Science.gov

Sample records for a-2 test stand

  1. Return to flight SSME test at A2 test stand

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Space Shuttle Main Engine (SSME) reached a historic milestone July 16, 2004, when a successful flight acceptance test was conducted at NASA Stennis Space Center (SSC). The engine tested today is the first complete engine to be tested and shipped in its entirety to Kennedy Space Center for installation on Space Shuttle Discovery for STS-114, NASA's Return to Flight mission. The engine test, which began about 3:59 p.m. CDT, ran for 520 seconds (8 minutes), the length of time it takes for the Space Shuttle to reach orbit.

  2. Final RTF SSME test at A2 test stand

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Space Shuttle's Main Engine (SSME) reached another milestone Aug. 19, 2004, when a successful flight acceptance test was conducted at NASA Stennis Space Center (SSC). The engine tested was the final of three engines that will carry the next Space Shuttle into orbit. The engine will be shipped to NASA Kennedy Space Center in Florida for installation on Space Shuttle Discovery for STS-114, NASA's Return to Flight mission. The engine test, which began about 8:10 p.m. CDT, ran for 520 seconds (8 minutes), the length of time it takes for the Space Shuttle to reach orbit.

  3. B-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The B-1 test stand, the largest of three test stands used for Space Shuttle Main Engine testing at Stennis Space Center, is a dual position engine stand that was modified for single-engine tests. This structure stands 295 feet tall or 407 feet tall with the crane fully extended.

  4. High Brightness Test Stand

    SciTech Connect

    Birx, D.L.; Caporaso, G.J.; Boyd, J.K.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Rogers, D. Jr.; Smith, M.W.

    1985-08-07

    The High Brightness Test Stand is a 2 MeV, less than or equal to 10 kA electron accelerator module. This accelerator module, designed as an upgrade prototype for the Advanced Test Accelerator (ATA), combines solid state nonlinear magnetic drives with state-of-the-art induction linac technology. The facility serves a dual role, as it not only provides a test bed for this new technology, but is used to develop high brightness electron optics. We will both further describe the accelerator, as well as present some of the preliminary electron optics measurements.

  5. Test Stand 500

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a ground level view of Test Stand 500 at the east test area of the Marshall Space Flight Center. Originally constructed in 1966, Test Stand 500 is a multipurpose, dual-position test facility. The stand was utilized to test liquid hydrogen/liquid oxygen turbopumps and combustion devices for the J-2 engine. One test position has a high superstructure with lines and tankage for testing liquid hydrogen and liquid oxygen turbopumps while the other position is adaptable to pressure-fed test programs such as turbo machinery bearings or seals. The facility was modified in 1980 to support Space Shuttle main engine (SSME) bearing testing.

  6. The Stimulus test stand

    SciTech Connect

    Christofek, L.; Rapidis, P.; Reinhard, A.; /Fermilab

    2005-06-01

    The Stimulus Test Stand was originally constructed and assembled for testing the SVX2 ASIC readout and then upgraded for SVX3 ASIC prototyping and testing. We have modified this system for SVX4 ASIC [1] prototype testing. We described the individual components below. Additional details for other hardware for SVX4 testing can be found in reference [2]. We provide a description of the Stimulus Test Stand used for prototype testing of the SVX4 chip.

  7. Planter unit test stand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A planter test stand was developed to evaluate individual row-crop metering units in early 2013. This test stand provided the ability to quantify actual seed metering in terms of population, seed spacing, skips, and multiples over a range of meter RPMs and vacuum pressures. Preliminary data has been...

  8. NEO Test Stand Analysis

    NASA Technical Reports Server (NTRS)

    Pike, Cody J.

    2015-01-01

    A project within SwampWorks is building a test stand to hold regolith to study how dust is ejected when exposed to the hot exhaust plume of a rocket engine. The test stand needs to be analyzed, finalized, and fabrication drawings generated to move forward. Modifications of the test stand assembly were made with Creo 2 modeling software. Structural analysis calculations were developed by hand to confirm if the structure will hold the expected loads while optimizing support positions. These calculations when iterated through MatLab demonstrated the optimized position of the vertical support to be 98'' from the far end of the stand. All remaining deflections were shown to be under the 0.6'' requirement and internal stresses to meet NASA Ground Support Equipment (GSE) Safety Standards. Though at the time of writing, fabrication drawings have yet to be generated, but are expected shortly after.

  9. Looking northeast from Test Stand 'A' superstructure towards Test Stand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking northeast from Test Stand 'A' superstructure towards Test Stand 'D' tower (4223/E-24, left background), Test Stand 'C' tower (4217/E-18, center), and Test Stand 'B' (4215/E-16, right foreground). - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  10. Numerical modeling of a 2K J-T heat exchanger used in Fermilab Vertical Test Stand VTS-1

    SciTech Connect

    Gupta, Prabhat Kumar; Rabehl, Roger

    2014-07-01

    Fermilab Vertical Test Stand-1 (VTS-1) is in operation since 2007 for testing the superconducting RF cavities at 2 K. This test stand has single layer coiled finned tubes heat exchanger before J-T valve. A finite difference based thermal model has been developed in Engineering Equation Solver (EES) to study its thermal performance during filling and refilling to maintain the constant liquid level of test stand. The model is also useful to predict its performance under other various operating conditions and will be useful to design the similar kind of heat exchanger for future needs. Present paper discusses the different operational modes of this heat exchanger and its thermal characteristics under these operational modes. Results of this model have also been compared with the experimental data gathered from the VTS-1 heat exchanger and they are in good agreement with the present model.

  11. EUV Engineering Test Stand

    SciTech Connect

    Tichenor, D.A.; Kubiak, G.D.; Replogle, W.C.; Klebanoff, L.E.; Wronosky, J.B.; Hale, L.C.; Chapman, H.N.; Taylor, J.S.; Folta, J.A.; Montcalm, C.; Hudyma, R.M.

    2000-02-14

    The Engineering Test Stand (ETS) is an EUV laboratory lithography tool. The purpose of the ETS is to demonstrate EUV full-field imaging and provide data required to support production-tool development. The ETS is configured to separate the imaging system and stages from the illumination system. Environmental conditions can be controlled independently in the two modules to maximize EUV throughput and environmental control. A source of 13.4 nm radiation is provided by a laser plasma source in which a YAG laser beam is focused onto a xenon-cluster target. A condenser system, comprised of multilayer-coated mirrors and grazing-incidence mirrors, collects the EUV radiation and directs it onto a-reflecting reticle. A four-mirror, ring-field optical system, having a numerical aperture of 0.1, projects a 4x-reduction image onto the wafer plane. This design corresponds to a resolution of 70nm at a k{sub 1} of 0.52. The ETS is designed to produce full-field images in step: and-scan mode using vacuum-compatible, one-dimension-long-travel magnetically levitated stages for both reticle and wafer. Reticle protection is incorporated into the ETS design. This paper provides a system overview of the ETS design and specifications.

  12. 20. Building 202, detail of stand A, rocket test stand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Building 202, detail of stand A, rocket test stand in test cell. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  13. A-1 Test Stand work

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A structural steel beam to support the new thrust measurement system on the A-1 Test Stand at NASA's John C. Stennis Space Center is lifted to waiting employees for installation. The beam is part of the thrust takeout structure needed to support the new measurement system. Four such beams have been installed at the stand in preparation for installation of the system in upcoming weeks. Operators are preparing the stand for testing the next generation of rocket engines for the U.S. space program.

  14. Crush Test Abuse Stand

    NASA Technical Reports Server (NTRS)

    Collins, Jacob; Jeevarajan, Judith; Salinas, Mike

    2011-01-01

    The purpose of this system is to simulate an internal short on battery cells by causing deformation (a crushing force) in a cell without penetration. This is performed by activating a hydraulic cylinder on one side of a blast wall with a hydraulic pump located on the other. The operator can control the rate of the crush by monitoring a local pressure gauge connected to the hydraulic cylinder or a load cell digital display located at the hydraulic pump control area. The internal short simulated would be considered a worst-case scenario of a manufacturer fs defect. This is a catastrophic failure of a cell and could be a very destructive event. Fully charged cells are to have an internal short simulated at the center of the length of the cell (away from terminals). The crush can be performed with a .- to 1-in. (.0.6- to 2.5-cm) rod placed crossways to the cell axis, causing deformation of the cell without penetration. The OCV (open-circuit voltage) and temperature of the cells, as well as the pressure and crushing force, are recorded during the operation. Occurrence of an internal short accompanied by any visible physical changes such as venting, fires, or explosions is reported. Typical analytical data examined after the test would be plots of voltage, temperature, and pressure or force versus time. The rate of crushing force can be increased or decreased based on how fast the operator pumps the hydraulic pump. The size of cylinder used to compress the battery cell can be easily changed by adding larger or smaller fittings onto the end of the hydraulic cylinder based on the battery/cell size being tested. The cell is crushed remotely and videotaped, allowing the operator to closely monitor the situation from a safe distance.

  15. 2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST STAND REMNANTS OF BUILDING-BLANK WHITE WALL ONLY ORIGINAL REMAINS. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  16. NIF PEPC Mechanical Test Stand Safety Note

    SciTech Connect

    Trent, J W

    1998-05-21

    The NIF PEPC Mechanical Test Stand is to be used in the building 432. Building 432 is being used to test components and processes for NIF. The test stand is to be bolted to the floor. The test stand provides a platform from which the PEPC kinematic repeatability and vibrational characteristics of the PEPC LRU can be tested. The test stand will allow user access to the LRU to install instrumentation and to make adjustments to the kinematics. The mechanical test stand is designed to hold the 1700 lb. PEPC LRU.

  17. Solid Propellant Test Article (SPTA) Test Stand

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Solid Propellant Test Article (SPTA) test stand with the Modified Nasa Motor (M-NASA) test article at the Marshall Space Flight Center (MSFC). The SPTA test stand, 12-feet wide by 12-feet long by 24-feet high, was built in 1989 to provide comparative performance data on nozzle and case insulation material and to verify thermostructural analysis models. A modified NASA 48-inch solid motor (M-NASA motor) with a 12-foot blast tube and 10-inch throat makes up the SPTA. The M-NASA motor is being used to evaluate solid rocket motor internal non-asbestos insulation materials, nozzle designs, materials, and new inspection techniques. New internal motor case instrumentation techniques are also being evaluated.

  18. TMS installation at A-1 Test Stand

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Stennis Space Center employees maneuver a new thrust measurement system in preparation for its installation on the A-1 Test Stand on March 3. The system was fabricated by Thrust Measurement Systems in Illinois and represents a state-of-the-art upgrade from the equipment used on the stand for more than 40 years. The A-1 Test Stand is being upgraded to provide testing for the next generation of rocket engines for America's space program.

  19. F-1 Engine Firing in Test Stand

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This photograph depicts the F-1 engine firing in the Marshall Space Flight Center's F-1 Engine Static Test Stand. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. It is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. The foundation of the stand is keyed into the bedrock approximately 40 feet below grade.

  20. 9. WEST SIDE, TEST STAND AND SUPERSTRUCTURE. TEST STAND 1B ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. WEST SIDE, TEST STAND AND SUPERSTRUCTURE. TEST STAND 1-B IN DISTANCE. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  1. Automated Test Stand for HEV Capacitor Testing

    SciTech Connect

    Seiber, Larry Eugene; Armstrong, Gary

    2007-01-01

    As capacitor manufacturers race to meet the needs of the hybrid-electric vehicle (HEV) of the future, many trade-offs at the system level as well as the component level must be considered. Even though the ultra-capacitor has the spot light for recent research and development (R&D) for HEVs, the electrostatic capacitor is also the subject of R&D (for HEVs as well as wireless communications). The Department of Energy has funded the Oak Ridge National Laboratory's Power Electronic and Electric Machinery Research Center to develop an automated test to aid in the independent testing of prototype electrostatic capacitors. This paper describes the design and development of such a stand.

  2. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  3. S-IC Static Test Stand

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Constructed in 1964, the S-IC Static Test Stand was designed to develop and test the first stage (S-IC) of the Saturn V launch vehicle. In the 1974 the test stand was modified to test the liquid hydrogen tank on the Space Shuttle External Tank. The facility was again modified in 1986 and its name was changed to the Advanced Engine Test Facility. These modifications were made to accommodate the Technology Test Bed engine which is a derivative of the Space Shuttle Main Engine.

  4. TMS delivered for A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A state-of-the-art thrust measurement system for the A-3 Test Stand under construction at NASA's John C. Stennis Space Center was delivered March 17. Once completed, the A-3 stand (seen in background) will allow simulated high-altitude testing on the next generation of rocket engines for America's space program. Work on the stand began in 2007, with activation scheduled for 2012. The stand is the first major test structure to be built at Stennis since the 1960s. The recently delivered TMS was fabricated by Thrust Measurement Systems in Illinois. It is an advanced calibration system capable of measuring vertical and horizontal thrust loads with an accuracy within 0.15 percent at 225,000 pounds.

  5. S-IC Test Stand Design Model

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo is of the S-IC test stand design model created prior to construction.

  6. S-IC Test Stand Design Model

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo is of the S-IC test stand design model.

  7. 8. TEST STAND 15, INVERTED ENGINE FIRING TEST, CIRCA 1963. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. TEST STAND 1-5, INVERTED ENGINE FIRING TEST, CIRCA 1963. Original is a color print. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  8. 24. SATURN V Fl ENGINE TEST FIRING ON TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SATURN V F-l ENGINE TEST FIRING ON TEST STAND 1A. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  9. 10. "TEST STAND 15, AIR FORCE FLIGHT TEST CENTER." ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. "TEST STAND 1-5, AIR FORCE FLIGHT TEST CENTER." ca. 1958. Test Area 1-115. Original is a color print, showing Test Stand 1-5 from below, also showing the superstructure of TS1-4 at left. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  10. SLS Test Stand Site Selection

    NASA Technical Reports Server (NTRS)

    Crowe, Kathryn; Williams, Michael

    2015-01-01

    Test site selection is a critical element of the design, development and production of a new system. With the advent of the new Space Launch System (SLS), the National Aeronautics and Space Administration (NASA) had a number of test site selection decisions that needed to be made early enough in the Program to support the planned Launch Readiness Date (LRD). This case study focuses on decisions that needed to be made in 2011 and 2012 in preparation for the April 2013 DPMC decision about where to execute the Main Propulsion Test that is commonly referred to as "Green Run." Those decisions relied upon cooperative analysis between the Program, the Test Lab and Center Operations. The SLS is a human spaceflight vehicle designed to carry a crew farther into space than humans have previously flown. The vehicle consists of four parts: the crew capsule, the upper stage, the core stage, and the first stage solid rocket boosters. The crew capsule carries the astronauts, while the upper stage, the core stage, and solid rocket boosters provide thrust for the vehicle. In other words, the stages provide the "lift" part of the lift vehicle. In conjunction with the solid rocket boosters, the core stage provides the initial "get-off-the-ground" thrust to the vehicle. The ignition of the four core stage engines and two solid rocket boosters is the first step in the launch portion of the mission. The solid rocket boosters burn out after about 2 minutes of flight, and are then jettisoned. The core stage provides thrust until the vehicle reaches a specific altitude and speed, at which point the core stage is shut off and jettisoned, and the upper stage provides vehicle thrust for subsequent mission trajectories. The integrated core stage primarily consists of a liquid oxygen tank, a liquid hydrogen tank, and the four core stage engines. For the SLS program, four RS-25 engines were selected as the four core stage engines. The RS-25 engine is the same engine that was used for Space

  11. Engineers conduct key water test for A-3 stand

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Water cascades from the A-2 Test Stand at Stennis Space Center as engineers challenge the limits of the high-pressure water system as part of the preparation process for the A-3 Test Stand under construction. Jeff Henderson, test director for Stennis' A Complex, led a series of tests Nov. 16-20, flowing water simultaneously on the A-1 and A-2 stands, followed by the A-1 and B-1 stands, to determine if the high-pressure industrial water facility pumps and the existing pipe system can support the needs of the A-3 stand. The stand is being built to test rocket engines that will carry astronauts beyond low-Earth orbit and will need about 300,000 gallons of water per minute when operating, but the Stennis system never had been tested to that level. The recent tests were successful in showing the water facility pumps can operate at that capacity - reaching 318,000 gallons per minute in one instance. However, officials continue to analyze data to determine if the system can provide the necessary pressure at that capacity and if the delivery system piping is adequate. 'We just think if there's a problem, it's better to identify and address it now rather than when A-3 is finished and it has to be dealt with,' Henderson said.

  12. 31. HISTORIC VIEW OF TEST STAND NO. 1 AT PEENEMUENDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. HISTORIC VIEW OF TEST STAND NO. 1 AT PEENEMUENDE A-4 ENGINE AND ROCKET PROPULSION TEST STAND. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  13. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Fabricated steel began arriving by truck Oct. 24 for construction of the A-3 Test Stand that will be used to test the engine for the nation's next generation of moon rockets. Within days workers from Lafayette Steel Erector Inc. began assembling the 16 steel stages needed on the foundation and footings poured in the previous year.

  14. A-3 Test Stand construction update

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The concrete foundation placed Dec. 18 (foreground) for Stennis Space Center's future A-3 Test Stand has almost completely cured by early January, according to Bo Clarke, NASA's contracting officer technical representative for the foundation contract. By late December, construction on foundations for many of the test stand's support structures - diffuser, liquid oxygen, isopropyl alcohol and water tanks and gaseous nitrogen bottle battery - had begun with the installation of (background) `mud slabs.' The slabs provide a working surface for the reinforcing steel and foundation forms.

  15. Airvolt Aircraft Electric Propulsion Test Stand

    NASA Technical Reports Server (NTRS)

    Samuel, Aamod; Lin, Yohan

    2015-01-01

    Development of an electric propulsion test stand that collects high-fidelity data of motor, inverter, and battery system efficiencies; thermal dynamics; and acoustics independent of manufacturer reported values will improve understanding of electric propulsion systems to be used in future aircraft. A buildup approach to this development reveals new areas of research and best practices in testing, and attempts to establish a standard for testing these systems.

  16. TMS installation at A-1 Test Stand

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A new thrust measurement system is lifted onto the A-1 Test Stand deck at NASA's John C. Stennis Space Center in preparation for its installation. The new system is a state-of-the-art upgrade for the testing structure, which is being prepared for testing of next-generation rocket engines. The system was fabricated by Thrust Measurement Systems in Illinois at a cost of about $3.5 million.

  17. TMS installation at A-1 Test Stand

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Employees at NASA's John C. Stennis Space Center complete installation of the new thrust measurement system on the A-1 Test Stand. The new TMS is a state-of-the-art upgrade from the previous system, which was installed when the testing structure was built in the 1960s. It is an advanced calibration system capable of measuring vertical and horizontal thrust loads with accuracy within 0.15 percent at 225,000 pounds. It also will allow engineers to measure thrust as they gimbal (or tilt) engines during tests. The new TMS is part of upgrades for the A-1 Test Stand in preparation for testing the next generation of American space program rocket engines.

  18. Test stand system for vacuum chambers

    NASA Technical Reports Server (NTRS)

    Newman, D. F. (Inventor)

    1973-01-01

    A test stand system for supporting test items in a vacuum chamber is described. The system consists of a frame adapted to conform to the inside of the vacuum chamber and supporting a central vertical shaft. The shaft rotates on bearings located at each end of the shaft. Several vertically spaced plates which fixed to the vertical shaft may be adjusted for height to support the test equipment as required. The test equipment may be rotated during tests without disturbing the vacuum by a manually actuated drive external to the vacuum chamber.

  19. PERSPECTIVE VIEW LOOKING NORTHEAST AT THE TEST STAND, NOTE THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PERSPECTIVE VIEW LOOKING NORTHEAST AT THE TEST STAND, NOTE THE SERVICE AND SUPPORT BUILDINGS TO THE LEFT AND RIGHT OF THE TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  20. 51. HISTORIC GENERAL VIEW LOOKING WEST AT THE TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. HISTORIC GENERAL VIEW LOOKING WEST AT THE TEST STAND WITH THE MERCURY REDSTONE ROCKET FULLY ASSEMBLED AND BEING PREPARED FOR TESTING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  1. 43. HISTORIC VIEW LOOKING SOUTHWEST AT THE TEST STAND WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. HISTORIC VIEW LOOKING SOUTHWEST AT THE TEST STAND WITH A REDSTONE ROCKET BEING FUELED AND PREPARED FOR TESTING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  2. 5. EAST SIDE, TEST STAND AND ITS SUPERSTRUCTURE. Edwards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EAST SIDE, TEST STAND AND ITS SUPERSTRUCTURE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  3. 1. VIEW NORTHEAST, LEFT TO RIGHT COLD CALIBRATION TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTHEAST, LEFT TO RIGHT COLD CALIBRATION TEST STAND COLD CALIBRATION BLOCKHOUSE IN FOREGROUND. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL

  4. 22. DETAIL, TWO LIGHTING TYPES AT REAR OF TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DETAIL, TWO LIGHTING TYPES AT REAR OF TEST STAND 1-A. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  5. Engineering design of vertical test stand cryostat

    SciTech Connect

    Suhane, S.K.; Sharma, N.K.; Raghavendra, S.; Joshi, S.C.; Das, S.; Kush, P.K.; Sahni, V.C.; Gupta, P.D.; Sylvester, C.; Rabehl, R.; Ozelis, J.; /Fermilab

    2011-03-01

    Under Indian Institutions and Fermilab collaboration, Raja Ramanna Centre for Advanced Technology and Fermi National Accelerator Laboratory are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities at 2K. The VTS cryostat has been designed for a large testing aperture of 86.36 cm for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Fermilab's Project-X. Units will be installed at Fermilab and RRCAT and used to test cavities for Project-X. A VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN{sub 2}) shield and vacuum vessel with external magnetic shield. The engineering design and analysis of VTS cryostat has been carried out using ASME B&PV Code and Finite Element Analysis. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel at the cavity surface <1 {micro}T. Thermal analysis for LN{sub 2} shield has been performed to check the effectiveness of LN{sub 2} cooling and for compliance with ASME piping code allowable stresses.

  6. 13. Photographic copy of site plan displaying Test Stand 'C' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photographic copy of site plan displaying Test Stand 'C' (4217/E-18), Test Stand 'D' (4223/E-24), and Control and Recording Center (4221/E-22) with ancillary structures, and connecting roads and services. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office 'Repairs to Test Stand 'C,' Edwards Test Station, Legend & Site Plan M-1,' drawing no. ESP/115, August 14, 1987. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA

  7. Photographic copy of site plan for proposed Test Stand "D" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of site plan for proposed Test Stand "D" in 1958. The contemporary site plans of test stands "A," "B," and "C" are also visible, along with the interconnecting tunnel system. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering "Site Plan for Proposed Test Stand "D" - Edwards Test Station," drawing no. ESP/22-0, 14 November 1958 - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  8. View looking northeast at Test Stand 'A' complex from road, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking northeast at Test Stand 'A' complex from road, showing Test Stand 'A' test tower (Building 4202/E-3) in left background, Monitor Building 4203/E-4 in right foreground, and barrier (Building 4216/E-17) behind 4203/E-4. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  9. View east northeast at Test Stand 'A' complex from road, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east northeast at Test Stand 'A' complex from road, showing Test Stand 'C' test tower in left background (Building 4217/E-18). Curved I-beam labeled '3-ton' is for small traveling hoist. Fuel tanks, propellant lines, and control panels have been removed from tower. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  10. 1. Photographic copy of original engineering drawing for Test Stand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photographic copy of original engineering drawing for Test Stand 'C.' California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'New Test Stand Plan -- Edwards Test Station' drawing no. E18/2-3, 18 January 1957. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA

  11. 38. HISTORIC CLOSER VIEW LOOKING WEST OF THE TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. HISTORIC CLOSER VIEW LOOKING WEST OF THE TEST STAND AND ROCKET DURING TEST FIRING NUMBER 10. NOTE THE NUMBER ALONG THE TOP RAIL OF THE STAND JUST TO THE RIGHT OF THE ROCKET, THIS NUMBER INDICATES WHAT NUMBER TEST IS BEING CONDUCTED. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  12. SSRL photocathode RF gun test stand

    SciTech Connect

    Hernandez, M.; Baltay, M.; Boyce, A.

    1995-12-31

    A photocathode RF gun test stand designed for the production and study of high brightness electron beams will be constructed at SSRL. The beam will be generated from a laser driven third generation photocathode RF gun being developed in collaboration with BNL, LBL, and UCLA. The 3-5 [MeV] beam from the gun will be accelerated using a SLAC three meter S-band accelerator section, in order to achieve the desired low emittance beam, emittance compensation with solenoidal focusing will be employed.

  13. View down into vertical flame channel of Test Stand 'A' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View down into vertical flame channel of Test Stand 'A' from superstructure. Wooden platform open side faces west. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  14. 2. View looking west southwest at Test Stand 'A' complex. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View looking west southwest at Test Stand 'A' complex. Monitor Building 4203/E-4 is hidden behind barrier (4216/E-17). - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Control Center, Edwards Air Force Base, Boron, Kern County, CA

  15. 45. HISTORIC AERIAL VIEW LOOKING SOUTHWEST AT THE TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. HISTORIC AERIAL VIEW LOOKING SOUTHWEST AT THE TEST STAND AND THE SURROUNDING ELECTRONICS AND EQUIPMENT TRAILERS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  16. View looking west at Test Stand 'A' complex in morning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking west at Test Stand 'A' complex in morning sun. View shows Monitor Building 4203/E-4 at left, barrier (Building 4216/E-17) to right of 4203/E-4, and Test Stand 'A' tower. Attached structure to lower left of tower is Test Stand 'A' machine room which contained refrigeration equipment. Building in right background with Test Stand 'A' tower shadow on it is Assembly Building 4288/E-89, built in 1984. Row of ground-mounted brackets in foreground was used to carry electrical cable and/or fuel lines. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  17. Credit BG. View looking southwest at Test Stand "D" complex. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looking southwest at Test Stand "D" complex. In the background at left is the Steam Generator Plant 4280/E-81 built in 1972 to house four gas-fired Clayton flash boilers. The boilers were later supplemented by the electrically heated steam accumulator (sphere) to supply steam to the various ejectors at Test Stand "D" vacuum test cells - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  18. 1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ OF THE X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  19. CLOSEUP VIEW LOOKING SOUTH AT THE SATURN I TEST STAND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOSE-UP VIEW LOOKING SOUTH AT THE SATURN I TEST STAND, NOTE THE INTERPRETIVE SIGN EXPLAINING THE HISTORIC NATURE OF THE SATURN I TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  20. Credit WCT. Photographic copy of photograph, view of Test Stand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Photographic copy of photograph, view of Test Stand "D" from Test Stand "A" while a rocket engine test is in progress. Cloud of steam is from partly from water created by propellant reaction and from water sprayed by flame bucket into engine exhaust for cooling purposes. A portion of Test Stand "C" is visible at the far right. (JPL negative no. 384-2082-B, 23 October 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  1. 40. VIEW LOOKING SOUTH AT THE STATIC TEST STAND DURING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. VIEW LOOKING SOUTH AT THE STATIC TEST STAND DURING A TEST OF AN F-1 ENGINE, DATE AND PHOTOGRAPHER UNKNOWN, MSFC PHOTO LAB. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  2. 49. HISTORIC GENERAL VIEW LOOKING NORTHWEST AT THE TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. HISTORIC GENERAL VIEW LOOKING NORTHWEST AT THE TEST STAND IN ITS CONFIGURATION FOR THE MERCURY-REDSTONE TESTING PROGRAM. NOTE THE MERCURY CAPSULE BEING ASSEMBLED IN THE FOREGROUND, ALSO NOTE THE LOAD CELL APPARATUS ON THE GROUND IN THE RIGHT OF THE PHOTOGRAPH. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  3. 7. ROCKET SLED ON DECK OF TEST STAND 15. Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. ROCKET SLED ON DECK OF TEST STAND 1-5. Photo no. "6085, G-EAFB-16 SEP 52." Looking south to machine shop. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  4. 21. Building 202, underside of test stand A, detail of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Building 202, underside of test stand A, detail of junction of scrubber structure and test stand with water pipes and valves visible. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  5. 37. HISTORIC GENERAL VIEW LOOKING WEST OF TEST STAND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. HISTORIC GENERAL VIEW LOOKING WEST OF TEST STAND AND ROCKET DURING TEST FIRING NUMBER 2. NOTE THE FLAME BEING EMITTED FROM THE BOTTOM OF THE ROCKET. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  6. 3. Credit WCT. Photographic copy of photograph, test Stand 'B' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Credit WCT. Photographic copy of photograph, test Stand 'B' during setup for an engine test, looking northwest. (JPL negative no. 384-9432, 1 May 1972) - Jet Propulsion Laboratory Edwards Facility, Test Stand B, Edwards Air Force Base, Boron, Kern County, CA

  7. 2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND GARAGE (BUILDING 1930) AT LEFT REAR. Looking to west. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  8. 9. BUILDING 8769, EAST REAR AND NORTH SIDE, TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. BUILDING 8769, EAST REAR AND NORTH SIDE, TEST STAND AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  9. 5. BUILDING 8768, SOUTH SIDE AND EAST REAR. TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. BUILDING 8768, SOUTH SIDE AND EAST REAR. TEST STAND 1A AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  10. 3. BUILDING 8767, NORTH REAR AND WEST SIDE, TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. BUILDING 8767, NORTH REAR AND WEST SIDE, TEST STAND 1-A AT FAR RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  11. 8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND DURING AN ENGINE FIRING. DATE UNKNOWN, FRED ORDWAY COLLECTION, U.S. SPACE AND ROCKET CENTER, HUNTSVILLE, AL. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  12. Detail of north side of Test Stand 'A' base, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of north side of Test Stand 'A' base, showing tanks for distilled water (left), fuel (center), and gaseous nitrogen (right). Other tanks present for tests were removed before this image was taken. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  13. 44. HISTORIC VIEW LOOKING WEST AT THE TEST STAND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. HISTORIC VIEW LOOKING WEST AT THE TEST STAND AND ROCKET BEING PREPARED FOR TESTING. NOTE THE LOAD CELL APPARATUS ABOVE THE ROCKET AND THE EQUIPMENT PLATFORM TO THE LEFT OF THE LOAD CELL HAVE BEEN ENCLOSED FOR PROTECTION FROM THE CLIMATE. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  14. Credit BG. View looking west down into Test Stand "D" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looking west down into Test Stand "D" vertical vacuum cell with top removed. Access to cell is normally through large round port seen in view. Piping and cradling toward bottom of cell was last used in tests of Viking space probe engines - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  15. 25. STATIC TEST TOWER WEST SIDE STANDING ON FLAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. STATIC TEST TOWER WEST SIDE - STANDING ON FLAME DEFLECTOR GRILL LOOKING UP TOWARDS F-1 ENGINE SET UP. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  16. 9. Building 202 test stand B and exhaust scrubber stack, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Building 202 test stand B and exhaust scrubber stack, looking southwest from concrete apron north of Building 202 test cell. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  17. Credit BG. View west of Test Stand "D" complex, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View west of Test Stand "D" complex, with ends of Dd (left) and Dy (right) station ejectors in view. Steam piping from accumulator (sphere) to ejectors is apparent; long horizontal loops in the pipes permit expansion and contraction without special joints. The small platform straddling the Dd ejector (near the accumulator) was originally constructed for a "Hyprox" steam generator which supplied steam to the Dd ejector before the accumulator and Dy stand were built. Note ejectors on top of interstage condenser in Test Stand "D" tower. Metal shed in far right background is for storage - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  18. Stand for testing the electrical race car engine

    NASA Astrophysics Data System (ADS)

    Baier, M.; Franiasz, J.; Mierzwa, P.; Wylenzek, D.

    2015-11-01

    An engine test stand created especially for research of electrical race car is described in the paper. The car is an aim of Silesian Greenpower project whose participants build and test electrical vehicles to take part in international races in Great Britain. The engine test stand is used to test and measure the characteristics of vehicles and their engines. It has been designed particularly to test the electric cars engineered by students of Silesian Greenpower project. The article contains a description how the test stand works and shows its versatility in many areas. The paper presents both construction of the test stand, control system and sample results of conducted research. The engine test stand was designed and modified using PLM Siemens NX 8.5. The construction of the test stand is highly modular, which means it can be used both for testing the vehicle itself or for tests without the vehicle. The test stand has its own wheel, motor, powertrain and braking system with second engine. Such solution enables verifying various concepts without changing the construction of the vehicle. The control system and measurement system are realized by enabling National Instruments product myRIO (RIO - Reconfigurable Input/Output). This controller in combination with powerful LabVIEW environment performs as an advanced tool to control torque and speed simultaneously. It is crucial as far as the test stand is equipped in two motors - the one being tested and the braking one. The feedback loop is realized by an optical encoder cooperating with the rotor mounted on the wheel. The results of tests are shown live on the screen both as a chart and as single values. After performing several tests there is a report generated. The engine test stand is widely used during process of the Silesian Greenpower vehicle design. Its versatility enables powertrain testing, wheels and tires tests, thermal analysis and more.

  19. 39. HISTORIC VIEW LOOKING WEST AT THE TEST STAND WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. HISTORIC VIEW LOOKING WEST AT THE TEST STAND WITH THE COLD CALIBRATION TOWER CONSTRUCTED TO THE LEFT OF THE ROCKET AND AN ACCESS PLATFORM BUILT TO REACH THE TOP OF THE ROCKET MORE EASILY. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  20. 4. Credit WCT. Photographic copy of photograph, test Stand 'B' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Credit WCT. Photographic copy of photograph, test Stand 'B' set up for shock tube and research on ship-to-ship fueling problems for the U.S. Coast Guard. (JPL negative no. 344-3743-A, October or November 1980) - Jet Propulsion Laboratory Edwards Facility, Test Stand B, Edwards Air Force Base, Boron, Kern County, CA

  1. 22. HISTORIC VIEW OF EARLY TEST STAND IN GERMANY PERHAPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. HISTORIC VIEW OF EARLY TEST STAND IN GERMANY PERHAPS THE ENGINE IS FOR THE VFR'S (VEREIN FUER RAUMSCHIFFAHRT) 4 STICK REPULSOR. ENGINE IN PHOTOS IS BEING TANKED WITH LOX (NOTICE THE FROST FORMING AT THE BOTTOM OF THE TANK BEHIND THE LADDER. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  2. 1. Credit GE. Photographic copy of photograph, test Stand 'A' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Credit GE. Photographic copy of photograph, test Stand 'A' reinforced concrete foundation under construction as seen from the southeast. Formwork is being removed as refractory brick lining is being laid in flame pit at the center. (JPL negative no. 383-763, 8 March 1945) - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  3. Construction Progress of the F-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were constructed during this time frame. Built just north of the massive S-IC test stand was the F-1 Engine test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the

  4. Construction Progress of the F-1 Engine Test Stand

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of

  5. Construction Progress of the F-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F

  6. Construction Progress of the F-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F

  7. Construction Progress of the F-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Northeast of the massive S-IC test stand, the F-1 Engine test stand was built. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the

  8. Construction Progress of the F-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F

  9. Construction Progress of the F-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F

  10. 10. ENGINE TEST CELL BUILDING INTERIOR. CELL 4, MOUNTING STAND. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. ENGINE TEST CELL BUILDING INTERIOR. CELL 4, MOUNTING STAND. LOOKING NORTHWEST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  11. Credit BG. Test Stand "D" tower as seen looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Test Stand "D" tower as seen looking northeast (See caption for CA-163-F-18). To the right of the view is the stainless steel dome top for Dv Cell (see CA-163-F-22 for view into cell), behind which rests a spherical accumulator--an electrically heated steam generator for powering the vacuum system at "C" and Test Stand "D." Part of the ejector system can be seen on the right corner of the tower, other connections include electrical ducts (thin, flat metal members) and fire protection systems. Note the stand in the foreground with lights used to indicate safety status of the stand during tests - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  12. Construction Progress of the F-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken

  13. Construction Progress of the F-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo shows

  14. Construction Progress of the F-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken

  15. Construction Progress of the F-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts

  16. Credit WCT. Photographic copy of photograph, view of Test Stand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Photographic copy of photograph, view of Test Stand "D" from the south with tower ejector system in operation during a 1972 engine test. Note steam evolving from Z-stage ejectors atop the interstage condenser in the tower. Note also the "Hyprox" steam generator straddling the Dd ejector train to the right. The new Dy horizontal train has not been erected as of this date. In the distance is Test Stand "E." (JPL negative no. 384-9766-AC, 28 November 1972) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  17. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. In this photo of the S-IC test stand, taken October 2, 1963, the flame deflector can be seen in the bottom center portion

  18. 5. "TEST STAND 13, CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. "TEST STAND 1-3, CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/17, Rev. A. Stamped: AS BUILT; NO CHANGES. Date of Revision A: 11/1/50. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  19. 9. "TEST STAND; STRUCTURAL; CABLE TUNNEL, PLAN, SECTIONS, DETAILS." Specifications ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. "TEST STAND; STRUCTURAL; CABLE TUNNEL, PLAN, SECTIONS, DETAILS." Specifications No. OC1-55-72-(Rev.); Drawing No. 60-09-12; sheet 43 of 148; file no. AF 1320/94, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  20. 27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL FRAMING ELEVATIONS." Specifications No. ENG-04353-55-72; Drawing No. 60-09-12; sheet 27 of 148; file no. 1320/78. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, Rev. B; date: 15 April 1957. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  1. 11. "INSTRUMENTATION AND CONTROL SYSTEMS, EQUIPMENT LOCATION, TEST STAND TERMINAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. "INSTRUMENTATION AND CONTROL SYSTEMS, EQUIPMENT LOCATION, TEST STAND TERMINAL ROOM, PLANS AND SECTION." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 106 of 148; file no. 1321/57. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  2. 12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." Specifications No. ENG-04-353-55-72; Drawing No. 60-09-12; sheet 41 of 148; file no. 1320/92, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  3. 8. "TEST STAND, ARCHITECTURAL, FLOOR PLANS AND SCHEDULES." Specifications No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. "TEST STAND, ARCHITECTURAL, FLOOR PLANS AND SCHEDULES." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 22 of 148; file no. 1320/73. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  4. 40. HISTORIC VIEW LOOKING WEST AT THE TEST STAND. NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. HISTORIC VIEW LOOKING WEST AT THE TEST STAND. NOTE THE LOAD CELL APPARATUS LOCATED ABOVE THE ROCKET. THE SPACE BETWEEN THE BOTTOM OF THE LOAD CELL APPARATUS AND THE TOP OF THE ROCKET IS THE DIFFERENCE IN SIZE BETWEEN THE REDSTONE ROCKET AND ITS DECEDENT THE JUPITER C ROCKET. THE GAP IS FILLED WITH A SPACER WHEN THEY TEST A REDSTONE ROCKET. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  5. Isopropyl alcohol tank installed at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2009-01-01

    An isopropyl alcohol (IPA) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen IPA, water and liquid oxygen (LOX) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  6. Liquid oxygen tank installed at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A liquid oxygen (LOX) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen LOX, isopropyl alcohol (IPA) and water tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  7. Water tank installed at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  8. 3. "TEST STAND NO. 13, EXCAVATION PLAN & SECTIONS." Specifications ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. "TEST STAND NO. 1-3, EXCAVATION PLAN & SECTIONS." Specifications No. ENG 04-353-50-10; Drawing No. 60-0906; no sheet number within title block; D.O. SERIES 1109/10. Stamped: AS BUILT. No revisions or revision dates. Last work date on this drawing "Checked by EAG, 1/31/49." Though this drawing is specific to Test Stand 1-3, it also illustrates the general methods used for excavation design and retaining wall construction at Test Stand 1-5. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  9. 1. TEST STAND 1A ENVIRONS, SHOWING WEST SIDE OF TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. TEST STAND 1-A ENVIRONS, SHOWING WEST SIDE OF TEST STAND 1-A, RP1 COMBINED FUEL STORAGE TANK FARM BELOW WATER TANKS ON HILLSIDE TO LEFT, AND TEST STAND 1-B IN DISTANCE AT RIGHT. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  10. SPALLATION NEUTRON SOURCE HIGH-POWER PROTECTION MODULE TEST STAND

    SciTech Connect

    Lee, Sung-Woo; Ball, Jeffrey Allen; Crofford, Mark T; Davidson Jr, Taylor L; Jones, Stacey L; Hardek, Thomas W

    2010-01-01

    The Spallation Neutron Source (SNS) High-Power Protection Module (HPM) provides interlocks and fast shutdown for the radio frequency (RF) system to protect the accelerating structures and high power RF (HPRF) Distribution System. The HPM has required some functional upgrades since the start of beam operations and an upgrade to the HPM test stand was required to support these added features. The HPM test stand currently verifies functionality, RF channel calibration, and measurement of the speed of shutdown to ensure the specifications are met. The upgraded test stand was implemented in a Field Programmable Gate Array (FPGA) to allow for future growth and flexibility. Work is currently progressing on automation of the test stand to better perform the required module calibration schedule.

  11. 6. VIEW OF FLAME DEFLECTOR DIRECTLY UNDER CAPTIVE TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF FLAME DEFLECTOR DIRECTLY UNDER CAPTIVE TEST STAND WITH MOBILE SERVICE STRUCTURE IN BACKGROUND; VIEW TO WEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  12. Redstone Test Stand Accepted Into National Register of Historical Places

    NASA Technical Reports Server (NTRS)

    1976-01-01

    On October 02, 1976, Marshall Space Flight Center's (MSFC) Redstone test stand was received into the National Registry of Historical Places. Photographed in front of the Redstone test stand along with their wives are (left to right), Madison County Commission Chairman James Record, Dr. William R. Lucas, MSFC Center Director from June 15, 1974 until July 3, 1986, (holding certificate), Ed, Buckbee, Space and Rocket Center Director; Harvie Jones, Huntsville Architect; Dick Smith; and Joe Jones.

  13. Redstone Test Stand Accepted Into National Register of Historical Places

    NASA Technical Reports Server (NTRS)

    1976-01-01

    On October 02, 1976, Marshall Space Flight Center's (MSFC) Redstone test stand was received into the National Registry of Historical Places. Photographed in front of the Redstone test stand are Dr. William R. Lucas, MSFC Center Director from June 15, 1974 until July 3, 1986, as he is accepting a certificate of registration from Madison County Commission Chairman James Record, and Huntsville architect Harvie Jones.

  14. Credit BG. West elevation of Test Stand "D" tower, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. West elevation of Test Stand "D" tower, with workshop on left, and tunnel entrance at right. Tower is accessed by exterior steel stairway; the vertical vacuum cell (Dv Cell) is obscured behind large square sunscreen. Below the sunscreen can be seen the end of the horizontal vacuum duct leading from the vacuum cell - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  15. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. In this photo, taken September 5, 1963, the flame deflector is being installed in the S-IC test stand.

  16. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. In this photo of the S-IC test stand, taken September 25, 1963, the flame deflector can be seen rotated to the outside on

  17. VIEW LOOKING NORTH AWAY FROM THE SATURN I TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTH AWAY FROM THE SATURN I TEST STAND LOOKING AT THE OBSERVATION AND CONTROL BUNKER. NOTE THE SATURN V AND SATURN I STRUCTURAL TEST FACILITIES IN THE BACKGROUND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  18. Modification Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1975-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was originally designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage. Modifications to the S-IC Test Stand began in 1975 to accommodate space shuttle external tank testing. This photo depicts the continuation of the modification process as of July 14, 1975. The flame deflector originally used to provide water to the 5 F-1 engines of the S-IC stage during testing has been removed.

  19. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of October 22, 1963. Spherical liquid hydrogen tanks can be seen to the left. Just to the lower front of those are the cylindrical liquid oxygen (LOX) tanks.

  20. Construction Progress of the S-IC Test Stand Towers

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken April 4, 1963, gives a close up look at the ever-growing four towers of the S-IC Test Stand.

  1. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph taken March 29, 1963, gives a close up look at two of the ever-growing four towers of the S-IC Test Stand.

  2. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of October 10, 1963. Spherical liquid hydrogen tanks can be seen to the left.

  3. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of November 20, 1963.

  4. Construction Progress of S-IC Test Stand Towers

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph taken April 17, 1963, gives a look at the four tower legs of the S-IC test stand at their completed height.

  5. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken June 24, 1963, the four tower legs of the test stand can be seen at their maximum height.

  6. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of October 10, 1963. Kerosene storage tanks can be seen to the left.

  7. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph taken February 25, 1963, gives a close up look at two of the ever-growing four towers of the S-IC Test Stand.

  8. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken May 7, 1963, gives a close look at the four concrete tower legs of the S-IC test stand at their completed height.

  9. Construction Progress of the S-IC Test Stand Tower

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken from ground level on May 7, 1963, gives a close look at one of the four towers legs of the S-IC test stand nearing its completed height.

  10. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress as of August 5, 1961. Heavy equipment continues to clear the test stand site.

  11. 1. BUILDING 8698, TEST STAND 13, WEST ELEVATION. NOTE TUNNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BUILDING 8698, TEST STAND 1-3, WEST ELEVATION. NOTE TUNNEL BETWEEN BLDG. 8668 AND TEST STAND 1-3. TEST AREA 1-120 IN THE MIDDLE DISTANCE, AND TEST AREA 1-125 ON THE HORIZON. Looking northeast from the roof of Building 8668, Instrumentation and Control Center. Note: Photograph CA-236-F-2 is an 8" x 10" enlargement from a 4" x 5" negative. This view is a photocopy of a recent resin coated print made from a print held at the Main Base History Office, Edwards Air Force Base, California. Photographer unknown. Date and file number unknown. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  12. Saturn V S-IC Stage at Dynamic Test Stand

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Engineers and technicians at the Marshall Space Flight Center placed a Saturn V ground test booster (S-IC-D) into the dynamic test stand. The stand was constructed to test the integrity of the vehicle. Forces were applied to the tail of the vehicle to simulate the engines thrusting, and various other flight factors were fed to the vehicle to test reactions. The Saturn V launch vehicle, with the Apollo spacecraft, was subjected to more than 450 hours of shaking. The photograph shows the 300,000 pound S-IC stage being lifted from its transporter into place inside the 360-foot tall test stand. This dynamic test booster has one dummy F-1 engine and weight simulators are used at the other four engine positions.

  13. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, depicts the progress of the stand as of January 14, 1963, with its four towers prominently rising.

  14. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This construction photo depicts the progress of the stand site as of October 8, 1962.

  15. 30. Historic view of twentythousandpound rocket test stand with engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Historic view of twenty-thousand-pound rocket test stand with engine installation in test cell of Building 202, looking down from elevated location, September 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45872. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  16. 35. Historic photo of Building 202 test stand with damage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Historic photo of Building 202 test stand with damage to twenty-thousand-pound-thrust rocket engine related to failure during testing, September 16, 1958. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-48704. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  17. 29. Historic view of twentythousandpound rocket test stand with engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Historic view of twenty-thousand-pound rocket test stand with engine installation in test cell of Building 202, September 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45870. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  18. Construction Progress S-IC Test Stand Block House Interior

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photograph, taken August 12, 1963, offers a view of the Block House interior.

  19. Construction Progress of S-IC Test Stand Pump House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast east was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. This photograph of the Pump House area was taken August 13, 1963. The massive round water storage tanks can be seen to the left of

  20. 4. "TEST STAND NO. 13, CONCRETE STRUCTURAL PLAN AND ELEVATION." ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. "TEST STAND NO. 1-3, CONCRETE STRUCTURAL PLAN AND ELEVATION." Specifications No. OC11-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/12 REV. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. E; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  1. 6. "TEST STAND NO. 13, RETAINING WALLS & APRON, SECTIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. "TEST STAND NO. 1-3, RETAINING WALLS & APRON, SECTIONS & ELEVATIONS." Specifications No. OC11-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/20, Rev. B. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. B; Date: 26 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  2. 10. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/14, Rev. B. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. B; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  3. 14. "TEST STANDS NOS. 11, 13, & 15; MISCELLANEOUS DETAILS." ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. "TEST STANDS NOS. 1-1, 1-3, & 1-5; MISCELLANEOUS DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/22, Rev. D. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. D, no change; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  4. 16. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; ELEVATIONS AND SECTIONS." Specifications No. ENG 04353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/35, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. A; Date: 29 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  5. 11. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/15, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  6. 12. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/16, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 26 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  7. 9. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. ENG 04-35350-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/13. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, no change; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  8. 15. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; PLAN & DETAILS." Specifications No. ENG 04-353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/34, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. A, no change; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  9. 13. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/18, Rev. D. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. D, no change; Date: 18 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  10. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 5, 1961, shows pumps used for extracting water emerging form a disturbed natural spring that occurred during the excavation of the site. The pumping became a daily ritual and the site is still pumped today.

  11. 32. Historic view of Building 202 test stand A with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Historic view of Building 202 test stand A with rocket engine, close-up detail of engine, November 19, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-46492. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  12. 31. Historic view of Building 202 test stand A with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Historic view of Building 202 test stand A with rocket engine, November 19, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-46491. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  13. 5. EDGE OF CAPTIVE TEST STAND THREE FERROCEMENT APRON AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EDGE OF CAPTIVE TEST STAND THREE FERROCEMENT APRON AT FAR LEFT, CONNECTING TUNNEL AT CENTER, CONTROL BUILDING B AT RIGHT, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Control Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  14. 25. "TEST STAND 1A UTILIZED TO TEST THE ATLAS ICBM", ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. "TEST STAND 1-A UTILIZED TO TEST THE ATLAS ICBM", CROPPED OUT: "DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB." Photo no. 11,371 57; G-AFFTC 15 OCT 57. Looking southwest from below the stand. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  15. Analysis of seated and standing triple Wingate tests.

    PubMed

    Wilson, Robert W; Snyder, Ann C; Dorman, Jason C

    2009-05-01

    Observations of athletes in seated and standing cycling positions in laboratory and field settings have led to the perception that they produce different outputs. The purpose of this study was to determine whether there are differences in power output and physiological responses between seated and standing positions of athletes during 3 consecutive Wingate tests. Seven (n = 7) elite-level speedskaters completed 3 x 30-second Wingate tests (resistance = 7.5% body weight) with 3.5 minutes of recovery between each test in both seated and standing positions. During the recovery period, athletes pedaled against no resistance in the seated position. Testing was randomized and separated by at least 48 hours. Power output, heart rate, blood lactate, and muscle oxygenation data were collected. Statistical analysis of comparable tests (i.e., seated Wingate test 1 [WinD1] compared with standing Wingate test 1 [WinU1]; WinD2:WinU2; WinD3:WinU3) revealed no significant differences between the seated and standing variables. Position during a short-duration maximal-effort exercise test on a stationary bike did not produce statistically different results in power, maximal heart rate, blood lactate, or muscle oxygenation. As no differences were detected between positions, practitioners can allow subjects to choose their position. Also, if a subject rises out of the seat during a "seated" test, this change may not affect the subject's physiological variables. However, transitioning from one position to the other during the test is not advised due to the possible chance of injury. It should be acknowledged that there may be reasons for stipulating one position over another (e.g., injuries, leg length). PMID:19387391

  16. Inflight exercise affects stand test responses after space flight

    NASA Technical Reports Server (NTRS)

    Lee, S. M.; Moore, A. D. Jr; Fritsch-Yelle, J. M.; Greenisen, M. C.; Schneider, S. M.

    1999-01-01

    PURPOSE: The purpose of this study was to determine whether exercise performed by Space Shuttle crew members during short-duration space flights (9-16 d) affects the heart rate (HR) and blood pressure (BP) responses to standing within 2-4 h of landing. METHODS: Thirty crew members performed self-selected inflight exercise and maintained exercise logs to monitor their exercise intensity and duration. Two subjects participated in this investigation during two different flights. A 10-min stand test, preceded by at least 6 min of quiet supine rest, was completed 10-15 d before launch (PRE) and within 4 h of landing (POST). Based upon their inflight exercise records, subjects were grouped as either high (HIex: > or = 3 times/week, HR > or = 70% HRmax, > or = 20 min/session, N = 11), medium (MEDex: > or = 3 times/week, HR < 70% HRmax, > or = 20 min/session, N = 10), or low (LOex: < or = 3 times/week, HR and duration variable, N = 11) exercisers. HR and BP responses to standing were compared between groups (ANOVA, P < or = 0.05). RESULTS: There were no PRE differences between the groups in supine or standing HR and BP. Although POST supine HR was similar to PRE, all groups had an increased standing HR compared with PRE. The increase in HR upon standing was significantly greater after flight in the LOex group (36 +/- 5 bpm) compared with HIex or MEDex groups (25 +/- 1 bpm; 22 +/- 2 bpm). Similarly, the decrease in pulse pressure (PP) from supine to standing was unchanged after space flight in the MEDex and HIex groups but was significantly greater in the LOex group (PRE: -9 +/- 3; POST: -19 +/- 4 mm Hg). CONCLUSIONS: Thus, moderate to high levels of inflight exercise attenuated HR and PP responses to standing after space flight.

  17. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photograph taken on August 5th, 1961, a back hoe is nearly submerged in water in the test stand site. During the initial digging, the disturbance of a natural spring contributed to constant water problems during the construction process. It was necessary to pump the water from the site on a daily basis and is still pumped from the site today.

  18. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 14, 1961. Water gushing in from the disturbance of a natural spring contributed to constant water problems during the construction process. It was necessary to pump water from the site on a daily basis and is still pumped from the site today. The equipment is partially submerged in the water emerging from the spring.

  19. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In the early stages of excavation, a natural spring was disturbed that caused a water problem which required constant pumping from the site and is even pumped to this day. Behind this reservoir of pumped water is the S-IC test stand boasting its ever-growing four towers as of March 29, 1963.

  20. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 5, 1961, shows the construction of forms which became the concrete foundation for the massive stand. The lower right hand corner reveals a pump used for extracting water emerging from a disturbed natural spring that occurred during excavation of the site. The pumping became a daily ritual and the site is still pumped today.

  1. CONSTRUCTION AND EVALUATION OF A FLOW TEST STAND

    EPA Science Inventory

    A test stand for the examination of flow monitors in a 3-inch pipe was designed, constructed, and evaluated. The calculations necessary for the proper design are based on empirical data and are described in detail. A statistical analysis was used to estimate the error generated f...

  2. 2. GENERAL VIEW DOWN TO CAPTIVE TEST STAND. STEEL SERVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW DOWN TO CAPTIVE TEST STAND. STEEL SERVICE DECK REMOVED. BASE OF UMBILICAL TOWER AT RIGHT AND FLUME LEADING TO DELUGE BASIN AT CENTER; VIEW TO SOUTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  3. A Cryogenic test stand for LHC quadrupole magnets

    SciTech Connect

    R. J. Rabehl et al.

    2004-03-09

    A new test stand for testing LHC interaction region (IR) quadrupole magnets at the Fermilab Magnet Test Facility has been designed and operated. The test stand uses a double bath system with a lambda plate to provide the magnet with a stagnant bath of pressurized He II at 1.9 K and 0.13 MPa. A cryostated magnet 0.91 m in diameter and up to 13 m in length can be accommodated. This paper describes the system design and operation. Issues related to both 4.5 K and 1.9 K operations and magnet quenching are highlighted. An overview of the data acquisition and cryogenics controls systems is also included.

  4. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. After a six month delay in construction due to size reconfiguration of the Saturn booster, the site was revisited for modifications in March 1962. The original foundation walls built in the prior year were torn down and re-poured to accommodate the larger boosters. This photo depicts that modification progress as of June 13,1962.

  5. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. After a 6 month delay in construction due to size reconfiguration of the Saturn booster, the site was revisited for modifications. The original foundation walls built in the prior year had to be torn down and re-poured to accommodate the larger booster. The demolition can be seen in this photograph taken on May 21, 1962.

  6. The cryomodule test stand at the European Spallation Source

    SciTech Connect

    Hees, W.; Weisend II, J. G.; Wang, X. L.; Köttig, T.

    2014-01-29

    The European Spallation Source (ESS) is an intergovernmental project building a multidisciplinary research laboratory based upon the world's most powerful neutron source to be built in Lund, Sweden. The ESS will use a linear accelerator which will deliver protons with 5 MW of power to the target at 2.5 GeV with a nominal current of 50 mA. The superconducting part of the linac consists of over 150 niobium cavities cooled with superfluid helium at 2 K. A dedicated cryoplant will supply the cryomodules with single phase helium through an external cryogenic transfer line. The elliptical cavity cryomodules will undergo their site acceptance tests at the ESS cryomodule test stand in Lund. This test stand will use a 4.5 K cryoplant and warm sub-atmospheric compression to supply the 2 K helium. We will show the requirements for the test stand, a layout proposal and discuss the factors determining the required cryogenic capacity, test sequence and schedule.

  7. 28. HISTORIC VIEW OF A3 ROCKET IN TEST STAND NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. HISTORIC VIEW OF A-3 ROCKET IN TEST STAND NO. 3 AT KUMMERSDORF (THE LARGEST TEST STAND AT KUMMERSDORF). THE STAND WAS MOBILE, SINCE IT MOVED ALONG RAILS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  8. RP-1 delivered to E-1 Test Stand

    NASA Technical Reports Server (NTRS)

    2010-01-01

    NASA John C. Stennis Space Center employee Dustan Ladner (left) assists tanker driver David Velasco in transferring RP-1 fuel to a 20,000-gallon underground tank at the E-1 Test Stand during a March 30 delivery. The rocket propellant will be used for testing Aerojet AJ26 rocket engines beginning this summer. Stennis is testing the engines for Orbital Sciences Corporation, which has partnered with NASA to provide eight supply missions to the International Space Station through 2015. The partnership is part of NASA's Commercial Orbital Transportation Services initiative to work closer with companies to provide commercial space transport once the space shuttle is retired later this year.

  9. Cryogenic System for the Cryomodule Test Stand at Fermilab

    NASA Astrophysics Data System (ADS)

    White, Michael; Hansen, Benjamin; Klebaner, Arkadiy

    2015-12-01

    This paper describes the cryogenic system for the Cryomodule Test Stand (CMTS) at the new Cryomodule Test Facility (CMTF) located at Fermilab. CMTS is designed for production testing of the 1.3 GHz and 3.9GHz cryomodules to be used in the Linac Coherent Light Source II (LCLSII), which is an upgrade to an existing accelerator at Stanford Linear Accelerator Laboratory (SLAC). This paper will focus on the cryogenic system that extends from the helium refrigeration plant to the CMTS cave. Topics covered will include component design, installation and commissioning progress, and operational plans. The paper will conclude with a description of the heat load measurement plan.

  10. Brightness measurements on the Livermore high brightness test stand

    SciTech Connect

    Caporaso, G.J.; Birx, D.L.

    1985-05-09

    Several techniques using small radius collimating pipes with and without axial magnetic fields to measure the brightness of an extracted 1 - 2 kA, 1 - 1.5 MeV electron beam will be described. The output beam of the High Brightness Test Stand as measured by one of these techniques is in excess of 2 x 10/sup 5/ amp/cm/sup 2//steradian. 5 refs., 4 figs.

  11. THE SPALLATION NEUTRON SOURCE CRYOMODULE TEST STAND RF SYSTEM

    SciTech Connect

    Crofford, Mark T; Ball, Jeffrey Allen; Davidson Jr, Taylor L; Hardek, Thomas W; Heidenreich, Dale A; Kasemir, Kay; Kim, Sang-Ho; Kang, Yoon

    2008-01-01

    The Spallation Neutron Source (SNS) has recently commissioned a cryomodule test facility for the repair and testing of the super-conducting radio-frequency (SRF) cavities. This facility utilizes the original 402.5/805 MHz Radio Frequency (RF) Klystron Test Stand as its power source along with dual Low Level RF (LLRF) control systems. One control system is based on the standard SNS Linac LLRF controls with a second system for open-loop only control. The system is designed to allow simultaneous testing of devices in the test cave and other devices which can be tested outside of the enclosure. Initial tests have shown good results; some improvements are yet to be implemented.

  12. 9. COLD CALIBRATION TEST STAND (H1) FROM LEFT TO RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. COLD CALIBRATION TEST STAND (H-1) FROM LEFT TO RIGHT - WORK BENCH, CONTROL PANEL, CHEMICAL TANK. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL

  13. 2. CLOSE UP OF CAPTIVE TEST STAND D4, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CLOSE UP OF CAPTIVE TEST STAND D-4, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  14. 1. CAPTIVE TEST STAND D4, CONNECTING TUNNELS AT RIGHT, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CAPTIVE TEST STAND D-4, CONNECTING TUNNELS AT RIGHT, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  15. 1. CAPTIVE TEST STAND D1 FROM THE FERROCEMENT APRON, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CAPTIVE TEST STAND D-1 FROM THE FERROCEMENT APRON, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  16. 5. VIEW NORTH/NORTHEAST OBSERVATION BUNKER FOR POWER PLANT TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW NORTH/NORTHEAST OBSERVATION BUNKER FOR POWER PLANT TEST STAND (LATER VERSION) INTERIOR AND PARTIAL EXTERIOR. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  17. The cathode test stand for the DARHT second-axis

    SciTech Connect

    Fortgang, C.; Monroe, M.; Prono, D.; Hudson, C.; Macy, D.; Moy, K.

    1998-12-31

    The injector for the DARHT second-axis injector will use an 8-in. thermionic dispenser cathode. Because the cathode is relatively large and requires a large amount of heat (5 kW) there are certain engineering issues that need to be addressed, before the DARHT injector reaches the final design stage. The Cathode Test Stand (CTS) will be used to address those concerns. The CTS is a new facility, presently under construction. The CTS will consist of a high-voltage pulse modulator, a high-vacuum diode test-chamber, and a short beam-transport section with diagnostics. This paper discusses the status of the project.

  18. F-1 Engine Test Firing at the S-IB Static Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The test laboratory of the Marshall Space Flight Center (MSFC) tested the F-1 engine, the most powerful rocket engine ever fired at MSFC. The engine was tested on the newly modified Saturn IB static test stand that had been used for three years to test the Saturn I eight-engine booster, S-I (first) stage. In 1961, the test stand was modified to permit static firing of the S-I/S-IB stage and the name of the stand was then changed to the S-IB Static Test Stand. Producing a combined thrust of 7,500,000 pounds, five F-1 engines powered the S-IC (first) stage of the Saturn V vehicle for the marned lunar mission.

  19. F-1 Engine Test Firing at the S-IB Static Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The test laboratory of the Marshall Space Flight Center (MSFC) tested the F-1 engine, the most powerful rocket engine ever fired at MSFC. The engine was tested on the newly modified Saturn IB Static Test Stand which had been used for three years to test the Saturn I eight-engine booster, S-I (first) stage. In 1961 the test stand was modified to permit static firing of the S-I/S-IB stage and the name of the stand was then changed to the S-IB Static Test Stand. Producing a combined thrust of 7,500,000 pounds, five F-1 engines powered the S-IC (first) stage of the Saturn V vehicle for the marned lunar mission.

  20. Multi-harmonic RF test stand for RF breakdown studies

    SciTech Connect

    Jiang, Y.; Shchelkunov, S.; Yakovlev, V. P.; Solyak, N.; Kuzikov, S. V.; Hirshfield, J. L.

    2012-12-21

    A multi-harmonic RF test stand is under construction at Yale Beam Physics Laboratory. It includes a frequency multiplier which can generate high power harmonics efficiently that are phase locked to the fundamental drive frequency. In a bi-modal asymmetric cavity powered by this RF source, the cavity may experience reduced exposure time to peak fields and sweeping of peak fields across their surfaces, and strong asymmetry between surfaces that may experience cathode-and anode-like fields; these phenomena are to be assessed for their influence on RF breakdown probabilities.

  1. ACCELERATORS Control system for the CSNS ion source test stand

    NASA Astrophysics Data System (ADS)

    Lu, Yan-Hua; Li, Gang; Ouyang, Hua-Fu

    2010-12-01

    A penning plasma surface H- ion source test stand for the CSNS has just been constructed at the IHEP. In order to achieve a safe and reliable system, nearly all devices of the ion source are designed to have the capability of both local and remote operation function. The control system consists of PLCs and EPICS real-time software tools separately serving device control and monitoring, PLC integration and OPI support. This paper summarizes the hardware and software implementation satisfying the requirements of the ion source control system.

  2. The Cold Dark Matter Search test stand warm electronics card

    SciTech Connect

    Hines, Bruce; Hansen, Sten; Huber, Martin; Kiper, Terry; Rau, Wolfgang; Saab, Tarek; Seitz, Dennis; Sundqvist, Kyle; Mandic, Vuk; /Minnesota U.

    2010-11-01

    A card which does the signal processing for four SQUID amplifiers and two charge sensitive channels is described. The card performs the same functions as is presently done with two custom 9U x 280mm Eurocard modules, a commercial multi-channel VME digitizer, a PCI to GPIB interface, a PCI to VME interface and a custom built linear power supply. By integrating these functions onto a single card and using the power over Ethernet standard, the infrastructure requirements for instrumenting a Cold Dark Matter Search (CDMS) detector test stand are significantly reduced.

  3. 11. "NIGHT SCENE OF TEST AREA WITH TEST STAND 1A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. "NIGHT SCENE OF TEST AREA WITH TEST STAND 1-A IN FOREGROUND. LIGHTS OF MAIN BASE, EDWARDS AFB, IN THE BACKGROUND. EDWARDS AFB." Test Area 1-120. Looking west past Test Stand 1-A to Test Area 1-115 and Test Area 1-110. Photo no. "12,401 57; G-AFFTC 12 DEC 57; TS 1-A Aux #1". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  4. Test stand design and analysis for Titan 34D static firing

    NASA Technical Reports Server (NTRS)

    Pazargadi, Shayan

    1988-01-01

    The Test Stand 1C at the Air Force Astronautic Laboratory (AFAL), Edwards AFB, Calif., was originally designed for F-1 liquid propellant engines. The stand was modified to handle a five and one half segment Solid Rocket Motor (SRM) Titan 34D vertical static firing test. The main design drivers and analysis effort utilized in the modification of the test stand are discussed.

  5. 4. Interior view of Test Stand 'D' workshop 4222/E23 looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Interior view of Test Stand 'D' workshop 4222/E-23 looking southwest. Many tools and machines have been removed in process of dismantling Test Stand 'D.' - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Workshop, Edwards Air Force Base, Boron, Kern County, CA

  6. Stand for coating deposition and coating/materials testing

    NASA Astrophysics Data System (ADS)

    Ayrapetov, A. A.; Begrambekov, L. B.; Dyachenko, M. Yu; Evsin, A. E.; Grunin, A. V.; Kalachev, A. M.; Sadovskiy, Ya A.; Shigin, P. A.

    2016-03-01

    The paper describes a new laboratory stand constructed for film deposition and for testing of deposited films and materials under pulsed and continuous heat load, ion and electron irradiation. The films are formed on substrates by atoms of target materials as a result of their sputtering by ions of argon plasma. The ion energy and ion flux can be varied independently. This enables the deposition of coatings with variable composition over thickness or of multi-layer coatings. Testing of materials is carried out in plasma under ion or electron irradiation by biasing the tested sample negatively or positively, respectively. The energies of ions or electrons can be varied up to 25 keV. The applied power can reach 4000 W (40 MW/m2 power density in the case of a 1-cm2 sample) in both continuous and pulsed regimes. In pulsed regime, pulses of 1 – 99% duty cycle at 0 – 500 Hz can be applied to the sample. The pulsed particle load can be combined with a continuous load. The size of the tested sample must not exceed 100 mm in diameter. The heat flux can irradiate the whole sample or be focused at its center (minimum spot of ~ 4mm2). Heating of the samples up to 2800 K is possible. At the same time, the backside of the tested sample could be actively cooled. This paper presents the results of deposition and testing of a B4C coating on tungsten and tungsten testing.

  7. View looking due west at Test Stand 'A' (Building 4202/E3) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking due west at Test Stand 'A' (Building 4202/E-3) along centerline of flame pit. Rocket engines were fired downward in test stand; flames were directed horizontally into the pit to the east via a deflector in the bottom of the stand. Pit contained a small pond and sump, now filled in by silt (See CA-163-A-4 for historical view). - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  8. HESTIA Commodities Exchange Pallet and Sounding Rocket Test Stand

    NASA Technical Reports Server (NTRS)

    Chaparro, Javier

    2013-01-01

    During my Spring 2016 internship, my two major contributions were the design of the Commodities Exchange Pallet and the design of a test stand for a 100 pounds-thrust sounding rocket. The Commodities Exchange Pallet is a prototype developed for the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) program. Under the HESTIA initiative the Commodities Exchange Pallet was developed as a method for demonstrating multi-system integration thru the transportation of In-Situ Resource Utilization produced oxygen and water to a human habitat. Ultimately, this prototype's performance will allow for future evaluation of integration, which may lead to the development of a flight capable pallet for future deep-space exploration missions. For HESTIA, my main task was to design the Commodities Exchange Pallet system to be used for completing an integration demonstration. Under the guidance of my mentor, I designed, both, the structural frame and fluid delivery system for the commodities pallet. The fluid delivery system includes a liquid-oxygen to gaseous-oxygen system, a water delivery system, and a carbon-dioxide compressors system. The structural frame is designed to meet safety and transportation requirements, as well as the ability to interface with the ER division's Portable Utility Pallet. The commodities pallet structure also includes independent instrumentation oxygen/water panels for operation and system monitoring. My major accomplishments for the commodities exchange pallet were the completion of the fluid delivery systems and the structural frame designs. In addition, parts selection was completed in order to expedite construction of the prototype, scheduled to begin in May of 2016. Once the commodities pallet is assembled and tested it is expected to complete a fully integrated transfer demonstration with the ISRU unit and the Environmental Control and Life Support System test chamber in September of 2016. In addition to the development of

  9. Standing balance tests for screening people with vestibular impairments

    PubMed Central

    Cohen, Helen S.; Mulavara, Ajitkumar P.; Peters, Brian T.; Sangi-Haghpeykar, Haleh; Bloomberg, Jacob J.

    2013-01-01

    Objective To improve the test standards for a version of the Romberg test and to determine if measuring kinematic variables improved its utility for screening. Study design Healthy controls and patients with benign paroxysmal positional vertigo, postoperative acoustic neuroma resection, and chronic peripheral unilateral weakness were compared. Methods Subjects wore Bluetooth-enabled inertial motion units while standing on the floor or medium density, compliant foam, with eyes open or closed, with head still or moving in pitch or yaw. Dependent measures were time to perform each test condition, number of head movements made, and kinematic variables. Results Patients and controls did not differ significantly with eyes open or with eyes closed while on the floor. With eyes closed, on foam, some significant differences were found between patients and controls, especially for subjects older than age 59. Head movement conditions were more challenging than head still. Significantly fewer patients than controls could make enough head movements to obtain kinematic measures. Kinematics indicated that lateral balance control is significantly reduced in these patients compared to controls. Receiver Operator Characteristics and sensitivity/specificity analyses showed moderately good differences with older subjects. Conclusion Tests on foam with eyes closed, with head still or moving, may be useful as part of a screening battery for vestibular impairments, especially for older people. PMID:23877965

  10. 4. "TEST CONDUCTORS PANEL AT TEST STAND 1A, DIRECTORATE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. "TEST CONDUCTORS PANEL AT TEST STAND 1-A, DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB, 15 JAN 58, 3098.58." A photograph of the control room, with seven men watching monitors and instrument panels. Photo no. "3098 58; G-AFFTC 15 JAN 58; Test Conductors Panel T.S. 1-A". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  11. A Test Stand for Ion Sources of Ultimate Reliability

    SciTech Connect

    Enparantza, R.; Uriarte, L.; Romano, P.; Alonso, J.; Ariz, I.; Egiraun, M.; Bermejo, F. J.; Etxebarria, V.; Lucas, J.; Del Rio, J. M.; Letchford, A.; Faircloth, D.; Stockli, M.

    2009-03-12

    The rationale behind the ITUR project is to perform a comparison between different kinds of H{sup -} ion sources using the same beam diagnostics setup. In particular, a direct comparison will be made in terms of the emittance characteristics of Penning Type sources such as those currently in use in the injector for the ISIS (UK) Pulsed Neutron Source and those of volumetric type such as that driving the injector for the ORNL Spallation Neutron Source (TN, U.S.A.). The endeavour here pursued is thus to build an Ion Source Test Stand where virtually any type of source can be tested and its features measured and, thus compared to the results of other sources under the same gauge. It would be possible then to establish a common ground for effectively comparing different ion sources. The long term objectives are thus to contribute towards building compact sources of minimum emittance, maximum performance, high reliability-availability, high percentage of desired particle production, stability and high brightness. The project consortium is lead by Tekniker-IK4 research centre and partners are companies Elytt Energy and Jema Group. The technical viability is guaranteed by the collaboration between the project consortium and several scientific institutions, such the CSIC (Spain), the University of the Basque Country (Spain), ISIS (STFC-UK), SNS (ORNL-USA) and CEA in Saclay (France)

  12. 3. COMPLETE X15 VEHICLE TEST STAND, LOCATED IN SOUTHEAST ¼ ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. COMPLETE X-15 VEHICLE TEST STAND, LOCATED IN SOUTHEAST ¼ OF X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  13. 7. BUILDING 604F, INTERIOR OF BULL PEN SHOWING TESTING STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. BUILDING 604-F, INTERIOR OF BULL PEN SHOWING TESTING STAND AND HEAVY WOOD LINING ON CONCRETE WALLS. STEEL PLATE ABOVE TEST STAND DEFLECTS SHRAPNEL, SCREEN FURTHER HELPS TO CONTAIN PARTICLES. ONLY SMALL EXPLOSIVES WERE TESTED HERE (GRENADES, MINES, BOMB FUZES, ETC.). - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ

  14. A high voltage test stand for electron gun qualification for LINACs

    SciTech Connect

    Wanmode, Yashwant D.; Mulchandani, J.; Acharya, M.; Bhisikar, A.; Singh, H.G.; Shrivastava, Purushottam

    2011-07-01

    An electron gun lest stand has been developed at RRCAT. The test stand consists of a high voltage pulsed power supply, electron gun filament supply, grid supply, UHV system and electron gun current measurement system. Several electron guns developed indigenously were evaluated on this test stand. The shielding is provided for the electron gun set up. Electron gun tests can be tested upto 55 kV with pulse width of 15 microsecs and pulse repetition rates up to 200 Hz. The technical details of the subsystems are furnished and results of performance of the test stand have been reported in this paper. (author)

  15. Testing the stand-alone microbeam at Columbia University.

    PubMed

    Garty, G; Ross, G J; Bigelow, A W; Randers-Pehrson, G; Brenner, D J

    2006-01-01

    The stand-alone microbeam at Columbia University presents a novel approach to biological microbeam irradiation studies. Foregoing a conventional accelerator as a source of energetic ions, a small, high-specific-activity, alpha emitter is used. Alpha particles emitted from this source are focused using a compound magnetic lens consisting of 24 permanent magnets arranged in two quadrupole triplets. Using a 'home made' 6.5 mCi polonium source, a 1 alpha particle s(-1), 10 microm diameter microbeam can, in principle, be realised. As the alpha source energy is constant, once the microbeam has been set up, no further adjustments are necessary apart from a periodic replacement of the source. The use of permanent magnets eliminates the need for bulky power supplies and cooling systems required by other types of ion lenses and greatly simplifies operation. It also makes the microbeam simple and cheap enough to be realised in any large lab. The Microbeam design as well as first tests of its performance, using an accelerator-based beam are presented here. PMID:17189277

  16. System integration and performance of the EUV engineering test stand

    SciTech Connect

    Tichenor, Daniel A.; Ray-Chaudhuri, Avijit K.; Replogle, William C.; Stulen, Richard H.; Kubiak, Glenn D.; Rockett, Paul D.; Klebanoff, Leonard E.; Jefferson, Karen L.; Leung, Alvin H.; Wronosky, John B.; Hale, Layton C.; Chapman, Henry N.; Taylor, John S.; Folta, James A.; Montcalm, Claude; Soufli, Regina; Spiller, Eberhard; Blaedel, Kenneth; Sommargren, Gary E.; Sweeney, Donald W.; Naulleau, Patrick; Goldberg, Kenneth A.; Gullikson, Eric M.; Bokor, Jeffrey; Batson, Phillip J.; Attwood, David T.; Jackson, Keith H.; Hector, Scott D.; Gwyn, Charles W.; Yan, Pei-Yang; Yan, P.

    2001-03-01

    The Engineering Test Stand (ETS) is a developmental lithography tool designed to demonstrate full-field EUV imaging and provide data for commercial-tool development. In the first phase of integration, currently in progress, the ETS is configured using a developmental projection system, while fabrication of an improved projection system proceeds in parallel. The optics in the second projection system have been fabricated to tighter specifications for improved resolution and reduced flare. The projection system is a 4-mirror, 4x-reduction, ring-field design having a numeral aperture of 0.1, which supports 70 nm resolution at a k{sub 1} of 0.52. The illuminator produces 13.4 nm radiation from a laser-produced plasma, directs the radiation onto an arc-shaped field of view, and provides an effective fill factor at the pupil plane of 0.7. The ETS is designed for full-field images in step-and-scan mode using vacuum-compatible, magnetically levitated, scanning stages. This paper describes system performance observed during the first phase of integration, including static resist images of 100 nm isolated and dense features.

  17. Comments on cathode contaminants and the LBNL test stand

    SciTech Connect

    Bieniosek, F.; Baca, D.; Greenway, W.; Leitner, M.; Kwan, J.W.

    2006-11-13

    This report collects information on cathode contaminants we have gathered in the process of operating the LBNL DARHT cathode test stand. Information on contaminants is compiled from several sources. The attachment, ''Practical Aspects of Modern Dispenser Cathodes'', is from Heat Wave Corp. (TB-134) and was originally published in Microwave Journal, September 1979. Cathode contamination depends on both material choices and residual gases. Table 1 of TB-134 lists materials that can poison dispenser cathodes. These include reactive residual gases or vapors such as oxygen, water vapor, benzene, chlorine, fluorine, sulfur, silicon, and most metals other than molybdenum, rhenium, tungsten, and copper. The metals interact with the cathode surface through their vapor pressure. A paper by Nexsen and Turner, J. Appl. Phys. 68, 298-303 (1990) shows the threshold effects of some common residual gases or vapors on cathode performance. The book by Walter H. Kohl, Handbook of Materials and Techniques for Vacuum Devices, also contains useful information on cathodes and poisoning agents. A plot of the vapor pressures and poisoning effect of certain metals (from Kohl) is shown below. Note that the vapor pressure of zinc is 1.1 x 10{sup -8} Torr at 400 K = 127 C, and 2.7 x 10{sup -5} at 500 K = 227 C. By contrast iron reaches a vapor pressure 1 x 10{sup -8} between 800 and 900 C. Therefore it is important to eliminate any brass parts that could exceed a temperature of 100 C. Many structural components of the cathode assembly contain steel. At 500-600 C in an oxygen atmosphere chromium oxide may outgas from the steel. [Cho, et.al., J. Vac. Sci. Technol. A 19, p. 998 (2001)]. Steel may also contain silicon, and sulfur at low concentrations. Therefore use of steel should be limited or avoided at high temperature near the cathode. Materials that should be avoided in the vicinity of the cathode include brass, silver, zinc, non-OFHC copper, silicates, and sulfur-containing lubricants such

  18. 7. COMPLETE X15 VEHICLE TEST STAND AFTER AN ENGINE FIRE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. COMPLETE X-15 VEHICLE TEST STAND AFTER AN ENGINE FIRE OR EXPLOSION. Wreckage of engine is still fixed in its clamp; X-15 vehicle lies on the ground detached from engine. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  19. 5. FLAME DEFLECTOR, COMPLETE X15 VEHICLE TEST STAND. Looking east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. FLAME DEFLECTOR, COMPLETE X-15 VEHICLE TEST STAND. Looking east. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  20. 4. COMPLETE X15 VEHICLE TEST STAND, DETAIL OF THRUST MOUNTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. COMPLETE X-15 VEHICLE TEST STAND, DETAIL OF THRUST MOUNTING STRUCTURE AT ENGINE END OF PLANE. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  1. 7. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. Looking north from north end of the cable tunnel leading toward Control Center. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  2. RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND 1-B. THIS TANK FARM SERVES BOTH TEST STANDS 1-A AND 1-B - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Combined Fuel Storage Tank Farm, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  3. 6. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. Looking south from north wall of terminal room. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  4. 10. OBSERVATION POST NO. 3, WEST OF TEST STAND 1A. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. OBSERVATION POST NO. 3, WEST OF TEST STAND 1-A. SOUTH SIDE AND EAST FRONT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  5. Construction Progress of the S-IC and F-1 Test Stands

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of

  6. Construction Progress of the S-IC and F-1 Test Stands

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F

  7. Calibration of Virtual Testing Stand of the Car Cabin using climatic chamber tests

    NASA Astrophysics Data System (ADS)

    Pokorny, Jan; Fiser, Jan; Jicha, Miroslav

    2015-05-01

    The aim of our research is to calibrate and verify of the software Virtual Testing Stand of the Car Cabin using climatic chamber tests. The Virtual Testing Stand is standalone executable software developed in Matlab for prediction of the cabin environment and thermal heat load by using the time-efficient heat balance model. The main limitation of the simulation method is a simplified convection scheme inside a cabin using the empirical correlations instead of the CFD simulations. In this paper we present the first preliminary tests of the calibration process and verification of the simulation results. Tests were carried out for the car Skoda Octavia Combi with the silver metallic paint. The material composition of the test car was deeply explored and the material properties of the cabin were identified as accurate as possible. The car was exposed to the various environments inside a climate chamber. In this paper we report about two performed tests: summer solar soak test and winter heat-up test with the defined heat source.

  8. The stand for research and testing of layout of ultraviolet photo-polarimeter (UPP)

    NASA Astrophysics Data System (ADS)

    Sorochynskyi, R. R.; Nevodovskyi, P. V.; Vidmachenko, A. P.; Herayimchuk, M. D.; Ivakhiv, O. V.

    2016-05-01

    For debugging, research and testing as a model of UPP in the complex and its individual parts we created a special stand with a complex set of equipment. The stand consists of: radiation block with variable sources of radiation; detector block with a set of measuring equipment; block of registration and analysis of radiation polarization; block with a set of different power supplies; block of variable high voltage. To use this stand we have also developed the corresponding software and more

  9. DELUGE AND WATER RECLAMATION BASIN BELOW TEST STAND 1A. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DELUGE AND WATER RECLAMATION BASIN BELOW TEST STAND 1-A. Looking north northwest - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  10. Construction Progress of the S-IC Test Stand Complex-Aerial

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and

  11. Construction Progress of the S-IC Test Stand Complex-Aerial View

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and

  12. A cryogenic test stand for full length SSC magnets with superfluid capability

    SciTech Connect

    Peterson, T.J.; Mazur, P.O.

    1989-02-01

    The Fermilab Magnet Test Facility performs testing of the full scale SSC magnets on test stands capable of simulating the cryogenic environment of the SSC main ring. One of these test stands, Stand 5, also has the ability to operate the magnet under test at temperatures from 1.8K to 4.5K with either supercritical helium or subcooled liquid, providing at least 25 Watts of refrigeration. At least 50 g/s flow is available from 2.3K to 4.5K, whereas superfluid operation occurs with zero flow. Cooldown time from 4.5K to 1.8K is 1.5 hours. A maximum current capability of 10,000 amps is provided, as is instrumentation to monitor and control the cryogenic conditions. This paper describes the cryogenic design of this test stand. 8 refs., 6 figs.

  13. Construction Progress of the S-IC Test Stand Complex Bunker House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC stand, additional related facilities were built during this time frame. Built to the east of the S-IC stand, the block house served as the control room. To the south of the blockhouse was a newly constructed pump house used for delivering water to the S-IC stand during testing. North of the massive test stand, the F-1 Engine test stand was built for testing a single F-1 engine. Just southeast of the S-IC stand a concrete bunker house was constructed. The bunker housed

  14. Construction Progress of the S-IC Test Stand-Pump House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through

  15. 26. "TEST STAND, STRUCTURAL, FOUNDATION PLAN." Specifications No. ENG043535572; Drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. "TEST STAND, STRUCTURAL, FOUNDATION PLAN." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 25 of 148; file no. 1320/76. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  16. Construction Progress of the S-IC Test Stand-Pump House Waterline

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through

  17. Construction Progress of the S-IC Test Stand-Crane Control

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken at the S-IC test stand on October 2, 1963, is of a crane control. It was from here that the massive cranes were operated. Seen in the background is the F-1 Test Stand. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand

  18. Construction Progress of the S-IC Test Stand- Pump House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small

  19. Construction Progress of the S-IC Test Stand-Pump House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small

  20. Construction Progress of the S-IC Test Stand-Pump House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small

  1. First results of negative-ion-based NBI test-stand for Large Helical Device

    NASA Astrophysics Data System (ADS)

    Takeiri, Y.; Ando, A.; Kaneko, O.; Oka, Y.; Tsumori, K.; Akiyama, R.; Kawamoto, T.; Kuroda, T.

    1992-10-01

    A negative-ion-based NBI test-stand has been constructed in Toki site of National Institute for Fusion Science (NIFS). This Toki test-stand has facilities to produce 2.5 MW neutral beam power with the energy of 125 keV for hydrogen and 250 keV for deuterium, which is utilized for developing a unit of neutral beam injection (NBI) system for Large Helical Device (LHD). All components of the Toki test-stand are installed on the basis of conceptual design of the LHD-NBI system. Development of a high-current negative ion source with vacuum-immersed structure is one of the main objectives of the test-stand, as well as transport of a high-energy beam with a small divergence angle. It is also an important subject to test all of hardware components such as beam dumps and cryo-pumps. Experiments started in July.

  2. Construction Progress of S-IC Test Stand Complex-Aerial

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and

  3. Construction Progress of the S-IC Test Stand Hydrogen Tanks

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. In the center portion of this photograph, taken September 5, 1963, the spherical hydrogen storage tanks are being constructed. One of the massive tower legs of the S-IC test stand is visible to the far right.

  4. Construction Progress of the S-IC Test Stand Spherical Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. This photograph taken September 18, 1963 shows a spherical hydrogen tank being constructed next to the S-IC test stand.

  5. Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan

    2010-01-01

    The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.

  6. VALIDITY OF THE STANDING SPIKE TEST AS A MONITORING PROTOCOL FOR FEMALE VOLLEYBALL PLAYERS

    PubMed Central

    Valadés, D.

    2012-01-01

    The purpose of this paper was: a) to provide reference values for the standing spike test for female volleyball players and b) to study whether the standing spike test is valid for assessing the theoretical differences between female volleyball players. The sample included 83 players from the first nine teams of the Spanish women's first volleyball division (52 Spanish players and 31 from other nationalities). The variables studied were the ball speed of the standing spike test, the age of the players, the player's role (outside hitter, opposite, middle-blocker, libero, or setter), height, and nationality of the players (Spanish or foreign). The results demonstrate the ranges for the standing spike among female performance volleyball players (70-82 km · h−1). The differences regarding nationality, player role, height, and age seem to indicate that the test is a valid instrument for monitoring the performance of female volleyball players. PMID:24868119

  7. Construction Progress of the S-IC Test Stand Pump House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through

  8. Construction Progress of the S-IC Test Stand Pump House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through

  9. Construction Progress of the S-IC Test Stand-Pump House Water Line

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through

  10. Construction Progress of the S-IC Test Stand Flame Deflector

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the east was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. In this photo, taken August 12, 1963, the S-IC stand has received some of its internal components. Directly in the center is the framework

  11. Construction Progress of the S-IC Test Stand Pump House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through

  12. Construction Progress of the S-IC Test Stand-Pump House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small

  13. Construction Progress of the S-IC Test Stand Flame Deflector

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. In this photo of the S-IC test stand, taken September 25, 1963, the flame deflector can be seen rotated to the outside on

  14. RESULTS OF BEAM TESTS ON A HIGH CURRENT EBIS TEST STAND.

    SciTech Connect

    BEEBE,E.; ALESSI,J.; BELLAVIA,S.; HERSHCOVITCH,A.; KPONOU,A.; LOCKEY,R.; PIKIN,A.; PRELEC,K.; KUZNETSOV,G.; TIUNOV,M.

    1999-03-29

    At Brookhaven National Laboratory there is an R&D program to design an Electron Beam Ion Source (EBIS) for use in a compact ion injector to be developed for the relativistic heavy ion collider (RHIC). The BNL effort is directed at developing an EBIS with intensities of 3 x 10{sup 9} particles/pulse of ions such as Au{sup 35+} and U{sup 45+}, and requires an electron beam on the order of 10A. The construction of a test stand (EBTS) with the full electron beam power and 1/3 the length of the EBIS for RHIC is nearing completion. Initial commissioning of the EBTS was made with pulsed electron beams of duration < 1ms and current up to 13 A. Details of the EBTS construction, results of the pulse tests, and preparations for DC electron beam tests are presented.

  15. PHYSICS RESULTS OF THE NSLS-II LINAC FRONT END TEST STAND

    SciTech Connect

    Fliller R. P.; Gao, F.; Yang, X.; Rose, J.; Shaftan, T.; Piel, C

    2012-05-20

    The Linac Front End Test Stand (LFETS) was installed at the Source Development Laboratory (SDL) in the fall of 2011 in order to test the Linac Front End. The goal of these tests was to test the electron source against the specifications of the linac. In this report, we discuss the results of these measurements and the effect on linac performance.

  16. Removal of Flame Deflector From the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1975-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was originally designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage. Modifications to the S-IC Test Stand began in 1975 to accommodate space shuttle external tank testing. This photo depicts the removal of the flame deflector which was originally used to provide water to the 5 F-1 engines of the S-IC stage during testing.

  17. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a...

  18. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a...

  19. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a...

  20. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a...

  1. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a...

  2. Coarse-coal hydrotransport studies using the separate effects test stand: FY 1980-1981

    SciTech Connect

    Powers, T.B.

    1981-09-01

    The Separate Effects Test Stand (SETS) was built to evaluate the rotating pipe-wheel stand concept for hydrotransport testing and to obtain hydrotransport data in support of the US Department of Energy's Hydraulic Transport Research Facility (HTRF). The SETS program involved three phases of testing. The first phase was to evaluate the wheel test stand as an adequate mechanism for testing the hydrotransport of coarse-particle coal through pipe. The second phase was to obtain preliminary data on coal head loss (flow pressure drop) during hydrotransport. The third phase was to determine the effects of coal hydrotransport on water quality. Other data obtained during the program included pipe wear and the size degradation of coal particles. The SETS was tested with water only and the resultant head loss data were compared with head loss values recorded for water flow in staight pipe. These tests were run to determine how well the SETS modeled straight pipe flow.

  3. The Instrumented Sit-to-Stand Test (iSTS) Has Greater Clinical Relevance than the Manually Recorded Sit-to-Stand Test in Older Adults

    PubMed Central

    van Lummel, Rob C.; Walgaard, Stefan; Maier, Andrea B.; Ainsworth, Erik; Beek, Peter J.; van Dieën, Jaap H.

    2016-01-01

    Background The ability to rise from sitting to standing is critical to an individual’s quality of life, as it is a prerequisite for functional independence. The purpose of the current study was to examine the hypothesis that test durations as assessed with the instrumented repeated Sit-To-Stand (STS) show stronger associations with health status, functional status and daily physical activity of older adults than manually recorded test durations. Methods In 63 older participants (mean age 83 ±6.9 years, 51 female), health status was assessed using the European Quality of Life questionnaire and functional status was assessed using the physical function index of the of the RAND-36. Physical performance was measured using a wearable sensor-based STS test. From this test, durations, sub-durations and kinematics of the STS movements were estimated and analysed. In addition, physical activity was measured for one week using an activity monitor and episodes of lying, sitting, standing and locomotion were identified. Associations between STS parameters with health status, functional status and daily physical activity were assessed. Results The manually recorded STS times were not significantly associated with health status (p = 0.457) and functional status (p = 0.055), whereas the instrumented STS times were (both p = 0.009). The manually recorded STS durations showed a significant association to daily physical activity for mean sitting durations (p = 0.042), but not for mean standing durations (p = 0.230) and mean number of locomotion periods (p = 0.218). Furthermore, durations of the dynamic sit-to-stand phase of the instrumented STS showed more significant associations with health status, functional status and daily physical activity (all p = 0.001) than the static phases standing and sitting (p = 0.043–0.422). Conclusions As hypothesized, instrumented STS durations were more strongly associated with participant health status, functional status and physical activity

  4. Construction Progress of the S-IC Test Stand-Block House Access Tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo taken August 17, 1962 depicts a view of the Block House from the test stand site. The tunnel opening is visible in the forefront center of the photo.

  5. Construction Progress of the S-IC Test Stand and Block House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This distant construction photo, taken October 26, 1962, depicts a view of the Block House and test stand site.

  6. Construction Progress of the S-IC Test Stand-Completed Block House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photograph, taken February 25, 1963, gives a close up look at the completed Block House. The side shown faces the S-IC Test Stand.

  7. Construction Progress of the S-IC Test Stand and Block House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photograph taken February 4, 1963, gives an impressive look at the Block House looking directly through the ever-growing four towers of the S-IC Test Stand.

  8. Construction Progress of the S-IC Test Stand Water Valve

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. In this photograph, a construction worker demonstrates the size of the massive water valve that was used in the testing cooling

  9. A test stand for off-line laser ion source development at TRIUMF

    SciTech Connect

    Lavoie, J. P.; Li, R.; Bricault, P.; Lassen, J.; Chachkova, O.; Teigelhoefer, A.

    2013-01-15

    A test stand for ion source development and laser resonance ionization spectroscopy was built and commissioned at TRIUMF. The test stand is needed to develop efficient ion sources that can function reliably in the hostile, high temperature, high radiation environment of TRIUMF's isotope separator on-line (ISOL) production target ion source. In addition, it enables laser resonance ionization spectroscopy to develop laser excitation schemes suitable for the solid-state laser systems used with TRIUMF's resonant ionization laser ion source . Also, it allows for possible improvement of current ion sources and validation of new designs. The test stand employs a copy of the ion optics used on-line, so that results can be transferred directly to radioactive ion beam production. Due to space restrictions and the need for rapid mass scans, a quadrupole mass spectrometer is used as a mass separator. One of the first experiments conducted on the laser ion source test stand (LIS STAND) was resonant ionization spectroscopy of gallium to improve on the ionization scheme previously used on-line, so that low yield isotopes (e.g., {sup 62}Ga) become available for experiments. Different Rydberg series in gallium were observed and autoionizing states were searched for. The overall LIS STAND system performance, characteristics, and the first resonant ionization spectroscopy are described.

  10. Construction Progress of the S-IC Test Stand Pump House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. This photograph, taken September 25, 1963, depicts the construction progress of the Pump House and massive round water

  11. Factors Affecting Test Results and Standardized Method in Quiet Standing Balance Evaluation

    PubMed Central

    Yoon, Jung Joong; Shin, Bo Mi; Na, Eun Hye

    2012-01-01

    Objective To identify factors affecting test results of the quiet standing balance evaluation conducted by posturography and to investigate the standardized method by comparing results according to feet width. Method The study cohort consisted of 100 healthy individuals. We assessed the quiet standing balance of subjects by using 3 different methods: standing on a force plate with feet width the same as shoulder width (test 1); with feet width the same as half the shoulder width (test 2); with feet width determined by the subject's comfort (test 3). Subjects underwent each test with their eyes open and closed for 30 seconds each time. Parameters for measuring standing balance included the mean mediolateral and anteroposterior extent, speed, and the velocity moment of center of pressure (COP) movement. Results All parameters showed better results when the subject's eyes were open rather than closed, and the mean AP extent and speed increased as the age of the subjects increased (p<0.01). However, there was no significant correlation between height and the study parameters, and no differences between men and women. Mean mediolateral extent and speed were significantly longer and faster in test 1 compared with tests 2 and 3 (p<0.01). The results of test 2 were better than the results of test 3, but the difference was not statistically significant. Conclusion COP movements increased with age and when subjects closed their eyes in an evaluation of quiet standing balance conducted by posturography. Gender and height did not affect results of the test. We suggest that an appropriate method for conducting posturography is to have the subject stand on a force plate with their feet width the same as half the shoulder width, because this posture provided relatively accurate balance capacity. PMID:22506243

  12. Construction Progress of the S-IC Test Stand-Block House Access Tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Construction of the tunnel is depicted in this photo taken June 13, 1962.

  13. Construction Progress of the S-IC Test Stand-Block House Access Tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken October 26, 1962, depicts a view of the Block House tunnel opening.

  14. Construction Progress of the S-IC Test Stand-Access Tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow tunnel which housed the cables for the controls. This photograph, taken on May 21, 1962 depicts the access tunnel construction.

  15. Construction Progress of the S-IC Test Stand-Block House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken October 26, 1962, depicts a nearly completed view of the Block House.

  16. Construction Progress of the S-IC Test Stand-Block House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. In this photo taken February 4, 1963, the Block House exterior is complete.

  17. Construction Progress of the S-IC Test Stand- Block House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken November 15, 1962, depicts a view of the Block House.

  18. Construction Progress of the S-IC Test Stand-Block House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo taken August 17, 1962 depicts a back side view of the Block House.

  19. Construction Progress of the S-IC Test Stand-Block House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken July 3, 1962, depicts the Block House with a portion of its concrete walls poured and exposed while many are still in the forms stage.

  20. Construction Progress of the S-IC Test Stand-Block House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photo, taken January 23, 1962, shows the excavation of the Block House site.

  1. Construction Progress of the S-IC Test Stand-Block House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photo, taken February 2, 1962, shows the excavation of the Block House site.

  2. Construction Progress of the S-IC Test Stand-Block House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo taken July 3, 1962 depicts the Block House with a portion of its concrete walls poured and exposed while many are still in the forms stage.

  3. Does Poststroke Lower-Limb Spasticity Influence the Recovery of Standing Balance Control? A 2-Year Multilevel Growth Model.

    PubMed

    Singer, Jonathan C; Nishihara, Kanako; Mochizuki, George

    2016-08-01

    Background Poststroke lower-limb spasticity (LLS) has been shown to degrade standing balance control by disrupting the temporal synchronization between individual limb centers of pressure (COPs). Time-varying changes in standing balance control associated with alterations in the extent of LLS have yet to be documented and are important to informing treatment strategies to improve such functional outcomes. Objective The present work aimed to understand the natural recovery of standing balance control among stroke survivors with LLS using limb-specific indices of standing balance control. Furthermore, we sought to understand if time-varying changes in LLS were associated with alterations in standing balance control. Methods A retrospective analysis of 92 participants was performed; 47 participants never exhibited LLS during the study (No_LLS), and 45 participants exhibited LLS during at least 1 testing session (LLS). Quiet standing for a duration of 30 s on 2 force platforms was recorded. Temporal synchrony and spatial symmetry of COP displacements were assessed, along with interlimb weight-bearing symmetry. Results All variables, except spatial symmetry, indicated initial improvement followed by deceleration in the rate of balance control recovery. Limb-specific measures indicated that individuals with LLS exhibited deficits in balance control. The recovery trajectories were not different between groups, suggesting a similar rate, but reduced extent, of balance control recovery among the LLS relative to the No_LLS group. Only temporal synchrony was altered by time-varying changes in spasticity. Conclusions The present results suggest that the reduction in spasticity may be beneficial to balance control recovery. PMID:26507437

  4. Test stands for the Central Drift Chamber front end hybrid in the Stanford Linear Collider Detector

    SciTech Connect

    Lo, C.C.; Yim, A.K.

    1987-10-01

    The Central Drift Chamber (CDC) of the SLAC Linear Collider Detector (SLD) uses 1280 front end electronic hybrid modules. Each of these modules contains over 450 components and performs numerous functions. This paper describes the four test stands for production and detailed circuit characterizations of these hybrids. Descriptions and performance of some of the important functions of the test systems will be presented here.

  5. Environmental Assessment for the Construction and Operation of the Constellation Program A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    Kennedy, Carolyn D.

    2007-01-01

    This document is an environmental assessment that examines the environmental impacts of a proposed plan to clear land and to construct a test stand for use in testing the J-2X rocket engine at simulated altitude conditions in support of NASA's Constellation Program.

  6. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell...

  7. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell...

  8. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell...

  9. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell...

  10. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell...

  11. Construction Progress of the S-IC Test Stand-Block House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken October 8, 1962, depicts a front view of the Block House nearing completion.

  12. Ares Launch Vehicles Development Awakens Historic Test Stands at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Burt, Richard K.

    2008-01-01

    This paper chronicles the rebirth of two national rocket testing assets located at NASA's Marshall Space Flight Center: the Dynamic Test Stand (also known as the Ground Vibration Test Stand) and the Static Test Stand (also known as the Main Propulsion Test Stand). It will touch on the historical significance of these special facilities, while introducing the requirements driving modifications for testing a new generation space transportation system, which is set to come on line after the Space Shuttle is retired in 2010. In many ways, America's journey to explore the Moon begins at the Marshall Center, which is developing the Ares I crew launch vehicle and the Ares V cargo launch vehicle, along with managing the Lunar Precursor Robotic Program and leading the Lunar Lander descent stage work, among other Constellation Program assignments. An important component of this work is housed in Marshall's Engineering Directorate, which manages more than 40 facilities capable of a full spectrum of rocket and space transportation technology testing - from small components to full-up engine systems. The engineers and technicians who operate these test facilities have more than a thousand years of combined experience in this highly specialized field. Marshall has one of the few government test groups in the United States with responsibility for the overall performance of a test program from conception to completion. The Test Laboratory has facilities dating back to the early 1960s, when the test stands needed for the Apollo Program and other scientific endeavors were commissioned and built along the Marshall Center's southern boundary, with logistics access by air, railroad, and barge or boat on the Tennessee River. NASA and its industry partners are designing and developing a new human-rated system based on the requirements for safe, reliable, and cost-effective transportation solutions. Given below are summaries of the Dynamic Test Stand and the Static Test Stand capabilities

  13. Integrated testing of standing balance and cognition: test-retest reliability and construct validity.

    PubMed

    Szturm, Tony; Sakhalkar, Vedant; Boreskie, Sue; Marotta, Jonathan J; Wu, Christine; Kanitkar, Anuprita

    2015-01-01

    Balance and cognitive impairments which are common with aging often coexist, are prognostic of future adverse health events, including fall injuries. Consequently, dual-task assessment programs that simultaneously address both stability and cognition are important to consider in rehabilitation and benefit healthy aging. The objective of this study was to establish test-retest reliability and construct validity of a dual-task computer game-based platform (TGP) that integrates head tracking and cognitive tasks with balance activities. Thirty healthy, community-dwelling individuals median age 64 (range 60-67) were recruited from a certified Medical Fitness Facility. Participants performed a series of computerized head tracking and cognitive game tasks while standing on fixed and sponge surfaces. Testing was conducted on two occasions, one week apart. Moderate to high test retest reliability (ICC values of 0.55-0.75) was observed for all outcome measures representing balance, gaze performance, cognition, and dual-task performance. A significant increase in center of foot pressure (COP) excursion was observed during both head tracking and cognitive dual-task conditions. The results demonstrate the system's ability to reliably detect changes related to specific and integrated aspects of balance, gaze, and cognitive performance. PMID:25455701

  14. Installation of TVC Actuators in a Two Axis Inertial Load Simulator Test Stand

    NASA Technical Reports Server (NTRS)

    Dziubanek, Adam

    2013-01-01

    This paper is about the installation of Space Shuttle Main Engines (SSME) actuators in the new Two Axis Inertial Load Simulator (ILS) at MSFC. The new test stand will support the core stage of the Space Launch System (SLS). Because of the unique geometry of the new test stand standard actuator installation procedures will not work. I have been asked to develop a design on how to install the actuators into the new test stand. After speaking with the engineers and technicians I have created a possible design solution. Using Pro Engineer design software and running my own stress calculations I have proven my design is feasible. I have learned how to calculate the stresses my design will see from this task. From the calculations I have learned I have over built the apparatus. I have also expanded my knowledge of Pro Engineer and was able to create a model of my idea.

  15. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 14, 1961, shows the abandoned site entirely flooded. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  16. Construction Progress of the S-IC Test Stand-Flooding

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September 1961 as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction about to resume, portable, floating pump stations were placed in the site to drain the flood waters caused by a disturbed natural spring months prior during excavation. In this March 31, 1962 photo, the foundation walls can once again be seen.

  17. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 22, 1961, shows danger signs posted around the abandoned site with floods nearing the top. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  18. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 4, 1961, shows the abandoned site with floods at the 11 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  19. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 8, 1961, shows the abandoned site with floods at the 16 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  20. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand would have to be modified. With construction delayed, and pumps turned off, this photo, taken December 4, 1961, shows the abandoned site with floods at the 11 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  1. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken February 2, 1962, shows the abandoned flooded site. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  2. Construction Progress of the S-IC Test Stand-Flooding

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken March 15, 1962, shows danger signs posted around the abandoned, flooded site. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  3. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 11, 1961, shows the abandoned site with floods above the 18 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  4. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 18, 1961, shows the abandoned site entirely flooded. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  5. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction about to resume, portable floating pump stations were placed in the site, as seen in this March 20, 1962 photo, to drain the flood waters caused by a disturbed natural spring months prior during excavation.

  6. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 1, 1961, shows the abandoned site with floods at the 6 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  7. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken January 23, 1962, shows the abandoned flooded site. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  8. An overview of the new test stand for H⁻ ion sources at FNAL.

    PubMed

    Sosa, A; Bollinger, D S; Duel, K; Karns, P R; Pellico, W; Tan, C Y

    2016-02-01

    A new test stand at Fermi National Accelerator Laboratory (FNAL) is being constructed to carry out experiments to develop and upgrade the present magnetron-type sources of H(-) ions of up to 80 mA at 35 keV in the context of the Proton Improvement Plan. The aim of this plan is to provide high-power proton beams for the experiments at FNAL. The technical details of the construction and layout of this test stand are presented, along with a prospective set of diagnostics to monitor the sources. PMID:26931987

  9. Saturn V S-IC-T Stage in the S-IC Static Test Stand

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The S-IC-T stage (static firing stage) is installed and awaits the first static firing of all five F-1 engines at the Marshall Space Flight Center S-IC static test stand. Constructed in 1964, the S-IC static test stand was designed and constructed to develop and test the first stage of the Saturn V launch vehicle that used five F-1 engines. Each F-1 engine developed 1,500,000 pounds of thrust for a total liftoff thrust of 7,500,000 pounds. To handle this research and development effort, the stand contains 12,000,000 pounds of concrete on its base legs that are planted down to bedrock 40 feet below ground level. Of concrete and steel construction, the stand foundation walls are 4 feet thick, and topped by a crane with a 135-foot boom. With the boom in the up position, the stand is given an overall height of 405 feet, placing it among the highest structures in Alabama at the time.

  10. Effect of In-Flight Exercise and Extravehicular Activity on Postflight Stand Tests

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Moore, Alan D., Jr.; Fritsch-Yelle, Janice; Greenisen, Michael; Schneider, Suzanne M.; Foster, Philip P.

    2000-01-01

    The purpose of this study was to determine whether exercise performed by Space Shuttle crewmembers during short-duration spaceflights (9-16 days) affects the heart rate (HR) and blood pressure (BP) responses to standing within 2-4 hr of landing. Thirty crewmembers performed self-selected in-flight exercise and maintained exercise logs to monitor their exercise intensity and duration. A 10min stand test, preceded by at least 6 min of quiet supine rest, was completed 10- 15 d before launch (PRE) and within four hours of landing (POST). Based upon their in-flight exercise records, subjects were grouped as either high (HIex: = 3x/week, HR = 70% ,HRMax, = 20 min/session, n = 11), medium (MEDex: = 3x/week, HR = 70% HRmax, = 20 min/session, n = 10), or low (LOex: = 3x/week, HR and duration variable, n = 11) exercisers. HR and BP responses to standing were compared between groups (ANOVA, or analysis of variance, P < 0.05). There were no PRE differences between the groups in supine or standing HR and BP. Although POST supine HR was similar to PRE, all groups had an increased standing HR compared to PRE. The increase in HR upon standing was significantly greater after flight in the LOex group (36+/-5 bpm) compared to HIex or MEDex groups (25+/-1bpm; 22+/-2 bpm). Similarly, the decrease in pulse pressure (PP) from supine to standing was unchanged after spaceflight in the MEDex and HIex groups, but was significantly less in the LOex group (PRE: -9+/- 3, POST: -19+/- 4 mmHg). Thus, moderate to high levels of in-flight exercise attenuated HR and PP responses to standing after spaceflight compared.

  11. Integrated System Health Management: Pilot Operational Implementation in a Rocket Engine Test Stand

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Schmalzel, John L.; Morris, Jonathan A.; Turowski, Mark P.; Franzl, Richard

    2010-01-01

    This paper describes a credible implementation of integrated system health management (ISHM) capability, as a pilot operational system. Important core elements that make possible fielding and evolution of ISHM capability have been validated in a rocket engine test stand, encompassing all phases of operation: stand-by, pre-test, test, and post-test. The core elements include an architecture (hardware/software) for ISHM, gateways for streaming real-time data from the data acquisition system into the ISHM system, automated configuration management employing transducer electronic data sheets (TEDS?s) adhering to the IEEE 1451.4 Standard for Smart Sensors and Actuators, broadcasting and capture of sensor measurements and health information adhering to the IEEE 1451.1 Standard for Smart Sensors and Actuators, user interfaces for management of redlines/bluelines, and establishment of a health assessment database system (HADS) and browser for extensive post-test analysis. The ISHM system was installed in the Test Control Room, where test operators were exposed to the capability. All functionalities of the pilot implementation were validated during testing and in post-test data streaming through the ISHM system. The implementation enabled significant improvements in awareness about the status of the test stand, and events and their causes/consequences. The architecture and software elements embody a systems engineering, knowledge-based approach; in conjunction with object-oriented environments. These qualities are permitting systematic augmentation of the capability and scaling to encompass other subsystems.

  12. Construction Progress of the S-IC Test Stand-Excavation

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 13, 1961, progress is being made with the excavation of the S-IC test stand site. During the digging, a natural spring was disturbed which caused a constant flooding problem. Pumps were used to remove the water all through the construction process and the site is still pumped today.

  13. Construction Progress of the S-IC Test Stand-Pumps

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken April 4, 1961, shows the S-IC test stand dry once again when workers resumed construction after a 6 month delay due to booster size reconfiguration back in September of 1961. The disturbance of a natural spring during the excavation of the site required water to be pumped from the site continuously. The site was completely flooded after the pumps were shut down during the construction delay.

  14. 5. "UNDERGROUND CONTROL ROOM AT TEST STAND 1A, DIRECTORATE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. "UNDERGROUND CONTROL ROOM AT TEST STAND 1-A, DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB, 15 JAN 58, 3097.58." Two men working in the control room. Photo no. "3097 58; G-AFFTC 15 JAN 58, T.S. 1-A Control". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  15. Reliability and sensitivity to change of the timed standing balance test in children with down syndrome

    PubMed Central

    Aranha, Vencita Priyanka; Samuel, Asir John; Saxena, Shikha

    2016-01-01

    Objective: To estimate the reliability and sensitivity to change of the timed standing balance test in children with Down syndrome (DS). Methods: It was a nonblinded, comparison study with a convenience sample of subjects consisting of children with DS (n = 9) aged 8–17 years. The main outcome measure was standing balance which was assessed using timed standing balance test, the time required to maintain in four conditions, eyes open static, eyes closed static, eyes open dynamic, and eyes closed dynamic. Results: Relative reliability was excellent for all four conditions with an Interclass Correlation Coefficient (ICC) ranging from 0.91 to 0.93. The variation between repeated measurements for each condition was minimal with standard error of measurement (SEM) of 0.21–0.59 s, suggestive of excellent absolute reliability. The sensitivity to change as measured by smallest real change (SRC) was 1.27 s for eyes open static, 1.63 s for eyes closed static, 0.58 s for eyes open dynamic, and 0.61 s for eyes closed static. Conclusions: Timed standing balance test is an easy to administer test and sensitive to change with strong absolute and relative reliabilities, an important first step in establishing its utility as a clinical balance measure in children with DS. PMID:26933350

  16. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions. PMID

  17. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies

    NASA Astrophysics Data System (ADS)

    Arunkumar, R.; Hogancamp, Kristina U.; Parsons, Michael S.; Rogers, Donna M.; Norton, Olin P.; Nagel, Brian A.; Alderman, Steven L.; Waggoner, Charles A.

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30×30×29cm3 nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5to12standardm3/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150°C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7standardm3/min, high mass concentrations (˜25mg/m3) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  18. Z-2 Suit Support Stand and MKIII Suit Center of Gravity Test

    NASA Technical Reports Server (NTRS)

    Nguyen, Tuan Q.

    2014-01-01

    NASA's next generation spacesuits are the Z-Series suits, made for a range of possible exploration missions in the near future. The prototype Z-1 suit has been developed and assembled to incorporate new technologies that has never been utilized before in the Apollo suits and the Extravehicular Mobility Unit (EMU). NASA engineers tested the Z-1 suit extensively in order to developed design requirements for the new Z-2 suit. At the end of 2014, NASA will be receiving the new Z-2 suit to perform more testing and to further develop the new technologies of the suit. In order to do so, a suit support stand will be designed and fabricated to support the Z-2 suit during maintenance, sizing, and structural leakage testing. The Z-2 Suit Support Stand (Z2SSS) will be utilized for these purposes in the early testing stages of the Z-2 suit.

  19. The test stand system for the PHENIX iFVTX silicon detector

    SciTech Connect

    Rivera, Ryan A.; Turqueti, Marcos A.; /Fermilab

    2007-05-01

    PHENIX is the largest of the four experiments currently taking data at the Relativistic Heavy Ion Collider (RHIC), and the iFVTX is a new pixel tracker which will be installed in the forward tracker region of PHENIX. Fermilab has developed a complete test stand system for the examination of FPix2.1 modules, hybrids, and pixel chips that will be installed in the iFVTX. The system is currently in use for chip, module, and wafer testing at Fermilab. The test stand architecture is flexible and can be adapted to new requirements. In this paper, the software and hardware integration will be discussed followed by an analysis of the advantages of choosing a modular approach for the system. Finally, a selection of tests supported by the system, along with sample results, will be presented and explained.

  20. Operational evaluation of a proppeller test stand in the quiet flow facility at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1982-01-01

    Operational proof tests of a propeller test stand (PTS) in a quiet flow facility (QFF) are presented. The PTS is an experimental test bed for acoustic propeller research in the quiet flow environment of the QFF. These proof tests validate thrust and torque predictions, examine the repeatability of measurements on the PTS, and determine the effect of applying artificial roughness to the propeller blades. Since a thrusting propeller causes an open jet to contract, the potential flow core was surveyed to examine the magnitude of the contraction. These measurements are compared with predicted values. The predictions are used to determine operational limitations for testing a given propeller design in the QFF.

  1. Hydrostatic Vibratory Drive of the Test Stand for Excitation of the Amplitude-Modulated Vibrations

    NASA Astrophysics Data System (ADS)

    Nizhegorodov, A. I.; Gavrilin, A. N.; Moyzes, B. B.

    2016-01-01

    The article reviews the problems arising during the development of the test stand hydrostatic vibratory drive, which synthesize controlled amplitude-modulated vibrations required testing of vibration strength and vibrostability of technological devices. The newly developed modification can adequately simulate the transport vibration and vibration of the operating power-supply units of technological machinery vibration by means of implementing of a continuous frequency spectrum of the vibration exposure in the desired frequency range.

  2. Construction Progress of the S-IC Test Stand-Demolition

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. After a 6 month delay in construction due to size reconfiguration of the Saturn booster, the site was revisited for modifications. The original foundation walls built in the prior year had to be torn down and re-poured to accommodate the larger booster. The demolition can be seen in this photograph taken on April 16, 1962.

  3. Rehabilitation of the Rocket Vehicle Integration Test Stand at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ray, Ronald J.; Phillips, Paul

    2005-01-01

    Since initial use in 1958 for the X-15 rocket-powered research airplane, the Rocket Engine Test Facility has proven essential for testing and servicing rocket-powered vehicles at Edwards Air Force Base. For almost two decades, several successful flight-test programs utilized the capability of this facility. The Department of Defense has recently demonstrated a renewed interest in propulsion technology development with the establishment of the National Aerospace Initiative. More recently, the National Aeronautics and Space Administration is undergoing a transformation to realign the organization, focusing on the Vision for Space Exploration. These initiatives provide a clear indication that a very capable ground-test stand at Edwards Air Force Base will be beneficial to support the testing of future access-to-space vehicles. To meet the demand of full integration testing of rocket-powered vehicles, the NASA Dryden Flight Research Center, the Air Force Flight Test Center, and the Air Force Research Laboratory have combined their resources in an effort to restore and upgrade the original X-15 Rocket Engine Test Facility to become the new Rocket Vehicle Integration Test Stand. This report describes the history of the X-15 Rocket Engine Test Facility, discusses the current status of the facility, and summarizes recent efforts to rehabilitate the facility to support potential access-to-space flight-test programs. A summary of the capabilities of the facility is presented and other important issues are discussed.

  4. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... coupling operations, and retarders shall be performed in accordance with the requirements of 40 CFR part... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement...

  5. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... coupling operations, and retarders shall be performed in accordance with the requirements of 40 CFR part... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement...

  6. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... coupling operations, and retarders shall be performed in accordance with the requirements of 40 CFR part... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement...

  7. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... coupling operations, and retarders shall be performed in accordance with the requirements of 40 CFR part... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement...

  8. Presyncopal/Non-Presyncopal Outcomes of Post Spaceflight Stand Tests are Consistent from Flight to Flight

    NASA Technical Reports Server (NTRS)

    Martin, D. S.; Meck, J. V.

    2004-01-01

    The overall prevalence of orthostatic hypotension after short duration (6-18 d) spaceflight is 20% with existing countermeasures. However, it is not known if the outcomes of stand tests for orthostatic tolerance are consistent within individuals on subsequent flights, or if first time fliers are more (or less) likely to experience orthostatic hypotension and presyncope than are veteran astronauts. Fifty astronauts were studied retrospectively. Stand test data, which had been collected before and after spaceflight, were compared from at least two flights for each astronaut. For twenty-five of these astronauts, their first flight in this database was also their first time to fly into space. For the remaining 25, their first flight in this database was their second, third or fourth flight, as data were available. No subject became presyncopal during preflight testing. Of the 50 subjects, 45 (90%) had the same outcome on their first and second fligh ts of this study. Of 14 subjects on whom we had data from a third mission, 12 had the same stand test outcome on all three flights (86% same outcome across three flights). There was no correlation between flight duration and orthostatic tolerance (r = 0.39). These data support the idea that astronauts are predisposed to orthostatic tolerance/intolerance after spaceflight and that this predisposition is not altered by subsequent flights. Flight durations within this data set did not alter the likelihood of orthostatic intolerance and rookie fliers were no more likely to experience orthostatic intolerance than were veteran astronauts.

  9. Credit BG. Looking southeast at Test Stand "D" (Building 4223/E24). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Looking southeast at Test Stand "D" (Building 4223/E-24). Left foreground contains six high-pressure nitrogen tanks which supplied nitrogen for operation of propellant valves. Several tanks for other substances have been removed from the base of the tower as part of decontamination and dismantling program. The vertical vacuum test cell can be seen in the tower behind the western sunscreen. At the top of the tower in the northeast corner is the interstage condenser used in the series of vacuum ejectors; at the top of the condenser is one of two Z-stage ejectors used to evacuate the condenser. The hoist beam for lifting/lowering rocket engines can be clearly seen projecting to the west over the pavement. In the distance on the right are Clayton water-tube steam generators from Building 4280/E-81, and the towers for Test Stand "C" and its scrubber-condenser - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  10. Guidance on the Stand Down, Mothball, and Reactivation of Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Volkman, Gregrey T.; Dunn, Steven C.

    2013-01-01

    The development of aerospace and aeronautics products typically requires three distinct types of testing resources across research, development, test, and evaluation: experimental ground testing, computational "testing" and development, and flight testing. Over the last twenty plus years, computational methods have replaced some physical experiments and this trend is continuing. The result is decreased utilization of ground test capabilities and, along with market forces, industry consolidation, and other factors, has resulted in the stand down and oftentimes closure of many ground test facilities. Ground test capabilities are (and very likely will continue to be for many years) required to verify computational results and to provide information for regimes where computational methods remain immature. Ground test capabilities are very costly to build and to maintain, so once constructed and operational it may be desirable to retain access to those capabilities even if not currently needed. One means of doing this while reducing ongoing sustainment costs is to stand down the facility into a "mothball" status - keeping it alive to bring it back when needed. Both NASA and the US Department of Defense have policies to accomplish the mothball of a facility, but with little detail. This paper offers a generic process to follow that can be tailored based on the needs of the owner and the applicable facility.

  11. Performance of 3.9 GHz SRF Cavities at Fermilab's ILCTA_MDB Horizontal Test Stand

    SciTech Connect

    Harms, E.; Hocker, A.; /Fermilab

    2009-01-01

    Fermilab is building a cryomodule containing four 3.9 GHz superconducting radio frequency (SRF) cavities for the Free electron LASer in Hamburg (FLASH) facility at the Deutsches Elektronen-SYnchrotron (DESY) laboratory. Before assembling the cavities into the cryomodule, each individual cavity is tested at Fermilab's Horizontal Test Stand (HTS). The HTS provides the capability to test fully-dressed SRF cavities at 1.8 K with high-power pulsed RF in order to verify that the cavities achieve performance requirements under these conditions. The performance at the HTS of the 3.9 GHz cavities built for FLASH is presented here.

  12. Performance of 3.9 GHz SRF cavities at Fermilab's ILCTA_MDB nhorizontal test stand

    SciTech Connect

    Harms, Elvin; Hocker, Andy; /Fermilab

    2008-08-01

    Fermilab is building a cryomodule containing four 3.9 GHz superconducting radio frequency (SRF) cavities for the Free electron LASer in Hamburg (FLASH) facility at the Deutsches Elektronen-SYnchrotron (DESY) laboratory. Before assembling the cavities into the cryomodule, each individual cavity is tested at Fermilab's Horizontal Test Stand (HTS). The HTS provides the capability to test fully-dressed SRF cavities at 1.8 K with high-power pulsed RF in order to verify that the cavities achieve performance requirements under these conditions. The performance at the HTS of the 3.9 GHz cavities built for FLASH is presented here.

  13. A quick screening test of competency to stand trial for defendants with mental retardation.

    PubMed

    Smith, S A; Hudson, R L

    1995-02-01

    19 terms and concepts from evaluations of competency to stand trial of 55 defendants with mental retardation were rated to examine whether a quick screening test could be devised that would differentiate those who were judged competent or not competent. A multiple regression and discriminant analysis gave four items that yielded maximum predictability (R = .84): court strategy, plead, testify, and jury. Guilty, trial, and prosecutor were also significantly more difficult for those who were not competent than those who were. PMID:7770598

  14. Performance Studies of the Vibration Wire Monitor on the Test Stand with Low Energy Electron Beam

    NASA Astrophysics Data System (ADS)

    Okabe, Kota; Yoshimoto, Masahiro; Kinsho, Michikazu

    In the high intensity proton accelerator as the Japan Proton Accelerator Research Complex (J-PARC) accelerators, serious radiation and residual dose is induced by a small beam loss such a beam halo. Therefore, diagnostics of the beam halo formation is one of the most important issues to control the beam loss. For the beam halo monitor, the vibration wire monitor (VWM) has a potential for investigating the beam halo and weak beam scanning. The VWM has a wide dynamic range, high resolution and the VWM is not susceptible to secondary electrons and electric noises. We have studied the VWM features as a new beam-halo monitor on the test stand with low energy electron gun. The frequency shift of the irradiated vibration wire was confirmed about wire material and the electron beam profile measured by using the VWM was consistent with the results of the Faraday cup measurement. Also we calculated a temperature distribution on the vibration wire which is irradiated by the electron beam with the numerical simulation. The simulations have been fairly successful in reproducing the transient of the irradiated vibration wire frequency measured by test stand experiments. In this paper, we will report a result of performance evaluation for the VWM on the test stands and discuss the VWM for beam halo diagnostic

  15. Reliability and validity of a talent identification test battery for seated and standing Paralympic throws.

    PubMed

    Spathis, Jemima Grace; Connick, Mark James; Beckman, Emma Maree; Newcombe, Peter Anthony; Tweedy, Sean Michael

    2015-01-01

    Paralympic throwing events for athletes with physical impairments comprise seated and standing javelin, shot put, discus and seated club throwing. Identification of talented throwers would enable prediction of future success and promote participation; however, a valid and reliable talent identification battery for Paralympic throwing has not been reported. This study evaluates the reliability and validity of a talent identification battery for Paralympic throws. Participants were non-disabled so that impairment would not confound analyses, and results would provide an indication of normative performance. Twenty-eight non-disabled participants (13 M; 15 F) aged 23.6 years (±5.44) performed five kinematically distinct criterion throws (three seated, two standing) and nine talent identification tests (three anthropometric, six motor); 23 were tested a second time to evaluate test-retest reliability. Talent identification test-retest reliability was evaluated using Intra-class Correlation Coefficient (ICC) and Bland-Altman plots (Limits of Agreement). Spearman's correlation assessed strength of association between criterion throws and talent identification tests. Reliability was generally acceptable (mean ICC = 0.89), but two seated talent identification tests require more extensive familiarisation. Correlation strength (mean rs = 0.76) indicated that the talent identification tests can be used to validly identify individuals with competitively advantageous attributes for each of the five kinematically distinct throwing activities. Results facilitate further research in this understudied area. PMID:25371965

  16. Large-scale generic test stand for testing of multiple configurations of air filters utilizing a range of particle size distributions

    NASA Astrophysics Data System (ADS)

    Giffin, Paxton K.; Parsons, Michael S.; Unz, Ronald J.; Waggoner, Charles A.

    2012-05-01

    The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m3/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.

  17. Large-scale generic test stand for testing of multiple configurations of air filters utilizing a range of particle size distributions.

    PubMed

    Giffin, Paxton K; Parsons, Michael S; Unz, Ronald J; Waggoner, Charles A

    2012-05-01

    The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m(3)/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome. PMID:22667655

  18. 3. SOUTH TEST STAND WITH X15 IN PLACE. A color ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SOUTH TEST STAND WITH X-15 IN PLACE. A color photograph taken from a lift boom or from atop a truck, looking northwest to NASA hangars in the far distance. Also shows the shop building at left, and two observation bunkers with hatches open; one at right (Bldg. 1933) and the other in front of Liquid Oxygen tank truck at left (Bldg. 1934). - Edwards Air Force Base, X-15 Engine Test Complex, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  19. Pilot Field Test: Use of a Compression Garment During a Stand Test After Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Laurie, S. S.; Stenger, M. B.; Phillips, T. R.; Lee, S. M. C.; Cerisano, J.; Kofman, I.; Reschke, M.

    2016-01-01

    Orthostatic intolerance (OI) is a concern for astronauts returning from long-duration space flight. One countermeasure that has been used to protect against OI after short-duration bed rest and space flight is the use of lower body and abdominal compression garments. However, since the end of the Space Shuttle era we have not been able to test crewmembers during the first 24 hours after landing on Earth. NASA's Pilot Field Test provided us the opportunity to test cardiovascular responses of crewmembers wearing the Russian Kentavr compression garment during a stand test at multiple time points throughout the first 24 hours after landing. HYPOTHESIS We hypothesized that the Kentavr compression garment would prevent an increase in heart rate (HR) >15 bpm during a 3.5-min stand test. METHODS: The Pilot Field Test was conducted up to 3 times during the first 24 hours after crewmembers returned to Earth: (1) either in a tent adjacent to the Soyuz landing site in Kazakhstan (approx.1 hr) or after transportation to the Karaganda airport (approx. 4 hr); (2) during a refueling stop in Scotland (approx.12 hr); and (3) upon return to NASA Johnson Space Center (JSC) (approx.24 hr). We measured HR and arterial pressure (finger photoplethysmography) for 2 min while the crewmember was prone and throughout 3.5 min of quiet standing. Eleven crewmembers consented to participate; however, 2 felt too ill to start the test and 1 stopped 30 sec into the stand portion of the test. Of the remaining 8 crewmembers, 2 did not wear the Russian Kentavr compression garment. Because of inclement weather at the landing site, 5 crewmembers were flown by helicopter to the Karaganda airport before initial testing and received intravenous saline before completing the stand test. One of these crewmembers wore only the portion of the Russian Kentavr compression garment that covered the lower leg and thus lacked thigh and abdominal compression. All crewmembers continued wearing the Russian Kentavr

  20. Application of the Life Safety Code to a Historic Test Stand

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Lemke, Paul R.; Lewis, William L.; Covell, Carol C.

    2011-01-01

    NASA has conducted a study to assess alternatives to refurbishing existing launch vehicle modal test facilities as opposed to developing new test facilities to meet the demands of a very fiscally constrained test and evaluation environment. The results of this study showed that Marshall Space Flight Center (MSFC) Test Stand (TS) 4550 could be made compliant, within reasonable cost and schedule impacts, if safety processes and operational limitations were put in place to meet the safety codes and concerns of the Fire Marshall. Trades were performed with key selection criteria to ensure that appropriate levels of occupant safety are incorporated into test facility design modifications. In preparation for the ground vibration tests that were to be performed on the Ares I launch vehicle, the Ares Flight and Integrated Test Office (FITO) organization evaluated the available test facility options, which included the existing mothballed structural dynamic TS4550 used by Apollo and Shuttle, alternative ground vibration test facilities at other locations, and construction of a new dynamic test stand. After an exhaustive assessment of the alternatives, the results favored modifying the TS4550 because it was the lowest cost option and presented the least schedule risk to the NASA Constellation Program for Ares Integrated Vehicle Ground Vibration Test (IVGVT). As the renovation design plans and drawings were being developed for TS4550, a safety concern was discovered the original design for the construction of the test stand, originally built for the Apollo Program and renovated for the Shuttle Program, was completed before NASA s adoption of the currently imposed safety and building codes per National Fire Protection Association Life Safety Code [NFPA 101] and International Building Codes. The initial FITO assessment of the design changes, required to make TS4550 compliant with current safety and building standards, identified a significant cost increase and schedule impact

  1. Characterization of Space Shuttle Reusable Rocket Motor Static Test Stand Thrust Measurements

    NASA Technical Reports Server (NTRS)

    Cook, Mart L.; Gruet, Laurent; Cash, Stephen F. (Technical Monitor)

    2003-01-01

    Space Shuttle Reusable Solid Rocket Motors (RSRM) are static tested at two ATK Thiokol Propulsion facilities in Utah, T-24 and T-97. The newer T-97 static test facility was recently upgraded to allow thrust measurement capability. All previous static test motor thrust measurements have been taken at T-24; data from these tests were used to characterize thrust parameters and requirement limits for flight motors. Validation of the new T-97 thrust measurement system is required prior to use for official RSRM performance assessments. Since thrust cannot be measured on RSRM flight motors, flight motor measured chamber pressure and a nominal thrust-to-pressure relationship (based on static test motor thrust and pressure measurements) are used to reconstruct flight motor performance. Historical static test and flight motor performance data are used in conjunction with production subscale test data to predict RSRM performance. The predicted motor performance is provided to support Space Shuttle trajectory and system loads analyses. Therefore, an accurate nominal thrust-to-pressure (F/P) relationship is critical for accurate RSRM flight motor performance and Space Shuttle analyses. Flight Support Motors (FSM) 7, 8, and 9 provided thrust data for the validation of the T-97 thrust measurement system. The T-97 thrust data were analyzed and compared to thrust previously measured at T-24 to verify measured thrust data and identify any test-stand bias. The T-97 FIP data were consistent and within the T-24 static test statistical family expectation. The FSMs 7-9 thrust data met all NASA contract requirements, and the test stand is now verified for future thrust measurements.

  2. A Positional X-ray Instrumentation Test Stand For Beam-Line Experiments

    NASA Astrophysics Data System (ADS)

    Nikoleyczik, Jonathan; Prieskorn, Z.; Burrows, D. N.; Falcone, A.

    2014-01-01

    A multi-axis, motion controlled test stand has been built in the PSU 47 m X-ray beam-line for the purpose of testing X-ray instrumentation and mirrors using parallel rays. The test stand is capable of translation along two axes and rotation about two axes with motorized fine position control. The translation stages have a range of motion of 200 mm with a movement accuracy of ± 2.5 microns. Rotation is accomplished with a two-axis gimbal which can rotate 360° about one axis and 240° about another; movement with ± 35 arcsecond accuracy are achieved in both axes. The position and status are monitored using a LabView program. An XCalibr source with multiple target materials is used as an X-ray source and can produce multiple lines between 0.8 and 8 keV. Some sample spectra are shown from a Si-PIN diode detector. This system is well suited for testing X-ray mirror segments which are currently being developed.

  3. Analysis of Flame Deflector Spray Nozzles in Rocket Engine Test Stands

    NASA Technical Reports Server (NTRS)

    Sachdev, Jai S.; Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel C.

    2010-01-01

    The development of a unified tightly coupled multi-phase computational framework is described for the analysis and design of cooling spray nozzle configurations on the flame deflector in rocket engine test stands. An Eulerian formulation is used to model the disperse phase and is coupled to the gas-phase equations through momentum and heat transfer as well as phase change. The phase change formulation is modeled according to a modified form of the Hertz-Knudsen equation. Various simple test cases are presented to verify the validity of the numerical framework. The ability of the methodology to accurately predict the temperature load on the flame deflector is demonstrated though application to an actual sub-scale test facility. The CFD simulation was able to reproduce the result of the test-firing, showing that the spray nozzle configuration provided insufficient amount of cooling.

  4. Lightning Protection and Structural Bonding for the B2 Test Stand

    NASA Technical Reports Server (NTRS)

    Kinard, Brandon

    2015-01-01

    With the privatization of the space industry, NASA has entered a new era. To explore deeper parts of the solar system, NASA is developing a new spacecraft, the Space Launch System (SLS), capable of reaching these destinations, such as an asteroid or Mars. However, the test stand that is capable of testing the stage has been unused for many years. In addition to the updating/repair of the stand, more steel is being added to fully support the SLS. With all these modifications, the lightning protection system must be brought up to code to assure the protection of all personnel and assets. Structural bonding is a part of the lightning protection system. The focus of this project was to assure proper structural bonding. To begin, all relevant technical standards and the construction specifications were reviewed. This included both the specifications for the lightning protection and for general construction. The drawings were reviewed as well. From the drawings, bolted structural joints were reviewed to determine whether bonding was necessary. Several bolted joints were determined to need bonding according to the notes in the drawings. This exceeds the industry standards. The bolted joints are an electrically continuous joint. During tests, the stand experiences heavy vibration that may weaken the continuity of the bolted joint. Therefore, the secondary bonding is implemented to ensure that the structural joint has low resistance. If the structural joint has a high resistance because of corrosion, a potential gradient can occur that can cause a side flash. Damage, injury, or death can occur from a side flash so they are to be prevented. A list of the identified structural joints was compiled and sent to the contractor to be bonded. That covers the scope of this project.

  5. Reverberant Acoustic Testing and Direct Field Acoustic Testing Acoustic Standing Waves and their Impact on Structural Responses

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    The aerospace industry has been using two methods of acoustic testing to qualify flight hardware: (1) Reverberant Acoustic Test (RAT), (2) Direct Field Acoustic Test (DFAT). The acoustic field obtained by RAT is generally understood and assumed to be diffuse, expect below Schroeder cut-of frequencies. DFAT method of testing has some distinct advantages over RAT, however the acoustic field characteristics can be strongly affected by test setup such as the speaker layouts, number and location of control microphones and control schemes. In this paper the following are discussed based on DEMO tests performed at APL and JPL: (1) Acoustic wave interference patterns and acoustic standing waves, (2) The structural responses in RAT and DFAT.

  6. The front end test stand high performance H- ion source at Rutherford Appleton Laboratory.

    PubMed

    Faircloth, D C; Lawrie, S; Letchford, A P; Gabor, C; Wise, P; Whitehead, M; Wood, T; Westall, M; Findlay, D; Perkins, M; Savage, P J; Lee, D A; Pozimski, J K

    2010-02-01

    The aim of the front end test stand (FETS) project is to demonstrate that chopped low energy beams of high quality can be produced. FETS consists of a 60 mA Penning Surface Plasma Ion Source, a three solenoid low energy beam transport, a 3 MeV radio frequency quadrupole, a chopper, and a comprehensive suite of diagnostics. This paper details the design and initial performance of the ion source and the laser profile measurement system. Beam current, profile, and emittance measurements are shown for different operating conditions. PMID:20192390

  7. A 20-liter test stand with gas purification for liquid argon research

    DOE PAGESBeta

    Li, Y.; Thorn, C.; Tang, W.; Joshi, J.; Qian, X.; Diwan, M.; Kettell, S.; Morse, W.; Rao, T.; Stewart, J.; et al

    2016-06-06

    Here, we describe the design of a 20-liter test stand constructed to study fundamental properties of liquid argon (LAr). Moreover, this system utilizes a simple, cost-effective gas argon (GAr) purification to achieve high purity, which is necessary to study electron transport properties in LAr. An electron drift stack with up to 25 cm length is constructed to study electron drift, diffusion, and attachment at various electric fields. Finally, a gold photocathode and a pulsed laser are used as a bright electron source. The operational performance of this system is reported.

  8. Incompetency to stand trial and mental health treatment: a case study testing the subversion hypothesis.

    PubMed

    Hochstedler Steury, E; Choinski, M; Steury, S R

    1996-01-01

    This study is a test of the so-called subversion hypothesis, which posits that mentally disordered persons who commit minor offenses are prosecuted primarily for the purpose of imposing mental health treatment on them through evaluation and treatment for incompetency to stand trial. These persons, according to the subversion hypothesis, find themselves in the criminal process because they do not meet the stringent civil commitment standards, but do meet the less stringent criteria for a disorderly conduct prosecution. The findings, based on 893 disorderly conduct prosecutions in a single jurisdiction over a two-year period, do not lend general support to the subversion hypothesis. PMID:8889132

  9. A 20-liter test stand with gas purification for liquid argon research

    NASA Astrophysics Data System (ADS)

    Li, Y.; Thorn, C.; Tang, W.; Joshi, J.; Qian, X.; Diwan, M.; Kettell, S.; Morse, W.; Rao, T.; Stewart, J.; Tsang, T.; Zhang, L.

    2016-06-01

    We describe the design of a 20-liter test stand constructed to study fundamental properties of liquid argon (LAr). This system utilizes a simple, cost-effective gas argon (GAr) purification to achieve high purity, which is necessary to study electron transport properties in LAr. An electron drift stack with up to 25 cm length is constructed to study electron drift, diffusion, and attachment at various electric fields. A gold photocathode and a pulsed laser are used as a bright electron source. The operational performance of this system is reported.

  10. Fluorescent screens and image processing for the APS linac test stand

    SciTech Connect

    Berg, W.; Ko, K.

    1992-12-01

    A fluorescent screen was used to monitor relative beam position and spot size of a 56-MeV electron beam in the linac test stand. A chromium doped alumina ceramic screen inserted into the beam was monitored by a video camera. The resulting image was captured using a frame grabber and stored into memory. Reconstruction and analysis of the stored image was performed using PV-WAVE. This paper will discuss the hardware and software implementation of the fluorescent screen and imaging system. Proposed improvements for the APS linac fluorescent screens and image processing will also be discussed.

  11. A test stand for the evaluation of high efficiency mist eliminators

    NASA Astrophysics Data System (ADS)

    Giffin, Paxton K.; Parsons, Michael S.; Waggoner, Charles A.

    2012-10-01

    High efficiency mist eliminators (HEME) are airstream filtering elements primarily used to remove liquid and solid aerosols. HEME elements are designed to reduce aerosol load on downstream high efficiency particulate air filters and to have a liquid particle removal efficiency of 99.5% for aerosols as small as 1 μm in size. The test stand described herein is designed to evaluate the loading capacity and filtering efficiency of a single HEME element. The loading capacity was determined with or without use of a water spray cleaning system to wash the interior surface of the element. The HEME element is challenged with a liquid waste surrogate using Laskin nozzles and large dispersion nozzles. The waste surrogate used was a highly caustic solution with both suspended and dissolved solids representative of actual exposures at mixed, hazardous, and radiological, waste treatment facilities. The filtering efficiency performance was determined by challenging the element with a dried waste surrogate aerosol and di-octyl phthalate intermittently during the loading process. Capabilities of the test stand and representative results obtained during testing are presented.

  12. A test stand for the evaluation of high efficiency mist eliminators.

    PubMed

    Giffin, Paxton K; Parsons, Michael S; Waggoner, Charles A

    2012-10-01

    High efficiency mist eliminators (HEME) are airstream filtering elements primarily used to remove liquid and solid aerosols. HEME elements are designed to reduce aerosol load on downstream high efficiency particulate air filters and to have a liquid particle removal efficiency of 99.5% for aerosols as small as 1 μm in size. The test stand described herein is designed to evaluate the loading capacity and filtering efficiency of a single HEME element. The loading capacity was determined with or without use of a water spray cleaning system to wash the interior surface of the element. The HEME element is challenged with a liquid waste surrogate using Laskin nozzles and large dispersion nozzles. The waste surrogate used was a highly caustic solution with both suspended and dissolved solids representative of actual exposures at mixed, hazardous, and radiological, waste treatment facilities. The filtering efficiency performance was determined by challenging the element with a dried waste surrogate aerosol and di-octyl phthalate intermittently during the loading process. Capabilities of the test stand and representative results obtained during testing are presented. PMID:23126804

  13. Design of the NSLS-II Linac Front End Test Stand

    SciTech Connect

    Fliller III, R.; Johanson, M.; Lucas, M.; Rose, J.; Shaftan, T.

    2011-03-28

    The NSLS-II operational parameters place very stringent requirements on the injection system. Among these are the charge per bunch train at low emittance that is required from the linac along with the uniformity of the charge per bunch along the train. The NSLS-II linac is a 200 MeV linac produced by Research Instruments Gmbh. Part of the strategy for understanding to operation of the injectors is to test the front end of the linac prior to its installation in the facility. The linac front end consists of a 100 kV electron gun, 500 MHz subharmonic prebuncher, focusing solenoids and a suite of diagnostics. The diagnostics in the front end need to be supplemented with an additional suite of diagnostics to fully characterize the beam. In this paper we discuss the design of a test stand to measure the various properties of the beam generated from this section. In particular, the test stand will measure the charge, transverse emittance, energy, energy spread, and bunching performance of the linac front end under all operating conditions of the front end.

  14. The use of an aircraft test stand for VTOL handling qualities studies. [pilot evaluation of flight controllability

    NASA Technical Reports Server (NTRS)

    Pauli, F. A.; Corliss, L. D.; Selan, S. D.; Gerdes, R. M.; Gossett, T. D.

    1974-01-01

    The VTOL flight tests stand for testing control concepts on the X-14B VSS aircraft in hover, is described. This stand permits realistic and safe piloted evaluation and checkout of various control systems and of parameter variations within each system to determine acceptability to the pilot. Pilots can use it as a practical training tool to practice procedures and flying techniques and become familiar with the aircraft characteristics. Some examples of test experience are given. The test stand allows the X14B to maneuver in hover from centered position + or - 9.7 deg in roll and + or - 9.3 deg in pitch, about + or - 6 deg in yaw, and + or - 15 cm in vertical translation. The unique vertical free flight freedom enables study of liftoffs and landings with power conditions duplicated. The response on the stand agrees well with that measured in free hovering flight, and pilot comments confirm this.

  15. Superconducting Focusing Lenses for the SSR1 Cryomodule of PXIE Test Stand at Fermilab

    SciTech Connect

    DiMarco, J.; Tartaglia, M.; Terechkine, I.

    2016-01-01

    Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses in the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. This report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.

  16. Simulated stand tests and centrifuge training to prevent orthostatic intolerance on Earth, moon, and Mars.

    PubMed

    Coats, Brandon W; Sharp, M Keith

    2010-03-01

    One proposed method to overcome postflight orthostatic intolerance is for astronauts to undergo inflight centrifugation. Cardiovascular responses were compared between centrifuge and gravitational conditions using a seven-compartment cardiovascular model. Vascular resistance, heart rate, and stroke volume values were adopted from literature, while compartmental volumes and compliances were derived from impedance plethysmography of subjects (n=8) riding on a centrifuge. Three different models were developed to represent the typical male subject who completed a 10-min postflight stand test ("male finisher"), "non-finishing male" and "female" (all non-finishers). A sensitivity analysis found that both cardiac output and arterial pressure were most sensitive to total blood volume. Simulated stand tests showed that female astronauts were more susceptible to orthostatic intolerance due to lower initial blood pressure and higher pressure threshold for presyncope. Rates of blood volume loss by capillary filtration were found to be equivalent in female and male non-finishers, but four times smaller in male finishers. For equivalent times to presyncope during centrifugation as those during constant gravity, lower G forces at the level of the heart were required. Centrifuge G levels to match other cardiovascular parameters varied depending on the parameter, centrifuge arm length, and the gravity level being matched. PMID:20131096

  17. Test stand for precise measurement of impulse and thrust vector of small attitude control jets

    NASA Technical Reports Server (NTRS)

    Woodruff, J. R.; Chisel, D. M.

    1973-01-01

    A test stand which accurately measures the impulse bit and thrust vector of reaction jet thrusters used in the attitude control system of space vehicles has been developed. It can be used to measure, in a vacuum or ambient environment, both impulse and thrust vector of reaction jet thrusters using hydrazine or inert gas propellants. The ballistic pendulum configuration was selected because of its accuracy, simplicity, and versatility. The pendulum is mounted on flexure pivots rotating about a vertical axis at the center of its mass. The test stand has the following measurement capabilities: impulse of 0.00004 to 4.4 N-sec (0.00001 to 1.0 lb-sec) with a pulse duration of 0.5 msec to 1 sec; static thrust of 0.22 to 22 N (0.05 to 5 lb) with a 5 percent resolution; and thrust angle alinement of 0.22 to 22 N (0.05 to 5 lb) thrusters with 0.01 deg accuracy.

  18. Pilot Field Test: Performance of a Sit-to-Stand Test After Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; Phillips, T. R.; Rukavishnikov, I. V.; Kitov, V. V.; Lysova, N. Yu; Lee, S. M. C.; Stenger, M. B.; Bloomberg, J. J.; Mulavara, A. P.; Tomilovskaya, E. S.; Kozlovskaya, I. B.

    2016-01-01

    BACKGROUND: Astronauts returning from the International Space Station are met by a team of recovery personnel typically providing physical assistance and medical support immediately upon landing. That is because long-duration spaceflight impacts astronauts' functional abilities. Future expeditions to planets or asteroids beyond the low Earth orbit, however, may require crewmembers to egress the vehicle and perform other types of physical tasks unassisted. It is therefore important to characterize the extent and longevity of functional deficits experienced by astronauts in order to design safe exploration class missions. Pilot Field Test (PFT) experiment conducted with participation of ISS crewmembers traveling on Soyuz expeditions 34S - 41S comprised several tasks designed to study the recovery of sensorimotor abilities of astronauts during the first 24 hours after landing and beyond. METHODS: The first test in the PFT battery sequence, and also the least demanding one from the sensorimotor perspective, was a Sit-to-Stand test. Test subjects were seated in the chair and had to stand up on command and remain standing for ten seconds. The subjects were instructed to stand up unassisted as quickly as they were able to, while maintaining postural control. Synchronized wireless inertial sensors mounted on the head, chest, lower back, wrists, and ankles were used to continuously log body kinematics. Crewmembers' blood pressure and heart rate were monitored and recorded with the Portapres and Polar systems. Each session was recorded with a digital video camera. During data collections occurring within the 24-hour postflight period, crewmembers were also asked to (1) evaluate their perceived motion sickness symptoms on a 20-point scale before and after completion of the test and (2) estimate how heavy they felt compared to their normal (preflight) body weight. Consent to participate in PFT was obtained from 18 crewmembers (11 US Orbital Segment [USOS] astronauts and 7

  19. F-15B ACTIVE with thrust vectoring nozzles on test stand at sunrise

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This November 13, 1995, photograph of the F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) at NASA's Dryden Flight Research Center, Edwards, California, shows the aircraft on a test stand at sunrise. Not shown in this photograph are the aircraft's two new Pratt & Whitney nozzles that can turn up to 20 degrees in any direction. These nozzles give the aircraft thrust control in the pitch (up and down) and yaw (left and right) directions. This will reduce drag and increase fuel economy or range as compared with conventional aerodynamic controls, which increase the retarding forces (drag) acting upon the aircraft. These tests could result in significant performance increases for military and commercial aircraft. The research program is the product of a collaborative effort by NASA, the Air Force's Wright Laboratory, Pratt & Whitney, and McDonnell Douglas Aerospace. The aircraft was originally built as an F-15B (Serial #71-0290).

  20. Test stand performance of a convertible engine for advanced V/STOL and rotorcraft propulsion

    NASA Technical Reports Server (NTRS)

    Mcardle, Jack G.

    1987-01-01

    A variable inlet guide vane (VIGV) convertible engine that could be used to power future high-speed V/STOL and rotorcraft was tested on an outdoor stand. The engine ran stably and smoothly in the turbofan, turboshaft, and dual (combined fan and shaft) power modes. In the turbofan mode with the VIGV open, fuel consumption was comparable to that of a conventional turbofan engine. In the turboshaft mode with the VIGV closed, fuel consumption was higher than that of present turboshaft engines because power was wasted in churning fan-tip air flow. In dynamic performance tests with a specially built digital engine control and using a waterbrake dynamometer for shaft load, the engine responded effectively to large steps in thrust command and shaft torque.

  1. Control System for the SNS H- Source Test Stand Allison Scanner

    SciTech Connect

    Long, Cary D; Stockli, Martin P; Gorlov, Timofey V; Han, Baoxi; Pennisi, Terry R; Murray Jr, S N

    2010-01-01

    SNS is currently in progress of a multi-year plan to ramp ion beam power to the initial design power of 1.4 MW. Key to reaching this goal is understanding and improving the operation of the H- ion source. An Allison scanner was installed on the ion source test stand to support this improvement. This paper will discuss the hardware and the software control system of the installed Allison scanner. The hardware for the system consists of several parts. The heart of the system is the scanner head, complete with associated bias plates, slits, and signal detector. There are two analog controlled high voltage power supplies to bias the plates in the head, and a motor with associated controller to position the head in the beam. A multifunction data acquisition card reads the signals from the signal detector, as well as supplying the analog voltage control for the power supplies. To synchronize data acquisition with the source, the same timing signal that is used to trigger the source itself is used to trigger data acquisition. Finally, there is an industrial PC to control the rest of the hardware. Control software was developed using National Instruments LabVIEW, and consists of two parts, a data acquisition program to control the hardware, and a stand alone application for offline user data analysis.

  2. Integrated System Health Management (ISHM) for Test Stand and J-2X Engine: Core Implementation

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge F.; Schmalzel, John L.; Aguilar, Robert; Shwabacher, Mark; Morris, Jon

    2008-01-01

    ISHM capability enables a system to detect anomalies, determine causes and effects, predict future anomalies, and provides an integrated awareness of the health of the system to users (operators, customers, management, etc.). NASA Stennis Space Center, NASA Ames Research Center, and Pratt & Whitney Rocketdyne have implemented a core ISHM capability that encompasses the A1 Test Stand and the J-2X Engine. The implementation incorporates all aspects of ISHM; from anomaly detection (e.g. leaks) to root-cause-analysis based on failure mode and effects analysis (FMEA), to a user interface for an integrated visualization of the health of the system (Test Stand and Engine). The implementation provides a low functional capability level (FCL) in that it is populated with few algorithms and approaches for anomaly detection, and root-cause trees from a limited FMEA effort. However, it is a demonstration of a credible ISHM capability, and it is inherently designed for continuous and systematic augmentation of the capability. The ISHM capability is grounded on an integrating software environment used to create an ISHM model of the system. The ISHM model follows an object-oriented approach: includes all elements of the system (from schematics) and provides for compartmentalized storage of information associated with each element. For instance, a sensor object contains a transducer electronic data sheet (TEDS) with information that might be used by algorithms and approaches for anomaly detection, diagnostics, etc. Similarly, a component, such as a tank, contains a Component Electronic Data Sheet (CEDS). Each element also includes a Health Electronic Data Sheet (HEDS) that contains health-related information such as anomalies and health state. Some practical aspects of the implementation include: (1) near real-time data flow from the test stand data acquisition system through the ISHM model, for near real-time detection of anomalies and diagnostics, (2) insertion of the J-2X

  3. Universal computer test stand (recommended computer test requirements). [for space shuttle computer evaluation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Techniques are considered which would be used to characterize areospace computers with the space shuttle application as end usage. The system level digital problems which have been encountered and documented are surveyed. From the large cross section of tests, an optimum set is recommended that has a high probability of discovering documented system level digital problems within laboratory environments. Defined is a baseline hardware, software system which is required as a laboratory tool to test aerospace computers. Hardware and software baselines and additions necessary to interface the UTE to aerospace computers for test purposes are outlined.

  4. Small-Scale Hybrid Rocket Test Stand & Characterization of Swirl Injectors

    NASA Astrophysics Data System (ADS)

    Summers, Matt H.

    Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that both the forward-end enclosure and end cap can be easily removed for rapid integration of components during testing. Each of the components of the motor is removable allowing for a broad range of testing capabilities. While examining injectors and their potential it is thought ideal to obtain the highest regression rates and overall motor performance possible. The oxidizer and fuel are N2O and hydroxyl-terminated polybutadiene (HTPB), respectively, due to previous experience and simplicity. The injector designs, selected for the same reasons, are designed such that they vary only in the swirl angle. This system provides the platform for characterizing the effects of varying said swirl angle on HRM performance.

  5. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  6. Safety and diagnostic systems on the Liquid Lithium Test Stand (LLTS)

    NASA Astrophysics Data System (ADS)

    Schwartz, J. A.; Jaworski, M. A.; Ellis, R.; Kaita, R.; Mozulay, R.

    2013-10-01

    The Liquid Lithium Test Stand (LLTS) is a test bed for development of flowing liquid lithium systems for plasma-facing components at PPPL. LLTS is designed to test operation of liquid lithium under vacuum, including flowing, solidifying (such as would be the case at the end of plasma operations), and re-melting. Constructed of stainless steel, LLTS is a closed loop of pipe with two reservoirs and a pump, as well as diagnostics for temperature, flow rate, and pressure. Since liquid lithium is a highly reactive material, special care must be taken when designing such a system. These include a permanent-magnet MHD pump and MHD flow meter that have no mechanical components in direct contact with the liquid lithium. The LLTS also includes an expandable 24-channel leak-detector interlock system which cuts power to heaters and the pump if any lithium leaks from a pipe joint. Design for the interlock systems and flow meter are presented. This work is supported by US DOE Contract DE-AC02-09CH11466.

  7. Pilot Field Test: Performance of a Sit-to-Stand Test After Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; May-Phillips, T. R.; Rukavishnikov, I. V.; Kitov, V. V.; Lysova, N. U.; Lee, S. M. C.; Stenger, M. B.; Bloomberg, J. J.; Mulavara, A. P.; Tomilovskaya, E. S.; Kozlovskaya, I. B.

    2016-01-01

    Astronauts returning from the International Space Station (ISS) are met by a team of recovery personnel who typically provide physical assistance and medical support immediately after landing. This assistance and support are provided because long-duration spaceflight greatly affects astronauts' functional abilities. Future expeditions to planets or asteroids beyond low Earth orbit, however, will require crewmembers to egress the vehicle and perform other types of physical tasks unassisted. It is therefore important to characterize the extent and longevity of functional deficits experienced by astronauts in order to design safe exploration-class missions. A joint US/Russian Pilot Field Test (PFT) study conducted with participation of crewmembers of ISS Expeditions 35-42 comprised several tasks designed to study the recovery of sensorimotor abilities of astronauts during the first 24 hours after landing and beyond. Sit-to-Stand (S2S) was the first task in the PFT battery.

  8. The Renaissance: A test-stand for the Forward CMS Pixel Tracker assembly

    NASA Astrophysics Data System (ADS)

    Menasce, Dario; Turqueti, Marcos; Uplegger, Lorenzo

    2007-09-01

    The CMS Forward Pixel Tracker will consist of two end-cap blocks, each made of two disks lodging sensors and Read-Out Chips (ROCs) (grouped into plaquettes of different sizes) for a total of about 18 million read-out channels. During the assembly phase, prior to the physical mounting of the plaquettes on the disks a thorough electronic test is necessary to check each channel for functionality, noise level, required threshold trimming and bump-bond quality. To this extent a complete test-stand system, based on custom PCI cards and specialized software, has been developed. Different methods have been evaluated and implemented to electronically assess the amount of malfunctioning bump-bonds. Determination of the correct parameters for initialization of the ROCs has also been implemented as an automatic procedure; data are finally fed into a centralized database for subsequent retrieval during detector initialization or for off-line analysis. In this paper we describe requirements, design and implementation of such a system, which is currently in use at the Silicon Detector Facility (SiDet) Laboratory of FNAL for the final assembly of the Forward Tracker system.

  9. Tandem mirror experiment-upgrade neutral beam test stand: a powerful tool for development and quality assurance

    SciTech Connect

    Hibbs, S.M.; Kane, R.J.; Kerr, R.G.; Poulsen, P.

    1983-12-02

    During construction of the Tandem Mirror Experiment-Upgrade (TMX-U), we assembled a test stand to develop electronics for the neutral beam system. In the first six months of test stand use we operated a few neutral beam injector modules and directed considerable effort toward improving the electronic system. As system development progressed, our focus turned toward improving the injector modules themselves. The test stand has proved to be the largest single contributor to the successful operation of neutral beams on TMX-U, primarily because it provides quality assurance andd development capability in conjunction with the scheduled activities of the main experiment. This support falls into five major categories: (1) electronics development, (2) operator training, (3) injector module testing and characterization, (4) injector module improvements, and (5) physics improvements (through areas affected by injector operation). Normal day-to-day operation of the test stand comes under the third category, testing and characterization, and comprises our final quality assurance activity for newly assembled or repaired modules before they are installed on TMX-U.

  10. Developments in Test Facility and Data Networking for the Altitude Test Stand at the John C. Stennis Space Center: A General Overview

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W.

    2008-01-01

    NASA/SSC's Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware: Accurate, Reliable, Comprehensive, and Timely. Data Acquisition in a Rocket Propulsion Test Environment Is Challenging: a) Severe Temporal Transient Dynamic Environments; b) Large Thermal Gradients; c) Vacuum to high pressure regimes. A-3 Test Stand Development is equally challenging with respect to accommodating vacuum environment, operation of a CSG system, and a large quantity of data system and control channels to determine proper engine performance as well as Test Stand operation. SSC is currently in the process of providing modernized DAS, Control Systems, Video, and network systems for the A-3 Test Stand to overcome these challenges.

  11. Control system of the fatigue stand for material tests under combined bending with torsion loading and experimental results

    NASA Astrophysics Data System (ADS)

    Rozumek, Dariusz; Marciniak, Zbigniew

    2008-08-01

    The paper presents the control system of the fatigue test stand MZGS-200PL. Electric signals from the strain gauge Wheatstone bridges were processed with spectrum analyzer and the computer. In the computer, the signals were registered on the hard disk. The paper presents characteristics signals loading, power spectral density, autocorrelations and cross-correlation. The circular smooth specimens were tested. As compared with hydraulic machines for fatigue tests, the presented machine is reliable and simple, it works quietly, it allows to save energy, it is small and cheap. The test stand MZGS-200PL allows to perform tests under cyclic proportional, non-proportional and random bending with torsion, as well as tests under pure bending and pure torsion.

  12. Measurements of high energy photons in Z-pinch experiments on primary test stand

    NASA Astrophysics Data System (ADS)

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 1010 cm-2 (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  13. Measurements of high energy photons in Z-pinch experiments on primary test stand

    SciTech Connect

    Si, Fenni Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-15

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10{sup 10} cm{sup −2} (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  14. Measurements of high energy photons in Z-pinch experiments on primary test stand.

    PubMed

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10(10) cm(-2) (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region. PMID:26329192

  15. Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand

    NASA Astrophysics Data System (ADS)

    Huang, Xian-Bin; Zhou, Shao-Tong; Dan, Jia-Kun; Ren, Xiao-Dong; Wang, Kun-Lun; Zhang, Si-Qun; Li, Jing; Xu, Qiang; Cai, Hong-Chun; Duan, Shu-Chao; Ouyang, Kai; Chen, Guang-Hua; Ji, Ce; Wei, Bing; Feng, Shu-Ping; Wang, Meng; Xie, Wei-Ping; Deng, Jian-Jun; Zhou, Xiu-Wen; Yang, Yi

    2015-07-01

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a 20 TW pulsed power driver, which can deliver a ˜10 MA, 70 ns rise-time (10%-90%) current to a short-circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. Preliminary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 13 mm to 30 mm, consisting of 132-300 tungsten wires with 5-10 μm in diameter. Multiple diagnostics were fielded to characterize the x-ray radiation from wire-array Z pinches. The x-ray peak power (˜50 TW) and total radiated energy (˜500 kJ) were obtained from a single 20-mm-diam array with 80-ns stagnation time. The highest x-ray peak power up to 80 TW with 2.4 ns FWHM was achieved by using a nested array with 20-mm outer diameter, and the total x-ray energy from the nested array is comparable to that of single array. Implosion velocity estimated from the time-resolved image measurement exceeds 30 cm/μs. The detailed experimental results and other findings are presented and discussed.

  16. Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand

    SciTech Connect

    Huang, Xian-Bin; Zhou, Shao-Tong; Dan, Jia-Kun; Ren, Xiao-Dong Wang, Kun-Lun; Zhang, Si-Qun; Li, Jing; Xu, Qiang; Cai, Hong-Chun; Duan, Shu-Chao; Ouyang, Kai; Chen, Guang-Hua; Ji, Ce; Wei, Bing; Feng, Shu-Ping; Wang, Meng; Xie, Wei-Ping; Deng, Jian-Jun; Zhou, Xiu-Wen; Yang, Yi

    2015-07-15

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a 20 TW pulsed power driver, which can deliver a ∼10 MA, 70 ns rise-time (10%–90%) current to a short-circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. Preliminary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 13 mm to 30 mm, consisting of 132–300 tungsten wires with 5–10 μm in diameter. Multiple diagnostics were fielded to characterize the x-ray radiation from wire-array Z pinches. The x-ray peak power (∼50 TW) and total radiated energy (∼500 kJ) were obtained from a single 20-mm-diam array with 80-ns stagnation time. The highest x-ray peak power up to 80 TW with 2.4 ns FWHM was achieved by using a nested array with 20-mm outer diameter, and the total x-ray energy from the nested array is comparable to that of single array. Implosion velocity estimated from the time-resolved image measurement exceeds 30 cm/μs. The detailed experimental results and other findings are presented and discussed.

  17. Wafer and reticle positioning system for the Extreme Ultraviolet Lithography Engineering Test Stand

    SciTech Connect

    WRONOSKY,JOHN B.; SMITH,TONY G.; CRAIG,MARCUS J.; STURGIS,BEVERLY R.; DARNOLD,JOEL R.; WERLING,DAVID K.; KINCY,MARK A.; TICHENOR,DANIEL A.; WILLIAMS,MARK E.; BISCHOFF,PAUL

    2000-01-27

    This paper is an overview of the wafer and reticle positioning system of the Extreme Ultraviolet Lithography (EUVL) Engineering Test Stand (ETS). EUVL represents one of the most promising technologies for supporting the integrated circuit (IC) industry's lithography needs for critical features below 100nm. EUVL research and development includes development of capabilities for demonstrating key EUV technologies. The ETS is under development at the EUV Virtual National Laboratory, to demonstrate EUV full-field imaging and provide data that supports production-tool development. The stages and their associated metrology operated in a vacuum environment and must meet stringent outgassing specifications. A tight tolerance is placed on the stage tracking performance to minimize image distortion and provide high position repeatability. The wafer must track the reticle with less than {+-}3nm of position error and jitter must not exceed 10nm rms. To meet these performance requirements, magnetically levitated positioning stages utilizing a system of sophisticated control electronics will be used. System modeling and experimentation have contributed to the development of the positioning system and results indicate that desired ETS performance is achievable.

  18. 49 CFR 210.33 - Operation standards (switcher locomotives, load cell test stands, car coupling operations, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Operation standards (switcher locomotives, load cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD NOISE EMISSION...

  19. Saturn I (SA-1) in Marshall Space Flight Center Test Stand

    NASA Technical Reports Server (NTRS)

    1961-01-01

    On October 27, 1961, the Marshall Space Flight Center (MSFC) and the Nation marked a high point in the 3-year-old Saturn development program when the first Saturn vehicle flew a flawless 215-mile ballistic trajectory from Cape Canaveral, Florida. SA-1 is pictured here, five months before launch, in the MSFC test stand on May 16, 1961. Developed and tested at MSFC under the direction of Dr. Wernher von Braun, SA-1 incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet. and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks, as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle.

  20. Magnetic core test stand for energy loss and permeability measurements at a high constant magnetization rate and test results for nanocrystalline and ferrite materials.

    PubMed

    Burdt, Russell; Curry, Randy D

    2008-09-01

    A test stand was developed to measure the energy losses and unsaturated permeability of toroidal magnetic cores, relevant to applications of magnetic switching requiring a constant magnetization rate of the order of 1-10 T/micros. These applications in pulsed power include linear induction accelerators, pulse transformers, and discharge switches. The test stand consists of a coaxial transmission line pulse charged up to 100 kV that is discharged into a magnetic core load. Suitable diagnostics measure the voltage across and the current through a winding on the magnetic core load, from which the energy losses and unsaturated permeability are calculated. The development of the test stand is discussed, and test results for ferrite CN20 and the nanocrystalline material Finemet FT-1HS are compared to demonstrate the unique properties of a nanocrystalline material. The experimental data are compared with published data in a similar parameter space to demonstrate the efficacy of the experimental methods. PMID:19044442

  1. Reliability and Validity of Standing Back Extension Test for Detecting Motor Control Impairment in Subjects with Low Back Pain

    PubMed Central

    Kumar, Senthil P; Eapen, Charu; Mahale, Ajit

    2016-01-01

    Introduction Low back pain is a chronic health problem with high socioeconomic impact. Specific diagnosis or treatment approach has not yet effectively established to treat chronic low back pain. Standing Back Extension Test is one of the clinical measures to detect the passive extension subgroup of Motor Control Impairment (MCI); which could have an impact on spinal stability leading to recurrent chronic low back pain. Reliability and validity of this test is not fully established. Aim To determine the intra-rater and inter-rater reliability and concurrent validity of the Standing Back Extension Test for detecting MCI of the lumbar spine. Materials and Methods A total of 50 subjects were included in the study, 25 patients with Non Specific Low Back Pain (NSLBP) (12 men, 13 women) and 25 healthy controls (12 men, 13 women) were recruited into the study. All subjects performed the test movement. Two raters blinded to the subjects rated the test performance as either ‘Positive’ or ‘Negative’ based on the predetermined rating protocol. The thickness of Transverse Abdominis (TrA) muscle was assessed using Rehabilitative Ultrasound Imaging (RUSI). Statistical test used For reliability, the kappa coefficient with percent agreement was calculated and for assessing the validity Receiver Operator Characteristic (ROC) curves and Area under the Curve (AUC) were constructed. Results The standing back extension test showed very good intra-rater (k=0.87 with an agreement of 96%) and good inter-rater (k=0.78 with an agreement of 94%) reliability and high AUC for TrA muscle. Conclusion The standing back extension test was found to be a reliable and a valid measure to detect passive extension subgroup for MCI in subjects with low back pain. PMID:26894091

  2. Rates and mechanisms of optic contamination in the EUV engineering test stand

    NASA Astrophysics Data System (ADS)

    Grunow, Philip A.; Klebanoff, Leonard E.; Graham, Samuel, Jr.; Haney, Steven J.; Clift, W. Miles

    2003-06-01

    The EUV Engineering Test Stand (ETS) is a full field, alpha class Extreme Ultraviolet Lithography (EUVL) tool that has demonstrated the printing of 70 nm resolution scanned images. The tool employs Mo/Si multilayer optics that reflect EUV radiation (13.4nm / 92.5eV) with ~67% peak reflectance per optic. For good reflectivity, many (greater than or equal to 40)Mo/Si layers must be present. Consequently, processes such as plasma induced multilayer erosion, which reduces the number of bilayer pairs on plasma facing optics, need to be understood. Since most materials readily absorb EUV photons, it is important to prevent contamination of mirror surfaces with EUV absorbing material. Contamination can occur by EUV photons "cracking" hydrocarbons or other species absorbed on the optical surfaces. The first ETS condenser component, referred to as C1, is coated with Mo/Si multilayers. Data collected from Mo/Si witness plates placed at the C1 position indicate erosion, using the Xe Laser Produced Plasma (LPP) spray jet, of 1 bilayer per ~15 million shots. Preliminary experiments with a filament jet yielded a significantly higher erosion rate. In the spray jet studies, erosion was found to depend sensitively on the composition of the residual background environment. Addition of low levels, ~7x10-7 Torr, of H2O to the vacuum background produced oxidation of the Si cap, and significantly slowed spray jet induced erosion. Operation of the plasma changed the environment in the Illuminator Chamber from oxidizing to carbonizing, thereby changing the nature of the contamination found environment at the C3 optic which does not view the plasma directly (and therefore does not erode). The change in environment is attributed to plasma induced outgassing of fluorocarbons in the Illuminator. Due to the non zero conductance between the Illuminator and Main Chambers, fluorocarbons were also found in the Main Chamber during Xe LPP operation. RGA data are presented that document the effect

  3. Rates and mechanisms of optic contamination in the EUVL engineering test stand

    NASA Astrophysics Data System (ADS)

    Grunow, Philip A.; Klebanoff, Leonard E.; Graham, Samuel, Jr.; Haney, Steven J.; Clift, W. Miles

    2003-06-01

    The EUV Engineering Test Stand (ETS) is a full-field, alpha-class Extreme Ultraviolet Lithography (EUVL) tool that has demonstrated the printing of 70 nm resolution scanned images. The tool employs Mo/Si multilayer optics that reflect EUV radiation (13.4nm / 92.5eV) with ~67% peak reflectance per optic. For good reflectivity, many (≥40)Mo/Si layers must be present. Consequently, processes such as plasma-induced multilayer erosion, which reduces the number of bilayer pairs on plasma-facing optics, need to be understood. Since most materials readily absorb EUV photons, it is important to prevent contamination of mirror surfaces with EUV absorbing material. Contamination can occur by EUV photons "cracking" hydrocarbons or other species absorbed on the optical surfaces. The first ETS condenser component, referred to as C1, is coated with Mo/Si multilayers. Data collected from Mo/Si witness plates placed at the C1 position indicate erosion, using the Xe Laser Produced Plasma (LPP) spray jet, of 1 bilayer per ~15 million shots. Preliminary experiments with a filament jet yielded a significantly higher erosion rate. In the spray jet studies, erosion was found to depend sensitively on the composition of the residual background environment. Addition of low levels, ~7x10-7 Torr, of H2O to the vacuum background produced oxidation of the Si cap, and significantly slowed spray jet-induced erosion. Operation of the plasma changed the environment in the Illuminator Chamber from oxidizing to carbonizing, thereby changing the nature of the contamination found environment at the C3 optic which does not view the plasma directly (and therefore does not erode). The change in environment is attributed to plasma-induced outgassing of fluorocarbons in the Illuminator. Due to the non-zero conductance between the Illuminator and Main Chambers, fluorocarbons were also found in the Main Chamber during Xe LPP operation. RGA data are presented that document the effect. In the presence of such

  4. Simulated Stand Tests on Earth, Moon, and Mars and Centrifuge Parameters to Prevent Cardiovascular Deconditioning During Spaceflight

    NASA Astrophysics Data System (ADS)

    Coats, Brandon W.; Sharp, M. Keith

    2008-06-01

    Postflight Orthostatic Intolerance (POI) results from cardiovascular adaptation to spaceflight and affects a significant fraction of astronauts returning to earth after missions that are merely a couple of weeks in duration and may be even more prevalent after longer missions, such as those to the moon and Mars. To prevent cardiovascular deconditioning a centrifuge may be utilized to induce gravity-like stresses within the body. The current investigation allows insight into the mechanisms of POI by simulating stand tests on Earth, the moon, and Mars while predicting centrifuge spin rates that sufficiently mimic each constant gravity reference. It was found that the modeled nonfinishing male & female astronaut would become presyncopal in about 4&7min, 32&56min, 104&182min while losing 160&280mL, 512&896mL, 692&1211mL of blood volume (BV) at the onset of presyncope in each case for Earth, Mars, and the moon, respectively. The modeled finishing male astronaut endured the length of the stand test in every case, but lost only 100mL, 320, and 432mL BV by the end of each stand test. Centrifuge speeds for equivalent times to presyncope for female and finishing & nonfinishing male astronauts loaded the body with G loads at heart level for Earth, Mars, and the moon cases consistently less than the constant gravity reference level for both the NASA short & long arm centrifuges.

  5. Effects of a standing and three dynamic workstations on computer task performance and cognitive function tests.

    PubMed

    Commissaris, Dianne A C M; Könemann, Reinier; Hiemstra-van Mastrigt, Suzanne; Burford, Eva-Maria; Botter, Juliane; Douwes, Marjolein; Ellegast, Rolf P

    2014-11-01

    Sedentary work entails health risks. Dynamic (or active) workstations, at which computer tasks can be combined with physical activity, may reduce the risks of sedentary behaviour. The aim of this study was to evaluate short term task performance while working on three dynamic workstations: a treadmill, an elliptical trainer, a bicycle ergometer and a conventional standing workstation. A standard sitting workstation served as control condition. Fifteen Dutch adults performed five standardised but common office tasks in an office-like laboratory setting. Both objective and perceived work performance were measured. With the exception of high precision mouse tasks, short term work performance was not affected by working on a dynamic or a standing workstation. The participant's perception of decreased performance might complicate the acceptance of dynamic workstations, although most participants indicate that they would use a dynamic workstation if available at the workplace. PMID:24951234

  6. Report of independent consultants reviewing Integrated Test Stands (ITS) performance and readiness of DARHT for construction start

    SciTech Connect

    Not Available

    1993-08-01

    Independent consultants met at Los Alamos, June 15 and 16, 1993, to review progress on the commissioning of the Integrated Test Stand (ITS) for DARHT and to provide DOE with technical input on readiness for construction of the first radiographic arm of DARHT. The consultants concluded that all milestones necessary for demonstrating the performance of the DARHT accelerator have been met and that the project is ready for construction to resume. The experimental program using ITS should be continued to quantify the comparison of experiment and theory, to test improvements on the injector insulator, and to better evaluate the interaction of the beam and the target.

  7. NASA's Functional Task Test: High Intensity Exercise Improves the Heart Rate Response to a Stand Test Following 70 Days of Bedrest

    NASA Technical Reports Server (NTRS)

    Laurie, Steven S.; Lee, Stuart M. C.; Phillips, Tiffany R.; Dillon, E. Lichar; Sheffield-Moore, Melinda; Urban, Randall J.; Ploutz-Snyder, Lori; Stenger, Michael B.; Bloomberg, Jacob J.

    2015-01-01

    Cardiovascular adaptations due to spaceflight are modeled with 6deg head-down tilt bed rest (BR) and result in decreased orthostatic tolerance. We investigated if high-intensity resistive and aerobic exercise with and without testosterone supplementation would improve the heart rate (HR) response to a 3.5-min stand test and how quickly these changes recovered following BR. During 70 days of BR male subjects performed no exercise (Control, n=10), high intensity supine resistive and aerobic exercise (Exercise, n=9), or supine exercise plus supplemental testosterone (Exercise+T, n=8; 100 mg i.m., weekly in 2-week on/off cycles). We measured HR for 2 min while subjects were prone and for 3 min after standing twice before and 0, 1, 6, and 11 days after BR. Mixed-effects linear regression models were used to evaluate group, time, and interaction effects. Compared to pre-bed rest, prone HR was elevated on BR+0 and BR+1 in Control, but not Exercise or Exercise+T groups, and standing HR was greater in all 3 groups. The increase in prone and standing HR in Control subjects was greater than either Exercise or Exercise+T groups and all groups recovered by BR+6. The change in HR from prone to standing more than doubled on BR+0 in all groups, but was significantly less in the Exericse+T group compared to the Control, but not Exercise group. Exercise reduces, but does not prevent the increase in HR observed in response to standing. The significantly lower HR response in the Exercise+T group requires further investigation to determine physiologic significance.

  8. Simulating ion beam extraction from a single aperture triode acceleration column: A comparison of the beam transport codes IGUN and PBGUNS with test stand data

    SciTech Connect

    Patel, A.; Wills, J. S. C.; Diamond, W. T.

    2008-04-15

    Ion beam extraction from two different ion sources with single aperture triode extraction columns was simulated with the particle beam transport codes PBGUNS and IGUN. For each ion source, the simulation results are compared to experimental data generated on well-equipped test stands. Both codes reproduced the qualitative behavior of the extracted ion beams to incremental and scaled changes to the extraction electrode geometry observed on the test stands. Numerical values of optimum beam currents and beam emittance generated by the simulations also agree well with test stand data.

  9. Status of DOE and AID stand-alone photovoltaic system field tests

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.; Delombard, R.; Ratajczak, A. F.; Scudder, L. R.

    1984-01-01

    The NASA Lewis Research Center (LeRC) is managing stand-alone photovoltaic (PV) system projects sponsored by the U.S. Department of Energy (DOE) and the U.S. Agency for International Development (AID). The DOE project includes village PV power demonstration projects in Gabon (four sites) and the Marshall Islands, and PV-powered vaccine refrigerator systems in six countries. The AID project includes a large village power system, a farmhouse system and two water pumping-irrigation systems in Tunisia, a water pumping/grain grinding system in Upper Volta, five medical clinic systems in four countries, PV-powered vaccine refrigerator systems in 18 countries and a PV-powered remote earth station in Indonesia. This paper reviews these PV projects and summarizes significant findings to date.

  10. Status of DOE and AID stand-alone photovoltaic system field tests

    SciTech Connect

    Bifano, W.J.; DeLombard, R.; Ratajczak, A.F.; Scudder, L.R.

    1984-05-01

    The NASA Lewis Research Center (LeRC) is managing stand-alone photovoltaic (PV) system projects sponsored by the U.S. Department of Energy (DOE) and the U.S. Agency for International Development (AID). The DOE project includes village PV power demonstration projects in Gabon (four sites) and the Marshall Islands, and PV-powered vaccine refrigerator systems in six countries. The AID project includes a large village power system, a farmhouse system and two water pumping-irrigation systems in Tunisia, a water pumping/grain grinding system in Upper Volta, five medical clinic systems in four countries, PV-powered vaccine refrigerator systems in 18 countries and a PVpowered remote earth station in Indonesia. This paper reviews these PV projects and summarizes significant findings to date.

  11. Status of DOE and AID stand-alone photovoltaic system field tests

    NASA Astrophysics Data System (ADS)

    Bifano, W. J.; Delombard, R.; Ratajczak, A. F.; Scudder, L. R.

    The NASA Lewis Research Center (LeRC) is managing stand-alone photovoltaic (PV) system projects sponsored by the U.S. Department of Energy (DOE) and the U.S. Agency for International Development (AID). The DOE project includes village PV power demonstration projects in Gabon (four sites) and the Marshall Islands, and PV-powered vaccine refrigerator systems in six countries. The AID project includes a large village power system, a farmhouse system and two water pumping-irrigation systems in Tunisia, a water pumping/grain grinding system in Upper Volta, five medical clinic systems in four countries, PV-powered vaccine refrigerator systems in 18 countries and a PV-powered remote earth station in Indonesia. This paper reviews these PV projects and summarizes significant findings to date.

  12. An analysis of cross-coupling of a multicomponent jet engine test stand using finite element modeling techniques

    NASA Technical Reports Server (NTRS)

    Schweikhard, W. G.; Singnoi, W. N.

    1985-01-01

    A two axis thrust measuring system was analyzed by using a finite a element computer program to determine the sensitivities of the thrust vectoring nozzle system to misalignment of the load cells and applied loads, and the stiffness of the structural members. Three models were evaluated: (1) the basic measuring element and its internal calibration load cells; (2) the basic measuring element and its external load calibration equipment; and (3) the basic measuring element, external calibration load frame and the altitude facility support structure. Alignment of calibration loads was the greatest source of error for multiaxis thrust measuring systems. Uniform increases or decreases in stiffness of the members, which might be caused by the selection of the materials, have little effect on the accuracy of the measurements. It is found that the POLO-FINITE program is a viable tool for designing and analyzing multiaxis thrust measurement systems. The response of the test stand to step inputs that might be encountered with thrust vectoring tests was determined. The dynamic analysis show a potential problem for measuring the dynamic response characteristics of thrust vectoring systems because of the inherently light damping of the test stand.

  13. Testing prototypes of high-temperature superconducting current leads of cryogenic stand for testing magnetic elements of the NICA accelerating complex

    NASA Astrophysics Data System (ADS)

    Kres, E. V.; Kadenko, I. N.; Bessheiko, O. A.; Belov, D. V.; Blinov, N. A.; Galimov, A. R.; Zorin, A. G.; Karpinsky, V. N.; Nikiforov, D. N.; Pivin, R. V.; Smirnov, A. V.; Shevchenko, E. V.; Smirnov, S. A.; Khodzhibagiyan, G. G.; Liu, Cheng Lian

    2014-09-01

    In the Laboratory of High Energies at the Joint Institute for Nuclear Research, as part of the NICA-MPD [1] project, tests of two prototypes of HTSC current leads prepared at ASIPP institute (Hefei, China) have been performed [2, 3] to measure electric and heat parameters and to search for structural and physical drawbacks. Based on the experimental results, necessary changes are made in the structure of HTSC current leads of the testing stand for the magnetic element testing of the NICA accelerating complex and its basic setups: the Nuclotron, Booster, and Collider.

  14. Creating an EPICS Based Test Stand Development System for a BPM Digitizer of the Linac Coherent Light Source

    SciTech Connect

    Not Available

    2011-06-22

    The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test the digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.

  15. Testing a simulation model for reconstruction of prehistoric forest-stand dynamics

    SciTech Connect

    Solomon, A.M.; Delcourt, H.R.; West, D.C.; Blasing, T.J.

    1980-01-01

    Three characteristics of the output of a forest-stand simulation model were matched to pollen records of actual vegetation in central Tennessee. Temporal shifts of individual pollen taxon frequencies were compared to shifts of individual plant species frequencies in simulated biomass for the last 16,000 y. Individual pollen profiles (temporally ordered species frequencies) were also compared to simulated biomass profiles during that period. Modern ratios of pollen to vegetation composition (R values) were compared with those calculated from simulated biomass percentages and fossil pollen percentages. The model output was similar to the comparable characteristics of the pollen record. The model output is therefore a plausible description of vegetation characteristics at the site of pollen deposition in central Tennessee. The model produced information unavailable from other sets of prehistoric data. This information describes the invasion and growth of the yellow-poplar which produces no windborne pollen, and of palynologically indistinguishable oak and pine species. These results suggest that many paleoecological questions can be answered through appropriate simulation modeling studies.

  16. Testing a simulation model for reconstruction of prehistoric forest-stand dynamics*1, *2

    NASA Astrophysics Data System (ADS)

    Solomon, Allen M.; Delcourt, Hazel R.; West, Darrell C.; Blasing, T. J.

    1980-11-01

    Three characteristics of the output of a forest-stand simulation model were matched to pollen records of actual vegetation in central Tennessee. Temporal shifts of individual pollen taxon frequencies were compared to shifts of individual plant species frequencies in simulated biomass for the last 16,000 yr. Individual pollen profiles (temporally ordered species frequencies) were also compared to simulated biomass profiles during that period. Modern ratios of pollen to vegetation composition ( R values) were compared with those calculated from simulated biomass percentages and fossil pollen percentages. The model output was similar to the comparable characteristics of the pollen record. The model output is therefore a plausible description of vegetation characteristics at the site of pollen deposition in central Tennessee. The model produced information unavailable from other sets of prehistoric data. This information describes the invasion and growth of the yellow-poplar which produces no windborne pollen, and of palynologically indistinguishable oak and pine species. These results suggest that many paleoecological questions can be answered through appropriate simulation modeling studies.

  17. Validity and Reproducibility of an Incremental Sit-To-Stand Exercise Test for Evaluating Anaerobic Threshold in Young, Healthy Individuals

    PubMed Central

    Nakamura, Keisuke; Ohira, Masayoshi; Yokokawa, Yoshiharu; Nagasawa, Yuya

    2015-01-01

    Sit-to-stand exercise (STS) is a common activity of daily living. The objectives of the present study were: 1) to assess the validity of aerobic fitness measurements based on anaerobic thresholds (ATs), during incremental sit-to-stand exercise (ISTS) with and without arm support compared with an incremental cycle-ergometer (CE) test; and 2) to examine the reproducibility of the AT measured during the ISTSs. Twenty-six healthy individuals randomly performed the ISTS and CE test. Oxygen uptakes at the AT (AT-VO2) and heart rate at the AT (AT-HR) were determined during the ISTSs and CE test, and repeated-measures analyses of variance and Tukey’s post-hoc test were used to evaluate the differences between these variables. Pearson correlation coefficients were used to assess the strength of the relationship between AT-VO2 and AT-HR during the ISTSs and CE test. Data analysis yielded the following correlations: AT-VO2 during the ISTS with arm support and the CE test, r = 0.77 (p < 0.05); AT-VO2 during the ISTS without arm support and the CE test, r = 0.70 (p < 0.05); AT-HR during the ISTS with arm support and the CE test, r = 0.80 (p < 0.05); and AT-HR during the ISTS without arm support and the CE test, r = 0.66 (p < 0.05). The AT-VO2 values during the ISTS with arm support (18.5 ± 1.9 mL·min-1·kg-1) and the CE test (18.4 ± 1.8 mL·min-1·kg-1) were significantly higher than those during the ISTS without arm support (16.6 ± 1.8 mL·min-1·kg-1; p < 0.05). The AT-HR values during the ISTS with arm support (126 ± 10 bpm) and the CE test (126 ± 13 bpm) were significantly higher than those during the ISTS without arm support (119 ± 9 bpm; p < 0.05). The ISTS with arm support may provide a cardiopulmonary function load equivalent to the CE test; therefore, it is a potentially valid test for evaluating AT-VO2 and AT-HR in healthy, young adults. Key points The ISTS is a simple test that varies only according to the frequency of standing up, and requires only a small

  18. Introducing Novel Generation of High Accuracy Camera Optical-Testing and Calibration Test-Stands Feasible for Series Production of Cameras

    NASA Astrophysics Data System (ADS)

    Nekouei Shahraki, M.; Haala, N.

    2015-12-01

    The recent advances in the field of computer-vision have opened the doors of many opportunities for taking advantage of these techniques and technologies in many fields and applications. Having a high demand for these systems in today and future vehicles implies a high production volume of video cameras. The above criterions imply that it is critical to design test systems which deliver fast and accurate calibration and optical-testing capabilities. In this paper we introduce new generation of test-stands delivering high calibration quality in single-shot calibration of fisheye surround-view cameras. This incorporates important geometric features from bundle-block calibration, delivers very high (sub-pixel) calibration accuracy, makes possible a very fast calibration procedure (few seconds), and realizes autonomous calibration via machines. We have used the geometrical shape of a Spherical Helix (Type: 3D Spherical Spiral) with special geometrical characteristics, having a uniform radius which corresponds to the uniform motion. This geometrical feature was mechanically realized using three dimensional truncated icosahedrons which practically allow the implementation of a spherical helix on multiple surfaces. Furthermore the test-stand enables us to perform many other important optical tests such as stray-light testing, enabling us to evaluate the certain qualities of the camera optical module.

  19. Association of Seat Height and Arm Position on the Five Times Sit-to-Stand Test Times of Stroke Survivors

    PubMed Central

    Ng, Shamay S. M.; Cheung, Susanna Y.; Lai, Lauren S. W.; Liu, Ann S. L.; Ieong, Selena H. I.; Fong, Shirley S. M.

    2013-01-01

    Objectives. To investigate (1) the association of seat height and (2) the association of arm position on the five times sit-to-stand test (FTSTS) times of individuals with stroke. Design. A cross-sectional study. Setting. University-based rehabilitation centre. Subjects. Patients (n = 43) with chronic stroke. Methods. The times in completing the FTSTS with different seat height (85%, 100%, and 115% knee height) and arm positions (arms across chest, hands on thighs). Results. FTSTS times were significantly different between 85% and 100% seat heights, and between the 85% and 115% seat heights in both arm positions. However, there was no significant difference between the FTSTS times with the two arm positions at any seat height tested. Conclusion. Seat heights lower than the knee height result in longer FTSTS times, whereas arms positions did not significantly affect the FTSTS times. PMID:24106711

  20. Design, installation, commissioning and operation of a beamlet monitor in the negative ion beam test stand at NIFS

    NASA Astrophysics Data System (ADS)

    Antoni, V.; Agostinetti, P.; Brombin, M.; Cervaro, V.; Delogu, R.; De Muri, M.; Fasolo, D.; Franchin, L.; Ghiraldelli, R.; Ikeda, K.; Kisaki, M.; Molon, F.; Muraro, A.; Nakano, H.; Pasqualotto, R.; Serianni, G.; Takeiri, Y.; Tollin, M.; Tsumori, K.; Veltri, P.

    2015-04-01

    In the framework of the accompanying activity for the development of the two neutral beam injectors for the ITER fusion experiment, an instrumented beam calorimeter is being designed at Consorzio RFX, to be used in the SPIDER test facility (particle energy 100keV; beam current 50A), with the aim of testing beam characteristics and to verify the source proper operation. The main components of the instrumented calorimeter are one-directional carbon-fibre-carbon composite tiles. Some prototype tiles have been used as a small-scale version of the entire calorimeter in the test stand of the neutral beam injectors of the LHD experiment, with the aim of characterising the beam features in various operating conditions. The extraction system of the NIFS test stand source was modified, by applying a mask to the first gridded electrode, in order to isolate only a subset of the beamlets, arranged in two 3×5 matrices, resembling the beamlet groups of the ITER beam sources. The present contribution gives a description of the design of the diagnostic system, including the numerical simulations of the expected thermal pattern. Moreover the dedicated thermocouple measurement system is presented. The beamlet monitor was successfully used for a full experimental campaign, during which the main parameters of the source, mainly the arc power and the grid voltages, were varied. This contribution describes the methods of fitting and data analysis applied to the infrared images of the camera to recover the beamlet optics characteristics, in order to quantify the response of the system to different operational conditions. Some results concerning the beamlet features are presented as a function of the source parameters.

  1. Design, installation, commissioning and operation of a beamlet monitor in the negative ion beam test stand at NIFS

    SciTech Connect

    Antoni, V.; Agostinetti, P.; Brombin, M.; Cervaro, V.; Delogu, R.; Fasolo, D.; Franchin, L.; Ghiraldelli, R.; Molon, F.; Pasqualotto, R.; Serianni, G. Tollin, M.; Veltri, P.; De Muri, M.; Ikeda, K.; Kisaki, M.; Nakano, H.; Takeiri, Y.; Tsumori, K.; Muraro, A.

    2015-04-08

    In the framework of the accompanying activity for the development of the two neutral beam injectors for the ITER fusion experiment, an instrumented beam calorimeter is being designed at Consorzio RFX, to be used in the SPIDER test facility (particle energy 100keV; beam current 50A), with the aim of testing beam characteristics and to verify the source proper operation. The main components of the instrumented calorimeter are one-directional carbon-fibre-carbon composite tiles. Some prototype tiles have been used as a small-scale version of the entire calorimeter in the test stand of the neutral beam injectors of the LHD experiment, with the aim of characterising the beam features in various operating conditions. The extraction system of the NIFS test stand source was modified, by applying a mask to the first gridded electrode, in order to isolate only a subset of the beamlets, arranged in two 3×5 matrices, resembling the beamlet groups of the ITER beam sources. The present contribution gives a description of the design of the diagnostic system, including the numerical simulations of the expected thermal pattern. Moreover the dedicated thermocouple measurement system is presented. The beamlet monitor was successfully used for a full experimental campaign, during which the main parameters of the source, mainly the arc power and the grid voltages, were varied. This contribution describes the methods of fitting and data analysis applied to the infrared images of the camera to recover the beamlet optics characteristics, in order to quantify the response of the system to different operational conditions. Some results concerning the beamlet features are presented as a function of the source parameters.

  2. RF and data acquisition systems for Fermilab's ILC SRF cavity vertical test stand

    SciTech Connect

    Ozelis, Joseph P.; Nehring, Roger; Grenoble, Christiana; Powers, Thomas J.; /Jefferson Lab

    2007-06-01

    Fermilab is developing a facility for vertical testing of SRF cavities as part of its ILC program. The RF system for this facility is based on the proven production cavity test systems used at Jefferson Lab for CEBAF and SNS cavity testing. The design approach is modular in nature, using commercial-off-the-shelf (COTS) components. This yields a system that can be easily debugged and modified, and with ready availability of spares. Comprehensive data acquisition and control is provided by a PXI-based hardware platform in conjunction with software developed in the LabView programming environment.

  3. GENERAL VIEW OF SITE LOOKING SOUTHWEST. JUPITER 'HOP' STAND, FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SITE LOOKING SOUTHWEST. JUPITER 'HOP' STAND, FOREGROUND CENTER, REDSTONE TEST STAND FOREGROUND RIGHT, SATURN I C TEST STAND BACKGROUND LEFT. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  4. RF and Data Acquisition Systems for Fermilab's ILC SRF Cavity Vertical Test Stand

    SciTech Connect

    Joseph P. Ozelis; Roger Nehring; Christiana Grenoble; Thomas J. Powers

    2007-06-01

    Fermilab is developing a facility for vertical testing of SRF cavities as part of a program to improve cavity performance reproducibility for the ILC. The RF system for this facility, using the classic combination of oscillator, phase detector/mixer, and loop amplifier to detect the resonant cavity frequency and lock onto the cavity, is based on the proven production cavity test systems used at Jefferson Lab for CEBAF and SNS cavity testing. The design approach is modular in nature, using commercial-off-the-shelf (COTS) components. This yields a system that can be easily debugged and modified, and with ready availability of spares. Data acquisition and control is provided by a PXI-based hardware platform in conjunction with software developed in the LabView programming environment. This software provides for amplitude and phase adjustment of incident RF power, and measures all relevant cavity power levels, cavity thermal environment parameters, as well as field emission-produced radiation. It also calculates the various cavity performance parameters and their associated errors. Performance during system commissioning and initial cavity tests will be presented.

  5. Sensitivity and alternative operating point studies on a high charge CW FEL injector test stand at CEBAF

    SciTech Connect

    Liu, H.; Kehne, D.; Benson, S.

    1995-12-31

    A high charge CW FEL injector test stand is being built at CEBAF based on a 500 kV DC laser gun, a 1500 MHz room-temperature buncher, and a high-gradient ({approx}10 MV/m) CEBAF cryounit containing two 1500 MHz CEBAF SRF cavities. Space-charge-dominated beam dynamics simulations show that this injector should be an excellent high-brightness electron beam source for CW UV FELs if the nominal parameters assigned to each component of the system are experimentally achieved. Extensive sensitivity and alternative operating point studies have been conducted numerically to establish tolerances on the parameters of various injector system components. The consequences of degraded injector performance, due to failure to establish and/or maintain the nominal system design parameters, on the performance of the main accelerator and the FEL itself are discussed.

  6. Cryogenic instrumentation of an SSC (superconducting super collider) magnet test stand

    SciTech Connect

    McGuire, K.; Strait, J.; Kuchnir, M.; McInturff, A.

    1987-09-01

    This paper describes the system used to acquire cryogenic data for the testing of SSC magnets at the Fermilab Magnet Test Facility. An array of pressure transducers, resistance thermometers, vapor pressure thermometers, and signal conditioning circuits are used. Readings with time resolution appropriate for quench recording are obtained with a waveform digitizer and steady-state measurements are obtained with higher accuracy using a digital voltmeter. The waveform digitizer is clocked at a 400 Hz sampling rate and these readings are stored in local ring buffers. The system is modular and can be expanded to add more channels. The software for the acquisition, control, logging, and display of cryogenic data consist of two programs which run as separate tasks. These programs (as well as a third program which acquires quench and magnetic data) communicate and pass data using shared global resources. The acquired data are available for analysis via a nationwide DECnet network.

  7. Development Status of Ion Source at J-PARC Linac Test Stand

    NASA Astrophysics Data System (ADS)

    Yamazaki, S.; Takagi, A.; Ikegami, K.; Ohkoshi, K.; Ueno, A.; Koizumi, I.; Oguri, H.

    The Japan Proton Accelerator Research Complex (J-PARC) linac power upgrade program is now in progress in parallel with user operation. To realize a nominal performance of 1 MW at 3 GeV Rapid Cycling Synchrotron and 0.75 MW at the Main Ring synchrotron, we need to upgrade the peak beam current (50 mA) of the linac. For the upgrade program, we are testing a new front-end system, which comprises a cesiated RF-driven H- ion source and a new radio -frequency quadrupole linac (RFQ). The H- ion source was developed to satisfy the J-PARC upgrade requirements of an H- ion-beam current of 60 mA and a lifetime of more than 50 days. On February 6, 2014, the first 50 mA H- beams were accelerated by the RFQ during a beam test. To demonstrate the performance of the ion source before its installation in the summer of 2014, we tested the long-term stability through continuous beam operation, which included estimating the lifetime of the RF antenna and evaluating the cesium consumption.

  8. Developing A New Test Stand For Lifetime Measurements Using A Narrow Gap Detector

    NASA Astrophysics Data System (ADS)

    Tuitt, Omani; Hill, Joanne E.; Jahoda, Keith; Morris, David C.

    2016-01-01

    The University of the Virgin Islands (UVI) recently won a proposal "The First Four-Year Physics and Astronomy Degree at the University of the Virgin Islands; A new Era in Caribbean Participation in NASA Science" in collaboration with NASA Goddard Space Flight Center (GSFC). The proposal included building a detector life-test chamber at UVI to support the degree program as well as assist NASA by running tests on detector components and reporting the results.The team at GSFC is developing X-ray polarimeters that can be used in detecting and imaging astrophysical sources such as black holes and neutron stars. The purpose of our research is to understand the effects that the degradation of gas has on the performance of the detectors. The current generation of time projection polarimeter incorporates a narrow gap detector assembled with epoxy. The addition of the epoxy allows a smaller gap with the minimal amount of changes from the original design, enhancing the performance of the detectors.With the use of epoxy, lifetime measurements have to be made to see how the epoxy detectors compared to previous iterations. We have been studying the effects on the narrow gap detector in the Mahaffey chamber in order to determine whether the epoxy affects the cleanliness of the gas. Tests have been conducted with a residual gas analyzer (RGA) in order to monitor the cleanliness of the gas inside of the Mahaffey chamber while being baked out. Results show that the detector is in fact getting cleaner as time progresses. The plan is to recreate a detector that meets the performance criteria for 2 years and has minimal degradation.

  9. Liquid-Hydrogen-Cooled 450-hp Electric Motor Test Stand Being Developed

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.; Trudell, Jeffrey J.; Brown, Gerald V.

    2005-01-01

    With growing concerns about global warming, there is a need to develop pollution-free aircraft. One approach is to use hydrogen-fueled aircraft that use fuel cells or turbogenerators to produce electric power to drive the electric motors that turn the aircraft s propulsive fans. Hydrogen fuel would be carried as a liquid, stored at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are too heavy for aircraft propulsion. We need to develop high-power, lightweight electric motors (highpower- density motors). One approach is to increase the conductivity of the wires by cooling them with liquid hydrogen (LH2). This would allow superconducting rotors with an ironless core. In addition, the motor could use very pure aluminum or copper, substances that have low resistances at cryogenic temperatures. A preliminary design of a 450-hp LH2-cooled electric motor was completed and is being manufactured by a contractor. This motor will be tested at the NASA Glenn Research Center and will be used to test different superconducting materials such as magnesium diboride (MgB2). The motor will be able to operate at speeds of up to 6000 rpm.

  10. Status of High Power Tests of Normal Conducting Single-Cell Standing Wave Structures

    SciTech Connect

    Dolgashev, Valery; Tantawi, Sami; Yeremian, Anahid; Higashi, Yasuo; Spataro, Bruno; /INFN, Rome

    2012-06-25

    Our experiments are directed toward the understanding of the physics of rf breakdown in systems that can be used to accelerate electron beams at {approx}11.4 GHz. The structure geometries have apertures, stored energy per cell, and rf pulse duration close to that of the NLC or CLIC. The breakdown rate is the main parameter that we use to compare rf breakdown behavior for different structures at a given set of rf pulse parameters (pulse shape and peak power) at 60 Hz repetition rate. In our experiments, the typical range of the breakdown rate is from one per few hours to {approx}100 per hour. To date we have tested 29 structures. We consistently found that after the initial conditioning, the behavior of the breakdown rate is reproducible for structures of the same geometry and material, and the breakdown rate dependence on peak magnetic fields is stronger than on peak surface electric fields for structures of different geometries. Below we report the main results from tests of seven structures made from hard copper, soft copper alloys and hard-copper alloys. Additional details on these and other structures will be discussed in future publications.

  11. Muscular Activity and Fatigue in Lower-Limb and Trunk Muscles during Different Sit-To-Stand Tests

    PubMed Central

    Roldán-Jiménez, Cristina; Bennett, Paul; Cuesta-Vargas, Antonio I.

    2015-01-01

    Sit-to-stand (STS) tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG), biceps femoris (BF), vastus medialis of the quadriceps (QM), the abdominal rectus (AR), erector spinae (ES), rectus femoris (RF), soleus (SO) and the tibialis anterior (TA). Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects. PMID:26506612

  12. The Psychometric Properties of a Modified Sit-to-Stand Test With Use of the Upper Extremities in Institutionalized Older Adults.

    PubMed

    Le Berre, Melanie; Apap, David; Babcock, Jade; Bray, Sarah; Gareau, Esther; Chassé, Kathleen; Lévesque, Nicole; Robbins, Shawn M

    2016-08-01

    Current sit-to-stand protocols do not permit use of upper extremities, limiting the protocols' utility for institutionalized older adults with diminished physical function. The objective of this study was to modify a 30-s sit-to-stand protocol to allow for arm use and to examine test-retest reliability and convergent validity; 54 institutionalized older adult men (age = 91 ± 3 year) performed the 30-s sit-to-stand twice within a span of 3 to 7 days. Results suggest good test-retest reliability (intraclass correlation coefficient = .84) and convergent validity with the Timed Up and Go Test (r = -.62). This modified 30-s sit-to-stand can be used to assess physical function performance in institutionalized older adults and will ensure that individuals with lower physical function capacity can complete the test, thus eliminating the floor effect demonstrated with other sit-to-stand protocols. PMID:27280453

  13. Where the world stands still: turnaround as a strong test of ΛCDM cosmology

    SciTech Connect

    Pavlidou, V.; Tomaras, T.N. E-mail: tomaras@physics.uoc.gr

    2014-09-01

    Our intuitive understanding of cosmic structure formation works best in scales small enough so that isolated, bound, relaxed gravitating systems are no longer adjusting their radius; and large enough so that space and matter follow the average expansion of the Universe. Yet one of the most robust predictions of ΛCDM cosmology concerns the scale that separates these limits: the turnaround radius, which is the non-expanding shell furthest away from the center of a bound structure. We show that the maximum possible value of the turnaround radius within the framework of the ΛCDM model is, for a given mass M, equal to (3GM/Λ c{sup 2}){sup 1/3}, with G Newton's constant and c the speed of light, independently of cosmic epoch, exact nature of dark matter, or baryonic effects. We discuss the possible use of this prediction as an observational test for ΛCDM cosmology. Current data appear to favor ΛCDM over alternatives with local inhomogeneities and no Λ. However there exist several local-universe structures that have, within errors, reached their limiting size. With improved determinations of their turnaround radii and the enclosed mass, these objects may challenge the limit and ΛCDM cosmology.

  14. Standing of nucleic acid testing strategies in veterinary diagnosis laboratories to uncover Mycobacterium tuberculosis complex members

    PubMed Central

    Costa, Pedro; Botelho, Ana; Couto, Isabel; Viveiros, Miguel; Inácio, João

    2014-01-01

    Nucleic acid testing (NAT) designate any molecular approach used for the detection, identification, and characterization of pathogenic microorganisms, enabling the rapid, specific, and sensitive diagnostic of infectious diseases, such as tuberculosis. These assays have been widely used since the 90s of the last century in human clinical laboratories and, subsequently, also in veterinary diagnostics. Most NAT strategies are based in the polymerase chain reaction (PCR) and its several enhancements and variations. From the conventional PCR, real-time PCR and its combinations, isothermal DNA amplification, to the nanotechnologies, here we review how the NAT assays have been applied to decipher if and which member of the Mycobacterium tuberculosis complex is present in a clinical sample. Recent advances in DNA sequencing also brought new challenges and have made possible to generate rapidly and at a low cost, large amounts of sequence data. This revolution with the high-throughput sequencing (HTS) technologies makes whole genome sequencing (WGS) and metagenomics the trendiest NAT strategies, today. The ranking of NAT techniques in the field of clinical diagnostics is rising, and we provide a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis with our view of the use of molecular diagnostics for detecting tuberculosis in veterinary laboratories, notwithstanding the gold standard being still the classical culture of the agent. The complementary use of both classical and molecular diagnostics approaches is recommended to speed the diagnostic, enabling a fast decision by competent authorities and rapid tackling of the disease. PMID:25988157

  15. Standing of nucleic acid testing strategies in veterinary diagnosis laboratories to uncover Mycobacterium tuberculosis complex members.

    PubMed

    Costa, Pedro; Botelho, Ana; Couto, Isabel; Viveiros, Miguel; Inácio, João

    2014-01-01

    Nucleic acid testing (NAT) designate any molecular approach used for the detection, identification, and characterization of pathogenic microorganisms, enabling the rapid, specific, and sensitive diagnostic of infectious diseases, such as tuberculosis. These assays have been widely used since the 90s of the last century in human clinical laboratories and, subsequently, also in veterinary diagnostics. Most NAT strategies are based in the polymerase chain reaction (PCR) and its several enhancements and variations. From the conventional PCR, real-time PCR and its combinations, isothermal DNA amplification, to the nanotechnologies, here we review how the NAT assays have been applied to decipher if and which member of the Mycobacterium tuberculosis complex is present in a clinical sample. Recent advances in DNA sequencing also brought new challenges and have made possible to generate rapidly and at a low cost, large amounts of sequence data. This revolution with the high-throughput sequencing (HTS) technologies makes whole genome sequencing (WGS) and metagenomics the trendiest NAT strategies, today. The ranking of NAT techniques in the field of clinical diagnostics is rising, and we provide a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis with our view of the use of molecular diagnostics for detecting tuberculosis in veterinary laboratories, notwithstanding the gold standard being still the classical culture of the agent. The complementary use of both classical and molecular diagnostics approaches is recommended to speed the diagnostic, enabling a fast decision by competent authorities and rapid tackling of the disease. PMID:25988157

  16. Derivation of the Data Reduction Equations for the Calibration of the Six-component Thrust Stand in the CE-22 Advanced Nozzle Test Facility

    NASA Technical Reports Server (NTRS)

    Wong, Kin C.

    2003-01-01

    This paper documents the derivation of the data reduction equations for the calibration of the six-component thrust stand located in the CE-22 Advanced Nozzle Test Facility. The purpose of the calibration is to determine the first-order interactions between the axial, lateral, and vertical load cells (second-order interactions are assumed to be negligible). In an ideal system, the measurements made by the thrust stand along the three coordinate axes should be independent. For example, when a test article applies an axial force on the thrust stand, the axial load cells should measure the full magnitude of the force, while the off-axis load cells (lateral and vertical) should read zero. Likewise, if a lateral force is applied, the lateral load cells should measure the entire force, while the axial and vertical load cells should read zero. However, in real-world systems, there may be interactions between the load cells. Through proper design of the thrust stand, these interactions can be minimized, but are hard to eliminate entirely. Therefore, the purpose of the thrust stand calibration is to account for these interactions, so that necessary corrections can be made during testing. These corrections can be expressed in the form of an interaction matrix, and this paper shows the derivation of the equations used to obtain the coefficients in this matrix.

  17. Lot A2 test, THC modelling of the bentonite buffer

    NASA Astrophysics Data System (ADS)

    Itälä, Aku; Olin, Markus; Lehikoinen, Jarmo

    Finnish spent nuclear fuel is planned to be disposed of deep in the crystalline bedrock of the Olkiluoto island. In such a repository, the role of the bentonite buffer is considered to be central. The initially unsaturated bentonite emplaced around a spent-fuel canister will become fully saturated by the groundwater from the host rock. In order to assess the long-term safety of a deep repository, it is essential to determine how temperature influences the chemical stability of bentonite. The aim of this study was to achieve an improved understanding of the factors governing the thermo-hydro-chemical evolution of the bentonite buffer subject to heat generation from the disposed fuel and in contact with a highly permeable rock fracture intersecting a canister deposition hole. TOUGHREACT was used to model a test known as the long-term test of buffer material adverse-2, which was conducted at the Äspö hard rock laboratory in Sweden. The results on the evolution of cation-exchange equilibria, bentonite porewater chemistry, mineralogy, and saturation of the buffer are presented and discussed. The calculated model results show similarity to the experimental results. In particular, the spatial differences in the saturation and porewater chemistry of the bentonite buffer were clearly visible in the model.

  18. Outdoor test stand performance of a convertible engine with variable inlet guide vanes for advanced rotorcraft propulsion

    NASA Technical Reports Server (NTRS)

    Mcardle, Jack G.

    1986-01-01

    A variable inlet guide van (VIGV) type convertible engine that could be used to power future high-speed rotorcraft was tested on an outdoor stand. The engine ran stably and smoothly in the turbofan, turboshaft, and dual (combined fan and shaft) power modes. In the turbofan mode with the VIGV open fuel consumption was comparable to that of a conventional turbofan engine. In the turboshaft mode with the VIGV closed fuel consumption was higher than that of present turboshaft engines because power was wasted in churning fan-tip airflow. In dynamic performance tests with a specially built digital engine control and using a waterbrake dynamometer for shaft load, the engine responded effectively to large steps in thrust command and shaft torque. Previous mission analyses of a conceptual X-wing rotorcraft capable of 400-knot cruise speed were revised to account for more fan-tip churning power loss than was originally estimated. The new calculations confirm that using convertible engines rather than separate lift and cruise engines would result in a smaller, lighter craft with lower fuel use and direct operating cost.

  19. Three-Month Test-Retest Reliability of Center of Pressure Motion During Standing Balance in Individuals with Multiple Sclerosis

    PubMed Central

    Wajda, Douglas A.; Motl, Robert W.

    2016-01-01

    Background: Balance impairment and an increased rate of falls are commonly reported in individuals with multiple sclerosis (MS). Force platform–generated center of pressure (COP) metrics have previously been recommended as an outcome measure to quantify balance deficits and distinguish between fallers and nonfallers in MS. Information is limited regarding the preservation of postural control in individuals with MS over extended time frames in the absence of an intervention. This report examines the test-retest reliability and magnitude of change of COP motion during standing balance over 3 months. Methods: Twenty individuals with MS and a history of falling underwent testing on two occasions 3 months apart in the absence of an intervention. On both occasions, participants completed two 30-second trials of three conditions: eyes open, eyes closed, and eyes open with concurrent cognitive challenge (dual task). Measures of COP area, velocity, and temporal structure were calculated and included in the reliability analysis. Results: The COP metrics displayed fair-to-excellent reliability over 3 months without an intervention. Reliability was maintained across the three commonly used balance conditions. Conclusions: These results offer insight into the reliability of COP measures over a 3-month period in MS and can inform the use of COP metrics for future study design (eg, sample size estimates) and balance outcome assessment during randomized controlled trials and fall-prevention studies in individuals with MS. PMID:27134578

  20. X-15A-2 with test pilot Pete Knight

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Air Force pilot William J. 'Pete' Knight is seen here in front of the X-15A-2 aircraft (56-6671). Pete Knight made 16 flights in the X-15, and set the world unofficial speed record for fixed wing aircraft, 4,520 mph (mach 6.7), in the X-15A-2. He also made one flight above 50 miles, qualifying him for astronaut wings. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120

  1. Take a Stand for Standing

    ERIC Educational Resources Information Center

    Labandz, Stephenie

    2010-01-01

    As a school-based physical therapist, the author sees children with a wide variety of diagnoses affecting their mobility and motor function. Supported standing is an important part of the routines of those who are unable to stand independently due to issues affecting the neuromuscular system. Being eye-to-eye with their peers and interacting with…

  2. Measuring the ion energy distribution using a retarding field energy analyzer in a plasma material interaction test stand

    NASA Astrophysics Data System (ADS)

    Christenson, Michael; Jung, Soonwook; Andruczyk, Daniel; Curreli, Davide; Ruzic, David

    2013-10-01

    The Divertor Erosion and Vapor Shielding eXperiment (DEVeX) at the University of Illinois is a gas-puff driven, theta pinch plasma source that is used as a test stand for off-normal plasma events incident on materials in the edge and divertor regions of a tokamak. Ion temperatures and the resulting energy distribution are of vital importance in DEVeX, indicating the level of edge simulation. For this reason, a theta pinch has been applied as a source of external heating, along with a coaxial plasma accelerator as a pre-ionization source. In its most recent iteration, the accurate diagnosis of ion temperature will prove difficult using conventional methods, since diagnostics are difficult in a pulsed device for measuring the ion temperature range produced in DEVeX (~10-100 eV). A retarding field energy analyzer (RFEA) has been proposed to measure the ion energy distribution and will be compared to theoretical predictions for the ion temperature in the upgraded DEVeX system. Such a diagnostic tool would be less susceptible to external fields and would be suitable for ion temperatures on the order of 100 eV. The RFEA will serve as a diagnostic for the ThermoElectric-driven Liquid-metal plasma-facing Structures (TELS), and its further applications are discussed. In residence at Princeton Plasma Physics Laboratory.

  3. Allometric Scaling and Resource Limitations Model of Total Aboveground Biomass in Forest Stands: Site-scale Test of Model

    NASA Astrophysics Data System (ADS)

    CHOI, S.; Shi, Y.; Ni, X.; Simard, M.; Myneni, R. B.

    2013-12-01

    Sparseness in in-situ observations has precluded the spatially explicit and accurate mapping of forest biomass. The need for large-scale maps has raised various approaches implementing conjugations between forest biomass and geospatial predictors such as climate, forest type, soil property, and topography. Despite the improved modeling techniques (e.g., machine learning and spatial statistics), a common limitation is that biophysical mechanisms governing tree growth are neglected in these black-box type models. The absence of a priori knowledge may lead to false interpretation of modeled results or unexplainable shifts in outputs due to the inconsistent training samples or study sites. Here, we present a gray-box approach combining known biophysical processes and geospatial predictors through parametric optimizations (inversion of reference measures). Total aboveground biomass in forest stands is estimated by incorporating the Forest Inventory and Analysis (FIA) and Parameter-elevation Regressions on Independent Slopes Model (PRISM). Two main premises of this research are: (a) The Allometric Scaling and Resource Limitations (ASRL) theory can provide a relationship between tree geometry and local resource availability constrained by environmental conditions; and (b) The zeroth order theory (size-frequency distribution) can expand individual tree allometry into total aboveground biomass at the forest stand level. In addition to the FIA estimates, two reference maps from the National Biomass and Carbon Dataset (NBCD) and U.S. Forest Service (USFS) were produced to evaluate the model. This research focuses on a site-scale test of the biomass model to explore the robustness of predictors, and to potentially improve models using additional geospatial predictors such as climatic variables, vegetation indices, soil properties, and lidar-/radar-derived altimetry products (or existing forest canopy height maps). As results, the optimized ASRL estimates satisfactorily

  4. Impulse radar measurements of snow interception - laboratory tests and field application to a forest stand in northern Sweden

    NASA Astrophysics Data System (ADS)

    Gustafsson, D.; Magnusson, J.; Granlund, N.

    2009-04-01

    attenuation through a sample of Norway spruce branches loaded with different amount of liquid water and snow. The results were used to establish empirical mixing formulas relating imaginary and real components of the effective dielectric permittivity to the volumetric fraction of liquid and frozen water. The obtained formulas were tested in a field application in northern Sweden, in a homogeneous stand dominated by Norway spruce. The mass of snow stored in the tree canopies were measured in two ways: firstly by measuring the weight of a single tree scaled to a forest stand average and secondly using impulse radar measurements through a small section of the forest. The transmitting and receiving antennas were placed in two small towers, separated horizontally by 15 m. The amount of intercepted snow determined from the radar measurements compared well with the measurements from the single tree weighing lysimeter, especially during cold conditions. Systematic differences were observed in situations with melting snow on the trees, when the estimation of liquid water content was overestimated by the frequency attenuation method. However, this might be due to a combination of uncertainties in the mixing models and inadequate corrections for drift in the measurement system. Overall, the results were promising and showed that impulse radar can be used to study snow interception.

  5. Corrective Action Decision Document/Closure Report for Corrective Action Unit 252: Area 25 Engine Test Stand 1 Decontamination Pad, Nevada Test Site, Nevada

    SciTech Connect

    DOE /NV

    2000-10-11

    This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 252: Area 25 Engine Test Stand-1 Decontamination Pad, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Located at the Nevada Test Site in Nevada, CAU 252 consists of only one Corrective Action Site (25-07-04, Decontamination Pad). This CADD/CR identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) recommendation that no corrective action is deemed necessary at CAU 252. The Corrective Action Decision Document and Closure Report have been combined into one report because the potential contaminants of concern were either not detected during the corrective action investigation or were only present at naturally occurring concentrations. Based on the field results, neither corrective action or a corrective action plan is required at this site. A Notice of Completion to DOE/NV is being requested from the Nevada Division of Environmental Protection for closure of CAU 252, as well as a request that this site be moved from Appendix III to Appendix IV of the FFACO. Further, no use restrictions are required to be placed on this CAU.

  6. Corrective Action Investigation Plan for Corrective Action Unit 252: Area 25 Engine Test Stand 1 Decontamination Pad, Nevada Test Site, Nevada

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office

    1999-08-20

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 252 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 252 consists of Corrective Action Site (CAS) 25-07-02, Engine Test Stand-1 (ETS-1) Decontamination Pad. Located in Area 25 at the intersection of Road H and Road K at the Nevada Test Site, ETS-1 was designed for use as a mobile radiation checkpoint and for vehicle decontamination. The CAS consists of a concrete decontamination pad with a drain, a gravel-filled sump, two concrete trailer pads, and utility boxes. Constructed in 1966, the ETS-1 facility was part of the Nuclear Rocket Development Station (NRDS) complex and used to test nuclear rockets. The ETS-1 Decontamination Pad and mobile radiation check point was built in 1968. The NRDS complex ceased primary operations in 1973. Based on site history, the focus of the field investigation activities will be to determine if any primary contaminants of potential concern (COPCs) (including radionuclides, total volatile organic compounds, total semivolatile organic compounds, total petroleum hydrocarbons as diesel-range organics, Resource Conservation and Recovery Act metals, total pesticides, and polychlorinated biphenyls) are present at this site. Vertical extent of migration of suspected vehicle decontamination effluent COPCs is expected to be less than 12 feet below ground surface. Lateral extent of migration of COPCs is expected to be limited to the sump area or near the northeast corner of the decontamination pad. Using a biased sampling approach, near-surface and subsurface sampling will be conducted at the suspected worst-case areas including the sump and soil near the northeast corner of the decontamination pad. The results of this field investigation will support a defensible e valuation

  7. The one repetition maximum test and the sit-to-stand test in the assessment of a specific pulmonary rehabilitation program on peripheral muscle strength in COPD patients

    PubMed Central

    Zanini, Andrea; Aiello, Marina; Cherubino, Francesca; Zampogna, Elisabetta; Azzola, Andrea; Chetta, Alfredo; Spanevello, Antonio

    2015-01-01

    Background Individuals with COPD may present reduced peripheral muscle strength, leading to impaired mobility. Comprehensive pulmonary rehabilitation (PR) should include strength training, in particular to lower limbs. Furthermore, simple tools for the assessment of peripheral muscle performance are required. Objectives To assess the peripheral muscle performance of COPD patients by the sit-to-stand test (STST), as compared to the one-repetition maximum (1-RM), considered as the gold standard for assessing muscle strength in non-laboratory situations, and to evaluate the responsiveness of STST to a PR program. Methods Sixty moderate-to-severe COPD inpatients were randomly included into either the specific strength training group or into the usual PR program group. Patients were assessed on a 30-second STST and 1-minute STST, 1-RM, and 6-minute walking test (6MWT), before and after PR. Bland–Altman plots were used to evaluate the agreement between 1-RM and STST. Results The two groups were not different at baseline. In all patients, 1-RM was significantly related to the 30-second STST (r=0.48, P<0.001) and to 1-minute STST (r=0.36, P=0.005). The 30-second STST was better tolerated in terms of the perceived fatigue (P=0.002) and less time consuming (P<0.001) test. In the specific strength training group significant improvements were observed in the 30-second STST (P<0.001), 1-minute STST (P=0.005), 1-RM (P<0.001), and in the 6MWT (P=0.001). In the usual PR program group, significant improvement was observed in the 30-second STST (P=0.042) and in the 6MWT (P=0.001). Conclusion Our study shows that in stable moderate-to-severe inpatients with COPD, STST is a valid and reliable tool to assess peripheral muscle performance of lower limbs, and is sensitive to a specific PR program. PMID:26648705

  8. 40 CFR Appendix A-2 to Part 60 - Test Methods 2G through 3C

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 8 2012-07-01 2012-07-01 false Test Methods 2G through 3C A Appendix A-2 to Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES (CONTINUED) Pt. 60, App. A-2 Appendix A-2 to Part 60—Test Methods 2G through 3C Method...

  9. PPT Thrust Stand

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.

    1995-01-01

    A torsional-type thrust stand has been designed and built to test Pulsed Plasma Thrusters (PPT's) in both single shot and repetitive operating modes. Using this stand, momentum per pulse was determined strictly as a function of thrust stand deflection, spring constant, and natural frequency. No empirical corrections were required. The accuracy of the method was verified using a swinging impact pendulum. Momentum transfer data between the thrust stand and the pendulum were consistent to within 1%. Following initial calibrations, the stand was used to test a Lincoln Experimental Satellite (LES-8/9) thruster. The LES-8/9 system had a mass of approximately 7.5 kg, with a nominal thrust to weight ratio of 1.3 x 10(exp -5). A total of 34 single shot thruster pulses were individually measured. The average impulse bit per pulse was 266 microN-s, which was slightly less than the value of 300 microN-s published in previous reports on this device. Repetitive pulse measurements were performed similar to ordinary steady-state thrust measurements. The thruster was operated for 30 minutes at a repetition rate of 132 pulses per minute and yielded an average thrust of 573 microN. Using average thrust, the average impulse bit per pulse was estimated to be 260 microN-s, which was in agreement with the single shot data. Zero drift during the repetitive pulse test was found to be approximately 1% of the measured thrust.

  10. 25. HISTORIC VIEW OF A2 ROCKET (FULLY ASSEMBLED) EXCEPT FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. HISTORIC VIEW OF A-2 ROCKET (FULLY ASSEMBLED) EXCEPT FOR GN2 CONTAINER. AT TEST STAND NO. 1 IN KUMMERSDORF. THE STAND WAS DESIGNED & CONSTRUCTED IN 1932. ROCKET IS BEING TANKED WITH LOX PRECEDING A STATIC FIRING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  11. Self-teaching digital-computer program for fail-operational control of a turbojet engine in a sea-level test stand

    NASA Technical Reports Server (NTRS)

    Wallhagen, R. E.; Arpasi, D. J.

    1974-01-01

    The design and evaluation are described of a digital turbojet engine control which is capable of sensing catastrophic failures in either the engine rotor speed or the compressor discharge static-pressure signal and is capable of switching control modes to maintain near normal operation. The control program was developed for and tested on a turbojet engine located in a sea-level test stand. The control program is also capable of acquiring all the data that are necessary for the fail-operational control to function.

  12. Development and Testing of Laser-induced Breakdown Spectroscopy for the Mars Rover Program: Elemental Analyses at Stand-Off Distances

    NASA Technical Reports Server (NTRS)

    Cremers, D. A.; Wiens, R. C.; Arp, Z. A.; Harris, R. D.; Maurice, S.

    2003-01-01

    One of the most fundamental pieces of information about any planetary body is the elemental composition of its surface materials. The Viking Martian landers employed XRF (x-ray fluorescence) and the MER rovers are carrying APXS (alpha-proton x-ray spectrometer) instruments upgraded from that used on the Pathfinder rover to supply elemental composition information for soils and rocks to which direct contact is possible. These in- situ analyses require that the lander or rover be in contact with the sample. In addition to in-situ instrumentation, the present generation of rovers carry instruments that operate at stand-off distances. The Mini-TES is an example of a stand-off instrument on the MER rovers. Other examples for future missions include infrared point spectrometers and microscopic-imagers that can operate at a distance. The main advantage of such types of analyses is obvious: the sensing element does not need to be in contact or even adjacent to the target sample. This opens up new sensing capabilities. For example, targets that cannot be reached by a rover due to impassable terrain or targets positioned on a cliff face can now be accessed using stand-off analysis. In addition, the duty cycle of stand-off analysis can be much greater than that provided by in-situ measurements because the stand-off analysis probe can be aimed rapidly at different features of interest eliminating the need for the rover to actually move to the target. Over the past five years we have been developing a stand-off method of elemental analysis based on atomic emission spectroscopy called laser-induced breakdown spectroscopy (LIBS). A laser-produced spark vaporizes and excites the target material, the elements of which emit at characteristic wavelengths. Using this method, material can be analyzed from within a radius of several tens of meters from the instrument platform. A relatively large area can therefore be sampled from a simple lander without requiring a rover or sampling

  13. Testing the link between hydrocarbon seepage, sea level stands, and salt diapirism in deepwater Gulf of Mexico

    SciTech Connect

    Aharon, P.

    1996-09-01

    Hydrocarbon seepage in both liquid (crude oil) and gas (principally methane) forms has been amply documented over the past decade from submersible dives on the northern Gulf of Mexico seafloor overlying salt diapirs. These seepage sites are inhabited by a remarkably diverse chemosynthetic fauna and are associated with massive carbonate buildups formed through bacterially-mediated processes of hydrocarbon oxidation coupled with sulfate reduction. This study addresses questions concerning the timing and longevity of seepage from four representative sites in the Green Canyon area (27{degrees}50{prime}N; 91{degrees}30{prime}W) on the basis of radiometric dating assays of massive carbonates that act as time keepers of hydrocarbon seeps. {sup 230}Th dates from GC-140 and GC-184 blocks place the initiation and termination of massive seepage there at 195 {+-} 25 Ka and 13.3 {+-} 2.7 Ka, respectively, and are in agreement with the chronology of the salt dome emplacement at shallow depth during mid- to late-Pleistocene low sea-level stands. The prolific seepage activity to the southeast in GC-185 (Bush Hill) and the {sup 230}Th dates of 3.2 to 1.4 Ka are attributed to a recent episode of subsidence caused by salt withdrawal which created late normal faults. When multiple dates, subsurface imaging of the salt domes by 3-D seismics, and high resolution subsurface chronostratigraphy are available from the same site, a link is apparent between the incidence of low sea level stands, salt diapirism, and enhanced hydrocarbon seepage.

  14. Developing the RAL front end test stand source to deliver a 60 mA, 50 Hz, 2 ms H- beam

    NASA Astrophysics Data System (ADS)

    Faircloth, Dan; Lawrie, Scott; Letchford, Alan; Gabor, Christoph; Perkins, Mike; Whitehead, Mark; Wood, Trevor; Tarvainen, Olli; Komppula, Jani; Kalvas, Taneli; Dudnikov, Vadim; Pereira, Hugo; Izaola, Zunbeltz; Simkin, John

    2013-02-01

    All the Front End Test Stand (FETS) beam requirements have been achieved, but not simultaneously [1]. At 50 Hz repetition rates beam current droop becomes unacceptable for pulse lengths longer than 1 ms. This is fundamental limitation of the present source design. Previous researchers [2] have demonstrated that using a physically larger Penning surface plasma source should overcome these limitations. The scaled source development strategy is outlined in this paper. A study of time-varying plasma behavior has been performed using a V-UV spectrometer. Initial experiments to test scaled plasma volumes are outlined. A dedicated plasma and extraction test stand (VESPA-Vessel for Extraction and Source Plasma Analysis) is being developed to allow new source and extraction designs to be appraised. The experimental work is backed up by modeling and simulations. A detailed ANSYS thermal model has been developed. IBSimu is being used to design extraction and beam transport. A novel 3D plasma modeling code using beamlets is being developed by Cobham Vector Fields using SCALA OPERA, early source modeling results are very promising. Hardware on FETS is also being developed in preparation to run the scaled source. A new 2 ms, 50 Hz, 25 kV pulsed extraction voltage power supply has been constructed and a new discharge power supply is being designed. The design of the post acceleration electrode assembly has been improved.

  15. Progress report on LLTR Series II Test A-2 (Part 1). [LMFBR

    SciTech Connect

    Freede, W.J.; Neely, H.H.

    1980-01-01

    This document contains a complete set of valid and final digital and analog data plots for LLTR Series II, Test A-2. Included is an Accuracy Statement regarding this data as required by Revision 0 of the GE Test Request, Specification No. 23A2062. The Series II, Sodium-Water Reaction Test A-2 was performed in the Large Leak Test Rig (LLTR) at the Energy Technology Engineering Center (ETEC). This was the third of three planned double-edged guillotine (DEG) rupture tests of a single tube which will be followed by a number of small leak tests. The test article is the LLTI which is a full-size diameter internals, shortened in length and prototypic of the CRBR steam generator. It is installed in the Large Leak Test Vessel (LLTV). The overall test program was formulated by General Electric (GE) as Test Requester to establish steam generator design and to verify analytical models/codes to estimate the effect of large leak accidents in an LMFBR demonstration plant steam generator and system.

  16. Test-Retest Reliability of Measurements of the Center of Pressure Displacement in Quiet Standing and During Maximal Voluntary Body Leaning Among Healthy Elderly Men

    PubMed Central

    Rafał, Stemplewski; Janusz, Maciaszek; Wiesław, Osiński; Robert, Szeklicki

    2011-01-01

    The aim of the study was to evaluate intra- and intersession test-retest reliability for the measurements of centre of pressure displacement in quiet standing and during maximal voluntary body leaning (approximate area of stability limits). 27 elderly men participated in the study (71.4±4.9 of age). Intrasession (4 measurements with two-minute breaks) and intersession (4 measurements one week apart) reliability were examined. Parameters connected to the centre of pressure data (AMTI force platform) were measured during a quiet stance and voluntary body leaning in medio-lateral and anterior-posterior directions (approximate limits of stability). Intraclass correlation coefficients (ICC2,1 and ICC2,k) were calculated. In case of quiet standing, only mean velocity of centre of pressure sway provides high reliability in intrasession – ICC2,1 of .84 and ICC2,k of .96, and in intersession – ICC2,1 of .76. Evaluation of limits of stability showed high values of all parameters (maximal and minimal displacement in sagittal and frontal planes, distance between maximal and minimal position of centre of pressure in sagittal and frontal planes and approximated area of stability limits) in intrasession – ICC2,1 between .82 to .96 and ICC2,k between .95 to .99. Similar tendency was observed in the intersession retest. Average velocity of the centre of pressure is the only parameter that showed a high application value in case of measurements during quiet standing. Parameters related to the stability limits appeared very reliable what proves that this evaluation may have potential application in the clinical practice. PMID:23487011

  17. Predicting Success Using HESI A2 Entrance Tests in an Associate Degree Nursing Program

    ERIC Educational Resources Information Center

    Bodman, Susan

    2012-01-01

    A challenge presented to nurse educators is retention of nursing students. This has led nursing faculty to review admission requirements and question how well entrance tests predict success in Associate Degree Nursing Programs. The purpose of this study was to investigate the relationship between the HESI Admission Assessment Exam (HESI A2) and…

  18. High voltage test-stand research done on ICRF antenna elements of the high-harmonic fast-wave system of NSTX

    NASA Astrophysics Data System (ADS)

    Perkins, R. J.; Ahn, J.-W.; Bortolon, A.; Brunkhorst, C.; Ellis, R.; Fredd, E.; Greenough, N.; Hosea, J. C.; Kung, C.; Miller, D.

    2015-12-01

    The twelve-strap high-harmonic fast-wave (HHFW) antenna on NSTX has exhibited a high-voltage standoff around 25 kV during previous experimental campaigns; this standoff needs to be improved for increased power coupling. During the recent NSTX-U upgrade period, a test-stand was set up with two antenna straps along with Faraday screens for testing purposes. Using a diagnostic suite consisting of a fast camera, a residual gas analyzer, a pressure gage, high-voltage probes, and an infrared camera, several interesting discoveries were made, leading to possible improvements of the antenna RF voltage operation level. First, arcing was observed outside the Faraday shields towards the low-voltage ("grounded") end of the straps (faraday shield box ends); this arcing was successfully eliminated by installing an additional grounding point between the Faraday shield box and the vessel wall. Second, considerable outgassing was observed during the RF pulse and the amount of outgassing was found to decrease with increasing RF power, possibly indicative of multipacting. Finally, infrared camera measurements of heating on the Faraday shield assembly suggest that the return currents on the Faraday shield box are highly localized at the box sides and possibly account for the pressure increase observed. Computations of these RF currents using Microwave Studio show qualitative agreement with the heated regions. New grounding points between the antenna box and the vessel have been implemented in NSTX-U, where future tests will be done to determine if the high-voltage standoff has improved. Further antenna improvements will be sought through future experiments on the test stand.

  19. High Voltage Test-Stand Research Done on ICRF Antenna Elements of the High-Harmonic Fast-Wave System of NSTX

    SciTech Connect

    Perkins, R. J.; Ahn, J.W.; Bortolon, A.; Brunkhorst, C.; Ellis, R.; Fredd, E.; Greenough, Nevell; Hosea, J.; Kung, C. C.; Miller, D.

    2015-01-01

    The twelve-strap high-harmonic fast-wave (HHFW) antenna on NSTX has exhibited a high-voltage standoff around 25 kV during previous experimental campaigns; this standoff needs to be improved for increased power coupling. During the recent NSTX-U upgrade period, a test-stand was set up with two antenna straps along with Faraday screens for testing purposes. Using a diagnostic suite consisting of a fast camera, a residual gas analyzer, a pressure gage, high-voltage probes, and an infrared camera, several interesting discoveries were made, leading to possible improvements of the antenna RF voltage operation level. First, arcing was observed outside the Faraday shields towards the low-voltage ("grounded") end of the straps (faraday shield box ends); this arcing was successfully eliminated by installing an additional grounding point between the Faraday shield box and the vessel wall. Second, considerable outgassing was observed during the RF pulse and the amount of outgassing was found to decrease with increasing RF power, possibly indicative of multipacting. Finally, infrared camera measurements of heating on the Faraday shield assembly suggest that the return currents on the Faraday shield box are highly localized at the box sides and possibly account for the pressure increase observed. Computations of these RF currents using Microwave Studio show qualitative agreement with the heated regions. New grounding points between the antenna box and the vessel have been implemented in NSTX-U, where future tests will be done to determine if the high-voltage standoff has improved. Further antenna improvements will be sought through future experiments on the test stand.

  20. Development of a clinical assessment test of 180-degree standing turn strategy (CAT-STS) and investigation of its reliability and validity

    PubMed Central

    Kobayashi,, Masaki; Usuda,, Shigeru

    2016-01-01

    [Purpose] To develop a clinical assessment test of 180-degree standing turn strategy (CAT-STS) and quantify its reliability and construct validity. [Subjects] Outpatients with stroke that occurred at least 6 months previously (N = 27) who could walk 10 m without physical assistance were included. [Methods] The CAT-STS was based on the literature and discussion with four physical therapists. The final version of the CAT-STS includes seven items: direction, use of space, foot movement, initiation, termination, instability, and non-fluidity. Patients were videotaped performing a 180-degree turn while standing. The Motricity Index, gait speed and Functional Ambulation Category were also evaluated. Two raters evaluated the turn on two occasions, and inter- and intra-rater reliability were calculated. Construct validity was also calculated. [Results] Inter-rater reliability was fair or moderate for many items (kappa = 0.221–0.746). Intra-rater reliability was good-to-excellent for all items (kappa = 0.681–0.846) except direction and termination. Inter- and intra-rater reliability of the total CAT-STS score were substantial and excellent, respectively (intraclass correlation coefficient = 0.725 and 0.865, respectively). The total CAT-STS score was associated with walking ability and the time and number of steps taken to turn. [Conclusion] The total CAT-STS score is a reliable and valid measure. PMID:27065557

  1. Development of a clinical assessment test of 180-degree standing turn strategy (CAT-STS) and investigation of its reliability and validity.

    PubMed

    Kobayashi, Masaki; Usuda, Shigeru

    2016-01-01

    [Purpose] To develop a clinical assessment test of 180-degree standing turn strategy (CAT-STS) and quantify its reliability and construct validity. [Subjects] Outpatients with stroke that occurred at least 6 months previously (N = 27) who could walk 10 m without physical assistance were included. [Methods] The CAT-STS was based on the literature and discussion with four physical therapists. The final version of the CAT-STS includes seven items: direction, use of space, foot movement, initiation, termination, instability, and non-fluidity. Patients were videotaped performing a 180-degree turn while standing. The Motricity Index, gait speed and Functional Ambulation Category were also evaluated. Two raters evaluated the turn on two occasions, and inter- and intra-rater reliability were calculated. Construct validity was also calculated. [Results] Inter-rater reliability was fair or moderate for many items (kappa = 0.221-0.746). Intra-rater reliability was good-to-excellent for all items (kappa = 0.681-0.846) except direction and termination. Inter- and intra-rater reliability of the total CAT-STS score were substantial and excellent, respectively (intraclass correlation coefficient = 0.725 and 0.865, respectively). The total CAT-STS score was associated with walking ability and the time and number of steps taken to turn. [Conclusion] The total CAT-STS score is a reliable and valid measure. PMID:27065557

  2. Use of phase information with a stepper motor to control frequency for tuning system of the Front End Test Stand Radio Frequency Quadrupole at Rutherford Appleton Laboratory

    NASA Astrophysics Data System (ADS)

    Alsari, S.; Aslaninejad, M.; Pozimski, J.

    2015-03-01

    For the Front End Test Stand (FETS) linear accelerator project at the Rutherford Appleton Laboratory in the UK, a 4 m, 4 vanes Radio Frequency Quadrupole (RFQ) with a resonant frequency of 324 MHz has been designed. The RF power feeding the RFQ gives rise to the temperature increase in the RFQ, which in turn, results in shifting the resonant frequency of the RFQ. The frequency shift and the stability in the RFQ frequency can be maintained based on the reflected power or signal phase information. We have, however, investigated restoration of the RFQ nominal frequency based on the RF signal phases driving a stepper motor. The concept and the system set-up and electronics are described in detail. Results of the measurements indicating the full restoration of the RFQ nominal frequency based on the RF signal phases and stepper motor are presented. Moreover, measured sensitivity of tuner with respect to its position is given.

  3. Development of the front end test stand and vessel for extraction and source plasma analyses negative hydrogen ion sources at the Rutherford Appleton Laboratory

    SciTech Connect

    Lawrie, S. R.; Faircloth, D. C.; Letchford, A. P.; Perkins, M.; Whitehead, M. O.; Wood, T.; Gabor, C.; Back, J.

    2014-02-15

    The ISIS pulsed spallation neutron and muon facility at the Rutherford Appleton Laboratory (RAL) in the UK uses a Penning surface plasma negative hydrogen ion source. Upgrade options for the ISIS accelerator system demand a higher current, lower emittance beam with longer pulse lengths from the injector. The Front End Test Stand is being constructed at RAL to meet the upgrade requirements using a modified ISIS ion source. A new 10% duty cycle 25 kV pulsed extraction power supply has been commissioned and the first meter of 3 MeV radio frequency quadrupole has been delivered. Simultaneously, a Vessel for Extraction and Source Plasma Analyses is under construction in a new laboratory at RAL. The detailed measurements of the plasma and extracted beam characteristics will allow a radical overhaul of the transport optics, potentially yielding a simpler source configuration with greater output and lifetime.

  4. 17. HISTORIC VIEW OF ROCKET & LAUNCH STAND DESIGNED BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. HISTORIC VIEW OF ROCKET & LAUNCH STAND DESIGNED BY HERMANN OBERTH AND RUDOLF NEBEL FOR THE MOVIE DIE FRAU IM MOND (THE WOMAN ON THE MOON). THE LAUNCH STAND WAS MODIFIED BY THE VFR FOR THE FIRST TEST STAND AT RAKETENFLUGPLATZ NEAR BERLIN. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  5. Chemical exposures of rocket-engine test-stand personnel and cancer mortality in a cohort of aerospace workers.

    PubMed

    Ritz, B; Morgenstern, H; Froines, J; Moncau, J

    1999-10-01

    We conducted a retrospective cohort study of 6107 aerospace workers to examine whether exposure to chemicals--primarily hydrazine fuels--during rocket-engine fueling and testing affects cancer mortality. When conditional logistic regression analysis was applied and adjusted for confounding variables, the estimated rate ratio for lung cancer mortality, comparing exposed to unexposed workers from the same facility, ranged from 1.68 (95% confidence interval, 1.12 to 2.52) to 2.10 (95% confidence interval, 1.36 to 3.25), depending on job-duration threshold (6 or 24 months) and lag (0 to 15 years). Similar results were obtained for hemato- and lymphopoietic cancer and for bladder and kidney cancer mortality, but estimates for these cancers were imprecise. We concluded that occupational exposure to hydrazine or other chemicals associated with rocket-engine testing jobs increased the risk of dying from lung cancer, and possibly other cancers, in this population of aerospace workers; however, our results need to be replicated in other populations. PMID:10529946

  6. Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing

    NASA Astrophysics Data System (ADS)

    Besuner, R. W.; Chow, K. P.; Kendrick, S. E.; Streetman, S.

    2008-07-01

    Optical testing of large mirrors for space telescopes can be challenging and complex. Demanding optical requirements necessitate both precise mirror figure and accurate prediction of zero gravity shape. Mass and packaging constraints require mirrors to be lightweighted and optically fast. Reliability and low mass imply simple mounting schemes, with basic kinematic mounts preferable to active figure control or whiffle trees. Ground testing should introduce as little uncertainty as possible, ideally employing flight mounts without offloaders. Testing mirrors with their optical axes horizontal can result in less distortion than in the vertical orientation, though distortion will increase with mirror speed. Finite element modeling and optimization tools help specify selective reinforcement of the mirror structure to minimize wavefront errors in a one gravity test, while staying within mass budgets and meeting other requirements. While low distortions are necessary, an important additional criterion is that designs are tolerant to imperfect positioning of the mounts relative to the neutral surface of the mirror substrate. In this paper, we explore selective reinforcement of a 2-meter class, f/1.25 primary mirror for the proposed SNAP space telescope. We specify designs optimized for various mount radial locations both with and without backup mount locations. Reinforced designs are predicted to have surface distortions in the horizontal beam test low enough to perform optical testing on the ground, on flight mounts, and without offloaders. Importantly, the required accuracy of mount locations is on the order of millimeters rather than tenths of millimeters.

  7. Control Performance of General Electric Fuel and Torque Regulator Operating on T31-3 Turbine-Propeller Engine in Sea-Level Test Stand

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L.; Lazar, James

    1951-01-01

    A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.

  8. Magnetic and electric bulge-test instrument for the determination of coupling mechanical properties of functional free-standing films and flexible electronics

    NASA Astrophysics Data System (ADS)

    Yu, Zejun; Mao, Weiguo; Li, Faxin; Feng, Xue; Pei, Yongmao; Fang, Daining

    2014-06-01

    For the first time a novel multi-field bulge-test instrument which enables measurements of the biaxial mechanical properties and electro-magnetic-mechanical coupling effect of free-standing films in external magnetic/electric fields was proposed. The oil pressure was designed with two ranges, 0-1 MPa for elastic small deformation and 0-7 MPa for plastic/damage large deformation. A magnetic field that was horizontal and uniform in the film plane was supplied by a hollow cylindrical magnet. The magnitude could be changed from 0 to 10 000 Oe by adjusting the position of the testing film. Meanwhile, an electric field applied on the film was provided by a voltage source (Maximum voltage: 1000 V; Maximum current: 1 A). Various signals related to deformation, mechanical loading, magnetic field, and electric field could be measured simultaneously without mutual interference, which was confirmed by the coincidence of the measured P-H curves for titanium (Ti)/nickel (Ni) specimens with/without external fields. A hardening phenomenon under magnetic/electric fields was observed for Ni and lead zirconate titanate specimens. The multi-field bulge-test instrument will provide a powerful research tool to study the deformation mechanism of functional films and flexible electronics in the coupling field.

  9. Magnetic and electric bulge-test instrument for the determination of coupling mechanical properties of functional free-standing films and flexible electronics

    SciTech Connect

    Yu, Zejun; Li, Faxin; Pei, Yongmao E-mail: fangdn@pku.edu.cn; Fang, Daining E-mail: fangdn@pku.edu.cn; Mao, Weiguo; Feng, Xue

    2014-06-15

    For the first time a novel multi-field bulge-test instrument which enables measurements of the biaxial mechanical properties and electro-magnetic-mechanical coupling effect of free-standing films in external magnetic/electric fields was proposed. The oil pressure was designed with two ranges, 0–1 MPa for elastic small deformation and 0–7 MPa for plastic/damage large deformation. A magnetic field that was horizontal and uniform in the film plane was supplied by a hollow cylindrical magnet. The magnitude could be changed from 0 to 10 000 Oe by adjusting the position of the testing film. Meanwhile, an electric field applied on the film was provided by a voltage source (Maximum voltage: 1000 V; Maximum current: 1 A). Various signals related to deformation, mechanical loading, magnetic field, and electric field could be measured simultaneously without mutual interference, which was confirmed by the coincidence of the measured P-H curves for titanium (Ti)/nickel (Ni) specimens with/without external fields. A hardening phenomenon under magnetic/electric fields was observed for Ni and lead zirconate titanate specimens. The multi-field bulge-test instrument will provide a powerful research tool to study the deformation mechanism of functional films and flexible electronics in the coupling field.

  10. The accuracy with which the 5 times sit-to-stand test, versus gait speed, can identify poor exercise tolerance in patients with COPD

    PubMed Central

    Bernabeu-Mora, Roberto; Medina-Mirapeix, Francesc; Llamazares-Herrán, Eduardo; de Oliveira-Sousa, Silvana Loana; Sánchez-Martinez, Mª Piedad; Escolar-Reina, Pilar

    2016-01-01

    Abstract Identifying those patients who underperform in the 6-minute walk test (6MWT <350 m), and the reasons for their poor performance, is a major concern in the management of chronic obstructive pulmonary disease. To explore the accuracy and relevance of the 4-m gait-speed (4MGS) test, and the 5-repetition sit-to-stand (5STS) test, as diagnostic markers, and clinical determinants, of poor performance in the 6MWT. We recruited 137 patients with stable chronic obstructive pulmonary disease to participate in our cross-sectional study. Patients completed the 4MGS and 5STS tests, with quantitative (in seconds) and qualitative ordinal data collected; the latter were categorized using a scale of 0 to 4. The following potential covariates and clinical determinants of poor 6MWT were collated: age, quadriceps muscle-strength (QMS), health status, dyspnea, depression, and airflow limitation. Area under the receiver-operating characteristic curve data (AUC) was used to assess accuracy, with logistic regression used to explore relevance as clinical determinants. The AUCs generated using the 4MGS and 5STS tests were comparable, at 0.719 (95% confidence interval [CI] 0.629–0.809) and 0.711 (95% CI 0.613–0.809), respectively. With ordinal data, the 5STS test was most accurate (AUC of 0.732; 95% CI 0.645–0.819); the 4MGS test showed poor discriminatory power (AUC <0.7), although accuracy improved (0.726, 95% CI 0.637–0.816) when covariates were included. Unlike the 4MGS test, the 5STS test provided a significant clinical determinant of a poor 6MWT (odds ratio 1.23, 95% CI 1.05–1.44). The 5STS test reliably predicts a poor 6MWT, especially when using ordinal data. Used alone, the 4MGS test is reliable when measured with continuous data. PMID:27583918

  11. A look ahead: Status of the SNS external antenna ion source and the new RFQ test stand

    SciTech Connect

    Welton, R. F. Aleksandrov, A.; Han, B. X.; Murray, S. N.; Pennisi, T. R.; Piller, M.; Kang, Y.; Santana, M.; Stockli, M. P.; Dudnikov, V. G.

    2015-04-08

    The U.S. Spallation Neutron Source (SNS) now operates with ∼1 MW of beam power to target with the near-term goal of delivering 1.4 MW. Plans are being considered to incorporate a second target station into the facility which will require ∼2.8 MW of beam power. Presently, H{sup −} beam pulses (∼1 ms, 60 Hz) are produced by an RF-driven, Cs-enhanced, multi-cusp ion source which injects beam into an RFQ (Radio Frequency Quadrupole) accelerator that, in turn, feeds the SNS Linac. Currently the source/RFQ system delivers ∼35 mA of pulsed current to the linac which is mostly sufficient for 1.4 MW operations while ∼50 mA are needed for the second target station upgrade. This paper provides a look forward for the SNS by providing (i) the present and future SNS source/RFQ beam requirements and our plans to achieve these, (ii) a description and status of the external antenna ion source being developed for the replacement of the current internal antenna ion source, and (iii) a description and status of the newly constructed RFQ test facility.

  12. Developments in Test Facility and Data Networking for the Altitude Test Stand at the John C. Stennis Space Center, MS - A General Overview

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.

    2008-01-01

    May 2007, NASA's Constellation Program selected John C Stennis Space Center (SSC) near Waveland Mississippi as the site to construct an altitude test facility for the developmental and qualification testing of the Ares1 upper stage (US) engine. Test requirements born out of the Ares1 US propulsion system design necessitate exceptional Data Acquisition System (DAS) design solutions that support facility and propellant systems conditioning, test operations control and test data analysis. This paper reviews the new A3 Altitude Test Facility's DAS design requirements for real-time deterministic digital data, DAS technology enhancements, system trades, technology validation activities, and the current status of this system's new architecture. Also to be discussed will be current network technologies to improve data transfer.

  13. Effect of arm position and foot placement on the five times sit-to-stand test completion times of female adults older than 50 years of age

    PubMed Central

    Ng, Shamay S.M.; Kwong, Patrick W.H.; Chau, Michael S.P.; Luk, Isaac C.Y.; Wan, Sam S.; Fong, Shirley S.M.

    2015-01-01

    The five times-sit-to stand test (FTSTS) is a clinical test which is commonly used to assessed the functional muscle strength of the lower limbs of older adults. The aim of this study was to examine the effect of different arm positions and foot placements on the FTSTS completion times of older female adults. [Subjects and Methods] Twenty-nine healthy female subjects, aged 63.1±5.3 years participated in this cross-sectional study. The times required to complete the FTSTS with 3 different arm positions (hands on thighs, arms crossed over chest, and an augmented arm position with the arms extended forward) and 2 foot placements (neutral and posterior) were recorded. The interaction effect and main effect of arm positions and foot placements were examined using a 3 (arm position) × 2 (foot placement) two-way repeated measures analysis of variance (ANOVA). [Results] There was no interaction effect among the 3 arm positions in the 2 foot placements. A significant main effect was identified for foot placement, but not arm position. Posterior foot placement led to a shorter FTSTS time compared to that of normal foot placement. [Conclusion] With the same arm position, FTSTS completion times with posterior foot placement tended to be shorter. Therefore, the standard foot placement should be used for FTSTS administration. PMID:26180314

  14. Standing Tall: The Benefits of Standing Devices

    ERIC Educational Resources Information Center

    Warner, Mark P.

    2007-01-01

    In the author's opinion as a pediatric physical therapist, with the exception of a wheelchair, there is no other piece of assistive technology that is more beneficial to children and adults with special needs than a standing device. Postural symmetry during standing and walking activities is extremely important for everyone. Very few children…

  15. 7. MOTION PICTURE CAMERA STAND AT BUILDING 8768. Edwards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. MOTION PICTURE CAMERA STAND AT BUILDING 8768. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  16. Static test-stand performance of the YF-102 turbofan engine with several exhaust configurations for the Quiet Short-Haul Research Aircraft (QSRA)

    NASA Technical Reports Server (NTRS)

    Mcardle, J. G.; Homyak, L.; Moore, A. S.

    1979-01-01

    The performance of a YF-102 turbofan engine was measured in an outdoor test stand with a bellmouth inlet and seven exhaust-system configurations. The configurations consisted of three separate-flow systems of various fan and core nozzle sizes and four confluent-flow systems of various nozzle sizes and shapes. A computer program provided good estimates of the engine performance and of thrust at maximum rating for each exhaust configuration. The internal performance of two different-shaped core nozzles for confluent-flow configurations was determined to be satisfactory. Pressure and temperature surveys were made with a traversing probe in the exhaust-nozzle flow for some confluent-flow configurations. The survey data at the mixing plane, plus the measured flow rates, were used to calculate the static-pressure variation along the exhaust nozzle length. The computed pressures compared well with experimental wall static-pressure data. External-flow surveys were made, for some confluent-flow configurations, with a large fixed rake at various locations in the exhaust plume.

  17. Earth Observing System (EOS) Advanced Microwave Sounding Unit-A2 (EOS/AMSU-A): EOS Software Test Report

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This document describes the results of the formal qualification test (FQT)/ Demonstration conducted on September 10, and 14, 1998 for the EOS AMSU-A2 instrument. The purpose of the report is to relate the results of the functional performance and interface tests of the software. This is the final submittal of the EOS/AMSU-A Software Test report.

  18. Test results of a 2 kW internal manifold MCFC stack

    SciTech Connect

    Lim, H C; Seol, J H; Ahn, K S

    1996-01-01

    A R&D program on MCFC, of which current target is to establish the fundamental technology through fabricating a 2k-W stack with the performance higher than 0.8V at 150mA/cm{sup 2}, has been started since 1993. The program consisted of two phases : a AW class MCFC stack and the test facility will be constructed and operated during the first phase (1993-1996) and then a 100k-W MCFC system will be constructed in the second phase (1997-2002) on the basement of first phase results. From this strategy, KEPRI former the MCFC developing group with Korea Institute of Science and Technology (KIST) and Samsung Heavy Industry (SHI) for fabricating, operating and evaluating of 2k-W MCFC stack. This paper presents the results of this first phase program and some of the problems experienced during its operation and fabrication of stack components. Specification of the stack under operation is shown in Table 1.

  19. The bovine immune response to Brucella abortus IV. Studies with a double immunodiffusion test for antibody against A2.

    PubMed Central

    Stemshorn, B; Nielsen, K

    1981-01-01

    A double immunodiffusion test for precipitins against Brucella antigen A2 was developed and applied to a variety of samples. The A2 precipitins were produced by a heifer infected with B. abortus strain 2308, cattle vaccinated with killed B. melitensis strain H38 or live B. abortus strain 19 and by a dog infected with B. canis. Precipitins were also detected in the second International Standard for anti-Brucella abortus serum, in several anti-B. canis sera and at low levels in one anti-B. ovis serum tested. Antisera produced in calves against Yersinia enterocolitica serotype 0:9 had no anti-A2 activity despite titers greater than or equal to 1/1024 and greater than or equal to 1/80 in standard Brucella agglutination and CF tests, respectively. The test for A2 precipitins lacked specificity as weak reactions were obtained with five of 295 sera from brucellosis-free herds. This test was relatively insensitive, detecting precipitins in only 16 of 24 sera from infected cattle and 27 of 54 sera positive by complement fixation and enzyme labelled antiglobulin tests performed with whole cell and smooth lipopolysaccharide antigens, respectively. The A2 precipitins were detected in nine sera from five cattle, in two infected herds, which were negative by agglutination and complement fixation tests. Images Fig. 1. Fig. 2. PMID:6790144

  20. Extraction of model performance from wall data in a 2-dimensional transonic flexible walled test section

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1982-01-01

    Data obtained from the boundary of a test section provides information on the model contained within it. A method for extracting some of this data in two dimensional testing is described. Examples of model data are included on lift, pitching moment and wake displacement thickness. A FORTRAN listing is also described, having a form suitable for incorporation into the software package used in the running of such a test section.

  1. Independent Review of AFC 2A, 2B, and 2E ATR Irradiation Tests

    SciTech Connect

    M. Cappiello; R. Hobbins; K. Penny; L. Walters

    2014-01-01

    As part of the Department of Energy Advanced Fuel Cycle program, a series of fuels development irradiation tests have been performed in the Advanced Test Reactor (ATR) at the Idaho National Laboratory. These tests are providing excellent data for advanced fuels development. The program is focused on the transmutation of higher actinides which best can be accomplished in a sodium-cooled fast reactor. Because a fast test reactor is no longer available in the US, a special test vehicle is used to achieve near-prototypic fast reactor conditions (neutron spectra and temperature) for use in ATR (a water-cooled thermal reactor). As part of the testing program, there were many successful tests of advanced fuels including metals and ceramics. Recently however, there have been three experimental campaigns using metal fuels that experienced failure during irradiation. At the request of the program, an independent review committee was convened to review the post-test analyses performed by the fuels development team, to assess the conclusions of the team for the cause of the failures, to assess the adequacy and completeness of the analyses, to identify issues that were missed, and to make recommendations for improvements in the design and operation of future tests. Although there is some difference of opinion, the review committee largely agreed with the conclusions of the fuel development team regarding the cause of the failures. For the most part, the analyses that support the conclusions are sufficient.

  2. An investigation into student understanding of longitudinal standing waves

    NASA Astrophysics Data System (ADS)

    Dostal, Jack Alan

    This study investigates the difficulties that introductory university physics students have with the concept of longitudinal standing waves in the context of standing waves in pipes. My goal is to identify difficulties that persist even after standard instruction on longitudinal standing waves and attempt to improve upon that method of instruction. The study follows a four-step design. I first use exploratory surveys and interviews with students to elicit the difficulties present in students' understanding of longitudinal standing waves in pipes. I then use the information gained to create and assessment instrument, the Standing Waves Diagnostic Test, and a curricular intervention, the Longitudinal Standing Waves Tutorial. I then undertake a three-step process of pre-testing students with the Standing Wave Diagnostic Test, intervention with the Longitudinal Standing Waves Tutorial, and post-testing again with the Standing Wave Diagnostic Test to determine the impact of the intervention. This is then compared to data from students in classes where the intervention is not used. Students using the intervention significantly outperform their non-intervention counterparts on the Standing Wave Diagnostic Test. The results of the students pre- and post-tests indicate that significant improvement in students' understandings of longitudinal standing waves can be achieved by the use of the tutorial.

  3. Response of a 2-story test-bed structure for the seismic evaluation of nonstructural systems

    NASA Astrophysics Data System (ADS)

    Soroushian, Siavash; Maragakis, E. "Manos"; Zaghi, Arash E.; Rahmanishamsi, Esmaeel; Itani, Ahmad M.; Pekcan, Gokhan

    2016-03-01

    A full-scale, two-story, two-by-one bay, steel braced-frame was subjected to a number of unidirectional ground motions using three shake tables at the UNR-NEES site. The test-bed frame was designed to study the seismic performance of nonstructural systems including steel-framed gypsum partition walls, suspended ceilings and fire sprinkler systems. The frame can be configured to perform as an elastic or inelastic system to generate large floor accelerations or large inter story drift, respectively. In this study, the dynamic performance of the linear and nonlinear test-beds was comprehensively studied. The seismic performance of nonstructural systems installed in the linear and nonlinear test-beds were assessed during extreme excitations. In addition, the dynamic interactions of the test-bed and installed nonstructural systems are investigated.

  4. Laparoscopic cryptorchidectomy in standing bulls

    PubMed Central

    KANEKO, Yasuyuki; TORISU, Shidow; KITAHARA, Go; HIDAKA, Yuichi; SATOH, Hiroyuki; ASANUMA, Taketoshi; MIZUTANI, Shinya; OSAWA, Takeshi; NAGANOBU, Kiyokazu

    2015-01-01

    Laparoscopic cryptorchidectomy without insufflation was applied in 10 standing bulls aged 3 to 15 months. Nine bulls were preoperatively pointed out intra-abdominal testes by computed tomography. Preoperative fasting for a minimum of 24 hr provided laparoscopic visualization of intra-abdominal area from the kidney to the inguinal region. Surgical procedure was interrupted by intra-abdominal fat and testis size. It took 0.6 to 1.5 hr in 4 animals weighing 98 to 139 kg, 0.8 to 2.8 hr in 4 animals weighing 170 to 187 kg, and 3 and 4 hr in 2 animals weighing 244 and 300 kg to complete the cryptorchidectomy. In conclusion, standing gasless laparoscopic cryptorchidectomy seems to be most suitable for bulls weighing from 100 to 180 kg. PMID:25715955

  5. Utility Test Results of a 2-Megawatt, 10-Second Reserve-Power System

    SciTech Connect

    BALL,GREG J.; NORRIS,BENJAMIN L.

    1999-10-01

    This report documents the 1996 evaluation by Pacific Gas and Electric Company of an advanced reserve-power system capable of supporting 2 MW of load for 10 seconds. The system, developed under a DOE Cooperative Agreement with AC Battery Corporation of East Troy, Wisconsin, contains battery storage that enables industrial facilities to ''ride through'' momentary outages. The evaluation consisted of tests of system performance using a wide variety of load types and operating conditions. The tests, which included simulated utility outages and voltage sags, demonstrated that the system could provide continuous power during utility outages and other disturbances and that it was compatible with a variety of load types found at industrial customer sites.

  6. A test of a 2 Tesla superconducting transmission line magnet system

    SciTech Connect

    Piekarz, Henryk; Carcagno, Ruben; Claypool, Brad; Foster, George W.; Hays, Steven L.; Huang, Yuenian; Kashikhin, Vladimir; Malamud, Ernest; Mazur, Peter O.; Nehring, Roger; Oleck, Andrew; Rabehl, Roger; Schlabach, Phil; Sylvester, Cosmore; Velev, Gueorgui; Volk, James; Wake, Masayoshi; /KEK, Tsukuba

    2005-09-01

    Superconducting transmission line magnet test system for an injector accelerator of a staged VLHC proton-proton colliding beam accelerator has been built and operated at Fermilab. The 1.5 m long, twin-aperture, combined function dipole magnet of 2 Tesla field is excited by a single turn 100 kA transmission line superconductor. The 100 kA dc current is generated using dc-dc switching converters powered by a bulk 240 kW supply. A pair of horizontally placed conventional leads facilitates transfer of this current to the magnet transmission line superconductor operating at liquid helium temperature. Fabrication of magnet components and magnet assembly work are described. The magnet test system and its operation are presented, and the performance is summarized.

  7. Design and test of a 2.25-MW transformer rectifier assembly

    NASA Technical Reports Server (NTRS)

    Cormier, R.; Daeges, J.

    1989-01-01

    A new 2.25-MW transformer rectifier assembly was fabricated for DSS-13 at Goldstone, California. The transformer rectifier will provide constant output power of 2.25 MW at any voltage from 31 kV to 125 kV. This will give a new capability of 1 MW of RF power at X-band, provided appropriate microwave tubes are in the power amplifier. A description of the design and test results is presented.

  8. J-2X Engine Ready For Second Test Series

    NASA Video Gallery

    Time-lapse video of the installation of J-2X engine 10001 in the A-2 test-stand at Stennis, complete with clamshell assembly and nozzle extension. With these enhancements test engineers will measur...

  9. Point of care testing of phospholipase A2 group IIA for serological diagnosis of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Liu, Nathan J.; Chapman, Robert; Lin, Yiyang; Mmesi, Jonas; Bentham, Andrew; Tyreman, Matthew; Abraham, Sonya; Stevens, Molly M.

    2016-02-01

    Secretory phospholipase A2 group IIA (sPLA2-IIA) was examined as a point of care marker for determining disease activity in rheumatoid (RA) and psoriatic (PsA) arthritis. Serum concentration and activity of sPLA2-IIA were measured using in-house antibodies and a novel point of care lateral flow device assay in patients diagnosed with varying severities of RA (n = 30) and PsA (n = 25) and found to correlate strongly with C-reactive protein (CRP). Levels of all markers were elevated in patients with active RA over those with inactive RA as well as both active and inactive PsA, indicating that sPLA2-IIA can be used as an analogue to CRP for RA diagnosis at point of care.Secretory phospholipase A2 group IIA (sPLA2-IIA) was examined as a point of care marker for determining disease activity in rheumatoid (RA) and psoriatic (PsA) arthritis. Serum concentration and activity of sPLA2-IIA were measured using in-house antibodies and a novel point of care lateral flow device assay in patients diagnosed with varying severities of RA (n = 30) and PsA (n = 25) and found to correlate strongly with C-reactive protein (CRP). Levels of all markers were elevated in patients with active RA over those with inactive RA as well as both active and inactive PsA, indicating that sPLA2-IIA can be used as an analogue to CRP for RA diagnosis at point of care. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08423g

  10. A wake traverse technique for use in a 2 dimensional transonic flexible walled test section

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1982-01-01

    Reported two dimensional validation data from the Transonic Self-Streamlining Wind Tunnel (TSWT) concerns model lift. The models tested provided data on their pressure distributions. This information was numerically integrated over the model surface to determine lift, pressure drag and pitching moment. However, the pressure drag is only a small component of the total drag at nominal angles of attack and cannot be used to assess the quality of flow simulation. An intrusive technique for obtaining information on the total drag of a model in TSWT is described. The technique adopted is the wake traverse method. The associated tunnel hardware and control and data reduction software are outlined and some experimental results are presented for discussion.

  11. Standing wave compressor

    DOEpatents

    Lucas, Timothy S.

    1991-01-01

    A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

  12. Standing waves braneworlds

    NASA Astrophysics Data System (ADS)

    Gogberashvili, Merab; Mantidze, Irakli; Sakhelashvili, Otari; Shengelia, Tsotne

    2016-05-01

    The class of nonstationary braneworld models generated by the coupled gravitational and scalar fields is reviewed. The model represents a brane in a spacetime with single time and one large (infinite) and several small (compact) spacelike extra dimensions. In some particular cases the model has the solutions corresponding to the bulk gravi-scalar standing waves bounded by the brane. Pure gravitational localization mechanism of matter particles on the node of standing waves, where the brane is placed, is discussed. Cosmological applications of the model is also considered.

  13. Tank Tests of a Powered Model of a Compression Plane, NACA Model 171A-2

    NASA Technical Reports Server (NTRS)

    Mottard, Elmo J.; Ruggles, Robert D.

    1948-01-01

    The compression plane is intended for operation on or close to the surface of the water, and has a hull with a concave bottom which forms the upper surface of a tunnel into which air is forced under pressure to support part of the load. The results of the tests made in Langley tank no. 1 include values of the horizontal forces, trimming moment, and static pressure in the tunnel for a wide range of loads and speeds and two power conditions, and are presented in the form of curves against speed with load as a parameter. The results are scaled up to 10 times the model size for three conditions at which the model is self-propelled at a steady speed. Lift is obtained from the static pressure of air in the tunnel. In general, the ratio of the gross load to the total resistance increases with increase in load and decrease in speed. This ratio varies between l-7 and 5.7 at high speeds and has a maximum value of 7. The total resistance is nearly the same for both power conditions except at low speeds and heavy loads. No abrupt change in forces on the hull or flow around the hull occurs in. the region of zero draft. The centers of pressure are generally far aft. At the most efficient trim (1.2'), considerable bow-up moment would be required for practicable operation. There is no abrupt transition from the air-borne to the water- borne condition.

  14. Tests of a 2-Stage, Axial-Flow, 2-Phase Turbine

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1982-01-01

    A two phase flow turbine with two stages of axial flow impulse rotors was tested with three different working fluid mixtures at a shaft power of 30 kW. The turbine efficiency was 0.55 with nitrogen and water of 0.02 quality and 94 m/s velocity, 0.57 with Refrigerant 22 of 0.27 quality and 123 m/s velocity, and 0.30 with steam and water of 0.27 quality and 457 m/s velocity. The efficiencies with nitrogen and water and Refrigerant 22 were 86 percent of theoretical. At that fraction of theoretical, the efficiencies of optimized two phase turbines would be in the low 60 percent range with organic working fluids and in the mid 50 percent range with steam and water. The recommended turbine design is a two stage axial flow impulse turbine followed by a rotary separator for discharge of separate liquid and gas streams and recovery of liquid pressure.

  15. Free-Standing Canes.

    ERIC Educational Resources Information Center

    Ehresman, Paul

    1995-01-01

    A precane device, called the "free-standing cane," was developed to help children with blindness along with other disabilities. The cane detects obstacles; guides the user's hands into a relaxed, static position in front of the hips; facilitates postural security and control; and offers tactile and kinesthetic feedback. (JDD)

  16. The accuracy with which the 5 times sit-to-stand test, versus gait speed, can identify poor exercise tolerance in patients with COPD: A cross-sectional study.

    PubMed

    Bernabeu-Mora, Roberto; Medina-Mirapeix, Francesc; Llamazares-Herrán, Eduardo; Oliveira-Sousa, Silvana Loana de; Sánchez-Martinez, M Piedad; Escolar-Reina, Pilar

    2016-08-01

    Identifying those patients who underperform in the 6-minute walk test (6MWT <350 m), and the reasons for their poor performance, is a major concern in the management of chronic obstructive pulmonary disease.To explore the accuracy and relevance of the 4-m gait-speed (4MGS) test, and the 5-repetition sit-to-stand (5STS) test, as diagnostic markers, and clinical determinants, of poor performance in the 6MWT.We recruited 137 patients with stable chronic obstructive pulmonary disease to participate in our cross-sectional study. Patients completed the 4MGS and 5STS tests, with quantitative (in seconds) and qualitative ordinal data collected; the latter were categorized using a scale of 0 to 4. The following potential covariates and clinical determinants of poor 6MWT were collated: age, quadriceps muscle-strength (QMS), health status, dyspnea, depression, and airflow limitation. Area under the receiver-operating characteristic curve data (AUC) was used to assess accuracy, with logistic regression used to explore relevance as clinical determinants.The AUCs generated using the 4MGS and 5STS tests were comparable, at 0.719 (95% confidence interval [CI] 0.629-0.809) and 0.711 (95% CI 0.613-0.809), respectively. With ordinal data, the 5STS test was most accurate (AUC of 0.732; 95% CI 0.645-0.819); the 4MGS test showed poor discriminatory power (AUC <0.7), although accuracy improved (0.726, 95% CI 0.637-0.816) when covariates were included. Unlike the 4MGS test, the 5STS test provided a significant clinical determinant of a poor 6MWT (odds ratio 1.23, 95% CI 1.05-1.44).The 5STS test reliably predicts a poor 6MWT, especially when using ordinal data. Used alone, the 4MGS test is reliable when measured with continuous data. PMID:27583918

  17. Get up, Stand up

    ERIC Educational Resources Information Center

    Melia, Ed

    2009-01-01

    Ignorance about dyslexia meant a miserable school experience for Barrie Hughes. He was in his 50s when he found the courage to stand up in front of a classroom of learners and admit he couldn't read. Barrie, who is now 59 and works for the parks department of Brighton and Hove Council, only began to learn how to read words in the last three years…

  18. Sit-to-Stand and Stand-to-Sit Control Mechanisms of Two-Wheeled Wheelchair.

    PubMed

    Abdul Ghani, N M; Tokhi, M O

    2016-04-01

    This paper presents a mechanism for standing and sitting transformation of a wheelchair using a two-wheeled inverted pendulum concept with reduced torque requirement, in simulation studies. The motivation of this work is to design a compact standing mechanism to help an elderly/disabled person with functional limitation in lower extremities to maneuver in small and confined spaces and enable them to perform standard daily life routines independently. The wheelchair system at the upright standing position is tested with different travel distances, and the challenge is to control both sit-to-stand and stand-to-sit operations in a stable manner using flexible-joint humanoid. An additional spring/damping element is incorporated at each wheel to provide a comfortable ride for the user especially during stand-to-sit transformation task. A PD-fuzzy control with modular structure is implemented, and the performance of the system is observed through visual nastran 4d (vn4d) visualization software and simulation in matlab. The stand-to-sit performance tests have shown more than 38% reduction in tilt and back seat angles fluctuation in linear travel motion using a suspension system, while the initial tilt torque needed is 50% less than the amount required in previous designs. PMID:26902396

  19. Taking Stock and Standing down

    ERIC Educational Resources Information Center

    Peeler, Tom

    2009-01-01

    Standing down is an action the military takes to review, regroup, and reorganize. Unfortunately, it often comes after an accident or other tragic event. To stop losses, the military will "stand down" until they are confident they can resume safe operations. Standing down is good for everyone, not just the military. In today's fast-paced world,…

  20. Learning to Stand: The Acceptability and Feasibility of Introducing Standing Desks into College Classrooms

    PubMed Central

    Benzo, Roberto M.; Gremaud, Allene L.; Jerome, Matthew; Carr, Lucas J.

    2016-01-01

    Prolonged sedentary behavior is an independent risk factor for multiple negative health outcomes. Evidence supports introducing standing desks into K-12 classrooms and work settings to reduce sitting time, but no studies have been conducted in the college classroom environment. The present study explored the acceptability and feasibility of introducing standing desks in college classrooms. A total of 993 students and 149 instructors completed a single online needs assessment survey. This cross-sectional study was conducted during the fall semester of 2015 at a large Midwestern University. The large majority of students (95%) reported they would prefer the option to stand in class. Most students (82.7%) reported they currently sit during their entire class time. Most students (76.6%) and instructors (86.6%) reported being in favor of introducing standing desks into college classrooms. More than half of students and instructors predicted having access to standing desks in class would improve student’s “physical health”, “attention”, and “restlessness”. Collectively, these findings support the acceptability of introducing standing desks in college classrooms. Future research is needed to test the feasibility, cost-effectiveness and efficacy of introducing standing desks in college classrooms. Such studies would be useful for informing institutional policies regarding classroom designs. PMID:27537901

  1. Learning to Stand: The Acceptability and Feasibility of Introducing Standing Desks into College Classrooms.

    PubMed

    Benzo, Roberto M; Gremaud, Allene L; Jerome, Matthew; Carr, Lucas J

    2016-01-01

    Prolonged sedentary behavior is an independent risk factor for multiple negative health outcomes. Evidence supports introducing standing desks into K-12 classrooms and work settings to reduce sitting time, but no studies have been conducted in the college classroom environment. The present study explored the acceptability and feasibility of introducing standing desks in college classrooms. A total of 993 students and 149 instructors completed a single online needs assessment survey. This cross-sectional study was conducted during the fall semester of 2015 at a large Midwestern University. The large majority of students (95%) reported they would prefer the option to stand in class. Most students (82.7%) reported they currently sit during their entire class time. Most students (76.6%) and instructors (86.6%) reported being in favor of introducing standing desks into college classrooms. More than half of students and instructors predicted having access to standing desks in class would improve student's "physical health", "attention", and "restlessness". Collectively, these findings support the acceptability of introducing standing desks in college classrooms. Future research is needed to test the feasibility, cost-effectiveness and efficacy of introducing standing desks in college classrooms. Such studies would be useful for informing institutional policies regarding classroom designs. PMID:27537901

  2. Foam posturography: standing on foam is not equivalent to standing with decreased rapidly adapting mechanoreceptive sensation.

    PubMed

    Patel, M; Fransson, P A; Johansson, R; Magnusson, M

    2011-02-01

    Standing on a foam surface is believed to exaggerate balance deficits by decreasing the reliability of somatosensory information from cutaneous mechanoreceptors on the plantar soles (i.e. base of feet) and by altering the effectiveness of ankle torque. The aim was to further document the nature of foam posturography testing by comparing between standing on foam and standing with decreased Rapidly Adapting Mechanoreceptive Sensation (RAMS). Sixteen healthy adults (mean age 20.8 years) were tested with posturography, standing with eyes open and closed on a solid surface and on foam, with and without decreased plantar RAMS. Standing balance was measured as torque variance and further analyzed by being divided into three spectral categories. Plantar cutaneous hypothermic anesthesia by ice-cooling was used to decrease RAMS. Plantar mechanoreceptive sensation was precisely determined with tactile sensitivity and vibration perception tests. Vibration perception was significantly decreased by hypothermic anesthesia, but tactile sensitivity was not. The anterior-posterior torque variance was significantly larger for frequencies less than 0.1 Hz under eyes closed conditions when standing on a solid surface with decreased RAMS compared to normal sensation. No effect of decreased RAMS was seen with eyes open on a solid surface, nor on foam with eyes open or closed. Decreased RAMS produced body sway responses on a solid surface that were different in spectral composition, amplitude, direction and that responded differently to vision compared with standing on foam. Hence, this study showed that RAMS contributes to postural control but reduction in RAMS does not produce a similar challenge as standing on foam. PMID:21120458

  3. On the lack of correlation between self-report and urine loss measured with standing provocation test in older stress-incontinent women.

    PubMed

    Miller, J M; Ashton-Miller, J A; Carchidi, L T; DeLancey, J O

    1999-03-01

    This study examined the association between the measured amount of urine lost during a standardized series of coughs in clinic (paper towel test) and questionnaire estimates of stress-related urine loss in 51 older women with mild to moderate urinary incontinence. It also examined the relationship between these questionnaire estimates and a 6-day urinary diary self-report of incontinence frequency and voiding episodes. Pearson's correlation coefficient and percent agreement were used to analyze the relationship between the variables. No significant correlations were found between the paper towel test results and questionnaire items reporting volume of urine loss. The relationship between urinary diary results and questionnaire items regarding the number of incontinence occurrences was weak but significant (r = 0.33, p = 0.045), with agreement in 53% of cases. Agreement was achieved in 68% of cases for number of voids per day recorded by urinary diary and reported by questionnaire (r = 0.65, p = 0.000). This study has quantified a weak correlation between objective and subjective measures of urine loss. These weak correlations could arise from either methodologic limitations in quantifying incontinence or the degree to which differences arise because different phenomena are being measured. PMID:10100129

  4. Unsupported standing with minimized ankle muscle fatigue.

    PubMed

    Mihelj, Matjaz; Munih, Marko

    2004-08-01

    In the past, limited unsupported standing has been restored in patients with thoracic spinal cord injury through open-loop functional electrical stimulation of paralyzed knee extensor muscles and the support of intact arm musculature. Here an optimal control system for paralyzed ankle muscles was designed that enables the subject to stand without hand support in a sagittal plane. The paraplegic subject was conceptualized as an underactuated double inverted pendulum structure with an active degree of freedom in the upper trunk and a passive degree of freedom in the paralyzed ankle joints. Control system design is based on the minimization of a cost function that estimates the effort of ankle joint muscles via observation of the ground reaction force position, relative to ankle joint axis. Furthermore, such a control system integrates voluntary upper trunk activity and artificial control of ankle joint muscles, resulting in a robust standing posture. Figures are shown for the initial simulation study, followed by disturbance tests on an intact volunteer and several laboratory trials with a paraplegic person. Benefits of the presented methodology are prolonged standing sessions and in the fact that the subject is able to maintain voluntary control over upper body orientation in space, enabling simple functional standing. PMID:15311817

  5. In-situ Curing Strain Monitoring of a Flat Plate Residual Stress Specimen Using a Chopped Stand Mat Glass/Epoxy Composite as Test Material

    NASA Astrophysics Data System (ADS)

    Jakobsen, J.; Skordos, A.; James, S.; Correia, R. G.; Jensen, M.

    2015-12-01

    The curing stresses in a newly proposed bi-axial residual stress testing configuration are studied using a chopped strand mat glass/epoxy specimen. In-situ monitoring of the curing is conducted using dielectric and fibre Bragg grating sensors. It is confirmed that a bi-axial residual stress state can be introduced in the specimens during curing and a quantification of its magnitude is presented. An alternative decomposition method used for converting the dielectric signal into a material state variable is proposed and good agreement with models found in the literature is obtained. From the cure cycles chosen it is suggested that any stress build up in the un-vitrified state is relaxed immediately and only stress build up in the vitrified state contributes to the residual stress state in the specimen.

  6. Design and Testing of a 2-Hour Oxygen Prebreathe Protocol for Space Walks from the International Space Station

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Conkin, J.; Foster, P. P.; Pilmanis, A. A.; Butler, B. D.; Beltran, E.; Fife, C. E.; Vann, R. D.; Gerth, W. A.; Loftin, K. C.; Paloski, William H. (Technical Monitor)

    2000-01-01

    To develop and test a 2-hour prebreathe protocol for performing extravehicular activities (EVAs) from the International Space Station (ISS). Combinations of adynamia (non-walking), prebreathe exercise, and space suit donning options (10.2 vs. 14.7 psi) were evaluated, against timeline and consumable contraints to develop an operational 2- hour prebreathe protocol. Prospective accept/reject criteria were defined for decompression sickness (DCS) and venous gas emboli (VGE) from analysis of historical DCS data, combined with risk management of DCS under ISS mission circumstances. Maximum operational DCS levels were defined based on protecting for EVA capability with two crew-members at 95% confidence, throughout ISS lifetime (within the constraints of NASA DCS disposition policy JPG 1800.3). The accept/reject limits were adjusted for greater safety based on analysis of related medical factors. Monte-Carlo simulation was performed to design a closed sequential, multi-center human trial. Protocols were tested with 4 different prebreathe exercises (Phases I-IV), prior to exposure to 4.3 psi for 4 hrs. Subject selection, Doppler monitoring for VGE, test termination criteria, and DCS definitions were standardized. Phase I: upper and lower body exercises using dual-cycle ergometry (75% VO2 max for 10 min). Phase II: ergometry plus 24 min of light exercise (simulating space-suit preparations). Phase III: same 24 min of light exercise but no ergometry, and Phase IV: 56 min of light exercise without ergometry. A prebreathe procedure was accepted if, at 95% confidence, the incidence of DCS was less than 15% (with no Type II DCS), and Grade IV VGE was less than 20%.

  7. A Case Study of Modern PLC and LabVIEW Controls: Power Supply Controls for the ORNL ITER ECH Test Stand

    SciTech Connect

    Barker, Alan M; Killough, Stephen M; Bigelow, Tim S; White, John A; Munro Jr, John K

    2011-01-01

    Power Supply Controls are being developed at Oak Ridge National Laboratory (ORNL) to test transmission line components of the Electron Cyclotron Heating (ECH) system, with a focus on gyrotrons and waveguides, in support of the International Thermonuclear Experimental Reactor (ITER). The control is performed by several Programmable Logic Controllers (PLC s) located near the different equipment. A technique of Supervisory Control and Data Acquisition (SCADA) is presented to monitor, control, and log actions of the PLC s on a PC through use of Allen Bradley s Remote I/O communication interface coupled with an Open Process Control/Object Linking and Embedding [OLE] for Process Control (OPC) Server/Client architecture. The OPC data is then linked to a National Instruments (NI) LabVIEW system for monitoring and control. Details of the architecture and insight into applicability to other systems are presented in the rest of this paper. Future integration with an EPICS (Experimental Physics Industrial Control System) based mini-CODAC (Control, Data Access and Communication) SCADA system is under consideration, and integration considerations will be briefly introduced.

  8. VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST TOWER VIEW INCLUDES STRUCTURAL DYNAMICS TEST STAND COLD CALIBRATION TEST STAND AND COMPONENTS TEST LAB. - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL

  9. 49 CFR 199.7 - Stand-down waivers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Stand-down waivers. 199.7 Section 199.7 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY DRUG AND ALCOHOL TESTING General § 199.7 Stand-down waivers. (a)...

  10. Data base on the high heat flux behaviour of metals and carbon materials for plasma facing components: Experiments at the 10 MW neutral beam injection test stand of the IPP Nagoya

    NASA Astrophysics Data System (ADS)

    Bolt, H.; Croessmann, C. D.; Miyahara, A.; Kuroda, T.; Oka, Y.

    1987-08-01

    Disruption events in tokamak devices are regarded as one of the main issues governing material and design considerations for in-vessel components. During disruptions heat loads in the order of 100 to 5000 MW/sq m for durations of about 100 microseconds to severl tens of microseconds can cause severe damage to plasma facing components and may possibly lead to their failure. To determine the response of materials to high heat fluxes, an experimental program was carried out on metals and carbon materials using the 10 MW Neutral Beam Injection Test Stand of the IPP Nagoya. Stainless steel, aluminum, copper, and molybdenum samples, 13 grades of fine grain graphites, and pyrolytic carbon samples were subjected to hydrogen beam exposure with power densities of 15 to 120 MW/sq m and pulse durations of 50 to 950 ms. Resulting damage and threshold values for the occurrence of damage were determined and documented. Main damage observed on samples includes melting, erosion, and crack formation. The high heat flux resistance of each material tested is compared comprehensively with that of the others. Processes leading to material damage are discussed. in the case of damage on graphite, models of erosion and cracking processes are given. The implication of the experimental results for material selection and design of first wall components under the high heat flux aspect is discussed.

  11. 15. ELEVATED CAMERA STAND, SHOWING LINE OF CAMERA STANDS PARALLEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. ELEVATED CAMERA STAND, SHOWING LINE OF CAMERA STANDS PARALLEL TO SLED TRACK. Looking west southwest down Camera Road. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  12. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, 08

    NASA Technical Reports Server (NTRS)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  13. 13C-methacetin breath test reproducibility study reveals persistent CYP1A2 stimulation on repeat examinations

    PubMed Central

    Kasicka-Jonderko, Anna; Nita, Anna; Jonderko, Krzysztof; Kamińska, Magdalena; Błońska-Fajfrowska, Barbara

    2011-01-01

    AIM: To find the most reproducible quantitative parameter of a standard 13C-methacetin breath test (13C-MBT). METHODS: Twenty healthy volunteers (10 female, 10 male) underwent the 13C-MBT after intake of 75 mg 13C-methacetin p.o. on three occasions. Short- and medium-term reproducibility was assessed with paired examinations taken at an interval of 2 and 18 d (medians), respectively. RESULTS: The reproducibility of the 1-h cumulative 13C recovery (AUC0-60), characterized by a coefficient of variation of 10%, appeared to be considerably better than the reproducibility of the maximum momentary 13C recovery or the time of reaching it. Remarkably, as opposed to the short gap between consecutive examinations, the capacity of the liver to handle 13C-methacetin increased slightly but statistically significantly when a repeat dose was administered after two to three weeks. Regarding the AUC0-60, the magnitude of this fixed bias amounted to 7.5%. Neither the time gap between the repeat examinations nor the gender of the subjects affected the 13C-MBT reproducibility. CONCLUSION: 13C-MBT is most reproducibly quantified by the cumulative 13C recovery, but the exactitude thereof may be modestly affected by persistent stimulation of CYP1A2 on repeat examinations. PMID:22174547

  14. OH Module Assembly Stand

    SciTech Connect

    Bolan, P.J.; /Fermilab

    1990-10-16

    There is an OR module assembly stand in use at IB4. This design has been approved by safety, as presented by Mike Foley, and has been successfully used. Another one is needed at the D-zero assembly building, but some modifications need to be made. This report will show that the new modified design is at least as strong, if not stronger, than the older IB4 design in every aspect. Since the weight distribution of the OR modules on the sling is indeterminate, this report compares three cases of support for the entire assembly: the lowest two beams only, the lowest four beams only, and all six beams. In each of these cases, the new design is stronger than the old design in maximum allowable weight. The ability of the the cradle to support the weight is also shown. For all of the failure conditions except for two, the cradle is stronger than the beams that it supports. In the two excepted situations, the calculated limit of the cradle is less than the beams it supports. This is because no credit is taken for the sling and strongback, which in reality will relieve much of the horizontal load.

  15. Oyster School Stands the Test of Time.

    ERIC Educational Resources Information Center

    Fern, Veronica

    1995-01-01

    Describes Oyster Elementary School's award-winning two-way bilingual (Spanish-English) program. The school's success has been maintained by strong parent and community support, high academic standards, and ongoing professional development efforts. However, cultural, generational, and socioeconomic differences among staff, students, and parents…

  16. Coupling tree-ring delta13C and delta15N to test the effect of fertilization on mature Douglas-fir (Pseudotsuga menziesii var. glauca) stands across the Interior northwest, USA.

    PubMed

    Balster, Nick J; Marshall, John D; Clayton, Murray

    2009-12-01

    Nitrogen (N) fertilization causes long-term increases in biomass production in many N-limited forests around the world, but the mechanistic basis underlying the increase is often unclear. One possibility, especially in summer-dry climates, is that N fertilization increases the efficiency with which a finite water supply is consumed to support photosynthesis. This increase is achieved by a reduction in the canopy-integrated concentration of internal CO(2) and thus discrimination against (13)C. We used stable isotopes of carbon (delta(13)C) in tree rings to experimentally test the physiological impact of N fertilization on mature Douglas-fir (Pseudotsuga menziesii Franco var. glauca) stands across the geographic extent of the Intermountain West, USA. The concentration and the stable isotopes of N (delta(15)N) in tree rings were also used to assess the presence and activity of fertilizer N. We hypothesized that N fertilization would (i) increase delta(15)N and N concentration of stemwood relative to non-fertilized stands and (ii) increase stemwood delta(13)C as photosynthetic gas exchange responded to the additional N. This experiment included two rates of urea addition, 178 kg ha(-1) (low) and 357 kg ha(-1) (high), which were applied twice over a 6-year interval bracketed by the 18 years of wood production measured in this study. Foliar N concentrations measured the year after each fertilization treatment suggest that the fertilizer N had been assimilated by the trees (P < 0.001). The N fertilization significantly enriched stemwood delta(15)N by 1.3 per thousand at the low fertilization rate and by 2.4 per thousand at the high rate (P < 0.001) despite variation in soil N between sites. However, we found no significant effect of the N fertilizer on delta(13)C of the annual rings (P = 0.76). These data lead us to suggest that alternative mechanisms underlie the growth response to fertilizer, i.e., increase in canopy area and shifts in biomass allocation. PMID:19855101

  17. Paradoxical muscle movement in human standing

    PubMed Central

    Loram, Ian D; Maganaris, Constantinos N; Lakie, Martin

    2004-01-01

    In human standing, gravity causes forward toppling about the ankle joint which is prevented by activity in the soleus and gastrocnemius muscles. It has long been assumed that when people sway forwards the calf muscles are stretched and conversely that they shorten with backward sway. Consequently, for many years, two explanations for standing stabilization have flourished. First, tonic muscle activity itself may generate adequate intrinsic ankle stiffness. Second, if intrinsic ankle stiffness is inadequate, the resistance to stretch of the calf muscles may be augmented by stretch reflexes or by central control. These explanations require that the passive tissue (Achilles' tendon, foot) transmitting the calf muscle tension is stiff. However, our recent measurements have indicated that this passive tissue is not stiff during standing. Accordingly, we predicted a counterintuitive mode of control where the muscles and body must, on average, move in opposite directions (paradoxical movements). Here we use dynamic ultrasound imaging in vivo with novel automated tracking of muscle length to test our hypothesis. We show that soleus and gastrocnemius do indeed move paradoxically, shortening when the body sways forward and lengthening when the body returns. This confirms that intrinsic ankle stiffness is too low to stabilize human standing. Moreover, it shows that the increase in active tension is associated with muscle shortening. This pattern cannot be produced by muscle stretch reflexes and can only arise from the anticipatory neural control of muscle length that is necessary for balance. PMID:15047776

  18. Thrust stand for high-power electric propulsion devices

    NASA Technical Reports Server (NTRS)

    Haag, T. W.

    1991-01-01

    This paper describes a new high-power thrust stand developed for use with high-power (up to 250 kW) magnetoplasmadynamic (MPD) thrusters, which is installed in a high-vacuum MPD facility at Lewis Research Center. The design of the stand is based on inverted pendulum configuration, with the result of large displacements and high resolution. Calibration results showed that thrust measurements were linear and repeatable to within a fraction of 1 percent. The thrust stand was used for testing water-cooled MPD thrusters at power levels up to 125 kW. The thruster, however, is quite well suited for testing other types of electric propulsion devices.

  19. Thrust Stand for Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Jones, J. E.; Cox, M. D.

    2004-01-01

    An electric propulsion thrust stand capable of supporting thrusters with total mass of up to 125 kg and 1 mN to 1 N thrust levels has been developed and tested. The mechanical design features a conventional hanging pendulum arm attached to a balance mechanism that transforms horizontal motion into amplified vertical motion, with accommodation for variable displacement sensitivity. Unlike conventional hanging pendulum thrust stands, the deflection is independent of the length of the pendulum arm, and no reference structure is required at the end of the pendulum. Displacement is measured using a non-contact, optical linear gap displacement transducer. Mechanical oscillations are attenuated using a passive, eddy current damper. An on-board microprocessor-based level control system, which includes a two axis accelerometer and two linear-displacement stepper motors, continuously maintains the level of the balance mechanism - counteracting mechanical %era drift during thruster testing. A thermal control system, which includes heat exchange panels, thermocouples, and a programmable recirculating water chiller, continuously adjusts to varying thermal loads to maintain the balance mechanism temperature, to counteract thermal drifts. An in-situ calibration rig allows for steady state calibration both prior to and during thruster testing. Thrust measurements were carried out on a well-characterized 1 kW Hall thruster; the thrust stand was shown to produce repeatable results consistent with previously published performance data.

  20. Arm-free paraplegic standing--Part II: Experimental results.

    PubMed

    Matjacić, Z; Bajd, T

    1998-06-01

    In Part I, we proposed an approach for restoring unsupported standing to thoracic-level paraplegics. The theoretical analysis and simulation of an underactuated double inverted pendulum, representing the standing subject, showed that arm-free standing might be achieved. Here in Part II, we present the mechanical apparatus which we used in our experiments and experimental results from tests of the balance-control strategy. We demonstrate that an intact and a paraplegic subject could perform quiet standing with the ankle stiffness set to 8 Nm/degree or even less (the intact subject). Both were also able to recover from disturbances, imposed by the artificial ankle joint of the apparatus. Introducing cognitive auditory feedback greatly improved the standing abilities of both subjects. PMID:9631321

  1. Standing Waves on a Shoestring.

    ERIC Educational Resources Information Center

    Hendrix, Laura

    1992-01-01

    Describes the construction of a wave generator used to review the algebraic relationships of wave motion. Students calculate and measure the weight needed to create tension to generate standing waves at the first eight harmonics. (MDH)

  2. Process Hood Stand Support Steel

    SciTech Connect

    VAN KATWIJK, C.

    2000-04-03

    This package is written to comply with EN-6-035-00 for upgrade dedication of commercial grade items (CGI). The SNF-5953 CGI package provides the Technical evaluation to identify the critical characteristics and the acceptance criteria associated with the safety function of the Hood Stand Support Steel. Completion of the technical and quality requirements identified in the dedication package will provide enough data to be reasonably assured that CGI Hood Stand Support Steel will perform its SC function.

  3. 14. Interior view of Building 202 test cell, with test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Interior view of Building 202 test cell, with test stand A at center and test stand B in background, looking north. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  4. VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST TOWER VIEW INCLUDES SATURN V STAND (BACKGROUND), BLOCK HOUSE (MIDDLE GROUND), STRUCTURAL DYNAMICS TEST STAND (FAR RIGHT). - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL

  5. Techniques utilized in the simulated altitude testing of a 2D-CD vectoring and reversing nozzle

    NASA Technical Reports Server (NTRS)

    Block, H. Bruce; Bryant, Lively; Dicus, John H.; Moore, Allan S.; Burns, Maureen E.; Solomon, Robert F.; Sheer, Irving

    1988-01-01

    Simulated altitude testing of a two-dimensional, convergent-divergent, thrust vectoring and reversing exhaust nozzle was accomplished. An important objective of this test was to develop test hardware and techniques to properly operate a vectoring and reversing nozzle within the confines of an altitude test facility. This report presents detailed information on the major test support systems utilized, the operational performance of the systems and the problems encountered, and test equipment improvements recommended for future tests. The most challenging support systems included the multi-axis thrust measurement system, vectored and reverse exhaust gas collection systems, and infrared temperature measurement systems used to evaluate and monitor the nozzle. The feasibility of testing a vectoring and reversing nozzle of this type in an altitude chamber was successfully demonstrated. Supporting systems performed as required. During reverser operation, engine exhaust gases were successfully captured and turned downstream. However, a small amount of exhaust gas spilled out the collector ducts' inlet openings when the reverser was opened more than 60 percent. The spillage did not affect engine or nozzle performance. The three infrared systems which viewed the nozzle through the exhaust collection system worked remarkably well considering the harsh environment.

  6. Credit BG. Looking northwest at the Dd stand complex. To ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Looking northwest at the Dd stand complex. To the left is the Test Stand "D" tower with steam-driven ejectors and interstage condenser visible along with steam lines. The steam accumulator appears in the left foreground (sphere); steam lines emerging from the top conduct steam to the Dv, Dd, and Dy stand ejectors. The T-shaped vertical pipes atop the accumulator are burst-disk type safety valves. The ejector ends of the Dd and Dy trains are visible to the right. Tracks permitted each train to expand and contract with temperature or equipment changes - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  7. Construction of a 2- by 2-foot transonic adaptive-wall test section at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Morgan, Daniel G.; Lee, George

    1986-01-01

    The development of a new production-size, two-dimensional, adaptive-wall test section with ventilated walls at the NASA Ames Research Center is described. The new facility incorporates rapid closed-loop operation, computer/sensor integration, and on-line interference assessment and wall corrections. Air flow through the test section is controlled by a series of plenum compartments and three-way slide vales. A fast-scan laser velocimeter was built to measure velocity boundary conditions for the interference assessment scheme. A 15.2-cm- (6.0-in.-) chord NACA 0012 airfoil model will be used in the first experiments during calibration of the facility.

  8. Testing and model-aided analysis of a 2 kW el PEMFC CHP-system

    NASA Astrophysics Data System (ADS)

    König, P.; Weber, A.; Lewald, N.; Aicher, T.; Jörissen, L.; Ivers-Tiffée, E.; Szolak, R.; Brendel, M.; Kaczerowski, J.

    A prototype PEMFC CHP-system (combined heat and power) for decentralised energy supply in domestic applications has been installed in the Fuel Cell Testing Laboratory at the Institut für Werkstoffe der Elektrotechnik (IWE), Universität Karlsruhe (TH). The system, which was developed at the Zentrum für Sonnenenergie- und Wasserstoff-Forschung ZSW, Ulm (FC-stack) and the Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg (reformer) is operated and tested in close cooperation with the Stadtwerke Karlsruhe. The tests are carried out as part of the strategic project EDISon, which is supported by the German Federal Ministry of Economics and Technology (BMWA). The performance of the system is evaluated for different operating conditions. The tests include steady state measurements under different electrical and thermal loads as well as an analysis of the dynamic behaviour of the system during load changes. First results of these steady state and dynamic operation characteristics will be presented in this paper.

  9. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: AMSU-A2 METSAT Instrument (S/N 108) Acceptance Level Vibration Tests of Dec 1999/Jan 2000 (S/O 784077, OC-454)

    NASA Technical Reports Server (NTRS)

    Heffner, R.

    2000-01-01

    This is the Engineering Test Report, AMSU-A2 METSAT Instrument (S/N 108) Acceptance Level Vibration Test of Dec 1999/Jan 2000 (S/O 784077, OC-454), for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  10. An 810 ft/sec soil impact test of a 2-foot diameter model nuclear reactor containment system

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1972-01-01

    A soil impact test was conducted on a 880-pound 2-foot diameter sphere model. The impact area consisted of back filled desert earth and rock. The impact generated a crater 5 feet in diameter by 5 feet deep. It buried itself a total of 15 feet - as measured to the bottom of the model. After impact the containment vessel was pressure checked. No leaks were detected nor cracks observed.

  11. A 2.2 sq m /24 sq ft/ self-controlled deployable heat pipe radiator - Design and test

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    An all heat pipe, deployable radiator has been developed which can effectively control pumped fluid loop temperatures under varying loads using variable conductance panel heat pipes. The 2.2 sq m (24 sq ft) aluminum panel can be coupled to either a fluid header or a flexible heat pipe header capable of transporting 850 watts in a 90-deg bent configuration. Test results support the feasibility of using this system to passively control Freon-21 loop temperatures.

  12. How young children and chimpanzees (Pan troglodytes) perceive objects in a 2D display: putting an assumption to the test.

    PubMed

    Leighty, Katherine A; Menzel, Charles R; Fragaszy, Dorothy M

    2008-09-01

    Object recognition research is typically conducted using 2D stimuli in lieu of 3D objects. This study investigated the amount and complexity of knowledge gained from 2D stimuli in adult chimpanzees (Pan troglodytes) and young children (aged 3 and 4 years) using a titrated series of cross-dimensional search tasks. Results indicate that 3-year-old children utilize a response rule guided by local features to solve cross-dimensional tasks. Four-year-old toddlers and adult chimpanzees use information about object form and compositional structure from a 2D image to guide their search in three dimensions. Findings have specific implications to research conducted in object recognition/perception and broad relevance to all areas of research and daily living that incorporate 2D displays. PMID:18801134

  13. Taking Stands for Social Justice

    ERIC Educational Resources Information Center

    Lindley, Lorinda; Rios, Francisco

    2004-01-01

    In this paper the authors describe efforts to help students take a stand for social justice in the College of Education at one predominantly White institution in the western Rocky Mountain region. The authors outline the theoretical frameworks that inform this work and the context of our work. The focus is on specific pedagogical strategies used…

  14. Investigation of postural hypotension due to static prolonged standing in female workers.

    PubMed

    Kabe, Isamu; Tsuruoka, Hiroko; Tokujitani, Yoko; Endo, Yuichi; Furusawa, Mami; Takebayashi, Toru

    2007-07-01

    The "Just-in-Time system" improves productivity and efficiency through cost reduction while it makes workers work in a standing posture. The aim of this study was to investigate the prevalence of postural hypotension in females during prolonged standing work, and to discuss preventive methods. Twelve female static standing workers (mean age+/-standard deviation; 32+/-14 yr old), 6 male static standing workers (30+/-4 yr old), 10 female walking workers (27+/-7 yr old) and 9 female desk workers (31+/-5 yr old) in a certain telecommunications equipment manufacturing factory agreed to participate in this study. All participants received an interview with an occupational physician, and performed the standing up test before working and ambulatory blood pressure monitoring (ABPM) while working. Although the blood pressure of the standing up test did not differ among the groups, mean pulse rates on standing up significantly increased in every group. Hypotension rates in the female standing workers' group by ABPM were 9 persons of 12 participants (75%) for systolic blood pressure (SBP), and were 11 persons of 12 participants (92%) for diastolic blood pressure (DBP). There were significantly higher than those in the female desk workers' group, none of 9 participants (0%) for SBP and 2 of 9 participants (22%) for DBP. The hypotension rates both male standing and female walking worker groups did not differ. Because all 8 workers who were found to have postural hypotension by the standing up test had decreased SBP and/or DBP by ABPM, it is suggested that persons at high risk of postural hypotension during standing work could be screened by the standing up test. The mechanism of postural hypotension may be a decrease of venous return due to leg swelling, and neurocardiogenic or vasovagal response. Preventing the congestion of the lower limbs by walking, managing standing time and wearing elastic hose to keep the amount of the venous return could prevent postural hypotension

  15. SSC Test Operations Contract Overview

    NASA Technical Reports Server (NTRS)

    Kleim, Kerry D.

    2010-01-01

    This slide presentation reviews the Test Operations Contract at the Stennis Space Center (SSC). There are views of the test stands layouts, and closer views of the test stands. There are descriptions of the test stand capabilities, some of the other test complexes, the Cryogenic propellant storage facility, the High Pressure Industrial Water (HPIW) facility, and Fluid Component Processing Facility (FCPF).

  16. A constant area monolayer method to assess optimal lipid packing for lipolysis tested with several secreted phospholipase A2.

    PubMed

    Yunes Quartino, Pablo J; Portela, Madelón; Lima, Analía; Durán, Rosario; Lomonte, Bruno; Fidelio, Gerardo Daniel

    2015-10-01

    We present an analysis of lipid monolayer hydrolysis at a constant area to assess the optimal lateral surface pressure value (Πopt) and thus, the surface packing density of the lipid, at which the activity of a given lipolytic enzyme is maximal. This isochoric method consists of a measurement of the decrease down to zero of the Πopt of phospholipid substrate monolayer due to continuous hydrolysis using only one reaction compartment. We performed the comparison of both approaches using several commercially available and literature-evaluated sPLA2s. Also, we characterized for the first time the profile of hydrolysis of DLPC monolayers catalyzed by a sPLA2 from Streptomyces violaceoruber and isoenzymes purified from Bothrops diporus venom. One of these viper venom enzymes is a new isoenzyme, partially sequenced by a mass spectrometry approach. We also included the basic myotoxin sPLA2-III from Bothrops asper. Results obtained with the isochoric method and the standard isobaric one produced quite similar values of Πopt, validating the proposal. In addition, we propose a new classification parameter, a lipolytic ratio of hydrolysis at two lateral pressures, 20 mN·m(-1) and 10 mN·m(-1), termed here as LR20/10 index. This index differentiates quite well "high surface pressure" from "low surface pressure" sPLA2s and, by extension; it can be used as a functional criterion for the quality of a certain enzyme. Also, this index could be added to the grouping systematic criteria for the superfamily proposed for phospholipase A2. PMID:26051123

  17. Thrust Stand for Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.; Dehoyos, Amado; Spaun, Benjamin

    2006-01-01

    An electric propulsion thrust stand capable of supporting testing of thrusters having a total mass of up to 125 kg and producing thrust levels between 100 microN to 1 N has been developed and tested. The design features a conventional hanging pendulum arm attached to a balance mechanism that converts horizontal deflections produced by the operating thruster into amplified vertical motion of a secondary arm. The level of amplification is changed through adjustment of the location of one of the pivot points linking the system. Response of the system depends on the relative magnitudes of the restoring moments applied by the displaced thruster mass and the twisting torsional pivots connecting the members of the balance mechanism. Displacement is measured using a non-contact, optical linear gap displacement transducer and balance oscillatory motion is attenuated using a passive, eddy-current damper. The thrust stand employs an automated leveling and thermal control system. Pools of liquid gallium are used to deliver power to the thruster without using solid wire connections, which can exert undesirable time-varying forces on the balance. These systems serve to eliminate sources of zero-drift that can occur as the stand thermally or mechanically shifts during the course of an experiment. An in-situ calibration rig allows for steady-state calibration before, during and after thruster operation. Thrust measurements were carried out on a cylindrical Hall thruster that produces mN-level thrust. The measurements were very repeatable, producing results that compare favorably with previously published performance data, but with considerably smaller uncertainty.

  18. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14

    well as the tradeoff between steady state and transient solutions. Solutions are compared for two commercial CFD codes, FLUENT and STAR-CCM+. The results can be used to provide input to the CFD Best Practices for this application. Following study results for the 2-D test problem, a comparison of simulation results is provided for a high Rayleigh number experiment with large annular gap. Because the geometry of this validation is significantly different from the neutron shield, and due to the critical nature of this application, the argument is made for new experiments at representative scales

  19. Free-standing superconductive articles

    SciTech Connect

    Wu, X.D.; Muenchausen, R.E.

    1991-12-31

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer, the ceramic superconductive material layer and the protective material layer, removing the protective material layer from the composite structure whereby a substrate-free, free-standing ceramic superconductive film remains.

  20. Gender-based differences in the cardiovascular response to standing

    NASA Technical Reports Server (NTRS)

    Gotshall, Robert W.; Tsai, Pai-Feng; Frey, Mary A. B.

    1991-01-01

    The cardiovascular responses of men and women to the stand test were compared by measuring respective values for heart rate, blood pressure, stroke volume, cardiac output, and total peripheral resistance during a 5-min supine and a 5-min standing test in ten subjects of each gender. It was found that, while the male and female subjects had similar heart rate values, all other responses exhibited greater changes in men than in women. While differences in the height of the subjects did not account for differences in cardiovascular responses, no mechanism responsible for these differences could be identified.