Science.gov

Sample records for a-570-929 small diameter

  1. Small diameter carbon nanopipettes

    NASA Astrophysics Data System (ADS)

    Singhal, Riju; Bhattacharyya, Sayan; Orynbayeva, Zulfiya; Vitol, Elina; Friedman, Gary; Gogotsi, Yury

    2010-01-01

    Nanoscale multifunctional carbon probes facilitate cellular studies due to their small size, which makes it possible to interrogate organelles within living cells in a minimally invasive fashion. However, connecting nanotubes to macroscopic devices and constructing an integrated system for the purpose of fluid and electrical signal transfer is challenging, as is often the case with nanoscale components. We describe a non-catalytic chemical vapor deposition based method for batch fabrication of integrated multifunctional carbon nanopipettes (CNPs) with tip diameters much smaller (10-30 nm) than previously reported (200 nm and above) and approaching those observed for multiwalled carbon nanotubes. This eliminates the need for complicated attachment/assembly of nanotubes into nanofluidic devices. Variable tip geometries and structures were obtained by controlled deposition of carbon inside and outside quartz pipettes. We have shown that the capillary length and gas flow rate have a marked effect on the carbon deposition. This gives us a flexible protocol, useful for growing carbon layers of different thicknesses at selective locations on a glass pipette to yield a large variety of cellular probes in bulk quantities. The CNPs possess an open channel for fluid transfer with the carbon deposited inside at 875 °C behaving like an amorphous semiconductor. Vacuum annealing of the CNP tips at temperatures up to 2000 °C yields graphitic carbon structures with an increase in conductivity of two orders of magnitude. Penetration of the integrated carbon nanoprobes into cells was shown to produce minimal Ca2+ signals, fast recovery of basal Ca2+ levels and no adverse activation of the cellular metabolism during interrogation times as long as 0.5-1 h.

  2. MWD tool for deep, small diameter boreholes

    SciTech Connect

    Buytaert, J.P.R.; Duckworth, A.

    1992-03-17

    This patent describes an apparatus for measuring a drilling parameters while drilling a borehole in an earth formation, wherein the borehole includes a small diameter deep borehole portion and a large diameter upper borehole portion. It includes small diameter drillstring means for drilling the deep borehole portion; sensor means, disposed within the small diameter drillstring means, for measuring a drilling parameter characteristic of the deep portion of the borehole while drilling the deep portion of the borehole and for providing sensor output signals indicative of the measured parameter; an upper drillstring portion extending between the surface of the formation and the small diameter drillstring means, the upper drillstring portion including a large diameter drillstring portion; data transmission means disposed within the large diameter drillstring portion and responsive to the sensor output.

  3. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  4. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  5. Coke from small-diameter tubes analyzed

    SciTech Connect

    Albright, L.F.

    1988-08-29

    The mechanism for coke deposit formation and the nature of the coke itself can vary with the design of the ethylene furnace tube bank. In this article, coke deposits from furnaces with small-diameter pyrolysis tubes are examined. The samples were taken from four furnaces of identical design (Plant B). As in both the first and second installments of the series, the coke deposits were examined using a scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDAX). The deposits from the small-diameter tubes are compared with the coke deposits from the furnace discussed in earlier articles. Analysis of the coke in both sets of samples are then used to offer recommendations for improved decoking procedures, operating procedures, better feed selection, and better selection of the metallurgy used in furnace tubes, to extend the operating time of the furnace tubes by reducing the amount and type of coke build up.

  6. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, David E.; Petrini, Richard R.; Carter, Gary W.

    1981-01-01

    An improved rod optic system for inspecting small diameter, deep bores. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90.degree. to minimize optical distortion in examining the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable of examining 1/16 inch diameter and up to 4 inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and right angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  7. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, D.E.; Petrini, R.R.; Carter, G.W.

    An improved rod optic system for inspecting small diameter, deep bores is described. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90/sup 0/ to minimize optical distortion in examing the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable if examing 1/16 inch diameter and up to 4-inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and righ angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  8. Tissue engineered small-diameter vascular grafts.

    PubMed

    Schmedlen, Rachael H; Elbjeirami, Wafa M; Gobin, Andrea S; West, Jennifer L

    2003-10-01

    Arterial occlusive disease remains the leading cause of death in western countries and often requires vascular reconstructive surgery. The limited supply of suitable small-diameter vascular grafts has led to the development of tissue engineered blood vessel substitutes. Many different approaches have been examined, including natural scaffolds containing one or more ECM proteins and degradable polymeric scaffolds. For optimal graft development, many efforts have modified the culture environment to enhance ECM synthesis and organization using bioreactors under physiologic conditions and biochemical supplements. In the past couple of decades, a great deal of progress on TEVGs has been made. Many challenges remain and are being addressed, particularly with regard to the prevention of thrombosis and the improvement of graft mechanical properties. To develop a patent TEVG that grossly resembles native tissue, required culture times in most studies exceed 8 weeks. Even with further advances in the field, TEVGs will likely not be used in emergency situations because of the time necessary to allow for cell expansion, ECM production and organization, and attainment of desired mechanical strength. Furthermore, TEVGs will probably require the use of autologous tissue to prevent an immunogenic response, unless advances in immune acceptance render allogenic and xenogenic tissue use feasible. TEVGs have not yet been subjected to clinical trials, which will determine the efficacy of such grafts in the long term. Finally, off-the-shelf availability and cost will become the biggest hurdles in the development of a feasible TEVG product. Although many obstacles exist in the effort to develop a small-diameter TEVG, the potential benefits of such an achievement are exciting. In the near future, a nonthrombogenic TEVG with sufficient mechanical strength may be developed for clinical trials. Such a graft will have the minimum characteristics of biological tissue necessary to remain patent

  9. Small diameter symmetric networks from linear groups

    NASA Technical Reports Server (NTRS)

    Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.

    1992-01-01

    In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.

  10. Fire protection covering for small diameter missiles

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Sawko, P. M. (Inventor)

    1979-01-01

    Flexible intumescent protection sheeting of unusually uniform thickness were prepared from epoxy-polysulfide compositions, containing microfibers and the ammonium salt of 1,4-nitroaniline-2-sulfonic acid, as disclosed in U.S. Pat. No. 3,663,464, except that an ammonium salt particle size in the order of 5 to 8 microns and a fiber size of about 1/128th inch in length and 3 to 5 microns in diameter were found critical to obtain the required density of 1.46 to 1.50 g/cc. The insulation sheeting was prepared by a continuous process involving vacuum mixing, calendering, and curing under very strict conditions which depend to some extent upon the thickness of the sheet produced.

  11. Extrusion of small-diameter, thin-wall tungsten tubing

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Gyorgak, C. A.

    1967-01-01

    Small-diameter, thin-wall seamless tubing of tungsten has been fabricated in lengths of up to 10 feet by hot extrusion over a floating mandrel. Extrusion of 0.50-inch-diameter tubing over 0.4-inch-diameter mandrels was accomplished at temperatures ranging from 3000 degrees to 4000 degrees F.

  12. SMALL DIAMETER GRAVITY SEWERS: AN ALTERNATIVE FOR UNSEWERED COMMUNITIES

    EPA Science Inventory

    The most recently introduced wastewater collection alternative for small unsewered communities is septic tank effluent drains or small diameter gravity sewers (SDGS). Unlike conventional sewers, SDGS only collect settled wastewater. Grit, grease and other troublesome solids which...

  13. SMALL DIAMETER STENCILING, ROLLING OVER STAMP. United States Pipe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SMALL DIAMETER STENCILING, ROLLING OVER STAMP. - United States Pipe & Foundry Company Plant, Coating, Painting, Lining & Packaging Building, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  14. SMALL DIAMETER CEMENT LINING FROM STAIRWAY. United States Pipe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SMALL DIAMETER CEMENT LINING FROM STAIRWAY. - United States Pipe & Foundry Company Plant, Coating, Painting, Lining & Packaging Building, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  15. SMALL DIAMETER PRECEMENT LINING FROM CATWALK ABOVE. United States ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SMALL DIAMETER PRE-CEMENT LINING FROM CATWALK ABOVE. - United States Pipe & Foundry Company Plant, Coating, Painting, Lining & Packaging Building, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  16. SMALL DIAMETER PAINTING FROM CATWALK ABOVE. United States Pipe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SMALL DIAMETER PAINTING FROM CATWALK ABOVE. - United States Pipe & Foundry Company Plant, Coating, Painting, Lining & Packaging Building, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  17. Eddy sensors for small diameter stainless steel tubes.

    SciTech Connect

    Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.

    2011-08-01

    The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

  18. Downhole pumps for water sampling in small diameter wells

    USGS Publications Warehouse

    Koopman, F. C.

    1979-01-01

    The relatively high cost and difficulty in locating a source of pumps for use in obtaining ground-water samples from small-diameter wells has demonstrated a need for this report. Criteria for selection of a pump and pumping equipment to meet specific requirements has been tabulated to assist field personnel in making a selection from commercial sources. (Kosco-USGS)

  19. Nanofiber alignment of a small diameter elastic electrospun scaffold

    NASA Astrophysics Data System (ADS)

    Patel, Jignesh

    Cardiovascular disease is the leading cause of death in western countries with coronary heart disease making up 50% of these deaths. As a treatment option, tissue engineered grafts have great potential. Elastic scaffolds that mimic arterial extracellular matrix (ECM) may hold the key to creating viable vascular grafts. Electrospinning is a widely used scaffold fabrication technique to engineer tubular scaffolds. In this study, we investigated how the collector rotation speed altered the nanofiber alignment which may improve mechanical characteristics making the scaffold more suitable for arterial grafts. The scaffold was fabricated from a blend of PCL/Elastin. 2D Fast Fourier Transform (FFT) image processing tool and MatLab were used to quantitatively analyze nanofiber orientation at different collector speeds (13500 to 15500 rpm). Both Image J and MatLab showed graphical peaks indicating predominant fiber orientation angles. A collector speed of 15000 rpm was found to produce the best nanofiber alignment with narrow peaks at 90 and 270 degrees, and a relative amplitude of 200. This indicates a narrow distribution of circumferentially aligned nanofibers. Collector speeds below and above 15000 rpm caused a decrease in fiber alignment with a broader orientation distribution. Uniformity of fiber diameter was also measured. Of 600 measures from the 15000 rpm scaffolds, the fiber diameter range from 500 nm to 899 nm was most prevalent. This diameter range was slightly larger than native ECM which ranges from 50 nm to 500 nm. The second most prevalent diameter range had an average of 404 nm which is within the diameter range of collagen. This study concluded that with proper electrospinning technique and collector speed, it is possible to fabricate highly aligned small diameter elastic scaffolds. Image J 2D FFT results confirmed MatLab findings for the analyses of circumferentially aligned nanofibers. In addition, MatLab analyses simplified the FFT orientation data

  20. Development of Small Diameter Nanofiber Tissue Engineered Arterial Grafts

    PubMed Central

    Tara, Shuhei; Rocco, Kevin A.; Bagi, Paul S.; Yi, Tai; Udelsman, Brooks; Zhuang, Zhen W.; Cleary, Muriel; Iwakiri, Yasuko; Breuer, Christopher K.; Shinoka, Toshiharu

    2015-01-01

    The surgical repair of heart and vascular disease often requires implanting synthetic grafts. While synthetic grafts have been successfully used for medium-to-large sized arteries, applications for small diameter arteries (<6 mm) is limited due to high rates of occlusion by thrombosis. Our objective was to develop a tissue engineered vascular graft (TEVG) for small diameter arteries. TEVGs composed of polylactic acid nanofibers with inner luminal diameter between 0.5 and 0.6 mm were surgically implanted as infra-renal aortic interposition conduits in 25 female C17SCID/bg mice. Twelve mice were given sham operations. Survival of mice with TEVG grafts was 91.6% at 12 months post-implantation (sham group: 83.3%). No instances of graft stenosis or aneurysmal dilatation were observed over 12 months post-implantation, assessed by Doppler ultrasound and microCT. Histologic analysis of explanted TEVG grafts showed presence of CD31-positive endothelial monolayer and F4/80-positive macrophages after 4, 8, and 12 months in vivo. Cells positive for α-smooth muscle actin were observed within TEVG, demonstrating presence of smooth muscle cells (SMCs). Neo-extracellular matrix consisting mostly of collagen types I and III were observed at 12 months post-implantation. PCR analysis supports histological observations. TEVG group showed significant increases in expressions of SMC marker, collagen-I and III, matrix metalloproteinases-2 and 9, and itgam (a macrophage marker), when compared to sham group. Overall, patency rates were excellent at 12 months after implantation, as structural integrity of these TEVG. Tissue analysis also demonstrated vessel remodeling by autologous cell. PMID:25830942

  1. Polymer scaffolds for small-diameter vascular tissue engineering.

    PubMed

    Ma, Haiyun; Hu, Jiang; Ma, Peter X

    2010-09-01

    To better engineer small-diameter blood vessels, a few types of novel scaffolds were fabricated from biodegradable poly(L-lactic acid) (PLLA) by means of thermally induced phase separation (TIPS) techniques. By utilizing the differences in thermal conductivities of the mold materials, the scaffolds with oriented gradient microtubular structures in axial or radial direction were created using benzene as the solvent. The porosity, tubular size, and the orientation direction of the microtubules can be controlled by polymer concentration, TIPS temperature, and materials of different thermal conductivities. The gradient microtubular structure was intended to facilitate cell seeding and mass transfer for cell growth and function. We also developed nanofibrous scaffolds with oriented and interconnected micro-tubular pore network by a one-step TIPS method using benzene/tetrahydrofuran mixture as the solvent without using porogen materials. The structural features of such scaffolds can be conveniently adjusted by varying the solvent ratio, phase separation temperature and polymer concentration to mimic the nanofibrous feature of extracellular matrix. These scaffolds were fabricated for the tissue engineering of small-diameter blood vessels by utilizing their advantageous structural features to facilitate blood vessel regeneration. PMID:24501590

  2. Polymer scaffolds for small-diameter vascular tissue engineering

    PubMed Central

    Ma, Haiyun; Hu, Jiang; Ma, Peter X

    2014-01-01

    To better engineer small-diameter blood vessels, a few types of novel scaffolds were fabricated from biodegradable poly(L-lactic acid) (PLLA) by means of thermally induced phase separation (TIPS) techniques. By utilizing the differences in thermal conductivities of the mold materials, the scaffolds with oriented gradient microtubular structures in axial or radial direction were created using benzene as the solvent. The porosity, tubular size, and the orientation direction of the microtubules can be controlled by polymer concentration, TIPS temperature, and materials of different thermal conductivities. The gradient microtubular structure was intended to facilitate cell seeding and mass transfer for cell growth and function. We also developed nanofibrous scaffolds with oriented and interconnected micro-tubular pore network by a one-step TIPS method using benzene/tetrahydrofuran mixture as the solvent without using porogen materials. The structural features of such scaffolds can be conveniently adjusted by varying the solvent ratio, phase separation temperature and polymer concentration to mimic the nanofibrous feature of extracellular matrix. These scaffolds were fabricated for the tissue engineering of small-diameter blood vessels by utilizing their advantageous structural features to facilitate blood vessel regeneration. PMID:24501590

  3. Decellularized ovine arteries as small-diameter vascular grafts.

    PubMed

    Mancuso, L; Gualerzi, A; Boschetti, F; Loy, F; Cao, G

    2014-08-01

    Atherosclerosis and its complications still represent the leading cause of death in the developed countries. While autologous blood vessels may be regarded as the best solution for peripheral and coronary bypass, they are unavailable in most patients. Even though tissue engineering techniques are often applied to the development of small-diameter vascular grafts, limiting factors of this approach are represented by the lack of essential extracellular matrix proteins and/or poor biomechanical properties of the scaffolds used. Along these lines, the aim of this study was to develop a decellularization protocol for ovine carotids to be used as suitable small-diameter vascular grafts. Samples were treated either with sodium dodecyl sulphate (SDS) or with Trypsin and Triton X-100; a final nuclease digestion was performed for both protocols. Morphological analyses demonstrate complete removal of nuclei and cellular components in treated vessels, also confirmed by significant reduction in wall thickness and DNA content. Essential extracellular matrix proteins such as collagen, elastin, and fibronectin are well preserved after decellularization. From a mechanical point of view, Trypsin and Triton X-100 treated arteries show elastic modules and compliance comparable to native carotids, whereas the use of SDS makes samples stiffer, with a significant decrease in the compliance mean value and an increase in longitudinal and circumferential Young's modules. It is demonstrated that the treatment where Trypsin and Triton X-100 are combined guarantees complete decellularization of carotids, with no significant alteration of biomechanical and structural properties, thus preserving a suitable environment for adhesion, proliferation, and migration of cells. PMID:25050540

  4. Attached cavitation at a small diameter ultrasonic horn tip

    NASA Astrophysics Data System (ADS)

    Žnidarčič, Anton; Mettin, Robert; Cairós, Carlos; Dular, Matevž

    2014-02-01

    Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids, for instance, for cell disruption or sonochemical reactions. They are operated typically in the frequency range up to about 50 kHz and have tip diameters from some mm to several cm. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e., below the acoustic driving frequency. Here, we present a systematic study of the cavitation dynamics in water at a 20 kHz horn tip of 3 mm diameter. The system was investigated by high-speed imaging with simultaneous recording of the acoustic emissions. Measurements were performed under variation of acoustic power, air saturation, viscosity, surface tension, and temperature of the liquid. Our findings show that the liquid properties play no significant role in the dynamics of the attached cavitation at the small ultrasonic horn. Also the variation of the experimental geometry, within a certain range, did not change the dynamics. We believe that the main two reasons for the peculiar dynamics of cavitation on a small ultrasonic horn are the higher energy density on a small tip and the inability of the big tip to "wash" away the gaseous bubbles. Calculation of the somewhat adapted Strouhal number revealed that, similar to the hydrodynamic cavitation, values which are relatively low characterize slow cavitation structure dynamics. In cases where the cavitation follows the driving frequency this value lies much higher - probably at Str > 20. In the spirit to distinguish the observed phenomenon with other cavitation dynamics at ultrasonic transducer surfaces, we suggest to term the observed phenomenon of attached cavities partly covering the full horn

  5. A Small Diameter Rosette for Sampling Ice Covered Waters

    NASA Astrophysics Data System (ADS)

    Chayes, D. N.; Smethie, W. M.; Perry, R. S.; Schlosser, P.; Friedrich, R.

    2011-12-01

    A gas tight, small diameter, lightweight rosette, supporting equipment and an effective operational protocol has been developed for aircraft supported sampling of sea water across the Lincoln Sea. The system incorporates a commercial off the shelf CTD electronics (SBE19+ sensor package and SBE33 deck unit) to provide real-time measurement data at the surface. We designed and developed modular water sample units and custom electronics to decode the bottle firing commands and close the sample bottles. For a typical station, we land a ski-equipped deHaviland Twin Otter (DHC-6) aircraft on a suitable piece of sea-ice, drill a 12" diameter hole through the ice next to the cargo door and set up a tent to provide a reasonable working environment over the hole. A small winch with 0.1" diameter single conductor cable is mounted in the aircraft by the cargo door and a tripod supports a sheave above the hole. The CTD module is connected to the end of the wire and the water sampling modules are stacked on top as the system is lowered. For most stations, three sample modules are used to provide 12 four (4) liter sample bottles. Data collected during the down-cast is used to formulate the sampling plan which is executed on the up-cast. The system is powered by a 3,700 Watt, 120VAC gasoline generator. After collection, the sample modules are stored in passively temperature stabilized ice chests during the flight back to the logistics facility at Alert where a broad range of samples are drawn and stored for future analysis. The transport mechanism has a good track record of maintaining water samples within about two degrees of the original collection temperature which minimizes out-gassing. The system has been successfully deployed during a field program each spring starting in 2004 along a transect between the north end of Ellesmere Island (Alert, Nunavut) and the North Pole. During the eight field programs we have taken 48 stations with twelve bottles at most stations (eight at

  6. Limitations on the Optical Tunability of Small Diameter Gold Nanoshells

    PubMed Central

    Rasch, Michael R.; Sokolov, Konstantin V.; Korgel, Brian A.

    2009-01-01

    Gold (Au) nanoshells were grown on silica nanoparticles with differing average diameters, ranging from 30 nm to 120 nm. Au nanoshells were also formed on silica spheres encapsulating 5 nm diameter magnetic iron oxide nanocrystals. The optical absorbance spectra of these Au nanoshells are reported. The plasmon resonance wavelengths of the smaller diameter nanoshells were significantly less tunable than those of the larger diameter nanoshells. This is due to a reduced range of accessible core-shell ratio—the geometric factor that determines the plasmon peak position—as the silica core diameter shrinks. The smaller diameter nanoshells were also found to be highly prone to aggregation, which broadens the plasmon absorption peak. Model calculations of dispersion stability as a function of silica core diameter reveal that smaller diameter Au shells exhibit more aggregation because of the size-dependence of the electrostatic double-layer potential. PMID:19711913

  7. High reliability bond program using small diameter aluminum wire

    NASA Technical Reports Server (NTRS)

    Macha, M.; Thiel, R. A.

    1975-01-01

    The program was undertaken to characterize the performance of small diameter aluminum wire ultrasonically bonded to conductors commonly encountered in hybrid assemblies, and to recommend guidelines for improving this performance. Wire, 25.4, 38.1 and 50.8 um (1, 1.5 and 2 mil), was used with bonding metallization consisting of thick film gold, thin film gold and aluminum as well as conventional aluminum pads on semiconductor chips. The chief tool for evaluating the performance was the double bond pull test in conjunction with a 72 hour - 150 C heat soak and -65 C to +150 C thermal cycling. In practice the thermal cycling was found to have relatively little effect compared to the heat soak. Pull strength will decrease after heat soak as a result of annealing of the aluminum wire; when bonded to thick film gold, the pull strength decreased by about 50% (weakening of the bond interface was the major cause of the reduction). Bonds to thin film gold lost about 30 - 40% of their initial pull strenth; weakening of the wire itself at the bond heel was the predominant cause. Bonds to aluminum substrate metallization lost only about 22%. Bonds between thick and thin film gold substrate metallization and semiconductor chips substantiated the previous conclusions but also showed that in about 20 to 25% of the cases, bond interface failure occurred at the semiconductor chip.

  8. Modular Small Diameter Vascular Grafts with Bioactive Functionalities

    PubMed Central

    Neufurth, Meik; Wang, Xiaohong; Tolba, Emad; Dorweiler, Bernhard; Schröder, Heinz C.; Link, Thorben; Diehl-Seifert, Bärbel; Müller, Werner E. G.

    2015-01-01

    We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca2+ through formation of Ca2+ bridges between the polyanions, alginate, N,O-CMC, and polyP (alginate-Ca2+-N,O-CMC-polyP). The bTEBV are formed by pressing the hydrogel through an extruder into a hardening solution, containing Ca2+. In this universal scaffold of the bTEBV biomaterial, polycations such as poly(l-Lys), poly(d-Lys) or a His/Gly-tagged RGD peptide (three RGD units) were incorporated, which promote the adhesion of endothelial cells to the vessel surface. The mechanical properties of the biopolymer material (alginate-Ca2+-N,O-CMC-polyP-silica) revealed a hardness (elastic modulus) of 475 kPa even after a short incubation period in CaCl2 solution. The material of the artificial vascular grafts (bTEBVs with an outer size 6 mm and 1.8 mm, and an inner diameter 4 mm and 0.8 mm, respectively) turned out to be durable in 4-week pulsatile flow experiments at an alternating pressure between 25 and 100 mbar (18.7 and 75.0 mm Hg). The burst pressure of the larger (smaller) vessels was 850 mbar (145 mbar). Incorporation of polycationic poly(l-Lys), poly(d-Lys), and especially the His/Gly-tagged RGD peptide, markedly increased the adhesion of human, umbilical vein/vascular endothelial cells, EA.HY926 cells, to the surface of the hydrogel. No significant effect of the polyP samples on the clotting of human plasma is measured. We propose that the metabolically degradable

  9. AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES

    SciTech Connect

    PETERSEN SW; EDRINGTON RS; MAHOOD RO; VANMIDDLESWORTH PE

    2011-01-14

    Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining and losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.

  10. 77 FR 13284 - Small Diameter Graphite Electrodes From the People's Republic of China: Preliminary Results and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... Antidumping Duty Administrative Review, 76 FR 67411 (November 1, 2011), and Small Diameter Graphite Electrodes... Final Determination, 74 FR at 2054, and Small Diameter Graphite Electrodes from the People's Republic of... International Trade Administration Small Diameter Graphite Electrodes From the People's Republic of...

  11. Thermal resistance of ultra-small-diameter disk microlasers

    SciTech Connect

    Zhukov, A. E. Kryzhanovskaya, N. V.; Maximov, M. V.; Lipovskii, A. A.; Savelyev, A. V.; Shostak, I. I.; Moiseev, E. I.; Kudashova, Yu. V.; Kulagina, M. M.; Troshkov, S. I.

    2015-05-15

    The thermal resistance of AlGaAs/GaAs microlasers of the suspended-disk type with a diameter of 1.7–4 μm and InAs/InGaAs quantum dots in the active region is inversely proportional to the squared diameter of the microdisk. The proportionality factor is 3.2 × 10{sup −3} (K cm{sup 2})/W, and the thermal resistance is 120–20°C/mW.

  12. Nuclear criticality safety calculational analysis for small-diameter containers

    SciTech Connect

    LeTellier, M.S.; Smallwood, D.J.; Henkel, J.A.

    1995-11-01

    This report documents calculations performed to establish a technical basis for the nuclear criticality safety of favorable geometry containers, sometimes referred to as 5-inch containers, in use at the Portsmouth Gaseous Diffusion Plant. A list of containers currently used in the plant is shown in Table 1.0-1. These containers are currently used throughout the plant with no mass limits. The use of containers with geometries or material types other than those addressed in this evaluation must be bounded by this analysis or have an additional analysis performed. The following five basic container geometries were modeled and bound all container geometries in Table 1.0-1: (1) 4.32-inch-diameter by 50-inch-high polyethylene bottle; (2) 5.0-inch-diameter by 24-inch-high polyethylene bottle; (3) 5.25-inch-diameter by 24-inch-high steel can ({open_quotes}F-can{close_quotes}); (4) 5.25-inch-diameter by 15-inch-high steel can ({open_quotes}Z-can{close_quotes}); and (5) 5.0-inch-diameter by 9-inch-high polybottle ({open_quotes}CO-4{close_quotes}). Each container type is evaluated using five basic reflection and interaction models that include single containers and multiple containers in normal and in credible abnormal conditions. The uranium materials evaluated are UO{sub 2}F{sub 2}+H{sub 2}O and UF{sub 4}+oil materials at 100% and 10% enrichments and U{sub 3}O{sub 8}, and H{sub 2}O at 100% enrichment. The design basis safe criticality limit for the Portsmouth facility is k{sub eff} + 2{sigma} < 0.95. The KENO study results may be used as the basis for evaluating general use of these containers in the plant.

  13. Mechanical analysis of conventional and small diameter conical implant abutments

    PubMed Central

    Moris, Izabela Cristina Maurício; Faria, Adriana Cláudia Lapria; de Mattos, Maria da Gloria Chiarello; Ribeiro, Ricardo Faria

    2012-01-01

    PURPOSE The aim of the present study was to evaluate if a smaller morse taper abutment has a negative effect on the fracture resistance of implant-abutment connections under oblique compressive loads compared to a conventional abutment. MATERIALS AND METHODS Twenty morse taper conventional abutments (4.8 mm diameter) and smaller abutments (3.8 mm diameter) were tightened (20 Ncm) to their respective implants (3.5 × 11 mm) and after a 10 minute interval, implant/abutment assemblies were subjected to static compressive test, performed in a universal test machine with 1 mm/min displacement, at 45° inclination. The maximum deformation force was determined. Data were statistically analyzed by student t test. RESULTS Maximum deformation force of 4.8 mm and 3.8 mm abutments was approximately 95.33 kgf and 95.25 kgf, respectively, but no fractures were noted after mechanical test. Statistical analysis demonstrated that the evaluated abutments were statistically similar (P=.230). CONCLUSION Abutment measuring 3.8 mm in diameter (reduced) presented mechanical properties similar to 4.8 mm (conventional) abutments, enabling its clinical use as indicated. PMID:22977724

  14. Hoop tensile strength testing of small diameter ceramic particles

    NASA Astrophysics Data System (ADS)

    Wereszczak, A. A.; Jadaan, O. M.; Lin, H.-T.; Champoux, G. J.; Ryan, D. P.

    2007-03-01

    A method to measure hoop tensile strength of 1-mm-diameter brittle ceramic spheres was demonstrated through the use of a 'C-sphere' flexure strength specimen. This innovative specimen geometry was chosen because a simple, monotonically increasing uniaxial compressive force produces a hoop tensile stress at the C-sphere's outer surface that ultimately initiates fracture. This enables strength quantification and strength-limiting-flaw identification of the sphere itself. Such strength information is relevant to design optimization and durability assessments of ceramic fuel particles and breeder/multiplier pebbles for fusion when particle surfaces are subjected to tensile stresses during their manufacturing or service.

  15. Structure Optimization and Evaluation of Small Adjustable Diameter Grinding Wheel

    NASA Astrophysics Data System (ADS)

    Yao, Yiyong; Li, Yuanyuan; Zhao, Liping; Zhao, Hu

    Focus on the uneven deformation of conventional adjustable diameter grinding wheel (ADGW), a structure optimization and evaluation method of ADGW was proposed in this paper. Firstly, the evaluation index system and structure optimization framework of ADGW was established to obtain the optimization objective of ADGW. Then a simulated experiment was provided. The flexible units of ADGW with different structures and geometries were selected to analyze the unevenness of deformation. The comparison results showed that the proposed method can improve the ADGW structures effectively and provide a technical approach for evaluating the structure design of ADGW.

  16. Evaluation of small diameter coreholes for reservoir information

    SciTech Connect

    Petty, Susan; Adair, Richard G.; Livesay, Bill

    1992-01-01

    Geothermal exploration has been highly successful to date in locating targets for drilling. However, the requirements for an economically successful geothermal well are both high flow rate and high temperature. Most geophysical and geochemical exploration methods have not been highly accurate in predicting the depth and actual temperature of a reservoir, nor have they been able to locate high permeability zones. The result is that most geothermal exploration is conducted by drilling core holes to better understand the heat flow in an area followed by drilling of production diameter exploration wells which can be flow tested to ascertain the permeability. The goal of any exploration program is to determine reservoir economics. The cost of wells makes up between one quarter and one half the total cost of producing geothermal power. The number, design, depth of wells and placement of injectors are important to the optimal exploitation of the reservoir. Although early efforts at development have focused on rapid plant construction to begin cash flow, the history of producing fields emphasizes that understanding reservoirs can reduce the risk of rapid temperature or pressure declines and increase the success of step out drilling following initial exploitation. The high cost of large diameter production wells makes the collecting of exploration data on the reservoir through some less expensive method desirable. Geothermal developers are still drilling resources with surface expression, hot springs and surface mappable fractures and faults. As these obvious resources are developed and as the obvious targets in productive fields are exhausted, new exploration tools are needed. One possibility is the use of deep core holes drilled for temperature gradient data to provide more reservoir information. Two methods not previously applied to geothermal reservoir assessment are suggested to augment other data obtained from coreholes.

  17. 78 FR 41369 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... on certain small diameter carbon and alloy seamless standard, line and pressure pipe (small diameter... diameter seamless pipe. The small diameter seamless pipe subject to the order is currently classifiable... small diameter seamless pipe from Romania entered, or withdrawn from warehouse, for......

  18. 77 FR 32568 - Notice of Scope Rulings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... October 22, 2010. A-570-929: Small Diameter Graphite Electrodes From the People's Republic of China Requestor: SGL Carbon LLC and Superior Graphite Co.; whether unfinished small diameter graphite electrodes... Rulings, 77 FR 9893 (February 21, 2012). This current notice covers all scope rulings...

  19. Selective control of small versus large diameter axons using infrared laser light (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lothet, Emilie H.; Shaw, Kendrick M.; Horn, Charles C.; Lu, Hui; Wang, Yves T.; Jansen, E. Duco; Chiel, Hillel J.; Jenkins, Michael W.

    2016-03-01

    Sensory information is conveyed to the central nervous system via small diameter unmyelinated fibers. In general, smaller diameter axons have slower conduction velocities. Selective control of such fibers could create new clinical treatments for chronic pain, nausea in response to chemo-therapeutic agents, or hypertension. Electrical stimulation can control axonal activity, but induced axonal current is proportional to cross-sectional area, so that large diameter fibers are affected first. Physiologically, however, synaptic inputs generally affect small diameter fibers before large diameter fibers (the size principle). A more physiological modality that first affected small diameter fibers could have fewer side effects (e.g., not recruiting motor axons). A novel mathematical analysis of the cable equation demonstrates that the minimum length along the axon for inducing block scales with the square root of axon diameter. This implies that the minimum length along an axon for inhibition will scale as the square root of axon diameter, so that lower radiant exposures of infrared light will selectively affect small diameter, slower conducting fibers before those of large diameter. This prediction was tested in identified neurons from the marine mollusk Aplysia californica. Radiant exposure to block a neuron with a slower conduction velocity (B43) was consistently lower than that needed to block a faster conduction velocity neuron (B3). Furthermore, in the vagus nerve of the musk shrew, lower radiant exposure blocked slow conducting fibers before blocking faster conducting fibers. Infrared light can selectively control smaller diameter fibers, suggesting many novel clinical treatments.

  20. A simple correction for slug tests in small-diameter wells

    USGS Publications Warehouse

    Butler, J.J., Jr.

    2002-01-01

    A simple procedure is presented for correcting hydraulic conductivity (K) estimates obtained from slug tests performed in small-diameter installations screened in highly permeable aquifers. Previously reported discrepancies between results from slug tests in small-diameter installations and those from tests in nearby larger-diameter wells are primarily a product of frictional losses within the small-diameter pipe. These frictional losses are readily incorporated into existing models for slug tests in high-K aquifers, which then serve as the basis of a straightforward procedure for correcting previously obtained K estimates. A demonstration of the proposed procedure using data from a series of slug tests performed in a controlled field setting confirms the validity of the approach. The results of this demonstration also reveal the detailed view of spatial variations in K that can be obtained using slug tests in small-diameter installations.

  1. Smart aircraft composite structures with embedded small-diameter optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Takeda, Nobuo; Minakuchi, Shu

    2012-02-01

    This talk describes the embedded optical fiber sensor systems for smart aircraft composite structures. First, a summary of the current Japanese national project on structural integrity diagnosis of aircraft composite structures is described with special emphasis on the use of embedded small-diameter optical fiber sensors including FBG sensors. Then, some examples of life-cycle monitoring of aircraft composite structures are presented using embedded small-diameter optical fiber sensors for low-cost and reliable manufacturing merits.

  2. Biomechanics and load resistance of small-diameter and mini dental implants: a review of literature.

    PubMed

    Hasan, Istabrak; Bourauel, Christoph; Mundt, Torsten; Stark, Helmut; Heinemann, Friedhelm

    2014-02-01

    In recent years, the application of small-diameter and mini dental implants to support removable and fixed prosthesis has dramatically increased. However, the success of these implants under functional biting forces and the reaction of the bone around them need to be analyzed. This review was aimed to present studies that deal with the fatigue life of small-diameter and mini dental implants under normal biting force, and their survival rate. The numerical and experimental studies concluded that an increase in the risk of bone damage or implant failure may be assumed in critical clinical situations and implants with <3 mm diameter have a risk of fracture in clinical practice. The survival rate of the small-diameter and mini dental implants over 5 years was 98.3-99.4%. PMID:24293447

  3. Implosion dynamics and x-ray generation in small-diameter wire-array Z pinches

    SciTech Connect

    Ivanov, V. V.; Sotnikov, V. I.; Kindel, J. M.; Hakel, P.; Mancini, R. C.; Astanovitskiy, A. L.; Haboub, A.; Altemara, S. D.; Shevelko, A. P.; Kazakov, E. D.; Sasorov, P. V.

    2009-05-15

    It is known from experiments that the radiated x-ray energy appears to exceed the calculated implosion kinetic energy and Spitzer resistive heating [C. Deeney et al., Phys. Rev. A 44, 6762 (1991)] but possible mechanisms of the enhanced x-ray production are still being discussed. Enhanced plasma heating in small-diameter wire arrays with decreased calculated kinetic energy was investigated, and a review of experiments with cylindrical arrays of 1-16 mm in diameter on the 1 MA Zebra generator is presented in this paper. The implosion and x-ray generation in cylindrical wire arrays with different diameters were compared to find a transition from a regime where thermalization of the kinetic energy is the prevailing heating mechanism to regimes with other dominant mechanisms of plasma heating. Loads of 3-8 mm in diameter generate the highest x-ray power at the Zebra generator. The x-ray power falls in 1-2 mm loads which can be linked to the lower efficiency of plasma heating with the lack of kinetic energy. The electron temperature and density of the pinches also depend on the array diameter. In small-diameter arrays, 1-3 mm in diameter, ablating plasma accumulates in the inner volume much faster than in loads of 12-16 mm in diameter. Correlated bubblelike implosions were observed with multiframe shadowgraphy. Investigation of energy balance provides evidence for mechanisms of nonkinetic plasma heating in Z pinches. Formation and evolution of bright spots in Z pinches were studied with a time-gated pinhole camera. A comparison of x-ray images with shadowgrams shows that implosion bubbles can initiate bright spots in the pinch. Features of the implosions in small-diameter wire arrays are discussed to identify mechanisms of energy dissipation.

  4. Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters.

    PubMed

    Xiong, Kunli; Emilsson, Gustav; Dahlin, Andreas B

    2016-06-21

    Plasmonic nanohole arrays are widely used for optical label-free molecular detection. An important factor for many applications is the diameter of the apertures. So far nanohole arrays with controllable diameters below 100 nm have not been demonstrated and it has not been systematically investigated how the diameter influences the optical properties. In this work we fine-tune the diameter in short range ordered nanohole arrays down to 50 nm. The experimental far field spectra show how the wavelength of maximum extinction remains unaffected while the transmission maximum blue shifts with smaller diameters. The near field is visualized by numerical simulations, showing a homogenous enhancement throughout the cylindrical void at the transmission maximum for diameters between 50 and 100 nm. For diameters below 50 nm plasmon excitation is no longer possible experimentally or by simulations. Further, we investigate the refractive index sensing capabilities of the smaller holes. As the diameter was reduced, the sensitivity in terms of resonance shift with bulk liquid refractive index was found to be unaltered. However, for the transmission maximum the sensitivity becomes more strongly localized to the hole interior. By directing molecular binding to the bottom of the holes we demonstrate how smaller holes enhance the sensitivity in terms of signal per molecule. A real-time detection limit well below one protein per nanohole is demonstrated. The smaller plasmonic nanoholes should be suitable for studies of molecules confined in small volumes and as mimics of biological nanopores. PMID:26867475

  5. Hyaluronic acid enhancement of expanded polytetrafluoroethylene for small diameter vascular grafts

    NASA Astrophysics Data System (ADS)

    Lewis, Nicole R.

    Cardiovascular disease is the leading cause of mortality and morbidity in the United States and other developed countries. In the United States alone, 8 million people are diagnosed with peripheral arterial disease per year and over 250,000 patients have coronary bypass surgery each year. Autologous blood vessels are the standard graft used in small diameter (<6mm) arterial bypass procedures. Synthetic small diameter grafts have had limited success. While polyethylene (Dacron) and expanded polytetrafluoroethylene (ePTFE) are the most commonly used small diameter synthetic vascular graft materials, there are significant limitations that make these materials unfavorable for use in the low blood flow conditions of the small diameter arteries. Specifically, Dacron and ePTFE grafts display failure due to early thrombosis or late intimal hyperplasia. With the shortage of tissue donors and the limited supply of autologous blood vessels available, there is a need for a small diameter synthetic vascular graft alternative. The aim of this research is to create and characterize ePTFE grafts prepared with hyaluronic acid (HA), evaluate thrombogenic potential of ePTFE-HA grafts, and evaluate graft mechanical properties and coating durability. The results in this work indicate the successful production of ePTFE-HA materials using a solvent infiltration technique. Surface interactions with blood show increased platelet adhesion on HA-modified surfaces, though evidence may suggest less platelet activation and erythrocyte lysis. Significant changes in mechanical properties of HA-modified ePTFE materials were observed. Further investigation into solvent selection, uniformity of HA, endothelialization, and dynamic flow testing would be beneficial in the evaluation of these materials for use in small diameter vascular graft bypass procedures.

  6. 77 FR 50465 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... carbon and alloy seamless standard, line and pressure pipe (small diameter seamless pipe) from Romania.\\1... Order: Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania... Corporation (the petitioner) alleged that AMTP made sales of small diameter seamless pipe from Romania...

  7. 77 FR 59374 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe (Under 41/2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ... standard, line and pressure pipe (under 4\\1/2\\ inches) (hereinafter, ``small diameter pipe'') from Japan... Ltd. (``CNRL), a Canadian exporter of small diameter pipe, which had requested an administrative... International Trade Administration Certain Small Diameter Carbon and Alloy Seamless Standard, Line and...

  8. 78 FR 63164 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... antidumping duty order on certain small diameter carbon and alloy seamless standard, line and pressure pipe... small diameter carbon and alloy seamless standard, line and pressure pipe from Romania.\\1\\ We invited... (the Act). \\1\\ See Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure...

  9. Preparation and evaluation of bicomponent and homogeneous polyester silk small diameter arterial prostheses.

    PubMed

    Yang, Xiaoyuan; Wang, Lu; Guan, Guoping; King, Martin W; Li, Yuling; Peng, Lei; Guan, Ying; Hu, Xingyou

    2014-01-01

    The development of a small diameter (≤5 mm) arterial prosthesis requires the appropriate selection of materials, structure and fabrication method so as to provide adequate mechanical properties, superior biocompatibility and precise control over the diameter. In this study, 100% polyester, 100% silk fibroin and a combination of both yarns were woven into seamless tubular prototype prostheses with different basic weaves. After degumming/scouring they met a target inner diameter of 3.9±0.3 mm which demonstrates that weaving is a precise way to manufacture small caliber arterial prostheses. In conclusion, the bicomponent polyester/silk woven samples had superior mechanical properties and improved cytocompatibility compared to commercial ePTFE devices. PMID:23292721

  10. Hydraulic fluid serves as mandrel for small diameter refractory tube drawing

    NASA Technical Reports Server (NTRS)

    Mayfield, R. M.

    1966-01-01

    Sealing hydraulic fluid within a tube and passing the tube through a reducing die produces high quality small diameter refractory metal tubing. The encased fluid eliminates the need for mandrel or ductile core removal and drawing can proceed with less handling operations.

  11. Dynamic processes in active medium of small diameter gas discharge lasers

    NASA Astrophysics Data System (ADS)

    Schishov, S. I.

    2008-03-01

    Review of electrodynamics properties for gas discharge lasers of small diameter has been completed with consideration of inertia typical for ionisation processes and transient nature of electron diffusion from unipolar to ambipolar. Procedure for calculation of transfer function and elements of equivalent electrical circuit for substitution of gas discharge laser discharge space.

  12. 78 FR 55680 - Small Diameter Graphite Electrodes From the People's Republic of China: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ...On March 8, 2013, the Department of Commerce (the Department) published the preliminary results of the administrative review of the antidumping duty order on small diameter graphite electrodes from the People's Republic of China (the PRC). The period of review (POR) is February 1, 2011, through January 31, 2012. For the final results, we continue to find that certain companies covered by this......

  13. 77 FR 47596 - Small Diameter Graphite Electrodes From the People's Republic of China: Affirmative Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... Antidumping Duty Order: Small Diameter Graphite Electrodes from the People's Republic of China, 74 FR 8775... Antidumping Duty Order and Extension of Final Determination, 77 FR 33405 (June 6, 2012) (``Preliminary... Decision Memorandum. \\8\\ See Preliminary Determination, 77 FR at 33409. Summary of Analysis of...

  14. Fabrication techniques developed for small- diameter, thin-wall tungsten and tungsten alloy tubing

    NASA Technical Reports Server (NTRS)

    Brillhart, D. C.; Burt, W. R.; Karasek, F. J.; Mayfield, R. M.

    1968-01-01

    Report describes methods for the fabrication of tungsten and tungsten alloys into small-diameter, thin-wall tubing of nuclear quality. The tungsten, or tungsten alloy tube blanks are produced by double extrusion. Plug-drawing has emerged as an excellent secondary fabrication technique for the reduction of the overall tube dimensions.

  15. Production of small diameter high-temperature-strength refractory metal wires

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.; King, G. W.

    1973-01-01

    Special thermomechanical techniques (schedules) have been developed to produce small diameter wire from three refractory metal alloys: colombian base alloy, tantalum base alloy, and tungsten base alloy. High strengths of these wires indicate their potential for contributing increased strength to metallic composites.

  16. Production of a large-diameter uniform plasma by electron cyclotron resonance heating with a small-diameter Lisitano coil

    NASA Astrophysics Data System (ADS)

    Komori, A.; Takada, Y.; Yonesu, A.; Kawai, Y.

    1991-02-01

    A large-diameter uniform plasma is produced by electron cyclotron resonance heating with a slotted Lisitano coil of 9 cm in diameter by locating the resonance apart from the Lisitano coil. Although the plasma production with a Lisitano coil has been performed extensively by placing the resonance near the Lisitano coil, the influence of the resonance location has not received as much attention. When the resonance is located further than 8 cm from the Lisitano coil, the uniform plasma of ˜40 cm in diameter at densities of ˜1.2×1011 cm-3 is produced over the vacuum chamber with an inner radius of 46 cm. The microwave is propagated in the whole space between the resonance and the Lisitano coil, and spatial electric-field distributions of the microwave play an important role on forming the radially uniform plasma.

  17. Depth-to-Diameter Ratio and Slopes in Small Lunar Highland Craters

    NASA Astrophysics Data System (ADS)

    Mahanti, P.; Robinson, M. S.; Stelling, R.

    2012-12-01

    Geomorphology of small lunar highland craters is quantified with digital elevation models (DEM) that cover 540 craters. From these new data we measured apparent depth (Ra), apparent diameter (Da) and wall slopes. While photogrammetric studies exist from Apollo era data [2,3], the lower end of the crater size spectrum is not well represented and the statistics for craters with diameters 150 meters or less is sparse. The slope of log-scale depth-vs.-diameter fit was ~0.9 (Figure 1). Previous studies [3] with both mare and highland craters (Da >330m) had slopes of ~1, so this result was somewhat expected, although the highland data density was poor in this size regime in the earlier works. However, it was found that a straight line represented the depth-vs.-diameter data better than a power law relation (goodness-of-fit 0.97 compared to 0.6) which is interesting since larger craters are found to change shape allometrically [4]. The median value of the depth-to-diameter ratio was ~0.13 which is also unexpected for small craters (usually ~0.2). Wall slopes were relatively shallow (median ~ 8°) with ~95% of the data at slopes less than 18°. Slopes decreased with crater size (Figure 2), with a sharp drop at diameters more than 35m after which the rate of change was small. Decrease in slope with size was observed earlier with Apollo data [2], but for larger craters (Da >1Km). References: [1] Robinson, M.S. et al (2010),Space Sci. Rev.,150,81-124;[2] Pike, R.J.(1977) Proceedings of the Symposium on Planetary Cratering Mechanics, Arizona, Pergamon Press.,489-509;[3] Pike, R.J.(1977) Lunar Science Conference,3, 3427-3436;[4] Pike, R.J(1967) J. Geophys. Res. 72, 8, 2099-2106

  18. 77 FR 56809 - Certain Small Diameter Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ... Diameter Seamless Carbon and Alloy Steel Standard, Line and Pressure Pipe From Germany, 60 FR 39704 (August...\\ \\3\\ See Certain Small Diameter Seamless Carbon and Alloy Standard, Line, and Pressure Pipe From... International Trade Administration Certain Small Diameter Seamless Carbon and Alloy Steel Standard, Line,...

  19. 77 FR 67336 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... order on certain small diameter carbon and alloy seamless standard, line and pressure pipe from Romania... diameter carbon and alloy seamless standard, line and pressure pipe from Romania. See Certain Small... Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania, 65 FR 48963 (August...

  20. Computational investigation of the electronic and structural properties of ultra small-diameter boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmoud; Giahi, Masoud

    2010-06-01

    The electronic and structural properties of ultra small-diameter (3,0) and (4,0) zigzag and (2,2) and (3,3) armchair models of boron nitride nanotubes (BNNTs) are investigated by density functional theory (DFT) calculations. The atomic geometries of the considered models are optimized and then the electric field gradient (EFG) tensors are calculated at the sites of boron-11 and nitrogen-14 nuclei in the optimized structures. The results indicate that the small-diameter boron nitride nanotubes are proper for contributing to intermolecular interactions whereas the zigzag models are more preferred rather than the armchair ones. Furthermore, the boron-11 nuclei play dominant roles in the characterization of the electronic and structural properties of the BNNTs. The DFT calculations are performed by the GAUSSIAN 98 package.

  1. A system for magnetostrictive transduction of guided waves in fluid-filled pipes of small diameter.

    PubMed

    Challis, Richard E; Phang, Albert P Y; Lowe, Michael J S; Mather, Melissa L

    2008-09-01

    This paper is concerned with the design of magnetostrictive transducers for the excitation and detection of guided waves in metal pipes of small diameter (mm) and their application to the study of wave propagation in pipes filled with water or supercritical CO(2). Optimized system design is based on a simulation of the overall signal pathway which includes the electric circuit conditions at the transducers, mode excitability, and the wavenumber filtering effect of the spatial distribution of the exciting alternating magnetic field. A prototype system was built, and experimental observations on small diameter pipes indicated good agreement with expected results from simulations. The reassigned spectrogram has been used to compare expectation on the basis of guided wave dispersion curves for fluid-filled pipes with experimental data. PMID:18986895

  2. Effects of drilling small diameter exhaust shafts in a gassy longwall operation

    SciTech Connect

    Coleman, T.; Maloney, W.

    1999-07-01

    As the title indicates, this paper deals with the ventilation of a gassy longwall mine through the use of small diameter exhaust shafts. Extensive background information is provided to show the evolution of the mine's ventilation system to correspond with changes in longwall mining techniques, particularly increases in face width. A description of the blind drilled shaft techniques, which proved to be the most economical ventilation choice for US Steel No. 50 Mine, is also included.

  3. Small diameter concentric tubing extends economical life of high water - sour gas Edwards producers

    SciTech Connect

    Weeks, S.G.

    1981-01-01

    Seven small-diameter tubing installations have been completed in two Edwards sour gas fields, Texas, which have high water production. Although there has been further decline in reservoir pressure, continuous production has been maintained without stop-cocking. Corrosion inhibition has been effective and the cost has been nominal compared to the previous expense of displacing the inhibitor each month with nitrogen. Thus, the economical life of the wells has been extended. 5 refs.

  4. Crosslinking of saphenous vein ECM by procyanidins for small diameter blood vessel replacement.

    PubMed

    Zhai, Wanyin; Zhang, Hongxia; Wu, Chengtie; Zhang, Jiamin; Sun, Xiaoning; Zhang, Hongfeng; Zhu, Ziyan; Chang, Jiang

    2014-08-01

    Xenogenic decellularized vessels, mainly composed of extracellular matrices (ECMs), are thought to be one of the alternative resources of small-diameter blood vessels due to abundant source, tubular configuration, vascular microstructure, and good cytocompatibility. However, the main shortcomings of ECM vessels are their low chemical stability, easy calcification, immunogenicity, and high risk of thrombogenicity. Previous studies have shown that, glutaraldehyde (GA), as a crosslinking agent, led to significant calcification and cytotoxicity for the prepared ECM substitutes. To overcome the drawbacks of pure and GA-crosslinked vascular alternatives of small-diameter blood vessels, procyanidins (PC), a naturally derived polyphenol with anti-inflammatory and platelet aggregation inhibiting bioactivities, was applied to crosslink the decellularized bovine saphenous vein ECM (svECM). After crosslinking, the obtained svECM substitutes exhibited natural tubular configuration with significantly improved mechanical properties, proper resistance to proteolysis, high chemical stability, and excellent anticalcification property. The PC-crosslinked svECM substitutes were cytocompatible for cells adhesion and proliferation, and blood compatible for erythrocytes with far less hemolysis than that of safety standard. Furthermore, the PC-crosslinked svECM substitutes showed distinct antithrombosis and anti-immunogenicity potential. With these advantages, it is suggested that the PC-crosslinked svECM may be used as a practical substitutes of small diameter blood vessels. PMID:24425308

  5. Mechanical behavior of bilayered small-diameter nanofibrous structures as biomimetic vascular grafts.

    PubMed

    Montini-Ballarin, Florencia; Calvo, Daniel; Caracciolo, Pablo C; Rojo, Francisco; Frontini, Patricia M; Abraham, Gustavo A; V Guinea, Gustavo

    2016-07-01

    To these days, the production of a small diameter vascular graft (<6mm) with an appropriate and permanent response is still challenging. The mismatch in the grafts mechanical properties is one of the principal causes of failure, therefore their complete mechanical characterization is fundamental. In this work the mechanical response of electrospun bilayered small-diameter vascular grafts made of two different bioresorbable synthetic polymers, segmented poly(ester urethane) and poly(L-lactic acid), that mimic the biomechanical characteristics of elastin and collagen is investigated. A J-shaped response when subjected to internal pressure was observed as a cause of the nanofibrous layered structure, and the materials used. Compliance values were in the order of natural coronary arteries and very close to the bypass gold standard-saphenous vein. The suture retention strength and burst pressure values were also in the range of natural vessels. Therefore, the bilayered vascular grafts presented here are very promising for future application as small-diameter vessel replacements. PMID:26872337

  6. 77 FR 46385 - Certain Small Diameter Seamless Carbon and Alloy Standard, Line, and Pressure Pipe From Germany...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... International Trade Administration Certain Small Diameter Seamless Carbon and Alloy Standard, Line, and Pressure... antidumping duty order on certain small diameter seamless carbon and alloy steel standard, line, and pressure... 19 CFR 351.218(e)(1)(ii)(C)(2). Scope of the Order The scope of the order includes small...

  7. Development of very small-diameter, inductively coupled magnetized plasma device.

    PubMed

    Kuwahara, D; Mishio, A; Nakagawa, T; Shinohara, S

    2013-10-01

    In order to miniaturize a high-density, inductively coupled magnetized plasma or helicon plasma to be applied to, e.g., an industrial application and an electric propulsion field, small helicon device has been developed. The specifications of this device along with the experimental results are described. We have succeeded in generating high-density (~10(19) m(-3)) plasmas using quartz tubes with very small diameters of 10 and 20 mm, with a radio frequency power ~1200 and 700 W, respectively, in the presence of the magnetic field less than 1 kG. PMID:24182105

  8. Anti-Thrombogenic Modification of Small-Diameter Microfibrous Vascular Grafts

    PubMed Central

    Hashi, Craig K.; Derugin, Nikita; Janairo, Randall Raphael R.; Lee, Randall; Schultz, David; Lotz, Jeffrey; Li, Song

    2010-01-01

    Objective We developed small diameter vascular grafts with a microstructure similar to native matrix fibers and with chemically modified microfibers to prevent thrombosis. Methods and Results Microfibrous vascular grafts (1-mm internal diameter) were fabricated by electrospinning and hirudin was conjugated to the poly (l-lactic acid) (PLLA) microfibers through an intermediate linker of poly(ethylene glycol) (PEG). The modified microfibrous vascular grafts were able to reduce platelet adhesion/aggregation onto microfibrous scaffolds, and immobilized hirudin suppressed thrombin that may interact with the scaffolds. This two-pronged approach to modify microfibrous vascular graft showed significantly improved patency (from 50% to 83%) and facilitated endothelialization, and the microfibrous structure of the vascular grafts allowed efficient graft remodeling and integration, with the improvement of mechanical property (elastic modulus) from 3.5 MPa to 11.1 MPa after 6 months of implantation. Conclusions Microfibrous vascular grafts with anti-thrombogenic microfibers can be used as small-diameter grafts with excellent patency and remodeling capability. PMID:20466974

  9. A High-Resolution Endoscope of Small Diameter Using Electromagnetically Vibration of Single Fiber

    NASA Astrophysics Data System (ADS)

    Matsunaga, Tadao; Hino, Ryunosuke; Makishi, Wataru; Esashi, Masayoshi; Haga, Yoichi

    For high resolution visual inspection in the narrow space of the human body, small diameter endoscope has been developed which utilize electromagnetically vibration of single fiber. Thin endoscopes are effective for inspection in the narrow space of the human body, for example, in the blood vessel, lactiferous duct for detection infiltration of breast cancer, and periodontal gap between gingiva and tooth. This endoscope consists of single optical fiber and photofabricated driving coils. A collimator lens and a cylindrical permanent magnet are fixed on the optical fiber, and the tilted driving coils have been patterned on a 1.08 mm outer diameter thin tube. The fiber is positioned at the center of the tube which is patterned the coils. When an electrical alternating current at the resonance frequency is supplied to the coils, the permanent magnet which is fixed to the fiber is vibrated electromagnetically and scanned one or two dimensionally. This paper reports small diameter endoscope by using electromagnetically vibration of single fiber. Optical coherence tomography imaging has also been carried out with the fabricated endoscope and cross-section image of sub-surface skin of thumb was observed.

  10. Experimental and theoretical study of dryout in annular flow in small diameter channels

    NASA Astrophysics Data System (ADS)

    Mikielewicz, Dariusz; Gliński, Michał; Wajs, Jan

    2011-04-01

    In the paper the experimental analysis of dryout in small diameter channels is presented. The investigations were carried out in vertical pipes of internal diameter equal to 1.15 mm and 2.3 mm. Low-boiling point fluids such as SES36 and R123 were examined. The modern experimental techniques were applied to record liquid film dryout on the wall, among the others the infrared camera. On the basis of experimental data an empirical correlation for predictions of critical heat flux was proposed. It shows a good agreement with experimental data within the error band of 30%. Additionally, a unique approach to liquid film dryout modeling in annular flow was presented. It led to the development of the three-equation model based on consideration of liquid mass balance in the film, a two-phase mixture in the core and gas. The results of experimental validation of the model exhibit improvement in comparison to other models from literature.

  11. Angiographic Evaluation of Carotid Artery Grafting with Prefabricated Small-Diameter, Small-Intestinal Submucosa Grafts in Sheep

    SciTech Connect

    Pavcnik, Dusan; Obermiller, Josef; Uchida, Barry T.; Van Alstine, William; Edwards, James M.; Landry, Gregory J.; Kaufman, John A.; Keller, Frederick S.; Roesch, Josef

    2009-01-15

    The purpose of this study was to report the longitudinal angiographic evaluation of prefabricated lyophilized small-intestinal submucosa (SIS) grafts placed in ovine carotid arteries and to demonstrate a variety of complications that developed. A total of 24 grafts, 10 cm long and 6 mm in diameter, were placed surgically as interposition grafts. Graft patency at 1 week was evaluated by Doppler ultrasound, and angiography was used for follow-up at 1 month and at 3 to 4 months. A 90% patency rate was found at 1 week, 65% at 1 month, and 30% at 3 to 4 months. On the patent grafts, angiography demonstrated a variety of changes, such as anastomotic stenoses, graft diffuse dilations and dissections, and aneurysm formation. These findings have not been previously demonstrated angiographically by other investigators reporting results with small-diameter vessel grafts made from fresh small-intestinal submucosa (SIS). The complications found were partially related to the graft construction from four SIS layers. Detailed longitudinal angiographic study should become an essential part of any future evaluation of small-vessel SIS grafting.

  12. Small diameter gravity sewers: self-cleansing conditions and aspects of wastewater quality.

    PubMed

    Dias, S P; Matos, J S

    2001-01-01

    The construction of conventional sewerage systems in small communities, with pipes laid on a uniform slope and manholes regularly spaced, is sometimes not economically feasible, because of the high costs of sewer installation. Under those circumstances, the small diameter gravity sewers (SDGS) have often proven to be substantially less costly than conventional sewers. Typically, in SDGS systems the wastewater from one or more households is discharged into an interceptor tank (or a single compartment septic tank). The settled effluent is discharged afterwards into small diameter sewers operating under gravity. In this paper, special emphasis is given to the analysis of self-cleansing conditions and to the analysis of risks of sulphide generation and occurrence of septic conditions in SDGS systems. For the evaluation of the self-cleansing conditions, the critical velocity and the critical shear stress were computed according to the Shields equation. The forecasting of dissolved oxygen concentrations and sulphide build-up along the lines, for different flow conditions, was done running an established wastewater quality model. PMID:11379122

  13. Development of multipoint strain measurement systems using small-diameter fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Kojima, Seiji; Satori, Kouji; Fukuchi, Keisuke; Hongo, Akihito; Takeda, Nobuo

    2002-07-01

    We have been studying optical sensing technologies using fiber Bragg gratings (FBGs) for health-monitoring systems in the fields of constructions, civil engineering, aerospace and so on. In these fields, various kinds of sensing techniques such as strain, temperature, vibration and crack detection are required. To meet these needs, we have fabricated the FBGs by precisely controlling photo-induced refractive index modulation or the grating period along a fiber. Also, as embedded sensors, we developed small-diameter FBGs which are embedded in fiber reinforced plastics (FRP) composite materials without inducing any mechanical deterioration. In this paper, we present the progress of our small-diameter FBGs and propose a new wavelength detection technique for FBG sensors using a wavelength division multiplexing (WDM) coupler. The reflected light is divided at the ratio depending wavelength through the WDM coupler. Especially, we adopted a PLC-type WDM coupler which has the advantage in low polarization sensitivity and integration compared with a fused-optical fiber-type WDM coupler. This technique is useful in high-speed detection for vibration or impact damage. Another application is a multipoint measurement system by using together with optical time domain reflectometry (OTDR) method. In this system, pulses of light incident into an optical fiber return from the FBGs to a detector with different arrival time. As a result, we can use FBGs with the same Bragg wavelength, because measuring delay time of the pulses enables to distinguish each FBG location. In addition, using together with wavelength division multiplexing within wavelength region for optical communications can increase the number of FBG sensors. The results of the basic performance in this system showed that it is very promising for the multipoint measuring system. These wavelength detection techniques will expand sensing applications using small-diameter FBGs.

  14. 77 FR 21734 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe From Romania...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... International Trade Administration Certain Small Diameter Carbon and Alloy Seamless Standard, Line, and Pressure... review of the antidumping duty order on certain small diameter carbon and alloy seamless standard, line... Antidumping and Countervailing Duty Administrative Reviews and Requests for Revocation in Part, 76 FR...

  15. 76 FR 67411 - Small Diameter Graphite Electrodes From the People's Republic of China: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... Reviews, Requests for Revocation in Part, and Deferral of Administrative Review, 76 FR 17825 (March 31... International Trade Administration Small Diameter Graphite Electrodes From the People's Republic of China... antidumping duty order on small diameter graphite electrodes from the People's Republic of China (PRC) for...

  16. Cryogenic thermal absorptance measurements on small-diameter stainless steel tubing

    NASA Astrophysics Data System (ADS)

    Tuttle, James; Jahromi, Amir; Canavan, Edgar; DiPirro, Michael

    2016-03-01

    The Mid Infrared Instrument (MIRI) on the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The coolant gas flows through several meters of small-diameter stainless steel tubing, which is exposed to thermal radiation from its environment. Over much of its length this tubing is gold-plated to minimize the absorption of this radiant heat. In order to confirm that the cryocooler will meet MIRI's requirements, the thermal absorptance of this tubing was measured as a function of its environment temperature. We describe the measurement technique and present the results.

  17. Firing of antagonist small-diameter muscle afferents reduces voluntary activation and torque of elbow flexors.

    PubMed

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2013-07-15

    During muscle fatigue, firing of small-diameter muscle afferents can decrease voluntary activation of the fatigued muscle. However, these afferents may have a more widespread effect on other muscles in the exercising limb. We examined if the firing of fatigue-sensitive afferents from elbow extensor muscles in the same arm reduces torque production and voluntary activation of elbow flexors. In nine subjects we examined voluntary activation of elbow flexors by measuring changes in superimposed twitches evoked by transcranial magnetic stimulation of the motor cortex during brief (2-3 s) maximal voluntary contractions (MVC). Inflation of a blood pressure cuff following a 2-min sustained MVC blocked blood flow to the fatigued muscle and maintained firing of small-diameter afferents. After a fatiguing elbow flexion contraction, maximal flexion torque was lower (26.0 ± 4.4% versus 67.9 ± 5.2% of initial maximal torque; means ± s.d.; P < 0.001) and superimposed twitches were larger (4.1 ± 1.1% versus 1.8 ± 0.2% ongoing MVC, P = 0.01) with than without ischaemia. After a fatiguing elbow extensor contraction, maximal flexion torque was also reduced (82.2 ± 4.9% versus 91.4 ± 2.3% of initial maximal torque; P = 0.007), superimposed twitches were larger (2.7 ± 0.7% versus 1.3 ± 0.2% ongoing MVC; P = 0.02) and voluntary activation lower (81.6 ± 8.2% versus 95.5 ± 6.9%; P = 0.04) with than without ischaemia. After a fatiguing contraction, voluntary drive to the fatigued muscles is reduced with continued input from small-diameter muscle afferents. Furthermore, fatigue of the elbow extensor muscles decreases voluntary drive to unfatigued elbow flexors of the same arm. Therefore, firing of small-diameter muscle afferents from one muscle can affect voluntary activation and hence torque generation of another muscle in the same limb. PMID:23652589

  18. Carbon nanotubes with small and tunable diameters from poly(ferrocenylsilane)-block-polysiloxane diblock copolymers.

    PubMed

    Lu, Jennifer Q; Rider, David A; Onyegam, Emanuel; Wang, Hai; Winnik, Mitchell A; Manners, Ian; Cheng, Qian; Fu, Qiang; Liu, Jie

    2006-05-23

    Iron-containing nanostructures produced from various self-assembled poly(ferrocenylsilane)-block-polysiloxane thin films are catalytically active for the initiation and growth of high density, small diameter carbon nanotubes (CNTs). Moreover, the tube diameter and density can be tuned by adjusting the chain lengths of the block copolymer. Iron-containing nanostructures from poly(ferrocenylmethylethylsilane)-b-poly(methylvinylsiloxane) polymer with 25 repeat units of an iron-containing segment and 265 repeat units of a non-iron-containing segment are able to produce CNTs with diameters around or less than 1 nm. Lithographically selective growth of CNTs across a large surface area has been demonstrated using this polymer system. Under the same growth condition, it has been found that the yield of defect-free CNTs varies with the size of the catalytically active nanostructures, which are dictated by the chain lengths of the two blocks. This result indicates that, for a specific-sized catalyst nanocluster, a unique set of growth conditions is required for synthesizing high yield, defect-free CNTs. This finding further addresses the importance of using uniform-sized catalyst-containing nanostructures for consistently achieving high-yield and high-quality CNTs with a minimum number of defects and amount of amorphous carbon. PMID:16700610

  19. A pilot trial of large versus small diameter needles for oocyte retrieval

    PubMed Central

    2013-01-01

    Background This study was designed to determine whether small diameter needles for oocyte retrieval alter oocyte yields in patients undergoing IVF in comparison to standard large diameter needles. Methods We conducted a prospective pilot study of 21 consecutive favorable prognosis patients. In each patient one ovary was randomly allocated to retrieval with either a 20 G/ 35 mm (thin) or 17 G/ 35 mm (standard) needle, the other ovary was then retrieved with the opposite needle. Results The standard diameter needle was used to collect a total of 215 oocytes from 355 aspirated follicles (60.6%) compared to 203 oocytes from 352 aspirated follicles (57.7%) with the thinner needle (p = 0.23). Stratifying outcomes by anti-Müllerian hormone (AMH), as indicator of ovarian reserve, and by body mass index (BMI) the oocyte yields, still, did not differ (AMH, r (17) = −0.20, p = 0.44; BMI, r (17) =0.02, p = 0.96). Outcomes also did not vary among women with diminished ovarian reserve (p = 0.17) and in women with normal ovarian reserve (p = 1.00). Operating time was, however, significantly increased by 3.3 minutes per ovary (z = −3.08, p = 0.002) with the thinner needle. Conclusions Needle diameter does not affect oocyte yield, including in obese patients and patients with diminished ovarian reserve. Thinner needles appear to significantly prolong operating time. PMID:23510450

  20. Tissue-engineered acellular small diameter long-bypass grafts with neointima-inducing activity.

    PubMed

    Mahara, Atsushi; Somekawa, Shota; Kobayashi, Naoki; Hirano, Yoshiaki; Kimura, Yoshiharu; Fujisato, Toshiya; Yamaoka, Tetsuji

    2015-07-01

    Researchers have attempted to develop efficient antithrombogenic surfaces, and yet small-caliber artificial vascular grafts are still unavailable. Here, we demonstrate the excellent patency of tissue-engineered small-caliber long-bypass grafts measuring 20-30 cm in length and having a 2-mm inner diameter. The inner surface of an acellular ostrich carotid artery was modified with a novel heterobifunctional peptide composed of a collagen-binding region and the integrin α4β1 ligand, REDV. Six grafts were transplanted in the femoral-femoral artery crossover bypass method. Animals were observed for 20 days and received no anticoagulant medication. No thrombogenesis was observed on the luminal surface and five cases were patent. In contrast, all unmodified grafts became occluded, and severe thrombosis was observed. The vascular grafts reported here are the first successful demonstrations of short-term patency at clinically applicable sizes. PMID:25941782

  1. Nanoarchitecture of scaffolds and endothelial cells in engineering small diameter vascular grafts.

    PubMed

    Sankaran, Krishna Kumar; Subramanian, Anuradha; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2015-01-01

    Regeneration of functional small diameter blood vessels still remains a challenge, as the synthetic vascular grafts fail to mimic the complex structural architecture and dynamic functions of blood vessels and also lack with the lack of non-thrombogenicity. Although, the existence of nanofibrous extracellular matrix components in the native tissue promotes many physical and molecular signals to the endothelial cells for the regulation of morphogenesis, homeostasis, and cellular functions in vascular tissue, poor understanding of the structural architecture on the functional activation of appropriate genes limits the development of successful vascular graft design. Hence, the present review outlines the functional contributions of various nanofibrous extracellular matrix components in native blood vessels. Further, the review focuses on the role of nanofiber topography of biomaterial scaffolds in endothelial cell fate processes such as adhesion, proliferation, migration, and infiltration with the expression of vasculature specific genes; thereby allowing the reader to envisage the communication between the nano-architecture of scaffolds and endothelial cells in engineering small diameter vascular grafts. PMID:25641941

  2. Development and evaluation of elastomeric hollow fiber membranes as small diameter vascular graft substitutes.

    PubMed

    Mercado-Pagán, Ángel E; Kang, Yunqing; Findlay, Michael W; Yang, Yunzhi

    2015-04-01

    Engineering of small diameter (<6mm) vascular grafts (SDVGs) for clinical use remains a significant challenge. Here, elastomeric polyester urethane (PEU)-based hollow fiber membranes (HFMs) are presented as an SDVG candidate to target the limitations of current technologies and improve tissue engineering designs. HFMs are fabricated by a simple phase inversion method. HFM dimensions are tailored through adjustments to fabrication parameters. The walls of HFMs are highly porous. The HFMs are very elastic, with moduli ranging from 1-4MPa, strengths from 1-5MPa, and max strains from 300-500%. Permeability of the HFMs varies from 0.5-3.5×10(-6)cm/s, while burst pressure varies from 25 to 35psi. The suture retention forces of HFMs are in the range of 0.8 to 1.2N. These properties match those of blood vessels. A slow degradation profile is observed for all HFMs, with 71 to 78% of the original mass remaining after 8weeks, providing a suitable profile for potential cellular incorporation and tissue replacement. Both human endothelial cells and human mesenchymal stem cells proliferate well in the presence of HFMs up to 7days. These results demonstrate a promising customizable PEU HFMs for small diameter vascular repair and tissue engineering applications. PMID:25686982

  3. Axially aligned 3D nanofibrous grafts of PLA-PCL for small diameter cardiovascular applications.

    PubMed

    Sankaran, Krishna Kumar; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2014-01-01

    Axially aligned nanofibrous matrices were evaluated as small diameter cardiovascular grafts. Grafts were prepared using the poly(L-lactic acid) (PLA) and poly(ε-caprolactone) (PCL) physical blends in the ratios of 75:25 and 25:75 with the dimension of (40 × 0.2 × 4) millimeter by electrospinning using dynamic collector (1500 RPM). Hydrophobicity and tensile stress were significantly higher in PLA-PCL (75:25), whereas tensile strain and fiber density were significantly higher in PLA-PCL (25:75). Properties such as anastomatic strength porosity, average pore size, degradation with retained fiber orientation, and thromboresistivity were comparable between blends. Human umbilical vascular endothelial cells (HUVEC) adhesion on the scaffolds was observed within 24 h. Cell viability and proliferation were rationally influenced by the aligned nanofibers. Gene expression reveals the grafts thromboresistivity, elasticity, and aided neovascularization. Thus, these scaffolds could be an ideal candidate for small diameter blood vessel engineering. PMID:25158229

  4. Development and evaluation of elastomeric hollow fiber membranes as small diameter vascular graft substitutes

    PubMed Central

    Mercado-Pagán, Ángel E.; Kang, Yunqing; Findlay, Michael W.; Yang, Yunzhi

    2015-01-01

    Engineering of small diameter (<6 mm) vascular grafts (SDVGs) for clinical use, remains a significant challenge. Here, elastomeric polyester urethane (PEU)-based hollow fiber membranes (HFM) are presented as an SDVG candidate to target the limitations of current technologies and improve tissue engineering designs. HFMs are fabricated by a simple phase inversion method. HFM dimensions are tailored through adjustments to fabrication parameters. The walls of HFMs are highly porous. The HFMs are very elastic, with moduli ranging from 1–4 MPa, strengths from 1–5 MPa, and max strains from 300–500%. Permeability of the HFMs varies from 0.5–3.5×10−6 cm/s, while burst pressure varies from 25 to 35 psi. The suture retention forces of HFMs are in the range of 0.8 to 1.2 N. These properties match those of blood vessels. A slow degradation profile is observed for all HFMs, with 71 to 78% of the original mass remaining after 8 weeks, providing a suitable profile for potential cellular incorporation and tissue replacement. Both human endothelial cells and human mesenchymal stem cells proliferate well in the presence of HFMs up to 7 days. These results demonstrate a promising customizable PEU HFMs for small diameter vascular repair and tissue engineering applications. PMID:25686982

  5. Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications.

    PubMed

    Jing, Xin; Mi, Hao-Yang; Salick, Max R; Cordie, Travis M; Peng, Xiang-Fang; Turng, Lih-Sheng

    2015-04-01

    Fabrication of small diameter vascular grafts plays an important role in vascular tissue engineering. In this study, thermoplastic polyurethane (TPU)/graphene oxide (GO) scaffolds were fabricated via electrospinning at different GO contents as potential candidates for small diameter vascular grafts. In terms of mechanical and surface properties, the tensile strength, Young's modulus, and hydrophilicity of the scaffolds increased with an increase of GO content while plasma treatment dramatically improved the scaffold hydrophilicity. Mouse fibroblast (3T3) and human umbilical vein endothelial cells (HUVECs) were cultured on the scaffolds separately to study their biocompatibility and potential to be used as vascular grafts. It was found that cell viability for both types of cells, fibroblast proliferation, and HUVEC attachment were the highest at a 0.5wt.% GO loading whereas oxygen plasma treatment also enhanced HUVEC viability and attachment significantly. In addition, the suture retention strength and burst pressure of tubular TPU/GO scaffolds containing 0.5wt.% GO were found to meet the requirements of human blood vessels, and endothelial cells were able to attach to the inner surface of the tubular scaffolds. Platelet adhesion tests using mice blood indicated that vascular scaffolds containing 0.5% GO had low platelet adhesion and activation. Therefore, the electrospun TPU/GO tubular scaffolds have the potential to be used in vascular tissue engineering. PMID:25686925

  6. Feasibility of in situ lining rehabilitation of small diameter heat distribution pipe

    SciTech Connect

    Cardenas, H.E.; Hock, V.F.; Segan, E.G.

    1995-12-01

    Many pipeline rehabilitation methods are available for large pipe systems greater than 2 inches in diameter. For small internal systems with many lateral connections, the cost of these methods becomes exorbitant. This study examined the feasibility of an in situ lining rehabilitation concept for small pipelines that involves minimal surface preparation. This work addressed: testing and modification of candidate liner resins, hydraulic analysis of lining impact on pipe flow, and the life cycle cost comparison of applying a liner compared with typical plumbing maintenance practices. Analytical projections based on these analyses revealed a potential source of life cycle cost savings by applying this rehabilitation process to condensate return lines. A liner formulation involving Bisphenol-A and 1% silica addition exhibited sufficient high temperature immersion resistance to operate in a condensate return line. The mathematical liner impact model developed herein provides a qualitative representation of the liner impact on flow. Analytical findings derived from this model indicated that power savings are significantly dependent on pipe diameter and flow rate. A present worth, life cycle cost analysis revealed that if the cost of in situ rehabilitation is roughly 50% of replacement, the benefits may be revealed in terms of avoided operations, maintenance, and repair costs.

  7. A study of the fatigue properties of small diameter wires used in intramuscular electrodes.

    PubMed

    Scheiner, A; Mortimer, J T; Kicher, T P

    1991-05-01

    Single and multi-strand stainless steel and cobalt-nickel alloy wires, with strand diameters from 26 to 46 microns, were fatigue tested using a modified rotating bending test to determine what factors are most important in controlling fatigue life. The relation between cyclic strain and cyclic life was determined for each material by cyclically straining test specimens at various strain ranges and recording the number of cycles to failure. The results show that (a) the fatigue curves of the 316LVM, MP35N, DBS, and Syntacoben wires are very similar and have many of the same fatigue characteristics of specimens of large cross section. (b) Multi-stranded wires have the same average fatigue life as their individual constituent strands, but the variance of that life is smaller. (c) Deformities in the wire, which are created during the manufacturing, appear to have the effect of shortening the fatigue life of these small section wires. (d) Observation of wire fracture surfaces show a relatively small crack propagation zone and a large fast fracture zone suggesting that most of the fatigue life of these small wires is in the original crack formation, which creates a large stress concentration and quickly leads to wire failure. (e) The size of the wire cross sectional area is of secondary importance compared to the amplitude of the maximum cyclic strain of the individual strands in determining fatigue life of the cable. To maximize the fatigue life of electrodes in vivo, the highest fatigue life for a given bending radius of curvature is desired. This suggests wire strands should be manufactured at the smallest diameter possible (without introducing structural flaws) to maximize service life. PMID:1869576

  8. Fault detection in small diameter pipes using ultrasonic guided wave technology

    NASA Astrophysics Data System (ADS)

    Sabhnani, Rahul M.; Humphrey, Victor; Zaghari, Bahareh; Moshrefi-Torbati, Mohamed

    2015-03-01

    Ultrasonic guided wave technology is one of the more recent developments in the field of non-destructive evaluation. In contrast to conventional ultrasonic, this technology requires exposing only the areas where the transducers will be placed, hence requiring minimal insulation removal and excavation for buried pipes. This paper discusses how this technology can be used to detect defects in pipes under different conditions. Here the experiments were performed on small diameter pipes (<5 cm diameter); which were bare pipe, buried pipe and bitumen coated pipe. The results were gathered to see the effectiveness of this technology in detecting defects. Experiments were conducted using two dry coupled piezoelectric transducers, where one of them transmitted guided waves along the pipe and the other received them. The transducers produced tangential displacement, thereby generating the fundamental torsional mode T(0,1). In order to assess whether having multiple transducers has any effect on the resultant waveform, the receiving transducer was rotated around the circumference of the pipe.

  9. Debonding monitoring of a composite repair patch using small-diameter FBG sensors

    NASA Astrophysics Data System (ADS)

    Takeda, Shin-ichi; Yamamoto, Takeharu; Okabe, Yoji; Takeda, Nobuo

    2004-07-01

    This paper presents the health monitoring technique of composite repair patches using small-diameter fiber Bragg grating (FBG) sensors. The composite patch structures consist of carbon fiber reinforced plastic (CFRP) patches, aluminum substrates and adhesive layers. The debonding progressed between aluminum substrate and the adhesive layers under cyclic loading. In this research, two types of the specimen were prepared for evaluation of the debonding size. One is specimen with the patches glued on the both side of the aluminum plate. The other is pre-notched specimen for investigation of the influence of the crack propagation in the substrate. The FBG sensors were embedded into the adhesive layers easily, because the diameter of the sensor was only 52 μm. Reflection spectra from the sensor were measured at various lengths of the debonding. The form of the spectrum changed sensitively with an increase in the debonding size. For confirmation of the measured results, the spectra were simulated theoretically. As a result, the change in the calculated spectrum was consistent with that in the measured spectrum, and the relation between the spectrum and the debonding was clarified. Moreover, the debonding length was evaluated quantitatively by the monitoring of the form of the reflection spectrum.

  10. Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts.

    PubMed

    Wu, Huijun; Fan, Jintu; Chu, Chih-Chang; Wu, Jun

    2010-12-01

    The control of nanofiber orientation in nanofibrous tubular scaffolds can benefit the cell responses along specific directions. For small diameter tubular scaffolds, however, it becomes difficult to engineer nanofiber orientation. This paper reports a novel electrospinning technique for the fabrication of 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations. Synthetic absorbable poly-ε-caprolactone (PCL) was used as the model biomaterial to demonstrate this new electrospinning technique. Electrospun 3-D PCL nanofibrous tubular scaffolds of 4.5 mm in diameter with different nanofiber orientations (viz. circumferential, axial, and combinations of circumferential and axial directions) were successfully fabricated. The degree of nanofiber alignment in the electrospun 3-D tubular scaffolds was quantified by using the fast Fourier transform (FFT) analysis. The results indicated that excellent circumferential nanofiber alignment could be achieved in the 3-D nanofibrous PCL tubular scaffolds. The nanofibrous tubular scaffolds with oriented nanofibers had not only directional mechanical property but also could facilitate the orientation of the endothelial cell attachment on the fibers. Multiple layers of aligned nanofibers in different orientations can produce 3-D nanofibrous tubular scaffolds of different macroscopic properties. PMID:20890639

  11. Demonstration of the BioBaler harvesting system for collection of small-diameter woody biomass

    SciTech Connect

    Langholtz, Matthew H; Caffrey, Kevin R; Barnett, Elliott J; Webb, Erin; Brummette, Mark W; Downing, Mark

    2011-12-01

    As part of a project to investigate sustainable forest management practices for producing wood chips on the Oak Ridge Reservation (ORR) for the ORNL steam plant, the BioBaler was tested in various Oak Ridge locations in August of 2011. The purpose of these tests and the subsequent economic analysis was to determine the potential of this novel woody biomass harvesting method for collection of small-diameter, low value woody biomass. Results suggest that opportunities may exist for economical harvest of low-value and liability or negative-cost biomass. (e.g., invasives). This could provide the ORR and area land managers with a tool to produce feedstock while improving forest health, controlling problem vegetation, and generating local employment.

  12. A tube-excited x-ray fluorescence spectrometer for use in small-diameter boreholes

    SciTech Connect

    Reeves, J.H.; Arthur, R.J.; Brodzinski, R.L.; Shepard, C.L.

    1995-04-01

    A portable in-situ x-ray fluorescence analytical system that uses an x-ray tube excitation source and a cooled Si(Li) spectrometer for detecting characteristic emission x rays has been developed for use in small-diameter wells and boreholes. The 15-watt, iron-anode x-ray tube operates up to 30 kV. Three wells at the Sandia National Laboratory Chemical Waste Landfill, lined with 76 {mu} thick polyethylene, were logged specifically for Cr contamination. Detection limits below 50 ppM were achieved with counting intervals of 600 seconds and with the Si(Li) detector operating at 450-eV resolution (full width at half maximum [FWHM] for the Mn K-alpha x ray).

  13. Guided waves based diagnostic imaging of circumferential cracks in small-diameter pipe.

    PubMed

    Liu, Kehai; Wu, Zhanjun; Jiang, Youqiang; Wang, Yishou; Zhou, Kai; Chen, Yingpu

    2016-02-01

    To improve the safety and reliability of pipeline structures, much work has been done using ultrasonic guided waves methods for pipe inspection. Though good for evaluating the defects in the pipes, most of the methods lack the capability to precisely identify the defects in the pipe features like welds or supports. Therefore, a novel guided wave based cross-sectional diagnostic imaging algorithm was developed to improve the ability of circumferential cracks identification in the pipe features. To ensure the accuracy of the imaging, an angular profile-based frequency selection method is presented. As validation, the approach was employed to identify the presence and location of a small circumferential crack with 1.13% cross sectional area (CSA) in the welding zone of a 48 mm diameter type 304 stainless steel pipe. Accurate identification results have demonstrated the effectiveness of the developed approach. PMID:26548527

  14. Modeling small diameter straw tubes in terms of their high frequency electrical characteristics

    SciTech Connect

    Ekenberg, T.; Newcomer, M. )

    1990-04-01

    As a part of the effort to design a prototype of a low mass tracking detector, the authors have developed an empirical model of the high frequency behavior of small diameter proportional straw tubes. The equivalent circuit is a distributed network of RLC-clusters, where the value of the discrete components is directly related to measurable characteristics of the em straws. The model is an approximation of the straw as a low loss transmission line, and yields very good agreement with measurements of transmission and reflection coefficients. Measurements and simulations of input impedance in frequency domain also agree well at frequencies below 120 MHz, when termination is close to Z{sub o}, the characteristic impedance.

  15. Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach.

    PubMed

    Ercolani, Enrico; Del Gaudio, Costantino; Bianco, Alessandra

    2015-08-01

    Vascular tissue engineering is a relevant research field aimed at elaborating and proposing innovative solutions to overcome the drawbacks related to the use of conventional blood vessel substitutes, especially referring to small-diameter grafts. For this aim, electrospinning can be regarded as a valuable technique to produce novel scaffolds with several functional characteristics that can be usefully tailored for the application discussed here. The reproduction of the natural extracellular matrix obtained by processing bioresorbable polymers, either functionalized or not, is driving the biomedical research towards technical solutions that can lead to an actual therapeutic improvement. In this context, this paper reviews those studies focused on the selection of suitable biomaterials for vascular applications, their microstructure, the cell response to polymeric fibres and the strategies considered so far to modify and therefore enhance the performance of final electrospun scaffolds. PMID:23365048

  16. A Bi-Layered Elastomeric Scaffold for Tissue Engineering of Small-Diameter Vascular Grafts

    PubMed Central

    Soletti, Lorenzo; Hong, Yi; Guan, Jianjun; Stankus, John J.; El-Kurdi, Mohammed S.; Wagner, William R.; Vorp, David A.

    2011-01-01

    A major barrier in the development of a clinically-useful small-diameter tissue engineered vascular graft (TEVG) is the scaffold component. Scaffold requirements include matching the mechanical and structural properties with those of native vessels and optimizing the microenvironment to foster cell integration, adhesion, and growth. We have developed a small-diameter, bi-layered, biodegradable, elastomeric scaffold based on a synthetic, biodegradable elastomer. The scaffold incorporates a highly porous inner layer, allowing cell integration and growth, and an external, fibrous reinforcing layer deposited by electrospinning. Scaffold morphology and mechanical properties were assessed, quantified, and compared to those of native vessels. Scaffolds were then seeded with adult stem cells via a rotational vacuum seeding device to obtain a TEVG, cultured in dynamic conditions for 7 days, and evaluated for cellularity. The scaffold showed a firm integration of the two polymeric layers with no delaminations. Mechanical properties were physiologically-consistent showing anisotropy, elastic modulus (1.4±0.4 MPa), and ultimate tensile stress (8.3±1.7 MPa) comparable with native vessels. Compliance and suture retention force were 4.6±0.5×10−4 mmHg−1 and 3.4±0.3 N, respectively. Seeding resulted in a rapid, uniform, bulk integration of cells, with a seeding efficiency of 92±1%. The scaffolds maintained a high level of cellular density throughout dynamic culture. This approach, combining artery-like mechanical properties and a rapid and efficient cellularization, might contribute to the future clinical translation of TEVGs. PMID:19540370

  17. 75 FR 64250 - Small Diameter Graphite Electrodes From the People's Republic of China: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... Requests for Revocation in Part, 75 FR 15679 (March 30, 2010). The preliminary results of this review are... International Trade Administration Small Diameter Graphite Electrodes From the People's Republic of China... diameter graphite electrodes from the People's Republic of China (``PRC'') for the period August 21,...

  18. Boiling heat transfer of refrigerant R-113 in a small-diameter, horizontal tube

    SciTech Connect

    Wambsganss, M.W.; Jendrzejczyk, J.A.; Tran, T.N.; France, D.M.

    1992-01-01

    Results of a study of boiling heat transfer from refrigerant R-113 in a small-diameter (2.92-mm) tube are reported. Local heat transfer coefficients over a range of heat fluxes, mass fluxes, and equilibrium mass qualities were measured. The measured coefficients were used to evaluate eight different heat transfer correlations, some of which have been developed specifically for refrigerants. High heat fluxes and low flow rates are inherent in small channels, and this combination results in high boiling numbers. The high boiling number of the collected data shows that the nucleation mechanism was dominant. As a result, the two-phase correlations that predicted this dominance also predicted the data best if they also properly modeled the physical parameters. The correlations of Lazarek and Black and of Shah, as modified in this study, predicted the data very well. It is also shown that a simple form, suggested by Stephan and Abdelsalam for nucleate boiling, correlates the data equally well. This study is part of a research program in multiphase flow and heat transfer, with the overall objective of developing validated design correlations and predictive methods that will facilitate the design and optimization of compact heat exchangers for use with environmentally acceptable alternatives for chlorofluorocarbon (CFC) refrigerants and refrigerant mixtures.

  19. Physiologic Compliance in Engineered Small-diameter Arterial Constructs Based on an Elastomeric Substrate

    PubMed Central

    CRAPO, PETER M.; WANG, YADONG

    2009-01-01

    Compliance mismatch is a significant challenge to long-term patency in small-diameter bypass grafts because it causes intimal hyperplasia and ultimately graft occlusion. Current engineered grafts are typically stiff with high burst pressure but low compliance and low elastin expression. We postulated that engineering small arteries on elastomeric scaffolds under dynamic mechanical stimulation would result in strong and compliant arterial constructs. Compare properties of engineered arterial constructs based on biodegradable polyester scaffolds composed of either rigid poly(lactide-co-glycolide) (PLGA) or elastomeric poly(glycerol sebacate) (PGS). Adult baboon arterial smooth muscle cells (SMCs) were cultured in vitro for 10 days in tubular, porous scaffolds. Scaffolds were significantly stronger after culture regardless of material, but the elastic modulus of PLGA constructs was an order of magnitude greater than that of porcine carotid arteries and PGS constructs. Deformation was elastic in PGS constructs and carotid arteries but plastic in PLGA constructs. Compliance of arteries and PGS constructs were equivalent at pressures tested. Altering scaffold material from PLGA to PGS significantly decreased collagen content and significantly increased insoluble elastin content in constructs without affecting soluble elastin concentration in the culture medium. PLGA constructs contained no appreciable insoluble elastin. This research demonstrates that: (1) substrate stiffness directly affects in vitro tissue development and mechanical properties; (2) rigid materials likely inhibit elastin incorporation into the extracellular matrix of engineered arterial tissues; and (3) grafts with physiologic compliance and significant elastin content can be engineered in vitro after only days of cell culture. PMID:19962188

  20. Cuff electrodes for very small diameter nerves -- prototyping and first recordings in vivo.

    PubMed

    Ordonez, Juan S; Pikov, Victor; Wiggins, Harvey; Patten, Craig; Stieglitz, Thomas; Rickert, J; Schuettler, Martin

    2014-01-01

    A fabrication method for cuff electrodes to interface small nerves was developed. Medical grade silicone rubber conforms the body of the cuff and insulation of the wires, platinum was used as metal for the embedded wiring and contacts. Planar electrode arrays where fabricated using a picosecond laser and then positioned into a carrying tube to provide the third dimension with the desired inner diameter (Ø 0.3-0.5 mm). The post preparation of the cuffs after structuring allows the fabrication of a stable self-closing flap that insulates the opening slit of the cuff without the need of extra sutures. Basic for the success of the cuff is the laser-based local thinning of both the silicone rubber and the metal at defined sections. This is critical to permit the PDMS' body to dominate the mechanical properties. Finite element modeling was applied to optimize the displacement ability of the cuff, leading to design capable of withstanding multiple implantation procedures without wire damage. Furthermore, the contact's surface was roughened by laser patterning to increase the charge injection capacity of Pt to 285 μC/cm(2) measured by voltage transient detection during pulse testing. The cuff electrodes were placed on a small sympathetic nerve of an adult female Sprague-Dawley rat for recording of spontaneous and evoked neural activity in vivo. PMID:25571569

  1. Development of capsules and pigs for inspection of small-diameter gas distribution pipelines

    SciTech Connect

    Hosohara, Y.; Seki, A.; Yasui, K.

    1988-01-01

    To inspect external corrosion of small-diameter gas distribution pipelines precisely, the three major gas companies of Japan have jointly developed inspection capsules (very small pigs) and pigs for the first time in the world. The laboratory test has been completed and the field test is now in progress. The inspection techniques developed are the following two methods: 1. Inspection methods for 2- and 3-inch screw-jointed mains: The inspection capsule is inserted through a launcher into a straight pipeline of 30m length on each side (60m total span) in live condition. The remote-field eddy current method and the impressed-current magnetic leakage flux method were adopted. 2. Inspection methods for weld-joint 4-, 8- and 12-inche mains: The pipeline is cut off (down to less than 300m length), and gas is purged by air. The inspection pigs pass through miter bends, short elbows of 1.5 DR and sleeve joints. The magnetic leakage flux method was adopted, while different methods of travel were adopted by the three contractors.

  2. Numerical Comparison of Artificial Recharge by Small-diameter Wells to Common Systems

    NASA Astrophysics Data System (ADS)

    Händel, F.; Liu, G.; Dietrich, P.; Liedl, R.; Fank, J.; Fank, A.; Butler, J. J.

    2013-12-01

    Scarcity of potable water has reached to a critical level all around the world. To address the temporal inequality of demand and availability of water resources, as well as additional purposes like enhancing water quality, artificial recharge is increasingly used. For shallow infiltration, such recharge methods as surface infiltration basins and trenches are commonly applied. However, these methods have significant disadvantages, e.g., enhanced clogging, evaporation, and an increased need of land use. Therefore, a new method for artificial recharge using shallow small-diameter wells is investigated. Such wells can be installed by Direct Push (DP) and water is allowed to infiltrate into aquifers by natural gravity, so that their installation and operation costs are very low. In this work, this method is compared numerically to a surface infiltration basin and a system applying horizontal filter pipes. For this, the work is divided into two parts. First, a rigorous comparison is done between the DP well and the infiltration basin. The simulated aquifer is composed of an unsaturated zone of 12 m and a saturated zone of 8 m. The results show the dependency of both methods on different components of the hydraulic conductivity, and highlight the advantages of the DP well over the basin. A small number of 5-cm shallow wells of 12 m length can be used to recharge water at the same infiltration rate as from a 60 m2 basin. When a layer of low hydraulic conductivity is present, the infiltration capacity of surface basins is significantly reduced while the adverse impacts on the wells are less pronounced due to the horizontal flow above the low conductivity layer (larger distance of water movement away from the screen). In the second part of this work, the DP wells will be compared to an operating horizontal, vadose zone artificial recharge system in Southern Styria, Austria. The water table is 3 m deep and horizontal filter pipes are used to recharge water into the shallow

  3. Electrospun Polycaprolactone Scaffolds for Small-Diameter Tissue Engineered Blood Vessels

    NASA Astrophysics Data System (ADS)

    Lee, Carol Hsiu-Yueh

    Cardiovascular disease is the leading cause of death in the United States with many patients requiring coronary artery bypass grafting. The current standard is using autografts such as the saphenous vein or intimal mammary artery, however creating a synthetic graft could eliminate this painful and inconvenient procedure. Large diameter grafts have long been established with materials such as DacronRTM and TeflonRTM, however these materials have not proved successful in small-diameter (< 6 mm) grafts where thrombosis and intimal hyperplasia are common in graft failure. With the use of a synthetic biodegradable polymer (polycaprolactone) we utilize our expertise in electrospinning and femtosecond laser ablation to create a novel tri-layered tissue engineered blood vessel containing microchannels. The benefits of creating a tri-layer is to mimic native arteries that contain an endothelium to prevent thrombosis in the inner layer, aligned smooth muscle cells in the middle to control vasodilation and constriction, and a mechanically robust outer layer. The following work evaluates the mechanical properties of such a graft (tensile, fatigue, burst pressure, and suture retention strength), the ability to rapidly align cells in laser ablated microchannels in PCL scaffolds, and the biological integration (co-culture of endothelial and smooth muscle cells) with electrospun PCL scaffolds. The conclusions from this work establish that the electrospun tri-layers provide adequate mechanical strength as a tissue engineered blood vessel, that laser ablated microchannels are able to contain the smooth muscle cells, and that cells are able to adhere to PCL fibers. However, future work includes adjusting microchannel dimensions to properly align smooth muscle cells along with perfect co-cultures of endothelial and smooth muscle cells on the electrospun tri-layer.

  4. Effect of fibroin sponge coating on in vivo performance of knitted silk small diameter vascular grafts

    PubMed Central

    Fukayama, Toshiharu; Ozai, Yusuke; Shimokawadoko, Haruka; Aytemiz, Derya; Tanaka, Ryou; Machida, Noboru; Asakura, Tetsuo

    2015-01-01

    ABSTRACT Vascular grafts under 5 mm or less in diameter are not developed due to a problem caused by early thrombus formation, neointimal hyperplasia, etc. Bombyx mori silk fibroin (SF) which has biodegradability and tissue infiltration is focused as tube and coating material of vascular grafts. Coating is an important factor to maintain the strength of the anastomotic region of vascular grafts, and to prevent the blood leak from the vascular grafts after implantation. Therefore, in this research, we focused on the SF concentration of the coating solution, and tissue infiltration and remodeling were compared among each SF concentration. Silk poly (-ethylene) glycol diglycidyl ether (PGDE) coating with concentrations of 1.0%, 2.5%, 5.0%, and 7.5% SF were applied for the double-raschel knitted small-sized vessel with 1.5 mm diameter and 1cm in length. The grafts were implanted in the rat abdominal aorta and removed after 3 weeks or 3 months. Vascular grafts patency was monitored by ultrasound, and morphological evaluation was performed by histopathological examination. SF concentration had no significant effects on the patency rate. However, tissue infiltration was significantly higher in the sample of 2.5% SF in 3 weeks, and 1.0% and 2.5% SF in 3 months. Also, in comparison of length inside of the graft, stenosis were not found in 3 weeks, however, found with 5.0% and 7.5% in 3 months. From these results, it is clear that 2.5% SF coating is the most suitable concentration, based on the characteristics of less stenosis, early tissue infiltration, and less neointimal hyperplasia. PMID:26496652

  5. Atomization of a small-diameter liquid jet by a high-speed gas stream

    NASA Astrophysics Data System (ADS)

    Varga, Christopher Michael

    The situation of a small-diameter liquid jet exposed to a large-diameter high-speed gas jet is investigated experimentally. Flow visualization and particle-sizing techniques are employed to examine both the initial breakup process and subsequent secondary atomization of the liquid. It is shown that nearly all of the breakup takes place in the near-field and that the bulk of the atomization is completed within the potential cone of the gas jet. The resultant drop size depends primarily on the gas velocity and to a weaker extent on the liquid mass flux. It is argued that the mechanism of primary atomization is similar to that of a liquid drop suddenly exposed to a high-speed gas stream. A phenomenological breakup model is proposed for the initial droplet size, based on the accelerative destabilization of the liquid jet surface by the Rayleigh-Taylor instability. Measurements of droplet sizes and surface wavelengths are shown to be in good agreement with the model predictions. The downstream evolution of the droplet-size distribution is also investigated, with consideration given to several secondary mechanisms including turbulent breakup, droplet-droplet collisions, and droplet acceleration. It is argued that the relative acceleration of droplets of different size classes, and energetic collisions between droplets, are together responsible for the experimentally observed variation of the mean drop size with downstream distance from the injection plane in the far-field of the spray. The feasibility of coaxial liquid-gas injection for pulse detonation engine (PDE) applications is additionally considered. The performance of coaxial atomizers under transient operating conditions appropriate to PDEs is analyzed along with the capability of this injection scheme to produce sufficiently small droplet sizes within restricted flow regimes. The ability to tailor the radial distributions of both the liquid mass flux and droplet sizes through the addition of swirl to the coaxial

  6. Antiplatelet therapy reduces aortic intimal hyperplasia distal to small diameter vascular prostheses (PTFE) in nonhuman primates.

    PubMed Central

    Hagen, P O; Wang, Z G; Mikat, E M; Hackel, D B

    1982-01-01

    While the use of prosthetic grafts in small diameter arterial reconstruction is required when suitable autogenous graft material is unavailable, late occlusion of prosthetic grafts caused by proliferative lesions has been described. This study evaluated the suitability of 3-mm (ID) microporous polytetrafluoroethylene (PTFE) Gore-Tex grafts inserted in the abdominal aorta of eight nonhuman primates (Macaca fascicularis), and the effects of prolonged antiplatelet treatment on both graft patency and the development of intimal hyperplasia in the adjacent vasculature. Four monkeys received antiplatelet medication consisting of aspirin (163 mg twice daily) and dipyridamole (25 mg twice daily). When killed at four months following graft insertion, all four grafts in the antiplatelet medicated group were patent, while in the control group, only two of four grafts were patent. Histologic examination and quantitative photogravitometric evaluation of the degree of luminal narrowing were performed on all grafts and the adjacent vasculature. These studies revealed that while all graft and aortic segments showed varying amounts of intimal thickening, occlusions in the control animals were related to intimal hyperplasia in the host aorta at the site of the distal anastomosis. Intimal hyperplasia in all aortic segments examined distal to the graft was significantly reduced by antiplatelet therapy. Electronmicroscopy showed that smooth muscle cells were the predominant cells of the intimal thickening of the aorta (intimal hyperplasia), and that proliferation of these cells did not extend into the graft itself. The predominant cell population of the intimal thickening of the graft were of the myofibroblast type (neointimal hyperplasis). The luminal surface of the graft was lined with cells that had some but not all of the characteristics of mature endothelial cells. In vitro studies confirmed global interference with platelet function and arachidonic acid metabolism in medicated

  7. Polyhydroxybutyrate/valerate/polycaprolactone small-diameter vascular graft: Experimental study of integration into organism

    NASA Astrophysics Data System (ADS)

    Antonova, L. V.; Burago, A. Yu.; Mironov, A. V.; Matveeva, V. G.; Velikanova, E. A.; Mukhamadiyarov, R. A.; Glushkova, T. V.; Kudryavtseva, Y. A.; Barbarash, O. L.; Barbarash, L. S.

    2015-10-01

    We prepared polyhydroxybutyrate/valerate (PHBV)/polylcaprolactone (PCL) small-diameter vascular grafts using electrospinning. Surface structure was assessed by scanning electron microscopy whilst physicomechanical properties were investigated by longitudinal uniaxial tension testing. Patency of grafts implanted into the rat abdominal aorta was evaluated using a Doppler ultrasonography at 2 week, 1 month and 12 month postimplantation. In addition, we assessed local histological features, along with IL-1β, IL-2, IL-4, IL-10, TNFa, TGF-β1, and VEGF serum levels. We revealed that only 2 (25%) grafts were not thrombosed at 2 week and 1 month postimplantation. However, at 12 month postimplantation a satisfactory histological pattern was observed in 50% of all cases, and we detected a monolayer of endothelial cells on the inner graft surface in half the cases. Regarding other grafts, we revealed minor connective tissue hyperplasia in 41.7% of the grafts and an inflammatory infiltrate in the part of the arterial wall in 8.3% of the grafts. We found that the IL-1β serum level was 3.5-fold higher in the group of experimental rats at 12 month postimplantation (p < 0.01). In addition, the IL-2 and IL-4 serum levels at 12 month postimplantation were 2- and 2.8-fold higher as compared to short-term implantation (2 weeks and 1 month) and control rats (p < 0.05) whilst the IL-10 serum level at 1 and 12 month postimplantation was more than 100-fold higher in comparison with 2 week postimplantation and control rats (p < 0.001). Serum VEGF was detected only at 12 month postimplantation. All in all, we created a biocompatible PHBV/PCL small-diameter vascular graft with a high surface area to volume ratio. A long-term patency of biodegradable vascular grafts after implantation into the rat abdominal aorta and the absence of a considerable immune response confirmed a high biocompatibility of such construct and the possibility of its use as a vascular graft.

  8. Polyhydroxybutyrate/valerate/polycaprolactone small-diameter vascular graft: Experimental study of integration into organism

    SciTech Connect

    Antonova, L. V. Burago, A. Yu.; Matveeva, V. G.; Velikanova, E. A.; Mukhamadiyarov, R. A.; Glushkova, T. V.; Kudryavtseva, Y. A.; Barbarash, O. L.; Barbarash, L. S.; Mironov, A. V.

    2015-10-27

    We prepared polyhydroxybutyrate/valerate (PHBV)/polylcaprolactone (PCL) small-diameter vascular grafts using electrospinning. Surface structure was assessed by scanning electron microscopy whilst physicomechanical properties were investigated by longitudinal uniaxial tension testing. Patency of grafts implanted into the rat abdominal aorta was evaluated using a Doppler ultrasonography at 2 week, 1 month and 12 month postimplantation. In addition, we assessed local histological features, along with IL-1β, IL-2, IL-4, IL-10, TNFa, TGF-β1, and VEGF serum levels. We revealed that only 2 (25%) grafts were not thrombosed at 2 week and 1 month postimplantation. However, at 12 month postimplantation a satisfactory histological pattern was observed in 50% of all cases, and we detected a monolayer of endothelial cells on the inner graft surface in half the cases. Regarding other grafts, we revealed minor connective tissue hyperplasia in 41.7% of the grafts and an inflammatory infiltrate in the part of the arterial wall in 8.3% of the grafts. We found that the IL-1β serum level was 3.5-fold higher in the group of experimental rats at 12 month postimplantation (p < 0.01). In addition, the IL-2 and IL-4 serum levels at 12 month postimplantation were 2- and 2.8-fold higher as compared to short-term implantation (2 weeks and 1 month) and control rats (p < 0.05) whilst the IL-10 serum level at 1 and 12 month postimplantation was more than 100-fold higher in comparison with 2 week postimplantation and control rats (p < 0.001). Serum VEGF was detected only at 12 month postimplantation. All in all, we created a biocompatible PHBV/PCL small-diameter vascular graft with a high surface area to volume ratio. A long-term patency of biodegradable vascular grafts after implantation into the rat abdominal aorta and the absence of a considerable immune response confirmed a high biocompatibility of such construct and the possibility of its use as a vascular graft.

  9. Physical parameters of very small diameter 10 MV X-ray beams for linac-based stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    Sham, Edwin

    Physical aspects of very small diameter X-ray beams used for a linac-based stereotactic radiosurgery are presented in this thesis. A 10 MV linac was used as the radiation source. Very small 10 MV photon fields with diameters of 1.5 mm, 3 mm, and 5 mm are produced by special collimators attached to the treatment head of the linac. The radiation beam data were measured with a small field diode detector as well as radiographic and radiochromic films. Measured beam parameters were compared with the same parameters calculated with Monte Carlo (MC) simulations. For very small photon fields with diameters on the order of the focal spot size, MC calculations show that both the percentage depth dose (PDD) distributions and dose profiles are sensitive to the focal spot size. A simple sliding slit technique was developed to measure the focal spot size and shape for accurate MC simulations of very small diameter beams. The measured focal spot of the 10 MV linac is elliptical in shape and fitted by a Gaussian distribution with full-widths-at-half-maximum (FWHMs) of 2.05 mm and 1.34 mm in the principal axes of the ellipse. A Gaussian circle equivalent in area to the experimentally determined focal spot ellipse was used in MC simulations. The resulting PDD and beam profile calculations are in good agreement with the measurements. Dynamic radiosurgery with very small diameter photon beams was carried out using the 10 MV linac. Radiosurgical isodose distributions were measured with radiographic films in a spherical head phantom and calculated with the MC technique. A good agreement between the measured and MC-calculated isodose distributions for very small diameter fields is achieved. The displacement of the center of the measured isodose distributions relative to the laser-defined isocenter was on the order of 0.7 mm. All these results show the potential of linac-based radiosurgery with very small diameter photon beams for clinical use.

  10. Self-ordering of small-diameter metal nanoparticles by dewetting on hexagonal mesh templates

    NASA Astrophysics Data System (ADS)

    Meshot, Eric R.; Zhao, Zhouzhou; Lu, Wei; Hart, A. John

    2014-08-01

    Arrays of small-diameter nanoparticles with high spatial order are useful for chemical and biological sensors, data storage, synthesis of nanowires and nanotubes, and many other applications. We show that self-ordered metal nanoparticle arrays can be formed by dewetting of thin films on hexagonal mesh substrates made of anodic aluminum oxide (AAO). Upon heating, the metal (Fe) film dewets onto the interstitial sites (i.e., the node points) between pores on the top surface of the AAO. We investigated the particle morphology and dynamics of dewetting using a combination of atomic force microscopy (AFM), grazing-incidence small-angle X-ray scattering (GISAXS), and numerical simulations. Templated metal particles are more monodisperse and have higher local order than those formed by the same dewetting process on flat, nonporous alumina. The degree of order depends on the initial film thickness, and for the optimal thickness tested (nominally 2 nm), we achieved uniform coverage and high order of the particles, comparable to that of the AAO template itself. Computational modeling of dewetting on templates with various pore order and size shows that the order of AAO pores is primarily influential in determining particle position and spacing, while the variance in pore size is less impactful. Potential uses of these ordered nanoparticle arrays on porous materials include plasmonic sensors and spatially controlled catalysts.Arrays of small-diameter nanoparticles with high spatial order are useful for chemical and biological sensors, data storage, synthesis of nanowires and nanotubes, and many other applications. We show that self-ordered metal nanoparticle arrays can be formed by dewetting of thin films on hexagonal mesh substrates made of anodic aluminum oxide (AAO). Upon heating, the metal (Fe) film dewets onto the interstitial sites (i.e., the node points) between pores on the top surface of the AAO. We investigated the particle morphology and dynamics of dewetting using

  11. Electrospun tecophilic/gelatin nanofibers with potential for small diameter blood vessel tissue engineering.

    PubMed

    Vatankhah, Elham; Prabhakaran, Molamma P; Semnani, Dariush; Razavi, Shahnaz; Morshed, Mohammad; Ramakrishna, Seeram

    2014-12-01

    Tissue engineering techniques particularly using electrospun scaffolds have been intensively used in recent years for the development of small diameter vascular grafts. However, the development of a completely successful scaffold that fulfills multiple requirements to guarantee complete vascular regeneration remains challenging. In this study, a hydrophilic and compliant polyurethane namely Tecophilic (TP) blended with gelatin (gel) at a weight ratio of 70:30 (TP(70)/gel(30)) was electrospun to fabricate a tubular composite scaffold with biomechanical properties closely simulating those of native blood vessels. Hydrophilic properties of the composite scaffold induced non-thrombogenicity while the incorporation of gelatin molecules within the scaffold greatly improved the capacity of the scaffold to serve as an adhesive substrate for vascular smooth muscle cells (SMCs), in comparison to pure TP. Preservation of the contractile phenotype of SMCs seeded on electrospun TP(70)/gel(30) was yet another promising feature of this scaffold. The nanostructured TP(70)/gel(30) demonstrated potential feasibility toward functioning as a vascular graft. PMID:25042000

  12. Versatile device for in-situ discharge cleaning and multiple coatings of long, small diameter tubes

    SciTech Connect

    Hershcovitch, A.; Blaskiewicz, M.; Brennan, J.M.; Custer, A.; Erickson, M.; Liaw, C.J.; Fischer, Jamshidi, N.; W.; Meng, W.; Poole, H.J.; Sochugov, N.

    2010-05-23

    Electron clouds, which can limit machine performance, have been observed in many accelerators including RHIC at BNL. Additional concern for the RHIC machine, whose vacuum chamber is made from relatively high resistivity 316LN stainless steel, is high wall resistivity that can result in unacceptably high ohmic heating for superconducting magnets. The high resistivity can be addressed with a copper (Cu) coating; a reduction in the secondary electron yield can be achieved with a TiN or amorphous carbon (a-C) coating. Applying such coatings in an already constructed machine is rather challenging. We have been developing a robotic plasma deposition technique for in-situ coating of long, small diameter tubes. The technique entails fabricating a device comprising of staged magnetrons mounted on a mobile mole for deposition of about 5 ?m of Cu followed by about 0.1 ?m of a-C. As a first step, a 15-cm Cu cathode magnetron was designed, fabricated, and 30-cm long samples of the RHIC pipe have been coated with 2 ?m to 5.6 ?m of copper. Deposition rates of up to 92 A/sec with an average coating rate of 30 A/sec were measured. Effects on RF resistivity is also to be measured.

  13. Synthesis and characterization of polycaprolactone urethane hollow fiber membranes as small diameter vascular grafts.

    PubMed

    Mercado-Pagán, Ángel E; Stahl, Alexander M; Ramseier, Michelle L; Behn, Anthony W; Yang, Yunzhi

    2016-07-01

    The design of bioresorbable synthetic small diameter (<6mm) vascular grafts (SDVGs) capable of sustaining long-term patency and endothelialization is a daunting challenge in vascular tissue engineering. Here, we synthesized a family of biocompatible and biodegradable polycaprolactone (PCL) urethane macromers to fabricate hollow fiber membranes (HFMs) as SDVG candidates, and characterized their mechanical properties, degradability, hemocompatibility, and endothelial development. The HFMs had smooth surfaces and porous internal structures. Their tensile stiffness ranged from 0.09 to 0.11N/mm and their maximum tensile force from 0.86 to 1.03N, with minimum failure strains of approximately 130%. Permeability varied from 1 to 14×10(-6)cm/s, burst pressures from 1158 to 1468mmHg, and compliance from 0.52 to 1.48%/100mmHg. The suture retention forces ranged from 0.55 to 0.81N. HFMs had slow degradation profiles, with 15 to 30% degradation after 8weeks. Human endothelial cells proliferated well on the HFMs, creating stable cell layer coverage. Hemocompatibility studies demonstrated low hemolysis (<2%), platelet activation, and protein adsorption. There were no significant differences in the hemocompatibility of HFMs in the absence and presence of endothelial layers. These encouraging results suggest great promise of our newly developed materials and biodegradable elastomeric HFMs as SDVG candidates. PMID:27127029

  14. Debonding monitoring of composite repair patches using embedded small-diameter FBG sensors

    NASA Astrophysics Data System (ADS)

    Takeda, S.; Yamamoto, T.; Okabe, Y.; Takeda, N.

    2007-06-01

    Small-diameter fiber Bragg grating (FBG) sensors were applied to the debonding monitoring of composite repair patches. The target of the monitoring consists of carbon fiber reinforced plastic (CFRP) patches and an aluminum substrate. The specimens were prepared through simple means: the tabular patches adhered to both sides of the aluminum substrate using epoxy adhesive films. Under cyclic loading conditions, the debonding progressed between the aluminum substrate and the adhesive layers. Before the embedding of the FBG sensors, the embedding location was determined using the calculation of the sensor signals, also called the reflection spectra. When the cyclic loading was stopped at a pre-determined numbers of cycles, the reflection spectra were measured at stress conditions of both 0 and 200 MPa. The newly appearing peak in the reflection spectrum indicated the arrival of debonding at the FBG sensors. As the debonding length increased, the intensity of the peak was found to increase. The relationship between the spectral change and the debonding length was verified by the simulated spectra and the strain distributions calculated by finite element (FE) analysis. As a result, the debonding length could be evaluated quantitatively by the spectral changes in the FBG sensors.

  15. The mechanical performance of weft-knitted/electrospun bilayer small diameter vascular prostheses.

    PubMed

    Xie, Yu; Guan, Ying; Kim, Soo-Hyun; King, Martin W

    2016-08-01

    Cardiovascular disease (CVD) accounts for a significant mortality rate worldwide. Autologous vessels, such as the saphenous vein and the internal mammary artery, are currently the gold standard materials for by-pass surgery. However, they may not always be available due to aging, previous harvesting or the pre-existing arterial disease. Synthetic commercial ePTFE and polyester (PET) are not suitable for small diameter vascular grafts (<6mm), mainly due to their poor circumferential compliance, rapid thrombus formation and low endothelialization. In order to reduce thrombogenicity and improve cell proliferation, we developed a collagen/elastin knitted/electrospun bilayer graft made of biodegradable and biocompatible poly(lactic acid) (PLA) and poly(lactide-co-caprolactone) (PLCL) polymers to mimic the multilayer structure of native arteries. We also designed the prostheses to provide some of the required mechanical properties. While the bilayer structure had excellent circumferential tensile strength, bursting strength and suture retention resistance, the radial compliance did not show any observable improvement. PMID:27111627

  16. Study on the role of active radicals on plasma sterilization inside small diameter flexible polymeric tubes

    NASA Astrophysics Data System (ADS)

    Mstsuura, Hiroto; Fujiyama, Takatomo; Okuno, Yasuki; Furuta, Masakazu; Okuda, Shuichi; Takemura, Yuichiro

    2015-09-01

    Recently, atmospheric pressure discharge plasma has gathered attention in various fields. Among them, plasma sterilization with many types of plasma source has studied for decades and its mechanism is still an open question. If active radicals produced in plasma has main contribution of killing bacterias, direct contact of the so-called plasma flame might not be necessary. To confirm this, sterilization inside small diameter flexible polymeric tubes is studied in present work. DBD type plasma jet is produce by flowing helium gas in a glass tube. A long polymeric tube is connected and plasma jet is introduced into it. Plasma flame length depends on helium gas flow rate, but limited to about 10 cm in our experimental condition. E.colis set at the exit plasma source is easily killed during 10 min irradiation. At the tube end (about 20 cm away from plasma source exit), sterilization is possible with 30 min operation. This result shows that active radical is produced with helium plasma and mist contained in sample, and it can be transferred more than 20 cm during it life time. More plasma diagnostic data will also be shown at the conference. This work was partially supported by the ''ZE Research Program, IAE(ZE27B-4).

  17. Electrospun biodegradable elastic polyurethane scaffolds with dipyridamole release for small diameter vascular grafts.

    PubMed

    Punnakitikashem, Primana; Truong, Danh; Menon, Jyothi U; Nguyen, Kytai T; Hong, Yi

    2014-11-01

    Acellular biodegradable small diameter vascular grafts (SDVGs) require antithrombosis, intimal hyperplasia inhibition and rapid endothelialization to improve the graft patency. However, current antithrombosis and antiproliferation approaches often conflict with endothelial cell layer formation on SDVGs. To address this limitation, biodegradable elastic polyurethane urea (BPU) and the drug dipyridamole (DPA) were mixed and then electrospun into a biodegradable fibrous scaffold. The BPU would provide the appropriate mechanical support, while the DPA in the scaffold would offer biofunctions as required above. We found that the resulting scaffolds had tensile strengths and strains comparable with human coronary artery. The DPA in the scaffolds was continuously released up to 91 days in phosphate buffer solution at 37 °C, with a low burst release within the first 3 days. Compared to BPU alone, improved non-thrombogenicity of the DPA-loaded BPU scaffolds was evidenced with extended human blood clotting time, lower TAT complex concentration, lower hemolysis and reduced human platelet deposition. The scaffolds with a higher DPA content (5 and 10%) inhibited proliferation of human aortic smooth muscle cell significantly. Furthermore, the DPA-loaded scaffolds had no adverse effect on human aortic endothelial cell growth, yet it improved their proliferation. The attractive mechanical properties and biofunctions of the DPA-loaded BPU scaffold indicate its potential as an acellular biodegradable SDVG for vascular replacement. PMID:25110284

  18. Electrospun biodegradable elastic polyurethane scaffolds with dipyridamole release for small diameter vascular grafts

    PubMed Central

    Punnakitikashem, Primana; Truong, Danh; Menon, Jyothi U.; Nguyen, Kytai T.; Hong, Yi

    2014-01-01

    Acellular biodegradable small diameter vascular grafts (SDVGs) require antithrombosis, intimal hyperplasia inhibition and rapid endothelialization to improve the graft patency. However, current antithrombosis and antiproliferation approaches often conflict with endothelial cell layer formation on SDVGs. To address this limitation, biodegradable elastic polyurethane urea (BPU) and the drug dipyridamole (DPA) were mixed and then electrospun into a biodegradable fibrous scaffold. The BPU would provide the appropriate mechanical support, while the DPA in the scaffold would offer biofunctions as required above. We found that the resulting scaffolds had tensile strengths and strains comparable with human coronary artery. The DPA in the scaffolds was continuously released up to 91 days in phosphate buffer solution at 37 °C, with a low burst release within the first 3 days. Compared to BPU alone, improved non-thrombogenicity of the DPA-loaded BPU scaffolds was evidenced with extended human blood clotting time, lower TAT complex concentration, lower hemolysis and reduced human platelet deposition. The scaffolds with a higher DPA content (5 and 10%) inhibited proliferation of human aortic smooth muscle cell significantly. Furthermore, the DPA-loaded scaffolds had no adverse effect on human aortic endothelial cell growth, yet it improved their proliferation. The attractive mechanical properties and biofunctions of the DPA-loaded BPU scaffold indicate its potential as an acellular biodegradable SDVG for vascular replacement. PMID:25110284

  19. Preparation and properties of small diameter tubular solid oxide fuel cells for rapid start-up

    NASA Astrophysics Data System (ADS)

    Kilbride, I. P.

    The feasibility of producing solid oxide fuel cells (SOFCs) which could be rapidly heated to operating temperature was investigated. Small diameter (2.4 mm) 3 and 8 mol% yttria-stabilised zirconia (YSZ) tubes were used both as the electrolyte and the cell support tube. Cells were prepared by winding with pure silver, Ni80/Cr20 and Nimonic 90 wires over lanthanumstrontiummanganite (LSM) cathodes. Specific power outputs of up to 250 mA/cm 2 at 900 °C, 0.7 V were achieved in silver wound cells with 5 mm long cathodes. Longer cathodes produced progressively lower specific outputs. This was attributed to increasing cathode and winding resistance with length. The base metal windings achieved up to 80% of the performance of a similar length cell wound with pure silver wire. Silver wound cells were successfully cycled between 200 and 900 °C at an average 25 °C/min (peak 100 °C/min) over 50 cycles with no degradation due to the thermal cycling. Degradation in cells wound with base metals was attributable to the increase in contact resistance found between the cathode and the wire with time.

  20. Structural Analysis of Pressurized Small Diameter Lines in a Random Vibration Environment

    NASA Technical Reports Server (NTRS)

    Davis, Mark; Ridnour, Andrew; Brethen, Mark

    2011-01-01

    The pressurization and propellant feed lines for the Ares 1 Upper Stage Reaction and Roll Control Systems (ReCS and RoCS) were required to be in a high g-load random vibration flight environment. The lines connected the system components and were filled with both liquid hydrazine and gaseous helium. They are considered small and varied between one fourth to one inch in diameter. The random vibration of the lines was considered to be base excitation through the mating components and mounting hardware. It was found that reducing the amount of support structure for the lines added flexibility to the system and improved the line stresses from random vibration, but caused higher stresses from the static g-loads. The locations and number of brackets were optimized by analyzing the mode shapes of the lines causing high stresses. The use of brackets that only constrain motion in the direction of concern further reduced the stresses in the lines. Finite element analysis was used to perform the analysis. The lines were pre-stressed by temperature and internal pressure with fluid and insulation included as non-structural mass. Base excitation was added to the model using Power Spectral Density (PSD) data for the expected flight loads. The random vibration and static g-load cases were combined to obtain the total stress in the lines. This approach advances the state of the art in line analysis by using FEA to predict the stresses in the lines and to optimize the entire system based on the expected flight environment. Adding flexibility to lines has been used in piping system for temperature loads, but in flight environments flexibility has been limited for the static stresses. Adding flexibility to the system in a flight environment by reducing brackets has the benefit of reducing stresses and weight

  1. Integrated spectral properties of 22 small angular diameter galactic open clusters

    NASA Astrophysics Data System (ADS)

    Ahumada, A. V.; Clariá, J. J.; Bica, E.

    2007-10-01

    Aims:Flux-calibrated integrated spectra of a sample of 22 Galactic open clusters of small angular diameter are presented. With one exception (ESO 429-SC2), all objects have Galactic longitudes in the range 208° < l < 33°. The spectra cover the range ≈3600-6800 Å, with a resolution of ≈14 Å. The properties of the present cluster sample are compared with those of well-studied clusters located in two 90° sectors, centred at l = 257° and l = 347°. The dissolution rate of Galactic open clusters in these two sectors is examined. Methods: Using the equivalent widths of the Balmer lines and comparing line intensities and continuum distribution of the cluster spectra with those of template cluster spectra with known properties, we derive both foreground reddening values and ages. Thus, we provide information independent of that determined through colour-magnitude diagrams. Results: The derived E(B-V) values for the whole sample vary from 0.0 in ESO 445-SC74 to 1.90 in Pismis 24, while the ages range from ~3 Myr (NGC 6604 and BH 151) to ~3.5 Gyr (Ruprecht 2). For six clusters (Dolidze 34, ESO 429-SC2, ESO 445-SC74, Ruprecht 2, BH 151 and Hogg 9) the foreground E(B-V) colour excesses and ages are determined for the first time. The results obtained for the remaining clusters show, in general terms, good agreement with previous photometric results. Conclusions: The age and reddening distributions of the present sample match those of known clusters in the two selected Galactic sectors. The present results would favour a major dissolution rate of star clusters in these two sectors. Two new solar-metallicity templates are defined corresponding to the age groups of (4-5) Myr and 30 Myr among those of Piatti et al. (2002, MNRAS, 335, 233). The Piatti et al. templates of 20 Myr and (3-4) Gyr are here redefined. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y T

  2. 78 FR 7397 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Opportunity to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ...-570-893 2/1/12-1/31/13 Heavy Forged Hand Tools, With or Without Handles 2/1/12-1/31/13 A-570-803 Small Diameter Graphite Electrodes A-570-929..... 2/1/12-1/31/13 Uncovered Innerspring Units A-570-928 2/1/12-1... explained in Antidumping and Countervailing Duty Proceedings: Assessment of Antidumping Duties, 68 FR...

  3. 77 FR 6060 - Small Diameter Graphite Electrodes from the People's Republic of China: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... Reviews, Requests for Revocation in Part, and Deferral of Administrative Review, 76 FR 17825 (March 31... Time Limit for Preliminary Results of Antidumping Duty Administrative Review, 76 FR 67411 (November 1... International Trade Administration Small Diameter Graphite Electrodes from the People's Republic of...

  4. 77 FR 37873 - Small Diameter Graphite Electrodes From the People's Republic of China: Initiation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... Diameter Graphite Electrodes from the People's Republic of China, 74 FR 8775 (February 26, 2009) (SDGE... product at issue. See, e.g., CTL Plate from the PRC, 74 FR at 33992-33993. \\10\\ See, e.g., Affirmative... from the People's Republic of China, 74 FR 33991, 33992 (July 14, 2009) (CTL Plate from the...

  5. Production of vertical arrays of small diameter single-walled carbon nanotubes

    DOEpatents

    Hauge, Robert H; Xu, Ya-Qiong

    2013-08-13

    A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.

  6. 78 FR 22843 - Small Diameter Graphite Electrodes From the People's Republic of China: Affirmative Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ... Diameter Graphite Electrodes from the People's Republic of China, 74 FR 8775 (February 26, 2009) (``Order... entered, or withdrawn from warehouse, for consumption on or after June 25, 2012, the date of publication... warehouse, for consumption on or after June 25, 2012, in accordance with 19 CFR 351.225(l)(2)....

  7. Assessment of small-diameter shallow wells for managed aquifer recharge at a site in southern Styria, Austria

    NASA Astrophysics Data System (ADS)

    Händel, Falk; Liu, Gaisheng; Fank, Johann; Friedl, Franz; Liedl, Rudolf; Dietrich, Peter

    2016-07-01

    An approach to establish the recharge component of managed aquifer recharge (MAR) has recently been proposed that uses small-diameter shallow wells installed using relatively inexpensive drilling methods such as direct push. As part of further development of that approach, a generalized procedure is presented for a technical and economic assessment of the approach's potential in comparison to other systems. Following this procedure, the use of small-diameter wells was evaluated both experimentally and numerically for a site located in southern Styria, Austria. MAR is currently done at the site using a horizontal pipe infiltration system, and system expansion has been proposed with a target rate of 12 l/s using small-diameter wells as one possible option. A short-duration single-well field recharge experiment (recharge rate 1.3-3.5 l/s) was performed (recharge by gravity only). Numerical modeling of the injection test was used to estimate hydraulic conductivity (K). Quasi-steady-state, single-well recharge simulations for different locations, as well as a long-term transient simulation, were performed using the K value calibrated from the field injection test. Results indicate that a recharge capacity of 4.1 l/s was achievable with a maximum head rise of 0.2 m at the injection well. Finally, simulations were performed for three different well fields (4, 6 and 8 wells, respectively) designed to infiltrate a target rate of 12 l/s. The experimental and numerical assessments, supported by a cost analysis of the small-diameter wells, indicate that the small-diameter wells are a viable, cost-effective recharge approach at this and other similar sites.

  8. Performance of and Pressure Elevation Formed by Small-diameter Microtubes Used in Constant-flow Sets

    PubMed Central

    Sohn, Sae Woon; Noh, Myounggyu D.; Lee, Jong-Hyun; Kim, Kyoung Nam; Ahn, Byung Heon

    2016-01-01

    Purpose We explored the performance of and pressure elevation caused by small-diameter microtubes used to reduce overfiltration. Methods Using a syringe pump-driven constant-flow setting (2 µL/min), pressures were measured for polytetrafluoroethylene (PTFE) microtubes 5 mm in length with inner diameters of 51, 64, and 76 µm and for polyether block amide (PEBAX) microtubes with an inner diameter of 76 µm. Experiments (using microtubes only) were initially performed in air, water, and enucleated pig eyes and were repeated under the same conditions using intraluminal 9/0 nylon stents. Results The pressures measured in air in 51-, 64-, and 76-µm-diameter PTFE microtubes differed significantly (22.1, 16.9, and 12.2 mmHg, respectively; p < 0.001), and that of the 76-µm-diameter PEBAX microtube was 15.8 mmHg (p < 0.001 compared to the 12.2 mmHg of the 76-µm-diameter PTFE microtube). The pressures measured in water also differed significantly among the three microtubes at 3.9, 3.0, and 1.4 mmHg, respectively, while that in the PEBAX microtube was 2.6 mmHg (all p < 0.001). Using the intraluminal stent, the pressure in water of the three different PTFE microtubes increased to 22.6, 18.0, and 4.1 mmHg, respectively, and that in the PEBAX microtube increased to 10.5 mmHg (all p < 0.001). Similar trends were evident when measurements were performed in pig eyes. Conclusions Although microtubes of smaller diameter experienced higher pressure in air, reduction of the inner diameter to 51 µm did not adequately increase the pressure attained in water or pig eyes. Insertion of an intraluminal stent effectively elevated the latter pressures. PEBAX microtubes created higher pressures than did PTFE microtubes. PMID:27247522

  9. Measuring helium bubble diameter distributions in tungsten with grazing incidence small angle x-ray scattering (GISAXS)

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Riley, D.; Corr, C. S.

    2016-02-01

    Grazing incidence small angle x-ray scattering was performed on tungsten samples exposed to helium plasma in the MAGPIE and Pisces-A linear plasma devices to measure the size distributions of resulting helium nano-bubbles. Nano-bubbles were fitted assuming spheroidal particles and an exponential diameter distribution. These particles had mean diameters between 0.36 and 0.62 nm. Pisces-A exposed samples showed more complex patterns, which may suggest the formation of faceted nano-bubbles or nano-scale surface structures.

  10. Method of synthesizing small-diameter carbon nanotubes with electron field emission properties

    NASA Technical Reports Server (NTRS)

    Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)

    2009-01-01

    Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.

  11. [Clinicopathological study of small lung cancer (diameter of 2 cm or less) by uptake value of 18F-fluorodeoxyglucose].

    PubMed

    Nakano, Tomoyuki; Endo, Shunsuke; Mitsuda, Sayaka; Endo, Tetsuya; Tezuka, Yasuhiro; Kanai, Yoshihiko; Otani, Shin-ichi; Yamamoto, Shin-ichi; Tetsuka, Kenji; Hasegawa, Tsuyoshi; Ishikawa, Shigemi; Saito, Noriko

    2012-01-01

    18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) for lung cancer may be a biomarker for malignancy as well as a useful tool for detection of nodal involvement and distant metastasis. The goal of this study was to clarify a relationship between clinicopathological findings and maximum standardized uptake value( SUVmax) obtained by preoperative PET in patients with non-small cell lung cancer in diameter of 2 cm or less. Between January 2008 and April 2011, 124 patients( 54 men and 70 women) with non-small cell lung cancer in diameter of 2 cm or less undergoing lobectomy or segmentectomy were enrolled. The relationship between SUVmax and clinicopathological findings as tumor diameter, histological type, pleural invasion, vascular invasion, lymphatic permeation and nodal involvement were analyzed. Correlation between SUVmax and findings such as vascular invasion and lymphatic permeation showed relatively strong in the patients with adenocarcinoma, on the contrary to the correlation in the patients with non-adenocarcinoma. No tumor showing SUVmax of 2 or less showed vascular invasion and/or lymphatic permeation as well as nodal involvement in any patients with adenocarcinoma. SUVmax of the primary tumor in diameter of 2 cm or less, can be a useful biomarker which indicates a surgical candidate for sublobar pulmonary resection as well as mediastinal nodal dissection, especially in patients with adenocarcinoma. PMID:22314152

  12. High-yield sorting of small-diameter carbon nanotubes for solar cells and transistors.

    PubMed

    Wang, Huiliang; Koleilat, Ghada I; Liu, Peng; Jiménez-Osés, Gonzalo; Lai, Ying-Chih; Vosgueritchian, Michael; Fang, Ya; Park, Steve; Houk, Kendall N; Bao, Zhenan

    2014-03-25

    We describe herein a high-yield method to selectively disperse semiconducting CoMoCAT (CO disproportionation on Co-Mo catalysts) single-walled carbon nanotubes (SWNTs) with regioregular poly(3-alkylthiophenes) polymers. We observed that the dispersion yield was directly related to the length of the polymer's alkyl side chains. Molecular dynamics simulations in explicit toluene (real toluene molecules) indicate that polythiophenes with longer alkyl side chains bind strongly to SWNTs, due to the increased overall surface contact area with the nanotube. Furthermore, the sorting process selectively enriches smaller-diameter CoMoCAT SWNTs with larger bandgaps, which is ideal for solar cell applications. Compared to the larger diameter sorted HiPco (High-Pressure CO) SWNTs, solar cells fabricated using our sorted CoMoCAT SWNTs demonstrated higher open-circuit voltage (Voc) and infrared external quantum efficiency (EQE). The Voc achieved is the highest reported for solar cells based on SWNT absorbers under simulated AM1.5 solar illumination. Additionally, we employed the sorted CoMoCAT SWNTs to fabricate thin film transistors with excellent uniformity and device performance. PMID:24484388

  13. Small diameter acetabulum and femoral head in total hip arthroplasty for developmental dysplasia of the hip, with no femoral osteotomy.

    PubMed

    Verettas, Dionysios-Alexandros; Chloropoulou, Pelagia; Xarchas, Konstantinos; Drosos, Georgios; Ververidis, Athanasios; Kazakos, Konstantinos

    2015-01-01

    We present the results of 66 total hip arthroplasties in 62 patients of mean age 46 years (24-74 years), with developmental dysplasia of the hip. In all cases the centre of rotation of the new hip was positioned at the site of the true acetabulum. In all patients cementless press fit acetabular components of small diameter (42-44 mm) were used, articulating exclusively with a 22.25 mm modular metal femoral head, without the use of bone grafts or shortening osteotomies of the femur. Despite the use of small diameter femoral heads the rate of dislocation was 3%. After an average follow-up period of 9 years (4-18 years), no revisions were required for infection, loosening or wear or implant migration. Osteolytic lesions were seen in the periacetabular region in 3 patients who were symptom free. A total of 2 revisions were required for instability and 2 patients had the wires of their trochanteric osteotomy removed because of bursitis. Leg length inequality was improved in 55% of the patients and one postoperative transient sciatic nerve lesion settled within 4 months. We believe that in patients with painful dysplastic hips, the use of small diameter implants with the centre of rotation at the true acetabulum, can give very satisfactory results, without any supplementary procedures. PMID:25907394

  14. Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper.

    PubMed

    Galland, Sylvain; Berthold, Fredrik; Prakobna, Kasinee; Berglund, Lars A

    2015-08-10

    Wood cellulose nanofibers (CNFs) based on bleached pulp are different from the cellulose microfibrils in the plant cell wall in terms of larger diameter, lower cellulose molar mass, and modified cellulose topochemistry. Also, CNF isolation often requires high-energy mechanical disintegration. Here, a new type of CNFs is reported based on a mild peracetic acid delignification process for spruce and aspen fibers, followed by low-energy mechanical disintegration. Resulting CNFs are characterized with respect to geometry (AFM, TEM), molar mass (SEC), and polysaccharide composition. Cellulose nanopaper films are prepared by filtration and characterized by UV-vis spectrometry for optical transparency and uniaxial tensile tests. These CNFs are unique in terms of high molar mass and cellulose-hemicellulose core-shell structure. Furthermore, the corresponding nanopaper structures exhibit exceptionally high optical transparency and the highest mechanical properties reported for comparable CNF nanopaper structures. PMID:26151837

  15. Growth of small diameter multi-walled carbon nanotubes by arc discharge process

    NASA Astrophysics Data System (ADS)

    T. Chaudhary, K.; J., Ali; P. Yupapin, P.

    2014-03-01

    Multi-walled carbon nanotubes (MWCNTs) are grown by arc discharge method in a controlled methane environment. The arc discharge is produced between two graphite electrodes at the ambient pressures of 100 torr, 300 torr, and 500 torr. Arc plasma parameters such as temperature and density are estimated to investigate the influences of the ambient pressure and the contributions of the ambient pressure to the growth and the structure of the nanotubes. The plasma temperature and density are observed to increase with the increase in the methane ambient pressure. The samples of MWCNT synthesized at different ambient pressures are analyzed using transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. An increase in the growth of MWCNT and a decrease in the inner tube diameter are observed with the increase in the methane ambient pressure.

  16. Response of critical tube diameter phenomenon to small perturbations for gaseous detonations

    NASA Astrophysics Data System (ADS)

    Mehrjoo, N.; Zhang, B.; Portaro, R.; Ng, H. D.; Lee, J. H. S.

    2014-03-01

    In this experimental study, the critical tube diameter phenomenon of gaseous detonations is investigated in both stable and unstable mixtures with focus on the failure mechanism. It was previously postulated that in unstable mixtures, where the cellular detonation front is highly irregular, the failure is caused by the suppression of local re-initiation centers linked to the dynamics of instabilities. In stable mixtures, typically with high argon dilution, the detonation structure is very regular and the failure mode is attributed to the excessive curvature of the global front. In order to differentiate between these two failure mechanisms, flow perturbations are introduced by placing an obstacle resulting in a minimal blockage ratio of approximately 8 %. The obstacle is placed at the tube exit, before the detonation diffraction. Results show that the perturbations caused by the obstacle only have an effect on undiluted (i.e., unstable) mixtures, causing a decrease in the minimum initial pressure required for successful detonation transmission. This thus demonstrates that local hydrodynamic instabilities play an important role for the critical tube diameter phenomenon in undiluted, unstable mixtures. In contrast, the results for the stable, argon-diluted mixture exhibit little variation in critical initial pressure between the perturbed and unperturbed cases. This can be attributed to the minimal effect of the perturbations on global curvature for the emergent detonation wave. The geometry of the perturbation is also tested, while holding the blockage area constant, by varying the number and position of the obstacle(s). The results demonstrate that the transmission of a detonation is independent of the blockage geometry and is only a function of its imposed blockage area. Consequently, the change in required minimum pressure for transmission shows an identical behavior in unstable mixtures for different perturbation geometries while the transmission characteristics

  17. Well-control methods and practices in small-diameter wellbores

    SciTech Connect

    Bode, D.J.; Noffke, R.B.; Nickens, H.V. )

    1991-11-01

    This paper reports on slim-hole drilling and continuous coring for oil and gas exploration which has been impeded by lack of documentation of well-control methods for small-annulus drilling. Research in annular pressure losses, kick identification, wireline swab effects, and dynamic-kill well-control effectiveness helped develop a slim-hole well-control methodology.

  18. A standing-wave flow measurement system for small diameter pipes using long acoustic waves

    NASA Astrophysics Data System (ADS)

    Ikpe, E. S.; Scarrott, G.; Weight, J. P.; Grattan, K. T. V.

    1993-09-01

    An exploratory investigation, using laboratory fabricated acoustic components, of standing-wave flow measurement techniques for liquids and gases in pipes of diameter up to about 25 mm was undertaken, using long acoustic waves. The results show a linear sensitivity based on the ``sing-around'' technique, often associated with contrapropagating time-of-flight flowmeters. A repeatability test at a volume flow rate of 1.5 l per minute indicates that, within the 95% confidence limit, only 5% of the readings will lie outside the range of 1.1-1.9 l per minute. The transducer used in the above investigation comprises a section of the pipe wall which acts as part of a resonating transmitter or detector of long waves in a fluid. The measurement cell is closed and generates a known standing-wave pattern. The results obtained suggest that, in the future, the initial accuracy obtained in this study can be significantly enhanced with further improvements to the transducers, the measurement cell, the electronics, and test procedures, on which work is continuing, to produce a device competitive with those using other technologies.

  19. Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model.

    PubMed

    Roh, Jason D; Nelson, Gregory N; Brennan, Matthew P; Mirensky, Tamar L; Yi, Tai; Hazlett, Tyrone F; Tellides, George; Sinusas, Albert J; Pober, Jordan S; Saltzman, W M; Kyriakides, Themis R; Breuer, Christopher K

    2008-04-01

    The development of neotissue in tissue engineered vascular grafts remains poorly understood. Advances in mouse genetic models have been highly informative in the study of vascular biology, but have been inaccessible to vascular tissue engineers due to technical limitations on the use of mouse recipients. To this end, we have developed a method for constructing sub-1mm internal diameter (ID) biodegradable scaffolds utilizing a dual cylinder chamber molding system and a hybrid polyester sealant scaled for use in a mouse model. Scaffolds constructed from either polyglycolic acid or poly-l-lactic acid nonwoven felts demonstrated sufficient porosity, biomechanical profile, and biocompatibility to function as vascular grafts. The scaffolds implanted as either inferior vena cava or aortic interposition grafts in SCID/bg mice demonstrated excellent patency without evidence of thromboembolic complications or aneurysm formation. A foreign body immune response was observed with marked macrophage infiltration and giant cell formation by post-operative week 3. Organized vascular neotissue, consisting of endothelialization, medial generation, and collagen deposition, was evident within the internal lumen of the scaffolds by post-operative week 6. These results present the ability to create sub-1mm ID biodegradable tubular scaffolds that are functional as vascular grafts, and provide an experimental approach for the study of vascular tissue engineering using mouse models. PMID:18164056

  20. Nanostructurally Controlled Hydrogel Based on Small-Diameter Native Chitin Nanofibers: Preparation, Structure, and Properties.

    PubMed

    Mushi, Ngesa Ezekiel; Kochumalayil, Joby; Cervin, Nicholas Tchang; Zhou, Qi; Berglund, Lars A

    2016-05-10

    Chitin nanofibers of unique structure and properties can be obtained from crustacean and fishery waste. These chitin nanofibers have roughly 4 nm diameters, aspect ratios between 25-250, a high degree of acetylation and preserved crystallinity, and can be potentially applied in hydrogels. Hydrogels with a chitin nanofiber content of 0.4, 0.6, 0.8, 1.0, 2.0, and 3.0 wt % were successfully prepared. The methodology for preparation is new, environmentally friendly, and simple as gelation is induced by neutralization of the charged colloidal mixture, inducing precipitation and secondary bond interaction between nanofibers. Pore structure and pore size distributions of corresponding aerogels are characterized using auto-porosimetry, revealing a substantial fraction of nanoscale pores. To the best of our knowledge, the values for storage (13 kPa at 3 wt %) and compression modulus (309 kPa at 2 wt %) are the highest reported for chitin nanofibers hydrogels. PMID:27061912

  1. Analysis of Eddy Current Capabilities for the Detection of Outer Diameter Stress Corrosion Cracking in Small Bore Metallic Structures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Williams, Phillip; Simpson, John

    2007-01-01

    The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in Space Shuttle Primary Reaction Control System (PRCS) Thrusters. In this case, the detection of deeply buried stress corrosion cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite and boundary element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of stress corrosion cracking in Space Shuttle Primary Reaction Control System (PRCS) Thrusters.

  2. Analysis of Eddy Current Capabilities for the Detection of Outer Diameter Cracking in Small Bore Metallic Structures

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz; Williams, Phillip; Simpson, John

    2008-02-01

    The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in space shuttle primary reaction control system (PRCS) thrusters. In this case, the detection of deeply buried intergranular cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of intergranular cracking in PRCS thrusters.

  3. Non-contact inspection for inner surface of small-diameter pipes based on laser-PSD

    NASA Astrophysics Data System (ADS)

    Wu, En-Qi; Ke, Ying-Lin; Li, Jiang-Xiong

    2005-07-01

    A new non-contact inspection technique based on laser-PSD (position sensitive detector) to inspect the inner surface of small-diameter pipe is proposed, and the corresponding sensor has been developed. After being reflected by two mirrors in series, a laser beam is projected onto the inner wall of a pipe as a small light spot and is read by a two-dimensional PSD. Based on the signals from the PSD and the structure parameters of the sensor, the spot position on the wall can be calculated in a local 3D coordinate system. The spot controlled by the micro-motor driven mirrors will scan a closed section ring on the inner wall of the pipe to obtain the relative coordinates of all the sampled points. The data will be then processed through data segmentation and least square fitting, to reconstruct the section curve used for obtaining the radius and the defect description of the section. Driven by a micro-pipe robot, the sensor can inspect a long curved pipe and obtain its 3-D reconstruction. An inspection system based on this technique can detect the mini-diameter pipe with an inner diameter of 9.5 mm≈10.5 mm and a curvature radius larger than 100 mm at a measurement accuracy of the inner surface defect of ±0.1 mm.

  4. The in vivo blood compatibility of bio-inspired small diameter vascular graft: effect of submicron longitudinally aligned topography

    PubMed Central

    2013-01-01

    Background Cardiovascular disease is the leading cause of deaths worldwide and the arterial reconstructive surgery remains the treatment of choice. Although large diameter vascular grafts have been widely used in clinical practices, there is an urgent need to develop a small diameter vascular graft with enhanced blood compatibility. Herein, we fabricated a small diameter vascular graft with submicron longitudinally aligned topography, which mimicked the tunica intima of the native arterial vessels and were tested in Sprague–Dawley (SD) rats. Methods Vascular grafts with aligned and smooth topography were prepared by electrospinning and were connected to the abdominal aorta of the SD rats to evaluate their blood compatibility. Graft patency and platelet adhesion were evaluated by color Doppler ultrasound and immunofluorescence respectively. Results We observed a significant higher patency rate (p = 0.021) and less thrombus formation in vascular graft with aligned topography than vascular graft with smooth topography. However, no significant difference between the adhesion rates on both vascular grafts (smooth/aligned: 0.35‰/0.12‰, p > 0.05) was observed. Moreover, both vascular grafts had few adherent activated platelets on the luminal surface. Conclusion Bionic vascular graft showed enhanced blood compatibility due to the effect of surface topography. Therefore, it has considerable potential for using in clinical application. PMID:24083888

  5. Plasma Sputtering Robotic Device for In-Situ Thick Coatings of Long, Small Diameter Vacuum Tubes

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2014-10-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed fabricated & operated. Reason for this endeavor is to alleviate the problems of unacceptable ohmic heating of stainless steel vacuum tubes and of electron clouds, due to high secondary electron yield (SEY), in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced SEY to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that 10 μm Cu coated stainless steel RHIC tube has conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. Device detail and experimental results will be presented. Work supported by Brookhaven Science Associates, LLC under

  6. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubesa)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Blaskiewicz, M.; Brennan, J. M.; Custer, A.; Dingus, A.; Erickson, M.; Fischer, W.; Jamshidi, N.; Laping, R.; Liaw, C.-J.; Meng, W.; Poole, H. J.; Todd, R.

    2015-05-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10 μm copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  7. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubes

    SciTech Connect

    Hershcovitch, A. Blaskiewicz, M.; Brennan, J. M.; Fischer, W.; Liaw, C.-J.; Meng, W.; Todd, R.; Custer, A.; Dingus, A.; Erickson, M.; Jamshidi, N.; Laping, R.; Poole, H. J.

    2015-05-15

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10 μm copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  8. Development and assessment of a biodegradable solvent cast polyester fabric small-diameter vascular graft

    PubMed Central

    Brandes, Zachary R; Jonas, Richard A.; Fisher, John P.

    2014-01-01

    Adjusting the mechanical properties of polyester-based vascular grafts is crucial to achieving long-term success in vivo. While previous studies using a fabric-based approach have achieved some success, a central issue with pure poly(lactic acid) (PLA) or poly(glycolic acid) (PGA) grafts sealed with poly(DL-caprolactone-co-lactic acid) (P(CL/LA)) has been stenosis. Intimal hyperplasia, a leading cause of stenosis, can be caused by the mechanical incompatibility of synthetic vascular grafts. Investigating the performance of poly(glycolic-co-lactic acid) grafts (PGLA) could lead to insight into whether graft stenosis stems from mechanical issues such as non-compliance and unfavorable degradation times. This could be achieved by examining grafts with tunable mechanical properties between the ranges of such properties in pure PGA and PLA based grafts. In this study, we examined PGLA-based grafts sealed with different P(CL/LA) solutions to determine the PGLA-P(CL/LA) grafts' mechanical properties and tissue functionality. Cell attachment and proliferation on graft surfaces were also observed. For in vivo assessment, grafts were implanted in a mouse model. Mechanical properties and degradation times appeared adequate compared to recorded values of vessels used in autograft procedures. Initial neotissue formation was observed in the grafts and patency maintained during the pilot study. This study presents a ~1mm diameter degradable graft demonstrating suitable mechanical properties and in vivo pilot study success, enabling further investigation into the tuning of mechanical properties to reduce complications in degradable polyester fabric-based vascular grafts. PMID:23852776

  9. Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies.

    PubMed

    Kim, Keun Su; Kingston, Christopher T; Hrdina, Amy; Jakubinek, Michael B; Guan, Jingwen; Plunkett, Mark; Simard, Benoit

    2014-06-24

    Boron nitride nanotubes (BNNTs) exhibit a range of properties that are as compelling as those of carbon nanotubes (CNTs); however, very low production volumes have prevented the science and technology of BNNTs from evolving at even a fraction of the pace of CNTs. Here we report the high-yield production of small-diameter BNNTs from pure hexagonal boron nitride powder in an induction thermal plasma process. Few-walled, highly crystalline small-diameter BNNTs (∼5 nm) are produced exclusively and at an unprecedentedly high rate approaching 20 g/h, without the need for metal catalysts. An exceptionally high cooling rate (∼10(5) K/s) in the induction plasma provides a strong driving force for the abundant nucleation of small-sized B droplets, which are known as effective precursors for small-diameter BNNTs. It is also found that the addition of hydrogen to the reactant gases is crucial for achieving such high-quality, high-yield growth of BNNTs. In the plasma process, hydrogen inhibits the formation of N2 from N radicals and promotes the creation of B-N-H intermediate species, which provide faster chemical pathways to the re-formation of a h-BN-like phase in comparison to nitridation from N2. We also demonstrate the fabrication of macroscopic BNNT assemblies such as yarns, sheets, buckypapers, and transparent thin films at large scales. These findings represent a seminal milestone toward the exploitation of BNNTs in real-world applications. PMID:24807071

  10. Boiling Heat Transfer and Pressure Drop of a Refrigerant Flowing Vertically Downward in a Small Diameter Tube

    NASA Astrophysics Data System (ADS)

    Miyata, Kazushi; Mori, Hideo; Ohishi, Katsumi; Tanaka, Hirokazu

    Experiments were performed on boiling heat transfer and pressure drop of a refrigerant R410A flowing vertically downward in a copper smooth tube of 1.0 mm inside diameter for the development of a high-performance heat exchanger using small diameter tubes for air conditioning systems. Local heat transfer coefficients were measured in a range of mass fluxes from 30 to 200 kg/(m2•s), heat fluxes from 1 to 16 kW/m2 and quality from 0.1 to over 1 at evaporation temperature of 10°C. Pressure drops were measured and flow patterns were observed at mass fluxes from 30 to 200 kg/(m2•s) and quality from 0.1 to 0.9. The characteristics of frictional pressure drop, heat transfer coefficient and dryout qualities were clarified by comparing the measurements with the data for the vertically upward flow previously obtained.

  11. Approximate solution for optical measurements of the diameter and refractive index of a small and transparent fiber.

    PubMed

    Świrniak, Grzegorz; Mroczka, Janusz

    2016-04-01

    When a plane electromagnetic wave is scattered by an optically transparent object, whose size is much larger than the wavelength, a series of bright and dark fringes forms the primary rainbow, which is one of the most splendid phenomena in nature. In this work, an optical technique is discussed for simultaneous measurement of the diameter and refractive index of an axisymmetric and dielectric fiber by studying some rainbow features. This noncontact optical technique uses a beam of light exhibiting low temporal coherence, which enabled us to reduce the detrimental sensitivity of the rainbow features to variations of the fiber properties, thus allowing for high-precision estimates. Approximate mathematical formulas for the diameter and refractive index measurements were derived from the lowest-order complex angular momentum correction to Airy theory of rainbow. Furthermore, sensitivity of the measurement data to small deformation of the fiber's cross section into an ellipse was discussed. Preliminary empirical results provide a qualitative verification. PMID:27140778

  12. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part I: Experimental study

    SciTech Connect

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    Two-phase flow pattern and heat transfer characteristics of refrigerant-oil mixture flow boiling inside small tubes with inside diameters of 6.34 mm and 2.50 mm are investigated experimentally. The test condition of nominal oil concentration is from 0% to 5%, mass flux from 200 to 400 kg m{sup -2} s{sup -1}, heat flux from 3.2 to 14 kW m{sup -2}, evaporation temperature of 5 C, inlet quality from 0.1 to 0.8, and quality change from 0.1 to 0.2. Wavy, wavy-annular, annular and mist-annular flow pattern in 6.34 mm tube are observed, while only slug-annular and annular flow pattern are observed in 2.50 mm tube. Oil presence can make annular flow to form early and to retard to diminish in quality direction at nominal oil concentration {>=}3%. Augmentation effect of oil on heat transfer coefficient becomes weakened or even diminishes for small diameter tube while detrimental effect of oil on small tube performance becomes more significant than large tube. For both test tubes, variation of heat transfer coefficient and enhanced factor with oil concentration is irregular. Two-phase heat transfer multiplier with refrigerant-oil mixture properties increases consistently and monotonically with local oil concentration at different vapor quality. (author)

  13. Suppression of ATP-induced excitability in rat small-diameter trigeminal ganglion neurons by activation of GABAB receptor.

    PubMed

    Takeda, Mamoru; Ikeda, Mizuho; Takahashi, Masayuki; Kanazawa, Takuya; Nasu, Masanori; Matsumoto, Shigeji

    2013-09-01

    The aim of the present study was to investigate whether a GABAB receptor agonist could modulate ATP-activated neuronal excitability of nociceptive TRG neurons using perforated whole-cell patch-clamp and immunohistochemical techniques. Immunohistochemical analysis revealed that 86% of P2X3 receptor-immunoreactive, small-diameter TRG neurons co-expressed GABAB receptor. Under voltage-clamp conditions (Vh=-60mV), application of ATP activated the inward current in acutely isolated rat TRG neurons in a dose-dependent manner (10-50 μM) and this current could be blocked by pyridoxal-phosphate-6-azophenyl-27,47-disulfonic acid (PPADS) (10 μM), a selective P2 purinoreceptor antagonist. The peak amplitude of ATP-activated currents was significantly inhibited after application of GABAB receptor agonist, baclofen (10-50 μM), in a concentration-dependent and reversible manner. The baclofen-induced inhibition of ATP-activated current was abolished by co-application of 3-amino-2 (4-chlorophenyl)-2hydroxypropysufonic acid) saclofen, a GABAB receptor antagonist (50 μM). Under current-clamp conditions, application of 20 μM ATP significantly depolarized the membrane potential resulting in increased mean action potential frequencies, and these ATP-induced effects were significantly inhibited by baclofen and these effects were antagonized by co-application of saclofen. Together, the results suggested that GABAB receptor activation could inhibit the ATP-induced excitability of small-diameter TRG neurons activated through the P2X3 receptor. Thus, the interaction between P2X3 and GABAB receptors of small-diameter TRG neuronal cell bodies is a potential therapeutic target for the treatment of trigeminal nociception. PMID:24004472

  14. Cost and Productivity of Multi-Product Processing for Small Diameter Trees : Final Report.

    SciTech Connect

    Lambert, Michael B.; Howard, James O.; Hermann, Steven E.

    1987-09-01

    This project evolved from an effort by the land manager, the United States Forest Service, to economically deal with thousands of acres of thick (doghair) Douglas-fir and hemlock forests on Washington's Olympic Peninsula. These forests are very densely stocked and the trees are small. Until this effort, there has been no reasonable way to get enough product from the sites to justify managing them. And, even this project required some special agreements between the landowner and the investigator to be viable. This report describes the in-woods processing system now working in doghair stands on the Quilcene District. As whole trees arrive at the landing, they are sorted by a Cat 225 shovel-type loader. Sawlogs are trimmed, limbed, bucked, and decked for transportation on conventional log trucks. Chip grade trees are passed through a prototype, multi-stem debarker/delimber and then chipped by a Morbark 23'' Chiparvester. Clean chips are transported in regular highway chip vans. All other materials, not sold as logs or clean chips, are processed by a prototype shredder, and taken from the site as hogfuel. 7 ref., 15 figs., 11 tabs.

  15. Removal of fusain with a small-diameter H.M. cyclone operating with ultrafine medium particles

    SciTech Connect

    Xu Jianping Cai Changfeng; Zhang Jing

    1997-12-31

    As evidenced by study of physio-chemical property and liberation characteristics of the macerals of Shenfu young coal, the vitrain differs slightly with fusain in density, with the density of the former being about 0.1g/l higher. After being crushed to {minus}0.5mm, the individual maceral can be liberated, and the fusainite content in the {minus}0.043mm size fraction is noticeably higher than that in the 0.5--0.043mm size fraction. Based on the theory and practical cleaning result obtained through using a small-diameter cyclone for efficient cleaning of fine coal according to density, tests on the removal of fusain from 0.5--0.043mm size coal were conducted with a small-size cyclone operating with ultrafine medium. The test proved to be successful, with a fusain removal rate of up to 50%.

  16. In vivo performance of a phospholipid-coated bioerodable elastomeric graft for small-diameter vascular applications

    PubMed Central

    Soletti, Lorenzo; Nieponice, Alejandro; Hong, Yi; Ye, Sang-Ho; Stankus, John J.; Wagner, William R.; Vorp, David A.

    2011-01-01

    There remains a great need for vascular substitutes for small-diameter applications. The use of an elastomeric biodegradable material, enabling acute antithrombogenicity and long-term in vivo remodeling, could be beneficial for this purpose. Conduits (1.3 mm internal diameter) were obtained by electrospinning biodegradable poly(ester urethane)urea (PEUU), and by luminally immobilizing a non-thrombogenic, 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymer. Platelet adhesion was characterized in vitro after contact with ovine blood. The conduits were implanted as aortic interposition grafts in the rat for 4, 8, 12, and 24 weeks. Surface treatment resulted in a 10-fold decrease in platelet adhesion compared to untreated material. Patency at 8 weeks was 92% for the coated grafts compared to 40% for the non-coated grafts. Histology at 8 and 12 weeks demonstrated formation of cellularized neotissue consisting of aligned collagen and elastin. The lumen of the grafts was confluent with cells qualitatively aligned in the direction of blood flow. Immunohistochemistry suggested the presence of smooth muscle cells in the medial layer of the neotissue and endothelial cells lining the lumen. Mechanically, the grafts were less compliant than rat aortas prior to implantation (4.5 ± 2.0 × 10–4 mmHg–1 vs. 14.2 ± 1.1 × 10–4 mmHg–1, respectively), then after 4 weeks in vivo they approximated native values, but subsequently became stiffer again at later time points. The novel coated grafts exhibited promising antithrombogenic and mechanical properties for small-diameter arterial revascularization. Further evaluation in vivo will be required to demonstrate complete remodeling of the graft into a native-like artery. PMID:21171163

  17. Platform Technologies for Decellularization, Tunic-Specific Cell Seeding, and In Vitro Conditioning of Extended Length, Small Diameter Vascular Grafts

    PubMed Central

    Fercana, George; Bowser, Devon; Portilla, Margarita; Langan, Eugene M.; Carsten, Christopher G.; Cull, David L.; Sierad, Leslie N.

    2014-01-01

    The aim of this study was to generate extended length, small diameter vascular scaffolds that could serve as potential grafts for treatment of acute ischemia. Biological tissues are considered excellent scaffolds, which exhibit adequate biological, mechanical, and handling properties; however, they tend to degenerate, dilate, and calcify after implantation. We hypothesized that chemically stabilized acellular arteries would be ideal scaffolds for development of vascular grafts for peripheral surgery applications. Based on promising historical data from our laboratory and others, we chose to decellularize bovine mammary and femoral arteries and test them as scaffolds for vascular grafting. Decellularization of such long structures required development of a novel “bioprocessing” system and a sequence of detergents and enzymes that generated completely acellular, galactose-(α1,3)-galactose (α-Gal) xenoantigen-free scaffolds with preserved collagen, elastin, and basement membrane components. Acellular arteries exhibited excellent mechanical properties, including burst pressure, suture holding strength, and elastic recoil. To reduce elastin degeneration, we treated the scaffolds with penta-galloyl glucose and then revitalized them in vitro using a tunic-specific cell approach. A novel atraumatic endothelialization protocol using an external stent was also developed for the long grafts and cell-seeded constructs were conditioned in a flow bioreactor. Both decellularization and revitalization are feasible but cell retention in vitro continues to pose challenges. These studies support further efforts toward clinical use of small diameter acellular arteries as vascular grafts. PMID:24749889

  18. Degradable/non-degradable polymer composites for in-situ tissue engineering small diameter vascular prosthesis application.

    PubMed

    Wang, Fujun; Mohammed, Abedalwafa; Li, Chaojing; Ge, Peng; Wang, Lu; King, Martin W

    2014-01-01

    Various tissue-engineered vascular grafts have been studied in order to overcome the clinical disadvantages associated with conventional prostheses. However, previous tissue-engineered vascular grafts have possessed insufficient mechanical properties and thus have generally required either preoperative cellular manipulation or the use of bioreactors to improve their performance. In this study, we focused on the concept of in situ cellularization and developed a tissue-engineered vascular graft with degradable/non-degradable polymer composites for arterial reconstruction that would facilitate the renewal of autologous tissue without any pretreatment. Additionally, these composites are designed to improve the mechanical performance of a small-diameter vascular prosthesis scaffold that is made from a flexible membrane of poly(e-caprolactone) (PCL). The PCL scaffold was reinforced by embedding a tubular fabric that was knitted from polyethylene terephthalate (PET) yarns within the freeze-dried composite structure. Adding this knitted fabric component significantly improved the mechanical properties of the composite scaffold, such as its tensile strength and initial modulus, radial compliance, compression recovery, and suture retention force. Finally, this reinforced composite structure is a promising candidate for use as a tissue-engineered scaffold for a future small diameter vascular prosthesis. PMID:25226910

  19. Triamcinolone Acetonide Selectively Inhibits Angiogenesis in Small Blood Vessels and Decreases Vessel Diameter within the Vascular Tree

    NASA Technical Reports Server (NTRS)

    McKay, Terri L.; Gredeon, Dan J.; Vickerman, Mary B.; Hylton, alan G.; Ribita, Daniela; Olar, Harry H.; Kaiser, Peter K.; Parsons-Wingerter, Patricia

    2007-01-01

    The steroid triamcinolone acetonide (TA) is a potent anti-angiogenesis drug used to treat retinal vascular diseases that include diabetic retinopathy, vascular occlusions and choroidal neovascularization. To quantify the effects of TA on branching morphology within the angiogenic microvascular tree of the chorioallantoic membrane (CAM) of quail embryos. Increasing concentrations of TA (0-16 ng/ml) were applied topically on embryonic day 7 (E7) to the chorioallantoic membrane (CAM) of quail embryos cultured in Petri dishes, and incubated for an additional 24 or 48 hours until fixation. Binary (black/white) microscopic images of arterial end points were quantified by VESGEN software (for Generational Analysis of Vessel Branching) to obtain major vascular parameters that include vessel diameter (Dv), fractal dimension (Df), tortuosity (Tv) and densities of vessel area, length, number and branch point (Av, Lv, Nv and Brv). For assessment of specific changes in vascular morphology induced by TA, the VESGEN software automatically segmented the vascular tree into branching generations (G1...G10) according to changes in vessel diameter and branching. Vessel density decreased significantly up to 34% as the function of increasing concentration of TA according to Av, Lv, Brv, Nv and Df. TA selectively inhibited the growth of new, small vessels, because Lv decreased from 13.14plus or minus 0.61 cm/cm2 for controls to 8.012 plus or minus 0.82 cm/cm2 at 16 ng TA/ml in smaller branching generations (G7-G10), and for Nv from 473.83 plus or minus 29.85 cm(-)2 to 302.32 plus or minus 33.09 cm-()2. In contrast, vessel diameter (Dv) decreased throughout the vascular tree (G1-G10).

  20. Influence of endothelial cell seeding on platelet deposition and patency in small-diameter Dacron arterial grafts

    SciTech Connect

    Allen, B.T.; Long, J.A.; Clark, R.E.; Sicard, G.A.; Hopkins, K.T.; Welch, M.J.

    1984-01-01

    Serial platelet deposition, surface topography, and patency were evaluated in control (N . 28) and endothelial cell-seeded (N . 28) small-diameter (4 mm inner diameter) USCI Dacron grafts implanted in the carotid and femoral arteries of dogs. All dogs received aspirin (325 mg) daily for 2 weeks starting 24 hours prior to graft implantation. Endothelial cell seeding was performed by mixing suspensions of autologous endothelial cells that had been enzymatically harvested from segments of external jugular vein with blood that was used to preclot the prostheses. The platelet deposition on each graft was quantitated by means of indium 111-labeled platelets and technetium 99m-labeled red cells in a dual-isotope platelet-imaging technique. Platelet deposition on seeded grafts 24 hours after implantation was significantly higher than on the controls (p less than 0.05). Two weeks after implantation platelet deposition on seeded prostheses had decreased to a level significantly lower than that on the controls and continued to decline on serial studies up to 7 months. In contrast to seeded grafts, platelet accumulation on control grafts dramatically increased after the withdrawal of aspirin therapy and was associated with a sharp rise in control graft thromboses. Cumulative 7-month patency for seeded prostheses was significantly higher than for the controls (96% and 29%, respectively; p less than 0.001). We conclude that endothelial cell seeding in combination with short-term aspirin therapy is a simple, reliable diameter Dacron prostheses. Abrupt withdrawal of aspirin therapy may be contraindicated in nonseeded control grafts because it results in increased platelet deposition and thrombosis.

  1. Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities

    SciTech Connect

    Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Jiang, H.; Kauppinen, E. I.; Susi, T.; Nasibulin, A. G.

    2015-07-06

    We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3–4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directly determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ∼10{sup 5 }cm{sup −3} prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light.

  2. Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities

    NASA Astrophysics Data System (ADS)

    Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Susi, T.; Jiang, H.; Nasibulin, A. G.; Kauppinen, E. I.

    2015-07-01

    We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3-4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directly determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ˜105 cm-3 prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light.

  3. Impact damage detection system using small-diameter optical fiber sensors wavily embedded in CFRP laminate structures

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hiroaki; Kawamata, Akio; Kimoto, Junichi; Isoe, Akira; Hirose, Yasuo; Sanda, Tomio; Takeda, Nobuo

    2003-08-01

    It is well known that barely visible damage is often induced in composite structures subjected to out-of plane impact, and the mechanical properties of the composites decrease markedly. In this study, some element technologies for the detection of the damage are explained. Those are (1) the technologies for the arrangement of embedded small-diameter optical fibers which have no serious effect on the mechanical properties of composites, (2) the technologies for the egress of the optical fibers using "the embedded connector for smart structures" which can be trimmed without care about the optical fibers, (3) the technologies for the damage detection system that has the functions for data acquisition and analysis, the evaluation of the initiation and the position of damage, and the visualization of damage information. The impact test using the composite airframe demonstrator is conducted. The sensors embedded in the upper panel of the stiffened cylindrical composite structure with 1.5 m in diameter and 3 m in length, are FBG sensors for strain measurement and the optical fibers for optical loss measurement. The detection of damage in the composite structures using a developed damage detection system is demonstrated.

  4. Impact damage detection of curved stiffened composite panels by using wavy embedded small-diameter optical fibers

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hiroaki; Kawamata, Akio; Kimoto, Junichi; Sanda, Tomio; Takeda, Nobuo

    2002-07-01

    It is well known that barely visible damage is often induced in composite structures subjected to our-of-plane impact, and the mechanical properties of the composites decrease markedly. So far, for the significance of the damage monitoring, the impact test of the CFRP laminate plates with embedded small-diameter optical fibers were conducted, and it was found possible to detect impact load and impact damage in real-time by measuring the optical loss and strain response. But the stiffened composite panels, which are the representative structural elements of airplane. Are characterized by different impact damage from that of the composite plates. In this study, single-mode and multi-mode optical fibers are used as a sensor for detecting impact load and impact damage in curved/stiffened composite panels. Those fibers have polyimide coating and about 40 micron in diameter which will have no serious effect on the mechanical properties of composites. Impact test are performed using the panels with wavy embedded optical fibers. The characteristics of impact damage are investigated. The impact load, the strain measured by FBG sensors and the optical intensity of the optical fibers embedded in the composites are monitored as a function of time. And we discuss the relationship between optical response, impact load and impact damage.

  5. Boiling Heat Transfer and Pressure Drop of a Refrigerant Flowing Vertically Upward in a Small Diameter Tube

    NASA Astrophysics Data System (ADS)

    Miyata, Kazushi; Mori, Hideo; Ohishi, Katsumi; Tanaka, Hirokazu

    In the present study, experiments were performed to examine characteristics of flow boiling heat transfer and pressure drop of a refrigerant R410A flowing vertically upward in a copper smooth tube with 1.0 mm inside diameter for the development of a high-performance heat exchanger using small diameter tubes for air conditioning systems. Local heat transfer coefficients were measured in a range of mass fluxes from 30 to 200 kg/(m2•s), heat fluxes from 1 to 16 kW/m2 and qualities from 0.1 to over 1 at evaporation temperature of 10°C, and pressure drops were also measured at mass fluxes of 100 and 200 kg/(m2•s) and qualities from 0.1 to 0.9. Three types of flow pattern were observed in the tube: A slug, a slug-annular and an annular flow. Based on the measurements, the characteristics of frictional pressure drop, heat transfer coefficient and dryout qualities were clarified. The measured pressure drop and heat transfer coefficient were compared with correlations.

  6. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  7. Strategies and Techniques to Enhance the In Situ Endothelialization of Small-Diameter Biodegradable Polymeric Vascular Grafts

    PubMed Central

    Hibino, Narutoshi; Fisher, John P.

    2013-01-01

    Due to the lack of success in small-diameter (<6 mm) prosthetic vascular grafts, a variety of strategies have evolved utilizing a tissue-engineering approach. Much of this work has focused on enhancing the endothelialization of these grafts. A healthy, confluent endothelial layer provides dynamic control over homeo-stasis, influencing and preventing thrombosis and smooth muscle cell proliferation that can lead to intimal hyperplasia. Strategies to improve endothelialization of biodegradable polymeric grafts have encompassed both chemical and physical modifications to graft surfaces, many focusing on the recruitment of endothelial and endothelial progenitor cells. This review aims to provide a compilation of current and developing strategies that utilize in situ endothelialization to improve vascular graft outcomes, providing a context for the future directions of vascular tissue-engineering strategies that do not require preprocedural cell seeding. PMID:23252992

  8. Mimicking Form and Function of Native Small Diameter Vascular Conduits Using Mulberry and Non-mulberry Patterned Silk Films.

    PubMed

    Gupta, Prerak; Kumar, Manishekhar; Bhardwaj, Nandana; Kumar, Jadi Praveen; Krishnamurthy, C S; Nandi, Samit Kumar; Mandal, Biman B

    2016-06-29

    Autologous graft replacement as a strategy to treat diseased peripheral small diameter (≤6 mm) blood vessel is often challenged by prior vein harvesting. To address this issue, we fabricated native-tissue mimicking multilayered small diameter vascular graft (SDVG) using mulberry (Bombyx mori) and Indian endemic non-mulberry (Antheraea assama and Philosamia ricini) silk. Patterned silk films were fabricated on microgrooved PDMS mold, casted by soft lithography. The biodegradable patterned film templates with aligned cell sheets were rolled onto an inert mandrel to mimic vascular conduit. The hemocompatible and mechanically strong non-mulberry films with RGD motif supported ∼1.2 folds greater proliferation of vascular cells with aligned anchorage. Elicitation of minimal immune response on subcutaneous implantation of the films in mice was complemented by ∼45% lower TNF α secretion by in vitro macrophage culture post 7 days. Pattern-induced alignment favored the functional contractile phenotype of smooth muscle cells (SMCs), expressing the signature markers-calponin, α-smooth muscle actin (α-SMA), and smooth muscle myosin heavy chain (SM-MHC). Endothelial cells (ECs) exhibited a typical punctuated pattern of von Willebrand factor (vWF). Deposition of collagen and elastin by the SMCs substantiated the aptness of the graft with desired biomechanical attributes. Furthermore, the burst strength of the fabricated conduit was in the range of ∼915-1260 mmHg, a prerequisite to withstand physiological pressure. This novel fabrication approach may eliminate the need of maturation in a pulsatile bioreactor for obtaining functional cellular phenotype. This work is thereby an attestation to the immense prospects of exploring non-mulberry silk for bioengineering a multilayered vascular conduit similar to a native vessel in "form and function", befitting for in vivo transplantation. PMID:27269821

  9. Optimization of the Energy Window for PETbox4, a Preclinical PET Tomograph With a Small Inner Diameter

    PubMed Central

    Gu, Z.; Bao, Q.; Taschereau, R.; Wang, H.; Bai, B.; Chatziioannou, A. F.

    2015-01-01

    Small animal positron emission tomography (PET) systems are often designed by employing close geometry configurations. Due to the different characteristics caused by geometrical factors, these tomographs require data acquisition protocols that differ from those optimized for conventional large diameter ring systems. In this work we optimized the energy window for data acquisitions with PETbox4, a 50 mm detector separation (box-like geometry) pre-clinical PET scanner, using the Geant4 Application for Tomographic Emission (GATE). The fractions of different types of events were estimated using a voxelized phantom including a mouse as well as its supporting chamber, mimicking a realistic mouse imaging environment. Separate code was developed to extract additional information about the gamma interactions for more accurate event type classification. Three types of detector backscatter events were identified in addition to the trues, phantom scatters and randoms. The energy window was optimized based on the noise equivalent count rate (NECR) and scatter fraction (SF) with lower-level discriminators (LLD) corresponding to energies from 150 keV to 450 keV. The results were validated based on the calculated image uniformity, spillover ratio (SOR) and recovery coefficient (RC) from physical measurements using the National Electrical Manufacturers Association (NEMA) NU-4 image quality phantom. These results indicate that when PETbox4 is operated with a more narrow energy window (350-650 keV), detector backscatter rejection is unnecessary. For the NEMA NU-4 image quality phantom, the SOR for the water chamber decreases by about 45% from 15.1% to 8.3%, and the SOR for the air chamber decreases by 31% from 12.0% to 8.3% at the LLDs of 150 and 350 keV, without obvious change in uniformity, further supporting the simulation based optimization. The optimization described in this work is not limited to PETbox4, but also applicable or helpful to other small inner diameter geometry

  10. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs)

    PubMed Central

    Gong, Zhaodi; Niklason, Laura E.

    2008-01-01

    Using biodegradable scaffold and a biomimetic perfusion system, our lab has successfully engineered small-diameter vessel grafts using endothelial cells (ECs) and smooth muscle cells (SMCs) obtained from vessels in various species. However, translating this technique into humans has presented tremendous obstacles due to species and age differences. SMCs from elderly persons have limited proliferative capacity and a reduction in collagen production, which impair the mechanical strength of engineered vessels. As an alternative cell source, adult human bone marrow-derived mesenchymal stem cells (hMSCs) were studied for their ability to differentiate into SMCs in culture plates as well as in a bioreactor system. In the former setting, immunofluorescence staining showed that MSCs, after induction for 14 days, expressed smooth muscle α-actin (SMA) and calponin, early and mid-SMC phenotypic markers, respectively. In the latter setting, vessel walls were constructed with MSC-derived SMCs. Various factors (i.e., matrix proteins, soluble factors, and cyclic strain) in the engineering system were further investigated for their effects on hMSC cell proliferation and differentiation into SMCs. Based on a screening of multiple factors, the engineering system was optimized by dividing the vessel culture into proliferation and differentiation phases. The vessel walls engineered under the optimized conditions were examined histologically and molecularly, and found to be substantially similar to native vessels. In conclusion, bone marrow-derived hMSCs can serve as a new cell source of SMCs in vessel engineering. Optimization of the culture conditions to drive SMC differentiation and matrix production significantly improved the quality of the hMSC-derived engineered vessel wall.—Gong, Z., Niklason, L. E. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). PMID:18199698

  11. Particle characterisation and cytokine expression in failed small-diameter metal-on-metal total hip arthroplasties.

    PubMed

    Singh, G; Nuechtern, J V; Meyer, H; Fiedler, G M; Awiszus, F; Junk-Jantsch, S; Bruegel, M; Pflueger, G; Lohmann, C H

    2015-07-01

    The peri-prosthetic tissue response to wear debris is complex and influenced by various factors including the size, area and number of particles. We hypothesised that the 'biologically active area' of all metal wear particles may predict the type of peri-prosthetic tissue response. Peri-prosthetic tissue was sampled from 21 patients undergoing revision of a small diameter metal-on-metal (MoM) total hip arthroplasty (THA) for aseptic loosening. An enzymatic protocol was used for tissue digestion and scanning electron microscope was used to characterise particles. Equivalent circle diameters and particle areas were calculated. Histomorphometric analyses were performed on all tissue specimens. Aspirates of synovial fluid were collected for analysis of the cytokine profile analysis, and compared with a control group of patients undergoing primary THA (n = 11) and revision of a failed ceramic-on-polyethylene arthroplasty (n = 6). The overall distribution of the size and area of the particles in both lymphocyte and non-lymphocyte-dominated responses were similar; however, the subgroup with lymphocyte-dominated peri-prosthetic tissue responses had a significantly larger total number of particles. 14 cytokines (interleukin (IL)-1ß, IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, interferon (IFN)-γ, and IFN-gamma-inducible protein 10), chemokines (macrophage inflammatory protein (MIP)-1α and MIP-1ß), and growth factors (granulocyte macrophage colony stimulating factor (GM-CSF) and platelet derived growth factor) were detected at significantly higher levels in patients with metal wear debris compared with the control group. Significantly higher levels for IL-1ß, IL-5, IL-10 and GM-CSF were found in the subgroup of tissues from failed MoM THAs with a lymphocyte-dominated peri-prosthetic response compared with those without this response. These results suggest that the 'biologically active area' predicts the type of peri-prosthetic tissue response. The cytokines IL-1ß, IL-5

  12. Small-diameter optical fiber and high-speed wavelength interrogator for FBG/PZT hybrid sensing system

    NASA Astrophysics Data System (ADS)

    Komatsuzaki, Shinji; Kojima, Seiji; Hongo, Akihito; Takeda, Nobuo; Sakurai, Takeo

    2007-04-01

    We have been developing a sensing system for checking the health of aircraft structures made of composite materials. In this system, lead zirconium titanate (PZT) actuators generate elastic waves that travel through the composite material and are received by embedded fiber Bragg grating (FBG) sensors. By analyzing the change in received waveforms, we can detect various kinds of damage. The frequency of the elastic waves is several hundred kHz, which is too high for a conventional optical spectrum analyzer to detect the wavelength change. Moreover, a conventional single-mode optical fiber cannot be used for an embedded FBG sensor because it is so thick that it induces defects in the composite material structure when it is embedded. We are thus developing a wavelength interrogator with an arrayed waveguide grating (AWG) that can detect the high-speed wavelength change and a small-diameter optical fiber (cladding diameter of 40µm) that does not induce defects. We use an AWG to convert the wavelength change into an output power change by using the wavelength dependency of the AWG transmittance. For this conversion, we previously used two adjacent output ports that cover the reflection spectrum of an FBG sensor. However, this requires controlling the temperature of the AWG because the ratio of the optical power change to the wavelength change is very sensitive to the relationship of the center wavelengths between an FBG sensor and the output ports of the AWG. We have now investigated the use of a denser AWG and six adjacent output ports, which covers the reflection spectrum of an FBG sensor, for detecting the elastic waves. Experimental results showed that this method can suppress the sensitivity of the power change ratio to the relationship of the center wavelengths between an FBG sensor and the output ports. Although our improved small-diameter optical fiber does not induce structural defects in the composite material when it is embedded, there is some micro or macro

  13. An autologous connective tissue tube with high healing ability as a small diameter vascular substitute with temporary antithrombogenicity.

    PubMed

    Satoh, S; Niu, S; Kanki, Y; Oka, T; Noishiki, Y; Kurumatani, H; Watanabe, K

    1989-01-01

    Although autologous connective tissue grafts (ACTG) are an ideal vascular substitute, they have not yet been used as small diameter vascular grafts because of thrombogenicity. We reported on ACTGs in which mesh tubes were fabricated from ultra-fine polyester fibers (UFPF) and used as a framework. Antithrombogenicity was established using an original heparinization method, with a 50% patency 1 month postimplantation. Early failure of these grafts was caused mainly by loss of antithrombogenicity before development of endothelialization on the inner surface. In this study, higher concentrations of heparin were used for in situ heparinization of the grafts before implantation in combination with antiplatelet therapy (cilostazol, OPC-13013 for the first month after substitution for canine carotid arteries. As a result, more complete healing of the grafts was attained, with a patency rate of 63% at 1 month, when small doses of antiplatelet agents were used. More intensive antiplatelet therapy resulted in impairment of graft healing, causing hematomas around the grafts. Thus, optimal doses of antiplatelet agents remain uncertain. PMID:2597440

  14. An Ultrasound-Based Liquid Pressure Measurement Method in Small Diameter Pipelines Considering the Installation and Temperature

    PubMed Central

    Li, Xue; Song, Zhengxiang

    2015-01-01

    Liquid pressure is a key parameter for detecting and judging faults in hydraulic mechanisms, but traditional measurement methods have many deficiencies. An effective non-intrusive method using an ultrasound-based technique to measure liquid pressure in small diameter (less than 15 mm) pipelines is presented in this paper. The proposed method is based on the principle that the transmission speed of an ultrasonic wave in a Kneser liquid correlates with liquid pressure. Liquid pressure was calculated using the variation of ultrasonic propagation time in a liquid under different pressures: 0 Pa and X Pa. In this research the time difference was obtained by an electrical processing approach and was accurately measured to the nanosecond level through a high-resolution time measurement module. Because installation differences and liquid temperatures could influence the measurement accuracy, a special type of circuit called automatic gain control (AGC) circuit and a new back propagation network (BPN) model accounting for liquid temperature were employed to improve the measurement results. The corresponding pressure values were finally obtained by utilizing the relationship between time difference, transient temperature and liquid pressure. An experimental pressure measurement platform was built and the experimental results confirm that the proposed method has good measurement accuracy. PMID:25860069

  15. An ultrasound-based liquid pressure measurement method in small diameter pipelines considering the installation and temperature.

    PubMed

    Li, Xue; Song, Zhengxiang

    2015-01-01

    Liquid pressure is a key parameter for detecting and judging faults in hydraulic mechanisms, but traditional measurement methods have many deficiencies. An effective non-intrusive method using an ultrasound-based technique to measure liquid pressure in small diameter (less than 15 mm) pipelines is presented in this paper. The proposed method is based on the principle that the transmission speed of an ultrasonic wave in a Kneser liquid correlates with liquid pressure. Liquid pressure was calculated using the variation of ultrasonic propagation time in a liquid under different pressures: 0 Pa and X Pa. In this research the time difference was obtained by an electrical processing approach and was accurately measured to the nanosecond level through a high-resolution time measurement module. Because installation differences and liquid temperatures could influence the measurement accuracy, a special type of circuit called automatic gain control (AGC) circuit and a new back propagation network (BPN) model accounting for liquid temperature were employed to improve the measurement results. The corresponding pressure values were finally obtained by utilizing the relationship between time difference, transient temperature and liquid pressure. An experimental pressure measurement platform was built and the experimental results confirm that the proposed method has good measurement accuracy. PMID:25860069

  16. Production of Human Endothelial Cells Free from Soluble Xenogeneic Antigens for Bioartificial Small Diameter Vascular Graft Endothelization

    PubMed Central

    de Carvalho, Juliana Lott; Zonari, Alessandra; de Paula, Ana Cláudia Chagas; Martins, Thaís Maria da Mata; Gomes, Dawidson Assis; Goes, Alfredo Miranda

    2015-01-01

    Arterial bypass graft implantation remains the primary therapy for patients with advanced cardiovascular disease, but most lack adequate saphenous vein or other conduits for bypass procedures and would benefit from a bioartificial conduit. This study aimed to produce human endothelial cells (hECs) in large scale, free from xenogeneic antigens, to develop a small diameter, compatible vessel for potential use as a vascular graft. Human adipose-derived stromal cells (hASCs) were isolated, cultured, and differentiated in the presence of human serum and used for the reendothelization of a decellularized rat aorta. hASC derived ECs (hASC-ECs) expressed VEGFR2, vWf and CD31 endothelial cell markers, the latter in higher levels than hASCs and HUVECs, and were shown to be functional. Decellularization protocol yielded aortas devoid of cell nuclei, with preserved structure, including a preserved basement membrane. When seeded with hASC-ECs, the decellularized aorta was completely reendothelized, and the hASC-ECs maintained their phenotype in this new condition. hASCs can be differentiated into functional hECs without the use of animal supplements and are capable of reendothelizing a decellularized rat aorta while maintaining their phenotype. The preservation of the basement membrane following decellularization supported the complete reendothelization of the scaffold with no cell migration towards other layers. This approach is potentially useful for rapid obtention of compatible, xenogeneic-free conduit. PMID:26146626

  17. Aortic Intima-Media Thickness and Aortic Diameter in Small for Gestational Age and Growth Restricted Fetuses

    PubMed Central

    Gomez-Roig, M. Dolores; Mazarico, Edurne; Valladares, Esther; Guirado, Laura; Fernandez-Arias, Mireia; Vela, Antonio

    2015-01-01

    Objective The objective of this study is to measure aortic intima-media thickness (aIMT) and aortic diameter (AD) in appropriate for gestational age (AGA) fetuses, small for gestational age (SGA) fetuses, and intrauterine growth restricted (IUGR) fetuses. Methods Case-control study performed between June 2011 and June 2012. Forty-nine AGA fetuses, 40 SGA fetuses, and 35 IUGR fetuses underwent concomitant measurement of aIMT and AD at a mean gestational age of 34.4 weeks. Results Median aIMT was higher in fetuses with IUGR (0.504 mm [95%CI: 0.477-0.530 mm]), than in SGA fetuses (0.466 mm [95% CI: 0.447–0.485 mm]), and AGA fetuses (0.471 mm [95% CI: 0.454-0.488 mm]) (p = 0.023). Mean AD was significantly lower in fetuses with IUGR (4.451 mm [95% CI: 4.258–4.655 mm]), than in AGA fetuses (4.74 mm [95% CI: 4.63-4.843 mm]) (p = 0.028). Conclusions Growth restricted fetuses have a thicker aortic wall than AGA and SGA fetuses, which possibly represents preclinical atherosclerosis and a predisposition to later cardiovascular disease. PMID:26017141

  18. Robotic gas metal arc welding of small diameter saddle type joints using multi-stripe structured light

    NASA Astrophysics Data System (ADS)

    Bonser, Gary R.; Parker, Graham A.

    1999-11-01

    Single-stripe structured light sensors are widely used in conjunction with arc welding robots for seam-tracking purposes. The interaction of the projected light with the weld joint and component surfaces produces characteristic line shapes with feature points that can be recognized at high speed by an underlying vision system. Unfortunately they are suitable only for the major classes of weld joint typically encountered within industry--long, straight, or gently curving fillet or butt joints. We present a multistripe structured light sensor that detects and measures the position of the saddle type weld joint formed by two small (< 50-mm)-diameter intersecting tubes. The underlying image processing algorithms detect the weld feature points from each stripe along with four calibration points to generate the entire weld path in the robot workcell base coordinate system before welding commences. The system is validated within an existing welding application; detecting 93% of the weld feature points within +/- 0.4 mm when used on 30-mm-diam tubes.

  19. Influence of Penetration Rate and Indenter Diameter in Strength Measurement by Indentation Testing on Small Rock Specimens

    NASA Astrophysics Data System (ADS)

    Haftani, Mohammad; Bohloli, Bahman; Nouri, Alireza; Javan, Mohammad Reza Maleki; Moosavi, Mahdi; Moradi, Majid

    2015-03-01

    Indentation testing has been developed as an unconventional method to determine intact rock strength using small rock specimens within the size of drill cuttings. In previous investigations involving indentation testing, researchers have used different indenter stylus geometries, penetration rate (PR) and specimen sizes. These dissimilarities can restrict applications of this method for strength measurement and lead to non-comparable results. This paper investigates the influence of indenter diameter (ID) and PR on indentation indices for carbonate rocks to provide objective comparison and application of the existing correlations. As part of this research, several indentation tests were conducted using different IDs and PRs. The laboratory test results showed that indentation indices can be affected by ID while PR has only minor effect on the indentation indices. Thus, a normalizing function was presented to reduce the dependency of test results to ID. Verification of the findings with independent data confirms the suitability of the suggested normalizing function in determining the rock uniaxial compressive strength using testing data obtained from various IDs and PRs.

  20. Final Report: DoE SBIR Phase 2 Low-Cost Small Diameter NMR Technologies for In-Situ Subsurface Characterization and Monitoring

    SciTech Connect

    Walsh, David Oliver

    2010-09-03

    In this Phase 2 SBIR program, Vista Clara successfully developed and field-tested small diameter NNR logging tools for subsurface characterization and monitoring. This effort involved the design and development surface electronics, a winch with 470ft cable, and three interchangeable downhole probes: a 3.5â diameter borehole NMR probe, a 1.67â diameter borehole NMR probe, and a 2.5â diameter NMR probe that can be deployed using a Geoprobe direct push machine. The 3.5â probe was tested extensively over a 6 week period including 4â to 8â boreholes in Washington, Idaho, Nebraska, Colorado, Kansas, Connecticut and Massachusetts. The field test campaign was highly successful. The 1.67â probe was assembled, tested and calibrated in the laboratory. The 2.5â Geoprobe probe is in final assembly and testing at the time of this report. The completed Phase 2 R&D program has resulted in the first NMR logging tool that can be deployed in boreholes of 4â diameter, the first NMR logging tool that can be deployed in boreholes on 2â diameter, and the first NMR logging tool that can be deployed by a direct push machine. These small diameter tools make NMR logging technically and economically feasible, for the first time. Previously available NMR logging tools were developed for oilfield applications and are prohibitively large and expensive for the majority of near surface groundwater characterization problems.

  1. Physiologically Modeled Pulse Dynamics to Improve Function in In Vitro-Endothelialized Small-Diameter Vascular Grafts.

    PubMed

    Uzarski, Joseph S; Cores, Jhon; McFetridge, Peter S

    2015-11-01

    The lack of a functional endothelium on small-diameter vascular grafts leads to intimal hyperplasia and thrombotic occlusion. Shear stress conditioning through controlled hydrodynamics within in vitro perfusion bioreactors has shown promise as a mechanism to drive endothelial cell (EC) phenotype from an activated, pro-inflammatory wound state toward a quiescent functional state that inhibits responses that lead to occlusive failure. As part of an overall design strategy to engineer functional vascular grafts, we present a novel two-phase shear conditioning approach to improve graft endothelialization. Axial rotation was first used to seed uniform EC monolayers onto the lumenal surface of decellularized scaffolds derived from the human umbilical vein. Using computer-controlled perfusion circuits, a flow-ramping paradigm was applied to adapt endothelia to arterial levels of fluid shear stress and pressure without graft denudation. The effects of constant pulse frequencies (CF) on EC quiescence were then compared with pulse frequencies modeled from temporal fluctuations in blood flow observed in vivo, termed physiologically modeled pulse dynamics (PMPD). Constructs exposed to PMPD for 72 h expressed a more functional transcriptional profile, lower metabolic activity (39.8% ± 8.4% vs. 62.5% ± 11.5% reduction, p = 0.012), and higher nitric oxide production (80.42 ± 23.93 vs. 48.75 ± 6.93 nmol/10(5) cells, p = 0.028) than those exposed to CF. By manipulating in vitro flow conditions to mimic natural physiology, endothelialized vascular grafts can be stimulated to express a nonactivated phenotype that would better inhibit peripheral cell adhesion and smooth muscle cell hyperplasia, conditions that typically lead to occlusive failure. Development of robust, functional endothelia on vascular grafts by modulation of environmental conditions within perfusion bioreactors may ultimately improve clinical outcomes in vascular bypass grafting. PMID:25996580

  2. Chronic inflammatory pain upregulates expression of P2Y2 receptor in small-diameter sensory neurons.

    PubMed

    Zhu, Huiqin; Yu, Yi; Zheng, Lingyan; Wang, Lu; Li, Chenli; Yu, Jiangyuan; Wei, Jing; Wang, Chuang; Zhang, Junfang; Xu, Shujun; Wei, Xiaofei; Cui, Wei; Wang, Qinwen; Chen, Xiaowei

    2015-12-01

    Roles of ionotropic purinergic (P2X) receptors in chronic pain have been intensively investigated. However, the contribution of metabotropic purinergic (P2Y) receptors to pathological pain is controversial. In the present study, using single cell RT-PCR (reverse transcription-polymerase chain reaction) and single cell nested-PCR techniques, we examined the expression of P2X(2), P2X(3), P2Y(1) and P2Y(2) mRNA transcripts in retrogradely labeled cutaneous sensory neurons from mouse lumber dorsal root ganglia (DRGs) following peripheral inflammation. The percentage of cutaneous sensory neurons expressing P2Y(2) mRNA transcripts increased after complete Freund's adjuvant (CFA) treatment. Particularly, the P2Y(2) mRNA transcripts were more frequently detected in small-diameter cutaneous neurons from CFA-treated mice than those from control mice. Coexpression of P2Y(2) and P2X (P2X(2) or P2X(3)) mRNAs was more frequently observed in cutaneous sensory neurons from CFA-treated mice relative to controls. Pain behavioral tests showed that the blockade of P2Y receptors by suramin attenuated mechanical allodynia evoked either by CFA or uridine triphosphate (UTP), an endogenous P2Y(2) and P2Y(4) agonist. These results suggest that chronic inflammatory pain enhances expression of P2Y(2) receptor in peripheral sensory neurons that innervate the injured tissue and the activation of P2Y receptors contributes to mechanical allodynia following inflammation. PMID:26062804

  3. Structure optimization of small-diameter polarization-maintaining photonic crystal fiber for mini coil of spaceborne miniature fiber-optic gyroscope.

    PubMed

    Song, Ningfang; Cai, Wei; Song, Jingming; Jin, Jing; Wu, Chunxiao

    2015-11-20

    A small-diameter polarization-maintaining photonic crystal fiber (PM-PCF) for mini coils of spaceborne miniature fiber-optic gyroscopes is proposed in this paper. To ensure the strength of the small-diameter PM-PCF, a four-ring air holes structure is adopted. Using the full vector finite element method, dependence studies of modal field distribution, birefringence, and confinement loss on several key structure parameters are numerically investigated. The optimized parameter region is obtained. An optimized PM-PCF is fabricated, which can achieve similar to or even better optical properties than that of commercial PM-PCFs. The coating and cladding diameters of the optimized PM-PCF are 135 μm and 100 μm, respectively. Meanwhile, the optimized small-diameter PM-PCF shows a proof test level of 0.5%. The attenuation of the PM-PCF at 1550 nm is ∼2  dB/km. Typical volume of a mini coil wound with 300 m optimized PM-PCF is 5.9  cm3, which is decreased by ∼60% compared with a commercial PM-PCF coil of the same length. The bias stability of this coil is comparable with that of a conventional PMF coil of comparable length. Thus, the optimized small-diameter PM-PCF is suitable for mini coils of spaceborne miniature fiber-optic gyroscopes. PMID:26836545

  4. Chandra Detection of Ejecta in the Small-Diameter Supernova Remnant G349.7+0.2

    NASA Astrophysics Data System (ADS)

    Lazendic, J. S.; Slane, P. O.; Hughes, J. P.; Chen, Y.; Dame, T. M.

    2005-01-01

    We present high-resolution X-ray observations of the small-diameter supernova remnant (SNR) G349.7+0.2 with Chandra. The overall SNR spectrum can be described by two spectral components. The soft component is in ionization equilibrium and has a temperature of ~0.8 keV the hard spectral component has a temperature of ~1.4 keV, an ionization timescale of ~5×1011 cm-3 s, and enhanced abundances of Si. The spatially resolved spectral modeling shows that S may also be enhanced, at least in some regions. The enhanced abundances clearly point to the presence of an ejecta component in this remnant. Using the available H I and CO data toward G349.7+0.2 we derive a column density of ~7×1022 cm-2 along the line of sight to the SNR, which is consistent with our X-ray data. The X-ray morphology of G349.7+0.2 is strikingly similar to that at radio wavelengths-an irregular shell with a brighter eastern side-which is consistent with expansion in a medium with a large-scale density gradient. The remnant is known to be interacting with a molecular cloud (from the presence of OH (1720 MHz) masers), but this interaction is probably limited to the central portion of the SNR, as seen in SNR IC 443. We found that H I clouds are present in the SNR region, which supports the notion that G349.7+0.2 belongs to a class of remnants evolving in the intercloud medium (such are IC 443 and W44), which is also responsible for the remnant's morphology. G349.7+0.2 does not have the mixed-morphology found for other maser-emitting SNRs studied to date in X-rays, but its morphology can be explained by a projection model for mixed-morphology SNRs. We have identified a point source close to the center of the SNR with a luminosity of LX(0.5-10.0keV)~(0.2-2.3)×1034 d22 ergs s-1, which is consistent with that of the compact central objects found in a few other Galactic SNRs.

  5. Ecological Importance of Small-Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, Gabon.

    PubMed

    Memiaghe, Hervé R; Lutz, James A; Korte, Lisa; Alonso, Alfonso; Kenfack, David

    2016-01-01

    Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh <10 cm) comprised 93.7% of the total tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate. PMID:27186658

  6. Ecological Importance of Small-Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, Gabon

    PubMed Central

    Memiaghe, Hervé R.; Lutz, James A.; Korte, Lisa; Alonso, Alfonso; Kenfack, David

    2016-01-01

    Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh <10 cm) comprised 93.7% of the total tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate. PMID:27186658

  7. Effect of hole geometry and Electric-Discharge Machining (EDM) on airflow rates through small diameter holes in turbine blade material

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Cochran, R. P.

    1980-01-01

    The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.

  8. Effects of weld defects at root on rotating bending fatigue strength of small diameter socket welded pipe joints

    SciTech Connect

    Higuchi, Makoto; Nakagawa, Akira; Chujo, Noriyuki; Iida, Kunihiro; Matsuda, Fukuhisa; Sato, Masanobu

    1996-12-01

    Rotating bending fatigue tests were conducted on socket welded joints of a nominal diameter 20 mm, and effects of root defect and other various factors, including post-weld heat treatment (PWHT), pipe wall thickness, and socket wall thickness, were investigated. The socket joints exhibited, in the rotating bending fatigue mode, fatigue strengths that were markedly lower than the same 20 mm diameter joints in four-point bending fatigue. Also, where the latter specimens failed always at the toe, root-failures occurred in rotating bending fatigue. When PWHT`d, however, the fatigue strength showed a remarkable improvement, while the failure site reverted to toe. Thicker pipe walls and socket walls gave rise to higher fatigue strength. A formula relating the size of root defects to the fatigue strength reduction has been proposed.

  9. Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Muzi, Laura; Ménard-Moyon, Cécilia; Russier, Julie; Li, Jian; Chin, Chee Fei; Ang, Wee Han; Pastorin, Giorgia; Risuleo, Gianfranco; Bianco, Alberto

    2015-03-01

    The use of platinum-based chemotherapeutic drugs in cancer therapy still suffers from severe disadvantages, such as lack of appropriate selectivity for tumor tissues and insurgence of multi-drug resistance. Moreover, drug efficacy can be attenuated by several mechanisms such as premature drug inactivation, reduced drug uptake inside cells and increased drug efflux once internalized. The use of functionalized carbon nanotubes (CNTs) as chemotherapeutic drug delivery systems is a promising strategy to overcome such limitations due to their ability to enhance cellular internalization of poorly permeable drugs and thus increase the drug bioavailability at the diseased site, compared to the free drug. Furthermore, the possibility to encapsulate agents in the nanotubes' inner cavity can protect the drug from early inactivation and their external functionalizable surface is useful for selective targeting. In this study, a hydrophobic platinum(iv) complex was encapsulated within the inner space of two different diameter functionalized multi-walled CNTs (Pt(iv)@CNTs). The behavior of the complexes, compared to the free drug, was investigated on both HeLa human cancer cells and RAW 264.7 murine macrophages. Both CNT samples efficiently induced cell death in HeLa cancer cells 72 hours after the end of exposure to CNTs. Although the larger diameter CNTs were more cytotoxic on HeLa cells compared to both the free drug and the smaller diameter nanotubes, the latter allowed a prolonged release of the encapsulated drug, thus increasing its anticancer efficacy. In contrast, both Pt(iv)@CNT constructs were poorly cytotoxic on macrophages and induced negligible cell activation and no pro-inflammatory cytokine production. Both CNT samples were efficiently internalized by the two types of cells, as demonstrated by transmission electron microscopy observations and flow cytometry analysis. Finally, the platinum levels found in the cells after Pt(iv)@CNT exposure demonstrate that they can

  10. Experimental study of star-like and small-diameter wire-array z-pinches on the 1-MA Zebra generator

    SciTech Connect

    Ivanov, V. V.; Sotnikov, V. I.; Kindel, J. M.; Hakel, P.; Mancini, R. C.; Astanovitskiy, A. L.; Haboub, A.; Altemara, S. D.; Le Galloudec, B.; Nalajala, V.; Shevelko, A. P.; Kazakov, E. D.

    2009-01-21

    Star-like wire arrays and small-diameter (1-3 mm in diameter) cylindrical loads were tested in the 1-MA Zebra generator. Mitigation of plasma inhomogeneity was observed in the implosions of star-like loads, which consisted of multiple nested, cylindrical arrays aligned azimuthally such that the wires appear as linear array 'rays' extending from the axis of symmetry. The implosion in these loads is directed along the 'rays' of the star and cascades from wire to wire to the center to form moving plasma columns with smooth leading edges. Despite the low azimuthal symmetry, a star-like wire array produces a stable x-ray pulse with a high peak power and a short duration of 8-12-ns. This can be linked to the stabilization of instabilities due to the multiple nesting. X-ray generation and implosion dynamics in wire arrays 1-16 mm in diameter were investigated to find a transition between the regime with prevailing kinetic energy and 'non-kinetic' plasma heating. Loads 3-8 mm in diameter generate the highest x-ray power at the Zebra generator. The fall of x-ray power in 1-2-mm loads can be linked to the lack of kinetic energy. Laser probing diagnostics show the formation of 'necks' on the pinch during the bubble-like implosion. The energy balance provides the evidence of the enhanced plasma heating in z-pinches. Features of the implosions in small-diameter wire-arrays can help to identify the mechanisms of energy dissipation.

  11. Efficiency of short, small-diameter columns for reversed-phase liquid chromatography under practical operating conditions.

    PubMed

    Ma, Yan; Chassy, Alexander W; Miyazaki, Shota; Motokawa, Masanori; Morisato, Kei; Uzu, Hideyuki; Ohira, Masayoshi; Furuno, Masahiro; Nakanishi, Kazuki; Minakuchi, Hiroyoshi; Mriziq, Khaled; Farkas, Tivadar; Fiehn, Oliver; Tanaka, Nobuo

    2015-02-27

    Prototype small-size (1.0mm I.D., 5cm long) columns for reversed-phase HPLC were evaluated in relation to instrument requirements. The performance of three types of columns, monolithic silica and particulate silica (2μm, totally porous and 2.6μm, core-shell particles) was studied in the presence of considerable or minimal extra-column effects, while the detector contribution to band broadening was minimized by employing a small size UV-detector cell (6- or 90nL). A micro-LC instrument having small system volume (<1μL) provided extra-column band variance of only 0.01-0.02μL(2). The three columns generated about 8500 theoretical plates for solutes with retention factor, k>1-3 (depending on the column), in acetonitrile/water mobile phase (65/35=vol/vol) at 0.05mL/min, with the instrument specified above. The column efficiency was lower by up to 30% than that observed with a 2.1mm I.D. commercial column. The small-size columns also provided 8000-8500 theoretical plates for well retained solutes with a commercial ultrahigh-pressure liquid chromatography (UHPLC) instrument when extra-column contributions were minimized. While a significant extra-column effect was observed for early eluting solutes (k<2-4, depending on column) with methanol/water (20/80=vol/vol) as weak-wash solvent, the use of methanol/water=50/50 as wash solvent affected the column efficiency for most analytes. The results suggest that the band compression effect by the weak-wash solvent associated with partial-loop injection may provide a practical means to reducing the extra-column effect for small-size columns, while the use of an instrument with minimum extra-column effect is highly desirable. PMID:25648581

  12. Nearly exclusive growth of small diameter semiconducting single-wall carbon nanotubes from organic chemistry synthetic end-cap molecules.

    PubMed

    Liu, Bilu; Liu, Jia; Li, Hai-Bei; Bhola, Radha; Jackson, Edward A; Scott, Lawrence T; Page, Alister; Irle, Stephan; Morokuma, Keiji; Zhou, Chongwu

    2015-01-14

    The inability to synthesize single-wall carbon nanotubes (SWCNTs) possessing uniform electronic properties and chirality represents the major impediment to their widespread applications. Recently, there is growing interest to explore and synthesize well-defined carbon nanostructures, including fullerenes, short nanotubes, and sidewalls of nanotubes, aiming for controlled synthesis of SWCNTs. One noticeable advantage of such processes is that no metal catalysts are used, and the produced nanotubes will be free of metal contamination. Many of these methods, however, suffer shortcomings of either low yield or poor controllability of nanotube uniformity. Here, we report a brand new approach to achieve high-efficiency metal-free growth of nearly pure SWCNT semiconductors, as supported by extensive spectroscopic characterization, electrical transport measurements, and density functional theory calculations. Our strategy combines bottom-up organic chemistry synthesis with vapor phase epitaxy elongation. We identify a strong correlation between the electronic properties of SWCNTs and their diameters in nanotube growth. This study not only provides material platforms for electronic applications of semiconducting SWCNTs but also contributes to fundamental understanding of the growth mechanism and controlled synthesis of SWCNTs. PMID:25521257

  13. Surface modification of silk fibroin fabric using layer-by-layer polyelectrolyte deposition and heparin immobilization for small-diameter vascular prostheses.

    PubMed

    Elahi, M Fazley; Guan, Guoping; Wang, Lu; Zhao, Xinzhe; Wang, Fujun; King, Martin W

    2015-03-01

    There is an urgent need to develop a biologically active implantable small-diameter vascular prosthesis with long-term patency. Silk-fibroin-based small-diameter vascular prosthesis is a promising candidate having higher patency rate; however, the surface modification is indeed required to improve its further hemocompatibility. In this study, silk fibroin fabric was modified by a two-stage process. First, the surface of silk fibroin fabric was coated using a layer-by-layer polyelectrolyte deposition technique by stepwise dipping the silk fibroin fabric into a solution of cationic poly(allylamine hydrochloride) (PAH) and anionic poly(acrylic acid) (PAA) solution. The dipping procedure was repeated to obtain the PAH/PAA multilayers deposited on the silk fibroin fabrics. Second, the polyelectrolyte-deposited silk fibroin fabrics were treated in EDC/NHS-activated low-molecular-weight heparin (LMWH) solution at 4 °C for 24 h, resulting in immobilization of LMWH on the silk fibroin fabrics surface. Scanning electron microscopy, atomic force microscopy, and energy-dispersive X-ray data revealed the accomplishment of LMWH immobilization on the polyelectrolyte-deposited silk fibroin fabric surface. The higher the number of PAH/PAA coating layers on the silk fibroin fabric, the more surface hydrophilicity could be obtained, resulting in a higher fetal bovine serum protein and platelets adhesion resistance properties when tested in vitro. In addition, compared with untreated sample, the surface-modified silk fibroin fabrics showed negligible loss of bursting strength and thus reveal the acceptability of polyelectrolytes deposition and heparin immobilization approach for silk-fibroin-based small-diameter vascular prostheses modification. PMID:25671295

  14. Luminescent small-diameter 3C-SiC nanocrystals fabricated via a simple chemical etching method

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Liu, Z.; Wu, X. L.; Xu, L. L.; Zhang, W. C.; Chu, Paul K.

    2007-09-01

    Up to now, it is still a great challenge to obtain bulk quantities of luminescent 3C-SiC nanocrystals with sizes smaller than 10 nm, which have quantum confinement effect. We report in this paper on the fabrication of 3C-SiC nanocrystals via a chemical etching of microscale 3C-SiC grains and ultrasonic vibration. The sizes of the as-prepared 3C-SiC nanocrystals are smaller than 6.5 nm and have a centric distribution with the maximal probability of 3.6 nm. Due to the quantum confinement effect, the suspension of the 3C-SiC nanocrystals exhibits a tunable photoluminescence (PL), which is visible with the naked eye. As the excitation line increases from 260 to 480 nm, the PL peak position changes from 420 to 512 nm. Spectral analysis and microstructural observations show that the chemical etching leads to the formation of a weakly interconnected nanostructure network in the large 3C-SiC grains and subsequent ultrasonic vibration crumbles the interconnected network, forming small-size 3C-SiC nanocrystals.

  15. Colville study: Wood utilization for ecosystem management. Preliminary results of study of product potential from small-diameter stands. Forest Service research paper

    SciTech Connect

    Willits, S.; Barbour, R.J.; Tesch, S.; Ryland, D.; McNeel, J.

    1996-12-01

    The Colville Study was developed in 1994 to identify and evaluate a series of management options for achieving ecosystem objectives in dense stands of small diameter trees while also producing wood products. The Colville National Forest selected the Rocky II Timber Sale as an example of this type of stand that needed management to achieve the following goals: (1) create late successional forest structure, (2) decrease forest health risk from fire, insects, and disease, (3) improve wildlife habitat by providing large green trees and snags, and (4) improve stand aesthetics by decreasing stand density. The Colville Study was divided into four technical focus areas: Silviculture and Ecology, Forest Operations, Timber Conversion, and Economics.

  16. Development and In Vivo Evaluation of Small-Diameter Vascular Grafts Engineered by Outgrowth Endothelial Cells and Electrospun Chitosan/Poly(ɛ-Caprolactone) Nanofibrous Scaffolds

    PubMed Central

    Zhou, Min; Qiao, Wei; Liu, Zhao; Shang, Tao; Qiao, Tong

    2014-01-01

    Successful engineering of a small-diameter vascular graft is still a challenge despite numerous attempts for decades. The present study aimed at developing a tissue-engineered vascular graft (TEVG) using autologous outgrowth endothelial cells (OECs) and a hybrid biodegradable polymer scaffold. OECs were harvested from canine peripheral blood and proliferated in vitro, as well as identified by immunofluorescent staining. Electrospun hybrid chitosan/poly(ɛ-caprolactone) (CS/PCL) nanofibers were fabricated and served as vascular scaffolds. TEVGs were constructed in vitro by seeding OECs onto CS/PCL scaffolds, and then implanted into carotid arteries of cell-donor dogs (n=6). After 3 months of implantation, 5 out of 6 of TEVGs remained patent as compared with 1 out of 6 of unseeded grafts kept patent. Histological and immunohistochemical analyses of the TEVGs retrieved at 3 months revealed the regeneration of endothelium, and the presence of collagen and elastin. OECs labeled with fluorescent dye before implantation were detected in the retrieved TEVGs, indicating that the OECs participated in the vascular tissue regeneration. Biomechanical testing of TEVGs showed good mechanical properties that were closer to native carotid arteries. RT-PCR and western blot analysis demonstrated that TEVGs had favorable biological functional properties resembling native arteries. Overall, this study provided a new strategy to develop small-diameter TEVGs with excellent biocompatibility and regeneration ability. PMID:23902162

  17. Six years of clinical follow-up with endothelial cell–seeded small-diameter vascular grafts during coronary bypass surgery

    PubMed Central

    Pruss, Axel; Koch, Christina; Borges, Adrian C; Konertz, Wolfgang

    2013-01-01

    This clinical study was performed to investigate the patency rate of endothelial cell–seeded small-diameter expanded polytetrafluoroethylene grafts during coronary artery bypass surgery. Between September 1995 and December 1998, 14 patients (median age: 71 years, range: 61–79 years) received 21 endothelial cell–seeded small-diameter grafts. In all, 43% of the performed implantations were reoperations. Endothelial cells were harvested from a forearm vein, cultured and characterized in the laboratory until a sufficient number was available. After in vitro seeding, the grafts were allowed to mature for another 10 days, prior to implantation. Graft patency was investigated with angiography, angioscopy, and intravascular ultrasonography during follow-up. Cumulative data represented 58 patients’ years and was 100% complete. The seeded autologous vascular endothelial cell density was 1.05 × 105 ± 0.12 × 105 cells/cm2 with a cell viability of 95.5 ± 1.5%. Operative mortality was 7.1% (one patient). Patency rate at discharge was 95.2%, and at a mean follow-up of 27 months was 90.5%. The proven patency rate at up to 72 months was at least 50.0%, as five patients refused angiographic evaluation. None of these five patients suffered from angina pectoris and so the best scenario would have shown a patency rate of 85.7%. Angioscopy and intravascular ultrasonography showed absence of atheroma or stenosis in the investigated patent grafts. Autologous vascular endothelial cell seeding improves patency rate of small-caliber expanded polytetrafluoroethylene grafts in patients without suitable autologous graft material. PMID:24020013

  18. Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model.

    PubMed

    Fukunishi, Takuma; Best, Cameron A; Sugiura, Tadahisa; Shoji, Toshihiro; Yi, Tai; Udelsman, Brooks; Ohst, Devan; Ong, Chin Siang; Zhang, Huaitao; Shinoka, Toshiharu; Breuer, Christopher K; Johnson, Jed; Hibino, Narutoshi

    2016-01-01

    Tissue engineered vascular grafts (TEVGs) have the potential to overcome the issues faced by existing small diameter prosthetic grafts by providing a biodegradable scaffold where the patient's own cells can engraft and form functional neotissue. However, applying classical approaches to create arterial TEVGs using slow degrading materials with supraphysiological mechanical properties, typically results in limited host cell infiltration, poor remodeling, stenosis, and calcification. The purpose of this study is to evaluate the feasibility of novel small diameter arterial TEVGs created using fast degrading material. A 1.0mm and 5.0mm diameter TEVGs were fabricated with electrospun polycaprolactone (PCL) and chitosan (CS) blend nanofibers. The 1.0mm TEVGs were implanted in mice (n = 3) as an unseeded infrarenal abdominal aorta interposition conduit., The 5.0mm TEVGs were implanted in sheep (n = 6) as an unseeded carotid artery (CA) interposition conduit. Mice were followed with ultrasound and sacrificed at 6 months. All 1.0mm TEVGs remained patent without evidence of thrombosis or aneurysm formation. Based on small animal outcomes, sheep were followed with ultrasound and sacrificed at 6 months for histological and mechanical analysis. There was no aneurysm formation or calcification in the TEVGs. 4 out of 6 grafts (67%) were patent. After 6 months in vivo, 9.1 ± 5.4% remained of the original scaffold. Histological analysis of patent grafts demonstrated deposition of extracellular matrix constituents including elastin and collagen production, as well as endothelialization and organized contractile smooth muscle cells, similar to that of native CA. The mechanical properties of TEVGs were comparable to native CA. There was a significant positive correlation between TEVG wall thickness and CD68+ macrophage infiltration into the scaffold (R2 = 0.95, p = 0.001). The fast degradation of CS in our novel TEVG promoted excellent cellular infiltration and neotissue formation

  19. Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model

    PubMed Central

    Fukunishi, Takuma; Best, Cameron A.; Sugiura, Tadahisa; Shoji, Toshihiro; Yi, Tai; Udelsman, Brooks; Ohst, Devan; Ong, Chin Siang; Zhang, Huaitao; Shinoka, Toshiharu; Breuer, Christopher K.; Johnson, Jed; Hibino, Narutoshi

    2016-01-01

    Tissue engineered vascular grafts (TEVGs) have the potential to overcome the issues faced by existing small diameter prosthetic grafts by providing a biodegradable scaffold where the patient’s own cells can engraft and form functional neotissue. However, applying classical approaches to create arterial TEVGs using slow degrading materials with supraphysiological mechanical properties, typically results in limited host cell infiltration, poor remodeling, stenosis, and calcification. The purpose of this study is to evaluate the feasibility of novel small diameter arterial TEVGs created using fast degrading material. A 1.0mm and 5.0mm diameter TEVGs were fabricated with electrospun polycaprolactone (PCL) and chitosan (CS) blend nanofibers. The 1.0mm TEVGs were implanted in mice (n = 3) as an unseeded infrarenal abdominal aorta interposition conduit., The 5.0mm TEVGs were implanted in sheep (n = 6) as an unseeded carotid artery (CA) interposition conduit. Mice were followed with ultrasound and sacrificed at 6 months. All 1.0mm TEVGs remained patent without evidence of thrombosis or aneurysm formation. Based on small animal outcomes, sheep were followed with ultrasound and sacrificed at 6 months for histological and mechanical analysis. There was no aneurysm formation or calcification in the TEVGs. 4 out of 6 grafts (67%) were patent. After 6 months in vivo, 9.1 ± 5.4% remained of the original scaffold. Histological analysis of patent grafts demonstrated deposition of extracellular matrix constituents including elastin and collagen production, as well as endothelialization and organized contractile smooth muscle cells, similar to that of native CA. The mechanical properties of TEVGs were comparable to native CA. There was a significant positive correlation between TEVG wall thickness and CD68+ macrophage infiltration into the scaffold (R2 = 0.95, p = 0.001). The fast degradation of CS in our novel TEVG promoted excellent cellular infiltration and neotissue formation

  20. Evaluation of Crack Suppression Effect of TiNi SMA Foil Embedded in CFRP Cross-Ply Laminates with Embedded Small-Diameter FBG Sensor

    NASA Astrophysics Data System (ADS)

    Amano, Masataro; Okabe, Yoji; Takeda, Nobuo

    A Ti-Ni shape memory alloy (SMA) foil and a small-diameter fiber Bragg grating (FBG) sensor were embedded simultaneously into a CFRP cross-ply laminate. When the specimen was heated, the recovery compressive force was generated from the embedded SMA foil, which homogenized the non-uniform strain distribution caused by cracks in the 90° ply. Then, the tensile stress in the 90° ply was relaxed and the occurrence of new transverse cracks was suppressed. This effect was evaluated with the embedded FBG sensor. When the specimen was heated, the deformed reflection spectrum of the FBG returned to its original shape, which suggested that Ti-Ni SMA foil was effective to suppress the damage. However, relaxation of thermal residual tensile stress in the 90° ply was also effective. The result of the 3D FEA suggested that the suppression of damage occurrence and growth was mainly caused by the relaxation of thermal residual tensile stress.

  1. Activation of MrgC receptor inhibits N-type calcium channels in small-diameter primary sensory neurons in mice

    PubMed Central

    Li, Zhe; He, Shao-Qiu; Xu, Qian; Yang, Fei; Tiwari, Vinod; Liu, Qin; Tang, Zongxiang; Han, Liang; Chu, Yu-Xia; Wang, Yun; Hin, Niyada; Tsukamoto, Takashi; Slusher, Barbara; Guan, Xiaowei; Wei, Feng; Raja, Srinivasa N; Dong, Xinzhong; Guan, Yun

    2014-01-01

    Mas-related G-protein-coupled receptor subtype C (mouse MrgC11 and rat rMrgC), expressed specifically in small-diameter primary sensory neurons, may constitute a novel pain inhibitory mechanism. We have shown previously that intrathecal administration of MrgC-selective agonists can strongly attenuate persistent pain in various animal models. However, the underlying mechanisms for MrgC agonist-induced analgesia remain elusive. Here, we conducted patch-clamp recordings to test the effect of MrgC agonists on high-voltage-activated (HVA) calcium current in small-diameter dorsal root ganglion (DRG) neurons. Using pharmacological approaches, we show for the first time that an MrgC agonist (JHU58) selectively and dose-dependently inhibits N-type, but not L- or P/Q-type, HVA calcium channels in mouse DRG neurons. Activation of HVA calcium channels is important to neurotransmitter release and synaptic transmission. Patch-clamp recordings in spinal cord slices showed that JHU58 attenuated the evoked excitatory postsynaptic currents in substantia gelatinosa (SG) neurons in wild-type mice, but not in Mrg knockout mice, after peripheral nerve injury. These findings indicate that activation of endogenously expressed MrgC receptors at central terminals of primary sensory fibers may decrease peripheral excitatory inputs onto SG neurons. Together, these results suggest potential cellular and molecular mechanisms that may contribute to intrathecal MrgC agonist-induced analgesia. Because MrgC shares substantial genetic homogeneity with human MrgX1, our findings may suggest a rationale for developing intrathecally delivered MrgX1 receptor agonists to treat pathological pain in humans and provide critical insight regarding potential mechanisms that may underlie its analgesic effects. PMID:24813294

  2. Growth of Si Bulk Crystals with Large Diameter Ratio Using Small Crucibles by Creating a Large Low-Temperature Region Inside a Si Melt Contained in an NOC Furnace Developed Using Two Zone Heaters

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuo; Ono, Satoshi; Murai, Ryota; Kaneko, Yuzuru

    2016-06-01

    Three zone heaters were generally used for a noncontact crucible (NOC) furnace. For practical reasons a simpler NOC furnace was developed with two zone heaters, which had a carbon heat holder to cover the three roles of each heater. Large low-temperature regions were obtained, and silicon ingots were grown in small crucibles with a large diameter and diameter ratio. Here, the diameter ratio is the ratio of the ingot diameter to the crucible diameter and can be as large as 0.90. The diameter ratio was controlled mainly by the temperature reduction of the first heater. Power changes of the second heater did not have a significant impact on the ingot diameter. Using this NOC furnace, maximum ingot diameters of 28.0, 33.5, and 45.0 cm were obtained using crucibles of 33, 40, and 50 cm in diameter, respectively. The oxygen concentration of the ingots did not strongly depend on the diameter ratio and were always low because convection in the Si melt was markedly suppressed by the carbon heat holder. Moreover, the oxygen concentration of the ingots has a tendency to become lower as the crucible diameter becomes larger.

  3. Renal Artery Embolization Combined With Radiofrequency Ablation in a Porcine Kidney Model: Effect of Small and Narrowly Calibrated Microparticles as Embolization Material on Coagulation Diameter, Volume, and Shape

    SciTech Connect

    Sommer, C. M. Kortes, N.; Zelzer, S.; Arnegger, F. U.; Stampfl, U.; Bellemann, N.; Gehrig, T.; Nickel, F.; Kenngott, H. G.; Mogler, C.; Longerich, T.; Meinzer, H. P.; Richter, G. M.; Kauczor, H. U.; Radeleff, B. A.

    2011-02-15

    The purpose of this study was to evaluate the effect of renal artery embolization with small and narrowly calibrated microparticles on the coagulation diameter, volume, and shape of radiofrequency ablations (RFAs) in porcine kidneys. Forty-eight RFAs were performed in 24 kidneys of 12 pigs. In 6 animals, bilateral renal artery embolization was performed with small and narrowly calibrated microparticles. Upper and lower kidney poles were ablated with identical system parameters. Applying three-dimensional segmentation software, RFAs were segmented on registered 2 mm-thin macroscopic slices. Length, depth, width, volume{sub s}egmented, and volume{sub c}alculated were determined to describe the size of the RFAs. To evaluate the shape of the RFAs, depth-to-width ratio (perfect symmetry-to-lesion length was indicated by a ratio of 1), sphericity ratio (perfect sphere was indicated by a sphericity ratio of 1), eccentricity (perfect sphere was indicated by an eccentricity of 0), and circularity (perfect circle was indicated by a circularity of 1) were determined. Embolized compared with nonembolized RFAs showed significantly greater depth (23.4 {+-} 3.6 vs. 17.2 {+-} 1.8 mm; p < 0.001) and width (20.1 {+-} 2.9 vs. 12.6 {+-} 3.7 mm; p < 0.001); significantly larger volume{sub s}egmented (8.6 {+-} 3.2 vs. 3.0 {+-} 0.7 ml; p < 0.001) and volume{sub c}alculated (8.4 {+-} 3.0 ml vs. 3.3 {+-} 1.1 ml; p < 0.001); significantly lower depth-to-width (1.17 {+-} 0.10 vs. 1.48 {+-} 0.44; p < 0.05), sphericity (1.55 {+-} 0.44 vs. 1.96 {+-} 0.43; p < 0.01), and eccentricity (0.84 {+-} 0.61 vs. 1.73 {+-} 0.91; p < 0.01) ratios; and significantly greater circularity (0.62 {+-} 0.14 vs. 0.45 {+-} 0.16; p < 0.01). Renal artery embolization with small and narrowly calibrated microparticles affected the coagulation diameter, volume, and shape of RFAs in porcine kidneys. Embolized RFAs were significantly larger and more spherical compared with nonembolized RFAs.

  4. Heterogeneous deformation of metals (copper, tantalum, uranium, titanium) at convergence of cylindrical apertures having small diameters under effect of shock waves

    NASA Astrophysics Data System (ADS)

    Andrey, Malyshev; Dmitriy, Zamotaev; Olga, Ignatova; Michail, Tkachenko; Erich, Shepelev; Olga, Tyupanova; Aleksey, Podurets; Anna, Balandina; Irina, Kondrokhina

    2013-06-01

    Construction metals undergo loadings of various types during high-velocity deformation. As a result, there are different structural changes and, in particular, varying of mechanical properties. One of these complex structural changes is the process of formation of heterogeneous localized shear bands (LSB) of the twinning nature and the associated temporal decrease of dynamic strength in strong shock waves. The earlier investigations in this area point to the fact that the process of LSB formation has the threshold character, and pressure is the main criterion. So, it is shown in work that LSB formation occurs in coarse-grained copper after effect of shock wave with the amplitude 28-30 GPa. In this work, within the investigation of convergence of cylindrical channels having small diameters under effect of planar shock waves, it is shown that LSB can be formed in metals, and flow stops being homogeneous at rather low loading level (up to 10 GPa). In this case, the level of plastic strain and its rate are the main factors, which are responsible for heterogeneous deformation. The authors present results of experimental and metallographic researches for some metals, which are copper with various grain sizes, tantalum, uranium, and titanium alloys.

  5. Novel techniques and devices for in-situ film coatings of long, small diameter tubes or elliptical and other surface contours

    DOE PAGESBeta

    Hershcovitch, Ady; Blaskiewicz, Michael; Brennan, Joseph Michael; Fischer, Wolfram; Liaw, Chong -Jer; Meng, Wuzhang; Todd, Robert; Custer, Art; Dingus, Aaron; Erikson, Mark; et al

    2015-07-30

    In this study, devices and techniques that can, via physical vapor deposition,coat various surface contours or very long small aperture pipes, are described. Recently, a magnetron mole was developed in order to in-situ coat accelerator tube sections of the Brookhaven National Lab relativistic heavy ion collider that have 7.1 cm diameter with access points that are 500 m apart, for copper coat the accelerator vacuum tube in order to alleviate the problems of unacceptable ohmic heating and of electron clouds. A magnetron with a 50 cm long cathode was designed fabricated and successfully operated to copper coat a whole assemblymore » containing a full-size, stainless steel, cold bore, of the accelerator magnet tubing connected to two types bellows, to which two additional pipes made of accelerator tubing were connected. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system, which is enclosed in a flexible braided metal sleeve, is driven by a motorized spool. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate distance of less than 1.5 cm. Optimized process to ensure excellent adhesion was developed. Coating thickness of 10 μm Cu passed all industrial tests and even exceeded maximum capability of a 12 kg pull test fixture. Room temperature radio frequency (RF) resistivity measurement indicated that 10 μm Cu coated stainless steel accelerator tube has conductivity close to copper tubing. Work is in progress to repeat the RF resistivity measurement at cryogenic temperatures. Over 20 years ago, a device using multi axis robotic manipulators controlling separate robotic assemblies resulted in nine-axes of motion combined with conformal

  6. Novel techniques and devices for in-situ film coatings of long, small diameter tubes or elliptical and other surface contours

    SciTech Connect

    Hershcovitch, Ady; Blaskiewicz, Michael; Brennan, Joseph Michael; Fischer, Wolfram; Liaw, Chong -Jer; Meng, Wuzhang; Todd, Robert; Custer, Art; Dingus, Aaron; Erikson, Mark; Jamshidi, Nader; Poole, Henry Joe

    2015-07-30

    In this study, devices and techniques that can, via physical vapor deposition,coat various surface contours or very long small aperture pipes, are described. Recently, a magnetron mole was developed in order to in-situ coat accelerator tube sections of the Brookhaven National Lab relativistic heavy ion collider that have 7.1 cm diameter with access points that are 500 m apart, for copper coat the accelerator vacuum tube in order to alleviate the problems of unacceptable ohmic heating and of electron clouds. A magnetron with a 50 cm long cathode was designed fabricated and successfully operated to copper coat a whole assembly containing a full-size, stainless steel, cold bore, of the accelerator magnet tubing connected to two types bellows, to which two additional pipes made of accelerator tubing were connected. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system, which is enclosed in a flexible braided metal sleeve, is driven by a motorized spool. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate distance of less than 1.5 cm. Optimized process to ensure excellent adhesion was developed. Coating thickness of 10 μm Cu passed all industrial tests and even exceeded maximum capability of a 12 kg pull test fixture. Room temperature radio frequency (RF) resistivity measurement indicated that 10 μm Cu coated stainless steel accelerator tube has conductivity close to copper tubing. Work is in progress to repeat the RF resistivity measurement at cryogenic temperatures. Over 20 years ago, a device using multi axis robotic manipulators controlling separate robotic assemblies resulted in nine-axes of motion combined with conformal shape of the

  7. Biomaterials patterned with discontinuous microwalls for vascular smooth muscle cell culture: biodegradable small diameter vascular grafts and stable cell culture substrates.

    PubMed

    Heath, Daniel E; Kang, Gavin C W; Cao, Ye; Poon, Yin Fun; Chan, Vincent; Chan-Park, Mary B

    2016-10-01

    The medial layer of small diameter blood vessels contains circumferentially aligned vascular smooth muscle cells (vSMC) that possess contractile phenotype. In tissue-engineered constructs, these cellular characteristics are usually achieved by seeding planar scaffolds with vSMC, rolling the cell-laden scaffold into a tubular structure, and maturing the construct in a pulsatile bioreactor, a lengthy process that can take up to two months. During the maturation phase, the cells circumferentially orient, their contractile protein expression increases, and they obtain a contractile phenotype. Generating cell culture platforms that enable the rapid production of directionally oriented vSMC with increased contractile protein expression would be a major step forward for blood vessel tissue engineering and would greatly facilitate the in vitro study of vSMC biology. Previously, we developed a micropatterned cell culture surface that promotes orientation and contractile protein expression of vSMC. Herein, we explore two potential applications of this technology. First, we fabricate tubular and biodegradable scaffolds that possess the micropatterning on their exterior surface. When vSMC are seeded on these scaffolds, they initially proliferate in order to fill the microchannels and as confluence is reached the cells align in the direction of the micropatterning resulting in a biodegradable scaffold that is inhabited by circumferentially aligned vSMC within a week. Second, we illustrate that we can generate biostable cell culture surfaces that allow the in vitro study of the cells in a more contractile state. Specifically, we explore contractile protein expression of cells cultured on the micropatterned surfaces with the addition of soluble transforming growth factor beta one (TGFβ1). PMID:27444318

  8. Excitability parameters and sensitivity to anemone toxin ATX-II in rat small diameter primary sensory neurones discriminated by Griffonia simplicifolia isolectin IB4

    PubMed Central

    Snape, Alistair; Pittaway, James F; Baker, Mark D

    2010-01-01

    Sensory neurone subtypes (≤ 25 μm apparent diameter) express a variety of Na+ channels, where expression is linked to action potential duration, and associated with differential IB4-lectin binding. We hypothesized that sensitivity to ATX-II might also discriminate neurones and report that 1 μm has negligible or small effects on action potentials in IB4 +ve, but dramatically increased action potential duration in IB4 −ve, neurones. The toxin did not act on tetrodotoxin-resistant (TTX-r) NaV1.8 currents; discrimination was based on tetrodotoxin-sensitive (TTX-s) Na+ channel expression. We also explored the effects of varying the holding potential on current threshold, and the effect of repetitive activation on action currents in IB4 +ve and −ve neurones. IB4 +ve neurones became more excitable with depolarization over the range −100 to −20 mV, but IB4 −ve neurones exhibited peak excitability near −55 mV, and were inexcitable at −20 mV. Eliciting action potentials at 2 Hz, we found that peak inward action current in IB4 +ve neurones was reduced, whereas changes in the current amplitude were negligible in most IB4 −ve neurones. Our findings are consistent with relatively toxin-insensitive channels including NaV1.7 being expressed in IB4 +ve neurones, whereas toxin sensitivity indicates that IB4 −ve neurones may express NaV1.1 or NaV1.2, or both. The retention of excitability at low membrane potentials, and the responses to repetitive stimulation are explained by the known preferential expression of NaV1.8 in IB4 +ve neurones, and the reduction in action current in IB4 +ve neurones with repetitive stimulation supports a novel hypothesis explaining the slowing of conduction velocity in C-fibres by the build-up of Na+ channel inactivation. PMID:19900960

  9. N-type calcium current, Cav2.2, is enhanced in small-diameter sensory neurons isolated from Nf1+/- mice.

    PubMed

    Duan, J-H; Hodgdon, K E; Hingtgen, C M; Nicol, G D

    2014-06-13

    Major aspects of neuronal function are regulated by Ca(2+) including neurotransmitter release, excitability, developmental plasticity, and gene expression. We reported previously that sensory neurons isolated from a mouse model with a heterozygous mutation of the Nf1 gene (Nf1+/-) exhibited both greater excitability and evoked release of neuropeptides compared to wildtype mice. Furthermore, augmented voltage-dependent sodium currents but not potassium currents contribute to the enhanced excitability. To determine the mechanisms giving rise to the enhanced release of substance P and calcitonin gene-related peptide in the Nf1+/- sensory neurons, the potential differences in the total voltage-dependent calcium current (ICa) as well as the contributions of individual Ca(2+) channel subtypes were assessed. Whole-cell patch-clamp recordings from small-diameter capsaicin-sensitive sensory neurons demonstrated that the average peak ICa densities were not different between the two genotypes. However, by using selective blockers of channel subtypes, the current density of N-type (Cav2.2) ICa was significantly larger in Nf1+/- neurons compared to wildtype neurons. In contrast, there were no significant differences in L-, P/Q- and R-type currents between the two genotypes. Quantitative real-time polymerase chain reaction measurements made from the isolated but intact dorsal root ganglia indicated that N-type (Cav2.2) and P/Q-type (Cav2.1) Ca(2+) channels exhibited the highest mRNA expression levels although there were no significant differences in the levels of mRNA expression between the genotypes. These results suggest that the augmented N-type (Cav2.2) ICa observed in the Nf1+/- sensory neurons does not result from genomic differences but may reflect post-translational or some other non-genomic modifications. Thus, our results demonstrate that sensory neurons from Nf1+/- mice, exhibit increased N-type ICa and likely account for the increased release of substance P and

  10. N-type calcium current, Cav2.2, is enhanced in small diameter sensory neurons isolated from Nf1+/− mice

    PubMed Central

    Duan, J-H.; Hodgdon, K. E.; Hingtgen, C. M.; Nicol, G. D.

    2014-01-01

    Major aspects of neuronal function are regulated by Ca2+ including neurotransmitter release, excitability, developmental plasticity, and gene expression. We reported previously that sensory neurons isolated from a mouse model with a heterozygous mutation of the Nf1 gene (Nf1+/−) exhibited both greater excitability and evoked release of neuropeptides compared to wildtype mice. Furthermore, augmented voltage-dependent sodium currents but not potassium currents contribute to the enhanced excitability. To determine the mechanisms giving rise to the enhanced release of substance P and calcitonin gene-related peptide in the Nf1+/− sensory neurons, the potential differences in the total voltage-dependent calcium current (ICa) as well as the contributions of individual Ca2+ channel subtypes were assessed. Whole-cell patch-clamp recordings from small diameter capsaicin-sensitive sensory neurons demonstrated that the average peak ICa densities were not different between the two genotypes. However, by using selective blockers of channel subtypes, the current density of N-type (Cav2.2) ICa was significantly larger in Nf1+/− neurons compared to wildtype neurons. In contrast, there were no significant differences in L-, P/Q- and R-type currents between the two genotypes. Quantitative real-time PCR measurements made from the isolated but intact dorsal root ganglia indicated that N-type (Cav2.2) and P/Q-type (Cav2.1) Ca2+ channels exhibited the highest mRNA expression levels although there were no significant differences in the levels of mRNA expression between the genotypes. These results suggest that the augmented N-type (Cav2.2) ICa observed in the Nf1+/− sensory neurons does not result from genomic differences but may reflect post-translational or some other non-genomic modifications. Thus, our results demonstrate that sensory neurons from Nf1+/− mice, exhibit increased N-type ICa and likely account for the increased release of substance P and calcitonin gene

  11. Development of in vivo tissue-engineered microvascular grafts with an ultra small diameter of 0.6 mm (MicroBiotubes): acute phase evaluation by optical coherence tomography and magnetic resonance angiography.

    PubMed

    Ishii, Daizo; Enmi, Jun-Ichiro; Moriwaki, Takeshi; Ishibashi-Ueda, Hastue; Kobayashi, Mari; Iwana, Shinichi; Iida, Hidehiro; Satow, Tetsu; Takahashi, Jun C; Kurisu, Kaoru; Nakayama, Yasuhide

    2016-09-01

    Biotubes, i.e., in vivo tissue-engineered connective tubular tissues, are known to be effective as vascular replacement grafts with a diameter greater than several millimeters. However, the performance of biotubes with smaller diameters is less clear. In this study, MicroBiotubes with diameters <1 mm were prepared, and their patency was evaluated noninvasively by optical coherence tomography (OCT) and magnetic resonance angiography (MRA). MicroBiotube molds, containing seven stainless wires (diameter 0.5 mm) covered with silicone tubes (outer diameter 0.6 mm) per mold, were embedded into the dorsal subcutaneous pouches of rats. After 2 months, the molds were harvested with the surrounding capsular tissues to obtain seven MicroBiotubes (internal diameter 0.59 ± 0.015 mm, burst pressure 4190 ± 1117 mmHg). Ten-mm-long MicroBiotubes were allogenically implanted into the femoral arteries of rats by end-to-end anastomosis. Cross-sectional OCT imaging demonstrated the patency of the MicroBiotubes immediately after implantation. In a 1-month follow-up MRA, high patency (83.3 %, n = 6) was observed without stenosis, aneurysmal dilation, or elongation. Native-like vascular structure was reconstructed with completely endothelialized luminal surfaces, mesh-like elastin fiber networks, regular circumferential orientation of collagen fibers, and α-SMA-positive cells. Although the long-term patency of MicroBiotubes still needs to be confirmed, they may be useful as an alternative ultra-small-caliber vascular substitute. PMID:27003431

  12. The measurement of gas-liquid two-phase flows in a small diameter pipe using a dual-sensor multi-electrode conductance probe

    NASA Astrophysics Data System (ADS)

    Zhai, Lu-Sheng; Bian, Peng; Han, Yun-Feng; Gao, Zhong-Ke; Jin, Ning-De

    2016-04-01

    We design a dual-sensor multi-electrode conductance probe to measure the flow parameters of gas-liquid two-phase flows in a vertical pipe with an inner diameter of 20 mm. The designed conductance probe consists of a phase volume fraction sensor (PVFS) and a cross-correlation velocity sensor (CCVS). Through inserting an insulated flow deflector in the central part of the pipe, the gas-liquid two-phase flows are forced to pass through an annual space. The multiple electrodes of the PVFS and the CCVS are flush-mounted on the inside of the pipe wall and the outside of the flow deflector, respectively. The geometry dimension of the PVFS is optimized based on the distribution characteristics of the sensor sensitivity field. In the flow loop test of vertical upward gas-liquid two-phase flows, the output signals from the dual-sensor multi-electrode conductance probe are collected by a data acquisition device from the National Instruments (NI) Corporation. The information transferring characteristics of local flow structures in the annular space are investigated using the transfer entropy theory. Additionally, the kinematic wave velocity is measured based on the drift velocity model to investigate the propagation behavior of the stable kinematic wave in the annular space. Finally, according to the motion characteristics of the gas-liquid two-phase flows, the drift velocity model based on the flow patterns is constructed to measure the individual phase flow rate with higher accuracy.

  13. A fast synthesis of near-infrared emitting CdTe/CdSe quantum dots with small hydrodynamic diameter for in vivo imaging probes

    NASA Astrophysics Data System (ADS)

    Hu, Dehong; Zhang, Pengfei; Gong, Ping; Lian, Shuhong; Lu, Yangyang; Gao, Duyang; Cai, Lintao

    2011-11-01

    Highly luminescent near-infrared (NIR) emitting CdTe/CdSe quantum dots (QDs) were prepared through a fast and convenient method, and a new type of multivalent polymer ligands was used as the surface substituents to prepare highly stable hydrophilic QDs with small sizes. The well-defined CdTe/CdSe QDs were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy and photoluminescence (PL) spectroscopy, respectively. The as-prepared CdTe/CdSe QDs were photostable with high PL quantum yields (QYs) (up to 66% at room temperature), low toxicity to cells at experimental dosages, and the QDs' fluorescence emissions were tunable between 700 and 820 nm. Furthermore, fluorescence imaging using CdTe/CdSe QDs conjugated with the AS1411 aptamer (targeting nucleolin) probe in cancer cells was reported, and the CdTe/CdSe QDs were also successfully applied for the fluorescence imaging of living animals. Our preliminary results illustrated that the CdTe/CdSe NIR-QDs with small sizes would be an alternative probe for ultrasensitive, multicolor, and multiplex applications, especially for in vivo imaging applications.

  14. Brain-derived neurotrophic factor enhances the excitability of small-diameter trigeminal ganglion neurons projecting to the trigeminal nucleus interpolaris/caudalis transition zone following masseter muscle inflammation

    PubMed Central

    2013-01-01

    Background The trigeminal subnuclei interpolaris/caudalis transition zones (Vi/Vc) play an important role in orofacial deep pain, however, the role of primary afferent projections to the Vi/Vc remains to be determined. This study investigated the functional significance of hyperalgesia to the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (trkB) signaling system in trigeminal ganglion (TRG) neurons projecting to the Vi/Vc transition zone following masseter muscle (MM) inflammation. Results The escape threshold from mechanical stimulation applied to skin above the inflamed MM was significantly lower than in naïve rats. Fluorogold (FG) labeling was used to identify the TRG neurons innervating the MM, while microbeads (MB) were used to label neurons projecting to the Vi/Vc region. FG/MB-labeled TRG neurons were immunoreactive (IR) for BDNF and trkB. The mean number of BDNF/trkB-IR small/medium-diameter TRG neurons was significantly higher in inflamed rats than in naïve rats. In whole-cell current-clamp experiments, the majority of dissociated small-diameter TRG neurons showed a depolarization response to BDNF that was associated with spike discharge, and the concentration of BDNF that evoked a depolarizing response was significantly lower in the inflamed rats. In addition, the relative number of BDNF-induced spikes during current injection was significantly higher in inflamed rats. The BDNF-induced changes in TRG neuron excitability was abolished by tyrosine kinase inhibitor, K252a. Conclusion The present study provided evidence that BDNF enhances the excitability of the small-diameter TRG neurons projecting onto the Vi/Vc following MM inflammation. These findings suggest that ganglionic BDNF-trkB signaling is a therapeutic target for the treatment of trigeminal inflammatory hyperalgesia. PMID:24073832

  15. Interpreting stem diameter changes

    NASA Astrophysics Data System (ADS)

    Hölttä, T.; Sevanto, S.; Nikinmaa, E.

    2009-12-01

    Detecting phloem transport in stem diameter changes Teemu Hölttä1, Sanna Sevanto2, Eero Nikinmaa1 1Department of Forest Ecology, P.O. Box 27, FIN-00014 University of Helsinki, Finland 2Department of Physics, P.O. Box 48, FIN-00014 University of Helsinki, Finland Introduction The volume of living cells and xylem conduits vary according to pressures they are subjected to. Our proposition is that the behavior of the inner bark diameter variation which cannot be explained by changes in xylem water status arise from changes in the osmotic concentration of the phloem and cambial growth. Materials and methods Simultaneous xylem and stem diameter measurements were conducted between June 28th to October 4th 2006 in Southern Finland on a 47-year old, 15 meter tall, Scots pine tree (DBH 15 cm) at heights of 1.5 and 10 meters. The difference between the measured inner bark diameter and the inner bark diameter predicted from xylem diameter change with a simple model (assuming there was no change in the osmotic concentration of the phloem) is hypothesized to give the changes in the osmotic concentration of the inner bark. The simple model calculates the radial water exchange between the xylem and phloem driven by the water potential changes in the xylem. Results and Discussion The major signal in the inner bark diameter was the transpiration rate as assumed, but also a signal arising from the change in the osmotic concentration (Fig 1a). The predicted osmotic concentration of the phloem typically increased during the afternoon due to the loading of photosynthesized sugars to the phloem. Inner bark osmotic concentration followed the photosynthesis rate with a 3 and 4 hour time-lag at the top and base, respectively (Fig 1b). The connection between photosynthesis and the predicted change in phloem osmotic concentration was stronger in the upper part of the tree compared to lower part. The changes in the predicted osmotic concentration were not similar every day, indicating that

  16. Shrinking plastic tubing and nonstandard diameters

    NASA Technical Reports Server (NTRS)

    Ruiz, W. V.; Thatcher, C. S.

    1980-01-01

    Process allows larger-than-normal postshrink diameters without splitting. Tetrafluoroethylene tubing on mandrel is supported within hot steel pipe by several small diameter coil sections. Rising temperature of mandrel is measured via thermocouple so assembly can be removed without overshrinking (and splitting) of tubing.

  17. Vascular Endothelial Growth Factor Improves Physico-Mechanical Properties and Enhances Endothelialization of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(ε-caprolactone) Small-Diameter Vascular Grafts In vivo

    PubMed Central

    Antonova, Larisa V.; Sevostyanova, Victoria V.; Kutikhin, Anton G.; Mironov, Andrey V.; Krivkina, Evgeniya O.; Shabaev, Amin R.; Matveeva, Vera G.; Velikanova, Elena A.; Sergeeva, Evgeniya A.; Burago, Andrey Y.; Vasyukov, Georgiy Y.; Glushkova, Tatiana V.; Kudryavtseva, Yuliya A.; Barbarash, Olga L.; Barbarash, Leonid S.

    2016-01-01

    The combination of a natural polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and a synthetic hydrophobic polymer poly(ε-caprolactone) (PCL) is promising for the preparation of biodegradable and biocompatible small-diameter vascular grafts for bypass surgery. However, physico-mechanical properties and endothelialization rate of PHBV/PCL grafts are poor. We suggested that incorporation of vascular endothelial growth factor (VEGF) into PHBV/PCL grafts may improve their physico-mechanical properties and enhance endothelialization. Here we compared morphology, physico-mechanical properties, and in vivo performance of electrospun small-diameter vascular grafts prepared from PHBV/PCL with and without VEGF. Structure of the graft surface and physico-mechanical properties were examined by scanning electron microscopy and universal testing machine, respectively. Grafts were implanted into rat abdominal aorta for 1, 3, and 6 months with the further histological, immunohistochemical, and immunofluorescence examination. PHBV/PCL grafts with and without VEGF were highly porous and consisted mostly of nanoscale and microscale fibers, respectively. Mean pore diameter and mean pore area were significantly lower in PHBV/PCL/VEGF compared to PHBV/PCL grafts (1.47 μm and 10.05 μm2; 2.63 μm and 47.13 μm2, respectively). Durability, elasticity, and stiffness of PHBV/PCL grafts with VEGF were more similar to internal mammary artery compared to those without, particularly 6 months postimplantation. Both qualitative examination and quantitative image analysis showed that three-fourths of PHBV/PCL grafts with VEGF were patent and had many CD31-, CD34-, and vWF-positive cells at their inner surface. However, all PHBV/PCL grafts without VEGF were occluded and had no or a few CD31-positive cells at the inner surface. Therefore, VEGF enhanced endothelialization and improved graft patency at all the time points in a rat abdominal aorta replacement model. In conclusion, PHBV

  18. Vascular Endothelial Growth Factor Improves Physico-Mechanical Properties and Enhances Endothelialization of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(ε-caprolactone) Small-Diameter Vascular Grafts In vivo.

    PubMed

    Antonova, Larisa V; Sevostyanova, Victoria V; Kutikhin, Anton G; Mironov, Andrey V; Krivkina, Evgeniya O; Shabaev, Amin R; Matveeva, Vera G; Velikanova, Elena A; Sergeeva, Evgeniya A; Burago, Andrey Y; Vasyukov, Georgiy Y; Glushkova, Tatiana V; Kudryavtseva, Yuliya A; Barbarash, Olga L; Barbarash, Leonid S

    2016-01-01

    The combination of a natural polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and a synthetic hydrophobic polymer poly(ε-caprolactone) (PCL) is promising for the preparation of biodegradable and biocompatible small-diameter vascular grafts for bypass surgery. However, physico-mechanical properties and endothelialization rate of PHBV/PCL grafts are poor. We suggested that incorporation of vascular endothelial growth factor (VEGF) into PHBV/PCL grafts may improve their physico-mechanical properties and enhance endothelialization. Here we compared morphology, physico-mechanical properties, and in vivo performance of electrospun small-diameter vascular grafts prepared from PHBV/PCL with and without VEGF. Structure of the graft surface and physico-mechanical properties were examined by scanning electron microscopy and universal testing machine, respectively. Grafts were implanted into rat abdominal aorta for 1, 3, and 6 months with the further histological, immunohistochemical, and immunofluorescence examination. PHBV/PCL grafts with and without VEGF were highly porous and consisted mostly of nanoscale and microscale fibers, respectively. Mean pore diameter and mean pore area were significantly lower in PHBV/PCL/VEGF compared to PHBV/PCL grafts (1.47 μm and 10.05 μm(2); 2.63 μm and 47.13 μm(2), respectively). Durability, elasticity, and stiffness of PHBV/PCL grafts with VEGF were more similar to internal mammary artery compared to those without, particularly 6 months postimplantation. Both qualitative examination and quantitative image analysis showed that three-fourths of PHBV/PCL grafts with VEGF were patent and had many CD31-, CD34-, and vWF-positive cells at their inner surface. However, all PHBV/PCL grafts without VEGF were occluded and had no or a few CD31-positive cells at the inner surface. Therefore, VEGF enhanced endothelialization and improved graft patency at all the time points in a rat abdominal aorta replacement model. In conclusion, PHBV

  19. Double diameter boring tool

    DOEpatents

    Ashbaugh, F.A.; Murry, K.R.

    1986-02-10

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting flutes formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first flute tip to the axis of rotation plus the distance from the second flute tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second flute tip to the axis of rotation minus one-half the distance from the first flute tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  20. Double diameter boring tool

    DOEpatents

    Ashbaugh, Fred N.; Murry, Kenneth R.

    1988-12-27

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting edges formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first cutting edge tip to the axis of rotation plus the distance from the second cutting edge tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second cutting edge tip to the axis of rotation minus one-half the distance from the first cutting edge tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  1. The DIAMET campaign

    NASA Astrophysics Data System (ADS)

    Vaughan, G.

    2012-04-01

    DIAMET (DIAbatic influences on Mesoscale structures in ExTratropical storms) is a joint project between the UK academic community and the Met Office. Its focus is on understanding and predicting mesoscale structures in synoptic-scale storms, and in particular on the role of diabatic processes in generating and maintaining them. Such structures include fronts, rain bands, secondary cyclones, sting jets etc, and are important because much of the extreme weather we experience (e.g. strong winds, heavy rain) comes from such regions. The project conducted two field campaigns in the autumn of 2011, from September 14 - 30 and November 24 - December 14, based around the FAAM BAe146 aircraft with support from ground-based radar and radiosonde measurements. Detailed modelling, mainly using the Met Office Unified model, supported the planning and interpretation of these campaigns. This presentation will give a brief overview of the campaigns. Both in September and November-December the weather regime was westerly, with a strong jet stream directed across the Atlantic. Three IOPs were conducted in September, to observe a convective band ahead of an upper-level trough, waves on a long trailing cold front, and a warm conveyor belt associated with a secondary cyclone. In November-December six IOPs were conducted, to observe frontal passages and high winds. This period was notable for a number of very strong windstorms passing across the north of the UK, and gave us an opportunity to examine bent-back warm fronts in the southern quadrant of these storms where the strongest winds are found. The case studies fell into two basic patterns. In the majority of cases, dropsonde legs at high level were used to obtain a cross-section of winds and thermodynamic structure (e.g. across a front), followed by in situ legs at lower levels (generally where the temperature was between 0 and -10°) to examine microphysical processes, especially ice multiplication and the extent of supercooled water

  2. Nineteen-Foot Diameter Explosively Driven Blast Simulator

    SciTech Connect

    VIGIL,MANUEL G.

    2001-07-01

    This report describes the 19-foot diameter blast tunnel at Sandia National Laboratories. The blast tunnel configuration consists of a 6 foot diameter by 200 foot long shock tube, a 6 foot diameter to 19 foot diameter conical expansion section that is 40 feet long, and a 19 foot diameter test section that is 65 feet long. Therefore, the total blast tunnel length is 305 feet. The development of this 19-foot diameter blast tunnel is presented. The small scale research test results using 4 inch by 8 inch diameter and 2 foot by 6 foot diameter shock tube facilities are included. Analytically predicted parameters are compared to experimentally measured blast tunnel parameters in this report. The blast tunnel parameters include distance, time, static, overpressure, stagnation pressure, dynamic pressure, reflected pressure, shock Mach number, flow Mach number, shock velocity, flow velocity, impulse, flow duration, etc. Shadowgraphs of the shock wave are included for the three different size blast tunnels.

  3. Wheel Diameter and Speedometer Reading

    ERIC Educational Resources Information Center

    Murray, Clifton

    2010-01-01

    Most introductory physics students have seen vehicles with nonstandard wheel diameters; some may themselves drive "low-rider" cars or "big-wheel" pickup trucks. But how does changing wheel diameter affect speedometer readout for a given speed? Deriving the answer can be followed readily by students who have been introduced to rotation, and it…

  4. 76 FR 47555 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Japan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... Pipe From Japan; Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From... certain small diameter carbon and alloy seamless standard, line and pressure pipe (``small diameter pipe... sunset reviews of the antidumping duty orders on large diameter pipe from Japan and small......

  5. Lasing in microdisks of ultrasmall diameter

    SciTech Connect

    Zhukov, A. E. Kryzhanovskaya, N. V.; Maximov, M. V.; Lipovskii, A. A.; Savelyev, A. V.; Bogdanov, A. A.; Shostak, I. I.; Moiseev, E. I.; Karpov, D. V.; Laukkanen, J.; Tommila, J.

    2014-12-15

    It is demonstrated by calculations and experimental results that room-temperature lasing can be obtained at the ground-state optical transition of InAs/InGaAs/GaAs quantum dots in optical microcavities with a record-small diameter of 1.5 μm. In 1-μm cavities, lasing occurs at the wavelength of one of the whispering-gallery modes within the band corresponding to the first excited-state optical transition.

  6. Measuring Diameters Of Large Vessels

    NASA Technical Reports Server (NTRS)

    Currie, James R.; Kissel, Ralph R.; Oliver, Charles E.; Smith, Earnest C.; Redmon, John W., Sr.; Wallace, Charles C.; Swanson, Charles P.

    1990-01-01

    Computerized apparatus produces accurate results quickly. Apparatus measures diameter of tank or other large cylindrical vessel, without prior knowledge of exact location of cylindrical axis. Produces plot of inner circumference, estimate of true center of vessel, data on radius, diameter of best-fit circle, and negative and positive deviations of radius from circle at closely spaced points on circumference. Eliminates need for time-consuming and error-prone manual measurements.

  7. Wheel Diameter and Speedometer Reading

    NASA Astrophysics Data System (ADS)

    Murray, Clifton

    2010-09-01

    Most introductory physics students have seen vehicles with nonstandard wheel diameters; some may themselves drive "low-rider" cars or "big-wheel" pickup trucks. But how does changing wheel diameter affect speedometer readout for a given speed? Deriving the answer can be followed readily by students who have been introduced to rotation, and it makes a good illustration of how reasoning in physics can lead to a result that is useful outside the classroom.

  8. Stellar diameters and temperatures. IV. Predicting stellar angular diameters

    SciTech Connect

    Boyajian, Tabetha S.; Van Belle, Gerard; Von Braun, Kaspar

    2014-03-01

    The number of stellar angular diameter measurements has greatly increased over the past few years due to innovations and developments in the field of long baseline optical interferometry. We use a collection of high-precision angular diameter measurements for nearby, main-sequence stars to develop empirical relations that allow the prediction of stellar angular sizes as a function of observed photometric color. These relations are presented for a combination of 48 broadband color indices. We empirically show for the first time a dependence on metallicity of these relations using Johnson (B – V) and Sloan (g – r) colors. Our relations are capable of predicting diameters with a random error of less than 5% and represent the most robust and empirical determinations of stellar angular sizes to date.

  9. 76 FR 62762 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Japan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... Pipe From Japan; Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From... alloy seamless standard, line and pressure pipe (``large diameter pipe'') from Japan and certain small diameter carbon and alloy seamless standard, line and pressure pipe (``small diameter pipe'')......

  10. High voltage variable diameter insulator

    DOEpatents

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  11. High voltage variable diameter insulator

    DOEpatents

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  12. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a line running from the stem to the...

  13. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a line running from the stem to the...

  14. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a...

  15. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a...

  16. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a line running from the stem to the...

  17. Diameter Control and Photoluminescence of ZnO Nanorods from Trialkylamines

    DOE PAGESBeta

    Andelman, Tamar; Gong, Yinyan; Neumark, Gertrude; O'Brien, Stephen

    2007-01-01

    A novel solution method to control the diameter of ZnO nanorods is reported. Small diameter (2-3 nm) nanorods were synthesized from trihexylamine, and large diameter (50–80 nm) nanorods were synthesized by increasing the alkyl chain length to tridodecylamine. The defect (green) emission of the photoluminescence (PL) spectra of the nanorods varies with diameter, and can thus be controlled by the diameter control. The small ZnO nanorods have strong green emission, while the large diameter nanorods exhibit a remarkably suppressed green band. We show that this observation supports surface oxygen vacancies as the defect that gives rise to the green emission.

  18. Brain Arterial Diameters as a Risk Factor for Vascular Events

    PubMed Central

    Gutierrez, Jose; Cheung, Ken; Bagci, Ahmet; Rundek, Tatjana; Alperin, Noam; Sacco, Ralph L; Wright, Clinton B; Elkind, Mitchell S V

    2015-01-01

    Background Arterial luminal diameters are routinely used to assess for vascular disease. Although small diameters are typically considered pathological, arterial dilatation has also been associated with disease. We hypothesize that extreme arterial diameters are biomarkers of the risk of vascular events. Methods and Results Participants in the Northern Manhattan Study who had a time-of-flight magnetic resonance angiography were included in this analysis (N=1034). A global arterial Z-score, called the brain arterial remodeling (BAR) score, was obtained by averaging the measured diameters within each individual. Individuals with a BAR score <−2 SDs were considered to have the smallest diameters, individuals with a BAR score >−2 and <2 SDs had average diameters, and individuals with a BAR score >2 SDs had the largest diameters. All vascular events were recorded prospectively after the brain magnetic resonance imaging. Spline curves and incidence rates were used to test our hypothesis. The association of the BAR score with death (P=0.001), vascular death (P=0.02), any vascular event (P=0.05), and myocardial infarction (P=0.10) was U-shaped except for ischemic stroke (P=0.74). Consequently, incidence rates for death, vascular death, myocardial infarction, and any vascular event were higher in individuals with the largest diameters, whereas individuals with the smallest diameters had a higher incidence of death, vascular death, any vascular event, and ischemic stroke compared with individuals with average diameters. Conclusions The risk of death, vascular death, and any vascular event increased at both extremes of brain arterial diameters. The pathophysiology linking brain arterial remodeling to systemic vascular events needs further research. PMID:26251284

  19. Explosively-Driven Blast Waves in Small-Diameter Tubes

    NASA Astrophysics Data System (ADS)

    Cooper, M. A.; Marinis, R. T.; Oliver, M. S.

    Studies on blast waves are motivated by the need to understand dynamic pressure loadings in accident scenarios associated with rapid energy release in confined geometries. Explosions from fuel-air mixtures, explosives and industrial accidents often occur within a range of length scales associated with ducts, pipes, corridors, and tunnels [1, 2].

  20. Analysis of flow dynamics through small diameter gas sampling systems

    NASA Technical Reports Server (NTRS)

    Brown, K. G.

    1984-01-01

    The removal of gas material through a capillary opening in a surface is analyzed. The gas, from which the sample is removed, is moving past the surface at supersonic velocities. A variety of possible conditions of temperature, pressure and composition are discussed in an effort to emulate conditions that might be found at the surface of a vehicle traversing the altitude range 100-50 km, or might exist at the surface of a model in the stream of a high enthalpy wind tunnel. Aspects discussed include: (1) the throughput of the capillary for conditions of different lengths and different L/a (length/radius) ratios; (2) the total throughput when the surface in question contains many hundreds of these capillaries; (3) the effect of the capillaries upon the composition of the analyzed gas; (4) the effect of the capillary or capillaries upon the gas stream itself; and (5) the implications of the calculations upon the possible implementation of this type of device as an inlet for a mass spectrometer to be developed for analyzing the upper atmosphere.

  1. Fabrication and characterization of small-diameter vascular prostheses.

    PubMed

    Kowligi, R R; von Maltzahn, W W; Eberhart, R C

    1988-12-01

    We have developed a process to fabricate polyurethane vascular grafts of various dimensions and porosities in our laboratory. A primary feature of the presented fabrication technique is the ability to control surface porosity and roughness, and bulk mechanical properties. The method is based on the spray application of a fine mixture of polymer solution and nitrogen gas bubbles onto a lathe-mounted mandrel. The technique was successfully tested with Tecoflex, a linear segmented aliphatic polyurethane. Other urethane polymers can be used as well. Several polymer coats are applied in a semiautomated process, at the end of which the polymer coating is dried and the tube is slipped off the mandrel. It is the purpose of this paper to describe the fabrication process and present results of the evaluation of grafts. Wall structure was evaluated using scanning electron microscopy and compliance was measured in a specially designed testing apparatus. We developed methods to quantify kink resistance and suture retention capacity of the grafts. These characteristics were correlated with graft fabrication variables: mandrel rpm, horizontal speed of the spray nozzle, gas and polymer solution flow rates. We were able to routinely produce 3-6-mm-ID grafts with 0.5-1.2-mm wall thickness and average bulk pore sizes of 10-250 microns; the wall porosity could be varied between 30 and 70%. Compliance values of the grafts were comparable with corresponding values of carotid and femoral arteries of dogs. PMID:3235462

  2. Biodegradable, thermoplastic polyurethane grafts for small diameter vascular replacements.

    PubMed

    Bergmeister, Helga; Seyidova, Nargiz; Schreiber, Catharina; Strobl, Magdalena; Grasl, Christian; Walter, Ingrid; Messner, Barbara; Baudis, Stefan; Fröhlich, Sophie; Marchetti-Deschmann, Martina; Griesser, Markus; di Franco, Matt; Krssak, Martin; Liska, Robert; Schima, Heinrich

    2015-01-01

    Biodegradable vascular grafts with sufficient in vivo performance would be more advantageous than permanent non-degradable prostheses. These constructs would be continuously replaced by host tissue, leading to an endogenous functional implant which would adapt to the need of the patient and exhibit only limited risk of microbiological graft contamination. Adequate biomechanical strength and a wall structure which promotes rapid host remodeling are prerequisites for biodegradable approaches. Current approaches often reveal limited tensile strength and therefore require thicker or reinforced graft walls. In this study we investigated the in vitro and in vivo biocompatibility of thin host-vessel-matched grafts (n=34) formed from hard-block biodegradable thermoplastic polyurethane (TPU). Expanded polytetrafluoroethylene (ePTFE) conduits (n=34) served as control grafts. Grafts were analyzed by various techniques after retrieval at different time points (1 week; 1, 6, 12 months). TPU grafts showed significantly increased endothelial cell proliferation in vitro (P<0.001). Population by host cells increased significantly in the TPU conduits within 1 month of implantation (P=0.01). After long-term implantation, TPU implants showed 100% patency (ePTFE: 93%) with no signs of aneurysmal dilatation. Substantial remodeling of the degradable grafts was observed but varied between subjects. Intimal hyperplasia was limited to ePTFE conduits (29%). Thin-walled TPU grafts offer a new and desirable form of biodegradable vascular implant. Degradable grafts showed equivalent long-term performance characteristics compared to the clinically used, non-degradable material with improvements in intimal hyperplasia and ingrowth of host cells. PMID:25218664

  3. Stress-rupture behavior of small diameter polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; Goldsby, Jon C.; Dicarlo, James A.

    1993-01-01

    Continuous length polycrystalline alumina fibers are candidates as reinforcement in high temperature composite materials. Interest therefore exists in characterizing the thermomechanical behavior of these materials, obtaining possible insights into underlying mechanisms, and understanding fiber performance under long term use. Results are reported on the time-temperature dependent strength behavior of Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Below 1000 C and 100 hours, Nextel 610 with the smaller grain size had a greater fast fracture and rupture strength than Fiber FP. The time exponents for stress-rupture of these fibers were found to decrease from approximately 13 at 900 C to below 3 near 1050 C, suggesting a transition from slow crack growth to creep rupture as the controlling fracture mechanism. For both fiber types, an effective activation energy of 690 kJ/mol was measured for rupture. This allowed stress-rupture predictions to be made for extended times at use temperatures below 1000 C.

  4. Development of immersion quenching of small diameter bars

    SciTech Connect

    Bunte, C.

    1996-12-31

    A change of process in the quenching of 25.40 mm (1 inch) bars in UNI41Cr4 (SAE 5140) was implemented. The change consisted in the passage from induction quenching to immersion quenching in a polymer solution bath. The tests were made on bars of 6.00 meters long, disposed in separate layers. The results were satisfactory: (a) A good homogeneity in the average center hardness of bars. (b) Low distortion of bars. (c) No cracks were found. Afterwards, tests were made on longer bars (9.50 meters) with the same results. This change of process allowed an important reduction of fabrication costs.

  5. Optimal electrode diameter in relation to volume of the cochlea.

    PubMed

    Gnansia, D; Demarcy, T; Vandersteen, C; Raffaelli, C; Guevara, N; Delingette, H; Ayache, N

    2016-06-01

    The volume of the cochlea is a key parameter for electrode-array design. Indeed, it constrains the diameter of the electrode-array for low-traumatic positioning in the scala timpani. The present report shows a model of scala timpani volume extraction from temporal bones images in order to estimate a maximum diameter of an electrode-array. Nine temporal bones were used, and passed to high-resolution computed tomography scan. Using image-processing techniques, scala timpani were extracted from images, and cross-section areas were estimated along cochlear turns. Cochlear implant electrode-array was fitted in these cross-sections. Results show that the electrode-array diameter is small enough to fit in the scala timpani, however the diameter is restricted at the apical part. PMID:27246746

  6. 7 CFR 51.2656 - Diameter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades for Sweet Cherries 1 Definitions § 51.2656 Diameter. Diameter means the greatest dimension measured at right angles to a line from the stem to the blossom end of the cherry....

  7. Diameter-dependent solubility of single-walled carbon nanotubes.

    PubMed

    Duque, Juan G; Parra-Vasquez, A Nicholas G; Behabtu, Natnael; Green, Micah J; Higginbotham, Amanda L; Price, B Katherine; Leonard, Ashley D; Schmidt, Howard K; Lounis, Brahim; Tour, James M; Doorn, Stephen K; Cognet, Laurent; Pasquali, Matteo

    2010-06-22

    We study the solubility and dispersibility of as-produced and purified HiPco single-walled carbon nanotubes (SWNTs). Variation in specific operating conditions of the HiPco process are found to lead to significant differences in the respective SWNT solubilities in oleum and surfactant suspensions. The diameter distributions of SWNTs dispersed in surfactant solutions are batch-dependent, as evidenced by luminescence and Raman spectroscopies, but are identical for metallic and semiconducting SWNTs within a batch. We thus find that small diameter SWNTs disperse at higher concentration in aqueous surfactants and dissolve at higher concentration in oleum than do large-diameter SWNTs. These results highlight the importance of controlling SWNT synthesis methods in order to optimize processes dependent on solubility, including macroscopic processing such as fiber spinning, material reinforcement, and films production, as well as for fundamental research in type selective chemistry, optoelectronics, and nanophotonics. PMID:20521799

  8. Graft Diameter matters in Hamstring ACL reconstruction

    PubMed Central

    Clatworthy, Mark

    2016-01-01

    Objective: Recently techniques have been developed to increase graft diameter in hamstring ACL reconstruction with the hope to decrease graft failure. To date there is limited evidence to show that a smaller graft diameter results in a higher ACL failure rate. Method: The factors for failure in 1480 consecutive single surgeon hamstring ACL reconstructions were evaluated prospectively. Patients were followed for 2-15 years. A multivariate analysis was performed which looked at graft size, age, sex, time to surgery, meniscal integrity, meniscal repair and ACL graft placement to determine whether graft diameter matters in determining the failure of hamstring ACL reconstruction. Results: Graft diameters ranged from 6-10 mm. The mean graft diameter for all patients was 7.75 mm. 83 ACL reconstructions failed. The mean size of graft failures was 7.55 mm ACL reconstructions that failed had a significantly smaller hamstring graft diameter p=0.001. The Hazard Ratio for a smaller diameter graft is 0.517 p=<0.0001. For every 1 mm decrease in graft diameter there is a 48.3% higher chance of failure. The multivariate analysis showed a hazard ratio of 0.543 p=0.002. For every 1 mm decrease in graft diameter there is a 45.7% higher chance of failure. Conclusion: Smaller diameter hamstring grafts do have a higher failure rate. Grafts ≤ 7.5 mm had twice the failure rate of grafts ≥8 mm using a multivariate analysis for every 1 mm decrease in graft diameter there is a 45.7% higher chance of failure.

  9. Photoacoustic determination of blood vessel diameter

    NASA Astrophysics Data System (ADS)

    Kolkman, Roy G. M.; Klaessens, John H. G. M.; Hondebrink, Erwin; Hopman, Jeroen C. W.; de Mul, Frits F. M.; Steenbergen, Wiendelt; Thijssen, Johan M.; van Leeuwen, Ton G.

    2004-10-01

    A double-ring sensor was applied in photoacoustic tomographic imaging of artificial blood vessels as well as blood vessels in a rabbit ear. The peak-to-peak time (tgrpp) of the laser (1064 nm) induced pressure transient was used to estimate the axial vessel diameter. Comparison with the actual vessel diameter showed that the diameter could be approximated by 2ctgrpp, with c the speed of sound in blood. Using this relation, the lateral diameter could also precisely be determined. In vivo imaging and monitoring of changes in vessel diameters was feasible. Finally, acoustic time traces were recorded while flushing a vessel in the rabbit ear with saline, which proved that the main contribution to the laser-induced pressure transient is caused by blood inside the vessel and that the vessel wall gives only a minor contribution.

  10. Continuous measurement of vascular diameters via television microscopy.

    PubMed

    Devaney, M J; Rathke, J E; Bartel, R W; Mcdonald, J E; Wiegman, D L; Miller, F N; Harris, P D

    1976-01-01

    In the past 10 years, microcirculation studies have emphasized quantitative measurements of microvascular diameters to characterize in vivo small vessel responses to experimental forcings such as hemorrhage, anesthesia, and hypoxia. We have developed an instrument to obtain continuous diameter measurements of a small artery and vein (40-200 mu) via closed-circuit television microscopy. The outputs are analog voltages proportional to the vessel diameters. Video processing is limited to two image areas termed "windows," which are defined by markers on the monitor and positioned over separate vertically aligned vessels. Each vessel, which appears darker than the surrounding tissue, is located by comparing the video signal to a reference voltage that adapts to changes in the relative contrast within the window. In the presence of a vessel, a ramp voltage is generated, the peak value of which is proportional to the vessel diameter. These peaks are averaged over the 15-video lines of the window and over several video frames to reduce noise sensitivity. In order to accommodate preparation movement such as skeletal muscle contraction, window position and width automatically adapt to changes in vessel position and width. Visual verification of system performance is provided by clamping the video signal to white on that portion of the image which the instrument identifies as vessel. PMID:950283

  11. Cost of Czochralski wafers as a function of diameter

    SciTech Connect

    Leipold, M.H.; Radics, C.; Kachare, A.

    1980-02-15

    The impact of diameter in the range of 10 to 15 cm on the cost of wafers sliced from Czochralski ingots is analyzed. Increasing silicon waste and decreasing ingot cost with increasing ingot size are estimated along with projected costs. Results indicate a small but continuous decrease in sheet cost with increasing ingot size in this size range. Sheet costs including silicon are projected to be $50 to $60/m/sup 2/ (1980 $) depending upon technique used.

  12. Measurement of shaft diameters by machine vision.

    PubMed

    Wei, Guang; Tan, Qingchang

    2011-07-01

    A machine vision method for accurately measuring the diameters of cylindrical shafts is presented. Perspective projection and the geometrical features of cylindrical shafts are modeled in order to enable accurate measurement of shaft diameters. Some of the model parameters are determined using a shaft of known diameter. The camera model itself includes radial and tangential distortions terms. Experiments were used to measure the accuracy of the proposed method and the effect of the position of the camera relative to the shaft, as well as other factors. PMID:21743525

  13. Growth of nanostructures with controlled diameter

    DOEpatents

    Pfefferle, Lisa; Haller, Gary; Ciuparu, Dragos

    2009-02-03

    Transition metal-substituted MCM-41 framework structures with a high degree of structural order and a narrow pore diameter distribution were reproducibly synthesized by a hydrothermal method using a surfactant and an anti-foaming agent. The pore size and the mesoporous volume depend linearly on the surfactant chain length. The transition metals, such as cobalt, are incorporated substitutionally and highly dispersed in the silica framework. Single wall carbon nanotubes with a narrow diameter distribution that correlates with the pore diameter of the catalytic framework structure were prepared by a Boudouard reaction. Nanostructures with a specified diameter or cross-sectional area can therefore be predictably prepared by selecting a suitable pore size of the framework structure.

  14. Making Jointless Dual-Diameter Tubes

    NASA Technical Reports Server (NTRS)

    Kirkham, Kathleen E.

    1989-01-01

    Welds between sections having different diameters eliminated. Single tube made with integral tapered transition section between straight sections of different diameters and wall thicknesses. Made from single piece; contains no joints, welded or otherwise. Not prone to such weld defects as voids and need not be inspected for them. Tube fabricated by either of two methods: drawing or reduction. Both methods used to fabricate tubes of 316L corrosion-resistant stainless steel for use as heat-exchanger coil.

  15. Ultra-efficient Engine Diameter Study

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Brown, Stephen T.; Kawai, Ron T.

    2003-01-01

    Engine fan diameter and Bypass Ratio (BPR) optimization studies have been conducted since the beginning of the turbofan age with the recognition that reducing the engine core jet velocity and increasing fan mass flow rate generally increases propulsive efficiency. However, performance tradeoffs limit the amount of fan flow achievable without reducing airplane efficiency. This study identifies the optimum engine fan diameter and BPR, given the advanced Ultra-Efficient Engine Technology (UEET) powerplant efficiencies, for use on an advanced subsonic airframe. Engine diameter studies have historically focused on specific engine size options, and were limited by existing technology and transportation infrastructure (e.g., ability to fit bare engines through aircraft doors and into cargo holds). This study is unique in defining the optimum fan diameter and drivers for future 2015 (UEET) powerplants while not limiting engine fan diameter by external constraints. This report follows on to a study identifying the system integration issues of UEET engines. This Engine Diameter study was managed by Boeing Phantom Works, Seattle, Washington through the NASA Glenn Revolutionary Aero Space Engine Research (RASER) contract under task order 10. Boeing Phantom Works, Huntington Beach, completed the engine/airplane sizing optimization, while the Boeing Commercial Airplane group (BCA) provided design oversight. A separate subcontract to support the overall project was issued to Tuskegee University.

  16. Ratio of Spleen Diameter to Red Blood Cell Distribution Width

    PubMed Central

    Balaban, Daniel Vasile; Popp, Alina; Lungu, Andrei Marian; Costache, Raluca Simona; Anca, Ioana Alina; Jinga, Mariana

    2015-01-01

    Abstract Celiac disease (CD) is currently considerably underdiagnosed, setting the need for developing tools to select patients with probability of CD, who warrant further testing. Red blood cell distribution width (RDW) has been shown in previous studies to be a sensitive predictor for CD, but it lacks specificity. Splenic hypotrophy is also noted frequently in celiac patients. Our aim was to evaluate if spleen diameter to RDW ratio can be used as an indicator for CD. We evaluated 15 newly diagnosed CD patients, 52 patients with inflammatory bowel disease, and 35 patients with irritable bowel syndrome (IBS). We evaluated the differences in spleen diameter, RDW, and their ratio among the four groups. Two-thirds of the CD patients had elevated RDW, compared to 9% in the IBS group. A small spleen was seen in 80% of the celiacs, compared to 21.9% in the ulcerative colitis group, 10% in the Crohn disease group, and 9% in the IBS group. A spleen diameter to RDW ratio under 6 had a sensitivity of 73.3% and specificity of 88.5% in predicting CD, with an AUROC of 0.737. Spleen diameter to RDW ratio is a simple, widely available score, which can be used to select adult patients with probability of CD. PMID:25881851

  17. Minimum tube diameters for steady propagation of gaseous detonations

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Ng, H. D.; Lee, J. H. S.

    2014-07-01

    Recent experimental results on detonation limits are reported in this paper. A parametric study was carried out to determine the minimum tube diameters for steady detonation propagation in five different hydrocarbon fuel-oxygen combustible mixtures and in five polycarbonate test tube diameters ranging from 50.8 mm down to a small scale of 1.5 mm. The wave propagation in the tube was monitored by optical fibers. By decreasing the initial pressure, hence the sensitivity of the mixture, the onset of limits is indicated by an abrupt drop in the steady detonation velocity after a short distance of travel. From the measured wave velocities inside the test tube, the critical pressure corresponding to the limit and the minimum tube diameters for the propagation of the detonation can be obtained. The present experimental results are in good agreement with previous studies and show that the measured minimum tube diameters can be reasonably estimated on the basis of the /3 rule over a wide range of conditions, where is the detonation cell size. These new data shall be useful for safety assessment in process industries and in developing and validating models for detonation limits.

  18. DiameterJ: A validated open source nanofiber diameter measurement tool.

    PubMed

    Hotaling, Nathan A; Bharti, Kapil; Kriel, Haydn; Simon, Carl G

    2015-08-01

    Despite the growing use of nanofiber scaffolds for tissue engineering applications, there is not a validated, readily available, free solution for rapid, automated analysis of nanofiber diameter from scanning electron microscope (SEM) micrographs. Thus, the goal of this study was to create a user friendly ImageJ/FIJI plugin that would analyze SEM micrographs of nanofibers to determine nanofiber diameter on a desktop computer within 60 s. Additional design goals included 1) compatibility with a variety of existing segmentation algorithms, and 2) an open source code to enable further improvement of the plugin. Using existing algorithms for centerline determination, Euclidean distance transforms and a novel pixel transformation technique, a plugin called "DiameterJ" was created for ImageJ/FIJI. The plugin was validated using 1) digital synthetic images of white lines on a black background and 2) SEM images of nominally monodispersed steel wires of known diameters. DiameterJ analyzed SEM micrographs in 20 s, produced diameters not statistically different from known values, was over 10-times closer to known diameter values than other open source software, provided hundreds of times the sampling of manual measurement, and was hundreds of times faster than manual assessment of nanofiber diameter. DiameterJ enables users to rapidly and thoroughly determine the structural features of nanofiber scaffolds and could potentially allow new insights to be formed into fiber diameter distribution and cell response. PMID:26043061

  19. Submicron diameter single crystal sapphire optical fiber

    SciTech Connect

    Hill, Cary; Homa, Daniel; Liu, Bo; Yu, Zhihao; Wang, Anbo; Pickrell, Gary

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers is the first step in achieving optical and sensing performance on par with its fused silica counterpart.

  20. Large diameter astromast development, phase 1

    NASA Technical Reports Server (NTRS)

    Preiswerk, P. R.; Finley, L. A.; Knapp, K.

    1983-01-01

    Coilable-longeron lattice columns called Astromasts (trademark) were manufactured for a variety of spacecraft missions. These flight structures varied in diameter from 0.2 to 0.5 meter (9 to 19 in.), and the longest Astromast of this type deploys to a length of 30 meters (100 feet). A double-laced diagonal Astromast design referred to as the Supermast (trademark) which, because it has shorter baylengths than an Astromast, is approximately four times as strong. The longeron cross section and composite material selection for these structures are limited by the maximum strain associated with stowage and deployment. As a result, future requirements for deployable columns with high stiffness and strength require the development of both structures in larger diameters. The design, development, and manufacture of a 6.1-m-long (20-ft), 0.75-m-diameter (30-in.), double-laced diagonal version of the Astromast is described.

  1. Submicron diameter single crystal sapphire optical fiber

    DOE PAGESBeta

    Hill, Cary; Homa, Daniel; Liu, Bo; Yu, Zhihao; Wang, Anbo; Pickrell, Gary

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers ismore » the first step in achieving optical and sensing performance on par with its fused silica counterpart.« less

  2. Videodensitometry for measuring blood vessel diameter.

    PubMed

    Hoornstra, K; Hanselman, J M; Holland, W P; De Wey Peters, G W; Zwamborn, A W

    1980-01-01

    A method employing a special computer for determining the internal diameters of blood vessels from photofluorographic image is described; in vitro and in vivo experiments are performed with the system. The amount of contrast medium injected is restricted to 4 times 3 ml, and it is possible to determine the diameter (in the range from 2 to 16 mm) at any place where blood vessels can be catheterized. In the in vivo experiments the maximum systematic error is +/-5 percent in the 7 to 8 mm range. PMID:7424549

  3. THERMAL EVALUATION OF DIFFERENT DRIFT DIAMETER SIZES

    SciTech Connect

    H.M. Wade

    1999-01-04

    The purpose of this calculation is to estimate the thermal response of a repository-emplaced waste package and its corresponding drift wall surface temperature with different drift diameters. The case examined is that of a 21 pressurized water reactor (PWR) uncanistered fuel (UCF) waste package loaded with design basis spent nuclear fuel assemblies. This calculation evaluates a 3.5 meter to 6.5 meter drift diameter range in increments of 1.0 meters. The time-dependent temperatures of interest, as determined by this calculation, are the spent nuclear fuel cladding temperature, the waste package surface temperature, and the drift wall surface temperature.

  4. Shaft Diameter Measurement Using Structured Light Vision

    PubMed Central

    Liu, Siyuan; Tan, Qingchang; Zhang, Yachao

    2015-01-01

    A method for measuring shaft diameters is presented using structured light vision measurement. After calibrating a model of the structured light measurement, a virtual plane is established perpendicular to the measured shaft axis and the image of the light stripe on the shaft is projected to the virtual plane. On the virtual plane, the center of the measured shaft is determined by fitting the projected image under the geometrical constraints of the light stripe, and the shaft diameter is measured by the determined center and the projected image. Experiments evaluated the measuring accuracy of the method and the effects of some factors on the measurement are analyzed. PMID:26274963

  5. Fabrication of 10nm diameter carbon nanopores

    SciTech Connect

    Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann; Downing, Kenneth H; Liphardt, Jan

    2008-09-25

    The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.

  6. Optical receivers with large-diameter photodiode

    NASA Astrophysics Data System (ADS)

    Swoboda, Robert; Schneider, Kerstin; Zimmermann, Horst

    2006-04-01

    This work presents two types of optical receivers with large-diameter photodiodes. Both are optoelectronic integrated circuits (OEICs) realized in 0.6μm BiCMOS Si technology integrating PIN photodiode, transimpedance amplifier (TIA) and output circuit on chip. The two circuits are an optocoupler with a photodiode diameter of 780μm and a rise- and falltime of 5ns and 4.9ns respectively at 850nm light and a plastic optical fiber (POF) receiver with a photodiode diameter of 500μm and upper -3dB cut-off frequencies of 165MHz at 660nm light and 148MHz at 850nm light. The measured rise- and falltime of the POF receiver was 1.78ns and 2.45ns at 660nm light and 1.94ns and 2.5ns at 850ns, respectively. The presented results combine the advantage of easier handling of large-diameter photodiode receivers and high performance.

  7. Changing the Diameter of a Viewing Tube

    ERIC Educational Resources Information Center

    Obara, Samuel

    2009-01-01

    This article is about the students' investigation about the relationship between the diameter of the view tubes (x) of constant lengths and the viewable vertical distance (y) on the wall while keeping the perpendicular distance from the eyeball to the wall constant. The students collected data and used and represented it in tabular and graphical…

  8. Reducing the diameters of computer networks

    NASA Technical Reports Server (NTRS)

    Bokhari, S. H.; Raza, A. D.

    1986-01-01

    Three methods of reducing the diameters of computer networks by adding additional processor to processor links under the constraint that no more than one I/O port be added to each processor are discussed. This is equivalent to adding edges to a given graph under the constraint that the degree of any node be increased, at most, by one.

  9. Computing Minimum Diameter Color-Spanning Sets

    NASA Astrophysics Data System (ADS)

    Fleischer, Rudolf; Xu, Xiaoming

    We study the minimum diameter color-spanning set problem which has recently drawn some attention in the database community. We show that the problem can be solved in polynomial time for L 1 and L ∞ metrics, while it is NP-hard for all other L p metrics even in two dimensions. However, we can efficiently compute a constant factor approximation.

  10. 7 CFR 51.320 - Diameter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Apples Definitions § 51.320 Diameter. When measuring for minimum size, “diameter” means the greatest dimension of the apple measured at right angles to a line from stem to blossom end. When measuring for maximum size, “diameter” means the smallest dimension of the apple determined...

  11. 7 CFR 51.320 - Diameter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Definitions § 51.320 Diameter. When measuring for minimum size, “diameter” means the greatest dimension of the apple measured at right angles to... dimension of the apple determined by passing the apple through a round opening in any position....

  12. 7 CFR 51.320 - Diameter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Definitions § 51.320 Diameter. When measuring for minimum size, “diameter” means the greatest dimension of the apple measured at right angles to... dimension of the apple determined by passing the apple through a round opening in any position....

  13. European Projects of Solar Diameter Monitoring

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino; Bianda, Michele; Arnaud, Jean

    2008-10-01

    Three projects dealing with solar diameter evolution are presently in development. Historical and contemporary eclipses and planetary transits data collection and analysis, to cover potentially the last 5 centuries with an accuracy of few hundreds of arcsecond on diameter's measurements. The French space mission PICARD with a few milliarcseconds accuray. With PICARD-SOL instruments located at the plateau of Calern the role of the atmosphere in ground-based measurements will be clarified. CLAVIUS is a Swiss-Italian project based on drift-scan method, free from optical distortions, where hourly circles transits will be monitored with fast CMOS sensors in different wavebands. The will run at IRSOL Gregory-Coudé telescope.

  14. On finding minimum-diameter clique trees

    SciTech Connect

    Blair, J.R.S. . Dept. of Computer Science); Peyton, B.W. )

    1991-08-01

    It is well-known that any chordal graph can be represented as a clique tree (acyclic hypergraph, join tree). Since some chordal graphs have many distinct clique tree representations, it is interesting to consider which one is most desirable under various circumstances. A clique tree of minimum diameter (or height) is sometimes a natural candidate when choosing clique trees to be processed in a parallel computing environment. This paper introduces a linear time algorithm for computing a minimum-diameter clique tree. The new algorithm is an analogue of the natural greedy algorithm for rooting an ordinary tree in order to minimize its height. It has potential application in the development of parallel algorithms for both knowledge-based systems and the solution of sparse linear systems of equations. 31 refs., 7 figs.

  15. Diameter-dependent hydrophobicity in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kyakuno, Haruka; Fukasawa, Mamoru; Ichimura, Ryota; Matsuda, Kazuyuki; Nakai, Yusuke; Miyata, Yasumitsu; Saito, Takeshi; Maniwa, Yutaka

    2016-08-01

    Single-wall carbon nanotubes (SWCNTs) are a good model system that provides atomically smooth nanocavities. It has been reported that water-SWCNTs exhibit hydrophobicity depending on the temperature T and the SWCNT diameter D. SWCNTs adsorb water molecules spontaneously in their cylindrical pores around room temperature, whereas they exhibit a hydrophilic-hydrophobic transition or wet-dry transition (WDT) at a critical temperature Twd ≈ 220-230 K and above a critical diameter Dc ≈ 1.4-1.6 nm. However, details of the WDT phenomenon and its mechanism remain unknown. Here, we report a systematic experimental study involving X-ray diffraction, optical microscopy, and differential scanning calorimetry. It is found that water molecules inside thick SWCNTs (D > Dc) evaporate and condense into ice Ih outside the SWCNTs at Twd upon cooling, and the ice Ih evaporates and condenses inside the SWCNTs upon heating. On the other hand, residual water trapped inside the SWCNTs below Twd freezes. Molecular dynamics simulations indicate that upon lowering T, the hydrophobicity of thick SWCNTs increases without any structural transition, while the water inside thin SWCNTs (D < Dc) exhibits a structural transition, forming an ordered ice. This ice has a well-developed hydrogen bonding network adapting to the cylindrical pores of the SWCNTs. Thus, the unusual diameter dependence of the WDT is attributed to the adaptability of the structure of water to the pore dimension and shape.

  16. Characterization of Large Diameter PMTs for Kaon Cerenkov Detector

    NASA Astrophysics Data System (ADS)

    Boylan, Derek

    2014-09-01

    The 12 GeV upgrade at the Jefferson Laboratory allows for unique new opportunities to study hadron structure through kaon production in Hall C, a threshold aerogel detector was constructed at the Catholic University of America. It uses the emission of Cerenkov radiation at different indices of refraction ranging from 1.03 to 1.01 to distinguish pions, kaons, and protons. An important aspect of this detector is the collection of very small amounts of light, in particular as the aerogel refractive index decreases. The Hall C aerogel detector uses the Photonis XP4500 large-diameter photomultiplier tubes (PMT) in order to detect these small traces of light. The purpose of this project is to explore the performance of alternative large-diameter PMTs and compares them to that of the XP4500. The PMT uniformity across the photocathode was characterized through scans along the surface of the PMT with a low-intensity, focused LED, thereby creating a 3D image of the gain at each section. The method of scanning consists of a two axis step motor moving an LED light source on a 100 x 100 grid parallel to the face of the PMT, with 30 pulses of light from the LED at each step. The step motor scans with a resolution of 1.2 mm. Scans conducted in this manner result in high resolution images which pick up most sensitive/non-sensitive spots on the photocathode. In this presentation I will present the results of the characterization and performance test of the XP4500 and comparison to alternative large-diameter PMT models. The 12 GeV upgrade at the Jefferson Laboratory allows for unique new opportunities to study hadron structure through kaon production in Hall C, a threshold aerogel detector was constructed at the Catholic University of America. It uses the emission of Cerenkov radiation at different indices of refraction ranging from 1.03 to 1.01 to distinguish pions, kaons, and protons. An important aspect of this detector is the collection of very small amounts of light, in

  17. Calibration of area based diameter distribution with individual tree based diameter estimates using airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Hou, Zhengyang; Maltamo, Matti; Tokola, Timo

    2014-07-01

    Diameter distribution is essential for calculating stem volume and timber assortments of forest stands. A new method was proposed in this study to improve the estimation of stem volume and timber assortments, by means of combining the Area-based approach (ABA) and individual tree detection (ITD), the two main approaches to deriving forest attributes from airborne laser scanning (ALS) data. Two methods, replacement, and histogram matching were employed to calibrate ABA-derived diameter distributions with ITD-derived diameter estimates at plot level. The results showed that more accurate estimates were obtained when calibrations were applied. In view of the highest accuracy between ABA and ITD, calibrated diameter distributions decreased its relative RMSE of the estimated entire growing stock, saw log and pulpwood fractions by 2.81%, 3.05% and 7.73% points at best, respectively. Calibration improved pulpwood fraction significantly, which contributed to the negligible bias of the estimated entire growing stock.

  18. Variable diameter wind turbine rotor blades

    DOEpatents

    Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.

    2005-12-06

    A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.

  19. Stellar Angular Diameter Relations for Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Adams, Arthur; Boyajian, Tabetha S.; von Braun, Kaspar

    2016-01-01

    Determining the physical properties of microlensing events depends on having accurate angular radii of the source star. Using long-baseline optical interferometry we are able to determine the angular sizes of nearby stars with uncertainties less than 2 percent. We present empirical estimates of angular diameters for both dwarfs/subgiants and giant stars as functions of five color indices which are relevant to planned microlensing surveys. We find in all considered colors that metallicity does not play a statistically significant role in predicting stellar size for the samples of stars considered.

  20. A 30-cm diameter argon ion source

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1976-01-01

    A 30 cm diameter argon ion source was evaluated. Ion source beam currents up to 4a were extracted with ion energies ranging from 0.2 to 1.5 KeV. An ion optics scaling relation was developed for predicting ion beam extraction capability as a function of total extraction voltage, gas type, and screen grid open area. Ignition and emission characteristics of several hollow cathode geometries were assessed for purposes of defining discharge chamber and neutralizer cathodes. Also presented are ion beam profile characteristics which exhibit broad beam capability well suited for ion beam sputtering applications.

  1. A Variable Diameter Short Haul Civil Tiltrotor

    NASA Technical Reports Server (NTRS)

    Wang, James M.; Jones, Christopher T.; Nixon, Mark W.

    1999-01-01

    The Short-Haul-Civil-tiltrotor (SHCT) component of the NASA Aviation System Capacity Program is an effort to develop the technologies needed for a potential 40-passenger civil tiltrotor. The variable diameter tiltrotor (VDTR) is a Sikorsky concept aimed at improving tiltrotor hover and cruise performance currently limited by disk loading that is much higher in hover than conventional helicopter, and much lower in cruise than turbo-prop systems. This paper describes the technical merits of using a VDTR on a SHCT aircraft. The focus will be the rotor design.

  2. Thread gauge for measuring thread pitch diameters

    DOEpatents

    Brewster, Albert L.

    1985-01-01

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade.

  3. Thread gauge for measuring thread pitch diameters

    DOEpatents

    Brewster, A.L.

    1985-11-19

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts is disclosed. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade. 2 figs.

  4. The diameter and albedo of 1943 Anteros

    NASA Technical Reports Server (NTRS)

    Veeder, G. J.; Tedesco, E. F.; Tholen, D. J.; Tokunaga, A.; Matthews, K.; Neugebauer, G.; Soifer, B. T.; Kowal, C.

    1981-01-01

    The results of broadband visual and infrared photometry of the Apollo-Amor asteroid 1943 Anteros during its 1980 apparition are reported. By means of a radiometric model, a diameter of 2.3 + or - 0.2 km and a visual geometric albedo of 0.13 + or - 0.03 is calculated. The albedo and reflectance spectrum of Anteros imply that it is a type S asteroid. Thus, Anteros may have a silicate surface similar to other Apollo-Amor asteroids as well as some stony-iron meteorites.

  5. Measurement of Diameter Changes during Irradiation Testing

    SciTech Connect

    Davis, K. L.; Knudson, D. L.; Crepeau, J. C.; Solstad, S.

    2015-03-01

    New materials are being considered for fuel, cladding, and structures in advanced and existing nuclear reactors. Such materials can experience significant dimensional and physical changes during irradiation. Currently in the US, such changes are measured by repeatedly irradiating a specimen for a specified period of time and then removing it from the reactor for evaluation. The time and labor to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and handling may disturb the phenomena of interest. In-pile detection of changes in geometry is sorely needed to understand real-time behavior during irradiation testing of fuels and materials in high flux US Material and Test Reactors (MTRs). This paper presents development results of an advanced Linear Variable Differential Transformer-based test rig capable of detecting real-time changes in diameter of fuel rods or material samples during irradiation in US MTRs. This test rig is being developed at the Idaho National Laboratory and will provide experimenters with a unique capability to measure diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  6. Axon diameters and conduction velocities in the macaque pyramidal tract

    PubMed Central

    Firmin, L.; Field, P.; Maier, M. A.; Kraskov, A.; Kirkwood, P. A.; Nakajima, K.; Lemon, R. N.

    2014-01-01

    Small axons far outnumber larger fibers in the corticospinal tract, but the function of these small axons remains poorly understood. This is because they are difficult to identify, and therefore their physiology remains obscure. To assess the extent of the mismatch between anatomic and physiological measures, we compared conduction time and velocity in a large number of macaque corticospinal neurons with the distribution of axon diameters at the level of the medullary pyramid, using both light and electron microscopy. At the electron microscopic level, a total of 4,172 axons were sampled from 2 adult male macaque monkeys. We confirmed that there were virtually no unmyelinated fibers in the pyramidal tract. About 14% of pyramidal tract axons had a diameter smaller than 0.50 μm (including myelin sheath), most of these remaining undetected using light microscopy, and 52% were smaller than 1 μm. In the electrophysiological study, we determined the distribution of antidromic latencies of pyramidal tract neurons, recorded in primary motor cortex, ventral premotor cortex, and supplementary motor area and identified by pyramidal tract stimulation (799 pyramidal tract neurons, 7 adult awake macaques) or orthodromically from corticospinal axons recorded at the mid-cervical spinal level (192 axons, 5 adult anesthetized macaques). The distribution of antidromic and orthodromic latencies of corticospinal neurons was strongly biased toward those with large, fast-conducting axons. Axons smaller than 3 μm and with a conduction velocity below 18 m/s were grossly underrepresented in our electrophysiological recordings, and those below 1 μm (6 m/s) were probably not represented at all. The identity, location, and function of the majority of corticospinal neurons with small, slowly conducting axons remains unknown. PMID:24872533

  7. Diameter-dependent electronic transport properties of Au-catalyst/Ge-nanowire Schottky diodes

    SciTech Connect

    Picraux, S Thomas; Leonard, Francois; Swartzentruber, Brian S; Talin, A Alee

    2008-01-01

    We present electronic transport measurements in individual Au-catalyst/Ge-nanowire interfaces demonstrating the presence of a Schottky barrier. Surprisingly, the small-bias conductance density increases with decreasing diameter. Theoretical calculations suggest that this effect arises because electron-hole recombination in the depletion region is the dominant charge transport mechanism, with a diameter dependence of both the depletion width and the electron-hole recombination time. The recombination time is dominated by surface contributions and depends linearly on the nanowire diameter.

  8. Thirty-centimeter-diameter ion milling source

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1978-01-01

    A 30-cm beam diameter ion source has been designed and fabricated for micromachining and sputtering applications. An argon ion current density of 1 mA/cu cm at 500 eV ion energy was selected as a design operating condition. The completed ion source met the design criteria at this operating condition with a uniform and well-collimated beam having an average variation in current density of + or - 5% over the center of 20 cm of the beam. This ion source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. Langmuir probe surveys of the source plasma support the design concepts of a multipole field and a circumferential cathode to enhance plasma uniformity.

  9. Five meter diameter conical furlable antenna

    NASA Technical Reports Server (NTRS)

    Fortenberry, J. W.; Freeland, R. E.; Moore, D. M.

    1976-01-01

    An investigation was made to demonstrate that a 5-meter-diameter, furlable, conical reflector antenna utilizing a line source feed can be fabricated utilizing composite materials and to prove that the antenna can function mechanically and electrically as prototype flight hardware. The design, analysis, and testing of the antenna are described. An RF efficiency of 55% at 8.5 GHz and a surface error of 0.64 mm rms were chosen as basic design requirements. Actual test measurements yielded an efficiency of 53% (49.77 dB gain) and a surface error of 0.61 mm rms. Atmospherically induced corrosion of the reflector mesh resulted in the RF performance degradation. An assessment of the antenna as compared to the current state of the art technology was made. This assessment included cost, surface accuracy and RF performance, structural and mechanical characteristics, and possible applications.

  10. Development of fine diameter mullite fiber

    NASA Technical Reports Server (NTRS)

    Long, W. G.

    1974-01-01

    Results are presented of a program to develop and evaluate mullite fiber with a mean diameter under two microns. The two micron fiber is produced by a blowing process at room temperature from a low viscosity (10-25 poise) solution. The blown fiber was evaluated for dimensional stability in thermal cycling to 1371 C, and was equivalent to the 5 micron spun B and W mullite fiber. An additive study was conducted to evaluate substitutes for the boron. Three levels of chromium, lithium fluoride, and magnesium were added to the standard composition in place of boron and the fiber produced was evaluated for chemical and dimensional stability in thermal cycling to 1371 C. The magnesium was the most chemically stable, but the chrome additive imparted the best dimensional stability.

  11. Granulation, Irradiance and Diameter Solar Variations

    NASA Astrophysics Data System (ADS)

    Humberto Andrei, Alexandre; Calderari Boscardin, Sergio; Lousada Penna, Jucira; Reis Neto, Eugenio

    2015-08-01

    Though granulation forms the very face of sun’s photosphere, there are no long term registers of it. Observational and computational hardships to define and follow such highly variable “face” have so far prevented the realization of those registers. However, in recent years a large, coherent body of white light images became available. We retrieved white light, full solar disk images from the BBSO, to a total of 1104 treated ones and 1245 treated and compensated for limb darkening ones. The time coverage extends from the year 2000 to 2005, thus covering the rise and fall of the solar cycle 23. For the analysis, only the central 0.35R portion of the Sun was considered. The central portion was then divided into 100 subsectors, to average and discard the deviant results. The analysis goal is to derive the long term behavior of the photosphere granulation, in broad statistical sense. Three statistics were this way calculated: the standard deviation of the counts (that answers to the grains size); the counts difference between the maximum and minimum tenths (that answers to the grains brightness); the degree of the best fit polynomial along lines and columns (that answers to the grains numbers). According to the statistics, there is no significant variation in the number of grains. The grains sizes are the largest by the solar maximum, in excellent agreement with the maximum of the measured diameter. The grains brightness, on the contrary, is minimum at the solar maximum, and again an excellent agreement is verified with the maximum of the measured diameter.

  12. Europa's Surface Properties from Secondary Crater Depth/Diameter Ratios

    NASA Astrophysics Data System (ADS)

    Bierhaus, Edward B.; Chapman, C. R.; Schenk, P. M.

    2007-10-01

    We find that secondary craters on Europa tend towards smaller depth-to-diameter (d/D) ratios than primary craters, consistent with observations on other cratered surfaces (the Moon and Mars). We measure craters near the resolution limit, so an individual crater profile is noisy and not definitive; however, the aggregate statistics of over 100 profiles demonstrate a systematic trend for shallow profiles. Primary crater collapse from a simple bowl shape to a more shallow profile (or more complex morphology) is a function of material strength and surface gravity: the transition will happen at smaller diameters for weaker surfaces or for those with higher surface gravity. However, secondary craters are usually more shallow at a given diameter than a primary, perhaps due to lower fragment impact speeds or self-burial during multiple, simultaneous impacts (McEwen and Bierhaus 2005). To first order, very cold ice and rock respond similarly to impact cratering, with predictable differences due to differences in strength, equations of state, etc. But Europa's surface is enigmatic: pervasive fracturing suggests a solid, competent material; chaos features and mobility of blocks within chaos suggest fluid-like behavior; radar measurements (Black et al. 2001) support the presence of a porous surface layer, as do thermal inertia models (Spencer 2004) -- though the thermal inertia only addresses the uppermost few cm. The d/D similarity of secondary craters on icy Europa and rocky surfaces (the Moon and Mars), whose surface evolutions are dominated by different processes, implies that either (a) material properties play a small role in the morphology of secondary craters, or (b) whatever processes operate to create Europa's surface features must leave the ice in a form that responds to cratering in a manner consistent with regoliths on other solar system surfaces. NASA Outer Planets Program funds this research.

  13. Ecological importance of large-diameter trees in a temperate mixed-conifer forest.

    PubMed

    Lutz, James A; Larson, Andrew J; Swanson, Mark E; Freund, James A

    2012-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. Although both scaling theory and competition theory make predictions about the relative composition and spatial patterns of large-diameter trees compared to smaller diameter trees, these predictions are rarely tested. We established a 25.6 ha permanent plot within which we tagged and mapped all trees ≥1 cm dbh, all snags ≥10 cm dbh, and all shrub patches ≥2 m(2). We sampled downed woody debris, litter, and duff with line intercept transects. Aboveground live biomass of the 23 woody species was 507.9 Mg/ha, of which 503.8 Mg/ha was trees (SD = 114.3 Mg/ha) and 4.1 Mg/ha was shrubs. Aboveground live and dead biomass was 652.0 Mg/ha. Large-diameter trees comprised 1.4% of individuals but 49.4% of biomass, with biomass dominated by Abies concolor and Pinus lambertiana (93.0% of tree biomass). The large-diameter component dominated the biomass of snags (59.5%) and contributed significantly to that of woody debris (36.6%). Traditional scaling theory was not a good model for either the relationship between tree radii and tree abundance or tree biomass. Spatial patterning of large-diameter trees of the three most abundant species differed from that of small-diameter conspecifics. For A. concolor and P. lambertiana, as well as all trees pooled, large-diameter and small-diameter trees were spatially segregated through inter-tree distances <10 m. Competition alone was insufficient to explain the spatial patterns of large-diameter trees and spatial relationships between large-diameter and small-diameter trees. Long-term observations may reveal regulation of forest biomass and spatial structure by fire, wind, pathogens, and insects in Sierra Nevada mixed-conifer forests. Sustaining ecosystem functions such as carbon storage or provision of specialist species habitat will likely require different management strategies when the functions are performed primarily by

  14. Ecological Importance of Large-Diameter Trees in a Temperate Mixed-Conifer Forest

    PubMed Central

    Lutz, James A.; Larson, Andrew J.; Swanson, Mark E.; Freund, James A.

    2012-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. Although both scaling theory and competition theory make predictions about the relative composition and spatial patterns of large-diameter trees compared to smaller diameter trees, these predictions are rarely tested. We established a 25.6 ha permanent plot within which we tagged and mapped all trees ≥1 cm dbh, all snags ≥10 cm dbh, and all shrub patches ≥2 m2. We sampled downed woody debris, litter, and duff with line intercept transects. Aboveground live biomass of the 23 woody species was 507.9 Mg/ha, of which 503.8 Mg/ha was trees (SD = 114.3 Mg/ha) and 4.1 Mg/ha was shrubs. Aboveground live and dead biomass was 652.0 Mg/ha. Large-diameter trees comprised 1.4% of individuals but 49.4% of biomass, with biomass dominated by Abies concolor and Pinus lambertiana (93.0% of tree biomass). The large-diameter component dominated the biomass of snags (59.5%) and contributed significantly to that of woody debris (36.6%). Traditional scaling theory was not a good model for either the relationship between tree radii and tree abundance or tree biomass. Spatial patterning of large-diameter trees of the three most abundant species differed from that of small-diameter conspecifics. For A. concolor and P. lambertiana, as well as all trees pooled, large-diameter and small-diameter trees were spatially segregated through inter-tree distances <10 m. Competition alone was insufficient to explain the spatial patterns of large-diameter trees and spatial relationships between large-diameter and small-diameter trees. Long-term observations may reveal regulation of forest biomass and spatial structure by fire, wind, pathogens, and insects in Sierra Nevada mixed-conifer forests. Sustaining ecosystem functions such as carbon storage or provision of specialist species habitat will likely require different management strategies when the functions are performed primarily by a

  15. Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy

    PubMed Central

    Xu, Junzhong; Li, Hua; Harkins, Kevin D.; Jiang, Xiaoyu; Xie, Jingping; Kang, Hakmook; Does, Mark D.; Gore, John C.

    2014-01-01

    Mapping mean axon diameter and intra-axonal volume fraction may have significant clinical potential because nerve conduction velocity is directly dependent on axon diameter, and several neurodegenerative diseases affect axons of specific sizes and alter axon counts. Diffusion-weighted MRI methods based on the pulsed gradient spin echo (PGSE) sequence have been reported to be able to assess axon diameter and volume fraction non-invasively. However, due to the relatively long diffusion times used, e.g. > 20 ms, the sensitivity to small axons (diameter < 2 µm) is low, and the derived mean axon diameter has been reported to be overestimated. In the current study, oscillating gradient spin echo (OGSE) diffusion sequences with variable frequency gradients were used to assess rat spinal white matter tracts with relatively short effective diffusion times (1 – 5 ms). In contrast to previous PGSE-based methods, the extra-axonal diffusion cannot be modeled as hindered (Gaussian) diffusion when short diffusion times are used. Appropriate frequency-dependent rates are therefore incorporated into our analysis and validated by histology-based computer simulation of water diffusion. OGSE data were analyzed to derive mean axon diameters and intra-axonal volume fractions of rat spinal white matter tracts (mean axon diameter ~ 1.27 – 5.54 µm). The estimated values were in good agreement with histology, including the small axon diameters (< 2.5 µm). This study establishes a framework for quantification of nerve morphology using the OGSE method with high sensitivity to small axons. PMID:25225002

  16. Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm).

    PubMed

    Chen, Dehong; Cao, Lu; Huang, Fuzhi; Imperia, Paolo; Cheng, Yi-Bing; Caruso, Rachel A

    2010-03-31

    Monodisperse mesoporous anatase titania beads with high surface areas and tunable pore size and grain diameter have been prepared through a combined sol-gel and solvothermal process in the presence of hexadecylamine (HDA) as a structure-directing agent. The monodispersity of the resultant titania beads, along with the spherical shape, can be controlled by varying the amount of structure-directing agent involved in the sol-gel process. The diameter of the titania beads is tunable from approximately 320 to 1150 nm by altering the hydrolysis and condensation rates of the titanium alkoxide. The crystallite size, specific surface area (from 89 to 120 m(2)/g), and pore size distribution (from 14 to 23 nm) of the resultant materials can be varied through a mild solvothermal treatment in the presence of varied amounts of ammonia. On the basis of the results of small-angle XRD, high-resolution SEM/TEM, and gas sorption characterization, a mechanism for the formation of the monodisperse precursor beads has been proposed to illustrate the role of HDA in determining the morphology and monodispersity during the sol-gel synthesis. The approach presented in this study demonstrates that simultaneous control of the physical properties, including specific surface area, mesoporosity, crystallinity, morphology, and monodispersity, of the titania materials can be achieved by a facile sol-gel synthesis and solvothermal process. PMID:20201515

  17. LED-based digital diameter measurement

    NASA Astrophysics Data System (ADS)

    Kleuver, Wolfram; Becker, Lothar

    1995-01-01

    This paper presents a new industrial sensor for measuring diameters of extreme thin objects. The system is divided in two parts. The first is the emitter and the second the receiver. It is possible to use this system for the automatic inspection of files and wires in the textile industries and wire works. Another application for the sensor is the control of production of chemical files in an extruder. Furthermore we can measure more than one object in the lightbeam because we get information not only about the dimensions also about the position of the objects in the beam. The innovation in this system is the using of a light emitting diode (LED) as emitter and the realization of a long distance of about two or more meters between the two sensorheads. The results of this development are a special kind of optical layout in the emitter to reduce the loss of intensity and minimize the divergence of the lightbeam. It is not necessary to develop an intensity distribution, which is equal over the complete width of the sensorhead. We can show that we have a better dynamic in the system with this feature. The experiments prove that we get the same resolution as a laserbeamsensor. Furthermore one advantage is the eye-safety.

  18. The 15 cm diameter ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1974-01-01

    The startup reliability of a 15 cm diameter mercury bombardment ion thruster which employs a pulsed high voltage tickler electrode on the main and neutralizer cathodes is examined. Startup of the thruster is achieved 100% of the time on the main cathode and 98.7% of the time on the neutralizer cathode over a 3640 cycle test. The thruster was started from a 20 C initial condition and operated for an hour at a 600 mA beam current. An energy efficiency of 75% and a propellant utilization efficiency of 77% was achieved over the complete cycle. The effect of a single cusp magnetic field thruster length on its performance is discussed. Guidelines are formulated for the shaping of magnetic field lines in thrusters. A model describing double ion production in mercury discharges is presented. The production route is shown to occur through the single ionic ground state. Photographs of the interior of an operating-hollow cathode are presented. A cathode spot is shown to be present if the cathode is free of low work-function surfaces. The spot is observed if a low work-function oxide coating is applied to the cathode insert. Results show that low work-function oxide coatings tend to migrate during thruster operation.

  19. Large Circular Basin - 1300-km diameter

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Close-up view of one-half of a 1300-km diameter circular basin the largest observed on Mercury. The other half is hidden beyond the terminator to the left. Hills and valleys extend in a radial fashion outward from the main ring. Interior of the large basin is completely flooded by plains materials; adjacent lowlands are also partially flooded and superimposed on the plains are bowl shaped craters. Wrinkle ridges are abundant on the plains materials. The area shown is 1008 miles (1600 km) from the top to the bottom of the picture. Sun's illumination is from the right. Blurred linear lines extending across the picture near bottom are missing data lines that have been filled in by the computer. Mariner 10 encountered Mercury on Friday, March 29th, 1974, passing the planet on the darkside 431 miles (690-km) from the surface.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    NOTE: This image was scanned from physical media.

  20. Fast and simplified mapping of mean axon diameter using temporal diffusion spectroscopy.

    PubMed

    Xu, Junzhon; Li, Hua; Li, Ke; Harkins, Kevin D; Jiang, Xiaoyu; Xie, Jingping; Kang, Hakmook; Dortch, Richard D; Anderson, Adam W; Does, Mark D

    2016-04-01

    Mapping axon diameter is of interest for the potential diagnosis and monitoring of various neuronal pathologies. Advanced diffusion-weighted MRI methods have been developed to measure mean axon diameters non-invasively, but suffer major drawbacks that prevent their direct translation into clinical practice, such as complex non-linear data fitting and, more importantly, long scanning times that are usually not tolerable for most human subjects. In the current study, temporal diffusion spectroscopy using oscillating diffusion gradients was used to measure mean axon diameters with high sensitivity to small axons in the central nervous system. Axon diameters have been found to be correlated with a novel metric, DDR⊥ (the rate of dispersion of the perpendicular diffusion coefficient with gradient frequency), which is a model-free quantity that does not require complex data analyses and can be obtained from two diffusion coefficient measurements in clinically relevant times with conventional MRI machines. A comprehensive investigation including computer simulations and animal experiments ex vivo showed that measurements of DDR⊥ agree closely with histological data. In humans in vivo, DDR⊥ was also found to correlate well with reported mean axon diameters in human corpus callosum, and the total scan time was only about 8 min. In conclusion, DDR⊥ may have potential to serve as a fast, simple and model-free approach to map the mean axon diameter of white matter in clinics for assessing axon diameter changes. PMID:27077155

  1. In vivo capillary diameters in the stria vascularis and spiral ligament of the guinea pig cochlea.

    PubMed

    Miles, F P; Nuttall, A L

    1988-05-01

    Blood microvessels in the membraneous lateral wall of the cochlea were examined using intravital microscopic techniques. A video analysis system made serial diameter measurements at 1 micron intervals along the length of selected vessel segments during four experimental conditions. For each vessel segment, the serial measurements were statistically converted into a single diameter estimate, such that the flow resistance in a uniform vessel of this diameter would equal the resistance of the real non-uniform vessel. Nominal vessel diameters found (spiral ligament: 9-12 micron; stria vascularis: 12-16 micron) were nearly double those reported earlier in histological observations (Axelsson, 1968). During stimulation the largest diameter change seen was a 3.7% dilation (about 0.5 micron) in response to breathing 5% CO2 in oxygen. Theoretically, this change could reduce vascular fluid resistance by 16%, nearly enough to explain the observed flow increase of 20%. No diameter changes occurred for 5% CO2 in air despite a 50% flow increase, nor for air pressure pulses applied at the tympanic membrane. Round window electrical stimulation of 50 microA also produced dilation (less than 2.5%), but higher current levels were ineffective. In general, blood flow increases seen in this study could not adequately be attributed to the small lateral wall vessel diameter increases nor systemic causes, suggesting that lateral wall blood flow in these instances is dependent on control within the modiolus. PMID:3135284

  2. Instability of Reference Diameter in the Evaluation of Stenosis After Coronary Angioplasty: Percent Diameter Stenosis Overestimates Dilative Effects Due to Reference Diameter Reduction

    SciTech Connect

    Hirami, Ryouichi; Iwasaki, Kohichiro; Kusachi, Shozo; Murakami, Takashi; Hina, Kazuyoshi; Matano, Shigeru; Murakami, Masaaki; Kita, Toshimasa; Sakakibara, Noburu; Tsuji, Takao

    2000-03-15

    Purpose: To examine changes in the reference segment luminal diameter after coronary angioplasty.Methods: Sixty-one patients with stable angina pectoris or old myocardial infarction were examined. Coronary angiograms were recorded before coronary angioplasty (pre-angioplasty) and immediately after (post-angioplasty), as well as 3 months after. Artery diameters were measured on cine-film using quantitative coronary angiographic analysis.Results: The diameters of the proximal segment not involved in the balloon inflation and segments in the other artery did not change significantly after angioplasty, but the reference segment diameter significantly decreased (4.7%). More than 10% luminal reduction was observed in seven patients (11%) and more than 5% reduction was observed in 25 patients (41%). More than 5% underestimation of the stenosis was observed in 22 patients (36%) when the post-angioplasty reference diameter was used as the reference diameter, compared with when the pre-angioplasty measurement was used and more than 10% underestimation was observed in five patients (8%).Conclusion: This study indicated that evaluation by percent diameter stenosis, with the reference diameter from immediately after angioplasty, overestimates the dilative effects of coronary angioplasty, and that it is thus better to evaluate the efficacy of angioplasty using the absolute diameter in addition to percent luminal stenosis.

  3. Diameter distribution of thermally evaporated indium metal islands on silicon substrates

    NASA Astrophysics Data System (ADS)

    Balch, Joleyn; Tsakalakos, Loucas; Huber, William; Grande, James; Knussman, Michael; Cale, Timothy S.

    2007-09-01

    Although many groups have studied the initial growth stages of various metals, including indium, there is little information in literature on diameter distributions of indium in relation to film thickness or annealing conditions. This paper reports island size distributions of thermally evaporated In islands on Si (100) and Si (111) substrates for nominal film thicknesses ranging from 5 to 50 nm. Because indium has a low melting temperature, and therefore a high homologous temperature at room temperature, 3-dimensional islands form during deposition with no subsequent heat treatments needed. Island diameters were calculated using commercial image analysis software in conjunction with SEM images of the samples. It is found that there is a bimodal island diameter distribution for nominal indium thicknesses greater than 5 nm. While the diameters of the larger islands increase exponentially with nominal thickness, those of the smaller islands increase linearly, and therefore more slowly, with nominal thickness. For nominal thickness of 50 nm, the average diameters of the small and large islands differ by almost an order of magnitude. Anneal conditions were studied in an attempt to narrow diameter distributions. Samples of each nominal thickness were annealed at temperatures ranging from 360°C to 550°C and the diameters again measured. The range of island diameters become narrower with 360°C anneal and volume average island diameter increases by ~30-50%. This narrowing of the distribution occurs due to smaller islands being absorbed by the larger in a process akin to Ostwald ripening, which is facilitated by higher surface diffusivities at higher homologous temperatures.

  4. Solar Diameter Measurements from Eclipses as a Solar Variability Proxy

    NASA Astrophysics Data System (ADS)

    Waring Dunham, David; Sofia, Sabatino; Guhl, Konrad; Herald, David Russell

    2015-08-01

    Since thermal relaxation times for the Sun are thousands of years, small variations of the Solar intensity are proportional to small variations of the Solar diameter on decadal time scales. In a combination between observations and theory, reliable values of the relation constant W are known, that allow transformation of historical variations of radius into variations of the solar luminosity. During the past 45 years, members of the International Occultation Timing Association (IOTA) have observed 20 annular and total solar eclipses from locations near the path edges. Baily’s beads, whose occurrence and duration are considerably prolonged as seen from path edge locations, were first timed visually, mostly using projection techniques, but since about 1980, they have been timed mainly from analysis of video recordings. The edge locations have the advantage that most of the beads are defined by the same features in the lunar polar regions that cause the phenomena at each eclipse. Some of the best-observed modern eclipses can be used to assess the accuracy of the results, which are limited mainly by the intensity drop at the Sun’s edge, and the consequent uncertainty in defining the edge. In addition, direct visual contact timings made near the path edges during earlier eclipses, back to 1715, have been found in the literature, and analyzed. Although the observations seem to show small variations, they are only a little larger than the assessed accuracies. The results can be improved with a consistent re-analysis of the observations using the much more accurate lunar profile data that is now available from the Japanese Kaguya and NASA’s LRO lunar orbiter observations. Also, IOTA has plans to observe future eclipses with a variety of techniques that were used in the past, to better assess the accuracies of the different observational methods that have been used, and determine any systematic differences between them.

  5. Earth Climate Changes Connected To Solar Diameter and Irradiance Variabilities

    NASA Astrophysics Data System (ADS)

    Lefebvre, S.; Rozelot, J. P.

    Recent studies indicate that small but persistent variations in the total solar irradiance may play an important role in climate changes. If it is known that such changes are mainly due to changes in sunspots darkness and faculae brightness, it begins to be understood that changes in the radius of the Sun may also play a role. In a first part of this paper, we will show how the irradiance is affected by small distortions of the solar shape. Indeed such departures to a pure spherical Sun can be modelized as they reflect the gravitational distortions inside the Sun (variability of the rotation rate both in latitude and in depth as deduced by helioseismic measurements). These departures have been also observed from space (MDI on board SOHO) and from ground (solar astrolabes, scanning heliometer or other means). Such a variability on the Sun's di- ameter, certainly of no more than 40 mas (maybe less), will imply a change in the luminosity of about 6 parts per 10000. For the time being such variations have not been yet taken into account in the Earth climate changes. In the second part of this paper, we will focus on a longer period of time. We will briefly review the variabil- ity of the solar diameter over the last past four centuries, as it is suspected now with a rather good confidence that such a temporal variability may have a sense. We will compare this variability with the global Earth temperatures used as a climatic proxy. It can be seen that diameter changes over such a long period of time are indicative of an external variability on the Earth climate. The physical mechanism involved is obviously through the irradiance changes for which we will emphasize the need to get accurate and simultaneous measurements of the Sun's radius. The determination of the commonly used ratio W, which measures the relative variations of the radius over the relative variations of the irradiance, and as deduced in the first part of this paper, is helpful to pinpoint the source of

  6. The Importance of Large-Diameter Trees to Forest Structural Heterogeneity

    PubMed Central

    Lutz, James A.; Larson, Andrew J.; Freund, James A.; Swanson, Mark E.; Bible, Kenneth J.

    2013-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥1 cm dbh, all 1,966 snags ≥10 cm dbh, and all shrub patches ≥2 m2. Basal area of the 26 woody species was 62.18 m2/ha, of which 61.60 m2/ha was trees and 0.58 m2/ha was tall shrubs. Large-diameter trees (≥100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P≤0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses. PMID:24376579

  7. The importance of large-diameter trees to forest structural heterogeneity.

    PubMed

    Lutz, James A; Larson, Andrew J; Freund, James A; Swanson, Mark E; Bible, Kenneth J

    2013-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥ 1 cm dbh, all 1,966 snags ≥ 10 cm dbh, and all shrub patches ≥ 2 m(2). Basal area of the 26 woody species was 62.18 m(2)/ha, of which 61.60 m(2)/ha was trees and 0.58 m(2)/ha was tall shrubs. Large-diameter trees (≥ 100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P ≤ 0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses. PMID:24376579

  8. Fiber diameter distributions in the chinchilla's ampullary nerves

    NASA Technical Reports Server (NTRS)

    Hoffman, Larry F.; Honrubia, Vicente

    2002-01-01

    A morphometric study of the chinchilla's ampullary nerves was conducted to produce an unbiased accounting of the diameter distribution of their constituent fibers. Diameter analyses were determined from 1 microm plastic-embedded nerve sections taken at a plane immediately proximal to the sensory epithelium. We found these nerves to be composed of 2094+/-573 fibers, having diameters that ranged from 0.5 to 8 microm. The distributions of diameters were positively skewed, where approximately 75% of the fibers were found to have diameters less than 3.5 microm. An analysis of the spatial distribution of diameters within the nerve section revealed that the lateralmost areas of the nerve contained larger fractions of fibers within the smallest diameter quintiles, and the central area harbored greater proportions of the larger diameter quintiles. However, significant fractions of all quintiles were found in all areas. These data were integrated with available data of Fernandez et al. (1998) to produce diameter estimates of calyx, dimorphic, and bouton morphology subpopulations. In view of a general relationship between diameter, innervation locus, and an afferent's physiologic characteristics, these data provide the basis for developing a perspective for the in situ distribution of afferent response dynamics.

  9. Slip flow through colloidal crystals of varying particle diameter.

    PubMed

    Rogers, Benjamin J; Wirth, Mary J

    2013-01-22

    Slip flow of water through silica colloidal crystals was investigated experimentally for eight different particle diameters, which have hydraulic channel radii ranging from 15 to 800 nm. The particle surfaces were silylated to be low in energy, with a water contact angle of 83°, as determined for a silylated flat surface. Flow rates through centimeter lengths of colloidal crystal were measured using a commercial liquid chromatograph for accurate comparisons of water and toluene flow rates using pressure gradients as high as 10(10) Pa/m. Toluene exhibited no-slip Hagen-Poiseuille flow for all hydraulic channel radii. For water, the slip flow enhancement as a function of hydraulic channel radius was described well by the expected slip flow correction for Hagen-Poiseuille flow, and the data revealed a constant slip length of 63 ± 3 nm. A flow enhancement of 20 ± 2 was observed for the smallest hydraulic channel radius of 15 nm. The amount of slip flow was found to be independent of shear rate over a range of fluid velocities from 0.7 to 5.8 mm/s. The results support the applicability of the slip flow correction for channel radii as small as 15 nm. The work demonstrates that packed beds of submicrometer particles enable slip flow to be employed for high-volume flow rates. PMID:23237590

  10. Slip Flow through Colloidal Crystals of Varying Particle Diameter

    PubMed Central

    Rogers, Benjamin J.; Wirth, Mary J.

    2012-01-01

    Slip flow of water through silica colloidal crystals was investigated experimentally for 8 different particle diameters, which have hydraulic channel radii ranging from 15 nm to 800 nm. The particle surfaces were silylated to be low in energy, with a water contact angle of 83°, as determined for a silylated flat surface. Flow rates through centimeter lengths of colloidal crystal were measured using a commercial liquid chromatograph for accurate comparisons of water and toluene flow rates using pressure gradients as high as 1010 Pa/m. Toluene exhibited no-slip Hagen-Poiseuille flow for all hydraulic channel radii. For water, the slip flow enhancement as a function of hydraulic channel radius was described well by the expected slip flow correction for Hagen-Poiseuille flow, and the data revealed a constant slip length of 63±3 nm. A flow enhancement of 20±2 was observed for the smallest hydraulic channel radius of 15 nm. The amount of slip flow was found to be independent of shear rate over a range of fluid velocities from 0.7 to 5.8 mm/s. The results support the applicability of the slip flow correction for channel radii as small as 15 nm. The work demonstrates that packed beds of submicrometer particles enable slip flow to be employed for high volume flow rates. PMID:23237590

  11. Catastrophes of large diameter pipelines. The role of hydrogen fields

    SciTech Connect

    Polyakov, V.N.

    1995-09-01

    Fracture statistics on transmission pipelines is presented. Fractures of large-diameter pipelines are regarded as catastrophes. Fracture accidents of other pipes are less dangerous. Hydrogen makes outer layers of pipes brittle. Therefore, critical crack lengths for pipes have been calculated by a linear fracture mechanics technique. It was found that a crack of any length may be critical. The opposite opinion on reliable operation of large-diameter pipes (diameter 1420 mm) is discussed.

  12. Diameter Controlled of Carbon Nanotubes Synthesized on Nanoporous Silicon Support

    NASA Astrophysics Data System (ADS)

    Asli, N. A.; Shamsudin, M. S.; Maryam, M.; Yusop, S. F. M.; Suriani, A. B.; Rusop, M.; Abdullah, S.

    2013-06-01

    Carbon nanotubes (CNTs) have been successfully synthesized on nanoporous silicon template (NPSiT) using botanical source, camphor oil. Diameter of CNTs synthesized was controlled by pore size of NPSiT prepared by photo-electrochemical anodization method. The diameter of CNTs grown on different NPSiT corresponded to the pore diameter of NPSiT. FESEM images showed self-organized bundles of fiber-like structures of CNTs with diameter of around 20nm which were successfully grown directly on nanoporous silicon while raman spectra obtained ratio of ID/IG at 0.67.

  13. Wire diameter dependence in the catalytic decomposition of H2

    NASA Astrophysics Data System (ADS)

    Umemoto, Hironobu

    2014-01-01

    Jansen et al. have demonstrated that the dissociaiton rate of H2 molecules on hot wire surfaces, normalized per unit surface area, depends on the wire diameter based on the electrical power consumption measurements [J. Appl. Phys. 66, 5749 (1989)]. Mathematical modeling calculations have also been presented to support their experimental results. In the present paper, it is shown that such a wire diameter dependence cannot be observed and that the H-atom density normalized by the wire surface area depends little on the wire diameter. Modeling calculations also show that the wire diameter dependence of the dissociation rate cannot be expected under typical decomposition conditions.

  14. Diameter-dependent thermal-oxidative stability of single-walled carbon nanotubes synthesized by a floating catalytic chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Yu, Fei; Yuan, Zhiwen; Chen, Junhong

    2011-10-01

    In this paper, purified single-walled carbon naotubes (SWCNTs) with three different diameters were synthesized using a floating catalytic chemical vapor deposition method with ethanol as carbon feedstock, ferrocene as catalyst, and thiophene as growth promoter. The thermal-oxidative stability of different-diameter SWCNTs was studied by using thermal analysis (TG, DTA), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. The results indicate that small diameter SWCNTs (˜1 nm) are less stable and burn at lower temperature (610 °C), however, the larger diameter SWCNTs (˜5 nm) survive after burning at higher temperature (685 °C), the oxidation rate varies inversely with the tube diameter of SWCNTs, which may be concluded that the higher oxidation-resistant temperature of larger diameter SWCNTs can be attributed to the lower curvature-induced strain by rolling the planar graphene sheet for the larger diameter, so small tubes will become thermodynamically unstable.

  15. Microbes make average 2 nanometer diameter crystalline UO2 particles.

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Kelly, S. D.; Kemner, K. M.; Banfield, J. F.

    2001-12-01

    It is well known that phylogenetically diverse groups of microorganisms are capable of catalyzing the reduction of highly soluble U(VI) to highly insoluble U(IV), which rapidly precipitates as uraninite (UO2). Because biological uraninite is highly insoluble, microbial uranyl reduction is being intensively studied as the basis for a cost-effective in-situ bioremediation strategy. Previous studies have described UO2 biomineralization products as amorphous or poorly crystalline. The objective of this study is to characterize the nanocrystalline uraninite in detail in order to determine the particle size, crystallinity, and size-related structural characteristics, and to examine the implications of these for reoxidation and transport. In this study, we obtained U-contaminated sediment and water from an inactive U mine and incubated them anaerobically with nutrients to stimulate reductive precipitation of UO2 by indigenous anaerobic bacteria, mainly Gram-positive spore-forming Desulfosporosinus and Clostridium spp. as revealed by RNA-based phylogenetic analysis. Desulfosporosinus sp. was isolated from the sediment and UO2 was precipitated by this isolate from a simple solution that contains only U and electron donors. We characterized UO2 formed in both of the experiments by high resolution-TEM (HRTEM) and X-ray absorption fine structure analysis (XAFS). The results from HRTEM showed that both the pure and the mixed cultures of microorganisms precipitated around 1.5 - 3 nm crystalline UO2 particles. Some particles as small as around 1 nm could be imaged. Rare particles around 10 nm in diameter were also present. Particles adhere to cells and form colloidal aggregates with low fractal dimension. In some cases, coarsening by oriented attachment on \\{111\\} is evident. Our preliminary results from XAFS for the incubated U-contaminated sample also indicated an average diameter of UO2 of 2 nm. In nanoparticles, the U-U distance obtained by XAFS was 0.373 nm, 0.012 nm

  16. Measurement of sputtered efflux from 5-, 8-, and 30-cm diameter mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Mirtich, M. J.

    1975-01-01

    A technique has been developed which uses spectral transmittance of samples exposed to thruster efflux to determine and characterize the effect of the efflux on spacecraft surfaces and optical devices. An investigation of facility backsputter revealed that efflux samples must be protected (e.g., by small shield boxes) from materials from tank walls and targets. The composition of the sputter efflux deposited on the samples was mostly molybdenum with trace amounts of tantalum, iron and/or mercury. The efflux from a 5-cm diameter thruster was deposited on samples located in the plane of the accelerator grid; the 8-cm diameter thruster efflux results showed that the location of ion beam sputtering and efflux deposition equilibrium occurred at 57 deg with respect to the thruster axis; and the 30-cm diameter thruster had an ion beam erosion-efflux deposition equilibrium at 45 deg.

  17. ``Seedless'' vapor-liquid-solid growth of Si and Ge nanowires: The origin of bimodal diameter distributions

    NASA Astrophysics Data System (ADS)

    Dailey, Eric; Drucker, Jeff

    2009-03-01

    We identify a previously uncharacterized vapor-liquid-solid growth mode that can produce small diameter, epitaxial ⟨110⟩ oriented Si and Ge nanowires (NWs). Disilane or digermane pyrolysis evolves H2 causing the monolayer thick Au/Si(111) layer between three dimensional Au seeds to dewet and form small Au islands. Under some conditions, these small islands facilitate "seedless" growth of small diameter NWs distinct from larger NWs that grow from the deposited seeds leading to a bimodal diameter distribution. We identify the precursor pressures and growth temperature regimes for which Si and Ge NW growth occurs in the absence of deposited seeds from the dewetted Au/Si(111) layer.

  18. Neurofilament spacing, phosphorylation, and axon diameter in regenerating and uninjured lamprey axons.

    PubMed

    Pijak, D S; Hall, G F; Tenicki, P J; Boulos, A S; Lurie, D I; Selzer, M E

    1996-05-13

    It has been postulated that phosphorylation of the carboxy terminus sidearms of neurofilaments (NFs) increases axon diameter through repulsive electrostatic forces that increase sidearm extension and interfilament spacing. To evaluate this hypothesis, the relationships among NF phosphorylation, NF spacing, and axon diameter were examined in uninjured and spinal cord-transected larval sea lampreys (Petromyzon marinus). In untransected animals, axon diameters in the spinal cord varied from 0.5 to 50 microns. Antibodies specific for highly phosphorylated NFs labeled only large axons (> 10 microns), whereas antibodies for lightly phosphorylated NFs labeled medium-sized and small axons more darkly than large axons. For most axons in untransected animals, diameter was inversely related to NF packing density, but the interfilament distances of the largest axons were only 1.5 times those of the smallest axons. In addition, the lightly phosphorylated NFs of the small axons in the dorsal columns were widely spaced, suggesting that phosphorylation of NFs does not rigidly determine their spacing and that NF spacing does not rigidly determine axon diameter. Regenerating neurites of giant reticulospinal axons (GRAs) have diameters only 5-10% of those of their parent axons. If axon caliber is controlled by NF phosphorylation via mutual electrostatic repulsion, then NFs in the slender regenerating neurites should be lightly phosphorylated and densely packed (similar to NFs in uninjured small caliber axons), whereas NFs in the parent GRAs should be highly phosphorylated and loosely packed. However, although linear density of NFs (the number of NFs per micrometer) in these slender regenerating neurites was twice that in their parent axons, they were highly phosphorylated. Following sectioning of these same axons close to the cell body, axon-like neurites regenerated ectopically from dendritic tips. These ectopically regenerating neurites had NF linear densities 2.5 times those of

  19. Dataset for the validation and use of DiameterJ an open source nanofiber diameter measurement tool.

    PubMed

    Hotaling, Nathan A; Bharti, Kapil; Kriel, Haydn; Simon, Carl G

    2015-12-01

    DiameterJ is an open source image analysis plugin for ImageJ. DiameterJ produces ten files for every image that it analyzes. These files include the images that were analyzed, the data to create histograms of fiber radius, pore size, fiber orientation, and summary statistics, as well as images to check the output of DiameterJ. DiameterJ was validated with 130 in silico-derived, digital, synthetic images and 24 scanning electron microscope (SEM) images of steel wire samples with a known diameter distribution. Once validated, DiameterJ was used to analyze SEM images of electrospun polymeric nanofibers, including a comparison of different segmentation algorithms. In this article, all digital synthetic images, SEM images, and their segmentations are included. Additionally, DiameterJ's raw output files, and processed data is included for the reader. The data provided herein was used to generate the figures in DiameterJ: A Validated Open Source Nanofiber Diameter Measurement Tool[1], where more discussion can be found. PMID:26380840

  20. Dataset for the validation and use of DiameterJ an open source nanofiber diameter measurement tool

    PubMed Central

    Hotaling, Nathan A.; Bharti, Kapil; Kriel, Haydn; Simon, Carl G.

    2015-01-01

    DiameterJ is an open source image analysis plugin for ImageJ. DiameterJ produces ten files for every image that it analyzes. These files include the images that were analyzed, the data to create histograms of fiber radius, pore size, fiber orientation, and summary statistics, as well as images to check the output of DiameterJ. DiameterJ was validated with 130 in silico-derived, digital, synthetic images and 24 scanning electron microscope (SEM) images of steel wire samples with a known diameter distribution. Once validated, DiameterJ was used to analyze SEM images of electrospun polymeric nanofibers, including a comparison of different segmentation algorithms. In this article, all digital synthetic images, SEM images, and their segmentations are included. Additionally, DiameterJ’s raw output files, and processed data is included for the reader. The data provided herein was used to generate the figures in DiameterJ: A Validated Open Source Nanofiber Diameter Measurement Tool[1], where more discussion can be found. PMID:26380840

  1. Numerical predictions of flows past two tandem cylinders of different diameters under unconfined and confined flows

    NASA Astrophysics Data System (ADS)

    Jiang, Renjie; Lin, Jianzhong; Ku, Xiaoke

    2014-04-01

    Flows past two tandem cylinders of different diameters placed in a free-stream velocity and between two parallel walls are numerically studied via a lattice Boltzmann method. In both the big-small arrangement (BSA) and the small-big arrangement (SBA), the diameter of the big cylinder is adopted as the characteristic length and the diameter ratios of two cylinders are 0.5, 0.625, 0.75 and 0.875, respectively. The effects of the Reynolds number, diameter ratio, arrangement pattern, cylinder spacing and plane boundaries on the flows are systematically investigated. In the binary-vortex regime, the results show that for both the unconfined and confined cases, vortices are shed from both cylinders in a coupled frequency which is mainly dependent on the front cylinder in contrast with the case of an isolated cylinder. The vortex structures in BSA are more regular than those observed in SBA and the plane boundaries have a modulation effect on the flow. In SBA, the flow structure becomes more irregular as the diameter ratio is decreased and as the Reynolds number is increased and the mechanism of such a phenomenon is also discussed. In both BSA and SBA, when the cylinder spacing is increased to a threshold, the wake structure translates from the reattachment regime to the co-shedding regime and the critical spacing in BSA is smaller than that in SBA. As the cylinders are placed in proximity to each other, the negative and positive drag coefficients of the downstream cylinder are observed in BSA and SBA, respectively. The positive drag coefficient in SBA decreases as the diameter ratio is increased.

  2. The Measurements of the Solar Diameter at the Kepler's Times

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino; Fraschetti, Federico

    2002-12-01

    We examine five measurements of the solar disk diameter made with a pinhole instrument by Tycho in 1591 and Kepler in 1600-1602 [1]. Those are the first accurate measurements of the solar disk diameter available in literature, even if Ptolemy and Copernicus already did such measurements [2].

  3. Method accurately measures mean particle diameters of monodisperse polystyrene latexes

    NASA Technical Reports Server (NTRS)

    Kubitschek, H. E.

    1967-01-01

    Photomicrographic method determines mean particle diameters of monodisperse polystyrene latexes. Many diameters are measured simultaneously by measuring row lengths of particles in a triangular array at a glass-oil interface. The method provides size standards for electronic particle counters and prevents distortions, softening, and flattening.

  4. Periodically Diameter-Modulated Semiconductor Nanowires for Enhanced Optical Absorption.

    PubMed

    Ko, Minjee; Baek, Seong-Ho; Song, Bokyung; Kang, Jang-Won; Kim, Shin-Ae; Cho, Chang-Hee

    2016-04-01

    A diameter-modulated silicon nanowire array to enhance the optical absorption across broad spectral range is presented. Periodic shape engineering is achieved using conventional semiconductor processes and the unique optical properties are analyzed. The periodicity in the diameter of the silicon nanowires enables stronger and more closely spaced optical resonances, leading to broadband absorption enhancement. PMID:26833855

  5. Reliable Diameter Control of Carbon Nanotube Nanobundles Using Withdrawal Velocity.

    PubMed

    Shin, Jung Hwal; Kim, Kanghyun; An, Taechang; Choi, WooSeok; Lim, Geunbae

    2016-12-01

    Carbon nanotube (CNT) nanobundles are widely used in nanoscale imaging, fabrication, and electrochemical and biological sensing. The diameter of CNT nanobundles should be controlled precisely, because it is an important factor in determining electrode performance. Here, we fabricated CNT nanobundles on tungsten tips using dielectrophoresis (DEP) force and controlled their diameters by varying the withdrawal velocity of the tungsten tips. Withdrawal velocity pulling away from the liquid-air interface could be an important, reliable parameter to control the diameter of CNT nanobundles. The withdrawal velocity was controlled automatically and precisely with a one-dimensional motorized stage. The effect of the withdrawal velocity on the diameter of CNT nanobundles was analyzed theoretically and compared with the experimental results. Based on the attachment efficiency, the withdrawal velocity is inversely proportional to the diameter of the CNT nanobundles; this has been demonstrated experimentally. Control of the withdrawal velocity will play an important role in fabricating CNT nanobundles using DEP phenomena. PMID:27581602

  6. PHOS Experiment: Thermal Response of a Large Diameter Pulsating Heat Pipe on Board REXUS-18 Rocket

    NASA Astrophysics Data System (ADS)

    Creatini, F.; Guidi, G. M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; Fontanesi, S.; Nannipieri, P.; Rognini, M.; Morganti, N.; Filippeschi, S.; Di Marco, P.; Fanucci, L.; Baronti, F.; Mameli, M.; Marengo, M.; Manzoni, M.

    2015-09-01

    In the present work, the results of two Closed Loop Pulsating Heat Pipes (CLPHPs) tested on board REXUS-1 8 sounding rocket in order to get experimental data over a relatively broad reduced gravity period (about 90 s) are thoroughly discussed. The CLPHPs are partially filled with refrigerant FC-72 and have, respectively, an inner tube diameter larger (3 .0 mm) and slightly smaller (1 .6 mm) than a critical diameter defined on Earth gravity conditions. On ground, the small diameter CLPHP works as a real Pulsating Heat Pipe (PHP): the typical capillary slug flow pattern forms inside the device and the heat exchange is triggered by self-sustained thermally driven oscillations of the working fluid. Conversely, the large diameter CLPHP behaves like a two-phase thermosyphon in vertical position while does not operate in horizontal position as the working fluid stratifies within the tube and surface tension is not able to balance buoyancy. Then, the idea to test the CLPHPs under reduced gravity conditions: as soon as gravity reduces, buoyancy becomes less intense and the typical capillary slug flow pattern can also forms within a tube with a larger diameter. Moreover, this allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience the expected reduced gravity conditions due to a failure of the yo-yo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described.

  7. Mechanical degradation of biological heart valve tissue induced by low diameter crimping: an early assessment.

    PubMed

    Khoffi, Foued; Heim, Frederic

    2015-04-01

    Transcatheter aortic valve implantation (TAVI) has become today an increasingly attractive procedure to relieve patients from aortic valve disease. However, the procedure requires crimping biological tissue within a metallic stent for low diameter catheter insertion purpose. This step induces specific stress in the leaflets especially when the crimping diameter is small. One concern about crimping is the potential degradations undergone by the biological tissue, which may limit the durability of the valve once implanted. The purpose of the present work is to study the effect of low diameter crimping on the mechanical performances of pericardium valve prototypes. The prototypes were compressed to a diameter of 1mm within braided stents for 20 min. SEM observations performed on crimped material show that crimped leaflets undergo degradations characterized by apparent surface defects. Moreover mechanical extension tests were performed on pericardium strips before and after crimping. The strips (15 mm long, 5mm wide) were taken from both crimped and native leaflets considering 2 different valve diameters, 19 and 21 mm. In order to prevent the premature drying of the pericardium tissue during the procedure, the biological tissue was kept in contact with a formaldehyde solution. Results show that the ultimate strength value decreases nearly by up to 50%. The modifications observed in the material may jeopardize the long term durability of the device. However, further tests are necessary with a larger amount of samples to confirm these early results. PMID:25621851

  8. Femoral head diameter considerations for primary total hip arthroplasty.

    PubMed

    Girard, J

    2015-02-01

    The configuration of total hip arthroplasty (THA) implants has constantly evolved since they were first introduced. One of the key components of THA design is the diameter of the prosthetic femoral head. It has been well established that the risk of dislocation is lower as the head diameter increases. But head diameter impacts other variables beyond joint stability: wear, cam-type impingement, range of motion, restoration of biomechanics, proprioception and groin pain. The introduction of highly cross-linked polyethylene and hard-on-hard bearings has allowed surgeons to implant large-diameter heads that almost completely eliminate the risk of dislocation. But as a result, cup liners have become thinner. With femoral head diameters up to 36 mm, the improvement in joint range of motion, delay in cam-type impingement and reduction in dislocation risk have been clearly demonstrated. Conversely, large-diameter heads do not provide any additional improvements. If an "ecologically sound" approach to hip replacement is embraced (e.g. keeping the native femoral head diameter), hip resurfacing with a metal-on-metal bearing must be carried out. The reliability of large-diameter femoral heads in the longer term is questionable. Large-diameter ceramic-on-ceramic bearings may be plagued by the same problems as metal-on-metal bearings: groin pain, squeaking, increased stiffness, irregular lubrication, acetabular loosening and notable friction at the Morse taper. These possibilities require us to be extra careful when using femoral heads with a diameter greater than 36 mm. PMID:25596984

  9. Pupil Diameter Changes in High Myopes after Collamer Lens Implantation

    PubMed Central

    Li, Dan; Yang, Yabo; Su, Caipei; Yin, Houfa; Liu, Xue

    2015-01-01

    ABSTRACT Purpose To observe the changes in pupil size under photopic and scotopic conditions after Implantable Collamer Lens (ICL) implantations in eyes with high myopia. Methods The ICL was implanted in 90 eyes belonging to 45 patients with high myopia. Photopic pupil diameters, scotopic pupil diameters, anterior chamber depths, and ICL vaults were examined at the preoperative, postoperative 1-month, and postoperative 3-month stages. The preoperative and postoperative photopic pupil diameters and scotopic pupil diameters were also compared with each other to note the differences between them. The correlations between preoperative and postoperative pupil diameter changes under different light conditions and presurgical refractive error were analyzed alongside patient’s age and ICL vault. Results Pupil diameters at both postoperative 1-month and postoperative 3-month stages were smaller than those before operation in distinct light environments, as well as pupil constriction amplitude. Correlation analysis showed that there was a statistically significant correlation between pupil diameter changes under different light conditions and presurgical refractive error at 1 month and 3 months after ICL implantation; pupil diameter decreased more when presurgical refractive error powers were less myopic. Statistically significant correlations were not found, however, with patient’s age and ICL vault. Postoperative 1-month and mean postoperative 3-month anterior chamber depths were decreased when compared with preoperative anterior chamber depths. Statistically significant correlations were found in change in preoperative and postoperative anterior chamber depth and ICL vault. No statistically significant difference was found between ICL vault at the postoperative 1-month and postoperative 3-month stages. Conclusions Pupil diameter may decrease at the 1- and 3-month stages after ICL implantation under both photopic and scotopic conditions. This indicates that reduction

  10. Method for applying pyrolytic carbon coatings to small particles

    DOEpatents

    Beatty, Ronald L.; Kiplinger, Dale V.; Chilcoat, Bill R.

    1977-01-01

    A method for coating small diameter, low density particles with pyrolytic carbon is provided by fluidizing a bed of particles wherein at least 50 per cent of the particles have a density and diameter of at least two times the remainder of the particles and thereafter recovering the small diameter and coated particles.

  11. Comparison of Failure Thickness and Critical Diameter of Nitromethane

    NASA Astrophysics Data System (ADS)

    Petel, Oren E.; Higgins, Andrew J.

    2006-07-01

    The critical diameter and failure thickness of both neat liquid nitromethane and a 65% nitromethane/35% nitroethane blend confined by aluminum are determined experimentally. A comparison of these two parameters provides insight into the failure mechanism of detonation in these explosives. If the failure of detonation in a critical charge diameter (or thickness) experiment is due to reaction quenching resulting from expansion losses (wave curvature), then it is expected that the failure thickness should be half the value of the critical diameter. The critical diameter and failure thickness of neat nitromethane confined in aluminum are found to be 2.5 mm and 0.75 mm respectively for a temperature range of 26 ± 1°C. The critical diameter and failure thickness of the 65NM/35NE blend confined in aluminum are found to be 6.2 mm and 1.7 mm respectively for a temperature range of 28 ± 1°C. The ratio of critical diameter to failure thickness for these experiments is found to lie between 3:1 and 4:1 rather than 2:1 as expected from wave curvature theory. By comparing the experimentally determined values of critical diameter and thickness for the test explosives and examining the failure patterns recovered on witness plates, a mechanism of propagation in thin rectangular channels is proposed based on complex wave interactions.

  12. Sterilization of various diameter dead-ended tubes.

    PubMed

    Young, J H

    1993-06-01

    Effect of tube diameter on steam-in-place sterilization of dead-ended tubes was studied by examining temperature profiles and rates of kill of Bacillus stearothermophilus spores. Time required for sterilization was determined for 9.4-cm-long tubes with various inside diameters from 0.4 to 1.7 cm. Sterilization time increased with decreasing tube diameter. Experimentally measured kill kinetics in 1.7-cm tubes were in agreement with those predicted if measured temperatures represented saturated steam. A 12-log spore reduction was achieved in 1.7-cm diameter vertical and horizontal tubes in less than 63 minutes. For smaller diameter tubes, entrapped air remained after 2 hours and rates of kill were very dependent on position within the tube, tube diameter, and tube orientation with respect to the gravitational vector. Times to achieve a 1-log drop in spore population in the smaller tubes were as much as 10 times greater than those expected if measured temperatures represented saturated steam. Sterilization was not achieved throughout the 0.4-cm tubes. Recommendations are made for including steam bleeders or using prevaccum cycles for these smaller diameter tubes. PMID:18609656

  13. Effects of diameter and temperature on XTX-8004 detonation velocity

    SciTech Connect

    Campos, C.A.

    1980-10-01

    This study was performed to determine the dependence of XTX-8004 steady detonation velocity on charge diameter and temperature. The tests were performed for four different diameters at three temperatures using a standard 4-track detonation velocity block and corresponding printed circuit ionization switch plate. The explosive was loaded in the detonation velocity block to a nominal density of 1.553 g/cc. Measurements obtained from two samples per temperature indicate the critical diameter is less than 0.178 cm. A relationship between detonation velocity and density due to temperature was established using experimental measurements.

  14. Calibration of the radiometric asteroid scale using occultation diameters

    NASA Technical Reports Server (NTRS)

    Telesco, C. M.; Brunk, W. E.; Brown, R. H.; Morrison, D.

    1982-01-01

    The paper describes a new approach to the calibration of the radiometric asteroid scale, which relies on recent accurate occultation measurements of the diameters of 2 Pallas (Wasserman et al., 1979) and 3 Juno (Millis et al., 1981), and the Voyager diameter of J4 Callisto, as well as IR photometry of these objects obtained with the NASA 3-m Infrared Telescope Facility. It is shown that this calibration is internally consistent to better than 5%, and probably has an absolute accuracy of + or - 5%. It is noted that a revision of the TRIAD radiometric diameters downward is required to bring them into agreement with the new calibration.

  15. Thermal mechanical analyses of large diameter ion accelerator systems

    SciTech Connect

    Brophy, J.R.; Aston, G.

    1989-01-01

    Thermal mechanical analyses of large diameter ion accelerator systems are performed using commercially available finite element software executed on a desktop computer. Finite element models of a 30-cm-diameter accelerator system formulated using plate/shell elements give calculated results which agree well with similar published obtained on a mainframe computer. Analyses of a 50-cm-diameter, three-grid accelerator system using measured grid temperatures (corresponding to discharge powers of 653 and 886 watts) indicate that thermally induced grid movements need not be the performance limiting phenomena for accelerator systems of this size. 8 refs.

  16. Thermal mechanical analyses of large diameter ion accelerator systems

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    Thermal mechanical analyses of large diameter ion accelerator systems are performed using commercially available finite element software executed on a desktop computer. Finite element models of a 30-cm-diameter accelerator system formulated using plate/shell elements give calculated results which agree well with similar published obtained on a mainframe computer. Analyses of a 50-cm-diameter, three-grid accelerator system using measured grid temperatures (corresponding to discharge powers of 653 and 886 watts) indicate that thermally induced grid movements need not be the performance limiting phenomena for accelerator systems of this size.

  17. Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Shunqiang; Wan, Yuan; Liu, Yaling

    2014-10-01

    While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future.While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs

  18. Floating zone process for drawing small diameter fibers of refractory materials

    NASA Technical Reports Server (NTRS)

    Westfall, L. J.; Haggerty, J.; Menashi, W. P.; Wenckus, J. F.

    1972-01-01

    New process produces controlled purity, very high strength, single crystal fibers of materials with melting points to 4000 C. Process has been used to make single crystal fibers of highly refractory ceramics such as aluminum oxide, titanium carbide and yttrium oxide.

  19. 76 FR 14910 - Small Diameter Graphite Electrodes From the People's Republic of China: Initiation of Anti...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... Republic of China, 74 FR 8775 (February 26, 2009) (``SDGE Order''). DATES: Effective Date: March 18, 2011... metallurgy, and specialty furnace applications in industries including foundries, smelters, and steel... for the steel and foundry industries;'' (b) the unfinished SDGE components in question contain...

  20. Non-Newtonian Liquid Flow through Small Diameter Piping Components: CFD Analysis

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Tarun Kanti; Das, Sudip Kumar

    2016-05-01

    Computational Fluid Dynamics (CFD) analysis have been carried out to evaluate the frictional pressure drop across the horizontal pipeline and different piping components, like elbows, orifices, gate and globe valves for non-Newtonian liquid through 0.0127 m pipe line. The mesh generation is done using GAMBIT 6.3 and FLUENT 6.3 is used for CFD analysis. The CFD results are verified with our earlier published experimental data. The CFD results show the very good agreement with the experimental values.

  1. Calibration of a Neutron Hydroprobe for Moisture Measurements in Small-Diameter Steel-Cased Boreholes

    SciTech Connect

    Ward, Anderson L.; Wittman, Richard S.

    2009-08-01

    Computation of soil moisture content from thermalized neutron counts for the T-Farm Interim cover requires a calibration relationship but none exists for 2-in tubes. A number of calibration options are available for the neutron probe, including vendor calibration, field calibration, but none of these methods were deemed appropriate for the configuration of interest. The objective of this work was to develop a calibration relation for converting neutron counts measured in 2-in access tubes to soil water content. The calibration method chosen for this study was a computational approach using the Monte Carlo N-Particle Transport Code (MCNP). Model calibration was performed using field measurements in the Hanford calibration models with 6-in access tubes, in air and in the probe shield. The bet-fit model relating known water content to measured neutron counts was an exponential model that was essentially equivalent to that currently being used for 6-in steel cased wells. The MCNP simulations successfully predicted the neutron count rate for the neutron shield and the three calibration models for which data were collected in the field. However, predictions for air were about 65% lower than the measured counts . This discrepancy can be attributed to uncertainties in the configuration used for the air measurements. MCNP-simulated counts for the physical models were essentially equal to the measured counts with values. Accurate prediction of the response in 6-in casings in the three calibration models was motivation to predict the response in 2-in access tubes. Simulations were performed for six of the seven calibration models as well as 4 virtual models with the entire set covering a moisture range of 0 to 40%. Predicted counts for the calibration models with 2-in access tubes were 40 to 50% higher than in the 6-inch tubes. Predicted counts for water were about 60% higher in the 2-in tube than in the 6-in tube. The discrepancy between the 2-in and 6-in tube can be attributed to the smaller air gap between the probe and the 2-in access tube. The best-fit model relating volumetric water content to count ratio (CR) is of the form e^A x CR^B with A=0.3596 ± 0.0216 and B=0.4629 ± 0.0629 and r^2= 0.9998. It is recommended that the calibration function based on the count ratio, rather than raw counts, be used to avoid the effects of electronic noise in the probe that may arise due to the conditions at the time of measurement. These results suggest that the MCNP code can be used to extend calibrations for the neutron probe to different conditions including access tube size as well as composition without the need to construct additional physical models.

  2. 78 FR 14964 - Small Diameter Graphite Electrodes From the People's Republic of China: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Revocation in Part, and Deferral of Administrative Review, 77 FR 19179 (March 30, 2012) (Initiation Notice... Rescission, in Part, 72 FR 58809 (October 17, 2007), and accompanying Issues and Decision Memorandum at... Margin and Assessment Rate in Certain Antidumping Duty Proceedings; Final Modification, 77 FR...

  3. 77 FR 33405 - Small Diameter Graphite Electrodes From the People's Republic of China: Affirmative Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... the People's Republic of China, 74 FR 8775 (February 26, 2009) (``SDGE Order''). DATES: Effective Date... Republic of China: Initiation of Anticircumvention Inquiry, 76 FR 14910, 14912, 14916-17 (March 18, 2011... Affirmative Preliminary Determination of Critical Circumstances, in Part, 73 FR 49408, 49412 (August 21,...

  4. 76 FR 12325 - Small Diameter Graphite Electrodes From the People's Republic of China: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... Republic of China, 74 FR 8775 (February 26, 2009). \\6\\ See Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Opportunity to Request Administrative Reviews, 75 FR 5037 (February 1... Antidumping and Countervailing Duty Administrative Reviews and Request for Revocation in Part, 75 FR...

  5. DISCOVERY OF THE SMALL-DIAMETER, YOUNG SUPERNOVA REMNANT G354.4+0.0

    SciTech Connect

    Roy, Subhashis; Pal, Sabyasachi E-mail: sabya@csp.res.in

    2013-09-10

    We report the discovery of a shell-like structure G354.4+0.0 of size 1.'6 that shows the morphology of a shell supernova remnant (SNR). Part of the structure shows polarized emission in a NRAO VLA sky survey map. Based on 330 MHz and 1.4 GHz Giant Metrewave Radio Telescope observations and existing observations at higher frequencies, we conclude that the partial shell structure showing synchrotron emission is embedded in an extended H II region of size {approx}4'. The spectrum of the diffuse H II region turns over between 1.4 GHz and 330 MHz. The H I absorption spectrum shows this objected to be located more than 5 kpc from Sun. Based on its morphology, non-thermal polarized emission, and size, this object is one of the youngest SNRs discovered in the Galaxy with an estimated age of {approx}100-500 yr.

  6. Discovery of the Small-diameter, Young Supernova Remnant G354.4+0.0

    NASA Astrophysics Data System (ADS)

    Roy, Subhashis; Pal, Sabyasachi

    2013-09-01

    We report the discovery of a shell-like structure G354.4+0.0 of size 1.'6 that shows the morphology of a shell supernova remnant (SNR). Part of the structure shows polarized emission in a NRAO VLA sky survey map. Based on 330 MHz and 1.4 GHz Giant Metrewave Radio Telescope observations and existing observations at higher frequencies, we conclude that the partial shell structure showing synchrotron emission is embedded in an extended H II region of size ~4'. The spectrum of the diffuse H II region turns over between 1.4 GHz and 330 MHz. The H I absorption spectrum shows this objected to be located more than 5 kpc from Sun. Based on its morphology, non-thermal polarized emission, and size, this object is one of the youngest SNRs discovered in the Galaxy with an estimated age of ~100-500 yr.

  7. Development of a precision wire feeder for small-diameter wire

    SciTech Connect

    Brandon, E.D.

    1995-03-01

    At Sandia National Laboratories in Albuquerque, the author designed and fabricated a precision wire feeder to be used with high energy density (electron beam and laser beam) welding for weld joints where filler wire might be needed to fill a gap or to adjust the chemical composition so that a crack-free weld could be made. The wire feeder incorporates a 25,000 step-per-revolution motor to power a urethane-coated drive roll. A microprocessor-based controller provides precise control of the motor and allows both continuous and pulsed feeding of the wire. A unidirectional 0.75-in.-dia ball bearing is used to press the wire against the drive roll. A slight constant backward tension is maintained on the wire spool by a Bodine torque motor. A Teflon tube is used to guide the wire from the drive roll to the vicinity of the weld, where a hypodermic needle is used to aim the wire into the weld pool. The operation of the wire feeder was demonstrated by feeding a 10-mil-dia, Type 304 stainless steel wire into a variety of CO{sub 2} laser beam welds. The resulting welds are smooth and continuous, and the welds are considered to be completely satisfactory for a variety of applications.

  8. Explosive Tube-to-fitting Joining of Small-diameter Tubes

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1985-01-01

    An effort is currently under way by NASA Marshall Space Flight Center to upgrade the space shuttle main engine through the use of improved materials and processes. Under consideration is the use of the Langley Research Center explosive seam welding process. The objective is to demonstrate the feasibility of joining space shuttle main engine tube to fitting components in an oxygen heat exchanger, using the NASA LaRC explosive seam welding process. It was concluded that LaRC explosive joining is viable for this application; that there is no incompatability of materials; that ultrasonic inspection is the best nondestructive testing method; and that the .500 DIA joint experiences interface problems.

  9. Non-intrusive ultrasonic liquid-in-line detector for small diameter tubes. [Patent application

    DOEpatents

    Piper, T.C.

    1980-09-24

    An arrangement for detecting liquids in a line, using non-intrusive ultrasonic techniques is disclosed. In this arrangement, four piezoelectric crystals are arranged in pairs about a 0.078 inch o.d. pipe. An ultrasonic tone burst is transmitted along the pipe, between crystal pairs, and the amplitude of the received tone burst indicates the absence/presence of liquid in the pipe.

  10. 78 FR 56864 - Small Diameter Graphite Electrodes From the People's Republic of China: Affirmative Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... China, 74 FR 8775 (February 26, 2009) (Order). DATES: Effective Date: September 16, 2013. FOR FURTHER... Duty Order and Intent To Rescind Later-Developed Merchandise Circumvention Inquiry, 78 FR 22843 (April... Circumvention of the Antidumping Duty Order, 77 FR 47596 (August 9, 2012). \\10\\ We have added this...

  11. Non-intrusive ultrasonic liquid-in-line detector for small diameter tubes

    DOEpatents

    Piper, Thomas C.

    1982-01-01

    An arrangement for deleting liquid in a line, using non-intrusive ultrasonic techniques is disclosed. In this arrangement, four piezoelectric crystals are arranged in pairs about a 0.072 inch o.d. pipe. An ultrasonic tone burst is transmitted along the pipe, between crystal pairs, and the amplitude of the received tone burst indicates the absence/presence of liquid in the pipe.

  12. Comparison of Failure Thickness and Critical Diameter of Nitromethane

    NASA Astrophysics Data System (ADS)

    Petel, Oren E.

    2005-07-01

    The critical diameter and failure thickness of liquid nitromethane confined by aluminum are determined experimentally. A comparison of these two parameters provides insight into the failure mechanism in nitromethane. If the failure of detonation in a critical charge diameter (or thickness) experiment is due to reaction quenching resulting from wave curvature, then it is expected that the critical diameter should be half the value of the critical thickness.[1] This has been shown to be the case with gas-phase detonations with nearly laminar reaction zones.[2] By comparing the experimentally determined values of critical diameter and thickness for a homogeneous liquid explosive, the validity of this model of detonation failure can be assessed. References: 1. Ramsay, J.B., 8th Symp. (Int.) on Detonation., 372-379 (1985). 2. Radulescu, M., Lee, J.H.S., Comb. and Flame, 131:29-46 (2002).

  13. Wavelength dependence of the apparent diameter of retinal blood vessels.

    PubMed

    Park, Robert; Twietmeyer, Karen; Chipman, Russell; Beaudry, Neil; Salyer, David

    2005-04-01

    Imaging of retinal blood vessels may assist in the diagnosis and monitoring of diseases such as glaucoma, diabetic retinopathy, and hypertension. However, close examination reveals that the contrast and apparent diameter of vessels are dependent on the wavelength of the illuminating light. In this study multispectral images of large arteries and veins within enucleated swine eyes are obtained with a modified fundus camera by use of intravitreal illumination. The diameters of selected vessels are measured as a function of wavelength by cross-sectional analysis. A fixed scale with spectrally independent dimension is placed above the retina to isolate the chromatic effects of the imaging system and eye. Significant apparent differences between arterial and venous diameters are found, with larger diameters observed at shorter wavelengths. These differences are due primarily to spectral absorption in the cylindrical blood column. PMID:15813519

  14. Anomalous dependence of band gaps of binary nanotubes on diameters

    NASA Astrophysics Data System (ADS)

    Adhikari, Kapil; Huda, Muhammad; Ray, Asok

    2012-02-01

    Using cluster approximation, AlN, BN, GaN, SiGe, SiC, and GeC armchair type 1 nanotubes have been spin optimized using the hybrid functional B3LYP, a double ζ basis set and the GAUSSIAN 03 software. The electronic structures of group III nitride and group IV-IV nanotubes indicate that the band gap increases with tube diameter contrary to behavior expected from quantum size effects. A detailed study indicates that, in a class of binary nanotubes with partial ionic contributions in the bonds, for example, AlN, BN, GaN, GeC, and SiC, ionicity of the bonds decreases as diameter decreases due to increased sp^3 contribution. This causes the band gap to increase with diameter. But in nanotubes with covalent bonding, for example SiGe, the gap decreases with diameter. A general trend for a class of binary nanotubes is established.

  15. Northern view of inside diameter welding station of the saw ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northern view of inside diameter welding station of the saw line in bay9 of the main pipe mill building. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  16. Pupil diameter reflects uncertainty in attentional selection during visual search

    PubMed Central

    Geng, Joy J.; Blumenfeld, Zachary; Tyson, Terence L.; Minzenberg, Michael J.

    2015-01-01

    Pupil diameter has long been used as a metric of cognitive processing. However, recent advances suggest that the cognitive sources of change in pupil size may reflect LC-NE function and the calculation of unexpected uncertainty in decision processes (Aston-Jones and Cohen, 2005; Yu and Dayan, 2005). In the current experiments, we explored the role of uncertainty in attentional selection on task-evoked changes in pupil diameter during visual search. We found that task-evoked changes in pupil diameter were related to uncertainty during attentional selection as measured by reaction time (RT) and performance accuracy (Experiments 1-2). Control analyses demonstrated that the results are unlikely to be due to error monitoring or response uncertainty. Our results suggest that pupil diameter can be used as an implicit metric of uncertainty in ongoing attentional selection requiring effortful control processes. PMID:26300759

  17. Development of welded metal bellows having minimum effective diameter change

    NASA Technical Reports Server (NTRS)

    Henschel, J. K.; Stevens, J. B.; Harvey, A. C.; Howland, J. S.; Rhee, S. S.

    1972-01-01

    A program of analysis, design, and fabrication was conducted to develop welded metal bellows having a minimum change in effective diameter for cryogenic turbomachinery face seal applications. Linear analysis of the principle types of bellows provided identification of concepts capable of meeting basic operation requirements. For the 6-inch (.152 m) mean diameter, 1.5-inch free length bellows studied, nonlinear analysis showed that opposed and nested toroidal bellows plates stiffened by means of alternating stiffener rings were capable of maintaining constant effective diameter within 0.3% and 0.1% respectively under the operating conditions of interest. Changes in effective diameter were due principally to bellows axial deflection with pressure differential having a lesser influence. Fabrication problems associated with joining the thin bellows plates to the relatively heavy stiffener rings were encountered and precluded assembly and testing of a bellows core. Fabrication problems are summarized and recommended fabrication methods for future effort are presented.

  18. Acoustic fill factors for a 120 inch diameter fairing

    NASA Technical Reports Server (NTRS)

    Lee, Y. Albert

    1992-01-01

    Data from the acoustic test of a 120-inch diameter payload fairing were collected and an analysis of acoustic fill factors were performed. Correction factors for obtaining a weighted spatial average of the interior sound pressure level (SPL) were derived based on this database and a normalized 200-inch diameter fairing database. The weighted fill factors were determined and compared with statistical energy analysis (VAPEPS code) derived fill factors. The comparison is found to be reasonable.

  19. Adaptive ultrasonic measurement of blood vessel diameter and wall thickness: theory and experimental results.

    PubMed

    Rafii, K; Jaffe, J S

    1998-01-01

    An adaptive ultrasonic technique for measuring blood vessel diameter and wall thickness is presented. This technique allows one to use a target-specific transmitted waveform/receiver filter to obtain a larger signal-to-noise ratio (SNR) in the received signal than conventional techniques. Generally, SNR of a received wave increases as the intensity of the transmit wave increases; however, because of the FDA limitations placed on the amount of transmit energy, it is important to be able to make the most efficient use of the energy that is available to obtain the best possible SNR in the received signal. Adaptive ultrasonic measurement makes the most efficient use of the energy that is available by placing the maximum amount of energy in the largest target scattering mode. This results in more energy backscatter from a given target, which leads to a higher SNR in the received waveform. Computer simulations of adaptive ultrasonic measurement of blood vessel diameter show that for a SNR of 0 dB in the transmitted waveform, the standard deviation of the diameter measurements for a custom-designed transmitted waveform is about two orders of magnitude less than the standard deviation of the diameter measurements using more conventional waveforms. Diameter and wall thickness measurement experiments were performed on a latex tube and a bovine blood vessel using both custom-made and conventionally used transmitted waveforms. Results show that the adaptively designed waveform gives a smaller uncertainty in the measurements. The adaptive ultrasonic blood vessel diameter and wall thickness measuring technique has potential applications in examining vessels which are either too deep inside the body or too small for conventional techniques to be used, because of the low SNR in the received signal. PMID:18244211

  20. Effect of Diameter of Saphenous Vein on Stump Length after Radiofrequency Ablation for Varicose Vein

    PubMed Central

    Kim, Jusung; Cho, Sungsin; Joh, Jin Hyun; Ahn, Hyung-Joon; Park, Ho-Chul

    2015-01-01

    Purpose: Radiofrequency ablation (RFA) has gained popularity for treatment of varicose veins. The diameter of the saphenous vein should be considered before RFA because occlusion of the vein may differ depending on its diameter. Until now, however, there have been few data about the correlation between the diameter of the saphenous vein and the stump length after RFA. The purpose of our study was to investigate its correlation. Materials and Methods: A retrospective review was performed from prospectively collected data of RFA patients between March 2009 and December 2011. Preoperatively, the saphenous vein diameter was measured. Ablation was initiated 2 cm distal from the junction. Postoperatively, stump length was measured at 1 week and 6 months. After 2 years, we measured the length from the saphenofemoral junction to the leading point of occlusion for great saphenous vein, and length from the saphenopopliteal junction to the leading point of occlusion for small saphenous vein. The paired t-test, independent t-test, and correlation analysis were used for statistical analysis. P-value <0.05 was considered statistically significant. Results: During the study period, RFA was performed in 201 patients. Endovenous heat-induced thrombosis developed in 3 patients (1.5%). After 2 years, the stump length was obtained in 74 limbs. The mean diameter and stump length of the saphenous vein were 6.7±1.8 mm and 12.5±8.5 mm, respectively. Correlation analysis showed that the Pearson correlation coefficient of these factors was −0.017. Conclusion: There was no correlation between the diameter of saphenous vein and stump length. PMID:26719839

  1. Structural adaptation of microvessel diameters in response to metabolic stimuli: where are the oxygen sensors?

    PubMed

    Reglin, Bettina; Secomb, Timothy W; Pries, Axel R

    2009-12-01

    Maintenance of functional vascular networks requires structural adaptation of vessel diameters in response to hemodynamic and metabolic conditions. The mechanisms by which diameters respond to the metabolic state are not known, but may involve the release of vasoactive substances in response to low oxygen by tissue ("tissue signaling", e.g., CO2, adenosine), by vessel walls ("wall signaling", e.g., prostaglandins, adenosine), and/or by red blood cells (RBCs) ("RBC signaling", e.g., ATP and nitric oxide). Here, the goal was to test the potential of each of these locations of oxygen-dependent signaling to control steady-state vascular diameters and tissue oxygenation. A previously developed theoretical model of structural diameter adaptation based on experimental data on microvascular network morphology and hemodynamics was used. Resulting network characteristics were analyzed with regard to tissue oxygenation (Oxdef; percentage of tissue volume with PO2<1 Torr) and the difference between estimated blood flow velocities and corresponding experimental data [velocity error (Verr); root mean square deviation of estimated vs. measured velocity]. Wall signaling led to Oxdef<1% and to the closest hemodynamic similarity (Verr: 0.60). Tissue signaling also resulted in a low oxygen deficit, but a higher Verr (0.73) and systematic diameter deviations. RBC signaling led to widespread hypoxia (Oxdef: 4.7%), unrealistic velocity distributions (Verr: 0.81), and shrinkage of small vessels. The results suggest that wall signaling plays a central role in structural control of vessel diameters in microvascular networks of given angioarchitecture. Tissue-derived and RBC-derived signaling of oxygen levels may be more relevant for the regulation of angiogenesis and/or smooth muscle tone. PMID:19783778

  2. Structural adaptation of microvessel diameters in response to metabolic stimuli: where are the oxygen sensors?

    PubMed Central

    Reglin, Bettina; Secomb, Timothy W.

    2009-01-01

    Maintenance of functional vascular networks requires structural adaptation of vessel diameters in response to hemodynamic and metabolic conditions. The mechanisms by which diameters respond to the metabolic state are not known, but may involve the release of vasoactive substances in response to low oxygen by tissue (“tissue signaling”, e.g., CO2, adenosine), by vessel walls (“wall signaling”, e.g., prostaglandins, adenosine), and/or by red blood cells (RBCs) (“RBC signaling”, e.g., ATP and nitric oxide). Here, the goal was to test the potential of each of these locations of oxygen-dependent signaling to control steady-state vascular diameters and tissue oxygenation. A previously developed theoretical model of structural diameter adaptation based on experimental data on microvascular network morphology and hemodynamics was used. Resulting network characteristics were analyzed with regard to tissue oxygenation (Oxdef; percentage of tissue volume with Po2 < 1 Torr) and the difference between estimated blood flow velocities and corresponding experimental data [velocity error (Verr); root mean square deviation of estimated vs. measured velocity]. Wall signaling led to Oxdef < 1% and to the closest hemodynamic similarity (Verr: 0.60). Tissue signaling also resulted in a low oxygen deficit, but a higher Verr (0.73) and systematic diameter deviations. RBC signaling led to widespread hypoxia (Oxdef: 4.7%), unrealistic velocity distributions (Verr: 0.81), and shrinkage of small vessels. The results suggest that wall signaling plays a central role in structural control of vessel diameters in microvascular networks of given angioarchitecture. Tissue-derived and RBC-derived signaling of oxygen levels may be more relevant for the regulation of angiogenesis and/or smooth muscle tone. PMID:19783778

  3. Understanding the effect of carbon status on stem diameter variations

    PubMed Central

    De Swaef, Tom; Driever, Steven M.; Van Meulebroek, Lieven; Vanhaecke, Lynn; Marcelis, Leo F. M.; Steppe, Kathy

    2013-01-01

    Background Carbon assimilation and leaf-to-fruit sugar transport are, along with plant water status, the driving mechanisms for fruit growth. An integrated comprehension of the plant water and carbon relationships is therefore essential to better understand water and dry matter accumulation. Variations in stem diameter result from an integrated response to plant water and carbon status and are as such a valuable source of information. Methods A mechanistic water flow and storage model was used to relate variations in stem diameter to phloem sugar loading and sugar concentration dynamics in tomato. The simulation results were compared with an independent model, simulating phloem sucrose loading at the leaf level based on photosynthesis and sugar metabolism kinetics and enabled a mechanistic interpretation of the ‘one common assimilate pool’ concept for tomato. Key Results Combining stem diameter variation measurements and mechanistic modelling allowed us to distinguish instantaneous dynamics in the plant water relations and gradual variations in plant carbon status. Additionally, the model combined with stem diameter measurements enabled prediction of dynamic variables which are difficult to measure in a continuous and non-destructive way, such as xylem water potential and phloem hydrostatic potential. Finally, dynamics in phloem sugar loading and sugar concentration were distilled from stem diameter variations. Conclusions Stem diameter variations, when used in mechanistic models, have great potential to continuously monitor and interpret plant water and carbon relations under natural growing conditions. PMID:23186836

  4. Nanofiber diameter-dependent MAPK activity in osteoblasts.

    PubMed

    Jaiswal, Devina; Brown, Justin L

    2012-11-01

    The major challenge for bone tissue engineering lies in the fabrication of scaffolds that can mimic the extracellular matrix and promote osteogenesis. Electrospun fibers are being widely researched for this application due to high porosity, interconnectivity, and mechanical strength of the fibrous scaffolds. Electrospun poly methyl methacrylate (PMMA, 2.416 ± 0.100 μm) fibers were fabricated and etched using a 60% propylene glycol methyl ether acetate (PGMEA)/limonene (vol/vol) solution to obtain fiber diameters ranging from 2.5 to 0.5 μm in a time-dependent manner. The morphology of the fibrous scaffolds was evaluated using scanning electron microscopy and cellular compatibility with etchant-treated scaffold was assessed using immunoflurescence. Mitogen-activated protein kinases (MAPK) activation in response to different fiber diameter was evaluated with western blot as well as quantitative in-cell western. We report that electrospun micro-fibers can be etched to 0.552 ± 0.047 μm diameter without producing beads. Osteoblasts adhered to the fibers and a change in fiber diameter played a major role in modulating the activation of extracellular signal-regulated kinase (ERK) and p38 kinases with 0.882 ± 0.091 μm diameter fibers producing an inverse effect on ERK and p38 phosphorylation. These results indicate that nanofibers produced by wet etching can be effectively utilized to produce diameters that can differentially modulate MAPK activation patterns. PMID:22700490

  5. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts

    NASA Astrophysics Data System (ADS)

    Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo

    2016-01-01

    We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high

  6. Predicting Hamstring Graft Diameter Using MRI and Anthropometry

    PubMed Central

    Fritsch, Brett A; Mhaskar, Vikram A; An, Vincent Vinh Gia; Scholes, Corey

    2016-01-01

    Objectives: Graft diameter is one variable that may affect outcome of ACL reconstruction. The ability to predict the size of a graft in a given patient pre-operatively may help guide graft selection and preparation technique. Various papers have correlated anthropometric data and MRI tendon measurements to intraoperative graft diameter, although no papers have investigated these together. The intra-operative diameter of a hamstring autograft will be influenced by graft preparation technique. Our study aimed to investigate the prediction of intraoperative graft diameter of 2 different graft construct techniques (4-strand semitendinosus versus quadrupled semitendinosus) using anthropometry and MRI measurements. Methods: Retrospective review of two groups of ACL reconstruction using different graft preparation techniques was performed. “Conventional” 4-strand gracilis + semitendinosus with fixed suspension at the femur and screw fixation at the tibia were compared with quadrupled semitendinosus grafts with adjustable suspensory fixation at each end (Graftlink). Cross-sectional areas (XSA) of the semitendinosus and gracilis tendons was measured in the axial slice of a T2 weighted MRI image using a region-of-interest tool. Stepwise linear regression using intraoperative graft diameter as the dependant variable was performed using MRI XSA of the semitendinosus and gracilis tendons, gender and height as predictors. Results: 129 ACL Reconstruction in 127 patients were done in the time period, 89 of which were done conventionally, and 40 which employed the Graftlink construct. The median graft diameter in the Graftlink group (8.5mm IQR8-9) was greater than that of the conventional group (8mm, IQR 7.5-8) (p < 0.001). MRI XSA of semitendinosus and height were statistically significant predictors of diameter in the Graftlink group (R2 = 51%), whilst MRI XSA of semitendinosus + gracilis and gender were predictors in the conventional group (R2 = 36%). Conclusion: Graftlink

  7. Large Diameter, Radiative Extinction Experiments with Decane Droplets in Microgravity

    NASA Technical Reports Server (NTRS)

    Easton, John; Tien, James; Dietrich, Daniel

    1999-01-01

    The extinction of a diffusion flame is of fundamental interest in combustion science. Linan, Law, and Chung and Law analytically and experimentally determined an extinction boundary in terms of droplet diameter and pressure for a single droplet due to Damkohler, or blowoff, extinction. More recently, other researchers demonstrated extinction due to finite rate kinetics in reduced gravity for free droplets of heptane. Chao modeled the effect of radiative heat loss on a quasi-steady spherically symmetric single droplet burning in the absence of buoyancy. They determined that for increasing droplet diameter, a second limit can be reached such that combustion is no longer possible. This second, larger droplet diameter limit arises due to radiative heat loss, which increases with increasing droplet and flame diameter. This increase in radiative heat loss arises due to an increase in the surface area of the flame. Recently, Marchese modeled fuel droplets with detailed chemistry and radiative effects, and compared the results to other work. The modeling also showed the importance of radiative loss and radiative extinction Experiments examined the behavior of a large droplet of decane burning in reduced gravity onboard the NASA Lewis DC-9 aircraft, but did not show a radiative extinction boundary due to g-jitter (Variations in gravitational level and direction) effects. Dietrich conducted experiments in the reduced gravity environment of the Space Shuttle. This work showed that the extinction diameter of methanol droplets increased when the initial diameter of the droplets was large (in this case, approximately 5 mm). Theoretical results agreed with these experimental results only when the theory included radiative effects . Radiative extinction was experimentally verified by Nayagam in a later Shuttle mission. The following work focuses on the combustion and extinction of a single fuel droplet. The goal is to experimentally determine a large droplet diameter limit that

  8. Transient magnetic birefringence for determining magnetic nanoparticle diameters in dense, highly light scattering media.

    PubMed

    Köber, Mariana; Moros, Maria; Grazú, Valeria; de la Fuente, Jesus M; Luna, Mónica; Briones, Fernando

    2012-04-20

    The increasing use of biofunctionalized magnetic nanoparticles in biomedical applications calls for further development of characterization tools that allow for determining the interactions of the nanoparticles with the biological medium in situ. In cell-incubating conditions, for example, nanoparticles may aggregate and serum proteins adsorb on the particles, altering the nanoparticles' performance and their interaction with cell membranes. In this work we show that the aggregation of spherical magnetite nanoparticles can be detected with high sensitivity in dense, highly light scattering media by making use of magnetically induced birefringence. Moreover, the hydrodynamic particle diameter distribution of anisometric nanoparticle aggregates can be determined directly in these media by monitoring the relaxation time of the magnetically induced birefringence. As a proof of concept, we performed measurements on nanoparticles included in an agarose gel, which scatters light in a similar way as a more complex biological medium but where particle-matrix interactions are weak. Magnetite nanoparticles were separated by agarose gel electrophoresis and the hydrodynamic diameter distribution was determined in situ. For the different particle functionalizations and agarose concentrations tested, we could show that gel electrophoresis did not yield a complete separation of monomers and small aggregates, and that the electrophoretic mobility of the aggregates decreased linearly with the hydrodynamic diameter. Furthermore, the rotational particle diffusion was not clearly affected by nanoparticle-gel interactions. The possibility to detect nanoparticle aggregates and their hydrodynamic diameters in complex scattering media like cell tissue makes transient magnetic birefringence an interesting technique for biological applications. PMID:22456180

  9. Colour of the nucleus as a marker of nuclear hardness, diameter and central thickness.

    PubMed

    Gullapalli, V K; Murthy, P R; Murthy, K R

    1995-12-01

    Hundred and thirty patients, aged above 40 years, with senile cataract were examined. Age and colour were selected as the probable preoperative indicators of nuclear hardness. The lens material collected after manual extracapsular extraction was washed and the nucleus isolated. The diameter and central thickness of the nucleus were measured; the mean diameter and mean central thickness were 7.13 mm +/- 0.76 and 3.05 mm +/- 0.48, respectively. The hardness of the nucleus was measured with a lens guillotine designed by us. Regression analysis was applied to the parameters measured and these were compared with the colour and age. The parameters measured had the following relationship: Colour vs hardness (r value = 0.7569) (p < 0.001) Colour vs diameter (r value = 0.3962) (p < 0.001) Colour vs central thickness (r value = 0.4785) (p < 0.001) Age vs hardness (r value = -0.0499) (p > 0.05) Age vs diameter (r value = 0.0987) (p > 0.05) Age vs central thickness (r value = 0.1700) (p > 0.05) The values showed that colour had a statistically significant relationship with all the 3 parameters (p < 0.001), while age had no significant relationship with the same parameters. The results indicated that colour can be used more reliably to predict physical characteristics of the cataractous lens nucleus, the preoperative knowledge of which would help the surgeon in planning small-incision surgery including phacoemulsification. PMID:8655196

  10. Measuring the unevenness of yarn apparent diameter from yarn sequence images

    NASA Astrophysics Data System (ADS)

    Li, Zhongjian; Pan, Ruru; Zhang, Jie; Li, Bianbian; Gao, Weidong; Bao, Wei

    2016-01-01

    This article presents a novel method for measuring the unevenness of yarn apparent diameter based on yarn sequence images captured from a moving yarn. A dynamic threshold module was designed to gain the global threshold for segmenting yarns in the sequence images. In the module, a K-means clustering algorithm was employed to classify the pixels of each frame in the sequence into two clusters—yarn and background. The cluster center of the current frame was used as the initial value of the cluster center for the next frame in the sequence to expedite the segmentation process. From the segmented yarn image, the yarn core was further extracted utilizing the characteristics of yarn hairiness, and two judgment templates were adopted to remove burrs, isolated points and unrelated small areas in the images. The yarn apparent diameter was measured on the yarn core at a given interval. The same kind of yarns were tested by using this method and Uster Evenness Tester 5. The experimental results show that the proposed method can accurately detect the unevenness of yarn apparent diameter and provide new useful information about yarn unevenness, such as the short-term, the long-term, and the periodic variations of yarn apparent diameters.

  11. Transient magnetic birefringence for determining magnetic nanoparticle diameters in dense, highly light scattering media

    NASA Astrophysics Data System (ADS)

    Köber, Mariana; Moros, Maria; Grazú, Valeria; de la Fuente, Jesus M.; Luna, Mónica; Briones, Fernando

    2012-04-01

    The increasing use of biofunctionalized magnetic nanoparticles in biomedical applications calls for further development of characterization tools that allow for determining the interactions of the nanoparticles with the biological medium in situ. In cell-incubating conditions, for example, nanoparticles may aggregate and serum proteins adsorb on the particles, altering the nanoparticles’ performance and their interaction with cell membranes. In this work we show that the aggregation of spherical magnetite nanoparticles can be detected with high sensitivity in dense, highly light scattering media by making use of magnetically induced birefringence. Moreover, the hydrodynamic particle diameter distribution of anisometric nanoparticle aggregates can be determined directly in these media by monitoring the relaxation time of the magnetically induced birefringence. As a proof of concept, we performed measurements on nanoparticles included in an agarose gel, which scatters light in a similar way as a more complex biological medium but where particle-matrix interactions are weak. Magnetite nanoparticles were separated by agarose gel electrophoresis and the hydrodynamic diameter distribution was determined in situ. For the different particle functionalizations and agarose concentrations tested, we could show that gel electrophoresis did not yield a complete separation of monomers and small aggregates, and that the electrophoretic mobility of the aggregates decreased linearly with the hydrodynamic diameter. Furthermore, the rotational particle diffusion was not clearly affected by nanoparticle-gel interactions. The possibility to detect nanoparticle aggregates and their hydrodynamic diameters in complex scattering media like cell tissue makes transient magnetic birefringence an interesting technique for biological applications.

  12. Memory, emotion, and pupil diameter: Repetition of natural scenes.

    PubMed

    Bradley, Margaret M; Lang, Peter J

    2015-09-01

    Recent studies have suggested that pupil diameter, like the "old-new" ERP, may be a measure of memory. Because the amplitude of the old-new ERP is enhanced for items encoded in the context of repetitions that are distributed (spaced), compared to massed (contiguous), we investigated whether pupil diameter is similarly sensitive to repetition. Emotional and neutral pictures of natural scenes were viewed once or repeated with massed (contiguous) or distributed (spaced) repetition during incidental free viewing and then tested on an explicit recognition test. Although an old-new difference in pupil diameter was found during successful recognition, pupil diameter was not enhanced for distributed, compared to massed, repetitions during either recognition or initial free viewing. Moreover, whereas a significant old-new difference was found for erotic scenes that had been seen only once during encoding, this difference was absent when erotic scenes were repeated. Taken together, the data suggest that pupil diameter is not a straightforward index of prior occurrence for natural scenes. PMID:25943211

  13. Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum

    PubMed Central

    Sepehrband, Farshid; Alexander, Daniel C.; Clark, Kristi A.; Kurniawan, Nyoman D.; Yang, Zhengyi; Reutens, David C.

    2016-01-01

    Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy), or to infer them indirectly (e.g., using diffusion-weighted MRI). The gamma distribution is a common choice for this purpose (particularly for the inferential approach) because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions. PMID:27303273

  14. Effect of nanotube diameters on bioactivity of a multifunctional titanium alloy

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Li, S. J.; Hao, Y. L.; Zhao, Y. K.; Ai, H. J.

    2013-03-01

    Ti-24Nb-4Zr-8Sn (abbreviated as Ti2448) is a multifunctional β type titanium alloy consisting of nontoxic alloying elements and possessing better balanced biomechanical properties of high strength and low elastic modulus. To improve its bioactivity, the anodic oxidation of Ti2448 alloy in neutral electrolyte containing small amounts of NH4F was applied to produce the nanotubes consisting of the amorphous mixed oxides of TiO2, Nb2O5, SnO2 and ZrO2. The in vitro studies of the oestoblast-like MG-63 cells were performed to evaluate the biological behavior of the nanotubes with the outer diameters of 30, 50, 70 and 90 nm in comparison with the polished pure titanium and Ti2448 alloy. The results showed that the smaller diameter of 30 nm promoted the cell adhesion, proliferation and differentiation whereas the larger diameter of 90 nm had the worst cell viability with small spreading area of cytoskeletal actin. Although the nanotubes of Ti2448 alloy consist of the amorphous mixed oxides, it exhibits similar biological behavior with that of the amorphous TiO2 of pure titanium. This suggests that the topography of the amorphous nanotube plays important role on cell response. Additionally, the studies did not detect statistical difference of the bioactivity for the polished pure titanium and Ti2448 alloy.

  15. NEOWISE Reactivation Mission Year Two: Asteroid Diameters and Albedos

    NASA Astrophysics Data System (ADS)

    Nugent, C. R.; Mainzer, A.; Bauer, J.; Cutri, R. M.; Kramer, E. A.; Grav, T.; Masiero, J.; Sonnett, S.; Wright, E. L.

    2016-09-01

    The Near-Earth Object Wide-Field Infrared Survey Explorer (NEOWISE) mission continues to detect, track, and characterize minor planets. We present diameters and albedos calculated from observations taken during the second year since the spacecraft was reactivated in late 2013. These include 207 near-Earth asteroids (NEAs) and 8885 other asteroids. Of the NEAs, 84% NEAs did not have previously measured diameters and albedos by the NEOWISE mission. Comparison of sizes and albedos calculated from NEOWISE measurements with those measured by occultations, spacecraft, and radar-derived shapes shows accuracy consistent with previous NEOWISE publications. Diameters and albedos fall within ±∼20% and ±∼40%, 1-sigma, respectively, of those measured by these alternate techniques. NEOWISE continues to preferentially discover near-Earth objects which are large (>100 m), and have low albedos.

  16. Diameter Dependence of the Transport Properties of Antimony Telluride Nanowires

    NASA Astrophysics Data System (ADS)

    Zuev, Yuri; Lee, Jin Sook; Park, Hongkun; Kim, Philip

    2010-03-01

    We report measurements of electronic, thermoelectric, and galvanometric properties of individual semimetallic single crystal antimony telluride (Sb2Te3) nanowires. Microfabricated heater and thermometer electrodes were used to probe the transport properties of the nanowires with diameters in the range of 22 - 95nm and temperatures in the range of 2 - 300K. Temperature dependent resistivity varies depending on nanowire diameter. Thermoelectric power (TEP) measurements indicate hole dominant diffusive thermoelectric generation, with an enhancement of the TEP for smaller diameter wires. The large surface-to-volume ratio of Sb2Te3 nanowires makes them an excellent platform to explore novel phenomena in this predicted topological insulator. We investigate mesoscopic magnetoresistance effects in magnetic fields both parallel and perpendicular to the nanowire axis.

  17. NEOWISE Reactivation Mission Year Two: Asteroid Diameters and Albedos

    NASA Astrophysics Data System (ADS)

    Nugent, C. R.; Mainzer, A.; Bauer, J.; Cutri, R. M.; Kramer, E. A.; Grav, T.; Masiero, J.; Sonnett, S.; Wright, E. L.

    2016-09-01

    The Near-Earth Object Wide-Field Infrared Survey Explorer (NEOWISE) mission continues to detect, track, and characterize minor planets. We present diameters and albedos calculated from observations taken during the second year since the spacecraft was reactivated in late 2013. These include 207 near-Earth asteroids (NEAs) and 8885 other asteroids. Of the NEAs, 84% NEAs did not have previously measured diameters and albedos by the NEOWISE mission. Comparison of sizes and albedos calculated from NEOWISE measurements with those measured by occultations, spacecraft, and radar-derived shapes shows accuracy consistent with previous NEOWISE publications. Diameters and albedos fall within ±˜20% and ±˜40%, 1-sigma, respectively, of those measured by these alternate techniques. NEOWISE continues to preferentially discover near-Earth objects which are large (>100 m), and have low albedos.

  18. Blood viscosity in tube flow: dependence on diameter and hematocrit.

    PubMed

    Pries, A R; Neuhaus, D; Gaehtgens, P

    1992-12-01

    Since the original publications by Martini et al. (Dtsch. Arch. Klin. Med. 169: 212-222, 1930) and Fahraeus and Lindqvist (Am. J. Physiol. 96: 562-568, 1931), it has been known that the relative apparent viscosity of blood in tube flow depends on tube diameter. Quantitative descriptions of this effect and of the dependence of blood viscosity on hematocrit in the different diameter tubes are required for the development of hydrodynamic models of blood flow through the microcirculation. The present study provides a comprehensive data base for the description of relative apparent blood viscosity as a function of tube diameter and hematocrit. Data available from the literature are compiled, and new experimental data obtained in a capillary viscometer are presented. The combined data base comprises measurements at high shear rates (u > or = 50 s-1) in tubes with diameters ranging from 3.3 to 1,978 microns at hematocrits of up to 0.9. If corrected for differences in suspending medium viscosity and temperature, the data show remarkable agreement. Empirical fitting equations predicting relative apparent blood viscosity from tube diameter and hematocrit are presented. A pronounced change in the hematocrit dependence of relative viscosity is observed in a range of tube diameters in which viscosity is minimal. While a linear hematocrit-viscosity relationship is found in tubes of < or = 6 microns, an overproportional increase of viscosity with hematocrit prevails in tubes of > or = 9 microns. This is interpreted to reflect the hematocrit-dependent transition from single- to multifile arrangement of cells in flow. PMID:1481902

  19. Critical diameter for stationary detonation in a high density explosive: shell effects

    SciTech Connect

    Kobylkin, I.F.; Boiko, M.M.; Solov'ev, V.S.

    1984-01-01

    A critical-diameter theory is proposed, based on certain assumptions about the nature of the detonation wave, the conditions in the region of the shock-wave front, and the shape of the front of the detonation wave. The flow in the reaction zone at the axis is examined in order to determine the limiting condition for stationary propagation of a self-maintaining detonation with a curved front. A small part of the shock front near the axis is represented as a spherical surface with a given radius. The conditions for stationarity in the front shape are considered. The model is tested by performing a quantitative analysis of an expression for the critical diameter for charges without shells. Finally, the constraints on this approach are considered.

  20. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals.

    PubMed

    Shan, Z W; Mishra, Raja K; Syed Asif, S A; Warren, Oden L; Minor, Andrew M

    2008-02-01

    The fundamental processes that govern plasticity and determine strength in crystalline materials at small length scales have been studied for over fifty years. Recent studies of single-crystal metallic pillars with diameters of a few tens of micrometres or less have clearly demonstrated that the strengths of these pillars increase as their diameters decrease, leading to attempts to augment existing ideas about pronounced size effects with new models and simulations. Through in situ nanocompression experiments inside a transmission electron microscope we can directly observe the deformation of these pillar structures and correlate the measured stress values with discrete plastic events. Our experiments show that submicrometre nickel crystals microfabricated into pillar structures contain a high density of initial defects after processing but can be made dislocation free by applying purely mechanical stress. This phenomenon, termed 'mechanical annealing', leads to clear evidence of source-limited deformation where atypical hardening occurs through the progressive activation and exhaustion of dislocation sources. PMID:18157134

  1. Giant Raman Response to the Encapsulation of Sulfur in Narrow Diameter Single-Walled Carbon Nanotubes.

    PubMed

    Li, Guanghui; Fu, Chengyin; Oviedo, M Belén; Chen, Mingguang; Tian, Xiaojuan; Bekyarova, Elena; Itkis, Mikhail E; Wong, Bryan M; Guo, Juchen; Haddon, Robert C

    2016-01-13

    Encapsulation of sulfur in HiPCO-SWNTs leads to large changes in the Raman spectra with the appearance of new peaks at 319, 395, and 715 cm(-1) which originate from the sulfur species within the SWNTs, while the high frequency SWNT bands (ν > 1200 cm(-1)) are decreased in intensity. The encapsulated species also shifts the near-IR interband electronic transitions to lower energy by more than 10%. These effects seem to originate with the van der Waals interaction of the confined sulfur species with the walls of the SWNTs which are not expected to be significant in the case of the previously studied large diameter SWNTs. We suggest that sulfur in the small diameter SWNTs exists as a helical polymeric sulfur chain that enters the SWNT interior in the form of S2 ((3)Σ(g)(-)) molecules which undergo polymerization to linear diradicals. PMID:26675065

  2. A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy.

    PubMed

    Yang, Joon-Mo; Chen, Ruimin; Favazza, Christopher; Yao, Junjie; Li, Chiye; Hu, Zhilin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V

    2012-10-01

    We have created a 2.5-mm outer diameter integrated photo-acoustic and ultrasonic mini-probe which can be inserted into a standard video endoscope's instrument channel. A small-diameter focused ultrasonic transducer made of PMN-PT provides adequate signal sensitivity, and enables miniaturization of the probe. Additionally, this new endoscopic probe utilizes the same scanning mirror and micromotor-based built-in actuator described in our previous reports; however, the length of the rigid distal section of the new probe has been further reduced to ~35 mm. This paper describes the technical details of the mini-probe and presents experimental results that both quantify the imaging performance and demonstrate its in vivo imaging capability, which suggests that it could work as a mini-probe for certain clinical applications. PMID:23188360

  3. The terminal rise velocity of 10-100 microm diameter bubbles in water.

    PubMed

    Parkinson, Luke; Sedev, Rossen; Fornasiero, Daniel; Ralston, John

    2008-06-01

    Single bubbles of very pure N2, He, air and CO2 were formed in a quiescent environment in ultra-clean water, with diameters ranging from 10 to 100 mum. Their terminal rise velocities were measured by high-speed video microscopy. For N2, He and air, excellent agreement with the Hadamard-Rybczynski (H-R) equation was observed, indicating that slip was occurring at the liquid-vapor interface. For CO2 bubbles with diameters less than 60 microm, the terminal rise velocities exceeded those predicted by the H-R equation. This effect was ascribed to the enhanced solubility of CO2 compared with the other gases examined. The presence of a diffusion boundary layer may be responsible for the increased terminal velocity of very small CO2 bubbles. PMID:18405911

  4. The heliometric Astrolabe, a new instrument for solar diameter observations

    NASA Astrophysics Data System (ADS)

    Andrei, A. H.; Reis Neto, E.; D'Ávila, V. A.; Penna, J. L.; Assafin, M.; Boscardin, S. C.; De Avila, K. N.

    2006-10-01

    The Observatorio Nacional takes part in the Reseau de Suivi au Sol du Rayon Solaire (the international solar diameter monitoring network) which co-participates in the PICARD micro satellite, to be launched in 2008 to study the Earth climate and Sun variability relationship. A new instrument, a heliometer, was devised in order to minimize the atmospheric turbulence and reach data accuracy compatible with PICARD's. The heliometer principle of double images will be added to the astrolabe metrological quality, and fully digitized acquisition. The objective is to obtain two simultaneous images from the Sun, with fixed angular separation of about 30', which variation will contain the signature of the diameter variation.

  5. Spirosymplokos deltaeiberi nov. gen., nov. sp.: variable-diameter composite spirochete from microbial mats

    NASA Technical Reports Server (NTRS)

    Guerrero, R.; Ashen, J.; Sole, M.; Margulis, L.

    1993-01-01

    Large (up to 100 micrometers long), loosely coiled, free-living spirochetes with variable diameters (from 0.4 to 3 micrometers in the same cell) were seen at least 40 times between August 1990 and January 1993. These spirochetes were observed in mud water and enrichment media from highly specific habitats in intertidal evaporite flats at three disjunct localities, one in Spain and two in Mexico. All three are sites of commercial saltworks. Associated with Microcoleus chthonoplastes the large spirochetes from Spain display phototaxis and a composite organization. Shorter and smaller-diameter spirochetes are seen inside both healthy and spent periplasm of larger ones. Small spirochetes attached to large ones have been observed live. From two to twelve spirochete protoplasmic cylinders were seen inside a single common outer membrane. A distinctive granulated cytoplasm in which the granules are of similar diameter (20-32 nanometers) to that of the flagella (26 nanometers) was present. Granule diameters were measured in thin section and in negatively-stained whole-mount preparations. Based on their ultrastructure, large size, variable diameter, number of flagella (3 to 6), and phototactic behavior these unique spirochetes are formally named Spirosymplokos deltaeiberi. Under anoxic (or low oxygen) conditions they formed blooms in mixed culture in media selective for spirochetes. Cellobiose was the major carbon source in 80% seawater, the antibiotic rifampicin was added, mat from the original field site was present and tubes were incubated in the light at from 18-31 degrees C. Within 1-2 weeks populations of the large spirochete developed at 25 degrees C but they could not be transferred to fresh medium.

  6. Mass transport through vertically aligned large diameter MWCNTs embedded in parylene

    NASA Astrophysics Data System (ADS)

    Krishnakumar, P.; Tiwari, P. B.; Staples, S.; Luo, T.; Darici, Y.; He, J.; Lindsay, S. M.

    2012-11-01

    We have fabricated porous membranes using a parylene encapsulated vertically aligned forest of multi-walled carbon nanotubes (MWCNTs, about 7 nm inner diameter). The transport of charged particles in electrolyte through these membranes was studied by applying electric field and pressure. Under an electric field in the range of 4.4 × 104 V m-1, electrophoresis instead of electroomosis is found to be the main mechanism for ion transport. Small molecules and 5 nm gold nanoparticles can be driven through the membranes by an electric field. However, small biomolecules, like DNA oligomers, cannot. Due to the weak electric driving force, the interactions between charged particles and the hydrophobic CNT inner surface play important roles in the transport, leading to enhanced selectivity for small molecules. Simple chemical modification on the CNT ends also induces an obvious effect on the translocation of single strand DNA oligomers and gold nanoparticles under a modest pressure (<294 Pa).

  7. Mass transport through vertically aligned large diameter MWCNT embedded in parylene

    PubMed Central

    Krishnakumar, P; Tiwari, P B; Staples, S; Luo, T; Darici, Y; He, J; Lindsay, SM

    2013-01-01

    We have fabricated porous membranes using a parylene encapsulated vertically aligned forest of multi-walled carbon nanotube (MWCNT, about 7nm inner diameter). The transport of charged particles in electrolyte through these membranes was studied by applying electric field and pressure. Under an electric field in the range of 4.4×104 V/m, electrophoresis instead of electroomosis is found to be the main mechanism for ion transport. Small molecules and 5 nm gold nanoparticles can be driven through the membranes by an electric field. However, small biomolecules, like DNA oligomers, cannot. Due to the weak electric driving force, the interactions between charged particles and the hydrophobic CNT inner surface play important roles in the transport, leading to enhanced selectivity for small molecules. Simple chemical modification on the CNT ends also induces an obvious effect on the translocation of single strand DNA oligomer and gold nanoparticle under a modest pressure (<294 Pa). PMID:23064678

  8. Defect characterization in pipe-to-pipe welds in large diameter stainless steel piping

    SciTech Connect

    Rawl, D.E. Jr.; West, S.L.; Wheeler, D.A.; Louthan, M.R. Jr.

    1990-01-01

    Metallurgical evaluation of pipe-to-pipe welds in large-diameter, Type 304 stainless steel piping used to construct the moderator/coolant water systems for Savannah River Site reactors has demonstrated that small weld defects found in this 1950-vintage system do not compromise the integrity of the system. The weld defects were too small for detection by the pre-service standard radiographic inspection, but were found through systematic ultrasonic testing (UT) and penetrant testing (PT) evaluations of piping that had been removed during upgrades to the piping system. The defects include lack of weld penetration, slag inclusions, and other weld metal discontinuities. These discontinuities typically did not propagate during more than 35 years of service. The defects examined were too small and isolated to degrade the mechanical properties of the pipe-to-pipe weldments and therefore did not compromise the integrity of the piping system. 14 refs., 7 figs.

  9. Control of the Diameter and Chiral Angle Distributions during Production of Single-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel; Holmes, William; Sosa, Edward; Boul, Peter; Arepalli, Sivaram; Yowell, Leonard

    2008-01-01

    Many applications of single wall carbon nanotubes (SWCNT), especially in microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap semiconductor, etc.). However, as produced SWCNT samples are polydispersed, with many (n,m) types present and typical approximate 1:2 metal/semiconductor ratio. It has been recognized that production of SWCNTs with narrow 'tube type populations' is beneficial for their use in applications, as well as for the subsequent sorting efforts. In the present work, SWCNTs were produced by a pulsed laser vaporization (PLV) technique. The nanotube type populations were studied with respect to the production temperature with two catalyst compositions: Co/Ni and Rh/Pd. The nanotube type populations were measured via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that in the case of Co/Ni catalyst, decreased production temperature leads to smaller average diameter, exceptionally narrow diameter distribution, and strong preference toward (8,7) nanotubes. The other nanotubes present are distributed evenly in the 7-30 deg chiral angle range. In the case of Rh/Pd catalyst, a decrease in the temperature leads to a small decrease in the average diameter, with the chiral angle distribution skewed towards 30 o and a preference toward (7,6), (8,6) and (8,7) nanotubes. However, the diameter distribution remains rather broad. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n,m) populations. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven.

  10. Performance Comparison of Ultrasound-Based Methods to Assess Aortic Diameter and Stiffness in Normal and Aneurysmal Mice

    PubMed Central

    Trachet, Bram; Fraga-Silva, Rodrigo A.; Londono, Francisco J.; Swillens, Abigaïl; Stergiopulos, Nikolaos; Segers, Patrick

    2015-01-01

    Objective Several ultrasound-based methods are currently used to assess aortic diameter, circumferential strain and stiffness in mice, but none of them is flawless and a gold standard is lacking. We aimed to assess the validity and sensitivity of these methods in control animals and animals developing dissecting abdominal aortic aneurysm. Methods and Results We first compared systolic and diastolic diameters as well as local circumferential strains obtained in 47 Angiotensin II-infused ApoE -/- mice with three different techniques (BMode, short axis MMode, long axis MMode), at two different abdominal aortic locations (supraceliac and paravisceral), and at three different time points of abdominal aneurysm formation (baseline, 14 days and 28 days). We found that short axis BMode was preferred to assess diameters, but should be avoided for strains. Short axis MMode gave good results for diameters but high standard deviations for strains. Long axis MMode should be avoided for diameters, and was comparable to short axis MMode for strains. We then compared pulse wave velocity measurements using global, ultrasound-based transit time or regional, pressure-based transit time in 10 control and 20 angiotensin II-infused, anti-TGF-Beta injected C57BL/6 mice. Both transit-time methods poorly correlated and were not able to detect a significant difference in PWV between controls and aneurysms. However, a combination of invasive pressure and MMode diameter, based on radio-frequency data, detected a highly significant difference in local aortic stiffness between controls and aneurysms, with low standard deviation. Conclusions In small animal ultrasound the short axis view is preferred over the long axis view to measure aortic diameters, local methods are preferred over transit-time methods to measure aortic stiffness, invasive pressure-diameter data are preferred over non-invasive strains to measure local aortic stiffness, and the use of radiofrequency data improves the accuracy

  11. Characterization of Detonation Wave Propagation in LX-17 Near the Critical Diameter

    SciTech Connect

    Tran, T D; Tarver, C M; Maienschein, J; Lewis, P; Pastrone, R; Lee, R S; Roeske, F

    2002-06-14

    A new Detonation Profile Test (DPT) was developed to measure simultaneously the detonation wave breakout profile and the average detonation velocity at the breakout surface. The test evaluated small cylindrical samples with diameter up to 19.08 mm and length up to 33 mm. The experiment involved initiating a LX-17 cylindrical specimen and recording the wave breakout using a fast streaking electronic camera. The initiation was done using a PBX-9407 pellet (1.630 g/cm{sup 3}), which has a Chapman-Jouguet (C-J) pressure close to that of LX-17. The acceptor breakout surface had a 2 mm wide by 1 mm deep groove that provided a step in the recorded breakout profile for velocity determination. A 532-nm laser light illuminated the specimen surface. A streak camera looking perpendicular to the groove, recorded the extinction of the laser light as the detonation wave emerged from the surface. This technique provided a high-resolution spatial and temporal profile of the wave curvature as well as accurate timing of the propagating wave over the last millimeter of the sample. The measured groove depth and recorded travel time were then used to calculate the average detonation wave velocity. Results for 12.7 mm diameter unconfined LX-17 charges showed detonation velocity in the range between 6.79 and 7.06 km/s for parts up to 33 mm long. Since LX-17 can not sustain detonation at less than 7.3 km/s , these waves were definitely failing. Experiments with confined 12.7 mm diameter and unconfined 19.1 mm diameter samples showed wave velocities in the range of 7.4-7.6 km/s, values approaching steady state conditions at infinite diameter. Both unconfined and confined charges show no sensitivity to density variations in the range between 1.890-1.915 g/cm{sup 3}. Experiments with 15.88 mm and 19.08 mm diameters gave velocities in the range between 7.2-7.45 km/s, values close to that expected for failure. The velocity measurement has an estimated experimental error in the range of 2

  12. Real-time precision measuring device of tree diameter growth

    NASA Astrophysics Data System (ADS)

    Guo, Mingming; Chen, Aijun; Li, Dongsheng; Liu, Nan; Yao, Jingyuan

    2016-01-01

    DBH(diameter at breast height) is an important factor to reflect of the quality of plant growth, also an important parameter indispensable in forest resources inventory and forest carbon sink, the accurate measurement of DBH or not is directly related to the research of forest resources inventory and forest carbon sink. In this paper, the principle and the mathematical model of DBH measurement device were introduced, the fixture measuring device and the hardware circuit for this tree diameter were designed, the measurement software programs were compiled, and the precision measuring device of tree diameter growth was developed. Some experiments with Australia fir were conducted. Based on experiment data, the correlations among the DBH variation of Australian fir, the environment temperature, air humility and PAR(photosynthetically active radiation) were obtained. The effects of environmental parameters (environment temperature, air humility and PAR) on tree diameter were analyzed. Experimental results show that there is a positive correlation between DBH variation of Australian fir and environment temperature, a negative correlation between DBH variation of Australian fir and air humility , so is PAR.

  13. Solar diameter measurements for study of Sun climate coupling

    NASA Technical Reports Server (NTRS)

    Hill, H. A.

    1983-01-01

    Changes in solar shape and diameter were detected as a possible probe of variability in solar luminosity, an important climatic driving function. A technique was designed which will allow the calibration of the telescope field, providing a scale for long-term comparison of these and future measurements.

  14. Decrease rate of the renal diameter in chronic hemodialysis patients.

    PubMed

    Aoyagi, Teiichiro; Tachibana, Masaaki; Naganuma, Shinji

    2013-01-01

    We here present the results of ultrasonographic (US) evaluations on the alteration of renal diameter of chronic HD patients. Of 109 outpatient HD patients who had neither severe acquired cystic disease of the kidney nor hereditary polycystic kidney disease, we performed US two or three times to measure their maximum renal diameter (mean of both kidneys), and the yearly alteration rate was calculated. The average interval of the two measurements was 35.9 months, and the average HD duration from the HD induction to the first measurement was 29.5 months. The average decrease rate of renal diameter was 4.34 ± 0.4 (SE) mm/year. No statistical difference was seen on the decrease rate in relation to gender, age and original disease (among three groups, glomerulonephritis and IgA nephropathy, diabetes, and others including hypertension). However, the decrease rate was large when the first measurement was close to the induction of hemodialysis, suggesting that the alteration rate reduced according to the hemodialysis vintage (5.3 ± 0.8 mm/year, first measurement not more than 10 months after induction of HD and 1.5 ± 1.6 mm/year, first measurement more than 80 months after induction of HD). Renal diameter decreased approximately 4.3 mm each year, and the decrease rate slowed as the length of time on dialysis increased. PMID:24967236

  15. Rowlinson’s concept of an effective hard sphere diameter

    PubMed Central

    Henderson, Douglas

    2010-01-01

    Attention is drawn to John Rowlinson’s idea that the repulsive portion of the intermolecular interaction may be replaced by a temperature-dependent hard sphere diameter. It is this approximation that made the development of perturbation theory possible for realistic fluids whose intermolecular interactions have a steep, but finite, repulsion at short separations. PMID:20953320

  16. Measuring the Diameter of a Hair with a Steel Rule.

    ERIC Educational Resources Information Center

    Macdonald, John; O'Leary, Sean V.

    1994-01-01

    Describes a technique that uses a helium neon laser, a steel rule, a wooden rule, and a piece of paper to measure the diameter of a hair using the diffraction of light. Details on technique, mathematics, and sources of error are provided. (DDR)

  17. Asteroid magnitudes, UBV colors, and IRAS albedos and diameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1989-01-01

    This paper lists absolute magnitudes and slope parameters for known asteroids numbered through 3318. The values presented are those used in reducing asteroid IR flux data obtained with the IRAS. U-B colors are given for 938 asteroids, and B-V colors are given for 945 asteroids. The IRAS albedos and diameters are tabulated for 1790 asteroids.

  18. Combined position and diameter measures for lunar craters

    USGS Publications Warehouse

    Arthur, D.W.G.

    1977-01-01

    The note addresses the problem of simultaneously measuring positions and diameters of circular impact craters on wide-angle photographs of approximately spherical planets such as the Moon and Mercury. The method allows for situations in which the camera is not aligned on the planet's center. ?? 1977.

  19. Assessment of vessel diameters for MR brain angiography processed images

    NASA Astrophysics Data System (ADS)

    Moraru, Luminita; Obreja, Cristian-Dragos; Moldovanu, Simona

    2015-12-01

    The motivation was to develop an assessment method to measure (in)visible differences between the original and the processed images in MR brain angiography as a method of evaluation of the status of the vessel segments (i.e. the existence of the occlusion or intracerebral vessels damaged as aneurysms). Generally, the image quality is limited, so we improve the performance of the evaluation through digital image processing. The goal is to determine the best processing method that allows an accurate assessment of patients with cerebrovascular diseases. A total of 10 MR brain angiography images were processed by the following techniques: histogram equalization, Wiener filter, linear contrast adjustment, contrastlimited adaptive histogram equalization, bias correction and Marr-Hildreth filter. Each original image and their processed images were analyzed into the stacking procedure so that the same vessel and its corresponding diameter have been measured. Original and processed images were evaluated by measuring the vessel diameter (in pixels) on an established direction and for the precise anatomic location. The vessel diameter is calculated using the plugin ImageJ. Mean diameter measurements differ significantly across the same segment and for different processing techniques. The best results are provided by the Wiener filter and linear contrast adjustment methods and the worst by Marr-Hildreth filter.

  20. Estimating Tree Height-Diameter Models with the Bayesian Method

    PubMed Central

    Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei

    2014-01-01

    Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the “best” model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2. PMID:24711733

  1. General view of outside diameter welding stations of the saw ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of outside diameter welding stations of the saw line in bay 8 of the main pipe mill building looking northwest. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  2. 5. 30 DIAMETER ACCESS MANHOLE IN THE CENTER OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. 30 DIAMETER ACCESS MANHOLE IN THE CENTER OF THE GATE HOUSE, LOOKING SOUTH. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  3. Non-Contact EDDY Current Hole Eccentricity and Diameter Measurement

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    1998-01-01

    Precision holes are among the most critical features of a mechanical component. Deviations from permissible tolerances can impede operation and result in unexpected failure. We have developed an automated non-contact eddy current hole diameter and eccentricity measuring system. The operating principle is based on the eddy current lift-off effect, which is the coil impedance as a function of the distance between the coil and the test object. An absolute eddy current probe rotates in the hole. The impedance of each angular position is acquired and input to the computer for integration and analysis. The eccentricity of the hole is the profile of the impedance as a function of angular position as compared to a straight line, an ideal hole. The diameter of the hole is the sum of the diameter of the probe and twice the distance-calibrated impedance. An eddy current image is generated by integrating angular scans for a plurality of depths between the top and bottom to display the eccentricity profile. This system can also detect and image defects in the hole. The method for non-contact eddy current hole diameter and eccentricity measurement has been granted a patent by the U.S. Patent and Trademark Office.

  4. View of wood stave penstocks (four feet in diameter) with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of wood stave penstocks (four feet in diameter) with steel bands, wood and steel frames; standing on top of penstocks is Doug Hamilton (right), Nooksack Falls hydro-plant operator for puget power, and Ken Rose (left) HAER Historian. - Nooksack Falls Hydroelectric Plant, Route 542, Glacier, Whatcom County, WA

  5. Estimating tree height-diameter models with the Bayesian method.

    PubMed

    Zhang, Xiongqing; Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei

    2014-01-01

    Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the "best" model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2. PMID:24711733

  6. Genetic and Environmental Effects on the Abdominal Aortic Diameter Development

    PubMed Central

    Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Littvay, Levente; Garami, Zsolt; Karlinger, Kinga; Berczi, Viktor

    2016-01-01

    Background Configuration of the abdominal aorta is related to healthy aging and a variety of disorders. Objectives We aimed to assess heritable and environmental effects on the abdominal aortic diameter. Methods 114 adult (69 monozygotic, 45 same-sex dizygotic) twin pairs (mean age 43.6 ± 16.3 years) underwent abdominal ultrasound with Esaote MyLab 70X ultrasound machine to visualize the abdominal aorta below the level of the origin of the renal arteries and 1-3 cm above the bifurcation. Results Age- and sex-adjusted heritability of the abdominal aortic diameter below the level of the origin of the renal arteries was 40% [95% confidence interval (CI), 14 to 67%] and 55% above the aortic bifurcation (95% CI, 45 to 70%). None of the aortic diameters showed common environmental effects, but unshared environmental effects were responsible for 60% and 45% of the traits, respectively. Conclusions Our analysis documents the moderate heritability and its segment-specific difference of the abdominal aortic diameter. The moderate part of variance was explained by unshared environmental components, emphasizing the importance of lifestyle factors in primary prevention. Further studies in this field may guide future gene-mapping efforts and investigate specific lifestyle factors to prevent abdominal aortic dilatation and its complications. PMID:26559855

  7. Changes in retinal microvascular diameter in patients with diabetes

    PubMed Central

    da Silva, Andréa Vasconcellos Batista; Gouvea, Sonia Alves; da Silva, Aurélio Paulo Batista; Bortolon, Saulo; Rodrigues, Anabel Nunes; Abreu, Glaucia Rodrigues; Herkenhoff, Fernando Luiz

    2015-01-01

    Background and objectives Diabetic retinopathy is the main microvascular complication in diabetes mellitus and needs to be diagnosed early to prevent severe sight-threatening retinopathy. The purpose of this study was to quantify the retinal microvasculature pattern and analyze the influence of blood glucose level and the duration of diabetes mellitus on the retinal microvasculature. Methods Two groups were analyzed: patients with diabetes (N=26) and patients without diabetes, ie, controls (N=26). A quantitative semiautomated method analyzed retinal microvasculature. The diameters of arterioles and venules were measured. The total numbers of arterioles and venules were counted. The ratio of arteriole diameter to venule diameter was calculated. The retinal microvasculature pattern was related to clinical and biochemical parameters. Results Patients with diabetes exhibited larger venule diameters in the upper temporal quadrant of the retina compared to the lower temporal quadrant (124.85±38.03 µm vs 102.92±15.69 µm; P<0.01). Patients with diabetes for 5 or more years had larger venule diameters in the upper temporal quadrant than patients without diabetes (141.62±44.44 vs 112.58±32.11 µm; P<0.05). The degree of venodilation in the upper temporal quadrant was positively correlated with blood glucose level and the estimated duration of diabetes mellitus. Interpretation and conclusion The employed quantitative method demonstrated that patients with diabetes exhibited venule dilation in the upper temporal quadrant, and the duration of diabetes mellitus was positively correlated with blood glucose level. Therefore, the early assessment of retinal microvascular changes is possible prior to the onset of diabetic retinopathy. PMID:26345217

  8. Diameters and dry weights of tree shoots: effects of Young's modulus, taper, deflection and angle.

    PubMed

    Cannell, M G; Morgan, J; Murray, M B

    1988-09-01

    The structural theory for cantilever beams was used to calculate the diameters and dry weights of wood that unbranched shoots must produce to support their own weights. The study was done on Picea sitchensis (Bong.) Carr., Pinus contorta Dougl., Larix decidua Mill. and Betula pendula Roth. syn. verrucosa Ehrh. The weights of wood increased in a non-linear fashion with increase in shoot length. A large investment in wood (as measured by diameter and dry weight) was required to maintain a small endpoint deflection (1-5% of the length). By contrast, the degree of linear taper had only a small effect on support costs, as did the Young's modulus of the wood (over the range 1-4 GPa) and the angle of the shoot from the horizontal (over the range 0-45 degrees ). Current year's shoots on young trees of P. sitchensis and P. contorta incur a high support cost in order to maintain small (1-5%) deflections throughout the year: similar shoots of L. decidua and B. pendula have smaller support costs because they deflect by about 20% after leaf expansion in spring. PMID:14972812

  9. A semi-automated computer tool for the analysis of retinal vessel diameter dynamics.

    PubMed

    Euvrard, Guillaume; Genevois, Olivier; Rivals, Isabelle; Massin, Pascale; Collet, Amélie; Sahel, José-Alain; Paques, Michel

    2013-06-01

    Retinal vessels are directly accessible to clinical observation. This has numerous potential interests for medical investigations. Using the Retinal Vessel Analyzer, a dedicated eye fundus camera enabling dynamic, video-rate recording of micrometric changes of the diameter of retinal vessels, we developed a semi-automated computer tool that extracts the heart beat rate and pulse amplitude values from the records. The extracted data enabled us to show that there is a decreasing relationship between heart beat rate and pulse amplitude of arteries and veins. Such an approach will facilitate the modeling of hemodynamic interactions in small vessels. PMID:23566397

  10. Sub-Kilometer Asteroid Diameter Survey (SKADS) V1.0

    NASA Astrophysics Data System (ADS)

    Gladman, B. J.; Davis, D. R.; Neese, C.; Jedicke, R.; Williams, G.; Kavelaars, J. J.; Petit, J.-M.; Scholl, H.; Holman, M.; Warrington, B.; Esquerdo, G.; Tricarico, P.

    2010-05-01

    The Sub-Kilometer Asteroid Diameter Survey (SKADS) (Gladman et al. 2009) acquired good-quality orbital and absolute magnitude (H) determinations for a sample of small main-belt asteroids in order to study the orbital and size distribution beyond H = 15, down to sub-kilometer sizes (H > 18). Based on six observing nights over an 11-night baseline, SKADS detected, measured photometry for, and linked observations of 1087 asteroids which have one-week time baselines or more. This data set contains the astrometry, photometry, and orbits of the 1087 asteroids detected by SKADS.

  11. Advances in large-diameter liquid encapsulated Czochralski GaAs

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1982-01-01

    The purity, crystalline perfection, and electrical properties of n- and p-type GaAs crystals grown by the liquid encapsulated Czochralski (LEC) technique are evaluated. The determination of the dislocation density, incidence of twinning, microstructure, background purity, mobility, and minority carrier diffusion length is included. The properties of the LEC GaAs crystals are generally comparable to, if not superior to those of small-diameter GaAs material grown by conventional bulk growth techniques. As a result, LEC GaAs is suitable for application to minority carrier devices requiring high-quality and large-area substrates.

  12. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts.

    PubMed

    Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo

    2016-01-21

    We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices. PMID:26690843

  13. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins.

    PubMed

    Tunuguntla, Ramya H; Allen, Frances I; Kim, Kyunghoon; Belliveau, Allison; Noy, Aleksandr

    2016-07-01

    Proton transport plays an important role in many biological processes due to the ability of protons to rapidly translocate along chains of hydrogen-bonded water molecules. Molecular dynamics simulations have predicted that confinement in hydrophobic nanochannels should enhance the rate of proton transport. Here, we show that 0.8-nm-diameter carbon nanotube porins, which promote the formation of one-dimensional water wires, can support proton transport rates exceeding those of bulk water by an order of magnitude. The transport rates in these narrow nanotube pores also exceed those of biological channels and Nafion. With larger 1.5-nm-diameter nanotube porins, proton transport rates comparable to bulk water are observed. We also show that the proton conductance of these channels can be modulated by the presence of Ca(2+) ions. Our results illustrate the potential of small-diameter carbon nanotube porins as a proton conductor material and suggest that strong spatial confinement is a key factor in enabling efficient proton transport. PMID:27043198

  14. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins

    NASA Astrophysics Data System (ADS)

    Tunuguntla, Ramya H.; Allen, Frances I.; Kim, Kyunghoon; Belliveau, Allison; Noy, Aleksandr

    2016-07-01

    Proton transport plays an important role in many biological processes due to the ability of protons to rapidly translocate along chains of hydrogen-bonded water molecules. Molecular dynamics simulations have predicted that confinement in hydrophobic nanochannels should enhance the rate of proton transport. Here, we show that 0.8-nm-diameter carbon nanotube porins, which promote the formation of one-dimensional water wires, can support proton transport rates exceeding those of bulk water by an order of magnitude. The transport rates in these narrow nanotube pores also exceed those of biological channels and Nafion. With larger 1.5-nm-diameter nanotube porins, proton transport rates comparable to bulk water are observed. We also show that the proton conductance of these channels can be modulated by the presence of Ca2+ ions. Our results illustrate the potential of small-diameter carbon nanotube porins as a proton conductor material and suggest that strong spatial confinement is a key factor in enabling efficient proton transport.

  15. Ultra-Compact Multitip Scanning Probe Microscope with an Outer Diameter of 50 mm

    NASA Astrophysics Data System (ADS)

    Cherepanov, Vasily; Zubkov, Evgeny; Junker, Hubertus; Korte, Stefan; Blab, Marcus; Coenen, Peter; Voigtländer, Bert

    We present a multitip scanning tunneling microscope (STM) where four independent STM units are integrated on a diameter of 50 mm. The coarse positioning of the tips is done under the control of an optical microscope or an SEM in vacuum. The heart of this STM is a new type of piezoelectric coarse approach called Koala Drive which can have a diameter greater than 2.5 mm and a length smaller than 10 mm. Alternating movements of springs move a central tube which holds the STM tip or AFM sensor. This new operating principle provides a smooth travel sequence and avoids shaking which is intrinsically present for nanopositioners based on inertial motion with saw tooth driving signals. Inserting the Koala Drive in a piezo tube for xyz-scanning integrates a complete STM inside a 4 mm outer diameter piezo tube of <10 mm length. The use of the Koala Drive makes the scanning probe microscopy design ultra-compact and accordingly leads to a high mechanical stability. The drive is UHV, low temperature, and magnetic field compatible. The compactness of the Koala Drive allows building a four-tip STM as small as a single-tip STM with a drift of <0.2 nm/min and lowest resonance frequencies of 2.5 (xy) and 5.5 kHz (z). We present examples of the performance of the multitip STM designed using the Koala Drive.

  16. Experimental study on the flow around two tandem cylinders with unequal diameters

    NASA Astrophysics Data System (ADS)

    Gao, Yangyang; Etienne, Stephane; Wang, Xikun; Tan, Soon Keat

    2014-10-01

    In this paper, flow around two circular cylinders in tandem arrangement with unequal diameters has been investigated using the particle image velocimetry technique (PIV) in a water channel. The upstream to downstream diameter ratio was kept constant at d/D = 2/3, the centre-to-centre distance was varied from 1.2 D to 5 D and the Reynolds number was varied from 1200 to 4800. The flow characteristics were analyzed through ensemble-averaged patterns of velocity, vorticity, normalized Reynolds stress contours and streamlines. Based on ensemble-averaged and instantaneous flow fields, different flow patterns, including single-wake-shedding at small spacing ratio, bi-stable flow behavior (alternating behavior of reattachment and vortex shedding) at intermediate spacing ratio and co-shedding pattern at large spacing ratio were observed. The effects of Reynolds number and the centre-to-centre spacing ratio on flow patterns and turbulent characteristics were also investigated. It was found that the diameter ratio appears to have a certain effect on the flow patterns at intermediate spacing ratios, where the reattachment of shear layer depends on the lateral width of the wake flow in the lee of the upstream cylinder. Extensive discussion on the distributions of Reynolds stress and turbulent kinetic energy was presented.

  17. Helical magneto-cumulative generator 280 mm in diameter

    NASA Astrophysics Data System (ADS)

    Demidov, V. A.; Kazakov, S. A.; Boriskin, A. S.; Vlasov, Yu. V.; Yanenko, V. A.; Nikolaev, N. I.; Volodchenkov, S. I.

    2015-01-01

    Several possibilities of preamplifier energy and power increasing are considered: using a more powerful (HMX-based) conical HE-charge in the central tube of the magneto-cumulative generator, using a magnetic flux finish pressing out device with axial initiation of the HE charge, and increasing the inner diameter of the helix. A magneto-cumulative generator (MCG) with a helix 280 mm in diameter (MCG-280) is developed. The new preamplifier has a power of ≈400 GW and is able to power a ten-element DMCG480 with an initial inductance of ≈0.2 µH by a current of ≈10 MA with a characteristic current rise time (by a factor of e at the final stage of its operation) τ e = 32 µs.

  18. Angular diameter distances reconsidered in the Newman and Penrose formalism

    NASA Astrophysics Data System (ADS)

    Kling, Thomas P.; Aly, Aly

    2016-02-01

    Using the Newman and Penrose spin coefficient (NP) formalism, we provide a derivation of the Dyer-Roeder equation for the angular diameter distance in cosmological space-times. We show that the geodesic deviation equation written in NP formalism is precisely the Dyer-Roeder equation for a general Friedman-Robertson-Walker (FRW) space-time, and then we examine the angular diameter distance to redshift relation in the case that a flat FRW metric is perturbed by a gravitational potential. We examine the perturbation in the case that the gravitational potential exhibits the properties of a thin gravitational lens, demonstrating how the weak lensing shear and convergence act as source terms for the perturbed Dyer-Roeder equation.

  19. Steering knuckle diameter measurement based on optical 3D scanning

    NASA Astrophysics Data System (ADS)

    Song, Li-mei; Li, Da-peng; Chang, Yu-lan; Xi, Jiang-tao; Guo, Qing-hua

    2014-11-01

    To achieve accurate measurements, the creating a fitting hole for internal diameter (CFHID) measurement method and the establishing multi-sectional curve for external diameter (EMCED) measurement method are proposed in this paper, which are based on computer vision principle and three-dimensional (3D) reconstruction. The methods are able to highlight the 3D characteristics of the scanned object and to achieve the accurate measurement of 3D data. It can create favorable conditions for realizing the reverse design and 3D reconstruction of scanned object. These methods can also be applied to dangerous work environment or the occasion that traditional contact measurement can not meet the demands, and they can improve the security in measurement.

  20. Predicting The Tube Diameter For Polymer Melts and Solutions

    NASA Astrophysics Data System (ADS)

    Milner, Scott

    2005-03-01

    A simple conjecture, relating the tube diameter to a characteristic length called the packing length, works well for all flexible entangled polymer melts. This is a remarkable result, because the tube diameter represents the confining effect of uncrossability of the chains, whereas the packing length is determined only by a chain's bulkiness and flexibility. I extend this conjecture to solutions: first for theta solvents, where it is shown to be equivalent to the Colby-Rubinstein scaling picture, and then for good solvents. In the latter case, it turns out that the number of blobs per entanglement strand is not a constant as had been previously assumed, but depends on the ratio of the packing length to the thermal blob size. Finally, I suggest that the packing length can be related to the Gauss winding number density, thus providing a topological basis for the conjecture.

  1. Large Diameter Shuttle Launched-AEM (LDSL-AEM) study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A technical description of a Large Diameter Shuttle Launched-AEM (LDSL-AEM), an AEM base module adapted to carry 5 ft diameter payloads in the shuttle with propulsion for carrying payloads to higher altitude orbits from a 150 NM shuttle orbit, is described. The AEM is designed for launch on the scout launch vehicle. Onboard equipment provides capability to despin, acquire the earth, and control the vehicle in an earth pointing mode using reaction wheels for torque with magnets for all attitude acquisition, wheel desaturation, and nutation damping. Earth sensors in the wheels provide pitch and roll attitude. This system provides autonomous control capability to 1 degree in pitch and roll and 2 degrees in yaw. The attitude can be determined to .5 degrees in pitch and roll and 2 degrees in yaw.

  2. EFFECT OF PARTICLE DIAMETER ON EXCLUSION-ZONE SIZE

    PubMed Central

    NHAN, D.T.; POLLACK, G.H.

    2011-01-01

    Particles and solutes are excluded from the vicinity of hydrophilic surfaces, leaving large microsphere-free regions known as exclusion zones (EZs). Prior work had indicated that EZs could extend to distances of up to several hundred micrometers from the nucleating surface. These observations were made on large, extended surfaces, leaving open the question whether EZ size might depend on the characteristic dimension of the excluding surface. We placed one or few ion-exchange-resin beads whose diameters varied from 15 μm to 300 μm in cuvettes. The beads were suffused with aqueous microsphere suspensions for observing the surfaces’ exclusionary behavior. Results showed a direct relation between bead size and EZ size over the full range of bead diameter, implying a similar relation for smaller particles or molecules, perhaps extending beyond the resolution of the light microscope. PMID:22389653

  3. The diameter and thermal inertia of 433 Eros

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1976-01-01

    Radiometry of Eros at 10 and 20 micrometers demonstrates that the thermal conductivity of the upper centimeter of the surface is approximately as low as that of the moon, suggesting that the asteroid has a regolith of highly porous rocky material. When combined with photoelectric photometry, these infrared measurements yield an effective diameter of Eros at maximum light of 22 plus or minus 2 km and a geometric albedo of 0.18 plus or minus 0.03.

  4. Cohesive/cohesionless sediment transition diameter from settling velocity data

    NASA Astrophysics Data System (ADS)

    Mehta, Ashish J.; Letter, Joseph V.

    2015-09-01

    Mathematical models designed to simulate the movement of cohesive and cohesionless particles require as input the diameter d T specifying the transition between these two transport modes. As an effort to identify this diameter, Migniot (La Houille Blanche, 7, 591-620, 1968) measured in a water-filled column the settling velocities of flocs and respective deflocculated particles of mainly mineral cohesive sediments. The data were plotted as the ratio of the floc settling velocity to the particle velocity, called the flocculation factor F f , against particle diameter d s . The trend line was found to approximately follow an empirical power-law such that F f increased rapidly as d s decreased below d T estimated to be about 30 μm at F f = 1. Assuming fractal self-similarity among falling flocs, the power-law exponent of 5/3 is shown to correspond to a fractal dimension of 2.65 implying that the flocs were densely packed. The diameter d T depends on the electrochemical properties of the suspended particles as well as the kinetics of floc growth and breakup, hence to an extent on the method of determination of d T . Its value deduced more directly from measurement of the critical shear stress for erosion of flocs at the surface of cohesive sediment beds has been reported to be about 10 μm, which is lower than 30 μm. Among other reasons, it is likely that the difference is rooted in the limited experimental information available as well as difficulty in characterizing the effect of highly graded distributions of the particle settling velocity.

  5. NEOWISE Diameters and Albedos V1.0

    NASA Astrophysics Data System (ADS)

    Mainzer, A. K.; Bauer, J. M.; Cutri, R. M.; Grav, T.; Kramer, E. A.; Masiero, J. R.; Nugent, C. R.; Sonnett, S. M.; Stevenson, R. A.; Wright, E. L.

    2016-06-01

    This PDS data set represents a compilation of published diameters, optical albedos, near-infrared albedos, and beaming parameters for minor planets detected by NEOWISE during the fully cryogenic, 3-band cryo, post-cryo and NEOWISE-Reactivation Year 1 operations. It contains data covering near-Earth asteroids, Main Belt asteroids, active Main Belt objects, Hildas, Jupiter Trojans, Centaurs, and Jovian and Saturnian irregular satellites. Methodology for physical property determination is described in the referenced articles.

  6. Left Ventricular Diameter and Risk Stratification for Sudden Cardiac Death

    PubMed Central

    Narayanan, Kumar; Reinier, Kyndaron; Teodorescu, Carmen; Uy‐Evanado, Audrey; Aleong, Ryan; Chugh, Harpriya; Nichols, Gregory A.; Gunson, Karen; London, Barry; Jui, Jonathan; Chugh, Sumeet S.

    2014-01-01

    Background Left ventricular (LV) diameter is routinely measured on the echocardiogram but has not been jointly evaluated with the ejection fraction (EF) for risk stratification of sudden cardiac death (SCD). Methods and Results From a large ongoing community‐based study of SCD (The Oregon Sudden Unexpected Death Study; population ≈1 million), SCD cases were compared with geographic controls. LVEF and LV diameter, measured using the LV internal dimension in diastole (categorized as normal, mild, moderate, or severe dilatation using American Society of Echocardiography definitions) were assessed from echocardiograms prior but unrelated to the SCD event. Cases (n=418; 69.5±13.8 years), compared with controls (n=329; 67.7±11.9 years), more commonly had severe LV dysfunction (EF ≤35%; 30.5% versus 18.8%; P<0.01) and larger LV diameter (52.2±10.5 mm versus 49.7±7.9 mm; P<0.01). Moderate or severe LV dilatation (16.3% versus 8.2%; P=0.001) and severe LV dilatation (8.1% versus 2.1%; P<0.001) were significantly more frequent in cases. In multivariable analysis, severe LV dilatation was an independent predictor of SCD (odds ratio 2.5 [95% CI 1.03 to 5.9]; P=0.04). In addition, subjects with both EF ≤35% and severe LV dilatation had higher odds for SCD compared with those with low EF only (odds ratio 3.8 [95% CI 1.5 to 10.2] for both versus 1.7 [95% CI 1.2 to 2.5] for low EF only), suggesting that severe LV dilatation additively increased SCD risk. Conclusion LV diameter may contribute to risk stratification for SCD independent of the LVEF. This readily available echocardiographic measure warrants further prospective evaluation. PMID:25227407

  7. Measuring angular diameter distances of strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Jee, I.; Komatsu, E.; Suyu, S. H.

    2015-11-01

    The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (zL=0.6304) and RXJ1131-1231 (zL=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ2, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in DA per object. This improves to 13% when we measure σ2 at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ2 with 5% precision.

  8. Astronaut Assembly of a 14-Meter-Diameter Microwave Antenna

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Astronaut Jerry Ross is shown assembling a portion of a 14-meter-diameter truss structure in NASAs Neutral Buoyancy Simulator at the Marshall Space Flight Center. The structure is part of a large microwave antenna designed for space-based monitoring of soil moisture levels and ocean temperatures. The underwater assembly tests demonstrated that two astronauts could construct the large antenna in approximately 4-6 hours in space.

  9. Time-delay cosmography: increased leverage with angular diameter distances

    NASA Astrophysics Data System (ADS)

    Jee, I.; Komatsu, E.; Suyu, S. H.; Huterer, D.

    2016-04-01

    Strong lensing time-delay systems constrain cosmological parameters via the so-called time-delay distance and the angular diameter distance to the lens. In previous studies, only the former information was used in forecasting cosmographic constraints. In this paper, we show that the cosmological constraints improve significantly when the latter information is also included. Specifically, the angular diameter distance plays a crucial role in breaking the degeneracy between the curvature of the Universe and the time-varying equation of state of dark energy. Using a mock sample of 55 bright quadruple lens systems based on expectations for ongoing/future imaging surveys, we find that adding the angular diameter distance information to the time-delay distance information and the Planck's measurements of the cosmic microwave background anisotropies improves the constraint on the constant equation of state by 30%, on the time variation in the equation of state by a factor of two, and on the Hubble constant in the flat ΛCDM model by a factor of two. Therefore, previous forecasts for the statistical power of time-delay systems were overly pessimistic, i.e., time-delay systems are more powerful than previously appreciated.

  10. Diameter dependent thermoelectric properties of individual SnTe nanowires

    DOE PAGESBeta

    Xu, E. Z.; Li, Z.; Martinez, J. A.; Sinitsyn, N.; Htoon, H.; Li, Nan; Swartzentruber, B.; Hollingsworth, J. A.; Wang, Jian; Zhang, S. X.

    2015-01-15

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a potentially promising thermoelectric material because of its similar electronic band structure as the well-known lead telluride. Here we report on the first thermoelectric study of individual single crystalline SnTe nanowires (NWs) with different diameters ranging from ~200 to ~1000 nm. Measurements of thermopower S, electrical conductivity σ, and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25 - 300 K. While σ does not show a strong diameter dependence, the thermopower increases by a factor of 2 when the nanowiremore » diameter is decreased from 1000 nm to 200 nm. The thermal conductivities of the measured NWs are only about half of that of the bulk SnTe, which may arise from the enhanced phonon-grain boundary and phonon-defect scatterings. Temperature dependent figure-of-merit ZT was determined and the maximum value at room temperature is ~3 times higher than what was obtained in bulk samples of comparable carrier density.« less

  11. J-integral of circumferential crack in large diameter pipes

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Chao, Yuh J.; Sutton, M. A.; Lam, P. S.; Mertz, G. E.

    Large diameter thin-walled pipes are encountered in a low pressure nuclear power piping system. Fracture parameters such as K and J, associated with postulated cracks, are needed to assess the safety of the structure, for example, prediction of the onset of tile crack growth and the stability of the crack. The Electric Power Research Institute (EPRI) has completed a comprehensive study of cracks in pipes and handbook-type data is available. However, for some large diameter, thin-walled pipes the needed information is not included in the handbook. This paper reports our study of circumferential cracks in large diameter, thin-walled pipes (R/t=30 to 40) under remote bending or tension loads. Elastic-Plastic analyses using the finite element method were performed to determine the elastic and fully plastic J values for various pipe/crack geometries. A non-linear Ramberg-Osgood material model is used with strain hardening exponents (n) that range from 3 to 10. A number of circumferential, through thickness cracks were studied with half crack angles ranging from 0.063(pi) to 0.5(pi). Results are tabulated for use with the EPRI estimation scheme.

  12. Diameter dependent thermoelectric properties of individual SnTe nanowires

    SciTech Connect

    Xu, E. Z.; Li, Z.; Martinez, J. A.; Sinitsyn, N.; Htoon, H.; Li, Nan; Swartzentruber, B.; Hollingsworth, J. A.; Wang, Jian; Zhang, S. X.

    2015-01-15

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a potentially promising thermoelectric material because of its similar electronic band structure as the well-known lead telluride. Here we report on the first thermoelectric study of individual single crystalline SnTe nanowires (NWs) with different diameters ranging from ~200 to ~1000 nm. Measurements of thermopower S, electrical conductivity σ, and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25 - 300 K. While σ does not show a strong diameter dependence, the thermopower increases by a factor of 2 when the nanowire diameter is decreased from 1000 nm to 200 nm. The thermal conductivities of the measured NWs are only about half of that of the bulk SnTe, which may arise from the enhanced phonon-grain boundary and phonon-defect scatterings. Temperature dependent figure-of-merit ZT was determined and the maximum value at room temperature is ~3 times higher than what was obtained in bulk samples of comparable carrier density.

  13. The method for detecting diffusion ring diameter in Hemagglutinin measuring

    NASA Astrophysics Data System (ADS)

    Jing, Wenbo; Liu, Xue; Duan, Jin; Wang, Xiao-man

    2014-11-01

    The diffuser ring diameter measurement is the most critical in hemagglutinin Measuring. The traditional methods, such as a vernier caliper or high-definition scanned images are subjective and low for the measurement data reliability. Propose high-resolution diffusion ring image for drop-resolution processing, adaptive Canny operator and local detection method to extract complete and clear diffusion ring boundaries, and finally make use of polynomial interpolation algorithm to make diffusion ring outer boundary pixel coordinates achieve sub-pixel accuracy and the least-squares fitting circle algorithm to calculate the precise center of the circle and the diameter of the diffuser ring. Experimental results show that the method detection time is only 63.61ms, which is a faster speed; diffuser ring diameter estimation error can achieve 0.55 pixel, high stability in experimental data. This method is adapted to the various types of influenza vaccine hemagglutinin content measurements, and has important value in the influenza vaccine quality detection.

  14. Diameter Dependent Thermoelectric Properties of Individual SnTe Nanowires

    NASA Astrophysics Data System (ADS)

    Xu, E. Z.; Li, Z.; Martinez, J.; Sinitsyn, N.; Htoon, H.; Li, N.; Swartzentruber, B.; Hollingsworth, J.; Wang, J.; Zhang, S. X.

    2015-03-01

    Tin telluride (SnTe), a newly discovered topological crystalline insulator, has recently been suggested to be a promising thermoelectric material. In this work, we report on a systematic study of the thermoelectric properties of individual single-crystalline SnTe nanowires with different diameters. Measurements of thermopower, electrical conductivity and thermal conductivity were carried out on the same nanowires over a temperature range of 25 - 300 K. While the electrical conductivity does not show a strong diameter dependence, we found that the thermopower increases by a factor of two when the nanowire diameter is decreased from 913 nm to 218 nm. The thermal conductivity of the measured NWs is lower than that of the bulk SnTe, which may be attributed to the enhanced phonon - surface boundary scattering and phonon-defect scattering. We further calculated the temperature dependent figure of merit ZT for each individual nanowire. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). We acknowledge support by the Los Alamos LDRD program.

  15. Tree height-diameter allometry across the United States.

    PubMed

    Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D

    2015-03-01

    The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height-diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales. PMID:25859325

  16. Tree height–diameter allometry across the United States

    PubMed Central

    Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D

    2015-01-01

    The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height–diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales. PMID:25859325

  17. Diameter dependent thermoelectric properties of individual SnTe nanowires.

    PubMed

    Xu, E Z; Li, Z; Martinez, J A; Sinitsyn, N; Htoon, H; Li, Nan; Swartzentruber, B; Hollingsworth, J A; Wang, Jian; Zhang, S X

    2015-02-21

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a promising thermoelectric material. In this work, we report on the first thermoelectric study of individual single-crystalline SnTe nanowires with different diameters ranging from ∼218 to ∼913 nm. Measurements of thermopower S, electrical conductivity σ and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25-300 K. While the electrical conductivity does not show a strong diameter dependence, the thermopower increases by a factor of two when the nanowire diameter is decreased from ∼913 nm to ∼218 nm. The thermal conductivity of the measured NWs is lower than that of the bulk SnTe, which may arise from the enhanced phonon - surface boundary scattering and phonon-defect scattering. Temperature dependent figure of merit ZT was determined for individual nanowires and the achieved maximum value at room temperature is about three times higher than that in bulk samples of comparable carrier density. PMID:25623253

  18. Subwavelength-diameter silica wires for microscale optical components

    NASA Astrophysics Data System (ADS)

    Tong, Limin; Mazur, Eric

    2005-04-01

    Subwavelength-diameter silica wires fabricated using a taper-drawing approach exhibit excellent diameter uniformity and atomic-level smoothness, making them suitable for low-loss optical wave guiding from the UV to the near-infrared. Such air-clad silica wires can be used as single-mode waveguides; depending on wavelength and wire diameter, they either tightly confine the optical fields or leave a certain amount of guided energy outside the wire in the form of evanescent waves. Using these wire waveguides as building blocks we assembled microscale optical components such as linear waveguides, waveguide bends and branch couplers on a low-index, non-dissipative silica aerogel substrate. These components are much smaller than comparable existing devices and have low optical loss, indicating that the wire-assembly technique presented here has great potential for developing microphotonics devices for future applications in a variety of fields such as optical communication, optical sensing and high-density optical integration.

  19. Influence of coronary artery diameter on eNOS protein content

    NASA Technical Reports Server (NTRS)

    Laughlin, M. H.; Turk, J. R.; Schrage, W. G.; Woodman, C. R.; Price, E. M.

    2003-01-01

    The purpose of this study was to test the hypothesis that the content of endothelial nitric oxide synthase (eNOS) protein (eNOS protein/g total artery protein) increases with decreasing artery diameter in the coronary arterial tree. Content of eNOS protein was determined in porcine coronary arteries with immunoblot analysis. Arteries were isolated in six size categories from each heart: large arteries [301- to 2,500-microm internal diameter (ID)], small arteries (201- to 300-microm ID), resistance arteries (151- to 200-microm ID), large arterioles (101- to 150-microm ID), intermediate arterioles (51- to 100-microm ID), and small arterioles(<50-microm ID). To obtain sufficient protein for analysis from small- and intermediate-sized arterioles, five to seven arterioles 1-2 mm in length were pooled into one sample for each animal. Results establish that the number of smooth muscle cells per endothelial cell decreases from a number of 10 to 15 in large coronary arteries to 1 in the smallest arterioles. Immunohistochemistry revealed that eNOS is located only in endothelial cells in all sizes of coronary artery and in coronary capillaries. Contrary to our hypothesis, eNOS protein content did not increase with decreasing size of coronary artery. Indeed, the smallest coronary arterioles had less eNOS protein per gram of total protein than the large coronary arteries. These results indicate that eNOS protein content is greater in the endothelial cells of conduit arteries, resistance arteries, and large arterioles than in small coronary arterioles.

  20. Estimating the Average Diameter of a Population of Spheres from Observed Diameters of Random Two-Dimensional Sections

    NASA Technical Reports Server (NTRS)

    Kong, Maiying; Bhattacharya, Rabi N.; James, Christina; Basu, Abhijit

    2003-01-01

    Size distributions of chondrules, volcanic fire-fountain or impact glass spherules, or of immiscible globules in silicate melts (e.g., in basaltic mesostasis, agglutinitic glass, impact melt sheets) are imperfectly known because the spherical objects are usually so strongly embedded in the bulk samples that they are nearly impossible to separate. Hence, measurements are confined to two-dimensional sections, e.g. polished thin sections that are commonly examined under reflected light optical or backscattered electron microscopy. Three kinds of approaches exist in the geologic literature for estimating the mean real diameter of a population of 3D spheres from 2D observations: (1) a stereological approach with complicated calculations; (2) an empirical approach in which independent 3D size measurements of a population of spheres separated from their parent sample and their 2D cross sectional diameters in thin sections have produced an array of somewhat contested conversion equations; and (3) measuring pairs of 2D diameters of upper and lower surfaces of cross sections each sphere in thin sections using transmitted light microscopy. We describe an entirely probabilistic approach and propose a simple factor of 4/x (approximately equal to 1.27) to convert the 2D mean size to 3D mean size.

  1. Automatic segmentation and diameter measurement of coronary artery vessels

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Tang, Zhenyu; Pauli, Josef

    2011-03-01

    This work presents a hybrid method for 2D artery vessel segmentation and diameter measurement in X-Ray angiograms. The proposed method is novel in that tracking-based and model-based approaches are combined. A robust and efficient tracking template, the "annular template", is devised for vessel tracking. It can readily be applied on X-Ray angiograms without any preprocessing. Starting from an initial tracking point given by the user the tracking algorithm iteratively repositions the annular template and thereby detects the vessel boundaries and possible bifurcations. With a user selected end point the tracking process results in a set of points that describes the contour and topology of an artery vessel segment between the initial and end points. A "boundary correction and interpolation" operation refines the extracted points which initialize the Snakes algorithm. Boundary correction adjusts the points to ensure that they lie on the vessel segment of interest. Boundary interpolation adds more points, so that there are sufficiently many points for the Snakes algorithm to generate a smooth and accurate vessel segmentation. After the application of Snakes the resulting points are sequentially connected to represent the vessel contour. Then, the diameters are measured along the extracted vessel contour. The segmentation and measurement results are compared with manually extracted and measured vessel segments. The average Precision, Recall and Jaccard Index of 21 vessel samples are 91.5%, 92.1% and 84.9%, respectively. Compared with ground truth measurements of diameters the average relative error is 8.2%, and the average absolute error is 1.13 pixels.

  2. Fabricated nano-fiber diameter as liquid concentration sensors

    NASA Astrophysics Data System (ADS)

    Chyad, Radhi M.; Mat Jafri, Mohd Zubir; Ibrahim, Kamarulazizi

    Nanofiber is characterized by thin, long, and very soft silica. Taper fibers are made using an easy and low cost chemical method. Etching is conducted with a HF solution to remove cladding and then a low molarity HF solution to reduce the fiber core diameter. One approach to on-line monitoring of the etching process uses spectrophotometer with a white light source. In the aforementioned technique, this method aims to determine the diameter of the reduced core and show the evolution of the two different processes from the nanofiber regime to the fixed regime in which the mode was remote from the surrounding evanescent field, intensity can propagate outside the segment fiber when the core diameter is less than 500 nm. Manufacturing technologies of nano-fiber sensors offer a number of approved properties of optical fiber sensors utilized in various sensory applications. The nano-fiber sensor is utilized to sense the difference in the concentration of D-glucose in double-distilled deionized water and to measure the refractive index (RI) of a sugar solution. Our proposed method exhibited satisfactory capability based on bimolecular interactions in the biological system. The response of the nano-fiber sensors indicates a different kind of interaction among various groups of AAs. These results can be interpreted in terms of solute-solute and solute-solvent interactions and the structure making or breaking ability of solutes in the given solution. This study utilized spectra photonics to measure the transmission of light through different concentrations of sugar solution, employing cell cumber and nano-optical fibers as sensors.

  3. A solar cycle lengthwise series of solar diameter measurements

    NASA Astrophysics Data System (ADS)

    Penna, J. L.; Andrei, A. H.; Boscardin, S. C.; Neto, E. Reis; d'Ávila, V. A.

    2010-02-01

    The measurements of the solar photospheric diameter rank among the most difficult astronomic observations. Reasons for this are the fuzzy definition of the limb, the SNR excess, and the adverse daytime seeing condition. As a consequence there are very few lengthy and consistent time series of such measurements. Using modern techniques, just the series from the IAG/USP and from Calern/OCA span more than one solar cycle. The Rio de Janeiro Group observations started in 1997, and therefore in 2008 one complete solar cycle time span can be analyzed. The series shares common principles of observation and analysis with the ones afore mentioned, and it is complementary on time to them. The distinctive features are the larger number of individual points and the improved precision. The series contains about 25,000 single observations, evenly distributed on a day-by-day basis. The typical error of a single observation is half an arc-second, enabling us to investigate variations at the expected level of tens of arc-second on a weekly basis. These features prompted to develop a new methodology for the investigation of the heliophysical scenarios leading to the observed variations, both on time and on heliolatitude. The algorithms rely on running averages and time shifts to derive the correlation and statistical incertitude for the comparison of the long term and major episodes variations of the solar diameter against activity markers. The results bring support to the correlation between the diameter variation and the solar activity, but evidentiating two different regimens for the long term trend and the major solar events.

  4. SERS Raman Sensor Based on Diameter-Modulated Sapphire Fiber

    SciTech Connect

    Shimoji, Yutaka

    2010-08-09

    Surface enhanced Raman scattering (SERS) has been observed using a sapphire fiber coated with gold nano-islands for the first time. The effect was found to be much weaker than what was observed with a similar fiber coated with silver nanoparticles. Diameter-modulated sapphire fibers have been successfully fabricated on a laser heated pedestal growth system. Such fibers have been found to give a modest increase in the collection efficiency of induced emission. However, the slow response of the SERS effect makes it unsuitable for process control applications.

  5. Assembly of gold nanoparticles of different diameters between nanogap electrodes

    SciTech Connect

    Cheon, Donguk; Kumar, Sanjeev; Kim, Gil-Ho

    2010-01-04

    Gold nanoparticles (NPs) of different diameters i.e., 5, 10, and 20 nm, were assembled between 20 nm gap electrodes using ac dielectrophoresis (DEP) process. DEP parameters, such as frequency, trapping time, and voltage of value 1 MHz, 1 s, and 2-3 V, respectively, led to the pearl-chain assembly corresponding to each type of NPs between 20 nm gap electrodes. Mutual DEP could be attributed to the NPs chaining in low field regions and subsequently the DEP force directs these chains to the trapping region. Such controlled assembly of individual NPs may find application in fabricating devices for molecular electronics.

  6. Magnetic configurations in 160 520-nm-diameter ferromagnetic rings

    NASA Astrophysics Data System (ADS)

    Castaño, F. J.; Ross, C. A.; Eilez, A.; Jung, W.; Frandsen, C.

    2004-04-01

    The remanent states and hysteretic behavior of thin-film magnetic rings has been investigated experimentally and by micromagnetic modeling. Rings of diameters 160 520 nm, made from Co using lift-off processing, show three distinct remanent states: a vortex state, an “onion” state with two head-on walls, and a “twisted” state containing a 360° wall. The range of stability of these states varies with ring geometry, with smaller width rings showing higher switching fields and greater variability.

  7. Radio source orientation and the angular diameter-redshift relation

    SciTech Connect

    Onuora, L.I. )

    1991-08-01

    The effect of a nonrandom source orientation on the angular diameter-redshift relation was considered for the 3CR sample of Laing et al., based on the 'unified' scheme of Barthel. For an inhomogeneous sample of objects displaying milliarcsecond scale structure, it was found that there was no evidence for a systematic variation for orientation angle with redshift. However, if it was assumed that quasars are closer to the line of sight than powerful extended radio galaxies, then the observed angular size-redshift relation could be interpreted in terms of source orientation, rather than linear size evolution. 14 refs.

  8. Predicting the Tube Diameter in Melts and Solutions

    NASA Astrophysics Data System (ADS)

    Milner, Scott

    2004-03-01

    A simple conjecture relating chain dimensions to the so-called ``tube diameter'', which represents the topological confining effect of entanglements on a chain, works well for all flexible entangled polymer melts. I extend this conjecture to semidilute solutions: first for theta solvents, where it is shown to be equivalent to the Colby-Rubinstein scaling picture, and then for good solvents. In the latter case, it turns out that the number of ``blobs'' per entanglement strand B is not a constant as had been previously assumed, but depends on the ratio of the packing length to the Edwards length. This unified picture is in agreement with existing data on semidilute solutions.

  9. Note: Computer controlled rotation mount for large diameter optics

    NASA Astrophysics Data System (ADS)

    Rakonjac, Ana; Roberts, Kris O.; Deb, Amita B.; Kjærgaard, Niels

    2013-02-01

    We describe the construction of a motorized optical rotation mount with a 40 mm clear aperture. The device is used to remotely control the power of large diameter laser beams for a magneto-optical trap. A piezo-electric ultrasonic motor on a printed circuit board provides rotation with a precision better than 0.03° and allows for a very compact design. The rotation unit is controlled from a computer via serial communication, making integration into most software control platforms straightforward.

  10. Tracking of vessel diameter fluctuations using digital image analysis

    NASA Astrophysics Data System (ADS)

    Aggarwal, Shanti J.; Yip, C.-Y.; Diller, Kenneth R.; Bovik, Alan C.

    1990-05-01

    An automatic digital image processing technique for vasomotion analysis in peripheral microcirculation at multiple sites simultaneously and in real time, is presented. The algorithm utilizes either fluorescent or bright field microimages of the vasculature as input. The video images are digitized and analyzed on-line by an IBM RT PC. Using digital filtering and edge detection, the technique allows simultaneous diameter measurement at more than one site. The sampling frequency is higher than 5 Hz when only one site is tracked. The performance of the algorithm is tested in the hamster cutaneous microcirculation.

  11. The Use of Narrow Diameter Implants in the Molar Area.

    PubMed

    Saad, M; Assaf, A; Gerges, E

    2016-01-01

    Implant rehabilitations in the posterior jaw are influenced by many factors such as the condition of the remaining teeth, the force factors related to the patient, the quality of the bone, the maintenance of the hygiene, the limited bone height, the type and extent of edentulism, and the nature of the opposing arch. The gold standard is to place a regular diameter implant (>3.7 mm) or a wide one to replace every missing molar. Unfortunately, due to horizontal bone resorption, this option is not possible without lateral bone augmentation. In this situation, narrow diameter implant (NDI < 3.5 mm) could be the alternative to lateral bone augmentation procedures. This paper presents a clinical study where NDIs were used for the replacement of missing molars. They were followed up to 11 years. Special considerations were observed and many parameters were evaluated. NDI could be used to replace missing molar in case of moderate horizontal bone resorption if strict guidelines are respected. Yet, future controlled prospective clinical trials are required to admit their use as scientific evidence. PMID:27293436

  12. Diameter Dependence of Planar Defects in InP Nanowires.

    PubMed

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y B; Ho, Johnny C

    2016-01-01

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of "bottom-up" InP NWs with minimized defect concentration which are suitable for various device applications. PMID:27616584

  13. The Use of Narrow Diameter Implants in the Molar Area

    PubMed Central

    Saad, M.; Assaf, A.; Gerges, E.

    2016-01-01

    Implant rehabilitations in the posterior jaw are influenced by many factors such as the condition of the remaining teeth, the force factors related to the patient, the quality of the bone, the maintenance of the hygiene, the limited bone height, the type and extent of edentulism, and the nature of the opposing arch. The gold standard is to place a regular diameter implant (>3.7 mm) or a wide one to replace every missing molar. Unfortunately, due to horizontal bone resorption, this option is not possible without lateral bone augmentation. In this situation, narrow diameter implant (NDI < 3.5 mm) could be the alternative to lateral bone augmentation procedures. This paper presents a clinical study where NDIs were used for the replacement of missing molars. They were followed up to 11 years. Special considerations were observed and many parameters were evaluated. NDI could be used to replace missing molar in case of moderate horizontal bone resorption if strict guidelines are respected. Yet, future controlled prospective clinical trials are required to admit their use as scientific evidence. PMID:27293436

  14. 33-Foot-Diameter Space Station Leading to Space Base

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  15. Diameter of titanium nanotubes influences anti-bacterial efficacy

    NASA Astrophysics Data System (ADS)

    Ercan, Batur; Taylor, Erik; Alpaslan, Ece; Webster, Thomas J.

    2011-07-01

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  16. Allowable pillar to diameter ratio for strategic petroleum reserve caverns.

    SciTech Connect

    Ehgartner, Brian L.; Park, Byoung Yoon

    2011-05-01

    This report compiles 3-D finite element analyses performed to evaluate the stability of Strategic Petroleum Reserve (SPR) caverns over multiple leach cycles. When oil is withdrawn from a cavern in salt using freshwater, the cavern enlarges. As a result, the pillar separating caverns in the SPR fields is reduced over time due to usage of the reserve. The enlarged cavern diameters and smaller pillars reduce underground stability. Advances in geomechanics modeling enable the allowable pillar to diameter ratio (P/D) to be defined. Prior to such modeling capabilities, the allowable P/D was established as 1.78 based on some very limited experience in other cavern fields. While appropriate for 1980, the ratio conservatively limits the allowable number of oil drawdowns and hence limits the overall utility and life of the SPR cavern field. Analyses from all four cavern fields are evaluated along with operating experience gained over the past 30 years to define a new P/D for the reserve. A new ratio of 1.0 is recommended. This ratio is applicable only to existing SPR caverns.

  17. Measurements of Pupillary Diameter and Wavefront Aberrations in Pregnant Women

    PubMed Central

    Altay, Mehmet Metin; Demirok, Gulizar; Balta, Ozgur; Bolu, Hulya

    2016-01-01

    Purpose. To show whether pregnancy affects the measurements of pupillary diameter and wavefront (WF) aberrations. Methods. This was a case-control study including 34 healthy pregnant women in the third trimester and age-matched 34 nonpregnant women. Only women who had no ocular abnormalities and no refractive error were included. We measured photopic and mesopic pupil diameter and WF aberrations at the third trimester and at the second postpartum month. Measurements of the right eyes were used in this study. The differences between groups were analysed by paired t-test and t-test. Results. Pregnant women's mean photopic pupil size in the third trimester was significantly higher than in postpartum period and in control group (3.74 ± 0.77, 3.45 ± 0.53, and 3.49 ± 0.15 mm, p < 0.05, resp.). Mesopic pupil size in the third trimester was also higher than in postpartum period and in control group (6.77 ± 0.52, 6.42 ± 0.55, and 6.38 ± 0.21 mm, p < 0.05, resp.). RMS-3 and RMS-5 values were higher in pregnancy but these differences were not statistically significant. Conclusion. Pregnancy increased photopic and mesopic pupil size significantly but did not increase wavefront aberrations notably. Increased pupil size may be due to increased sympathetic activity during pregnancy. And this activity can be noninvasively determined by measuring pupil size. PMID:26998383

  18. Large diameter femoral heads: is bigger always better?

    PubMed

    Cooper, H J; Della Valle, C J

    2014-11-01

    Dislocation remains among the most common complications of, and reasons for, revision of both primary and revision total hip replacements (THR). Hence, there is great interest in maximising stability to prevent this complication. Head size has been recognised to have a strong influence on the risk of dislocation post-operatively. As femoral head size increases, stability is augmented, secondary to an increase in impingement-free range of movement. Larger head sizes also greatly increase the 'jump distance' required for the head to dislocate in an appropriately positioned cup. Level-one studies support the use of larger diameter heads as they decrease the risk of dislocation following primary and revision THR. Highly cross-linked polyethylene has allowed us to increase femoral head size, without a marked increase in wear. However, the thin polyethylene liners necessary to accommodate larger heads may increase the risk of liner fracture and larger heads have also been implicated in causing soft-tissue impingement resulting in groin pain. Larger diameter heads also impart larger forces on the femoral trunnion, which may contribute to corrosion, metal release, and adverse local tissue reactions. Alternative large bearings including large ceramic heads and dual mobility bearings may mitigate some of these risks, and several of these devices have been used with clinical success. PMID:25381403

  19. Gas holdup in slurry bubble columns: Effect of column diameter and slurry concentrations

    SciTech Connect

    Krishna, R.; Swart, J.W.A. de; Ellenberger, J.; Martina, G.B.; Maretto, C.

    1997-02-01

    In processes for converting natural gas to liquid fuels, bubble-column reactors are finding increasing application. To study the influence of particle concentration on the hydrodynamics of bubble-column slurry reactors operating in the heterogeneous flow regime, experiments were carried out in 0.10, 0.19, and 0.38-m-dia. columns using paraffinic oil as the liquid phase and slurry concentrations of up to 36 vol. %. To interpret experimental results a generalization of the two-phase model for gas-solid fluid beds was used to describe bubble hydrodynamics. The two phases identified are: a dilute phase consisting of fast-rising large bubbles that traverse the column virtually in plug flow and a dense phase that is identified with the liquid phase along with solid particles and entrained small bubbles. The dense phase suffers backmixing considerably. Dynamic gas disengagement was experimented in the heterogeneous flow regime to determine the gas voidage in dilute and dense phases. Experimental data show that increasing the solid concentration decreases the total gas holdup significantly, but the influence on the dilute-phase gas holdup is small. The dense-phase gas voidage significantly decreases gas holdup due to enhanced coalescence of small bubbles resulting from introduction of particles. The dense-phase gas voidage is practically independent of the column diameter. The dilute-phase gas holdup, on the other hand, decreases with increasing column diameter, and this dependence could be described adequately with a slight modification of the correlation of Krishna and Ellenberger developed for gas-liquid systems.

  20. Verification of the FBR fuel bundle-duct interaction analysis code BAMBOO by the out-of-pile bundle compression test with large diameter pins

    NASA Astrophysics Data System (ADS)

    Uwaba, Tomoyuki; Ito, Masahiro; Nemoto, Junichi; Ichikawa, Shoichi; Katsuyama, Kozo

    2014-09-01

    The BAMBOO computer code was verified by results for the out-of-pile bundle compression test with large diameter pin bundle deformation under the bundle-duct interaction (BDI) condition. The pin diameters of the examined test bundles were 8.5 mm and 10.4 mm, which are targeted as preliminary fuel pin diameters for the upgraded core of the prototype fast breeder reactor (FBR) and for demonstration and commercial FBRs studied in the FaCT project. In the bundle compression test, bundle cross-sectional views were obtained from X-ray computer tomography (CT) images and local parameters of bundle deformation such as pin-to-duct and pin-to-pin clearances were measured by CT image analyses. In the verification, calculation results of bundle deformation obtained by the BAMBOO code analyses were compared with the experimental results from the CT image analyses. The comparison showed that the BAMBOO code reasonably predicts deformation of large diameter pin bundles under the BDI condition by assuming that pin bowing and cladding oval distortion are the major deformation mechanisms, the same as in the case of small diameter pin bundles. In addition, the BAMBOO analysis results confirmed that cladding oval distortion effectively suppresses BDI in large diameter pin bundles as well as in small diameter pin bundles.

  1. HVOF thermal spray process for internal diameter applications

    SciTech Connect

    Poe, M.W.

    1994-12-31

    Thermal spray has been selected as the coating process of choice for many OEM and repair/restoration applications. Although the thermal spray process has historically been limited to coating `line-of-sight` surfaces, advances in thermal spray equipment design now allow protective and/or restorative coatings to be applied to deep internal diameters utilizing state-of-the-art HVOF processing. The advanced designs include both `standard` and `mini` torches to coat rotating components, plus a rotating extension for coating stationary ID`s. In addition, a wide range of coating materials has been developed and engineered to combat the deleterious effects of wear found in severe service environments. The resultant coatings have exceptionally high bond strength with no interconnected porosity and low residual stress. This unique process provides an important adjunct to the field of thermal spray process capabilities.

  2. Longitudinal Lorentz force on a subwavelength-diameter optical fiber

    SciTech Connect

    Yu Huakang; Fang Wei; Gu Fuxing; Yang Zongyin; Tong Limin; Qiu Min

    2011-05-15

    We analyze the longitudinal Lorentz forces that a propagating continuous-wave light exerts on a subwavelength-diameter optical fiber. Our theoretical results show that, during the propagating process, the guided light exerts no net time-averaged force on the fiber. Via numerical simulation, we find a significant overall pull force of 0.4 pN/mW acting on a 450-nm-diam fiber tip at a wavelength of 980 nm due to the scattering of the end face and a calculated force distribution reveals the feature of a near-field accumulation. Our results may be helpful to the configuration of optomechanical components or devices based on these fibers.

  3. Solar furnace satellite for large diameter crystal growth in space

    NASA Technical Reports Server (NTRS)

    Overfelt, Tony; Wells, Mark; Blake, John

    1993-01-01

    Investigators worldwide are preparing experiments to test the influence of low gravity found in space on the growth of many crystalline materials. However, power limitations prevent existing space crystal growth furnaces from being able to process samples any larger than about 2 cm, and in addition, the background microgravity levels found on the Space Shuttle are not low enough to significantly benefit samples much larger than 2 cm. This paper describes a novel concept of a free-flying platform utilizing well-established solar furnace technology to enable materials processing in space experiments on large-diameter crystals. The conceptual design of this Solar Furnace Satellite is described along with its operational scenario and the anticipated g levels.

  4. Density profile control in a large diameter, helicon plasma

    SciTech Connect

    Cluggish, B.P.; Anderegg, F.A.; Freeman, R.L.; Gilleland, J.; Hilsabeck, T.J.; Isler, R.C.; Lee, W.D.; Litvak, A.A.; Miller, R.L.; Ohkawa, T.; Putvinski, S.; Umstadter, K.R.; Winslow, D.L.

    2005-05-15

    Plasmas with peaked radial density profiles have been generated in the world's largest helicon device, with plasma diameters of over 70 cm. The density profiles can be manipulated by controlling the phase of the current in each strap of two multistrap antenna arrays. Phase settings that excite long axial wavelengths create hollow density profiles, whereas settings that excite short axial wavelengths create peaked density profiles. This change in density profile is consistent with the cold-plasma dispersion relation for helicon modes, which predicts a strong increase in the effective skin depth of the rf fields as the wavelength decreases. Scaling of the density with magnetic field, gas pressure, and rf power is also presented.

  5. Growth of 3-Inch-Diameter Li2B4O7 Single Crystal Using the Resistance Heating Furnace

    NASA Astrophysics Data System (ADS)

    Sugawara, Tamotsu; Komatsu, Ryuichi; Sugihara, Tadashi

    1994-09-01

    The mode and origin of cracking of lithium tetraborate ( Li2B4O7) single crystals during growth using a resistance heating furnace have been studied. The relationship between the formation mechanism of anomalous growth ridges and the occurrence of cracking was examined. It is concluded that a high temperature gradient near the interface and small temperature fluctuations in the melt are needed for growing a crack-free 3-inch-diameter Li2B4O7 single crystal.

  6. Numerical simulation of vortex-induced vibration of two circular cylinders of different diameters at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Yan, Guirong

    2013-08-01

    Two-degree-of-freedom Vortex-Induced Vibration (VIV) of two rigidly coupled circular cylinders of different diameters at a low Reynolds number of 250 is investigated numerically. While the diameter ratio and the mass ratio are kept constant, the study is focused on the effect of the position angle of the small cylinder on the lock-in regime of the VIV. Simulations are carried out for position angles α of the small cylinder ranging from 0° to 180° with an interval of 22.5° and the reduced velocities ranging from 1 to 15 with an increment of 1. In order to find the effect of the gap between the two cylinders on the vibration, two gap-to-diameter ratios (0 and 0.2) are considered. It is found that compared with a single cylinder case, the lock-in regime of the reduced velocity is widened significantly when the position angle of the small cylinder is α = 0°, 22.5°, 90°, or 112.5°. Pulsed beating phenomenon characterized by regular vibration with occasional high-amplitude disturbances at regular or irregular intervals is observed at G = 0 and α = 90°. At α = 135°, more than one lock-in regimes are observed in the computed range of reduced velocity for both gaps (G = 0 and 0.2). Setting a small gap (gap-to-diameter ratio of 0.2) between the two cylinders mitigates the vibration by narrowing the lock-in regime and reducing the vibration amplitude.

  7. White matter microstructure from nonparametric axon diameter distribution mapping.

    PubMed

    Benjamini, Dan; Komlosh, Michal E; Holtzclaw, Lynne A; Nevo, Uri; Basser, Peter J

    2016-07-15

    We report the development of a double diffusion encoding (DDE) MRI method to estimate and map the axon diameter distribution (ADD) within an imaging volume. A variety of biological processes, ranging from development to disease and trauma, may lead to changes in the ADD in the central and peripheral nervous systems. Unlike previously proposed methods, this ADD experimental design and estimation framework employs a more general, nonparametric approach, without a priori assumptions about the underlying form of the ADD, making it suitable to analyze abnormal tissue. In the current study, this framework was used on an ex vivo ferret spinal cord, while emphasizing the way in which the ADD can be weighted by either the number or the volume of the axons. The different weightings, which result in different spatial contrasts, were considered throughout this work. DDE data were analyzed to derive spatially resolved maps of average axon diameter, ADD variance, and extra-axonal volume fraction, along with a novel sub-micron restricted structures map. The morphological information contained in these maps was then used to segment white matter into distinct domains by using a proposed k-means clustering algorithm with spatial contiguity and left-right symmetry constraints, resulting in identifiable white matter tracks. The method was validated by comparing histological measures to the estimated ADDs using a quantitative similarity metric, resulting in good agreement. With further acquisition acceleration and experimental parameters adjustments, this ADD estimation framework could be first used preclinically, and eventually clinically, enabling a wide range of neuroimaging applications for improved understanding of neurodegenerative pathologies and assessing microstructural changes resulting from trauma. PMID:27126002

  8. Automatic detection and estimation of biparietal diameter from fetal ultrasonography

    NASA Astrophysics Data System (ADS)

    Annangi, Pavan; Banerjee Krishnan, Kajoli; Banerjee, Jyotirmoy; Gupta, Madhumita; Patil, Uday

    2011-03-01

    Fetal bi-parietal diameter (BPD) is known to provide a reliable estimate of gestational age (GA) of a fetus in the first half of pregnancy. In this paper, we present an automated method to identify and measure BPD from B-mode ultrasound images of fetal head. The method (a) automatically detects and places a region-of-interest on the head based on a prior work in our group (b) utilizes the concept of phase congruency for edge detection and (c) employs a cost function to identify the third ventricle inside the head (d) measures the BPD along the perpendicular bisector of occipital frontal diameter (OFD) from the outer rim of the cranium closer to the transducer to the inner rim of the cranium away from the transducer. The cost function is premised on the distribution of anatomical shape, size and presentation of the third ventricle in images that adhere to clinical guidelines describing the scan plane for BPD measurement. The OFD is assumed to lie along the third ventricle. The algorithm has been tested on 137 images acquired from four different scanners. Based on GA estimates and their bounds specified in Standard Obstetric Tables, the GA predictions from automated measurements are found to be within +/-2SD of GA estimates from manual measurements by the operator and a second expert radiologist in 98% of the cases. The method described in this paper can also be adapted to assess the accuracy of the scan plane based on the presence/absence of the third ventricle.

  9. Association between abdominal aortic diameter and peripheral vascular disease.

    PubMed

    Rajkumar, C; Bonapace, S; Starr, J; Radia, M; Bulpitt, C J

    1997-09-01

    Fifty-four elderly people 81.2 years +/- 7.4 (mean age +/- s.d., range 66-98 years) were selected. These included 20 men (78.6 +/- 6.4 years, range 70-91 years) and 34 women (82.2 +/- 7.6 years, range 66-98 years). The relationship between the size of the abdominal aorta and various cardiovascular risk indicators such as calf:-brachial systolic pressure ratio, plasma cholesterol, triglycerides, and random blood glucose were examined. Abdominal aortic diameter correlated well with calf:-brachial systolic ratio measured by Doppler method over the posterior tibial artery and taking the lowest result of the right and left side (r = -0.28, P = 0.04). This correlation tended to be stronger in men (r = -0.55, P = 0.02) compared to women (r = -0.10, P = 0.57). However, the relationship tended to be confined to the systolic pressure in the left leg, raising the hypothesis that left-sided vascular disease is better related to aortic diameter, possibly due to a difference in the effects of reflected waves between the two sides. This needs further investigation. The contrast between the sexes was seen in the absence of any significant difference in resting blood pressure and calf:brachial systolic pressure ratio between the two. This finding suggests that the sex differences in the relationship between the size of the abdominal aorta and calf:brachial systolic pressure ratio are related to intrinsic properties of the arterial wall. PMID:9364278

  10. Heat transfer in fixed beds at very low (<4) tube-to-particle diameter ratio

    SciTech Connect

    Dixon, A.G.

    1997-08-01

    Fixed bed reactor tubes are often used in applications in which the need for the removal of heat from highly-exothermic chemical reactions (e.g., ethylene epoxidation to ethylene oxide) or the supply of heat to highly endothermic reactions (e.g., the steam reforming of methane to syngas) constrains the tube diameter to be small, but the need for high gas velocities and reasonable pressure drops constrains the particle diameter to be fairly large. New heat transfer measurements are reported for packings of full and hollow cylinders in tubes over a tube-to-particle diameter ratio (N) range of 1.8--5.6. Both high and low thermal conductivity packings were used. These results are analyzed in conjunction with previously-reported data for spheres in the range 1.13 < N < 6.4 and data for cylinders and rings in the range 5.2 < N < 6.9 to provide a comprehensive picture of heat transfer in the region of very low N (<4) and a comparison to data at higher N. Single-phase heat transfer correlations are critically evaluated with regard to their dependence on N, to determine whether their range of applicability extends to N < 4. The effective radial thermal conductivity k{sub r} and wall heat transfer coefficient h{sub W} depend on N less strongly for full and hollow cylinders than they do for spheres. For spheres, there is evidence of high rates of radial heat transfer as N approaches unity, and the bed behaves as a single pellet string, but for 2 {le} N {le} 4, k{sub r} is highly dependent on the specific value of N.

  11. Venus small volcano classification and description

    NASA Technical Reports Server (NTRS)

    Aubele, J. C.

    1993-01-01

    The high resolution and global coverage of the Magellan radar image data set allows detailed study of the smallest volcanoes on the planet. A modified classification scheme for volcanoes less than 20 km in diameter is shown and described. It is based on observations of all members of the 556 significant clusters or fields of small volcanoes located and described by this author during data collection for the Magellan Volcanic and Magmatic Feature Catalog. This global study of approximately 10 exp 4 volcanoes provides new information for refining small volcano classification based on individual characteristics. Total number of these volcanoes was estimated to be 10 exp 5 to 10 exp 6 planetwide based on pre-Magellan analysis of Venera 15/16, and during preparation of the global catalog, small volcanoes were identified individually or in clusters in every C1-MIDR mosaic of the Magellan data set. Basal diameter (based on 1000 measured edifices) generally ranges from 2 to 12 km with a mode of 34 km, and follows an exponential distribution similar to the size frequency distribution of seamounts as measured from GLORIA sonar images. This is a typical distribution for most size-limited natural phenomena unlike impact craters which follow a power law distribution and continue to infinitely increase in number with decreasing size. Using an exponential distribution calculated from measured small volcanoes selected globally at random, we can calculate total number possible given a minimum size. The paucity of edifice diameters less than 2 km may be due to inability to identify very small volcanic edifices in this data set; however, summit pits are recognizable at smaller diameters, and 2 km may represent a significant minimum diameter related to style of volcanic eruption. Guest, et al, discussed four general types of small volcanic edifices on Venus: (1) small lava shields; (2) small volcanic cones; (3) small volcanic domes; and (4) scalloped margin domes ('ticks'). Steep

  12. Venus small volcano classification and description

    NASA Astrophysics Data System (ADS)

    Aubele, J. C.

    1993-03-01

    The high resolution and global coverage of the Magellan radar image data set allows detailed study of the smallest volcanoes on the planet. A modified classification scheme for volcanoes less than 20 km in diameter is shown and described. It is based on observations of all members of the 556 significant clusters or fields of small volcanoes located and described by this author during data collection for the Magellan Volcanic and Magmatic Feature Catalog. This global study of approximately 10 exp 4 volcanoes provides new information for refining small volcano classification based on individual characteristics. Total number of these volcanoes was estimated to be 10 exp 5 to 10 exp 6 planetwide based on pre-Magellan analysis of Venera 15/16, and during preparation of the global catalog, small volcanoes were identified individually or in clusters in every C1-MIDR mosaic of the Magellan data set. Basal diameter (based on 1000 measured edifices) generally ranges from 2 to 12 km with a mode of 34 km, and follows an exponential distribution similar to the size frequency distribution of seamounts as measured from GLORIA sonar images. This is a typical distribution for most size-limited natural phenomena unlike impact craters which follow a power law distribution and continue to infinitely increase in number with decreasing size. Using an exponential distribution calculated from measured small volcanoes selected globally at random, we can calculate total number possible given a minimum size. The paucity of edifice diameters less than 2 km may be due to inability to identify very small volcanic edifices in this data set; however, summit pits are recognizable at smaller diameters, and 2 km may represent a significant minimum diameter related to style of volcanic eruption. Guest, et al, discussed four general types of small volcanic edifices on Venus: (1) small lava shields; (2) small volcanic cones; (3) small volcanic domes; and (4) scalloped margin domes ('ticks'). Steep

  13. Experimental study of lean flammability limits of methane/hydrogen/air mixtures in tubes of different diameters

    SciTech Connect

    Shoshin, Y.L.; Goey, L.P.H. de

    2010-04-15

    Lean limit flames in methane/hydrogen/air mixtures propagating in tubes of internal diameters (ID) of 6.0, 8.9, 12.3, 18.4, 25.2, 35.0, and 50.2 mm have been experimentally studied. The flames propagated upward from the open bottom end of the tube to the closed upper end. The content of hydrogen in the fuel gas has been varied in the range 0-40 mol%. Lean flammability limits have been determined; flame shapes recorded and the visible speed of flame propagation measured. Most of the observed limit flames in tubes with diameters in the range of 8.9-18.4 mm had enclosed shape, and could be characterized as distorted or spherical flame balls. The tendency was observed for mixtures with higher hydrogen content to form smaller size, more uniform flame balls in a wider range of tube diameters. At hydrogen content of 20% or more in the fuel gas, limit flames in largest diameters (35.0 mm and 50.2 mm ID) tubes had small, compared to the tube diameter, size and were ''lens''-shaped. ''Regular'' open-front lean limit flames were observed only for the smallest diameters (6.0 mm and 8.9 mm) and largest diameters (35.0 and 50.2 mm ID), and only for methane/air and (90% CH{sub 4} + 10% H{sub 2})/air mixtures, except for 6 mm ID tube in which all limit flames had open front. In all experiments, except for the lean limit flames in methane/air and (90% CH{sub 4} + 10% H{sub 2})/air mixtures in the 8.9 mm ID tube, and all limit flames in 6.0 mm ID tube, visible flame speeds very weakly depended on the hydrogen content in the fuel gas and were close to- or below the theoretical estimate of the speed of a rising hot bubble. This observation suggests that the buoyancy is the major factor which determines the visible flame speed for studied limit flames, except that last mentioned. A decrease of the lean flammability limit value with decreasing the tube diameter was observed for methane/air and (90% CH{sub 4} + 10% H{sub 2})/air mixtures for tubes having internal diameters in the range

  14. Design of dual-diameter nanoholes for efficient solar-light harvesting

    PubMed Central

    2014-01-01

    A dual-diameter nanohole (DNH) photovoltaic system is proposed, where a top (bottom) layer with large (small) nanoholes is used to improve the absorption for the short-wavelength (long-wavelength) solar incidence, leading to a broadband light absorption enhancement. Through three-dimensional finite-element simulation, the core device parameters, including the lattice constant, nanohole diameters, and nanohole depths, are engineered in order to realize the best light-matter coupling between nanostructured silicon and solar spectrum. The designed bare DNH system exhibits an outstanding absorption capability with a photocurrent density (under perfect internal quantum process) predicted to be 27.93 mA/cm2, which is 17.39%, 26.17%, and over 100% higher than the best single-nanohole (SNH) system, SNH system with an identical Si volume, and equivalent planar configuration, respectively. Considering the fabrication feasibility, a modified DNH system with an anti-reflection coating and back silver reflector is examined by simulating both optical absorption and carrier transport in a coupled way in frequency and three-dimensional spatial domains, achieving a light-conversion efficiency of 13.72%. PACS 85.60.-q; Optoelectronic device; 84.60.Jt; Photovoltaic conversion PMID:25258605

  15. An ultrasonic system for diameter pulse tracking in arteries: problems and pitfalls.

    PubMed

    Manor, D; Dahl, P; Benthin, M; Ruzicka, R; Lindström, K; Gennser, G

    1993-01-01

    Non-invasive ultrasonic techniques for measuring the mechanical behaviour of large arteries have a potential clinical application for physiological studies of the circulation and early detection of degenerative arterial disorders. A newly developed system for such purposes, comprising two double-echo trackers with zero-crossing phase-locked circuits and interfacing a B-mode real-time scanner, has been introduced for on-line recording of the diameter in a selected aortic segment. The aim of this report is to draw attention to the limitations of the technique in order to avoid misinterpretation of results. The various problems associated with the use of phase-locked echo followers for tracking sonic echoes of vessel pulse waves are summarized. The high spatial resolution of the measuring system is essential for estimating the elastic properties of the vessel, because the fractional changes of the diameter waveform during a heart cycle are small compared with the swings of intravascular pressure. Measuring errors may originate from either human or technical sources. From several viewpoints correct alignment of the ultrasonic beam vis-à-vis the vessel segment under consideration is crucial for obtaining valid measures. A thorough knowledge of the physics involved is essential for an adequate use of the instrument. With correct use, easily reproducible and reliable estimations are obtained of the mechanical properties of large vessel walls. PMID:8326507

  16. Stress relaxation of grouted entirely large diameter B-GFRP soil nail

    NASA Astrophysics Data System (ADS)

    Li, Guo-wei; Ni, Chun; Pei, Hua-fu; Ge, Wan-ming; Ng, Charles Wang Wai

    2013-08-01

    One of the potential solutions to steel-corrosion-related problems is the usage of fiber reinforced polymer (FRP) as a replacement of steel bars. In the past few decades, researchers have conducted a large number of experimental and theoretical studies on the behavior of small size glass fiber reinforce polymer (GFRP) bars (diameter smaller than 20 mm). However, the behavior of large size GFRP bar is still not well understood. Particularly, few studies were conducted on the stress relaxation of grouted entirely large diameter GFRP soil nail. This paper investigates the effect of stress levels on the relaxation behavior of GFRP soil nail under sustained deformation ranging from 30% to 60% of its ultimate strain. In order to study the behavior of stress relaxation, two B-GFRP soil nail element specimens were developed and instrumented with fiber Bragg grating (FBG) strain sensors which were used to measure strains along the B-GFRP bars. The test results reveal that the behavior of stress relaxation of B-GFRP soil nail element subjected to pre-stress is significantly related to the elapsed time and the initial stress of relaxation procedure. The newly proposed model for evaluating stress relaxation ratio can substantially reflect the influences of the nature of B-GFRP bar and the property of grip body. The strain on the nail body can be redistributed automatically. Modulus reduction is not the single reason for the stress degradation.

  17. The stability of Taylor bubbles in large-diameter tubes: Linear theory

    NASA Astrophysics Data System (ADS)

    Abubakar, Habib; Matar, Omar

    2015-11-01

    Taylor bubbles are a characteristic feature of the slug flow regime in gas-liquid pipe flows. With increasing pipe diameter, previous experimental observations have shown that at sufficiently large diameter (> 0.1 m), the slug flow regime, and hence Taylor bubbles, are not observed in gas-liquid flows in vertical pipes. Numerical simulations of a Taylor bubble rising in a quiescent liquid (see companion talk at this APS/DFD conference) have also shown that the wake of Taylor bubbles rising in a riser of such sizes is turbulent and has great impact on the stability of the subsequent, trailing bubbles. In view of these observations, a linear stability analysis is carried out to establish the stability conditions for a Taylor bubble rising in a turbulent flowing liquid. The stability of an axisymmetric Taylor bubble to a small-amplitude, three dimensional, perturbation is studied and the dimensionless flow parameters of the liquid investigated include the Froude number, the inverse viscosity number, and the Eotvos numbers. Nigerian Government scholarship (for HA).

  18. In Acute Myocardial Infarction Liver Parameters Are Associated With Stenosis Diameter

    PubMed Central

    Baars, Theodor; Neumann, Ursula; Jinawy, Mona; Hendricks, Stefanie; Sowa, Jan-Peter; Kälsch, Julia; Riemenschneider, Mona; Gerken, Guido; Erbel, Raimund; Heider, Dominik; Canbay, Ali

    2016-01-01

    Abstract Detection of high-risk subjects in acute myocardial infarction (AMI) by noninvasive means would reduce the need for intracardiac catheterization and associated complications. Liver enzymes are associated with cardiovascular disease risk. A potential predictive value for liver serum markers for the severity of stenosis in AMI was analyzed. Patients with AMI undergoing percutaneous coronary intervention (PCI; n = 437) were retrospectively evaluated. Minimal lumen diameter (MLD) and percent stenosis diameter (SD) were determined from quantitative coronary angiography. Patients were classified according to the severity of stenosis (SD ≥ 50%, n = 357; SD < 50%, n = 80). Routine heart and liver parameters were associated with SD using random forests (RF). A prediction model (M10) was developed based on parameter importance analysis in RF. Age, alkaline phosphatase (AP), aspartate aminotransferase (AST), and MLD differed significantly between SD ≥ 50 and SD < 50. Age, AST, alanine aminotransferase (ALT), and troponin correlated significantly with SD, whereas MLD correlated inversely with SD. M10 (age, BMI, AP, AST, ALT, gamma-glutamyltransferase, creatinine, troponin) reached an AUC of 69.7% (CI 63.8–75.5%, P < 0.0001). Routine liver parameters are associated with SD in AMI. A small set of noninvasively determined parameters can identify SD in AMI, and might avoid unnecessary coronary angiography in patients with low risk. The model can be accessed via http://stenosis.heiderlab.de. PMID:26871849

  19. Large-Diameter Burrows of the Triassic Ischigualasto Basin, NW Argentina: Paleoecological and Paleoenvironmental Implications

    PubMed Central

    Colombi, Carina E.; Fernández, Eliana; Currie, Brian S.; Alcober, Oscar A.; Martínez, Ricardo; Correa, Gustavo

    2012-01-01

    Large-diameter ichnofossils comprising three morphotypes have been identified in the Upper Triassic Ischigualasto and Los Colorados formations of northwestern Argentina. These burrows add to the global record of the early appearance of fossorial behavior during early Mesozoic time. Morphotypes 1 and 2 are characterized by a network of tunnels and shafts that can be assigned to tetrapod burrows given similarities with previously described forms. However, differences in diameter, overall morphology, and stratigraphic occurrence allow their independent classification. Morphotype 3 forms a complex network of straight branches that intersect at oblique angles. Their calcareous composition and surface morphology indicate these structures have a composite biogenic origin likely developed due to combined plant/animal interactions. The association of Morphotypes 1 and 2 with fluvial overbank lithologies deposited under an extremely seasonal arid climate confirms interpretations that the early appearance of burrowing behavior was employed by vertebrates in response to both temperature and moisture-stress associated with seasonally or perpetually dry Pangean paleoclimates. Comparisons of burrow morphology and biomechanical attributes of the abundant paleovertebrate fauna preserved in both formations permit interpretations regarding the possible burrow architects for Morphotypes 1 and 2. In the case of the Morphotype 1, the burrow constructor could be one of the small carnivorous cynodonts, Ecteninion or Probelesodon. Assigning an architect for Morphotype 2 is more problematic due to mismatches between the observed burrow morphology and the size of the known Los Colorados vertebrates. PMID:23227195

  20. Development of a 5.5 m diameter vertical axis wind turbine, phase 3

    NASA Astrophysics Data System (ADS)

    Dekitsch, A.; Etzler, C. C.; Fritzsche, A.; Lorch, G.; Mueller, W.; Rogalla, K.; Schmelzle, J.; Schuhwerk, W.; Vollan, A.; Welte, D.

    1982-06-01

    In continuation of development of a 5.5 m diameter vertical axis windmill that consists in conception, building, and wind tunnel testing, a Darrieus rotor windpowered generator feeding an isolated network under different wind velocity conditions and with optimal energy conversion efficiency was designed built, and field tested. The three-bladed Darrieus rotor tested in the wind tunnel was equiped with two variable pitch Savonius rotors 2 m in diameter. By means of separate measures of the aerodynamic factors and the energy consumption, effect of revisions and optimizations on different elements was assessed. Pitch adjustement of the Savonius blades, lubrication of speed reducer, rotor speed at cut-in of generator field excitation, time constant of field excitation, stability conditions, switch points of ohmic resistors which combined with a small electric battery simulated a larger isolated network connected with a large storage battery, were investigated. Fundamentals for the economic series production of windpowered generators with Darrieus rotors for the control and the electric conversion system are presented.

  1. Flux-Dependent Growth Kinetics and Diameter Selectivity in Single-Wall Carbon Nanotube Arrays

    SciTech Connect

    Geohegan, David B; Puretzky, Alexander A; Jackson, Jeremy Joseph; Rouleau, Christopher M; Eres, Gyula; More, Karren Leslie

    2011-01-01

    The nucleation and growth kinetics of single-wall carbon nanotubes in aligned arrays have been measured using fast pulses of acetylene and in situ optical diagnostics in conjunction with low pressure chemical vapor deposition (CVD). Increasing the acetylene partial pressure is shown to decrease nucleation times by three orders of magnitude, permitting aligned nanotube arrays to nucleate and grow to microns lengths within single gas pulses at high (up to 7 micron/s) peak growth rates and short ~ 0.5 s times.Low-frequency Raman scattering (> 10 cm-1) and transmission electron microscopy measurements show that increasing the feedstock flux in both continuous-CVD and pulsed-CVD shifts the product distribution to large single-wall carbon nanotube diameters > 2.5 nm. Sufficiently high acetylene partial pressures in pulsed-CVD appear to temporarily terminate the growth of the fastest- growing, small-diameter nanotubes by overcoating the more catalytically-active, smaller catalyst nanoparticles within the ensemble with non-nanotube carbon in agreement with a growth model. The results indicate that subsets of catalyst nanoparticle ensembles nucleate, grow, and terminate growth within different flux ranges according to their catalytic activity.

  2. Correlation of the ratio of caudal vena cava diameter and aorta diameter with systolic pressure variation in anesthetized dogs.

    PubMed

    Meneghini, Caterina; Rabozzi, Roberto; Franci, Paolo

    2016-02-01

    OBJECTIVE To evaluate the correlation coefficient of the ratio between diameter of the caudal vena cava (CVC) and diameter of the aorta (Ao) in dogs as determined ultrasonographically with systolic pressure variation (SPV). ANIMALS 14 client-owned dogs (9 females and 5 males; mean ± SD age, 73 ± 40 months; mean body weight, 22 ± 7 kg) that underwent anesthesia for repair of skin wounds. PROCEDURES Anesthesia was induced. Controlled mechanical ventilation with a peak inspiratory pressure of 8 cm H2O was immediately started, and SPV was measured. During a brief period of suspension of ventilation, CVC-to-Ao ratio was measured on a transverse right-lateral intercostal ultrasonographic image obtained at the level of the porta hepatis. When the SPV was ≥ 4 mm Hg, at least 1 bolus (3 to 4 mL/kg) of Hartmann solution was administered IV during a 1-minute period. Bolus administration was stopped and the CVC-to-Ao ratio measured when SPV was < 4 mm Hg. Correlation coefficient analysis was performed. RESULTS 28 measurements were obtained. The correlation coefficient was 0.86 (95% confidence interval, 0.72 to 0.93). Mean ± SD SPV and CVC-to-Ao ratio before bolus administration were 7 ± 2 mm Hg and 0.52 ± 0.16, respectively. Mean ± SD SPV and CVC-to-Ao ratio after bolus administration were 2 ± 0.6 mm Hg and 0.91 ± 0.13, respectively. CONCLUSIONS AND CLINICAL RELEVANCE In this study, the CVC-to-Ao ratio was a feasible, noninvasive ultrasonographically determined value that correlated well with SPV. (Am J Vet Res 2016;77:137-143). PMID:27027706

  3. Performance of 26 Meter Diameter Ringsail Parachute in a Simulated Martian Environment

    NASA Technical Reports Server (NTRS)

    Whitlock, Charles H.; Bendura, Richard J.; Cotrane, Lucille C.

    1967-01-01

    Inflation, drag, and stability characteristics of an 85.3-foot (26-meter) nominal diameter ringsail parachute deployed at a Mach number of 1.15 and at an altitude of 132,600 feet (40.42 kilometers) were obtained from the first flight test of the Planetary Entry Parachute Program. After deployment, the parachute inflated to the reefed condition. However, the canopy was unstable and produced low drag in the reefed condition. Upon disreefing and opening to full inflation, a slight instability in the canopy mouth was observed initially. After a short time, the fluctuations diminished and a stable configuration was attained. Results indicate a loss in drag during the fluctuation period prior to stable inflation. During descent, stability characteristics of the system were such that the average pitch-yaw angle from the local vertical was less than 10 degrees. Rolling motion between the payload and parachute canopy quickly damped to small amplitude.

  4. A photodegradable hexaaza-pentacene molecule for selective dispersion of large-diameter semiconducting carbon nanotubes.

    PubMed

    Han, Jie; Ji, Qiyan; Li, Hongbo; Li, Gang; Qiu, Song; Li, Hai-Bei; Zhang, Qichun; Jin, Hehua; Li, Qingwen; Zhang, Jin

    2016-06-01

    Harvesting high-purity semiconducting single-walled carbon nanotubes (s-SWCNTs) with removable dispersants remains a challenge. In this work, we demonstrate that small heteroacene derivatives may serve as promising selective dispersants for sorting s-SWCNTs. A rich N "doped" and thiophene-substituted hexaazapentacene molecule, denoted as 4HP, was found to be more favorable for high-purity s-SWCNTs with large diameters. Importantly, 4HP is photodegradable under 365 nm or blue light, which enables a simple deposition approach for the formation of clean s-SWCNT networks. The as-fabricated thin film transistors show excellent performance with a charge-mobility of 30-80 cm(2) V(-1) s(-1) and an on-off ratio of 10(4)-10(6). PMID:27230421

  5. Status of 30-centimeter-diameter mercury ion thruster isolator development

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1976-01-01

    Results are presented of several 30 cm diameter mercury ion thruster isolator life tests that show that the onset and exponential increase of leakage current problems observed in earlier thruster operations and isolator tests have been solved. A 10,006 hour life test of a main isolator vaporizer operated with no mercury flow at 320 C and 1500 volts was found to have no onset of leakage current during the test. A cathode-isolator vaporizer operated with a mercury discharge at 340 to 360 C and 1200 volts for 18,000 hours, was found to have a small increase of leakage current with time. A 10,000 hour thruster life test exhibited no increase of leakage current during the life test. Isolators have been developed which will satisfy 30 cm mercury ion thruster mission requirements.

  6. BRIEF COMMUNICATION: Piezoelectric ultrasonic resonant motor with stator diameter less than 250 µm: the Proteus motor

    NASA Astrophysics Data System (ADS)

    Watson, B.; Friend, J.; Yeo, L.

    2009-02-01

    Minimally invasive and in vivo surgery is limited by the ability to provide controllable and powerful motion at scales appropriate for navigation within the human body. A motor for in vivo microbot propulsion is presented with a stator diameter of phi250 µm, demonstrating the potential to directly drive a flagellum for swimming at up to 1295 rpm with a torque of 13 nN m. The motor uses coupled axial-torsional vibration at 652-682 kHz in a helically cut structure excited by a thickness-polarized piezoelectric element. The output power is 4.25 µW, on the order of what is necessary to navigate small human arteries.

  7. Evaluation of distal radial artery cross-sectional internal diameter in pediatric patients using ultrasound.

    PubMed

    Varga, Eliane Q S; Candiotti, Keith A; Saltzman, Bruce; Gayer, Steven; Giquel, Jadelis; Castillo-Pedraza, Catalina; Sanchez, Grace; Halliday, Norman

    2013-05-01

    In this study, we measure the radial artery internal diameter (RAID) in children up to 4 years of age before and after the induction of anesthesia. A B-mode portable color Doppler ultrasound was used to measure the RAID. Three sets of measurements were taken for each child before and after the induction of anesthesia and with the wrist in the neutral and dorsiflexed positions. The reliability of the mean value of the RAID in the three sets in 24 patients was established. There were discrepancies between the RAID and the proposed catheter size in some individuals, which may not only render placement difficult but also have potential for arterial injury. There are good reasons to measure the RAID in small children prior to insertion of an intra-arterial catheter. PMID:23577822

  8. Empirical relationships between optical properties and equivalent diameters of fractal soot aggregates at 550 nm wavelength.

    PubMed

    Pandey, Apoorva; Chakrabarty, Rajan K; Liu, Li; Mishchenko, Michael I

    2015-11-30

    Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension Df = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numerically-exact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships. PMID:26698786

  9. Empirical Relationships Between Optical Properties and Equivalent Diameters of Fractal Soot Aggregates at 550 Nm Wavelength.

    NASA Technical Reports Server (NTRS)

    Pandey, Apoorva; Chakrabarty, Rajan K.; Liu, Li; Mishchenko, Michael I.

    2015-01-01

    Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension Df = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numericallyexact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships.

  10. Space shuttle: Aerodynamic characteristics of a 162-inch diameter solid rocket booster with and without strakes

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Radford, W. D.; Rampy, J. M.

    1973-01-01

    Tests conducted at NASA-Langley have shown that a small flap or strake can generate a significant amount of lift on a circular cylinder with large cross flow. If strakes are placed on the opposite sides and ends on a circular body, a moment will be produced about the center of mass of the body. The purpose of this test was to determine the static-aerodynamic forces and moments of a 162-inch diameter SRB (PRR) with and without strakes. The total angle-of-attack range of the SRB test was from -10 to 190 degrees. Model roll angles were 0, 45, 90, and 135 degrees with some intermediate angles. The Mach range was from 0.6 to 3.48. The 0.00494 scale model was designated as MSFC No. 449.

  11. Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque.

    PubMed

    Liewald, Daniel; Miller, Robert; Logothetis, Nikos; Wagner, Hans-Joachim; Schüz, Almut

    2014-10-01

    The aim of this study was to obtain information on the axonal diameters of cortico-cortical fibres in the human brain, connecting distant regions of the same hemisphere via the white matter. Samples for electron microscopy were taken from the region of the superior longitudinal fascicle and from the transitional white matter between temporal and frontal lobe where the uncinate and inferior occipitofrontal fascicle merge. We measured the inner diameter of cross sections of myelinated axons. For comparison with data from the literature on the human corpus callosum, we also took samples from that region. For comparison with well-fixed material, we also included samples from corresponding regions of a monkey brain (Macaca mulatta). Fibre diameters in human brains ranged from 0.16 to 9 μm. Distributions of diameters were similar in the three systems of cortico-cortical fibres investigated, both in humans and the monkey, with most of the average values below 1 μm diameter and a small population of much thicker fibres. Within individual human brains, the averages were larger in the superior longitudinal fascicle than in the transitional zone between temporal and frontal lobe. An asymmetry between left and right could be found in one of the human brains, as well as in the monkey brain. A correlation was also found between the thickness of the myelin sheath and the inner axon diameter for axons whose calibre was greater than about 0.6 μm. The results are compared to white matter data in other mammals and are discussed with respect to conduction velocity, brain size, cognition, as well as diffusion weighted imaging studies. PMID:25142940

  12. Influence of diameter on particle transport in a fractured shale saprolite

    USGS Publications Warehouse

    Cumbie, D.H.; McKay, L.D.

    1999-01-01

    Experiments in an undisturbed, saturated column of weathered and fractured shale saprolite using fluorescent carboxylate-coated latex microspheres as tracers indicate that particle diameter plays a major role in controlling transport. In this study the optimum microsphere diameter for transport was approximately 0.5 ??m. Microspheres larger than the optimum size were present in the effluent at lower relative concentrations, apparently because of greater retention due to gravitational settling and/or physical straining. The smaller than optimum microspheres also experienced greater retention, apparently related to their higher rates of diffusion. Faster diffusion can lead to more frequent collisions with, and attachment to, fracture walls and may also lead to movement of particles into zones of relatively immobile pore water in the fractures or in the fine pore structure of the clay-rich matrix between fractures. Dismantling of the soil column and mapping of the distribution of retained microspheres indicated that there was substantial size-segregation of the microspheres between different fractures or in 'channels' within a fracture. Examination of small core samples showed that the smallest microspheres (0.05-0.1 ??m) were present in the fine pores of the matrix at distances of up to 3-4 mm from the nearest fracture, which supports the hypothesis that small particles can be retained by diffusion into the matrix. Calculations of settling velocity and diffusion rate using simple 1D approaches suggest that these processes could both cause significant retention of the larger and smaller particles, respectively, even for the fast advective transport rates (up to 32 m/day) observed during the experiments. Copyright (C) 1999 Elsevier Science B.V.

  13. Control of the Diameter and Chiral Angle Distributions during Production of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel

    2009-01-01

    Many applications of single wall carbon nanotubes (SWCNT), especially in microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap semiconductor, etc.) Especially fascinating is the possibility of quantum conductors that require metallic armchair nanotubes. However, as produced SWCNT samples are polydisperse, with many (n,m) types present and typical approx.1:2 metal/semiconductor ratio. Nanotube nucleation models predict that armchair nuclei are energetically preferential due to formation of partial triple bonds along the armchair edge. However, nuclei can not reach any meaningful thermal equilibrium in a rapidly expanding and cooling plume of carbon clusters, leading to polydispersity. In the present work, SWCNTs were produced by a pulsed laser vaporization (PLV) technique. The carbon vapor plume cooling rate was either increased by change in the oven temperature (expansion into colder gas), or decreased via "warm-up" with a laser pulse at the moment of nucleation. The effect of oven temperature and "warm-up" on nanotube type population was studied via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that reduced temperatures leads to smaller average diameters, progressively narrower diameter distributions, and some preference toward armchair structures. "Warm-up" shifts nanotube population towards arm-chair structures as well, but the effect is small. Possible improvement of the "warm-up" approach to produce armchair SWCNTs will be discussed. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n,m) population. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven.

  14. Two-group interfacial area transport equation in large diameter pipes

    NASA Astrophysics Data System (ADS)

    Smith, Todd Ryan

    2002-01-01

    The closure relations for the two-group interfacial area transport equation (LATE) by which the changes of interfacial area concentration can be dynamically modeled are set forth in this thesis for the case of large diameter pipes. In the two-group formulation, the sources and sink terms are established by mechanistic modeling of the intra-group and inter-group transport of the bubbles based on five major bubble interaction mechanisms. These mechanisms are bubble coalescence as a result of random collision, RC, wake entrainment, WE, bubble break-up due to turbulent impact, TI, small bubble shearing-off of large bubbles, SO, and bubble break-up due to surface instability for large bubbles, SI. The models developed are supported by experiments using a four-sensor conductivity probe in large diameter test sections, 10.16 cm and 15.24 cm in diameter. A total of 31 different flow conditions under atmospheric pressure are examined in the bubbly to churn-turbulent flow regimes. The local flow parameters measured by the multi-sensor conductivity probe include the local time-averaged void fraction, interfacial area concentration, bubble Sauter mean diameter, interfacial velocity, and interface frequency for the two groups of bubbles. The model is evaluated against the extensive database and good agreement is obtained between the model predictions and the experimental data. The average error based on the total interfacial area concentration is around 7.0% for interfacial area concentration in both test sections. Recirculation in the large pipes is given special treatment in the measurement analysis. Using upwards and downwards facing probes, information on the missing bubble signals is obtained which is used to correct the local data by either the Effective Bubble Number or Intrusiveness Factor Method. The correction to void fraction is found to be about a 12% increase in the local area averaged value, while interfacial area concentration may increase upwards of 60% in the

  15. Can We Prevent a Postoperative Spinal Epidural Hematoma by Using Larger Diameter Suction Drains?

    PubMed Central

    Kim, Jin Hak; Chang, Byung Kwon; Lee, Jae Il

    2016-01-01

    Background Epidural hematoma is a rare but serious complication. According to previous studies, it is not prevented by suction drains. This study evaluated the following alternative hypothesis: the larger the diameter of a suction drain, the less the remaining epidural hematoma after spinal surgery. Methods This was a randomized prospective study. Patients who underwent posterior lumbar decompression and instrumented fusion were divided into two groups: the large drain (LD, 2.8-mm-diameter tube) and small drain (SD, 1.6-mm-diameter tube) groups according to the diameter of the suction drains. All patients were consecutive and allocated alternately according to the date of operations. Suction drains were removed on day 3 and magnetic resonance imaging was performed on day 7 postoperatively. The size of remaining hematomas was measured by the degree of thecal sac compression in cross section using the following 4-point numeric scale: G1, less than one quarter; G2, between one quarter and half; G3, more than half; and G4, more than subtotal obstruction. Results There were 39 patients with LDs and 38 with SDs. They did not differ significantly in terms of sex, number of fusion segments, revision or not, antiplatelet medication, intraoperative injection of tranexamic acid. However, patient age differed significantly between the two groups (LD, 63.3 years and < SD, 68.6 years; p = 0.007). The two groups did not differ significantly in terms of prothrombin time, activated partial thromboplastin time, platelet number, blood loss, or operation duration. However, platelet function analysis exhibited a significant difference (LD, 164.7 seconds and < SD, 222.3 seconds; p = 0.002). The two blinded readers showed high consistency (Kappa value = 0.740; p = 0.000). The results of reader 1 were as follows: LD and SD had 21 and 21 cases of G1, 9 and 11 cases of G2, 6 and 6 cases of G3, and 3 and 0 cases of G4, respectively. The results of reader 2 were as follows: LD and SD had 22

  16. Economic strategies of plant absorptive roots vary with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Wang, J. J.; Kardol, P.; Wu, H. F.; Zeng, H.; Deng, X. B.; Deng, Y.

    2016-01-01

    Plant roots typically vary along a dominant ecological axis, the root economics spectrum, depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root economic strategies differ with increasing root diameter. To test this hypothesis, we used seven plant species (a fern, a conifer, and five angiosperms from south China) for which we separated absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis < 247 µm) and thick roots. For each category, we analyzed a range of root traits related to resource acquisition and conservation, including root tissue density, different carbon (C), and nitrogen (N) fractions (i.e., extractive, acid-soluble, and acid-insoluble fractions) as well as root anatomical traits. The results showed significant relationships among root traits indicating an acquisition-conservation tradeoff for thin absorptive roots while no such trait relationships were found for thick absorptive roots. Similar results were found when reanalyzing data of a previous study including 96 plant species. The contrasting economic strategies between thin and thick absorptive roots, as revealed here, may provide a new perspective on our understanding of the root economics spectrum.

  17. Cylindrical surface profile and diameter measuring tool and method

    NASA Technical Reports Server (NTRS)

    Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Smith, Earnest C. (Inventor); Oliver, Charles E. (Inventor); Redmon, John W., Sr. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)

    1987-01-01

    A tool is shown having a cross beam assembly made of beams joined by a center box structure. The assembly is adapted to be mounted by brackets to the outer end of a cylindrical case. The center box structure has a vertical shaft rotatably mounted therein and extending beneath the assembly. Secured to the vertical shaft is a radius arm which is adapted to rotate with the shaft. On the longer end of the radius arm is a measuring tip which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm. An electric servomotor rotates the vertical shaft and an electronic resolver provides an electric signal representing the angle of rotation of the shaft. The electric signals are provided to a computer station which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.

  18. Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles

    PubMed Central

    Eggersdorfer, Max L.; Kadau, Dirk; Herrmann, Hans J.; Pratsinis, Sotiris E.

    2013-01-01

    The structure of fractal-like agglomerates (physically-bonded) and aggregates (chemically- or sinter-bonded) is important in aerosol synthesis of nanoparticles, and in monitoring combustion emissions and atmospheric particles. It influences also particle mobility, scattering, and eventually performance of nanocomposites, suspensions and devices made with such particles. Here, aggregate sintering by viscous flow of amorphous materials (silica, polymers) and grain boundary diffusion of crystalline ceramics (titania, alumina) or metals (Ni, Fe, Ag etc.) is investigated. A scaling law is found between average aggregate projected area and equivalent number of constituent primary particles during sintering: from fractal-like agglomerates to aggregates and eventually compact particles (e.g. spheres). This is essentially a relation independent of time, material properties and sintering mechanisms. It is used to estimate the equivalent primary particle diameter and number in aggregates. The evolution of aggregate morphology or structure is quantified by the effective fractal dimension (Df) and mass-mobility exponent (Dfm) and the corresponding prefactors. The Dfm increases monotonically during sintering converging to 3 for a compact particle. Therefore Dfm and its prefactor could be used to gauge the degree or extent of sintering of agglomerates made by a known collision mechanism. This analysis is exemplified by comparison to experiments of silver nanoparticle aggregates sintered at different temperatures in an electric tube furnace. PMID:23658467

  19. Continuous Measurement of Particle Hygroscopicity as a Function of Diameter

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Anderson, B. E.; Ziemba, L. D.; Thornhill, K. L.; Moore, R.; Beyersdorf, A. J.; Winstead, E. L.; Crumeyrolle, S.; Wagner, N.; Langridge, J. M.; Richardson, M.; Lack, D. A.; Law, D. C.; Shingler, T.; Sorooshian, A.

    2012-12-01

    An ultra-high sensitivity aerosol spectrometer (UHSAS, Droplet Measurement Technologies, Boulder, CO, USA) has been substantially modified to humidify the aerosol sample stream. The size distribution of deliquesced particles at humidities as high as 95% is measured. By combining a Mie model of instrument response with measurements of dry and wet size distributions, the hygroscopic growth factor as a function of particle diameter can be estimated. By operating a second, well-calibrated dry UHSAS simultaneously with the humidified UHSAS, the size-dependent particle hygroscopicity can be determined continuously, which is particularly useful for airborne sampling where rapid time response is required. The technique has been applied to laboratory particles of inorganic salts and of polystyrene latex, and to mixed sulfate/organic particles and dense forest fire smoke measured on an aircraft during the Deep Convective Clouds and Chemistry (DC3) project. Results will be compared with measurements of aerosol extinction at different RH values and of hygroscopic growth made with a differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP). Initial evaluations of changes in hygroscopicity due to processing in convective clouds will be presented. Limitations of the technique, such as the effects of external mixtures and insoluble components, will be discussed.

  20. Development of the 15 meter diameter hoop column antenna

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The building of a deployable 15-meter engineering model of the 100 meter antenna based on the point-design of an earlier task of this contract, complete with an RF-capable surface is described. The 15 meter diameter was selected so that the model could be tested in existing manufacturing, near-field RF, thermal vacuum, and structural dynamics facilities. The antenna was designed with four offset paraboloidal reflector surfaces with a focal length of 366.85 in and a primary surface accuracy goal of .069 in rms. Surface adjustment capability was provided by manually resetting the length of 96 surface control cords which emanated from the lower column extremity. A detailed description of the 15-meter Hoop/Column Antenna, major subassemblies, and a history of its fabrication, assembly, deployment testing, and verification measurements are given. The deviation for one aperture surface (except the outboard extremity) was measured after adjustments in follow-on tests at the Martin Marietta Near-field Facility to be .061 in; thus the primary surface goal was achieved.