Science.gov

Sample records for a-580-867 large power

  1. 78 FR 46573 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Opportunity To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... August for the following periods: \\1\\ Or the next business day, if the deadline falls on a weekend... Large Power Transformers A-580-867 2/16/12-7/31/13 Romania: Carbon and Alloy Seamless Standard, Line, 8... Carrier Bags A-549-821. 8/1/12-7/31/13 The People's Republic of China: Floor-Standing, Metal-Top...

  2. Power quality load management for large spacecraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.

    1988-01-01

    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  3. Large autonomous spacecraft electrical power system (LASEPS)

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.

  4. Large kinetic power in FRII radio jets

    NASA Astrophysics Data System (ADS)

    Ito, Hirotaka; Kino, Motoki; Kawakatu, Nozomu; Isobe, Naoki; Yamada, Shoichi

    2007-10-01

    We investigate the total kinetic powers ( L j) and ages ( t age) of powerful jets of four FR II radio sources (Cygnus A, 3C 223, 3C 284, and 3C 219) by the detail comparison of the dynamical model of expanding cocoons with observed ones. It is found that these sources have quite large kinetic powers with the ratio of L j to the Eddington luminosity ( L Edd) resides in 0.02< L j/ L Edd<10. Reflecting the large kinetic powers, we also find that the total energy stored in the cocoon ( E c) exceed the energy derived from the minimum energy condition ( E min ): 2< E c/ E min <160. This implies that a large amount of kinetic power is carried by invisible components such as thermal leptons (electron and positron) and/or protons.

  5. Feasible eigenvalue sensitivity for large power systems

    SciTech Connect

    Smed, T. . Dept. of Electric Power Systems)

    1993-05-01

    Traditional eigenvalue sensitivity for power systems requires the formulation of the system matrix, which lacks sparsity. In this paper, a new sensitivity analysis, derived for a sparse formulation, is presented. Variables that are computed as intermediate results in established eigen value programs for power systems, but not used further, are given a new interpretation. The effect of virtually any control action can be assessed based on a single eigenvalue-eigenvector calculation. In particular, the effect of active and reactive power modulation can be found as a multiplication of two or three complex numbers. The method is illustrated in an example for a large power system when applied to the control design for an HVDC-link.

  6. Attitude control of large solar power satellites

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1978-01-01

    Satellite power systems are a promising future source of electrical energy. However, the very large size solar power satellites (relative to contemporary spacecraft) requires investigation of the resulting attitude control problems and of appropriate control techniques. The principal effects of the large size are a great increase in sensitivity to gravity-gradient torques and a great reduction in structural bending frequencies with the attendant likelihood of undesirable control system interaction. A wide variety of control techniques are investigated to define approaches that minimize implementation penalties. These techniques include space-constructed momentum wheels, gravity-gradient stabilization, quasi-inertial free-drift modes, and various reaction control thruster types, some of which reduce the implementation penalties to a few percent of the spacecraft mass. The control system/structural dynamic interaction problem is found to have a tractable solution. Some of the results can be applied to other large space structure spacecraft.

  7. Stability analysis of large electric power systems

    SciTech Connect

    Elwood, D.M.

    1993-01-01

    Modern electric power systems are large and complicated, and, in many regions of the world, the generation and transmission systems are operating near their limits. Ensuring the reliable operation of the power system requires engineers to study the response of the system to various disturbances. The responses to large disturbances are examined by numerically solving the nonlinear differential-algebraic equations describing the power system. The response to small disturbances is typically studied via eigenanalysis. The Electric Power Research Institute (EPRI) recently developed the Extended Transient/Mid-term Stability Program (ETMSP) to study large disturbance stability and the Small Signal Stability Program Package (SSSP) to study small signal stability. The primary objectives of the work described in this report were to (1) explore ways of speeding up ETMSP, especially on mid-term voltage stability problems, (2) explore ways of speeding up the Multi-Area Small-Signal Stability program (MASS), one of the codes in SSSP, and (3) explore ways of increasing the size of problem that can be solved by the Cray version of MASS.

  8. Economic analysis of large solar power plants

    NASA Astrophysics Data System (ADS)

    Klaiss, Helmut; Nitsch, Joachim; Geyer, Michael

    1987-11-01

    The current status and future potential of solar-tower, parabolic-reflector/Stirling-engine, channel-collector, and photovoltaic solar power plants of capacity 10 MWe or more are discussed. Consideration is given to the geographic and technological limitations, initial investment and operating costs, presently operating facilities, market openings, and critical technological challenges controlling future expansion. Numerical data are presented in tables and graphs, and it is concluded that solar power production will soon become economically competitive. It is suggested that the channel collector, at present the most mature and cost-efficient technology, has the least potential for further improvement, and that parabolic/Stirling and photovoltaic systems are probably better suited to smaller applications than to large-scale commercial power production.

  9. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    SciTech Connect

    Kiviluoma, Juha; Holttinen, Hannele; Weir, David; Scharff, Richard; Söder, Lennart; Menemenlis, Nickie; Cutululis, Nicolaos A.; Danti Lopez, Irene; Lannoye, Eamonn; Estanqueiro, Ana; Gomez-Lazaro, Emilio; Bai, Jianhua; Wan, Yih-Huei; Milligan, Michael

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.

  10. Large Eddy Simulation of Powered Fontan Hemodynamics

    PubMed Central

    Delorme, Y.; Anupindi, K.; Kerlo, A.E.; Shetty, D.; Rodefeld, M.; Chen, J.; Frankel, S.

    2012-01-01

    Children born with univentricular heart disease typically must undergo three open heart surgeries within the first 2–3 years of life to eventually establish the Fontan circulation. In that case the single working ventricle pumps oxygenated blood to the body and blood returns to the lungs flowing passively through the Total Cavopulmonary Connection (TCPC) rather than being actively pumped by a subpulmonary ventricle. The TCPC is a direct surgical connection between the superior and inferior vena cava and the left and right pulmonary arteries. We have postulated that a mechanical pump inserted into this circulation providing a 3–5 mmHg pressure augmentation will reestablish bi-ventricular physiology serving as a bridge-to-recovery, bridge-to-transplant or destination therapy as a “biventricular Fontan” circulation. The Viscous Impeller Pump (VIP) has been proposed by our group as such an assist device. It is situated in the center of the 4-way TCPC intersection and spins pulling blood from the vena cavae and pushing it into the pulmonary arteries. We hypothesized that Large Eddy Simulation (LES) using high-order numerical methods are needed to capture unsteady powered and unpowered Fontan hemodynamics. Inclusion of a mechanical pump into the CFD further complicates matters due to the need to account for rotating machinery. In this study, we focus on predictions from an in-house high-order LES code (WenoHemo™) for unpowered and VIP-powered idealized TCPC hemodynamics with quantitative comparisons to Stereoscopic Particle Imaging Velocimetry (SPIV) measurements. Results are presented for both instantaneous flow structures and statistical data. Simulations show good qualitative and quantitative agreement with measured data. PMID:23177085

  11. Large eddy simulation of powered Fontan hemodynamics.

    PubMed

    Delorme, Y; Anupindi, K; Kerlo, A E; Shetty, D; Rodefeld, M; Chen, J; Frankel, S

    2013-01-18

    Children born with univentricular heart disease typically must undergo three open heart surgeries within the first 2-3 years of life to eventually establish the Fontan circulation. In that case the single working ventricle pumps oxygenated blood to the body and blood returns to the lungs flowing passively through the Total Cavopulmonary Connection (TCPC) rather than being actively pumped by a subpulmonary ventricle. The TCPC is a direct surgical connection between the superior and inferior vena cava and the left and right pulmonary arteries. We have postulated that a mechanical pump inserted into this circulation providing a 3-5 mmHg pressure augmentation will reestablish bi-ventricular physiology serving as a bridge-to-recovery, bridge-to-transplant or destination therapy as a "biventricular Fontan" circulation. The Viscous Impeller Pump (VIP) has been proposed by our group as such an assist device. It is situated in the center of the 4-way TCPC intersection and spins pulling blood from the vena cavae and pushing it into the pulmonary arteries. We hypothesized that Large Eddy Simulation (LES) using high-order numerical methods are needed to capture unsteady powered and unpowered Fontan hemodynamics. Inclusion of a mechanical pump into the CFD further complicates matters due to the need to account for rotating machinery. In this study, we focus on predictions from an in-house high-order LES code (WenoHemo(TM)) for unpowered and VIP-powered idealized TCPC hemodynamics with quantitative comparisons to Stereoscopic Particle Imaging Velocimetry (SPIV) measurements. Results are presented for both instantaneous flow structures and statistical data. Simulations show good qualitative and quantitative agreement with measured data.

  12. 76 FR 54790 - Large Power Transformers From Korea

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... COMMISSION Large Power Transformers From Korea Determination On the basis of the record \\1\\ developed in the... Korea of large power transformers, provided for in subheadings 8504.23.00 and 8504.90.95 of the... of large power transformers from Korea. Accordingly, effective July 14, 2011, the...

  13. 77 FR 52758 - Large Power Transformers From Korea

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... COMMISSION Large Power Transformers From Korea Determination On the basis of the record \\1\\ developed in the... the United States is materially injured, by reason of imports from Korea of large power transformers... power transformers from Korea were being sold at LTFV within the meaning of section 733(b) of the...

  14. High power/large area PV systems

    NASA Technical Reports Server (NTRS)

    Wise, Joseph; Baraona, Cosmo

    1987-01-01

    The major photovoltaic power system technology drivers for a wide variety of mission types were ranked. Each technology driver was ranked on a scale of high, medium, or low in terms of importance to each particular mission type. The rankings were then compiled to determine the overall importance of each driver over the entire range of space missions. In each case cost was ranked the highest.

  15. Stowable large area solar power module

    SciTech Connect

    Hanak, J.J.

    1987-12-15

    A stowable, deployable large area solar module is described comprising: discrete, interconnected, flexible, large area solar panels; hinge means operatively disposed on the panels so as to provide for the relative planar displacement of the folded panels of the module when the panels are folded in overlying sandwiched relationship; the hinge means also operatively disposed so as to provide for the folded panels to be rolled into a stowable, substantially cylindrical configuration. The hinge means comprise: hinge knuckles associated with at least one edge of each large area panel, each of the knuckles including a passage therethrough adapted to receive pintle means, the knuckles of adjacent panels disposed in a spaced apart, generally coplanar, interdigitating relationship; and, flexible pintle means disposed so as to sequentially pass through the interdigitating knuckles, whereby the spaced apart knuckles allow for a degree of planar displacement of adjoining large area panels relative to one another, as well as allowing for the folding of the panels in a sandwiched relationship and the flexible pintle means allows for the panels to be rolled into the substantially cylindrical configuration.

  16. Equivalencing the Collector System of a Large Wind Power Plant

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hocheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

    2006-01-01

    As the size and number of wind power plants (also called wind farms) increases, power system planners will need to study their impact on the power system in more detail. As the level of wind power penetration into the grid increases, the transmission system integration requirements will become more critical [1-2]. A very large wind power plant may contain hundreds of megawatt-size wind turbines. These turbines are interconnected by an intricate collector system. While the impact of individual turbines on the larger power system network is minimal, collectively, wind turbines can have a significant impact on the power systems during a severe disturbance such as a nearby fault. Since it is not practical to represent all individual wind turbines to conduct simulations, a simplified equivalent representation is required. This paper focuses on our effort to develop an equivalent representation of a wind power plant collector system for power system planning studies. The layout of the wind power plant, the size and type of conductors used, and the method of delivery (overhead or buried cables) all influence the performance of the collector system inside the wind power plant. Our effort to develop an equivalent representation of the collector system for wind power plants is an attempt to simplify power system modeling for future developments or planned expansions of wind power plants. Although we use a specific large wind power plant as a case study, the concept is applicable for any type of wind power plant.

  17. EPA RE-Powering Mapper Large Scale

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. EPA developed national level site screening criteria in partnership with the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) for wind, solar, biomass, and geothermal facilities. While the screening criteria demonstrate the potential to reuse contaminated land for renewable energy facilities, the criteria and data are neither designed to identify the best sites for developing renewable energy nor all-inclusive. Therefore, more detailed, site-specific analysis is necessary to identify or prioritize the best sites for developing renewable energy facilities based on the technical and economic potential. Please note that these sites were only pre-screened for renewable energy potential. The sites were not evaluated for land use constraints or current on the ground conditions. Additional research and site-specific analysis are needed to verify viability for renewable energy potential at a given site.

  18. Historically Large Geomagnetic Storms and Potential Electric Power Grid Impacts

    NASA Astrophysics Data System (ADS)

    Kappenman, J. G.

    2004-05-01

    While recent work has been done to examine the possible Dst Intensity of historically large geomagnetic storms, the impacts caused to modern day electric power grids from these storms occurs due to rapid rate-of-change of regional geomagnetic fields which in most cases are driven by large ionospheric electrojet current intensifications. These temporally and spatially dynamic disturbance morphologies are not well-characterized by Dst or other broad geomagnetic storm indices. For estimates of storm intensity that correctly scale the threat potential to electric power grids, it is necessary to describe the rate-of-change of geomagnetic field. The rate-of-change of the geomagnetic field (dB/dt usually measured in nT/min) creates at ground level a geoelectric field that causes the flow of geomagnetically-induced currents (GIC) through ground connection points in electric power grids. Therefore in general, the larger the dB/dt, the larger the resulting geo-electric field and GIC in exposed power grid infrastructures and the greater the operational impact these induced currents will have on the power grid. Both extensive modeling analysis and recent operational experience suggests that power grids are becoming more vulnerable to geomagnetic storms as they grow in size and complexity. Also, large power grid blackouts have occurred at relatively low geomagnetic storm intensities. For example, the regional disturbance intensity that triggered the Hydro Quebec collapse during the March 13, 1989 Superstorm only reached an intensity of 479 nT/min. Large numbers of power system impacts in the United States were also observed for intensities that ranged from 300 to 600 nT/min during this storm. Yet both recent and historical data indicate that storms with disturbance levels that range from 2000 nT/min to as much ~5000 nT/min may be possible over extensive regions at latitudes of concern for large continental power grids across North America and Europe. Large GIC have also been

  19. Power suppression at large scales in string inflation

    SciTech Connect

    Cicoli, Michele; Downes, Sean; Dutta, Bhaskar E-mail: sddownes@physics.tamu.edu

    2013-12-01

    We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflation is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.

  20. ElGENANALYSlS OF LARGE ELECTRIC POWER SYSTEMS

    SciTech Connect

    Elwood, D. M.

    1991-02-01

    Modern electric power systems are large and complicated, and, in many regions, the generation and transmission systems are operating near their limits. Eigenanalysis is one of the tools used to analyze the behavior of these systems. Standard eigenvalue methods require that simplified models be used for these analyses; however, these simplified models do not adequately model all of the characteristics of large power systems. Thus, new eigenanalysis methods that can analyze detailed power system models are required. The primary objectives of the work described in this report were I) to determine the availability of eigenanalysis algorithms that are better than methods currently being applied and that could be used an large power systems and 2) to determine if vector supercomputers could be used to significantly increase the size of power systems that can be analyzed by a standard power system eigenanalysis code. At the request of the Bonneville Power Administration, the Pacific Northwest Laboratory (PNL) conducted a literature review of methods currently used for the eigenanalysis of large electric power systems, as well as of general eigenanalysis algorithms that are applicable to large power systems. PNL found that a number of methods are currently being used for the this purpose, and all seem to work fairly well. Furthermore, most of the general eigenanalysis techniques that are applicable to power systems have been tried on these systems, and most seem to work fairly well. One of these techniques, a variation of the Arnoldi method, has been incorporated into a standard power system eigenanalysis package. Overall, it appears that the general purpose eigenanalysis methods are more versatile than most of the other methods that have been used for power systems eigenanalysis. In addition, they are generally easier to use. For some problems, however, it appears that some of the other eigenanalysis methods may be better. Power systems eigenanalysis requires the

  1. Design, construction and evaluation of two large photovoltaic power systems

    SciTech Connect

    Solman, F. J.; Nichols, B. E.

    1980-01-01

    A description and comparison of two large photovoltaic electric power systems is presented. The smaller system is designed for economic viability in the near future and provides 70 to 90 percent of the electric requirements for its prime load, a daytime AM radio station. The second system is a stand-alone power system suitable for a remote residential and light industrial community. No electric utility grid is present at this location so the management of a backup Diesel generator is also required.

  2. Reactor Power for Large Displacement Autonomous Underwater Vehicles

    SciTech Connect

    McClure, Patrick Ray; Reid, Robert Stowers; Poston, David Irvin; Dasari, Venkateswara Rao

    2016-08-24

    This is a PentaChart on reactor power for large displacement autonomous underwater vehicles. Currently AUVs use batteries or combinations of batteries and fuel cells for power. Battery/fuel cell technology is limited by duration. Batteries and cell fuels are a good match for some missions, but other missions could benefit greatly by a longer duration. The goal is the following: to design nuclear systems to power an AUV and meet design constraints including non-proliferation issues, power level, size constraints, and power conversion limitations. The action plan is to continue development of a range of systems for terrestrial systems and focus on a system for Titan Moon as alternative to Pu-238 for NASA.

  3. Controllable Bidirectional dc Power Sources For Large Loads

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1995-01-01

    System redesigned for greater efficiency, durability, and controllability. Modern electronically controlled dc power sources proposed to supply currents to six electromagnets used to position aerodynamic test model in wind tunnel. Six-phase bridge rectifier supplies load with large current at voltage of commanded magnitude and polarity. Current-feedback circuit includes current-limiting feature giving some protection against overload.

  4. Rotor dynamic considerations for large wind power generator systems

    NASA Technical Reports Server (NTRS)

    Ormiston, R. A.

    1973-01-01

    Successful large, reliable, low maintenance wind turbines must be designed with full consideration for minimizing dynamic response to aerodynamic, inertial, and gravitational forces. Much of existing helicopter rotor technology is applicable to this problem. Compared with helicopter rotors, large wind turbines are likely to be relatively less flexible with higher dimensionless natural frequencies. For very large wind turbines, low power output per unit weight and stresses due to gravitational forces are limiting factors. The need to reduce rotor complexity to a minimum favors the use of cantilevered (hingeless) rotor configurations where stresses are relieved by elastic deformations.

  5. Generalized slow roll approximation for large power spectrum features

    SciTech Connect

    Dvorkin, Cora; Hu, Wayne

    2010-01-15

    We develop a variant of the generalized slow roll approach for calculating the curvature power spectrum that is well suited for order unity deviations in power caused by sharp features in the inflaton potential. As an example, we show that predictions for a step function potential, which has been proposed to explain order unity glitches in the cosmic microwave background temperature power spectrum at multipoles l=20-40, are accurate at the percent level. Our analysis shows that to good approximation there is a single source function that is responsible for observable features and that this function is simply related to the local slope and curvature of the inflaton potential. These properties should make the generalized slow roll approximation useful for inflation-model-independent studies of features, both large and small, in the observable power spectra.

  6. Research on unit commitment with large-scale wind power connected power system

    NASA Astrophysics Data System (ADS)

    Jiao, Ran; Zhang, Baoqun; Chi, Zhongjun; Gong, Cheng; Ma, Longfei; Yang, Bing

    2017-01-01

    Large-scale integration of wind power generators into power grid brings severe challenges to power system economic dispatch due to its stochastic volatility. Unit commitment including wind farm is analyzed from the two parts of modeling and solving methods. The structures and characteristics can be summarized after classification has been done according to different objective function and constraints. Finally, the issues to be solved and possible directions of research and development in the future are discussed, which can adapt to the requirements of the electricity market, energy-saving power generation dispatching and smart grid, even providing reference for research and practice of researchers and workers in this field.

  7. PEP-II Large Power Supplies Rebuild Program at SLAC

    SciTech Connect

    Bellomo, P.; Lipari, J.J.; de Lira, A.C.; Rafael, F.S.; /SLAC

    2005-05-17

    Seven large power supplies (LGPS) with output ratings from 72kW to 270kW power PEP-II quad magnets in the electron-positron collider region. These supplies have posed serious maintenance and reliability problems since they were installed in 1997, resulting in loss of accelerator availability. A redesign/rebuild program was undertaken by the SLAC Power Conversion Department. During the 2004 summer shutdown all the control circuits in these supplies were redesigned and replaced. A new PWM control board, programmable logic controller, and touch panel have been installed to improve LGPS reliability, and to make troubleshooting easier. In this paper we present the details of this rebuilding program and results.

  8. High power microwave generation from a large orbit gyrotron

    SciTech Connect

    Lawson, W.; Destler, W.W.; Striffler, C.D.

    1985-10-01

    A study of the production of high power microwave radiation from a large orbit gyrotron in azimuthally periodic boundary systems has been conducted. Linear growth rates have been calculated for the 2 modes of magnetron-like hole-and-slot resonator (HASR) and vane resonator (VR) systems using a general growth rate formalism. The experiment involves the interaction of a 2.3 MeV, 1-2 kA, 5 ns rotating electron layer with the HASR and VR structures. Maximum power levels are about 300 MW in X band from a 10 slot HASR system; about 500 MW in Ku band from a 20 slot VR system; and about 15 MW in K band from about 30 slot systems. The peak efficiency is about 15%. The radiation characteristics are in reasonably good agreement with the theoretical predictions. The reduced power levels for about 30 slot systems are partially attributed to radial mode competition.

  9. Improvement of Unbalanced Load Flow Program for Large Power Systems

    NASA Astrophysics Data System (ADS)

    Imai, Shinichi; Suzuki, Haruhiko; Iba, Kenji; Fujiwara, Shuhei

    The idea of unbalanced power flow calculation was proposed many years ago. At that time, however, the needs for such techniques was not an argent issue. But modern power system networks are comprised of long untransposed transmission lines. Therefore, for some kind of analysis, it is now almost impossible to treat a system as though it were a symmetrical network. The aims of most previous studies were oriented to solve voltage/current imbalance in local or small system because local imbalance was a serious concern. This is still an important issue, but more recently our needs have become concentrated on practical bulk power systems, since principal EHV lines are entirely untransposed. Following such a background, we have developed a practical unbalanced load flow program. This program was developed for steady state analysis of large scale of practical networks under many possible unbalanced conditions.

  10. Power-law time distribution of large earthquakes.

    PubMed

    Mega, Mirko S; Allegrini, Paolo; Grigolini, Paolo; Latora, Vito; Palatella, Luigi; Rapisarda, Andrea; Vinciguerra, Sergio

    2003-05-09

    We study the statistical properties of time distribution of seismicity in California by means of a new method of analysis, the diffusion entropy. We find that the distribution of time intervals between a large earthquake (the main shock of a given seismic sequence) and the next one does not obey Poisson statistics, as assumed by the current models. We prove that this distribution is an inverse power law with an exponent mu=2.06+/-0.01. We propose the long-range model, reproducing the main properties of the diffusion entropy and describing the seismic triggering mechanisms induced by large earthquakes.

  11. Large space systems technology electronics: Data and power distribution

    NASA Astrophysics Data System (ADS)

    Dunbar, W. G.

    1980-02-01

    The development of hardware technology and manufacturing techniques required to meet space platform and antenna system needs in the 1980s is discussed. Preliminary designs for manned and automatically assembled space power system cables, connectors, and grounding and bonding materials and techniques are reviewed. Connector concepts, grounding design requirements, and bonding requirements are discussed. The problem of particulate debris contamination for large structure spacecraft is addressed.

  12. Large space systems technology electronics: Data and power distribution

    NASA Technical Reports Server (NTRS)

    Dunbar, W. G.

    1980-01-01

    The development of hardware technology and manufacturing techniques required to meet space platform and antenna system needs in the 1980s is discussed. Preliminary designs for manned and automatically assembled space power system cables, connectors, and grounding and bonding materials and techniques are reviewed. Connector concepts, grounding design requirements, and bonding requirements are discussed. The problem of particulate debris contamination for large structure spacecraft is addressed.

  13. Large-Scale Data Challenges in Future Power Grids

    SciTech Connect

    Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

    2013-03-25

    This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

  14. Development of large wind energy power generation system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The background and development of an experimental 100 kW wind-energy generation system are described, and the results of current field tests are presented. The experimental wind turbine is a two-bladed down-wind horizontal axis propeller type with a 29.4 m diameter rotor and a tower 28 m in height. The plant was completed in March, 1983, and has been undergoing trouble-free tests since then. The present program calls for field tests during two years from fiscal 1983 to 1984. The development of technologies relating to the linkage and operation of wind-energy power generation system networks is planned along with the acquisition of basic data for the development of a large-scale wind energy power generation system.

  15. Probabilistic voltage security for large scale power systems

    NASA Astrophysics Data System (ADS)

    Poshtan, Majid

    2000-10-01

    Stability is one of the most important problems in power system operation and control. Voltage instability is one type of power system instability that occurs when the system operates close to its limits. Progressive voltage instability, which is also referred to as Voltage Collapse, results in loss of voltage at certain nodes (buses) in the system. Voltage collapse, a slowly occurring phenomena leading to loss of voltage at specific parts of an electric utility, has been observed in the USA, Europe, Japan, Canada, and other places in the world during the past decade. Voltage collapse typically occurs on power systems which are heavily loaded, faulted and/or have reactive power shortages. There are several power system's parameter changes known to contribute to voltage collapse. The most important contributors to voltage instability are: increasing load, generators or SVC reaching reactive power limits, action of tap-changing transformers, line tripping, and generator outages. The differences between voltage collapse and lack of classical transient stability is that in voltage collapse we focus on loads and voltage magnitudes whereas in classical transient stability the focus is on generators' dynamics and voltage angles. Also voltage collapse often includes longer time scale dynamics and includes the effects of continuous changes such as load increases in addition to discrete events such as line outages. Two conventional methods to analyze voltage collapse are P-V and V-Q curves, and modal analyses. Both methods are deterministic and do not encounter any probability for the contingencies causing the voltage collapse. The purpose of this investigation is to identify probabilistic indices to assess the steady-state voltage stability by considering random failures and their dependency in a large-scale power system. The research mainly continues the previous research completed at Tulane University by Dr. J. Bian and Professor P. Rastgoufard and will complement it by

  16. Power conditioning for large dc motors for space flight applications

    NASA Technical Reports Server (NTRS)

    Veatch, Martin S.; Anderson, Paul M.; Eason, Douglas J.; Landis, David M.

    1988-01-01

    The design and performance of a prototype power-conditioning system for use with large brushless dc motors on NASA space missions are discussed in detail and illustrated with extensive diagrams, drawings, and graphs. The 5-kW 8-phase parallel module evaluated here would be suitable for use in the Space Shuttle Orbiter cargo bay. A current-balancing magnetic assembly with low distributed inductance permits high-speed current switching from a low-voltage bus as well as current balancing between parallel MOSFETs.

  17. 77 FR 53177 - Large Power Transformers From the Republic of Korea: Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... International Trade Administration Large Power Transformers From the Republic of Korea: Antidumping Duty Order... antidumping duty order on large power transformers from the Republic of Korea (Korea). FOR FURTHER INFORMATION... in the antidumping duty investigation of large power transformers from Korea. See Large...

  18. Ferroelectric opening switches for large-scale pulsed power drivers.

    SciTech Connect

    Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

    2009-11-01

    Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of

  19. High-power picosecond laser with 400W average power for large scale applications

    NASA Astrophysics Data System (ADS)

    Du, Keming; Brüning, Stephan; Gillner, Arnold

    2012-03-01

    Laser processing is generally known for low thermal influence, precise energy processing and the possibility to ablate every type of material independent on hardness and vaporisation temperature. The use of ultra-short pulsed lasers offers new possibilities in the manufacturing of high end products with extra high processing qualities. For achieving a sufficient and economical processing speed, high average power is needed. To scale the power for industrial uses the picosecond laser system has been developed, which consists of a seeder, a preamplifier and an end amplifier. With the oscillator/amplifier system more than 400W average power and maximum pulse energy 1mJ was obtained. For study of high speed processing of large embossing metal roller two different ps laser systems have been integrated into a cylinder engraving machine. One of the ps lasers has an average power of 80W while the other has 300W. With this high power ps laser fluencies of up to 30 J/cm2 at pulse repetition rates in the multi MHz range have been achieved. Different materials (Cu, Ni, Al, steel) have been explored for parameters like ablation rate per pulse, ablation geometry, surface roughness, influence of pulse overlap and number of loops. An enhanced ablation quality and an effective ablation rate of 4mm3/min have been achieved by using different scanning systems and an optimized processing strategy. The max. achieved volume rate is 20mm3/min.

  20. Satellite observations of large power plants and megacities from GOSAT

    NASA Astrophysics Data System (ADS)

    Oda, Tom; Maksyutov, Shamil; Boesch, Hartmut; Butz, Andre; Ganshin, Alexander; Guerlet, Sandrine; Parker, Robert; O'Dell, Chris; Oshchepkov, Sergey; Yoshida, Yukio; Zhuravlev, Ruslan; Yokota, Tatsuya

    2013-04-01

    Fossil fuel CO2 emissions are a major source of CO2 to the global carbon cycle over decadal time scales and international efforts to curb those missions are required for mitigating climate change. Although emissions from nations are estimated and reported to help monitor their compliance of emission reductions, we still lack an objective method to monitor emissions directly. Future carbon-observing space missions are thus expected to provide an independent tool for directly measuring emissions. We proposed and have implemented satellite observations specifically over intense large point sources (LPS), including large fossil-fueled power plants and megacities, worldwide (N > 300) using the Japanese Greenhouse Gases Observing SATelllite (GOSAT). Our target LPS sites have been occasionally included in the observation schedule of GOSAT and the measurements are made using the target observation mode. This proposal was officially accepted by the GOSAT project office and we have attempted to use these data to detect signatures of man-made greenhouse gas emissions. We have submitted our locations of interest on a monthly basis two month prior to observation. We calculated the X_CO2 concentration enhancement due to the LPS emissions. We analyzed GOSAT X_CO2 retrievals from four research groups (five products total): the National Institute for Environmental Studies (NIES) (both the NIES standard Level 2 and NIES-PPDF products), the NASA Atmospheric CO2 from Space (ACOS) team (ACOS Level 2 product), the Netherlands Institute for Space Research (SRON)/Karlsruhe Institute of Technology, Germany (RemoTeC), and the University of Leicester, UK (Full-Physics CO2 retrieval dataset). Although we obtained fewer retrieved soundings relative to what we requested (probably due to geophysical difficulties in the retrievals), we did obtain statistically significant enhancements at some LPS sites where weather condition were ideal for viewing. We also implemented simulations of enhanced X

  1. 76 FR 76146 - Large Power Transformers From the Republic of Korea: Postponement of Preliminary Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... International Trade Administration Large Power Transformers From the Republic of Korea: Postponement of... transformers from the Republic of Korea (Korea). See Large Power Transformers from the Republic of Korea... petitioners to the Department, entitled ``Large Power Transformers from the Republic of Korea--...

  2. Short-Term Power Fluctuations of Large Wind Power Plants: Preprint

    SciTech Connect

    Wan, Y.; Bucaneg, D.

    2002-01-01

    With electric utilities and other power providers showing increased interest in wind power and with growing penetration of wind capacity into the market, questions about how wind power fluctuations affect power system operations and about wind power's ancillary services requirements are receiving lots of attention. The project's purpose is to acquire actual, long-term wind power output data for analyzing wind power fluctuations, frequency distribution of the changes, the effects of spatial diversity, and wind power ancillary services.

  3. Security, protection, and control of power systems with large-scale wind power penetration

    NASA Astrophysics Data System (ADS)

    Acharya, Naresh

    As the number of wind generation facilities in the utility system is fast increasing, many issues associated with their integration into the power system are beginning to emerge. Of the various issues, this dissertation deals with the development of new concepts and computational methods to handle the transmission issues and voltage issues caused by large-scale integration of wind turbines. This dissertation also formulates a probabilistic framework for the steady-state security assessment of wind power incorporating the forecast uncertainty and correlation. Transmission issues are mainly related to the overloading of transmission lines, when all the wind power generated cannot be delivered in full due to prior outage conditions. To deal with this problem, a method to curtail the wind turbine outputs through Energy Management System facilities in the on-line operational environment is proposed. The proposed method, which is based on linear optimization, sends the calculated control signals via the Supervisory Control and Data Acquisition system to wind farm controllers. The necessary ramping of the wind farm outputs is implemented either by the appropriate blade pitch angle control at the turbine level or by switching a certain number of turbines. The curtailment strategy is tested with an equivalent system model of MidAmerican Energy Company. The results show that the line overload in high wind areas can be alleviated by controlling the outputs of the wind farms step-by-step over an allowable period of time. A low voltage event during a system fault can cause a large number of wind turbines to trip, depending on voltages at the wind turbine terminals during the fault and the under-voltage protection setting of wind turbines. As a result, an N-1 contingency may evolve into an N-(K+1) contingency, where K is the number of wind farms tripped due to low voltage conditions. Losing a large amount of wind power following a line contingency might lead to system

  4. Medium power voltage multipliers with a large number of stages

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T.; Myers, I. T.

    1978-01-01

    Voltage multiplier techniques are extended at medium power levels to larger multiplication ratios. A series of dc-dc converters were built, with from 20 to 45 stages and with power levels up to 100 watts. Maximum output voltages were about 10,000 volts.

  5. Large CFB power plant design and operating experience: Texas-New Mexico Power Company 150 MWe (net) CFB power plant

    SciTech Connect

    Riley, K.; Cleve, K.; Tanca, M.

    1995-12-31

    The first unit of the TNP One CFB power plant was successfully put on line by Texas-New Mexico Power Company (TNP) in Robertson County, Texas, US in 1990. Unit 2 came on line one year later. This grassroots plant fires Texas lignite. The two identical CFB units were each designed for 150 MWe net electrical generation. The units have operated at 155 MWe net for extended periods of time without modifications. The boilers have additional capacity but are limited by the balance of plant. The TNP One plant was awarded the Power Plant of the Year Award by Power magazine in 1991 advancing CFB technology in large generating facilities. The plant was designed for maximum fuel flexibility with guaranteed full load operation on either Texas lignite, western coal or natural gas. The plant has fired the following fuels, to date: lignite (base fuel), natural gas (0--100% with lignite), delayed petroleum coke (0--100% with lignite), plant generated waste oils (small amounts), oil filter fluff (small amounts) and a waste product of pelletized reflective tape. Future testing is planned to test burn shredded tires. While firing all fuels, the plant could attain full load and meet all environmentally permitted emissions without any boiler modifications or compromises in boiler efficiency. This high flexibility of the plant can be attributed to the two large fluidized bed heat exchangers (FBHEs) for steam temperature and combustor temperature control. The facility is a mine mouth operation burning the local Texas lignite. The delayed petroleum cokes fired originated from various supply sources from the Texas/Louisiana area.

  6. 76 FR 49439 - Large Power Transformers From the Republic of Korea: Initiation of Antidumping Duty Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... International Trade Administration Large Power Transformers From the Republic of Korea: Initiation of... power transformers (``large power transformers'') from the Republic of Korea (``Korea''), filed in... Transformers from the Republic of Korea, filed on July 14, 2011 (``the Petition''). On July 20, 2011,...

  7. Design considerations for large space electric power systems

    NASA Technical Reports Server (NTRS)

    Renz, D. D.; Finke, R. C.; Stevens, N. J.; Triner, J. E.; Hansen, I. G.

    1983-01-01

    As power levels of spacecraft rise to the 50 to 100 kW range, it becomes apparent that low voltage (28 V) dc power distribution and management systems will not operate efficiently at these higher power levels. The concept of transforming a solar array voltage at 150 V dc into a 1000 V ac distribution system operating at 20 kHz is examined. The transformation is accomplished with series-resonant inverter by using a rotary transformer to isolate the solar array from the spacecraft. The power can then be distributed in any desired method such as three phase delta to delta. The distribution voltage can be easily transformed to any desired load voltage and operating frequency. The reasons for the voltage limitations on the solar array due to plasma interactions and the many advantages of a high voltage, high frequency at distribution system are discussed.

  8. Large scale power suppression in a multifield landscape

    SciTech Connect

    Blanco-Pillado, Jose J.; Frazer, Jonathan; Sousa, Kepa

    2015-08-01

    Power suppression of the cosmic microwave background on the largest observable scales could provide valuable clues about the particle physics underlying inflation. Here we consider the prospect of power suppression in the context of the multifield landscape. Based on the assumption that our observable universe emerges from a tunnelling event and that the relevant features originate purely from inflationary dynamics, we find that the power spectrum not only contains information on single-field dynamics, but also places strong constraints on all scalar fields present in the theory. We find that the simplest single-field models giving rise to power suppression do not generalise to multifield models in a straightforward way, as the resulting superhorizon evolution of the curvature perturbation tends to erase any power suppression present at horizon crossing. On the other hand, multifield effects do present a means of generating power suppression which to our knowledge has so far not been considered. We propose a mechanism to illustrate this, which we dub flume inflation.

  9. High voltage-high power components for large space power distribution systems

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1984-01-01

    Space power components including a family of bipolar power switching transistors, fast switching power diodes, heat pipe cooled high frequency transformers and inductors, high frequency conduction cooled transformers, high power-high frequency capacitors, remote power controllers and rotary power transfer devices were developed. Many of these components such as the power switching transistors, power diodes and the high frequency capacitor are commercially available. All the other components were developed to the prototype level. The dc/dc series resonant converters were built to the 25 kW level.

  10. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  11. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  12. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  13. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  14. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  15. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  16. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  17. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  18. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  19. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  20. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  1. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  2. 76 FR 65212 - Caterpillar, Inc., Large Power Systems Division, Including On-Site Leased Workers From Gray...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... Employment and Training Administration Caterpillar, Inc., Large Power Systems Division, Including On- Site... Adjustment Assistance on November 2, 2009, applicable to Caterpillar, Inc., Large Power Systems Division... Caterpillar, Inc., Large Power Systems Division. The Department has determined that these workers...

  3. Growth of Power-Free Languages over Large Alphabets

    NASA Astrophysics Data System (ADS)

    Shur, Arseny M.

    We study growth properties of power-free languages over finite alphabets. We consider the function α(k,β) whose values are the exponential growth rates of β-power-free languages over k-letter alphabets and clarify its asymptotic behaviour. Namely, we suggest the laws of the asymptotic behaviour of this function when k tends to infinity and prove some of them as theorems. In particular, we obtain asymptotic formulas for α(k,β) for the case β ≥ 2.

  4. Achievable flatness in a large microwave power antenna study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Achievable flatness for the microwave power transmission system antenna array was determined. Two configurations were analyzed in detail and evaluated as to their net potential misalignment. Manufacturing, joint slack, assembly, alignment and environmental aspects were considered. Approaches to each aspect were analyzed to minimize their contributions to distortions.

  5. Gated Si nanowires for large thermoelectric power factors

    SciTech Connect

    Neophytou, Neophytos; Kosina, Hans

    2014-08-18

    We investigate the effect of electrostatic gating on the thermoelectric power factor of p-type Si nanowires (NWs) of up to 20 nm in diameter in the [100], [110], and [111] crystallographic transport orientations. We use atomistic tight-binding simulations for the calculation of the NW electronic structure, coupled to linearized Boltzmann transport equation for the calculation of the thermoelectric coefficients. We show that gated NW structures can provide ∼5× larger thermoelectric power factor compared to doped channels, attributed to their high hole phonon-limited mobility, as well as gating induced bandstructure modifications which further improve mobility. Despite the fact that gating shifts the charge carriers near the NW surface, surface roughness scattering is not strong enough to degrade the transport properties of the accumulated hole layer. The highest power factor is achieved for the [111] NW, followed by the [110], and finally by the [100] NW. As the NW diameter increases, the advantage of the gated channel is reduced. We show, however, that even at 20 nm diameters (the largest ones that we were able to simulate), a ∼3× higher power factor for gated channels is observed. Our simulations suggest that the advantage of gating could still be present in NWs with diameters of up to ∼40 nm.

  6. Aging assessment of large electric motors in nuclear power plants

    SciTech Connect

    Villaran, M.; Subudhi, M.

    1996-03-01

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.

  7. Characterization and Mitigation of Resistive Losses in a Large Area Laser Power Converter

    DTIC Science & Technology

    2014-03-27

    CHARACTERIZATION AND MITIGATION OF RESISTIVE LOSSES IN A LARGE AREA LASER POWER CONVERTER THESIS Eli A. Garduño, Second Lieutenant, USAF AFIT-ENP-14...LOSSES IN A LARGE AREA LASER POWER CONVERTER THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and...DISTRIBUTION UNLIMITED. AFIT-ENP-14-M-09 CHARACTERIZATION AND MITIGATION OF RESISTIVE LOSSES IN A LARGE AREA LASER POWER CONVERTER Eli A. Garduño, BS

  8. Jet engine powers large, high-temperature wind tunnel

    NASA Technical Reports Server (NTRS)

    Benham, T. F.; Mulliken, S. R.

    1967-01-01

    Wind tunnel for large component testing uses a jet engine with afterburner to provide high temperatures /1200 degrees to 2000 degrees F/ and controlled high velocity gas. This economical wind tunnel can accommodate parts ten feet by ten feet or larger, and is a useful technique for qualitative information.

  9. Low-Power Architectures for Large Radio Astronomy Correlators

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry R.

    2011-01-01

    The architecture of a cross-correlator for a synthesis radio telescope with N greater than 1000 antennas is studied with the objective of minimizing power consumption. It is found that the optimum architecture minimizes memory operations, and this implies preference for a matrix structure over a pipeline structure and avoiding the use of memory banks as accumulation registers when sharing multiply-accumulators among baselines. A straw-man design for N = 2000 and bandwidth of 1 GHz, based on ASICs fabricated in a 90 nm CMOS process, is presented. The cross-correlator proper (excluding per-antenna processing) is estimated to consume less than 35 kW.

  10. Flashover lithium ion source development for large pulsed power accelerators

    SciTech Connect

    Bieg, K.W.; Burns, E.J.T.; Gerber, R.A.; Olsen, J.N.; Lamppa, K.P.

    1985-01-01

    PBFA II, a light-ion pulsed power accelerator intended for inertial confinement fusion (ICF) applications, is currently under construction at Sandia National Laboratories. The accelerator will deliver a 30 MV, 5 MA lithium beam from an Applied-B diode to drive an ICF target. The ion source for this diode will require a thin (approx.1 mm), dense (10 W cm S) anode plasma layer of singly-ionized lithium over an anode area of 10T cmS. One type of source being investigated is the flashover ion source, which generates the anode plasma via vacuum flashover of a lithium-bearing dielectric material. Experiments with a LiF flashover source on the 0.03 TW Nereus accelerator have shown that contaminant ions account for as much as 70% of the extracted ion beam current. To overcome this, we have explored in-diode cleaning of the externally-prepared anode surface by glow discharge cleaning and vacuum baking as well as in-diode preparation of the anode surface by vacuum evaporation of the lithium dielectric. Lithium-bearing dielectric materials which have been investigated include LiF, LiI, LiNO3, and Li3N. These techniques have resulted in a two- to three-fold improvement in the extracted lithium ion purity. As a result, a glow-discharge cleaned LiF flashover source will be used for initial pulsed-power testing on PBFA II.

  11. Large area solar power heliostat array for OSETI

    NASA Astrophysics Data System (ADS)

    Covault, Corbin E.

    2001-08-01

    Current OSETI programs make use of optical telescopes with light collection areas on the order of 10 square meters or less. The small collection area limits the ultimate sensitivity achievable to low-intensity signals. However, solar power facilities such as the National Solar Thermal Test Facility (NSTTF) provide the potential for a much larger collecting area. The NSTTF is operated at by the Department of Energy at Sandia National Laboratories for research in solar power development and testing. The NSTTF site includes over 200 fully steerable mirrors (called heliostats) each providing 37 square meters of collecting area. This facility is currently being used at night for gamma-ray astronomy. The STACEE experiment makes use of 64 heliostats to detect nanosecond flashes of optical Cherenkov light associated with gamma-ray air showers from the top of the atmosphere. The STACEE experiment has been in operation since 1998 and has already detected gamma-rays from the Crab Nebula. In principle, the STACEE experiment can be operated with minor modifications to detect OSETI signals on the ground at a photon density of less than two optical photons per square meter per pulse. We summarize performance results from the STACEE experiment, and we discuss the sensitivity of a hypothetical future STACEE-OSETI experiment with particular attention to potential sources of background.

  12. A logistics model for large space power systems

    NASA Astrophysics Data System (ADS)

    Koelle, H. H.

    Space Power Systems (SPS) have to overcome two hurdles: (1) to find an attractive design, manufacturing and assembly concept and (2) to have available a space transportation system that can provide economical logistic support during the construction and operational phases. An initial system feasibility study, some five years ago, was based on a reference system that used terrestrial resources only and was based partially on electric propulsion systems. The conclusion was: it is feasible but not yet economically competitive with other options. This study is based on terrestrial and extraterrestrial resources and on chemical (LH 2/LOX) propulsion systems. These engines are available from the Space Shuttle production line and require small changes only. Other so-called advanced propulsion systems investigated did not prove economically superior if lunar LOX is available! We assume that a Shuttle derived Heavy Lift Launch Vehicle (HLLV) will become available around the turn of the century and that this will be used to establish a research base on the lunar surface. This lunar base has the potential to grow into a lunar factory producing LOX and construction materials for supporting among other projects also the construction of space power systems in geostationary orbit. A model was developed to simulate the logistics support of such an operation for a 50-year life cycle. After 50 years 111 SPS units with 5 GW each and an availability of 90% will produce 100 × 5 = 500 GW. The model comprises 60 equations and requires 29 assumptions of the parameter involved. 60-state variables calculated with the 60 equations mentioned above are given on an annual basis and as averages for the 50-year life cycle. Recycling of defective parts in geostationary orbit is one of the features of the model. The state-of-the-art with respect to SPS technology is introduced as a variable Mg mass/MW electric power delivered. If the space manufacturing facility, a maintenance and repair facility

  13. Optimization of hybrid power system composed of SMES and flywheel MG for large pulsed load

    NASA Astrophysics Data System (ADS)

    Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2008-09-01

    A superconducting magnetic storage system (SMES) has some advantages such as rapid large power response and high storage efficiency which are superior to other energy storage systems. A flywheel motor generator (FWMG) has large scaled capacity and high reliability, and hence is broadly utilized for a large pulsed load, while it has comparatively low storage efficiency due to high mechanical loss compared with SMES. A fusion power plant such as International Thermo-Nuclear Experimental Reactor (ITER) requires a large and long pulsed load which causes a frequency deviation in a utility power system. In order to keep the frequency within an allowable deviation, we propose a hybrid power system for the pulsed load, which equips the SMES and the FWMG with the utility power system. We evaluate installation cost and frequency control performance of three power systems combined with energy storage devices; (i) SMES with the utility power, (ii) FWMG with the utility power, (iii) both SMES and FWMG with the utility power. The first power system has excellent frequency power control performance but its installation cost is high. The second system has inferior frequency control performance but its installation cost is the lowest. The third system has good frequency control performance and its installation cost is attained lower than the first power system by adjusting the ratio between SMES and FWMG.

  14. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  15. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  16. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  17. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  18. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  19. Flashover lithium ion source development for large pulsed power accelerators

    SciTech Connect

    Bieg, K.W.; Burns, E.J.T.; Gerber, R.A.; Olsen, J.N.; Lamppa, K.P.

    1986-05-01

    The Particle Beam Fusion Accelerator II (PBFA II), a light-ion pulsed power accelerator intended for inertial confinement fusion (ICF) applications, is currently under construction at Sandia National Laboratories. The accelerator will deliver a 30 MV, 5 MA lithium beam from an Applied-B diode to drive an ICF target. The ion source for this diode will require a thin (approx.1 mm), dense (10/sup 16/ cm/sup -2/) anode plasma layer of singly ionized lithium over an anode area of 10/sup 3/ cm/sup 2/. One type of source being investigated is the flashover ion source, which generates the anode plasma via vacuum flashover of a lithium-bearing dielectric material. Experiments with a LiF flashover source on the 0.03 TW Nereus accelerator have shown that contaminant ions account for as much as 70% of the extracted ion beam current. To overcome this, we have explored in-diode cleaning of the externally prepared anode surface by glow discharge cleaning and vacuum baking as well as in-diode preparation of the anode surface by vacuum evaporation of the lithium dielectric. Lithium-bearing dielectric materials which have been investigated include LiF, LiI, LiNO/sub 3/, and Li/sub 3/N. These techniques have resulted in a two to threefold improvement in the extracted lithium ion purity. As a result, a glow-discharge cleaned LiF flashover source will be used for initial pulsed-power testing on PBFA II.

  20. Development of an analytical tool to study power quality of AC power systems for large spacecraft

    NASA Technical Reports Server (NTRS)

    Kraft, L. Alan; Kankam, M. David

    1991-01-01

    A harmonic power flow program applicable to space power systems with sources of harmonic distortion is described. The algorithm is a modification of the Electric Power Research Institute's HARMFLO program which assumes a three phase, balanced, AC system with loads of harmonic distortion. The modified power flow program can be used with single phase, AC systems. Early results indicate that the required modifications and the models developed are quite adequate for the analysis of a 20 kHz testbed built by General Dynamics Corporation. This is demonstrated by the acceptable correlation of present results with published data. Although the results are not exact, the discrepancies are relatively small.

  1. Development of an analytical tool to study power quality of ac power systems for large spacecraft

    NASA Technical Reports Server (NTRS)

    Kraft, L. A.; Kankam, M. D.

    1991-01-01

    A harmonic power flow program applicable to space power systems with sources of harmonic distortion is described. The algorithm is a modification of Electric Power Research Institute's HARMFLO program which assumes a three-phase, balanced, ac system with loads of harmonic distortion. The modified power flow program can be used with single phase, ac systems. Early results indicate that the required modifications and the models developed are quite adequate for the analysis of a 20-kHz testbed built by General Dynamics Corporation. This is demonstrated by the acceptable correlation of the present results with published data. Although the results are not exact, the discrepancies are relatively small.

  2. Impacts of Large Amounts of Wind Power on Design and Operation of Power Systems, Results of IEA Collaboration

    SciTech Connect

    Holttinen, H.; Meibom, P.; Orths, A.; O'Malley, M.; Ummels, B. C.; Tande, J. O.; Estanqueiro, A.; Gomez, E.; Smith, J. C.; Ela, E.

    2008-01-01

    There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. IEA WIND R and D Task 25 on 'Design and Operation of Power Systems with Large Amounts of Wind Power' produced a state-of-the-art report in October 2007, where the most relevant wind-power grid integration studies were analyzed, especially regarding methodologies and input data. This paper summarizes the results from 18 case studies, with discussion on differences in methodology as well as issues that have been identified to impact the cost of wind integration.

  3. Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid

    NASA Astrophysics Data System (ADS)

    Kuwayama, Akira

    The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.

  4. The influence of large-scale wind power on global climate

    PubMed Central

    Keith, David W.; DeCarolis, Joseph F.; Denkenberger, David C.; Lenschow, Donald H.; Malyshev, Sergey L.; Pacala, Stephen; Rasch, Philip J.

    2004-01-01

    Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO2 and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels. PMID:15536131

  5. The influence of large-scale wind power on global climate.

    PubMed

    Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J

    2004-11-16

    Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.

  6. 77 FR 42332 - Large Power Transformers From Korea; Revised Schedule for the Subject Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-18

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Large Power Transformers From Korea; Revised Schedule for the Subject Investigation AGENCY: United States International Trade Commission. ACTION: Notice. DATES: Effective Date: July 12, 2012. FOR...

  7. Next Generation Large Mode Area Fiber Technologies for High Power Fiber Laser Arrays

    DTIC Science & Technology

    2012-06-08

    REPORT Next Generation Large Mode Area Fiber Technologies for High Power Fiber Laser Arrays 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: This program...monolithically-integrated building blocks (individual laser channels) of high power beam-combined fiber laser arrays. Robust single-mode performance...of CCC fibers with core sizes of up to ~60?m has been rigorously demonstrated. Various CCC fiber based high power lasers have been also

  8. High power picosecond vortex laser based on a large-mode-area fiber amplifier.

    PubMed

    Tanaka, Yuichi; Okida, Masahito; Miyamoto, Katsuhiko; Omatsu, Takashige

    2009-08-03

    We present the production of picosecond vortex pulses from a stressed large-mode-area fiber amplifier for the first time. 8.5 W picosecond output with a peak power of approximately 12.5 kW was obtained at a pump power of 29 W. 2009 Optical Society of America.

  9. 77 FR 40857 - Large Power Transformers From the Republic of Korea: Final Determination of Sales at Less Than...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... International Trade Administration Large Power Transformers From the Republic of Korea: Final Determination of... large power transformers from the Republic of Korea (Korea) are being, or are likely to be, sold in the... determination in the antidumping duty investigation of large power transformers from Korea. See Large...

  10. Impacts of Large Amounts of Wind Power on Design and Operation of Power Systems; Results of IEA Collaboration

    SciTech Connect

    Parsons, B.; Ela, E.; Holttinen, H.; Meibom, P.; Orths, A.; O'Malley, M.; Ummels, B. C.; Tande, J.; Estanqueiro, A.; Gomez, E.; Smith, J. C.

    2008-06-01

    There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. IEA WIND R&D Task 25 on “Design and Operation of Power Systems with Large Amounts of Wind Power” produced a state-of-the-art report in October 2007, where the most relevant wind-power grid integration studies were analyzed, especially regarding methodologies and input data. This paper summarizes the results from 18 case studies, with discussion on differences in methodology as well as issues that have been identified to impact the cost of wind integration.

  11. A novel photovoltaic power system which uses a large area concentrator mirror

    NASA Technical Reports Server (NTRS)

    Arrison, Anne; Fatemi, Navid

    1987-01-01

    A preliminary analysis has been made of a novel photovoltaic power system concept. The system is composed of a small area, dense photovoltaic array, a large area solar concentrator, and a battery system for energy storage. The feasibility of such a system is assessed for space power applications. The orbital efficiency, specific power, mass, and area of the system are calculated under various conditions and compared with those for the organic Rankine cycle solar dynamic system proposed for Space Station. Near term and advanced large area concentrator photovoltaic systems not only compare favorably to solar dynamic systems in terms of performance but offer other benefits as well.

  12. Design and Operation of Power Systems with Large Amounts of Wind Power, First Results of IEA Collaboration

    SciTech Connect

    Holttinen, H.; Meibom, P.; Orths, A.; Van Hulle, F.; Ensslin, C.; Hofmann, L.; McCann, J.; Pierik, J.; Tande, J. O.; Estanqueiro, A.; Soder, L.; Strbac, G.; Parsons, B.; Smith, J. C.; Lemstrom, B.

    2006-01-01

    An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The task 'Design and Operation of Power Systems with Large Amounts of Wind Power' will analyse existing case studies from different power systems. There are a multitude of studies made and ongoing related to cost of wind integration. However, the results are not easy to compare. This paper summarizes the results from 10 countries and outlines the studies made at European Wind Energy Association and the European system operators UCTE and ETSO. A more in-depth review of the studies is needed to draw conclusions on the range of integration costs for wind power. A state-of-the art review process of the new IEA collaboration will seek reasons behind the wide range of results for costs of wind integration - definitions for wind penetration, reserves and costs; different power system and load characteristics and operational rules; underlying assumptions on variability and uncertainty of wind, etc.

  13. 14 CFR 135.367 - Large transport category airplanes: Reciprocating engine powered: Takeoff limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes... AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.367 Large transport category airplanes: Reciprocating engine powered: Takeoff limitations. (a)...

  14. 14 CFR 135.367 - Large transport category airplanes: Reciprocating engine powered: Takeoff limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes... AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.367 Large transport category airplanes: Reciprocating engine powered: Takeoff limitations. (a)...

  15. 14 CFR 135.365 - Large transport category airplanes: Reciprocating engine powered: Weight limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.365 Large transport category airplanes: Reciprocating engine powered: Weight limitations. (a) No person may take off...

  16. 14 CFR 135.365 - Large transport category airplanes: Reciprocating engine powered: Weight limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.365 Large transport category airplanes: Reciprocating engine powered: Weight limitations. (a) No person may take off...

  17. 14 CFR 135.365 - Large transport category airplanes: Reciprocating engine powered: Weight limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Reciprocating engine powered: Weight limitations. 135.365 Section 135.365 Aeronautics and Space FEDERAL AVIATION... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.365 Large...

  18. 14 CFR 135.369 - Large transport category airplanes: Reciprocating engine powered: En route limitations: All...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND... Limitations § 135.369 Large transport category airplanes: Reciprocating engine powered: En route...

  19. 14 CFR 135.369 - Large transport category airplanes: Reciprocating engine powered: En route limitations: All...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND... Limitations § 135.369 Large transport category airplanes: Reciprocating engine powered: En route...

  20. The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid State Laser

    SciTech Connect

    Yamamoto, R; Bhachu, B; Cutter, K; Fochs, S; Letts, S; Parks, C; Rotter, M; Soules, T

    2007-09-24

    The advent of large transparent ceramics is one of the key enabling technological advances that have shown that the development of very high average power compact solid state lasers is achievable. Large ceramic neodymium doped yttrium aluminum garnet (Nd:YAG) amplifier slabs are used in Lawrence Livermore National Laboratory's (LLNL) Solid State Heat Capacity Laser (SSHCL), which has achieved world record average output powers in excess of 67 kilowatts. We will describe the attributes of using large transparent ceramics, our present system architecture and corresponding performance; as well as describe our near term future plans.

  1. Development of an automated electrical power subsystem testbed for large spacecraft

    NASA Technical Reports Server (NTRS)

    Hall, David K.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed two autonomous electrical power system breadboards. The first breadboard, the autonomously managed power system (AMPS), is a two power channel system featuring energy generation and storage and 24-kW of switchable loads, all under computer control. The second breadboard, the space station module/power management and distribution (SSM/PMAD) testbed, is a two-bus 120-Vdc model of the Space Station power subsystem featuring smart switchgear and multiple knowledge-based control systems. NASA/MSFC is combining these two breadboards to form a complete autonomous source-to-load power system called the large autonomous spacecraft electrical power system (LASEPS). LASEPS is a high-power, intelligent, physical electrical power system testbed which can be used to derive and test new power system control techniques, new power switching components, and new energy storage elements in a more accurate and realistic fashion. LASEPS has the potential to be interfaced with other spacecraft subsystem breadboards in order to simulate an entire space vehicle. The two individual systems, the combined systems (hardware and software), and the current and future uses of LASEPS are described.

  2. Factors which affect spatial resolving power in large array biomagnetic sensors

    SciTech Connect

    Flynn, E.R. )

    1994-04-01

    A reduced chi-squared test has been used to evaluate factors that affect the spatial resolving power of large array biomagnetic sensors for the brain. Realistic array geometries are used and a classical description of spatial resolving power is applied to determine when two separate sources may be resolved. Array parameters such as sensor spacing, coil diameter, and gradiometer type are varied to determine their effect on spatial resolving power. The consequences of the number of sensors is considered and a comparison of existing systems is made. The effects of the vector nature of magnetic sources on spatial resolving power is also considered. It is shown that spatial resolving power is not strongly dependent upon individual sensor diameter, but that sensor spacing is important. It is also found that the instrumental spatial resolving power as a function of depth degrades much more quickly when planar gradiometers are used, as compared to axial gradiometers.

  3. Power monitoring and control for large scale projects: SKA, a case study

    NASA Astrophysics Data System (ADS)

    Barbosa, Domingos; Barraca, João. Paulo; Maia, Dalmiro; Carvalho, Bruno; Vieira, Jorge; Swart, Paul; Le Roux, Gerhard; Natarajan, Swaminathan; van Ardenne, Arnold; Seca, Luis

    2016-07-01

    Large sensor-based science infrastructures for radio astronomy like the SKA will be among the most intensive datadriven projects in the world, facing very high demanding computation, storage, management, and above all power demands. The geographically wide distribution of the SKA and its associated processing requirements in the form of tailored High Performance Computing (HPC) facilities, require a Greener approach towards the Information and Communications Technologies (ICT) adopted for the data processing to enable operational compliance to potentially strict power budgets. Addressing the reduction of electricity costs, improve system power monitoring and the generation and management of electricity at system level is paramount to avoid future inefficiencies and higher costs and enable fulfillments of Key Science Cases. Here we outline major characteristics and innovation approaches to address power efficiency and long-term power sustainability for radio astronomy projects, focusing on Green ICT for science and Smart power monitoring and control.

  4. Switch: a planning tool for power systems with large shares of intermittent renewable energy.

    PubMed

    Fripp, Matthias

    2012-06-05

    Wind and solar power are highly variable, so it is it unclear how large a role they can play in future power systems. This work introduces a new open-source electricity planning model--Switch--that identifies the least-cost strategy for using renewable and conventional generators and transmission in a large power system over a multidecade period. Switch includes an unprecedented amount of spatial and temporal detail, making it possible to address a new type of question about the optimal design and operation of power systems with large amounts of renewable power. A case study of California for 2012-2027 finds that there is no maximum possible penetration of wind and solar power--these resources could potentially be used to reduce emissions 90% or more below 1990 levels without reducing reliability or severely raising the cost of electricity. This work also finds that policies that encourage customers to shift electricity demand to times when renewable power is most abundant (e.g., well-timed charging of electric vehicles) could make it possible to achieve radical emission reductions at moderate costs.

  5. Power analysis for the design of a large area ultrasonic tactile touch panel

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Lemaire-Semail, Betty; Giraud, Frédéric; Amberg, Michel; Zhang, Yuru; Giraud-Audine, Christophe

    2015-10-01

    Tactile interfaces are intuitive but lack of haptic feedback. One method to provide tactile feedback is to change the friction coefficient of the touch surface. Several small-size tactile devices have been developed to provide programmable friction coefficient based on the squeeze air film effect. This effect is produced by ultrasonic vibration of the tactile plate thanks to piezoceramics. In order to design larger embedded tactile feedback areas, a key issue is the power consumption. In this paper, we present the power analysis of a tactile device which is based on the squeeze film effect. We first investigate the source of power consumption by a series of measurements. Then, an analytical model is developed to estimate the power, which gives the conclusion that, when the vibration amplitude is constant, the power consumption is not related to the number of piezoelectric actuators. According to this result, we design a large area (198 mm × 138 mm) tactile plate with only eight piezoelectric actuators. Experimental results show that the power consumption of the large tactile plate is less than 2 W. Moreover, we also find that the power consumption of the large tactile plate was predictable with the measurement results from small plates with an average error of less than 10%.

  6. 77 FR 16559 - Large Power Transformers From Korea: Scheduling of the Final Phase of an Antidumping Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... COMMISSION Large Power Transformers From Korea: Scheduling of the Final Phase of an Antidumping Investigation... imports from Korea of large power transformers, provided for in subheading 8504.23.00 of the Harmonized... Commerce that imports of large power transformers from Korea are being sold in the United States at...

  7. A probabilistic assessment of large scale wind power development for long-term energy resource planning

    NASA Astrophysics Data System (ADS)

    Kennedy, Scott Warren

    A steady decline in the cost of wind turbines and increased experience in their successful operation have brought this technology to the forefront of viable alternatives for large-scale power generation. Methodologies for understanding the costs and benefits of large-scale wind power development, however, are currently limited. In this thesis, a new and widely applicable technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic modeling techniques to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. A method for including the spatial smoothing effect of geographically dispersed wind farms is also introduced. The model has been used to analyze potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle (NGCC) and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on natural gas and coal prices is also discussed. In power systems with a high penetration of wind generated electricity, the intermittent availability of wind power may influence hourly spot prices. A price responsive electricity demand model is introduced that shows a small increase in wind power value when consumers react to hourly spot prices. The effectiveness of this mechanism depends heavily on estimates of the own- and cross-price elasticities of aggregate electricity demand. This work makes a valuable

  8. Direct heuristic dynamic programming for damping oscillations in a large power system.

    PubMed

    Lu, Chao; Si, Jennie; Xie, Xiaorong

    2008-08-01

    This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.

  9. Overview of Small and Large-Scale Space Solar Power Concepts

    NASA Technical Reports Server (NTRS)

    Potter, Seth; Henley, Mark; Howell, Joe; Carrington, Connie; Fikes, John

    2006-01-01

    An overview of space solar power studies performed at the Boeing Company under contract with NASA will be presented. The major concepts to be presented are: 1. Power Plug in Orbit: this is a spacecraft that collects solar energy and distributes it to users in space using directed radio frequency or optical energy. Our concept uses solar arrays having the same dimensions as ISS arrays, but are assumed to be more efficient. If radiofrequency wavelengths are used, it will necessitate that the receiving satellite be equipped with a rectifying antenna (rectenna). For optical wavelengths, the solar arrays on the receiving satellite will collect the power. 2. Mars Clipper I Power Explorer: this is a solar electric Mars transfer vehicle to support human missions. A near-term precursor could be a high-power radar mapping spacecraft with self-transport capability. Advanced solar electric power systems and electric propulsion technology constitute viable elements for conducting human Mars missions that are roughly comparable in performance to similar missions utilizing alternative high thrust systems, with the one exception being their inability to achieve short Earth-Mars trip times. 3. Alternative Architectures: this task involves investigating alternatives to the traditional solar power satellite (SPS) to supply commercial power from space for use on Earth. Four concepts were studied: two using photovoltaic power generation, and two using solar dynamic power generation, with microwave and laser power transmission alternatives considered for each. All four architectures use geostationary orbit. 4. Cryogenic Propellant Depot in Earth Orbit: this concept uses large solar arrays (producing perhaps 600 kW) to electrolyze water launched from Earth, liquefy the resulting hydrogen and oxygen gases, and store them until needed by spacecraft. 5. Beam-Powered Lunar Polar Rover: a lunar rover powered by a microwave or laser beam can explore permanently shadowed craters near the lunar

  10. Large- and small-scale constraints on power spectra in Omega = 1 universes

    NASA Technical Reports Server (NTRS)

    Gelb, James M.; Gradwohl, Ben-Ami; Frieman, Joshua A.

    1993-01-01

    The CDM model of structure formation, normalized on large scales, leads to excessive pairwise velocity dispersions on small scales. In an attempt to circumvent this problem, we study three scenarios (all with Omega = 1) with more large-scale and less small-scale power than the standard CDM model: (1) cold dark matter with significantly reduced small-scale power (inspired by models with an admixture of cold and hot dark matter); (2) cold dark matter with a non-scale-invariant power spectrum; and (3) cold dark matter with coupling of dark matter to a long-range vector field. When normalized to COBE on large scales, such models do lead to reduced velocities on small scales and they produce fewer halos compared with CDM. However, models with sufficiently low small-scale velocities apparently fail to produce an adequate number of halos.

  11. Genetic variation of individual alpha frequency (IAF) and alpha power in a large adolescent twin sample.

    PubMed

    Smit, Christine M; Wright, Margaret J; Hansell, Narelle K; Geffen, Gina M; Martin, Nicholas G

    2006-08-01

    To further clarify the mode of genetic transmission on individual alpha frequency (IAF) and alpha power, the extent to which individual differences in these alpha indices are influenced by genetic factors were examined in a large sample of adolescent twins (237 MZ, 282 DZ pairs; aged 16). EEG was measured at rest (eyes closed) from the right occipital site, and a second EEG recording for 50 twin pairs obtained approximately 3 months after the initial collection, enabled an estimation of measurement error. Analyses confirmed a strong genetic influence on both IAF (h(2)=0.81) and alpha power (h(2)=0.82), and there was little support for non-additive genetic (dominance) variance. A small but significant negative correlation (-0.18) was found between IAF and alpha power, but genetic influences on IAF and alpha power were largely independent. All non-genetic variance was due to unreliability, with no significant variance attributed to unique environmental factors. Relationships between the alpha and IQ indices were also explored but were generally either non-significant or very low. The findings confirm the high heritability for both IAF and alpha power, they further suggest that the mode of genetic transmission is due to additive genetic factors, that genetic influences on the underlying neural mechanisms of alpha frequency and power are largely specific, and that individual differences in alpha activity are influenced little by developmental plasticity and individual experiences.

  12. Large-scale terrestrial solar cell power generation cost: A preliminary assessment

    NASA Technical Reports Server (NTRS)

    Spakowski, A. E.; Shure, L. I.

    1972-01-01

    A cost study was made to assess the potential of the large-scale use of solar cell power for terrestrial applications. The incentive is the attraction of a zero-pollution source of power for wide-scale use. Unlike many other concepts for low-pollution power generation, even thermal pollution is avoided since only the incident solar flux is utilized. To provide a basis for comparison and a perspective for evaluation, the pertinent technology was treated in two categories: current and optimistic. Factors considered were solar cells, array assembly, power conditioning, site preparation, buildings, maintenance, and operation. The capital investment was assumed to be amortized over 30 years. The useful life of the solar cell array was assumed to be 10 years, and the cases of zero and 50-percent performance deg-radation were considered. Land costs, taxes, and profits were not included in this study because it was found too difficult to provide good generalized estimates of these items. On the basis of the factors considered, it is shown that even for optimistic projections of technology, electric power from large-sclae terrestrial use of solar cells is approximately two to three orders of magnitude more costly than current electric power generation from either fossil or nuclear fuel powerplants. For solar cell power generation to be a viable competitor on a cost basis, technological breakthroughs would be required in both solar cell and array fabrication and in site preparation.

  13. Large-area measurements of CIB power spectra with Planck HFI maps

    NASA Astrophysics Data System (ADS)

    Mak, D. S. Y.; Challinor, A.; Efstathiou, G.; Lagache, G.

    We present new measurements of the power spectra of the cosmic infrared background (CIB) anisotropies using the Planck 2015 full-mission HFI data at 353, 545, and 857 GHz over 20 000 square degrees. Unlike previous Planck measurements of the CIB power spectra, we do not rely on external HI data to remove Galactic dust emission from the Planck maps. Instead, we model the Galactic emission at the level of the power spectra, using templates constructed directly from the Planck data by exploiting the statistical isotropy of all extragalactic emission components. This allows us to work at the full resolution of Planck over large sky areas. We construct a likelihood based on the measured spectra (for multipoles 50 <= l <= 2500) using analytic covariance matrices that account for masking and the realistic instrumental noise properties. The results of an MCMC exploration of this likelihood are presented, based on simple parameterised models of the CIB power that arises from clustering of infrared galaxies. We explore simultaneously the parameters describing the clustered power, the Poisson power levels, and the amplitudes of the Galactic power spectrum templates across the six frequency (cross-)spectra. The best-fit model provides a good fit to all spectra. As an example, Fig. 1 compares the measured auto spectra at 353, 545, and 857 GHz over 40% of the sky to the power in the best-fit model. We find that the power in the CIB anisotropies from galaxy clustering is roughly equal to the Poisson power at multipoles l =2000 (the clustered power dominates on larger scales), and that our dust-cleaned CIB spectra are in good agreement with previous Planck and Herschel measurements. A key feature of our analysis is that it allows one to make many internal consistency tests. We show that our results are stable to data selection and choice of survey area, demonstrating both our ability to remove Galactic dust power to high accuracy and the statistical isotropy of the CIB signal.

  14. Nonlinear modulation of the HI power spectrum on ultra-large scales. I

    SciTech Connect

    Umeh, Obinna; Maartens, Roy; Santos, Mario E-mail: roy.maartens@gmail.com

    2016-03-01

    Intensity mapping of the neutral hydrogen brightness temperature promises to provide a three-dimensional view of the universe on very large scales. Nonlinear effects are typically thought to alter only the small-scale power, but we show how they may bias the extraction of cosmological information contained in the power spectrum on ultra-large scales. For linear perturbations to remain valid on large scales, we need to renormalize perturbations at higher order. In the case of intensity mapping, the second-order contribution to clustering from weak lensing dominates the nonlinear contribution at high redshift. Renormalization modifies the mean brightness temperature and therefore the evolution bias. It also introduces a term that mimics white noise. These effects may influence forecasting analysis on ultra-large scales.

  15. Large-scale data analysis of power grid resilience across multiple US service regions

    NASA Astrophysics Data System (ADS)

    Ji, Chuanyi; Wei, Yun; Mei, Henry; Calzada, Jorge; Carey, Matthew; Church, Steve; Hayes, Timothy; Nugent, Brian; Stella, Gregory; Wallace, Matthew; White, Joe; Wilcox, Robert

    2016-05-01

    Severe weather events frequently result in large-scale power failures, affecting millions of people for extended durations. However, the lack of comprehensive, detailed failure and recovery data has impeded large-scale resilience studies. Here, we analyse data from four major service regions representing Upstate New York during Super Storm Sandy and daily operations. Using non-stationary spatiotemporal random processes that relate infrastructural failures to recoveries and cost, our data analysis shows that local power failures have a disproportionally large non-local impact on people (that is, the top 20% of failures interrupted 84% of services to customers). A large number (89%) of small failures, represented by the bottom 34% of customers and commonplace devices, resulted in 56% of the total cost of 28 million customer interruption hours. Our study shows that extreme weather does not cause, but rather exacerbates, existing vulnerabilities, which are obscured in daily operations.

  16. Active power control of solar PV generation for large interconnection frequency regulation and oscillation damping

    DOE PAGES

    Liu, Yong; Zhu, Lin; Zhan, Lingwei; ...

    2015-06-23

    Because of zero greenhouse gas emission and decreased manufacture cost, solar photovoltaic (PV) generation is expected to account for a significant portion of future power grid generation portfolio. Because it is indirectly connected to the power grid via power electronic devices, solar PV generation system is fully decoupled from the power grid, which will influence the interconnected power grid dynamic characteristics as a result. In this study, the impact of solar PV penetration on large interconnected power system frequency response and inter-area oscillation is evaluated, taking the United States Eastern Interconnection (EI) as an example. Furthermore, based on the constructedmore » solar PV electrical control model with additional active power control loops, the potential contributions of solar PV generation to power system frequency regulation and oscillation damping are examined. The advantages of solar PV frequency support over that of wind generator are also discussed. Finally, simulation results demonstrate that solar PV generations can effectively work as ‘actuators’ in alleviating the negative impacts they bring about.« less

  17. Active power control of solar PV generation for large interconnection frequency regulation and oscillation damping

    SciTech Connect

    Liu, Yong; Zhu, Lin; Zhan, Lingwei; Gracia, Jose R.; King, Thomas Jr.; Liu, Yilu

    2015-06-23

    Because of zero greenhouse gas emission and decreased manufacture cost, solar photovoltaic (PV) generation is expected to account for a significant portion of future power grid generation portfolio. Because it is indirectly connected to the power grid via power electronic devices, solar PV generation system is fully decoupled from the power grid, which will influence the interconnected power grid dynamic characteristics as a result. In this study, the impact of solar PV penetration on large interconnected power system frequency response and inter-area oscillation is evaluated, taking the United States Eastern Interconnection (EI) as an example. Furthermore, based on the constructed solar PV electrical control model with additional active power control loops, the potential contributions of solar PV generation to power system frequency regulation and oscillation damping are examined. The advantages of solar PV frequency support over that of wind generator are also discussed. Finally, simulation results demonstrate that solar PV generations can effectively work as ‘actuators’ in alleviating the negative impacts they bring about.

  18. Efficient Bayesian mixed model analysis increases association power in large cohorts

    PubMed Central

    Loh, Po-Ru; Tucker, George; Bulik-Sullivan, Brendan K; Vilhjálmsson, Bjarni J; Finucane, Hilary K; Salem, Rany M; Chasman, Daniel I; Ridker, Paul M; Neale, Benjamin M; Berger, Bonnie; Patterson, Nick; Price, Alkes L

    2014-01-01

    Linear mixed models are a powerful statistical tool for identifying genetic associations and avoiding confounding. However, existing methods are computationally intractable in large cohorts, and may not optimize power. All existing methods require time cost O(MN2) (where N = #samples and M = #SNPs) and implicitly assume an infinitesimal genetic architecture in which effect sizes are normally distributed, which can limit power. Here, we present a far more efficient mixed model association method, BOLT-LMM, which requires only a small number of O(MN)-time iterations and increases power by modeling more realistic, non-infinitesimal genetic architectures via a Bayesian mixture prior on marker effect sizes. We applied BOLT-LMM to nine quantitative traits in 23,294 samples from the Women’s Genome Health Study (WGHS) and observed significant increases in power, consistent with simulations. Theory and simulations show that the boost in power increases with cohort size, making BOLT-LMM appealing for GWAS in large cohorts. PMID:25642633

  19. Efficient Bayesian mixed-model analysis increases association power in large cohorts.

    PubMed

    Loh, Po-Ru; Tucker, George; Bulik-Sullivan, Brendan K; Vilhjálmsson, Bjarni J; Finucane, Hilary K; Salem, Rany M; Chasman, Daniel I; Ridker, Paul M; Neale, Benjamin M; Berger, Bonnie; Patterson, Nick; Price, Alkes L

    2015-03-01

    Linear mixed models are a powerful statistical tool for identifying genetic associations and avoiding confounding. However, existing methods are computationally intractable in large cohorts and may not optimize power. All existing methods require time cost O(MN(2)) (where N is the number of samples and M is the number of SNPs) and implicitly assume an infinitesimal genetic architecture in which effect sizes are normally distributed, which can limit power. Here we present a far more efficient mixed-model association method, BOLT-LMM, which requires only a small number of O(MN) time iterations and increases power by modeling more realistic, non-infinitesimal genetic architectures via a Bayesian mixture prior on marker effect sizes. We applied BOLT-LMM to 9 quantitative traits in 23,294 samples from the Women's Genome Health Study (WGHS) and observed significant increases in power, consistent with simulations. Theory and simulations show that the boost in power increases with cohort size, making BOLT-LMM appealing for genome-wide association studies in large cohorts.

  20. Sandia Laboratories in-house activities in support of solar thermal large power applications

    NASA Technical Reports Server (NTRS)

    Mar, R. W.

    1980-01-01

    The development of thermal energy storage subsystems for solar thermal large power applications is described. The emphasis is on characterizing the behavior of molten nitrate salts with regard to thermal decomposition, environmental interactions, and corrosion. Electrochemical techniques to determine the ionic species in the melt and for use in real time studies of corrosion are also briefly discussed.

  1. Teaching Methodology in a "Large Power Distance" Classroom: A South Korean Context

    ERIC Educational Resources Information Center

    Jambor, Paul Z.

    2005-01-01

    This paper looks at South Korea as an example of a collectivist society having a rather large power distance dimension value. In a traditional Korean classroom the teacher is at the top of the classroom hierarchy, while the students are the passive participants. Gender and age play a role in the hierarchy between students themselves. Teaching…

  2. Estimating the Power Characteristics of Clusters of Large Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Drew, D.; Barlow, J. F.; Coceal, O.; Coker, P.; Brayshaw, D.; Lenaghan, D.

    2014-12-01

    The next phase of offshore wind projects in the UK focuses on the development of very large wind farms clustered within several allocated zones. However, this change in the distribution of wind capacity brings uncertainty for the operational planning of the power system. Firstly, there are concerns that concentrating large amounts of capacity in one area could reduce some of the benefits seen by spatially dispersing the turbines, such as the smoothing of the power generation variability. Secondly, wind farms of the scale planned are likely to influence the boundary layer sufficiently to impact the performance of adjacent farms, therefore the power generation characteristics of the clusters are largely unknown. The aim of this study is to use the Weather Research and Forecasting (WRF) model to investigate the power output of a cluster of offshore wind farms for a range of extreme events, taking into account the wake effects of the individual turbines and the neighbouring farms. Each wind farm in the cluster is represented as an elevated momentum sink and a source of turbulent kinetic energy using the WRF Wind Farm Parameterization. The research focuses on the Dogger Bank zone (located in the North Sea approximately 125 km off the East coast of the UK), which could have 7.2 GW of installed capacity across six separate wind farms. For this site, a 33 year reanalysis data set (MERRA, from NASA-GMAO) has been used to identify a series of extreme event case studies. These are characterised by either periods of persistent low (or high) wind speeds, or by rapid changes in power output. The latter could be caused by small changes in the wind speed inducing large changes in power output, very high winds prompting turbine shut down, or a change in the wind direction which shifts the wake effects of the neighbouring farms in the cluster and therefore changes the wind resource available.

  3. Interactions between large space power systems and low-Earth-orbit plasmas

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1985-01-01

    There is a growing tendency to plan space missions that will incorporate very large space power systems. These space power systems must function in the space plasma environment, which can impose operational limitations. As the power output increases, the operating voltage also must increase and this voltage, exposed at solar array interconnects, interacts with the local plasma. The implications of such interactions are considered. The available laboratory data for biased array segment tests are reviewed to demonstrate the basic interactions considered. A data set for a floating high voltage array test was used to generate approximate relationships for positive and negative current collection from plasmas. These relationships were applied to a hypothetical 100 kW power system operating in a 400 km, near equatorial orbit. It was found that discharges from the negative regions of the array are the most probable limiting factor in array operation.

  4. Large-stroke convex micromirror actuated by electromagnetic force for optical power control.

    PubMed

    Hossain, Md Mahabub; Bin, Wu; Kong, Seong Ho

    2015-11-02

    This paper contributes a novel design and the corresponding fabrication process to research on the unique topic of micro-electro-mechanical systems (MEMS) deformable convex micromirror used for focusing-power control. In this design, the shape of a thin planar metal-coated polymer-membrane mirror is controlled electromagnetically by using the repulsive force between two magnets, a permanent magnet and a coil solenoid, installed in an actuator system. The 5 mm effective aperture of a large-stroke micromirror showed a maximum center displacement of 30.08 µm, which enabled control of optical power across a wide range that could extend up to around 20 diopters. Specifically, utilizing the maximum optical power of 20 diopter by applying a maximum controlling current of 0.8 A yielded consumption of at most 2 W of electrical power. It was also demonstrated that this micromirror could easily be integrated in miniature tunable optical imaging systems.

  5. Optimizing power cylinder lubrication on a large bore natural gas engine

    NASA Astrophysics Data System (ADS)

    Luedeman, Matthew R.

    More than 6000 integral compressors, located along America's natural gas pipelines, pump natural gas across the United States. These compressors are powered by 2-stroke, large bore natural gas burning engines. Lowering the operating costs, reducing the emissions, and ensuring that these engines remain compliant with future emission regulations are the drivers for this study. Substantial research has focused on optimizing efficiency and reducing the fuel derived emissions on this class of engine. However, significantly less research has focused on the effect and reduction of lubricating oil derived emissions. This study evaluates the impact of power cylinder lubricating oil on overall engine emissions with an emphasis on reducing oxidation catalyst poisoning. A traditional power cylinder lubricator was analyzed; power cylinder lubricating oil was found to significantly impact exhaust emissions. Lubricating oil was identified as the primary contributor of particulate matter production in a large bore natural gas engine. The particulate matter was determined to be primarily organic carbon, and most likely direct oil carryover of small oil droplets. The particulate matter production equated to 25% of the injected oil at a nominal power cylinder lubrication rate. In addition, power cylinder friction is considered the primary contributor to friction loss in the internal combustion engine. This study investigates the potential for optimizing power cylinder lubrication by controlling power cylinder injection to occur at the optimal time in the piston cycle. By injecting oil directly into the ring pack, it is believed that emissions, catalyst poisoning, friction, and wear can all be reduced. This report outlines the design and theory of two electronically controlled lubrication systems. Experimental results and evaluation of one of the systems is included.

  6. Greenhouse gas emissions from operating reserves used to backup large-scale wind power.

    PubMed

    Fripp, Matthias

    2011-11-01

    Wind farms provide electricity with no direct emissions. However, their output cannot be forecasted perfectly, even a short time ahead. Consequently, power systems with large amounts of wind power may need to keep extra fossil-fired generators turned on and ready to provide power if wind farm output drops unexpectedly. In this work, I introduce a new model for estimating the uncertainty in short-term wind power forecasts, and how this uncertainty varies as wind power is aggregated over larger regions. I then use this model to estimate the reserve requirements in order to compensate for wind forecast errors to a 99.999% level of reliability, and an upper limit on the amount of carbon dioxide that would be emitted if natural gas power plants are used for this purpose. I find that for regions larger than 500 km across, operating reserves will undo 6% or less of the greenhouse gas emission savings that would otherwise be expected from wind power.

  7. Selectively filled large-mode-area photonic crystal fiber for high power applications

    NASA Astrophysics Data System (ADS)

    Saini, Than S.; Kumar, Ajeet; Rastogi, Vipul; Sinha, Ravindra K.

    2013-09-01

    A large-mode-area (LMA) single-mode (SM) photonic crystal fiber (PCF) structure for applications in high power fiber lasers, amplifiers and sensors is proposed. In the proposed structure the center air hole has been removed to form the core and the six elliptical air holes of inner ring around the center core have been selectively filled with high refractive index material. Effects of design parameters on SM operation and mode area are numerically investigated by using the full vectorial finite-element method. Structure offers large-mode-area exceeding 835 μm2 at 1.064 μm wavelength. A PCF with such a large-mode-area would significantly reduce the nonlinear effects and would be useful for high power applications.

  8. Assessment of the technology required to develop photovoltaic power system for large scale national energy applications

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1974-01-01

    A technical assessment of a program to develop photovoltaic power system technology for large-scale national energy applications was made by analyzing and judging the alternative candidate photovoltaic systems and development tasks. A program plan was constructed based on achieving the 10 year objective of a program to establish the practicability of large-scale terrestrial power installations using photovoltaic conversion arrays costing less than $0.50/peak W. Guidelines for the tasks of a 5 year program were derived from a set of 5 year objectives deduced from the 10 year objective. This report indicates the need for an early emphasis on the development of the single-crystal Si photovoltaic system for commercial utilization; a production goal of 5 x 10 to the 8th power peak W/year of $0.50 cells was projected for the year 1985. The developments of other photovoltaic conversion systems were assigned to longer range development roles. The status of the technology developments and the applicability of solar arrays in particular power installations, ranging from houses to central power plants, was scheduled to be verified in a series of demonstration projects. The budget recommended for the first 5 year phase of the program is $268.5M.

  9. Decoupled control techniques for dual flying capacitor bridge power supplies of large superconductive magnets

    SciTech Connect

    Ehsani, M.; Hozhabri, A.; Kustom, R.L.

    1986-01-01

    The dual flying capacitor (DFC) was developed in 1976 as a method of supplying efficient bilateral power to large superconductive magnets. This power supply concept uses a second superconductive coil for energy storage. Large reversible power demands of the load magnet are met by energy exchange between the storage and load coils, through the DFC bridge. This paper will show that the DFC circuit can be decomposed into two elementary single flying capacitor (SLC) circuits which can be controlled independently. The discovery of this decoupled control concept is the origin of several new control strategies which significantly improve the performance of DFC power supplies. Microcomputer controllers containing the decoupled control algorithm were tested on a DFC system simulator. The results show that time optimal load coil current and voltage control is now achievable by a robust bang-bang control technique. Furthermore, load coil current ripple and voltage spectrum can be independently controlled, while following an arbitrary reference signal. The DFC bridge, with the decoupled controllers, is a high performance power supply candidate for superconductive magnets of fusion reactors, particle accelerators and other systems.

  10. The cost of large numbers of hypothesis tests on power, effect size and sample size.

    PubMed

    Lazzeroni, L C; Ray, A

    2012-01-01

    Advances in high-throughput biology and computer science are driving an exponential increase in the number of hypothesis tests in genomics and other scientific disciplines. Studies using current genotyping platforms frequently include a million or more tests. In addition to the monetary cost, this increase imposes a statistical cost owing to the multiple testing corrections needed to avoid large numbers of false-positive results. To safeguard against the resulting loss of power, some have suggested sample sizes on the order of tens of thousands that can be impractical for many diseases or may lower the quality of phenotypic measurements. This study examines the relationship between the number of tests on the one hand and power, detectable effect size or required sample size on the other. We show that once the number of tests is large, power can be maintained at a constant level, with comparatively small increases in the effect size or sample size. For example at the 0.05 significance level, a 13% increase in sample size is needed to maintain 80% power for ten million tests compared with one million tests, whereas a 70% increase in sample size is needed for 10 tests compared with a single test. Relative costs are less when measured by increases in the detectable effect size. We provide an interactive Excel calculator to compute power, effect size or sample size when comparing study designs or genome platforms involving different numbers of hypothesis tests. The results are reassuring in an era of extreme multiple testing.

  11. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  12. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  13. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  14. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  15. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  16. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine... Limitations § 135.383 Large transport category airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered large transport category airplane along an...

  17. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine... Limitations § 135.383 Large transport category airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered large transport category airplane along an...

  18. Improved Structure and Fabrication of Large, High-Power KHPS Rotors - Final Scientific/Technical Report

    SciTech Connect

    Corren, Dean; Colby, Jonathan; Adonizio, Mary Ann

    2013-01-29

    Verdant Power, Inc, working in partnership with the National Renewable Energy Laboratory (NREL), Sandia National Laboratories (SNL), and the University of Minnesota St. Anthony Falls Laboratory (SAFL), among other partners, used evolving Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) models and techniques to improve the structure and fabrication of large, high-power composite Kinetic Hydropower System (KHPS) rotor blades. The objectives of the project were to: design; analyze; develop for manufacture and fabricate; and thoroughly test, in the lab and at full scale in the water, the improved KHPS rotor blade.

  19. The impact of wakes on power output at large offshore wind farms

    NASA Astrophysics Data System (ADS)

    Barthelmie, R. J.; Frandsen, S.; Hansen, K.; Schepers, G.; Rados, K.; Schlez, W.; Cabezon, D.; Jensen, L.; Neckelmann, S.

    2010-12-01

    The size of planned offshore wind farms is in the range 100 MW to 1 GW requiring tens to hundreds of wind turbines typically arranged in a large array. As wind farms offshore increase in size, one of the research challenges is to model interactions between the individual turbines, the atmosphere and neighbouring turbines to accurately predict power output before wind farm construction in addition to evaluation during the operation phase. The aim of the research described (part of the UpWind project) is to improve wind farm modelling and address the issue of providing more accurate power output predictions accounting for wind turbine wakes. DONG Energy and Vattenfall have allowed data from a number of cases studies to be used in this project. Detailed case studies of power losses due to wakes at the large wind farms at Nysted and Horns Rev have been analysed and are presented. A focus of the data analysis has been to understand the importance of turbulence and atmospheric stability at these offshore sites. It is evident that the magnitude of wake losses is primarily driven by wind speed but that signals from turbine spacing, turbulence and atmospheric stability can be determined. The case studies are simulated with a range of wind farm and computational fluid dynamics (CFD) models. The UpWind project presents a unique platform for model evaluation because the co-operation of a number of groups means that more models can be evaluated on standardised cases. Results shown indicate power losses due to wakes can be modelled, provided that the standard models are subject to some modifications. We also present some of the first full simulations of large offshore wind farms using CFD. Despite this progress, wake modelling of large wind farms is still subject to an unacceptably high degree of uncertainty requiring further work to understand the physical flow processes within and downwind of large wind farms.

  20. Stability of large DC power systems using switching converters, with application to the international space station

    NASA Technical Reports Server (NTRS)

    Manners, B.; Gholdston, E. W.; Karimi, K.; Lee, F. C.; Rajagopalan, J.; Panov, Y.

    1996-01-01

    As space direct current (dc) power systems continue to grow in size, switching power converters are playing an ever larger role in power conditioning and control. When designing a large dc system using power converters of this type, special attention must be placed on the electrical stability of the system and of the individual loads on the system. In the design of the electric power system (EPS) of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) and its contractor team led by Boeing Defense & Space Group has placed a great deal of emphasis on designing for system and load stability. To achieve this goal, the team has expended considerable effort deriving a dear concept on defining system stability in both a general sense and specifically with respect to the space station. The ISS power system presents numerous challenges with respect to system stability, such as high power, complex sources and undefined loads. To complicate these issues, source and load components have been designed in parallel by three major subcontractors (Boeing, Rocketdyne, and McDonnell Douglas) with interfaces to both sources and loads being designed in different countries (Russia, Japan, Canada, Europe, etc.). These issues, coupled with the program goal of limiting costs, have proven a significant challenge to the program. As a result, the program has derived an impedance specification approach for system stability. This approach is based on the significant relationship between source and load impedances and the effect of this relationship on system stability. This approach is limited in its applicability by the theoretical and practical limits on component designs as presented by each system segment. As a result, the overall approach to system stability implemented by the ISS program consists of specific hardware requirements coupled with extensive system analysis and hardware testing. Following this approach, the ISS program plans to begin

  1. Vulnerability of the large-scale future smart electric power grid

    NASA Astrophysics Data System (ADS)

    Nasiruzzaman, A. B. M.; Pota, H. R.; Akter, Most. Nahida

    2014-11-01

    The changing power flow pattern of the power system, with inclusion of large-scale renewable energy sources in the distribution side of the network, has been modeled by complex network framework based bidirectional graph. The bidirectional graph accommodates the reverse power flowing back from the distribution side to the grid in the model as a reverse edge connecting two nodes. The capacity of the reverse edge is equal to the capacity of the existing edge between the nodes in the forward directional nominal graph. Increased path in the combined model, built to facilitate grid reliability and efficiency, may serve as a bottleneck in practice with removal of certain percentage of nodes or edges. The effect of removal of critical elements has been analyzed in terms of increased path length, connectivity loss, load loss, and number of overloaded lines.

  2. Application of CFB technology for large power generating units and CO{sub 2} capture

    SciTech Connect

    Ryabov, G. A. Folomeev, O. M.; Sankin, D. A.; Khaneev, K. V.; Bondarenko, I. G.; Mel'nikov, D. A.

    2010-07-15

    Data on the development of the circulating fluidized bed (CFB) technology for combustion of fuels in large power generating units are examined. The problems with raising the steam parameters and unit power of boilers with a circulating fluidized bed are examined. With the boiler system at the 460 MW unit at Lagisza (Poland) as an example, the feasibility of raising the efficiency of units with CFB boilers through deep recovery of the heat of the effluent gases and reducing expenditure for in-house needs is demonstrated. Comparative estimates of the capital and operating costs of 225 and 330 MW units are used to determine the conditions for optimum use of CFB boilers in the engineering renovation of thermal power plants in Russia. New areas for the application of CFB technology in CO{sub 2} capture are analyzed in connection with the problem of reducing greenhouse gas emissions.

  3. Higher order corrections to the large scale matter power spectrum in the presence of massive neutrinos

    SciTech Connect

    Wong, Yvonne Y Y

    2008-10-15

    We present the first systematic derivation of the one-loop correction to the large scale matter power spectrum in a mixed cold + hot dark matter cosmology with subdominant massive neutrino hot dark matter. Starting with the equations of motion for the density and velocity fields, we derive perturbative solutions to these quantities and construct recursion relations for the interaction kernels, noting and justifying all approximations along the way. We find interaction kernels similar to those for a cold dark matter only universe, but with additional dependences on the neutrino energy density fraction f{sub {nu}} and the linear growth functions of the incoming wavevectors. Compared with the f{sub {nu}} = 0 case, the one-loop corrected matter power spectrum for a mixed dark matter cosmology exhibits a decrease in small scale power exceeding the canonical {approx}8f{sub {nu}} suppression predicted by linear theory, a feature also seen in multi-component N-body simulations.

  4. A prototype of wireless power and data acquisition system for large detectors

    NASA Astrophysics Data System (ADS)

    De Lurgio, P.; Djurcic, Z.; Drake, G.; Hashemian, R.; Kreps, A.; Oberling, M.; Pearson, T.; Sahoo, H.

    2015-06-01

    We have developed a prototype detector and data acquisition module that incorporates wireless power and wireless data transmission techniques. The module has no electrical connections. It receives power using photovoltaic devices, and communicates control, timing, trigger, and data using the 802.11n wireless communication standard. The work is part of a study for building a large detector having many readout channels, where it is desirable to reduce the cable plant and infrastructure. The system could also be deployed in smaller detectors that require mobility or are difficult to cable due to extreme conditions. We describe the design and operation of the prototype module, including benchmark performance measurements, and discuss aspect and issues in extrapolating to a large detector system.

  5. Theoretical and experimental power from large horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Janetzke, D. C.

    1982-01-01

    A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip-speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-0 (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

  6. High-power and steady-state operation of ICRF heating in the large helical device

    SciTech Connect

    Mutoh, T. Seki, T.; Saito, K.; Kasahara, H.; Seki, R.; Kamio, S.; Kumazawa, R.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ii, T.; Makino, R.; Nagaoka, K.; Nomura, G.; Shinya, T.

    2015-12-10

    Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAIT antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.

  7. Maximal Aerobic and Anaerobic Power Generation in Large Crocodiles versus Mammals: Implications for Dinosaur Gigantothermy

    PubMed Central

    Seymour, Roger S.

    2013-01-01

    Inertial homeothermy, the maintenance of a relatively constant body temperature that occurs simply because of large size, is often applied to large dinosaurs. Moreover, biophysical modelling and actual measurements show that large crocodiles can behaviourally achieve body temperatures above 30°C. Therefore it is possible that some dinosaurs could achieve high and stable body temperatures without the high energy cost of typical endotherms. However it is not known whether an ectothermic dinosaur could produce the equivalent amount of muscular power as an endothermic one. To address this question, this study analyses maximal power output from measured aerobic and anaerobic metabolism in burst exercising estuarine crocodiles, Crocodylusporosus, weighing up to 200 kg. These results are compared with similar data from endothermic mammals. A 1 kg crocodile at 30°C produces about 16 watts from aerobic and anaerobic energy sources during the first 10% of exhaustive activity, which is 57% of that expected for a similarly sized mammal. A 200 kg crocodile produces about 400 watts, or only 14% of that for a mammal. Phosphocreatine is a minor energy source, used only in the first seconds of exercise and of similar concentrations in reptiles and mammals. Ectothermic crocodiles lack not only the absolute power for exercise, but also the endurance, that are evident in endothermic mammals. Despite the ability to achieve high and fairly constant body temperatures, therefore, large, ectothermic, crocodile-like dinosaurs would have been competitively inferior to endothermic, mammal-like dinosaurs with high aerobic power. Endothermy in dinosaurs is likely to explain their dominance over mammals in terrestrial ecosystems throughout the Mesozoic. PMID:23861968

  8. Maximal aerobic and anaerobic power generation in large crocodiles versus mammals: implications for dinosaur gigantothermy.

    PubMed

    Seymour, Roger S

    2013-01-01

    Inertial homeothermy, the maintenance of a relatively constant body temperature that occurs simply because of large size, is often applied to large dinosaurs. Moreover, biophysical modelling and actual measurements show that large crocodiles can behaviourally achieve body temperatures above 30°C. Therefore it is possible that some dinosaurs could achieve high and stable body temperatures without the high energy cost of typical endotherms. However it is not known whether an ectothermic dinosaur could produce the equivalent amount of muscular power as an endothermic one. To address this question, this study analyses maximal power output from measured aerobic and anaerobic metabolism in burst exercising estuarine crocodiles, Crocodylusporosus, weighing up to 200 kg. These results are compared with similar data from endothermic mammals. A 1 kg crocodile at 30°C produces about 16 watts from aerobic and anaerobic energy sources during the first 10% of exhaustive activity, which is 57% of that expected for a similarly sized mammal. A 200 kg crocodile produces about 400 watts, or only 14% of that for a mammal. Phosphocreatine is a minor energy source, used only in the first seconds of exercise and of similar concentrations in reptiles and mammals. Ectothermic crocodiles lack not only the absolute power for exercise, but also the endurance, that are evident in endothermic mammals. Despite the ability to achieve high and fairly constant body temperatures, therefore, large, ectothermic, crocodile-like dinosaurs would have been competitively inferior to endothermic, mammal-like dinosaurs with high aerobic power. Endothermy in dinosaurs is likely to explain their dominance over mammals in terrestrial ecosystems throughout the Mesozoic.

  9. Pre-slow-roll initial conditions: Large scale power suppression and infrared aspects during inflation

    NASA Astrophysics Data System (ADS)

    Lello, Louis; Boyanovsky, Daniel; Holman, Richard

    2014-03-01

    If the large-scale anomalies in the temperature power spectrum of the cosmic microwave background are of primordial origin, they may herald modifications to the slow-roll inflationary paradigm on the largest scales. We study the possibility that the origin of the large-scale power suppression is a modification of initial conditions during slow roll as a result of a pre-slow-roll phase during which the inflaton evolves rapidly. This stage is manifest in a potential in the equations for the Gaussian fluctuations during slow roll and modifies the power spectra of scalar perturbations via an initial condition transfer function T(k). We provide a general analytical study of its large- and small-scale properties and analyze the impact of these initial conditions on the infrared aspects of typical test scalar fields. The infrared behavior of massless minimally coupled test scalar field theories leads to the dynamical generation of mass and anomalous dimensions, both depending nonanalytically on T(0). During inflation, all quanta decay into many quanta even of the same field because of the lack of kinematic thresholds. The decay leads to a quantum entangled state of subhorizon and superhorizon quanta with correlations across the horizon. We find the modifications of the decay width and the entanglement entropy from the initial conditions. In all cases, initial conditions from a "fast-roll" stage that lead to a suppression in the scalar power spectrum at large scales also result in a suppression of the dynamically generated masses, anomalous dimensions and decay widths.

  10. Heat transfer and thermal lensing in large-mode high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Chan, Paddy K. L.; Pipe, Kevin P.; Plant, Jason J.; Swint, Reuel B.; Juodawlkis, Paul W.

    2007-02-01

    In semiconductor lasers, key parameters such as threshold current, efficiency, wavelength, and lifetime are closely related to temperature. These dependencies are especially important for high-power lasers, in which device heating is the main cause of decreased performance and failure. Heat sources such as non-radiative recombination in the active region typically cause the temperature to be highly peaked within the device, potentially leading to large refractive index variation with bias. Here we apply high-resolution charge-coupled device (CCD) thermoreflectance to generate two dimensional (2D) maps of the facet temperatures of a high power laser with 500 nm spatial resolution. The device under test is a slab-coupled optical waveguide laser (SCOWL) which has a large single mode and high power output. These characteristics favor direct butt-coupling the light generated from the laser diode into a single mode optical fiber. From the high spatial resolution temperature map, we can calculate the non-radiative recombination power and the optical mode size by thermal circuit and finite-element model (FEM) respectively. Due to the thermal lensing effect at high bias, the size of the optical mode will decrease and hence the coupling efficiency between the laser diode and the single mode fiber increases. At I=10I th, we found that the optical mode size has 20% decrease and the coupling efficiency has 10% increase when comparing to I=2I th. This suggests SCOWL is very suitable fr optical communication system.

  11. Control considerations for high frequency, resonant, power processing equipment used in large systems

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.; Schreiner, K. E.; Wolff, F.

    1987-01-01

    Addressed is a class of resonant power processing equipment designed to be used in an integrated high frequency (20 KHz domain), utility power system for large, multi-user spacecraft and other aerospace vehicles. It describes a hardware approach, which has been the basis for parametric and physical data used to justify the selection of high frequency ac as the PMAD baseline for the space station. This paper is part of a larger effort undertaken by NASA and General Dynamics to be sure that all potential space station contractors and other aerospace power system designers understand and can comfortably use this technology, which is now widely used in the commercial sector. In this paper, we will examine control requirements, stability, and operational modes; and their hardware impacts from an integrated system point of view. The current space station PMAD system will provide the overall requirements model to develop an understanding of the performance of this type of system with regard to: (1) regulation; (2) power bus stability and voltage control; (3) source impedance; (4) transient response; (5) power factor effects; and (6) limits and overloads.

  12. Control considerations for high frequency, resonant, power processing equipment used in large systems

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.; Schreiner, K. E.; Wolff, F.

    1987-01-01

    Addressed is a class of resonant power processing equipment designed to be used in an integrated high frequency (20 KHz domain), utility power system for large, multi-user spacecraft and other aerospace vehicles. It describes a hardware approach, which has been the basis for parametric and physical data used to justify the selection of high frequency ac as the PMAD baseline for the space station. This paper is part of a larger effort undertaken by NASA and General Dynamics to be sure that all potential space station contractors and other aerospace power system designers understand and can comfortably use this technology, which is now widely used in the commercial sector. In this paper, we will examine control requirements, stability, and operational modes; and their hardware impacts from an integrated system point of view. The current space station PMAD system will provide the overall requirements model to develop an understanding of the performance of this type of system with regard to: (1) regulation; (2) power bus stability and voltage control; (3) source impedance; (4) transient response; (5) power factor effects, and (6) limits and overloads.

  13. Important influence of respiration on human R-R interval power spectra is largely ignored

    NASA Technical Reports Server (NTRS)

    Brown, T. E.; Beightol, L. A.; Koh, J.; Eckberg, D. L.

    1993-01-01

    Frequency-domain analyses of R-R intervals are used widely to estimate levels of autonomic neural traffic to the human heart. Because respiration modulates autonomic activity, we determined for nine healthy subjects the influence of breathing frequency and tidal volume on R-R interval power spectra (fast-Fourier transform method). We also surveyed published literature to determine current practices in this burgeoning field of scientific inquiry. Supine subjects breathed at rates of 6, 7.5, 10, 15, 17.1, 20, and 24 breaths/min and with nominal tidal volumes of 1,000 and 1,500 ml. R-R interval power at respiratory and low (0.06-0.14 Hz) frequencies declined significantly as breathing frequency increased. R-R interval power at respiratory frequencies was significantly greater at a tidal volume of 1,500 than 1,000 ml. Neither breathing frequency nor tidal volume influenced average R-R intervals significantly. Our review of studies reporting human R-R interval power spectra showed that 51% of the studies controlled respiratory rate, 11% controlled tidal volume, and 11% controlled both respiratory rate and tidal volume. The major implications of our analyses are that breathing parameters strongly influence low-frequency as well as respiratory frequency R-R interval power spectra and that this influence is largely ignored in published research.

  14. PowerGrid - A Computation Engine for Large-Scale Electric Networks

    SciTech Connect

    Chika Nwankpa

    2011-01-31

    This Final Report discusses work on an approach for analog emulation of large scale power systems using Analog Behavioral Models (ABMs) and analog devices in PSpice design environment. ABMs are models based on sets of mathematical equations or transfer functions describing the behavior of a circuit element or an analog building block. The ABM concept provides an efficient strategy for feasibility analysis, quick insight of developing top-down design methodology of large systems and model verification prior to full structural design and implementation. Analog emulation in this report uses an electric circuit equivalent of mathematical equations and scaled relationships that describe the states and behavior of a real power system to create its solution trajectory. The speed of analog solutions is as quick as the responses of the circuit itself. Emulation therefore is the representation of desired physical characteristics of a real life object using an electric circuit equivalent. The circuit equivalent has within it, the model of a real system as well as the method of solution. This report presents a methodology of the core computation through development of ABMs for generators, transmission lines and loads. Results of ABMs used for the case of 3, 6, and 14 bus power systems are presented and compared with industrial grade numerical simulators for validation.

  15. Non-detection of a statistically anisotropic power spectrum in large-scale structure

    SciTech Connect

    Pullen, Anthony R.; Hirata, Christopher M. E-mail: chirata@tapir.caltech.edu

    2010-05-01

    We search a sample of photometric luminous red galaxies (LRGs) measured by the Sloan Digital Sky Survey (SDSS) for a quadrupolar anisotropy in the primordial power spectrum, in which P( k-vector ) is an isotropic power spectrum P-bar (k) multiplied by a quadrupolar modulation pattern. We first place limits on the 5 coefficients of a general quadrupole anisotropy. We also consider axisymmetric quadrupoles of the form P( k-vector ) = P-bar (k)(1+g{sub *}[( k-circumflex ⋅ n-circumflex ){sup 2}−(1/3)]) where n-circumflex is the axis of the anisotropy. When we force the symmetry axis n-circumflex to be in the direction (l,b) = (94°,26°) identified in the recent Groeneboom et al. analysis of the cosmic microwave background, we find g{sub *} = 0.006±0.036 (1σ). With uniform priors on n-circumflex and g{sub *} we find that −0.41 < g{sub *} < +0.38 with 95% probability, with the wide range due mainly to the large uncertainty of asymmetries aligned with the Galactic Plane. In none of these three analyses do we detect evidence for quadrupolar power anisotropy in large scale structure.

  16. Large Space Telescopes Using Fresnel Lens for Power Beaming, Astronomy and Sail Missions

    SciTech Connect

    Early, J T

    2002-10-15

    The concept of using Fresnel optics as part of power beaming, astronomy or sail systems has been suggested by several authors. The primary issues for large Fresnel optics are the difficulties in fabricating these structures and deploying them in space and for astronomy missions the extremely narrow frequency range of these optics. In proposals where the telescope is used to transmit narrow frequency laser power, the narrow bandwidth has not been an issue. In applications where the optic is to be used as part of a telescope, only around 10{sup -5} to limited frequency response of a Fresnel optic is addressed by the use of a corrective optic that will broaden the frequency response of the telescope by three or four orders of magnitude. This broadening will dramatically increase the optical power capabilities of the system and will allow some spectroscopy studies over a limited range. Both the fabrication of Fresnel optics as large as five meters and the use of corrector optics for telescopes have been demonstrated at LLNL. For solar and laser sail missions the use of Fresnel amplitude zone plates made of very thin sail material is also discussed.

  17. Asymptotically Optimal Transmission Policies for Large-Scale Low-Power Wireless Sensor Networks

    SciTech Connect

    I. Ch. Paschalidis; W. Lai; D. Starobinski

    2007-02-01

    We consider wireless sensor networks with multiple gateways and multiple classes of traffic carrying data generated by different sensory inputs. The objective is to devise joint routing, power control and transmission scheduling policies in order to gather data in the most efficient manner while respecting the needs of different sensing tasks (fairness). We formulate the problem as maximizing the utility of transmissions subject to explicit fairness constraints and propose an efficient decomposition algorithm drawing upon large-scale decomposition ideas in mathematical programming. We show that our algorithm terminates in a finite number of iterations and produces a policy that is asymptotically optimal at low transmission power levels. Furthermore, we establish that the utility maximization problem we consider can, in principle, be solved in polynomial time. Numerical results show that our policy is near-optimal, even at high power levels, and far superior to the best known heuristics at low power levels. We also demonstrate how to adapt our algorithm to accommodate energy constraints and node failures. The approach we introduce can efficiently determine near-optimal transmission policies for dramatically larger problem instances than an alternative enumeration approach.

  18. Advances in solid state switchgear technology for large space power systems

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.

    1984-01-01

    High voltage solid state remote power controllers (RPC's) and the required semiconductor power switches to provide baseline technology for large, high power distribution systems in the space station, all electric airplane and other advanced aerospace applications were developed. The RPC's were developed for dc voltages from 28 to 1200 V and ac voltages of 115, 230, and 440 V at frequencies of 400 Hz to 20 kHz. The benefits and operation of solid state RPC's and highlights of several developments to bring the RPC to technology readiness for future aerospace needs are examined. The 28 V dc Space Shuttle units, three RPC types at 120 V dc, two at 270/300 V dc, two at 230 V ac and several high power RPC models at voltages up to 1200 V dc with current ratings up to 100 A are reviewed. New technology programs to develop a new family of (DI)2 semiconductor switches and 20 kHz, 440 V ac RPC's are described.

  19. A Decentralized Multivariable Robust Adaptive Voltage and Speed Regulator for Large-Scale Power Systems

    NASA Astrophysics Data System (ADS)

    Okou, Francis A.; Akhrif, Ouassima; Dessaint, Louis A.; Bouchard, Derrick

    2013-05-01

    This papter introduces a decentralized multivariable robust adaptive voltage and frequency regulator to ensure the stability of large-scale interconnnected generators. Interconnection parameters (i.e. load, line and transormer parameters) are assumed to be unknown. The proposed design approach requires the reformulation of conventiaonal power system models into a multivariable model with generator terminal voltages as state variables, and excitation and turbine valve inputs as control signals. This model, while suitable for the application of modern control methods, introduces problems with regards to current design techniques for large-scale systems. Interconnection terms, which are treated as perturbations, do not meet the common matching condition assumption. A new adaptive method for a certain class of large-scale systems is therefore introduces that does not require the matching condition. The proposed controller consists of nonlinear inputs that cancel some nonlinearities of the model. Auxiliary controls with linear and nonlinear components are used to stabilize the system. They compensate unknown parametes of the model by updating both the nonlinear component gains and excitation parameters. The adaptation algorithms involve the sigma-modification approach for auxiliary control gains, and the projection approach for excitation parameters to prevent estimation drift. The computation of the matrix-gain of the controller linear component requires the resolution of an algebraic Riccati equation and helps to solve the perturbation-mismatching problem. A realistic power system is used to assess the proposed controller performance. The results show that both stability and transient performance are considerably improved following a severe contingency.

  20. Feasibility of Large High-Powered Solar Electric Propulsion Vehicles: Issues and Solutions

    NASA Technical Reports Server (NTRS)

    Capadona, Lynn A.; Woytach, Jeffrey M.; Kerslake, Thomas W.; Manzella, David H.; Christie, Robert J.; Hickman, Tyler A.; Schneidegger, Robert J.; Hoffman, David J.; Klem, Mark D.

    2012-01-01

    Human exploration beyond low Earth orbit will require the use of enabling technologies that are efficient, affordable, and reliable. Solar electric propulsion (SEP) has been proposed by NASA s Human Exploration Framework Team as an option to achieve human exploration missions to near Earth objects (NEOs) because of its favorable mass efficiency as compared to traditional chemical systems. This paper describes the unique challenges and technology hurdles associated with developing a large high-power SEP vehicle. A subsystem level breakdown of factors contributing to the feasibility of SEP as a platform for future exploration missions to NEOs is presented including overall mission feasibility, trip time variables, propellant management issues, solar array power generation, array structure issues, and other areas that warrant investment in additional technology or engineering development.

  1. Improving Performance of Power Systems with Large-scale Variable Generation Additions

    SciTech Connect

    Makarov, Yuri V.; Etingov, Pavel V.; Samaan, Nader A.; Lu, Ning; Ma, Jian; Subbarao, Krishnappa; Du, Pengwei; Kannberg, Landis D.

    2012-07-22

    A power system with large-scale renewable resources, like wind and solar generation, creates significant challenges to system control performance and reliability characteristics because of intermittency and uncertainties associated with variable generation. It is important to quantify these uncertainties, and then incorporate this information into decision-making processes and power system operations. This paper presents three approaches to evaluate the flexibility needed from conventional generators and other resources in the presence of variable generation as well as provide this flexibility from a non-traditional resource – wide area energy storage system. These approaches provide operators with much-needed information on the likelihood and magnitude of ramping and capacity problems, and the ability to dispatch available resources in response to such problems.

  2. Characteristics of a large multijunction launcher for high-power LHCD experiments on JT-60U

    SciTech Connect

    Seki, M.; Ikeda, Y.; Ushigusa, K.; Naito, O.; Kondoh, T.; Wolfe, S.W.; Imai, T. )

    1994-10-15

    This paper presents overview of a large multijunction launcher for JT-60U. The launcher is featured by the multijunction module with the oversized taper waveguide, in order to simplify structure of the launcher. This launcher allows high performances of current drive and current profile control by using very sharp and highly directive spectrum. Initial result of coupling property is also described. A good coupling was observed at a power level of [similar to]0.8 MW with plasma-launcher distance of [lt]14 cm.

  3. Electronic Origins of Large Thermoelectric Power Factor of LaOBiS2-xSex

    NASA Astrophysics Data System (ADS)

    Nishida, Atsuhiro; Nishiate, Hirotaka; Lee, Chul-Ho; Miura, Osuke; Mizuguchi, Yoshikazu

    2016-07-01

    We have examined the electrical transport properties of densified LaOBiS2-xSex, which constitutes a new family of thermoelectric materials. The power factor increases with increasing concentration of Se, i.e., Se substitution leads to an enhanced electrical conductivity, without suppression of the Seebeck coefficient. Hall measurements reveal that the carrier mobility increases with decreasing carrier concentration as Se doping, which is responsible for the low electrical resistivity and large absolute values of the Seebeck coefficient in the system.

  4. Observing trans-Planckian ripples in the primordial power spectrum with future large scale structure probes

    SciTech Connect

    Hamann, Jan; Hannestad, Steen; Sloth, Martin S; Wong, Yvonne Y Y E-mail: sth@phys.au.dk E-mail: ywong@mppmu.mpg.de

    2008-09-15

    We revisit the issue of ripples in the primordial power spectra caused by trans-Planckian physics, and the potential for their detection by future cosmological probes. We find that for reasonably large values of the first slow-roll parameter {epsilon} ({approx}>0.001), a positive detection of trans-Planckian ripples can be made even if the amplitude is as low as 10{sup -4}. Data from the Large Synoptic Survey Telescope (LSST) and the proposed future 21 cm survey with the Fast Fourier Transform Telescope (FFTT) will be particularly useful in this regard. If the scale of inflation is close to its present upper bound, a scale of new physics as high as {approx}0.2 M{sub P} could lead to observable signatures.

  5. MIC-Large Scale Magnetically Inflated Cable Structures for Space Power, Propulsion, Communications and Observational Applications

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    A new approach for the erection of rigid large scale structures in space-MIC (Magnetically Inflated Cable)-is described. MIC structures are launched as a compact payload of superconducting cables and attached tethers. After reaching orbit, the superconducting cables are energized with electrical current. The magnet force interactions between the cables cause them to expand outwards into the final large structure. Various structural shapes and applications are described. The MIC structure can be a simple flat disc with a superconducting outer ring that supports a tether network holding a solar cell array, or it can form a curved mirror surface that concentrates light and focuses it on a smaller region-for example, a high flux solar array that generates electric power, a high temperature receiver that heats H2 propellant for high Isp propulsion, and a giant primary reflector for a telescope for astronomy and Earth surveillance. Linear dipole and quadrupole MIC structures are also possible. The linear quadrupole structure can be used for magnetic shielding against cosmic radiation for astronauts, for example. MIC could use lightweight YBCO superconducting HTS (High Temperature Superconductor) cables, that can operate with liquid N2 coolant at engineering current densities of ~105 amp/cm2. A 1 kilometer length of MIC cable would weigh only 3 metric tons, including superconductor, thermal insulations, coolant circuits, and refrigerator, and fit within a 3 cubic meter compact package for launch. Four potential MIC applications are described: Solar-thermal propulsion using H2 propellant, space based solar power generation for beaming power to Earth, a large space telescope, and solar electric generation for a manned lunar base. The first 3 applications use large MIC solar concentrating mirrors, while the 4th application uses a surface based array of solar cells on a magnetically levitated MIC structure to follow the sun. MIC space based mirrors can be very large and light

  6. Surface error modeling of mounted large optics in high power laser system

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Xiong, Zhao; Yuan, Xiaodong

    2016-10-01

    The surface form of mounted large optics has a very important impact on the laser beam performance in high power laser system. To make the surface form to the minimized distortion and keep with the design specifications is always a difficult challenge in China's SG-III laser system which is made up of thousands meter-sized large optical units and requires to focus all 48 laser beams into nearly 600 μm-diameter spot better than 50 μm (RMS) within a few picoseconds. In this paper, a methodology integrated both 3D finite elements modeling method and nanometer-level precision metrology is proposed to evaluate the surface performance. According to various spatial frequencies, the wavefront characters of large aperture optical component are measured and provided to analyze its mounted surface characters. Assembly and mounting process will be adjusted to meet for the surface wavefront requirements both of with the data both of measured when pre-alignment and predicted for installation. By a case study of large transport mirror, the proposed approach has shown a good performance on obtaining precise surface features and guiding the optical mounting.

  7. Organic solar cells for large-scale fossil-competitive power production: science fiction? Perhaps no!

    NASA Astrophysics Data System (ADS)

    Faiman, David

    2004-11-01

    The most widespread expectations for the future role of organic solar cells are probably as an extremely low-cost, easily-replaceable, power-producing medium for a wide variety of portable applications. This picture has come about owing to the present-day relatively low efficiency and stability of organic solar cells compared to their far more mature inorganic counterparts. However, even with the highest-efficiency and most stable inorganic solar cells there are still serious questions as to whether such technology could ever be cost-competitive with fossil-fuelled power generation, except for special niche situations. We have recently proposed that very large parabolic dishes, if used to illuminate inorganic solar cells at solar intensities several hundred times larger than normal, could lead to fossil-competitive solar power generation. The paper will review the technical details and economic projections of such systems and will discuss the conditions under which it might be possible for them to employ organic solar cells.

  8. A Tutorial on Detection and Characterization of Special Behavior in Large Electric Power Systems

    SciTech Connect

    Hauer, John F.; DeSteese, John G.

    2004-08-20

    The objective of this document is to report results in the detection and characterization of special behavior in large electric power systems. Such behavior is usually dynamic in nature, but not always. This is also true for the underlying sources of special behavior. At the device level, a source of special behavior might be an automatic control system, a dynamic load, or even a manual control system that is operated according to some sharply defined policy. Other possible sources include passive system conditions, such as the state of a switched device or the amount of power carried on some critical line. Detection and characterization are based upon “signature information” that is extracted from the behavior observed. Characterization elements include the signature information itself, the nature of the behavior and its likely causes, and the associated implications for the system or for the public at large. With sufficient data and processing, this characterization may directly identify a particular condition or device at a specific location. Such conclusive results cannot always be done from just one observation, however. Information environments that are very sparse may require multiple observations, comparative model studies, and even direct testing of the system.

  9. Large-area high-power VCSEL pump arrays optimized for high-energy lasers

    NASA Astrophysics Data System (ADS)

    Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel

    2012-06-01

    Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.

  10. On the soft limit of the large scale structure power spectrum: UV dependence

    SciTech Connect

    Garny, Mathias; Konstandin, Thomas; Sagunski, Laura; Porto, Rafael A. E-mail: thomas.konstandin@desy.de E-mail: laura.sagunski@desy.de

    2015-11-01

    We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agreement within the expected uncertainties. Our approach can in principle be used to precisely infer the relevance of the leading order EFT coefficient(s) using small volume simulations in an 'anisotropic separate universe' framework. Our results suggest that the importance of these coefficient(s) is a ∼ 10% effect, and plausibly smaller.

  11. Two methods for estimating limits to large-scale wind power generation

    PubMed Central

    Miller, Lee M.; Brunsell, Nathaniel A.; Mechem, David B.; Gans, Fabian; Monaghan, Andrew J.; Vautard, Robert; Keith, David W.; Kleidon, Axel

    2015-01-01

    Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 105 km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m−2, whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m−2, with VKE capturing this combination in a comparatively simple way. PMID:26305925

  12. Two methods for estimating limits to large-scale wind power generation.

    PubMed

    Miller, Lee M; Brunsell, Nathaniel A; Mechem, David B; Gans, Fabian; Monaghan, Andrew J; Vautard, Robert; Keith, David W; Kleidon, Axel

    2015-09-08

    Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 10(5) km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m(-2), whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m(-2), with VKE capturing this combination in a comparatively simple way.

  13. Complete power concentration into a single waveguide in large-scale waveguide array lenses

    PubMed Central

    Catrysse, Peter B.; Liu, Victor; Fan, Shanhui

    2014-01-01

    Waveguide array lenses are waveguide arrays that focus light incident on all waveguides at the input side into a small number of waveguides at the output side. Ideal waveguide array lenses provide complete (100%) power concentration of incident light into a single waveguide. While of great interest for several applications, ideal waveguide array lenses have not been demonstrated for practical arrays with large numbers of waveguides. The only waveguide arrays that have sufficient degrees of freedom to allow for the design of an ideal waveguide array lens are those where both the propagation constants of the individual waveguides and the coupling constants between the waveguides vary as a function of space. Here, we use state-of-the-art numerical methods to demonstrate complete power transfer into a single waveguide for waveguide array lenses with large numbers of waveguides. We verify this capability for more than a thousand waveguides using a spatial coupled mode theory. We hereby extend the state-of-art by more than two orders of magnitude. We also demonstrate for the first time a physical design for an ideal waveguide array lens. The design is based on an aperiodic metallic waveguide array and focuses ~100% of the incident light into a deep-subwavelength focal spot. PMID:25319203

  14. Development of a single-phase harmonic power flow program to study the 20 kHz AC power system for large spacecraft

    NASA Technical Reports Server (NTRS)

    Kraft, L. Alan; Kankam, M. David

    1991-01-01

    The development of software is described to aid in design and analysis of AC power systems for large spacecraft. The algorithm is an important version of harmonic power flow program, HARMFLO, used for the study of AC power quality. The new program is applicable to three-phase systems typified by terrestrial power systems, and single-phase systems characteristic of space power systems. The modified HARMFLO accommodates system operating frequencies ranging from terrestrial 60 Hz to and beyond aerospace 20 kHz, and can handle both source and load-end harmonic distortions. Comparison of simulation and test results of a representative spacecraft power system shows a satisfactory correlation. Recommendations are made for the direction of future improvements to the software, to enhance its usefulness to power system designer and analysts.

  15. Evaluating power and type 1 error in large pedigree analyses of binary traits.

    PubMed

    Cummings, Anna C; Torstenson, Eric; Davis, Mary F; D'Aoust, Laura N; Scott, William K; Pericak-Vance, Margaret A; Bush, William S; Haines, Jonathan L

    2013-01-01

    Studying population isolates with large, complex pedigrees has many advantages for discovering genetic susceptibility loci; however, statistical analyses can be computationally challenging. Allelic association tests need to be corrected for relatedness among study participants, and linkage analyses require subdividing and simplifying the pedigree structures. We have extended GenomeSIMLA to simulate SNP data in complex pedigree structures based on an Amish pedigree to generate the same structure and distribution of sampled individuals. We evaluated type 1 error rates when no disease SNP was simulated and power when disease SNPs with recessive, additive, and dominant modes of inheritance and odds ratios of 1.1, 1.5, 2.0, and 5.0 were simulated. We generated subpedigrees with a maximum bit-size of 24 using PedCut and performed two-point and multipoint linkage using Merlin. We also ran MQLS on the subpedigrees and unified pedigree. We saw no inflation of type 1 error when running MQLS on either the whole pedigrees or the sub-pedigrees, and we saw low type 1 error for two-point and multipoint linkage. Power was reduced when running MQLS on the subpedigrees versus the whole pedigree, and power was low for two-point and multipoint linkage analyses of the subpedigrees. These data suggest that MQLS has appropriate type 1 error rates in our Amish pedigree structure, and while type 1 error does not seem to be affected when dividing the pedigree prior to linkage analysis, power to detect linkage is diminished when the pedigree is divided.

  16. Benefits of an ultra large and multiresolution ensemble for estimating available wind power

    NASA Astrophysics Data System (ADS)

    Berndt, Jonas; Hoppe, Charlotte; Elbern, Hendrik

    2016-04-01

    In this study we investigate the benefits of an ultra large ensemble with up to 1000 members including multiple nesting with a target horizontal resolution of 1 km. The ensemble shall be used as a basis to detect events of extreme errors in wind power forecasting. Forecast value is the wind vector at wind turbine hub height (~ 100 m) in the short range (1 to 24 hour). Current wind power forecast systems rest already on NWP ensemble models. However, only calibrated ensembles from meteorological institutions serve as input so far, with limited spatial resolution (˜10 - 80 km) and member number (˜ 50). Perturbations related to the specific merits of wind power production are yet missing. Thus, single extreme error events which are not detected by such ensemble power forecasts occur infrequently. The numerical forecast model used in this study is the Weather Research and Forecasting Model (WRF). Model uncertainties are represented by stochastic parametrization of sub-grid processes via stochastically perturbed parametrization tendencies and in conjunction via the complementary stochastic kinetic-energy backscatter scheme already provided by WRF. We perform continuous ensemble updates by comparing each ensemble member with available observations using a sequential importance resampling filter to improve the model accuracy while maintaining ensemble spread. Additionally, we use different ensemble systems from global models (ECMWF and GFS) as input and boundary conditions to capture different synoptic conditions. Critical weather situations which are connected to extreme error events are located and corresponding perturbation techniques are applied. The demanding computational effort is overcome by utilising the supercomputer JUQUEEN at the Forschungszentrum Juelich.

  17. Comparing the extractable power and climatic impacts of very large-scale deployment of solar, wind, and biomass technologies

    NASA Astrophysics Data System (ADS)

    Miller, L. M.; Gans, F.; Pavlick, R.; Kleidon, A.

    2010-12-01

    The world is faced with two difficult problems: ever-increasing energy demands and climate change due primarily to the burning of fossil fuels. Overcoming these challenges will require the large-scale deployment of power technologies with low or zero greenhouse gas emissions. No power technology, however, will have zero climatic impact. Here, we compare the climatic impacts of the large-scale deployment of several such renewable power technologies (near-surface wind, photovoltaic solar, and second-generation biofuels) using an earth system model of intermediate complexity. All power technologies have an impact on the climate and alter the generation of power within the Earth system. For instance, we find that the maximum power that can be extracted from atmospheric motion is much less than previous estimates of the availability of wind power and this extraction reduces the ability of the atmosphere to generate motion, since the natural efficiency of the atmosphere to generate motion is already maximized. Solar power, in contrast, can convert incoming shortwave radiation into electric energy that would otherwise be "wasted" by the conversion into heat. Hence, solar power has the ability to enhance power generation within the Earth system, while large-scale extraction of wind power appears to weaken power generation. We provide estimates of the maximum realizable power potential for each resource along with its climate impacts in terms of standard metrics such as changes in 2-meter air temperature, surface heat flux partitioning, and precipitation. This understanding is then extended to include less-conventional metrics relating renewable power extraction to its impact on power generation in the Earth System (eg. atmospheric wind dissipation, terrestrial biosphere productivity, and the work done by the hydrologic cycle). Many previous assessments of large-scale renewable power technologies fail to consider the removal of power from the Earth System and its sometimes

  18. Analysis of energy-saving dispatch based on energy efficiency for power system with large scale wind power integration

    NASA Astrophysics Data System (ADS)

    Zou, Lanqing; Zhou, Peng; Li, Shitong; Lin, Li

    2017-01-01

    With the increasing of wind generators and the scale of wind farm, the utilization rate of wind power decreases continually, it is essential to develop an energy-saving dispatching model for the purpose of energy conservation and emission reduction. Firstly, considering some main factors, such as generator operating costs, start-up unit costs, shutdown unit costs, oil consumption and pollutant emission, establish an energy efficiency model. Then, based on the principle of energy-saving dispatch, a model is established which objective is maximizing the energy efficiency. Moreover, in order to realize the priority dispatching of wind power, another model is established which objective is minimizing the wind power shedding. Finally, under the conditions of different installed wind power capacities being integrated into a real region grid, two models are compared and analyzed from perspectives of the society, thermal power enterprise and wind power enterprise.

  19. Impurity-free quantum well intermixing for large optical cavity high-power laser diode structures

    NASA Astrophysics Data System (ADS)

    Kahraman, Abdullah; Gür, Emre; Aydınlı, Atilla

    2016-08-01

    We report on the correlation of atomic concentration profiles of diffusing species with the blueshift of the quantum well luminescence from both as-grown and impurity free quantum wells intermixed on actual large optical cavity high power laser diode structures. Because it is critical to suppress catastrophic optical mirror damage, sputtered SiO2 and thermally evaporated SrF2 were used both to enhance and suppress quantum well intermixing, respectively, in these (Al)GaAs large optical cavity structures. A luminescence blueshift of 55 nm (130 meV) was obtained for samples with 400 nm thick sputtered SiO2. These layers were used to generate point defects by annealing the samples at 950 °C for 3 min. The ensuing Ga diffusion observed as a shifting front towards the surface at the interface of the GaAs cap and AlGaAs cladding, as well as Al diffusion into the GaAs cap layer, correlates well with the observed luminescence blue shift, as determined by x-ray photoelectron spectroscopy. Although this technique is well-known, the correlation between the photoluminescence peak blue shift and diffusion of Ga and Al during impurity free quantum well intermixing on actual large optical cavity laser diode structures was demonstrated with both x ray photoelectron and photoluminescence spectroscopy, for the first time.

  20. Fabrication of large flattened mode optical fiber for high power laser

    NASA Astrophysics Data System (ADS)

    Das, S.; Pal, A.; Paul, M. C.; Sen, R.

    2010-12-01

    Large flattened mode optical fiber with raised index ring around the outer edge of the fiber core has been fabricated through modified chemical vapour deposition process to raise the threshold for non-linear interaction in high power laser fiber. The conversion of the fundamental mode shape from a Bessel function to a top hat function, enhances the effective area of the core intersected by the mode without increasing the physical size of the core. The shape of the fundamental mode is observed to be strongly dependent on the width of the raised index ring from the modal analysis. Suitable fiber parameters have also been estimated through the modal field analysis. Fabrication process steps have been optimized to achieve the desired fiber parameters. Modal field distribution, transmission properties and bending loss of the fabricated fibers have been characterized.

  1. Large-Scale Distributed Computational Fluid Dynamics on the Information Power Grid Using Globus

    NASA Technical Reports Server (NTRS)

    Barnard, Stephen; Biswas, Rupak; Saini, Subhash; VanderWijngaart, Robertus; Yarrow, Maurice; Zechtzer, Lou; Foster, Ian; Larsson, Olle

    1999-01-01

    This paper describes an experiment in which a large-scale scientific application development for tightly-coupled parallel machines is adapted to the distributed execution environment of the Information Power Grid (IPG). A brief overview of the IPG and a description of the computational fluid dynamics (CFD) algorithm are given. The Globus metacomputing toolkit is used as the enabling device for the geographically-distributed computation. Modifications related to latency hiding and Load balancing were required for an efficient implementation of the CFD application in the IPG environment. Performance results on a pair of SGI Origin 2000 machines indicate that real scientific applications can be effectively implemented on the IPG; however, a significant amount of continued effort is required to make such an environment useful and accessible to scientists and engineers.

  2. Lateral cavity photonic crystal surface emitting lasers with ultralow threshold and large power

    NASA Astrophysics Data System (ADS)

    Wang, Yufei; Qu, Hongwei; Zhou, Wenjun; Jiang, Bin; Zhang, Jianxin; Qi, Aiyi; Liu, Lei; Fu, Feiya; Zheng, Wanhua

    2012-03-01

    The Bragg diffraction condition of surface-emitting lasing action is analyzed and Γ2-1 mode is chosen for lasing. Two types of lateral cavity photonic crystal surface emitting lasers (LC-PCSELs) based on the PhC band edge mode lateral resonance and vertical emission to achieve electrically driven surface emitting laser without distributed Bragg reflectors in the long wavelength optical communication band are designed and fabricated. Deep etching techniques, which rely on the active layer being or not etched through, are adopted to realize the LC-PCSELs on the commercial AlGaInAs/InP multi-quantum-well (MQW) epitaxial wafer. 1553.8 nm with ultralow threshold of 667 A/cm2 and 1575 nm with large power of 1.8 mW surface emitting lasing actions are observed at room temperature, providing potential values for mass production with low cost of electrically driven PCSELs.

  3. Robust optimal sun-pointing control of a large solar power satellite

    NASA Astrophysics Data System (ADS)

    Wu, Shunan; Zhang, Kaiming; Peng, Haijun; Wu, Zhigang; Radice, Gianmarco

    2016-10-01

    The robust optimal sun-pointing control strategy for a large geostationary solar power satellite (SPS) is addressed in this paper. The SPS is considered as a huge rigid body, and the sun-pointing dynamics are firstly proposed in the state space representation. The perturbation effects caused by gravity gradient, solar radiation pressure and microwave reaction are investigated. To perform sun-pointing maneuvers, a periodically time-varying robust optimal LQR controller is designed to assess the pointing accuracy and the control inputs. It should be noted that, to reduce the pointing errors, the disturbance rejection technique is combined into the proposed LQR controller. A recursive algorithm is then proposed to solve the optimal LQR control gain. Simulation results are finally provided to illustrate the performance of the proposed closed-loop system.

  4. Large area and low power dielectrowetting optical shutter with local deterministic fluid film breakup

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Cumby, B.; Russell, A.; Heikenfeld, J.

    2013-11-01

    A large area (>10 cm2) and low-power (0.1-10 Hz AC voltage, ˜10's μW/cm2) dielectrowetting optical shutter requiring no pixelation is demonstrated. The device consists of 40 μm interdigitated electrodes covered by fluid splitting features and a hydrophobic fluoropolymer. When voltage is removed, the fluid splitting features initiate breakup of the fluid film into small droplets resulting in ˜80% transmission. Both the dielectrowetting and fluid splitting follow theory, allowing prediction of alternate designs and further improved performance. Advantages include scalability, optical polarization independence, high contrast ratio, fast response, and simple construction, which could be of use in switchable windows or transparent digital signage.

  5. Solving Man-Induced Large-Scale Conservation Problems: The Spanish Imperial Eagle and Power Lines

    PubMed Central

    López-López, Pascual; Ferrer, Miguel; Madero, Agustín; Casado, Eva; McGrady, Michael

    2011-01-01

    Background Man-induced mortality of birds caused by electrocution with poorly-designed pylons and power lines has been reported to be an important mortality factor that could become a major cause of population decline of one of the world rarest raptors, the Spanish imperial eagle (Aquila adalberti). Consequently it has resulted in an increasing awareness of this problem amongst land managers and the public at large, as well as increased research into the distribution of electrocution events and likely mitigation measures. Methodology/Principal Findings We provide information of how mitigation measures implemented on a regional level under the conservation program of the Spanish imperial eagle have resulted in a positive shift of demographic trends in Spain. A 35 years temporal data set (1974–2009) on mortality of Spanish imperial eagle was recorded, including population censuses, and data on electrocution and non-electrocution of birds. Additional information was obtained from 32 radio-tracked young eagles and specific field surveys. Data were divided into two periods, before and after the approval of a regional regulation of power line design in 1990 which established mandatory rules aimed at minimizing or eliminating the negative impacts of power lines facilities on avian populations. Our results show how population size and the average annual percentage of population change have increased between the two periods, whereas the number of electrocuted birds has been reduced in spite of the continuous growing of the wiring network. Conclusions Our results demonstrate that solving bird electrocution is an affordable problem if political interest is shown and financial investment is made. The combination of an adequate spatial planning with a sustainable development of human infrastructures will contribute positively to the conservation of the Spanish imperial eagle and may underpin population growth and range expansion, with positive side effects on other endangered

  6. Circadian analysis of large human populations: inferences from the power grid.

    PubMed

    Stowie, Adam C; Amicarelli, Mario J; Crosier, Caitlin J; Mymko, Ryan; Glass, J David

    2015-03-01

    Few, if any studies have focused on the daily rhythmic nature of modern industrialized populations. The present study utilized real-time load data from the U.S. Pacific Northwest electrical power grid as a reflection of human operative household activity. This approach involved actigraphic analyses of continuously streaming internet data (provided in 5 min bins) from a human subject pool of approximately 43 million primarily residential users. Rhythm analyses reveal striking seasonal and intra-week differences in human activity patterns, largely devoid of manufacturing and automated load interference. Length of the diurnal activity period (alpha) is longer during the spring than the summer (16.64 h versus 15.98 h, respectively; p < 0.01). As expected, significantly more activity occurs in the solar dark phase during the winter than during the summer (6.29 h versus 2.03 h, respectively; p < 0.01). Interestingly, throughout the year a "weekend effect" is evident, where morning activity onset occurs approximately 1 h later than during the work week (5:54 am versus 6:52 am, respectively; p < 0.01). This indicates a general phase-delaying response to the absence of job-related or other weekday morning arousal cues, substantiating a preference or need to sleep longer on weekends. Finally, a shift in onset time can be seen during the transition to Day Light Saving Time, but not the transition back to Standard Time. The use of grid power load as a means for human actimetry assessment thus offers new insights into the collective diurnal activity patterns of large human populations.

  7. OASIS 1.0: Very Large-Aperture High-Power Lidar for Exploring Geospace

    NASA Astrophysics Data System (ADS)

    Chu, X.; Smith, J. A.; Chen, C.; Zhao, J.; Yu, Z.; Gardner, C. S.

    2015-12-01

    A new initiative, namely OASIS (the Observatory for Atmosphere Space Interaction Studies), has called for a very large-aperture high-power (VLAHP) lidar as its first step forward to acquire the unprecedented measurement capabilities for exploring the space-atmosphere interaction region (SAIR). Currently, there exists a serious observational gap of the Earth's neutral atmosphere above 100 km. Information on neutral winds and temperatures and on the plasma-neutral coupling in the SAIR, especially between 100 and 200 km, is either sparse or nonexistent. Fully exploring the SAIR requires measurements of the neutral atmosphere to complement radar observations of the plasma. Lidar measurements of neutral winds, temperatures and species can enable these explorations. Many of these topics will be addressed with the VLAHP lidar. Discoveries of thermospheric neutral Fe, Na and K layers up to nearly 200 km at McMurdo, Antarctica and other locations on Earth, have opened a new door to observing the neutral thermosphere with ground-based instruments. These neutral metal layers provide the tracers for resonance Doppler lidars to directly measure the neutral temperatures and winds in the thermosphere, thus enabling the VLAHP lidar dream! Because the thermospheric densities of these metal atoms are many times smaller than the layer peak densities near 90 km, high power-aperture product lidars, like the VLAHP lidar, are required to derive scientifically useful measurements. Furthermore, several key technical challenges for VLAHP lidar have been largely resolved in the last a few years through the successful development of Fe and Na Doppler lidars at Boulder. By combining Rayleigh and Raman with resonance lidar techniques and strategically operating the VLAHP lidar next to incoherent scatter radar and other complementary instruments, the VLAHP lidar will enable new cutting-edge exploration of the geospace. These new concepts and progresses will be introduced in this paper.

  8. Unexpected low thermal conductivity and large power factor in Dirac semimetal Cd3As2

    NASA Astrophysics Data System (ADS)

    Cheng, Zhang; Tong, Zhou; Sihang, Liang; Junzhi, Cao; Xiang, Yuan; Yanwen, Liu; Yao, Shen; Qisi, Wang; Jun, Zhao; Zhongqin, Yang; Faxian, Xiu

    2016-01-01

    Thermoelectrics has long been considered as a promising way of power generation for the next decades. So far, extensive efforts have been devoted to the search of ideal thermoelectric materials, which require both high electrical conductivity and low thermal conductivity. Recently, the emerging Dirac semimetal Cd3As2, a three-dimensional analogue of graphene, has been reported to host ultra-high mobility and good electrical conductivity as metals. Here, we report the observation of unexpected low thermal conductivity in Cd3As2, one order of magnitude lower than the conventional metals or semimetals with a similar electrical conductivity, despite the semimetal band structure and high electron mobility. The power factor also reaches a large value of 1.58 mW·m-1·K-2 at room temperature and remains non-saturated up to 400 K. Corroborating with the first-principles calculations, we find that the thermoelectric performance can be well-modulated by the carrier concentration in a wide range. This work demonstrates the Dirac semimetal Cd3As2 as a potential candidate of thermoelectric materials. Project supported by the National Young 1000 Talent Plan China, the Pujiang Talent Plan in Shanghai, China, the National Natural Science Foundation of China (Grant Nos. 61322407 and 11474058), the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1103204), and the National Basic Research Program of China (Grant No. 2011CB921803).

  9. Tension between the power spectrum of density perturbations measured on large and small scales

    NASA Astrophysics Data System (ADS)

    Battye, Richard A.; Charnock, Tom; Moss, Adam

    2015-05-01

    There is a tension between measurements of the amplitude of the power spectrum of density perturbations inferred using the cosmic microwave background (CMB) and directly measured by large-scale structure (LSS) on smaller scales. We show that this tension exists, and is robust, for a range of LSS indicators including clusters, lensing and redshift space distortions and using CMB data from either Planck or WMAP +SPT /ACT . One obvious way to try to reconcile this is the inclusion of a massive neutrino which could be either active or sterile. Using Planck and a combination of all the LSS data we find that (i) for an active neutrino ∑mν=(0.357 ±0.099 ) eV and (ii) for a sterile neutrino msterileeff=(0.67 ±0.18 ) eV and Δ Neff=0.32 ±0.20 . This is, however, at the expense of a degraded fit to Planck temperature data, and we quantify the residual tension at 2.5 σ and 1.6 σ for massive and sterile neutrinos, respectively. We also consider alternative explanations including a lower redshift for reionization that would be in conflict with polarization measurements made by WMAP and ad hoc modifications to the primordial power spectrum.

  10. Serial powering: Proof of principle demonstration of a scheme for the operation of a large pixel detector at the LHC

    NASA Astrophysics Data System (ADS)

    Ta, D. B.; Stockmanns, T.; Hügging, F.; Fischer, P.; Grosse-Knetter, J.; Runolfsson, Ö.; Wermes, N.

    2006-02-01

    Large detectors in high-energy physics experiments are mostly built from many identical individual building blocks, called modules, which possess individual parts of the services. The modules are usually also powered by parallel power lines such that they can be individually operated. The main disadvantage of such a parallel powering scheme is the vast amount of necessary power cables which constitutes also a large amount of material in the path of the particles to be detected. For the LHC experiments already now this is a major problem for the optimal performance of the detectors and it has become evident, that for an upgrade programme alternative powering schemes must be investigated. We prove and demonstrate here for the example of the large scale pixel detector of ATLAS that Serial Powering of pixel modules is a viable alternative. A powering scheme using dedicated voltage regulators and modified flex hybrid circuits has been devised and implemented for ATLAS pixel modules. The modules have been intensively tested in the lab and in test beams and have been compared to those powered in parallel with respect to noise and threshold stability performance. Finally, the equivalent of a pixel ladder consisting of six serially powered pixel modules with about 0.3 Mpixels has been built and the performance with respect to operation failures has been studied.

  11. Virtual power based algorithm for decoupling large motions from infinitesimal strains: application to shoulder joint biomechanics.

    PubMed

    Büchler, P; Rakotomanana, L; Farron, A

    2002-12-01

    New trends of numerical models of human joints require more and more computation of both large amplitude joint motions and fine bone stress distribution. Together, these problems are difficult to solve and very CPU time consuming. The goal of this study is to develop a new method to diminish the calculation time for this kind of problems which include calculation of large amplitude motions and infinitesimal strains. Based on the Principle of Virtual Power, the present method decouples the problem into two parts. First, rigid body motion is calculated. The bone micro-deformations are then calculated in a second part by using the results of rigid body motions as boundary conditions. A finite element model of the shoulder was used to test this decoupling technique. The model was designed to determine the influence of humeral head shape on stress distribution in the scapula for different physiological motions of the joint. Two versions of the model were developed: a first version completely deformable and a second version based on the developed decoupling method. It was shown that biomechanical variables, as mean pressure and von Mises stress, calculated with the two versions were sensibly the same. On the other hand, CPU time needed for calculating with the new decoupled technique was more than 6 times less than with the completely deformable model.

  12. Root causes and impacts of severe accidents at large nuclear power plants.

    PubMed

    Högberg, Lars

    2013-04-01

    The root causes and impacts of three severe accidents at large civilian nuclear power plants are reviewed: the Three Mile Island accident in 1979, the Chernobyl accident in 1986, and the Fukushima Daiichi accident in 2011. Impacts include health effects, evacuation of contaminated areas as well as cost estimates and impacts on energy policies and nuclear safety work in various countries. It is concluded that essential objectives for reactor safety work must be: (1) to prevent accidents from developing into severe core damage, even if they are initiated by very unlikely natural or man-made events, and, recognizing that accidents with severe core damage may nevertheless occur; (2) to prevent large-scale and long-lived ground contamination by limiting releases of radioactive nuclides such as cesium to less than about 100 TBq. To achieve these objectives the importance of maintaining high global standards of safety management and safety culture cannot be emphasized enough. All three severe accidents discussed in this paper had their root causes in system deficiencies indicative of poor safety management and poor safety culture in both the nuclear industry and government authorities.

  13. Semiconducting large bandgap oxides as potential thermoelectric materials for high-temperature power generation?

    NASA Astrophysics Data System (ADS)

    Backhaus-Ricoult, M.; Rustad, J.; Moore, L.; Smith, C.; Brown, J.

    2014-08-01

    Semiconducting large bandgap oxides are considered as interesting candidates for high-temperature thermoelectric power generation (700-1,200 °C) due to their stability, lack of toxicity and low cost, but so far they have not reached sufficient performance for extended application. In this review, we summarize recent progress on thermoelectric oxides, analyze concepts for tuning semiconductor thermoelectric properties with view of their applicability to oxides and determine key drivers and limitations for electrical and thermal transport properties in oxides based on our own experimental work and literature results. For our experimental assessment, we have selected representative multicomponent oxides that range from materials with highly symmetric crystal structure (SrTiO3 perovskite) over oxides with large densities of planar crystallographic defects (Ti n O2 n-1 Magnéli phases with a single type of shear plane, NbO x block structures with intersecting shear planes and WO3- x with more defective block and channel structures) to layered superstructures (Ca3Co4O9 and double perovskites) and also include a wide range of their composites with a variety of second phases. Crystallographic or microstructural features of these oxides are in 0.3-2 nm size range, so that oxide phonons can efficiently interact with them. We explore in our experiments the effects of doping, grain size, crystallographic defects, superstructures, second phases, texturing and (to a limited extend) processing on electric conductivity, Seebeck coefficient, thermal conductivity and figure of merit. Jonker and lattice-versus-electrical conductivity plots are used to compare specific materials and material families and extract levers for future improvement of oxide thermoelectrics. We show in our work that oxygen vacancy doping (reduction) is a more powerful driver for improving the power factor for SrTiO3, TiO2 and NbO x than heterovalent doping. Based on our Seebeck-conductivity plots, we derived

  14. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    SciTech Connect

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 [times] 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V[sub x] ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V[sub x], the polarization of an incoming, linearly polarized, laser beam is rotated by 90[degree]. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 [times] 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches.

  15. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    SciTech Connect

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 {times} 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V{sub x} ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V{sub x}, the polarization of an incoming, linearly polarized, laser beam is rotated by 90{degree}. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 {times} 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches.

  16. Optimized Large-scale CMB Likelihood and Quadratic Maximum Likelihood Power Spectrum Estimation

    NASA Astrophysics Data System (ADS)

    Gjerløw, E.; Colombo, L. P. L.; Eriksen, H. K.; Górski, K. M.; Gruppuso, A.; Jewell, J. B.; Plaszczynski, S.; Wehus, I. K.

    2015-11-01

    We revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation with the goal of minimizing computational costs through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8% at ℓ ≤ 32 and a maximum shift in the mean values of a joint distribution of an amplitude-tilt model of 0.006σ. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ ≤ 32, rendering low-ℓ QML CMB power spectrum analysis fully tractable on a standard laptop.

  17. Operative and technological management of super-large united power grids: lessons of major world's blackouts

    NASA Astrophysics Data System (ADS)

    Brinkis, K.; Kreslins, V.; Mutule, A.

    2014-02-01

    Power system (PS) blackouts still persist worldwide, evidencing that the existing protective structures need to be improved. The discussed requirements and criteria to be met for joint synchronous operation of large and super-large united PSs should be based on close co-ordination of operative and technological management of all PSs involved in order to ensure secure and stable electricity supply and minimise or avoid the threat of a total PS blackout. The authors analyse the July 2012 India blackout - the largest power outage in history, which affected over 620 million people, i.e. half of India's population and spread across its 22 states. The analysis is of a general character, being applicable also to similar blackouts that have occurred in Europe and worldwide since 2003. The authors summarise and develop the main principles and methods of operative and technological management aimed at preventing total blackouts in large and super-large PSs. Neskatoties uz sasniegumiem elektroenerģētikas jomā un energosistēmu nepārtrauktu modernizāciju, pasaulē regulāri notiek sabrukumu avārijas. Rakstā apskatīti lielu un superlielu energosistēmu apvienību savstarpējas sinhronas darbības nodrošinājuma prasības un kritēriji, kas pamatojas uz operatīvās un tehnoloģiskās vadības ciešu koordināciju starp energosistēmām. Savstarpējas sinhronas darbības nodrošinājuma prasībām un kritērijiem ir izšķiroša nozīme, lai panāktu elektroapgādes drošumu un stabilitāti katrā energosistēmā, kas darbojas apvienotas energosistēmas sastāvā. Šo prasību un kritēriju ievērošana sekmē totālo avāriju izcelšanās iespēju samazināšanu un to novēršanu. Indijas 2012.gada totālo avāriju un citu analogo avāriju Eiropā un Amerikā analīze un izvērtējums laika posmā no 2003.gada, deva iespēju apkopot un izstrādāt lielu un superlielu energosistēmu operatīvās un tehnoloģiskās vadības principus un metodoloģiju, lai novērstu vai

  18. Energy Storage and Reactive Power Compensator in a Large Wind Farm: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Yinger, R.; Romanowitz, H.

    2003-10-01

    The size of wind farm power systems is increasing, and so is the number of wind farms contributing to the power systems network. The size of wind turbines is also increasing--from less than 1 MW a few years ago to the 2- to 3-MW machines being installed today and the 5-MW machines under development. The interaction of the wind farm, energy storage, reactive power compensation, and the power system network is being investigated. Because the loads and the wind farms' output fluctuate during the day, the use of energy storage and reactive power compensation is ideal for the power system network. Energy storage and reactive power compensation can minimize real/reactive power imbalances that can affect the surrounding power system. In this paper, we will show how the contribution of wind farms affects the power distribution network and how the power distribution network, energy storage, and reactive power compensation interact when the wind changes. We will also investigate the size of the components in relation to each other and to the power system.

  19. Stability Analysis for a Large-scale Space Power Network, International Space Station and Japanese Experiment Module

    NASA Astrophysics Data System (ADS)

    Komatsu, Masaaki; Arai, Satoaki

    The International Space Station (ISS), which is scheduled to start the operation fully in early 2000’s, is being developed and assembled on orbit since 1998 with international cooperation of the USA, Russia, Europe, Canada, and Japan. Japan participates in this ISS program and will provide the Japanese Experiment Module (JEM, named “Kibo") which will be attached to the ISS core. Japan Aerospace Exploration Agency (JAXA), which is responsible for the JEM system development and integration, has been developed JEM Electric Power System (JEM EPS) as part of the Space Station Electric Power System (EPS). The International Space Station Electric Power System is the world’s largest orbiting direct-current (DC) power system. The ISS electric power is generated by solar arrays, and distributed to the each module in 120 Vdc bus voltage rating. When designing a large-scale Space Power System using direct current (DC), special attention must be placed on the electrical stability and control of the system and individual load on the system. For a large-scale Space Power System, it is not feasible to design the entire system as a whole. Instead, the system can be defined in term of numerous small blocks, and each block then designed individually. The individual blocks are then integrated to form a complete system. The International Space Station (ISS) is one of good example for these issue and concerns as a large-scale Space Power System. This paper describes the approach of the stability analysis for a large-scale space power network.

  20. Requirements for Large Eddy Simulation Computations of Variable-Speed Power Turbine Flows

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.

    2016-01-01

    Variable-speed power turbines (VSPTs) operate at low Reynolds numbers and with a wide range of incidence angles. Transition, separation, and the relevant physics leading to them are important to VSPT flow. Higher fidelity tools such as large eddy simulation (LES) may be needed to resolve the flow features necessary for accurate predictive capability and design of such turbines. A survey conducted for this report explores the requirements for such computations. The survey is limited to the simulation of two-dimensional flow cases and endwalls are not included. It suggests that a grid resolution necessary for this type of simulation to accurately represent the physics may be of the order of Delta(x)+=45, Delta(x)+ =2 and Delta(z)+=17. Various subgrid-scale (SGS) models have been used and except for the Smagorinsky model, all seem to perform well and in some instances the simulations worked well without SGS modeling. A method of specifying the inlet conditions such as synthetic eddy modeling (SEM) is necessary to correctly represent the inlet conditions.

  1. Powering up with indirect reciprocity in a large-scale field experiment.

    PubMed

    Yoeli, Erez; Hoffman, Moshe; Rand, David G; Nowak, Martin A

    2013-06-18

    A defining aspect of human cooperation is the use of sophisticated indirect reciprocity. We observe others, talk about others, and act accordingly. We help those who help others, and we cooperate expecting that others will cooperate in return. Indirect reciprocity is based on reputation, which spreads by communication. A crucial aspect of indirect reciprocity is observability: reputation effects can support cooperation as long as peoples' actions can be observed by others. In evolutionary models of indirect reciprocity, natural selection favors cooperation when observability is sufficiently high. Complimenting this theoretical work are experiments where observability promotes cooperation among small groups playing games in the laboratory. Until now, however, there has been little evidence of observability's power to promote large-scale cooperation in real world settings. Here we provide such evidence using a field study involving 2413 subjects. We collaborated with a utility company to study participation in a program designed to prevent blackouts. We show that observability triples participation in this public goods game. The effect is over four times larger than offering a $25 monetary incentive, the company's previous policy. Furthermore, as predicted by indirect reciprocity, we provide evidence that reputational concerns are driving our observability effect. In sum, we show how indirect reciprocity can be harnessed to increase cooperation in a relevant, real-world public goods game.

  2. Design of an RF Antenna for a Large0Bore, High Power, Steady State Plasma Processing Chamber for Material Separation

    SciTech Connect

    Rasmussen, D.A.; Freeman, R.L.

    2001-11-07

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC, (Contractor), and Archimedes Technology Group, (Participant) is to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure. The project objectives are to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure.

  3. Stochastic Methods for Planning and Operating Power Systems with Large Amounts of Wind and Solar Power: Preprint

    SciTech Connect

    Milligan, M.; Donohoo, P.; O'Malley, M.

    2012-09-01

    Wind and solar generators differ in their generation characteristics than conventional generators. The variable output and imperfect predictability of these generators face a stochastic approach to plan and operate the power system without fundamentally changing the operation and planning problems. This paper overviews stochastic modeling challenges in operations, generation planning, and transmission planning, with references to current industry and academic work. Different stochastic problem formulations, including approximations, are also discussed.

  4. Co-optimizing Generation and Transmission Expansion with Wind Power in Large-Scale Power Grids Implementation in the US Eastern Interconnection

    DOE PAGES

    You, Shutang; Hadley, Stanton W.; Shankar, Mallikarjun; ...

    2016-01-12

    This paper studies the generation and transmission expansion co-optimization problem with a high wind power penetration rate in the US Eastern Interconnection (EI) power grid. In this paper, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. Our paper also analyzed a time series generation method to capture the variation and correlation of both load and wind power across regions. The obtained series can be easily introduced into the expansion planning problem and then solved through existing MIP solvers. Simulation results show that the proposed planning model and series generation methodmore » can improve the expansion result significantly through modeling more detailed information of wind and load variation among regions in the US EI system. Moreover, the improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare in large-scale power grids.« less

  5. Co-optimizing Generation and Transmission Expansion with Wind Power in Large-Scale Power Grids Implementation in the US Eastern Interconnection

    SciTech Connect

    You, Shutang; Hadley, Stanton W.; Shankar, Mallikarjun; Liu, Yilu

    2016-01-12

    This paper studies the generation and transmission expansion co-optimization problem with a high wind power penetration rate in the US Eastern Interconnection (EI) power grid. In this paper, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. Our paper also analyzed a time series generation method to capture the variation and correlation of both load and wind power across regions. The obtained series can be easily introduced into the expansion planning problem and then solved through existing MIP solvers. Simulation results show that the proposed planning model and series generation method can improve the expansion result significantly through modeling more detailed information of wind and load variation among regions in the US EI system. Moreover, the improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare in large-scale power grids.

  6. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    This CD contains files that support the talk (see CASI ID 20100021404). There are 24 models that relate to the ADAPT system and 1 Excel worksheet. In the paper an investigation into the use of Bayesian networks to construct large-scale diagnostic systems is described. The high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems are described in the talk. The data in the CD are the models of the 24 different power systems.

  7. Red, Straight, no bends: primordial power spectrum reconstruction from CMB and large-scale structure

    NASA Astrophysics Data System (ADS)

    Ravenni, Andrea; Verde, Licia; Cuesta, Antonio J.

    2016-08-01

    We present a minimally parametric, model independent reconstruction of the shape of the primordial power spectrum. Our smoothing spline technique is well-suited to search for smooth features such as deviations from scale invariance, and deviations from a power law such as running of the spectral index or small-scale power suppression. We use a comprehensive set of the state-of the art cosmological data: Planck observations of the temperature and polarisation anisotropies of the cosmic microwave background, WiggleZ and Sloan Digital Sky Survey Data Release 7 galaxy power spectra and the Canada-France-Hawaii Lensing Survey correlation function. This reconstruction strongly supports the evidence for a power law primordial power spectrum with a red tilt and disfavours deviations from a power law power spectrum including small-scale power suppression such as that induced by significantly massive neutrinos. This offers a powerful confirmation of the inflationary paradigm, justifying the adoption of the inflationary prior in cosmological analyses.

  8. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device.

    PubMed

    Srivastava, P K; Singh, S K; Sanyasi, A K; Awasthi, L M; Mattoo, S K

    2016-07-01

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.

  9. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Singh, S. K.; Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.

    2016-07-01

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.

  10. Comparison of high power large mode area and single mode 1908nm Tm-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Johnson, Benjamin R.; Creeden, Daniel; Limongelli, Julia; Pretorius, Herman; Blanchard, Jon; Setzler, Scott D.

    2016-03-01

    We compare large mode area (LMA) and single-mode (SM) double-clad fiber geometries for use in high power 1908nm fiber lasers. With a simple end-pumped architecture, we have generated 100W of 1908nm power with LMA fiber at 40% optical efficiency and 117W at 52.2% optical efficiency with single-mode fiber. We show the LMA fiber is capable of generating >200W and the SM fiber is capable of >300W at 1908nm. In all cases, the fiber lasers are monolithic power-oscillators with no free-space coupling.

  11. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    DOE PAGES

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; ...

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less

  12. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    SciTech Connect

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; Martin-Martinez, Sergio; Zhang, Jie; Hodge, Bri -Mathias; Molina-Garcia, Angel

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power data are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.

  13. Development of software to improve AC power quality on large spacecraft

    NASA Technical Reports Server (NTRS)

    Kraft, L. Alan

    1991-01-01

    To insure the reliability of a 20 kHz, alternating current (AC) power system on spacecraft, it is essential to analyze its behavior under many adverse operating conditions. Some of these conditions include overloads, short circuits, switching surges, and harmonic distortions. Harmonic distortions can become a serious problem. It can cause malfunctions in equipment that the power system is supplying, and, during distortions such as voltage resonance, it can cause equipment and insulation failures due to the extreme peak voltages. To address the harmonic distortion issue, work was begun under the 1990 NASA-ASEE Summer Faculty Fellowship Program. Software, originally developed by EPRI, called HARMFLO, a power flow program capable of analyzing harmonic conditions on three phase, balanced, 60 Hz AC power systems, was modified to analyze single phase, 20 kHz, AC power systems. Since almost all of the equipment used on spacecraft power systems is electrically different from equipment used on terrestrial power systems, it was also necessary to develop mathematical models for the equipment to be used on the spacecraft. The modelling was also started under the same fellowship work period. Details of the modifications and models completed during the 1990 NASA-ASEE Summer Faculty Fellowship Program can be found in a project report. As a continuation of the work to develop a complete package necessary for the full analysis of spacecraft AC power system behavior, deployment work has continued through NASA Grant NAG3-1254. This report details the work covered by the above mentioned grant.

  14. Development of software to improve AC power quality on large spacecraft

    NASA Technical Reports Server (NTRS)

    Kraft, L. Alan

    1991-01-01

    To insure the reliability of a 20 kHz, AC power system on spacecraft, it is essential to analyze its behavior under many adverse operating conditions. Some of these conditions include overloads, short circuits, switching surges, and harmonic distortions. Harmonic distortions can cause malfunctions in equipment that the power system is supplying, and during extreme distortions such as voltage resonance, it can cause equipment and insulation failures due to the extreme peak voltages. HARMFLO, a power flow computer program, which was capable of analyzing harmonic conditions on three phase, balanced, 60 Hz, AC power systems, was modified to analyze single phase, 20 kHz, AC power systems. Since almost all of the equipment used on spacecraft power systems is electrically different from equipment used on terrestrial power systems, it was also necessary to develop mathematical models for the equipment to be used on the spacecraft. The results are that (1) the harmonic power now has a model of a single phase, voltage controlled, full wave rectifier; and (2) HARMFLO was ported to the SUN workstation platform.

  15. Numerical Modeling of Thermal Pollution of Large Water Bodies from Thermal and Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Lyubimova, Tatyana; Lepikhin, Anatoly; Lyakhin, Yury; Parshakova, Yanina; Tiunov, Alexey

    2016-04-01

    Currently, the major manufacturers of electrical energy are the thermal and nuclear power plants including the cooling ponds in the processing chains. For a wide range of both environmental and technological problems, the evaluation of the temperature fields in the cooling ponds at certain critical values of hydrological and meteorological parameters is important. The present paper deals with the evaluation of the thermal effect of one of the largest thermal power plant in Europe - Perm GRES - to its cooling pond which is the Kama Reservoir. Since the area of the possible impact is rather large and the reservoir itself is characterized by a very complex morphometry, numerical modeling of thermal spot propagation in the Kama River due to the discharge of warm water by Perm GRES for the entire area in the 3D-formulation with the desired detail setting morphometric characteristics of the water body meets very serious difficulties. Because of that, to solve the problem, a combined scheme of calculations based on the combination of hydrodynamic models in 2D and 3D formulations was used. At the first stage of the combined scheme implementation, 2D hydrodynamical model was developed for all possible area, using software SMS v.11.1. The boundary and initial conditions for this model were formulated on the basis of calculations made using 1D hydrodynamical model developed and applied for the entire Kama Reservoir. Application of 2D hydrodynamical model for solving the problem under consideration was needed to obtain the necessary information for setting the boundary conditions for the 3D model. Software package ANSYS Fluent v.6.3 was used for the realization of 3D model. 3D modeling was performed for different wind speeds and directions and quantitative characteristics of the discharge of warm water. To verify the models, the data of the detailed field measurements in the zones of thermal pollution of the Kama reservoir due to impact of the Perm GRES were used. A

  16. Rotordynamic Feasibility of a Conceptual Variable-Speed Power Turbine Propulsion System for Large Civil Tilt-Rotor Applications

    NASA Technical Reports Server (NTRS)

    Howard, Samuel

    2012-01-01

    A variable-speed power turbine concept is analyzed for rotordynamic feasibility in a Large Civil Tilt-Rotor (LCTR) class engine. Implementation of a variable-speed power turbine in a rotorcraft engine would enable high efficiency propulsion at the high forward velocities anticipated of large tilt-rotor vehicles. Therefore, rotordynamics is a critical issue for this engine concept. A preliminary feasibility study is presented herein to address this concern and identify if variable-speed is possible in a conceptual engine sized for the LCTR. The analysis considers critical speed placement in the operating speed envelope, stability analysis up to the maximum anticipated operating speed, and potential unbalance response amplitudes to determine that a variable-speed power turbine is likely to be challenging, but not impossible to achieve in a tilt-rotor propulsion engine.

  17. NREL Confirms Large Potential for Grid Integration of Wind, Solar Power (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much electrical power from these renewable resources could be integrated reliably into the grid. To inform the discussion about the potential of such variable sources, the National Renewable Energy Laboratory (NREL) launched two key regional studies, examining the east and west sections of the U.S. power grid. The studies show that it is technically possible for U.S. power systems to integrate 20%-35% renewable electricity if infrastructure and operational improvements can be made.

  18. Large theoretical thermoelectric power factor of suspended single-layer MoS{sub 2}

    SciTech Connect

    Babaei, Hasan E-mail: babaei@auburn.edu; Khodadadi, J. M.; Sinha, Sanjiv

    2014-11-10

    We have calculated the semi-classical thermoelectric power factor of suspended single-layer (SL)- MoS{sub 2} utilizing electron relaxation times derived from ab initio calculations. Measurements of the thermoelectric power factor of SL-MoS{sub 2} on substrates reveal poor power factors. In contrast, we find the thermoelectric power factor of suspended SL-MoS{sub 2} to peak at ∼2.8 × 10{sup 4} μW/m K{sup 2} at 300 K, at an electron concentration of 10{sup 12} cm{sup −2}. This figure is higher than that in bulk Bi{sub 2}Te{sub 3}, for example. Given its relatively high thermal conductivity, suspended SL-MoS{sub 2} may hold promise for in-plane thin-film Peltier coolers, provided reasonable mobilities can be realized.

  19. A TWO-COMPONENT POWER LAW COVERING NEARLY FOUR ORDERS OF MAGNITUDE IN THE POWER SPECTRUM OF SPITZER FAR-INFRARED EMISSION FROM THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Block, David L.; Puerari, Ivanio; Elmegreen, Bruce G.; Bournaud, Frederic

    2010-07-20

    Power spectra of Large Magellanic Cloud (LMC) emission at 24, 70, and 160 {mu}m observed with the Spitzer Space Telescope have a two-component power-law structure with a shallow slope of -1.6 at low wavenumber, k, and a steep slope of -2.9 at high k. The break occurs at k {sup -1} {approx} 100-200 pc, which is interpreted as the line-of-sight thickness of the LMC disk. The slopes are slightly steeper for longer wavelengths, suggesting the cooler dust emission is smoother than the hot emission. The power spectrum (PS) covers {approx}3.5 orders of magnitude, and the break in the slope is in the middle of this range on a logarithmic scale. Large-scale driving from galactic and extragalactic processes, including disk self-gravity, spiral waves, and bars, presumably causes the low-k structure in what is effectively a two-dimensional geometry. Small-scale driving from stellar processes and shocks causes the high-k structure in a three-dimensional geometry. This transition in dimensionality corresponds to the observed change in PS slope. A companion paper models the observed power law with a self-gravitating hydrodynamics simulation of a galaxy like the LMC.

  20. Reliability and statistical power analysis of cortical and subcortical FreeSurfer metrics in a large sample of healthy elderly.

    PubMed

    Liem, Franziskus; Mérillat, Susan; Bezzola, Ladina; Hirsiger, Sarah; Philipp, Michel; Madhyastha, Tara; Jäncke, Lutz

    2015-03-01

    FreeSurfer is a tool to quantify cortical and subcortical brain anatomy automatically and noninvasively. Previous studies have reported reliability and statistical power analyses in relatively small samples or only selected one aspect of brain anatomy. Here, we investigated reliability and statistical power of cortical thickness, surface area, volume, and the volume of subcortical structures in a large sample (N=189) of healthy elderly subjects (64+ years). Reliability (intraclass correlation coefficient) of cortical and subcortical parameters is generally high (cortical: ICCs>0.87, subcortical: ICCs>0.95). Surface-based smoothing increases reliability of cortical thickness maps, while it decreases reliability of cortical surface area and volume. Nevertheless, statistical power of all measures benefits from smoothing. When aiming to detect a 10% difference between groups, the number of subjects required to test effects with sufficient power over the entire cortex varies between cortical measures (cortical thickness: N=39, surface area: N=21, volume: N=81; 10mm smoothing, power=0.8, α=0.05). For subcortical regions this number is between 16 and 76 subjects, depending on the region. We also demonstrate the advantage of within-subject designs over between-subject designs. Furthermore, we publicly provide a tool that allows researchers to perform a priori power analysis and sensitivity analysis to help evaluate previously published studies and to design future studies with sufficient statistical power.

  1. High-power pulsed gyrotron for 300 GHz-band collective Thomson scattering diagnostics in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuusuke; Saito, Teruo; Tatematsu, Yoshinori; Ikeuchi, Shinji; Manuilov, Vladimir N.; Kasa, Jun; Kotera, Masaki; Idehara, Toshitaka; Kubo, Shin; Shimozuma, Takashi; Tanaka, Kenji; Nishiura, Masaki

    2015-01-01

    A high-power pulse gyrotron was developed to generate a probe wave for 300 GHz-band collective Thomson scattering (CTS) diagnostics in the Large Helical Device. In this frequency range, avoiding mode competition is critical to realizing high-power and stable oscillation with a narrow frequency bandwidth. A moderately over-moded cavity was investigated to ensure sufficient isolation of a desired mode from neighbouring modes, and to achieve high power output simultaneously. A cavity with the TE14,2 operation mode, a triode electron gun with an intense laminar electron beam, and an internal mode convertor were designed to construct a prototype tube. It was experimentally observed that oscillation of the TE14,2 mode was strong enough for mode competition, and provided high power with sufficient stability. The oscillation characteristics associated with the electron beam properties were compared with the numerical characteristics to find an optimum operating condition. As a result, single-mode operation with maximum output power of 246 kW was demonstrated at 294 GHz with 65 kV/14 A electron beam, yielding efficiency of ˜27%. The radiation pattern was confirmed to be highly Gaussian. The duration of the 130 kW pulse, which is presently limited by the power supply, was extended up to 30 µs. The experimental results validate our design concept and indicate the potential for realizing a gyrotron with higher power and longer pulse toward practical use in 300 GHz CTS diagnostics.

  2. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)

  3. Waste heat recovery options in a large gas-turbine combined power plant

    NASA Astrophysics Data System (ADS)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat

  4. Design, construction, and measurement of a large solar powered thermoacoustic cooler

    NASA Astrophysics Data System (ADS)

    Chen, Reh-Lin

    2001-07-01

    A device based on harnessing concentrated solar power in combination with using thermoacoustic principles has been built, instrumented, and tested. Its acoustic power is generated by solar radiation and is subsequently used to pump heat from external loads. The direct conversion between thermal and mechanical energy without going through any electronic stage makes the mechanism simple. Construction of the solar collector is also rather unsophisticated. It was converted from a 10-ft satellite dish with aluminized Mylar glued on the surface. The thermoacoustic device was mounted on the dish with its engine's hot side positioned near the focus of the parabolic dish, about 1 meter above the center of the dish. A 2-dimensional solar tracking system was built, using two servo motors to position the dish at pre-calculated coordinates. The solar powered thermoacoustic cooler is intended to be used where solar power is abundant and electricity may not be available or reliable. The cooler provides cooling during solar availability. Cooling can be maintained by the latent heat of ice when solar power is unattainable. The device has achieved cooling although compromised by gas leakage and thermal losses and was not able to provide temperatures low enough to freeze water. Improvements of the device are expected through modifications suggested herein.

  5. Comparison of large central and small decentralized power generation in India

    SciTech Connect

    1997-05-01

    This reports evaluates two options for providing reliable power to rural areas in India. The benefits and costs are compared for biomass based distributed generation (DG) systems versus a 1200-MW central grid coal-fired power plant. The biomass based DG systems are examined both as alternatives to grid extension and as supplements to central grid power. The benefits are divided into three categories: those associated with providing reliable power from any source, those associated specifically with biomass based DG technology, and benefits of a central grid coal plant. The report compares the estimated delivered costs of electricity from the DG systems to those of the central plant. The analysis includes estimates for a central grid coal plant and four potential DG system technologies: Stirling engines, direct-fired combustion turbines, fuel cells, and biomass integrated gasification combined cycles. The report also discusses issues affecting India`s rural electricity demand, including economic development, power reliability, and environmental concerns. The results of the costs of electricity comparison between the biomass DG systems and the coal-fired central grid station demonstrated that the DG technologies may be able to produce very competitively priced electricity by the start of the next century. The use of DG technology may provide a practical means of addressing many rural electricity issues that India will face in the future. Biomass DG technologies in particular offer unique advantages for the environment and for economic development that will make them especially attractive. 58 refs., 31 figs.

  6. Transient Stability Improvement of Multi-Machine Power System with Large-Capacity Battery Systems

    NASA Astrophysics Data System (ADS)

    Kawabe, Ken-Ichi; Yokoyama, Akihiko

    An emergency control has been applied to power systems to avoid cascading outages by making the best use of existing equipment under severe fault conditions. Battery energy storage system (BESS) is one of the attractive equipment for the emergency control according to its growing installed capacity in the current grid. This paper investigates an effective use of BESS for transient stability improvement, and proposes a novel control scheme using wide-area information. The proposed control scheme adopts two stability indices, the energy function and rotor speed of the critical machine, to make it applicable to multi-machine power systems. Besides, it can control active and reactive power injection of the BESS coordinately to make the best use of its converter capacity for the stability enhancement. Digital simulations are conducted on the 32-machine meshed system with multiple BESSs. The results demonstrate that the BESSs controlled by the proposed method can improve the first swing stability and the system damping, and it is made clear how they improve the transient stability of the multi-machine power system. In addition, an impact of the reactive power control on the bus voltages around the installation sites is investigated to discuss a preferable way of their installation.

  7. Optimization of a hybrid electric power system design for large commercial buildings: An application design guide

    NASA Astrophysics Data System (ADS)

    Lee, Keun

    Renewable energy in different forms has been used in various applications for survival since the beginning of human existence. However, there is a new dire need to reevaluate and recalibrate the overall energy issue both nationally and globally. This includes, but is not limited to, the finite availability of fossil fuel, energy sustainability with an increasing demand, escalating energy costs, environmental impact such as global warming and green-house gases, to name a few. This dissertation is primarily focused and related to the production and usage of electricity from non-hydro renewable sources. Among non-hydro renewable energy sources, electricity generation from wind and solar energy are the fastest-growing technologies in the United States and in the world. However, due to the intermittent nature of such renewable sources, energy storage devices are required to maintain proper operation of the grid system and in order to increase reliability. A hybrid system, as the name suggests, is a combination of different forms of non-renewable and renewable energy generation, with or without storage devices. Hybrid systems, when applied properly, are able to improve reliability and enhance stability, reduce emissions and noise pollution, provide continuous power, increase operation life, reduce cost, and efficiently use all available energy. In the United States (U.S.), buildings consume approximately 40% of the total primary energy and 74% of the total electricity. Therefore, reduction of energy consumption and improved energy efficiency in U.S. buildings will play a vital role in the overall energy picture. Electrical energy usage for any such building varies widely depending on age (construction technique), electricity and natural gas usage, appearance, location and climate. In this research, a hybrid system including non-renewable and renewable energy generation with storage devices specifically for building applications, is studied in detail. This research deals

  8. Improvement of the main pump equipment used in large thermal power installations

    NASA Astrophysics Data System (ADS)

    Morgunov, G. M.

    2010-12-01

    The establishment and development history of the Moscow Power Engineering Institute's Department of Hydromechanics and Hydraulic Machines, and the educational and scientific work presently conducted at it are briefly described. The research and design work aimed at developing the optimal construction of the flow path and blade systems for the stages of a feedwater pump with a useful capacity of 25 MW with the traditional one-sided admission of working fluid for power units designed to operate at supercritical steam conditions is discussed. A new alternative design solution for the cartridge of a super-powerful feedwater pump with the two-sided admission of working fluid is presented. The predicted possibility of achieving more reliable and energy-efficient performance of a feedwater pump equipped with such a cartridge is substantiated.

  9. Estimating SO2 emissions from a large point source using 10 year OMI SO2 observations: Afsin Elbistan Power Plant

    NASA Astrophysics Data System (ADS)

    Kaynak Tezel, Burcak; Firatli, Ertug

    2016-04-01

    SO2 pollution has still been a problem for parts of Turkey, especially regions with large scale coal power plants. In this study, 10 year Ozone Monitoring Instrument (OMI) SO2 observations are used for estimating SO2 emissions from large point sources in Turkey. We aim to estimate SO2 emissions from coal power plants where no online monitoring is available and improve the emissions given in current emission inventories with these top-down estimates. High-resolution yearly averaged maps are created on a domain over large point sources by oversampling SO2 columns for each grid for the years 2005-2014. This method reduced the noise and resulted in a better signal from large point sources and it was used for coal power plants in U.S and India, previously. The SO2 signal over selected power plants are observed with this method, and the spatiotemporal changes of SO2 signal are analyzed. With the assumption that OMI SO2 observations are correlating with emissions, long-term OMI SO2 observation averages can be used to estimate emission levels of significant point sources. Two-dimensional Gaussian function is used for explaining the relationships between OMI SO2 observations and emissions. Afsin Elbistan Power Plant, which is the largest capacity coal power plant in Turkey, is investigated in detail as a case study. The satellite scans within 50 km of the power plant are selected and averaged over a 2 x 2 km2 gridded domain by smoothing method for 2005-2014. The yearly averages of OMI SO2 are calculated to investigate the magnitude and the impact area of the SO2 emissions of the power plant. A significant increase in OMI SO2 observations over Afsin Elbistan from 2005 to 2009 was observed (over 2 times) possibly due to the capacity increase from 1715 to 2795 MW in 2006. Comparison between the yearly gross electricity production of the plant and OMI SO2 observations indicated consistency until 2009, but OMI SO2 observations indicated a rapid increase while gross electricity

  10. Environmental implications of large-scale adoption of wind power: a scenario-based life cycle assessment

    NASA Astrophysics Data System (ADS)

    Arvesen, Anders; Hertwich, Edgar G.

    2011-01-01

    We investigate the potential environmental impacts of a large-scale adoption of wind power to meet up to 22% of the world’s growing electricity demand. The analysis builds on life cycle assessments of generic onshore and offshore wind farms, meant to represent average conditions for global deployment of wind power. We scale unit-based findings to estimate aggregated emissions of building, operating and decommissioning wind farms toward 2050, taking into account changes in the electricity mix in manufacturing. The energy scenarios investigated are the International Energy Agency’s BLUE scenarios. We estimate 1.7-2.6 Gt CO2-eq climate change, 2.1-3.2 Mt N-eq marine eutrophication, 9.2-14 Mt NMVOC photochemical oxidant formation, and 9.5-15 Mt SO2-eq terrestrial acidification impact category indicators due to global wind power in 2007-50. Assuming lifetimes 5 yr longer than reference, the total climate change indicator values are reduced by 8%. In the BLUE Map scenario, construction of new capacity contributes 64%, and repowering of existing capacity 38%, to total cumulative greenhouse gas emissions. The total emissions of wind electricity range between 4% and 14% of the direct emissions of the replaced fossil-fueled power plants. For all impact categories, the indirect emissions of displaced fossil power are larger than the total emissions caused by wind power.

  11. Soft Power and Hard Measures: Large-Scale Assessment, Citizenship and the European Union

    ERIC Educational Resources Information Center

    Rutkowski, David; Engel, Laura C.

    2010-01-01

    This article explores the International Civic and Citizenship Education Study (ICCS) with particular emphasis on the European Union's (EU's) involvement in the regional portion. Using the ICCS, the EU actively combines hard measures with soft power, allowing the EU to define and steer cross-national rankings of values of EU citizenship. The…

  12. Combined Heat and Power System Achieves Millions in Cost Savings at Large University - Case Study

    SciTech Connect

    2013-05-29

    Texas A&M University is operating a high-efficiency combined heat and power (CHP) system at its district energy campus in College Station, Texas. Texas A&M received $10 million in U.S. Department of Energy funding from the American Recovery and Reinvestment Act (ARRA) of 2009 for this project. Private-sector cost share totaled $40 million.

  13. Fuel-Cell-Powered Electric Motor Drive Analyzed for a Large Airplane

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Choi, Benjamin B.

    2005-01-01

    Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.

  14. Measurement of CIB power spectra over large sky areas from Planck HFI maps

    NASA Astrophysics Data System (ADS)

    Mak, Daisy Suet Ying; Challinor, Anthony; Efstathiou, George; Lagache, Guilaine

    2017-04-01

    We present new measurements of the power spectra of the cosmic infrared background (CIB) anisotropies using the Planck 2015 full-mission High frequency instrument data at 353, 545 and 857 GHz over 20 000 deg2. We use techniques similar to those applied for the cosmological analysis of Planck, subtracting dust emission at the power spectrum level. Our analysis gives stable solutions for the CIB power spectra with increasing sky coverage up to about 50 per cent of the sky. These spectra agree well with H I-cleaned spectra from Planck measured on much smaller areas of sky with low Galactic dust emission. At 545 and 857 GHz, our CIB spectra agree well with those measured from Herschel data. We find that the CIB spectra at ℓ ≳ 500 are well fitted by a power-law model for the clustered CIB, with a shallow index γcib = 0.53 ± 0.02. This is consistent with the CIB results at 217 GHz from the cosmological parameter analysis of Planck. We show that a linear combination of the 545 and 857 GHz Planck maps is dominated by the CIB fluctuations at multipoles ℓ ≳ 300.

  15. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat (Presentation)

    SciTech Connect

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  16. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    SciTech Connect

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  17. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    NASA Astrophysics Data System (ADS)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  18. Recent Large Reduction in Sulfur Dioxide Emissions from Chinese Power Plants Observed by the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Li, Can; Zhang, Qiang; Krotkov, Nickolay A.; Streets, David G.; He, Kebin; Tsay, Si-Chee; Gleason, James F.

    2010-01-01

    The Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite observed substantial increases in total column SO2 and tropospheric column NO2 from 2005 to 2007, over several areas in northern China where large coal-fired power plants were built during this period. The OMI-observed SO2/NO2 ratio is consistent with the SO2/ NO2, emissions estimated from a bottom-up approach. In 2008 over the same areas, OMI detected little change in NO2, suggesting steady electricity output from the power plants. However, dramatic reductions of S0 2 emissions were observed by OMI at the same time. These reductions confirm the effectiveness of the flue-gas desulfurization (FGD) devices in reducing S02 emissions, which likely became operational between 2007 and 2008. This study further demonstrates that the satellite sensors can monitor and characterize anthropogenic emissions from large point sources.

  19. Electromechanical properties of novel large strain PolyPower film and laminate components for DEAP actuator and sensor applications

    NASA Astrophysics Data System (ADS)

    Benslimane, Mohamed; Kiil, Hans-Erik; Tryson, Michael J.

    2010-04-01

    A novel large strain PolyPower® compliant electrode has been manufactured and tested. The new electrode design is based on the anisotropic corrugated electrode principle with a corrugation profile designed to enable up to 100 percent linear strain of PolyPower compliant electrodes. Specifically, corrugations height-to-period ratio in the range of 1 allows stretching the thin metal electrode more than 80 percent without inducing any substantial damage to it. Based upon this new design, PolyPower films and laminates are large scale manufactured and used to fabricate PolyPower InLastor actuators and sensors capable of withstanding large strain conditions. The metal electrode is applied onto the corrugated surface of silicone elastomer film. Experimental measurements made with single-layer dielectric electro-active polymer (DEAP) PolyPower laminates are presented. Electrical and mechanical properties of the electrode are discussed. Stress and capacitance measurements as a function of strain and corrugations height-to-period ratio are used as a basis to analyze the properties of the laminates. It can be shown that the degree of anisotropy of compliant electrode affects the stress and capacitance dependence as a function of axial strain in the compliance direction. The degree of anisotropy of the electrode depends very much on the thickness of the coatings applied to the corrugated surface of elastomer film. This degree determines the conversion ratio of Maxwell pressure into actuation pressure in the direction of compliance. The effects of electrode thickness on the stress and strain relaxation properties of the DEAP laminate are also presented.

  20. Investigation of radial power and temperature effects in large-scale reflood experiments. [PWR

    SciTech Connect

    Motley, F.

    1983-01-01

    The largest reflood test facility in the world has been designed and constructed by the Japan Atomic Energy Research Institute (JAERI). The experimental test facility, known as the Cylindrical Core Test Facility (CCTF), models a full-height core section and the four primary loops of a Pressurized Water Reactor (PWR). The radial power distribution and temperature distribution were varied during the testing program. The test results indicate that the radial effects, while noticeable, do not appreciably alter the overall quenching behavior of the facility. The Transient Reactor Analysis Code (TRAC) correctly predicted the experimental results of several of the tests. The code results indicate that the core flow pattern adjusts multidimensionally to mitigate the effects of increased power or stored energy.

  1. Bendable n-Type Metallic Nanocomposites with Large Thermoelectric Power Factor.

    PubMed

    Chen, Yani; He, Minhong; Liu, Bin; Bazan, Guillermo C; Zhou, Jun; Liang, Ziqi

    2017-01-01

    Highly bendable n-type thermoelectric nanocomposites are successfully developed by embedding metallic Ni nanowires within an insulating poly(vinylidene fluoride) (PVDF) matrix in solution. These nanocomposites exhibit an abnormal decoupling of the electrical conductivity and Seebeck coefficient as a function of Ni contents. A maximum power factor of 220 µW m(-1) K(-2) and ZT of 0.15 can thus be obtained with 80 wt% Ni at 380 K.

  2. Large Scale Triboelectric Nanogenerator and Self-Powered Pressure Sensor Array Using Low Cost Roll-to-Roll UV Embossing

    PubMed Central

    Dhakar, Lokesh; Gudla, Sudeep; Shan, Xuechuan; Wang, Zhiping; Tay, Francis Eng Hock; Heng, Chun-Huat; Lee, Chengkuo

    2016-01-01

    Triboelectric nanogenerators (TENGs) have emerged as a potential solution for mechanical energy harvesting over conventional mechanisms such as piezoelectric and electromagnetic, due to easy fabrication, high efficiency and wider choice of materials. Traditional fabrication techniques used to realize TENGs involve plasma etching, soft lithography and nanoparticle deposition for higher performance. But lack of truly scalable fabrication processes still remains a critical challenge and bottleneck in the path of bringing TENGs to commercial production. In this paper, we demonstrate fabrication of large scale triboelectric nanogenerator (LS-TENG) using roll-to-roll ultraviolet embossing to pattern polyethylene terephthalate sheets. These LS-TENGs can be used to harvest energy from human motion and vehicle motion from embedded devices in floors and roads, respectively. LS-TENG generated a power density of 62.5 mW m−2. Using roll-to-roll processing technique, we also demonstrate a large scale triboelectric pressure sensor array with pressure detection sensitivity of 1.33 V kPa−1. The large scale pressure sensor array has applications in self-powered motion tracking, posture monitoring and electronic skin applications. This work demonstrates scalable fabrication of TENGs and self-powered pressure sensor arrays, which will lead to extremely low cost and bring them closer to commercial production. PMID:26905285

  3. Large Scale Triboelectric Nanogenerator and Self-Powered Pressure Sensor Array Using Low Cost Roll-to-Roll UV Embossing

    NASA Astrophysics Data System (ADS)

    Dhakar, Lokesh; Gudla, Sudeep; Shan, Xuechuan; Wang, Zhiping; Tay, Francis Eng Hock; Heng, Chun-Huat; Lee, Chengkuo

    2016-02-01

    Triboelectric nanogenerators (TENGs) have emerged as a potential solution for mechanical energy harvesting over conventional mechanisms such as piezoelectric and electromagnetic, due to easy fabrication, high efficiency and wider choice of materials. Traditional fabrication techniques used to realize TENGs involve plasma etching, soft lithography and nanoparticle deposition for higher performance. But lack of truly scalable fabrication processes still remains a critical challenge and bottleneck in the path of bringing TENGs to commercial production. In this paper, we demonstrate fabrication of large scale triboelectric nanogenerator (LS-TENG) using roll-to-roll ultraviolet embossing to pattern polyethylene terephthalate sheets. These LS-TENGs can be used to harvest energy from human motion and vehicle motion from embedded devices in floors and roads, respectively. LS-TENG generated a power density of 62.5 mW m‑2. Using roll-to-roll processing technique, we also demonstrate a large scale triboelectric pressure sensor array with pressure detection sensitivity of 1.33 V kPa‑1. The large scale pressure sensor array has applications in self-powered motion tracking, posture monitoring and electronic skin applications. This work demonstrates scalable fabrication of TENGs and self-powered pressure sensor arrays, which will lead to extremely low cost and bring them closer to commercial production.

  4. Large Scale Triboelectric Nanogenerator and Self-Powered Pressure Sensor Array Using Low Cost Roll-to-Roll UV Embossing.

    PubMed

    Dhakar, Lokesh; Gudla, Sudeep; Shan, Xuechuan; Wang, Zhiping; Tay, Francis Eng Hock; Heng, Chun-Huat; Lee, Chengkuo

    2016-02-24

    Triboelectric nanogenerators (TENGs) have emerged as a potential solution for mechanical energy harvesting over conventional mechanisms such as piezoelectric and electromagnetic, due to easy fabrication, high efficiency and wider choice of materials. Traditional fabrication techniques used to realize TENGs involve plasma etching, soft lithography and nanoparticle deposition for higher performance. But lack of truly scalable fabrication processes still remains a critical challenge and bottleneck in the path of bringing TENGs to commercial production. In this paper, we demonstrate fabrication of large scale triboelectric nanogenerator (LS-TENG) using roll-to-roll ultraviolet embossing to pattern polyethylene terephthalate sheets. These LS-TENGs can be used to harvest energy from human motion and vehicle motion from embedded devices in floors and roads, respectively. LS-TENG generated a power density of 62.5 mW m(-2). Using roll-to-roll processing technique, we also demonstrate a large scale triboelectric pressure sensor array with pressure detection sensitivity of 1.33 V kPa(-1). The large scale pressure sensor array has applications in self-powered motion tracking, posture monitoring and electronic skin applications. This work demonstrates scalable fabrication of TENGs and self-powered pressure sensor arrays, which will lead to extremely low cost and bring them closer to commercial production.

  5. Economic optimization of the energy transport component of a large distributed solar power plant

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1976-01-01

    A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.

  6. Subsets of a Large Cognitive Battery Better Power Clinical Trials on Early Stage Alzheimer Disease

    PubMed Central

    Xiong, Chengjie; Weng, Hua; Bennett, David A.; Boyle, Patricia A.; Shah, Raj C.; Fague, Scot; Hall, Charles B.; Lipton, Richard B.; Morris, John C.

    2014-01-01

    Background/Aims Cognitive batteries routinely used by the Alzheimer disease (AD) research community may contain items uninformative for tracking disease progression to power clinical trials on early stage AD. We aim to identify subsets of the most informative items from an existing cognitive battery for better powering clinical trials on early AD. Methods Longitudinal change in item scores from the battery was associated with the onset of Mild Cognitive Impairment (MCI) in 1513 elderly individuals. Items whose longitudinal changes were correlated with the onset of MCI were selected as informative for tracking the early cognitive progression. Results 226 items in the battery were annually assessed over a follow-up of up to 13 years. Changes of item scores over time from 187 items were significantly correlated with the onset of MCI. For clinical trials on preclinical AD and on MCI, informative items permit smaller or similar sample sizes as compared to the entire battery, whereas uninformative items require much larger sample sizes. Conclusions Longitudinal changes in item scores from about 17% of items in the cognitive battery are uninformative for tracking early disease progression. Clinical trials on early AD can be better powered using informative items rather than the entire battery. PMID:25376544

  7. Very low noise AC/DC power supply systems for large detector arrays.

    PubMed

    Arnaboldi, C; Baù, A; Carniti, P; Cassina, L; Giachero, A; Gotti, C; Maino, M; Passerini, A; Pessina, G

    2015-12-01

    In this work, we present the first part of the power supply system for the CUORE and LUCIFER arrays of bolometric detectors. For CUORE, it consists of AC/DC commercial power supplies (0-60 V output) followed by custom DC/DC modules (48 V input, ±5 V to ±13.5 V outputs). Each module has 3 floating and independently configurable output voltages. In LUCIFER, the AC/DC + DC/DC stages are combined into a commercial medium-power AC/DC source. At the outputs of both setups, we introduced filters with the aim of lowering the noise and to protect the following stages from high voltage spikes that can be generated by the energy stored in the cables after the release of accidental short circuits. Output noise is very low, as required: in the 100 MHz bandwidth the RMS level is about 37 μV(RMS) (CUORE setup) and 90 μV(RMS) (LUCIFER setup) at a load of 7 A, with a negligible dependence on the load current. Even more importantly, high frequency switching disturbances are almost completely suppressed. The efficiency of both systems is above 85%. Both systems are completely programmable and monitored via CAN bus (optically coupled).

  8. Developments on GM-Type Pulse Tube Cryorefrigerators with Large Cooling Power

    NASA Astrophysics Data System (ADS)

    Köttig, T.; Waldauf, A.; Thürk, M.; Seidel, P.

    2004-06-01

    Over the past several years the authors have participated in basic and prototype developments of four valve pulse tube refrigerators (FVPTR). Systematic studies have been carried out to characterize the basics of energy transport mechanisms, the flow distribution and loss mechanisms of this type of pulse tube refrigerator (PTR) with its active type of phase shifting. Based on the comprehension of these phenomena, several prototypes have been built and optimized for various applications. Recently a single-stage PTR in coaxial arrangement has been designed for maximum refrigeration power in the temperature range between 20 and 80 K limited by an available electrical input power of 7 kW. To reach this goal we used lead screens in the coldest part of the regenerator instead of spheres in order to decrease the pressure drop. The improvement of the regenerator prevents the reported fact that at higher temperatures the performance of a pulse tube with a regenerator partially filled with lead spheres can even be worse than a regenerator totally made of stainless steel. At the moment the cooler provides a cooling power of 120 W@74 K and 40 W@34 K. The minimum no-load temperature achieved is 18.6 K.

  9. Assessment of Aerodynamic Challenges of a Variable-Speed Power Turbine for Large Civil Tilt-Rotor Application

    NASA Technical Reports Server (NTRS)

    Welch, Gerand E.

    2010-01-01

    The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range (100% at take-off to 54% at cruise). The variable-speed power turbine, when coupled to a fixed-gear-ratio transmission, offers one approach to accomplish this speed variation. The key aero-challenges of the variable-speed power turbine are related to high work factors at cruise, where the power turbine operates at 54% of take-off speed, wide incidence variations into the vane, blade, and exit-guide-vane rows associated with the power-turbine speed change, and the impact of low aft-stage Reynolds number (transitional flow) at 28 kft cruise. Meanline and 2-D Reynolds-Averaged Navier- Stokes analyses are used to characterize the variable-speed power-turbine aerodynamic challenges and to outline a conceptual design approach that accounts for multi-point operation. Identified technical challenges associated with the aerodynamics of high work factor, incidence-tolerant blading, and low Reynolds numbers pose research needs outlined in the paper

  10. Doin' Time in College: An Ethnographic Study of Power and Motivation in a Large Lecture Class.

    ERIC Educational Resources Information Center

    Campbell, Cheri Ellis

    An ethnographic study examined instructor uses of control, immediacy, and affinity-seeking behaviors in a large college lecture class. A class of 140 college sophomores was observed for 10 weeks, in an attempt to understand in a situational and non-quantitative manner, what instructor behaviors motivate students toward cognitive and affective…

  11. Efficient calculation of critical eigenvalue clusters in the small signal stability analysis of large power systems

    SciTech Connect

    Angelidis, G.; Semlyen, A.

    1995-02-01

    The paper presents a methodology for the calculation of a selected set of eigenvalues, considered critical in the small signal stability analysis of power systems. It analyzes several alternatives for refining a preliminary rough solution obtained by subspace interactions. These alternatives range from constant-matrix iterative refinement to Newton`s method. Due to an adaptive solution strategy, the overall algorithm is very robust. Newton`s method is much faster than existing approaches. The performance of these methods is demonstrated on several test systems.

  12. A new VME based high voltage power supply for large experiments

    SciTech Connect

    Ahn, S.C.; Angstadt, R.D.; Droege, T.F.; Johnson, M.E.; MacKinnon, B.A.; McNulty, S.E.; Shea, M.F.; Thompson, R.N.; Watson, M.M. ); Franzini, P. ); Jones, A.A. ); Lopez, M.L. ); Wimpenny, S.J.; Yang, M.J

    1991-11-01

    A new VME based high voltage power supply has been developed for the D{O} experiment at Fermilab. There are three types of supplies delivering up to {plus minus}5.6 kV at 1.0 mA or +2.0 kV at 3.0 mA with a set accuracy of 1.5 V and extremely low voltage ripples. Complete computer control has allowed many special features to be developed for the supply, including user-defined control land monitor groups, variable ramp rates, and advanced histogram and graphic functions. 3 refs.

  13. A new VME based high voltage power supply for large experiments

    SciTech Connect

    Ahn, S.C.; Angstadt, R.D.; Droege, T.F.; Johnson, M.E.; MacKinnon, B.A.; McNulty, S.E.; Shea, M.F.; Thompson, R.N.; Watson, M.M.; Franzini, P.; Jones, A.A.; Lopez, M.L.; Wimpenny, S.J.; Yang, M.J.

    1991-11-01

    A new VME based high voltage power supply has been developed for the D{O} experiment at Fermilab. There are three types of supplies delivering up to {plus_minus}5.6 kV at 1.0 mA or +2.0 kV at 3.0 mA with a set accuracy of 1.5 V and extremely low voltage ripples. Complete computer control has allowed many special features to be developed for the supply, including user-defined control land monitor groups, variable ramp rates, and advanced histogram and graphic functions. 3 refs.

  14. Online Monitoring Technical Basis and Analysis Framework for Large Power Transformers; Interim Report for FY 2012

    SciTech Connect

    Nancy J. Lybeck; Vivek Agarwal; Binh T. Pham; Heather D. Medema; Kirk Fitzgerald

    2012-09-01

    The Light Water Reactor Sustainability program at Idaho National Laboratory (INL) is actively conducting research to develop and demonstrate online monitoring (OLM) capabilities for active components in existing Nuclear Power Plants. A pilot project is currently underway to apply OLM to Generator Step-Up Transformers (GSUs) and Emergency Diesel Generators (EDGs). INL and the Electric Power Research Institute (EPRI) are working jointly to implement the pilot project. The EPRI Fleet-Wide Prognostic and Health Management (FW-PHM) Software Suite will be used to implement monitoring in conjunction with utility partners: the Shearon Harris Nuclear Generating Station (owned by Duke Energy for GSUs, and Braidwood Generating Station (owned by Exelon Corporation) for EDGs. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for GSUs. GSUs are main transformers that are directly connected to generators, stepping up the voltage from the generator output voltage to the highest transmission voltages for supplying electricity to the transmission grid. Technical experts from Shearon Harris are assisting INL and EPRI in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the FW-PHM Software Suite and tested using data from Shearon-Harris. Parallel research on EDGs is being conducted, and will be reported in an interim report during the first quarter of fiscal year 2013.

  15. Automating large-scale power plant systems: a perspective and philosophy

    SciTech Connect

    Kisner, R A; Raju, G V.S.

    1984-12-01

    This report is intended to convey a philosophy for the design of large-scale control systems that will guide control engineers and managers in the development of integrated, intelligent, flexible control systems. A liquid reactor, the large-scale protoype breeder, is the focus of the examples and analyses in the report. A structure for the discontinuous and continuous control aspects is presented in sufficient detail to form the foundation for future expanded development. The system diagramming techniques used are especially useful because they are both an aid to control design and a specification for software design. This report develops a continuous-system supervisory controlled that adds the capability for optimal coordination and control to existing supervisory control design. This development makes global minimization of variations in key system parameters during transients.

  16. Variable-Speed Power-Turbine for the Large Civil Tilt Rotor

    NASA Technical Reports Server (NTRS)

    Suchezky, Mark; Cruzen, G. Scott

    2012-01-01

    Turbine design concepts were studied for application to a large civil tiltrotor transport aircraft. The concepts addressed the need for high turbine efficiency across the broad 2:1 turbine operating speed range representative of the notional mission for the aircraft. The study focused on tailoring basic turbine aerodynamic design design parameters to avoid the need for complex, heavy, and expensive variable geometry features. The results of the study showed that good turbine performance can be achieved across the design speed range if the design focuses on tailoring the aerodynamics for good tolerance to large swings in incidence, as opposed to optimizing for best performance at the long range cruise design point. A rig design configuration and program plan are suggested for a dedicated experiment to validate the proposed approach.

  17. NASA's Information Power Grid: Large Scale Distributed Computing and Data Management

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Vaziri, Arsi; Hinke, Tom; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Tang, Harry (Technical Monitor)

    2001-01-01

    Large-scale science and engineering are done through the interaction of people, heterogeneous computing resources, information systems, and instruments, all of which are geographically and organizationally dispersed. The overall motivation for Grids is to facilitate the routine interactions of these resources in order to support large-scale science and engineering. Multi-disciplinary simulations provide a good example of a class of applications that are very likely to require aggregation of widely distributed computing, data, and intellectual resources. Such simulations - e.g. whole system aircraft simulation and whole system living cell simulation - require integrating applications and data that are developed by different teams of researchers frequently in different locations. The research team's are the only ones that have the expertise to maintain and improve the simulation code and/or the body of experimental data that drives the simulations. This results in an inherently distributed computing and data management environment.

  18. Modeling turbine wakes and power losses within the Horns Rev offshore wind farm using large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Porte-Agel, Fernando

    2013-04-01

    A recently-developed large-eddy simulations (LES) framework is implemented to predict multiple wake flows and the associated power losses within the Horns Rev offshore wind farm under near-neutral stability conditions. A tuning-free Lagrangian scale-dependent dynamic subgrid-scale (SGS) model is used for the parametrization of the SGS stresses. The turbine-generated power outputs and the turbine-induced forces (e.g., thrust, lift, drag) are parameterized using two models: (a) the traditional actuator-disk model without rotation (ADM-NR), which uses the 1D momentum theory to relate the power output and the thrust force with a representative velocity over the rotor (e.g., the disk-averaged velocity); and (b) the actuator-disk model with rotation (ADM-R), which adopts blade element theory to calculate the lift and drag forces (that produce thrust, rotor shaft torque, and power) based on the local blade and flow characteristics. In general, the predicted power outputs obtained using the ADM-R are in good agreement with observed power data from the Horns Rev wind farm. The ADM-NR tends to underestimate the power output. A similar under-prediction is obtained using industry-standard wind-farm models such as the Wind Atlas Analysis and Application Program (WAsP). Simulations using different inflow conditions show that the mean wind direction has a strong effect on the spatial distributions of the time-averaged velocity and the turbulence intensity within the farm. These, in turn, affect the power output and the fatigue loads on the turbines. When the prevailing wind direction is parallel to the turbine rows (i.e., a full wake condition), the velocity deficit and the power losses are largest, and the turbulence intensity levels are highest and have a symmetric pattern (dual-peak at hub height) on both sides of the turbine wakes. A detailed analysis of the turbulence kinetic energy budget in the full wake condition shows an important effect of the increased turbulence level

  19. Local SAR, Global SAR, and Power-Constrained Large-Flip-Angle Pulses with Optimal Control and Virtual Observation Points

    PubMed Central

    Vinding, Mads S.; Guérin, Bastien; Vosegaard, Thomas; Nielsen, Niels Chr.

    2016-01-01

    Purpose To present a constrained optimal-control (OC) framework for designing large-flip-angle parallel-transmit (pTx) pulses satisfying hardware peak-power as well as regulatory local and global specific-absorption-rate (SAR) limits. The application is 2D and 3D spatial-selective 90° and 180° pulses. Theory and Methods The OC gradient-ascent-pulse-engineering method with exact gradients and the limited-memory Broyden-Fletcher-Goldfarb-Shanno method is proposed. Local SAR is constrained by the virtual-observation-points method. Two numerical models facilitated the optimizations, a torso at 3 T and a head at 7 T, both in eight-channel pTx coils and acceleration-factors up to 4. Results The proposed approach yielded excellent flip-angle distributions. Enforcing the local-SAR constraint, as opposed to peak power alone, reduced the local SAR 7 and 5-fold with the 2D torso excitation and inversion pulse, respectively. The root-mean-square errors of the magnetization profiles increased less than 5% with the acceleration factor of 4. Conclusion A local and global SAR, and peak-power constrained OC large-flip-angle pTx pulse design was presented, and numerically validated for 2D and 3D spatial-selective 90° and 180° pulses at 3 T and 7 T. PMID:26715084

  20. Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective

    NASA Astrophysics Data System (ADS)

    Cheng, W.; Samtaney, R.

    2014-01-01

    The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo ["Zero-pressure-gradient turbulent boundary layer," Appl. Mech. Rev. 50, 689 (1997)]). Comparison of LES results for Reθ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.

  1. Measurements of mean flow and acoustic power for a subsonic jet impinging normal to a large rigid surface

    NASA Technical Reports Server (NTRS)

    Schloth, A. P.

    1976-01-01

    An experimental study was made to measure the mean flow field and acoustic power of a subsonic jet impinging normal to a large rigid surface. A 6.25 cm diameter, circular cool air jet was used at heights of 20, 10, and 5 jet diameters above the surface. The jet exit Mach number was varied from 0.28 to 0.93. Impact and static pressure surveys were made in directions both axial and lateral to the jet axis and also parallel and perpendicular to the surface. Acoustic power was calculated from microphone measurements made during each test run using a diffuse field calibration for the test facility. Results indicate that the flow field for jet impingement is characterized mainly by a strong rise in static pressure in the impingement region near the surface and by boundary layer development in the wall jet region. Acoustic power measurements generally followed a U(8) law for both the free jet and jet impingement although there was some variation especially at high Mach number and for close impingement distances. Overall noise levels increased with decreasing jet-to-surface height. Normalized power spectra correlated well for all cases when the Strouhal number was greater than 0.2; the correlation was poor when the Strouhal number was low.

  2. Boundary-layer flow and power output in large wind farms during transition from neutral to stable conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2016-11-01

    In wind farms, power deficits are directly related to ambient turbulence levels. Power deficits will therefore increase during the transition from a daytime, conventionally neutral boundary layer (CNBL) to the stable boundary layer (SBL) at night. Besides turbulent decay, a multitude of effects occurs during this transition. For instance, low-level jets may cause strong winds at high elevations, while the velocity near the surface generally decreases. Consequently, Coriolis forces induce a change in wind direction, which alters the apparent wind-farm layout in streamwise direction. In this study, we perform LES of a large onshore wind farm in the late-afternoon transition from an equilibrium CNBL to a surface-cooled SBL. The results of two different cooling rates are compared with the wind-farm performance in the CNBL. The power output decrease during the transition, with faster decrease for stronger surface cooling. However, the initial decrease is dominated by the reduction in wind speed, and the relative power deficits do not increase. Further, considerable wake deflection occurs, and a spatially heterogeneous distribution of temperature and heat flux is observed. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  3. Large-Spot Material Interactions with a High-Power Solid-State Laser Beam

    SciTech Connect

    Boley, C D; Fochs, S N; Rubenchik, A M

    2008-08-06

    We study the material interactions produced by the beam of a 25-kW solid-state laser, in experiments characterized by relatively large spot sizes ({approx}3 cm) and the presence of airflow. The targets are iron or aluminum slabs, of thickness 1 cm. In the experiments with iron, we show that combustion plays an important role in heating the material. In the experiments with aluminum, we observe a sharp transition from no melting to complete melt-through as the intensity on target increases. A layer of paint greatly reduces the requirements for melt-through. We explain these effects and incorporate them into an overall computational model.

  4. Potential benefits of a ceramic thermal barrier coating on large power generation gas turbine

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Nainiger, J. J.

    1977-01-01

    Thermal barrier coating design option offers benefit in terms of reduced electricity costs when used in utility gas turbines. Options considered include: increased firing temperature, increased component life, reduced cooling air requirements, and increased corrosion resistance (resulting in increased tolerance for dirty fuels). Performance and cost data were obtained. Simple, recuperated and combined cycle applications were considered, and distillate and residual fuels were assumed. The results indicate that thermal barrier coatings could produce large electricity cost savings if these coatings permit turbine operation with residual fuels at distillate-rated firing temperatures. The results also show that increased turbine inlet temperature can result in substantial savings in fuel and capital costs.

  5. Linear Models for Large Signal Control of High Power Factor AC-DC Converters

    DTIC Science & Technology

    1989-11-01

    PI controller , but some modeling aspects are left unclear. Williams [3] designs a controller using the small signal ’transfer function’ between...models for the dynamics of the outer voltage control loop. Finally Section 4 discusses the design of the outer control loop, including PI control , and...dy(t)/dt = -2y(t)/RC’ + (Vl2 k(t) - 2P)/(’ (6) This form already suffices to design controllers (e.g. PI controllers ) for large deviations in y(t

  6. Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power

    SciTech Connect

    Wang, Longfei; He, Dongbing; Yu, Chunlei; Hu, Lili; Chen, Danping; Liu, Hui; Qiu, Jianrong

    2014-03-31

    An index-depressed active core, single-mode phosphate all-solid large-mode-area photonic crystal fiber (PCF) is theoretically investigated using full-vectorial finite difference approach and experimentally realized. The PCF has a maximum output power of 5.4 W and 31% slope efficiency. Single-mode operation is realized through PCFs with core diameters of 30, 35, and 40 μm, respectively. The beam quality is not degraded even at maximum output power. Our simulations and experiments reveal that the laser performance is significantly affected by the center-to-center distance between the two nearest rods Λ, the rod diameter d, and their ratio d/Λ, implying that much attention should be given in employing optimal parameters to achieve excellent laser performance.

  7. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality.

    PubMed

    Zhi, Dong; Ma, Yanxing; Chen, Zilun; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2016-05-15

    We report on the development of a monolithic adaptive fiber optics collimator, with a large deflection angle and preserved near-diffraction-limited beam quality, that has been tested at a maximal output power at the 300 W level. Additionally, a new measurement method of beam quality (M2 factor) is developed. Experimental results show that the deflection angle of the collimated beam is in the range of 0-0.27 mrad in the X direction and 0-0.19 mrad in the Y direction. The effective working frequency of the device is about 710 Hz. By employing the new measurement method of the M2 factor, we calculate that the beam quality is Mx2=1.35 and My2=1.24, which is in agreement with the result from the beam propagation analyzer and is preserved well with the increasing output power.

  8. Yaw control for power optimization of an array of turbines: large eddy simulations

    NASA Astrophysics Data System (ADS)

    Ciri, Umberto; Rotea, Mario; Leonardi, Stefano

    2016-11-01

    Nowadays, advanced control systems are highly sought for the efficient operation of large clusters of wind turbines. The main objective is to mitigate wake interactions thus increasing annual energy production and/or limiting fatigue loads. Several control strategies have been proposed: generator torque, blade pitch angle and turbine yaw angle. Specifically, the introduction of a misalignment between the rotor plane and the wind direction (i.e. a non-zero yaw angle) causes the wake to laterally displace. Consequently, this phenomenon can potentially be exploited to avoid or reduce waked operations in aligned turbines configurations. However, the successful use of this strategy requires proper coordination between the individual machines in order to identify the optimal yaw angles. Because of the complex mechanisms which are expected to occur in this kind of flow, modeling inaccuracies may have a major impact on the results. As a consequence, a model-free approach is pursued, namely a Nested Extremum Seeking Control, coupled with Large-Eddy Simulations to assess the impact on performances of this control strategy, devise optimal settings and identify key interactions. This work is supported by NSF Award IIP 1362033, NSF IR/D program(while Dr. Rotea is serving at the NSF), NSF Grant N. 1243482. TACC is acknowledged for computational resources.

  9. Tensor to scalar ratio and large scale power suppression from pre-slow roll initial conditions

    NASA Astrophysics Data System (ADS)

    Lello, Louis; Boyanovsky, Daniel

    2014-05-01

    We study the corrections to the power spectra of curvature and tensor perturbations and the tensor-to-scalar ratio r in single field slow roll inflation with standard kinetic term due to initial conditions imprinted by a ``fast-roll'' stage prior to slow roll. For a wide range of initial inflaton kinetic energy, this stage lasts only a few e-folds and merges smoothly with slow-roll thereby leading to non-Bunch-Davies initial conditions for modes that exit the Hubble radius during slow roll. We describe a program that yields the dynamics in the fast-roll stage while matching to the slow roll stage in a manner that is independent of the inflationary potentials. Corrections to the power spectra are encoded in a ``transfer function'' for initial conditions Script Tα(k), Script Pα(k) = PBDα(k)Script Tα(k), implying a modification of the ``consistency condition'' for the tensor to scalar ratio at a pivot scale k0: r(k0) = -8nT(k0) [Script TT(k0)/Script TScript R(k0)]. We obtain Script Tα(k) to leading order in a Born approximation valid for modes of observational relevance today. A fit yields Script Tα(k) = 1+Aαk-pcos [2πωk/Hsr+varphiα], with 1.5lesssimplesssim2, ω simeq 1 and Hsr the Hubble scale during slow roll inflation, where curvature and tensor perturbations feature the same p,ω for a wide range of initial conditions. These corrections lead to both a suppression of the quadrupole and oscillatory features in both PR(k) and r(k0) with a period of the order of the Hubble scale during slow roll inflation. The results are quite general and independent of the specific inflationary potentials, depending solely on the ratio of kinetic to potential energy κ and the slow roll parameters epsilonV, ηV to leading order in slow roll. For a wide range of κ and the values of epsilonV ηV corresponding to the upper bounds from Planck, we find that the low quadrupole is consistent with the results from Planck, and the oscillations in r(k0) as a function of k0 could

  10. Nonlinear contingency analysis methodologies for determining transfer capability of large-scale power systems with voltage collapse constraints

    NASA Astrophysics Data System (ADS)

    Chatterjee, Renuka Gonella

    2000-10-01

    Reliable delivery of electric power is a major concern in both regulated and deregulated energy markets. Power transfers are limited due to voltage limit violations, thermal limits on transmission lines and instability. Voltage collapse is a catastrophic instability leading to cascaded tripping of network and generation equipment eventually causing blackouts. Most importantly, contingencies can trigger voltage collapse. The traditional tool for determining the distance to collapse is the repeated power flow technique. Power flow takes about 3 minutes for a case with over 18,000 buses. On an average it takes about 10 power flow solutions to determine the distance to collapse requiring 30 minutes of computation time. An attractive alternative is continuation, which takes approximately 15 minutes to compute the entire trajectory and the exact distance to collapse. Using a continuation method to compute the distance to collapse for 1336 contingencies would take about 14 days. Thus faster methods of contingency analysis for voltage collapse are required for planning and operating studies. Three new methodologies, lambda/MVA sensitivity, Nonlinear sensitivity and the 2n+1 method are presented for fast and accurate voltage collapse contingency analysis. Linear sensitivity techniques with admittance parameterization give poor distance to collapse predictions for large admittance branches. A new lambda/MVA sensitivity technique with branch MVA parameterization was developed to correct this error. The lambda/MVA algorithm can estimate 6689 single branch outage contingency bifurcation points of a 3493 bus power system with less than 3% relative error, except for two branches within 7%, in less than 4 minutes on a Pentium Pro 180 MHz PC. To facilitate analysis of multi-terminal branch outages and generator contingencies, the Nonlinear sensitivity method was developed. This method can rank 1336 multi-terminal contingencies of a 18,000 bus case with a speedup of 112 compared to

  11. A methodology for understanding the impacts of large-scale penetration of micro-combined heat and power

    SciTech Connect

    Tapia-Ahumada, K.; Pérez-Arriaga, I. J.; Moniz, Ernest J.

    2013-10-01

    Co-generation at small kW-e scale has been stimulated in recent years by governments and energy regulators as one way to increasing energy efficiency and reducing CO2emissions. If a widespread adoption should be realized, their effects from a system's point of view are crucial to understand the contributions of this technology. Based on a methodology that uses long-term capacity planning expansion, this paper explores some of the implications for an electric power system of having a large number of micro-CHPs. Results show that fuel cells-based micro-CHPs have the best and most consistent performance for different residential demands from the customer and system's perspectives. As the penetration increases at important levels, gas-based technologies - particularly combined cycle units - are displaced in capacity and production, which impacts the operation of the electric system during summer peak hours. Other results suggest that the tariff design impacts the economic efficiency of the system and the operation of micro-CHPs under a price-based strategy. Finally, policies aimed at micro-CHPs should consider the suitability of the technology (in size and heat-to-power ratio) to meet individual demands, the operational complexities of a large penetration, and the adequacy of the economic signals to incentivize an efficient and sustainable operation. Highlights: Capacity displacements and daily operation of an electric power system are explored; Benefits depend on energy mix, prices, and micro-CHP technology and control scheme; Benefits are observed mostly in winter when micro-CHP heat and power are fully used; Micro-CHPs mostly displace installed capacity from natural gas combined cycle units; and, Tariff design impacts economic efficiency of the system and operation of micro-CHPs.

  12. Generator module architecture for a large solid oxide fuel cell power plant

    DOEpatents

    Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.

    2013-06-11

    A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.

  13. Effect of the shutdown of a large coal-fired power plant on ambient mercury species.

    PubMed

    Wang, Yungang; Huang, Jiaoyan; Hopke, Philip K; Rattigan, Oliver V; Chalupa, David C; Utell, Mark J; Holsen, Thomas M

    2013-07-01

    In the spring of 2008, a 260MWe coal-fired power plant (CFPP) located in Rochester, New York was closed over a 4month period. Using a 2-years data record, the impacts of the shutdown of the CFPP on nearby ambient concentrations of three Hg species were quantified. The arithmetic average ambient concentrations of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate mercury (PBM) during December 2007-November 2009 were 1.6ngm(-3), 5.1pgm(-3), and 8.9pgm(-3), respectively. The median concentrations of GEM, GOM, and PBM significantly decreased by 12%, 73%, and 50% after the CFPP closed (Mann-Whitney test, p<0.001). Positive Matrix Factorization (EPA PMF v4.1) identified six factors including O3-rich, traffic, gas phase oxidation, wood combustion, nucleation, and CFPP. When the CFPP was closed, median concentrations of GEM, GOM, and PBM apportioned to the CFPP factor significantly decreased by 25%, 74%, and 67%, respectively, compared to those measured when the CFPP was still in operation (Mann-Whitney test, p<0.001). Conditional probability function (CPF) analysis showed the greatest reduction in all three Hg species was associated with northwesterly winds pointing toward the CFPP. These changes were clearly attributable to the closure of the CFPP.

  14. Large thermoelectric power and figure of merit in a ferromagnetic-quantum dot-superconducting device

    NASA Astrophysics Data System (ADS)

    Hwang, Sun-Yong; López, Rosa; Sánchez, David

    2016-08-01

    We investigate the thermoelectric properties of a quantum dot coupled to ferromagnetic and superconducting electrodes. The combination of spin polarized tunneling at the ferromagnetic-quantum dot interface and the application of an external magnetic field that Zeeman splits the dot energy level leads to large values of the thermopower (Seebeck coefficient). Importantly, the thermopower can be tuned with an external gate voltage connected to the dot. We compute the figure of merit that measures the efficiency of thermoelectric conversion and find that it attains high values. We discuss the different contributions from Andreev reflection processes and quasiparticle tunneling into and out of the superconducting contact. Furthermore, we obtain dramatic variations of both the magnetothermopower and the spin Seebeck effect, which suggest that in our device spin currents can be controlled with temperature gradients only.

  15. The exceptionally powerful TeV γ-ray emitters in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker-Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carrigan, S.; Casanova, S.; Chadwick, P. M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Davids, I. D.; Degrange, B.; Deil, C.; de Wilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Odaka, H.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2015-01-01

    The Large Magellanic Cloud, a satellite galaxy of the Milky Way, has been observed with the High Energy Stereoscopic System (H.E.S.S.) above an energy of 100 billion electron volts for a deep exposure of 210 hours. Three sources of different types were detected: the pulsar wind nebula of the most energetic pulsar known, N 157B; the radio-loud supernova remnant N 132D; and the largest nonthermal x-ray shell, the superbubble 30 Dor C. The unique object SN 1987A is, unexpectedly, not detected, which constrains the theoretical framework of particle acceleration in very young supernova remnants. These detections reveal the most energetic tip of a γ-ray source population in an external galaxy and provide via 30 Dor C the unambiguous detection of γ-ray emission from a superbubble.

  16. Astrophysics. The exceptionally powerful TeV γ-ray emitters in the Large Magellanic Cloud.

    PubMed

    2015-01-23

    The Large Magellanic Cloud, a satellite galaxy of the Milky Way, has been observed with the High Energy Stereoscopic System (H.E.S.S.) above an energy of 100 billion electron volts for a deep exposure of 210 hours. Three sources of different types were detected: the pulsar wind nebula of the most energetic pulsar known, N 157B; the radio-loud supernova remnant N 132D; and the largest nonthermal x-ray shell, the superbubble 30 Dor C. The unique object SN 1987A is, unexpectedly, not detected, which constrains the theoretical framework of particle acceleration in very young supernova remnants. These detections reveal the most energetic tip of a γ-ray source population in an external galaxy and provide via 30 Dor C the unambiguous detection of γ-ray emission from a superbubble.

  17. Towards large and powerful radio frequency driven negative ion sources for fusion

    NASA Astrophysics Data System (ADS)

    Heinemann, B.; Fantz, U.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Bonomo, F.; Fröschle, M.; Nocentini, R.; Riedl, R.

    2017-01-01

    The ITER neutral beam system will be equipped with radio-frequency (RF) negative ion sources, based on the IPP Garching prototype source design. Up to 100 kW at 1 MHz is coupled to the RF driver, out of which the plasma expands into the main source chamber. Compared to arc driven sources, RF sources are maintenance free and without evaporation of tungsten. The modularity of the driver concept permits to supply large source volumes. The prototype source (one driver) demonstrated operation in hydrogen and deuterium up to one hour with ITER relevant parameters. The ELISE test facility is operating with a source of half the ITER size (four drivers) in order to validate the modular source concept and to gain early operational experience at ITER relevant dimensions. A large variety of diagnostics allows improving the understanding of the relevant physics and its link to the source performance. Most of the negative ions are produced on a caesiated surface by conversion of hydrogen atoms. Cs conditioning and distribution have been optimized in order to achieve high ion currents which are stable in time. A magnetic filter field is needed to reduce the electron temperature and co-extracted electron current. The influence of different field topologies and strengths on the source performance, plasma and beam properties is being investigated. The results achieved in short pulse operation are close to or even exceed the ITER requirements with respect to the extracted ion currents. However, the extracted negative ion current for long pulse operation (up to 1 h) is limited by the increase of the co-extracted electron current, especially in deuterium operation.

  18. Linear Averaged and Sampled Data Models for Large Signal Control of High Power Factor AC-DC Converters

    DTIC Science & Technology

    1990-06-01

    design a digital controller for the outer trol schemes for high power factor ac to dc converters, loop, including PI control , and presents simulation re...design of an analog control (e.g. PI control ) for by the current loop. If kin] is too large, then the inductor tam el (3) Isnoar ts ee lin at tne. Fcorl...with PI Control 6 mm am I m mmmmimmm~mmml r .14 _ _ _ _ _ _ _ _ _ _ O .12 SM .16 .p N 17 .6 Is , TV 240 6 F tic .04 113 .02 a I I ’ 190 0 0.973 I • 0

  19. Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion

    SciTech Connect

    Dobranich, Dean; Blanchat, Thomas K.

    2008-01-21

    Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System.

  20. Tensor to scalar ratio and large scale power suppression from pre-slow roll initial conditions

    SciTech Connect

    Lello, Louis; Boyanovsky, Daniel E-mail: boyan@pitt.edu

    2014-05-01

    We study the corrections to the power spectra of curvature and tensor perturbations and the tensor-to-scalar ratio r in single field slow roll inflation with standard kinetic term due to initial conditions imprinted by a ''fast-roll'' stage prior to slow roll. For a wide range of initial inflaton kinetic energy, this stage lasts only a few e-folds and merges smoothly with slow-roll thereby leading to non-Bunch-Davies initial conditions for modes that exit the Hubble radius during slow roll. We describe a program that yields the dynamics in the fast-roll stage while matching to the slow roll stage in a manner that is independent of the inflationary potentials. Corrections to the power spectra are encoded in a ''transfer function'' for initial conditions T{sub α}(k), P{sub α}(k) = P{sup BD}{sub α}(k)T{sub α}(k), implying a modification of the ''consistency condition'' for the tensor to scalar ratio at a pivot scale k{sub 0}: r(k{sub 0}) = −8n{sub T}(k{sub 0}) [T{sub T}(k{sub 0})/T{sub R}(k{sub 0})]. We obtain T{sub α}(k) to leading order in a Born approximation valid for modes of observational relevance today. A fit yields T{sub α}(k) = 1+A{sub α}k{sup −p}cos [2πωk/H{sub sr}+φ{sub α}], with 1.5∼

  1. The power of event-driven analytics in Large Scale Data Processing

    SciTech Connect

    2011-02-24

    FeedZai is a software company specialized in creating high-­-throughput low-­-latency data processing solutions. FeedZai develops a product called "FeedZai Pulse" for continuous event-­-driven analytics that makes application development easier for end users. It automatically calculates key performance indicators and baselines, showing how current performance differ from previous history, creating timely business intelligence updated to the second. The tool does predictive analytics and trend analysis, displaying data on real-­-time web-­-based graphics. In 2010 FeedZai won the European EBN Smart Entrepreneurship Competition, in the Digital Models category, being considered one of the "top-­-20 smart companies in Europe". The main objective of this seminar/workshop is to explore the topic for large-­-scale data processing using Complex Event Processing and, in particular, the possible uses of Pulse in the scope of the data processing needs of CERN. Pulse is available as open-­-source and can be licensed both for non-­-commercial and commercial applications. FeedZai is interested in exploring possible synergies with CERN in high-­-volume low-­-latency data processing applications. The seminar will be structured in two sessions, the first one being aimed to expose the general scope of FeedZai's activities, and the second focused on Pulse itself: 10:00-11:00 FeedZai and Large Scale Data Processing Introduction to FeedZai FeedZai Pulse and Complex Event Processing Demonstration Use-Cases and Applications Conclusion and Q&A 11:00-11:15 Coffee break 11:15-12:30 FeedZai Pulse Under the Hood A First FeedZai Pulse Application PulseQL overview Defining KPIs and Baselines Conclusion and Q&A About the speakers Nuno Sebastião is the CEO of FeedZai. Having worked for many years for the European Space Agency (ESA), he was responsible the overall design and development of Satellite Simulation Infrastructure of the agency. Having left ESA to found FeedZai, Nuno is

  2. The power of event-driven analytics in Large Scale Data Processing

    ScienceCinema

    None

    2016-07-12

    FeedZai is a software company specialized in creating high-­-throughput low-­-latency data processing solutions. FeedZai develops a product called "FeedZai Pulse" for continuous event-­-driven analytics that makes application development easier for end users. It automatically calculates key performance indicators and baselines, showing how current performance differ from previous history, creating timely business intelligence updated to the second. The tool does predictive analytics and trend analysis, displaying data on real-­-time web-­-based graphics. In 2010 FeedZai won the European EBN Smart Entrepreneurship Competition, in the Digital Models category, being considered one of the "top-­-20 smart companies in Europe". The main objective of this seminar/workshop is to explore the topic for large-­-scale data processing using Complex Event Processing and, in particular, the possible uses of Pulse in the scope of the data processing needs of CERN. Pulse is available as open-­-source and can be licensed both for non-­-commercial and commercial applications. FeedZai is interested in exploring possible synergies with CERN in high-­-volume low-­-latency data processing applications. The seminar will be structured in two sessions, the first one being aimed to expose the general scope of FeedZai's activities, and the second focused on Pulse itself: 10:00-11:00 FeedZai and Large Scale Data Processing Introduction to FeedZai FeedZai Pulse and Complex Event Processing Demonstration Use-Cases and Applications Conclusion and Q&A 11:00-11:15 Coffee break 11:15-12:30 FeedZai Pulse Under the Hood A First FeedZai Pulse Application PulseQL overview Defining KPIs and Baselines Conclusion and Q&A About the speakers Nuno Sebastião is the CEO of FeedZai. Having worked for many years for the European Space Agency (ESA), he was responsible the overall design and development of Satellite Simulation Infrastructure of the agency. Having left ESA to found FeedZai, Nuno is

  3. Analyses of Large Coal-Based SOFCs for High Power Stack Block Development

    SciTech Connect

    Recknagle, Kurtis P; Koeppel, Brian J

    2010-10-01

    This report summarizes the numerical modeling and analytical efforts for SOFC stack development performed for the coal-based SOFC program. The stack modeling activities began in 2004, but this report focuses on the most relevant results obtained since August 2008. This includes the latter half of Phase-I and all of Phase-II activities under technical guidance of VPS and FCE. The models developed to predict the thermal-flow-electrochemical behaviors and thermal-mechanical responses of generic planar stacks and towers are described. The effects of cell geometry, fuel gas composition, on-cell reforming, operating conditions, cell performance, seal leak, voltage degradation, boundary conditions, and stack height are studied. The modeling activities to evaluate and achieve technical targets for large stack blocks are described, and results from the latest thermal-fluid-electrochemical and structural models are summarized. Modeling results for stack modifications such as scale-up and component thickness reduction to realize cost reduction are presented. Supporting modeling activities in the areas of cell fabrication and loss of contact are also described.

  4. The power of sensitivity analysis and thoughts on models with large numbers of parameters

    SciTech Connect

    Havlacek, William

    2008-01-01

    The regulatory systems that allow cells to adapt to their environments are exceedingly complex, and although we know a great deal about the intricate mechanistic details of many of these systems, our ability to make accurate predictions about their system-level behaviors is severely limited. We would like to make such predictions for a number of reasons. How can we reverse dysfunctional molecular changes of these systems that cause disease? More generally, how can we harness and direct cellular activities for beneficial purposes? Our ability to make accurate predictions about a system is also a measure ofour fundamental understanding of that system. As evidenced by our mastery of technological systems, a useful understanding ofa complex system can often be obtained through the development and analysis ofa mathematical model, but predictive modeling of cellular regulatory systems, which necessarily relies on quantitative experimentation, is still in its infancy. There is much that we need to learn before modeling for practical applications becomes routine. In particular, we need to address a number of issues surrounding the large number of parameters that are typically found in a model for a cellular regulatory system.

  5. Delay-dependent H∞ robust control for large power systems based on two-level hierarchical decentralised coordinated control structure

    NASA Astrophysics Data System (ADS)

    Dou, Chun-Xia; Duan, Zhi-Sheng; Jia, Xing-Bei

    2013-02-01

    This article focuses on a novel two-level hierarchical decentralised coordinated control which consists of several local fuzzy power system stabilisers (LFPSSs) for each generator at the first level tuned by supervisory power system stabiliser (SPSS) at the secondary level for the transient stabilisation improvement of large power systems. First, in order to compensate the inherent nonlinear interconnections between subsystems in system dynamic model, a direct feedback linearisation compensator is proposed to act through the local excitation machine. Afterwards, the T-S fuzzy model-based decentralised LFPSS for each generator is designed. Then, for the purpose of improving dynamic performance, the SPSS is designed by using the remote signals from the wide area measurements system. However, there are unavoidable delays involved before the remote signals are received at the SPSS site or the control signals of SPSS are sent to the local systems. Taking consideration of the multiple delays, by using less conservative delay-dependent Lyapunov approach, the authors develop a delay-dependent H∞ robust control technique based on the decentralised coordinated control structure. Some sufficient conditions for the system stabilisation are presented in terms of linear matrix inequalities dependent only on the upper bounds of the time delays. Finally, the effectiveness of the proposed control scheme is demonstrated through simulation examples.

  6. Large size biogas-fed Solid Oxide Fuel Cell power plants with carbon dioxide management: Technical and economic optimization

    NASA Astrophysics Data System (ADS)

    Curletti, F.; Gandiglio, M.; Lanzini, A.; Santarelli, M.; Maréchal, F.

    2015-10-01

    This article investigates the techno-economic performance of large integrated biogas Solid Oxide Fuel Cell (SOFC) power plants. Both atmospheric and pressurized operation is analysed with CO2 vented or captured. The SOFC module produces a constant electrical power of 1 MWe. Sensitivity analysis and multi-objective optimization are the mathematical tools used to investigate the effects of Fuel Utilization (FU), SOFC operating temperature and pressure on the plant energy and economic performances. FU is the design variable that most affects the plant performance. Pressurized SOFC with hybridization with a gas turbine provides a notable boost in electrical efficiency. For most of the proposed plant configurations, the electrical efficiency ranges in the interval 50-62% (LHV biogas) when a trade-off of between energy and economic performances is applied based on Pareto charts obtained from multi-objective plant optimization. The hybrid SOFC is potentially able to reach an efficiency above 70% when FU is 90%. Carbon capture entails a penalty of more 10 percentage points in pressurized configurations mainly due to the extra energy burdens of captured CO2 pressurization and oxygen production and for the separate and different handling of the anode and cathode exhausts and power recovery from them.

  7. Computational Assessment of the Aerodynamic Performance of a Variable-Speed Power Turbine for Large Civil Tilt-Rotor Application

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    2011-01-01

    The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range, from 100% at take-off to 54% at cruise. The variable-speed power turbine offers one approach by which to effect this speed variation. Key aero-challenges include high work factors at cruise and wide (40 to 60 deg.) incidence variations in blade and vane rows over the speed range. The turbine design approach must optimize cruise efficiency and minimize off-design penalties at take-off. The accuracy of the off-design incidence loss model is therefore critical to the turbine design. In this effort, 3-D computational analyses are used to assess the variation of turbine efficiency with speed change. The conceptual design of a 4-stage variable-speed power turbine for the Large Civil Tilt-Rotor application is first established at the meanline level. The design of 2-D airfoil sections and resulting 3-D blade and vane rows is documented. Three-dimensional Reynolds Averaged Navier-Stokes computations are used to assess the design and off-design performance of an embedded 1.5-stage portion-Rotor 1, Stator 2, and Rotor 2-of the turbine. The 3-D computational results yield the same efficiency versus speed trends predicted by meanline analyses, supporting the design choice to execute the turbine design at the cruise operating speed.

  8. Linked Scatter Plots, A Powerful Exploration Tool For Very Large Sets of Spectra

    NASA Astrophysics Data System (ADS)

    Carbon, Duane Francis; Henze, Christopher

    2015-08-01

    We present a new tool, based on linked scatter plots, that is designed to efficiently explore very large spectrum data sets such as the SDSS, APOGEE, LAMOST, GAIA, and RAVE data sets.The tool works in two stages: the first uses batch processing and the second runs interactively. In the batch stage, spectra are processed through our data pipeline which computes the depths relative to the local continuum at preselected feature wavelengths. These depths, and any additional available variables such as local S/N level, magnitudes, colors, positions, and radial velocities, are the basic measured quantities used in the interactive stage.The interactive stage employs the NASA hyperwall, a configuration of 128 workstation displays (8x16 array) controlled by a parallelized software suite running on NASA's Pleiades supercomputer. Each hyperwall panel is used to display a fully linked 2-D scatter plot showing the depth of feature A vs the depth of feature B for all of the spectra. A and B change from panel to panel. The relationships between the various (A,B) strengths and any distinctive clustering, as well as unique outlier groupings, are visually apparent when examining and inter-comparing the different panels on the hyperwall. In addition, the data links between the scatter plots allow the user to apply a logical algebra to the measurements. By graphically selecting the objects in any interesting region of any 2-D plot on the hyperwall, the tool immediately and clearly shows how the selected objects are distributed in all the other 2-D plots. The selection process may be repeated multiple times and, at each step, the selections can represent a sequence of logical constraints on the measurements, revealing those objects which satisfy all the constraints thus far. The spectra of the selected objects may be examined at any time on a connected workstation display.Using over 945,000,000 depth measurements from 569,738 SDSS DR10 stellar spectra, we illustrate how to quickly

  9. Large-scale geophysical and geological-prospecting earth-crust investigation using high-power electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Velikhov, E. P.; Panchenko, V. P.

    2005-12-01

    The paper presents the concept and physical/technical prerequisites for the use of multi-megawatt electromagnetic pulses created, for instance, by autonomous MHD facilities of short-term operation (3--12 seconds), in fundamental and applied in-depth geophysical and geological research. Location of geological sites and research regions; circuits and parameters of emitting and detecting devices; unique pulse MHD facilities of 10--100 MWe capacity using solid (powder) fuel, created in Russia; conditions and methods of conducting large-scale experiments and trial methodical works, performed in the last 30 years by a cooperative group of Russian institute in various regions of Russia, Kyrghizia and Tajikistan, are described. Results of the following large-scale experiments and methodical works are presented: Oil and gas deposits' searching (Caspian depression, East Siberia); Study of electric conduction of sediments near and on the sea shelf (Kola peninsula); Electrical prospecting of ore deposits at depths of up to 10 km (Kola peninsula); Study of geo-electrical composition (section) of the earth-crust and upper mantle at the Ural (up to 40 km), and in the Baltic (up to 150 km); Forecasting of earthquakes using the effective electric resistance of earth-crust blocks up to 20 km deep (Tajikistan, Kirghizia); Seismic earth-crust "unloading", and changing the time-dependent distribution of the seismic activity under high-power electromagnetic impact; Impact on the ionosphere and spreading of ultra-low-frequency electromagnetic waves emitted by a high-power source. The possibilities and prospects of research dedicated to developing the technologies for electrical prospecting, sorting and outlining hydrocarbon deposits on the shelf, as well as to monitoring and studying the processes occurring in the earth-crust under artificial high-power electromagnetic impact in seismic regions, are discussed.

  10. Local and regional effects of large scale atmospheric circulation patterns on winter wind power output in Western Europe

    NASA Astrophysics Data System (ADS)

    Zubiate, Laura; McDermott, Frank; Sweeney, Conor; O'Malley, Mark

    2014-05-01

    Recent studies (Brayshaw, 2009, Garcia-Bustamante, 2010, Garcia-Bustamante, 2013) have drawn attention to the sensitivity of wind speed distributions and likely wind energy power output in Western Europe to changes in low-frequency, large scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). Wind speed variations and directional shifts as a function of the NAO state can be larger or smaller depending on the North Atlantic region that is considered. Wind speeds in Ireland and the UK for example are approximately 20 % higher during NAO + phases, and up to 30 % lower during NAO - phases relative to the long-term (30 year) climatological means. By contrast, in southern Europe, wind speeds are 15 % lower than average during NAO + phases and 15 % higher than average during NAO - phases. Crucially however, some regions such as Brittany in N.W. France have been identified in which there is negligible variability in wind speeds as a function of the NAO phase, as observed in the ERA-Interim 0.5 degree gridded reanalysis database. However, the magnitude of these effects on wind conditions is temporally and spatially non-stationary. As described by Comas-Bru and McDermott (2013) for temperature and precipitation, such non-stationarity is caused by the influence of two other patterns, the East Atlantic pattern, (EA), and the Scandinavian pattern, (SCA), which modulate the position of the NAO dipole. This phenomenon has also implications for wind speeds and directions, which has been assessed using the ERA-Interim reanalysis dataset and the indices obtained from the PC analysis of sea level pressure over the Atlantic region. In order to study the implications for power production, the interaction of the NAO and the other teleconnection patterns with local topography was also analysed, as well as how these interactions ultimately translate into wind power output. The objective is to have a better defined relationship between wind speed and power

  11. Saturation Ion Current Densities in Inductively Coupled Hydrogen Plasma Produced by Large-Power Radio Frequency Generator

    NASA Astrophysics Data System (ADS)

    Wang, Songbai; Lei, Guangjiu; Bi, Zhenhua; Ghomi, H.; Yang, Size; Liu, Dongping

    2016-09-01

    An experimental investigation of the saturation ion current densities (Jions) in hydrogen inductively coupled plasma (ICP) produced by a large-power (2-32 kW) radio frequency (RF) generator is reported, then some reasonable explanations are given out. With the increase of RF power, the experimental results show three stages: in the first stage (2-14 kW), the electron temperature will rise with the increase of RF power in the ICP, thus, the Jions increases continually as the electron temperature rises in the ICP. In the second stage (14-20 kW), as some H- ions lead to the mutual neutralization (MN), the slope of Jions variation firstly decreases then increases. In the third stage (20-32 kW), both the electronic detachment (ED) and the associative detachment (AD) in the ICP result in the destruction of H- ions, therefore, the increased amplitude of the Jions in the third stage is weaker than the one in the first stage. In addition, with the equivalent transformer model, we successfully explain that the Jions at different radial locations in ICP has the same rule. Finally, it is found that the Jions has nothing to do with the outer/inner puffing gas pressure ratio, which is attributed to the high-speed movement of hydrogen molecules. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB108011 and 2010GB103001), the Major International (Regional) Project Cooperation and Exchanges of China (No. 11320101005) and the Startup Fund from Fuzhou University (No. 510071)

  12. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors

    NASA Astrophysics Data System (ADS)

    Doo-Hee, Chang; Seung, Ho Jeong; Min, Park; Tae-Seong, Kim; Bong-Ki, Jung; Kwang, Won Lee; Sang Ryul, In

    2016-12-01

    A large-area high-power radio-frequency (RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute (KAERI). The RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of high-power RF discharge. Plasma ignition of the ion source is initiated by the injection of argon-gas without a starter-filament heating, and the argon-gas is then slowly exchanged by the injection of hydrogen-gas to produce pure hydrogen plasmas. The uniformities of the plasma parameter, such as a plasma density and an electron temperature, are measured at the lowest area of the driver region using two RF-compensated electrostatic probes along the direction of the short-and long-dimensions of the driver region. The plasma parameters will be compared with those obtained at the lowest area of the expansion bucket to analyze the plasma expansion properties from the driver region to the expansion region. supported by the Ministry of Science, ICT and Future Planning of the Republic of Korea under the ITER Technology R&D Program, and National R&D Program Through the National Research Foundation of Korea (NRF) Funded by the Ministry of Science, ICT & Future Planning (NRF-2014M1A7A1A03045372)

  13. Non-Gaussian covariance of the matter power spectrum in the effective field theory of large scale structure

    NASA Astrophysics Data System (ADS)

    Bertolini, Daniele; Schutz, Katelin; Solon, Mikhail P.; Walsh, Jonathan R.; Zurek, Kathryn M.

    2016-06-01

    We compute the non-Gaussian contribution to the covariance of the matter power spectrum at one-loop order in standard perturbation theory (SPT), using the framework of the effective field theory (EFT) of large scale structure (LSS). The complete one-loop contributions are evaluated for the first time, including the leading EFT corrections that involve seven independent operators, of which four appear in the power spectrum and bispectrum. We compare the non-Gaussian part of the one-loop covariance computed with both SPT and EFT of LSS to two separate simulations. In one simulation, we find that the one-loop prediction from SPT reproduces the simulation well to ki+kj˜0.25 h /Mpc , while in the other simulation we find a substantial improvement of EFT of LSS (with one free parameter) over SPT, more than doubling the range of k where the theory accurately reproduces the simulation. The disagreement between these two simulations points to unaccounted for systematics, highlighting the need for improved numerical and analytic understanding of the covariance.

  14. Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals

    NASA Astrophysics Data System (ADS)

    Schmittfull, Marcel; Vlah, Zvonimir

    2016-11-01

    Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially increase the science return of upcoming surveys by increasing the number of modes available for model comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this involves high-dimensional loop integrals that are cumbersome to evaluate. Trying to simplify this, we show how two-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to low-dimensional, radial integrals. Many of those can be evaluated with a one-dimensional fast Fourier transform, which is significantly faster than the five-dimensional Monte-Carlo integrals that are needed otherwise. The general idea of this fast fourier transform perturbation theory method is to switch between Fourier and position space to avoid convolutions and integrate over orientations, leaving only radial integrals. This reformulation is independent of the underlying shape of the initial linear density power spectrum and should easily accommodate features such as those from baryonic acoustic oscillations. We also discuss how to account for halo bias and redshift space distortions.

  15. A Simple but Powerful Heuristic Method for Accelerating k-Means Clustering of Large-Scale Data in Life Science.

    PubMed

    Ichikawa, Kazuki; Morishita, Shinichi

    2014-01-01

    K-means clustering has been widely used to gain insight into biological systems from large-scale life science data. To quantify the similarities among biological data sets, Pearson correlation distance and standardized Euclidean distance are used most frequently; however, optimization methods have been largely unexplored. These two distance measurements are equivalent in the sense that they yield the same k-means clustering result for identical sets of k initial centroids. Thus, an efficient algorithm used for one is applicable to the other. Several optimization methods are available for the Euclidean distance and can be used for processing the standardized Euclidean distance; however, they are not customized for this context. We instead approached the problem by studying the properties of the Pearson correlation distance, and we invented a simple but powerful heuristic method for markedly pruning unnecessary computation while retaining the final solution. Tests using real biological data sets with 50-60K vectors of dimensions 10-2001 (~400 MB in size) demonstrated marked reduction in computation time for k = 10-500 in comparison with other state-of-the-art pruning methods such as Elkan's and Hamerly's algorithms. The BoostKCP software is available at http://mlab.cb.k.u-tokyo.ac.jp/~ichikawa/boostKCP/.

  16. Load Frequency Control by use of a Number of Both Heat Pump Water Heaters and Electric Vehicles in Power System with a Large Integration of Renewable Energy Sources

    NASA Astrophysics Data System (ADS)

    Masuta, Taisuke; Shimizu, Koichiro; Yokoyama, Akihiko

    In Japan, from the viewpoints of global warming countermeasures and energy security, it is expected to establish a smart grid as a power system into which a large amount of generation from renewable energy sources such as wind power generation and photovoltaic generation can be installed. Measures for the power system stability and reliability are necessary because a large integration of these renewable energy sources causes some problems in power systems, e.g. frequency fluctuation and distribution voltage rise, and Battery Energy Storage System (BESS) is one of effective solutions to these problems. Due to a high cost of the BESS, our research group has studied an application of controllable loads such as Heat Pump Water Heater (HPWH) and Electric Vehicle (EV) to the power system control for reduction of the required capacity of BESS. This paper proposes a new coordinated Load Frequency Control (LFC) method for the conventional power plants, the BESS, the HPWHs, and the EVs. The performance of the proposed LFC method is evaluated by the numerical simulations conducted on a power system model with a large integration of wind power generation and photovoltaic generation.

  17. Large scale simulations of the mechanical properties of layered transition metal ternary compounds for fossil energy power system applications

    SciTech Connect

    Ching, Wai-Yim

    2014-12-31

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  18. Development of a low-power, low-cost front end electronics module for large scale distributed neutrino detectors

    SciTech Connect

    James J. Beatty Richard D. Kass

    2008-03-08

    A number of concepts have been presented for distributed neutrino detectors formed of large numbers of autonomous detectors. Examples include the Antarctic Ross Ice Shelf Antenna Neutrino Array (ARIANNA) [Barwick 2006], as well as proposed radio extensions to the IceCube detector at South Pole Station such as AURA and IceRay. [Besson 2008]. We have focused on key enabling technical developments required by this class of experiments. The radio Cherenkov signal, generated by the Askaryan mechanism [Askaryan 1962, 1965], is impulsive and coherent up to above 1 GHz. In the frequency domain, the impulsive character of the emission results in simultaneous increase of the power detected in multiple frequency bands. This multiband triggering approach has proven fruitful, especially as anthropogenic interference often results from narrowband communications signals. A typical distributed experiment of this type consists of a station responsible for the readout of a cluster of antennas either near the surface of the ice or deployed in boreholes. Each antenna is instrumented with a broadband low-noise amplifier, followed by an array of filters to facilitate multi-band coincidence trigger schemes at the antenna level. The power in each band is detected at the output of each band filter, using either square-law diode detectors or log-power detectors developed for the cellular telephone market. The use of multiple antennas per station allows a local coincidence among antennas to be used as the next stage of the trigger. Station triggers can then be combined into an array trigger by comparing timestamps of triggers among stations and identifying space-time clusters of station triggers. Data from each station is buffered and can be requested from the individual stations when a multi-station coincidence occurs. This approach has been successfully used in distributed experiments such as the Pierre Auger Observatory. [Abraham et al. 2004] We identified the filters as being especially

  19. Chromosomal Aberrations in Large Japanese Field Mice (Apodemus speciosus) Captured near Fukushima Dai-ichi Nuclear Power Plant.

    PubMed

    Kawagoshi, Taiki; Shiomi, Naoko; Takahashi, Hiroyuki; Watanabe, Yoshito; Fuma, Shoichi; Doi, Kazutaka; Kawaguchi, Isao; Aoki, Masanari; Kubota, Masahide; Furuhata, Yoshiaki; Shigemura, Yusaku; Mizoguchi, Masahiko; Yamada, Fumio; Tomozawa, Morihiko; Sakamoto, Shinsuke H; Yoshida, Satoshi; Kubota, Yoshihisa

    2017-04-07

    Since the Fukushima Dai-ichi Nuclear Power Plant accident, radiation effects on nonhuman biota in the contaminated areas have been a major concern. Here, we analyzed the frequencies of chromosomal aberrations (translocations and dicentrics) in the splenic lymphocytes of large Japanese field mice (Apodemus speciosus) inhabiting Fukushima Prefecture. A. speciosus chromosomes 1, 2, and 5 were flow-sorted in order to develop A. speciosus chromosome-specific painting probes, and FISH (fluorescence in situ hybridization) was performed using these painting probes to detect the translocations and dicentrics. The average frequency of the translocations and dicentrics per cell in the heavily contaminated area was significantly higher than the frequencies in the case of the noncontaminated control area and the slightly and moderately contaminated areas, and this aberration frequency in individual mice tended to roughly increase with the estimated dose rates and accumulated doses. In all four sampling areas, the proportion of aberrations occurring in chromosome 2 was approximately >3 times higher than that in chromosomes 1 and 5, which suggests that A. speciosus chromosome 2 harbors a fragile site that is highly sensitive to chromosome breaks induced by cellular stress such as DNA replication. The elevated frequency of chromosomal aberrations in A. speciosus potentially resulting from the presence of a fragile site in chromosome 2 might make it challenging to observe the mild effect of chronic low-dose-rate irradiation on the induction of chromosomal aberrations in A. speciosus inhabiting the contaminated areas of Fukushima.

  20. Textured PrCo{sub 5} nanoflakes with large coercivity prepared by low power surfactant-assisted ball milling

    SciTech Connect

    Zuo, Wen-Liang Liu, Rong-Ming; Zheng, Xin-Qi; Wu, Rong-Rong; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2014-05-07

    The effect of the milling time on the structure, morphology, coercivity, and remanence ratio of textured PrCo{sub 5} nanoflakes produced by low power surfactant-assisted ball milling (SABM) was investigated. The X-ray powder diffraction (XRD) patterns indicate that the SABM PrCo{sub 5} samples are all CaCu{sub 5}-type hexagonal structure. The average grain size is smaller than 10 nm when the SABM time is equal to or longer than 5.5 h. The thickness of nanoflakes is mainly in the range of 50−100 nm while the length is 0.5−5 μm when the SABM time reaches 8 h. For the field-aligned PrCo{sub 5} nanoflakes, the out-of-plane texture is indicated from the increasing (0 0 l) peaks in the XRD patterns, and the easy magnetization direction is perpendicular to the flake surface. The strong texture of PrCo{sub 5} nanoflakes leads to a large coercivity H{sub c} (7.8 kOe) and obvious anisotropic magnetic behaviors for the aligned samples.

  1. Efficient algorithm for locating and sizing series compensation devices in large power transmission grids: I. Model implementation

    SciTech Connect

    Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha

    2014-10-24

    We explore optimization methods for planning the placement, sizing and operations of Flexible Alternating Current Transmission System (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to Series Compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of Linear Programs (LP) which are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPower Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed up that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically-sized networks that suffer congestion from a range of causes including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically-sized network.

  2. Information Power Grid: Distributed High-Performance Computing and Large-Scale Data Management for Science and Engineering

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Gannon, Dennis; Nitzberg, Bill; Feiereisen, William (Technical Monitor)

    2000-01-01

    The term "Grid" refers to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. The vision for NASN's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks that will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. IPG development and deployment is addressing requirements obtained by analyzing a number of different application areas, in particular from the NASA Aero-Space Technology Enterprise. This analysis has focussed primarily on two types of users: The scientist / design engineer whose primary interest is problem solving (e.g., determining wing aerodynamic characteristics in many different operating environments), and whose primary interface to IPG will be through various sorts of problem solving frameworks. The second type of user if the tool designer: The computational scientists who convert physics and mathematics into code that can simulate the physical world. These are the two primary users of IPG, and they have rather different requirements. This paper describes the current state of IPG (the operational testbed), the set of capabilities being put into place for the operational prototype IPG, as well as some of the longer term R&D tasks.

  3. Efficient algorithm for locating and sizing series compensation devices in large power transmission grids: I. Model implementation

    DOE PAGES

    Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha

    2014-10-24

    We explore optimization methods for planning the placement, sizing and operations of Flexible Alternating Current Transmission System (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to Series Compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of Linear Programs (LP) which are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPower Polishmore » Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed up that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically-sized networks that suffer congestion from a range of causes including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically-sized network.« less

  4. Large-Area Optical Coatings with Uniform Thickness Grown by Surface Chemical Reactions for High-Power Laser Applications

    NASA Astrophysics Data System (ADS)

    Zaitsu, Shin-ichi; Motokoshi, Shinji; Jitsuno, Takahisa; Nakatsuka, Masahiro; Yamanaka, Tatsuhiko

    2002-01-01

    We prepared optical thin films using an atomic layer deposition (ALD) procedure in order to apply this coating method to optical components for high-power and large-scale lasers. Film thickness shows a proportional relationship to the number of operation cycles even in the case of room-temperature growth, and the distribution is uniform with a thickness error of less than 1% over an area of 240 mm diameter. We examined the laser damage thresholds of the films with 1 ns laser pulses at 1.064 μm. The highest thresholds (TiO2: 5 J/cm2, Al2O3: 5.2 J/cm2) are obtained in the amorphous films grown at low growth temperatures (25-50°C). Results from the analysis of film structure and composition, and measurement of optical absorption reveal that the decrease in laser damage threshold as the growth temperature rises is caused by the crystallization of films.

  5. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines.

    PubMed

    Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J

    2013-02-28

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined.

  6. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2012-07-01

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.

  7. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2011-07-01

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used to determine the inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modeling, and the examination of more array configurations.

  8. Design and Operation of Power Systems with Large Amounts of Wind Power: Final Summary Report, IEA WIND Task 25, Phase Three 2012-2014

    SciTech Connect

    Holttinen, Hannele; Kiviluoma, Juha; Forcione, Alain; Milligan, Michael; Smith, Charles J.; Dillon, Jody; Dobschinski, Jan; van Roon, Serafin; Cutululis, Nicolaos; Orths, Antje; Eriksen, Peter Borre; Carlini, Enrico Maria; Estanqueiro, Ana; Bessa, Ricardo; Soder, Lennart; Farahmand, Hossein; Torres, Jose Rueda; Jianhua, Bai; Kondoh, Junji; Pineda, Ivan; Strbac, Goran

    2016-06-01

    This report summarizes recent findings on wind integration from the 16 countries participating in the International Energy Agency (IEA) Wind collaboration research Task 25 in 2012-2014. Both real experience and studies are reported. The national case studies address several impacts of wind power on electric power systems. In this report, they are grouped under long-term planning issues and short-term operational impacts. Long-term planning issues include grid planning and capacity adequacy. Short-term operational impacts include reliability, stability, reserves, and maximizing the value in operational timescales (balancing related issues). The first section presents variability and uncertainty of power system-wide wind power, and the last section presents recent wind integration studies for higher shares of wind power. Appendix 1 provides a summary of ongoing research in the national projects contributing to Task 25 in 2015-2017.

  9. Information Power Grid: Distributed High-Performance Computing and Large-Scale Data Management for Science and Engineering

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Gannon, Dennis; Nitzberg, Bill

    2000-01-01

    We use the term "Grid" to refer to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. This infrastructure includes: (1) Tools for constructing collaborative, application oriented Problem Solving Environments / Frameworks (the primary user interfaces for Grids); (2) Programming environments, tools, and services providing various approaches for building applications that use aggregated computing and storage resources, and federated data sources; (3) Comprehensive and consistent set of location independent tools and services for accessing and managing dynamic collections of widely distributed resources: heterogeneous computing systems, storage systems, real-time data sources and instruments, human collaborators, and communications systems; (4) Operational infrastructure including management tools for distributed systems and distributed resources, user services, accounting and auditing, strong and location independent user authentication and authorization, and overall system security services The vision for NASA's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks. Such Grids will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. Examples of these problems include: (1) Coupled, multidisciplinary simulations too large for single systems (e.g., multi-component NPSS turbomachine simulation); (2) Use of widely distributed, federated data archives (e.g., simultaneous access to metrological, topological, aircraft performance, and flight path scheduling databases supporting a National Air Space Simulation systems}; (3

  10. Development of Quality Assessment Techniques for Large Eddy Simulation of Propulsion and Power Systems in Complex Geometries

    SciTech Connect

    Lacaze, Guilhem; Oefelein, Joseph

    2015-03-01

    Large-eddy-simulation (LES) is quickly becoming a method of choice for studying complex thermo-physics in a wide range of propulsion and power systems. It provides a means to study coupled turbulent combustion and flow processes in parameter spaces that are unattainable using direct-numerical-simulation (DNS), with a degree of fidelity that can be far more accurate than conventional engineering methods such as the Reynolds-averaged Navier-Stokes (RANS) approx- imation. However, development of predictive LES is complicated by the complex interdependence of different type of errors coming from numerical methods, algorithms, models and boundary con- ditions. On the other hand, control of accuracy has become a critical aspect in the development of predictive LES for design. The objective of this project is to create a framework of metrics aimed at quantifying the quality and accuracy of state-of-the-art LES in a manner that addresses the myriad of competing interdependencies. In a typical simulation cycle, only 20% of the computational time is actually usable. The rest is spent in case preparation, assessment, and validation, because of the lack of guidelines. This work increases confidence in the accuracy of a given solution while min- imizing the time obtaining the solution. The approach facilitates control of the tradeoffs between cost, accuracy, and uncertainties as a function of fidelity and methods employed. The analysis is coupled with advanced Uncertainty Quantification techniques employed to estimate confidence in model predictions and calibrate model's parameters. This work has provided positive conse- quences on the accuracy of the results delivered by LES and will soon have a broad impact on research supported both by the DOE and elsewhere.

  11. Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects.

    PubMed

    Bakken, Tor Haakon; Aase, Anne Guri; Hagen, Dagmar; Sundt, Håkon; Barton, David N; Lujala, Päivi

    2014-07-01

    Climate change and the needed reductions in the use of fossil fuels call for the development of renewable energy sources. However, renewable energy production, such as hydropower (both small- and large-scale) and wind power have adverse impacts on the local environment by causing reductions in biodiversity and loss of habitats and species. This paper compares the environmental impacts of many small-scale hydropower plants with a few large-scale hydropower projects and one wind power farm, based on the same set of environmental parameters; land occupation, reduction in wilderness areas (INON), visibility and impacts on red-listed species. Our basis for comparison was similar energy volumes produced, without considering the quality of the energy services provided. The results show that small-scale hydropower performs less favourably in all parameters except land occupation. The land occupation of large hydropower and wind power is in the range of 45-50 m(2)/MWh, which is more than two times larger than the small-scale hydropower, where the large land occupation for large hydropower is explained by the extent of the reservoirs. On all the three other parameters small-scale hydropower performs more than two times worse than both large hydropower and wind power. Wind power compares similarly to large-scale hydropower regarding land occupation, much better on the reduction in INON areas, and in the same range regarding red-listed species. Our results demonstrate that the selected four parameters provide a basis for further development of a fair and consistent comparison of impacts between the analysed renewable technologies.

  12. Data envelopment analysis of space and terrestrially-based large scale commercial power systems for earth: A prototype analysis of their relative economic advantages

    SciTech Connect

    Criswell, D.R.; Thompson, R.G.

    1996-12-31

    Society must develop a large new source of electric power to adequately meet human needs in the 21st Century. The Lunar Solar Power system (LSP) is a new option that is independent of the biosphere. LSP captures sunlight on the moon, converts the solar power to microwaves, and beams the power to receivers on Earth that output electricity. The collimated microwave beams are low in intensity (< 20% of sunlight), safe, and environmentally benign. Data Envelopment Analysis (DEA) enables the detailed quantitative comparison of alternative economic systems. We use DEA methodology to compare the technical efficiency of the large-scale power systems needed to meet the growing energy needs of terrestrial society. This comparison suggests the efficiencies to be gained from LSP are large indeed. Such gains remain even if the resources needed for LSP are 10-fold greater than estimated from United States government studies. In terms of benefits versus costs, normalized to the range of 0-1, DEA reveals that LSP is much more efficient than conventional terrestrial solar-thermal and photovoltaic, fossil, and nuclear systems. LSP is also environmentally benign compared to the conventional systems.. 1 ref., 1 fig., 12 tabs.

  13. Information Power Grid: Distributed High-Performance Computing and Large-Scale Data Management for Science and Engineering

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Gannon, Dennis; Nitzberg, Bill

    2000-01-01

    We use the term "Grid" to refer to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. This infrastructure includes: (1) Tools for constructing collaborative, application oriented Problem Solving Environments / Frameworks (the primary user interfaces for Grids); (2) Programming environments, tools, and services providing various approaches for building applications that use aggregated computing and storage resources, and federated data sources; (3) Comprehensive and consistent set of location independent tools and services for accessing and managing dynamic collections of widely distributed resources: heterogeneous computing systems, storage systems, real-time data sources and instruments, human collaborators, and communications systems; (4) Operational infrastructure including management tools for distributed systems and distributed resources, user services, accounting and auditing, strong and location independent user authentication and authorization, and overall system security services The vision for NASA's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks. Such Grids will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. Examples of these problems include: (1) Coupled, multidisciplinary simulations too large for single systems (e.g., multi-component NPSS turbomachine simulation); (2) Use of widely distributed, federated data archives (e.g., simultaneous access to metrological, topological, aircraft performance, and flight path scheduling databases supporting a National Air Space Simulation systems}; (3

  14. Stability of Large Direct-Current Power Systems That Use Switching Converters and the Application of Switching Converters to the International Space Station

    NASA Technical Reports Server (NTRS)

    Manners, Bruce A.; Gholdston, E. W.; Karimi, K.; Lee, F. C.; Rajagopalan, J.; Panov, Y.

    1997-01-01

    As direct-current space power systems continue to grow in size, switching power converters are playing an ever larger role in power conditioning and control. When a large direct-current system that uses power converters of this type is being designed, special attention must be placed on the electrical stability of the system and of the individual loads on the system. The impedance specification approach for system stability was accomplished as a result of cooperative work of the International Space Station program team, which consists of the NASA Lewis Research Center, the Boeing Company, and Rocketdyne Division/Rockwell International. In addition, major contributions were provided by the Virginia Polytechnic Institute and State University working under a grant to NASA Lewis.

  15. Power evaluation of asymptotic tests for comparing two binomial proportions to detect direct and indirect association in large-scale studies.

    PubMed

    Emily, Mathieu; Friguet, Chloé

    2015-10-14

    Asymptotic tests are commonly used for comparing two binomial proportions when the sample size is sufficiently large. However, there is no consensus on the most powerful test. In this paper, we clarify this issue by comparing the power functions of three popular asymptotic tests: the Pearson's χ(2) test, the likelihood-ratio test and the odds-ratio based test. Considering Taylor decompositions under local alternatives, the comparisons lead to recommendations on which test to use in view of both the experimental design and the nature of the investigated signal. We show that when the design is balanced between the two binomials, the three tests are equivalent in terms of power. However, when the design is unbalanced, differences in power can be substantial and the choice of the most powerful test also depends on the value of the parameters of the two compared binomials. We further investigated situations where the two binomials are not compared directly but through tag binomials. In these cases of indirect association, we show that the differences in power between the three tests are enhanced with decreasing values of the parameters of the tag binomials. Our results are illustrated in the context of genetic epidemiology where the analysis of genome-wide association studies provides insights regarding the low power for detecting rare variants.

  16. Learning Large Lessons: The Evolving Roles of Ground Power and Air Power in the Post-Cold War Era. Executive Summary

    DTIC Science & Technology

    2007-01-01

    document THE ARTS CHILD POLICY CIVIL JUSTICE EDUCATION ENERGY AND ENVIRONMENT HEALTH AND HEALTH CARE INTERNATIONAL AFFAIRS NATIONAL SECURITY POPULATION AND...examined in the more-comprehensive study: Iraq (1991), Kosovo (1999), Afghanistan (2001), and Iraq (2003). It also incorporates modest changes from...operations in Afghanistan and Iraq , the strategic goals of these operations have not yet been realized. Given the effec- tiveness of air power in

  17. Online Supplementary ADP Learning Controller Design and Application to Power System Frequency Control With Large-Scale Wind Energy Integration.

    PubMed

    Guo, Wentao; Liu, Feng; Si, Jennie; He, Dawei; Harley, Ronald; Mei, Shengwei

    2016-08-01

    The emergence of smart grids has posed great challenges to traditional power system control given the multitude of new risk factors. This paper proposes an online supplementary learning controller (OSLC) design method to compensate the traditional power system controllers for coping with the dynamic power grid. The proposed OSLC is a supplementary controller based on approximate dynamic programming, which works alongside an existing power system controller. By introducing an action-dependent cost function as the optimization objective, the proposed OSLC is a nonidentifier-based method to provide an online optimal control adaptively as measurement data become available. The online learning of the OSLC enjoys the policy-search efficiency during policy iteration and the data efficiency of the least squares method. For the proposed OSLC, the stability of the controlled system during learning, the monotonic nature of the performance measure of the iterative supplementary controller, and the convergence of the iterative supplementary controller are proved. Furthermore, the efficacy of the proposed OSLC is demonstrated in a challenging power system frequency control problem in the presence of high penetration of wind generation.

  18. Assessing power of large river fish monitoring programs to detect population changes: the Missouri River sturgeon example

    USGS Publications Warehouse

    Wildhaber, M.L.; Holan, S.H.; Bryan, J.L.; Gladish, D.W.; Ellersieck, M.

    2011-01-01

    In 2003, the US Army Corps of Engineers initiated the Pallid Sturgeon Population Assessment Program (PSPAP) to monitor pallid sturgeon and the fish community of the Missouri River. The power analysis of PSPAP presented here was conducted to guide sampling design and effort decisions. The PSPAP sampling design has a nested structure with multiple gear subsamples within a river bend. Power analyses were based on a normal linear mixed model, using a mixed cell means approach, with variance estimates from the original data. It was found that, at current effort levels, at least 20 years for pallid and 10 years for shovelnose sturgeon is needed to detect a 5% annual decline. Modified bootstrap simulations suggest power estimates from the original data are conservative due to excessive zero fish counts. In general, the approach presented is applicable to a wide array of animal monitoring programs.

  19. A Capacity Design Method of Distributed Battery Storage for Controlling Power Variation with Large-Scale Photovoltaic Sources in Distribution Network

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhiro; Sawa, Toshiyuki; Gunji, Keiko; Yamazaki, Jun; Watanabe, Masahiro

    A design method for distributed battery storage capacity has been developed for evaluating battery storage advantage on demand-supply imbalance control in distribution systems with which large-scale home photovoltaic powers connected. The proposed method is based on a linear storage capacity minimization model with design basis demand load and photovoltaic output time series subjective to battery management constraints. The design method has been experimentally applied to a sample distribution system with substation storage and terminal area storage. From the numerical results, the developed method successfully clarifies the charge-discharge control and stored power variation, satisfies peak cut requirement, and pinpoints the minimum distributed storage capacity.

  20. Phase-matched waveguide four-wave mixing scaled to higher peak powers with large-core-area hollow photonic-crystal fibers.

    PubMed

    Konorov, S O; Serebryannikov, E E; Fedotov, A B; Miles, R B; Zheltikov, A M

    2005-05-01

    Hollow photonic-crystal fibers with large core diameters are shown to allow waveguide nonlinear-optical interactions to be scaled to higher pulse peak powers. Phase-matched four-wave mixing is predicted theoretically and demonstrated experimentally for millijoule nanosecond pulses propagating in a hollow photonic-crystal fiber with a core diameter of about 50 microm , suggesting the way to substantially enhance the efficiency of nonlinear-optical spectral transformations and wave mixing of high-power laser pulses in the gas phase.

  1. CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases.

    PubMed

    Tu, Zhuchi; Yang, Weili; Yan, Sen; Guo, Xiangyu; Li, Xiao-Jiang

    2015-08-04

    Animal models are extremely valuable to help us understand the pathogenesis of neurodegenerative disorders and to find treatments for them. Since large animals are more like humans than rodents, they make good models to identify the important pathological events that may be seen in humans but not in small animals; large animals are also very important for validating effective treatments or confirming therapeutic targets. Due to the lack of embryonic stem cell lines from large animals, it has been difficult to use traditional gene targeting technology to establish large animal models of neurodegenerative diseases. Recently, CRISPR/Cas9 was used successfully to genetically modify genomes in various species. Here we discuss the use of CRISPR/Cas9 technology to establish large animal models that can more faithfully mimic human neurodegenerative diseases.

  2. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are... fly from the point where the two engines are assumed to fail simultaneously to an airport that meets... over the airport, and after that to fly for 15 minutes at cruise power or thrust, or both, and that...

  3. Very large arrays of individually addressable high-power single-mode laser arrays in the 800- to 1000-nm wavelength range obtained by quantum well intermixing techniques

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Bacchin, Gianluca; Qiu, Bocang C.; Smith, Chris J. M.; Vassalli, O.; Toury, Marion; McDougall, Stewart D.; Hamilton, Craig J.; Marsh, John H.

    2005-04-01

    Quantum well intermixing (QWI) of the facet regions of a semiconductor laser can significantly improve the COD of the device giving high kink power and high reliability. A novel epitaxy design incorporating a graded 'V-profile' layer allows for a reduced vertical far-field and simultaneously suppresses higher order modes to give high power operation. Furthermore, the 'V-profile' layer provides a robust design to improve the ridge etch tolerance to give excellent device performance uniformity across an array. Very large arrays of individually addressable lasers (up to 100 elements) are reported with small pitch size (~100 μm), high single mode power (up to 300 mW) and high uniformity.

  4. Experimental Investigation of Natural-Circulation Flow Behavior Under Low-Power/Low-Pressure Conditions in the Large-Scale PANDA Facility

    SciTech Connect

    Auban, Olivier; Paladino, Domenico; Zboray, Robert

    2004-12-15

    Twenty-five tests have been carried out in the large-scale thermal-hydraulic facility PANDA to investigate natural-circulation and stability behavior under low-pressure/low-power conditions, when void flashing might play an important role. This work, which extends the current experimental database to a large geometric scale, is of interest notably with regard to the start-up procedures in natural-circulation-cooled boiling water reactors. It should help the understanding of the physical phenomena that may cause flow instability in such conditions and can be used for validation of thermal-hydraulics system codes. The tests were performed at a constant power, balanced by a specific condenser heat removal capacity. The test matrix allowed the reactor pressure vessel power and pressure to be varied, as well as other parameters influencing the natural-circulation flow. The power spectra of flow oscillations showed in a few tests a major and unique resonance peak, and decay ratios between 0.5 and 0.9 have been found. The remainder of the tests showed an even more pronounced stable behavior. A classification of the tests is presented according to the circulation modes (from single-phase to two-phase flow) that could be assumed and particularly to the importance and the localization of the flashing phenomenon.

  5. Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses

    NASA Astrophysics Data System (ADS)

    Kempton, Willett; Archer, Cristina L.; Dhanju, Amardeep; Garvine, Richard W.; Jacobson, Mark Z.

    2007-01-01

    We develop methods for assessing offshore wind resources, using a model of the vertical structure of the planetary boundary layer (PBL) over water and a wind-electric technology analysis linking turbine and tower limitations to bathymetry and continental shelf geology. These methods are tested by matching the winds of the Middle-Atlantic Bight (MAB) to energy demand in the adjacent states (Massachusetts through North Carolina, U.S.A.). We find that the MAB wind resource can produce 330 GW average electrical power, a resource exceeding the region's current summed demand for 73 GW of electricity, 29 GW of light vehicle fuels (now gasoline), and 83 GW of building fuels (now distillate fuel oil and natural gas). Supplying these end-uses with MAB wind power would reduce by 68% the region's CO2 emissions, and reduce by 57% its greenhouse gas forcing. These percentages are in the range of the global reductions needed to stabilize climate.

  6. Ultrasensitive self-powered large area planar GaN UV-photodetector using reduced graphene oxide electrodes

    NASA Astrophysics Data System (ADS)

    Prakash, Nisha; Singh, Manjri; Kumar, Gaurav; Barvat, Arun; Anand, Kritika; Pal, Prabir; Singh, Surinder P.; Khanna, Suraj P.

    2016-12-01

    A simplistic design of a self-powered UV-photodetector device based on hybrid reduced-graphene-oxide (r-GO)/gallium nitride (GaN) is demonstrated. Under zero bias, the fabricated hybrid photodetector shows a photosensivity of ˜85% while the ohmic contact GaN photodetector with an identical device structure exhibits only ˜5.3% photosensivity at 350 nm illumination (18 μW/cm2). The responsivity and detectivity of the hybrid device were found to be 1.54 mA/W and 1.45 × 1010 Jones (cm Hz½ W-1), respectively, at zero bias with fast response (60 ms), recovery time (267 ms), and excellent repeatability. Power density-dependent responsivity and detectivity revealed ultrasensitive behaviour under low light conditions. The source of the observed self-powered effect in the hybrid photodetector is attributed to the depletion region formed at the r-GO and GaN quasi-ohmic interface.

  7. Evaluation of pressure and thermal data from a wind tunnel test of a large-scale, powered, STOL fighter model

    NASA Technical Reports Server (NTRS)

    Howell, G. A.; Crosthwait, E. L.; Witte, M. C.

    1981-01-01

    A STOL fighter model employing the vectored-engine-over wing concept was tested at low speeds in the NASA/Ames 40 by 80-foot wind tunnel. The model, approximately 0.75 scale of an operational fighter, was powered by two General Electric J-97 turbojet engines. Limited pressure and thermal instrumentation were provided to measure power effects (chordwise and spanwise blowing) and control-surface-deflection effects. An indepth study of the pressure and temperature data revealed many flow field features - the foremost being wing and canard leading-edge vortices. These vortices delineated regions of attached and separated flow, and their movements were often keys to an understanding of flow field changes caused by power and control-surface variations. Chordwise blowing increased wing lift and caused a modest aft shift in the center of pressure. The induced effects of chordwise blowing extended forward to the canard and significantly increased the canard lift when the surface was stalled. Spanwise blowing effectively enhanced the wing leading-edge vortex, thereby increasing lift and causing a forward shift in the center of pressure.

  8. Assessment of generic solar thermal systems for large power applications: analysis of electric power generating costs for systems larger than 10 MWe

    SciTech Connect

    Apley, W.J.; Bird, S.P.; Brown, D.R.; Drost, M.K.; Fort, J.A.; Garrett-Price, B.A.; Patton, W.P.; Williams, T.A.

    1980-11-01

    Seven generic types of collectors, together with associated subsystems for electric power generation, were considered. The collectors can be classified into three categories: (1) two-axis tracking (with compound-curvature reflecting surfaces); (2) one-axis tracking (with single-curvature reflecting surfaces); and (3) nontracking (with low-concentration reflecting surfaces). All seven collectors were analyzed in conceptual system configurations with Rankine-cycle engines. In addition, two of the collectors were analyzed with Brayton-cycle engines, and one was analyzed with a Stirling-cycle engine. With these engine options, and the consideration of both thermal and electrical storage for the Brayton-cycle central receiver, 11 systems were formulated for analysis. Conceptual designs developed for the 11 systems were based on common assumptions of available technology in the 1990 to 2000 time frame. No attempt was made to perform a detailed optimization of each conceptual design. Rather, designs best suited for a comparative evaluation of the concepts were formulated. Costs were estimated on the basis of identical assumptions, ground rules, methodologies, and unit costs of materials and labor applied uniformly to all of the concepts. The computer code SOLSTEP was used to analyze the thermodynamic performance characteristics and energy costs of the 11 concepts. Year-long simulations were performed using meteorological and insolation data for Barstow, California. Results for each concept include levelized energy costs and capacity factors for various combinations of storage capacity and collector field size.

  9. Simultaneous excitation of large-scale geomagnetic field fluctuations and plasma density irregularities by powerful radio waves

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kuo, S. P.

    1985-01-01

    The physical mechanism of thermal filamentation instability of radio waves whose frequencies can be as low as in the VLF band and as high as in the SHF band are investigated. This instability can excite large-scale magnetic and plasma density fluctuations simultaneously in the ionosphere and magnetosphere. Relevant experiments are reviewed in terms of this instability and other mechanisms.

  10. Large-size heat pipes intended for use in a megawatt-class space nuclear power system

    NASA Astrophysics Data System (ADS)

    Gribkov, A. S.

    2013-12-01

    The schematic design of a space nuclear power system is suggested that is fitted with a radiating cooler, which deploys and forms a part of the radiation protection cone once a spacecraft has been inserted into its orbit. The principle of selecting a design of a capillary structure for heat pipes with high thermal output (hundreds of kilowatts) is proposed. Comparison is drawn between heat pipes having the proposed and the conventional design. The advantages of the proposed design of heat pipes are shown by calculation results.

  11. Tabulated pressure measurements on a large subsonic transport model airplane with high bypass ratio, powered, fan jet engines

    NASA Technical Reports Server (NTRS)

    Flechner, S. G.; Patterson, J. C., Jr.

    1972-01-01

    An experimental wind-tunnel investigation to determine the aerodynamic interference and the jet-wake interference associated with the wing, pylon, and high-bypass-ratio, powered, fan-jet model engines has been conducted on a typical high-wing logistics transport airplane configuration. Pressures were measured on the wing and pylons and on the surfaces of the engine fan cowl, turbine cowl, and plug. Combinations of wing, pylons, engines, and flow-through nacelles were tested, and the pressure coefficients are presented in tabular form. Tests were conducted at Mach numbers from 0.700 to 0.825 and angles of attack from -2 to 4 deg.

  12. A Large-Bandwidth, Cylindrical Offner Pulse Stretcher for a High-Average-Power, 15 Femtosecond Laser

    SciTech Connect

    Molander, W A; Bayramian, A J; Campbell, R; Cross, R R; Huete, G; Schenkel, N; Ebbers, C; Caird, J; Barty, C J; Siders, C W

    2008-09-24

    We have designed and built an all-reflective pulse stretcher based on an Offner telescope. It uses cylindrical optics to simplify alignment and reduce aberrations. The stretch is {approx}1x10{sup 5} with a bandwidth of 200 nm. The stretcher is to be part of a 10 Hz repetition rate, high-average-power, femtosecond laser. This new design compensates for dispersion in the laser by using gratings of different groove spacing in the stretcher and compressor and a spectral phase corrector plate, made by magneto-rheological finishing, within the stretcher.

  13. Production cost and air emissions impacts of coal cycling in power systems with large-scale wind penetration

    NASA Astrophysics Data System (ADS)

    Oates, David Luke; Jaramillo, Paulina

    2013-06-01

    Wind power introduces variability into electric power systems. Due to the physical characteristics of wind, most of this variability occurs at inter-hour time-scales and coal units are therefore technically capable of balancing wind. Operators of coal-fired units have raised concerns that additional cycling will be prohibitively costly. Using PJM bid-data, we observe that coal operators are likely systematically under-bidding their startup costs. We then consider the effects of a 20% wind penetration scenario in the coal-heavy PJM West area, both when coal units bid business as usual startup costs, and when they bid costs accounting for the elevated wear and tear that occurs during cycling. We conclude that while 20% wind leads to increased coal cycling and reduced coal capacity factors under business as usual startup costs, including full startup costs shifts the burden of balancing wind onto more flexible units. This shift has benefits for CO2, NOX, and SO2 emissions as well as for the profitability of coal plants, as calculated by our dispatch model.

  14. Low-dimensional transport and large thermoelectric power factors in bulk semiconductors by band engineering of highly directional electronic states.

    PubMed

    Bilc, Daniel I; Hautier, Geoffroy; Waroquiers, David; Rignanese, Gian-Marco; Ghosez, Philippe

    2015-04-03

    Thermoelectrics are promising for addressing energy issues but their exploitation is still hampered by low efficiencies. So far, much improvement has been achieved by reducing the thermal conductivity but less by maximizing the power factor. The latter imposes apparently conflicting requirements on the band structure: a narrow energy distribution and a low effective mass. Quantum confinement in nanostructures and the introduction of resonant states were suggested as possible solutions to this paradox, but with limited success. Here, we propose an original approach to fulfill both requirements in bulk semiconductors. It exploits the highly directional character of some orbitals to engineer the band structure and produce a type of low-dimensional transport similar to that targeted in nanostructures, while retaining isotropic properties. Using first-principle calculations, the theoretical concept is demonstrated in Fe2YZ Heusler compounds, yielding power factors 4 to 5 times larger than in classical thermoelectrics at room temperature. Our findings are totally generic and rationalize the search of alternative compounds with similar behavior. Beyond thermoelectricity, these might be relevant also in the context of electronic, superconducting, or photovoltaic applications.

  15. Large-Scale Exploratory Analysis, Cleaning, and Modeling for Event Detection in Real-World Power Systems Data

    DTIC Science & Technology

    2013-11-01

    experiences using a non-traditional Hadoop distributed computing setup on top of a HPC computing cluster. Categories and Subject Descriptors J.2 [Computer...Analysis, Hadoop , R 1. INTRODUCTION In application areas involving large-scale distributed sen- sor networks, prior to deploying algorithms over high...executed on a Hadoop cluster. This provides the flexible rapid development and iterative analysis capabilities required for our analysis as well as the

  16. A Powerful New Quantitative Genetics Platform, Combining Caenorhabditis elegans High-Throughput Fitness Assays with a Large Collection of Recombinant Strains

    PubMed Central

    Andersen, Erik C.; Shimko, Tyler C.; Crissman, Jonathan R.; Ghosh, Rajarshi; Bloom, Joshua S.; Seidel, Hannah S.; Gerke, Justin P.; Kruglyak, Leonid

    2015-01-01

    The genetic variants underlying complex traits are often elusive even in powerful model organisms such as Caenorhabditis elegans with controlled genetic backgrounds and environmental conditions. Two major contributing factors are: (1) the lack of statistical power from measuring the phenotypes of small numbers of individuals, and (2) the use of phenotyping platforms that do not scale to hundreds of individuals and are prone to noisy measurements. Here, we generated a new resource of 359 recombinant inbred strains that augments the existing C. elegans N2xCB4856 recombinant inbred advanced intercross line population. This new strain collection removes variation in the neuropeptide receptor gene npr-1, known to have large physiological and behavioral effects on C. elegans and mitigates the hybrid strain incompatibility caused by zeel-1 and peel-1, allowing for identification of quantitative trait loci that otherwise would have been masked by those effects. Additionally, we optimized highly scalable and accurate high-throughput assays of fecundity and body size using the COPAS BIOSORT large particle nematode sorter. Using these assays, we identified quantitative trait loci involved in fecundity and growth under normal growth conditions and after exposure to the herbicide paraquat, including independent genetic loci that regulate different stages of larval growth. Our results offer a powerful platform for the discovery of the genetic variants that control differences in responses to drugs, other aqueous compounds, bacterial foods, and pathogenic stresses. PMID:25770127

  17. Development and Testing of a Power Trough System Using a Structurally-Efficient, High-Performance, Large-Aperture Concentrator with Thin Glass Reflector and Focal Point Rotation

    SciTech Connect

    May, E. K.; Forristall, R.

    2005-11-01

    Industrial Solar Technology has assembled a team of experts to develop a large-aperture parabolic trough for the electric power market that moves beyond cost and operating limitations of 1980's designs based on sagged glass reflectors. IST's structurally efficient space frame design will require nearly 50% less material per square meter than a Solel LS-2 concentrator and the new trough will rotate around the focal point. This feature eliminates flexhoses that increase pump power, installation and maintenance costs. IST aims to deliver a concentrator module costing less than $100 per square meter that can produce temperatures up to 400 C. The IST concentrator is ideally suited for application of front surface film reflectors and ensures that US corporations will manufacture major components, except for the high temperature receivers.

  18. Evaluation of the conservation potential of a refit energy management system (using a power line subcarrier) in a large, high-rise apartment complex. Phase II

    SciTech Connect

    Hirschfeld, H.E.

    1981-09-01

    An energy conservation study of the application of an energy management system (EMS) utilizing power line subcarrier communication equipment was made in a large apartment building in New York, New York. The building utilized individual cooling and resistance heating units in each apartment. The EMS turned the individual units on and off (with override by tenants) on a schedule determined by the building operator. Summer savings were found to be 11%; winter savings were 20%. Annual savings were projected to be 19%. The study demonstrated the conservation value of power line subcarrier technology as an alternative to submetering. It also developed and evaluated control strategies for the system and served as a field test to accelerate commercialization of the technology.

  19. Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber.

    PubMed

    Nodop, D; Jauregui, C; Schimpf, D; Limpert, J; Tünnermann, A

    2009-11-15

    An efficient and simple approach for converting pulsed near-IR laser radiation into visible and mid-IR light by exploiting degenerate four-wave-mixing in an endlessly single-mode, large-mode-area photonic-crystal fiber is presented. Coupling a 1 MHz, 200 ps, 8 W average power pulsed source emitting at 1064 nm into this fiber results in average powers of 3 W at 673 nm signal wavelength and of 450 mW at 2539 nm idler wavelength, respectively. The excellent pulse energy conversion efficiencies of 35% for the signal and 6% for the idler wavelength are due to the unique combination of characteristics of this type of fiber.

  20. Efficient algorithm for locating and sizing series compensation devices in large power transmission grids: II. Solutions and applications

    DOE PAGES

    Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha

    2014-10-01

    In a companion manuscript, we developed a novel optimization method for placement, sizing, and operation of Flexible Alternating Current Transmission System (FACTS) devices to relieve transmission network congestion. Specifically, we addressed FACTS that provide Series Compensation (SC) via modification of line inductance. In this manuscript, this heuristic algorithm and its solutions are explored on a number of test cases: a 30-bus test network and a realistically-sized model of the Polish grid (~ 2700 nodes and ~ 3300 lines). The results on the 30-bus network are used to study the general properties of the solutions including non-locality and sparsity. The Polishmore » grid is used as a demonstration of the computational efficiency of the heuristics that leverages sequential linearization of power flow constraints and cutting plane methods that take advantage of the sparse nature of the SC placement solutions. Using these approaches, the algorithm is able to solve an instance of Polish grid in tens of seconds. We explore the utility of the algorithm by analyzing transmission networks congested by (a) uniform load growth, (b) multiple overloaded configurations, and (c) sequential generator retirements.« less

  1. Efficient algorithm for locating and sizing series compensation devices in large power transmission grids: II. Solutions and applications

    SciTech Connect

    Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha

    2014-10-01

    In a companion manuscript, we developed a novel optimization method for placement, sizing, and operation of Flexible Alternating Current Transmission System (FACTS) devices to relieve transmission network congestion. Specifically, we addressed FACTS that provide Series Compensation (SC) via modification of line inductance. In this manuscript, this heuristic algorithm and its solutions are explored on a number of test cases: a 30-bus test network and a realistically-sized model of the Polish grid (~ 2700 nodes and ~ 3300 lines). The results on the 30-bus network are used to study the general properties of the solutions including non-locality and sparsity. The Polish grid is used as a demonstration of the computational efficiency of the heuristics that leverages sequential linearization of power flow constraints and cutting plane methods that take advantage of the sparse nature of the SC placement solutions. Using these approaches, the algorithm is able to solve an instance of Polish grid in tens of seconds. We explore the utility of the algorithm by analyzing transmission networks congested by (a) uniform load growth, (b) multiple overloaded configurations, and (c) sequential generator retirements.

  2. Analysis of satellite-observed CO2 and CH4 of GOSAT for estimation of GHG emissions from power plants and large cities from space

    NASA Astrophysics Data System (ADS)

    Oda, Tomohiro; Maksyutov, Shamil; Saito, Makoto; Valsala, Vinu; Ganshin, Alexander; Andres, Robert; Koyama, Yuji; Ito, Akihiko; Yoshida, Yukio; Yokota, Tatsuya

    2010-05-01

    National GHG inventories, which are reported on annual basis by country, are a tool to monitor the compliance of GHG emission reduction. National emissions are calculated according to the local activity statistics by sector and thus total emissions and emission changes from the past are obtained. National inventories are presently the only tool available to give a measure of national emissions, although these might not accurately reflect the true quantity of national emissions due to data quality, calculation methods, and time lag. We present an attempt to directly monitor GHG emissions, especially from intense sources such as large power plants and populated cities using GOSAT observations. Our preliminary analysis suggested that emissions from such intense sources cause changes in XCO2, which are detectable by GOSAT, in low wind condition. Since August 2009 we have requested GOSAT targeted mode measurements over large power plants and cities. The large power plants were selected from CARMA (Carbon Monitoring and Action) database by emission intensity, and cities were selected by population ranking. Until to December 2009, 137 XCO2 measurements over 98 observation points were successfully obtained. We evaluated difference between the data at requested points and background concentration, which we defined as monthly mean concentration over 800 km vicinity. An analysis using observational data suggested that XCO2 over requested points might be higher than zonal mean and background concentrations on average, and the range of the difference (1.07 ppm for 3 months) appears to be close to prior estimates. The level of uncertainty at this point (71 % of the mean value) is still at the level of the value itself, however a simple estimate suggests that it can be reduced to about 10% assuming a larger number of measurements, improvements on the retrieval and 5-year operation of GOSAT.

  3. Limited change in dune mobility in response to a large decrease in wind power in semi-arid northern China since the 1970s

    USGS Publications Warehouse

    Mason, J.A.; Swinehart, J.B.; Lu, H.; Miao, X.; Cha, P.; Zhou, Y.

    2008-01-01

    The climatic controls on dune mobility, especially the relative importance of wind strength, remain incompletely understood. This is a key research problem in semi-arid northern China, both for interpreting past dune activity as evidence of paleoclimate and for predicting future environmental change. Potential eolian sand transport, which is approximately proportional to wind power above the threshold for sand entrainment, has decreased across much of northern China since the 1970s. Over the same period, effective moisture (ratio of precipitation to potential evapotranspiration) has not changed significantly. This "natural experiment" provides insight on the relative importance of wind power as a control on dune mobility in three dunefields of northern China (Mu Us, Otindag, and Horqin), although poorly understood and potentially large effects of human land use complicate interpretation. Dune forms in these three regions are consistent with sand transport vectors inferred from weather station data, suggesting that wind directions have remained stable and the stations adequately represent winds that shaped the dunes. The predicted effect of weaker winds since the 1970s would be dune stabilization, with lower sand transport rates allowing vegetation cover to expand. Large portions of all three dunefields remained stabilized by vegetation in the 1970s despite high wind power. Since the 1970s, trends in remotely sensed vegetation greenness and change in mobile dune area inferred from sequential Landsat images do indicate widespread dune stabilization in the eastern Mu Us region. On the other hand, expansion of active dunes took place farther west in the Mu Us dunefield and especially in the central Otindag dunefield, with little overall change in two parts of the Horqin dunes. Better ground truth is needed to validate the remote sensing analyses, but results presented here place limits on the relative importance of wind strength as a control on dune mobility in the

  4. Large-scale wind tunnel studies of a jet-engined powered ejector-lift STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Dudley, Michael R.; Smith, Brian E.; Corsiglia, Victor; Ashby, Dale L.

    1990-01-01

    A full-scale model of a supersonic STOVL single engine flighter aircraft employing an ejector to augment lift in hover and in low-speed flight was tested in the 40- by 80-ft and 80- by 120-ft test sections of the National Full-Scale Aerodynamics Complex located at the NASA Ames Research Center. The measured ejector augmentation ratio in hover met the design requirement of 1.6 and continued to provide the lift necessary in forward flight for good transition qualities. The up-and-away aerodynamics (ejector system stowed) were found to be conventional for this class of vehicle. The pitch control provided by the full-span blown flaps is sufficient to control the large pitching moments generated by ventral exhaust nozzle vectoring and propulsion induced aerodynamic effects such as the turning of the flow entrained into the ejectors.

  5. High-rate and low-cost production of very large flat optical debris shields for the French high-power UV laser project

    NASA Astrophysics Data System (ADS)

    Garret, Thierry; Chabassier, Genevieve; Roussel, Andre

    1996-08-01

    SFIM ODS is involved in the French MEGAJOULE Project managed by the Commissariat a l'Energie Atomique. It is a high power UV-laser using 240 square beams. SFIM ODS achieved a technical and economical analysis concerning the production of flat-parallel debris-shields in silica using large and specific dual-side fine-grinding and polishing machines. This analysis was supported by trials using half-scale windows showing the ability to reach the specifications with low production costs.

  6. Terraced-heterostructure large-optical-cavity AlGaAs diode laser - A new type of high-power CW single-mode device

    NASA Technical Reports Server (NTRS)

    Botez, D.; Connolly, J. C.

    1982-01-01

    A new terraced lateral wave confining structure is obtained by liquid phase epitaxy over channeled substrates misoriented perpendicular to the channels' direction. Single spatial and longitudinal mode CW operation is achieved to 50 mW from one facet, in large spot sizes (2 x 7.5 micron, 1/e squared points in intensity) and narrow beams (6 deg x 23 deg), full width half-power). At 70 C ambient temperature CW lasing is obtained to 15 mW from one facet. Weak mode confinement in an asymmetric lateral waveguides provides discrimination against high-order mode oscillation.

  7. Particle-associated polycyclic aromatic hydrocarbons near power plants as determined by large volume injection--GC/MS.

    PubMed

    Evagelopoulos, V; Albanis, T A; Kodona, El; Zoras, S

    2010-06-01

    PM(10) and PM(2.5) samples were collected at two locations in the heavy industrialized prefecture of Kozani, in North-western Greece; in the open-cast mines of Klitos area and in the urban area of city of Kozani. The samples were collected by the use of low volume samplers, for a period of 1 year every 6 d. An analytical method has been adapted for determining 16 particle-bound polycyclic aromatic hydrocarbons (PAHs) in PM(10) and PM(2.5). Samples were collected on poly-tetra-fluorinated-ethylene (PTFE) filters using low volume samplers, considered to be ideal for trapping various organic pollutants including PAHs. The extraction has been made in two stages. Firstly, by reflux and then by using ultrasound bath. Chromatographic analysis has been carried out by GC/MS with programmable temperature vaporizers (PTV) injector and large volume injection (LVI) technique. Mean daily concentrations of B[a]Py in PM(10)-bound particles were 0.57 ng m(-3) in Kozani and 0.58 ng m(-3) at Klitos, while in PM(2.5)-bound PAHs were 0.35 ng m(-3) and 0.30 ng m(-3) respectively. We were able to verify the sources of PAHs by the use of diagnostic ratios, which indicate oil or/and coal burning as the, possible, major PAHs pollutant source(s).

  8. MRF Applications: On the Road to Making Large-Aperture Ultraviolet Laser Resistant Continuous Phase Plates for High-Power Lasers

    SciTech Connect

    Menapace, J A; Davis, P J; Steele, W A; Hachkowski, M R; Nelson, A; Xin, K

    2006-10-26

    Over the past two years we have developed MRF tools and procedures to manufacture large-aperture (430 X 430 mm) continuous phase plates (CPPs) that are capable of operating in the infrared portion (1053 nm) of high-power laser systems. This is accomplished by polishing prescribed patterns of continuously varying topographical features onto finished plano optics using MRF imprinting techniques. We have been successful in making, testing, and using large-aperture CPPs whose topography possesses spatial periods as low as 4 mm and surface peak-to-valleys as high as 8.6 {micro}m. Combining this application of MRF technology with advanced MRF finishing techniques that focus on ultraviolet laser damage resistance makes it potentially feasible to manufacture large-aperture CPPs that can operate in the ultraviolet (351 nm) without sustaining laser-induced damage. In this paper, we will discuss the CPP manufacturing process and the results of 351-nm/3-nsec equivalent laser performance experiments conducted on large-aperture CPPs manufactured using advanced MRF protocols.

  9. A Revised Method of Presenting Wavenumber-Frequency Power Spectrum Diagrams That Reveals the Asymmetric Nature of Tropical Large-scale Waves

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Yang, Bo; Fu, Xiouhua

    2007-01-01

    The popular method of presenting wavenumber-frequency power spectrum diagrams for studying tropical large-scale waves in the literature is shown to give an incomplete presentation of these waves. The so-called "convectively-coupled Kelvin (mixed Rossby-gravity) waves" are presented as existing only in the symmetric (antisymmetric) component of the diagrams. This is obviously not consistent with the published composite/regression studies of "convectively-coupled Kelvin waves," which illustrate the asymmetric nature of these waves. The cause of this inconsistency is revealed in this note and a revised method of presenting the power spectrum diagrams is proposed. When this revised method is used, "convectively-coupled Kelvin waves" do show anti-symmetric components, and "convectively-coupled mixed Rossby-gravity waves (also known as Yanai waves)" do show a hint of symmetric components. These results bolster a published proposal that these waves be called "chimeric Kelvin waves," "chimeric mixed Rossby-gravity waves," etc. This revised method of presenting power spectrum diagrams offers a more rigorous means of comparing the General Circulation Models (GCM) output with observations by calling attention to the capability of GCMs in correctly simulating the asymmetric characteristics of the equatorial waves.

  10. Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations.

    PubMed

    Contini, Daniele; Cesari, Daniela; Conte, Marianna; Donateo, Antonio

    2016-08-01

    The evaluation of the contribution of coal-fired thermo-electrical power plants to particulate matter (PM) is important for environmental management, for evaluation of health risks, and for its potential influence on climate. The application of receptor models, based on chemical composition of PM, is not straightforward because the chemical profile of this source is loaded with Si and Al and it is collinear with the profile of crustal particles. In this work, a new methodology, based on Positive Matrix Factorization (PMF) receptor model and Si/Al diagnostic ratio, specifically developed to discriminate the coal-fired power plant contribution from the crustal contribution is discussed. The methodology was applied to daily PM10 samples collected in central Italy in proximity of a large coal-fired power plant. Samples were simultaneously collected at three sites between 2.8 and 5.8km from the power plant: an urban site, an urban background site, and a rural site. Chemical characterization included OC/EC concentrations, by thermo-optical method, ions concentrations (NH4(+), Ca(2+), Mg(2+), Na(+), K(+), Mg(2+), SO4(2-), NO3(-), Cl(-)), by high performances ion chromatography, and metals concentrations (Si, Al, Ti, V, Mn, Fe, Ni, Cu, Zn, Br), by Energy dispersive X-ray Fluorescence (ED-XRF). Results showed an average primary contribution of the power plant of 2% (±1%) in the area studied, with limited differences between the sites. Robustness of the methodology was tested inter-comparing the results with two independent evaluations: the first obtained using the Chemical Mass Balance (CMB) receptor model and the second correlating the Si-Al factor/source contribution of PMF with wind directions and Calpuff/Calmet dispersion model results. The contribution of the power plant to secondary ammonium sulphate was investigated using an approach that integrates dispersion model results and the receptor models (PMF and CMB), a sulphate contribution of 1.5% of PM10 (±0.3%) as

  11. Natural inflation: Particle physics models, power-law spectra for large-scale structure, and constraints from the Cosmic Background Explorer

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.; Bond, J. Richard; Freese, Katherine; Frieman, Joshua A.; Olinto, Angela V.

    1993-01-01

    We discuss the particle physics basis for models of natural inflation with pseudo Nambu-Goldstone bosons and study the consequences for large-scale structure of the nonscale-invariant density fluctuation spectra that arise in natural inflation and other models. A pseudo Nambu-Goldstone boson, with a potential of the form V(φ)=Λ4[1+/-cos(φ/f)], can naturally give rise to an epoch of inflation in the early Universe, if f~MPl and Λ~MGUT. Such mass scales arise in particle physics models with a gauge group that becomes strongly interacting at the grand unified theory scale. We work out a specific particle physics example based on the multiple gaugino condensation scenario in superstring theory. We then study the cosmological evolution of and constraints upon these inflation models numerically and analytically. To obtain sufficient inflation with a probability of order 1 and a high enough post-inflation reheat temperature for baryogenesis, we require f>~0.3MPl. The primordial density fluctuation spectrum generated by quantum fluctuations in φ is a non-scale-invariant power law P(k)~kns, with ns~=1-(M2Pl/8πf2) leading to more power on large length scales than the ns=1 Harrison-Zeldovich spectrum. (For the reader primarily interested in large-scale structure, the discussion of this topic is presented in Sec. IV and is intended to be nearly self-contained.) We pay special attention to the prospects of using the enhanced power to explain the otherwise puzzling large-scale clustering of galaxies and clusters and their flows. We find that the standard cold dark matter (CDM) model with 0<~ns<~0.6 could in principle explain these data. However, the microwave background anisotropies recently detected by the Cosmic Background Explorer (COBE) imply such low primordial amplitudes for these CDM models (that is, bias factors b8>~2 for ns<~0.6) that galaxy formation would occur too late to be viable and the large-scale galaxy velocities would be too small. In fact, combining the

  12. ACVR1B rs2854464 Is Associated with Sprint/Power Athletic Status in a Large Cohort of Europeans but Not Brazilians

    PubMed Central

    Voisin, Sarah; Guilherme, João Paulo F. L.; Yan, Xu; Pushkarev, Vladimir P.; Cieszczyk, Pawel; Massidda, Myosotis; Calò, Carla M.; Dyatlov, Dmitry A.; Kolupaev, Vitaliy A.; Pushkareva, Yuliya E.; Maciejewska, Agnieszka; Sawczuk, Marek; Lancha, Antonio H.; Artioli, Guilherme G.

    2016-01-01

    Skeletal muscle strength and mass, major contributors to sprint/power athletic performance, are influenced by genetics. However, to date, only a handful of genetic variants have been associated with sprint/power performance. The ACVR1B A allele (rs rs2854464) has previously been associated with increased muscle-strength in non-athletic cohort. However, no follow-up and/or replications studies have since been conducted. Therefore, the aim of the present study was to compare the genotype distribution of ACVR1B rs2854464 between endurance athletes (E), sprint/power (S/P) athletes, mixed athletes (M), and non-athletic control participants in 1672 athletes (endurance athletes, n = 482; sprint/power athletes, n = 578; mixed athletes, n = 498) and 1089 controls (C) of both European Caucasians (Italian, Polish and Russians) and Brazilians. We have also compared the genotype distribution according to the athlete’s level of competition (elite vs. sub-elite). DNA extraction and genotyping were performed using various methods. Fisher's exact test (adjusted for multiple comparisons) was used to test whether the genotype distribution of rs2854464 (AA, AG and GG) differs between groups. The A allele was overrepresented in S/P athletes compared with C in the Caucasian sample (adjusted p = 0.048), whereas there were no differences in genotype distribution between E athletes and C, in neither the Brazilian nor the Caucasian samples (adjusted p > 0.05). When comparing all Caucasian athletes regardless of their sporting discipline to C, we found that the A allele was overrepresented in athletes compared to C (adjusted p = 0.024). This association was even more pronounced when only elite-level athletes were considered (adjusted p = 0.00017). In conclusion, in a relatively large cohort of athletes from Europe and South America we have shown that the ACVR1B rs2854464 A allele is associated with sprint/power performance in Caucasians but not in Brazilian athletes. This reinforces the

  13. Uncertainty Quantification in Dynamic Simulations of Large-scale Power System Models using the High-Order Probabilistic Collocation Method on Sparse Grids

    SciTech Connect

    Lin, Guang; Elizondo, Marcelo A.; Lu, Shuai; Wan, Xiaoliang

    2014-01-01

    This paper proposes a probabilistic collocation method (PCM) to quantify the uncertainties with dynamic simulations in power systems. The appraoch was tested on a single-machine-infinite-bus system and the over 15,000 -bus Western Electricity Coordinating Council (WECC) system. Comparing to classic Monte-Carlo (MC) method, the proposed PCM applies the Smolyak algorithm to reduce the number of simulations that have to be performed. Therefore, the computational cost can be greatly reduced using PCM. The algorithm and procedures are described in the paper. Comparison was made with MC method on the single machine as well as the WECC system. The simulation results shows that using PCM only a small number of sparse grid points need to be sampled even when dealing with systems with a relatively large number of uncertain parameters. PCM is, therefore, computationally more efficient than MC method.

  14. Angular power spectrum of the diffuse gamma-ray emission as measured by the Fermi Large Area Telescope and constraints on its dark matter interpretation

    NASA Astrophysics Data System (ADS)

    Fornasa, Mattia; Cuoco, Alessandro; Zavala, Jesús; Gaskins, Jennifer M.; Sánchez-Conde, Miguel A.; Gomez-Vargas, German; Komatsu, Eiichiro; Linden, Tim; Prada, Francisco; Zandanel, Fabio; Morselli, Aldo

    2016-12-01

    The isotropic gamma-ray background arises from the contribution of unresolved sources, including members of confirmed source classes and proposed gamma-ray emitters such as the radiation induced by dark matter annihilation and decay. Clues about the properties of the contributing sources are imprinted in the anisotropy characteristics of the gamma-ray background. We use 81 months of Pass 7 Reprocessed data from the Fermi Large Area Telescope to perform a measurement of the anisotropy angular power spectrum of the gamma-ray background. We analyze energies between 0.5 and 500 GeV, extending the range considered in the previous measurement based on 22 months of data. We also compute, for the first time, the cross-correlation angular power spectrum between different energy bins. We find that the derived angular spectra are compatible with being Poissonian, i.e. constant in multipole. Moreover, the energy dependence of the anisotropy suggests that the signal is due to two populations of sources, contributing, respectively, below and above ˜2 GeV . Finally, using data from state-of-the-art numerical simulations to model the dark matter distribution, we constrain the contribution from dark matter annihilation and decay in Galactic and extra-Galactic structures to the measured anisotropy. These constraints are competitive with those that can be derived from the average intensity of the isotropic gamma-ray background.

  15. Large area self-powered gamma ray detector. Phase 2, Development of a source position monitor for use on industrial radiographic units

    SciTech Connect

    LeVert, F.E.

    1994-01-01

    The purpose of this research was to develop a large area self-powered gamma detector (LASPGD) capable of detecting the movement of sealed radiation sources into and out of industrial radiographic units and to construct a prototype source position monitor (SPM) for these units utilizing the LASPGD. Prototype isotropic and directional LASPGDs, with solid and inert gas dielectrics, were developed and extensively tested using calibrated gamma sources (i.e., Cs-137, and Co-60). The sensitivities of the isotropic detectors, with inert gas dielectrics, were found to be approximately a factor of ten greater than those measured for the solid dielectric LASPGDs. Directionally sensitive self-powered detectors were found to exhibit a forward-to-back hemispherical sensitivity ratio of approximately 2 to 1. Industrial radiographic units containing Ir-192 sources with different activities were used to test the performance of the SPM. The SPM, which utilized a gas dielectric LASPGD, performed as designed. That is, the current generated in the LASPGD was converted to a voltage, amplified and used to control the on/off state of an incandescent lamp. The incandescent lamp, which functions as the source/out warning indicator, flashes at a rate of one flash per second when the source is in use (i.e. out of its shield).

  16. Low-pressure hydrogen discharge maintenance in a large-size plasma source with localized high radio-frequency power deposition

    SciTech Connect

    Todorov, D.; Shivarova, A. Paunska, Ts.; Tarnev, Kh.

    2015-03-15

    The development of the two-dimensional fluid-plasma model of a low-pressure hydrogen discharge, presented in the study, is regarding description of the plasma maintenance in a discharge vessel with the configuration of the SPIDER source. The SPIDER source, planned for the neutral-beam-injection plasma-heating system of ITER, is with localized high RF power deposition to its eight drivers (cylindrical-coil inductive discharges) and a large-area second chamber, common for all the drivers. The continuity equations for the charged particles (electrons and the three types of positive ions) and for the neutral species (atoms and molecules), their momentum equations, the energy balance equations for electrons, atoms and molecules and the Poisson equations are involved in the discharge description. In addition to the local processes in the plasma volume, the surface processes of particle reflection and conversion on the walls as well as for a heat exchange with the walls are included in the model. The analysis of the results stresses on the role of the fluxes (particle and energy fluxes) in the formation of the discharge structure. The conclusion is that the discharge behavior is completely obeyed to non-locality. The latter is displayed by: (i) maximum values of plasma parameters (charged particle densities and temperatures of the neutral species) outside the region of the RF power deposition, (ii) shifted maxima of the electron density and temperature, of the plasma potential and of the electron production, (iii) an electron flux, with a vortex structure, strongly exceeding the total ion flux which gives evidence of a discharge regime of non-ambipolarity and (iv) a spatial distribution of the densities of the neutral species resulting from their fluxes.

  17. Low-pressure hydrogen discharge maintenance in a large-size plasma source with localized high radio-frequency power deposition

    NASA Astrophysics Data System (ADS)

    Todorov, D.; Shivarova, A.; Paunska, Ts.; Tarnev, Kh.

    2015-03-01

    The development of the two-dimensional fluid-plasma model of a low-pressure hydrogen discharge, presented in the study, is regarding description of the plasma maintenance in a discharge vessel with the configuration of the SPIDER source. The SPIDER source, planned for the neutral-beam-injection plasma-heating system of ITER, is with localized high RF power deposition to its eight drivers (cylindrical-coil inductive discharges) and a large-area second chamber, common for all the drivers. The continuity equations for the charged particles (electrons and the three types of positive ions) and for the neutral species (atoms and molecules), their momentum equations, the energy balance equations for electrons, atoms and molecules and the Poisson equations are involved in the discharge description. In addition to the local processes in the plasma volume, the surface processes of particle reflection and conversion on the walls as well as for a heat exchange with the walls are included in the model. The analysis of the results stresses on the role of the fluxes (particle and energy fluxes) in the formation of the discharge structure. The conclusion is that the discharge behavior is completely obeyed to non-locality. The latter is displayed by: (i) maximum values of plasma parameters (charged particle densities and temperatures of the neutral species) outside the region of the RF power deposition, (ii) shifted maxima of the electron density and temperature, of the plasma potential and of the electron production, (iii) an electron flux, with a vortex structure, strongly exceeding the total ion flux which gives evidence of a discharge regime of non-ambipolarity and (iv) a spatial distribution of the densities of the neutral species resulting from their fluxes.

  18. VEGA: A low-power front-end ASIC for large area multi-linear X-ray silicon drift detectors: Design and experimental characterization

    NASA Astrophysics Data System (ADS)

    Ahangarianabhari, Mahdi; Macera, Daniele; Bertuccio, Giuseppe; Malcovati, Piero; Grassi, Marco

    2015-01-01

    We present the design and the first experimental characterization of VEGA, an Application Specific Integrated Circuit (ASIC) designed to read out large area monolithic linear Silicon Drift Detectors (SDD's). VEGA consists of an analog and a digital/mixed-signal section to accomplish all the functionalities and specifications required for high resolution X-ray spectroscopy in the energy range between 500 eV and 50 keV. The analog section includes a charge sensitive preamplifier, a shaper with 3-bit digitally selectable shaping times from 1.6 μs to 6.6 μs and a peak stretcher/sample-and-hold stage. The digital/mixed-signal section includes an amplitude discriminator with coarse and fine threshold level setting, a peak discriminator and a logic circuit to fulfill pile-up rejection, signal sampling, trigger generation, channel reset and the preamplifier and discriminators disabling functionalities. A Serial Peripherical Interface (SPI) is integrated in VEGA for loading and storing all configuration parameters in an internal register within few microseconds. The VEGA ASIC has been designed and manufactured in 0.35 μm CMOS mixed-signal technology in single and 32 channel versions with dimensions of 200 μm×500 μm per channel. A minimum intrinsic Equivalent Noise Charge (ENC) of 12 electrons r.m.s. at 3.6 μs peaking time and room temperature is measured and the linearity error is between -0.9% and +0.6% in the whole input energy range. The total power consumption is 481 μW and 420 μW per channel for the single and 32 channels version, respectively. A comparison with other ASICs for X-ray SDD's shows that VEGA has a suitable low noise and offers high functionality as ADC-ready signal processing but at a power consumption that is a factor of four lower than other similar existing ASICs.

  19. Examples of the Influence of Turbine Wakes on Downwind Power Output, Surface Wind Speed, Turbulence and Flow Convergence in Large Wind Farms

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Rajewski, D. A.; Lundquist, J. K.; Doorenbos, R. K.

    2014-12-01

    We have analyzed turbine power and concurrent wind speed, direction and turbulence data from surface 10-m flux towers in a large wind farm for experiments during four summer periods as part of the Crop Wind Energy Experiment (CWEX). We use these data to analyze surface differences for a near-wake (within 2.5 D of the turbine line), far wake (17 D downwind of the turbine line), and double wake (impacted by two lines of turbines about 34 D downwind of the first turbine line) locations. Composites are categorized by10 degree directional intervals and three ambient stability categories as defined by Rajewski et al. (2013): neutral (|z/L|<0.05), stable (z/L>0.05) and unstable (z/L<-0.05), where z is the height of the measurement and L is the Monin-Obhukov length. The dominant influence of the turbines is under stably stratified conditions (i. e., mostly at night). A 25% to 40% increase in mean wind speed occurs when turbine wakes are moving over the downwind station at a distance of 2.8 D and 5.4 D (D = fan diameter). For the double wake condition (flux station leeward of two lines of turbines) we find a daytime (unstable conditions) speed reduction of 20% for southerly wind, but for nighttime (stable conditions) the surface speeds are enhancedby 40-60% for SSW-SW winds. The speedup is reduced as wind directions shift to the west. We interpret these speed variations as due to the rotation of the wake and interaction (or not) with higher speed air above the rotor layer in highly sheared nocturnal low-level jet conditions. From a cluster of flux stations and three profiling lidars deployed within and around a cluster of turbines in 2013 (CWEX-13) we found evidence of mesoscale influences. In particular, surface convergence (wind direction deflection of 10-20 degrees) was observed during periods of low nighttime winds (hub-height winds of 4-6 m/s) with power reduction of 50-75%. This is consistent with a similar range of deflection observed from a line of turbines in CWEX

  20. Large magnetic cooling power involving frustrated antiferromagnetic spin-glass state in R2NiSi3(R =Gd ,Er )

    NASA Astrophysics Data System (ADS)

    Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.; Giri, S.; Avdeev, Maxim

    2016-09-01

    The ternary intermetallic compounds Gd2NiSi3 and Er2NiSi3 are synthesized in chemically single phase, which are characterized using dc magnetization, ac magnetic susceptibility, heat capacity, and neutron diffraction studies. Neutron diffraction and heat capacity studies confirm that long-range magnetic ordering coexists with the frustrated glassy magnetic components for both compounds. The static and dynamical features of dc magnetization and frequency-dependent ac susceptibility data reveal that Gd2NiSi3 is a canonical spin-glass system, while Er2NiSi3 is a reentrant spin cluster-glass system. The spin freezing temperature merges with the long-range antiferromagnetic ordering temperature at 16.4 K for Gd2NiSi3 . Er2NiSi3 undergoes antiferromagnetic ordering at 5.4 K, which is slightly above the spin freezing temperature at 3 K. The detailed studies of nonequilibrium dynamical behavior, viz., the memory effect and relaxation behavior using different protocols, suggest that both compounds favor the hierarchical model over the droplet model. A large magnetocaloric effect is observed for both compounds. Maximum values of isothermal entropy change (-Δ SM ) and relative cooling power (RCP) are found to be 18.4 J/kg K and 525 J/kg for Gd2NiSi3 and 22.6 J/kg K and 540 J/kg for Er2NiSi3 , respectively, for a change in field from 0 to 70 kOe. The values of RCP are comparable to those of the promising refrigerant materials. A correlation between large RCP and magnetic frustration is discussed for developing new magnetic refrigerant materials.

  1. Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Saito, Kimiaki; Tanihata, Isao; Fujiwara, Mamoru; Saito, Takashi; Shimoura, Susumu; Otsuka, Takaharu; Onda, Yuichi; Hoshi, Masaharu; Ikeuchi, Yoshihiro; Takahashi, Fumiaki; Kinouchi, Nobuyuki; Saegusa, Jun; Seki, Akiyuki; Takemiya, Hiroshi; Shibata, Tokushi

    2015-01-01

    Soil deposition density maps of gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant (NPP) accident were constructed on the basis of results from large-scale soil sampling. In total 10,915 soil samples were collected at 2168 locations. Gamma rays emitted from the samples were measured by Ge detectors and analyzed using a reliable unified method. The determined radioactivity was corrected to that of June 14, 2011 by considering the intrinsic decay constant of each nuclide. Finally the deposition maps were created for (134)Cs, (137)Cs, (131)I, (129m)Te and (110m)Ag. The radioactivity ratio of (134)Cs-(137)Cs was almost constant at 0.91 regardless of the locations of soil sampling. The radioactivity ratios of (131)I and (129m)Te-(137)Cs were relatively high in the regions south of the Fukushima NPP site. Effective doses for 50 y after the accident were evaluated for external and inhalation exposures due to the observed radioactive nuclides. The radiation doses from radioactive cesium were found to be much higher than those from the other radioactive nuclides.

  2. Observation of large thermoelectric power in charge ordered La1-xLixMnO3 (x = 0.25) manganite system

    NASA Astrophysics Data System (ADS)

    Taran, S.; Yang, H. D.

    2016-12-01

    In the present investigation detailed structural, electrical, magnetic and thermoelectric measurements on bulk samples of Li-doped La1-xLixMnO3+δ (0.05 ≤ x ≤ 0.3) manganites have been done. The samples are synthesized by wet-chemical mixing route and XRD analysis using Rietveld refinement revealed single phase behaviour upto Li-concentration x = 0.25. All the samples in the present series show ferromagnetic behaviour while metallic behaviour is shown by the samples upto Li concentration x = 0.2. Beyond x = 0.2 the sample (i.e., La0.75Li0.25MnO3) show insulating behaviour for the entire temperature range accompanied by charge-order transition around T = 225 K. The low temperature resistivity data are best fitted by ρ(T) = ρ0 + ρ4.5T 4.5 + C/sinh2(hυs/2kBT), where C is a constant. Such behaviour might be an indication of the small-polaron coherent motion which involves a relaxation due to a soft optical phonon mode that is strongly coupled to the carriers. Thermoelectric power (TEP) measurements reveal interesting results showing a colossal value of -340 μV/K around 25 K for the CO sample in the present series. The probable mechanism responsible for the observed large TEP has been discussed here.

  3. Parametric Study on Pressureless Sintering of Nanosilver Paste to Bond Large-Area (≥100 mm2) Power Chips at Low Temperatures for Electronic Packaging

    NASA Astrophysics Data System (ADS)

    Fu, Shancan; Mei, Yunhui; Li, Xin; Ning, Puqi; Lu, Guo-Quan

    2015-10-01

    We have developed a new kind of nanosilver paste by reducing the stress and strain of the drying process with the help of some organics to bond large-area (≥100 mm2) power chips without additional pressure. This new nanosilver paste contains nanoparticles and microparticles ranging from 0.02 μm to 2 μm. The effects of sintering temperature ( T), heating rate ( ν), and holding time for sintering ( t) on the microstructure and mechanical properties of sintered silver joints were investigated by the Taguchi method. The various factors were assigned to an L16 (43) orthogonal array. The experimental results showed that neck formation was strongly dependent on the increase of the sintering temperature, while prolonging the holding time and decreasing the heating rate were beneficial to neck growth. The pore size distribution ranged from 0.03 μm2 to 1.6 μm2, and the larger pores (0.8 μm2 to 1.6 μm2) were more irregular and clustered along the interstices between particles. The shear strength increased with increased sintering temperature, prolonged holding time, and decreased heating rate due to smaller pore size and a more homogeneous pore distribution. The fatigue and tensile behaviors of pressureless-sintered silver joints were also compared with those of soldered SAC305 joints.

  4. THE DESIGN OF AN RF ANTENNA FOR A LARGE-BORE, HIGH POWER, STEADY STATE PLASMA PROCESSING CHAMBER FOR MATERIAL SEPARATION - CRADA FINAL REPORT for CRADA Number ORNL00-0585

    SciTech Connect

    Rasmussen, D. A.; Freeman, R. L.

    2001-11-07

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC, (Contractor), and Archimedes Technology Group, (Participant) is to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure. The project objectives are to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure.

  5. ANEMOS: Development of a next generation wind power forecasting system for the large-scale integration of onshore and offshore wind farms.

    NASA Astrophysics Data System (ADS)

    Kariniotakis, G.; Anemos Team

    2003-04-01

    Objectives: Accurate forecasting of the wind energy production up to two days ahead is recognized as a major contribution for reliable large-scale wind power integration. Especially, in a liberalized electricity market, prediction tools enhance the position of wind energy compared to other forms of dispatchable generation. ANEMOS, is a new 3.5 years R&D project supported by the European Commission, that resembles research organizations and end-users with an important experience on the domain. The project aims to develop advanced forecasting models that will substantially outperform current methods. Emphasis is given to situations like complex terrain, extreme weather conditions, as well as to offshore prediction for which no specific tools currently exist. The prediction models will be implemented in a software platform and installed for online operation at onshore and offshore wind farms by the end-users participating in the project. Approach: The paper presents the methodology of the project. Initially, the prediction requirements are identified according to the profiles of the end-users. The project develops prediction models based on both a physical and an alternative statistical approach. Research on physical models gives emphasis to techniques for use in complex terrain and the development of prediction tools based on CFD techniques, advanced model output statistics or high-resolution meteorological information. Statistical models (i.e. based on artificial intelligence) are developed for downscaling, power curve representation, upscaling for prediction at regional or national level, etc. A benchmarking process is set-up to evaluate the performance of the developed models and to compare them with existing ones using a number of case studies. The synergy between statistical and physical approaches is examined to identify promising areas for further improvement of forecasting accuracy. Appropriate physical and statistical prediction models are also developed for

  6. Aerodynamic Effects of High Turbulence Intensity on a Variable-Speed Power-Turbine Blade with Large Incidence and Reynolds Number Variations

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At

  7. Aerodynamic Effects of High Turbulence Intensity on a Variable-Speed Power-Turbine Blade With Large Incidence and Reynolds Number Variations

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At

  8. SCATTER-DOMINATED INTERPLANETARY TRANSPORT OF SOLAR ENERGETIC PARTICLES IN LARGE GRADUAL EVENTS AND THE FORMATION OF DOUBLE POWER-LAW DIFFERENTIAL FLUENCE SPECTRA OF GROUND-LEVEL EVENTS DURING SOLAR CYCLE 23

    SciTech Connect

    Li, Gen; Lee, Martin A.

    2015-09-01

    The effects of scatter-dominated interplanetary transport on the spectral properties of the differential fluence of large gradual solar energetic particle (SEP) events are investigated analytically. The model assumes for simplicity radial constant solar wind and radial magnetic field. The radial diffusion coefficient is calculated with quasilinear theory by assuming a spectrum of Alfvén waves propagating parallel to the magnetic field. Cross-field transport is neglected. The model takes into consideration several essential features of gradual event transport: nearly isotropic ion distributions, adiabatic deceleration in a divergent solar wind, and particle radial scattering mean free paths increasing with energy. Assuming an impulsive and spherically symmetric injection of SEPs with a power-law spectrum near the Sun, the predicted differential fluence spectrum exhibits at 1 AU three distinctive power laws for different energy domains. The model naturally reproduces the spectral features of the double power-law proton differential fluence spectra that tend to be observed in extremely large SEP events. We select nine western ground-level events (GLEs) out of the 16 GLEs during Solar Cycle 23 and fit the observed double power-law spectra to the analytical predictions. The compression ratio of the accelerating shock wave, the power-law index of the ambient wave intensity, and the proton radial scattering mean free path are determined for the nine GLEs. The derived parameters are generally in agreement with the characteristic values expected for large gradual SEP events.

  9. Aerodynamic Effects of Turbulence Intensity on a Variable-Speed Power-Turbine Blade with Large Incidence and Reynolds Number Variations

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie Brynn; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    The effects of inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The high turbulence study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Downstream total pressure and exit angle data were acquired for ten incidence angles ranging from +15.8 to 51.0. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12105 to 2.12106 and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 0.25 - 0.4 for the low Tu tests and 8- 15 for the high Tu study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitchyaw probe located in a survey plane 7 axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At the extreme positive and negative incidence angles, the data show substantial differences in the exit flow field. These differences are attributable to both the higher inlet Tu directly and to the thinner inlet endwall

  10. Large N

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerard

    2002-09-01

    In the first part of this lecture, the 1/N expansion technique is illustrated for the case of the large-N sigma model. In large-N gauge theories, the 1/N expansion is tantamount to sorting the Feynman diagrams according to their degree of planarity, that is, the minimal genus of the plane onto which the diagram can be mapped without any crossings. This holds both for the usual perturbative expansion with respect to powers of ˜ {g}2 = g2N, as well as for the expansion of lattice theories in positive powers of 1/˜ {g}2. If there were no renormalization effects, the ˜ {g} expansion would have a finite radius of convergence. The zero-dimensional theory can be used for counting planar diagrams. It can be solved explicitly, so that the generating function for the number of diagrams with given 3-vertices and 4-vertices, can be derived exactly. This can be done for various kinds of Feynman diagrams. We end with some remarks about planar renormalization.

  11. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator.

    PubMed

    Singh, Rahul; Shukla, K K; Kumar, A; Okram, G S; Singh, D; Ganeshan, V; Lakhani, Archana; Ghosh, A K; Chatterjee, Sandip

    2016-09-21

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.

  12. Totem pole drive decks for the high-voltage, pulsed-power modulator for a large-scale plasma source ion implantation system

    SciTech Connect

    Gribble, R.J.; Reass, W.A.

    1993-07-01

    Plasma source ion implantation (PSII) is an industrially-relevant technique to change the surface composition of materials, thereby improving the mechanical, chemical, electrical, or optical properties. Pre-manufactured parts are immersed in a plasma and are pulsed with a high voltage source that accelerates the ions to the surface, where they become implanted, modifying the surface characteristics. The high voltage applied to the ``workpiece`` is supplied by a high-voltage, pulsed-power modulator capable of operating to 120 kV, with an output pulse width to 20 uS at a repetition rate of up to 2 kHz. Output currents of up to 60 A, and average powers of 225 kW (6.6 MW peak) will be the ultimate capability. Initial system start-up will be limited by a 60 kV, 1 A charging power supply. This paper describes the totem pole drive decks, the ``on`` deck and ``off`` deck, used as a pre-driver to the main high voltage switch tubes which applies power to the workpiece. The pulse length and frequency are externally controlled and then fiber-optically coupled to the modulator totem pole drive decks. The circuitry of the planar triode drivers will be presented in addition to experimental results.

  13. Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds.

    PubMed

    Zhu, Baohua; Sun, Faqiang; Yang, Miao; Lu, Lin; Yang, Guanpin; Pan, Kehou

    2014-12-01

    The potential use of microalgal biomass as a biofuel source has raised broad interest. Highly effective and economically feasible biomass generating techniques are essential to realize such potential. Flue gas from coal-fired power plants may serve as an inexpensive carbon source for microalgal culture, and it may also facilitate improvement of the environment once the gas is fixed in biomass. In this study, three strains of the genus Nannochloropsis (4-38, KA2 and 75B1) survived this type of culture and bloomed using flue gas from coal-fired power plants in 8000-L open raceway ponds. Lower temperatures and solar irradiation reduced the biomass yield and lipid productivities of these strains. Strain 4-38 performed better than the other two as it contained higher amounts of triacylglycerols and fatty acids, which are used for biodiesel production. Further optimization of the application of flue gas to microalgal culture should be undertaken.

  14. Similar Spectral Power Densities Within the Schumann Resonance and a Large Population of Quantitative Electroencephalographic Profiles: Supportive Evidence for Koenig and Pobachenko

    PubMed Central

    Saroka, Kevin S.; Vares, David E.; Persinger, Michael A.

    2016-01-01

    In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m) and magnetic field (pT) components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6–16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV) obtained by whole brain quantitative electroencephalography (QEEG) between rostral-caudal and left-right (hemispheric) comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7–8 Hz), second (13–14 Hz) and third (19–20 Hz) harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the ‘best-of-fitness’ of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity. PMID:26785376

  15. Similar Spectral Power Densities Within the Schumann Resonance and a Large Population of Quantitative Electroencephalographic Profiles: Supportive Evidence for Koenig and Pobachenko.

    PubMed

    Saroka, Kevin S; Vares, David E; Persinger, Michael A

    2016-01-01

    In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m) and magnetic field (pT) components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6-16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV) obtained by whole brain quantitative electroencephalography (QEEG) between rostral-caudal and left-right (hemispheric) comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7-8 Hz), second (13-14 Hz) and third (19-20 Hz) harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the 'best-of-fitness' of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity.

  16. Sampling strategies and materials for investigating large reactive particle complaints from Valley Village homeowners near a coal-fired power plant

    SciTech Connect

    Chang, A.; Davis, H.; Frazar, B.; Haines, B.

    1997-12-31

    This paper will present Phase 3`s sampling strategies, techniques, methods and substrates for assisting the District to resolve the complaints involving yellowish-brown staining and spotting of homes, cars, etc. These spots could not be easily washed off and some were permanent. The sampling strategies for the three phases were based on Phase 1 -- the identification of the reactive particles conducted in October, 1989 by APCD and IITRI, Phase 2 -- a study of the size distribution and concentration as a function of distance and direction of reactive particle deposition conducted by Radian and LG and E, and Phase 3 -- the determination of the frequency of soiling events over a full year`s duration conducted in 1995 by APCD and IITRI. The sampling methods included two primary substrates -- ACE sheets and painted steel, and four secondary substrates -- mailbox, aluminum siding, painted wood panels and roof tiles. The secondary substrates were the main objects from the Valley Village complaints. The sampling technique included five Valley Village (VV) soiling/staining assessment sites and one southwest of the power plant as background/upwind site. The five VV sites northeast of the power plant covered 50 degrees span sector and 3/4 miles distance from the stacks. Hourly meteorological data for wind speeds and wind directions were collected. Based on this sampling technique, there were fifteen staining episodes detected. Nine of them were in summer, 1995.

  17. Constraints on the power spectrum of the primordial density field from large-scale data - Microwave background and predictions of inflation

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    1992-01-01

    It is shown here that, by using galaxy catalog correlation data as input, measurements of microwave background radiation (MBR) anisotropies should soon be able to test two of the inflationary scenario's most basic predictions: (1) that the primordial density fluctuations produced were scale-invariant and (2) that the universe is flat. They should also be able to detect anisotropies of large-scale structure formed by gravitational evolution of density fluctuations present at the last scattering epoch. Computations of MBR anisotropies corresponding to the minimum of the large-scale variance of the MBR anisotropy are presented which favor an open universe with P(k) significantly different from the Harrison-Zeldovich spectrum predicted by most inflationary models.

  18. Influence of a Modification of the Petcoke/Coal Ratio on the Leachability of Fly Ash and Slag Produced from a Large PCC Power Plant

    SciTech Connect

    Izquierdo,M.; Font, O.; Moreno, N.; Querol, X.; Huggins, F.; Alvarez, E.; Diez, S.; Otero, P.; Ballesteros, J.; Gimenez, A.

    2007-01-01

    Co-firing of coal with inexpensive secondary fuels such as petroleum coke is expected to increase in the near future in the EU given that it may provide certain economic and environmental benefits with respect to coal combustion. However, changes in the feed fuel composition of power plants may modify the bulk content and the speciation of a number of elements in fly ash and slag. Consequently, leachability of these byproducts also can be modified. This study is focused on identifying the changes in the environmental quality of co-fired fly ash and slag induced by a modification of the petcoke/coal ratio. Petcoke was found to increase the leachable content of V and Mo and to enhance the mobility of S and As. However, with the exception of these elements, the addition of this secondary fuel did not drastically modify the bulk composition or the overall leachability of the resulting fly ash and slag.

  19. Influence of a modification of the petcoke/coal ratio on the leachability of fly ash and slag produced from a large PCC power plant.

    PubMed

    Izquierdo, Maria; Font, Oriol; Moreno, Natalia; Querol, Xavier; Huggins, Frank E; Alvarez, Esther; Diez, Sergi; Otero, Pedro; Ballesteros, Juan Carlos; Gimenez, Antonio

    2007-08-01

    Co-firing of coal with inexpensive secondary fuels such as petroleum coke is expected to increase in the near future in the EU given that it may provide certain economic and environmental benefits with respect to coal combustion. However, changes in the feed fuel composition of power plants may modify the bulk content and the speciation of a number of elements in fly ash and slag. Consequently, leachability of these byproducts also can be modified. This study is focused on identifying the changes in the environmental quality of co-fired fly ash and slag induced by a modification of the petcoke/coal ratio. Petcoke was found to increase the leachable content of V and Mo and to enhance the mobility of S and As. However, with the exception of these elements, the addition of this secondary fuel did not drastically modify the bulk composition or the overall leachability of the resulting fly ash and slag.

  20. Operating characteristics of a large-bore roller bearing to speeds of 3 times 10 to the 6th power DN

    NASA Technical Reports Server (NTRS)

    Schuller, F. T.

    1979-01-01

    A 118-millimeter-bore roller bearing was studied parametrically at speeds from 10,000 to 25,500 rpm. The bearing had a round outer ring (not preloaded), and provisions were made for lubrication and cooling through the inner ring. In some tests the outer ring was also cooled. The bearing ran successfully at 300,00 DN with very small evidence of cage slip. Load, which was varied from 2200 to 8900 newtons (500 to 2000 lb), had no effect on bearing temperature or cage slip over the speed range tested. Bearing temperature varied inversely with cage slip for all test conditions. Cooling the outer ring decreased its temperature but increased the inner-ring temperature. Heat rejected to the lubricant (power loss within the bearing) increased with both shaft speed and total oil flow rate to the inner ring.

  1. Wind Power Now!

    ERIC Educational Resources Information Center

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  2. Large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.

    1975-01-01

    Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.

  3. 1.3-μm, 4 × 25-Gbit/s, EADFB laser array module with large-output-power and low-driving-voltage for energy-efficient 100GbE transmitter.

    PubMed

    Fujisawa, Takeshi; Kanazawa, Shigeru; Takahata, Kiyoto; Kobayashi, Wataru; Tadokoro, Takashi; Ishii, Hiroyuki; Kano, Fumiyoshi

    2012-01-02

    A 1.3-μm, 4 × 25-Gbit/s, EADFB laser array module with large output power and low driving voltage is developed for 100GbE. A novel rear grating DFB laser is introduced to increase the output power of the laser while keeping the single mode lasing, which is desirable for a monolithic integration. Also, InGaAlAs-based electroabsorption modulators make very-low-driving-voltage operation possible due to their steep extinction curves. With the module, very clear 25-Gbit/s eye openings are obtained for four wavelengths with the driving voltage of only 0.5 V while securing the dynamic extinction ratio required by the system. These results indicate that the presented module is a promising candidate for energy-efficient future 100GbE transmitter.

  4. Dynamics of large-scale ionospheric inhomogeneities caused by a powerful radio emission of the Sura facility from the data collected onto ground-based GNSS network

    NASA Astrophysics Data System (ADS)

    Kogogin, D. A.; Nasyrov, I. A.; Grach, S. M.; Shindin, A. V.; Zagretdinov, R. V.

    2017-01-01

    The measurements of variations in the total electron content of the Earth's ionosphere along the GPS satellite signal propagation path are described. The signal parameters were measured at a network of receivers at three distant sites: Sura (Vasilsursk), Zelenodolsk, and Kazan. They are arranged along the geomagnetic latitude of the Sura Facility under short-wave radio irradiation of the ionosphere. One feature of the experiment is the crossing of a disturbed region by the radio path between a GPS satellite and Vasilsursk. This resulted from the angular sizes of the Sura array pattern; the radio paths between a GPS satellite and Zelenodolsk and a GPS satellite and Kazan did not cross. Variations in the total electron content of up to 0.15-0.3 TECU were revealed at all three sites during four experimental campaigns (March 2010, March 2013, May 2013, and November 2013). The lateral scale of an ionospheric disturbance stimulated by a high-power radio wave and the velocity of its west-to-east propagation along the geomagnetic latitude were 30-60 km and 270-350 m/s, respectively. A decrease in the total electron content (down to 0.55 TECU) was recorded along the Kazan-Zelenodolsk-Vasilsurks line, which is connected with the solar terminator transit; the lateral scale of the related ionospheric inhomogeneities was 65-80 km.

  5. Large-eddy simulation of turbulent winds during the Fukushima Daiichi Nuclear Power Plant accident by coupling with a meso-scale meteorological simulation model

    NASA Astrophysics Data System (ADS)

    Nakayama, H.; Takemi, T.; Nagai, H.

    2015-06-01

    A significant amount of radioactive material was accidentally discharged into the atmosphere from the Fukushima Dai-ichi Nuclear Power Plant from 12 March 2011, which produced high contaminated areas over a wide region in Japan. In conducting regional-scale atmospheric dispersion simulations, the computer-based nuclear emergency response system WSPEEDI-II developed by Japan Atomic Energy Agency was used. Because this system is driven by a meso-scale meteorological (MM) model, it is difficult to reproduce small-scale wind fluctuations due to the effects of local terrain variability and buildings within a nuclear facility that are not explicitly represented in MM models. In this study, we propose a computational approach to couple an LES-based CFD model with a MM model for detailed simulations of turbulent winds with buoyancy effects under real meteorological conditions using turbulent inflow technique. Compared to the simple measurement data, especially, the 10 min averaged wind directions of the LES differ by more than 30 degrees during some period of time. However, distribution patterns of wind speeds, directions, and potential temperature are similar to the MM data. This implies that our coupling technique has potential performance to provide detailed data on contaminated area in the nuclear accidents.

  6. Influence of a modification of the petcoke/coal ratio on the leachability of fly ash and slag produced from a large PCC power plant

    SciTech Connect

    Maria Izquierdo; Oriol Font; Natalia Moreno

    2007-08-01

    Co-firing of coal with inexpensive secondary fuels such as petroleum coke is expected to increase in the near future in the EU given that it may provide certain economic and environmental benefits with respect to coal combustion. However, changes in the feed fuel composition of power plants may modify the bulk content and the speciation of a number of elements in fly ash and slag. Consequently, leachability of these byproducts also can be modified. This study is focused on identifying the changes in the environmental quality of co-fired fly ash and slag induced by a modification of the petcoke/coal ratio. Petcoke was found to increase the leachable content of V and Mo and to enhance the mobility of S and As. However, with the exception of these elements, the addition of this secondary fuel did not drastically modify the bulk composition or the overall leachability of the resulting fly ash and slag. 30 refs., 3 figs., 2 tabs.

  7. All-optical SOA-based wavelength converter assisted by optical filters with wide operation wavelength and large dynamic input power range

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, J.; Marculescu, A.; Vorreau, P.; Zhang, Z.; Freude, W.; Leuthold, J.

    2008-11-01

    All-optical wavelength converters (AOWCs) based on nonlinear processes of semiconductor optical amplifiers (SOAs) have attracted interest to overcome the wavelength blocking issues in future transparent networks. While many schemes work well, pattern effect impairments that are due to the finite lifetime of charge carriers are an issue most of the time. Recently, wavelength conversion and pattern effect mitigation techniques that work by properly shaping the passband of filters following the converter have been introduced. However, due to the necessity of selecting filter slope and position precisely, one would expect that the schemes are extremely sensitive to any drift of the center wavelength. In this work, we demonstrate a 40 Gbit/s SOA-based wavelength converter with more than 15 dB dynamic input power range. In addition, the center wavelength of the converted signal has a tolerance of ~0.2 nm towards the red spectral region and of ~0.1nm towards blue spectral region, respectively. This success is due to combining advantageously pattern effect mitigation techniques connected to the pulse reformatting optical filter, the red-shift and the blue-shift optical filter.

  8. Radioactivity of drinking-water in the vicinity of nuclear power plants in China based on a large-scale monitoring study.

    PubMed

    Miao, Xiao-Xiang; Ji, Yan-Qin; Shao, Xian-Zhang; Wang, Huan; Sun, Quan-Fu; Su, Xu

    2013-12-06

    The public concern for radioactivity of drinking-water has been increasing in recent years after the rapid development of nuclear power plants, and especially after the Fukushima nuclear accident. In this study, the radioactivity of water samples collected in the vicinity of nuclear facilities from seven provinces in China was measured and an average annual equivalent effective dose derived from drinking-water ingestion was calculated. The results showed that, in winter and spring, the activities of gross α and β ranged from 0.009 Bq/L to 0.200 Bq/L and from 0.067 Bq/L to 0.320 Bq/L, respectively. While, in summer and autumn, the activities of gross a and β varied from 0.002 Bq/L to 0.175 Bq/L and from 0.060 Bq/L to 0.334 Bq/L. Our results indicated that the gross a and β activities in these measured water samples were below the WHO recommended values (0.5 Bq/L for gross α and 1.0 Bq/L for gross β) and the annual equivalent effective dose derived from drinking-water ingestion was at a safe level.

  9. Radioactivity of Drinking-Water in the Vicinity of Nuclear Power Plants in China Based on a Large-Scale Monitoring Study

    PubMed Central

    Miao, Xiao-Xiang; Ji, Yan-Qin; Shao, Xian-Zhang; Wang, Huan; Sun, Quan-Fu; Su, Xu

    2013-01-01

    The public concern for radioactivity of drinking-water has been increasing in recent years after the rapid development of nuclear power plants, and especially after the Fukushima nuclear accident. In this study, the radioactivity of water samples collected in the vicinity of nuclear facilities from seven provinces in China was measured and an average annual equivalent effective dose derived from drinking-water ingestion was calculated. The results showed that, in winter and spring, the activities of gross α and β ranged from 0.009 Bq/L to 0.200 Bq/L and from 0.067 Bq/L to 0.320 Bq/L, respectively. While, in summer and autumn, the activities of gross α and β varied from 0.002 Bq/L to 0.175 Bq/L and from 0.060 Bq/L to 0.334 Bq/L. Our results indicated that the gross α and β activities in these measured water samples were below the WHO recommended values (0.5 Bq/L for gross α and 1.0 Bq/L for gross β) and the annual equivalent effective dose derived from drinking-water ingestion was at a safe level. PMID:24322395

  10. Large-scale hydropower system optimization using dynamic programming and object-oriented programming: the case of the Northeast China Power Grid.

    PubMed

    Li, Ji-Qing; Zhang, Yu-Shan; Ji, Chang-Ming; Wang, Ai-Jing; Lund, Jay R

    2013-01-01

    This paper examines long-term optimal operation using dynamic programming for a large hydropower system of 10 reservoirs in Northeast China. Besides considering flow and hydraulic head, the optimization explicitly includes time-varying electricity market prices to maximize benefit. Two techniques are used to reduce the 'curse of dimensionality' of dynamic programming with many reservoirs. Discrete differential dynamic programming (DDDP) reduces the search space and computer memory needed. Object-oriented programming (OOP) and the ability to dynamically allocate and release memory with the C++ language greatly reduces the cumulative effect of computer memory for solving multi-dimensional dynamic programming models. The case study shows that the model can reduce the 'curse of dimensionality' and achieve satisfactory results.

  11. Determination of copper in liquid and solid insulation for large electrical equipment by ICP-OES. Application to copper contamination assessment in power transformers.

    PubMed

    Bruzzoniti, Maria Concetta; De Carlo, Rosa Maria; Sarzanini, Corrado; Maina, Riccardo; Tumiatti, Vander

    2012-09-15

    Copper is one of the main constituents of the components in power transformers and its presence both in liquid (mineral oil) and in solid (Kraft paper) insulators can lead to enhanced dielectric losses and to the subsequent deterioration of their insulating properties. Recently the latter have been correlated to plant failures which in turn may have severe impact on the environment. This paper describes the direct analysis of copper in insulating mineral oil by ICP-OES and how it was first optimized compared to the official American Society for Testing and Materials (ASTM) D7151 method. Detection and quantification limits of 8.8 μg kg(-1) and 29.3 μg kg(-1) were obtained. Secondly, copper determination was improved by coupling a microwave assisted dissolution procedure of the mineral oil which avoided the problems, in the real samples, due to the presence of solid species of copper which cannot be nebulized following traditional methods described in literature. Sixteen mineral insulating oils sampled from transformers in service were analyzed before and after dissolution. In order to evaluate copper speciation, size fractionation was performed by filtration on PTFE filters (0.45, 1 and 5 μm). This test was performed on all the oil samples. Finally, because of the key role of the solid insulator in failed transformers, the Authors applied the developed method to study the copper deposition tendency onto the insulating Kraft paper tapes exerted by two unused oils (a corrosive and a non-corrosive one) under defined ageing conditions.

  12. Coupling the Weather Research and Forecasting (WRF) model and Large Eddy Simulations with Actuator Disk Model: predictions of wind farm power production

    NASA Astrophysics Data System (ADS)

    Garcia Cartagena, Edgardo Javier; Santoni, Christian; Ciri, Umberto; Iungo, Giacomo Valerio; Leonardi, Stefano

    2015-11-01

    A large-scale wind farm operating under realistic atmospheric conditions is studied by coupling a meso-scale and micro-scale models. For this purpose, the Weather Research and Forecasting model (WRF) is coupled with an in-house LES solver for wind farms. The code is based on a finite difference scheme, with a Runge-Kutta, fractional step and the Actuator Disk Model. The WRF model has been configured using seven one-way nested domains where the child domain has a mesh size one third of its parent domain. A horizontal resolution of 70 m is used in the innermost domain. A section from the smallest and finest nested domain, 7.5 diameters upwind of the wind farm is used as inlet boundary condition for the LES code. The wind farm consists in six-turbines aligned with the mean wind direction and streamwise spacing of 10 rotor diameters, (D), and 2.75D in the spanwise direction. Three simulations were performed by varying the velocity fluctuations at the inlet: random perturbations, precursor simulation, and recycling perturbation method. Results are compared with a simulation on the same wind farm with an ideal uniform wind speed to assess the importance of the time varying incoming wind velocity. Numerical simulations were performed at TACC (Grant CTS070066). This work was supported by NSF, (Grant IIA-1243482 WINDINSPIRE).

  13. Joint design of kT-points trajectories and RF pulses under explicit SAR and power constraints in the large flip angle regime

    NASA Astrophysics Data System (ADS)

    Gras, Vincent; Luong, Michel; Amadon, Alexis; Boulant, Nicolas

    2015-12-01

    In Magnetic Resonance Imaging at ultra-high field, kT-points radiofrequency pulses combined with parallel transmission are a promising technique to mitigate the B1 field inhomogeneity in 3D imaging applications. The optimization of the corresponding k-space trajectory for its slice-selective counterpart, i.e. the spokes method, has been shown in various studies to be very valuable but also dependent on the hardware and specific absorption rate constraints. Due to the larger number of degrees of freedom than for spokes excitations, joint design techniques based on the fine discretization (gridding) of the parameter space become hardly tractable for kT-points pulses. In this article, we thus investigate the simultaneous optimization of the 3D blipped k-space trajectory and of the kT-points RF pulses, using a magnitude least squares cost-function, with explicit constraints and in the large flip angle regime. A second-order active-set algorithm is employed due to its demonstrated success and robustness in similar problems. An analysis of global optimality and of the structure of the returned trajectories is proposed. The improvement provided by the k-space trajectory optimization is validated experimentally by measuring the flip angle on a spherical water phantom at 7T and via Quantum Process Tomography.

  14. Analysis of the Effect of Chronic and Low-Dose Radiation Exposure on Spermatogenic Cells of Male Large Japanese Field Mice ( Apodemus speciosus ) after the Fukushima Daiichi Nuclear Power Plant Accident.

    PubMed

    Takino, Sachio; Yamashiro, Hideaki; Sugano, Yukou; Fujishima, Yohei; Nakata, Akifumi; Kasai, Kosuke; Hayashi, Gohei; Urushihara, Yusuke; Suzuki, Masatoshi; Shinoda, Hisashi; Miura, Tomisato; Fukumoto, Manabu

    2017-02-01

    In this study we analyzed the effect of chronic and low-dose-rate (LDR) radiation on spermatogenic cells of large Japanese field mice ( Apodemus speciosus ) after the Fukushima Daiichi Nuclear Power Plant (FNPP) accident. In March 2014, large Japanese field mice were collected from two sites located in, and one site adjacent to, the FNPP ex-evacuation zone: Tanashio, Murohara and Akogi, respectively. Testes from these animals were analyzed histologically. External dose rate from radiocesium (combined (134)Cs and (137)Cs) in these animals at the sampling sites exhibited 21 μGy/day in Tanashio, 304-365 μGy/day in Murohara and 407-447 μGy/day in Akogi. In the Akogi group, the numbers of spermatogenic cells and proliferating cell nuclear antigen (PCNA)-positive cells per seminiferous tubule were significantly higher compared to the Tanashio and Murohara groups, respectively. TUNEL-positive apoptotic cells tended to be detected at a lower level in the Murohara and Akogi groups compared to the Tanashio group. These results suggest that enhanced spermatogenesis occurred in large Japanese field mice living in and around the FNPP ex-evacuation zone. It remains to be elucidated whether this phenomenon, attributed to chronic exposure to LDR radiation, will benefit or adversely affect large Japanese field mice.

  15. ERS-ENVISAT InSAR deformation time-series: a powerful tool to investigate long term surface deformation of large areas

    NASA Astrophysics Data System (ADS)

    Lanari, Riccardo

    2010-05-01

    Satellite time series have already provided key measurements to retrieve information on the dynamic nature of Earth surface processes. We exploit in this work the availability of the large archives of spaceborne Synthetic Aperture Radar (SAR) data acquired by the ERS-1/2 and ENVISAT sensors of the European Space Agency (ESA) during the 1992-2009 time period, in order to investigate long term surface deformation of large areas. To achieve this result we take advantage of the Differential SAR Interferometry (InSAR) algorithm referred to as Small BAseline Subset (SBAS) technique (Berardino et al., 2002), which allows us to generate mean deformation velocity maps and corresponding time-series by exploiting temporally overlapping SAR dataset collected by the ERS and ENVISAT sensors (Pepe et al., 2005). In particular, we focus on the results obtained by retrieving ERS-ENVISAT deformation time-series from 1992 till today in selected case studies relevant to different scenarios. We start from the analysis of the Mt. Etna volcano (Italy) and the Napoli Bay area (Italy), the latter including three volcanic systems (the Campi Flegrei caldera, the Somma-Vesuvio volcanic complex and the Ischia island) and the city of Napoli. In addition, we present the results relevant to the cities of Istanbul (Turkey) and Roma (Italy). The overall analyses are carried out by using averaged (multilook) InSAR interferograms with a spatial resolution of about 100 x 100 m. Moreover, in selected zones we further investigate localized phenomena by zooming in the areas of interest and carrying out a InSAR analysis at full spatial resolution scale (Lanari et al., 2004). In these cases we also exploit the doppler centroid variations of the post-2000 acquisitions of the ERS-2 sensor and the carrier frequency difference between the ERS-1/2 and the ENVISAT systems in order to maximize the number of investigated SAR pixels and to improve their geocoding. The presented results demonstrate the unique

  16. Power supply

    DOEpatents

    Hart, Edward J.; Leeman, James E.; MacDougall, Hugh R.; Marron, John J.; Smith, Calvin C.

    1976-01-01

    An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.

  17. SSP Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    Lynch, Thomas H.; Roth, A. (Technical Monitor)

    2000-01-01

    Space Solar Power is a NASA program sponsored by Marshall Space Flight Center. The Paper presented here represents the architectural study of a large power management and distribution (PMAD) system. The PMAD supplies power to a microwave array for power beaming to an earth rectenna (Rectifier Antenna). The power is in the GW level.

  18. Photovoltaic power systems workshop

    NASA Technical Reports Server (NTRS)

    Killian, H. J.; Given, R. W.

    1978-01-01

    Discussions are presented on apparent deficiencies in NASA planning and technology development relating to a standard power module (25-35 kW) and to future photovoltaic power systems in general. Topics of discussion consider the following: (1) adequate studies on power systems; (2) whether a standard power system module should be developed from a standard spacecraft; (3) identification of proper approaches to cost reduction; (4) energy storage avoidance; (5) attitude control; (6) thermal effects of heat rejection on solar array configuration stability; (7) assembly of large power systems in space; and (8) factoring terrestrial photovoltaic work into space power systems for possible payoff.

  19. Measurement of large nonlinear refractive index of natural pigment extracted from Hibiscus rosa-sinensis leaves with a low power CW laser and by spatial self-phase modulation technique

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Kumbhakar, P.

    2017-02-01

    We have reported here, for the first time, to the best of our knowledge, a high nonlinear refractive index (n2e) of a natural pigment extracted from Hibiscus rosa-sinensis leaves by using spatial self-phase modulation technique (SSPM) with a low power CW He-Ne laser radiation at 632.8 nm. It is found by UV-Vis absorption spectroscopic analysis that chlrophyll-a, chlrophyll-b and carotenoid are present in the pigment extract with 56%, 25% and 19%, respectively. The photoluminescence (PL) emission characteristics of the extracted samples have also been measured at room temperature as well as in the temperature range of 283-333 K to investigate the effect of temperature on luminescent properties of the sample. By analyzing the SSPM experimental data, the nonlinear refractive index value of pigment extract has been determined to be 3.5 × 10- 5 cm2/W. The large nonlinear refractive index has been assigned due to asymmetrical structure, molecular reorientation and thermally induced nonlinearity in the sample. The presented results might open new avenues for the green and economical technique of syntheses of organic dyes with such a large nonlinear optical property.

  20. Measurement of large nonlinear refractive index of natural pigment extracted from Hibiscus rosa-sinensis leaves with a low power CW laser and by spatial self-phase modulation technique.

    PubMed

    Biswas, S; Kumbhakar, P

    2017-02-15

    We have reported here, for the first time, to the best of our knowledge, a high nonlinear refractive index (n2e) of a natural pigment extracted from Hibiscus rosa-sinensis leaves by using spatial self-phase modulation technique (SSPM) with a low power CW He-Ne laser radiation at 632.8nm. It is found by UV-Vis absorption spectroscopic analysis that chlrophyll-a, chlrophyll-b and carotenoid are present in the pigment extract with 56%, 25% and 19%, respectively. The photoluminescence (PL) emission characteristics of the extracted samples have also been measured at room temperature as well as in the temperature range of 283-333K to investigate the effect of temperature on luminescent properties of the sample. By analyzing the SSPM experimental data, the nonlinear refractive index value of pigment extract has been determined to be 3.5×10(-5)cm(2)/W. The large nonlinear refractive index has been assigned due to asymmetrical structure, molecular reorientation and thermally induced nonlinearity in the sample. The presented results might open new avenues for the green and economical technique of syntheses of organic dyes with such a large nonlinear optical property.

  1. Power beaming options

    NASA Technical Reports Server (NTRS)

    Rather, John D. G.

    1989-01-01

    Some large scale power beaming applications are proposed for the purpose of stimulating research. The first proposal is for a combination of large phased arrays on the ground near power stations and passive reflectors in geostationary orbit. The systems would beam excess electrical power in microwave form to areas in need of electrical power. Another proposal is to build solar arrays in deserts and beam the energy around the world. Another proposal is to use lasers to beam energy from earth to orbiting spacecraft.

  2. Multimegawatt space power reactors

    SciTech Connect

    Dearien, J.A.; Whitbeck, J.F.

    1989-01-01

    In response to the need of the Strategic Defense Initiative (SDI) and long range space exploration and extra-terrestrial basing by the National Air and Space Administration (NASA), concepts for nuclear power systems in the multi-megawatt levels are being designed and evaluated. The requirements for these power systems are being driven primarily by the need to minimize weight and maximize safety and reliability. This paper will discuss the present requirements for space based advanced power systems, technological issues associated with the development of these advanced nuclear power systems, and some of the concepts proposed for generating large amounts of power in space. 31 figs.

  3. The use of real-time off-site observations as a methodology for increasing forecast skill in prediction of large wind power ramps one or more hours ahead of their impact on a wind plant.

    SciTech Connect

    Martin Wilde, Principal Investigator

    2012-12-31

    ABSTRACT Application of Real-Time Offsite Measurements in Improved Short-Term Wind Ramp Prediction Skill Improved forecasting performance immediately preceding wind ramp events is of preeminent concern to most wind energy companies, system operators, and balancing authorities. The value of near real-time hub height-level wind data and more general meteorological measurements to short-term wind power forecasting is well understood. For some sites, access to onsite measured wind data - even historical - can reduce forecast error in the short-range to medium-range horizons by as much as 50%. Unfortunately, valuable free-stream wind measurements at tall tower are not typically available at most wind plants, thereby forcing wind forecasters to rely upon wind measurements below hub height and/or turbine nacelle anemometry. Free-stream measurements can be appropriately scaled to hub-height levels, using existing empirically-derived relationships that account for surface roughness and turbulence. But there is large uncertainty in these relationships for a given time of day and state of the boundary layer. Alternatively, forecasts can rely entirely on turbine anemometry measurements, though such measurements are themselves subject to wake effects that are not stationary. The void in free-stream hub-height level measurements of wind can be filled by remote sensing (e.g., sodar, lidar, and radar). However, the expense of such equipment may not be sustainable. There is a growing market for traditional anemometry on tall tower networks, maintained by third parties to the forecasting process (i.e., independent of forecasters and the forecast users). This study examines the value of offsite tall-tower data from the WINDataNOW Technology network for short-horizon wind power predictions at a wind farm in northern Montana. The presentation shall describe successful physical and statistical techniques for its application and the practicality of its application in an operational

  4. Power Systems integration

    NASA Technical Reports Server (NTRS)

    Brantley, L. W.

    1982-01-01

    Power systems integration in large flexible space structures is discussed with emphasis upon body control. A solar array is discussed as a typical example of spacecraft configuration problems. Information on how electric batteries dominate life-cycle costs is presented in chart form. Information is given on liquid metal droplet generators and collectors, hot spot analysis, power dissipation in solar arrays, solar array protection optimization, and electromagnetic compatibility for a power system platform.

  5. Power from Ocean Waves.

    ERIC Educational Resources Information Center

    Newman, J. N.

    1979-01-01

    Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)

  6. Can solar power deliver?

    PubMed

    Nelson, Jenny; Emmott, Christopher J M

    2013-08-13

    Solar power represents a vast resource which could, in principle, meet the world's needs for clean power generation. Recent growth in the use of photovoltaic (PV) technology has demonstrated the potential of solar power to deliver on a large scale. Whilst the dominant PV technology is based on crystalline silicon, a wide variety of alternative PV materials and device concepts have been explored in an attempt to decrease the cost of the photovoltaic electricity. This article explores the potential for such emerging technologies to deliver cost reductions, scalability of manufacture, rapid carbon mitigation and new science in order to accelerate the uptake of solar power technologies.

  7. Space Station power system selection

    NASA Technical Reports Server (NTRS)

    Rice, R. R.

    1986-01-01

    The Space Station power system selection process is described with attention given to management organization and technical considerations. A hybrid power system was chosen because of the large life cycle cost savings. The power management and distribution system that was chosen was the 400 Hz system.

  8. Power optics

    SciTech Connect

    Apollonov, V V

    2014-02-28

    theoretical estimates are compared with the experimental data. We discuss the issues related to the technology of fabrication of power optics elements based on materials with a porous structure, of lightweight highly stable large optics based on highly porous materials, multi-layer honeycomb structures and silicon carbide, as well as problems of application of physical and technical fundamentals of power optics in modern cutting-edge technology. (invited paper)

  9. Large area plasma source

    NASA Technical Reports Server (NTRS)

    Foster, John (Inventor); Patterson, Michael (Inventor)

    2008-01-01

    An all permanent magnet Electron Cyclotron Resonance, large diameter (e.g., 40 cm) plasma source suitable for ion/plasma processing or electric propulsion, is capable of producing uniform ion current densities at its exit plane at very low power (e.g., below 200 W), and is electrodeless to avoid sputtering or contamination issues. Microwave input power is efficiently coupled with an ionizing gas without using a dielectric microwave window and without developing a throat plasma by providing a ferromagnetic cylindrical chamber wall with a conical end narrowing to an axial entrance hole for microwaves supplied on-axis from an open-ended waveguide. Permanent magnet rings are attached inside the wall with alternating polarities against the wall. An entrance magnet ring surrounding the entrance hole has a ferromagnetic pole piece that extends into the chamber from the entrance hole to a continuing second face that extends radially across an inner pole of the entrance magnet ring.

  10. Power Play.

    ERIC Educational Resources Information Center

    Aho, Timothy A.

    1998-01-01

    Describes how to integrate technology into old buildings beginning with an evaluation of the electric power systems. A case study is highlighted showing the process in determining existing conditions, assessing electric power needs, and designing upgrades. (GR)

  11. Pulsed power

    NASA Astrophysics Data System (ADS)

    Stone, David H.

    Pulsed power systems are critical elements for such prospective weapons technologies as high-power microwaves, electrothermal and electromagnetic projectile launchers, neutral particle beams, space-based FELs, ground-based lasers, and charged particle beams. Pulsed power will also be essential for the development of nonweapon military systems such as lidars and ultrawideband radars, and could serve as the bases for nuclear weapon effect simulators. The pulsed power generation requirements for each of these systems is considered.

  12. Power processing

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C.

    1971-01-01

    Processing of electric power has been presented as a discipline that draws on almost every field of electrical engineering, including system and control theory, communications theory, electronic network design, and power component technology. The cost of power processing equipment, which often equals that of expensive, sophisticated, and unconventional sources of electrical energy, such as solar batteries, is a significant consideration in the choice of electric power systems.

  13. Space Power

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Appropriate directions for the applied research and technology programs that will develop space power systems for U.S. future space missions beyond 1995 are explored. Spacecraft power supplies; space stations, space power reactors, solar arrays, thermoelectric generators, energy storage, and communication satellites are among the topics discussed.

  14. Power supply

    DOEpatents

    Yakymyshyn, Christopher Paul; Hamilton, Pamela Jane; Brubaker, Michael Allen

    2007-12-04

    A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

  15. Large coil test facility

    SciTech Connect

    Nelms, L.W.; Thompson, P.B.

    1980-01-01

    Final design of the facility is nearing completion, and 20% of the construction has been accomplished. A large vacuum chamber, houses the test assembly which is coupled to appropriate cryogenic, electrical, instrumentation, diagnostc systems. Adequate assembly/disassembly areas, shop space, test control center, offices, and test support laboratories are located in the same building. Assembly and installation operations are accomplished with an overhead crane. The major subsystems are the vacuum system, the test stand assembly, the cryogenic system, the experimental electric power system, the instrumentation and control system, and the data aquisition system.

  16. Power supply conditioning circuit

    NASA Technical Reports Server (NTRS)

    Primas, L. E.; Loveland, R.

    1987-01-01

    A power supply conditioning circuit that can reduce Periodic and Random Deviations (PARD) on the output voltages of dc power supplies to -150 dBV from dc to several KHz with no measurable periodic deviations is described. The PARD for a typical commercial low noise power supply is -74 dBV for frequencies above 20 Hz and is often much worse at frequencies below 20 Hz. The power supply conditioning circuit described here relies on the large differences in the dynamic impedances of a constant current diode and a zener diode to establish a dc voltage with low PARD. Power supplies with low PARD are especially important in circuitry involving ultrastable frequencies for the Deep Space Network.

  17. Power-constrained supercomputing

    NASA Astrophysics Data System (ADS)

    Bailey, Peter E.

    . Adaptive power balancing efficiently predicts where critical paths are likely to occur and distributes power to those paths. Greater power, in turn, allows increased thread concurrency levels, CPU frequency/voltage, or both. We describe these techniques in detail and show that, compared to the state-of-the-art technique of using statically predetermined, per-node power caps, Conductor leads to a best-case performance improvement of up to 30%, and an average improvement of 19.1%. At the node level, an accurate power/performance model will aid in selecting the right configuration from a large set of available configurations. We present a novel approach to generate such a model offline using kernel clustering and multivariate linear regression. Our model requires only two iterations to select a configuration, which provides a significant advantage over exhaustive search-based strategies. We apply our model to predict power and performance for different applications using arbitrary configurations, and show that our model, when used with hardware frequency-limiting in a runtime system, selects configurations with significantly higher performance at a given power limit than those chosen by frequency-limiting alone. When applied to a set of 36 computational kernels from a range of applications, our model accurately predicts power and performance; our runtime system based on the model maintains 91% of optimal performance while meeting power constraints 88% of the time. When the runtime system violates a power constraint, it exceeds the constraint by only 6% in the average case, while simultaneously achieving 54% more performance than an oracle. Through the combination of the above contributions, we hope to provide guidance and inspiration to research practitioners working on runtime systems for power-constrained environments. We also hope this dissertation will draw attention to the need for software and runtime-controlled power management under power constraints at various levels

  18. Electric power

    SciTech Connect

    Chase, M.

    1988-01-01

    This text examines the critical problems faced by the electric power industry, shown in the context of a detailed description of the history and development of the industry. A new industry initiative is proposed that will allow for a more effective response to industry fluctuations. Topics covered include developments in power technology federal nuclear power regulation and legislation, environmentalism and conservationism, industry financial problems, capital minimization, and responses to utility responsibility.

  19. Large and small photovoltaic powerplants

    NASA Astrophysics Data System (ADS)

    Cormode, Daniel

    The installed base of photovoltaic power plants in the United States has roughly doubled every 1 to 2 years between 2008 and 2015. The primary economic drivers of this are government mandates for renewable power, falling prices for all PV system components, 3rd party ownership models, and a generous tariff scheme known as net-metering. Other drivers include a desire for decreasing the environmental impact of electricity generation and a desire for some degree of independence from the local electric utility. The result is that in coming years, PV power will move from being a minor niche to a mainstream source of energy. As additional PV power comes online this will create challenges for the electric grid operators. We examine some problems related to large scale adoption of PV power in the United States. We do this by first discussing questions of reliability and efficiency at the PV system level. We measure the output of a fleet of small PV systems installed at Tucson Electric Power, and we characterize the degradation of those PV systems over several years. We develop methods to predict energy output from PV systems and quantify the impact of negatives such as partial shading, inverter inefficiency and malfunction of bypass diodes. Later we characterize the variability from large PV systems, including fleets of geographically diverse utility scale power plants. We also consider the power and energy requirements needed to smooth those systems, both from the perspective of an individual system and as a fleet. Finally we report on experiments from a utility scale PV plus battery hybrid system deployed near Tucson, Arizona where we characterize the ability of this system to produce smoothly ramping power as well as production of ancillary energy services such as frequency response.

  20. Power options for lunar exploration

    SciTech Connect

    Bamberger, J.A.; Gaustad, K.L.

    1992-01-01

    This paper presents an overview of the types of power systems available for providing power on the moon. Lunar missions of exploration, in situ resource utilization, and colonization will be constrained by availability of adequate power. The length of the lunar night places severe limitations on solar power system designs, because a large portion of the system mass is devoted to energy storage. The selection of the ideal power source hardware will require compatibility with not only the lunar base power requirements and environment, but also with the conversion, storage, and transmission equipment. In addition, further analysis to determine the optimum operating parameters for a given power system should be conducted so that critical technologies can be identified in the early stages of base development. This paper describes the various concepts proposed for providing power on the lunar surface and compare their ranges of applicability. The importance of a systems approach to the integration of these components will also be discussed.

  1. Diastatic power

    Technology Transfer Automated Retrieval System (TEKTRAN)

    diastatic power: Diastatic power, abbreviated DP, is the total activity of malt starch degrading enzymes that hydrolyze starch to fermentable sugars. The starch degrading enzymes contributing to this process are a-amylase, ß-amylase, limit dextrinase, and a-glucosidase. The driving force for DP a...

  2. Power Teaching

    ERIC Educational Resources Information Center

    Fluellen, Jerry E., Jr.

    2007-01-01

    Power Teaching weaves four factors into a seamless whole: standards, teaching thinking, research based strategies, and critical inquiry. As a prototype in its first year of development with an urban fifth grade class, the power teaching model connects selected district standards, thinking routines from Harvard University Project Zero Research…

  3. Powerful Literacies.

    ERIC Educational Resources Information Center

    Crowther, Jim, Ed.; Hamilton, Mary, Ed.; Tett, Lyn, Ed.

    These 15 papers share a common theme: seeking to promote literacy as a powerful tool for challenging existing inequalities and dependencies. "Powerful Literacies" (Jim Crowther et al.) is an introduction. Section 1 establishes the theoretical and policy frameworks that underpin the book and shows how literacy is situated in different…

  4. Power subsystem automation study

    NASA Technical Reports Server (NTRS)

    Imamura, M. S.; Moser, R. L.; Veatch, M.

    1983-01-01

    Generic power-system elements and their potential faults are identified. Automation functions and their resulting benefits are defined and automation functions between power subsystem, central spacecraft computer, and ground flight-support personnel are partitioned. All automation activities were categorized as data handling, monitoring, routine control, fault handling, planning and operations, or anomaly handling. Incorporation of all these classes of tasks, except for anomaly handling, in power subsystem hardware and software was concluded to be mandatory to meet the design and operational requirements of the space station. The key drivers are long mission lifetime, modular growth, high-performance flexibility, a need to accommodate different electrical user-load equipment, onorbit assembly/maintenance/servicing, and potentially large number of power subsystem components. A significant effort in algorithm development and validation is essential in meeting the 1987 technology readiness date for the space station.

  5. Power system

    DOEpatents

    Hickam, Christopher Dale

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  6. Power systems

    NASA Astrophysics Data System (ADS)

    Kaplan, G.

    1982-01-01

    Significant events in current, prototype, and experimental utility power generating systems in 1981 are reviewed. The acceleration of licensing and the renewal of plans for reprocessing of fuel for nuclear power plants are discussed, including the rise of French reactor-produced electricity to over 40% of the country's electrical output. A 4.5 MW fuel cell neared completion in New York City, while three 2.5 MW NASA-designed windpowered generators began producing power in the state of Washington. Static bar compensators, nonflammable-liquid cooled power transformers, and ZnO surge arrestors were used by utilities for the first time, and the integration of a coal gasifier-combined cycle power plant approached the planning phase. An MHD generator was run for 1000 hours and produced 50-60 kWe, while a 20 MVA superconducting generator was readied for testing.

  7. Future Photovoltaic Power Generation for Space-Based Power Utilities

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Landis, Geoffrey; Hepp, Aloysius; Raffaelle, Ryne

    2002-01-01

    This paper discusses requirements for large earth orbiting power stations that can serve as central utilities for other orbiting spacecraft, or for beaming power to the earth itself. The current state of the art of space solar cells, and a variety of both evolving thin film cells as well as new technologies that may impact the future choice of space solar cells for high power mission applications are addressed.

  8. Power without nukes

    SciTech Connect

    Not Available

    1988-03-01

    Nuclear power is good at producing large quantities of electricity. Barring a big change in the world's pattern of energy consumption, that is the kind of energy that will be most in demand if economic growth is to remain rapid. What are the options if we abandon nuclear power. By the year 2000, even on conservative estimates of economic growth, OECD countries would be generating 25% of their electricity from nuclear power. Total nuclear capacity would be about 400,000 MW. That is the size of the gap that would have to be filled. The rate of economic growth and the progress of conservation both depend partly on the price of energy - and the price of energy depends on the speed and extent of any nuclear phase-out. But if nuclear power stations were shut overnight, power cuts would be impossible to avoid in several countries, and electricity-generating costs would osar. Only oil, gas, and coal could fill the gap. Consumption of either oil or coal would have to rise by 10%. Replacing nuclear power over say 20 years would be less disruptive, but still costly. Some new sources - oil from tar sands and shale, more hydroelectric power, perhaps fuel cells - would fill the gap. But they would not prevent energy prices from rising to at least double their present levels in real terms. Indeed, they would require such a rise, because without it they would make no commercial sense.

  9. The Unseen Power Loss: Stemming the Flow.

    ERIC Educational Resources Information Center

    Gillett, Raphael

    2002-01-01

    Outlined an estimate-substitution strategy for a test comparing two means and developed an expected-power formula for the test. Demonstrated that for empirically representative distributions of effect size in psychology, the expected power deficit is large. (SLD)

  10. Phenomenology of Large Nc QCD

    NASA Astrophysics Data System (ADS)

    Lebed, Richard F.

    1999-09-01

    These lectures are designed to introduce the methods and results of large N c QCD in a presentation intended for nuclear and particle physicists alike. Beginning with definitions and motivations of the approach, we demonstrate that all quark and gluon Feynman diagrams are organized into classes based on powers of 1/N c. We then show that this result can be translated into definite statements about mesons and baryons containing arbitrary numbers of constituents. In the mesons, numerous well-known phenomenological properties follow as immediate consequences of simply counting powers of N c, while for the baryons, quantitative large N c analyses of masses and other properties are seen to agree with experiment, even when large” N c is set equal to its observed value of 3. Large N c reasoning is also used to explain some simple features of nuclear interactions.

  11. Power-Supply-Conditioning Circuit

    NASA Technical Reports Server (NTRS)

    Primas, L. E.; Loveland, R. C.

    1989-01-01

    Fluctuations of voltage suppressed in power supplies for precise radio-frequency circuits. Circuit suppresses both periodic and random deviations of dc supply voltage from desired steady level. Highly-stable feedback voltage regulator, conditioner intended in conjunction with conventional power-supply circuit to provide constant voltage to atomic frequency standard or other precise oscillator. Without conditioners, outputs of most commercial power supplies contain fluctuations causing unacceptably-large phase and amplitude modulation of precise oscillators.

  12. Anisotropic power-law inflation

    SciTech Connect

    Kanno, Sugumi; Soda, Jiro; Watanabe, Masa-aki E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2010-12-01

    We study an inflationary scenario in supergravity model with a gauge kinetic function. We find exact anisotropic power-law inflationary solutions when both the potential function for an inflaton and the gauge kinetic function are exponential type. The dynamical system analysis tells us that the anisotropic power-law inflation is an attractor for a large parameter region.

  13. Active Power Controls from Wind Power: Bridging the Gaps

    SciTech Connect

    Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

    2014-01-01

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  14. Large solar arrays

    NASA Technical Reports Server (NTRS)

    Crabtree, W. L.

    1980-01-01

    A spectrophotovoltaic converter, a thermophotovoltaic converter, a cassegrainian concentrator, a large silicon cell blanket, and a high flux approach are among the concepts being investigated as part of the multihundred kW solar array program for reducing the cost of photovoltaic energy in space. These concepts involve a range of technology risks, the highest risk being represented by the thermophotovoltaics and spectrophotovoltaics approaches which involve manipulation to of the incoming spectrum to enhance system efficiency. The planar array (solar blanket) has no technology risk and a moderate payback. The primary characteristics, components, and technology concerns of each of these concepts are summarized. An orbital power platform mission in the late 1980's is being used to allow a coherent technology advancement program in order to achieve a ten year life with maintenance at a capital recurring cost of $30/watt based on 1978 dollars.

  15. Power performance

    SciTech Connect

    Anderson, J.

    1996-04-01

    Two power generation engineering and construction firms with international markets are briefly described in this article. Bibb and Associates and Black & Veatch, both Kansas-based companies, are discussed. Current projects and services provided by the companies are described.

  16. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  17. Power combiner

    DOEpatents

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  18. Power outages, power externalities, and baby booms.

    PubMed

    Burlando, Alfredo

    2014-08-01

    Determining whether power outages have significant fertility effects is an important policy question in developing countries, where blackouts are common and modern forms of family planning are scarce. Using birth records from Zanzibar, this study shows that a month-long blackout in 2008 caused a significant increase in the number of births 8 to 10 months later. The increase was similar across villages that had electricity, regardless of the level of electrification; villages with no electricity connections saw no changes in birth numbers. The large fertility increase in communities with very low levels of electricity suggests that the outage affected the fertility of households not connected to the grid through some spillover effect. Whether the baby boom is likely to translate to a permanent increase in the population remains unclear, but this article highlights an important hidden consequence of power instability in developing countries. It also suggests that electricity imposes significant externality effects on rural populations that have little exposure to it.

  19. Energy conservation in large buildings

    NASA Astrophysics Data System (ADS)

    Rosenfeld, A.; Hafemeister, D.

    1985-11-01

    As energy prices rise, newly energy aware designers use better tools and technology to create energy efficient buildings. Thus the U.S. office stock (average age 20 years) uses 250 kBTU/ft2 of resource energy, but the guzzler of 1972 uses 500 (up×2), and the 1986 ASHRAE standards call for 100-125 (less than 25% of their 1972 ancestors). Surprisingly, the first real cost of these efficient buildings has not risen since 1972. Scaling laws are used to calculate heat gains and losses of buildings to obtain the ΔT(free) which can be as large as 15-30 °C (30-60 °F) for large buildings. The net thermal demand and thermal time constants are determined for the Swedish Thermodeck buildings which need essentially no heat in the winter and no chillers in summer. The BECA and other data bases for large buildings are discussed. Off-peak cooling for large buildings is analyzed in terms of saving peak-electrical power. By downsizing chillers and using cheaper, off-peak power, cost-effective thermal storage in new commercial buildings can reduce U.S. peak power demands by 10-20 GW in 15 years. A further potential of about 40 GW is available from adopting partial thermal storage and more efficient air conditioners in existing buildings.

  20. Space Power Engineering Problems

    NASA Astrophysics Data System (ADS)

    Senkevich, V. P.

    2002-01-01

    Development of space power engineering in the first half of XXI century shall be aimed at preventing the forthcoming energy crisis and ecological catastrophes. The problem can be solved through using solar energy being perpetual, endless, and ecologically safe. As of now, issues on the development and employment of solar power stations and its beaming to the ground stations in the SHF band are put on the agenda. The most pressing problem is to develop orbital solar reflectors to illuminate towns in the polar regions, agricultural regions, and areas of processing sea products. Space-based technologies can be used to deal with typhoons, green house effects, and "ozone holes". Recently, large, frameless film structures formed by centrifugal forces offer the promise of structures for orbital power plants, reflectors, and solar sails. A big success is achieved in the development of power generating solar array elements of amorphous silicon. These innovations would make the development of orbital solar power plants dozens of times cheaper. Such solar arrays shall be used in the nearest future on heavy communication satellites and the Earth remote sensing platforms for generation of 140-160 kW at a specific power beyond 300 W/kg. The cargo traffic needed to develop and maintain the orbital power plants and reflector systems could be equipped with solar sails as the future low thrust propulsion. In 2000, the mankind witnessed an unexpected beginning of energy crisis along with strong hydro- meteorological events (typhoons, floods) that shocked the USA, the Western Europe, England, Japan, and other countries. The total damage is estimated as 90 billions of dollars. The mankind is approaching a boundary beyond which its further existence would depend on how people would learn to control weather and use ecologically safe power sources. Space technology base on the research potential accumulated in the previous century could serve for the solution of this problem.

  1. Power inverters

    SciTech Connect

    Miller, David H; Korich, Mark D; Smith, Gregory S

    2011-11-15

    Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

  2. Power transmission

    SciTech Connect

    Yale, O.S.

    1989-12-12

    This patent describes a power transmission. It comprises: in combination, a master gear having at least one annular tooth set, means for drivingly engaging the master gear with a power source, driven shaft, a yoke member attached to the shaft and including a screw pump housing extending radially with respect to the shaft with a pair of ports in spaced relation, a pump screw rotatable in the housing and a pump gear attached to the screw and engaging the annular tooth set, and a casing for transmission fluid. The pump housing being located for immersion in the fluid.

  3. High Power Switching Transistor

    NASA Technical Reports Server (NTRS)

    Hower, P. L.; Kao, Y. C.; Carnahan, D. C.

    1983-01-01

    Improved switching transistors handle 400-A peak currents and up to 1,200 V. Using large diameter silicon wafers with twice effective area as D60T, form basis for D7 family of power switching transistors. Package includes npn wafer, emitter preform, and base-contact insert. Applications are: 25to 50-kilowatt high-frequency dc/dc inverters, VSCF converters, and motor controllers for electrical vehicles.

  4. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  5. Power grid reliability and security

    SciTech Connect

    Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid

    2015-01-31

    This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

  6. Power Struggle.

    ERIC Educational Resources Information Center

    Cook, Glenn

    2001-01-01

    California's "power struggle" will probably not be replicated in the other 23 states that have deregulated electricity, but costs are rising everywhere. The Environmental Protection Agency/Department of Energy's new Energy Star online rating system should help school officials measure their buildings' efficiency and remove barriers to…

  7. Stigma power.

    PubMed

    Link, Bruce G; Phelan, Jo

    2014-02-01

    When people have an interest in keeping other people down, in or away, stigma is a resource that allows them to obtain ends they desire. We call this resource "stigma power" and use the term to refer to instances in which stigma processes achieve the aims of stigmatizers with respect to the exploitation, control or exclusion of others. We draw on Bourdieu (1987, 1990) who notes that power is often most effectively deployed when it is hidden or "misrecognized." To explore the utility of the stigma-power concept we examine ways in which the goals of stigmatizers are achieved but hidden in the stigma coping efforts of people with mental illnesses. We developed new self-report measures and administered them to a sample of individuals who have experienced mental illness to test whether results are consistent with the possibility that, in response to negative societal conceptions, the attitudes, beliefs and behaviors of people with psychosis lead them to be concerned with staying in, propelled to stay away and induced to feel downwardly placed - precisely the outcomes stigmatizers might desire. Our introduction of the stigma-power concept carries the possibility of seeing stigmatizing circumstances in a new light.

  8. Power, Revisited

    ERIC Educational Resources Information Center

    Roscigno, Vincent J.

    2011-01-01

    Power is a core theoretical construct in the field with amazing utility across substantive areas, levels of analysis and methodologies. Yet, its use along with associated assumptions--assumptions surrounding constraint vs. action and specifically organizational structure and rationality--remain problematic. In this article, and following an…

  9. Power Controller

    NASA Astrophysics Data System (ADS)

    1983-01-01

    The power factor controller (PFC) senses shifts in the relationship between voltage and current, and matches them with a motor's need. This prevents waste as motors do not need a high voltage when they are not operating at full load conditions. PFC is manufactured by Nordic Controls Company, among others, and has proved extremely cost effective.

  10. Perpetual Power?

    SciTech Connect

    Madison, Alison L.

    2010-02-16

    This is a submission to Innovation Magazine for its January 2010 Clean-tech issue. The article discusses PNNL's award-winning Thermoelectric Ambient Energy Harvester technology, its license to Perpetua Power Source Technologies, Perpetua's subsequent product based on the PNNL technology, and where they're headed with it.

  11. Power Trains.

    ERIC Educational Resources Information Center

    Kukuk, Marvin; Mathis, Joe

    This curriculum guide is part of a series designed to teach students about diesel engines. The materials in this power trains guide apply to both on-road and off-road vehicles and include information about chain and belt drives used in tractors and combines. These instructional materials, containing nine units, are written in terms of student…

  12. Star Power

    SciTech Connect

    2014-10-17

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  13. Star Power

    ScienceCinema

    None

    2016-07-12

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  14. Nuclear Power - Post Fukushima

    NASA Astrophysics Data System (ADS)

    Reyes, Jose, Jr.

    2011-10-01

    The extreme events that led to the prolonged power outage at the Fukushima Daiicchi nuclear plant have highlighted the importance of assuring a means for stable long term cooling of the nuclear fuel and containment following a complete station blackout. Legislative bodies, regulatory agencies and industry are drawing lessons from those events and considering what changes, if any, are needed to nuclear power, post Fukushima. The enhanced safety of a new class of reactor designed by NuScale Power is drawing significant attention in light of the Fukushima events. During normal operation, each NuScale containment is fully immersed in a water-filled stainless steel lined concrete pool that resides underground. The pool, housed in a Seismic Category I building, is large enough to provided 30 days of core and containment cooling without adding water. After 30 days, the decay heat generations coupled with thermal radiation heat transfer is completely adequate to remove core decay heat for an unlimited period of time. These passive power systems can perform their function without requiring an external supply of water of power. An assessment of the NuScale passive systems is being performed through a comprehensive test program that includes the NuScale integral system test facility at Oregon State University

  15. The power relay satellite

    SciTech Connect

    Glaser, P.E.

    1994-12-31

    The availability and use of renewable energy sources compatible with reducing risks to the global environment are key to sustainable development. Large-scale, renewable energy resources at undeveloped or underutilized sites are potentially available on several continents. The Power Relay Satellite (PRS) concept has the potential to access these remote energy resources by coupling primary electricity generation from terrestrial transmission lines. A global PRS network can be envisioned to provide a high degree of flexibility for supplying energy demands worldwide with wireless power transmitted from sites on Earth to geosynchronous orbit and then reflected to receivers interfacing with terrestrial power transmision networks. Past developments in wireless power transmission (WPT) are reviewed and recent successful results are noted. The origins of the PRS concept, and a possible configuration are discussed, principles of WPT at microwave frequencies, functional requirements, and system design contraints are outlined, and space transportation concepts presented. PRS assessments including applicable technologies, economic projections, and societal issues are highlighted. It is concluded that the PRS provides a promising option to access renewable resources at great distances from major markets, and represents an important stage in the future development in the future of solar power satellites.

  16. The power relay satellite

    NASA Astrophysics Data System (ADS)

    Glaser, Peter E.

    The availability and use of renewable energy sources compatible with reducing risks to the global environment are key to sustainable development. Large-scale, renewable energy resources at undeveloped or underutilized sites are potentially available on several continents. The Power Relay Satellite (PRS) concept has the potential to access these remote energy resources by coupling primary electricity generation from terrestrial transmission lines. A global PRS network can be envisioned to provide a high degree of flexibility for supplying energy demands worldwide with wireless power transmitted from sites on Earth to geosynchronous orbit and then reflected to receivers interfacing with terrestrial power transmision networks. Past developments in wireless power transmission (WPT) are reviewed and recent successful results are noted. The origins of the PRS concept, and a possible configuration are discussed, principles of WPT at microwave frequencies, functional requirements, and system design contraints are outlined, and space transportation concepts presented. PRS assessments including applicable technologies, economic projections, and societal issues are highlighted. It is concluded that the PRS provides a promising option to access renewable resources at great distances from major markets, and represents an important stage in the future development in the future of solar power satellites.

  17. Inductive power transfer: Powering our future

    NASA Astrophysics Data System (ADS)

    Covic, Grant A.

    2013-12-01

    The ability to provide power without wires was imagined over a century ago, but assumed commercially impractical and impossible to realise. However for more than two decades the University of Auckland has been at the forefront of developing and commercialising this technology alongside its industrial partners. This research has proven that significant wireless power can be transferred over relatively large air-gaps efficiently and robustly. Early solutions were applied in industrial applications to power moving vehicles in clean room systems, industrial plants, and in theme parks, but more recently this research has helped develop technology that has the ability to impact us directly at home. The seminar will describe some of the early motivations behind this research, and introduce some of the solutions which have been developed by the team of researchers at Auckland over two decades, many of which have found their way into the market. It will also describe how the technology has recently been re-developed to enable battery charging of electric vehicles without the need to plug in, and alongside this how it has the potential to change the way we drive in the future.

  18. Reliability Estimates for Power Supplies

    SciTech Connect

    Lee C. Cadwallader; Peter I. Petersen

    2005-09-01

    Failure rates for large power supplies at a fusion facility are critical knowledge needed to estimate availability of the facility or to set priorties for repairs and spare components. A study of the "failure to operate on demand" and "failure to continue to operate" failure rates has been performed for the large power supplies at DIII-D, which provide power to the magnet coils, the neutral beam injectors, the electron cyclotron heating systems, and the fast wave systems. When one of the power supplies fails to operate, the research program has to be either temporarily changed or halted. If one of the power supplies for the toroidal or ohmic heating coils fails, the operations have to be suspended or the research is continued at de-rated parameters until a repair is completed. If one of the power supplies used in the auxiliary plasma heating systems fails the research is often temporarily changed until a repair is completed. The power supplies are operated remotely and repairs are only performed when the power supplies are off line, so that failure of a power supply does not cause any risk to personnel. The DIII-D Trouble Report database was used to determine the number of power supply faults (over 1,700 reports), and tokamak annual operations data supplied the number of shots, operating times, and power supply usage for the DIII-D operating campaigns between mid-1987 and 2004. Where possible, these power supply failure rates from DIII-D will be compared to similar work that has been performed for the Joint European Torus equipment. These independent data sets support validation of the fusion-specific failure rate values.

  19. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  20. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  1. The predictive power of airborne gamma ray survey data on the locations of domestic radon hazards in Norway: A strong case for utilizing airborne data in large-scale radon potential mapping.

    PubMed

    Smethurst, M A; Watson, R J; Baranwal, V C; Rudjord, A L; Finne, I

    2017-01-01

    It is estimated that exposure to radon in Norwegian dwellings is responsible for as many as 300 deaths a year due to lung cancer. To address this, the authorities in Norway have developed a national action plan that has the aim of reducing exposure to radon in Norway (Norwegian Ministries, 2010). The plan includes further investigation of the relationship between radon hazard and geological conditions, and development of map-based tools for assessing the large spatial variation in radon hazard levels across Norway. The main focus of the present contribution is to describe how we generate map predictions of radon potential (RP), a measure of radon hazard, from available airborne gamma ray spectrometry (AGRS) surveys in Norway, and what impact these map predictions can be expected to have on radon protection work including land-use planning and targeted surveying. We have compiled 11 contiguous AGRS surveys centred on the most populated part of Norway around Oslo to produce an equivalent uranium map measuring 180 km × 102 km that represents the relative concentrations of radon in the near surface of the ground with a spatial resolution in the 100 s of metres. We find that this map of radon in the ground offers a far more detailed and reliable picture of the distribution of radon in the sub-surface than can be deduced from the available digital geology maps. We tested the performances of digital geology and AGRS data as predictors of RP. We find that digital geology explains approximately 40% of the observed variance in ln RP nationally, while the AGRS data in the Oslo area split into 14 bands explains approximately 70% of the variance in the same parameter. We also notice that there are too few indoor data to characterise all geological settings in Norway which leaves areas in the geology-based RP map in the Oslo area, and elsewhere, unclassified. The AGRS RP map is derived from fewer classes, all characterised by more than 30 indoor measurements, and the

  2. Power converter

    NASA Technical Reports Server (NTRS)

    Black, J. M. (Inventor)

    1981-01-01

    A dc-to-dc converter employs four transistor switches in a bridge to chop dc power from a source, and a voltage multiplying diode rectifying ladder network to rectify and filter the chopped dc power for delivery to a load. The bridge switches are cross coupled in order for diagonally opposite pairs to turn on and off together using RC networks for the cross coupling to achieve the mode of operation of a free running multivibrator, and the diode rectifying ladder is configured to operate in a push-pull mode driven from opposite sides of the multivibrator outputs of the ridge switches. The four transistor switches provide a square-wave output voltage which as a peak-to-peak amplitude that is twice the input dc voltage, and is thus useful as a dc-to-ac inverter.

  3. Power quality enhancement of renewable energy source power network using SMES system

    NASA Astrophysics Data System (ADS)

    Seo, H. R.; Kim, A. R.; Park, M.; Yu, I. K.

    2011-11-01

    This paper deals with power quality enhancement of renewable energy source power network using SMES system and describes the operation characteristics of HTS SMES system using real-toroidal-type SMES coil for smoothening the fluctuation of large-scale renewable energy source such as photovoltaic (PV) power generation system. It generates maximum power of PV array under various weather conditions. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The SMES unit is controlled according to the PV array output and the utility power quality conditions. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation (PHILS). The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality in power network including large-scale renewable energy source, especially PV power generation system.

  4. ASPEC: Solar power satellite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The solar power satellite (SPS) will provide a clean, reliable source of energy for large-scale consumption. The system will use satellites in geostationary orbits around the Earth to capture the Sun's energy. The intercepted sunlight will be converted to laser beam energy that can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting energy to a single ground station. The SPS design uses multilayer solar cell technology arranged on a 20 km squared planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Typically, a single SPS will supply 5 GW of power to the ground station. Due to the large mass of the SPS, about 41 million kg, construction in space is needed in order to keep the structural mass low. The orbit configuration for this design is to operate a single satellite in geosynchronous orbit (GEO). The GEO allows the system to be positioned above a single receiving station and remain in sunlight 99 percent of the time. Construction will take place in low Earth orbit (LEO); array sections, 20 in total, will be sailed on solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing array panels (SSAP's). The primary truss elements used to support the array are composed of composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  5. Information Power Grid Posters

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2003-01-01

    This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.

  6. Test facilities for high power electric propulsion

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.

    1991-01-01

    Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.

  7. Potential converter for laser-power beaming

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.

    1991-01-01

    Future space missions, such as those associated with the Space Exploration Initiative (SEI), will require large amounts of power for operation of bases, rovers, and orbit transfer vehicles. One method for supplying this power is to beam power from a spaced based or Earth based laser power station to a receiver where laser photons can be converted to electricity. Previous research has described such laser power stations orbiting the Moon and beaming power to a receiver on the surface of the Moon by using arrays of diode lasers. Photovoltaic converters that can be efficiently used with these diode lasers are described.

  8. Mobile Centers For Secondary Power Distribution

    NASA Technical Reports Server (NTRS)

    Mears, Robert L.

    1990-01-01

    Concept for distribution of 60-Hz ac power in large building devoted to assembly and testing of equipment improves safety, reduces number of outlets and lengthy cables, and readily accommodates frequent changes in operations and configuration. Power from floor recess fed via unobtrusive cable to portable power management center. A cart containing variety of outlets and circuit breakers, wheeled to convenient location near equipment to be assembled or tested. Power distribution system presents larger range of operational configurations than fixed location. Meets tighter standards to feed computers and delicate instruments. Industrial-grade power suitable for power tools and other hardware. Three-phase and single-phase outlets available from each.

  9. Long-Term Wind Power Variability

    SciTech Connect

    Wan, Y. H.

    2012-01-01

    The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

  10. Technologies for Lunar Surface Power Systems Power Beaming and Transfer

    NASA Astrophysics Data System (ADS)

    Marzwell, Neville; Pogorzelski, Ronald J.; Chang, Kai; Little, Frank

    2008-01-01

    Wireless power transmission within a given working area is required or enabling for many NASA Exploration Systems. Fields of application include robotics, habitats, autonomous rendezvous and docking, life support, EVA, and many others. In robotics applications, for example, the robots must move in the working area without being hampered by power cables and, meanwhile, obtain a continuous and constant power from a power transmitter. The development of modern technology for transmitting electric power over free space has been studied for several decades, but its use in a system has been mainly limited to low power, 1-2 Vdc output voltage at a transmission distance of few meters for which relatively less than 0.5 mW/cm2 is required (e.g., Radio frequency identification RFID). Most of the rectenna conversion efficiency research to date has concentrated in low GHz frequency range of 2.45 to 10 GHz, with some work at 35 GHz. However, for space application, atmospheric adsorbtion is irrelevant and higher frequency systems with smaller transmit and receive apertures may be appropriate. For high power, most of the work on rectennas has concentrated on optimizing the conversion efficiency of the microwave rectifier element; the highest power demonstrated was 35 kW of power over a distance of 1.5 km. The objective of this paper is to establish the manner in which a very large number of very low power microwave devices can be synchronized to provide a beam of microwaves that can be used to efficiently and safely transport a significant amount of power to a remote location where it can be converted to dc (or ac) power by a ``rectenna.'' The proposed system is based on spatial power combining of the outputs of a large number of devices synchronized by mutual injection locking. We have demonstrated at JPL that such power could be achieved by combining 25 sources in a configuration that allows for convenient steering of the resulting beam of microwaves. Retrodirective beam

  11. Big power from walking

    NASA Astrophysics Data System (ADS)

    Illenberger, Patrin K.; Madawala, Udaya K.; Anderson, Iain A.

    2016-04-01

    Dielectric Elastomer Generators (DEG) offer an opportunity to capture the energy otherwise wasted from human motion. By integrating a DEG into the heel of standard footwear, it is possible to harness this energy to power portable devices. DEGs require substantial auxiliary systems which are commonly large, heavy and inefficient. A unique challenge for these low power generators is the combination of high voltage and low current. A void exists in the semiconductor market for devices that can meet these requirements. Until these become available, existing devices must be used in an innovative way to produce an effective DEG system. Existing systems such as the Bi-Directional Flyback (BDFB) and Self Priming Circuit (SPC) are an excellent example of this. The BDFB allows full charging and discharging of the DEG, improving power gained. The SPC allows fully passive voltage boosting, removing the priming source and simplifying the electronics. This paper outlines the drawbacks and benefits of active and passive electronic solutions for maximizing power from walking.

  12. Primer on Wind Power for Utility Applications

    SciTech Connect

    Wan, Y.

    2005-12-01

    The wind industry still faces many market barriers, some of which stem from utilities' lack of experience with the technology. Utility system operators and planners need to understand the effects of fluctuating wind power on system regulation and stability. Without high-frequency wind power data and realistic wind power plant models to analyze the problem, utilities often rely on conservative assumptions and worst-case scenarios to make engineering decisions. To remedy the situation, the National Renewable Energy Laboratory (NREL) has undertaken a project to record long-term, high-resolution (1-hertz [Hz]) wind power output data from large wind power plants in various regions. The objective is to systematically collect actual wind power data from large commercial wind power plants so that wind power fluctuations, their frequency distribution, the effects of spatial diversity, and the ancillary services of large commercial wind power plants can be analyzed. It also aims to provide the industry with nonproprietary wind power data in different wind regimes for system planning and operating impact studies. This report will summarize the results of data analysis performed at NREL and discuss the wind power characteristics related to power system operation and planning.

  13. Lunar nuclear power feasibility study

    NASA Technical Reports Server (NTRS)

    Erdman, C. A.; Tran, T.

    1984-01-01

    Based on review of literature and on limited examination of nuclear power systems now proposed for space applications, a nuclear fission reactor powered system should be seriously considered as the first large (order of 50 kWe or greater) power system to be placed on a lunar base. With relatively minor modifications, the major one being addition of a cooled side shield, the proposed 100 kWe product of the SP-100 Program could be adapted for use on a lunar base.

  14. An approach to space power

    NASA Technical Reports Server (NTRS)

    Miley, G. H.; Nadler, J. H.; Hochberg, T.; Barnouin, O.; Gu, Y. B.

    1990-01-01

    Fusion offers the potential for a very high specific power, providing a large specific impulse that can be traded-off with thrust for mission optimization. Thus fusion is a leading candidate for missions beyond the moon. A new approach is discussed for space fusion power, namely Inertial Electrostatic Confinement (IEC). This method offers a high power density in a relatively small, simple device. It appears capable of burning aneutronic fuels which are most desirable for space applications and is well suited for direct conversion. An experimental device to test the concept is described.

  15. A Tariff for Reactive Power

    SciTech Connect

    Kueck, John D; Kirby, Brendan J; Li, Fangxing; Tufon, Christopher; Isemonger, Alan

    2008-07-01

    system losses, increase circuit capacity, increase reliability, and improve efficiency. Reactive power is theoretically available from any inverter-based equipment such as photovoltaic (PV) systems, fuel cells, microturbines, and adjustable-speed drives. However, the installation is usually only economical if reactive power supply is considered during the design and construction phase. In this report, we find that if the inverters of PV systems or the generators of combined heat and power (CHP) systems were designed with capability to supply dynamic reactive power, they could do this quite economically. In fact, on an annualized basis, these inverters and generators may be able to supply dynamic reactive power for about $5 or $6 per kVAR. The savings from the local supply of dynamic reactive power would be in reduced losses, increased capacity, and decreased transmission congestion. The net savings are estimated to be about $7 per kVAR on an annualized basis for a hypothetical circuit. Thus the distribution company could economically purchase a dynamic reactive power service from customers for perhaps $6/kVAR. This practice would provide for better voltage regulation in the distribution system and would provide an alternate revenue source to help amortize the cost of PV and CHP installations. As distribution and transmission systems are operated under rising levels of stress, the value of local dynamic reactive supply is expected to grow. Also, large power inverters, in the range of 500 kW to 1 MW, are expected to decrease in cost as they become mass produced. This report provides one data point which shows that the local supply of dynamic reactive power is marginally profitable at present for a hypothetical circuit. We expect that the trends of growing power flow on the existing system and mass production of inverters for distributed energy devices will make the dynamic supply of reactive power from customers an integral component of economical and reliable system

  16. Simulating cosmic reionization: how large a volume is large enough?

    NASA Astrophysics Data System (ADS)

    Iliev, Ilian T.; Mellema, Garrelt; Ahn, Kyungjin; Shapiro, Paul R.; Mao, Yi; Pen, Ue-Li

    2014-03-01

    We present the largest-volume (425 Mpc h-1 = 607 Mpc on a side) full radiative transfer simulation of cosmic reionization to date. We show that there is significant additional power in density fluctuations at very large scales. We systematically investigate the effects this additional power has on the progress, duration and features of reionization and on selected reionization observables. We find that comoving volume of ˜100 Mpc h-1 per side is sufficient for deriving a convergent mean reionization history, but that the reionization patchiness is significantly underestimated. We use jackknife splitting to quantify the convergence of reionization properties with simulation volume. We find that sub-volumes of ˜100 Mpc h-1 per side or larger yield convergent reionization histories, except for the earliest times, but smaller volumes of ˜50 Mpc h-1 or less are not well converged at any redshift. Reionization history milestones show significant scatter between the sub-volumes, as high as Δz ˜ 1 for ˜50 Mpc h-1 volumes. If we only consider mean-density sub-regions the scatter decreases, but remains at Δz ˜ 0.1-0.2 for the different size sub-volumes. Consequently, many potential reionization observables like 21-cm rms, 21-cm PDF skewness and kurtosis all show good convergence for volumes of ˜200 Mpc h-1, but retain considerable scatter for smaller volumes. In contrast, the three-dimensional 21-cm power spectra at large scales (k < 0.25 h Mpc-1) do not fully converge for any sub-volume size. These additional large-scale fluctuations significantly enhance the 21-cm fluctuations, which should improve the prospects of detection considerably, given the lower foregrounds and greater interferometer sensitivity at higher frequencies.

  17. Reinventing the Solar Power Satellite

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    Economy of scale is inherent in the microwave power transmission aperture/spot-size trade-off, resulting in a requirement for large space systems in the existing design concepts. Unfortunately, this large size means that the initial investment required before the first return, and the price of amortization of this initial investment, is a daunting (and perhaps insurmountable) barrier to economic viability. As the growth of ground-based solar power applications will fund the development of the PV technology required for space solar power and will also create the demand for space solar power by manufacturing a ready-made market, space power systems must be designed with an understanding that ground-based solar technologies will be implemented as a precursor to space-based solar. for low initial cost, (3) operation in synergy with ground solar systems, and (4) power production profile tailored to peak rates. A key to simplicity of design is to maximize the integration of the system components. Microwave, millimeter-wave, and laser systems are analyzed. A new solar power satellite design concept with no sun-tracking and no moving parts is proposed to reduce the required cost to initial operational capability.

  18. Optimal Power Flow Pursuit

    SciTech Connect

    Dall'Anese, Emiliano

    2016-08-01

    Past works that focused on addressing power-quality and reliability concerns related to renewable energy resources (RESs) operating with business-as-usual practices have looked at the design of Volt/VAr and Volt/Watt strategies to regulate real or reactive powers based on local voltage measurements, so that terminal voltages are within acceptable levels. These control strategies have the potential of operating at the same time scale of distribution-system dynamics, and can therefore mitigate disturbances precipitated fast time-varying loads and ambient conditions; however, they do not necessarily guarantee system-level optimality, and stability claims are mainly based on empirical evidences. On a different time scale, centralized and distributed optimal power flow (OPF) algorithms have been proposed to compute optimal steady-state inverter setpoints, so that power losses and voltage deviations are minimized and economic benefits to end-users providing ancillary services are maximized. However, traditional OPF schemes may offer decision making capabilities that do not match the dynamics of distribution systems. Particularly, during the time required to collect data from all the nodes of the network (e.g., loads), solve the OPF, and subsequently dispatch setpoints, the underlying load, ambient, and network conditions may have already changed; in this case, the DER output powers would be consistently regulated around outdated setpoints, leading to suboptimal system operation and violation of relevant electrical limits. The present work focuses on the synthesis of distributed RES-inverter controllers that leverage the opportunities for fast feedback offered by power-electronics interfaced RESs. The overarching objective is to bridge the temporal gap between long-term system optimization and real-time control, to enable seamless RES integration in large scale with stability and efficiency guarantees, while congruently pursuing system-level optimization objectives. The

  19. Large area pulsed solar simulator

    NASA Technical Reports Server (NTRS)

    Kruer, Mark A. (Inventor)

    1999-01-01

    An advanced solar simulator illuminates the surface a very large solar array, such as one twenty feet by twenty feet in area, from a distance of about twenty-six feet with an essentially uniform intensity field of pulsed light of an intensity of one AMO, enabling the solar array to be efficiently tested with light that emulates the sun. Light modifiers sculpt a portion of the light generated by an electrically powered high power Xenon lamp and together with direct light from the lamp provide uniform intensity illumination throughout the solar array, compensating for the square law and cosine law reduction in direct light intensity, particularly at the corner locations of the array. At any location within the array the sum of the direct light and reflected light is essentially constant.

  20. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  1. Power oscillator

    DOEpatents

    Gitsevich, Aleksandr

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  2. Solar powered aircraft

    SciTech Connect

    Phillips, W.H.

    1983-11-15

    A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils.

  3. Instantons and Large N

    NASA Astrophysics Data System (ADS)

    Mariño, Marcos

    2015-09-01

    Preface; Part I. Instantons: 1. Instantons in quantum mechanics; 2. Unstable vacua in quantum field theory; 3. Large order behavior and Borel summability; 4. Non-perturbative aspects of Yang-Mills theories; 5. Instantons and fermions; Part II. Large N: 6. Sigma models at large N; 7. The 1=N expansion in QCD; 8. Matrix models and matrix quantum mechanics at large N; 9. Large N QCD in two dimensions; 10. Instantons at large N; Appendix A. Harmonic analysis on S3; Appendix B. Heat kernel and zeta functions; Appendix C. Effective action for large N sigma models; References; Author index; Subject index.

  4. Power management system

    DOEpatents

    Algrain, Marcelo C.; Johnson, Kris W.; Akasam, Sivaprasad; Hoff, Brian D.

    2007-10-02

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  5. Green Power Partnership Videos

    EPA Pesticide Factsheets

    The Green Power Partnership develops videos on a regular basis that explore a variety of topics including, Green Power partnership, green power purchasing, Renewable energy certificates, among others.

  6. Radio signals from very large showers

    NASA Technical Reports Server (NTRS)

    Suga, K.; Kakimoto, F.; Nishi, K.

    1985-01-01

    Radio signals from air showers with electron sizes in the range 1 x 10 to the 7th power to 2 x 10 to the 9th power were detected at 50kHz, 170kHz, and 1,647kHz at large core distances in the Akeno square kilometers air-shower array. The field strength is higher than that expected from any mechanisms hitherto proposed.

  7. LHC: The Large Hadron Collider

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  8. Aeroacoustics of large wind turbines

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1991-01-01

    This paper reviews published information on aerodynamically generated noise from large horizontal axis wind turbines operated for electric power generation. Methods are presented for predicting both the discrete frequency rotational noise components and the broadband noise components, and results are compared with measurements. Refraction effects that result in the formation of high-frequency shadow zones in the upwind direction and channeling effects for the low frequencies in the downwind direction are illustrated. Special topics such as distributed source effects in prediction and the role of building dynamics in perception are also included.

  9. LHC: The Large Hadron Collider

    SciTech Connect

    Lincoln, Don

    2015-03-04

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  10. Diode amplifier of modulated optical beam power

    SciTech Connect

    D'yachkov, N V; Bogatov, A P; Gushchik, T I; Drakin, A E

    2014-11-30

    Analytical relations are obtained between characteristics of modulated light at the output and input of an optical diode power amplifier operating in the highly saturated gain regime. It is shown that a diode amplifier may act as an amplitude-to-phase modulation converter with a rather large bandwidth (∼10 GHz). The low sensitivity of the output power of the amplifier to the input beam power and its high energy efficiency allow it to be used as a building block of a high-power multielement laser system with coherent summation of a large number of optical beams. (lasers)

  11. Transforming Power Systems; 21st Century Power Partnership

    SciTech Connect

    2015-05-20

    The 21st Century Power Partnership - a multilateral effort of the Clean Energy Ministerial - serves as a platform for public-private collaboration to advance integrated solutions for the large-scale deployment of renewable energy in combination with deep energy ef?ciency and smart grid solutions.

  12. Method for large and rapid terahertz imaging

    DOEpatents

    Williams, Gwyn P.; Neil, George R.

    2013-01-29

    A method of large-scale active THz imaging using a combination of a compact high power THz source (>1 watt), an optional optical system, and a camera for the detection of reflected or transmitted THz radiation, without the need for the burdensome power source or detector cooling systems required by similar prior art such devices. With such a system, one is able to image, for example, a whole person in seconds or less, whereas at present, using low power sources and scanning techniques, it takes several minutes or even hours to image even a 1 cm.times.1 cm area of skin.

  13. Beamed laser power in support of near-earth missions

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.; Schuster, Gregory L.; Weaver, Willard; Humes, Donald H.

    1989-01-01

    It was found that solar-pumped laser-beamed power is lighter than photovoltaic for power requirements of 150 KWe and above, and is competitive with combined photovoltaic/solar-dynamic over the entire power range investigated. A space station supported by laser-beamed power can be a lower-g facility (reduced drag) than with PV or PV + SD power; has greater freedom of orientation (small receiver moves rather than large arrays or concentrators); and requires less structure (arrays, alpha joints, booms) permitting easier control and fewer vibrational modes. Laser power beaming offers a revolutionary concept for planning designing, and powering large orbiting spacecraft.

  14. Power toothbrushes: a critical review.

    PubMed

    Penick, C

    2004-02-01

    Although the first toothbrush is thought to have been used in about 1000 ad, tooth brushing in America did not gain popularity until after 1945. The introduction of the powered toothbrush in 1960 has led to a large number of studies comparing the safety and efficacy of powered toothbrushes to manual toothbrushes. There is a general agreement that powered toothbrushes are as safe as manual toothbrushes; however, studies show significantly differing conclusions regarding the efficacy of power toothbrushes for the removal of plaque. The recent amendment of the Cochrane report on this subject concluded that the only type of powered toothbrush that removes more plaque than a manual toothbrush is one with rotational oscillation movement. Their conclusion was based on the review of 29 published studies, conducted between 1964 and 2001, with a total of 2547 participants. All these studies used similar research design criteria. The Cochrane conclusion is in agreement with a 1996 study carried out in the Netherlands. Many of the conflicting study conclusions, to date, on powered toothbrushes, are the result of using differing study design criteria. While the dental profession desires evidence-based research, it is clear that dental schools will need to increase the level of attention in their curriculum to address disciplined techniques for research design in order to reconcile the large variances in reported research results.

  15. New Technology and Lunar Power Option for Power Beaming Propulsion

    SciTech Connect

    Kare, J; Early, J; Krupke, W; Beach, R

    2004-10-11

    Orbit raising missions (LEO to GEO or beyond) are the only missions with enough current traffic to be seriously considered for near-term power beaming propulsion. Even these missions cannot justify the development expenditures required to deploy the required new laser, optical and propulsion technologies or the programmatic risks. To be deployed, the laser and optics technologies must be spin-offs of other funded programs. The manned lunar base nighttime power requirements may justify a major power beaming program with 2MW lasers and large optical systems. New laser and optical technologies may now make this mission plausible. If deployed these systems could be diverted for power beaming propulsion applications. Propulsion options include a thermal system with an Isp near 1000 sec., a new optical coupled thermal system with an Isp over 2000 sec. photovoltaic-ion propulsion systems with an Isp near 3000 sec., and a possible new optical coupled thermal system with an Isp over 2000 sec.

  16. POWER GRID DYNAMICS: ENHANCING POWER SYSTEM OPERATION THROUGH PRONY ANALYSIS

    SciTech Connect

    Ray, C.; Huang, Z.

    2007-01-01

    Prony Analysis is a technique used to decompose a signal into a series consisting of weighted complex exponentials and promises to be an effi cient way of recognizing sensitive lines during faults in power systems such as the U.S. Power grid. Positive Sequence Load Flow (PSLF) was used to simulate the performance of a simple two-area-four-generator system and the reaction of the system during a line fault. The Dynamic System Identifi cation (DSI) Toolbox was used to perform Prony analysis and use modal information to identify key transmission lines for power fl ow adjustment to improve system damping. The success of the application of Prony analysis methods to the data obtained from PSLF is reported, and the key transmission line for adjustment is identifi ed. Future work will focus on larger systems and improving the current algorithms to deal with networks such as large portions of the Western Electricity Coordinating Council (WECC) power grid.

  17. The Ames Power Monitoring System

    NASA Technical Reports Server (NTRS)

    Osetinsky, Leonid; Wang, David

    2003-01-01

    The Ames Power Monitoring System (APMS) is a centralized system of power meters, computer hardware, and specialpurpose software that collects and stores electrical power data by various facilities at Ames Research Center (ARC). This system is needed because of the large and varying nature of the overall ARC power demand, which has been observed to range from 20 to 200 MW. Large portions of peak demand can be attributed to only three wind tunnels (60, 180, and 100 MW, respectively). The APMS helps ARC avoid or minimize costly demand charges by enabling wind-tunnel operators, test engineers, and the power manager to monitor total demand for center in real time. These persons receive the information they need to manage and schedule energy-intensive research in advance and to adjust loads in real time to ensure that the overall maximum allowable demand is not exceeded. The APMS (see figure) includes a server computer running the Windows NT operating system and can, in principle, include an unlimited number of power meters and client computers. As configured at the time of reporting the information for this article, the APMS includes more than 40 power meters monitoring all the major research facilities, plus 15 Windows-based client personal computers that display real-time and historical data to users via graphical user interfaces (GUIs). The power meters and client computers communicate with the server using Transmission Control Protocol/Internet Protocol (TCP/IP) on Ethernet networks, variously, through dedicated fiber-optic cables or through the pre-existing ARC local-area network (ARCLAN). The APMS has enabled ARC to achieve significant savings ($1.2 million in 2001) in the cost of power and electric energy by helping personnel to maintain total demand below monthly allowable levels, to manage the overall power factor to avoid low power factor penalties, and to use historical system data to identify opportunities for additional energy savings. The APMS also

  18. Power Management and Distribution System Developed for Thermionic Power Converters

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.

    1998-01-01

    A spacecraft solar, bimodal system combines propulsion and power generation into a single integrated system. An Integrated Solar Upper Stage (ISUS) provides orbital transfer capabilities, power generation for payloads, and onboard propulsion to the spacecraft. A key benefit of a bimodal system is a greater payload-to-spacecraft mass ratio resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. NASA has joined efforts with the Air Force Phillips Laboratory to develop enabling technologies for such a system. The NASA/Air Force bimodal concept uses solar concentrators to focus energy into an integrated power plant. This power plant consists of a graphite core that stores thermal energy within a cavity. An array of thermionic converters encircles the graphite cavity and provides electrical energy conversion functions. During the power generation phase of the bimodal system, the thermionic converters are exposed to the heated cavity and convert the thermal energy to electricity. Near-term efforts of the ISUS bimodal program are focused on a ground demonstration of key technologies in order to proceed to a full space flight test. Thermionic power generation is one key technology of the bimodal concept. Thermionic power converters impose unique operating requirements upon a power management and distribution (PMAD) system design. Single thermionic converters supply large currents at very low voltages. Operating voltages can vary over a range of up to 3 to 1 as a function of operating temperature. Most spacecraft loads require regulated 28-volts direct-current (Vdc) power. A combination of series-connected converters and powerprocessing boosters is required to deliver power to the spacecraft's payloads at this level.

  19. Galaxy clustering on large scales.

    PubMed Central

    Efstathiou, G

    1993-01-01

    I describe some recent observations of large-scale structure in the galaxy distribution. The best constraints come from two-dimensional galaxy surveys and studies of angular correlation functions. Results from galaxy redshift surveys are much less precise but are consistent with the angular correlations, provided the distortions in mapping between real-space and redshift-space are relatively weak. The galaxy two-point correlation function, rich-cluster two-point correlation function, and galaxy-cluster cross-correlation function are all well described on large scales ( greater, similar 20h-1 Mpc, where the Hubble constant, H0 = 100h km.s-1.Mpc; 1 pc = 3.09 x 10(16) m) by the power spectrum of an initially scale-invariant, adiabatic, cold-dark-matter Universe with Gamma = Omegah approximately 0.2. I discuss how this fits in with the Cosmic Background Explorer (COBE) satellite detection of large-scale anisotropies in the microwave background radiation and other measures of large-scale structure in the Universe. PMID:11607400

  20. Global implications of standby power use

    SciTech Connect

    Lebot, Benoit; Meier, Alan; Anglade, Alain

    2000-05-01

    Separate studies indicate that standby power is responsible for 20-60 W per home in developed countries. Standby power is responsible for about 2% of OECD countries total electricity consumption and the related power generation generates almost 1% of their carbon emissions. Replacement of existing appliances with those appliances having the lowest standby would reduce total standby power consumption by over 70%. The resulting reductions in carbon emissions would meet over 3% of OECD's total Kyoto commitments. Other strategies may cut more carbon emissions, but standby power is unique in that the reductions are best accomplished through international collaboration and whose costs and large benefits would be spread over all countries.