Science.gov

Sample records for a-dependent redox biology

  1. Redox biology of the intestine

    PubMed Central

    Circu, Magdalena L.; Aw, Tak Yee

    2011-01-01

    The intestinal tract, known for its capability for self-renew, represents the first barrier of defense between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signaling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer. PMID:21831010

  2. Redox-capacitor to connect electrochemistry to redox-biology.

    PubMed

    Kim, Eunkyoung; Leverage, W Taylor; Liu, Yi; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-01-07

    It is well-established that redox-reactions are integral to biology for energy harvesting (oxidative phosphorylation), immune defense (oxidative burst) and drug metabolism (phase I reactions), yet there is emerging evidence that redox may play broader roles in biology (e.g., redox signaling). A critical challenge is the need for tools that can probe biologically-relevant redox interactions simply, rapidly and without the need for a comprehensive suite of analytical methods. We propose that electrochemistry may provide such a tool. In this tutorial review, we describe recent studies with a redox-capacitor film that can serve as a bio-electrode interface that can accept, store and donate electrons from mediators commonly used in electrochemistry and also in biology. Specifically, we (i) describe the fabrication of this redox-capacitor from catechols and the polysaccharide chitosan, (ii) discuss the mechanistic basis for electron exchange, (iii) illustrate the properties of this redox-capacitor and its capabilities for promoting redox-communication between biology and electrodes, and (iv) suggest the potential for enlisting signal processing strategies to "extract" redox information. We believe these initial studies indicate broad possibilities for enlisting electrochemistry and signal processing to acquire "systems level" redox information from biology.

  3. Structure of the Type III Pantothenate Kinase from Bacillus Anthracis at 2.0 A Resolution: Implications for Coenzyme A-Dependent Redox Biology

    SciTech Connect

    Nicely,N.; Parsonage, D.; Paige, C.; Newton, G.; Fahey, R.; Leonardi, R.; Jackowski, S.; Mallett, T.; Claiborne, A.

    2007-01-01

    Coenzyme A (CoASH) is the major low-molecular weight thiol in Staphylococcus aureus and a number of other bacteria; the crystal structure of the S. aureus coenzyme A-disulfide reductase (CoADR), which maintains the reduced intracellular state of CoASH, has recently been reported [Mallett, T.C., Wallen, J.R., Karplus, P.A., Sakai, H., Tsukihara, T., and Claiborne, A. (2006) Biochemistry 45, 11278-89]. In this report we demonstrate that CoASH is the major thiol in Bacillus anthracis; a bioinformatics analysis indicates that three of the four proteins responsible for the conversion of pantothenate (Pan) to CoASH in Escherichia coli are conserved in B. anthracis. In contrast, a novel type III pantothenate kinase (PanK) catalyzes the first committed step in the biosynthetic pathway in B. anthracis; unlike the E. coli type I PanK, this enzyme is not subject to feedback inhibition by CoASH. The crystal structure of B. anthracis PanK (BaPanK), solved using multiwavelength anomalous dispersion data and refined at a resolution of 2.0 {angstrom}, demonstrates that BaPanK is a new member of the Acetate and Sugar Kinase/Hsc70/Actin (ASKHA) superfamily. The Pan and ATP substrates have been modeled into the active-site cleft; in addition to providing a clear rationale for the absence of CoASH inhibition, analysis of the Pan-binding pocket has led to the development of two new structure-based motifs (the PAN and INTERFACE motifs). Our analyses also suggest that the type III PanK in the spore-forming B. anthracis plays an essential role in the novel thiol/disulfide redox biology of this category A biodefense pathogen.

  4. Redox biology of tuberculosis pathogenesis.

    PubMed

    Trivedi, Abhishek; Singh, Nisha; Bhat, Shabir Ahmed; Gupta, Pawan; Kumar, Ashwani

    2012-01-01

    Mycobacterium tuberculosis (Mtb) is one of the most successful human pathogens. Mtb is persistently exposed to numerous oxidoreductive stresses during its pathogenic cycle of infection and transmission. The distinctive ability of Mtb, not only to survive the redox stress manifested by the host but also to use it for synchronizing the metabolic pathways and expression of virulence factors, is central to its success as a pathogen. This review describes the paradigmatic redox and hypoxia sensors employed by Mtb to continuously monitor variations in the intracellular redox state and the surrounding microenvironment. Two component proteins, namely, DosS and DosT, are employed by Mtb to sense changes in oxygen, nitric oxide, and carbon monoxide levels, while WhiB3 and anti-sigma factor RsrA are used to monitor changes in intracellular redox state. Using these and other unidentified redox sensors, Mtb orchestrates its metabolic pathways to survive in nutrient-deficient, acidic, oxidative, nitrosative, and hypoxic environments inside granulomas or infectious lesions. A number of these metabolic pathways are unique to mycobacteria and thus represent potential drug targets. In addition, Mtb employs versatile machinery of the mycothiol and thioredoxin systems to ensure a reductive intracellular environment for optimal functioning of its proteins even upon exposure to oxidative stress. Mtb also utilizes a battery of protective enzymes, such as superoxide dismutase (SOD), catalase (KatG), alkyl hydroperoxidase (AhpC), and peroxiredoxins, to neutralize the redox stress generated by the host immune system. This chapter reviews the current understanding of mechanisms employed by Mtb to sense and neutralize redox stress and their importance in TB pathogenesis and drug development. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Non-equilibrium thermodynamics of thiol/disulfide redox systems: A perspective on redox systems biology

    PubMed Central

    Kemp, Melissa; Go, Young-Mi; Jones, Dean P.

    2008-01-01

    Understanding the dynamics of redox elements in biologic systems remains a major challenge for redox signaling and oxidative stress research. Central redox elements include evolutionarily conserved subsets of cysteines and methionines of proteins which function as sulfur switches and labile reactive oxygen species (ROS) and reactive nitrogen species (RNS) which function in redox signaling. The sulfur switches depend upon redox environments in which rates of oxidation are balanced with rates of reduction through the thioredoxins, glutathione/glutathione disulfide and cysteine/cystine redox couples. These central couples, which we term redox control nodes, are maintained at stable but non-equilibrium steady states, are largely independently regulated in different subcellular compartments and are quasi-independent from each other within compartments. Disruption of the redox control nodes can differentially affect sulfur switches, thereby creating a diversity of oxidative stress responses. Systems biology provides approaches to address the complexity of these responses. In the present review, we summarize thiol/disulfide pathway, redox potential and rate information as a basis for kinetic modeling of sulfur switches. The summary identifies gaps in knowledge especially related to redox communication between compartments, definition of redox pathways and discrimination between types of sulfur switches. A formulation for kinetic modeling of GSH/GSSG redox control indicates that systems biology could encourage novel therapeutic approaches to protect against oxidative stress by identifying specific redox-sensitive sites which could be targeted for intervention. PMID:18155672

  6. A Panoramic Overview of Mitochondria and Mitochondrial Redox Biology

    PubMed Central

    2014-01-01

    Mitochondria dysfunction was first described in the 1960s. However, the extent and mechanisms of mitochondria dysfunction’s role in cellular physiology and pathology has only recently begun to be appreciated. To adequately evaluate mitochondria-mediated toxicity, it is not only necessary to understand mitochondria biology, but discerning mitochondrial redox biology is also essential. The latter is intricately tied to mitochondrial bioenergetics. Mitochondrial free radicals, antioxidants, and antioxidant enzymes are players in mitochondrial redox biology. This review will provide an across-the-board, albeit not in-depth, overview of mitochondria biology and mitochondrial redox biology. With accumulating knowledge on mitochondria biology and mitochondrial redox biology, we may devise experimental methods with adequate sensitivity and specificity to evaluate mitochondrial toxicity, especially in vivo in living organisms, in the near future. PMID:25584141

  7. New tools for redox biology: From imaging to manipulation.

    PubMed

    Bilan, Dmitry S; Belousov, Vsevolod V

    2016-12-06

    Redox reactions play a key role in maintaining essential biological processes. Deviations in redox pathways result in the development of various pathologies at cellular and organismal levels. Until recently, studies on transformations in the intracellular redox state have been significantly hampered in living systems. The genetically encoded indicators, based on fluorescent proteins, have provided new opportunities in biomedical research. The existing indicators already enable monitoring of cellular redox parameters in different processes including embryogenesis, aging, inflammation, tissue regeneration, and pathogenesis of various diseases. In this review, we summarize information about all genetically encoded redox indicators developed to date. We provide the description of each indicator and discuss its advantages and limitations, as well as points that need to be considered when choosing an indicator for a particular experiment. One chapter is devoted to the important discoveries that have been made by using genetically encoded redox indicators.

  8. Theoretical estimation of redox potential of biological quinone cofactors.

    PubMed

    Gillet, Natacha; Lévy, Bernard; Moliner, Vicent; Demachy, Isabelle; de la Lande, Aurélien

    2017-07-05

    Redox potentials are essential to understand biological cofactor reactivity and to predict their behavior in biological media. Experimental determination of redox potential in biological system is often difficult due to complexity of biological media but computational approaches can be used to estimate them. Nevertheless, the quality of the computational methodology remains a key issue to validate the results. Instead of looking to the best absolute results, we present here the calibration of theoretical redox potential for quinone derivatives in water coupling QM + MM or QM/MM scheme. Our approach allows using low computational cost theoretical level, ideal for long simulations in biological systems, and determination of the uncertainties linked to the calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Chemistry and Redox Biology of Mycothiol.

    PubMed

    Reyes, Aníbal M; Pedre, Brandán; De Armas, María Inés; Tossounian, Maria-Armineh; Radi, Rafael; Messens, Joris; Trujillo, Madia

    2017-05-10

    Mycothiol (MSH, AcCys-GlcN-Ins) is the main low-molecular weight (LMW) thiol of most Actinomycetes, including the human pathogen Mycobacterium tuberculosis that affects millions of people worldwide. Strains with decreased MSH content show increased susceptibilities to hydroperoxides and electrophilic compounds. In M. tuberculosis, MSH modulates the response to several antituberculosis drugs. Enzymatic routes involving MSH could provide clues for specific drug design. Recent Advances: Physicochemical data argue against a rapid, nonenzymatic reaction of MSH with oxidants, disulfides, or electrophiles. Moreover, exposure of the bacteria to high concentrations of two-electron oxidants resulted in protein mycothiolation. The recently described glutaredoxin-like protein mycoredoxin-1 (Mrx-1) provides a route for catalytic reduction of mycothiolated proteins, protecting critical cysteines from irreversible oxidation. The description of MSH/Mrx-1-dependent activities of peroxidases helped to explain the higher susceptibility to oxidants observed in Actinomycetes lacking MSH. Moreover, the first mycothiol-S-transferase, member of the DinB superfamily of proteins, was described. In Corynebacterium, both the MSH/Mrx-1 and the thioredoxin pathways reduce methionine sulfoxide reductase A. A novel tool for in vivo imaging of the MSH/mycothiol disulfide (MSSM) status allows following changes in the mycothiol redox state during macrophage infection and its relationship with antibiotic sensitivity. Redundancy of MSH with other LMW thiols is starting to be unraveled and could help to rationalize the differences in the reported importance of MSH synthesis observed in vitro versus in animal infection models. Future work should be directed to establish the structural bases of the specificity of MSH-dependent enzymes, thus facilitating drug developments. Antioxid. Redox Signal. 00, 000-000.

  10. Linking mitochondrial bioenergetics to insulin resistance via redox biology.

    PubMed

    Fisher-Wellman, Kelsey H; Neufer, P Darrell

    2012-03-01

    Chronic overnutrition and physical inactivity are major risk factors for insulin resistance and type 2 diabetes. Recent research indicates that overnutrition generates an increase in hydrogen peroxide (H(2)O(2)) emission from mitochondria, serving as a release valve to relieve the reducing pressure created by fuel overload, as well as a primary signal that ultimately decreases insulin sensitivity. H(2)O(2) is a major input to cellular redox circuits that link to cysteine residues throughout the entire proteome to regulate cell function. Here we review the principles of mitochondrial bioenergetics and redox systems biology and offer new insight into how H(2)O(2) emission may be linked via redox biology to the etiology of insulin resistance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Linking mitochondrial bioenergetics to insulin resistance via redox biology

    PubMed Central

    Fisher-Wellman, Kelsey H.; Neufer, P. Darrell

    2012-01-01

    Chronic overnutrition and physical inactivity are major risk factors for insulin resistance and type 2 diabetes. Recent research indicates that overnutrition generates an increase in hydrogen peroxide (H2O2) emission from mitochondria, serving as a release valve to relieve the reducing pressure created by fuel overload, as well as a primary signal to ultimately decrease insulin sensitivity. H2O2 is a major input to cellular redox circuits that link to cysteine residues throughout the entire proteome to regulate cell function. Here we review the principles of mitochondrial bioenergetics and redox systems biology and offer new insight as to how H2O2 emission may be linked via redox biology to the etiology of insulin resistance. PMID:22305519

  12. Subcellular Redox Targeting: Bridging in Vitro and in Vivo Chemical Biology.

    PubMed

    Long, Marcus J C; Poganik, Jesse R; Ghosh, Souradyuti; Aye, Yimon

    2017-03-17

    Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.

  13. Circulating Membrane-Derived Microvesicles in Redox Biology

    PubMed Central

    Larson, Michael Craig; Hillery, Cheryl A.; Hogg, Neil

    2015-01-01

    Microparticles or microvesicles (MV) are sub-cellular membrane blebs shed from all cells in response to various stimuli. MVs carry a battery of signaling molecules, many of them related to redox-regulated processes. The role of MVs, either as a cause or result of cellular redox signaling has been increasingly recognized over the past decade. This is in part due to advances in flow cytometry and its detection of MVs. Notably, recent studies have shown circulating MVs from platelets and endothelial cells drive reactive species-dependent angiogenesis; circulating MVs in cancer alter the microenvironment and enhance invasion through horizontal transfer of mutated proteins and nucleic acids, and harbor redox-regulated matrix metalloproteinases and pro-coagulative surface molecules; and circulating MVs from RBCs and other cells modulate cell-cell interactions through scavenging or production of nitric oxide and other free radicals. While our recognition of MVs in redox-related processes is growing, especially in the vascular biology field, much remains unknown regarding the various biologic and pathologic functions of MVs. Like reactive oxygen and nitrogen species, MVs were originally believed to have a solely a pathological role in biology. And like our understanding of reactive species, it is now clear that MVs also play an important role in normal growth, development, and homeostasis. We are just beginning to understand how MVs are involved in various biological processes—developmental, homeostatic and pathological—and the role of MVs in redox signaling is an rich and exciting area of investigation. PMID:24751526

  14. Redox Biology Final Examination 2016 | Center for Cancer Research

    Cancer.gov

    Numerous registrants have requested a certificate upon completion of the Redox Biology (RB) course. In order to obtain a certificate, you must answer 8 of the 12 questions below correctly. In the final examination, 1 question is derived from each of the 1-hour lectures. It is highly recommended that you have a copy of each PowerPoint presentation prior to taking the examination.

  15. Redox Biology Course Evaluation Form | Center for Cancer Research

    Cancer.gov

    To improve the Redox Biology (RB) course in future years, we would appreciate your feedback by completing this course evaluation. Please score the course elements as poor, fair, average, good or excellent. Please type any comments that you have in response to the questions at the bottom of the form. Remember to include your name as you wish it to appear on the certificate. Thank you for your feedback.

  16. Redox Biology Course Registration Form | Center for Cancer Research

    Cancer.gov

    The Redox Biology class is open to all NIH/NCI fellows and staff and will be held Septhember 27 - November 8, 2016. The last day to register is: September 21, 2016. The first 100 registrants will be accepted for the class. Those who plan to participate by Video TeleConference should also register so that you can receive the speaker handouts in advance.

  17. The chemical biology of the persulfide (RSSH)/perthiyl (RSS·) redox couple and possible role in biological redox signaling.

    PubMed

    Bianco, Christopher L; Chavez, Tyler A; Sosa, Victor; Saund, Simran S; Nguyen, Q Nhu N; Tantillo, Dean J; Ichimura, Andrew S; Toscano, John P; Fukuto, Jon M

    2016-12-01

    The recent finding that hydropersulfides (RSSH) are biologically prevalent in mammalian systems has prompted further investigation of their chemical properties in order to provide a basis for understanding their potential functions, if any. Hydropersulfides have been touted as hyper-reactive thiol-like species that possess increased nucleophilicity and reducing capabilities compared to their thiol counterparts. Herein, using persulfide generating model systems, the ability of RSSH species to act as one-electron reductants has been examined. Not unexpectedly, RSSH is relatively easily oxidized, compared to thiols, by weak oxidants to generate the perthiyl radical (RSS·). Somewhat surprisingly, however, RSS· was found to be stable in the presence of both O2 and NO and only appears to dimerize. Thus, the RSSH/RSS· redox couple is readily accessible under biological conditions and since dimerization of RSS· may be a rare event due to low concentrations and/or sequestration within a protein, it is speculated that the general lack of reactivity of individual RSS· species may allow this couple to be utilized as a redox component in biological systems.

  18. The redox biology network in cancer pathophysiology and therapeutics

    PubMed Central

    Manda, Gina; Isvoranu, Gheorghita; Comanescu, Maria Victoria; Manea, Adrian; Debelec Butuner, Bilge; Korkmaz, Kemal Sami

    2015-01-01

    The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1) and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic), greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular heterogeneity and the

  19. The redox biology network in cancer pathophysiology and therapeutics.

    PubMed

    Manda, Gina; Isvoranu, Gheorghita; Comanescu, Maria Victoria; Manea, Adrian; Debelec Butuner, Bilge; Korkmaz, Kemal Sami

    2015-08-01

    The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1) and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic), greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular heterogeneity and the

  20. ROSICS: CHEMISTRY AND PROTEOMICS OF CYSTEINE MODIFICATIONS IN REDOX BIOLOGY

    PubMed Central

    Kim, Hee-Jung; Ha, Sura; Lee, Hee Yoon; Lee, Kong-Joo

    2015-01-01

    Post-translational modifications (PTMs) occurring in proteins determine their functions and regulations. Proteomic tools are available to identify PTMs and have proved invaluable to expanding the inventory of these tools of nature that hold the keys to biological processes. Cysteine (Cys), the least abundant (1–2%) of amino acid residues, are unique in that they play key roles in maintaining stability of protein structure, participating in active sites of enzymes, regulating protein function and binding to metals, among others. Cys residues are major targets of reactive oxygen species (ROS), which are important mediators and modulators of various biological processes. It is therefore necessary to identify the Cys-containing ROS target proteins, as well as the sites and species of their PTMs. Cutting edge proteomic tools which have helped identify the PTMs at reactive Cys residues, have also revealed that Cys residues are modified in numerous ways. These modifications include formation of disulfide, thiosulfinate and thiosulfonate, oxidation to sulfenic, sulfinic, sulfonic acids and thiosulfonic acid, transformation to dehydroalanine (DHA) and serine, palmitoylation and farnesylation, formation of chemical adducts with glutathione, 4-hydroxynonenal and 15-deoxy PGJ2, and various other chemicals. We present here, a review of relevant ROS biology, possible chemical reactions of Cys residues and details of the proteomic strategies employed for rapid, efficient and sensitive identification of diverse and novel PTMs involving reactive Cys residues of redox-sensitive proteins. We propose a new name, “ROSics,” for the science which describes the principles of mode of action of ROS at molecular levels. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc. Rapid Commun. Mass Spec Rev 34:184–208, 2015. PMID:24916017

  1. ROSics: chemistry and proteomics of cysteine modifications in redox biology.

    PubMed

    Kim, Hee-Jung; Ha, Sura; Lee, Hee Yoon; Lee, Kong-Joo

    2015-01-01

    Post-translational modifications (PTMs) occurring in proteins determine their functions and regulations. Proteomic tools are available to identify PTMs and have proved invaluable to expanding the inventory of these tools of nature that hold the keys to biological processes. Cysteine (Cys), the least abundant (1-2%) of amino acid residues, are unique in that they play key roles in maintaining stability of protein structure, participating in active sites of enzymes, regulating protein function and binding to metals, among others. Cys residues are major targets of reactive oxygen species (ROS), which are important mediators and modulators of various biological processes. It is therefore necessary to identify the Cys-containing ROS target proteins, as well as the sites and species of their PTMs. Cutting edge proteomic tools which have helped identify the PTMs at reactive Cys residues, have also revealed that Cys residues are modified in numerous ways. These modifications include formation of disulfide, thiosulfinate and thiosulfonate, oxidation to sulfenic, sulfinic, sulfonic acids and thiosulfonic acid, transformation to dehydroalanine (DHA) and serine, palmitoylation and farnesylation, formation of chemical adducts with glutathione, 4-hydroxynonenal and 15-deoxy PGJ2, and various other chemicals. We present here, a review of relevant ROS biology, possible chemical reactions of Cys residues and details of the proteomic strategies employed for rapid, efficient and sensitive identification of diverse and novel PTMs involving reactive Cys residues of redox-sensitive proteins. We propose a new name, "ROSics," for the science which describes the principles of mode of action of ROS at molecular levels.

  2. Calibration of CCD-based redox imaging for biological tissues

    NASA Astrophysics Data System (ADS)

    Xu, He N.; Wu, Baohua; Nioka, Shoko; Chance, Britton; Li, Lin Z.

    2009-02-01

    Clinically-translatable redox imaging methods developed in the Chance laboratory have been used for imaging mitochondrial metabolic states in tissues. The fluorescence of reduced pyridine nucleotide (PN or NADH) and oxidized flavoproteins (Fp) in the respiratory chain is sensitive to intracellular redox states. The redox ratios, i.e., Fp/(Fp+NADH) and NADH/(Fp+NADH) provide important metabolic information in living tissues. Usually the higher the metabolic flux, the less NADH, the more oxidized Fp, and the higher Fp redox ratio. Snap-freezing tissue samples under the liquid nitrogen condition preserves the tissue metabolic state in vivo. Here we report our work on the calibration of a homebuilt Charged Coupled Device (CCD) cryogenic redox imager using a series of snap-frozen solution standards of NADH and Fp. The NADH concentration ranged from 0-1318 μM and Fp from 0-719 μM. The sensitivity ratio of NADH and Fp channels was determined from the slope ratio of the two calibration curves and was used to correct the redox ratio of a human melanoma mouse xenograft. The NADH and Fp reference standards were placed adjacent to the tissue samples and their emission intensities were used to quantitatively determine the concentrations of NADH and Fp in a mouse xenograft of a human breast cancer line. Our method of imaging tissue samples along with reference NADH and Fp standards should facilitate the comparison of redox images obtained at different times or with different instrument parameters.

  3. Different redox states of metallothionein/thionein in biological tissue

    PubMed Central

    Krężel, Artur; Maret, Wolfgang

    2006-01-01

    Mammalian metallothioneins are redox-active metalloproteins. In the case of zinc metallothioneins, the redox activity resides in the cysteine sulfur ligands of zinc. Oxidation releases zinc, whereas reduction re-generates zinc-binding capacity. Attempts to demonstrate the presence of the apoprotein (thionein) and the oxidized protein (thionin) in tissues posed tremendous analytical challenges. One emerging strategy is differential chemical modification of cysteine residues in the protein. Chemical modification distinguishes three states of the cysteine ligands (reduced, oxidized and metal-bound) based on (i) quenched reactivity of the thiolates when bound to metal ions and restoration of thiol reactivity in the presence of metal-ion-chelating agents, and (ii) modification of free thiols with alkylating agents and subsequent reduction of disulfides to yield reactive thiols. Under normal physiological conditions, metallothionein exists in three states in rat liver and in cell lines. Ras-mediated oncogenic transformation of normal HOSE (human ovarian surface epithelial) cells induces oxidative stress and increases the amount of thionin and the availability of cellular zinc. These experiments support the notion that metallothionein is a dynamic protein in terms of its redox state and metal content and functions at a juncture of redox and zinc metabolism. Thus redox control of zinc availability from this protein establishes multiple methods of zinc-dependent cellular regulation, while the presence of both oxidized and reduced states of the apoprotein suggest that they serve as a redox couple, the generation of which is controlled by metal ion release from metallothionein. PMID:17134375

  4. Redox biology of exercise: an integrative and comparative consideration of some overlooked issues.

    PubMed

    Nikolaidis, Michalis G; Kyparos, Antonios; Spanou, Chrysoula; Paschalis, Vassilis; Theodorou, Anastasios A; Vrabas, Ioannis S

    2012-05-15

    The central aim of this review is to address the highly multidisciplinary topic of redox biology as related to exercise using an integrative and comparative approach rather than focusing on blood, skeletal muscle or humans. An attempt is also made to re-define 'oxidative stress' as well as to introduce the term 'alterations in redox homeostasis' to describe changes in redox homeostasis indicating oxidative stress, reductive stress or both. The literature analysis shows that the effects of non-muscle-damaging exercise and muscle-damaging exercise on redox homeostasis are completely different. Non-muscle-damaging exercise induces alterations in redox homeostasis that last a few hours post exercise, whereas muscle-damaging exercise causes alterations in redox homeostasis that may persist for and/or appear several days post exercise. Both exhaustive maximal exercise lasting only 30 s and isometric exercise lasting 1-3 min (the latter activating in addition a small muscle mass) induce systemic oxidative stress. With the necessary modifications, exercise is capable of inducing redox homeostasis alterations in all fluids, cells, tissues and organs studied so far, irrespective of strains and species. More importantly, 'exercise-induced oxidative stress' is not an 'oddity' associated with a particular type of exercise, tissue or species. Rather, oxidative stress constitutes a ubiquitous fundamental biological response to the alteration of redox homeostasis imposed by exercise. The hormesis concept could provide an interpretative framework to reconcile differences that emerge among studies in the field of exercise redox biology. Integrative and comparative approaches can help determine the interactions of key redox responses at multiple levels of biological organization.

  5. Modeling of biologically mediated redox processes in the subsurface

    NASA Astrophysics Data System (ADS)

    Lensing, H. J.; Vogt, M.; Herrling, B.

    1994-07-01

    To model bacterially catalyzed redox processes a multicomponent transport reaction model is presented. The transport part of the model solves the transient convection dispersion differential equations. The pure chemical submodel is conceptually similar to conventional thermodynamic equilibrium models. The kinetic submodel describes the heterotrophic metabolisms of several groups of microorganisms. To model a complete redox sequence (aerobic carbonaceous oxidation, denitrification, Fe(III)-reduction, Mn(IV)-reduction, and sulfate reduction) four functional bacterial groups are defined. Their growth and metabolisms are formulated in terms of Monod equations. As in other biofilm models, diffusion-limited exchange between the different phases (mobile pore water, biophase, and aquifer material) is also considered in this approach. The submodels are coupled by the equations of the microbially mediated redox reactions. This numerical technique permits direct mechanistic modeling of the influence of microbially catalyzed redox reactions on the chemical milieu of an aquifer. A two-step method is applied to solve the coupled transport and biochemical reaction equations. The numerical model was applied to field data of a natural subsurface flow path.

  6. Biological validation of coenzyme Q redox state by HPLC-EC measurement: relationship between coenzyme Q redox state and coenzyme Q content in rat tissues.

    PubMed

    Galinier, A; Carrière, A; Fernandez, Y; Bessac, A M; Caspar-Bauguil, S; Periquet, B; Comtat, M; Thouvenot, J P; Casteilla, L

    2004-12-03

    The properties of coenzymes Q (CoQ9 and CoQ10) are closely linked to their redox state (CoQox/total CoQ) x 100. In this work, CoQ redox state was biologically validated by high performance liquid chromatography-electrochemical measurement after modulation of mitochondrial electron flow of cultured cells by molecules increasing (rotenone, carbonyl cyanide chlorophenylhydrazone) or decreasing (antimycin) CoQ oxidation. The tissue specificity of CoQ redox state and content were investigated in control and hypoxic rats. In control rats, there was a strong negative linear regression between tissular CoQ redox state and CoQ content. Hypoxia increased CoQ9 redox state and decreased CoQ9 content in a negative linear relationship in the different tissues, except the heart and lung. This result demonstrates that, under conditions of mitochondrial impairment, CoQ redox control is tissue-specific.

  7. Biological redox cycling of iron in nontronite and its potential application in nitrate removal.

    PubMed

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K; Zeng, Qiang; Edelmann, Richard E; Pentrák, Martin; Agrawal, Abinash

    2015-05-05

    Biological redox cycling of structural Fe in phyllosilicates is an important but poorly understood process. The objective of this research was to study microbially mediated redox cycles of Fe in nontronite (NAu-2). During the reduction phase, structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens CN32 as mediator in bicarbonate- and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served as electron donor and nitrate as electron acceptor. Nitrate-dependent Fe(II)-oxidizing bacterium Pseudogulbenkiania sp. strain 2002 was added as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo three redox cycles without significant dissolution. Fe(II) in bioreduced samples occurred in two distinct environments, at edges and in the interior of the NAu-2 structure. Nitrate reduction to nitrogen gas was coupled with oxidation of edge-Fe(II) and part of interior-Fe(II) under both buffer conditions, and its extent and rate did not change with Fe redox cycles. These results suggest that biological redox cycling of structural Fe in phyllosilicates is a reversible process and has important implications for biogeochemical cycles of carbon, nitrogen, and other nutrients in natural environments.

  8. Nitric oxide function in plant biology: a redox cue in deconvolution.

    PubMed

    Yu, Manda; Lamattina, Lorenzo; Spoel, Steven H; Loake, Gary J

    2014-06-01

    Nitric oxide (NO), a gaseous, redox-active small molecule, is gradually becoming established as a central regulator of growth, development, immunity and environmental interactions in plants. A major route for the transfer of NO bioactivity is S-nitrosylation, the covalent attachment of an NO moiety to a protein cysteine thiol to form an S-nitrosothiol (SNO). This chemical transformation is rapidly emerging as a prototypic, redox-based post-translational modification integral to the life of plants. Here we review the myriad roles of NO and SNOs in plant biology and, where known, the molecular mechanisms underpining their activity.

  9. Redox control bioreactor: a unique biological water processor.

    PubMed

    Smith, Daniel P; Rector, Tony; Reid-Black, Kristina; Hummerick, Mary; Strayer, Richard; Birmele, Michele; Roberts, Michael S; Garland, Jay L

    2008-03-01

    The redox control bioreactor (RCB) is a new hollow fiber membrane bioreactor (HFMBR) design in which oxygen and hydrogen gases are provided simultaneously through separate arrays of juxtaposed hollow fiber (HF) membranes. This study applied the RCB for completely autotrophic conversion of ammonia to N(2) through nitrification with O(2) and denitrification using hydrogen as an electron donor (i.e., autohydrogentrophic denitrification). The hypothesis of this research was that efficient biofilm utilization of O(2) and H(2) at respective HFs would limit transport of these gases to bulk fluid, thereby enabling completely autotrophic ammonia conversion to N(2) through the co-occurrence of ammonia oxidation (O(2)-HF biofilms) and autohydrogenotrophic denitrification (H(2)-HF biofilms). A prototype RCB was fabricated and operated for 215 days on a synthetic, organic-free feedstream containing 217 mg L(-1) NH(4)(+)-N. When O(2) and H(2) were simultaneously supplied, the RCB achieved a steady NH(4)(+)-N removal flux of 5.8 g m(-2) day(-1) normalized to O(2)-HF surface area with a concomitant removal flux of 4.4 g m(-2) day(-1) (NO(3)(-))+NO(2)(-))-N based on H(2)-HF surface area. The significance of H(2) supply was confirmed by an increase in effluent NO(3)(-)-N when H(2) supply was discontinued and a decline in NO(3)(-)-N when H(2) supply was restarted. Increases in H(2) pressure caused decreased ammonia utilization, suggesting that excess H(2) interfered with nitrification. Microprobe profiling across radial transects revealed significant gradients in dissolved O(2) on spatial scales of 1 mm or less. Physiological and molecular analysis of biofilms confirmed that structurally and functionally distinct biofilms developed on adjacent, juxtaposed fibers. Copyright 2007 Wiley Periodicals, Inc.

  10. The reversibility of the vitamin C redox system: electrochemical reasons and biological aspects.

    PubMed

    Sapper, H; Kang, S O; Paul, H H; Lohmann, W

    1982-10-01

    The biological efficacy of vitamin C depends on its redox abilities as given by the relations between ascorbic acid, semidehydroascorbic acid, and dehydroascorbic acid. It is shown by means of proton magnetic resonance spectroscopy that the enzymatic (by ascorbate oxidase) as well as non-enzymatic (by iodine) oxidation of ascorbic acid is, in principle, reversible despite the hydration and structural changes during the formation of dehydroascorbic acid. The strong redox activity of semidehydroascorbic acid which results in a fast disproportionation to ascorbic acid and dehydroascorbic acid is inferred from an inversion of the electrochemical potentials of the vitamin C redox system. The capacity of this is maintained by a fast reduction of dehydroascorbic acid e.g. by reduced glutathione, preventing its delactonization and further degradation.

  11. Biochemical methods for monitoring protein thiol redox states in biological systems

    PubMed Central

    Rudyk, Olena; Eaton, Philip

    2014-01-01

    Oxidative post-translational modifications of proteins resulting from events that increase cellular oxidant levels play important roles in physiological and pathophysiological processes. Evaluation of alterations to protein redox states is increasingly common place because of methodological advances that have enabled detection, quantification and identification of such changes in cells and tissues. This mini-review provides a synopsis of biochemical methods that can be utilized to monitor the array of different oxidative and electrophilic modifications that can occur to protein thiols and can be important in the regulatory or maladaptive impact oxidants can have on biological systems. Several of the methods discussed are valuable for monitoring the redox state of established redox sensing proteins such as Keap1. PMID:25009782

  12. Biological Redox Cycling Of Iron In Nontronite And Its Potential Application In Nitrate Removal

    SciTech Connect

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.; Zeng, Qiang; Edelmann, Richard E.; Pentrak, Martin; Agrawal, Abinash

    2015-05-05

    Redox cycling of structural Fe in phyllosilicates provides a potential method to remediate nitrate contamination in natural environment. Past research has only studied chemical redox cycles or a single biologically mediated redox cycle of Fe in phyllosilicates. The objective of this research was to study three microbially driven redox cycles of Fe in one phyllosilicate, nontronite (NAu-2). During the reduction phase structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacteria Shewanella putrefaciens CN32 as mediator in bicarbonate-buffered and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served an electron donor, nitrate as electron acceptor, and nitrate-dependent Fe(II)-oxidizing bacteria Pseudogulbenkiania sp. strain 2002 as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo 3 redox cycles without significant reductive or oxidative dissolution. X-ray diffraction and scanning and transmission electron microscopy revealed that NAu-2 was the dominant residual mineral throughout the 3 redox cycles with some dissolution textures but no significant secondary mineralization. Mössbauer spectroscopy revealed that Fe(II) in bio-reduced samples likely occurred in two distinct environments, at edges and the interior of the NAu-2 structure. Nitrate was completely reduced to nitrogen gas under both buffer conditions and this extent and rate did not change with Fe redox cycles. Mössbauer spectroscopy further revealed that nitrate reduction was coupled to predominant/preferred oxidation of edge Fe(II). These results suggest that structural Fe in phyllosilicates may represent a renewable source to continuously remove nitrate in natural environments.

  13. Reactions of copper macrocycles with antioxidants and HOCl: potential for biological redox sensing.

    PubMed

    Sowden, Rebecca J; Trotter, Katherine D; Dunbar, Lynsey; Craig, Gemma; Erdemli, Omer; Spickett, Corinne M; Reglinski, John

    2013-02-01

    A series of simple copper N(2)S(2) macrocycles were examined for their potential as biological redox sensors, following previous characterization of their redox potentials and crystal structures. The divalent species were reduced by glutathione or ascorbate at a biologically relevant pH in aqueous buffer. A less efficient reduction was also achieved by vitamin E in DMSO. Oxidation of the corresponding univalent copper species by sodium hypochlorite resulted in only partial (~65 %) recovery of the divalent form. This was concluded to be due to competition between metal oxidation and ligand oxidation, which is believed to contribute to macrocycle demetallation. Electrospray mass spectrometry confirmed that ligand oxidation had occurred. Moreover, the macrocyclic complexes could be demetallated by incubation with EDTA and bovine serum albumin, demonstrating that they would be inappropriate for use in biological systems. The susceptibility to oxidation and demetallation was hypothesized to be due to oxidation of the secondary amines. Consequently these were modified to incorporate additional oxygen donor atoms. This modification led to greater resistance to demetallation and ligand oxidation, providing a better platform for further development of copper macrocycles as redox sensors for use in biological systems.

  14. Direct (1)O2 optical excitation: A tool for redox biology.

    PubMed

    Blázquez-Castro, Alfonso

    2017-10-01

    Molecular oxygen (O2) displays very interesting properties. Its first excited state, commonly known as singlet oxygen ((1)O2), is one of the so-called Reactive Oxygen Species (ROS). It has been implicated in many redox processes in biological systems. For many decades its role has been that of a deleterious chemical species, although very positive clinical applications in the Photodynamic Therapy of cancer (PDT) have been reported. More recently, many ROS, and also (1)O2, are in the spotlight because of their role in physiological signaling, like cell proliferation or tissue regeneration. However, there are methodological shortcomings to properly assess the role of (1)O2 in redox biology with classical generation procedures. In this review the direct optical excitation of O2 to produce (1)O2 will be introduced, in order to present its main advantages and drawbacks for biological studies. This photonic approach can provide with many interesting possibilities to understand and put to use ROS in redox signaling and in the biomedical field. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.

  15. Ionizing Radiation-Induced Responses: Where Free Radical Chemistry Meets Redox Biology and Medicine

    PubMed Central

    Hauer-Jensen, Martin

    2014-01-01

    Abstract The biological effects of ionizing radiation (IR) from environmental, medical, and man-made sources, as well as from space exploration are of broad health concern. During the last 40 years it has become evident that, in addition to short-lived free radical-mediated events initiated within microseconds of exposure and generally thought to dissipate within milliseconds, IR-induced production of reactive oxygen and nitrogen species as well as changes in redox signaling linked to disruption of metabolic processes persist long after radiation exposure. Furthermore, persistent IR-induced increases in the metabolic production of reactive oxygen and nitrogen species appear to significantly contribute to the delayed effects of IR exposure, including induction of adaptive responses at low doses as well as carcinogenesis, fibrosis, inflammation, genomic instability, and acceleration of the onset of degenerative tissue injury processes associated with aging. The ability to identify the specific metabolic mechanisms and dose–response relationships that contribute to adaptive responses as well as persistent IR-induced injury processes holds great promise for identifying novel strategies to mitigate the deleterious effects of IR exposure as well as for gathering mechanistic information critical for risk assessment. This Forum contains original and review articles authored by experts in the field of radiobiology focusing on novel mechanisms involving redox biology and metabolism that significantly contribute to the persistent biological effects seen following IR exposure. Antioxid. Redox Signal. 20, 1407–1409. PMID:24354361

  16. The chemical biology of hydropersulfides (RSSH): Chemical stability, reactivity and redox roles.

    PubMed

    Saund, Simran S; Sosa, Victor; Henriquez, Stephanie; Nguyen, Q Nhu N; Bianco, Christopher L; Soeda, Shuhei; Millikin, Robert; White, Corey; Le, Henry; Ono, Katsuhiko; Tantillo, Dean J; Kumagai, Yoshito; Akaike, Takaaki; Lin, Joseph; Fukuto, Jon M

    2015-12-15

    Recent reports indicate the ubiquitous prevalence of hydropersulfides (RSSH) in mammalian systems. The biological utility of these and related species is currently a matter of significant speculation. The function, lifetime and fate of hydropersulfides will be assuredly based on their chemical properties and reactivity. Thus, to serve as the basis for further mechanistic studies regarding hydropersulfide biology, some of the basic chemical properties/reactivity of hydropersulfides was studied. The nucleophilicity, electrophilicity and redox properties of hydropersulfides were examined under biological conditions. These studies indicate that hydropersulfides can be nucleophilic or electrophilic, depending on the pH (i.e. the protonation state) and can act as good one- and two-electron reductants. These diverse chemical properties in a single species make hydropersulfides chemically distinct from other, well-known sulfur containing biological species, giving them unique and potentially important biological function.

  17. Nitric Oxide and Redox Regulation in the Liver: Part I General Considerations and Redox biology in Hepatitis

    PubMed Central

    Diesen, Diana L.; Kuo, Paul C.

    2010-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are created in normal hepatocytes and are critical for normal physiological processes including oxidative respiration, growth, regeneration, apoptosis, and microsomal defense. When the levels of oxidation products exceed the capacity of normal antioxidant systems, oxidative stress occurs. This type of stress, in the form of ROS and RNS, can be damaging to all liver cells, including hepatocytes, Kupffer cells, stellate cells, and endothelial cells, through induction of inflammation, ischemia, fibrosis, necrosis, apoptosis, or through malignant transformation by damaging lipids, proteins, and/or DNA. In part I of this review, we will discuss basic redox biology in the liver, including a review of ROS, RNS, and antioxidants, with a focus on nitric oxide as a common source of RNS. We will then review the evidence for oxidative stress as a mechanism of liver injury in hepatitis (alcoholic, viral, non-alcoholic). In part II of this review, we will review oxidative stress in common pathophysiological conditions including ischemia/reperfusion injury, fibrosis, hepatocellular carcinoma, iron overload, Wilson's disease, sepsis and acetaminophen overdose. Finally, biomarkers, proteomic, and antioxidant therapies will be discussed as areas for future therapeutic interventions. PMID:20444470

  18. Competing for phosphors under changing redox conditions: biological versus geochemical sinks

    NASA Astrophysics Data System (ADS)

    Gross, A.; Pett-Ridge, J.; Silver, W. L.

    2016-12-01

    Competing for phosphorus under changing redox conditions: biological versus geochemical sinksAvner Gross1, Jennifer Pett-Ridge2 and Whendee L Silver1 University of California Berkeley, Department of Environmental Science, Policy, & Management, Berkeley, CA, USA. Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, USA. The cycling of phosphorous (P) in highly weathered, humid tropical forest soils is tightly regulated by P sorption dynamics to the surfaces of Fe(III) (hydr)oxides and root and microbial demands for P. Periods of anoxic soil conditions, which are common in humid environments, induce the reduction of Fe (III) to Fe (II) and may release sorbed P into the soil solution. The microbial demand for P is influenced by the C and nutrient composition of their available substrates. Therefore, we hypothesize that soil redox conditions and substrate quality and availability will control the partitioning of P between microbial biomass and the soil mineral phase. The aim of this study was to examine how fluctuations in soil redox conditions and changes in microbial P demand affect the fate of new P that enters the soil solution. To achieve this aim we conducted a series of soil incubation experiments using a wet tropical soil from Puerto Rico (where redox conditions and P availability naturally oscillate) with a single pulse of phosphate (PO4), altering both the microbial activity and redox conditions. To follow the fate the added P, the added phosphate was labeled with 18O. As the exchange of oxygen between phosphate and water only occurs during biological processes, P-18O labeling can be used as an indicator of microbial use. To quantify sizes of the microbial and mineral P pools we used traditional chemical extractions in the bulk scale. We used NanoSIMS isotopic imaging to map the distribution of P-16O and P-18O and co-localization with Fe minerals at the nano scale. Our results show that the amount of the added P fixed

  19. The redox biology of schistosome parasites and applications for drug development.

    PubMed

    Huang, Hsin-Hung; Rigouin, Coraline; Williams, David L

    2012-01-01

    Schistosomiasis caused by Schistosoma spp. is a serious public health concern, especially in sub-Saharan Africa. Praziquantel is the only drug currently administrated to treat this disease. However, praziquantel-resistant parasites have been identified in endemic areas and can be generated in the laboratory. Therefore, it is essential to find new therapeutics. Antioxidants are appealing drug targets. In order to survive in their hosts, schistosomes are challenged by reactive oxygen species from intrinsic and extrinsic sources. Schistosome antioxidant enzymes have been identified as essential proteins and novel drug targets and inhibition of the antioxidant response can lead to parasite death. Because the organization of the redox network in schistosomes is significantly different from that in humans, new drugs are being developed targeting schistosome antioxidants. In this paper the redox biology of schistosomes is discussed and their potential use as drug targets is reviewed. It is hoped that compounds targeting parasite antioxidant responses will become clinically relevant drugs in the near future.

  20. Electrochemical reverse engineering: A systems-level tool to probe the redox-based molecular communication of biology.

    PubMed

    Li, Jinyang; Liu, Yi; Kim, Eunkyoung; March, John C; Bentley, William E; Payne, Gregory F

    2016-12-29

    The intestine is the site of digestion and forms a critical interface between the host and the outside world. This interface is composed of host epithelium and a complex microbiota which is "connected" through an extensive web of chemical and biological interactions that determine the balance between health and disease for the host. This biology and the associated chemical dialogues occur within a context of a steep oxygen gradient that provides the driving force for a variety of reduction and oxidation (redox) reactions. While some redox couples (e.g., catecholics) can spontaneously exchange electrons, many others are kinetically "insulated" (e.g., biothiols) allowing the biology to set and control their redox states far from equilibrium. It is well known that within cells, such non-equilibrated redox couples are poised to transfer electrons to perform reactions essential to immune defense (e.g., transfer from NADH to O2 for reactive oxygen species, ROS, generation) and protection from such oxidative stresses (e.g., glutathione-based reduction of ROS). More recently, it has been recognized that some of these redox-active species (e.g., H2O2) cross membranes and diffuse into the extracellular environment including lumen to transmit redox information that is received by atomically-specific receptors (e.g., cysteine-based sulfur switches) that regulate biological functions. Thus, redox has emerged as an important modality in the chemical signaling that occurs in the intestine and there have been emerging efforts to develop the experimental tools needed to probe this modality. We suggest that electrochemistry provides a unique tool to experimentally probe redox interactions at a systems level. Importantly, electrochemistry offers the potential to enlist the extensive theories established in signal processing in an effort to "reverse engineer" the molecular communication occurring in this complex biological system. Here, we review our efforts to develop this

  1. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine.

    PubMed

    Cortese-Krott, Miriam M; Koning, Anne; Kuhnle, Gunter G C; Nagy, Peter; Bianco, Christopher L; Pasch, Andreas; Wink, David A; Fukuto, Jon M; Jackson, Alan A; van Goor, Harry; Olson, Kenneth R; Feelisch, Martin

    2017-10-01

    Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent Advances: Similar to reactive oxygen species and reactive nitrogen species, reactive sulfur species are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism, and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept defined as the reactive species interactome (RSI). The RSI is a primeval multilevel redox regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stressors to enhance fitness and resilience at the local and whole-organism level. To better characterize the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems, and effects on cellular, organ, and whole-organism bioenergetics using system-level/network analyses. Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other forms of stress will provide new prevention/intervention opportunities for personalized medicine. Antioxid. Redox Signal. 00, 000-000.

  2. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine

    PubMed Central

    Koning, Anne; Kuhnle, Gunter G.C.; Nagy, Peter; Bianco, Christopher L.; Pasch, Andreas; Wink, David A.; Fukuto, Jon M.; Jackson, Alan A.; van Goor, Harry; Olson, Kenneth R.

    2017-01-01

    Abstract Significance: Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent Advances: Similar to reactive oxygen species and reactive nitrogen species, reactive sulfur species are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism, and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept defined as the reactive species interactome (RSI). The RSI is a primeval multilevel redox regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stressors to enhance fitness and resilience at the local and whole-organism level. Critical Issues: To better characterize the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems, and effects on cellular, organ, and whole-organism bioenergetics using system-level/network analyses. Future Directions: Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other forms of stress will provide new prevention/intervention opportunities for personalized medicine. Antioxid. Redox

  3. Multicomponent redox catalysts for reduction of large biological molecules using molecular hydrogen as the reductant

    SciTech Connect

    Chao, S.; Simon, R.A.; Mallouk, T.E.; Wrighton, M.S.

    1988-03-30

    One-electron reduction of the large biological molecules horse heart cytochrome c, sperm whale myoglobin, and horseradish peroxidase using H/sub 2/ as the reductant can be catalyzed by two-component, high surface area heterogeneous catalysts. The catalysts can be prepared by first functionalizing high surface area SiO/sub 2/ with a polycationic polymer into which is dispersed MCl/sub 4//sup 2 -/ (M = Pd, Pt). Reduction with H/sub 2/ yields elemental Pd or Pt dispersed in the polymer. The particles are finally functionalized with a redox polymer derived from hydrolysis of Si(OR)/sub 3/ groups of an N,N'-dialkyl-4,4'-bipyridinium- or from a cobalticenium-based monomer. The two components of the heterogeneous catalysts are the buried noble metal capable of activating the H/sub 2/ and the redox polymer, which can equilibrate both with the noble metal and with the large biological molecule. Reduction of the large biological molecules in aqueous solution can be effected at room temperature and 1 atm H/sub 2/ using the catalysts under conditions where the biological materials would not be reducible with H/sub 2/ alone or when the noble metal alone would be used as the catalyst.

  4. Species-Specific Thiol-Disulfide Equilibrium Constant: A Tool To Characterize Redox Transitions of Biological Importance.

    PubMed

    Mirzahosseini, Arash; Somlyay, Máté; Noszál, Béla

    2015-08-13

    Microscopic redox equilibrium constants, a new species-specific type of physicochemical parameters, were introduced and determined to quantify thiol-disulfide equilibria of biological significance. The thiol-disulfide redox equilibria of glutathione with cysteamine, cysteine, and homocysteine were approached from both sides, and the equilibrium mixtures were analyzed by quantitative NMR methods to characterize the highly composite, co-dependent acid-base and redox equilibria. The directly obtained, pH-dependent, conditional constants were then decomposed by a new evaluation method, resulting in pH-independent, microscopic redox equilibrium constants for the first time. The 80 different, microscopic redox equilibrium constant values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.

  5. Synchrotron-Based Infrared Microanalysis of Biological Redox Processes under Electrochemical Control

    PubMed Central

    2016-01-01

    We describe a method for addressing redox enzymes adsorbed on a carbon electrode using synchrotron infrared microspectroscopy combined with protein film electrochemistry. Redox enzymes have high turnover frequencies, typically 10–1000 s–1, and therefore, fast experimental triggers are needed in order to study subturnover kinetics and identify the involvement of transient species important to their catalytic mechanism. In an electrochemical experiment, this equates to the use of microelectrodes to lower the electrochemical cell constant and enable changes in potential to be applied very rapidly. We use a biological cofactor, flavin mononucleotide, to demonstrate the power of synchrotron infrared microspectroscopy relative to conventional infrared methods and show that vibrational spectra with good signal-to-noise ratios can be collected for adsorbed species with low surface coverages on microelectrodes with a geometric area of 25 × 25 μm2. We then demonstrate the applicability of synchrotron infrared microspectroscopy to adsorbed proteins by reporting potential-induced changes in the flavin mononucleotide active site of a flavoenzyme. The method we describe will allow time-resolved spectroscopic studies of chemical and structural changes at redox sites within a variety of proteins under precise electrochemical control. PMID:27269716

  6. Role of NADPH oxidases in the redox biology of liver fibrosis

    PubMed Central

    Crosas-Molist, Eva; Fabregat, Isabel

    2015-01-01

    Liver fibrosis is the pathological consequence of chronic liver diseases, where an excessive deposition of extracellular matrix (ECM) proteins occurs, concomitantly with the processes of repair and regeneration. It is characterized by increased production of matrix proteins, in particular collagens, and decreased matrix remodelling. The principal source of ECM accumulation is myofibroblasts (MFB). Most fibrogenic MFB are endogenous to the liver, coming from hepatic stellate cells (HSC) and portal fibroblasts. Dysregulated inflammatory responses have been associated with most (if not all) hepatotoxic insults and chronic oxidative stress play a role during the initial liver inflammatory phase and its progression to fibrosis. Redox-regulated processes are responsible for activation of HSC to MFB, as well as maintenance of the MFB function. Increased oxidative stress also induces hepatocyte apoptosis, which contributes to increase the liver injury and to transdifferentiate HSC to MFB, favouring the fibrogenic process. Mitochondria and other redox-active enzymes can generate superoxide and hydrogen peroxide as a by-product in liver cells. Moreover, accumulating evidence indicates that NADPH oxidases (NOXs), which play a critical role in the inflammatory response, may contribute to reactive oxygen species (ROS) production during liver fibrosis, being important players in HSC activation and hepatocyte apoptosis. Based on the knowledge of the pathogenic role of ROS, different strategies to prevent or reverse the oxidative damage have been developed to be used as therapeutic tools in liver fibrosis. This review will update all these concepts, highlighting the relevance of redox biology in chronic fibrogenic liver pathologies. PMID:26204504

  7. The Japanese Emperor bestows Medal with Purple Ribbon on antioxidants and redox signaling editor Hideo Utsumi for contributions to redox biology.

    PubMed

    Ozawa, Toshihiko; Ichikawa, Kazuhiro

    2012-03-01

    On November 15, 2011, the Japanese Emperor bestowed the Medal with Purple Ribbon on Professor Hideo Utsumi for contributions to redox biology. Professor Utsumi was awarded Ph.D. in Pharmaceutical Sciences from University of Tokyo in 1976, and started his professional career as Assistant Professor at Teikyo University. He visited Cologne University as fellow during 1978-1980. In 1982, he moved to Showa University as Associate Professor. In 1994, he moved to Kyushu University as Professor. During 2008-2010, he served as vice president of Kyushu University. From 2007 to now he serves as the Director of Innovation Center for Medical Redox Navigation. Beginning 2010 he serves as the Executive Director of the Center for Product Evaluation, Pharmaceuticals and Medical Devices Agency. Professor Utsumi was the first to develop in vivo electron spin resonance (ESR; also known as electron paramagnetic resonance) imaging system in Japan and commercialized it to promote redox research. Over 30 in vivo ESR systems are currently used in Japan today. A compact or high-resolution Overhauser-enhanced MRI system has been developed by his group and will be available next year. His translational research activities have uniquely covered instrumentation, organic synthesis, and disease model applications. He synthesized many redox-sensitive compounds, and collaborated with clinicians to understand mechanisms underlying disease systems caused by redox imbalance using his compounds as tools. Thus, Professor Hideo Utsumi contributed a novel technology to investigate in vivo redox status in disease models. This technology platform has immense potential for bedside application to humans.

  8. Cross Talk between Cellular Redox Status, Metabolism, and p53 in Neural Stem Cell Biology.

    PubMed

    Forsberg, Kirsi; Di Giovanni, Simone

    2014-08-01

    In recent years, the importance of the cellular redox status for neural stem cell (NSC) homeostasis has become increasingly clear. Similarly, the transcription factor and tumor suppressor p53 has been implicated in the regulation of cell metabolism, in antioxidant response, and in stem cell quiescence and fate commitment. Here, we explore the known and putative functions of p53 in antioxidant response and metabolic control and examine how reactive oxygen species, p53, and related cellular signaling may regulate NSC homeostasis, quiescence, and differentiation. We also discuss the role that PI3K-Akt-mTOR signaling plays in NSC biology and oxidative signaling and how p53 contributes to the regulation of this signaling cascade. Finally, we invite reflection on the several unanswered questions of the role that p53 plays in NSC biology and metabolism, anticipating future directions. © The Author(s) 2014.

  9. Systems biology defines the biological significance of redox-active proteins during cellulose degradation in an aerobic bacterium.

    PubMed

    Gardner, Jeffrey G; Crouch, Lucy; Labourel, Aurore; Forsberg, Zarah; Bukhman, Yury V; Vaaje-Kolstad, Gustav; Gilbert, Harry J; Keating, David H

    2014-10-08

    Microbial depolymerization of plant cell walls contributes to global carbon balance and is a critical component of renewable energy. The genomes of lignocellulose degrading microorganisms encode diverse classes of carbohydrate modifying enzymes, although currently there is a paucity of knowledge on the role of these proteins in vivo. We report the comprehensive analysis of the cellulose degradation system in the saprophytic bacterium Cellvibrio japonicus. Gene expression profiling of C. japonicus demonstrated that three of the 12 predicted β-1,4 endoglucanases (cel5A, cel5B, and cel45A) and the sole predicted cellobiohydrolase (cel6A) showed elevated expression during growth on cellulose. Targeted gene disruptions of all 13 predicted cellulase genes showed that only cel5B and cel6A were required for optimal growth on cellulose. Our analysis also identified three additional genes required for cellulose degradation: lpmo10B encodes a lytic polysaccharide monooxygenase (LPMO), while cbp2D and cbp2E encode proteins containing carbohydrate binding modules and predicted cytochrome domains for electron transfer. CjLPMO10B oxidized cellulose and Cbp2D demonstrated spectral properties consistent with redox function. Collectively, this report provides insight into the biological role of LPMOs and redox proteins in cellulose utilization and suggests that C. japonicus utilizes a combination of hydrolytic and oxidative cleavage mechanisms to degrade cellulose.

  10. The Redox Biology of Schistosome Parasites and Applications for Drug Development

    PubMed Central

    Huang, Hsin-Hung; Rigouin, Coraline; Williams, David L.

    2013-01-01

    Schistosomiasis caused by Schistosoma spp. is a serious public health concern, especially in sub-Saharan Africa. Praziquantel is the only drug currently administrated to treat this disease. However, praziquantel-resistant parasites have been identified in endemic areas and can be generated in the laboratory. Therefore, it is essential to find new therapeutics. Antioxidants are appealing drug targets. In order to survive in their hosts, schistosomes are challenged by reactive oxygen species from intrinsic and extrinsic sources. Schistosome antioxidant enzymes have been identified as essential proteins and novel drug targets and inhibition of the antioxidant response can lead to parasite death. Because the organization of the redox network in schistosomes is significantly different form that in humans, new drugs are being developed targeting schistosome antioxidants. In this paper the redox biology of schistosomes is discussed and their potential use as drug targets is reviewed. It is hoped that compounds targeting parasite antioxidant responses will become clinically relevant drugs in the near future. PMID:22607149

  11. Understanding the cytotoxicity or cytoprotective effects of biological and synthetic quinone derivatives by redox mechanism.

    PubMed

    Borges, Rosivaldo S; Carneiro, Agnaldo S; Barros, Tainá G; Barros, Carlos A L; Neto, Antonio M J Chaves; da Silva, Albérico B F

    2014-12-01

    Quinones represent an important class of biological compounds, but are also involved with toxicological intermediates and among their hazardous effects include cytotoxicity, immunotoxicity, and carcinogenesis. The structure-toxicity relationship for quinone derivatives has been used to cytotoxicity or cytoprotective effects by redox mechanism is determined using quantum chemical calculations through the density functional theory (DFT). According to our DFT study, the electron acceptance is related with LUMO, electron affinity, and stabilization energy values. The highest spin density distribution in the heteroatoms is more favored for the more cytotoxic compounds. The electrophilic capacities of these compounds have been related with LUMO values. The cytotoxic properties of quinones are related to the stabilization energy after electron accepting by redox mechanism. Electron affinity is the most relevant parameter related to toxicity mechanism. Regioisomers has different electrophilic capacity. The electrophilicity increases on molecules containing electron-withdrawing groups (EWG) and reduces on molecules containing electron-donating groups (EDG). These results explain the toxic difference between natural and synthetic quinone derivatives and can be used in the design and study of new drugs.

  12. Redox chemistry of molybdenum in natural waters and its involvement in biological evolution

    PubMed Central

    Wang, Deli

    2012-01-01

    The transition element molybdenum (Mo) possesses diverse valances (+II to +VI), and is involved in forming cofactors in more than 60 enzymes in biology. Redox switching of the element in these enzymes catalyzes a series of metabolic reactions in both prokaryotes and eukaryotes, and the element therefore plays a fundamental role in the global carbon, nitrogen, and sulfur cycling. In the present oxygenated waters, oxidized Mo(VI) predominates thermodynamically, whilst reduced Mo species are mainly confined within specific niches including cytoplasm. Only recently has the reduced Mo(V) been separated from Mo(VI) in sulfidic mats and even in some reducing waters. Given the presence of reduced Mo(V) in contemporary anaerobic habitats, it seems that reduced Mo species were present in the ancient reducing ocean (probably under both ferruginous and sulfidic conditions), prompting the involvement of Mo in enzymes including nitrogenase and nitrate reductase. During the global transition to oxic conditions, reduced Mo species were constrained to specific anaerobic habitats, and efficient uptake systems of oxidized Mo(VI) became a selective advantage for current prokaryotic and eukaryotic cells. Some prokaryotes are still able to directly utilize reduced Mo if any exists in ambient environments. In total, this mini-review describes the redox chemistry and biogeochemistry of Mo over the Earth’s history. PMID:23267355

  13. Redox chemistry of molybdenum in natural waters and its involvement in biological evolution.

    PubMed

    Wang, Deli

    2012-01-01

    The transition element molybdenum (Mo) possesses diverse valances (+II to +VI), and is involved in forming cofactors in more than 60 enzymes in biology. Redox switching of the element in these enzymes catalyzes a series of metabolic reactions in both prokaryotes and eukaryotes, and the element therefore plays a fundamental role in the global carbon, nitrogen, and sulfur cycling. In the present oxygenated waters, oxidized Mo(VI) predominates thermodynamically, whilst reduced Mo species are mainly confined within specific niches including cytoplasm. Only recently has the reduced Mo(V) been separated from Mo(VI) in sulfidic mats and even in some reducing waters. Given the presence of reduced Mo(V) in contemporary anaerobic habitats, it seems that reduced Mo species were present in the ancient reducing ocean (probably under both ferruginous and sulfidic conditions), prompting the involvement of Mo in enzymes including nitrogenase and nitrate reductase. During the global transition to oxic conditions, reduced Mo species were constrained to specific anaerobic habitats, and efficient uptake systems of oxidized Mo(VI) became a selective advantage for current prokaryotic and eukaryotic cells. Some prokaryotes are still able to directly utilize reduced Mo if any exists in ambient environments. In total, this mini-review describes the redox chemistry and biogeochemistry of Mo over the Earth's history.

  14. Chemical Biology of Hydropersulfides and Related Species: Possible Roles in Cellular Protection and Redox Signaling.

    PubMed

    Álvarez, Lucía; Bianco, Christopher L; Toscano, John P; Lin, Joseph; Akaike, Takaaki; Fukuto, Jon M

    2017-10-01

    For >20 years, physiological signaling associated with the endogenous generation of hydrogen sulfide (H2S) has been of significant interest. Despite its presumed importance, the biochemical mechanisms associated with its actions have not been elucidated. Recent Advances: Recently it has been found that H2S-related or derived species are highly prevalent in mammalian systems and that these species may be responsible for some, if not the majority, of the biological actions attributed to H2S. One of the most prevalent and intriguing species are hydropersulfides (RSSH), which can be present at significant levels. Indeed, it appears that H2S and RSSH are intimately linked in biological systems and likely to be mutually inclusive. The fact that H2S and polysulfides such as RSSH are present simultaneously means that the biological actions previously assigned to H2S can be instead because of the presence of RSSH (or other polysulfides). Thus, it remains possible that hydropersulfides are the biological effectors, and H2S serves, to a certain extent, as a marker for persulfides and polysulfides. Addressing this possibility will to a large extent be based on the chemistry of these species. Currently, it is known that persulfides possess unique and novel chemical properties that may explain their biological prevalence. However, significantly more work will be required to establish the possible physiological roles of these species. Moreover, an understanding of the regulation of their biosynthesis and degradation will become important topics in piecing together their biology. Antioxid. Redox Signal. 00, 000-000.

  15. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms☆

    PubMed Central

    Kalyanaraman, Balaraman

    2013-01-01

    This article provides a succinct but limited overview of the protective and deleterious effects of reactive oxygen and nitrogen species in a clinical context. Reactive oxygen species include superoxide, hydrogen peroxide, single oxygen and lipid peroxides. Reactive nitrogen species include species derived from nitric oxide. This review gives a brief overview of the reaction chemistry of these species, the role of various enzymes involved in the generation and detoxification of these species in disease mechanisms and drug toxicity and the protective role of dietary antioxidants. I hope that the graphical review will be helpful for teaching both the first year medical and graduate students in the U.S. and abroad the fundamentals of reactive oxygen and nitrogen species in redox biology and clinical medicine. PMID:24024158

  16. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms.

    PubMed

    Kalyanaraman, Balaraman

    2013-02-08

    This article provides a succinct but limited overview of the protective and deleterious effects of reactive oxygen and nitrogen species in a clinical context. Reactive oxygen species include superoxide, hydrogen peroxide, single oxygen and lipid peroxides. Reactive nitrogen species include species derived from nitric oxide. This review gives a brief overview of the reaction chemistry of these species, the role of various enzymes involved in the generation and detoxification of these species in disease mechanisms and drug toxicity and the protective role of dietary antioxidants. I hope that the graphical review will be helpful for teaching both the first year medical and graduate students in the U.S. and abroad the fundamentals of reactive oxygen and nitrogen species in redox biology and clinical medicine.

  17. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry.

    PubMed

    Zhang, Peng; Yuly, Jonathon L; Lubner, Carolyn E; Mulder, David W; King, Paul W; Peters, John W; Beratan, David N

    2017-09-19

    How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation. Remarkably, bifurcating electron transfer (ET) proteins typically send one electron uphill and one electron downhill by similar energies, such that the overall reaction is spontaneous, but not profligate. Electron bifurcation in the NADH-dependent reduced ferredoxin: NADP(+) oxidoreductase I (Nfn) is explored in detail here. Recent experimental progress in understanding the structure and function of Nfn allows us to dissect its workings in the framework of modern ET theory. The first electron that leaves the two-electron donor flavin (L-FAD) executes a positive free energy "uphill" reaction, and the departure of this electron switches on a second thermodynamically spontaneous ET reaction from the flavin along a second pathway that moves electrons in the opposite direction and at a very different potential. The singly reduced ET products formed from the bifurcating flavin are more than two nanometers distant from each other. In Nfn, the second electron to leave the flavin is much more reducing than the first: the potentials are said to be "crossed." The eventually reduced cofactors, NADH and ferredoxin in the case of Nfn, perform crucial downstream redox

  18. Oxygen in human health from life to death--An approach to teaching redox biology and signaling to graduate and medical students.

    PubMed

    Briehl, Margaret M

    2015-08-01

    In the absence of oxygen human life is measured in minutes. In the presence of oxygen, normal metabolism generates reactive species (ROS) that have the potential to cause cell injury contributing to human aging and disease. Between these extremes, organisms have developed means for sensing oxygen and ROS and regulating their cellular processes in response. Redox signaling contributes to the control of cell proliferation and death. Aberrant redox signaling underlies many human diseases. The attributes acquired by altered redox homeostasis in cancer cells illustrate this particularly well. This teaching review and the accompanying illustrations provide an introduction to redox biology and signaling aimed at instructors of graduate and medical students.

  19. Experimental verification of regression to the mean in redox biology: differential responses to exercise.

    PubMed

    Margaritelis, Nikos V; Theodorou, Anastasios A; Paschalis, Vassilis; Veskoukis, Aristidis S; Dipla, Konstantina; Zafeiridis, Andreas; Panayiotou, George; Vrabas, Ioannis S; Kyparos, Antonios; Nikolaidis, Michalis G

    2016-01-01

    An important methodological threat when selecting individuals based on initial values for a given trait is the "regression to the mean" artifact. This artifact appears when a group with an extreme mean value during a first measurement tends to obtain a less extreme value (i.e. tends toward the mean) on a subsequent measurement. The main aim was to experimentally confirm the presence of this artifact in the responses of the reference oxidative stress biomarker (F2-isoprostanes) after exercise. Urine samples were collected before and immediately following acute exercise in order to determine the level of exercise-induced oxidative stress. Afterwards, participants were arranged into three groups based on their levels of exercise-induced oxidative stress (low, moderate and high oxidative stress groups; n = 12 per group). In order to verify the existence of the regression to the mean artifact, the three groups were subjected to a second exercise trial one week after the first trial. This study confirmed the regression to the mean artifact in a redox biology context and showed that this artifact can be minimized by performing a duplicate pretreatment measurement after completing a nonrandom sorting based on the first assessment. This study also indicated that different individuals experience high oxidative stress or reductive stress (or no stress) to the same exercise stimulus even after adjusting for regression to the mean. This finding substantiates the methodological choice to divide individuals based on their degree of exercise-induced oxidative stress in future experiments to investigate the role of reactive species in exercise adaptations.

  20. Effect of redox conditions on pharmaceutical loss during biological wastewater treatment using sequencing batch reactors.

    PubMed

    Stadler, Lauren B; Su, Lijuan; Moline, Christopher J; Ernstoff, Alexi S; Aga, Diana S; Love, Nancy G

    2015-01-23

    We lack a clear understanding of how wastewater treatment plant (WWTP) process parameters, such as redox environment, impact pharmaceutical fate. WWTPs increasingly install more advanced aeration control systems to save energy and achieve better nutrient removal performance. The impact of redox condition, and specifically the use of microaerobic (low dissolved oxygen) treatment, is poorly understood. In this study, the fate of a mixture of pharmaceuticals and several of their transformation products present in the primary effluent of a local WWTP was assessed in sequencing batch reactors operated under different redox conditions: fully aerobic, anoxic/aerobic, and microaerobic (DO concentration ≈0.3mg/L). Among the pharmaceuticals that were tracked during this study (atenolol, trimethoprim, sulfamethoxazole, desvenlafaxine, venlafaxine, and phenytoin), overall loss varied between them and between redox environments. Losses of atenolol and trimethoprim were highest in the aerobic reactor; sulfamethoxazole loss was highest in the microaerobic reactors; and phenytoin was recalcitrant in all reactors. Transformation products of sulfamethoxazole and desvenlafaxine resulted in the reformation of their parent compounds during treatment. The results suggest that transformation products must be accounted for when assessing removal efficiencies and that redox environment influences the degree of pharmaceutical loss. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis.

    PubMed

    Toledano, Michel B; Kumar, Chitranshu; Le Moan, Natacha; Spector, Dan; Tacnet, Frédérique

    2007-07-31

    By its ability to engage in a variety of redox reactions and coordinating metals, cysteine serves as a key residue in mediating enzymatic catalysis, protein oxidative folding and trafficking, and redox signaling. The thiol redox system, which consists of the glutathione and thioredoxin pathways, uses the cysteine residue to catalyze thiol-disulfide exchange reactions, thereby controlling the redox state of cytoplasmic cysteine residues and regulating the biological functions it subserves. Here, we consider the thiol redox systems of Escherichia coli and Saccharomyces cerevisiae, emphasizing the role of genetic approaches in the understanding of the cellular functions of these systems. We show that although prokaryotic and eukaryotic systems have a similar architecture, they profoundly differ in their overall cellular functions.

  2. Elucidation of the Biological Redox Chemistry of Purines Using Electrochemical Techniques.

    ERIC Educational Resources Information Center

    Dryhurst, Glenn; And Others

    1983-01-01

    Electrochemical studies can give insights into the chemical aspects of enzymatic and in vivo redox reactions of naturally occurring organic compounds. This is illustrated by studies of the electrochemical oxidation of the purinem uric acid. The discussion is limited to information at pH 7 or greater. (JN)

  3. Elucidation of the Biological Redox Chemistry of Purines Using Electrochemical Techniques.

    ERIC Educational Resources Information Center

    Dryhurst, Glenn; And Others

    1983-01-01

    Electrochemical studies can give insights into the chemical aspects of enzymatic and in vivo redox reactions of naturally occurring organic compounds. This is illustrated by studies of the electrochemical oxidation of the purinem uric acid. The discussion is limited to information at pH 7 or greater. (JN)

  4. Redox Biology: Computational Approaches to the Investigation of Functional Cysteine Residues

    PubMed Central

    Marino, Stefano M.

    2011-01-01

    Abstract Cysteine (Cys) residues serve many functions, such as catalysis, stabilization of protein structure through disulfides, metal binding, and regulation of protein function. Cys residues are also subject to numerous post-translational modifications. In recent years, various computational tools aiming at classifying and predicting different functional categories of Cys have been developed, particularly for structural and catalytic Cys. On the other hand, given complexity of the subject, bioinformatics approaches have been less successful for the investigation of regulatory Cys sites. In this review, we introduce different functional categories of Cys residues. For each category, an overview of state-of-the-art bioinformatics methods and tools is provided, along with examples of successful applications and potential limitations associated with each approach. Finally, we discuss Cys-based redox switches, which modify the view of distinct functional categories of Cys in proteins. Antioxid. Redox Signal. 15, 135–146. PMID:20812876

  5. Hemoglobin and Myoglobin as Reducing Agents in Biological Systems. Redox Reactions of Globins with Copper and Iron Salts and Complexes.

    PubMed

    Postnikova, G B; Shekhovtsova, E A

    2016-12-01

    In addition to reversible O2 binding, respiratory proteins of the globin family, hemoglobin (Hb) and myoglobin (Mb), participate in redox reactions with various metal complexes, including biologically significant ones, such as those of copper and iron. HbO2 and MbO2 are present in cells in large amounts and, as redox agents, can contribute to maintaining cell redox state and resisting oxidative stress. Divalent copper complexes with high redox potentials (E0, 200-600 mV) and high stability constants, such as [Cu(phen)2](2+), [Cu(dmphen)2](2+), and CuDTA oxidize ferrous heme proteins by the simple outer-sphere electron transfer mechanism through overlapping π-orbitals of the heme and the copper complex. Weaker oxidants, such as Cu2+, CuEDTA, CuNTA, CuCit, CuATP, and CuHis (E0 ≤ 100-150 mV) react with HbO2 and MbO2 through preliminary binding to the protein with substitution of the metal ligands with protein groups and subsequent intramolecular electron transfer in the complex (the site-specific outer-sphere electron transfer mechanism). Oxidation of HbO2 and MbO2 by potassium ferricyanide and Fe(3) complexes with NTA, EDTA, CDTA, ATP, 2,3-DPG, citrate, and pyrophosphate PPi proceeds mainly through the simple outer-sphere electron transfer mechanism via the exposed heme edge. According to Marcus theory, the rate of this reaction correlates with the difference in redox potentials of the reagents and their self-exchange rates. For charged reagents, the reaction may be preceded by their nonspecific binding to the protein due to electrostatic interactions. The reactions of LbO2 with carboxylate Fe complexes, unlike its reactions with ferricyanide, occur via the site-specific outer-sphere electron transfer mechanism, even though the same reagents oxidize structurally similar MbO2 and cytochrome b5 via the simple outer-sphere electron transfer mechanism. Of particular biological interest is HbO2 and MbO2 transformation into met-forms in the presence of small amounts

  6. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification.

    PubMed

    Irigoín, Florencia; Cibils, Lucía; Comini, Marcelo A; Wilkinson, Shane R; Flohé, Leopold; Radi, Rafael

    2008-09-15

    Trypanosoma cruzi is the etiologic agent of Chagas' disease, an infection that affects several million people in Latin America. With no immediate prospect of a vaccine and problems associated with current chemotherapies, the development of new treatments is an urgent priority. Several aspects of the redox metabolism of this parasite differ enough from those in the mammalian host to be considered targets for drug development. Here, we review the information about a trypanosomatid-specific molecule centrally involved in redox metabolism, the dithiol trypanothione, and the main effectors of cellular antioxidant defense. We focus mainly on data from T. cruzi, making comparisons with other trypanosomatids whenever possible. In these parasites trypanothione participates in crucial thiol-disulfide exchange reactions and serves as electron donor in different metabolic pathways, from synthesis of DNA precursors to oxidant detoxification. Interestingly, the levels of several enzymes involved in trypanothione metabolism and oxidant detoxification increase during the transformation of T. cruzi to its mammalian-infective form and the overexpression of some of them has been associated with increased resistance to macrophage-dependent oxidative killing. Together, the evidence suggests a central role of the trypanothione-dependent antioxidant systems in the infection process.

  7. The Basics of Thiols and Cysteines in Redox Biology and Chemistry

    PubMed Central

    Poole, Leslie B.

    2014-01-01

    Cysteine is one of the least abundant amino acids, yet it is frequently found as a highly conserved residue within functional (regulatory, catalytic or binding) sites in proteins. It is the unique chemistry of the thiol or thiolate group of cysteine that imparts functional sites with their specialized properties (e.g., nucleophilicity, high affinity metal binding, and/or ability to form disulfide bonds). Highlighted in this review are some of the basic biophysical and biochemical properties of cysteine groups and the equations that apply to them, particularly with respect to pKa and redox potential. Also summarized are the types of low molecular weight thiols present in high concentrations in most cells, as well as the ways in which modifications of cysteinyl residues can impart or regulate molecular functions important to cellular processes including signal transduction. PMID:25433365

  8. The basics of thiols and cysteines in redox biology and chemistry.

    PubMed

    Poole, Leslie B

    2015-03-01

    Cysteine is one of the least abundant amino acids, yet it is frequently found as a highly conserved residue within functional (regulatory, catalytic, or binding) sites in proteins. It is the unique chemistry of the thiol or thiolate group of cysteine that imparts to functional sites their specialized properties (e.g., nucleophilicity, high-affinity metal binding, and/or ability to form disulfide bonds). Highlighted in this review are some of the basic biophysical and biochemical properties of cysteine groups and the equations that apply to them, particularly with respect to pKa and redox potential. Also summarized are the types of low-molecular-weight thiols present in high concentrations in most cells, as well as the ways in which modifications of cysteinyl residues can impart or regulate molecular functions important to cellular processes, including signal transduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Improved anticonvulsant activity of phenytoin by a redox brain delivery system. II: Stability in buffers and biological materials.

    PubMed

    Murakami, T; Shek, E; Pop, E; Bodor, N

    1989-09-01

    The stability of nine chemical delivery systems (CDSs) for phenytoin (DPH) was studied in aqueous buffers and in biological materials. The systems were based on a dihydropyridine in equilibrium quaternary pyridinium salt redox pair attached to 3-(hydroxymethyl)phenytoin via an ester linkage. The pyridinium derivatives released DPH in aqueous buffers and their hydrolytic reactivity was consistent with their chemical structure. Although in rat blood and plasma all pyridinium esters hydrolyzed rapidly, there was a wide range in the hydrolysis rates in rat brain homogenate. The sterically hindered 1-alkylcarboxynicotinamide was the least reactive ester (t1/2 = 98.2 min), while the trigonellylglycolate ester was the fastest to hydrolyze enzymatically (t1/2 = 2 min) in rat brain homogenate. In acidic media, the major products of all dihydropyridine esters were the corresponding water adducts, the 6-hydroxy- 1,4,5,6-tetrahydropyridines. These adducts were of no significance in biological materials. After comparison of the relative stability of the corresponding pairs of dihydropyridine and pyridinium ion in brain homogenate and the absolute stability of the various dihydropyridines, two CDSs were chosen for further in vivo evaluations. The CDSs chosen were the dihydrotrigonellinate ester and its 6-methyl derivative.

  10. The Influence of the Biological Pump on Marine Redox Conditions During Earth History

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Ridgwell, A.; Payne, J.

    2015-12-01

    Evidence for bottom-water anoxia on the continental shelves waned over the course of the Phanerozoic, which may be influenced by secular changes in the biological pump that led to weaker positive feedbacks within the oceans. The biological pump describes the transfer of carbon from the atmosphere to the deep ocean, which creates vertical gradients in nutrients and oxygen, both important influences in the structure of marine ecosystems. We used the cGENIE Earth system model to quantitatively test the hypothesis that reductions in the efficiency of the nutrient recycling loop of the biological pump during the past 550 Ma reduced the extent of anoxia on the shelves and acted as an important control on marine animal ecosystems. When the modeled remineralization depth is shallow relative to the modern ocean, anoxia tends to be more widespread at continental shelf depths. As the modeled remineralization depth increases toward modern conditions, anoxia is less prevalent and occurs at depths below the continental shelves. Reduced marine productivity in the closed system configuration of cGENIE cannot produce the frequent bottom-water anoxia conditions envisioned for the Paleozoic. We hypothesize that evidence for greater animal abundance and metabolic demand during the Phanerozoic was driven by progressive oxygenation of shelf environments related to changes in the biological pump rather than greater food availability. In general, these model simulations suggest changes in the depth distribution of organic carbon remineralization may have controlled observed shifts in ocean chemistry, biogeochemical cycling, and ecosystem structure during the Phanerozoic.

  11. The Redox Proteome*

    PubMed Central

    Go, Young-Mi; Jones, Dean P.

    2013-01-01

    The redox proteome consists of reversible and irreversible covalent modifications that link redox metabolism to biologic structure and function. These modifications, especially of Cys, function at the molecular level in protein folding and maturation, catalytic activity, signaling, and macromolecular interactions and at the macroscopic level in control of secretion and cell shape. Interaction of the redox proteome with redox-active chemicals is central to macromolecular structure, regulation, and signaling during the life cycle and has a central role in the tolerance and adaptability to diet and environmental challenges. PMID:23861437

  12. Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-Cbl pathway in cancer cells offers new approaches to cancer treatment.

    PubMed

    Noble, Mark; Mayer-Pröschel, Margot; Li, Zaibo; Dong, Tiefei; Cui, Wanchang; Pröschel, Christoph; Ambeskovic, Ibro; Dietrich, Joerg; Han, Ruolan; Yang, Yin Miranda; Folts, Christopher; Stripay, Jennifer; Chen, Hsing-Yu; Stevens, Brett M

    2015-02-01

    This review discusses a unique discovery path starting with novel findings on redox regulation of precursor cell and signaling pathway function and identification of a new mechanism by which relatively small changes in redox status can control entire signaling networks that regulate self-renewal, differentiation, and survival. The pathway central to this work, the redox/Fyn/c-Cbl (RFC) pathway, converts small increases in oxidative status to pan-activation of the c-Cbl ubiquitin ligase, which controls multiple receptors and other proteins of central importance in precursor cell and cancer cell function. Integration of work on the RFC pathway with attempts to understand how treatment with systemic chemotherapy causes neurological problems led to the discovery that glioblastomas (GBMs) and basal-like breast cancers (BLBCs) inhibit c-Cbl function through altered utilization of the cytoskeletal regulators Cool-1/βpix and Cdc42, respectively. Inhibition of these proteins to restore normal c-Cbl function suppresses cancer cell division, increases sensitivity to chemotherapy, disrupts tumor-initiating cell (TIC) activity in GBMs and BLBCs, controls multiple critical TIC regulators, and also allows targeting of non-TICs. Moreover, these manipulations do not increase chemosensitivity or suppress division of nontransformed cells. Restoration of normal c-Cbl function also allows more effective harnessing of estrogen receptor-α (ERα)-independent activities of tamoxifen to activate the RFC pathway and target ERα-negative cancer cells. Our work thus provides a discovery strategy that reveals mechanisms and therapeutic targets that cannot be deduced by standard genetics analyses, which fail to reveal the metabolic information, isoform shifts, protein activation, protein complexes, and protein degradation critical to our discoveries.

  13. Cerium oxide nanozyme modulate the ‘exercise’ redox biology of skeletal muscle

    NASA Astrophysics Data System (ADS)

    Arya, Aditya; Sethy, Niroj Kumar; Gangwar, Anamika; Bhargava, Neelima; Dubey, Amarish; Roy, Manas; Srivastava, Gaurav; Singh, Sushil Kumar; Das, Mainak; Bhargava, Kalpana

    2017-05-01

    ‘Exercise’ is a double-edged sword for the skeletal muscle. Small amount of ROS generated during mild exercise, is essential for normal force generation; whereas large quantity of ROS generated during intense exercise, may cause contractile dysfunction, resulting in muscle weakness and fatigue. One of the key question in skeletal muscle physiology is ‘could antioxidant therapy improve the skeletal muscle endurance? A question, which has resulted in contradictory experimental findings till this date. This work has addressed this ‘very question’ using a synthetic, inorganic, antioxidant nano-material viz., ‘cerium oxide nanozyme’ (CON). It has been introduced in the rat by intramuscular injection, and the skeletal muscle endurance has been evaluated. Intramuscular injections of CON, concurrent with exercise, enhanced muscle mass, glycogen and ATP content, type I fiber ratio, thus resulting in significantly higher muscle endurance. Electron microscope studies confirmed the presence of CON in the vicinity of muscle mitochondria. There was an increase in the number and size of the muscle mitochondria in the CON treated muscle, following exercise, as compared to the untreated group with only exercised muscle. Quantitative proteomics data and subsequent biological network analysis studies, identified higher levels of oxidative phosphorylation, TCA cycle output and glycolysis in CON supplemented exercised muscle over only exercised muscle. This was further associated with significant increase in the mitochondrial respiratory capacity and muscle contraction, primarily due to higher levels of electron transport chain proteins like NDUFA9, SDHA, ATP5B and ATP5D, which were validated by real-time PCR and western blotting. Along with this, persistence of CON in muscle was evaluated with ICP-MS analysis, which revealed clearance of the particles after 90 d, without exhibiting any inflammation or adverse affects on the health of the experimental animals. Thus a

  14. Enzymes as modular catalysts for redox half-reactions in H2-powered chemical synthesis: from biology to technology.

    PubMed

    Reeve, Holly A; Ash, Philip A; Park, HyunSeo; Huang, Ailun; Posidias, Michalis; Tomlinson, Chloe; Lenz, Oliver; Vincent, Kylie A

    2017-01-15

    The present study considers the ways in which redox enzyme modules are coupled in living cells for linking reductive and oxidative half-reactions, and then reviews examples in which this concept can be exploited technologically in applications of coupled enzyme pairs. We discuss many examples in which enzymes are interfaced with electronically conductive particles to build up heterogeneous catalytic systems in an approach which could be termed synthetic biochemistry We focus on reactions involving the H(+)/H2 redox couple catalysed by NiFe hydrogenase moieties in conjunction with other biocatalysed reactions to assemble systems directed towards synthesis of specialised chemicals, chemical building blocks or bio-derived fuel molecules. We review our work in which this approach is applied in designing enzyme-modified particles for H2-driven recycling of the nicotinamide cofactor NADH to provide a clean cofactor source for applications of NADH-dependent enzymes in chemical synthesis, presenting a combination of published and new work on these systems. We also consider related photobiocatalytic approaches for light-driven production of chemicals or H2 as a fuel. We emphasise the techniques available for understanding detailed catalytic properties of the enzymes responsible for individual redox half-reactions, and the importance of a fundamental understanding of the enzyme characteristics in enabling effective applications of redox biocatalysis.

  15. Enzymes as modular catalysts for redox half-reactions in H2-powered chemical synthesis: from biology to technology

    PubMed Central

    Reeve, Holly A.; Ash, Philip A.; Park, HyunSeo; Huang, Ailun; Posidias, Michalis; Tomlinson, Chloe; Lenz, Oliver

    2017-01-01

    The present study considers the ways in which redox enzyme modules are coupled in living cells for linking reductive and oxidative half-reactions, and then reviews examples in which this concept can be exploited technologically in applications of coupled enzyme pairs. We discuss many examples in which enzymes are interfaced with electronically conductive particles to build up heterogeneous catalytic systems in an approach which could be termed synthetic biochemistry. We focus on reactions involving the H+/H2 redox couple catalysed by NiFe hydrogenase moieties in conjunction with other biocatalysed reactions to assemble systems directed towards synthesis of specialised chemicals, chemical building blocks or bio-derived fuel molecules. We review our work in which this approach is applied in designing enzyme-modified particles for H2-driven recycling of the nicotinamide cofactor NADH to provide a clean cofactor source for applications of NADH-dependent enzymes in chemical synthesis, presenting a combination of published and new work on these systems. We also consider related photobiocatalytic approaches for light-driven production of chemicals or H2 as a fuel. We emphasise the techniques available for understanding detailed catalytic properties of the enzymes responsible for individual redox half-reactions, and the importance of a fundamental understanding of the enzyme characteristics in enabling effective applications of redox biocatalysis. PMID:28062838

  16. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology

    PubMed Central

    Oliveira, Matheus P.; Correa Soares, Juliana B. R.; Oliveira, Marcus F.

    2016-01-01

    Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute

  17. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology.

    PubMed

    Oliveira, Matheus P; Correa Soares, Juliana B R; Oliveira, Marcus F

    2016-01-01

    Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute

  18. Novel Perspectives in Redox Biology and Pathophysiology of Failing Myocytes: Modulation of the Intramyocardial Redox Milieu for Therapeutic Interventions-A Review Article from the Working Group of Cardiac Cell Biology, Italian Society of Cardiology.

    PubMed

    Arcaro, Alessia; Pirozzi, Flora; Angelini, Annalisa; Chimenti, Cristina; Crotti, Lia; Giordano, Carla; Mancardi, Daniele; Torella, Daniele; Tocchetti, Carlo G

    2016-01-01

    The prevalence of heart failure (HF) is still increasing worldwide, with enormous human, social, and economic costs, in spite of huge efforts in understanding pathogenetic mechanisms and in developing effective therapies that have transformed this syndrome into a chronic disease. Myocardial redox imbalance is a hallmark of this syndrome, since excessive reactive oxygen and nitrogen species can behave as signaling molecules in the pathogenesis of hypertrophy and heart failure, leading to dysregulation of cellular calcium handling, of the contractile machinery, of myocardial energetics and metabolism, and of extracellular matrix deposition. Recently, following new interesting advances in understanding myocardial ROS and RNS signaling pathways, new promising therapeutical approaches with antioxidant properties are being developed, keeping in mind that scavenging ROS and RNS tout court is detrimental as well, since these molecules also play a role in physiological myocardial homeostasis.

  19. Novel Perspectives in Redox Biology and Pathophysiology of Failing Myocytes: Modulation of the Intramyocardial Redox Milieu for Therapeutic Interventions—A Review Article from the Working Group of Cardiac Cell Biology, Italian Society of Cardiology

    PubMed Central

    Arcaro, Alessia; Pirozzi, Flora; Angelini, Annalisa; Chimenti, Cristina; Crotti, Lia; Giordano, Carla; Mancardi, Daniele; Torella, Daniele; Tocchetti, Carlo G.

    2016-01-01

    The prevalence of heart failure (HF) is still increasing worldwide, with enormous human, social, and economic costs, in spite of huge efforts in understanding pathogenetic mechanisms and in developing effective therapies that have transformed this syndrome into a chronic disease. Myocardial redox imbalance is a hallmark of this syndrome, since excessive reactive oxygen and nitrogen species can behave as signaling molecules in the pathogenesis of hypertrophy and heart failure, leading to dysregulation of cellular calcium handling, of the contractile machinery, of myocardial energetics and metabolism, and of extracellular matrix deposition. Recently, following new interesting advances in understanding myocardial ROS and RNS signaling pathways, new promising therapeutical approaches with antioxidant properties are being developed, keeping in mind that scavenging ROS and RNS tout court is detrimental as well, since these molecules also play a role in physiological myocardial homeostasis. PMID:26881035

  20. Biological definition of multiple chemical sensitivity from redox state and cytokine profiling and not from polymorphisms of xenobiotic-metabolizing enzymes

    SciTech Connect

    De Luca, Chiara; Scordo, Maria G.; Cesareo, Eleonora; Pastore, Saveria; Mariani, Serena; Maiani, Gianluca; Stancato, Andrea; Loreti, Beatrice; Valacchi, Giuseppe; Lubrano, Carla; Raskovic, Desanka; De Padova, Luigia; Genovesi, Giuseppe; Korkina, Liudmila G.

    2010-11-01

    Background: Multiple chemical sensitivity (MCS) is a poorly clinically and biologically defined environment-associated syndrome. Although dysfunctions of phase I/phase II metabolizing enzymes and redox imbalance have been hypothesized, corresponding genetic and metabolic parameters in MCS have not been systematically examined. Objectives: We sought for genetic, immunological, and metabolic markers in MCS. Methods: We genotyped patients with diagnosis of MCS, suspected MCS and Italian healthy controls for allelic variants of cytochrome P450 isoforms (CYP2C9, CYP2C19, CYP2D6, and CYP3A5), UDP-glucuronosyl transferase (UGT1A1), and glutathione S-transferases (GSTP1, GSTM1, and GSTT1). Erythrocyte membrane fatty acids, antioxidant (catalase, superoxide dismutase (SOD)) and glutathione metabolizing (GST, glutathione peroxidase (Gpx)) enzymes, whole blood chemiluminescence, total antioxidant capacity, levels of nitrites/nitrates, glutathione, HNE-protein adducts, and a wide spectrum of cytokines in the plasma were determined. Results: Allele and genotype frequencies of CYPs, UGT, GSTM, GSTT, and GSTP were similar in the Italian MCS patients and in the control populations. The activities of erythrocyte catalase and GST were lower, whereas Gpx was higher than normal. Both reduced and oxidised glutathione were decreased, whereas nitrites/nitrates were increased in the MCS groups. The MCS fatty acid profile was shifted to saturated compartment and IFNgamma, IL-8, IL-10, MCP-1, PDGFbb, and VEGF were increased. Conclusions: Altered redox and cytokine patterns suggest inhibition of expression/activity of metabolizing and antioxidant enzymes in MCS. Metabolic parameters indicating accelerated lipid oxidation, increased nitric oxide production and glutathione depletion in combination with increased plasma inflammatory cytokines should be considered in biological definition and diagnosis of MCS.

  1. Redox pioneer: Professor Arne Holmgren.

    PubMed

    Arnér, Elias S J

    2011-08-01

    Dr. Arne Holmgren (Ph.D., 1968) is recognized here as a redox pioneer, because he has published at least one article on redox biology that has been cited over 1000 times and has published at least 10 articles, each cited over 100 times. He is widely known for his seminal discoveries and in-depth studies of thioredoxins, thioredoxin reductases, and glutaredoxins. Dr. Holmgren, active throughout his career at Karolinska Institutet, Sweden, has led the field of research about these classes of proteins for more than 45 years, continuously building upon his sequence determination of Escherichia coli thioredoxin in the late 1960s and discovery of the thioredoxin fold in the 1970s. He discovered and named glutaredoxin and he determined the structure and function of several members of these glutathione-dependent disulfide oxidoreductases. He still continues to broaden the frontiers of knowledge of thioredoxin and glutaredoxin systems. The thioredoxin fold is today recognized as one of the most common protein folds and the intriguing complexity of redox systems, redox signaling, and redox control of cellular function is constantly increasing. The legacy of Dr. Holmgren's research is therefore highly relevant and important also in the context of present science. In a tribute to his work, questions need to be addressed toward the physiological importance of redox signaling and the impact of glutaredoxin and thioredoxin systems on health and disease. Dr. Holmgren helped lay the foundation for the redox biology field and opened new vistas in the process. He is truly a redox pioneer.

  2. Altered Redox Mitochondrial Biology in the Neurodegenerative Disorder Fragile X-Tremor/Ataxia Syndrome: Use of Antioxidants in Precision Medicine

    PubMed Central

    Song, Gyu; Napoli, Eleonora; Wong, Sarah; Hagerman, Randi; Liu, Siming; Tassone, Flora; Giulivi, Cecilia

    2016-01-01

    A 55–200 expansion of the CGG nucleotide repeat in the 5’-UTR of the fragile X mental retardation 1 gene (FMR1) is the hallmark of the triplet nucleotide disease known as the “premutation” as opposed to those with >200 repeats, known as the full mutation or fragile X syndrome. Originally, premutation carriers were thought to be free of phenotypic traits; however, some are diagnosed with emotional and neurocognitive issues and, later in life, with the neurodegenerative disease fragile X-associated tremor/ataxia syndrome (FXTAS). Considering that mitochondrial dysfunction has been observed in fibroblasts and post-mortem brain samples from carriers of the premutation, we hypothesized that mitochondrial dysfunction-derived reactive oxygen species (ROS) may result in cumulative oxidative-nitrative damage. Fibroblasts from premutation carriers (n = 31, all FXTAS-free except 8), compared with age- and sex-matched controls (n = 25), showed increased mitochondrial ROS production, impaired Complex I activity, lower expression of MIA40 (rate-limiting step of the redox-regulated mitochondrial-disulfide-relay-system), increased mtDNA deletions and increased biomarkers of lipid and protein oxidative-nitrative damage. Most of the outcomes were more pronounced in FXTAS-affected individuals. Significant recovery of mitochondrial mass and/or function was obtained with superoxide or hydroxyl radicals’ scavengers, a glutathione peroxidase analog, or by overexpressing MIA40. The effects of ethanol (a hydroxyl radical scavenger) were deleterious, while others (by N-acetyl-cysteine, quercetin and epigallocatechin-3-gallate) were outcome- and/or carrier- specific. The use of antioxidants in the context of precision medicine is discussed with the goal of improving mitochondrial function in carriers with the potential of decreasing the morbidity and/or delaying FXTAS onset. PMID:27385396

  3. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress

    PubMed Central

    2015-01-01

    Abstract Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3′,-5′-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed. Antioxid. Redox Signal. 23, 899–942. PMID:26261901

  4. Kinetics and mechanism of oxidation of the anti-tubercular prodrug isoniazid and its analog by iridium(iv) as models for biological redox systems.

    PubMed

    Dong, Jingran; Ren, Yanli; Sun, Sufang; Yang, Jiao; Nan, Chunxia; Shi, Hongmei; Xu, Jianzhong; Duan, Jie; Shi, Tiesheng; Elding, Lars I

    2017-07-04

    A complex reaction mechanism of oxidation of the anti-tubercular prodrug isoniazid (isonicotinic hydrazide, INH) by [IrCl6](2-) as a model for redox processes of such drugs in biological systems has been studied in aqueous solution as a function of pH between 0 and 8.5. Similar experiments have been performed with its isomer nicotinic hydrazide (NH). All reactions are overall second-order, first-order in [IrCl6](2-) and hydrazide, and the observed second-order rate constants k' have been determined as a function of pH. Spectrophotometric titrations indicate a stoichiometry of [Ir(iv)] : [hydrazide] = 4 : 1. HPLC analysis shows that the oxidation product of INH is isonicotinic acid. The derived reaction mechanism, based on rate law, time-resolved spectra and stoichiometry, involves parallel attacks by [IrCl6](2-) on all four protolytic species of INH and NH as rate-determining steps, depending on pH. These steps are proposed to generate two types of hydrazyl free radicals. These radicals react further in three rapid consecutive processes, leading to the final oxidation products. Rate constants for the rate-determining steps have been determined for all protolytic species I-IV of INH and NH. They are used to calculate reactivity-pH diagrams. These diagrams demonstrate that for both systems, species IV is ca. 10(5) times more reactive in the redox process than the predominant species III at the physiological pH of 7.4. Thus, species IV will be the main reactant, in spite of the fact that its concentration at this pH is extremely low, a fact that has not been considered in previous work. The results indicate that pH changes might be an important factor in the activation process of INH in biological systems also, and that in such systems this process most likely is more complicated than previously assumed.

  5. Redox Redone.

    ERIC Educational Resources Information Center

    Petty, John T.

    1996-01-01

    Presents an extension of the change in oxidation number method that is used for balancing skeletal redox reactions in aqueous solutions. Retains most of the simplicity of the change in oxidation number method but provides the additional step-by-step process necessary for the beginner to balance an equation. (JRH)

  6. The Redox Chemistry and Chemical Biology of H2S, Hydropersulfides and Derived Species: Implications to Their Possible Biological Activity and Utility

    PubMed Central

    Ono, Katsuhiko; Akaike, Takaake; Sawa, Tomohiro; Kumagai, Yoshito; Wink, David A.; Tantillo, Dean J.; Hobbs, Adrian J.; Nagy, Peter; Xian, Ming; Lin, Joseph; Fukuto, Jon M.

    2014-01-01

    Hydrogen sulfide (H2S) is an endogenously generated and putative signaling/effector molecule. In spite of its numerous reported functions, the chemistry by which it elicits its functions is not understood. Moreover, recent studies allude to the existence of other sulfur species besides H2S that may play critical physiological roles. Herein, the basic chemical biology of H2S as well as other related or derived species is discussed and reviewed. A particular focus of this review are the per- and poly-sulfides which are likely in equilibrium with free H2S and which may be important biological effectors themselves. PMID:25229186

  7. Redox Pioneer: Professor Vadim N. Gladyshev

    PubMed Central

    2016-01-01

    Abstract Professor Vadim N. Gladyshev is recognized here as a Redox Pioneer, because he has published an article on antioxidant/redox biology that has been cited more than 1000 times and 29 articles that have been cited more than 100 times. Gladyshev is world renowned for his characterization of the human selenoproteome encoded by 25 genes, identification of the majority of known selenoprotein genes in the three domains of life, and discoveries related to thiol oxidoreductases and mechanisms of redox control. Gladyshev's first faculty position was in the Department of Biochemistry, the University of Nebraska. There, he was a Charles Bessey Professor and Director of the Redox Biology Center. He then moved to the Department of Medicine at Brigham and Women's Hospital, Harvard Medical School, where he is Professor of Medicine and Director of the Center for Redox Medicine. His discoveries in redox biology relate to selenoenzymes, such as methionine sulfoxide reductases and thioredoxin reductases, and various thiol oxidoreductases. He is responsible for the genome-wide identification of catalytic redox-active cysteines and for advancing our understanding of the general use of cysteines by proteins. In addition, Gladyshev has characterized hydrogen peroxide metabolism and signaling and regulation of protein function by methionine-R-sulfoxidation. He has also made important contributions in the areas of aging and lifespan control and pioneered applications of comparative genomics in redox biology, selenium biology, and aging. Gladyshev's discoveries have had a profound impact on redox biology and the role of redox control in health and disease. He is a true Redox Pioneer. Antioxid. Redox Signal. 25, 1–9. PMID:26984707

  8. Redox Pioneer: Professor Vadim N. Gladyshev.

    PubMed

    Hatfield, Dolph L

    2016-07-01

    Professor Vadim N. Gladyshev is recognized here as a Redox Pioneer, because he has published an article on antioxidant/redox biology that has been cited more than 1000 times and 29 articles that have been cited more than 100 times. Gladyshev is world renowned for his characterization of the human selenoproteome encoded by 25 genes, identification of the majority of known selenoprotein genes in the three domains of life, and discoveries related to thiol oxidoreductases and mechanisms of redox control. Gladyshev's first faculty position was in the Department of Biochemistry, the University of Nebraska. There, he was a Charles Bessey Professor and Director of the Redox Biology Center. He then moved to the Department of Medicine at Brigham and Women's Hospital, Harvard Medical School, where he is Professor of Medicine and Director of the Center for Redox Medicine. His discoveries in redox biology relate to selenoenzymes, such as methionine sulfoxide reductases and thioredoxin reductases, and various thiol oxidoreductases. He is responsible for the genome-wide identification of catalytic redox-active cysteines and for advancing our understanding of the general use of cysteines by proteins. In addition, Gladyshev has characterized hydrogen peroxide metabolism and signaling and regulation of protein function by methionine-R-sulfoxidation. He has also made important contributions in the areas of aging and lifespan control and pioneered applications of comparative genomics in redox biology, selenium biology, and aging. Gladyshev's discoveries have had a profound impact on redox biology and the role of redox control in health and disease. He is a true Redox Pioneer. Antioxid. Redox Signal. 25, 1-9.

  9. Environmental Redox Potential and Redox Capacity Concepts Using a Simple Polarographic Experiment

    NASA Astrophysics Data System (ADS)

    Pidello, Alejandro

    2003-01-01

    The redox status of a system may be analyzed in terms of the redox potential (redox intensity component) and the size of the pool of electrons able to be transferred (redox capacity component). In single chemical systems, both terms are thermodynamically related by means of the Nernst equation, the classical redox equilibrium equation. Consequently, either the redox potential measurement or the redox capacity may be used without distinction to define the redox characteristics of these systems. However, in natural environments, which are a complex mixture of compounds undergoing redox reactions in several stages of nonequilibrium, it is difficult to establish the relationships linking redox potential and redox capacity. In this situation, as suggested by various authors, the complementary use of intensity and capacity measurements improves the characterization of the redox status of these systems. The aim of this laboratory experiment is to enable undergraduate students of applied biology (agronomy, veterinary or environmental sciences) to distinguish clearly between redox potential and redox capacity concepts through concrete results obtained in complex natural system such as soil, and to discuss the ecological significance of both concepts.

  10. A Systems Biology Approach to Reveal Putative Host-Derived Biomarkers of Periodontitis by Network Topology Characterization of MMP-REDOX/NO and Apoptosis Integrated Pathways.

    PubMed

    Zeidán-Chuliá, Fares; Gürsoy, Mervi; Neves de Oliveira, Ben-Hur; Özdemir, Vural; Könönen, Eija; Gürsoy, Ulvi K

    2015-01-01

    Periodontitis, a formidable global health burden, is a common chronic disease that destroys tooth-supporting tissues. Biomarkers of the early phase of this progressive disease are of utmost importance for global health. In this context, saliva represents a non-invasive biosample. By using systems biology tools, we aimed to (1) identify an integrated interactome between matrix metalloproteinase (MMP)-REDOX/nitric oxide (NO) and apoptosis upstream pathways of periodontal inflammation, and (2) characterize the attendant topological network properties to uncover putative biomarkers to be tested in saliva from patients with periodontitis. Hence, we first generated a protein-protein network model of interactions ("BIOMARK" interactome) by using the STRING 10 database, a search tool for the retrieval of interacting genes/proteins, with "Experiments" and "Databases" as input options and a confidence score of 0.400. Second, we determined the centrality values (closeness, stress, degree or connectivity, and betweenness) for the "BIOMARK" members by using the Cytoscape software. We found Ubiquitin C (UBC), Jun proto-oncogene (JUN), and matrix metalloproteinase-14 (MMP14) as the most central hub- and non-hub-bottlenecks among the 211 genes/proteins of the whole interactome. We conclude that UBC, JUN, and MMP14 are likely an optimal candidate group of host-derived biomarkers, in combination with oral pathogenic bacteria-derived proteins, for detecting periodontitis at its early phase by using salivary samples from patients. These findings therefore have broader relevance for systems medicine in global health as well.

  11. Regulation of SOD2 in Cancer by Histone Modifications and CpG Methylation: Closing the Loop Between Redox Biology and Epigenetics

    PubMed Central

    Cyr, Anthony R.; Hitchler, Michael J.

    2013-01-01

    Abstract Significance: Manganese superoxide dismutase (SOD2), encoded by the nuclear gene SOD2, is a critical mitochondrial antioxidant enzyme whose activity has broad implications in health and disease. Thirty years ago, Oberley and Buettner elegantly folded SOD2 into cancer biology with the free radical theory of cancer, which was built on the observation that many human cancers had reduced SOD2 activity. In the original formulation, the loss of SOD2 in tumor cells produced a state of perpetual oxidative stress, which, in turn, drove genetic instability, leading to cancer development. Recent Advances: In the past two decades, research has established that SOD2 transcriptional activity is controlled, at least in part, via epigenetic mechanisms at different stages in the development of human cancer. These mechanisms, which include histone methylation, histone acetylation, and DNA methylation, are increasingly recognized as being aberrantly regulated in human cancer. Indeed, the epigenetic progenitor model proposed by Henikoff posits that epigenetic events are central governing agents of carcinogenesis. Important recent advances in epigenetics research have indicated that the loss of SOD activity itself may contribute to changes in epigenetic regulation, establishing a vicious cycle that drives further epigenetic instability. Critical Issues: With these observations in mind, we propose an epigenetic revision to the free radical theory of cancer: that loss of SOD activity promotes epigenetic aberrancies, driving the epigenetic instability in tumor cells which produces broad phenotypic effects. Future Directions: The development of next-generation sequencing technologies and novel approaches in systems biology and bioinformatics promise to make testing this exciting model a reality in the near future. Antioxid. Redox Signal. 18, 1946–1955. PMID:22946823

  12. Understanding the Adsorption Interface of Polyelectrolyte Coating on Redox Active Nanoparticles Using Soft Particle Electrokinetics and Its Biological Activity

    PubMed Central

    2015-01-01

    The application of cerium oxide nanoparticles (CNPs) for therapeutic purposes requires a stable dispersion of nanoparticles in a biological environment. The objective of this study is to tailor the properties of polyelectrolyte coated CNPs as a function of molecular weight to achieve a stable and catalytic active dispersion. The coating of CNPs with polyacrylic acid (PAA) has increased the dispersion stability of CNPs and enhanced the catalytic ability. The stability of PAA coating was analyzed using the change in the Gibbs free energy computed by the Langmuir adsorption model. The adsorption isotherms were determined using soft particle electrokinetics which overcomes the challenges presented by other techniques. The change in Gibbs free energy was highest for CNPs coated with PAA of 250 kg/mol indicating the most stable coating. The change in free energy for PAA of 100 kg/mol coated CNPs was 85% lower than the PAA of 250 kg/mol coated CNPs. This significant difference is caused by the strong adsorption of PAA of 100 kg/mol on CNPs. Catalytic activity of PAA-CNPs is assessed by the catalase enzymatic mimetic activity of nanoparticles. The catalase activity was higher for PAA coated CNPs as compared to bare CNPs which indicated preferential adsorption of hydrogen peroxide induced by coating. This indicates that the catalase activity is also affected by the structure of the coating layer. PMID:24673655

  13. Understanding the adsorption interface of polyelectrolyte coating on redox active nanoparticles using soft particle electrokinetics and its biological activity.

    PubMed

    Saraf, Shashank; Neal, Craig J; Das, Soumen; Barkam, Swetha; McCormack, Rameech; Seal, Sudipta

    2014-04-23

    The application of cerium oxide nanoparticles (CNPs) for therapeutic purposes requires a stable dispersion of nanoparticles in a biological environment. The objective of this study is to tailor the properties of polyelectrolyte coated CNPs as a function of molecular weight to achieve a stable and catalytic active dispersion. The coating of CNPs with polyacrylic acid (PAA) has increased the dispersion stability of CNPs and enhanced the catalytic ability. The stability of PAA coating was analyzed using the change in the Gibbs free energy computed by the Langmuir adsorption model. The adsorption isotherms were determined using soft particle electrokinetics which overcomes the challenges presented by other techniques. The change in Gibbs free energy was highest for CNPs coated with PAA of 250 kg/mol indicating the most stable coating. The change in free energy for PAA of 100 kg/mol coated CNPs was 85% lower than the PAA of 250 kg/mol coated CNPs. This significant difference is caused by the strong adsorption of PAA of 100 kg/mol on CNPs. Catalytic activity of PAA-CNPs is assessed by the catalase enzymatic mimetic activity of nanoparticles. The catalase activity was higher for PAA coated CNPs as compared to bare CNPs which indicated preferential adsorption of hydrogen peroxide induced by coating. This indicates that the catalase activity is also affected by the structure of the coating layer.

  14. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology

    NASA Astrophysics Data System (ADS)

    Graves, David B.

    2012-07-01

    Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation-reduction biology. Oxidation-reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well.

  15. Globin-based redox signaling

    PubMed Central

    De Henau, Sasha; Braeckman, Bart P.

    2016-01-01

    ABSTRACT In recent years, moderate levels of reactive oxygen species (ROS) have become recognized as signaling cues that participate at all levels of cellular organization. Globins, with their redox-active heme iron and ubiquitous presence, seem ideally suited to participate in ROS metabolism. Here we comment on our recent findings that show the participation of a globin, GLB-12, in a redox signaling pathway in Caenorhabditis elegans. We found that GLB-12 produces superoxide, a type of ROS, after which this is converted to what appears to be a hydrogen peroxide gradient over the plasma membrane by the activity of intracellular and extracellular superoxide dismutases. In the first part, we discuss in more detail the different regulatory mechanisms that increase the effectiveness of this redox signal. In the second part, we comment on how specific structural and biochemical properties allow this globin to perform redox reactions. Interestingly, these properties are also observed in 2 other C. elegans globins that appear to be involved in redox biology. We therefore hypothesize that globins involved in redox signaling display similar structural and biochemical characteristics and propose that a subgroup of globins can be added to the group of proteins that play a vital role in redox signaling. PMID:27695650

  16. Globin-based redox signaling.

    PubMed

    De Henau, Sasha; Braeckman, Bart P

    2016-01-01

    In recent years, moderate levels of reactive oxygen species (ROS) have become recognized as signaling cues that participate at all levels of cellular organization. Globins, with their redox-active heme iron and ubiquitous presence, seem ideally suited to participate in ROS metabolism. Here we comment on our recent findings that show the participation of a globin, GLB-12, in a redox signaling pathway in Caenorhabditis elegans. We found that GLB-12 produces superoxide, a type of ROS, after which this is converted to what appears to be a hydrogen peroxide gradient over the plasma membrane by the activity of intracellular and extracellular superoxide dismutases. In the first part, we discuss in more detail the different regulatory mechanisms that increase the effectiveness of this redox signal. In the second part, we comment on how specific structural and biochemical properties allow this globin to perform redox reactions. Interestingly, these properties are also observed in 2 other C. elegans globins that appear to be involved in redox biology. We therefore hypothesize that globins involved in redox signaling display similar structural and biochemical characteristics and propose that a subgroup of globins can be added to the group of proteins that play a vital role in redox signaling.

  17. A Systems Biology Approach to Reveal Putative Host-Derived Biomarkers of Periodontitis by Network Topology Characterization of MMP-REDOX/NO and Apoptosis Integrated Pathways

    PubMed Central

    Zeidán-Chuliá, Fares; Gürsoy, Mervi; Neves de Oliveira, Ben-Hur; Özdemir, Vural; Könönen, Eija; Gürsoy, Ulvi K.

    2016-01-01

    Periodontitis, a formidable global health burden, is a common chronic disease that destroys tooth-supporting tissues. Biomarkers of the early phase of this progressive disease are of utmost importance for global health. In this context, saliva represents a non-invasive biosample. By using systems biology tools, we aimed to (1) identify an integrated interactome between matrix metalloproteinase (MMP)-REDOX/nitric oxide (NO) and apoptosis upstream pathways of periodontal inflammation, and (2) characterize the attendant topological network properties to uncover putative biomarkers to be tested in saliva from patients with periodontitis. Hence, we first generated a protein-protein network model of interactions (“BIOMARK” interactome) by using the STRING 10 database, a search tool for the retrieval of interacting genes/proteins, with “Experiments” and “Databases” as input options and a confidence score of 0.400. Second, we determined the centrality values (closeness, stress, degree or connectivity, and betweenness) for the “BIOMARK” members by using the Cytoscape software. We found Ubiquitin C (UBC), Jun proto-oncogene (JUN), and matrix metalloproteinase-14 (MMP14) as the most central hub- and non-hub-bottlenecks among the 211 genes/proteins of the whole interactome. We conclude that UBC, JUN, and MMP14 are likely an optimal candidate group of host-derived biomarkers, in combination with oral pathogenic bacteria-derived proteins, for detecting periodontitis at its early phase by using salivary samples from patients. These findings therefore have broader relevance for systems medicine in global health as well. PMID:26793622

  18. Differential coordination demands in Fe versus Mn water-soluble cationic metalloporphyrins translate into remarkably different aqueous redox chemistry and biology.

    PubMed

    Tovmasyan, Artak; Weitner, Tin; Sheng, Huaxin; Lu, MiaoMiao; Rajic, Zrinka; Warner, David S; Spasojevic, Ivan; Reboucas, Julio S; Benov, Ludmil; Batinic-Haberle, Ines

    2013-05-20

    The different biological behavior of cationic Fe and Mn pyridylporphyrins in Escherichia coli and mouse studies prompted us to revisit and compare their chemistry. For that purpose, the series of ortho and meta isomers of Fe(III) meso-tetrakis-N-alkylpyridylporphyrins, alkyl being methyl to n-octyl, were synthesized and characterized by elemental analysis, UV/vis spectroscopy, mass spectrometry, lipophilicity, protonation equilibria of axial waters, metal-centered reduction potential, E(1/2) for M(III)P/M(II)P redox couple (M = Fe, Mn, P = porphyrin), kcat for the catalysis of O2(•-) dismutation, stability toward peroxide-driven porphyrin oxidative degradation (produced in the catalysis of ascorbate oxidation by MP), ability to affect growth of SOD-deficient E. coli, and toxicity to mice. Electron-deficiency of the metal site is modulated by the porphyrin ligand, which renders Fe(III) porphyrins ≥5 orders of magnitude more acidic than the analogous Mn(III) porphyrins, as revealed by the pKa1 of axially coordinated waters. The 5 log units difference in the acidity between the Mn and Fe sites in porphyrin translates into the predominance of tetracationic (OH)(H2O)FeP complexes relative to pentacationic (H2O)2MnP species at pH ∼7.8. This is additionally evidenced in large differences in the E(1/2) values of M(III)P/M(II)P redox couples. The presence of hydroxo ligand labilizes trans-axial water which results in higher reactivity of Fe relative to Mn center. The differences in the catalysis of O2(•-) dismutation (log kcat) between Fe and Mn porphyrins is modest, 2.5-5-fold, due to predominantly outer-sphere, with partial inner-sphere character of two reaction steps. However, the rate constant for the inner-sphere H2O2-based porphyrin oxidative degradation is 18-fold larger for (OH)(H2O)FeP than for (H2O)2MnP. The in vivo consequences of the differences between the Fe and Mn porphyrins were best demonstrated in SOD-deficient E. coli growth. On the basis of

  19. Differential coordination demands in Fe vs Mn water-soluble cationic metalloporphyrins translates into remarkably different aqueous redox chemistry and biology

    PubMed Central

    Tovmasyan, Artak; Weitner, Tin; Sheng, Huaxin; Lu, MiaoMiao; Rajic, Zrinka; Warner, David S.; Spasojevic, Ivan; Reboucas, Julio S.; Benov, Ludmil; Batinic-Haberle, Ines

    2013-01-01

    The different biological behavior of cationic Fe and Mn pyridylporphyrins in Escherichia coli and mouse studies prompted us to revisit and compare their chemistry. For that purpose the series of ortho and meta isomers of Fe(III) meso-tetrakis-N-alkylpyridylporphyrins, alkyl being methyl to n-octyl, were synthesized and characterized by elemental analysis, UV/vis spectroscopy, mass spectrometry, lipophilicity, protonation equilibria of axial waters, metal-centered reduction potential, E1/2 for MIIIP/MIIP redox couple (M = Fe, Mn, P=porphyrin), kcat for the catalysis of O2•− dismutation, stability towards peroxide-driven porphyrin oxidative degradation (produced in the catalysis of ascorbate oxidation by MP), ability to affect growth of SOD-deficient E. coli and toxicity to mice. Electron-deficiency of the metal site is modulated by the porphyrin ligand, which renders Fe(III) porphyrins ≥ 5 orders of magnitude more acidic than the analogous Mn(III) porphyrins, as revealed by the pKa1 of axially coordinated waters. The 5 log units difference in the acidity between the Mn and Fe sites in porphyrin translates into the predominance of tetracationic (OH)(H2O)FeP complexes relative to pentacationic (H2O)2MnP species at pH ~7.8. This is evidenced in large differences in the thermodynamic parameters - pKa of axial waters and E1/2 of MIII/MII redox couple. The presence of hydroxo ligand labilizes trans-axial water which results in higher reactivity of Fe- relative to Mn center. The differences in the catalysis of O2•− dismutation (log kcat) between Fe and Mn porphyrins is modest, 2.5-5-fold, due to predominantly outer-sphere, with partial inner-sphere character of two reaction steps. However, the rate constant for the inner-sphere H2O2-based porphyrin oxidative degradation is 18-fold larger for (OH)(H2O)FeP than for (H2O)2MnP. The in vivo consequences of the differences between the Fe- and Mn porphyrins were best demonstrated in SOD-deficient E. coli growth. Based

  20. Redox Pioneer: Professor Helmut Sies

    PubMed Central

    Radi, Rafael

    2014-01-01

    Abstract Professor Helmut Sies Dr. Helmut Sies (MD, 1967) is recognized as a Redox Pioneer, because he authored five articles on oxidative stress, lycopene, and glutathione, each of which has been cited more than 1000 times, and coauthored an article on hydroperoxide metabolism in mammalian systems cited more than 5000 times (Google Scholar). He obtained preclinical education at the University of Tübingen and the University of Munich, clinical training at Munich (MD, 1967) and Paris, and completed Habilitation at Munich (Physiological Chemistry and Physical Biochemistry, 1972). In early research, he first identified hydrogen peroxide (H2O2) as a normal aerobic metabolite and devised a method to quantify H2O2 concentration and turnover in cells. He quantified central redox systems for energy metabolism (NAD, NADP systems) and antioxidant GSH in subcellular compartments. He first described ebselen, a selenoorganic compound, as a glutathione peroxidase mimic. He contributed a fundamental discovery to the physiology of GSH, selenium nutrition, singlet oxygen biochemistry, and health benefits of dietary lycopene and cocoa flavonoids. He has published more than 600 articles, 134 of which are cited at least 100 times, and edited 28 books. His h-index is 115. During the last quarter of the 20th century and well into the 21st, he has served as a scout, trailblazer, and pioneer in redox biology. His formulation of the concept of oxidative stress stimulated and guided research in oxidants and antioxidants; his pioneering research on carotenoids and flavonoids informed nutritional strategies against cancer, cardiovascular disease, and aging; and his quantitative approach to redox biochemistry provides a foundation for modern redox systems biology. Helmut Sies is a true Redox Pioneer. Antioxid. Redox Signal. 21, 2459–2468. The joy of exploring the unknown and finding something novel and noteworthy: what a privilege! —Prof. Helmut Sies PMID:25178739

  1. Thiol/disulfide redox states in signaling and sensing

    PubMed Central

    Go, Young-Mi; Jones, Dean P.

    2015-01-01

    Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol-disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady-states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling, and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol-disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities. PMID:23356510

  2. Redox Strategies for Crop Improvement.

    PubMed

    Kerchev, Pavel; De Smet, Barbara; Waszczak, Cezary; Messens, Joris; Van Breusegem, Frank

    2015-11-10

    Recently, the agro-biotech industry has been driven by overcoming the limitations imposed by fluctuating environmental stress conditions on crop productivity. A common theme among (a)biotic stresses is the perturbation of the redox homeostasis. As a strategy to engineer stress-tolerant crops, many approaches have been centered on restricting the negative impact of reactive oxygen species (ROS) accumulation. In this study, we discuss the scientific background of the existing redox-based strategies to improve crop performance and quality. In this respect, a special focus goes to summarizing the current patent landscape because this aspect is very often ignored, despite constituting the forefront of applied research. The current increased understanding of ROS acting as signaling molecules has opened new avenues to exploit redox biology for crop improvement required for sustainable food security.

  3. Redox pioneer: professor Helmut Sies.

    PubMed

    Jones, Dean P; Radi, Rafael

    2014-12-20

    Dr. Helmut Sies (MD, 1967) is recognized as a Redox Pioneer, because he authored five articles on oxidative stress, lycopene, and glutathione, each of which has been cited more than 1000 times, and coauthored an article on hydroperoxide metabolism in mammalian systems cited more than 5000 times (Google Scholar). He obtained preclinical education at the University of Tübingen and the University of Munich, clinical training at Munich (MD, 1967) and Paris, and completed Habilitation at Munich (Physiological Chemistry and Physical Biochemistry, 1972). In early research, he first identified hydrogen peroxide (H2O2) as a normal aerobic metabolite and devised a method to quantify H2O2 concentration and turnover in cells. He quantified central redox systems for energy metabolism (NAD, NADP systems) and antioxidant GSH in subcellular compartments. He first described ebselen, a selenoorganic compound, as a glutathione peroxidase mimic. He contributed a fundamental discovery to the physiology of GSH, selenium nutrition, singlet oxygen biochemistry, and health benefits of dietary lycopene and cocoa flavonoids. He has published more than 600 articles, 134 of which are cited at least 100 times, and edited 28 books. His h-index is 115. During the last quarter of the 20th century and well into the 21st, he has served as a scout, trailblazer, and pioneer in redox biology. His formulation of the concept of oxidative stress stimulated and guided research in oxidants and antioxidants; his pioneering research on carotenoids and flavonoids informed nutritional strategies against cancer, cardiovascular disease, and aging; and his quantitative approach to redox biochemistry provides a foundation for modern redox systems biology. Helmut Sies is a true Redox Pioneer.

  4. Engineered Proteins: Redox Properties and Their Applications

    PubMed Central

    Prabhulkar, Shradha; Tian, Hui; Wang, Xiaotang; Zhu, Jun-Jie

    2012-01-01

    Abstract Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796–1822. PMID:22435347

  5. Redox signaling in cardiovascular health and disease

    PubMed Central

    Madamanchi, Nageswara R.; Runge, Marschall S.

    2013-01-01

    Spatiotemporal regulation of the activity of a vast array of intracellular proteins and signaling pathways by reactive oxygen species (ROS) governs normal cardiovascular function. However, data from experimental and animal studies strongly support that dysregulated redox signaling, resulting from hyper-activation of various cellular oxidases or mitochondrial dysfunction, is integral to the pathogenesis and progression of cardiovascular disease (CVD). In this review, we address how redox signaling modulates the protein function, the various sources of increased oxidative stress in CVD, and the labyrinth of redox-sensitive molecular mechanisms involved in the development of atherosclerosis, hypertension, cardiac hypertrophy and heart failure, and ischemia–reperfusion injury. Advances in redox biology and pharmacology for inhibiting ROS production in specific cell types and subcellular organelles combined with the development of nanotechnology-based new in vivo imaging systems and targeted drug delivery mechanisms may enable fine-tuning of redox signaling for the treatment and prevention of CVD. PMID:23583330

  6. Synthesis and biological evaluation of 2-methyl-1H-benzimidazole-5-carbohydrazides derivatives as modifiers of redox homeostasis of Trypanosoma cruzi.

    PubMed

    Melchor-Doncel de la Torre, Silvia; Vázquez, Citlali; González-Chávez, Zabdi; Yépez-Mulia, Lilián; Nieto-Meneses, Rocío; Jasso-Chávez, Ricardo; Saavedra, Emma; Hernández-Luis, Francisco

    2017-08-01

    Twelve novel benzimidazole derivatives were synthesized and their in vitro activities against epimastigotes of Trypanosoma cruzi were evaluated. Two derivatives (6 and 7), which have 4-hydroxy-3-methoxyphenyl moiety in their structures, proved to be the most active in inhibiting the parasite growth. Compound 6 showed a trypanocidal activity higher than benznidazole (IC50=5µM and 7.5µM, respectively) and less than nifurtimox (IC50=3.6µM). In addition, the ability of 6 and 7 to modify the redox homeostasis in T cruzi epimastigote was studied; cysteine and glutathione increased in parasites exposed to both compounds, whereas trypanothione only increased with 7 treatment. These results suggest that the decrease in viability of T. cruzi may be attributed to the change in cellular redox balance caused by compound 6 or 7. Furthermore, compounds 6 and 7 showed CC50 values of 160.64 and 160.66µM when tested in mouse macrophage cell line J774 and selectivity indexes (macrophage/parasite) of 32 and 20.1, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mitochondrially targeted fluorescent redox sensors.

    PubMed

    Yang, Kylie; Kolanowski, Jacek L; New, Elizabeth J

    2017-04-06

    The balance of oxidants and antioxidants within the cell is crucial for maintaining health, and regulating physiological processes such as signalling. Consequently, imbalances between oxidants and antioxidants are now understood to lead to oxidative stress, a physiological feature that underlies many diseases. These processes have spurred the field of chemical biology to develop a plethora of sensors, both small-molecule and fluorescent protein-based, for the detection of specific oxidizing species and general redox balances within cells. The mitochondrion, in particular, is the site of many vital redox reactions. There is therefore a need to target redox sensors to this particular organelle. It has been well established that targeting mitochondria can be achieved by the use of a lipophilic cation-targeting group, or by utilizing natural peptidic mitochondrial localization sequences. Here, we review how these two approaches have been used by a number of researchers to develop mitochondrially localized fluorescent redox sensors that are already proving useful in providing insights into the roles of reactive oxygen species in the mitochondria.

  8. The redox switch/redox coupling hypothesis.

    PubMed

    Cerdán, Sebastián; Rodrigues, Tiago B; Sierra, Alejandra; Benito, Marina; Fonseca, Luis L; Fonseca, Carla P; García-Martín, María L

    2006-01-01

    We provide an integrative interpretation of neuroglial metabolic coupling including the presence of subcellular compartmentation of pyruvate and monocarboxylate recycling through the plasma membrane of both neurons and glial cells. The subcellular compartmentation of pyruvate allows neurons and astrocytes to select between glucose and lactate as alternative substrates, depending on their relative extracellular concentration and the operation of a redox switch. This mechanism is based on the inhibition of glycolysis at the level of glyceraldehyde 3-phosphate dehydrogenase by NAD(+) limitation, under sufficiently reduced cytosolic NAD(+)/NADH redox conditions. Lactate and pyruvate recycling through the plasma membrane allows the return to the extracellular medium of cytosolic monocarboxylates enabling their transcellular, reversible, exchange between neurons and astrocytes. Together, intracellular pyruvate compartmentation and monocarboxylate recycling result in an effective transcellular coupling between the cytosolic NAD(+)/NADH redox states of both neurons and glial cells. Following glutamatergic neurotransmission, increased glutamate uptake by the astrocytes is proposed to augment glycolysis and tricarboxylic acid cycle activity, balancing to a reduced cytosolic NAD(+)/NADH in the glia. Reducing equivalents are transferred then to the neuron resulting in a reduced neuronal NAD(+)/NADH redox state. This may eventually switch off neuronal glycolysis, favoring the oxidation of extracellular lactate in the lactate dehydrogenase (LDH) equilibrium and in the neuronal tricarboxylic acid cycles. Finally, pyruvate derived from neuronal lactate oxidation, may return to the extracellular space and to the astrocyte, restoring the basal redox state and beginning a new loop of the lactate/pyruvate transcellular coupling cycle. Transcellular redox coupling operates through the plasma membrane transporters of monocarboxylates, similarly to the intracellular redox shuttles

  9. Metabolic Control of Redox and Redox Control of Metabolism in Plants

    PubMed Central

    Fernie, Alisdair R.

    2014-01-01

    Abstract Significance: Reduction-oxidation (Redox) status operates as a major integrator of subcellular and extracellular metabolism and is simultaneously itself regulated by metabolic processes. Redox status not only dominates cellular metabolism due to the prominence of NAD(H) and NADP(H) couples in myriad metabolic reactions but also acts as an effective signal that informs the cell of the prevailing environmental conditions. After relay of this information, the cell is able to appropriately respond via a range of mechanisms, including directly affecting cellular functioning and reprogramming nuclear gene expression. Recent Advances: The facile accession of Arabidopsis knockout mutants alongside the adoption of broad-scale post-genomic approaches, which are able to provide transcriptomic-, proteomic-, and metabolomic-level information alongside traditional biochemical and emerging cell biological techniques, has dramatically advanced our understanding of redox status control. This review summarizes redox status control of metabolism and the metabolic control of redox status at both cellular and subcellular levels. Critical Issues: It is becoming apparent that plastid, mitochondria, and peroxisome functions influence a wide range of processes outside of the organelles themselves. While knowledge of the network of metabolic pathways and their intraorganellar redox status regulation has increased in the last years, little is known about the interorganellar redox signals coordinating these networks. A current challenge is, therefore, synthesizing our knowledge and planning experiments that tackle redox status regulation at both inter- and intracellular levels. Future Directions: Emerging tools are enabling ever-increasing spatiotemporal resolution of metabolism and imaging of redox status components. Broader application of these tools will likely greatly enhance our understanding of the interplay of redox status and metabolism as well as elucidating and

  10. Redox modulation of adipocyte differentiation: hypothesis of "Redox Chain" and novel insights into intervention of adipogenesis and obesity.

    PubMed

    Wang, Xin; Hai, Chunxu

    2015-12-01

    In view of the global prevalence of obesity and obesity-associated disorders, it is important to clearly understand how adipose tissue forms. Accumulating data from various laboratories implicate that redox status is closely associated with energy metabolism. Thus, biochemical regulation of the redox system may be an attractive alternative for the treatment of obesity-related disorders. In this work, we will review the current data detailing the role of the redox system in adipocyte differentiation, as well as identifying areas for further research. The redox system affects adipogenic differentiation in an extensive way. We propose that there is a complex and interactive "redox chain," consisting of a "ROS-generating enzyme chain," "combined antioxidant chain," and "transcription factor chain," which contributes to fine-tune the regulation of ROS level and subsequent biological consequences. The roles of the redox system in adipocyte differentiation are paradoxical. The redox system exerts a "tridimensional" mechanism in the regulation of adipocyte differentiation, including transcriptional, epigenetic, and posttranslational modulations. We suggest that redoxomic techniques should be extensively applied to understand the biological effects of redox alterations in a more integrated way. A stable and standardized "redox index" is urgently needed for the evaluation of the general redox status. Therefore, more effort should be made to establish and maintain a general redox balance rather than to conduct simple prooxidant or antioxidant interventions, which have comprehensive implications. Copyright © 2015. Published by Elsevier Inc.

  11. Redox Signals in Wound Healing

    PubMed Central

    Sen, Chandan K.; Roy, Sashwati

    2008-01-01

    Physical trauma represents one of the most primitive challenges that threatened survival. Healing a problem wound requires a multi-faceted comprehensive approach. First and foremost, the wound environment will have to be made receptive to therapies. Second, the appropriate therapeutic regimen needs to be identified and provided while managing systemic limitations that could secondarily limit the healing response. Unfortunately, most current solutions seem to aim at designing therapeutic regimen with little or no consideration of the specific details of the wound environment and systemic limitations. One factor that is centrally important in making the wound environment receptive is correction of wound hypoxia. Recent work have identified that oxygen is not only required to disinfect wounds and fuel healing but that oxygen-dependent redox-sensitive signaling processes represent an integral component of the healing cascade. Over a decade ago, it was proposed that in biological systems oxidants are not necessarily always the triggers for oxidative damage and that oxidants such as H2O2 could actually serve as signaling messengers and drive several aspects of cellular signaling. Today, that concept is much more developed and mature. Evidence supporting the role of oxidants such as H2O2 as signaling messenger is compelling. A complete understanding of the continuum between the classical and emergent roles of oxygen requires a thorough consideration of current concepts in redox biology. The objective of this review is to describe our current understanding of how redox-sensitive processes may drive dermal tissue repair. PMID:18249195

  12. Redox Modulations, Antioxidants, and Neuropsychiatric Disorders.

    PubMed

    Fraunberger, Erik A; Scola, Gustavo; Laliberté, Victoria L M; Duong, Angela; Andreazza, Ana C

    2016-01-01

    Although antioxidants, redox modulations, and neuropsychiatric disorders have been widely studied for many years, the field would benefit from an integrative and corroborative review. Our primary objective is to delineate the biological significance of compounds that modulate our redox status (i.e., reactive species and antioxidants) as well as outline their current role in brain health and the impact of redox modulations on the severity of illnesses. Therefore, this review will not enter into the debate regarding the perceived medical legitimacy of antioxidants but rather seek to clarify their abilities and limitations. With this in mind, antioxidants may be interpreted as natural products with significant pharmacological actions in the body. A renewed understanding of these often overlooked compounds will allow us to critically appraise the current literature and provide an informed, novel perspective on an important healthcare issue. In this review, we will introduce the complex topics of redox modulations and their role in the development of select neuropsychiatric disorders.

  13. Redox Modulations, Antioxidants, and Neuropsychiatric Disorders

    PubMed Central

    Fraunberger, Erik A.; Scola, Gustavo; Laliberté, Victoria L. M.; Duong, Angela; Andreazza, Ana C.

    2016-01-01

    Although antioxidants, redox modulations, and neuropsychiatric disorders have been widely studied for many years, the field would benefit from an integrative and corroborative review. Our primary objective is to delineate the biological significance of compounds that modulate our redox status (i.e., reactive species and antioxidants) as well as outline their current role in brain health and the impact of redox modulations on the severity of illnesses. Therefore, this review will not enter into the debate regarding the perceived medical legitimacy of antioxidants but rather seek to clarify their abilities and limitations. With this in mind, antioxidants may be interpreted as natural products with significant pharmacological actions in the body. A renewed understanding of these often overlooked compounds will allow us to critically appraise the current literature and provide an informed, novel perspective on an important healthcare issue. In this review, we will introduce the complex topics of redox modulations and their role in the development of select neuropsychiatric disorders. PMID:26640614

  14. Synthesis, pH dependent photometric and electrochemical investigation, redox mechanism and biological applications of novel Schiff base and its metallic derivatives

    NASA Astrophysics Data System (ADS)

    Rauf, Abdur; Shah, Afzal; Khan, Abdul Aziz; Shah, Aamir Hassan; Abbasi, Rashda; Qureshi, Irfan Zia; Ali, Saqib

    2017-04-01

    A novel Schiff base, 1-((2, 4-dimethylphenylimino)methyl)naphthalen-2-ol abbreviated as (HL) and its four metallic complexes were synthesized and confirmed by 1H and 13C NMR, FTIR, TGA and UV-Visible spectroscopy. Schiff base was also characterized by X-ray analysis. The photometric and electrochemical responses of all the synthesized compounds were investigated in a wide pH range. Structures of the compounds were optimized computationally for the evaluation of different physico-chemical parameters. On the basis of electrochemical results the redox mechanistic pathways of the compounds were proposed. The cytotoxicity analysis on Hela cells revealed that HL and its complexes inhibit cell growth as revealed from their IC50 values (HL):106.7 μM, (L2VO): 40.66 μM, (L2Sn): 5.92 μM, (L2Zn): 42.82 and (L2Co): 107.68 μM. The compounds were tested for anti-diabetic, triglyceride, cholesterol, anti-microbial, anti-fungal and enzyme inhibition activities. The results revealed that HL and its complexes are promising new therapeutic options as these compounds exhibit strong activity against cancer cells, diabetics, fungal and microbial inhibition.

  15. Synthesis, characterization, redox property and biological activity of Ru(II) carbonyl complexes containing O,N-donor ligands and heterocyclic bases

    NASA Astrophysics Data System (ADS)

    Kumar, K. Naresh; Ramesh, R.

    2004-10-01

    Stable ruthenium(II) carbonyl complexes having the general composition [RuCl(CO)(PPh 3)(B)(L)] (where B=PPh 3, pyridine, piperidine or morpholine; L = anion of bidentate Schiff bases (Vanmet, Vanampy, Vanchx)) were synthesized from the reaction of [RuHCl(CO)(PPh 3) 2(B)] with bidentate Schiff base ligands derived from condensation of o-vanillin with primary amines such as methylamine, 2-aminopyridine and cyclohexylamine. The new complexes were characterized by elemental analysis, IR, UV-Vis and 1H NMR spectral data. The redox property of the complexes were studied by cyclic voltammetric technique and the stability of the complexes towards oxidation were related to the electron releasing or electron withdrawing ability of the substituent in the phenyl ring of o-vanillin. An octahedral geometry has been assigned for all the complexes. In all the above reactions, the Schiff bases replace one molecule of PPh 3 and hydride ion from the starting complexes, which indicate that the Ru-N bonds present in the complexes containing heterocyclic nitrogen bases are stronger than the Ru-P. The Schiff bases and their ruthenium(II) complexes have been tested in vitro to evaluate their activity against bacteria, viz., Staphylococus aureus (209p) and E. coli (ESS 2231).

  16. Redox signaling in plants.

    PubMed

    Foyer, Christine H; Noctor, Graham

    2013-06-01

    Our aim is to deliver an authoritative and challenging perspective of current concepts in plant redox signaling, focusing particularly on the complex interface between the redox and hormone-signaling pathways that allow precise control of plant growth and defense in response to metabolic triggers and environmental constraints and cues. Plants produce significant amounts of singlet oxygen and other reactive oxygen species (ROS) as a result of photosynthetic electron transport and metabolism. Such pathways contribute to the compartment-specific redox-regulated signaling systems in plant cells that convey information to the nucleus to regulate gene expression. Like the chloroplasts and mitochondria, the apoplast-cell wall compartment makes a significant contribution to the redox signaling network, but unlike these organelles, the apoplast has a low antioxidant-buffering capacity. The respective roles of ROS, low-molecular antioxidants, redox-active proteins, and antioxidant enzymes are considered in relation to the functions of plant hormones such as salicylic acid, jasmonic acid, and auxin, in the composite control of plant growth and defense. Regulation of redox gradients between key compartments in plant cells such as those across the plasma membrane facilitates flexible and multiple faceted opportunities for redox signaling that spans the intracellular and extracellular environments. In conclusion, plants are recognized as masters of the art of redox regulation that use oxidants and antioxidants as flexible integrators of signals from metabolism and the environment.

  17. Redox regulation: an introduction.

    PubMed

    Dietz, Karl-Josef; Scheibe, Renate

    2004-01-01

    The redox-state is a critical determinate of cell function, and any major imbalances can cause severe damage or death. The cellular redox status therefore needs to be sensed and modulated before such imbalances occur. Various redox-active components are involved in these processes, including thioredoxins, glutaredoxins and other thiol/disulphide-containing proteins. The cellular reactions for cytoprotection and for signalling are integrated with physiological redox-reactions in photosynthesis, assimilation and respiration. They also determine the developmental fate of the cell and finally decide on proliferation or cell death. An international workshop on redox regulation, organized by the research initiative FOR 387 of the Deutsche Forschungsgemeinschaft, was held in Bielefeld, Germany in 2002. A selection of articles originating from the meeting is printed in this issue of Physiologia Plantarum.

  18. The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems.

    PubMed

    Meyer, K M; Ridgwell, A; Payne, J L

    2016-05-01

    The net export of organic matter from the surface ocean and its respiration at depth create vertical gradients in nutrient and oxygen availability that play a primary role in structuring marine ecosystems. Changes in the properties of this 'biological pump' have been hypothesized to account for important shifts in marine ecosystem structure, including the Cambrian explosion. However, the influence of variation in the behavior of the biological pump on ocean biogeochemistry remains poorly quantified, preventing any detailed exploration of how changes in the biological pump over geological time may have shaped long-term shifts in ocean chemistry, biogeochemical cycling, and ecosystem structure. Here, we use a 3-dimensional Earth system model of intermediate complexity to quantitatively explore the effects of the biological pump on marine chemistry. We find that when respiration of sinking organic matter is efficient, due to slower sinking or higher respiration rates, anoxia tends to be more prevalent and to occur in shallower waters. Consequently, the Phanerozoic trend toward less bottom-water anoxia in continental shelf settings can potentially be explained by a change in the spatial dynamics of nutrient cycling rather than by any change in the ocean phosphate inventory. The model results further suggest that the Phanerozoic decline in the prevalence ocean anoxia is, in part, a consequence of the evolution of larger phytoplankton, many of which produce mineralized tests. We hypothesize that the Phanerozoic trend toward greater animal abundance and metabolic demand was driven more by increased oxygen concentrations in shelf environments than by greater food (nutrient) availability. In fact, a lower-than-modern ocean phosphate inventory in our closed system model is unable to account for the Paleozoic prevalence of bottom-water anoxia. Overall, these model simulations suggest that the changing spatial distribution of photosynthesis and respiration in the oceans has

  19. Methods for using redox liposome biosensors

    DOEpatents

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  20. Redox tuning of cytochrome b562 through facile metal porphyrin substitution.

    PubMed

    Della Pia, Eduardo Antonio; Chi, Qijin; Elliott, Martin; Macdonald, J Emyr; Ulstrup, Jens; Jones, D Dafydd

    2012-11-07

    The biologically and nanotechnologically important heme protein cytochrome b(562) was reconstructed with zinc and copper porphyrins, leading to significant changes in the spectral, redox and electron transfer properties. The Cu form shifts the redox potential by +300 mV and exhibits high electron transfer, while the Zn form is redox inert.

  1. Regulation of Cell Transformation by Rb-Controlled Redox Homeostasis

    PubMed Central

    Wang, Wenwen; Zhang, Huamei; Li, Binghui; Ying, Guoguang

    2014-01-01

    Rb is a tumor suppressor, and regulates various biological progresses, such as cell proliferation, development, metabolism and cell death. In the current study, we show that Rb knockout in 3T3 cells leads to oxidative redox state and low mitochondrial membrane potential by regulating mitochondrial activity. Our results indicate that Rb plays an important role in controlling redox homeostasis. More importantly, the functions of Rb in modulating cell proliferation, death and transformation are, at least in part, mediated by its controlling cellular redox state. In addition, our results also suggest that the cellular redox state possibly determines various biological activities, including cell survival, death and transformation, where Rb is functioning as a regulator of redox homeostasis. PMID:25019272

  2. Redox pioneer: professor Irwin Fridovich.

    PubMed

    Imlay, James A

    2011-02-01

    Dr. Irwin Fridovich (Ph.D., 1955) is recognized here as a Redox Pioneer because as first/last author he has published at least 1 paper on antioxidant/redox biology that has been cited over 1000 times and has published at least 10 papers each cited over 100 times. In collaboration with his graduate student, Joe McCord, Dr. Fridovich discovered the activity of superoxide dismutase (SOD). Subsequently, he and his colleagues demonstrated that the enzyme is ubiquitous among aerobic biota and comprises a critical defense against oxidative stress. With coworkers, Dr. Fridovich identified the first physiological targets of superoxide, the iron-sulfur clusters of dehydratases. They also showed that SOD is just one of several strategies by which cells fend off oxidative stress. It is now clear that organisms are chronically exposed to endogenous superoxide; further, microbes, plants, and mammals all employ superoxide as a weapon to poison their competitors. Thus, the achievement of Fridovich's laboratory was not only the seminal discovery of SOD but also the painstaking work over the subsequent decades that illuminated its place in biology.

  3. Measuring E(GSH) and H2O2 with roGFP2-based redox probes.

    PubMed

    Morgan, Bruce; Sobotta, Mirko C; Dick, Tobias P

    2011-12-01

    Redox biochemistry plays an important role in a wide range of cellular events. However, investigation of cellular redox processes is complicated by the large number of cellular redox couples, which are often not in equilibrium with one another and can vary significantly between subcellular compartments and cell types. Further, it is becoming increasingly clear that different redox systems convey different biological information; thus it makes little sense to talk of an overall "cellular redox state". To gain a more differentiated understanding of cellular redox biology, quantitative, redox couple-specific, in vivo measurements are necessary. Unfortunately our ability to investigate specific redox couples or redox-reactive molecules with the necessary degree of spatiotemporal resolution is very limited. The development of genetically encoded redox biosensors offers a promising new way to investigate redox biology. Recently developed redox-sensitive green fluorescent proteins (roGFPs), genetically fused to redox-active proteins, allow rapid equilibration of the roGFP moiety with a specific redox couple. Two probes based on this principle are now available: Grx1-roGFP2 for the measurement of glutathione redox potential (E(GSH)) and roGFP2-Orp1 for measuring changes in H(2)O(2) concentration. Here we provide a detailed protocol for the use of these probes in both yeast and mammalian systems using either plate-reader- or microscopy-based measurements.

  4. Redox Species of Redox Flow Batteries: A Review.

    PubMed

    Pan, Feng; Wang, Qing

    2015-11-18

    Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  5. Redox pioneer: professor Roland Stocker.

    PubMed

    Hunt, Nicholas H

    2011-12-15

    Dr. Roland Stocker (Ph.D. 1985) is recognized here as a Redox Pioneer, because he has published one article on antioxidant/redox biology as first author that has been cited over 1000 times and has published another 32 articles, each cited over 100 times. Dr. Stocker received his undergraduate education at the Federal Institute of Technology Zürich, Switzerland (1975-1981), followed by postgraduate training at the Australian National University Canberra, Australia (1982-1985) and postdoctoral training at the University of California, Berkeley (1986-1987), and the University of Berne, Switzerland (1987-1988). Dr. Stocker's top scientific contributions are in the following areas: (i) molecular action and interaction of nonproteinaceous antioxidants, particularly bilirubin, α-tocopherol, and ubiquinol-10; (ii) lipoprotein lipid oxidation and its inhibition, with a particular focus on how α-tocopherol affects these processes; (iii) the role of arterial lipoprotein lipid oxidation in atherosclerosis and related diseases; (iv) modes of antiatherosclerotic action of probucol and the involvement of heme oxygenase-1 in vascular protection; and (v) the regulation of indoleamine 2,3-dioxygenase and its contribution to vascular tone and blood pressure in inflammatory diseases.

  6. Redox pioneer: professor Barry Halliwell.

    PubMed

    Pervaiz, Shazib

    2011-05-01

    Professor Barry Halliwell is recognized as a Redox Pioneer because he has published eight articles on redox biology that have been each cited more than 1000 times, and 158 articles that have been each cited more than 100 times. His contributions go back as far as 1976, when he was involved in elucidation of the Foyer-Halliwell-Asada cycle, an efficient mechanism for preventing oxidative damage to chloroplasts. His subsequent work established the important role of iron and zinc in free radical reactions and their relevance to human pathologies. Professor Halliwell is also a leader in developing novel methodology for detecting free radical intermediates in vivo, and his contributions to our knowledge of reactive nitrogen species are highly significant. His sustained excellence won him the top-cited scientist award in the United Kingdom in biomedical sciences in 1999, and in 2003 he was recognized as a highly cited scientist by Institute of Scientific Information (ISI) for work on plant antioxidants, and the same year ranked 28 out of 5494 biochemists/biologists for scientific impact. Two pieces of his scholarly work have been listed as Citation Classics by ISI, and in 2007 his laboratory was ranked number 1 worldwide based on highest citation score in research on free radicals.

  7. The chemistry behind redox regulation with a focus on sulphur redox systems.

    PubMed

    Jacob, Claus; Anwar, Awais

    2008-07-01

    Sulphur metabolism in plants provides a wealth of natural products, including several chemically unusual substances, such as thiosulphinates, polysulphides and isothiocyanates. Many of these reactive sulphur species (RSS) exhibit a distinct redox behaviour in vitro, which translates into a rather interesting biological activity in vivo, such as antibiotic, fungicidal, pesticidal or anticancer activity. While the molecular basis for such activity has long remained obscure, research into sulphur-based redox systems during the past 5-10 years has achieved a better knowledge of the in vitro properties of RSS and has led to an improved understanding of their impact on intracellular redox signalling and control pathways in living cells. It has become apparent that the redox chameleon sulphur occurs in biological systems in about 10 different oxidation states, which give rise to an extensive and complicated network of sulphur-based redox events. Together, natural sulphur products from plants and their intracellular targets provide the basis for innovative design of novel antibiotics, fungicides, pesticides and anticancer agents.

  8. Redox control of teratogenesis.

    PubMed

    Hansen, Jason M; Harris, Craig

    2013-01-01

    A number of human teratogens elicit their deleterious effects through mechanisms involving the generation of reactive oxygen species (ROS) and oxidative stress. However, classic definitions of oxidative stress do not fully coincide with basic fundamental principles of teratology. Newer definitions of oxidative stress focus on the targeted redox modification of cysteine/thiol functional groups found in the regulatory domains of critical signaling pathway proteins, suggesting that the targeted disruption of signaling through specific redox couples may account for the specificity of teratogen-induced malformations which previously could not be rationalized. Here, we review examples of teratogens that induce ROS and oxidative injury, describe oxidative stress-related teratogenic mechanisms, and provide rationale for developmental periods of sensitivity and species susceptibility. Understanding how chemicals disrupt redox status, induce oxidative stress leading to dysmorphogenesis becomes important to identify potential teratogens and develop therapeutic interventions for attenuation of harmful chemical effects in utero following exposure.

  9. Redox Regulation of Mitochondrial Function

    PubMed Central

    Handy, Diane E.

    2012-01-01

    Abstract Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function. Antioxid. Redox Signal. 16, 1323–1367. PMID:22146081

  10. Kynurenine pathway metabolites and enzymes involved in redox reactions.

    PubMed

    González Esquivel, D; Ramírez-Ortega, D; Pineda, B; Castro, N; Ríos, C; Pérez de la Cruz, V

    2017-01-01

    Oxido-reduction reactions are a fundamental part of the life due to support many vital biological processes as cellular respiration and glucose oxidation. In the redox reactions, one substance transfers one or more electrons to another substance. An important electron carrier is the coenzyme NAD(+), which is involved in many metabolic pathways. De novo biosynthesis of NAD(+) is through the kynurenine pathway, the major route of tryptophan catabolism, which is sensitive to redox environment and produces metabolites with redox capacity, able to alter biological functions that are controlled by redox-responsive signaling pathways. Kynurenine pathway metabolites have been implicated in the physiology process and in the physiopathology of many diseases; processes that also share others factors as dysregulation of calcium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation and cell death, which impact the redox environment. This review examines in detail the available evidence in which kynurenine pathway metabolites participate in redox reactions and their effect on cellular redox homeostasis, since the knowledge of the main factors and mechanisms that lead to cell death in many neurodegenative disorders and other pathologies, such as mitochondrial dysfunction, oxidative stress and kynurenines imbalance, will allow to develop therapies using them as targets. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Redox Control of Inflammation in Macrophages

    PubMed Central

    Dehne, Nathalie; Grossmann, Nina; Jung, Michaela; Namgaladze, Dmitry; Schmid, Tobias; von Knethen, Andreas; Weigert, Andreas

    2013-01-01

    Abstract Macrophages are present throughout the human body, constitute important immune effector cells, and have variable roles in a great number of pathological, but also physiological, settings. It is apparent that macrophages need to adjust their activation profile toward a steadily changing environment that requires altering their phenotype, a process known as macrophage polarization. Formation of reactive oxygen species (ROS), derived from NADPH-oxidases, mitochondria, or NO-producing enzymes, are not necessarily toxic, but rather compose a network signaling system, known as redox regulation. Formation of redox signals in classically versus alternatively activated macrophages, their action and interaction at the level of key targets, and the resulting physiology still are insufficiently understood. We review the identity, source, and biological activities of ROS produced during macrophage activation, and discuss how they shape the key transcriptional responses evoked by hypoxia-inducible transcription factors, nuclear-erythroid 2-p45-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor-γ. We summarize the mechanisms how redox signals add to the process of macrophage polarization and reprogramming, how this is controlled by the interaction of macrophages with their environment, and addresses the outcome of the polarization process in health and disease. Future studies need to tackle the option whether we can use the knowledge of redox biology in macrophages to shape their mediator profile in pathophysiology, to accelerate healing in injured tissue, to fight the invading pathogens, or to eliminate settings of altered self in tumors. Antioxid. Redox Signal. 19, 595–637. PMID:23311665

  12. Redox Flow Batteries, a Review

    SciTech Connect

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  13. Redox Control of Skeletal Muscle Regeneration.

    PubMed

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  14. MITOCHONDRIAL REDOX IMAGING FOR CANCER DIAGNOSTIC AND THERAPEUTIC STUDIES

    PubMed Central

    LI, LIN Z.; XU, HE N.; RANJI, MAHSA; NIOKA, SHOKO; CHANCE, BRITTON

    2015-01-01

    Mitochondrial redox states provide important information about energy-linked biological processes and signaling events in tissues for various disease phenotypes including cancer. The redox scanning method developed at the Chance laboratory about 30 years ago has allowed 3D high-resolution (~ 50 × 50 × 10 μm3) imaging of mitochondrial redox state in tissue on the basis of the fluorescence of NADH (reduced nicotinamide adenine dinucleotide) and Fp (oxidized flavoproteins including flavin adenine dinucleotide, i.e., FAD). In this review, we illustrate its basic principles, recent technical developments, and biomedical applications to cancer diagnostic and therapeutic studies in small animal models. Recently developed calibration procedures for the redox imaging using reference standards allow quantification of nominal NADH and Fp concentrations, and the concentration-based redox ratios, e.g., Fp/(Fp+NADH) and NADH/(Fp+NADH) in tissues. This calibration facilitates the comparison of redox imaging results acquired for different metabolic states at different times and/or with different instrumental settings. A redox imager using a CCD detector has been developed to acquire 3D images faster and with a higher in-plane resolution down to 10 μm. Ex vivo imaging and in vivo imaging of tissue mitochondrial redox status have been demonstrated with the CCD imager. Applications of tissue redox imaging in small animal cancer models include metabolic imaging of glioma and myc-induced mouse mammary tumors, predicting the metastatic potentials of human melanoma and breast cancer mouse xenografts, differentiating precancerous and normal tissues, and monitoring the tumor treatment response to photodynamic therapy. Possible future directions for the development of redox imaging are also discussed. PMID:26015810

  15. Redox theory of aging

    PubMed Central

    Jones, Dean P.

    2015-01-01

    Metazoan genomes encode exposure memory systems to enhance survival and reproductive potential by providing mechanisms for an individual to adjust during lifespan to environmental resources and challenges. These systems are inherently redox networks, arising during evolution of complex systems with O2 as a major determinant of bioenergetics, metabolic and structural organization, defense, and reproduction. The network structure decreases flexibility from conception onward due to differentiation and cumulative responses to environment (exposome). The redox theory of aging is that aging is a decline in plasticity of genome–exposome interaction that occurs as a consequence of execution of differentiation and exposure memory systems. This includes compromised mitochondrial and bioenergetic flexibility, impaired food utilization and metabolic homeostasis, decreased barrier and defense capabilities and loss of reproductive fidelity and fecundity. This theory accounts for hallmarks of aging, including failure to maintain oxidative or xenobiotic defenses, mitochondrial integrity, proteostasis, barrier structures, DNA repair, telomeres, immune function, metabolic regulation and regenerative capacity. PMID:25863726

  16. Microfluidic redox battery.

    PubMed

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-07

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  17. Redox regulated peroxisome homeostasis

    PubMed Central

    Wang, Xiaofeng; Li, Shuo; Liu, Yu; Ma, Changle

    2014-01-01

    Peroxisomes are ubiquitous organelles present in nearly all eukaryotic cells. Conserved functions of peroxisomes encompass beta-oxidation of fatty acids and scavenging of reactive oxygen species generated from diverse peroxisomal metabolic pathways. Peroxisome content, number, and size can change quickly in response to environmental and/or developmental cues. To achieve efficient peroxisome homeostasis, peroxisome biogenesis and degradation must be orchestrated. We review the current knowledge on redox regulated peroxisome biogenesis and degradation with an emphasis on yeasts and plants. PMID:25545794

  18. Ediacaran Redox Fluctuations

    NASA Astrophysics Data System (ADS)

    Sahoo, S. K.; Jiang, G.; Planavsky, N. J.; Kendall, B.; Owens, J. D.; Anbar, A. D.; Lyons, T. W.

    2013-12-01

    Evidence for pervasive oxic conditions, and likely even deep ocean oxygenation has been documented at three intervals in the lower (ca. 632 Ma), middle (ca. 580 Ma) and upper (ca. 551 Ma) Ediacaran. The Doushantuo Formation in South China hosts large enrichments of redox-sensitive trace element (e.g., molybdenum, vanadium and uranium) in anoxic shales, which are indicative of a globally oxic ocean-atmosphere system. However, ocean redox conditions between these periods continue to be a topic of debate and remain elusive. We have found evidence for widespread anoxic conditions through much of the Ediacaran in the deep-water Wuhe section in South China. During most of the Ediacaran-early Cambrian in basinal sections is characterized by Fe speciation data and pyrite morphologies that indicate deposition under euxinic conditions with near-crustal enrichments of redox-sensitive element and positive pyrite-sulfur isotope values, which suggest low levels of marine sulfate and widespread euxinia. Our work reinforces an emerging view that the early Earth, including the Ediacaran, underwent numerous rises and falls in surface oxidation state, rather than a unidirectional rise as originally imagined. The Ediacaran ocean thus experienced repetitive expansion and contraction of marine chalcophilic trace-metal levels that may have had fundamental impact on the slow evolution of early animals and ecosystems. Further, this framework forces us to re-examine the relationship between Neoproterozoic oxygenation and metazoan diversification. Varying redox conditions through the Cryogenian and Ediacaran may help explain molecular clock and biomarker evidence for an early appearance and initial diversification of metazoans but with a delay in the appearance of most major metazoan crown groups until close to Ediacaran-Cambrian boundary.

  19. Redox signaling regulated by electrophiles and reactive sulfur species

    PubMed Central

    Nishida, Motohiro; Kumagai, Yoshito; Ihara, Hideshi; Fujii, Shigemoto; Motohashi, Hozumi; Akaike, Takaaki

    2016-01-01

    Redox signaling is a key modulator of oxidative stress induced by nonspecific insults of biological molecules generated by reactive oxygen species. Current redox biology is revisiting the traditional concept of oxidative stress, such that toxic effects of reactive oxygen species are protected by diverse antioxidant systems upregulated by oxidative stress responses that are physiologically mediated by redox-dependent cell signaling pathways. Redox signaling is thus precisely regulated by endogenous electrophilic substances that are generated from reactive oxygen species and nitric oxide and its derivative reactive species during stress responses. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive sulfur species such as cysteine hydropersulfides that are abundant in cells are likely involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cell and stem cell biology; infectious diseases, cancer, metabolic syndrome, ageing, and neurodegenerative diseases; and other oxidative stress-related disorders. This review focuses on the most recent progress in the biosynthesis, cell signaling, and metabolism of 8-nitro-cGMP, which is a likely target for drug development and lead to discovery of novel therapeutics for many diseases. PMID:27013774

  20. Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells.

    PubMed

    Yin, Zepeng; Balmant, Kelly; Geng, Sisi; Zhu, Ning; Zhang, Tong; Dufresne, Craig; Dai, Shaojun; Chen, Sixue

    2017-01-01

    Climate change as a result of increasing atmospheric CO2 affects plant growth and productivity. CO2 is not only a carbon donor for photosynthesis but also an environmental signal that can perturb cellular redox homeostasis and lead to modifications of redox-sensitive proteins. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, protein redox modifications and how they function in plant CO2 response remain unclear. Here a new iodoTMTRAQ proteomics technology was employed to analyze changes in protein redox modifications in Arabidopsis thaliana suspension cells in response to bicarbonate (mimic of elevated CO2) in a time-course study. A total of 47 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, transport, ROS scavenging, cell structure modulation and protein turnover. This inventory of previously unknown redox responsive proteins in Arabidopsis bicarbonate responses lays a foundation for future research toward understanding the molecular mechanisms underlying plant CO2 responses.

  1. Managing the cellular redox hub in photosynthetic organisms.

    PubMed

    Foyer, Christine H; Noctor, Graham

    2012-02-01

    Light-driven redox chemistry is a powerful source of redox signals that has a decisive input into transcriptional control within the cell nucleus. Like photosynthetic electron transport pathways, the respiratory electron transport chain exerts a profound control over gene function, in order to balance energy (reductant and ATP) supply with demand, while preventing excessive over-reduction or over-oxidation that would be adversely affect metabolism. Photosynthetic and respiratory redox chemistries are not merely housekeeping processes but they exert a controlling influence over every aspect of plant biology, participating in the control of gene transcription and translation, post-translational modifications and the regulation of assimilatory reactions, assimilate partitioning and export. The number of processes influenced by redox controls and signals continues to increase as do the components that are recognized participants in the associated signalling pathways. A step change in our understanding of the overall importance of the cellular redox hub to plant cells has occurred in recent years as the complexity of the management of the cellular redox hub in relation to metabolic triggers and environmental cues has been elucidated. This special issue describes aspects of redox regulation and signalling at the cutting edge of current research in this dynamic and rapidly expanding field. © 2011 Blackwell Publishing Ltd.

  2. Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells

    PubMed Central

    Yin, Zepeng; Balmant, Kelly; Geng, Sisi; Zhu, Ning; Zhang, Tong; Dufresne, Craig; Dai, Shaojun; Chen, Sixue

    2017-01-01

    Climate change as a result of increasing atmospheric CO2 affects plant growth and productivity. CO2 is not only a carbon donor for photosynthesis but also an environmental signal that can perturb cellular redox homeostasis and lead to modifications of redox-sensitive proteins. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, protein redox modifications and how they function in plant CO2 response remain unclear. Here a new iodoTMTRAQ proteomics technology was employed to analyze changes in protein redox modifications in Arabidopsis thaliana suspension cells in response to bicarbonate (mimic of elevated CO2) in a time-course study. A total of 47 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, transport, ROS scavenging, cell structure modulation and protein turnover. This inventory of previously unknown redox responsive proteins in Arabidopsis bicarbonate responses lays a foundation for future research toward understanding the molecular mechanisms underlying plant CO2 responses. PMID:28184230

  3. The Expanding Landscape of the Thiol Redox Proteome*

    PubMed Central

    Yang, Jing; Carroll, Kate S.; Liebler, Daniel C.

    2016-01-01

    Cysteine occupies a unique place in protein chemistry. The nucleophilic thiol group allows cysteine to undergo a broad range of redox modifications beyond classical thiol-disulfide redox equilibria, including S-sulfenylation (-SOH), S-sulfinylation (-SO2H), S-sulfonylation (-SO3H), S-nitrosylation (-SNO), S-sulfhydration (-SSH), S-glutathionylation (-SSG), and others. Emerging evidence suggests that these post-translational modifications (PTM) are important in cellular redox regulation and protection against oxidative damage. Identification of protein targets of thiol redox modifications is crucial to understanding their roles in biology and disease. However, analysis of these highly labile and dynamic modifications poses challenges. Recent advances in the design of probes for thiol redox forms, together with innovative mass spectrometry based chemoproteomics methods make it possible to perform global, site-specific, and quantitative analyses of thiol redox modifications in complex proteomes. Here, we review chemical proteomic strategies used to expand the landscape of thiol redox modifications. PMID:26518762

  4. Tissue redox activity as a sensing platform for imaging of cancer based on nitroxide redox cycle.

    PubMed

    Zhelev, Zhivko; Aoki, Ichio; Gadjeva, Veselina; Nikolova, Biliana; Bakalova, Rumiana; Saga, Tsuneo

    2013-04-01

    The experience in free radical biology and medicine shows the crucial role of redox signalling in carcinogenesis. The cells and tissues of healthy mammals are characterised by a low level of reactive oxygen species (ROS) and some constant (reference) level of reducing equivalents. Increasing of ROS above the critical level provokes genomic instability. The present study describes universal methodology for direct imaging of tissue redox activity in carcinogenesis, which allows a differentiation of cancer development from normal condition. The experiments were conducted on: neuroblastoma-bearing mice; colon cancer-bearing mice; and healthy mice. The tissue redox activity was visualised in vivo by nitroxide-enhanced magnetic resonance imaging (MRI) on anesthetised animals. The method is based on nitroxide redox cycle, coupled with appearance/disappearance of MRI signal. The half-life (τ1/2) of nitroxide-enhanced MRI signal in the respective tissue was used as a diagnostic marker. The study provides direct evidence that healthy and cancer-bearing mammalian tissues are characterised by different redox activities - a basis for cancer diagnosis. The tissues (cancer and 'normal') of cancer-bearing mammals were characterised by a long-lived MRI signal (τ1/2>14 min), indicating a high oxidative activity. The tissues of healthy organism were characterised by a short-lived MRI signal (τ1/2=1-3 min), indicating a high reducing activity. The study shows that tissue redox activity is a sensing platform for imaging of cancer using nitroxide-enhanced MRI. It also suggests that 'normal' tissues of cancer-bearing organism are susceptible to oxidative damage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines

    SciTech Connect

    Duan, Jicheng; Gaffrey, Matthew J.; Qian, Wei-Jun

    2017-01-01

    Protein cysteine thiols play a crucial role in redox signaling, regulation of enzymatic activity and protein function, and maintaining redox homeostasis in living systems. The unique chemical reactivity of thiol groups makes cysteine susceptible to oxidative modifications by reactive oxygen and nitrogen species to form a broad array of reversible and irreversible protein post-translational modifications (PTMs). The reversible modifications in particular are one of the major components of redox signaling and are involved in regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in health and diseases has been increasingly recognized. Herein, we review the recent advances of quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including the general considerations of sample processing, various chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for addressing specific biological questions. Although some technological limitations remain, redox proteomics is paving the way towards a better understanding of redox signaling and regulation in human health and diseases.

  6. Quantitative Redox Imaging Software.

    PubMed

    Fricker, Mark D

    2016-05-01

    A wealth of fluorescent reporters and imaging systems are now available to characterize dynamic physiological processes in living cells with high spatiotemporal resolution. The most reliable probes for quantitative measurements show shifts in their excitation or emission spectrum, rather than just a change in intensity, as spectral shifts are independent of optical path length, illumination intensity, probe concentration, and photobleaching, and they can be easily determined by ratiometric measurements at two wavelengths. A number of ratiometric fluorescent reporters, such as reduction-oxidation-sensitive green fluorescent protein (roGFP), have been developed that respond to the glutathione redox potential and allow redox imaging in vivo. roGFP and its derivatives can be expressed in the cytoplasm or targeted to different organelles, giving fine control of measurements from sub-cellular compartments. Furthermore, roGFP can be imaged with probes for other physiological parameters, such as reactive oxygen species or mitochondrial membrane potential, to give multi-channel, multi-dimensional 4D (x,y,z,t) images. Live cell imaging approaches are needed to capture transient or highly spatially localized physiological behavior from intact, living specimens, which are often not accessible by other biochemical or genetic means. The next challenge is to be able to extract useful data rapidly from such large (GByte) images with due care given to the assumptions used during image processing. This article describes a suite of software programs, available for download, that provide intuitive user interfaces to conduct multi-channel ratio imaging, or alternative analysis methods such as pixel-population statistics or image segmentation and object-based ratio analysis. Antioxid. Redox Signal. 24, 752-762.

  7. Quantitative measures for redox signaling.

    PubMed

    Pillay, Ché S; Eagling, Beatrice D; Driscoll, Scott R E; Rohwer, Johann M

    2016-07-01

    Redox signaling is now recognized as an important regulatory mechanism for a number of cellular processes including the antioxidant response, phosphokinase signal transduction and redox metabolism. While there has been considerable progress in identifying the cellular machinery involved in redox signaling, quantitative measures of redox signals have been lacking, limiting efforts aimed at understanding and comparing redox signaling under normoxic and pathogenic conditions. Here we have outlined some of the accepted principles for redox signaling, including the description of hydrogen peroxide as a signaling molecule and the role of kinetics in conferring specificity to these signaling events. Based on these principles, we then develop a working definition for redox signaling and review a number of quantitative methods that have been employed to describe signaling in other systems. Using computational modeling and published data, we show how time- and concentration- dependent analyses, in particular, could be used to quantitatively describe redox signaling and therefore provide important insights into the functional organization of redox networks. Finally, we consider some of the key challenges with implementing these methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Spatial patterns in oxygen and redox sensitive biogeochemistry in tropical forest soils

    Treesearch

    Daniel Liptzin; Whendee L. Silver

    2015-01-01

    Humid tropical forest soils are characterized by warm temperatures, abundant rainfall, and high rates of biological activity that vary considerably in both space and time. These conditions, together with finely textured soils typical of humid tropical forests lead to periodic low redox conditions, even in well-drained upland environments. The relationship between redox...

  9. Redox artifacts in electrophysiological recordings

    PubMed Central

    Berman, Jonathan M.

    2013-01-01

    Electrophysiological techniques make use of Ag/AgCl electrodes that are in direct contact with cells or bath. In the bath, electrodes are exposed to numerous experimental conditions and chemical reagents that can modify electrode voltage. We examined voltage offsets created in Ag/AgCl electrodes by exposure to redox reagents used in electrophysiological studies. Voltage offsets were measured in reference to an electrode separated from the solution by an agar bridge. The reducing reagents Tris-2-carboxyethly-phosphine, dithiothreitol (DTT), and glutathione, as well as the oxidizing agent H2O2 used at experimentally relevant concentrations reacted with Ag in the electrodes to produce voltage offsets. Chloride ions and strong acids and bases produced offsets at millimolar concentrations. Electrolytic depletion of the AgCl layer, to replicate voltage clamp and sustained use, resulted in increased sensitivity to flow and DTT. Offsets were sensitive to electrode silver purity and to the amount and method of chloride deposition. For example, exposure to 10 μM DTT produced a voltage offset between 10 and 284 mV depending on the chloride deposition method. Currents generated by these offsets are significant and dependent on membrane conductance and by extension the expression of ion channels and may therefore appear to be biological in origin. These data demonstrate a new source of artifacts in electrophysiological recordings that can affect measurements obtained from a variety of experimental techniques from patch clamp to two-electrode voltage clamp. PMID:23344161

  10. Redox flow batteries: a review

    SciTech Connect

    Weber, Adam Z.; Mench, Matthew M; Meyers, Jeremy; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-01-01

    Redox flow batteries (RFBs) are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of RFBs with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  11. Redox control of plant growth and development.

    PubMed

    Kocsy, Gábor; Tari, Irma; Vanková, Radomíra; Zechmann, Bernd; Gulyás, Zsolt; Poór, Péter; Galiba, Gábor

    2013-10-01

    Redox changes determined by genetic and environmental factors display well-organized interactions in the control of plant growth and development. Diurnal and seasonal changes in the environmental conditions are important for the normal course of these physiological processes and, similarly to their mild irregular alterations, for stress adaptation. However, fast or large-scale environmental changes may lead to damage or death of sensitive plants. The spatial and temporal redox changes influence growth and development due to the reprogramming of metabolism. In this process reactive oxygen and nitrogen species and antioxidants are involved as components of signalling networks. The control of growth, development and flowering by reactive oxygen and nitrogen species and antioxidants in interaction with hormones at organ, tissue, cellular and subcellular level will be discussed in the present review. Unsolved problems of the field, among others the need for identification of new components and interactions in the redox regulatory network at various organization levels using systems biology approaches will be also indicated.

  12. Redox regulation of cardiac hypertrophy.

    PubMed

    Sag, Can M; Santos, Celio X C; Shah, Ajay M

    2014-08-01

    It is increasingly evident that redox-dependent modifications in cellular proteins and signaling pathways (or redox signaling) play important roles in many aspects of cardiac hypertrophy. Indeed, these redox modifications may be intricately linked with the process of hypertrophy wherein there is not only a significant increase in myocardial O2 consumption but also important alterations in metabolic processes and in the local generation of O2-derived reactive species (ROS) that modulate and/or amplify cell signaling pathways. This article reviews our current knowledge of redox signaling pathways and their roles in cardiac hypertrophy. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System". Copyright © 2014. Published by Elsevier Ltd.

  13. Redox Disproportionation of Glucose as a Major Biosynthetic Energy Source

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1996-01-01

    Previous studies have concluded that very little if any energy is required for the microbial biosynthesis of amino acids and lipids from glucose -- processes that yield almost as much ATP (adenosine triphosphate) as they consume. However, these studies did not establish the strength nor the nature of the energy source driving these biological transformations. To identify and estimate the strength of the energy source behind these processes, we calculated the free energy change due to the redox disproportionation of substrate carbon of (a) 26 redox-balanced fermentation reactions, and (b) the biosynthesis of amino acids, lipids, and nucleotides of E. coli from glucose. A plot of the negative free energy of these reactions per mmole of carbon as a function of the number of disproportionative electron transfers per mmol of carbon showed that the energy yields of these fermentations and biosyntheses were directly proportional to the degree of redox disproportionation of carbon. Since this linear relationship showed that redox disproportionation was the dominant energy source of these reactions, we were able to establish that amino acid and lipid biosynthesis obtained most of their energy from redox disproportionation (greater than 94%). In contrast nucleotide biosynthesis was not driven by redox disproportionation of carbon, and consequently depended completely on ATP for energy. This crucial and previously unrecognized role of sugars as an energy source of biosynthesis suggests that sugars were involved at the earliest stage in the origin of anabolic metabolism.

  14. Evolution of robusta green coffee redox enzymatic activities with maturation.

    PubMed

    Montavon, Philippe; Bortlik, Karlheinz

    2004-06-02

    Oxidation reactions in coffee involve redox-sensitive polyphenols and appear to control the fragmentation of coffee storage proteins both in solution and during roasting. Coffee-specific nitrogenous flavor precursors may derive from this process. Accordingly, data converge to suggest that the redox status of the green bean before roasting might control the development of subsequent redox reactions during roasting. Consequently, we decided to identify biological events that may trigger or prevent oxidation during maturation of the coffee cherry and set the final redox status of the green bean. In a previous study, we observed that the sensitivity of green coffee to oxidative processes decreased along maturation. By using the very same samples originating from open-pollinated Robusta clones, we followed the activity of three essential redox enzymes: catalase (CAT), peroxidase (POD) and polyphenoloxidase (PPO). While CAT and POD activities increased with maturation, PPO activities decreased. Thanks to the identification of an atypical immature subclass, it appeared that CAT might be an essential factor in setting the final redox status of the green bean before the roasting event.

  15. Redox Disproportionation of Glucose as a Major Biosynthetic Energy Source

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1996-01-01

    Previous studies have concluded that very little if any energy is required for the microbial biosynthesis of amino acids and lipids from glucose -- processes that yield almost as much ATP (adenosine triphosphate) as they consume. However, these studies did not establish the strength nor the nature of the energy source driving these biological transformations. To identify and estimate the strength of the energy source behind these processes, we calculated the free energy change due to the redox disproportionation of substrate carbon of (a) 26 redox-balanced fermentation reactions, and (b) the biosynthesis of amino acids, lipids, and nucleotides of E. coli from glucose. A plot of the negative free energy of these reactions per mmole of carbon as a function of the number of disproportionative electron transfers per mmol of carbon showed that the energy yields of these fermentations and biosyntheses were directly proportional to the degree of redox disproportionation of carbon. Since this linear relationship showed that redox disproportionation was the dominant energy source of these reactions, we were able to establish that amino acid and lipid biosynthesis obtained most of their energy from redox disproportionation (greater than 94%). In contrast nucleotide biosynthesis was not driven by redox disproportionation of carbon, and consequently depended completely on ATP for energy. This crucial and previously unrecognized role of sugars as an energy source of biosynthesis suggests that sugars were involved at the earliest stage in the origin of anabolic metabolism.

  16. Redox mediation and hydrogen-generation with bipyridinium reagents

    DOEpatents

    Wrighton, Mark S.; Bookbinder, Dana C.; Bruce, James A.; Dominey, Raymond N.; Lewis, Nathan S.

    1984-03-27

    A variety of redox mediating agents employing bipyridinium reagents and such reagents in conjunction with dispersed noble metals, such as platinium, are disclosed as coatings for substrates and electrodes. The agents may be charged by an applied voltage or by photoelectric effects or may be equilibrated with hydrogen. The agents are useful in reducing biological materials and electrolytic hydrogen production.

  17. Redox- and hypoxia-responsive MRI contrast agents.

    PubMed

    Do, Quyen N; Ratnakar, James S; Kovács, Zoltán; Sherry, A Dean

    2014-06-01

    The development of responsive or "smart" magnetic resonance imaging (MRI) contrast agents that can report specific biomarker or biological events has been the focus of MRI contrast agent research over the past 20 years. Among various biological hallmarks of interest, tissue redox and hypoxia are particularly important owing to their roles in disease states and metabolic consequences. Herein we review the development of redox-/hypoxia-sensitive T1 shortening and paramagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agents. Traditionally, the relaxivity of redox-sensitive Gd(3+) -based complexes is modulated through changes in the ligand structure or molecular rotation, while PARACEST sensors exploit the sensitivity of the metal-bound water exchange rate to electronic effects of the ligand-pendant arms and alterations in the coordination geometry. Newer designs involve complexes of redox-active metal ions in which the oxidation states have different magnetic properties. The challenges of translating redox- and hypoxia-sensitive agents in vivo are also addressed.

  18. Redox Pioneer: Professor Joe M. McCord

    PubMed Central

    Schnell, David M.

    2014-01-01

    Abstract Dr. Joe McCord (Ph.D. 1970) is recognized here as a Redox Pioneer because he has published at least three articles on antioxidant/redox biology as first/last author that have been cited over 1000 times and has published at least 37 articles each cited over 100 times. Dr. McCord is known for the monumental discovery of the antioxidant superoxide dismutase (SOD) while a graduate student under fellow redox pioneer Irwin Fridovich and demonstrating its necessity to aerobic life. Beyond this, McCord's career is distinguished for bridging the gap from basic science to clinical relevance by showing the application of SOD and superoxide to human physiology, and characterizing the physiological functions of superoxide in inflammation, immunological chemotaxis, and ischemia–reperfusion injury, among other disease conditions. Work by McCord serves as the foundation upon which our understanding of how superoxide functions in a variety of physiological systems is built and demonstrates how superoxide is essential to aerobic life, yet, if left unchecked by SOD, toxic to a multitude of systems. These discoveries have substantial significance in a wide range of studies with applications in cardiovascular disease, cancer, neurology, and medicine, as well as general health and longevity. Dr. McCord's contributions to free radical biology have been recognized through many prestigious achievement awards, honorary titles, and conferences around the world; each serving as a testament to his status as a redox pioneer. Antioxid. Redox Signal. 20, 183–188. PMID:24117164

  19. Redox- and Hypoxia-Responsive MRI Contrast Agents

    PubMed Central

    Do, Quyen N.; Ratnakar, James S.; Kovács, Zoltán

    2014-01-01

    The development of responsive or “smart” magnetic resonance imaging (MRI) contrast agents that can report specific biomarker or biological events has been the focus of MRI contrast agent research over the past 20 years. Among various biological hallmarks of interest, tissue redox and hypoxia are particularly important owing to their roles in disease states and metabolic consequences. Herein we review the development of redox-/hypoxia-sensitive T1 shortening and paramagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agents. Traditionally, the relaxivity of redox-sensitive Gd3+-based complexes is modulated through changes in the ligand structure or molecular rotation, while PARACEST sensors exploit the sensitivity of the metal-bound water exchange rate to electronic effects of the ligand-pendant arms and alterations in the coordination geometry. Newer designs involve complexes of redox-active metal ions in which the oxidation states have different magnetic properties. The challenges of translating redox- and hypoxia-sensitive agents in vivo are also addressed. PMID:24825674

  20. Redox potential: An indicator of site productivity in forest management

    NASA Astrophysics Data System (ADS)

    Sajedi, Toktam; Prescott, Cindy; Lavkulich, Les

    2010-05-01

    Redox potential (Eh) is an integrated soil measurement that reflects several environmental conditions in the soil associated with aeration, moisture and carbon (organic matter) dynamics. Its measurement can be related to water table fluctuations, precipitation and landscape gradients, organic matter decomposition rates, nutrient dynamics, biological diversity and plant species distribution. Redox is an excellent indicator of soil biological processes, as it is largely a reflection of microbial activities which to a large extent govern carbon dynamics and nutrient cycling. Redox thus serves as an ecological indicator of site productivity at the ecosystem scale and may be used for management purposes as its magnitude can be altered by activities such as harvesting and drainage. A threshold value of 300 mv has been documented as the critical value below which anaerobic conditions in the soil develop. However, redox measurements and its impacts on ecosystem processes such as nutrient cycling and productivity, especially in forest ecosystems, have not received the attention that this "master" variable deserves, On northern Vancouver Island, Canada, regenerating stands of western redcedar-western hemlock (CH) sites exhibit symptoms of nutrient deficiencies and slow growth, but this phenomenon does not occur on adjacent western hemlock- amabalis fir (HA) sites. We tested the hypothesis that differences in nutrient supply and distribution of plant species was caused by differences in moisture regime and redox potential. Redox potential, pH, soil aeration depth (steel rods), organic matter thickness, bulk density, soil carbon store, plant species distribution and richness were measured at five old-growth and five 10-year-old cutover blocks. Results of investigations confirmed that CH forests were wetter, had redox values lower than the critical 300mv and a shallower aerated zone, compared with adjacent regenerating HA sites. Fifty percent of the CH plots had redox values

  1. A New Hybrid Redox Flow Battery with Multiple Redox Couples

    SciTech Connect

    Wang, Wei; Li, Liyu; Nie, Zimin; Chen, Baowei; Luo, Qingtao; Shao, Yuyan; Wei, Xiaoliang; Chen, Feng; Xia, Guanguang; Yang, Zhenguo

    2012-05-19

    A redox flow battery using V{sup 4+}/V{sup 5+} vs. V{sup 2+}/V{sup 3+} and Fe{sup 2+}/Fe{sup 3+} vs. V{sup 2+}/V{sup 3+} redox couples in chloric/sulphuric mixed acid supporting electrolyte was investigated for potential stationary energy storage applications. The Fe/V hybrid redox flow cell using mixed reactant solutions operated within a voltage window of 0.5-1.7 V demonstrated stable cycling over 100 cycles with energy efficiency {approx}80% and no capacity fading at room temperature. A 66% improvement in the energy density of the Fe/V hybrid cell was achieved compared with the previous reported Fe/V cell using only Fe{sup 2+}/Fe{sup 3+} vs. V{sup 2+}/V{sup 3+} redox couples.

  2. Thiol-Based Redox Switches

    PubMed Central

    Groitl, Bastian; Jakob, Ursula

    2014-01-01

    Regulation of protein function through thiol-based redox switches plays an important role in the response and adaptation to local and global changes in the cellular levels of reactive oxygen species (ROS). Redox regulation is used by first responder proteins, such as ROS-specific transcriptional regulators, chaperones or metabolic enzymes to protect cells against mounting levels of oxidants, repair the damage and restore redox homeostasis. Redox regulation of phosphatases and kinases is used to control the activity of select eukaryotic signaling pathways, making reactive oxygen species important second messengers that regulate growth, development and differentiation. In this review we will compare different types of reversible protein thiol modifications, elaborate on their structural and functional consequences and discuss their role in oxidative stress response and ROS adaptation. PMID:24657586

  3. Redox regulation of Ran GTPase

    SciTech Connect

    Heo, Jongyun

    2008-11-21

    Ran, a small Ras-like GTP-binding nuclear protein, plays a key role in modulation of various cellular signaling events including the cell cycle. This study shows that a cellular redox agent (nitrogen dioxide) facilitates Ran guanine nucleotide dissociation, and identifies a unique Ran redox architecture involved in that process. Sequence analysis suggests that Dexras1 and Rhes GTPases also possess the Ran redox architecture. As Ran releases an intact nucleotide, the redox regulation mechanism of Ran is likely to differ from the radical-based guanine nucleotide modification mechanism suggested for Ras and Rho GTPases. These results provide a mechanistic reason for the previously observed oxidative stress-induced perturbation of the Ran-mediated nuclear import, and suggest that oxidative stress could be a factor in the regulation of cell signal transduction pathways associated with Ran.

  4. Redox Properties of Free Radicals.

    ERIC Educational Resources Information Center

    Neta, P.

    1981-01-01

    Describes pulse radiolysis as a useful means in studing one-electron redox potentials. This method allows the production of radicals and the determination of their concentration and rates of reaction. (CS)

  5. Redox Properties of Free Radicals.

    ERIC Educational Resources Information Center

    Neta, P.

    1981-01-01

    Describes pulse radiolysis as a useful means in studing one-electron redox potentials. This method allows the production of radicals and the determination of their concentration and rates of reaction. (CS)

  6. Redox Reactions of Myoglobin

    PubMed Central

    2013-01-01

    Abstract Significance: Failure to maintain myoglobin (Mb) in the reduced state causes the formation of metMb, ferryl Mb species, and cross-linked Mb. Dissociation of ferriprotoporphyrin IX from the globin and release of iron atoms can also occur as oxidized Mb accumulates. These modifications may contribute to various oxidative pathologies in muscle and muscle foods. Recent Advances: The mechanism of ferryl Mb-mediated oxidative damage to nearby structures has been partially elucidated. Dissociation of ferriprotoporphyrin IX from metMb occurs more readily at acidic pH values. The dissociated ferriprotoporphyrin IX (also called hemin) readily decomposes preformed lipid hydroperoxides to reactive oxygen species. Heme oxygenase as well as lipophilic free radicals can degrade the protoporphyrin IX moiety, which results in the formation of free iron. Critical Issues: The multiple pathways by which Mb can incur toxicity create difficulties in determining the major cause of oxidative damage in a particular system. Peroxides and low pH activate each of the oxidative Mb forms, ferriprotoporphyrin IX, and released iron. Determining the relative concentration of these species is technically difficult, but essential to a complete understanding of oxidative pathology in muscle tissue. Future Directions: Improved methods to assess the different pathways of Mb toxicity are needed. Although significant advances have been made in the understanding of Mb interactions with other biomolecules, further investigation is needed to understand the physical and chemical nature of these interactions. Antioxid. Redox Signal. 18, 2342–2351. PMID:22900975

  7. Redox Control of Cardiac Excitability

    PubMed Central

    Aggarwal, Nitin T.

    2013-01-01

    Abstract Reactive oxygen species (ROS) have been associated with various human diseases, and considerable attention has been paid to investigate their physiological effects. Various ROS are synthesized in the mitochondria and accumulate in the cytoplasm if the cellular antioxidant defense mechanism fails. The critical balance of this ROS synthesis and antioxidant defense systems is termed the redox system of the cell. Various cardiovascular diseases have also been affected by redox to different degrees. ROS have been indicated as both detrimental and protective, via different cellular pathways, for cardiac myocyte functions, electrophysiology, and pharmacology. Mostly, the ROS functions depend on the type and amount of ROS synthesized. While the literature clearly indicates ROS effects on cardiac contractility, their effects on cardiac excitability are relatively under appreciated. Cardiac excitability depends on the functions of various cardiac sarcolemal or mitochondrial ion channels carrying various depolarizing or repolarizing currents that also maintain cellular ionic homeostasis. ROS alter the functions of these ion channels to various degrees to determine excitability by affecting the cellular resting potential and the morphology of the cardiac action potential. Thus, redox balance regulates cardiac excitability, and under pathological regulation, may alter action potential propagation to cause arrhythmia. Understanding how redox affects cellular excitability may lead to potential prophylaxis or treatment for various arrhythmias. This review will focus on the studies of redox and cardiac excitation. Antioxid. Redox Signal. 18, 432–468. PMID:22897788

  8. A biomimetic redox flow battery based on flavin mononucleotide

    NASA Astrophysics Data System (ADS)

    Orita, Akihiro; Verde, Michael G.; Sakai, Masanori; Meng, Ying Shirley

    2016-10-01

    The versatility in design of redox flow batteries makes them apt to efficiently store energy in large-scale applications at low cost. The discovery of inexpensive organic electroactive materials for use in aqueous flow battery electrolytes is highly attractive, but is thus far limited. Here we report on a flow battery using an aqueous electrolyte based on the sodium salt of flavin mononucleotide. Flavins are highly versatile electroactive molecules, which catalyse a multitude of redox reactions in biological systems. We use nicotinamide (vitamin B3) as a hydrotropic agent to enhance the water solubility of flavin mononucleotide. A redox flow battery using flavin mononucleotide negative and ferrocyanide positive electrolytes in strong base shows stable cycling performance, with over 99% capacity retention over the course of 100 cycles. We hypothesize that this is enabled due to the oxidized and reduced forms of FMN-Na being stabilized by resonance structures.

  9. A biomimetic redox flow battery based on flavin mononucleotide

    PubMed Central

    Orita, Akihiro; Verde, Michael G.; Sakai, Masanori; Meng, Ying Shirley

    2016-01-01

    The versatility in design of redox flow batteries makes them apt to efficiently store energy in large-scale applications at low cost. The discovery of inexpensive organic electroactive materials for use in aqueous flow battery electrolytes is highly attractive, but is thus far limited. Here we report on a flow battery using an aqueous electrolyte based on the sodium salt of flavin mononucleotide. Flavins are highly versatile electroactive molecules, which catalyse a multitude of redox reactions in biological systems. We use nicotinamide (vitamin B3) as a hydrotropic agent to enhance the water solubility of flavin mononucleotide. A redox flow battery using flavin mononucleotide negative and ferrocyanide positive electrolytes in strong base shows stable cycling performance, with over 99% capacity retention over the course of 100 cycles. We hypothesize that this is enabled due to the oxidized and reduced forms of FMN-Na being stabilized by resonance structures. PMID:27767026

  10. A biomimetic redox flow battery based on flavin mononucleotide.

    PubMed

    Orita, Akihiro; Verde, Michael G; Sakai, Masanori; Meng, Ying Shirley

    2016-10-21

    The versatility in design of redox flow batteries makes them apt to efficiently store energy in large-scale applications at low cost. The discovery of inexpensive organic electroactive materials for use in aqueous flow battery electrolytes is highly attractive, but is thus far limited. Here we report on a flow battery using an aqueous electrolyte based on the sodium salt of flavin mononucleotide. Flavins are highly versatile electroactive molecules, which catalyse a multitude of redox reactions in biological systems. We use nicotinamide (vitamin B3) as a hydrotropic agent to enhance the water solubility of flavin mononucleotide. A redox flow battery using flavin mononucleotide negative and ferrocyanide positive electrolytes in strong base shows stable cycling performance, with over 99% capacity retention over the course of 100 cycles. We hypothesize that this is enabled due to the oxidized and reduced forms of FMN-Na being stabilized by resonance structures.

  11. Characterization of plasma thiol redox potential in a common marmoset model of aging.

    PubMed

    Roede, James R; Uppal, Karan; Liang, Yongliang; Promislow, Daniel E L; Wachtman, Lynn M; Jones, Dean P

    2013-01-01

    Due to its short lifespan, ease of use and age-related pathologies that mirror those observed in humans, the common marmoset (Callithrix jacchus) is poised to become a standard nonhuman primate model of aging. Blood and extracellular fluid possess two major thiol-dependent redox nodes involving cysteine (Cys), cystine (CySS), glutathione (GSH) and glutathione disulfide (GSSG). Alteration in these plasma redox nodes significantly affects cellular physiology, and oxidation of the plasma Cys/CySS redox potential (E hCySS) is associated with aging and disease risk in humans. The purpose of this study was to determine age-related changes in plasma redox metabolites and corresponding redox potentials (E h) to further validate the marmoset as a nonhuman primate model of aging. We measured plasma thiol redox states in marmosets and used existing human data with multivariate adaptive regression splines (MARS) to model the relationships between age and redox metabolites. A classification accuracy of 70.2% and an AUC of 0.703 were achieved using the MARS model built from the marmoset redox data to classify the human samples as young or old. These results show that common marmosets provide a useful model for thiol redox biology of aging.

  12. Thioredoxin/Txnip: Redoxisome, as a Redox Switch for the Pathogenesis of Diseases

    PubMed Central

    Yoshihara, Eiji; Masaki, So; Matsuo, Yoshiyuki; Chen, Zhe; Tian, Hai; Yodoi, Junji

    2014-01-01

    During the past few decades, it has been widely recognized that Reduction-Oxidation (redox) responses occurring at the intra- and extra-cellular levels are one of most important biological phenomena and dysregulated redox responses are involved in the initiation and progression of multiple diseases. Thioredoxin1 (Trx1) and Thioredoxin2 (Trx2), mainly located in the cytoplasm and mitochondria, respectively, are ubiquitously expressed in variety of cells and control cellular reactive oxygen species by reducing the disulfides into thiol groups. Thioredoxin interacting protein (Txnip/thioredoxin binding protein-2/vitamin D3 upregulated protein) directly binds to Trx1 and Trx2 (Trx) and inhibit the reducing activity of Trx through their disulfide exchange. Recent studies have revealed that Trx1 and Txnip are involved in some critical redox-dependent signal pathways including NLRP-3 inflammasome activation in a redox-dependent manner. Therefore, Trx/Txnip, a redox-sensitive signaling complex is a regulator of cellular redox status and has emerged as a key component in the link between redox regulation and the pathogenesis of diseases. Here, we review the novel functional concept of the redox-related protein complex, named “Redoxisome,” consisting of Trx/Txnip, as a critical regulator for intra- and extra-cellular redox signaling, involved in the pathogenesis of various diseases such as cancer, autoimmune disease, and diabetes. PMID:24409188

  13. Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases.

    PubMed

    Yoshihara, Eiji; Masaki, So; Matsuo, Yoshiyuki; Chen, Zhe; Tian, Hai; Yodoi, Junji

    2014-01-09

    During the past few decades, it has been widely recognized that Reduction-Oxidation (redox) responses occurring at the intra- and extra-cellular levels are one of most important biological phenomena and dysregulated redox responses are involved in the initiation and progression of multiple diseases. Thioredoxin1 (Trx1) and Thioredoxin2 (Trx2), mainly located in the cytoplasm and mitochondria, respectively, are ubiquitously expressed in variety of cells and control cellular reactive oxygen species by reducing the disulfides into thiol groups. Thioredoxin interacting protein (Txnip/thioredoxin binding protein-2/vitamin D3 upregulated protein) directly binds to Trx1 and Trx2 (Trx) and inhibit the reducing activity of Trx through their disulfide exchange. Recent studies have revealed that Trx1 and Txnip are involved in some critical redox-dependent signal pathways including NLRP-3 inflammasome activation in a redox-dependent manner. Therefore, Trx/Txnip, a redox-sensitive signaling complex is a regulator of cellular redox status and has emerged as a key component in the link between redox regulation and the pathogenesis of diseases. Here, we review the novel functional concept of the redox-related protein complex, named "Redoxisome," consisting of Trx/Txnip, as a critical regulator for intra- and extra-cellular redox signaling, involved in the pathogenesis of various diseases such as cancer, autoimmune disease, and diabetes.

  14. Redox Heterogenity in MORB

    NASA Astrophysics Data System (ADS)

    Cottrell, E.; Kelley, K. A.

    2012-12-01

    Mantle oxygen fugacity (fO2) has a first-order effect on the petrogenesis of mantle-derived melts and the speciation of mantle fluids. Current debate centers on the spatial uniformity of upper mantle fO2 and its constancy through geologic time. We use iron K-edge X-ray absorption near-edge structure (μXANES) spectroscopy to provide Fe3+ /ΣFe ratios of submarine mantle-derived basalts from mid-ocean ridges (MORB) as a proxy for fO2. A global survey of primitive (>8.75 wt% MgO) MORB glasses at spreading centers, unaffected by plumes, reveals a decrease in Fe3+ /ΣFe ratio of 12% relative with indices of mantle enrichment such as 87/86Sr, 208/204Pb, Ba/La, and Rb/Sr ratios. The strong negative correlation between upper mantle fO2 and enrichment recorded by MORB glasses contrasts with the positive relationship hinted at by abyssal peridotite oxybarometry (e.g. Ballhaus, CMP, 1993) and the general prediction of a positive correlation born of the expectation that Fe3+ can be treated as more incompatible than Fe2+ during mantle melting. These data unequivocally link upper mantle oxidation state to mantle source enrichment. EMORB generation is commonly attributed to subduction-related processes. That EMORB is more reduced than NMORB implies that deeply subducted and recycled lithologies, such as anoxic sediment, may be more reduced than ambient mantle. Negative correlations between traditional tracers of recycled sediment (e.g. +Nb anomaly, high 87/86Sr, high LILE/LREE) and redox support this hypothesis. Preservation of redox signatures on plate-recycling timescales of hundreds of millions to billions of years would require the mantle to be very poorly buffered. Alternatively, MORB Fe3+ /ΣFe ratios may be generated in situ beneath ridges as a function of variable carbon content. The shallow MORB source is too oxidized to stabilize graphite (Cottrell and Kelley, EPSL, 2011) and carbon exists as oxides. Decreasing fO2 with increasing depth eventually stabilizes reduced

  15. Redox rhythm reinforces the circadian clock to gate immune response.

    PubMed

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian

    2015-07-23

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.

  16. Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator.

    PubMed

    Emilia Rios-Del Toro, E; Celis, Lourdes B; Cervantes, Francisco J; Rangel-Mendez, J Rene

    2013-09-15

    The anaerobic degradation of azo dyes under anaerobic conditions is possible but at a slow rate. Redox mediators (quinones, activated carbon) are used to improve the reduction rate. The aim of this work was to use activated carbon fiber (ACF) as a redox mediator for the anaerobic reduction of the azo dye methyl red. ACF was chemically modified with 8M HNO₃ to increase its redox-mediating capacity and used in chemical and anaerobic biological batch assays for the reduction of methyl red. ACF increased its redox-mediating capacity up to 3-fold in chemical assays; in biological assays ACF increased the reduction rate up to 8-fold compared to controls without ACF. However, since the ACF served as support for biomass, a biofilm formed on the fiber significantly reduced its redox-mediating capacity; substrate consumption suggested that the electron transport from ACF to methyl red was the rate-limiting step in the process. These results are the first evidence of the role of ACF as a redox mediator in the reductive decolorization of methyl red, in addition to the effect of biofilm attached to ACF on methyl red reduction. Due to the versatile characteristics of ACF and its redox-mediating capacity, carbon fibers could be used in biological wastewater treatment systems to accelerate the reductive transformation of pollutants commonly found in industrial effluents.

  17. Hydrogen peroxide and central redox theory for aerobic life A tribute to Helmut Sies: Scout, trailblazer and Redox Pioneer

    PubMed Central

    Jones, Dean P.

    2015-01-01

    When Rafael Radi and I wrote about Helmut Sies for the Redox Pioneer series, I was disappointed that the Editor restricted us to the use of “Pioneer” in the title. My view is that Helmut was always ahead of the pioneers: He was a scout discovering paths for exploration and a trailblazer developing strategies and methods for discovery. I have known him for nearly 40 years and greatly enjoyed his collegiality as well as brilliance in scientific scholarship. He made monumental contributions to 20th century physiological chemistry beginning with his first measurement of H2O2 in rat liver. While continuous H2O2 production is dogma today, the concept of H2O2 production in mammalian tissues was largely buried for half a century. He continued this leadership in research on oxidative stress, GSH, selenium, and singlet oxygen, during the timeframe when physiological chemistry and biochemistry transitioned to contemporary 21st century systems biology. His impact has been extensive in medical and health sciences, especially in nutrition, aging, toxicology and cancer. I briefly summarize my interactions with Helmut, stressing our work together on the redox code, a set of principles to link mitochondrial respiration, bioenergetics, H2O2 metabolism, redox signaling and redox proteomics into central redox theory. PMID:27095208

  18. Redox electrode materials for supercapatteries

    NASA Astrophysics Data System (ADS)

    Yu, Linpo; Chen, George Z.

    2016-09-01

    Redox electrode materials, including transition metal oxides and electronically conducting polymers, are capable of faradaic charge transfer reactions, and play important roles in most electrochemical energy storage devices, such as supercapacitor, battery and supercapattery. Batteries are often based on redox materials with low power capability and safety concerns in some cases. Supercapacitors, particularly those based on redox inactive materials, e.g. activated carbon, can offer high power output, but have relatively low energy capacity. Combining the merits of supercapacitor and battery into a hybrid, the supercapattery can possess energy as much as the battery and output a power almost as high as the supercapacitor. Redox electrode materials are essential in the supercapattery design. However, it is hard to utilise these materials easily because of their intrinsic characteristics, such as the low conductivity of metal oxides and the poor mechanical strength of conducting polymers. This article offers a brief introduction of redox electrode materials, the basics of supercapattery and its relationship with pseudocapacitors, and reviews selectively some recent progresses in the relevant research and development.

  19. Redox pioneer: Professor Joe M. McCord.

    PubMed

    Schnell, David M; St Clair, Daret

    2014-01-01

    Dr. Joe McCord (Ph.D. 1970) is recognized here as a Redox Pioneer because he has published at least three articles on antioxidant/redox biology as first/last author that have been cited over 1000 times and has published at least 37 articles each cited over 100 times. Dr. McCord is known for the monumental discovery of the antioxidant superoxide dismutase (SOD) while a graduate student under fellow redox pioneer Irwin Fridovich and demonstrating its necessity to aerobic life. Beyond this, McCord's career is distinguished for bridging the gap from basic science to clinical relevance by showing the application of SOD and superoxide to human physiology, and characterizing the physiological functions of superoxide in inflammation, immunological chemotaxis, and ischemia-reperfusion injury, among other disease conditions. Work by McCord serves as the foundation upon which our understanding of how superoxide functions in a variety of physiological systems is built and demonstrates how superoxide is essential to aerobic life, yet, if left unchecked by SOD, toxic to a multitude of systems. These discoveries have substantial significance in a wide range of studies with applications in cardiovascular disease, cancer, neurology, and medicine, as well as general health and longevity. Dr. McCord's contributions to free radical biology have been recognized through many prestigious achievement awards, honorary titles, and conferences around the world; each serving as a testament to his status as a redox pioneer.

  20. Pyridine nucleotide redox abnormalities in diabetes.

    PubMed

    Ido, Yasuo

    2007-07-01

    In addition to hyperglycemia, diabetes is associated with increased levels of circulating free fatty acids, lactate, and branched chain amino acids, all of which produce an excessive reduced form of pyridine nucleotides NADH (reductive stress) in the cytosol and mitochondria. Our studies suggest that cytosolic NADH reductive stress under high glucose is largely caused by increased flux of glucose through polyol (sorbitol) pathway consisting of aldose reductase and sorbitol dehydrogenase. Inhibition of aldose reductase that blocks the polyol pathway has been shown to ameliorate diabetic neuropathy in humans. Cytosolic NADH reductive stress is predicted to increase production of diglycerides, reactive oxygen species, and methylglyoxal. Recent studies indicate that increasing NADH affects gene expression through the NADH activating transcriptional co-repressor, C-terminal binding protein (CtBP). In addition, it has been shown that the NADH utilizing enzyme, glyceraldehyde-3-phosphate dehydrogenase, participates as transcriptional regulator. These findings testify to the importance of NADH redox balance in cell biology and pathogenesis of diabetes and its complications. For example, through CtBP, the high NADH to NAD(+) ratio decreases an expression of SirT1, the protein inducing longevity and anti-apoptosis. This review covers metabolic cascades causing reductive stress and oxidative stress in diabetes after a brief introduction of the redox concept.

  1. Redox pioneer: Professor Leopold Flohé.

    PubMed

    Ursini, Fulvio; Maiorino, Matilde

    2010-11-15

    Leopold Flohé is recognized here as a Redox Pioneer because has published a article on antioxidant/redox biology, as first author, that has been cited more than 1,000 times, and more than 20 articles have been cited more than 100 times. He obtained the medical doctorate at the Institute of Pharmacology and Toxicology at the University of Tübingen, Germany, in 1968. He held positions in both Academia (Tübingen, Aachen, and Braunschweig, Germany) and industry (Aachen). He is now operating the biotech company MOLISA in Magdeburg, Germany, while teaching as guest professor at the local university. Dr. Flohé is the pioneer who established the selenoprotein nature of glutathione peroxidase (GPx), the first and, for almost 10 years, the only selenoprotein known in animals. His work was pivotal to link the essential trace element selenium to metabolic processes, which led the Food and Drug Administration (FDA) to approve selenium supplementation for humans in 1980, and stimulated selenium biochemistry in general. In recent years, he embarked on investigating how pathogens protect themselves from oxidative killing. His inseminating studies on the thiol-dependent hydroperoxide metabolism of trypanosomatids and mycobacteria defined molecular drug targets, paving the way to new therapeutic strategies for neglected diseases affecting the people of developing countries.

  2. Redox Control of Prion and Disease Pathogenesis

    PubMed Central

    Singh, Ajay; Das, Dola; Mohan, Maradumane L.

    2010-01-01

    Abstract Imbalance of brain metal homeostasis and associated oxidative stress by redox-active metals like iron and copper is an important trigger of neurotoxicity in several neurodegenerative conditions, including prion disorders. Whereas some reports attribute this to end-stage disease, others provide evidence for specific mechanisms leading to brain metal dyshomeostasis during disease progression. In prion disorders, imbalance of brain-iron homeostasis is observed before end-stage disease and worsens with disease progression, implicating iron-induced oxidative stress in disease pathogenesis. This is an unexpected observation, because the underlying cause of brain pathology in all prion disorders is PrP-scrapie (PrPSc), a β-sheet–rich conformation of a normal glycoprotein, the prion protein (PrPC). Whether brain-iron dyshomeostasis occurs because of gain of toxic function by PrPSc or loss of normal function of PrPC remains unclear. In this review, we summarize available evidence suggesting the involvement of oxidative stress in prion-disease pathogenesis. Subsequently, we review the biology of PrPC to highlight its possible role in maintaining brain metal homeostasis during health and the contribution of PrPSc in inducing brain metal imbalance with disease progression. Finally, we discuss possible therapeutic avenues directed at restoring brain metal homeostasis and alleviating metal-induced oxidative stress in prion disorders. Antioxid. Redox Signal. 12, 1271–1294. PMID:19803746

  3. Mouse redox histology using genetically encoded probes.

    PubMed

    Fujikawa, Yuuta; Roma, Leticia P; Sobotta, Mirko C; Rose, Adam J; Diaz, Mauricio Berriel; Locatelli, Giuseppe; Breckwoldt, Michael O; Misgeld, Thomas; Kerschensteiner, Martin; Herzig, Stephan; Müller-Decker, Karin; Dick, Tobias P

    2016-03-15

    Mapping the in vivo distribution of endogenous oxidants in animal tissues is of substantial biomedical interest. Numerous health-related factors, including diet, physical activity, infection, aging, toxins, or pharmacological intervention, may cause redox changes. Tools are needed to pinpoint redox state changes to particular organs, tissues, cell types, and subcellular organelles. We describe a procedure that preserves the in vivo redox state of genetically encoded redox biosensors within histological tissue sections, thus providing "redox maps" for any tissue and comparison of interest. We demonstrate the utility of the technique by visualizing endogenous redox differences and changes in the context of tumor growth, inflammation, embryonic development, and nutrient starvation.

  4. NASA Redox Project status summary

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.

    1983-01-01

    This report is a summary of the results of the Redox Project effort during Cy 1982. It was presented at the Fifth U.S. Department of Energy Battery and Electrochemical Contractors Conference, Arlington, Va., Dec. 7-9, 1982. The major development during 1982 was the shift from Redox system operation at 25 C with unmixed reactants to operation at 65 C with mixed reactants. This change has made possible a two- or three-fold increase in operating current density, to about 65 mA/sq cm, and an increase in reactant utilization from 40% to about 90%. Both of these improvements will lead to significant system cost reductions. Contract studies have indicated that Redox reactant costs also will be moderate. A new catalyst for the chromuim electrode offers all the advantages of the conventional gold-lead catalyst while being easier to apply and more forgiving in use.

  5. Novel insights into redox system and the mechanism of redox regulation.

    PubMed

    Wang, Xin; Hai, Chunxu

    2016-07-01

    In view of the critical role of redox system in numerous physiological and pathophysiological processes, it is important to clearly understand the family members and regulatory mechanism of redox system. In this work, we will systematically review the current data detailing the reactive oxygen species (ROS), enzymatic and non-enzymatic antioxidants and redox sensitive transcription factors and we give a brief description of redox-mediated epigenetic and post-translational regulation. We propose that the redox system functions as a "Redox Chain", consisting of "ROS-generating Enzyme Chain", "Combined Antioxidant Chain" and "Transcription Factor Chain". We suggest that an individualized assessment of the redox status in the body should be conducted for the redox intervention of a patient. The strategy of intervention is to maintain redox homeostasis via either facilitation of ROS signaling or enhancement of antioxidant defense. These findings provide valuable new insights into redox system and open up new paths for the control of redox-related disorders.

  6. Redox Regulation of Plant Development

    PubMed Central

    Considine, Michael J.

    2014-01-01

    Abstract Significance: We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. Recent Advances: Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. Critical Issues: The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. Future Directions: The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context. Antioxid. Redox Signal. 21, 1305–1326. PMID:24180689

  7. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    PubMed

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2017-07-28

    The nicotinamide adenine dinucleotide (NAD(+))/reduced NAD(+) (NADH) and NADP(+)/reduced NADP(+) (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD(+)-consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD(+) precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 00, 000-000.

  8. The role of sirtuins in modulating redox stressors

    PubMed Central

    Webster, Bradley R.; Lu, Zhongping; Sack, Michael N.; Scott, Iain

    2011-01-01

    For much of the time since their discovery, the sirtuin family of deacetylase enzymes has been associated with extensions in lifespan. This longevity promoting capacity in numerous model systems has enabled the sirtuins to gain `celebrity status' in the field of aging research. However, the mechanisms underpinning these changes remain incompletely defined. A general phenotype long associated with aging is the dysregulation of biological systems, which partly occurs via the accumulation of damage over time. One of the major sources of this damage is oxidative stress, which can harm both biological structures, and the mechanisms with which they are repaired. It is now becoming clear that the beneficial lifespan effects of sirtuins, along with many of their other functions, are closely linked to their ability to regulate systems that control the redox environment. Here we investigate the links between sirtuins and their oxidative/redox environment, and review the control mechanisms which are regulated by the activity of sirtuin deacetylase proteins. PMID:22085655

  9. Thioredoxin Glutathione Reductase-Dependent Redox Networks in Platyhelminth Parasites

    PubMed Central

    Bonilla, Mariana; Gladyshev, Vadim N.

    2013-01-01

    Abstract Significance: Platyhelminth parasites cause chronic infections that are a major cause of disability, mortality, and economic losses in developing countries. Maintaining redox homeostasis is a major adaptive problem faced by parasites and its disruption can shift the biochemical balance toward the host. Platyhelminth parasites possess a streamlined thiol-based redox system in which a single enzyme, thioredoxin glutathione reductase (TGR), a fusion of a glutaredoxin (Grx) domain to canonical thioredoxin reductase (TR) domains, supplies electrons to oxidized glutathione (GSSG) and thioredoxin (Trx). TGR has been validated as a drug target for schistosomiasis. Recent Advances: In addition to glutathione (GSH) and Trx reduction, TGR supports GSH-independent deglutathionylation conferring an additional advantage to the TGR redox array. Biochemical and structural studies have shown that the TR activity does not require the Grx domain, while the glutathione reductase and deglutathionylase activities depend on the Grx domain, which receives electrons from the TR domains. The search for TGR inhibitors has identified promising drug leads, notably oxadiazole N-oxides. Critical Issues: A conspicuous feature of platyhelminth TGRs is that their Grx-dependent activities are temporarily inhibited at high GSSG concentrations. The mechanism underlying the phenomenon and its biological relevance are not completely understood. Future Directions: The functional diversity of Trxs and Grxs encoded in platyhelminth genomes remains to be further assessed to thoroughly understand the TGR-dependent redox network. Optimization of TGR inhibitors and identification of compounds targeting other parasite redox enzymes are good options to clinically develop relevant drugs for these neglected, but important diseases. Antioxid. Redox Signal. 19, 735–745. PMID:22909029

  10. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy-consuming redox circuit.

    PubMed

    Fisher-Wellman, Kelsey H; Lin, Chien-Te; Ryan, Terence E; Reese, Lauren R; Gilliam, Laura A A; Cathey, Brook L; Lark, Daniel S; Smith, Cody D; Muoio, Deborah M; Neufer, P Darrell

    2015-04-15

    Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+/NADH) and anabolic (NADP+/NADPH) processes integrate during metabolism to maintain cellular redox homoeostasis, however, is unknown. The present work identifies a continuously cycling mitochondrial membrane potential (ΔΨm)-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to produce H2O2 in relation to reducing pressure within the complex. The H2O2 produced, however, is effectively masked by a continuously cycling redox circuit that links, via glutathione/thioredoxin, to NNT, which catalyses the regeneration of NADPH from NADH at the expense of ΔΨm. The net effect is an automatic fine-tuning of NNT-mediated energy expenditure to metabolic balance at the level of PDHC. In mitochondria, genetic or pharmacological disruptions in the PDHC-NNT redox circuit negate counterbalance changes in energy expenditure. At the whole animal level, mice lacking functional NNT (C57BL/6J) are characterized by lower energy-expenditure rates, consistent with their well-known susceptibility to diet-induced obesity. These findings suggest the integration of redox sensing of metabolic balance with compensatory changes in energy expenditure provides a potential mechanism by which cellular redox homoeostasis is maintained and body weight is defended during periods of positive and negative energy balance.

  11. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy consuming redox circuit

    PubMed Central

    Fisher-Wellman, Kelsey H.; Lin, Chien-Te; Ryan, Terence E.; Reese, Lauren R.; Gilliam, Laura A. A.; Cathey, Brook L.; Lark, Daniel S.; Smith, Cody D.; Muoio, Deborah M.; Neufer, P. Darrell

    2015-01-01

    SUMMARY Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+:NADH) and anabolic (NADP+:NADPH) processes integrate during metabolism to maintain cellular redox homeostasis however is unknown. The present work identifies a continuously cycling, mitochondrial membrane potential-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to produce H2O2 in relation to reducing pressure within the complex. The H2O2 produced however is effectively masked by a continuously cycling redox circuit that links, via glutathione/thioredoxin, to NNT, which catalyzes the regeneration of NADPH from NADH at the expense of the mitochondrial membrane potential. The net effect is an automatic fine tuning of NNT-mediated energy expenditure to metabolic balance at the level of PDHC. In mitochondria, genetic or pharmacological disruptions in the PDHC-NNT redox circuit negate counterbalance changes in energy expenditure. At the whole animal level, mice lacking functional NNT (C57BL/6J) are characterized by lower energy expenditure rates, consistent with their well known susceptibility to diet-induced obesity. These findings suggest the integration of redox sensing of metabolic balance with compensatory changes in energy expenditure provides a potential mechanism by which cellular redox homeostasis is maintained and body weight is defended during periods of positive and negative energy balance. PMID:25643703

  12. Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability

    PubMed Central

    Yoshida, Keisuke; Hisabori, Toru

    2016-01-01

    The thiol-based redox regulation system is believed to adjust chloroplast functions in response to changes in light environments. A redox cascade via the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway has been traditionally considered to serve as a transmitter of light signals to target enzymes. However, emerging data indicate that chloroplasts have a complex redox network composed of diverse redox-mediator proteins and target enzymes. Despite extensive research addressing this system, two fundamental questions are still unresolved: How are redox pathways orchestrated within chloroplasts, and why are chloroplasts endowed with a complicated redox network? In this report, we show that NADPH-Trx reductase C (NTRC) is a key redox-mediator protein responsible for regulatory functions distinct from those of the classically known FTR/Trx system. Target screening and subsequent biochemical assays indicated that NTRC and the Trx family differentially recognize their target proteins. In addition, we found that NTRC is an electron donor to Trx-z, which is a key regulator of gene expression in chloroplasts. We further demonstrate that cooperative control of chloroplast functions via the FTR/Trx and NTRC pathways is essential for plant viability. Arabidopsis double mutants impaired in FTR and NTRC expression displayed lethal phenotypes under autotrophic growth conditions. This severe growth phenotype was related to a drastic loss of photosynthetic performance. These combined results provide an expanded map of the chloroplast redox network and its biological functions. PMID:27335455

  13. Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-07-05

    The thiol-based redox regulation system is believed to adjust chloroplast functions in response to changes in light environments. A redox cascade via the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway has been traditionally considered to serve as a transmitter of light signals to target enzymes. However, emerging data indicate that chloroplasts have a complex redox network composed of diverse redox-mediator proteins and target enzymes. Despite extensive research addressing this system, two fundamental questions are still unresolved: How are redox pathways orchestrated within chloroplasts, and why are chloroplasts endowed with a complicated redox network? In this report, we show that NADPH-Trx reductase C (NTRC) is a key redox-mediator protein responsible for regulatory functions distinct from those of the classically known FTR/Trx system. Target screening and subsequent biochemical assays indicated that NTRC and the Trx family differentially recognize their target proteins. In addition, we found that NTRC is an electron donor to Trx-z, which is a key regulator of gene expression in chloroplasts. We further demonstrate that cooperative control of chloroplast functions via the FTR/Trx and NTRC pathways is essential for plant viability. Arabidopsis double mutants impaired in FTR and NTRC expression displayed lethal phenotypes under autotrophic growth conditions. This severe growth phenotype was related to a drastic loss of photosynthetic performance. These combined results provide an expanded map of the chloroplast redox network and its biological functions.

  14. Electrical Connection of Enzyme Redox Centers to Electrodes

    DTIC Science & Technology

    1992-03-20

    electrical short in delicately orchestrated and interconnected biological electron transfer routes. Toxicity among fast redox couples that are diffusing...mediators is common. While most diffusing couples are toxic , the natural 02/H 20 2 couple is safe, because people are abundantly equipped with...to medical sensors and sensors for the food and beverage industries from which no toxic mediator could be leached. We observed the expected non

  15. Implications of phosphorus redox geochemistry

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew

    2015-04-01

    Phosphorus is the limiting nutrient in many environments. Until recently, redox changes to phosphorus speciation have been confined to the realm of chemical laboratories as phosphorus was considered to be synonymous with phosphate in the natural environment. The few known phosphorus species with a reduced redox state, such as phosphine gas, were considered novelties. Recent work has revealed a surprising role for low redox state organophosphorus compounds -- the phosphonates -- in biogeochemistry. Additionally, phosphite and hypophosphite (the lower oxyanions of phosphorus) have been identified from natural sources, and microbial genomics suggests these compounds may be ubiquitous in nature. Recent work from our laboratory suggests that reduced phosphorus compounds such as phosphite and hypophosphite may be ubiquitous (Pasek et al. 2014). If so, then these species maybe important in the global phosphorus biogeochemical cycle, and could influence global phosphorus sustainability. Additionally, these compounds could have been relevant on the early earth environment, priming the earth with reactive phosphorus for prebiotic chemistry. Reference: Pasek, M. A., Sampson, J. M., & Atlas, Z. (2014). Redox chemistry in the phosphorus biogeochemical cycle. Proceedings of the National Academy of Sciences, 111(43), 15468-15473.

  16. Redox regulation of autophagy in healthy brain and neurodegeneration.

    PubMed

    Hensley, Kenneth; Harris-White, Marni E

    2015-12-01

    Autophagy and redox biochemistry are two major sub disciplines of cell biology which are both coming to be appreciated for their paramount importance in the etiology of neurodegenerative diseases including Alzheimer's disease (AD). Thus far, however, there has been relatively little exploration of the interface between autophagy and redox biology. Autophagy normally recycles macro-molecular aggregates produced through oxidative-stress mediated pathways, and also may reduce the mitochondrial production of reactive oxygen species through recycling of old and damaged mitochondria. Conversely, dysfunction in autophagy initiation, progression or clearance is evidenced to increase aggregation-prone proteins in neural and extraneural tissues. Redox mechanisms of autophagy regulation have been documented at the level of cross-talk between the Nrf2/Keap1 oxidant and electrophilic defense pathway and p62/sequestosome-1 (SQSTM1)-associated autophagy, at least in extraneural tissue; but other mechanisms of redox autophagy regulation doubtless remain to be discovered and the relevance of such processes to maintenance of neural homeostasis remains to be determined. This review summarizes current knowledge regarding the relationship of redox signaling, autophagy control, and oxidative stress as these phenomena relate to neurodegenerative disease. AD is specifically addressed as an example of the theme and as a promising indication for new therapies that act through engagement of autophagy pathways. To exemplify one such novel therapeutic entity, data is presented that the antioxidant and neurotrophic agent lanthionine ketimine-ethyl ester (LKE) affects autophagy pathway proteins including beclin-1 in the 3xTg-AD model of Alzheimer's disease where the compound has been shown to reduce pathological features and cognitive dysfunction.

  17. Redox active motifs in selenoproteins.

    PubMed

    Li, Fei; Lutz, Patricia B; Pepelyayeva, Yuliya; Arnér, Elias S J; Bayse, Craig A; Rozovsky, Sharon

    2014-05-13

    Selenoproteins use the rare amino acid selenocysteine (Sec) to act as the first line of defense against oxidants, which are linked to aging, cancer, and neurodegenerative diseases. Many selenoproteins are oxidoreductases in which the reactive Sec is connected to a neighboring Cys and able to form a ring. These Sec-containing redox motifs govern much of the reactivity of selenoproteins. To study their fundamental properties, we have used (77)Se NMR spectroscopy in concert with theoretical calculations to determine the conformational preferences and mobility of representative motifs. This use of (77)Se as a probe enables the direct recording of the properties of Sec as its environment is systematically changed. We find that all motifs have several ring conformations in their oxidized state. These ring structures are most likely stabilized by weak, nonbonding interactions between the selenium and the amide carbon. To examine how the presence of selenium and ring geometric strain governs the motifs' reactivity, we measured the redox potentials of Sec-containing motifs and their corresponding Cys-only variants. The comparisons reveal that for C-terminal motifs the redox potentials increased between 20-25 mV when the selenenylsulfide bond was changed to a disulfide bond. Changes of similar magnitude arose when we varied ring size or the motifs' flanking residues. This suggests that the presence of Sec is not tied to unusually low redox potentials. The unique roles of selenoproteins in human health and their chemical reactivities may therefore not necessarily be explained by lower redox potentials, as has often been claimed.

  18. Arsenic behavior in river sediments under redox gradient: a review.

    PubMed

    Gorny, Josselin; Billon, Gabriel; Lesven, Ludovic; Dumoulin, David; Madé, Benoît; Noiriel, Catherine

    2015-02-01

    The fate of arsenic - a redox sensitive metalloid - in surface sediments is closely linked to early diagenetic processes. The review presents the main redox mechanisms and final products of As that have been evidenced over the last years. Oxidation of organic matter and concomitant reduction of oxidants by bacterial activity result in redox transformations of As species. The evolution of the sediment reactivity will also induce secondary abiotic reactions like complexation/de-complexation, sorption, precipitation/dissolution and biotic reactions that could, for instance, lead to the detoxification of some As species. Overall, abiotic redox reactions that govern the speciation of As mostly involve manganese (hydr)-oxides and reduced sulfur species produced by the sulfate-reducing bacteria. Bacterial activity is also responsible for the inter-conversion between As(V) and As(III), as well as for the production of methylated arsenic species. In surficial sediments, sorption processes also control the fate of inorganic As(V), through the formation of inner sphere complexes with iron (hydr)-oxides, that are biologically reduced in buried sediment. Arsenic species can also be bound to organic matter, either directly to functional groups or indirectly through metal complexes. Finally, even if the role of reduced sulfur species in the cycling of arsenic in sediments has been evidenced, some of the transformations remain hypothetical and deserve further investigation.

  19. Differential alkylation-based redox proteomics--Lessons learnt.

    PubMed

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina

    2015-12-01

    Cysteine is one of the most reactive amino acids. This is due to the electronegativity of sulphur atom in the side chain of thiolate group. It results in cysteine being present in several distinct redox forms inside the cell. Amongst these, reversible oxidations, S-nitrosylation and S-sulfenylation are crucial mediators of intracellular redox signalling, with known associations to health and disease. Study of their functionalities has intensified thanks to the development of various analytical strategies, with particular contribution from differential alkylation-based proteomics methods. Presented here is a critical evaluation of differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is to assess the current status and to provide insights for future directions in the dynamically evolving field of redox proteomics. To achieve that we collected 35 original research articles published since 2010 and analysed them considering the following parameters, (i) resolution of modification site, (ii) quantitative information, including correction of modification levels by protein abundance changes and determination of modification site occupancy, (iii) throughput, including the amount of starting material required for analysis. The results of this meta-analysis are the core of this review, complemented by issues related to biological models and sample preparation in redox proteomics, including conditions for free thiol blocking and labelling of target cysteine oxoforms.

  20. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation

    PubMed Central

    Wang, Kui; Zhang, Tao; Dong, Qiang; Nice, Edouard Collins; Huang, Canhua; Wei, Yuquan

    2013-01-01

    Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as ‘redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology. PMID:23492768

  1. Cascade redox flow battery systems

    DOEpatents

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  2. Redox signaling in cardiac myocytes

    PubMed Central

    Santos, Celio X.C.; Anilkumar, Narayana; Zhang, Min; Brewer, Alison C.; Shah, Ajay M.

    2011-01-01

    The heart has complex mechanisms that facilitate the maintenance of an oxygen supply–demand balance necessary for its contractile function in response to physiological fluctuations in workload as well as in response to chronic stresses such as hypoxia, ischemia, and overload. Redox-sensitive signaling pathways are centrally involved in many of these homeostatic and stress-response mechanisms. Here, we review the main redox-regulated pathways that are involved in cardiac myocyte excitation–contraction coupling, differentiation, hypertrophy, and stress responses. We discuss specific sources of endogenously generated reactive oxygen species (e.g., mitochondria and NADPH oxidases of the Nox family), the particular pathways and processes that they affect, the role of modulators such as thioredoxin, and the specific molecular mechanisms that are involved—where this knowledge is available. A better understanding of this complex regulatory system may allow the development of more specific therapeutic strategies for heart diseases. PMID:21236334

  3. Acupuncture mechanism and redox equilibrium.

    PubMed

    Zeng, Xiang-Hong; Li, Qian-Qian; Xu, Qian; Li, Fang; Liu, Cun-Zhi

    2014-01-01

    Oxidative stress participates in the pathological process of various diseases. Acupuncture is a component of the health care system in China that can be traced back for at least 3000 years. Recently, increased evidences indicate that acupuncture stimulation could reduce oxidative damage in organisms under pathological state, but the exact mechanism remains unclear. This review focuses on the emerging links between acupuncture and redox modulation in various disorders, such as vascular dementia, Parkinson's disease, and hypertension, ranging from redox system, antioxidant system, anti-inflammatory system, and nervous system to signaling pathway. Although the molecular and cellular pathways studies of acupuncture effect on oxidative stress are preliminary, they represent an important step forward in the research of acupuncture antioxidative effect.

  4. Redox signaling in acute pancreatitis

    PubMed Central

    Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan

    2015-01-01

    Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF–VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis. PMID:25778551

  5. Redox signaling in acute pancreatitis.

    PubMed

    Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan

    2015-08-01

    Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF-VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Redox Regulation of Protein Kinases

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2015-01-01

    Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous H2O2 by membrane-bound NADPH oxidases. In turn, H2O2 can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H2O2 regarding kinase activity, as well as the components involved in H2O2 production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H2O2 through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiologic and pathological H2O2 responses. PMID:23639002

  7. Late Ediacaran redox stability and metazoan evolution

    NASA Astrophysics Data System (ADS)

    Johnston, D. T.; Poulton, S. W.; Goldberg, T.; Sergeev, V. N.; Podkovyrov, V.; Vorob'eva, N. G.; Bekker, A.; Knoll, A. H.

    2012-06-01

    The Neoproterozoic arrival of animals fundamentally changed Earth's biological and geochemical trajectory. Since the early description of Ediacaran and Cambrian animal fossils, a vigorous debate has emerged about the drivers underpinning their seemingly rapid radiation. Some argue for predation and ecology as central to diversification, whereas others point to a changing chemical environment as the trigger. In both cases, questions of timing and feedbacks remain unresolved. Through these debates, the last fifty years of work has largely converged on the concept that a change in atmospheric oxygen levels, perhaps manifested indirectly as an oxygenation of the deep ocean, was causally linked to the initial diversification of large animals. What has largely been absent, but is provided in this study, is a multi-proxy stratigraphic test of this hypothesis. Here, we describe a coupled geochemical and paleontological investigation of Neoproterozoic sedimentary rocks from northern Russia. In detail, we provide iron speciation data, carbon and sulfur isotope compositions, and major element abundances from a predominantly siliciclastic succession (spanning>1000 m) sampled by the Kel'tminskaya-1 drillcore. Our interpretation of these data is consistent with the hypothesis that the pO2 threshold required for diversification of animals with high metabolic oxygen demands was crossed prior to or during the Ediacaran Period. Redox stabilization of shallow marine environments was, however, also critical and only occurred about 560 million years ago (Ma), when large motile bilaterians first enter the regional stratigraphic record. In contrast, neither fossils nor geochemistry lend support to the hypothesis that ecological interactions altered the course of evolution in the absence of environmental change. Together, the geochemical and paleontological records suggest a coordinated transition from low oxygen oceans sometime before the Marinoan (˜635 Ma) ice age, through better

  8. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.

    PubMed

    Valko, Marian; Jomova, Klaudia; Rhodes, Christopher J; Kuča, Kamil; Musílek, Kamil

    2016-01-01

    Transition metal ions are key elements of various biological processes ranging from oxygen formation to hypoxia sensing, and therefore, their homeostasis is maintained within strict limits through tightly regulated mechanisms of uptake, storage and secretion. The breakdown of metal ion homeostasis can lead to an uncontrolled formation of reactive oxygen species, ROS (via the Fenton reaction, which produces hydroxyl radicals), and reactive nitrogen species, RNS, which may cause oxidative damage to biological macromolecules such as DNA, proteins and lipids. An imbalance between the formation of free radicals and their elimination by antioxidant defense systems is termed oxidative stress. Most vulnerable to free radical attack is the cell membrane which may undergo enhanced lipid peroxidation, finally producing mutagenic and carcinogenic malondialdehyde and 4-hydroxynonenal and other exocyclic DNA adducts. While redox-active iron (Fe) and copper (Cu) undergo redox-cycling reactions, for a second group of redox-inactive metals such as arsenic (As) and cadmium (Cd), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. While arsenic is known to bind directly to critical thiols, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. Redox-inert zinc (Zn) is the most abundant metal in the brain and an essential component of numerous proteins involved in biological defense mechanisms against oxidative stress. The depletion of zinc may enhance DNA damage by impairing DNA repair mechanisms. Intoxication of an organism by arsenic and cadmium may lead to metabolic disturbances of redox-active copper and iron, with the occurrence of oxidative stress induced by the enhanced formation of ROS/RNS. Oxidative stress occurs when excessive formation of ROS overwhelms the antioxidant defense system, as is maintained by antioxidants such as ascorbic acid, alpha

  9. Application of a thin film of poly(solochrome black T) as a redox mediator for the electro-catalytic simultaneous determination of dopamine and acetaminophen in the pharmaceutical and biological samples.

    PubMed

    Daneshinejad, Hassan; Chamjangali, Mansour Arab; Goudarzi, Nasser; Roudbari, Aliakbar

    2016-01-01

    Glassy carbon electrode was successfully modified with a thin film of poly(solochrome black T) and applied for the sensitive and selective voltammetric simultaneous determination of dopamine and acetaminophen. The preparation and basic electrochemical behavior of poly(solochrome black T) film on the glassy carbon electrode were investigated in details. The modified electrode with polymeric thin film exhibits excellent electro-catalytic activity toward the oxidation of dopamine and acetaminophen. The anodic peaks of the both species were well defined with lowered oxidation potential and enhanced oxidation peak currents. The modified electrode was used as a voltammetric sensor for sensitive simultaneous determination of dopamine and acetaminophen free from ascorbic acid and uric acid interferences. Under the optimum conditions, the detection limits were 0.092 and 0.142 μmol L(-1) for DA and AP, respectively. The proposed sensor has been successfully used in analysis of pharmaceutical and biological samples.

  10. Reactive Oxygen Species are Ubiquitous along Subsurface Redox Gradients

    NASA Astrophysics Data System (ADS)

    Nico, P. S.; Yuan, X.; Davis, J. A.; Dwivedi, D.; Williams, K. H.; Bhattacharyya, A.; Fox, P. M.

    2016-12-01

    Reactive oxygen species (hydroxyl radical, superoxide, hydrogen peroxide, etc.) are known to be important intermediates in many biological and earth system processes. They have been particularly well studied in the realms of atmospheric chemistry and aquatic photochemistry. However, recently there is increasing evidence that they are also present in impactful quantities in dark systems as a result of both biotic and abiotic reactions. Herein we will present a complementary suite of laboratory and field studies examining the presence and production of hydrogen peroxide under relevant subsurface conditions. The laboratory work examines the redox cycling between reduced organic matter, molecular oxygen, and Fe which results in not only the production of hydrogen peroxide and oxidation of organic functional groups but also the maintenance of steady-state concentration of Fe(II) under fully oxygenated aqueous conditions. The field studies involve three distinct locations, namely a shallow subsurface aquifer, a hyporheic zone redox gradient across a river meander, and a hillside shale seep. In all cases detectable quantities (tens of nanomolar) of hydrogen peroxide were measured. In general, concentrations peak under transitional redox conditions where there is the simultaneous presence of reduced Fe, organic matter, and at least trace dissolved oxygen. Many, but not all, of the observed dynamics in hydrogen peroxide production can be reproduced by a simple kinetic model representing the reactions between Fe, organic matter, and molecular oxygen, but many questions remain regarding the role of microorganisms and other redox active chemical species in determining the detected hydrogen peroxide concentrations. The consistent detection of hydrogen peroxide at these disparate locations supports the hypothesis that hydrogen peroxide, and by extension, the entire suite of reactive oxygen species are ubiquitous along subsurface redox gradients.

  11. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signaling, and their interplay.

    PubMed

    Cobley, James N; Margaritelis, Nikos V; Morton, James P; Close, Graeme L; Nikolaidis, Michalis G; Malone, John K

    2015-01-01

    Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1) redox signaling and (2) macromolecule damage. Mechanistic knowledge of how exercise-induced redox signaling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signaling and DNA damage, using hydroxyl radical ((·)OH) and hydrogen peroxide (H2O2) as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signaling and damage. Indeed, H2O2 can participate in two electron signaling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and (·)OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signaling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signaling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.

  12. Species-Specific Standard Redox Potential of Thiol-Disulfide Systems: A Key Parameter to Develop Agents against Oxidative Stress

    PubMed Central

    Mirzahosseini, Arash; Noszál, Béla

    2016-01-01

    Microscopic standard redox potential, a new physico-chemical parameter was introduced and determined to quantify thiol-disulfide equilibria of biological significance. The highly composite, codependent acid-base and redox equilibria of thiols could so far be converted into pH-dependent, apparent redox potentials (E’°) only. Since the formation of stable metal-thiolate complexes precludes the direct thiol-disulfide redox potential measurements by usual electrochemical techniques, an indirect method had to be elaborated. In this work, the species-specific, pH-independent standard redox potentials of glutathione were determined primarily by comparing it to 1-methylnicotinamide, the simplest NAD+ analogue. Secondarily, the species-specific standard redox potentials of the two-electron redox transitions of cysteamine, cysteine, homocysteine, penicillamine, and ovothiol were determined using their microscopic redox equilibrium constants with glutathione. The 30 different, microscopic standard redox potential values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress. PMID:27869189

  13. Species-Specific Standard Redox Potential of Thiol-Disulfide Systems: A Key Parameter to Develop Agents against Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Mirzahosseini, Arash; Noszál, Béla

    2016-11-01

    Microscopic standard redox potential, a new physico-chemical parameter was introduced and determined to quantify thiol-disulfide equilibria of biological significance. The highly composite, codependent acid-base and redox equilibria of thiols could so far be converted into pH-dependent, apparent redox potentials (E’°) only. Since the formation of stable metal-thiolate complexes precludes the direct thiol-disulfide redox potential measurements by usual electrochemical techniques, an indirect method had to be elaborated. In this work, the species-specific, pH-independent standard redox potentials of glutathione were determined primarily by comparing it to 1-methylnicotinamide, the simplest NAD+ analogue. Secondarily, the species-specific standard redox potentials of the two-electron redox transitions of cysteamine, cysteine, homocysteine, penicillamine, and ovothiol were determined using their microscopic redox equilibrium constants with glutathione. The 30 different, microscopic standard redox potential values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.

  14. Redox-active metals, oxidative stress, and Alzheimer's disease pathology.

    PubMed

    Huang, Xudong; Moir, Robert D; Tanzi, Rudolph E; Bush, Ashley I; Rogers, Jack T

    2004-03-01

    Considerable evidence is mounting that dyshomeostasis of the redox-active biometals, Cu and Fe, and oxidative stress contribute to the neuropathology of Alzheimer's disease (AD). Present data suggest that metals can interact directly with Abeta peptide, the principal component of beta-amyloid that is one of the primary lesions in AD. The binding of metals to Abeta modulates several physiochemical properties of Abeta that are thought to be central to the pathogenicity of the peptide. First, we and others have shown that metals can promote the in vitro aggregation into tinctorial Abeta amyloid. Studies have confirmed that insoluble amyloid plaques in postmortem AD brain are abnormally enriched in Cu, Fe, and Zn. Conversely, metal chelators dissolve these proteinaceous deposits from postmortem AD brain tissue and attenuate cerebral Abeta amyloid burden in APP transgenic mouse models of AD. Second, we have demonstrated that redox-active Cu(II) and, to a lesser extent, Fe(III) are reduced in the presence of Abeta with concomitant production of reactive oxygen species (ROS), hydrogen peroxide (H(2)O(2)) and hydroxyl radical (OH*). These Abeta/metal redox reactions, which are silenced by redox-inert Zn(II), but exacerbated by biological reducing agents, may lead directly to the widespread oxidation damages observed in AD brains. Moreover, studies have also shown that H(2)O(2) mediates Abeta cellular toxicity and increases the production of both Abeta and amyloid precursor protein (APP). Third, the 5' untranslated region (5'UTR) of APP mRNA has a functional iron-response element (IRE), which is consistent with biochemical evidence that APP is a redox-active metalloprotein. Hence, the redox interactions between Abeta, APP, and metals may be at the heart of a pathological positive feedback system wherein Abeta amyloidosis and oxidative stress promote each other. The emergence of redox-active metals as key players in AD pathogenesis strongly argues that amyloid-specific metal

  15. Cellular metabolic and autophagic pathways: traffic control by redox signaling.

    PubMed

    Dodson, Matthew; Darley-Usmar, Victor; Zhang, Jianhua

    2013-10-01

    It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Redox pioneer: Professor Wulf Dröge.

    PubMed

    Kinscherf, Ralf

    2011-06-01

    Dr. Wulf Dröge is recognized here as a redox pioneer because he has published as first author an article on antioxidant/redox biology that has been cited more than 2000 times and over 10 articles that have been cited more than 100 times. One of the key discoveries (1987) was the stimulatory effect of superoxide radicals and hydrogen peroxide on lymphocyte functions, which triggered a series of studies on the role of reactive oxygen species, glutathione, and its precursor cysteine in physiological and pathological processes. He discovered abnormally low cysteine and glutathione levels in human immunodeficiency virus-infected patients and the age-related decline in the postabsorptive plasma cysteine concentration, which is believed to cause age-related oxidative stress. He developed a theoretical concept of the mechanism of aging and death, which is outlined in his books Avoiding the First Cause of Death and Challenging the Limits of the Human Lifespan.

  17. The emerging theme of redox bioenergetics in health and disease.

    PubMed

    Kramer, Philip A; Darley-Usmar, Victor M

    2015-01-01

    Mitochondrial function has long been recognized as central to normal physiology and a contributor to a broad range of pathologies. Much of the early research in mitochondrial biology focused on the mechanisms to generate ATP and characterization of mitochondria from highly energetic tissues such as the heart or liver. More recent studies emphasize the role of mitochondria in redox signaling and in less energetic cells such as those in the innate immune system and the vasculature. In this short overview, we discuss some of these recent developments in translational and basic research in mitochondrial pathophysiology. Advanced high throughput analytical techniques are now allowing the assessment of bioenergetic health in human populations and the emergence of the exciting new field of metabolotherapeutics. These have led to the emergence of the new field of redox bioenergetics which encompasses both the canonical aspects of mitochondrial energy production and the organelles' role in cell signaling and disease.

  18. Cellular Metabolic and Autophagic Pathways: Traffic Control by Redox Signaling

    PubMed Central

    Dodson, Matthew; Darley-Usmar, Victor; Zhang, Jianhua

    2013-01-01

    It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality, and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function. PMID:23702245

  19. Nanofluidic redox-cycling in electrochemical biosensing applications

    NASA Astrophysics Data System (ADS)

    Wolfrum, Bernhard; Zevenbergen, Marcel; Lemay, Serge

    2008-03-01

    We have developed a chip-based nanofluidic device which amplifies the sensitivity in electrochemical biosensing applications by orders of magnitude. The amplification is based on rapid redox-cycling between plane parallel electrodes inside a nanochannel. We show that it is possible to monitor the signal of less than a hundred molecules residing in the active area of the nanofluidic sensor. The small number of molecules is reflected in the noise spectrum of the device. In particular, we obtain high sensitivities when detecting catecholamines, which comprise an important group of hormones and neurotransmitters such as serotonin and dopamine. Furthermore, due to the nanochannel design, the sensor is immune to interference by molecules undergoing irreversible redox reactions. We demonstrate the selectivity of the device by detecting target molecules in the presence of ascorbic acid whose oxidized form is only stable on the order of milliseconds. The interference of ascorbic acid is usually a challenge in the detection of catecholamines in biological samples.

  20. Redox Control of Renal Function and Hypertension

    PubMed Central

    Whaley-Connell, Adam; Sowers, James R.

    2008-01-01

    Abstract Loss of redox homeostasis and formation of excessive free radicals play an important role in the pathogenesis of kidney disease and hypertension. Free radicals such as reactive oxygen species (ROS) are necessary in physiologic processes. However, loss of redox homeostasis contributes to proinflammatory and profibrotic pathways in the kidney, which in turn lead to reduced vascular compliance and proteinuria. The kidney is susceptible to the influence of various extracellular and intracellular cues, including the renin–angiotensin–aldosterone system (RAAS), hyperglycemia, lipid peroxidation, inflammatory cytokines, and growth factors. Redox control of kidney function is a dynamic process with reversible pro– and anti-free radical processes. The imbalance of redox homeostasis within the kidney is integral in hypertension and the progression of kidney disease. An emerging paradigm exists for renal redox contribution to hypertension. Antioxid. Redox Signal. 11, 2047–2089. PMID:18821850

  1. Engineering redox balance through cofactor systems.

    PubMed

    Chen, Xiulai; Li, Shubo; Liu, Liming

    2014-06-01

    Redox balance plays an important role in the production of enzymes, pharmaceuticals, and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximal carbon flux towards target metabolites with no fluctuations in redox. This requires functional cofactor systems that support dynamic homeostasis between different redox states or functional stability in a given redox state. Redox balance can be achieved by improving the self-balance of a cofactor system, regulating the substrate balance of a cofactor system, and engineering the synthetic balance of a cofactor system. This review summarizes how cofactor systems can be manipulated to improve redox balance in microbes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei.

    PubMed

    Zimmermann, Stefanie; Oufir, Mouhssin; Leroux, Alejandro; Krauth-Siegel, R Luise; Becker, Katja; Kaiser, Marcel; Brun, Reto; Hamburger, Matthias; Adams, Michael

    2013-11-15

    In mice cynaropicrin (CYN) potently inhibits the proliferation of Trypanosoma brucei-the causative agent of Human African Trypanosomiasis-by a so far unknown mechanism. We hypothesized that CYNs α,β-unsaturated methylene moieties act as Michael acceptors for glutathione (GSH) and trypanothione (T(SH)2), the main low molecular mass thiols essential for unique redox metabolism of these parasites. The analysis of this putative mechanism and the effects of CYN on enzymes of the T(SH)2 redox metabolism including trypanothione reductase, trypanothione synthetase, glutathione-S-transferase, and ornithine decarboxylase are shown. A two step extraction protocol with subsequent UPLC-MS/MS analysis was established to quantify intra-cellular CYN, T(SH)2, GSH, as well as GS-CYN and T(S-CYN)2 adducts in intact T. b. rhodesiense cells. Within minutes of exposure to CYN, the cellular GSH and T(SH)2 pools were entirely depleted, and the parasites entered an apoptotic stage and died. CYN also showed inhibition of the ornithine decarboxylase similar to the positive control eflornithine. Significant interactions with the other enzymes involved in the T(SH)2 redox metabolism were not observed. Alongside many other biological activities sesquiterpene lactones including CYN have shown antitrypanosomal effects, which have been postulated to be linked to formation of Michael adducts with cellular nucleophiles. Here the interaction of CYN with biological thiols in a cellular system in general, and with trypanosomal T(SH)2 redox metabolism in particular, thus offering a molecular explanation for the antitrypanosomal activity is demonstrated. At the same time, the study provides a novel extraction and analysis protocol for components of the trypanosomal thiol metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Rho GTPases, oxidation, and cell redox control

    PubMed Central

    Hobbs, G Aaron; Zhou, Bingying; Cox, Adrienne D; Campbell, Sharon L

    2014-01-01

    While numerous studies support regulation of Ras GTPases by reactive oxygen and nitrogen species, the Rho subfamily has received considerably less attention. Over the last few years, increasing evidence is emerging that supports the redox sensitivity of Rho GTPases. Moreover, as Rho GTPases regulate the cellular redox state by controlling enzymes that generate and convert reactive oxygen and nitrogen species, redox feedback loops likely exist. Here, we provide an overview of cellular oxidants, Rho GTPases, and their inter-dependence. PMID:24809833

  4. Aging is not a barrier to muscle and redox adaptations: applying the repeated eccentric exercise model.

    PubMed

    Nikolaidis, Michalis G; Kyparos, Antonios; Spanou, Chrysa; Paschalis, Vassilis; Theodorou, Anastasios A; Panayiotou, George; Grivas, Gerasimos V; Zafeiridis, Andreas; Dipla, Konstantina; Vrabas, Ioannis S

    2013-08-01

    Despite the progress of analytic techniques and the refinement of study designs, striking disagreement exists among studies regarding the influence of exercise on muscle function and redox homeostasis in the elderly. The repeated eccentric exercise model was applied to produce long-lasting and extensive changes in redox biomarkers and to reveal more effectively the potential effects of aging on redox homeostasis. Ten young (20.6±0.5 years) and ten elderly men (64.6±1.1 years) underwent an isokinetic eccentric exercise session, which was repeated after three weeks. Muscle function/damage indices (torque, range of movement, muscle soreness and creatine kinase) and redox biomarkers (F2-isoprostanes, protein carbonyls, glutathione, catalase, superoxide dismutase, glutathione peroxidase, glucose-6-phosphate dehydrogenase, uric acid, bilirubin and albumin) were assessed in plasma, erythrocytes or urine pre-exercise, immediately post-exercise and at 2 and 4 days post-exercise. As expected, the elderly group exhibited oxidative stress in baseline compared to the young group. Extensive muscle damage and extensive alterations in redox homeostasis appeared after the first bout of eccentric exercise. Noteworthy, the redox responses were similar between the age groups despite their differences in baseline values. Likewise, both age groups demonstrated blunted alterations in muscle damage and redox homeostasis after the second bout of eccentric exercise indicating adaptations from the first bout of exercise. Elderly individuals seem to be well fitted to participate in demanding physical activities without suffering detrimental effects on skeletal muscle and/or disturbances on redox homeostasis. The repeated eccentric exercise model may be a useful and practical physiological tool to study redox biology in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Redox conditions for mantle plumes

    NASA Astrophysics Data System (ADS)

    Heister, L. E.; Lesher, C. E.

    2005-12-01

    The vanadium to scandium ratio (V/Sc) for basalts from mid-ocean ridge (MOR) and arc environments has been proposed as a proxy for fO2 conditions during partial melting (e.g. [1] and [2]). Contrary to barometric measurements of the fO2 of primitive lavas, the V/Sc ratio of the upper mantle at mid-ocean ridges and arcs is similar, leading previous authors to propose that the upper mantle has uniform redox potential and is well-buffered. We have attempted to broaden the applicability of the V/Sc parameter to plume-influenced localities (both oceanic and continental), where mantle heterogeneities associated with recycled sediments, mafic crust, and metasomatized mantle, whether of shallow or deep origin, exist. We find that primitive basalts from the North Atlantic Igneous Province (NAIP), Hawaii (both the Loa and Kea trends), Deccan, Columbia River, and Siberian Traps show a range of V/Sc ratios that are generally higher (average ~9) than those for MOR (average ~ 6.7) or arc (average ~7) lavas. Based on forward polybaric decompression modeling, we attribute these differences to polybaric melting and melt segregation within the garnet stability field rather than the presence of a more oxidized mantle in plume-influenced settings. Like MORB, the V/Sc ratios for plume-influenced basalts can be accounted for by an oxidation state approximately one log unit below the Ni-NiO buffer (NNO-1). Our analysis suggests that source heterogeneities have little, if any, resolvable influence on mantle redox conditions, although they have significant influence on the trace element and isotopic composition of mantle-derived melts. We suggest that variations in the redox of erupted lavas is largely a function of shallow lithospheric processes rather than intrinsic to the mantle source, regardless of tectonic setting. [1] Li and Lee (2004) EPSL, [2] Lee et al. (2005) J. of Petrology

  6. Zinc and the modulation of redox homeostasis

    PubMed Central

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  7. [Redox Molecular Imaging Using ReMI].

    PubMed

    Hyodo, Fuminori; Ito, Shinji; Utsumi, Hideo

    2015-01-01

    Tissue redox status is one of the most important parameters to maintain homeostasis in the living body. Numerous redox reactions are involved in metabolic processes, such as energy production in the mitochondrial electron transfer system. A variety of intracellular molecules such as reactive oxygen species, glutathione, thioredoxins, NADPH, flavins, and ascorbic acid may contribute to the overall redox status in tissues. Breakdown of redox balance may lead to oxidative stress and can induce many pathological conditions such as cancer, neurological disorders, and aging. Therefore imaging of tissue redox status and monitoring antioxidant levels in living organisms can be useful in the diagnosis of disease states and assessment of treatment response. In vivo redox molecular imaging technology such as electron spin resonance imaging (ESRI), magnetic resonance imaging (MRI), and dynamic nuclear polarization (DNP)-MRI (redox molecular imaging; ReMI) is emerging as a viable redox status imaging modality. This review focuses on the application of magnetic resonance technologies using MRI or DNP-MRI and redox-sensitive contrast agents.

  8. Method for producing redox shuttles

    SciTech Connect

    Pupek, Krzysztof Z.; Dzwiniel, Trevor L.; Krumdick, Gregory K.

    2015-03-03

    A single step method for producing a redox shuttle having the formula 2,5-di-tert-butyl-1,4-phenylene tetraethyl bis(phosphate) is provided, the method comprising phosphorylating tert butyl hydroquinone with a phosphate-containing reagent. Also provided is method for producing 2,5-di-tert-butyl-1,4-phenylene tetraethyl bis(phosphate), the method comprising solubilizing tert-butyl hydroquinone and tetrabutylammonium bromide with methyltetrahydrofuran to create a mixture; heating the mixture while adding base to the mixture in an amount to turn the mixture orange; and adding diethyl chlorophosphate to the orange mixture in an amount to phosphorylate the hydroquinone.

  9. Redox State of Cytochromes in Frozen Yeast Cells Probed by Resonance Raman Spectroscopy

    PubMed Central

    Okotrub, Konstantin A.; Surovtsev, Nikolay V.

    2015-01-01

    Cryopreservation is a well-established technique used for the long-term storage of biological materials whose biological activity is effectively stopped under low temperatures (suspended animation). Since most biological methods do not work in a low-temperature frozen environment, the mechanism and details of the depression of cellular activity in the frozen state remain largely uncharacterized. In this work, we propose, to our knowledge, a new approach to study the downregulation of the redox activity of cytochromes b and c in freezing yeast cells in a contactless, label-free manner. Our approach is based on cytochrome photobleaching effects observed in the resonance Raman spectra of live cells. Photoinduced and native redox reactions that contributed to the photobleaching rate were studied over a wide temperature range (from −173 to +25°C). We found that ice formation influences both the rate of cytochrome redox reactions and the balance between the reduced and oxidized cytochromes. We demonstrate that the temperature dependence of native redox reaction rates can be well described by the thermal activation law with an apparent energy of 32.5 kJ/mol, showing that the redox reaction rate is ∼1015 times slower at liquid nitrogen temperature than at room temperature. PMID:26636934

  10. Redox State of Cytochromes in Frozen Yeast Cells Probed by Resonance Raman Spectroscopy.

    PubMed

    Okotrub, Konstantin A; Surovtsev, Nikolay V

    2015-12-01

    Cryopreservation is a well-established technique used for the long-term storage of biological materials whose biological activity is effectively stopped under low temperatures (suspended animation). Since most biological methods do not work in a low-temperature frozen environment, the mechanism and details of the depression of cellular activity in the frozen state remain largely uncharacterized. In this work, we propose, to our knowledge, a new approach to study the downregulation of the redox activity of cytochromes b and c in freezing yeast cells in a contactless, label-free manner. Our approach is based on cytochrome photobleaching effects observed in the resonance Raman spectra of live cells. Photoinduced and native redox reactions that contributed to the photobleaching rate were studied over a wide temperature range (from -173 to +25 °C). We found that ice formation influences both the rate of cytochrome redox reactions and the balance between the reduced and oxidized cytochromes. We demonstrate that the temperature dependence of native redox reaction rates can be well described by the thermal activation law with an apparent energy of 32.5 kJ/mol, showing that the redox reaction rate is ∼10(15) times slower at liquid nitrogen temperature than at room temperature. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Transport of gadolinium- and arsenic-based pharmaceuticals in saturated soil under various redox conditions.

    PubMed

    Menahem, Adi; Dror, Ishai; Berkowitz, Brian

    2016-02-01

    The release of pharmaceuticals and personal care products (PPCPs) to the soil-water environment necessitates understanding of PPCP transport behavior under conditions that account for dynamic flow and varying redox states. This study investigates the transport of two organometallic PPCPs, Gd-DTPA and roxarsone (arsenic compound) and their metal salts (Gd(NO3)3, AsNaO2); Gd-DTPA is used widely as a contrasting agent for MRI, while roxarsone is applied extensively as a food additive in the broiler poultry industry. Here, we present column experiments using sand and Mediterranean red sandy clay soil, performed under several redox conditions. The metal salts were almost completely immobile. In contrast, transport of Gd-DTPA and roxarsone was affected by the soil type. Roxarsone was also affected by the different redox conditions, showing delayed breakthrough curves as the redox potential became more negative due to biological activity (chemically-strong reducing conditions did not affect the transport). Mechanisms that include adsorptive retardation for aerobic and nitrate-reducing conditions, and non-adsorptive retardation for iron-reducing, sulfate-reducing and biologically-strong reducing conditions, are suggested to explain the roxarsone behavior. Gd-DTPA is found to be a stable complex, with potential for high mobility in groundwater systems, whereas roxarsone transport through groundwater systems is affected by redox environments, demonstrating high mobility under aerobic and nitrate-reducing conditions and delayed transport under iron-reducing, sulfate-reducing and biologically-strong reducing conditions.

  12. Characterization of protein redox dynamics induced during light-to-dark transitions and nutrient limitation in cyanobacteria

    SciTech Connect

    Ansong, Charles; Sadler, Natalie C.; Hill, Eric A.; Lewis, Michael P.; Zink, Erika M.; Smith, Richard D.; Beliaev, Alex S.; Konopka, Allan; Wright, Aaron T.

    2014-07-03

    Protein redox chemistry constitutes a major void in knowledge pertaining to photoautotrophic system regulation and signaling processes. We have employed a chemical biology approach to analyze redox sensitive proteins in live Synechococcus sp. PCC 7002 cells in both light and dark periods, and to understand how cellular redox balance is disrupted during nutrient perturbation. The present work identified several novel putative redox-sensitive proteins that are involved in the generation of reductant, macromolecule synthesis, and carbon flux through central metabolic pathways, and may be involved in cell signaling and response mechanisms. Furthermore, our research suggests that dynamic redox changes in response to specific nutrient limitations contribute to the regulatory changes driven by a shift from light to dark. Taken together, these results contribute to the high-level understanding of post-translational mechanisms regulating flux distributions and therefore present potential metabolic engineering targets for redirecting carbon towards biofuel precursors.

  13. Chromium electrodes for REDOX cells

    NASA Technical Reports Server (NTRS)

    Jalan, V.; Reid, M. A.; Charleston, A. (Inventor)

    1984-01-01

    An improved electrode having a gold coating for use in the anode compartment of a REDOX cell is described. The anode fluid utilizes a chromic/chromous couple. A carbon felt is soaked in methanol, rinsed in water, dried and then heated in KOH after which it is again washed in deionized water and dried. The felt is then moistened with a methanol water solution containing chloroauric acid and is stored in a dark place while still in contact with the gold-containing solution. After all the gold-containing solution is absorbed in the felt, the latter is dried by heat and then heat treated at a substantially greater temperature. The felt is then suitable for use as an electrode and is wetted with water or up to two molar HCl prior to installation in a REDOX cell. The novelty of the invention lies in the use of KOH for cleaning the felt and the use of alcohol as a carrier for the gold together with the heat treating procedure.

  14. Redox control of prion and disease pathogenesis.

    PubMed

    Singh, Neena; Singh, Ajay; Das, Dola; Mohan, Maradumane L

    2010-06-01

    Imbalance of brain metal homeostasis and associated oxidative stress by redox-active metals like iron and copper is an important trigger of neurotoxicity in several neurodegenerative conditions, including prion disorders. Whereas some reports attribute this to end-stage disease, others provide evidence for specific mechanisms leading to brain metal dyshomeostasis during disease progression. In prion disorders, imbalance of brain-iron homeostasis is observed before end-stage disease and worsens with disease progression, implicating iron-induced oxidative stress in disease pathogenesis. This is an unexpected observation, because the underlying cause of brain pathology in all prion disorders is PrP-scrapie (PrP(Sc)), a beta-sheet-rich conformation of a normal glycoprotein, the prion protein (PrP(C)). Whether brain-iron dyshomeostasis occurs because of gain of toxic function by PrP(Sc) or loss of normal function of PrP(C) remains unclear. In this review, we summarize available evidence suggesting the involvement of oxidative stress in prion-disease pathogenesis. Subsequently, we review the biology of PrP(C) to highlight its possible role in maintaining brain metal homeostasis during health and the contribution of PrP(Sc) in inducing brain metal imbalance with disease progression. Finally, we discuss possible therapeutic avenues directed at restoring brain metal homeostasis and alleviating metal-induced oxidative stress in prion disorders.

  15. Hydrogen Sulfide and Cellular Redox Homeostasis

    PubMed Central

    Xie, Zhi-Zhong; Liu, Yang; Bian, Jin-Song

    2016-01-01

    Intracellular redox imbalance is mainly caused by overproduction of reactive oxygen species (ROS) or weakness of the natural antioxidant defense system. It is involved in the pathophysiology of a wide array of human diseases. Hydrogen sulfide (H2S) is now recognized as the third “gasotransmitters” and proved to exert a wide range of physiological and cytoprotective functions in the biological systems. Among these functions, the role of H2S in oxidative stress has been one of the main focuses over years. However, the underlying mechanisms for the antioxidant effect of H2S are still poorly comprehended. This review presents an overview of the current understanding of H2S specially focusing on the new understanding and mechanisms of the antioxidant effects of H2S based on recent reports. Both inhibition of ROS generation and stimulation of antioxidants are discussed. H2S-induced S-sulfhydration of key proteins (e.g., p66Shc and Keap1) is also one of the focuses of this review. PMID:26881033

  16. Thiol Chemistry in Peroxidase Catalysis and Redox Signaling

    PubMed Central

    Fukuto, Jon M.; Forman, Henry Jay

    2008-01-01

    Abstract The oxidation chemistry of thiols and disulfides of biologic relevance is described. The review focuses on the interaction and kinetics of hydrogen peroxide with low-molecular-weight thiols and protein thiols and, in particular, on sulfenic acid groups, which are recognized as key intermediates in several thiol oxidation processes. In particular, sulfenic and selenenic acids are formed during the catalytic cycle of peroxiredoxins and glutathione peroxidases, respectively. In turn, these enzymes are in close redox communication with the thioredoxin and glutathione systems, which are the major controllers of the thiol redox state. Oxidants formed in the cell originate from several different sources, but the major producers are NADPH oxidases and mitochondria. However, a different role of the oxygen species produced by these sources is apparent as oxidants derived from NADPH oxidase are involved mainly in signaling processes, whereas those produced by mitochondria induce cell death in pathways including also the thioredoxin system, presently considered an important target for cancer chemotherapy. Antioxid. Redox Signal. 10, 1549–1564. PMID:18479206

  17. Redox-tagged peptide for capacitive diagnostic assays.

    PubMed

    Santos, Adriano; Piccoli, Julia P; Santos-Filho, Norival A; Cilli, Eduardo M; Bueno, Paulo R

    2015-06-15

    Early detection assays play a key role in the successful treatment of most diseases. Redox capacitive biosensors were recently introduced as a potential electroanalytical assay platform for point-of-care applications but alternative surfaces (besides a mixed layer containing ferrocene and antibody receptive component) for recruiting important clinical biomarkers are still needed. Aiming to develop alternative receptive surfaces for this novel electrochemical biosensing platform, we synthesized a ferrocene redox-tagged peptide capable of self-assembly into metallic interfaces, a potentially useful biological surface functionalization for bedside diagnostic assays. As a proof of concept we used C-reactive protein (CRP), as a model biomarker, and compared the obtained results to those of previously reported capacitive assays. The redox-tagged peptide approach shows a limit of detection of 0.8 nmol L(-1) (same as 94 ng mL(-1)) and a linear range (R(2)∼98%) with the logarithm of the concentration of the analyte comprising 0.5-10.0 nmol L(-1), within a clinical relevant range for CRP.

  18. Profiling thiol redox proteome using isotope tagging mass spectrometry.

    PubMed

    Parker, Jennifer; Zhu, Ning; Zhu, Mengmeng; Chen, Sixue

    2012-03-24

    Pseudomonas syringae pv. tomato strain DC3000 not only causes bacterial speck disease in Solanum lycopersicum but also on Brassica species, as well as on Arabidopsis thaliana, a genetically tractable host plant(1,2). The accumulation of reactive oxygen species (ROS) in cotyledons inoculated with DC3000 indicates a role of ROS in modulating necrotic cell death during bacterial speck disease of tomato(3). Hydrogen peroxide, a component of ROS, is produced after inoculation of tomato plants with Pseudomonas(3). Hydrogen peroxide can be detected using a histochemical stain 3'-3' diaminobenzidine (DAB)(4). DAB staining reacts with hydrogen peroxide to produce a brown stain on the leaf tissue(4). ROS has a regulatory role of the cellular redox environment, which can change the redox status of certain proteins(5). Cysteine is an important amino acid sensitive to redox changes. Under mild oxidation, reversible oxidation of cysteine sulfhydryl groups serves as redox sensors and signal transducers that regulate a variety of physiological processes(6,7). Tandem mass tag (TMT) reagents enable concurrent identification and multiplexed quantitation of proteins in different samples using tandem mass spectrometry(8,9). The cysteine-reactive TMT (cysTMT) reagents enable selective labeling and relative quantitation of cysteine-containing peptides from up to six biological samples. Each isobaric cysTMT tag has the same nominal parent mass and is composed of a sulfhydryl-reactive group, a MS-neutral spacer arm and an MS/MS reporter(10). After labeling, the samples were subject to protease digestion. The cysteine-labeled peptides were enriched using a resin containing anti-TMT antibody. During MS/MS analysis, a series of reporter ions (i.e., 126-131 Da) emerge in the low mass region, providing information on relative quantitation. The workflow is effective for reducing sample complexity, improving dynamic range and studying cysteine modifications. Here we present redox proteomic

  19. Method for characterization of the redox condition of cementitious materials

    SciTech Connect

    Almond, Philip M.; Langton, Christine A.; Stefanko, David B.

    2015-12-22

    Disclosed are methods for determining the redox condition of cementitious materials. The methods are leaching methods that utilize an in situ redox indicator that is present in the cementitious materials as formed. The in situ redox indicator leaches from cementitious material and, when the leaching process is carried out under anaerobic conditions can be utilized to determine the redox condition of the material. The in situ redox indicator can exhibit distinct characteristics in the leachate depending upon the redox condition of the indicator.

  20. Development of redox-sensitive red fluorescent proteins for imaging redox dynamics in cellular compartments.

    PubMed

    Fan, Yichong; Ai, Hui-wang

    2016-04-01

    We recently reported a redox-sensitive red fluorescent protein, rxRFP1, which is one of the first genetically encoded red-fluorescent probes for general redox states in living cells. As individual cellular compartments have different basal redox potentials, we hereby describe a group of rxRFP1 mutants, showing different midpoint redox potentials for detection of redox dynamics in various subcellular domains, such as mitochondria, the cell nucleus, and endoplasmic reticulum (ER). When these redox probes were expressed and subcellularly localized in human embryonic kidney (HEK) 293 T cells, they responded to membrane-permeable oxidants and reductants. In addition, a mitochondrially localized rxRFP1 mutant, Mito-rxRFP1.1, was used to detect mitochondrial oxidative stress induced by doxorubicin-a widely used cancer chemotherapy drug. Our work has expanded the fluorescent protein toolkit with new research tools for studying compartmentalized redox dynamics and oxidative stress under various pathophysiological conditions.

  1. Screening of redox couples and electrode materials

    NASA Technical Reports Server (NTRS)

    Giner, J.; Swette, L.; Cahill, K.

    1976-01-01

    Electrochemical parameters of selected redox couples that might be potentially promising for application in bulk energy storage systems were investigated. This was carried out in two phases: a broad investigation of the basic characteristics and behavior of various redox couples, followed by a more limited investigation of their electrochemical performance in a redox flow reactor configuration. In the first phase of the program, eight redox couples were evaluated under a variety of conditions in terms of their exchange current densities as measured by the rotating disk electrode procedure. The second phase of the program involved the testing of four couples in a redox reactor under flow conditions with a varity of electrode materials and structures.

  2. Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes.

    PubMed

    Albrecht, Simone C; Sobotta, Mirko C; Bausewein, Daniela; Aller, Isabel; Hell, Rüdiger; Dick, Tobias P; Meyer, Andreas J

    2014-03-01

    The development of genetically encoded redox biosensors has paved the way toward chemically specific, quantitative, dynamic, and compartment-specific redox measurements in cells and organisms. In particular, redox-sensitive green fluorescent proteins (roGFPs) have attracted major interest as tools to monitor biological redox changes in real time and in vivo. Most recently, the engineering of a redox relay that combines glutaredoxin (Grx) with roGFP2 as a translational fusion (Grx1-roGFP2) led to a biosensor for the glutathione redox potential (EGSH ). The expression of this probe in mitochondria is of particular interest as mitochondria are the major source of oxidants, and their redox status is closely connected to cell fate decisions. While Grx1-roGFP2 can be expressed in mammalian mitochondria, it fails to enter mitochondria in various nonmammalian model organisms. Here we report that inversion of domain order from Grx1-roGFP2 to roGFP2-Grx1 yields a biosensor with perfect mitochondrial targeting while fully maintaining its biosensor capabilities. The redesigned probe thus allows extending in vivo observations of mitochondrial redox homeostasis to important nonmammalian model organisms, particularly plants and insects.

  3. Effects of citrinin on iron-redox cycle.

    PubMed

    Da Lozzo, Eneida Janiscki; Mangrich, Antonio Salvio; Rocha, Maria Eliane Merlin; de Oliveira, Maria Benigna Martinelli; Carnieri, Eva Gunilla Skare

    2002-03-01

    The ability of the mycotoxin citrinin to act as an inhibitor of iron-induced lipoperoxidation of biological membranes prompted us to determine whether it could act as an iron chelating agent, interfering with iron redox reactions or acting as a free radical scavenger. The addition of Fe3+ to citrinin rapidly produced a chromogen, indicating the formation of citrinin-Fe3+ complexes. An EPR study confirms that citrinin acts as a ligand of Fe3+, the complexation depending on the [Fe3+]:[citrinin] ratios. Effects of citrinin on the iron redox cycle were evaluated by oxygen consumption or the o-phenanthroline test. No effect on EDTA-Fe2+-->EDTA-Fe3+ oxidation was observed in the presence of citrinin, but the mycotoxin inhibited, in a dose-dependent manner, the oxidation of Fe2+ to Fe3+ by hydrogen peroxide. Reducing agents such as ascorbic acid and DTT reduced the Fe3+-citrinin complex, but DTT did not cause reduction of Fe3+-EDTA, indicating that the redox potentials of Fe3+-citrinin and Fe3+-EDTA are not the same. The Fe2+ formed from the reduction of Fe3+-citrinin by reducing agents was not rapidly reoxidized to Fe3+ by atmospheric oxygen. Citrinin has no radical scavenger ability as demonstrated by the absence of DPPH reduction. However, a reaction between citrinin and hydrogen peroxide was observed by UV spectrum changes of citrinin after incubation with hydrogen peroxide. It was also observed that citrinin did not induce direct or reductive mobilization of iron from ferritin. These results indicate that the protective effect on iron-induced lipid peroxidation by citrinin occurs due to the formation of a redox inactive Fe3+-citrinin complex, as well as from the reaction of citrinin and hydrogen peroxide. Copyright 2001 John Wiley & Sons, Ltd.

  4. Inflammatory Bowel Disease: Mechanisms, Redox Considerations, and Therapeutic Targets

    PubMed Central

    Biasi, Fiorella; Leonarduzzi, Gabriella; Oteiza, Patricia I.

    2013-01-01

    Abstract Oxidative stress is thought to play a key role in the development of intestinal damage in inflammatory bowel disease (IBD), because of its primary involvement in intestinal cells' aberrant immune and inflammatory responses to dietary antigens and to the commensal bacteria. During the active disease phase, activated leukocytes generate not only a wide spectrum of pro-inflammatory cytokines, but also excess oxidative reactions, which markedly alter the redox equilibrium within the gut mucosa, and maintain inflammation by inducing redox-sensitive signaling pathways and transcription factors. Moreover, several inflammatory molecules generate further oxidation products, leading to a self-sustaining and auto-amplifying vicious circle, which eventually impairs the gut barrier. The current treatment of IBD consists of long-term conventional anti-inflammatory therapy and often leads to drug refractoriness or intolerance, limiting patients' quality of life. Immune modulators or anti-tumor necrosis factor α antibodies have recently been used, but all carry the risk of significant side effects and a poor treatment response. Recent developments in molecular medicine point to the possibility of treating the oxidative stress associated with IBD, by designing a proper supplementation of specific lipids to induce local production of anti-inflammatory derivatives, as well as by developing biological therapies that target selective molecules (i.e., nuclear factor-κB, NADPH oxidase, prohibitins, or inflammasomes) involved in redox signaling. The clinical significance of oxidative stress in IBD is now becoming clear, and may soon lead to important new therapeutic options to lessen intestinal damage in this disease. Antioxid. Redox Signal. 19, 1711–1747. PMID:23305298

  5. Electrically rechargeable REDOX flow cell

    NASA Technical Reports Server (NTRS)

    Thaller, L. H. (Inventor)

    1976-01-01

    A bulk energy storage system is designed with an electrically rechargeable reduction-oxidation (REDOX) cell divided into two compartments by a membrane, each compartment containing an electrode. An anode fluid is directed through the first compartment at the same time that a cathode fluid is directed through the second compartment. Means are provided for circulating the anode and cathode fluids, and the electrodes are connected to an intermittent or non-continuous electrical source, which when operating, supplies current to a load as well as to the cell to recharge it. Ancillary circuitry is provided for disconnecting the intermittent source from the cell at prescribed times and for circulating the anode and cathode fluids according to desired parameters and conditions.

  6. Optimization of Spin-Unrestricted Density Functional Theory for Redox Properties of Rubredoxin Redox Site Analogues

    SciTech Connect

    Niu, Shuqiang; Nichols, Jeffery A.; Ichiye, Toshiko

    2009-05-01

    Systematic studies of the accuracy of density functional theory (DFT) methods, especially the recently developed hybrid generalized gradient approximation (GGA) functionals, for structural and energetic properties of iron-sulfur redox sites are essential before these methods can be used to answer important biological questions about these systems. Here, the geometries, electronic structures, and reduction potentials of redox site analogs of the iron-sulfur protein rubredoxin are investigated using DFT (B3LYP, B97gga1 and BHandH), the Moller-Plesset perturbation theory series (MP2, MP3, MP4SDQ), and coupled cluster (CCSD, CCSD(T)) methods. For the geometries of [Fe(SCH3)4]2-/1- and [Fe(SCH3)3]1-/0, the DFT optimizations give reasonable values and the inclusion of a core electron basis substantially reduces the errors in the calculated geometries. However, for the vertical detachment energy (VDE) and adiabatic detachment energy (ADE) of [Fe(SCH3)4]1- and [Fe(SCH3)3]1-, the B3LYP functional gives the most accurately computed ADE and VDE using DFT, which are comparable with those at the CCSD level of theory. When diffuse functions are added to the sulfur basis set, they have little effect on the geometry optimization but significantly improve the calculated VDE and ADE, which is important for the anionic reduced sites. When multiple polarization functions are added to the sulfur basis set, they lead to a slightly better description of the geometry by giving more angular flexibility but underestimate ADE and VDE, most likely due to overestimating the stabilizing energy of the oxidized sites. Overall, the B3LYP calculations with the more flexible full-core basis sets give a reasonable description both of the geometry and of the ADE and VDE. Thus, improving the basis sets seems to be an efficient and convenient way to obtain reliable reduction potentials of the high-spin iron-sulfur redox sites.

  7. Ca(2+) signaling and redox regulation: Roles of an Arabidopsis Glutaredoxin

    USDA-ARS?s Scientific Manuscript database

    Redox states in all biological systems including plants are thought to play vital roles in maintaining and/or regulating cellular processes and metabolisms in response to extreme conditions, such as oxidative stresses, nutritional perturbation, and metabolic disorders. There is a growing body of evi...

  8. Proteomic Analysis of Early-Responsive Redox-Sensitive Proteins in Arabidopsis

    PubMed Central

    2011-01-01

    Regulation of protein function through oxidative modification has emerged as an important molecular mechanism modulating various biological processes. Here, we report a proteomic study of redox-sensitive proteins in Arabidopsis cells subjected to H2O2 treatment. Four gel-based approaches were employed, leading to the identification of four partially overlapping sets of proteins whose thiols underwent oxidative modification in the H2O2-treated cells. Using a method based on differential labeling of thiols followed by immunoprecipitation and Western blotting, five of the six selected putative redox-sensitive proteins were confirmed to undergo oxidative modification following the oxidant treatment in Arabidopsis leaves. Another method, which is based on differential labeling of thiols coupled with protein electrophoretic mobility shift assay, was adopted to reveal that one of the H2O2-sensitive proteins, a homologue of cytokine-induced apoptosis inhibitor 1 (AtCIAPIN1), also underwent oxidative modification in Arabidopsis leaves after treatments with salicylic acid or the peptide elicitor flg22, two inducers of defense signaling. The redox-sensitive proteins identified from the proteomic study are involved in various biological processes such as metabolism, the antioxidant system, protein biosynthesis and processing, and cytoskeleton organization. The identification of novel redox-sensitive proteins will be helpful toward understanding of cellular components or pathways previously unknown to be redox-regulated. PMID:22050424

  9. Redox-Mediated and Ionizing-Radiation-Induced Inflammatory Mediators in Prostate Cancer Development and Treatment

    PubMed Central

    Miao, Lu; Holley, Aaron K.; Zhao, Yanming; St. Clair, William H.

    2014-01-01

    Abstract Significance: Radiation therapy is widely used for treatment of prostate cancer. Radiation can directly damage biologically important molecules; however, most effects of radiation-mediated cell killing are derived from the generated free radicals that alter cellular redox status. Multiple proinflammatory mediators can also influence redox status in irradiated cells and the surrounding microenvironment, thereby affecting prostate cancer progression and radiotherapy efficiency. Recent Advances: Ionizing radiation (IR)–generated oxidative stress can regulate and be regulated by the production of proinflammatory mediators. Depending on the type and stage of the prostate cancer cells, these proinflammatory mediators may lead to different biological consequences ranging from cell death to development of radioresistance. Critical Issues: Tumors are heterogeneous and dynamic communication occurs between stromal and prostate cancer cells, and complicated redox-regulated mechanisms exist in the tumor microenvironment. Thus, antioxidant and anti-inflammatory strategies should be carefully evaluated for each patient at different stages of the disease to maximize therapeutic benefits while minimizing unintended side effects. Future Directions: Compared with normal cells, tumor cells are usually under higher oxidative stress and secrete more proinflammatory mediators. Thus, redox status is often less adaptive in tumor cells than in their normal counterparts. This difference can be exploited in a search for new cancer therapeutics and treatment regimes that selectively activate cell death pathways in tumor cells with minimal unintended consequences in terms of chemo- and radio-resistance in tumor cells and toxicity in normal tissues. Antioxid. Redox Signal. 20, 1481–1500. PMID:24093432

  10. Antioxidants as therapeutics in the intensive care unit: Have we ticked the redox boxes?

    PubMed

    Margaritelis, Nikos V

    2016-09-01

    Critically ill patients are under oxidative stress and antioxidant administration reasonably emerged as a promising approach to combat the aberrant redox homeostasis in this patient cohort. However, the results of the antioxidant treatments in the intensive care unit are conflicting and inconclusive. The main objective of the present review is to highlight some inherent, yet widely overlooked redox-related issues about the equivocal effectiveness of antioxidants in the intensive care unit, beyond methodological considerations. In particular, the discrepancy in the literature partially stems from: (1) the largely unspecified role of reactive species in disease onset and progression, (2) our fragmentary understanding on the interplay between inflammation and oxidative stress, (3) the complex spatiotemporal specificity of in vivo redox biology, (4) the pleiotropic effects of antioxidants and (5) the divergent effects of antioxidants according to the temporal administration pattern. In addition, two novel and sophisticated practices with promising pre-clinical results are presented: (1) the selective neutralization of reactive species in key organelles after they are formed (i.e., in mitochondria) and (2) the targeted complete inhibition of dominant reactive species sources (i.e., NADPH oxidases). Finally, the reductive potential of NADPH as a key pharmacological target for redox therapies is rationalized. In light of the above, the recontextualization of knowledge from basic redox biology to translational medicine seems imperative to perform more realistic in vivo studies in the fast-growing field of critical care pharmacology.

  11. Redox subpopulations and the risk of cancer progression: a new method for characterizing redox heterogeneity

    NASA Astrophysics Data System (ADS)

    Xu, He N.; Li, Lin Z.

    2016-02-01

    It has been shown that a malignant tumor is akin to a complex organ comprising of various cell populations including tumor cells that are genetically, metabolically and functionally different. Our redox imaging data have demonstrated intra-tumor redox heterogeneity in all mouse xenografts derived from human melanomas, breast, prostate, and colon cancers. Based on the signals of NADH and oxidized flavoproteins (Fp, including flavin adenine dinucleotide (FAD)) and their ratio, i.e., the redox ratio, which is an indicator of mitochondrial metabolic status, we have discovered several distinct redox subpopulations in xenografts of breast tumors potentially recapitulating functional/metabolic heterogeneity within the tumor. Furthermore, xenografts of breast tumors with higher metastatic potential tend to have a redox subpopulation whose redox ratio is significantly different from that of tumors with lower metastatic potential and usually have a bi-modal distribution of the redox ratio. The redox subpopulations from human breast cancer samples can also be very complex with multiple subpopulations as determined by fitting the redox ratio histograms with multi- Gaussian functions. In this report, we present a new method for identifying the redox subpopulations within individual breast tumor xenografts and human breast tissues, which may be used to differentiate between breast cancer and normal tissue and among breast cancer with different risks of progression.

  12. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    PubMed Central

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V. PMID:27966605

  13. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    NASA Astrophysics Data System (ADS)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-12-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.

  14. Astrocytic Redox Remodeling by Amyloid Beta Peptide

    PubMed Central

    Garg, Sanjay K.; Vitvitsky, Victor; Albin, Roger

    2011-01-01

    Abstract Astrocytes are critical for neuronal redox homeostasis providing them with cysteine needed for glutathione synthesis. In this study, we demonstrate that the astrocytic redox response signature provoked by amyloid beta (Aβ) is distinct from that of a general oxidant (tertiary-butylhydroperoxide [t-BuOOH]). Acute Aβ treatment increased cystathionine β-synthase (CBS) levels and enhanced transsulfuration flux in contrast to repeated Aβ exposure, which decreased CBS and catalase protein levels. Although t-BuOOH also increased transsulfuration flux, CBS levels were unaffected. The net effect of Aβ treatment was an oxidative shift in the intracellular glutathione/glutathione disulfide redox potential in contrast to a reductive shift in response to peroxide. In the extracellular compartment, Aβ, but not t-BuOOH, enhanced cystine uptake and cysteine accumulation, and resulted in remodeling of the extracellular cysteine/cystine redox potential in the reductive direction. The redox changes elicited by Aβ but not peroxide were associated with enhanced DNA synthesis. CBS activity and protein levels tended to be lower in cerebellum from patients with Alzheimer's disease than in age-matched controls. Our study suggests that the alterations in astrocytic redox status could compromise the neuroprotective potential of astrocytes and may be a potential new target for therapeutic intervention in Alzheimer's disease. Antioxid. Redox Signal. 14, 2385–2397. PMID:21235355

  15. Mitochondria and redox homoeostasis as chemotherapeutic targets.

    PubMed

    Briehl, Margaret M; Tome, Margaret E; Wilkinson, Sarah T; Jaramillo, Melba C; Lee, Kristy

    2014-08-01

    Characteristics of cancer cells include a more oxidized redox environment, metabolic reprogramming and apoptosis resistance. Our studies with a lymphoma model have explored connections between the cellular redox environment and cancer cell phenotypes. Alterations seen in lymphoma cells made resistant to oxidative stress include: a more oxidized redox environment despite increased expression of antioxidant enzymes, enhanced net tumour growth, metabolic changes involving the mitochondria and resistance to the mitochondrial pathway to apoptosis. Of particular importance, the cells show cross-resistance to multiple chemotherapeutic agents used to treat aggressive lymphomas. Analyses of clinical and tumour data reveal the worst prognosis when patients' lymphomas have gene expression patterns consistent with the most oxidized redox environment. Lymphomas from patients with the worst survival outcomes express increased levels of proteins involved in oxidative phosphorylation, including cytochrome c. This is consistent with these cells functioning as metabolic opportunists. Using lymphoma cell models and primary lymphoma cultures, we observed enhanced killing using genetic and drug approaches which further oxidize the cellular redox environment. These approaches include increased expression of SOD2 (superoxide dismutase 2), treatment with a manganoporphyrin that oxidizes the glutathione redox couple, or treatment with a copper chelator that inhibits SOD1 and leads to peroxynitrite-dependent cell death. The latter approach effectively kills lymphoma cells that overexpress the anti-apoptotic protein Bcl-2. Given the central role of mitochondria in redox homoeostasis, metabolism and the intrinsic pathway to apoptosis, our studies support the development of new anti-cancer drugs to target this organelle.

  16. Functional aspects of redox control during neuroinflammation.

    PubMed

    Rosales-Corral, Sergio; Reiter, Russel J; Tan, Dun-Xian; Ortiz, Genaro G; Lopez-Armas, Gabriela

    2010-07-15

    Neuroinflammation is a CNS reaction to injury in which some severe pathologies, regardless of their origin, converge. The phenomenon emphasizes crosstalk between neurons and glia and reveals a complex interaction with oxidizing agents through redox sensors localized in enzymes, receptors, and transcription factors. When oxidizing pressures cause reversible molecular changes, such as minimal or transitory proinflammatory cytokine overproduction, redox couples provide a means of translating the presence of reactive oxygen or nitrogen species into useful signals in the cell. Additionally, thiol-based redox sensors convey information about localized changes in redox potential induced by physiologic or pathologic situations. They are susceptible to oxidative changes and become key events during neuroinflammation, altering the course of a signaling response or the behavior of specific transcription factors. When oxidative stress augments the pressure on the intracellular environment, the effective reduction potential of redox pairs diminishes, and cell signaling shifts toward proinflammatory and proapoptotic signals, creating a vicious cycle between oxidative stress and neuroinflammation. In addition, electrophilic compounds derived from the oxidative cascade react with key protein thiols and interfere with redox signaling. This article reviews the relevant functional aspects of redox control during the neuroinflammatory process.

  17. Controls on the redox potential of rainwater.

    PubMed

    Willey, Joan D; Mullaugh, Katherine M; Kieber, Robert J; Avery, G Brooks; Mead, Ralph N

    2012-12-18

    Hydrogen peroxide acting as a reductant affects the redox potential of rainwater collected at the Bermuda Atlantic Time Series Station, the South Island of New Zealand, the contiguous USA, and the primary study site in Wilmington, NC. Analytical measurements of both halves of redox couples for dissolved iron, mercury, and the nitrate-nitrite-ammonium system can predict the rainwater redox potential measured directly by a platinum electrode. Measurements of these redox couples along with the pH in rain yields pe⁻ between 8 and 11; the half reaction for hydrogen peroxide acting as a reductant using typical rainwater conditions of 15 μM H₂O₂ at pH 4.7 gives pe⁻ = 9.12, where pe⁻ = negative log of the activity of hydrated electrons. Of the six rainwater redox systems investigated, only manganese speciation appeared to be controlled by molecular oxygen (pe⁻ = 15.90). Copper redox speciation was consistent with superoxide acting as a reductant (pe⁻ = 2.7). The concentration of H₂O₂ in precipitation has more than doubled over the preceding decade due to a decrease in SO₂ emissions, which suggests the redox chemistry of rainwater is dynamic and changing, potentially altering the speciation of many organic compounds and trace metals in atmospheric waters.

  18. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, Brian A.; Taylor, A. Michael

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  19. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  20. Strong correlations in actinide redox reactions

    NASA Astrophysics Data System (ADS)

    Horowitz, S. E.; Marston, J. B.

    2011-02-01

    Reduction-oxidation (redox) reactions of the redox couples An(VI)/An(V), An(V)/An(IV), and An(IV)/An(III), where An is an element in the family of early actinides (U, Np, and Pu), as well as Am(VI)/Am(V) and Am(V)/Am(III), are modeled by combining density functional theory with a generalized Anderson impurity model that accounts for the strong correlations between the 5f electrons. Diagonalization of the Anderson impurity model yields improved estimates for the redox potentials and the propensity of the actinide complexes to disproportionate.

  1. Bis(Dioxolene)(Bipyridine)Ruthenium Redox Series

    DTIC Science & Technology

    1988-07-11

    reactions with isosbestic points were generally observed in these redox processes. The electronic spectra of 02, 01, S, RI and R2 are shown Tor the (1...oOFFICE OF NAVAL RESEARCH Contract NOOOl4-84-G-0201 Task No. 0051-865 Technical Report *23 Bis(Dioxolene)(Bipyridine)Ruthenium Redox Series By...Classit’.’-tion) Bix(Dioxolene)(Bipyridine)Ruthenium Redox Series 12 PERSON4AL AUTHOR(S) A.B. P. Lever*, Pamela R. &uburn, Elaine S. Dodsworth, Masa-A

  2. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, B.A.; Taylor, A.M.

    1998-11-24

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.

  3. Electrochemical cell for rebalancing REDOX flow system

    NASA Technical Reports Server (NTRS)

    Thaller, L. H. (Inventor)

    1979-01-01

    An electrically rechargeable REDOX cell or battery system including one of more rebalancing cells is described. Each rebalancing cell is divided into two chambers by an ion permeable membrane. The first chamber is fed with gaseous hydrogen and a cathode fluid which is circulated through the cathode chamber of the REDOX cell is also passed through the second chamber of the rebalancing cell. Electrochemical reactions take place on the surface of insert electrodes in the first and second chambers to rebalance the electrochemical capacity of the anode and cathode fluids of the REDOX system.

  4. Strong correlations in actinide redox reactions.

    PubMed

    Horowitz, S E; Marston, J B

    2011-02-14

    Reduction-oxidation (redox) reactions of the redox couples An(VI)/An(V), An(V)/An(IV), and An(IV)/An(III), where An is an element in the family of early actinides (U, Np, and Pu), as well as Am(VI)/Am(V) and Am(V)/Am(III), are modeled by combining density functional theory with a generalized Anderson impurity model that accounts for the strong correlations between the 5f electrons. Diagonalization of the Anderson impurity model yields improved estimates for the redox potentials and the propensity of the actinide complexes to disproportionate.

  5. Iron Metallodrugs: Stability, Redox Activity and Toxicity against Artemia salina

    PubMed Central

    2015-01-01

    Iron metallodrugs comprise mineral supplements, anti-hypertensive agents and, more recently, magnetic nanomaterials, with both therapeutic and diagnostic roles. As biologically-active metal compounds, concern has been raised regarding the impact of these compounds when emitted to the environment and associated ecotoxicological effects for the fauna. In this work we assessed the relative stability of several iron compounds (supplements based on glucoheptonate, dextran or glycinate, as well as 3,5,5-trimethylhexanoyl (TMH) derivatives of ferrocene) against high affinity models of biological binding, calcein and aprotransferrin, via a fluorimetric method. Also, the redox-activity of each compound was determined in a physiologically relevant medium. Toxicity toward Artemia salina at different developmental stages was measured, as well as the amount of lipid peroxidation. Our results show that polymer-coated iron metallodrugs are stable, non-redox-active and non-toxic at the concentrations studied (up to 300 µM). However, TMH derivatives of ferrocene were less stable and more redox-active than the parent compound, and TMH-ferrocene displayed toxicity and lipid peroxidation to A. salina, unlike the other compounds. Our results indicate that iron metallodrugs based on polymer coating do not present direct toxicity at low levels of emission; however other iron species (eg. metallocenes), may be deleterious for aquatic organisms. We suggest that ecotoxicity depends more on metal speciation than on the total amount of metal present in the metallodrugs. Future studies with discarded metallodrugs should consider the chemical speciation of the metal present in the composition of the drug. PMID:25849743

  6. Direct measurement of electron transfer distance decay constants of single redox proteins by electrochemical tunneling spectroscopy.

    PubMed

    Artés, Juan M; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau

    2011-03-22

    We present a method to measure directly and at the single-molecule level the distance decay constant that characterizes the rate of electron transfer (ET) in redox proteins. Using an electrochemical tunneling microscope under bipotentiostatic control, we obtained current−distance spectroscopic recordings of individual redox proteins confined within a nanometric tunneling gap at a well-defined molecular orientation. The tunneling current decays exponentially, and the corresponding decay constant (β) strongly supports a two-step tunneling ET mechanism. Statistical analysis of decay constant measurements reveals differences between the reduced and oxidized states that may be relevant to the control of ET rates in enzymes and biological electron transport chains.

  7. S-sulfhydration as a cellular redox regulation

    PubMed Central

    Iciek, Małgorzata; Kowalczyk-Pachel, Danuta; Bilska-Wilkosz, Anna; Kwiecień, Inga; Górny, Magdalena; Włodek, Lidia

    2015-01-01

    For many years reactive oxygen and nitrogen species (ROS and RNS) have been recognized as key messengers in the process of thiol-based redox regulation. Relatively recently, literature reports began to mention reactive sulfur species (RSS) and their role in thiol regulation. This review is focused on biogenesis and biological properties of RSS, including: hydropersulfides, polysulfides and hydrogen sulfide (H2S). Based on the most up-to-date literature data, the paper presents biological significance of S-sulfhydration process. In this reaction, sulfane sulfur is transferred to the–SH groups forming hydropersulfides. Protein cysteine residues, called ‘redox switches’ are susceptible to such reversible modifications. In line with the most recent reports, it was emphasized that sulfane sulfur-containing compounds (mainly hydrogen persulfides and polysulfides) are real and better mediators of S-sulfhydration-based signalling than H2S. We also overviewed proteins participating in the formation and transport of RSS and in mitochondrial H2S oxidation. In addition, we reviewed many reports about proteins unrelated to sulfur metabolism which are modified by S-sulfhydration that influences their catalytic activity. We also addressed the problem of the regulatory function of S-sulfhydration reaction in the activation of KATP channels (vasorelaxant) and transcription factors (e.g. NFκB) as well as in the mechanism of therapeutic action of garlic-derived sulfur compounds. Some aspects of comparison between RNS and RSS are also discussed in this review. PMID:26607972

  8. Novel Redox Processes for Carbonaceous Fuel Conversion

    NASA Astrophysics Data System (ADS)

    He, Feng

    The current study investigates oxygen carrier development, process intensification, and oxygen carrier attrition behaviors for a number of novel, redox-based energy conversion schemes. (Abstract shortened by ProQuest.).

  9. Carbon fiber electrode for redox flow battery

    SciTech Connect

    Inoue, M.; Tsuzuki, Y.; Iizuka, Y.; Shimada, M.

    1987-03-01

    Advanced secondary batteries have been developed as electrical energy storage systems for use in electrical utility load-levelling and stand-alone photovoltaic installations. Among them, the redox flow system based on aqueous iron and chromium redox couple is one of the most advanced. An important key to its feasibility is electrode fabrication. Woven and non-woven fabrics of carbon fibers have been used as thin but three dimensional electrodes of the redox flow system in view of their electric conductivity, chemical stability, and economy. One of the electrochemical problems of iron-chromium redox battery related to the electrode is the slow reaction rate of reduction and oxidation of chromium complex ion. As the electron transfer rate of chromium complex ion is lower than that of iron ion, the voltaic efficiency of the battery tends to decrease.

  10. High energy density redox flow device

    DOEpatents

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  11. A redox-flow electrochromic window.

    PubMed

    Jennings, James R; Lim, Wei Yang; Zakeeruddin, Shaik M; Grätzel, Michael; Wang, Qing

    2015-02-04

    A low-cost electrochromic (EC) window based on a redox-flow system that does not require expensive transparent conductive oxide (TCO) substrates is introduced and demonstrated for the first time. An aqueous I3–/I– redox electrolyte is used in place of a TCO to oxidize/reduce a molecular layer of an EC triphenylamine derivative that is anchored to a mesoporous TiO2 scaffold on the inner faces of a double-paned window. The redox electrolyte is electrochemically oxidized/reduced in an external two-compartment cell and circulated through the window cavity using an inexpensive peristaltic pump, resulting in coloration or decoloration of the window due to reaction of the redox solution with the triphenylamine derivative. The absorption characteristics, coloration/decoloration times, and cycling stability of the prototype EC window are evaluated, and prospects for further development are discussed.

  12. Mitochondria and Redox Signaling in Steatohepatitis

    PubMed Central

    Morris, E. Matthew; Rector, R. Scott; Thyfault, John P.

    2011-01-01

    Abstract Alcoholic and nonalcoholic fatty liver diseases are potentially pathological conditions that can progress to steatohepatitis, fibrosis, and cirrhosis. These conditions affect millions of people throughout the world in part through poor lifestyle choices of excess alcohol consumption, overnutrition, and lack of regular physical activity. Abnormal mitochondrial and cellular redox homeostasis has been documented in steatohepatitis and results in alterations of multiple redox-sensitive signaling cascades. Ultimately, these changes in signaling lead to altered enzyme function and transcriptional activities of proteins critical to mitochondrial and cellular function. In this article, we review the current hypotheses linking mitochondrial redox state to the overall pathophysiology of alcoholic and nonalcoholic steatohepatitis and briefly discuss the current therapeutic options under investigation. Antioxid. Redox Signal. 15, 485–504. PMID:21128703

  13. Redox regulation of intercellular transport.

    PubMed

    Benitez-Alfonso, Yoselin; Jackson, David; Maule, Andy

    2011-01-01

    Plant cells communicate with each other via plasmodesmata (PDs) in order to orchestrate specific responses to environmental and developmental cues. At the same time, environmental signals regulate this communication by promoting changes in PD structure that modify symplastic permeability and, in extreme cases, isolate damaged cells. Reactive oxygen species (ROS) are key messengers in plant responses to a range of biotic and abiotic stresses. They are also generated during normal metabolism, and mediate signaling pathways that modulate plant growth and developmental transitions. Recent research has suggested the participation of ROS in the regulation of PD transport. The study of several developmental and stress-induced processes revealed a co-regulation of ROS and callose (a cell wall polymer that regulates molecular flux through PDs). The identification of Arabidopsis mutants simultaneously affected in cell redox homeostasis and PD transport, and the histological detection of hydrogen peroxide and peroxidases in the PDs of the tomato vascular cambium provide new information in support of this novel regulatory mechanism. Here, we describe the evidence that supports a role for ROS in the regulation of callose deposition and/or in the formation of secondary PD, and discuss the potential importance of this mechanism during plant growth or defense against environmental stresses.

  14. Nuclear thiol redox systems in plants.

    PubMed

    Delorme-Hinoux, Valérie; Bangash, Sajid A K; Meyer, Andreas J; Reichheld, Jean-Philippe

    2016-02-01

    Thiol-disulfide redox regulation is essential for many cellular functions in plants. It has major roles in defense mechanisms, maintains the redox status of the cell and plays structural, with regulatory roles for many proteins. Although thiol-based redox regulation has been extensively studied in subcellular organelles such as chloroplasts, it has been much less studied in the nucleus. Thiol-disulfide redox regulation is dependent on the conserved redox proteins, glutathione/glutaredoxin (GRX) and thioredoxin (TRX) systems. We first focus on the functions of glutathione in the nucleus and discuss recent data concerning accumulation of glutathione in the nucleus. We also provide evidence that glutathione reduction is potentially active in the nucleus. Recent data suggests that the nucleus is enriched in specific GRX and TRX isoforms. We discuss the biochemical and molecular characteristics of these isoforms and focus on genetic evidences for their potential nuclear functions. Finally, we make an overview of the different thiol-based redox regulated proteins in the nucleus. These proteins are involved in various pathways including transcriptional regulation, metabolism and signaling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Dynamic Redox Regulation of IL-4 Signaling

    PubMed Central

    Dwivedi, Gaurav; Gran, Margaret A.; Bagchi, Pritha; Kemp, Melissa L.

    2015-01-01

    Quantifying the magnitude and dynamics of protein oxidation during cell signaling is technically challenging. Computational modeling provides tractable, quantitative methods to test hypotheses of redox mechanisms that may be simultaneously operative during signal transduction. The interleukin-4 (IL-4) pathway, which has previously been reported to induce reactive oxygen species and oxidation of PTP1B, may be controlled by several other putative mechanisms of redox regulation; widespread proteomic thiol oxidation observed via 2D redox differential gel electrophoresis upon IL-4 treatment suggests more than one redox-sensitive protein implicated in this pathway. Through computational modeling and a model selection strategy that relied on characteristic STAT6 phosphorylation dynamics of IL-4 signaling, we identified reversible protein tyrosine phosphatase (PTP) oxidation as the primary redox regulatory mechanism in the pathway. A systems-level model of IL-4 signaling was developed that integrates synchronous pan-PTP oxidation with ROS-independent mechanisms. The model quantitatively predicts the dynamics of IL-4 signaling over a broad range of new redox conditions, offers novel hypotheses about regulation of JAK/STAT signaling, and provides a framework for interrogating putative mechanisms involving receptor-initiated oxidation. PMID:26562652

  16. Membranes for redox flow battery applications.

    PubMed

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-06-19

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  17. Membranes for Redox Flow Battery Applications

    PubMed Central

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention. PMID:24958177

  18. Spectrophotometric assays for measuring redox biomarkers in blood.

    PubMed

    Veskoukis, Aristidis S; Kyparos, Antonios; Paschalis, Vassilis; Nikolaidis, Michalis G

    2016-01-01

    The assessment of redox status is most frequently performed by measuring redox biomarkers. The spectrophotometer is the most commonly used analytical instrument in biochemistry. There is a huge number of spectrophotometric redox biomarkers and assays, thus distinguishing the most appropriate biomarkers and protocols is overwhelming. The aim of the present review is to propose valid and reliable spectrophotometric assays for measuring redox biomarkers in blood. It is hoped that this work will help researchers to select the most suitable redox biomarkers and assays.

  19. Biofabricated film with enzymatic and redox-capacitor functionalities to harvest and store electrons.

    PubMed

    Liba, Benjamin D; Kim, Eunkyoung; Martin, Alexandra N; Liu, Yi; Bentley, William E; Payne, Gregory F

    2013-03-01

    Exciting opportunities in bioelectronics will be facilitated by materials that can bridge the chemical logic of biology and the digital logic of electronics. Here we report the fabrication of a dual functional hydrogel film that can harvest electrons from its chemical environment and store these electrons by switching the film's redox-state. The hydrogel scaffold was formed by the anodic deposition of the aminopolysaccharide chitosan. Electron-harvesting function was conferred by co-depositing the enzyme glucose dehydrogenase (GDH) with chitosan. GDH catalyzes the transfer of electrons from glucose to the soluble redox-shuttle NADP(+). Electron-storage function was conferred by the redox-active food phenolic chlorogenic acid (CA) that was enzymatically grafted to the chitosan scaffold using tyrosinase. The grafted CA undergoes redox-cycling reactions with NADPH resulting in the net transfer of electrons to the film where they are stored in the reduced state of CA. The individual and dual functionalities of these films were demonstrated experimentally. There are three general conclusions from this proof-of-concept study. First, enzymatically-grafted catecholic moieties confer redox-capacitor function to the chitosan scaffold. Second, biological materials (i.e. chitosan and CA) and mechanisms (i.e. tyrosinase-mediated grafting) allow the reagentless fabrication of functional films that should be environmentally-friendly, safe and potentially even edible. Finally, the film's ability to mediate the transfer of electrons from a biological metabolite to an electrode suggests an approach to bridge the chemical logic of biology with the digital logic of electronics.

  20. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.

    PubMed

    Nietzel, Thomas; Mostertz, Jörg; Hochgräfe, Falko; Schwarzländer, Markus

    2017-03-01

    Mitochondria are hotspots of cellular redox biochemistry. Respiration as a defining mitochondrial function is made up of a series of electron transfers that are ultimately coupled to maintaining the proton motive force, ATP production and cellular energy supply. The individual reaction steps involved require tight control and flexible regulation to maintain energy and redox balance in the cell under fluctuating demands. Redox regulation by thiol switching has been a long-standing candidate mechanism to support rapid adjustment of mitochondrial protein function at the posttranslational level. Here we review recent advances in our understanding of cysteine thiol switches in the mitochondrial proteome with a focus on their operation in vivo. We assess the conceptual basis for thiol switching in mitochondria and discuss to what extent insights gained from in vitro studies may be valid in vivo, considering thermodynamic, kinetic and structural constraints. We compare functional proteomic approaches that have been used to assess mitochondrial protein thiol switches, including thioredoxin trapping, redox difference gel electrophoresis (redoxDIGE), isotope-coded affinity tag (OxICAT) and iodoacetyl tandem mass tag (iodoTMT) labelling strategies. We discuss conditions that may favour active thiol switching in mitochondrial proteomes in vivo, and appraise recent advances in dissecting their impact using combinations of in vivo redox sensing and quantitative redox proteomics. Finally we focus on four central facets of mitochondrial biology, aging, carbon metabolism, energy coupling and electron transport, exemplifying the current emergence of a mechanistic understanding of mitochondrial regulation by thiol switching in living plants and animals. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  1. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans

    PubMed Central

    Smolders, Arne; Back, Patricia; De Henau, Sasha

    2016-01-01

    Abstract Significance: Due to its large families of redox-active enzymes, genetic amenability, and complete transparency, the nematode Caenorhabditis elegans has the potential to become an important model for the in vivo study of redox biology. Recent Advances: The recent development of several genetically encoded ratiometric reactive oxygen species (ROS) and redox sensors has revolutionized the quantification and precise localization of ROS and redox signals in living organisms. Only few exploratory studies have applied these sensors in C. elegans and undoubtedly much remains to be discovered in this model. As a follow-up to our recent findings that the C. elegans somatic gonad uses superoxide and hydrogen peroxide (H2O2) signals to communicate with the germline, we here analyze the patterns of H2O2 inside the C. elegans germline. Critical Issues: Despite the advantages of genetically encoded ROS and redox sensors over classic chemical sensors, still several general as well as C. elegans-specific issues need to be addressed. The major concerns for the application of these sensors in C. elegans are (i) decreased vitality of some reporter strains, (ii) interference of autofluorescent compartments with the sensor signal, and (iii) the use of immobilization methods that do not influence the worm's redox physiology. Future Directions: We propose that several of the current issues may be solved by designing reporter strains carrying single copies of codon-optimized sensors. Preferably, these sensors should have their emission wavelengths in the red region, where autofluorescence is absent. Worm analysis could be optimized using four-dimensional ratiometric fluorescence microscopy of worms immobilized in microfluidic chips. Antioxid. Redox Signal. 25, 577–592. PMID:27306519

  2. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans.

    PubMed

    Braeckman, Bart P; Smolders, Arne; Back, Patricia; De Henau, Sasha

    2016-10-01

    Due to its large families of redox-active enzymes, genetic amenability, and complete transparency, the nematode Caenorhabditis elegans has the potential to become an important model for the in vivo study of redox biology. The recent development of several genetically encoded ratiometric reactive oxygen species (ROS) and redox sensors has revolutionized the quantification and precise localization of ROS and redox signals in living organisms. Only few exploratory studies have applied these sensors in C. elegans and undoubtedly much remains to be discovered in this model. As a follow-up to our recent findings that the C. elegans somatic gonad uses superoxide and hydrogen peroxide (H2O2) signals to communicate with the germline, we here analyze the patterns of H2O2 inside the C. elegans germline. Despite the advantages of genetically encoded ROS and redox sensors over classic chemical sensors, still several general as well as C. elegans-specific issues need to be addressed. The major concerns for the application of these sensors in C. elegans are (i) decreased vitality of some reporter strains, (ii) interference of autofluorescent compartments with the sensor signal, and (iii) the use of immobilization methods that do not influence the worm's redox physiology. We propose that several of the current issues may be solved by designing reporter strains carrying single copies of codon-optimized sensors. Preferably, these sensors should have their emission wavelengths in the red region, where autofluorescence is absent. Worm analysis could be optimized using four-dimensional ratiometric fluorescence microscopy of worms immobilized in microfluidic chips. Antioxid. Redox Signal. 25, 577-592.

  3. Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling

    PubMed Central

    Tschirhart, Tanya; Kim, Eunkyoung; McKay, Ryan; Ueda, Hana; Wu, Hsuan-Chen; Pottash, Alex Eli; Zargar, Amin; Negrete, Alejandro; Shiloach, Joseph; Payne, Gregory F.; Bentley, William E.

    2017-01-01

    The ability to interconvert information between electronic and ionic modalities has transformed our ability to record and actuate biological function. Synthetic biology offers the potential to expand communication ‘bandwidth' by using biomolecules and providing electrochemical access to redox-based cell signals and behaviours. While engineered cells have transmitted molecular information to electronic devices, the potential for bidirectional communication stands largely untapped. Here we present a simple electrogenetic device that uses redox biomolecules to carry electronic information to engineered bacterial cells in order to control transcription from a simple synthetic gene circuit. Electronic actuation of the native transcriptional regulator SoxR and transcription from the PsoxS promoter allows cell response that is quick, reversible and dependent on the amplitude and frequency of the imposed electronic signals. Further, induction of bacterial motility and population based cell-to-cell communication demonstrates the versatility of our approach and potential to drive intricate biological behaviours. PMID:28094788

  4. Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling

    NASA Astrophysics Data System (ADS)

    Tschirhart, Tanya; Kim, Eunkyoung; McKay, Ryan; Ueda, Hana; Wu, Hsuan-Chen; Pottash, Alex Eli; Zargar, Amin; Negrete, Alejandro; Shiloach, Joseph; Payne, Gregory F.; Bentley, William E.

    2017-01-01

    The ability to interconvert information between electronic and ionic modalities has transformed our ability to record and actuate biological function. Synthetic biology offers the potential to expand communication `bandwidth' by using biomolecules and providing electrochemical access to redox-based cell signals and behaviours. While engineered cells have transmitted molecular information to electronic devices, the potential for bidirectional communication stands largely untapped. Here we present a simple electrogenetic device that uses redox biomolecules to carry electronic information to engineered bacterial cells in order to control transcription from a simple synthetic gene circuit. Electronic actuation of the native transcriptional regulator SoxR and transcription from the PsoxS promoter allows cell response that is quick, reversible and dependent on the amplitude and frequency of the imposed electronic signals. Further, induction of bacterial motility and population based cell-to-cell communication demonstrates the versatility of our approach and potential to drive intricate biological behaviours.

  5. Carotenoid accumulation affects redox status, starch metabolism, and flavonoid/anthocyanin accumulation in citrus.

    PubMed

    Cao, Hongbo; Wang, Jiangbo; Dong, Xintian; Han, Yan; Ma, Qiaoli; Ding, Yuduan; Zhao, Fei; Zhang, Jiancheng; Chen, Haijiang; Xu, Qiang; Xu, Juan; Deng, Xiuxin

    2015-02-03

    Carotenoids are indispensable plant secondary metabolites that are involved in photosynthesis, antioxidation, and phytohormone biosynthesis. Carotenoids are likely involved in other biological functions that have yet to be discovered. In this study, we integrated genomic, biochemical, and cellular studies to gain deep insight into carotenoid-related biological processes in citrus calli overexpressing CrtB (phytoene synthase from Pantoea agglomerans). Fortunella hindsii Swingle (a citrus relative) and Malus hupehensis (a wild apple) calli were also utilized as supporting systems to investigate the effect of altered carotenoid accumulation on carotenoid-related biological processes. Transcriptomic analysis provided deep insight into the carotenoid-related biological processes of redox status, starch metabolism, and flavonoid/anthocyanin accumulation. By applying biochemical and cytological analyses, we determined that the altered redox status was associated with variations in O2 (-) and H2O2 levels. We also ascertained a decline in starch accumulation in carotenoid-rich calli. Furthermore, via an extensive cellular investigation of the newly constructed CrtB overexpressing Fortunella hindsii Swingle, we demonstrated that starch level reducation occurred in parallel with significant carotenoid accumulation. Moreover, studying anthocyanin-rich Malus hupehensis calli showed a negative effect of carotenoids on anthocyanin accumulation. In citrus, altered carotenoid accumulation resulted in dramatic effects on metabolic processes involved in redox modification, starch degradation, and flavonoid/anthocyanin biosynthesis. These findings provided new perspectives to understand the biological importance of carotenogenesis and of the developmental processes associated with the nutritional and sensory qualities of agricultural products that accumulate carotenoids.

  6. Redox-dependent stability, protonation, and reactivity of cysteine-bound heme proteins

    PubMed Central

    Zhong, Fangfang; Lisi, George P.; Collins, Daniel P.; Dawson, John H.; Pletneva, Ekaterina V.

    2014-01-01

    Cysteine-bound hemes are key components of many enzymes and biological sensors. Protonation (deprotonation) of the Cys ligand often accompanies redox transformations of these centers. To characterize these phenomena, we have engineered a series of Thr78Cys/Lys79Gly/Met80X mutants of yeast cytochrome c (cyt c) in which Cys78 becomes one of the axial ligands to the heme. At neutral pH, the protonation state of the coordinated Cys differs for the ferric and ferrous heme species, with Cys binding as a thiolate and a thiol, respectively. Analysis of redox-dependent stability and alkaline transitions of these model proteins, as well as comparisons to Cys binding studies with the minimalist heme peptide microperoxidase-8, demonstrate that the protein scaffold and solvent interactions play important roles in stabilizing a particular Cys–heme coordination. The increased stability of ferric thiolate compared with ferrous thiol arises mainly from entropic factors. This robust cyt c model system provides access to all four forms of Cys-bound heme, including the ferric thiol. Protein motions control the rates of heme redox reactions, and these effects are amplified at low pH, where the proteins are less stable. Thermodynamic signatures and redox reactivity of the model Cys-bound hemes highlight the critical role of the protein scaffold and its dynamics in modulating redox-linked transitions between thiols and thiolates. PMID:24398520

  7. Evolutionary history of redox metal-binding domains across the tree of life

    PubMed Central

    Harel, Arye; Bromberg, Yana; Falkowski, Paul G.; Bhattacharya, Debashish

    2014-01-01

    Oxidoreductases mediate electron transfer (i.e., redox) reactions across the tree of life and ultimately facilitate the biologically driven fluxes of hydrogen, carbon, nitrogen, oxygen, and sulfur on Earth. The core enzymes responsible for these reactions are ancient, often small in size, and highly diverse in amino acid sequence, and many require specific transition metals in their active sites. Here we reconstruct the evolution of metal-binding domains in extant oxidoreductases using a flexible network approach and permissive profile alignments based on available microbial genome data. Our results suggest there were at least 10 independent origins of redox domain families. However, we also identified multiple ancient connections between Fe2S2- (adrenodoxin-like) and heme- (cytochrome c) binding domains. Our results suggest that these two iron-containing redox families had a single common ancestor that underwent duplication and divergence. The iron-containing protein family constitutes ∼50% of all metal-containing oxidoreductases and potentially catalyzed redox reactions in the Archean oceans. Heme-binding domains seem to be derived via modular evolutionary processes that ultimately form the backbone of redox reactions in both anaerobic and aerobic respiration and photosynthesis. The empirically discovered network allows us to peer into the ancient history of microbial metabolism on our planet. PMID:24778258

  8. Interaction between heavy metals and thiol-linked redox reactions in germination.

    PubMed

    Smiri, M; Chaoui, A; Ferjani, E E

    2010-09-15

    Thioredoxin (TRX) proteins perform important biological functions in cells by changing the redox state of proteins via dithiol disulfide exchange. Several systems are able to control the activity, stability, and correct folding of enzymes through dithiol/disulfide isomerization reactions including the enzyme protein disulfide-isomerase, the glutathione-dependent glutaredoxin system, and the thioredoxin systems. Plants have devised sophisticated mechanisms to cope with biotic and abiotic stresses imposed by their environment. Among these mechanisms, those collectively referred to as redox reactions induced by endogenous systems. This is of agronomical importance since a better knowledge of the involved mechanisms can offer novel means for crop protection. In the plant life cycle, the seed and seedling stages are key developmental stages conditioning the final yield of crops. Both are very sensitive to heavy metal stress. Plant redox reactions are principally studied on adult plant organs and there is only very scarce informations about the onset of redox regulation at the level of seed germination. In the here presented study, we discussed the importance of redox proteins in plant cell metabolism and defence. Special focus is given to TRX, which are involved in detoxification of ROS and also to their targets.

  9. Evolutionary history of redox metal-binding domains across the tree of life.

    PubMed

    Harel, Arye; Bromberg, Yana; Falkowski, Paul G; Bhattacharya, Debashish

    2014-05-13

    Oxidoreductases mediate electron transfer (i.e., redox) reactions across the tree of life and ultimately facilitate the biologically driven fluxes of hydrogen, carbon, nitrogen, oxygen, and sulfur on Earth. The core enzymes responsible for these reactions are ancient, often small in size, and highly diverse in amino acid sequence, and many require specific transition metals in their active sites. Here we reconstruct the evolution of metal-binding domains in extant oxidoreductases using a flexible network approach and permissive profile alignments based on available microbial genome data. Our results suggest there were at least 10 independent origins of redox domain families. However, we also identified multiple ancient connections between Fe2S2- (adrenodoxin-like) and heme- (cytochrome c) binding domains. Our results suggest that these two iron-containing redox families had a single common ancestor that underwent duplication and divergence. The iron-containing protein family constitutes ∼50% of all metal-containing oxidoreductases and potentially catalyzed redox reactions in the Archean oceans. Heme-binding domains seem to be derived via modular evolutionary processes that ultimately form the backbone of redox reactions in both anaerobic and aerobic respiration and photosynthesis. The empirically discovered network allows us to peer into the ancient history of microbial metabolism on our planet.

  10. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    PubMed Central

    Liu, Pei; Zhang, Huoming; Yu, Boying; Xiong, Liming; Xia, Yiji

    2015-01-01

    Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response. PMID:25720653

  11. An Unconventional Redox Cross Claisen Condensation-Aromatization of 4-Hydroxyprolines with Ketones.

    PubMed

    Tang, Mi; Sun, Rengwei; Li, Hao; Yu, Xinhong; Wang, Wei

    2017-08-18

    Reaction of α-amino acids, particularly prolines and their derivatives with carbonyl compounds via decarboxylative redox process, is a viable strategy for synthesis of structurally diverse nitrogen centered heterocyclics. In these processes, the decarboxylation is the essential driving force for the processes. The realization of the redox process without decarboxylation may offer an opportunity to explore new reactions. Herein, we report the discovery of an unprecedented redox Claisen-type condensation aromatization cascade reaction of 4-substituted 4-hydroxyproline and its esters with unreactive ketones. We found that the use of propionic acid as a catalyst and a co-solvent can change the reaction course. The commonly observed redox decarboxylation and aldol condensation reactions are significantly minimized. Moreover, unreactive ketones can effectively participate in the Claisen condensation reaction. The new reactivity enables a redox cyclization via an unconventional Claisen-type condensation reaction of in situ formed enamine intermediates from ketone precursors with 4-substituted 4-hydroxyproline and its esters as electrophilic acylation partners. Under the reaction conditions, the cascade process proceeds highly regio- and stereoselectively to afford highly synthetically and biologically valued cis-2,3-dihydro-1H-pyrrolizin-1-ones with a broad substrate scope in efficient 'one-pot' operation, whereas such structures generally require multiple steps.

  12. Effect of redox conditions on bacterial community structure in Baltic Sea sediments with contrasting phosphorus fluxes.

    PubMed

    Steenbergh, Anne K; Bodelier, Paul L E; Slomp, Caroline P; Laanbroek, Hendrikus J

    2014-01-01

    Phosphorus release from sediments can exacerbate the effect of eutrophication in coastal marine ecosystems. The flux of phosphorus from marine sediments to the overlying water is highly dependent on the redox conditions at the sediment-water interface. Bacteria are key players in the biological processes that release or retain phosphorus in marine sediments. To gain more insight in the role of bacteria in phosphorus release from sediments, we assessed the effect of redox conditions on the structure of bacterial communities. To do so, we incubated surface sediments from four sampling sites in the Baltic Sea under oxic and anoxic conditions and analyzed the fingerprints of the bacterial community structures in these incubations and the original sediments. This paper describes the effects of redox conditions, sampling station, and sample type (DNA, RNA, or whole-cell sample) on bacterial community structure in sediments. Redox conditions explained only 5% of the variance in community structure, and bacterial communities from contrasting redox conditions showed considerable overlap. We conclude that benthic bacterial communities cannot be classified as being typical for oxic or anoxic conditions based on community structure fingerprints. Our results suggest that the overall structure of the benthic bacterial community has only a limited impact on benthic phosphate fluxes in the Baltic Sea.

  13. Seasonal variation of redox species and redox potentials in shallow groundwater: A comparison of measured and calculated redox potentials

    NASA Astrophysics Data System (ADS)

    Ramesh Kumar, A.; Riyazuddin, P.

    2012-06-01

    SummaryThe seasonal variation of redox potential (Eh) and redox species such as As(V)/As(III), Cr(VI)/Cr(III), Fe(III)/Fe(II), NO3-/NO2-, and Se(VI)/Se(IV) were studied in a shallow groundwater for a period of three years (May, 2004-January, 2007). The study area was Chrompet area of Chennai city, India. Groundwater samples from 65 wells were monitored for pH, electrical conductivity, dissolved oxygen (DO), and major ions during pre-(May) and post-monsoon (January) seasons. The objective of the study was to gain insight into the temporal variation of the redox species due to groundwater recharge and to identify the redox reactions controlling the measured Eh of the groundwater. The study revealed that the shallow groundwater was "oxic" with DO ranging between 0.25 and 5.00 mg L-1, and between 0.38 and 5.05 mg L-1 during pre-(May, 2004) and post-monsoon (January, 2005) seasons, respectively. The measured Eh (with respect to standard hydrogen electrode, SHE) ranged between 65 and 322 mV, and between 110 and 330 mV during pre- and post-monsoon seasons, respectively. During post-monsoon seasons, DO and Eh increased in most of the wells due to groundwater recharge. The calculated Eh using the redox couples As(V)/As(III), NO3-/NO2-, O2/H2O and Se(VI)/Se(IV) neither agreed among themselves nor with the measured Eh during all the seasons. It shows that in the shallow groundwater, the various redox couples are in disequilibrium among themselves and with the Pt electrode. However, 41% (n = 122) of the Eh values calculated from Fe(III)/Fe(II) couple agreed with the measured Eh within ±30 mV, the uncertainty of Pt-electrode measurement. The post-monsoon seasons showed higher values of As(V)/As(III) and Se(VI)/Se(IV) compared to the pre-monsoon seasons, whereas Fe(III)/Fe(II) behaved in the opposite manner. This pattern of variation is consistent with the increased oxidizing nature, as shown by the higher DO and Eh values observed during post-monsoon seasons. The results

  14. Redox control of iron biomineralization in Magnetospirillum magneticum AMB-1

    NASA Astrophysics Data System (ADS)

    Jones, Stephanie Rhianon

    Magnetotactic bacteria have evolved complex subcellular machinery to construct linear chains of magnetite nanocrystals that allow the host cell to sense direction. Each mixed-valent iron nanoparticle is mineralized from soluble iron within a membrane-encapsulated vesicle termed the magnetosome, which serves as a specialized compartment that regulates the iron, redox, and pH environment of the growing mineral. In order to dissect the biological components that control this process, we have carried out genetic and biochemical studies of proteins proposed to function in iron mineralization in Magnetospirillum magneticum AMB-1. As iron biomineralization by magnetotactic bacteria represents a particularly interesting case for understanding how the production of nanomaterials can be programmed at the genetic level, we also apply synthetic biology techniques towards the production of new cellular materials and new cellular functions. As the production of magnetite requires both the formation of Fe(II) and Fe(III), the redox components of the magnetosome play an essential role in this process. Using genetic complementation studies, we show that the redox cofactors or heme sites of the two putative redox partners, MamP and MamT, are required for magnetite biomineralization in vivo and that removal of one or both sites leads to defects in mineralization. We develop and optimize a heterologous expression method in the E. coli periplasm to cleanly isolate fully heme-loaded MamP for biochemical studies. Spectrochemical redox titrations show that the reduction potential of MamP lies in a different range than other c-type cytochrome involved in either Fe(III) reduction or Fe(II) oxidation. Nonetheless, in vitro mineralization studies with MamP and Fe(II) show that it is able to catalyze the formation of mixed-valent Fe(II)/Fe(III) oxides such as green rust. Biomineralization also requires lattice-templating proteins that guide the growth of the functional crystalline material. We

  15. Thiol-based redox switches in prokaryotes.

    PubMed

    Hillion, Melanie; Antelmann, Haike

    2015-05-01

    Bacteria encounter reactive oxygen species (ROS) as a consequence of the aerobic life or as an oxidative burst of activated neutrophils during infections. In addition, bacteria are exposed to other redox-active compounds, including hypochloric acid (HOCl) and reactive electrophilic species (RES) such as quinones and aldehydes. These reactive species often target the thiol groups of cysteines in proteins and lead to thiol-disulfide switches in redox-sensing regulators to activate specific detoxification pathways and to restore the redox balance. Here, we review bacterial thiol-based redox sensors that specifically sense ROS, RES and HOCl via thiol-based mechanisms and regulate gene transcription in Gram-positive model bacteria and in human pathogens, such as Staphylococcus aureus and Mycobacterium tuberculosis. We also pay particular attention to emerging widely conserved HOCl-specific redox regulators that have been recently characterized in Escherichia coli. Different mechanisms are used to sense and respond to ROS, RES and HOCl by 1-Cys-type and 2-Cys-type thiol-based redox sensors that include versatile thiol-disulfide switches (OxyR, OhrR, HypR, YodB, NemR, RclR, Spx, RsrA/RshA) or alternative Cys phosphorylations (SarZ, MgrA, SarA), thiol-S-alkylation (QsrR), His-oxidation (PerR) and methionine oxidation (HypT). In pathogenic bacteria, these redox-sensing regulators are often important virulence regulators and required for adapation to the host immune defense.

  16. The redox switch that regulates molecular chaperones.

    PubMed

    Conway, Myra E; Lee, Christopher

    2015-08-01

    Modification of reactive cysteine residues plays an integral role in redox-regulated reactions. Oxidation of thiolate anions to sulphenic acid can result in disulphide bond formation, or overoxidation to sulphonic acid, representing reversible and irreversible endpoints of cysteine oxidation, respectively. The antioxidant systems of the cell, including the thioredoxin and glutaredoxin systems, aim to prevent these higher and irreversible oxidation states. This is important as these redox transitions have numerous roles in regulating the structure/function relationship of proteins. Proteins with redox-active switches as described for peroxiredoxin (Prx) and protein disulphide isomerase (PDI) can undergo dynamic structural rearrangement resulting in a gain of function. For Prx, transition from cysteine sulphenic acid to sulphinic acid is described as an adaptive response during increased cellular stress causing Prx to form higher molecular weight aggregates, switching its role from antioxidant to molecular chaperone. Evidence in support of PDI as a redox-regulated chaperone is also gaining impetus, where oxidation of the redox-active CXXC regions causes a structural change, exposing its hydrophobic region, facilitating polypeptide folding. In this review, we will focus on these two chaperones that are directly regulated through thiol-disulphide exchange and detail how these redox-induced switches allow for dual activity. Moreover, we will introduce a new role for a metabolic protein, the branched-chain aminotransferase, and discuss how it shares common mechanistic features with these well-documented chaperones. Together, the physiological importance of the redox regulation of these proteins under pathological conditions such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis will be discussed to illustrate the impact and importance of correct folding and chaperone-mediated activity.

  17. Thiol-based redox switches in prokaryotes

    PubMed Central

    Hillion, Melanie; Antelmann, Haike

    2015-01-01

    Summary Bacteria encounter reactive oxygen species (ROS) as consequence of the aerobic life or as oxidative burst of activated neutrophils during infections. In addition, bacteria are exposed to other redox-active compounds including hypochloric acid (HOCl) and reactive electrophilic species (RES), such as quinones and aldehydes. These reactive species often target the thiol groups of cysteines in proteins and lead to thiol-disulfide switches in redox-sensing regulators to activate specific detoxification pathways and to restore the redox balance. Here, we review bacterial thiol-based redox sensors that specifically sense ROS, RES and HOCl via thiol-based mechanisms and regulate gene transcription in Gram-positive model bacteria and in human pathogens, such as Staphylococcus aureus and Mycobacterium tuberculosis. We also pay particular attention to emerging widely conserved HOCl-specific redox regulators that have been recently characterized in Escherichia coli. Different mechanisms are used to sense and respond to ROS, RES and HOCl by 1-Cys-type and 2-Cys-type thiol-based redox sensors that include versatile thiol-disulfide switches (OxyR, OhrR, HypR, YodB, NemR, RclR, Spx, RsrA/RshA) or alternative Cys-phosphorylations (SarZ, MgrA, SarA), thiol-S-alkylation (QsrR), His-oxidation (PerR) and methionine oxidation (HypT). In pathogenic bacteria, these redox-sensing regulators are often important virulence regulators and required for adapation to the host immune defense. PMID:25720121

  18. Redox interplay between mitochondria and peroxisomes

    PubMed Central

    Lismont, Celien; Nordgren, Marcus; Van Veldhoven, Paul P.; Fransen, Marc

    2015-01-01

    Reduction-oxidation or “redox” reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from “omics” technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of discussion. PMID:26075204

  19. Nitrosopersulfide (SSNO(-)) targets the Keap-1/Nrf2 redox system.

    PubMed

    Cortese-Krott, Miriam M; Pullmann, David; Feelisch, Martin

    2016-11-01

    Nitric oxide (NO), hydrogen sulfide and polysulfides have been proposed to contribute to redox signaling by activating the Keap-1/Nrf2 stress response system. Nitrosopersulfide (SSNO(-)) recently emerged as a bioactive product of the chemical interaction of NO or nitrosothiols with sulfide; upon decomposition it generates polysulfides and free NO, triggering the activation of soluble guanylate cyclase, inducing blood vessel relaxation in vitro and lowering blood pressure in vivo. Whether SSNO(-) itself interacts with the Keap-1/Nrf2 system is unknown. We therefore sought to investigate the ability of SSNO(-) to activate Nrf2-dependent processes in human vascular endothelial cells, and to compare the pharmacological effects of SSNO(-) with those of its precursors NO and sulfide at multiple levels of target engagement. We here demonstrate that SSNO(-) strongly increases nuclear levels, binding activity and transactivation activity of Nrf2, thereby increasing mRNA expression of Hmox-1, the gene encoding for heme oxygenase 1, without adversely affecting cell viability. Under all conditions, SSNO(-) appeared to be more potent than its parent compounds, NO and sulfide. SSNO(-)-induced Nrf2 transactivation activity was abrogated by either NO scavenging with cPTIO or inhibition of thiol sulfuration by high concentrations of cysteine, implying a role for both persulfides/polysulfides and NO in SSNO(-) mediated Nrf2 activation. Taken together, our studies demonstrate that the Keap-1/Nrf2 redox system is a biological target of SSNO(-), enriching the portfolio of bioactivity of this vasoactive molecule to also engage in the regulation of redox signaling processes. The latter suggests a possible role as messenger and/or mediator in cellular sensing and adaptations processes.

  20. Selenium- and tellurium-containing multifunctional redox agents as biochemical redox modulators with selective cytotoxicity.

    PubMed

    Jamier, Vincent; Ba, Lalla A; Jacob, Claus

    2010-09-24

    Various human diseases, including different types of cancer, are associated with a disturbed intracellular redox balance and oxidative stress (OS). The past decade has witnessed the emergence of redox-modulating compounds able to utilize such pre-existing disturbances in the redox state of sick cells for therapeutic advantage. Selenium- and tellurium-based agents turn the oxidizing redox environment present in certain cancer cells into a lethal cocktail of reactive species that push these cells over a critical redox threshold and ultimately kill them through apoptosis. This kind of toxicity is highly selective: normal, healthy cells remain largely unaffected, since changes to their naturally low levels of oxidizing species produce little effect. To further improve selectivity, multifunctional sensor/effector agents are now required that recognize the biochemical signature of OS in target cells. The synthesis of such compounds provides interesting challenges for chemistry in the future.

  1. Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress.

    PubMed

    Dietz, Karl-Josef; Hell, Rüdiger

    2015-05-01

    In photosynthesizing chloroplasts, rapidly changing energy input, intermediate generation of strong reductants as well as oxidants and multiple participating physicochemical processes and pathways, call for efficient regulation. Coupling redox information to protein function via thiol modifications offers a powerful mechanism to activate, down-regulate and coordinate interdependent processes. Efficient thiol switching of target proteins involves the thiol-disulfide redox regulatory network, which is highly elaborated in chloroplasts. This review addresses the features of this network. Its conditional function depends on specificity of reduction and oxidation reactions and pathways, thiol redox buffering, but also formation of heterogeneous milieus by microdomains, metabolite gradients and macromolecular assemblies. One major player is glutathione. Its synthesis and function is under feedback redox control. The number of thiol-controlled processes and involved thiol switched proteins is steadily increasing, e.g., in tetrapyrrole biosynthesis, plastid transcription and plastid translation. Thus chloroplasts utilize an intricate and versatile redox regulatory network for intraorganellar and retrograde communication.

  2. Redox-sensitive materials for drug delivery: targeting the correct intracellular environment, tuning release rates, and appropriate predictive systems.

    PubMed

    Phillips, Daniel J; Gibson, Matthew I

    2014-08-10

    The development of responsive drug delivery systems (DDS) holds great promise as a tool for improving the pharmacokinetic properties of drug compounds. Redox-sensitive systems are particularly attractive given the rich variety of redox gradients present in vivo. These gradients, where the circulation is generally considered oxidizing and the cellular environment is substantially more reducing, provide attractive options for targeted, specific cargo delivery. Experimental evidence suggests that a "one size fits all" redox gradient does not exist. Rather, there are subtle differences in redox potential within a cell, while the chemical nature of reducing agents in these microenvironments varies. Recent works have demonstrated an ability to modulate the degradation rate of redox-susceptible groups and, hence, provide new tools to engineer precision-targeted DDS. Modern synthetic and macromolecular chemistry provides access to a wide range of redox-susceptible architectures. However, in order to utilize these in real applications, the actual chemical nature of the redox-susceptible group, the sub-cellular location being targeted, and the redox microenvironment being encountered should be considered in detail. This is critical to avoid the over-simplification possible when using non-biological reducing agents, which may provide inaccurate kinetic information, and to ensure these materials can be advanced beyond simple "on/off" systems. Furthermore, a strong case can be made for the use of biorelevant reducing agents such as glutathione when demonstrating a materials redox response. A further understanding of the complexities of the extra- and intracellular microenvironments would greatly assist with the design and application of DDS.

  3. Monitoring thioredoxin redox with a genetically encoded red fluorescent biosensor.

    PubMed

    Fan, Yichong; Makar, Merna; Wang, Michael X; Ai, Hui-Wang

    2017-09-01

    Thioredoxin (Trx) is one of the two major thiol antioxidants, playing essential roles in redox homeostasis and signaling. Despite its importance, there is a lack of methods for monitoring Trx redox dynamics in live cells, hindering a better understanding of physiological and pathological roles of the Trx redox system. In this work, we developed the first genetically encoded fluorescent biosensor for Trx redox by engineering a redox relay between the active-site cysteines of human Trx1 and rxRFP1, a redox-sensitive red fluorescent protein. We used the resultant biosensor-TrxRFP1-to selectively monitor perturbations of Trx redox in various mammalian cell lines. We subcellularly localized TrxRFP1 to image compartmentalized Trx redox changes. We further combined TrxRFP1 with a green fluorescent Grx1-roGFP2 biosensor to simultaneously monitor Trx and glutathione redox dynamics in live cells in response to chemical and physiologically relevant stimuli.

  4. Impact of hydroquinone used as a redox effector model on potential denitrification, microbial activity and redox condition of a cultivable soil.

    PubMed

    Perotti, Elda B R

    2015-01-01

    In this microcosm study, we analyzed the effect produced by hydroquinone on the expression of soil biological denitrification, in relation to the redox state of the soil, both in terms of intensity factor (Eh') and capacity factor (amount of oxidized or reduced compounds). The supplementation of an Argiudoll soil with hydroquinone decreased the soil apparent reduction potential (Eh') and soil dehydrogenase activity (formazan production from tetrazolium chloride reduction; redox capacity factor), the relationship between both factors being highly significative, r=0.99 (p<0.001). The bacterial population (measured by colony forming units) increased, and the production of N2O was greater (p<0.001) at 200 and 400μg/g dry soil doses. Furthermore, there was an inverse relationship between soil dehydrogenase activity and the number of bacteria (r=-0.82; p<0.05), increased denitrification activity and changes in the CO2/N2O ratio value. These results suggest that hydroquinone at supplemented doses modified the soil redox state and the functional structure of the microbial population. Acetate supplementation on soil with hydroquinone, to ensure the availability of an energy source for microbial development, confirmed the tendency of the results obtained with the supplementation of hydroquinone alone. The differences observed at increased doses of hydroquinone might be explained by differences on the hydroquinone redox species between treatments. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Mitochondrial Redox Signaling and Tumor Progression

    PubMed Central

    Chen, Yuxin; Zhang, Haiqing; Zhou, Huanjiao Jenny; Ji, Weidong; Min, Wang

    2016-01-01

    Cancer cell can reprogram their energy production by switching mitochondrial oxidative phosphorylation to glycolysis. However, mitochondria play multiple roles in cancer cells, including redox regulation, reactive oxygen species (ROS) generation, and apoptotic signaling. Moreover, these mitochondrial roles are integrated via multiple interconnected metabolic and redox sensitive pathways. Interestingly, mitochondrial redox proteins biphasically regulate tumor progression depending on cellular ROS levels. Low level of ROS functions as signaling messengers promoting cancer cell proliferation and cancer invasion. However, anti-cancer drug-initiated stress signaling could induce excessive ROS, which is detrimental to cancer cells. Mitochondrial redox proteins could scavenger basal ROS and function as “tumor suppressors” or prevent excessive ROS to act as “tumor promoter”. Paradoxically, excessive ROS often also induce DNA mutations and/or promotes tumor metastasis at various stages of cancer progression. Targeting redox-sensitive pathways and transcriptional factors in the appropriate context offers great promise for cancer prevention and therapy. However, the therapeutics should be cancer-type and stage-dependent. PMID:27023612

  6. Compartmentation of Redox Metabolism in Malaria Parasites

    PubMed Central

    Rahlfs, Stefan; Przyborski, Jude M.; Becker, Katja

    2010-01-01

    Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito – a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes – glutathione reductase and thioredoxin reductase – Plasmodium makes use of alternative-translation-initiation (ATI) to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention. PMID:21203490

  7. NASA Redox Storage System Development Project

    NASA Astrophysics Data System (ADS)

    Hagedorn, N. H.

    1984-10-01

    The Redox Storage System Technology Project was jointly supported by the U.S. Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to probe its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25 C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh preprototype system. A subsequent change was made in operating mode, going to 65 C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/sq cm with energy efficiencies greater than 80 percent. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office.

  8. Redox Signaling Mechanisms in Nervous System Development.

    PubMed

    Olguín-Albuerne, Mauricio; Morán, Julio

    2017-09-21

    Numerous studies have demonstrated the actions of reactive oxygen species (ROS) as regulators of several physiological processes. In this study, we discuss how redox signaling mechanisms operate to control different processes such as neuronal differentiation, oligodendrocyte differentiation, dendritic growth, and axonal growth. Recent Advances: Redox homeostasis regulates the physiology of neural stem cells (NSCs). Notably, the neuronal differentiation process of NSCs is determined by a change toward oxidative metabolism, increased levels of mitochondrial ROS, increased activity of NADPH oxidase (NOX) enzymes, decreased levels of Nrf2, and differential regulation of different redoxins. Furthermore, during the neuronal maturation processes, NOX and MICAL produce ROS to regulate cytoskeletal dynamics, which control the dendritic and axonal growth, as well as the axonal guidance. The redox homeostasis changes are, in part, attributed to cell metabolism and compartmentalized production of ROS, which is regulated, sensed, and transduced by different molecules such as thioredoxins, glutaredoxins, peroxiredoxins, and nucleoredoxin to control different signaling pathways in different subcellular regions. The study of how these elements cooperatively act is essential for the understanding of nervous system development, as well as the application of regenerative therapies that recapitulate these processes. The information about these topics in the last two decades leads us to the conclusion that the role of ROS signaling in development of the nervous system is more important than it was previously believed and makes clear the importance of exploring in more detail the mechanisms of redox signaling. Antioxid. Redox Signal. 00, 000-000.

  9. Mitochondrial Redox Signaling and Tumor Progression.

    PubMed

    Chen, Yuxin; Zhang, Haiqing; Zhou, Huanjiao Jenny; Ji, Weidong; Min, Wang

    2016-03-25

    Cancer cell can reprogram their energy production by switching mitochondrial oxidative phosphorylation to glycolysis. However, mitochondria play multiple roles in cancer cells, including redox regulation, reactive oxygen species (ROS) generation, and apoptotic signaling. Moreover, these mitochondrial roles are integrated via multiple interconnected metabolic and redox sensitive pathways. Interestingly, mitochondrial redox proteins biphasically regulate tumor progression depending on cellular ROS levels. Low level of ROS functions as signaling messengers promoting cancer cell proliferation and cancer invasion. However, anti-cancer drug-initiated stress signaling could induce excessive ROS, which is detrimental to cancer cells. Mitochondrial redox proteins could scavenger basal ROS and function as "tumor suppressors" or prevent excessive ROS to act as "tumor promoter". Paradoxically, excessive ROS often also induce DNA mutations and/or promotes tumor metastasis at various stages of cancer progression. Targeting redox-sensitive pathways and transcriptional factors in the appropriate context offers great promise for cancer prevention and therapy. However, the therapeutics should be cancer-type and stage-dependent.

  10. NASA Redox Storage System Development Project

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.

    1984-01-01

    The Redox Storage System Technology Project was jointly supported by the U.S. Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to probe its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25 C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh preprototype system. A subsequent change was made in operating mode, going to 65 C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/sq cm with energy efficiencies greater than 80 percent. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office.

  11. Redox activity and chemical interactions of metal oxide nano- and micro-particles with dithiothreitol (DTT).

    PubMed

    Nicolas, Johny; Jaafar, Malek; Sepetdjian, Elizabeth; Saad, Walid; Sioutas, Constantinos; Shihadeh, Alan; Saliba, Najat A

    2015-11-01

    The wide application and production of nanotechnology have increased the interest in studying the toxicity of nano- and micro-sized particles escaping into air from various aspects of the production process. Metal oxides (MOs) are one particular class of particles that exist abundantly in ambient PM. Studies show an emphasis on biological mechanisms by which inhalation exposure to MOs leads to disease. However, different biological assays provide different redox activity rankings making it difficult to assess the contributions of various MOs to measures of aggregate toxicity in multi-pollutant systems such as ambient PM. Therefore, research to evaluate the chemical interaction between these particles and molecules that are relevant to cellular redox activity can help in establishing indicators of reactivity. In particular, this study assesses the redox activity of six MOs mainly emitted from anthropogenic industrial activities using the dithiothreitol (DTT) assay. DTT is commonly used in acellular assays due to its analogous structure to cellular glutathione. The structural and chemical behaviors between active MOs and DTT were elucidated using FTIR, NMR, and BET methods. The results indicate that the health risk (redox activity) associated with MOs is mainly a function of their surface reactivity demonstrated by the ability of the oxidized (S-H) bond in DTT to form a stable bond with the MO surface.

  12. Quantitative measurement of redox potential in hypoxic cells using SERS nanosensors

    NASA Astrophysics Data System (ADS)

    Jiang, Jing; Auchinvole, Craig; Fisher, Kate; Campbell, Colin J.

    2014-09-01

    Hypoxia is considered to be a reductive disorder of cells that is caused either by a lack of oxygen or by the dysregulation of metabolic pathways and is thought to play a role in the pathology of diseases including stroke and cancer. One aspect of hypoxia that remains poorly investigated is the dysregulation of cellular redox potential and its role in controlling biological pathway activation. Since there is currently no way of quantitatively measuring the intracellular redox potential of hypoxic cells, this provided us with the motivation to develop optical nanosensors whose Surface-Enhanced Raman (SER) spectrum provides a quantitative measure of redox potential in hypoxic cells. Our nanosensors are made from organic reporter molecules that show oxidation-state-dependent changes in the Raman spectrum and are chemically adsorbed onto gold nanoshells. These nanosensors can be taken up by cells, and by collecting the SER spectrum we can calculate the localised intracellular redox potential from single hypoxic cells in a non-invasive, reversible way.Hypoxia is considered to be a reductive disorder of cells that is caused either by a lack of oxygen or by the dysregulation of metabolic pathways and is thought to play a role in the pathology of diseases including stroke and cancer. One aspect of hypoxia that remains poorly investigated is the dysregulation of cellular redox potential and its role in controlling biological pathway activation. Since there is currently no way of quantitatively measuring the intracellular redox potential of hypoxic cells, this provided us with the motivation to develop optical nanosensors whose Surface-Enhanced Raman (SER) spectrum provides a quantitative measure of redox potential in hypoxic cells. Our nanosensors are made from organic reporter molecules that show oxidation-state-dependent changes in the Raman spectrum and are chemically adsorbed onto gold nanoshells. These nanosensors can be taken up by cells, and by collecting the SER

  13. Redox storage systems for solar applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Thaller, L. H.

    1981-01-01

    It is noted that the worldwide development of solar photovoltaic and wind turbine systems to meet a range of terrestrial electrical energy requirements has underscored the need for inexpensive and reliable electrical energy storage. The NASA Redox Energy Storage System, based on soluble aqueous iron and chromium chloride redox couples, has exhibited many system-related features which for the most part are unique to this storage system. The technology advances required in the two elements (electrodes and membranes), which are the key to its technological feasibility, have been attained and system development has begun. The design, construction, and testing of a 1-kW system integrated with a solar photovoltaic array is underway to provide early demonstration of the attractive system-related features of the NASA Redox Storage System. Also demonstrated will be its versatility and compatibility with a terrestrial solar photovoltaic electric power system.

  14. Carbon Redox-Polymer-Gel Hybrid Supercapacitors

    NASA Astrophysics Data System (ADS)

    Vlad, A.; Singh, N.; Melinte, S.; Gohy, J.-F.; Ajayan, P. M.

    2016-02-01

    Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances.

  15. Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids.

    PubMed

    Terpolilli, Jason J; Masakapalli, Shyam K; Karunakaran, Ramakrishnan; Webb, Isabel U C; Green, Rob; Watmough, Nicholas J; Kruger, Nicholas J; Ratcliffe, R George; Poole, Philip S

    2016-10-15

    Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the tricarboxylic acid (TCA) cycle to generate NAD(P)H for reduction of N2 Metabolic flux analysis of laboratory-grown Rhizobium leguminosarum showed that the flux from [(13)C]succinate was consistent with respiration of an obligate aerobe growing on a TCA cycle intermediate as the sole carbon source. However, the instability of fragile pea bacteroids prevented their steady-state labeling under N2-fixing conditions. Therefore, comparative metabolomic profiling was used to compare free-living R. leguminosarum with pea bacteroids. While the TCA cycle was shown to be essential for maximal rates of N2 fixation, levels of pyruvate (5.5-fold reduced), acetyl coenzyme A (acetyl-CoA; 50-fold reduced), free coenzyme A (33-fold reduced), and citrate (4.5-fold reduced) were much lower in bacteroids. Instead of completely oxidizing acetyl-CoA, pea bacteroids channel it into both lipid and the lipid-like polymer poly-β-hydroxybutyrate (PHB), the latter via a type III PHB synthase that is active only in bacteroids. Lipogenesis may be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Direct reduction by NAD(P)H of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance the production of NAD(P)H from oxidation of acetyl-CoA in the TCA cycle with its storage in PHB and lipids. Biological nitrogen fixation by symbiotic bacteria (rhizobia) in legume root nodules is an energy-expensive process. Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the TCA cycle to generate NAD(P)H for reduction of N2 However, direct reduction of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox

  16. Redox signaling in the gastrointestinal tract.

    PubMed

    Pérez, Salvador; Taléns-Visconti, Raquel; Rius-Pérez, Sergio; Finamor, Isabela; Sastre, Juan

    2017-03-01

    Redox signaling regulates physiological self-renewal, proliferation, migration and differentiation in gastrointestinal epithelium by modulating Wnt/β-catenin and Notch signaling pathways mainly through NADPH oxidases (NOXs). In the intestine, intracellular and extracellular thiol redox status modulates the proliferative potential of epithelial cells. Furthermore, commensal bacteria contribute to intestine epithelial homeostasis through NOX1- and dual oxidase 2-derived reactive oxygen species (ROS). The loss of redox homeostasis is involved in the pathogenesis and development of a wide diversity of gastrointestinal disorders, such as Barrett's esophagus, esophageal adenocarcinoma, peptic ulcer, gastric cancer, ischemic intestinal injury, celiac disease, inflammatory bowel disease and colorectal cancer. The overproduction of superoxide anion together with inactivation of superoxide dismutase are involved in the pathogenesis of Barrett's esophagus and its transformation to adenocarcinoma. In Helicobacter pylori-induced peptic ulcer, oxidative stress derived from the leukocyte infiltrate and NOX1 aggravates mucosal damage, especially in HspB+ strains that downregulate Nrf2. In celiac disease, oxidative stress mediates most of the cytotoxic effects induced by gluten peptides and increases transglutaminase levels, whereas nitrosative stress contributes to the impairment of tight junctions. Progression of inflammatory bowel disease relies on the balance between pro-inflammatory redox-sensitive pathways, such as NLRP3 inflammasome and NF-κB, and the adaptive up-regulation of Mn superoxide dismutase and glutathione peroxidase 2. In colorectal cancer, redox signaling exhibits two Janus faces: On the one hand, NOX1 up-regulation and derived hydrogen peroxide enhance Wnt/β-catenin and Notch proliferating pathways; on the other hand, ROS may disrupt tumor progression through different pro-apoptotic mechanisms. In conclusion, redox signaling plays a critical role in the

  17. Redox regulation and overreduction control in the photosynthesizing cell: complexity in redox regulatory networks.

    PubMed

    Oelze, Marie-Luise; Kandlbinder, Andrea; Dietz, Karl-Josef

    2008-11-01

    Regulation of the photosynthetic apparatus between efficient energy conversion at low light and avoidance of overreduction and damage development at excess light resembles dangerous navigating between Scylla and Charybdis. Photosynthesis is a high rate redox metabolic pathway that generates redox intermediates with extreme redox potentials and eventually reactive oxygen species and oxidative stress. Therefore it is not surprising that the states of defined redox reactions in the chloroplast provide the predominant information and thus directly or indirectly the decisive signals for the multilevel control of cell activities in the chloroplast, cytoplasm, mitochondrion and nucleus. This review elaborates on the diversity of photosynthesis-derived redox signals such as the plastoquinone and thiol redox state that regulate and coordinate light use efficiency, electron transport activity, metabolic reactions, gene transcription and translation not only in the chloroplast but through retrograde signaling also essentially in all other cell compartments. The synergistic and antagonistic interrelations between the redox-dependent signaling pathways and their interactions with other signals such as abscisic acid and tetrapyrol intermediates constitute a redundant and probably buffered regulatory network to optimize performance of photosynthesis on the cellular and whole leaf level.

  18. The Chemistry of Redox-Flow Batteries.

    PubMed

    Noack, Jens; Roznyatovskaya, Nataliya; Herr, Tatjana; Fischer, Peter

    2015-08-17

    The development of various redox-flow batteries for the storage of fluctuating renewable energy has intensified in recent years because of their peculiar ability to be scaled separately in terms of energy and power, and therefore potentially to reduce the costs of energy storage. This has resulted in a considerable increase in the number of publications on redox-flow batteries. This was a motivation to present a comprehensive and critical overview of the features of this type of batteries, focusing mainly on the chemistry of electrolytes and introducing a thorough systematic classification to reveal their potential for future development.

  19. Thiol redox chemistry: role of protein cysteine oxidation and altered redox homeostasis in allergic inflammation and asthma

    PubMed Central

    Hoffman, SM; Nolin, JD; McMillan, DH; Wouters, EFM; Janssen-Heininger, YMW; Reynaert, NL

    2015-01-01

    Asthma is a pulmonary disorder, with an estimated 300 million people affected worldwide. While it is thought that endogenous reactive oxygen species (ROS) and reactive nitrogen species (RNS) such as hydrogen peroxide and nitric oxide, are important mediators of natural physiological processes, inflammatory cells recruited to the asthmatic airways have an exceptional capacity for producing a variety of highly reactive ROS and RNS believed to contribute to tissue damage and chronic airways inflammation. Antioxidant defense systems form a tightly regulated network that maintains the redox environment of the intra- as well as extracellular environment. Evidence for an oxidant-antioxidant imbalance in asthmatic airways is demonstrated in a number of studies, revealing decreased total antioxidant capacity as well as lower levels of individual antioxidants. Thiols in the form of GSH and sulfhydryl groups of proteins are among the most susceptible oxidant-sensitive targets, and hence, studies investigating protein thiol redox modifications in biology and disease have emerged. This perspective offers an overview of the combined efforts aimed at the elucidation of mechanisms whereby cysteine oxidations contribute to chronic inflammation and asthma, as well as insights into potential cysteine thiol-based therapeutic strategies. PMID:25565397

  20. Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus

    PubMed Central

    Zheng, He; Kim, Jaekuk; Liew, Mathew; Yan, John K.; Herrera, Oscar; Bok, JinWoo; Kelleher, Neil L.; Keller, Nancy P.; Wang, Yun

    2014-01-01

    Summary Background Filamentous fungi and bacteria form mixed-species biofilms in nature and diverse clinical contexts. They secrete a wealth of redox-active small molecule secondary metabolites, which are traditionally viewed as toxins that inhibit growth of competing microbes. Results Here we report that these “toxins” can act as interspecies signals, affecting filamentous fungal development via oxidative stress regulation. Specifically, in co-culture biofilms, Pseudomonas aeruginosa phenazine-derived metabolites differentially modulated Aspergillus fumigatus development, shifting from weak vegetative growth to induced asexual sporulation (conidiation) along a decreasing phenazine gradient. The A. fumigatus morphological shift correlated with the production of phenazine radicals and concomitant reactive oxygen species (ROS) production generated by phenazine redox cycling. Phenazine conidiation signaling was conserved in the genetic model A. nidulans, and mediated by NapA, a homolog of AP-1-like bZIP transcription factor, which is essential for the response to oxidative stress in humans, yeast, and filamentous fungi. Expression profiling showed phenazine treatment induced a NapA-dependent response of the global oxidative stress metabolome including the thioredoxin, glutathione and NADPH-oxidase systems. Conidiation induction in A. nidulans by another microbial redox-active secondary metabolite, gliotoxin, also required NapA. Conclusions This work highlights that microbial redox metabolites are key signals for sporulation in filamentous fungi, which are communicated through an evolutionarily conserved eukaryotic stress response pathway. It provides a foundation for interspecies signaling in environmental and clinical biofilms involving bacteria and filamentous fungi. PMID:25532893

  1. Redox Non-Innocence of Nitrosobenzene at Nickel

    DOE PAGES

    Kundu, Subrata; Stieber, S. Chantal; Ferrier, Maryline Ghislaine; ...

    2016-08-22

    Nitrosobenzene (PhNO) serves as a stable analogue of nitroxyl (HNO), a biologically relevant, redox-active nitric oxide derivative. Capture of nitrosobenzene at the electrondeficient β-diketiminato nickel(I) complex [iPr2NNF6]Ni results in reduction of the PhNO ligand to a (PhNO)./ ⁻ species coordinated to a square planar NiII center in [iPr2NNF6]Ni(η2- ONPh). Ligand centered reduction leads to the (PhNO)-2 moiety bound to NiII supported by XAS studies. Ultimately, systematic investigation of structure–reactivity patterns of (PhNO)./ ⁻ and (PhNO)2- ligands reveals parallels with superoxo (O2)./ ⁻ and peroxo (O2)2- ligands, respectively, and forecasts reactivity patterns of the more transient HNO ligand.

  2. Redox regulation and pro-oxidant reactions in the physiology of circadian systems.

    PubMed

    Méndez, Isabel; Vázquez-Martínez, Olivia; Hernández-Muñoz, Rolando; Valente-Godínez, Héctor; Díaz-Muñoz, Mauricio

    2016-05-01

    Rhythms of approximately 24 h are pervasive in most organisms and are known as circadian. There is a molecular circadian clock in each cell sustained by a feedback system of interconnected "clock" genes and transcription factors. In mammals, the timing system is formed by a central pacemaker, the suprachiasmatic nucleus, in coordination with a collection of peripheral oscillators. Recently, an extensive interconnection has been recognized between the molecular circadian clock and the set of biochemical pathways that underlie the bioenergetics of the cell. A principle regulator of metabolic networks is the flow of electrons between electron donors and acceptors. The concomitant reduction and oxidation (redox) reactions directly influence the balance between anabolic and catabolic processes. This review summarizes and discusses recent findings concerning the mutual and dynamic interactions between the molecular circadian clock, redox reactions, and redox signaling. The scope includes the regulatory role played by redox coenzymes (NAD(P)+/NAD(P)H, GSH/GSSG), reactive oxygen species (superoxide anion, hydrogen peroxide), antioxidants (melatonin), and physiological events that modulate the redox state (feeding condition, circadian rhythms) in determining the timing capacity of the molecular circadian clock. In addition, we discuss a purely metabolic circadian clock, which is based on the redox enzymes known as peroxiredoxins and is present in mammalian red blood cells and in other biological systems. Both the timing system and the metabolic network are key to a better understanding of widespread pathological conditions such as the metabolic syndrome, obesity, and diabetes. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  3. Metabolic Impact of Redox Cofactor Perturbations on the Formation of Aroma Compounds in Saccharomyces cerevisiae

    PubMed Central

    Sanchez, Isabelle; Dequin, Sylvie; Camarasa, Carole

    2015-01-01

    Redox homeostasis is a fundamental requirement for the maintenance of metabolism, energy generation, and growth in Saccharomyces cerevisiae. The redox cofactors NADH and NADPH are among the most highly connected metabolites in metabolic networks. Changes in their concentrations may induce widespread changes in metabolism. Redox imbalances were achieved with a dedicated biological tool overexpressing native NADH-dependent or engineered NADPH-dependent 2,3-butanediol dehydrogenase, in the presence of acetoin. We report that targeted perturbation of the balance of cofactors (NAD+/NADH or, to a lesser extent, NADP+/NADPH) significantly affected the production of volatile compounds. In most cases, variations in the redox state of yeasts modified the formation of all compounds from the same biochemical pathway (isobutanol, isoamyl alcohol, and their derivatives) or chemical class (ethyl esters), irrespective of the cofactors. These coordinated responses were found to be closely linked to the impact of redox status on the availability of intermediates of central carbon metabolism. This was the case for α-keto acids and acetyl coenzyme A (acetyl-CoA), which are precursors for the synthesis of many volatile compounds. We also demonstrated that changes in the availability of NADH selectively affected the synthesis of some volatile molecules (e.g., methionol, phenylethanol, and propanoic acid), reflecting the specific cofactor requirements of the dehydrogenases involved in their formation. Our findings indicate that both the availability of precursors from central carbon metabolism and the accessibility of reduced cofactors contribute to cell redox status modulation of volatile compound formation. PMID:26475113

  4. Fate of Pharmaceuticals and Personal Care Products (PPCPs) in Saturated Soil Under Various Redox Conditions

    NASA Astrophysics Data System (ADS)

    Dror, I.; Menahem, A.; Berkowitz, B.

    2014-12-01

    The growing use of PPCPs results in their increasing release to the aquatic environment. Consequently, understanding the fate of PPCPs under environmentally relevant conditions that account for dynamic flow and varying redox states is critical. In this study, the transport of two organometallic PPCPs, Gd-DTPA and Roxarsone (As complex) and their metal salts (Gd(NO3)3, AsNaO2), is investigated. The former is used widely as a contrasting agent for MRI, while the latter is applied extensively as a food additive in the broiler poultry industry. Both of these compounds are excreted from the body, almost unchanged chemically. Gadolinium complexes are not fully eliminated in wastewater treatment and can reach groundwater via irrigation with treated wastewater; Roxarsone can enter groundwater via leaching from manure used as fertilizer. Studies have shown that the transport of PPCPs in groundwater is affected by environmental conditions such as redox states, pH, and soil type. For this study, column experiments using sand or Mediterranean red sandy clay soil were performed under several redox conditions: aerobic, nitrate-reducing, iron-reducing, sulfate-reducing, methanogenic, and very strongly chemical reducing. Batch experiments to determine adsorption isotherms were also performed for the complexes and metal salts. We found that Gd-DTPA transport was affected by the soil type and was not affected by the redox conditions. In contrast, Roxarsone transport was affected mainly by the different redox conditions, showing delayed breakthrough curves as the conditions became more biologically reduced (strong chemical reducing conditions did not affect the transport). We also observed that the metal salts show essentially no transport while the organic complexes display much faster breakthrough. The results suggest that transport of these PPCPs through soil and groundwater is determined by the redox conditions, as well as by soil type and the form of the applied metal (as salt

  5. The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria.

    PubMed

    Bhattacharjee, Ashima; Yang, Haojun; Duffy, Megan; Robinson, Emily; Conrad-Antoville, Arianrhod; Lu, Ya-Wen; Capps, Tony; Braiterman, Lelita; Wolfgang, Michael; Murphy, Michael P; Yi, Ling; Kaler, Stephen G; Lutsenko, Svetlana; Ralle, Martina

    2016-08-05

    Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Biogeochemical Barriers: Redox Behavior of Metals and Metalloids

    EPA Science Inventory

    Redox conditions and pH are arguably the most important geochemical parameters that control contaminant transport and fate in groundwater systems. Oxidation-reduction (redox) reactions mediate the chemical behavior of both inorganic and organic chemical constituents by affecting...

  7. Biogeochemical Barriers: Redox Behavior of Metals and Metalloids

    EPA Science Inventory

    Redox conditions and pH are arguably the most important geochemical parameters that control contaminant transport and fate in groundwater systems. Oxidation-reduction (redox) reactions mediate the chemical behavior of both inorganic and organic chemical constituents by affecting...

  8. Quantitative biology of hydrogen peroxide signaling.

    PubMed

    Antunes, Fernando; Brito, Paula Matos

    2017-10-01

    Hydrogen peroxide (H2O2) controls signaling pathways in cells by oxidative modulation of the activity of redox sensitive proteins denominated redox switches. Here, quantitative biology concepts are applied to review how H2O2 fulfills a key role in information transmission. Equations described lay the foundation of H2O2 signaling, give new insights on H2O2 signaling mechanisms, and help to learn new information from common redox signaling experiments. A key characteristic of H2O2 signaling is that the ratio between reduction and oxidation of redox switches determines the range of H2O2 concentrations to which they respond. Thus, a redox switch with low H2O2-dependent oxidability and slow reduction rate responds to the same range of H2O2 concentrations as a redox switch with high H2O2-dependent oxidability, but that is rapidly reduced. Yet, in the first case the response time is slow while in the second case is rapid. H2O2 sensing and transmission of information can be done directly or by complex mechanisms in which oxidation is relayed between proteins before oxidizing the final regulatory redox target. In spite of being a very simple molecule, H2O2 has a key role in cellular signaling, with the reliability of the information transmitted depending on the inherent chemical reactivity of redox switches, on the presence of localized H2O2 pools, and on the molecular recognition between redox switches and their partners. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Biolog phenotype microarrays.

    PubMed

    Shea, April; Wolcott, Mark; Daefler, Simon; Rozak, David A

    2012-01-01

    Phenotype microarrays nicely complement traditional genomic, transcriptomic, and proteomic analysis by offering opportunities for researchers to ground microbial systems analysis and modeling in a broad yet quantitative assessment of the organism's physiological response to different metabolites and environments. Biolog phenotype assays achieve this by coupling tetrazolium dyes with minimally defined nutrients to measure the impact of hundreds of carbon, nitrogen, phosphorous, and sulfur sources on redox reactions that result from compound-induced effects on the electron transport chain. Over the years, we have used Biolog's reproducible and highly sensitive assays to distinguish closely related bacterial isolates, to understand their metabolic differences, and to model their metabolic behavior using flux balance analysis. This chapter describes Biolog phenotype microarray system components, reagents, and methods, particularly as they apply to bacterial identification, characterization, and metabolic analysis.

  10. Redox biochemistry of hydrogen sulfide.

    PubMed

    Kabil, Omer; Banerjee, Ruma

    2010-07-16

    H(2)S, the most recently discovered gasotransmitter, might in fact be the evolutionary matriarch of this family, being both ancient and highly reduced. Disruption of gamma-cystathionase in mice leads to cardiovascular dysfunction and marked hypertension, suggesting a key role for this enzyme in H(2)S production in the vasculature. However, patients with inherited deficiency in gamma-cystathionase apparently do not present vascular pathology. A mitochondrial pathway disposes sulfide and couples it to oxidative phosphorylation while also exposing cytochrome c oxidase to this metabolic poison. This report focuses on the biochemistry of H(2)S biogenesis and clearance, on the molecular mechanisms of its action, and on its varied biological effects.

  11. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    NASA-Redox systems are electrochemical storage devices that use two fully soluble Redox couples, anode and cathode fluids, as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of Redox flow cells where the electrochemical reactions (reduction and oxidation) take place at porous carbon felt electrodes. A string or stack of these power producing cells is connected in series in a bipolar manner. Redox energy storage systems promise to be inexpensive and possess many features that provide for flexible design, long life, high reliability and minimal operation and maintenance costs. These features include independent sizing of power and storage capacity requirements and inclusion within the cell stack of a cell that monitors the state of charge of the system as a whole, and a rebalance cell which permits continuous correction to be made for minor side reactions that would tend to result in the anode fluid and cathode fluids becoming electrochemically out of balance. These system features are described and discussed.

  12. Redox regulation in cancer stem cells

    USDA-ARS?s Scientific Manuscript database

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processe...

  13. Antioxidant and cytoprotective responses to redox stress.

    PubMed

    Mathers, Joanne; Fraser, Jennifer A; McMahon, Michael; Saunders, Robert D C; Hayes, John D; McLellan, Lesley I

    2004-01-01

    Aerobic cells produce reactive oxygen species as a consequence of normal cellular metabolism, and an array of antioxidant systems are in place to maintain the redox balance. When the redox equilibrium of the cell is upset by pro-oxidant environmental stimuli, adaptive responses to the redox stress take place, which can result in up-regulation of antioxidant proteins and detoxification enzymes. Over the past few years, it has become apparent that members of the CNC (cap 'n' collar)-basic leucine zipper family of transcription factors are principal mediators of defensive responses to redox stress. In mammals, the CNC family members nuclear factor-erythroid 2 p45-related factors 1 and 2 (Nrf1 and Nrf2) have been shown to be involved in the transcriptional up-regulation of cytoprotective genes including those encoding glutamate cysteine ligase, NAD(P)H:quinone oxidoreductase, glutathione S-transferases and aldo-keto reductases. An evolutionarily conserved system exists in Caenorhabditis elegans, and it is possible that Drosophila melanogaster may also utilize CNC transcription factors to induce antioxidant genes in response to pro-oxidant chemicals. The advent of microarray and proteomic technologies has advanced our understanding of the gene batteries regulated by oxidative insult, but has highlighted the complexity of gene regulation by environmental factors. This review focuses on the antioxidant response to environmental stress, and the impact that microarrays and proteomics have made in this field.

  14. Energy storage: Redox flow batteries go organic

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sprenkle, Vince

    2016-03-01

    The use of renewable resources as providers to the electrical grid is hampered by the intermittent and irregular nature in which they generate energy. Electrical energy storage technology could provide a solution and now, by using an iterative design process, a promising anolyte for use in redox flow batteries has been developed.

  15. Redox Transformations of Mercury in Wetlands

    NASA Astrophysics Data System (ADS)

    Amyot, M.

    2007-12-01

    Wetlands are valued for their high biodiversity and for their ecosystem services. However, we still have a poor understanding of their role in the redox transformation of contaminants such as mercury. We first propose a brief overview of past studies conducted on wetlands from different latitudes. In most instances, photochemical processes are determinant in the upper portion of the water column. At the sediment/water interface, evidence is currently supporting a significant contribution of bacterial communities, as promoters of Hg(II) reduction, particularly in the presence of anoxia. A multi-year study was recently conducted on Hg redox cycling in a fluvial wetland of the St. Lawrence River, where wetland restoration could have unintended consequences. In addition to photochemistry and bacterial reduction, Hg redox cycling was affected by epiphytes living on macrophytes, through adsorption/absorption processes. Redox studies such as this one have been historically seen as having implication for water/air flux studies, since Hg(0) is volatile. We here also discuss the potential bioavailability of Hg(0) towards bacteria. An emerging axis of our wetland research effort deals with beaver dams, which are in expansion and shown to produce high levels of methylHg

  16. Methane oxidation over dual redox catalysts

    SciTech Connect

    Klier, K.; Herman, R.G.; Sojka, Z.

    1989-06-01

    The objective of this research is to develop the scientific background for direct catalytic oxidation of methane over oxides that are doubly doped with transition metal ions. The desired process aims at employing of a double redox mechanism, where one redox couple is utilized for activation of oxygen and another for the conversion of CH{sub 3} radicals to carbocations via electron transfer reaction. The latter species can react with surface OH{sup {minus}} groups to form methanol or formaldehyde. To establish the foundations for such a process, two groups of the catalysts, one containing dispersed redox centers (Cu{sup I}/Fe{sup III}/ZnO and Cu{sup I}/Sn{sup IV}/ZnO) and a second of delafossite-type oxides containing concentrated redox centers (CuFeO{sub 2}, CuCoO{sub 2}) were synthesized and chemically analyzed for composition. For the sake of comparison, undoped ZnO treated in the same way as doped zinc oxide catalysts was also prepared. The samples were characterized by X-ray diffraction, BET surface area measurements and preliminarily by scanning electron microscopy. A catalytic testing unit and reactor to study the title reaction were designed and constructed.

  17. Mitochondrial Energy and Redox Signaling in Plants

    PubMed Central

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  18. Bimetallic redox synergy in oxidative palladium catalysis.

    PubMed

    Powers, David C; Ritter, Tobias

    2012-06-19

    Polynuclear transition metal complexes, which are embedded in the active sites of many metalloenzymes, are responsible for effecting a diverse array of oxidation reactions in nature. The range of chemical transformations remains unparalleled in the laboratory. With few noteworthy exceptions, chemists have primarily focused on mononuclear transition metal complexes in developing homogeneous catalysis. Our group is interested in the development of carbon-heteroatom bond-forming reactions, with a particular focus on identifying reactions that can be applied to the synthesis of complex molecules. In this context, we have hypothesized that bimetallic redox chemistry, in which two metals participate synergistically, may lower the activation barriers to redox transformations relevant to catalysis. In this Account, we discuss redox chemistry of binuclear Pd complexes and examine the role of binuclear intermediates in Pd-catalyzed oxidation reactions. Stoichiometric organometallic studies of the oxidation of binuclear Pd(II) complexes to binuclear Pd(III) complexes and subsequent C-X reductive elimination from the resulting binuclear Pd(III) complexes have confirmed the viability of C-X bond-forming reactions mediated by binuclear Pd(III) complexes. Metal-metal bond formation, which proceeds concurrently with oxidation of binuclear Pd(II) complexes, can lower the activation barrier for oxidation. We also discuss experimental and theoretical work that suggests that C-X reductive elimination is also facilitated by redox cooperation of both metals during reductive elimination. The effect of ligand modification on the structure and reactivity of binuclear Pd(III) complexes will be presented in light of the impact that ligand structure can exert on the structure and reactivity of binuclear Pd(III) complexes. Historically, oxidation reactions similar to those discussed here have been proposed to proceed via mononuclear Pd(IV) intermediates, and the hypothesis of mononuclear Pd

  19. Redox-Directed Cancer Therapeutics: Molecular Mechanisms and Opportunities

    PubMed Central

    2009-01-01

    Abstract Redox dysregulation originating from metabolic alterations and dependence on mitogenic and survival signaling through reactive oxygen species represents a specific vulnerability of malignant cells that can be selectively targeted by redox chemotherapeutics. This review will present an update on drug discovery, target identification, and mechanisms of action of experimental redox chemotherapeutics with a focus on pro- and antioxidant redox modulators now in advanced phases of preclinal and clinical development. Recent research indicates that numerous oncogenes and tumor suppressor genes exert their functions in part through redox mechanisms amenable to pharmacological intervention by redox chemotherapeutics. The pleiotropic action of many redox chemotherapeutics that involves simultaneous modulation of multiple redox sensitive targets can overcome cancer cell drug resistance originating from redundancy of oncogenic signaling and rapid mutation. Moreover, some redox chemotherapeutics may function according to the concept of synthetic lethality (i.e., drug cytotoxicity is confined to cancer cells that display loss of function mutations in tumor suppressor genes or upregulation of oncogene expression). The impressive number of ongoing clinical trials that examine therapeutic performance of novel redox drugs in cancer patients demonstrates that redox chemotherapy has made the crucial transition from bench to bedside. Antioxid. Redox Signal. 11, 3013–3069. PMID:19496700

  20. Introduction: What we do and do not know regarding redox processes of thiols in signaling pathways.

    PubMed

    Poole, Leslie B; Schöneich, Christian

    2015-03-01

    Due to their susceptibility towards redox modification, protein thiols represent primary targets for the modulation of protein activity, conformation and oligomerization. Until fairly recently, such modifications were considered "damage" as a result of oxidative stress, before researchers recognized their physiological importance for biologic signaling. This paradigm shift, and the associated necessity to accurately characterize and quantify the various pathways of thiol redox modifications not only for specific proteins, but also within the cellular environment, has enticed researchers to take a close look at the impact of environment and molecular (protein) structure on these reactions. This Special Issue on Redox Biology of Thiols in Signaling Pathways is the result of a workshop organized at the 2013 Annual Meeting of the Society for Free Radical Biology and Medicine in San Antonio, Texas, summarizing the contributions from many of the presenters. It will provide a stimulating synopsis on what is known, and what is not known, about the reaction mechanisms which underlie the role of thiols and oxidative processes in signaling pathways. Copyright © 2015. Published by Elsevier Inc.

  1. Introduction: What we do and do not know regarding redox processes of thiols in signaling pathways

    PubMed Central

    Poole, Leslie B.; Schöneich, Christian

    2015-01-01

    Due to their susceptibility towards redox modification, protein thiols represent primary targets for the modulation of protein activity, conformation and oligomerization. Until fairly recently, such modifications were considered “damage” as a result of oxidative stress, before researchers recognized their physiological importance for biologic signaling. This paradigm shift, and the associated necessity to accurately characterize and quantify the various pathways of thiol redox modifications not only for specific proteins, but also within the cellular environment, has enticed researchers to take a close look at the impact of environment and molecular (protein) structure on these reactions. This Special Issue on Redox Biology of Thiols in Signaling Pathways is the result of a workshop organized at the 2013 Annual Meeting of the Society for Free Radical Biology and Medicine in San Antonio, Texas, summarizing the contributions from many of the presenters. It will provide a stimulating synopsis on what is known, and what is not known, about the reaction mechanisms which underlie the role of thiols and oxidative processes in signaling pathways. PMID:25746478

  2. The Redox Stress Hypothesis of Aging

    PubMed Central

    Sohal, Rajindar S.; Orr, William C.

    2011-01-01

    The main objective of this review is to examine the role of the endogenous reactive oxygen/nitrogen species (ROS) in the aging process. Until relatively recently, ROS were considered to be potentially toxic by-products of aerobic metabolism, which, if not eliminated, may inflict structural damage on various macromolecules. Accrual of such damage over time was postulated to be responsible for the physiological deterioration in the post-reproductive phase of life and eventually the death of the organism. This “structural damage-based oxidative stress” hypothesis has received support from the age-associated increases in the rates of ROS production and the steady-state amounts of oxidized macromolecules; however, there are increasing indications that structural damage alone is insufficient to satisfactorily explain the age-associated functional losses. The level of oxidative damage, accrued during aging, often does not match the magnitude of functional losses. Although experimental augmentations of antioxidant defenses tend to enhance resistance to induced oxidative stress, such manipulations are generally ineffective in the extension of life span of long-lived strains of animals. More recently, in a major conceptual shift, ROS have been found to be physiologically vital for signal transduction, gene regulation and redox regulation, among others, implying that their complete elimination would be harmful. An alternative notion, advocated here, termed “redox stress hypothesis”, proposes that aging-associated functional losses are primarily caused by a progressive pro-oxidizing shift in the redox state of the cells, which leads to the over-oxidation of redox-sensitive protein thiols and the consequent disruption of the redox-regulated signaling mechanisms. PMID:22080087

  3. Evolutionary development of redox regulation in chloroplasts.

    PubMed

    Balsera, Monica; Uberegui, Estefania; Schürmann, Peter; Buchanan, Bob B

    2014-09-20

    The post-translational modification of thiol groups stands out as a key strategy that cells employ for metabolic regulation and adaptation to changing environmental conditions. Nowhere is this more evident than in chloroplasts-the O2-evolving photosynthetic organelles of plant cells that are fitted with multiple redox systems, including the thioredoxin (Trx) family of oxidoreductases functional in the reversible modification of regulatory thiols of proteins in all types of cells. The best understood member of this family in chloroplasts is the ferredoxin-linked thioredoxin system (FTS) by which proteins are modified via light-dependent disulfide/dithiol (S-S/2SH) transitions. Discovered in the reductive activation of enzymes of the Calvin-Benson cycle in illuminated chloroplast preparations, recent studies have extended the role of the FTS far beyond its original boundaries to include a spectrum of cellular processes. Together with the NADP-linked thioredoxin reductase C-type (NTRC) and glutathione/glutaredoxin systems, the FTS also plays a central role in the response of chloroplasts to different types of stress. The comparisons of redox regulatory networks functional in chloroplasts of land plants with those of cyanobacteria-prokaryotes considered to be the ancestors of chloroplasts-and different types of algae summarized in this review have provided new insight into the evolutionary development of redox regulation, starting with the simplest O2-evolving organisms. The evolutionary appearance, mode of action, and specificity of the redox regulatory systems functional in chloroplasts, as well as the types of redox modification operating under diverse environmental conditions stand out as areas for future study.

  4. Determination of the in vivo redox potential using roGFP and fluorescence spectra obtained from one-wavelength excitation

    NASA Astrophysics Data System (ADS)

    Wierer, S.; Elgass, K.; Bieker, S.; Zentgraf, U.; Meixner, A. J.; Schleifenbaum, F.

    2011-02-01

    The analysis of molecular processes in living (plant) cells such as signal transduction, DNA replication, carbon metabolism and senescence has been revolutionized by the use of green fluorescent protein (GFP) and its variants as specific cellular markers. Many cell biological processes are accompanied by changes in the intracellular redox potential. To monitor the redox potential, a redox-sensitive mutant of GFP (roGFP) was created, which shows changes in its optical properties in response to changes in the redox state of its surrounding medium. For a quantitative analysis in living systems, it is essential to know the optical properties of roGFP in vitro. Therefore, we applied spectrally resolved fluorescence spectroscopy on purified roGFP exposed to different redox potentials to determine shifts in both the absorption and the emission spectra of roGFP. Based on these in vitro findings, we introduce a new approach using one-wavelength excitation to use roGFP for the in vivo analysis of cell biological processes. We demonstrate the ability this technique by investigating chloroplast-located Grx1-roGFP2 expressing Arabidopsis thaliana cells as example for dynamically moving intracellular compartments. This is not possible with the two-wavelength excitation technique established so far, which hampers a quantitative analysis of highly mobile samples due to the time delay between the two measurements and the consequential displacement of the investigated area.

  5. Redox Modulation of Flavin and Tyrosine Determines Photoinduced Proton-coupled Electron Transfer and Photoactivation of BLUF Photoreceptors

    PubMed Central

    Mathes, Tilo; van Stokkum, Ivo H. M.; Stierl, Manuela; Kennis, John T. M.

    2012-01-01

    Photoinduced electron transfer in biological systems, especially in proteins, is a highly intriguing matter. Its mechanistic details cannot be addressed by structural data obtained by crystallography alone because this provides only static information on a given redox system. In combination with transient spectroscopy and site-directed manipulation of the protein, however, a dynamic molecular picture of the ET process may be obtained. In BLUF (blue light sensors using FAD) photoreceptors, proton-coupled electron transfer between a tyrosine and the flavin cofactor is the key reaction to switch from a dark-adapted to a light-adapted state, which corresponds to the biological signaling state. Particularly puzzling is the fact that, although the various naturally occurring BLUF domains show little difference in the amino acid composition of the flavin binding pocket, the reaction rates of the forward reaction differ quite largely from a few ps up to several hundred ps. In this study, we modified the redox potential of the flavin/tyrosine redox pair by site-directed mutagenesis close to the flavin C2 carbonyl and fluorination of the tyrosine, respectively. We provide information on how changes in the redox potential of either reaction partner significantly influence photoinduced proton-coupled electron transfer. The altered redox potentials allowed us furthermore to experimentally describe an excited state charge transfer intermediately prior to electron transfer in the BLUF photocycle. Additionally, we show that the electron transfer rate directly correlates with the quantum yield of signaling state formation. PMID:22833672

  6. Redox metabolism abnormalities in autistic children associated with mitochondrial disease.

    PubMed

    Frye, R E; Delatorre, R; Taylor, H; Slattery, J; Melnyk, S; Chowdhury, N; James, S J

    2013-06-18

    Research studies have uncovered several metabolic abnormalities associated with autism spectrum disorder (ASD), including mitochondrial disease (MD) and abnormal redox metabolism. Despite the close connection between mitochondrial dysfunction and oxidative stress, the relation between MD and oxidative stress in children with ASD has not been studied. Plasma markers of oxidative stress and measures of cognitive and language development and ASD behavior were obtained from 18 children diagnosed with ASD who met criteria for probable or definite MD per the Morava et al. criteria (ASD/MD) and 18 age and gender-matched ASD children without any biological markers or symptoms of MD (ASD/NoMD). Plasma measures of redox metabolism included reduced free glutathione (fGSH), oxidized glutathione (GSSG), the fGSH/GSSG ratio and 3-nitrotyrosine (3NT). In addition, a plasma measure of chronic immune activation, 3-chlorotyrosine (3CT), was also measured. Language was measured using the preschool language scale or the expressive one-word vocabulary test (depending on the age), adaptive behaviour was measured using the Vineland Adaptive Behavior Scale (VABS) and core autism symptoms were measured using the Autism Symptoms Questionnaire and the Social Responsiveness Scale. Children with ASD/MD were found to have lower scores on the communication and daily living skill subscales of the VABS despite having similar language and ASD symptoms. Children with ASD/MD demonstrated significantly higher levels of fGSH/GSSG and lower levels of GSSG as compared with children with ASD/NoMD, suggesting an overall more favourable glutathione redox status in the ASD/MD group. However, compare with controls, both ASD groups demonstrated lower fGSH and fGSH/GSSG, demonstrating that both groups suffer from redox abnormalities. Younger ASD/MD children had higher levels of 3CT than younger ASD/NoMD children because of an age-related effect in the ASD/MD group. Both ASD groups demonstrated significantly

  7. Redox metabolism abnormalities in autistic children associated with mitochondrial disease

    PubMed Central

    Frye, R E; DeLaTorre, R; Taylor, H; Slattery, J; Melnyk, S; Chowdhury, N; James, S J

    2013-01-01

    Research studies have uncovered several metabolic abnormalities associated with autism spectrum disorder (ASD), including mitochondrial disease (MD) and abnormal redox metabolism. Despite the close connection between mitochondrial dysfunction and oxidative stress, the relation between MD and oxidative stress in children with ASD has not been studied. Plasma markers of oxidative stress and measures of cognitive and language development and ASD behavior were obtained from 18 children diagnosed with ASD who met criteria for probable or definite MD per the Morava et al. criteria (ASD/MD) and 18 age and gender-matched ASD children without any biological markers or symptoms of MD (ASD/NoMD). Plasma measures of redox metabolism included reduced free glutathione (fGSH), oxidized glutathione (GSSG), the fGSH/GSSG ratio and 3-nitrotyrosine (3NT). In addition, a plasma measure of chronic immune activation, 3-chlorotyrosine (3CT), was also measured. Language was measured using the preschool language scale or the expressive one-word vocabulary test (depending on the age), adaptive behaviour was measured using the Vineland Adaptive Behavior Scale (VABS) and core autism symptoms were measured using the Autism Symptoms Questionnaire and the Social Responsiveness Scale. Children with ASD/MD were found to have lower scores on the communication and daily living skill subscales of the VABS despite having similar language and ASD symptoms. Children with ASD/MD demonstrated significantly higher levels of fGSH/GSSG and lower levels of GSSG as compared with children with ASD/NoMD, suggesting an overall more favourable glutathione redox status in the ASD/MD group. However, compare with controls, both ASD groups demonstrated lower fGSH and fGSH/GSSG, demonstrating that both groups suffer from redox abnormalities. Younger ASD/MD children had higher levels of 3CT than younger ASD/NoMD children because of an age-related effect in the ASD/MD group. Both ASD groups demonstrated significantly

  8. Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O2 battery.

    PubMed

    Zhu, Yun Guang; Jia, Chuankun; Yang, Jing; Pan, Feng; Huang, Qizhao; Wang, Qing

    2015-06-11

    A redox flow lithium-oxygen battery (RFLOB) by using soluble redox catalysts with good performance was demonstrated for large-scale energy storage. The new device enables the reversible formation and decomposition of Li2O2 via redox targeting reactions in a gas diffusion tank, spatially separated from the electrode, which obviates the passivation and pore clogging of the cathode.

  9. Biological signaling by small inorganic molecules.

    PubMed

    Basudhar, Debashree; Ridnour, Lisa A; Cheng, Robert; Kesarwala, Aparna H; Heinecke, Julie; Wink, David A

    2016-01-01

    Small redox active molecules such as reactive nitrogen and oxygen species and hydrogen sulfide have emerged as important biological mediators that are involved in various physiological and pathophysiological processes. Advancement in understanding of cellular mechanisms that tightly regulate both generation and reactivity of these molecules is central to improved management of various disease states including cancer and cardiovascular dysfunction. Imbalance in the production of redox active molecules can lead to damage of critical cellular components such as cell membranes, proteins and DNA and thus may trigger the onset of disease. These small inorganic molecules react independently as well as in a concerted manner to mediate physiological responses. This review provides a general overview of the redox biology of these key molecules, their diverse chemistry relevant to physiological processes and their interrelated nature in cellular signaling.

  10. Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on s-glutathionylation.

    PubMed

    Mieyal, John J; Chock, P Boon

    2012-03-15

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have become recognized as second messengers for initiating and/or regulating vital cellular signaling pathways, and they are known also as deleterious mediators of cellular stress and cell death. ROS and RNS, and their cross products like peroxynitrite, react primarily with cysteine residues whose oxidative modification leads to functional alterations in the proteins. In this Forum, the collection of six review articles presents a perspective on the broad biological impact of cysteine modifications in health and disease from the molecular to the cellular and organismal levels, focusing in particular on reversible protein-S-glutathionylation and its central role in transducing redox signals as well as protecting proteins from irreversible cysteine oxidation. The Forum review articles consider the role of S-glutationylation in regulation of the peroxiredoxin enzymes, the special redox environment of the mitochondria, redox regulation pertinent to the function of the cardiovascular system, mechanisms of redox-activated apoptosis in the pulmonary system, and the role of glutathionylation in the initiation, propagation, and treatment of neurodegenerative diseases. Several common themes emerge from these reviews; notably, the probability of crosstalk between signaling/regulation mechanisms involving protein-S-nitrosylation and protein-S-glutathionylation, and the need for quantitative analysis of the relationship between specific cysteine modifications and corresponding functional changes in various cellular contexts.

  11. Mapping solvation dynamics at the function site of flavodoxin in three redox states.

    PubMed

    Chang, Chih-Wei; He, Ting-Fang; Guo, Lijun; Stevens, Jeffrey A; Li, Tanping; Wang, Lijuan; Zhong, Dongping

    2010-09-15

    Flavoproteins are unique redox coenzymes, and the dynamic solvation at their function sites is critical to the understanding of their electron-transfer properties. Here, we report our complete characterization of the function-site solvation of holoflavodoxin in three redox states and of the binding-site solvation of apoflavodoxin. Using intrinsic flavin cofactor and tryptophan residue as the local optical probes with two site-specific mutations, we observed distinct ultrafast solvation dynamics at the function site in the three states and at the related recognition site of the cofactor, ranging from a few to hundreds of picoseconds. The initial ultrafast motion in 1-2.6 ps reflects the local water-network relaxation around the shallow, solvent-exposed function site. The second relaxation in 20-40 ps results from the coupled local water-protein fluctuation. The third dynamics in hundreds of picoseconds is from the intrinsic fluctuation of the loose loops flanking the cofactor at the function site. These solvation dynamics with different amplitudes well correlate with the redox states from the oxidized form, to the more rigid semiquinone and to the much looser hydroquinone. This observation of the redox control of local protein conformation plasticity and water network flexibility is significant, and such an intimate relationship is essential to the biological function of interprotein electron transfer.

  12. Redox Bulk Energy Storage System Study, Volume 1

    NASA Technical Reports Server (NTRS)

    Ciprios, G.; Erskine, W., Jr.; Grimes, P. G.

    1977-01-01

    Opportunities were found for electrochemical energy storage devices in the U.S. electric utility industry. Application requirements for these devices were defined, including techno-economic factors. A new device, the Redox storage battery was analyzed. The Redox battery features a decoupling of energy storage and power conversion functions. General computer methods were developed to simulate Redox system operations. These studies showed that the Redox system is potentially attractive if certain performance goals can be achieved. Pathways for reducing the cost of the Redox system were identified.

  13. Copper isotopes as monitors of redox processes in hydrothermal mineralization

    NASA Astrophysics Data System (ADS)

    Markl, Gregor; Lahaye, Yann; Schwinn, Gregor

    2006-08-01

    : within-fluid control, i.e., the fractionation during the redox process among dissolved species, and fluid-solid control, i.e., fractionation during precipitation involving reactions between dissolved Cu species and minerals. Additionally, Rayleigh fractionation in a closed system may be responsible for some of the spread in isotope compositions. Our study indicates that copper isotope variations may be used to decipher details of natural redox processes and therefore may have some bearing on exploration, evaluation and exploitation of copper deposits. On the other hand, copper isotope analyses of single archeological artefacts or geological or biological objects cannot be easily used as reliable fingerprint for the source of copper, because the variation caused by redox processes within a single deposit is usually much larger than the inter-deposit variation.

  14. Redox reactions of apo mammalian ferritin.

    PubMed

    Watt, R K; Frankel, R B; Watt, G D

    1992-10-13

    Apo horse spleen ferritin undergoes a 6.3 +/- 0.5 electron redox reaction at -310 mV at pH 6.0-8.5 and 25 degrees C to form reduced apoferritin (apoMFred). Reconstituted ferritin containing up to 50 ferric ions undergoes reduction at the same potential, taking up one electron per ferric ion and six additional electrons by the protein. We propose that apo mammalian ferritin (apoMF) contains six redox centers that can be fully oxidized forming oxidized apoferritin (apoMFox) or fully reduced forming apoMFred. ApoMFred can be prepared conveniently by dithionite or methyl viologen reduction. ApoMFred is slowly oxidized by molecular oxygen but more rapidly by Fe(CN)6(3-) to apoMFox. Fe(III)-cytochrome c readily oxidizes apoMFred to apoMFox with a stoichiometry of 6 Fe(III)-cytochrome c per apoMFred, demonstrating a rapid interprotein electron-transfer reaction. Both redox states of apoMF react with added Fe3+ and Fe2+. Addition of eight Fe2+ to apoMFox under anaerobic conditions produced apoMFred and Fe3+, as evidenced by the presence of a strong g = 4.3 EPR signal. Subsequent addition of bipyridyl produced at least six Fe(bipyd)3(2+) per MF, establishing the reversibility of this internal electron-transfer process between the redox centers of apoMF and bound iron. Incubation of apoMFred with the Fe(3+)-ATP complex under anaerobic conditions resulted in the formation and binding of two Fe2+ and four Fe3+ by the protein. The various redox states formed by the binding of Fe2+ and Fe3+ to apoMFox and apoMFred are proposed and discussed. The yellow color of apoMF appears to be an integral characteristic of the apoMF and is possibly associated with its redox activity.

  15. Redox proteomics in the mussel, Mytilus edulis.

    PubMed

    McDonagh, B; Tyther, R; Sheehan, D

    2006-07-01

    Pollutants (e.g. PAHs, metals) cause oxidative stress (OS) by forming reactive oxygen species. Redox proteomics provides a means for identifying protein-specific OS effects in Mytilus edulis. Groups of mussels were sampled from a clean site in Cork Harbour, Ireland and exposed to 1 mM H2O2 in holding tanks. Protein extracts of gill and digestive gland were separated by two dimensional electrophoresis and similar protein expression profiles were found. Effects of OS on disulphide bridge patterns were investigated in diagonal gels by separating proteins in non-reducing conditions followed by a second reducing dimension. Immunoprecipitation selected carbonylated and glutathionylated proteins. These methodologies can contribute to redox proteomic studies of pollutant responses in marine organisms.

  16. Redox imbalance, macrocytosis, and RBC homeostasis.

    PubMed

    Tsantes, Argirios E; Bonovas, Stefanos; Travlou, Anthi; Sitaras, Nikolaos M

    2006-01-01

    The erythrocyte represents a major component of the antioxidant capacity of the blood through the enzymes contained in the cell, the glutathione system, and the low-molecular-weight antioxidants of the erythrocyte membrane. A further major red blood cell contribution is in regenerating consumed redox equivalents via the oxidative pentose phosphate pathway and glutathione reductase. Moreover, its extracellular antioxidant capacity, its mobility, and the existence of reducing equivalents far in excess of its normal requirements make erythrocytes function as an effective oxidative sink in the organism. That is why red blood cell metabolism and homeostasis strongly affect the antioxidant properties of the whole body. Conversely, the relation between macrocytosis and oxidative stress has not been fully delineated. Reviewing the mechanisms involved in red blood cell homeostasis in cases of redox imbalance is crucial in identification of factors that could potentially improve erythrocyte survival and defense against oxidant damage.

  17. Cooperative redox activation for carbon dioxide conversion

    NASA Astrophysics Data System (ADS)

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-12-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing `waste', produced through oxygen insertion into the Si-Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2.

  18. Cost projections for Redox Energy storage systems

    NASA Technical Reports Server (NTRS)

    Michaels, K.; Hall, G.

    1980-01-01

    A preliminary design and system cost analysis was performed for the redox energy storage system. A conceptual design and cost estimate was prepared for each of two energy applications: (1) electric utility 100-MWh requirement (10-MW for ten hours) for energy storage for utility load leveling application, and (2) a 500-kWh requirement (10-kW for 50 hours) for use with a variety of residential or commercial applications, including stand alone solar photovoltaic systems. The conceptual designs were based on cell performance levels, system design parameters, and special material costs. These data were combined with estimated thermodynamic and hydraulic analysis to provide preliminary system designs. Results indicate that the redox cell stack to be amenable to mass production techniques with a relatively low material cost.

  19. Artificial Enzyme-based Logic Operations to Mimic an Intracellular Enzyme-participated Redox Balance System.

    PubMed

    Huang, Yanyan; Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2017-07-06

    Owing to the biocatalytic properties of artificial enzymes and the redox characteristic of glutathione, a colorimetric and resettable biological operation was successfully designed to mimic enzyme-participated redox balance in living systems. As one promising candidate of a natural enzyme, artificial enzyme possesses many advantages and has been used in numerous fields. Similar to natural enzymes, communications are also present between different artificial enzymes. With the assistance of four artificial enzymes, three simple biological logic gates were fabricated to help us deepen the understanding of communications between artificial enzymes. In the presence of glutathione, the system could be easily reset without any complicated procedures. We prospect that this work may push forward the exploration of communications between different artificial enzymes and the design of novel artificial enzyme-based biological gates or nanodevices. We hope that our mimic system may help us further understand the functioning of complex biological pathways in biological systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Redox reaction rates using potentiostatic coulometry

    SciTech Connect

    Ramette, R.W.; Harris, R.Z.; Bengali, A.A.; Noll, R.J.

    1987-01-01

    A new method based on potentiostatic coulometry was used to study the kinetics of the aqueous redox reactions between the ions chlorate/iodide, bromate/iodide, and bromate/bromide. The halogen product was continuously and rapidly reduced back to halide at a large platinum gauze cathode, the current being a direct measure of reaction rate and the accumulated charge serving to measure the extent of reaction. The reactions were studied at several temperatures, and activation entropies and enthalpies were calculated.

  1. Thermodynamic stability relations in redox systems.

    PubMed

    Fishtik, Ilie

    2006-03-15

    Graphical stability relations in redox systems known as Pourbaix diagrams are analyzed employing the concept of overall stability of chemical species in multiple chemical reaction systems recently developed by us (Fishtik, I. J. Phys. Chem. B 2005, 109, 3851). The overall stability approach provides a simple and systematic algorithm for generating thermodynamically and stoichiometrically consistent Pourbaix diagrams that are referred to as overall Pourbaix diagrams. The conditions under which the conventional Pourbaix diagrams coincide with the overall Pourbaix diagrams are also discussed.

  2. Asymmetric Redox-Annulation of Cyclic Amines

    PubMed Central

    2015-01-01

    Cyclic amines such as 1,2,3,4-tetrahydroisoquinoline undergo regiodivergent annulation reactions with 4-nitrobutyraldehydes. These redox-neutral transformations enable the asymmetric synthesis of highly substituted polycyclic ring systems in just two steps from commercial materials. The utility of this process is illustrated in a rapid synthesis of (−)-protoemetinol. Computational studies provide mechanistic insights and implicate the elimination of acetic acid from an ammonium nitronate intermediate as the rate-determining step. PMID:26348653

  3. Neptunium redox speciation at the illite surface

    NASA Astrophysics Data System (ADS)

    Marsac, Rémi; Banik, Nidhu lal; Lützenkirchen, Johannes; Marquardt, Christian Michael; Dardenne, Kathy; Schild, Dieter; Rothe, Joerg; Diascorn, Alexandre; Kupcik, Tomas; Schäfer, Thorsten; Geckeis, Horst

    2015-03-01

    Neptunium (Np(V)) sorption onto a purified illite is investigated as a function of pH (3-10) and [NpVO2+]tot(3 × 10-8-3 × 10-4 M) in 0.1 M NaCl under Ar atmosphere. After about one week reaction time, only insignificant variation of Np sorption is observed and the establishment of reaction equilibrium can be assumed. Surprisingly, solid-liquid distribution ratios (Rd) are clearly higher than those measured for Np(V) sorption onto illite under aerobic conditions. The observation that Rd increases with decreasing pe (pe = -log ae-) suggests partial reduction to Np(IV), although measured redox potentials (pe values) at a first glance suggest the predominance of Np(V). Reduction to Np(IV) at the illite surface could indeed be confirmed by X-ray absorption near-edge spectroscopy (XANES). Np speciation in presence of the purified Na-illite under given conditions is consistently described by applying the 2 sites protolysis non-electrostatic surface complexation and cation exchange model. Measured pe data are taken to calculate Np redox state and surface complexation constants for Np(IV) are derived by applying a data fitting procedure. Constants are very consistent with results obtained by applying an existing linear free energy relationship (LFER). Taking Np(IV) surface complexation constants into account shifts the calculated Np(V)/Np(IV) redox borderline in presence of illite surfaces by 3-5 pe units (0.2-0.3 V) towards redox neutral conditions. Our study suggests that Np(V) reduction in presence of a sorbing mineral phase is thermodynamically favored.

  4. Proteostasis and REDOX state in the heart

    PubMed Central

    Christians, Elisabeth S.

    2012-01-01

    Force-generating contractile cells of the myocardium must achieve and maintain their primary function as an efficient mechanical pump over the life span of the organism. Because only half of the cardiomyocytes can be replaced during the entire human life span, the maintenance strategy elicited by cardiac cells relies on uninterrupted renewal of their components, including proteins whose specialized functions constitute this complex and sophisticated contractile apparatus. Thus cardiac proteins are continuously synthesized and degraded to ensure proteome homeostasis, also termed “proteostasis.” Once synthesized, proteins undergo additional folding, posttranslational modifications, and trafficking and/or become involved in protein-protein or protein-DNA interactions to exert their functions. This includes key transient interactions of cardiac proteins with molecular chaperones, which assist with quality control at multiple levels to prevent misfolding or to facilitate degradation. Importantly, cardiac proteome maintenance depends on the cellular environment and, in particular, the reduction-oxidation (REDOX) state, which is significantly different among cardiac organelles (e.g., mitochondria and endoplasmic reticulum). Taking into account the high metabolic activity for oxygen consumption and ATP production by mitochondria, it is a challenge for cardiac cells to maintain the REDOX state while preventing either excessive oxidative or reductive stress. A perturbed REDOX environment can affect protein handling and conformation (e.g., disulfide bonds), disrupt key structure-function relationships, and trigger a pathogenic cascade of protein aggregation, decreased cell survival, and increased organ dysfunction. This review covers current knowledge regarding the general domain of REDOX state and protein folding, specifically in cardiomyocytes under normal-healthy conditions and during disease states associated with morbidity and mortality in humans. PMID:22003057

  5. Proterozoic ocean redox and biogeochemical stasis

    PubMed Central

    Reinhard, Christopher T.; Planavsky, Noah J.; Robbins, Leslie J.; Partin, Camille A.; Gill, Benjamin C.; Lalonde, Stefan V.; Bekker, Andrey; Konhauser, Kurt O.; Lyons, Timothy W.

    2013-01-01

    The partial pressure of oxygen in Earth’s atmosphere has increased dramatically through time, and this increase is thought to have occurred in two rapid steps at both ends of the Proterozoic Eon (∼2.5–0.543 Ga). However, the trajectory and mechanisms of Earth’s oxygenation are still poorly constrained, and little is known regarding attendant changes in ocean ventilation and seafloor redox. We have a particularly poor understanding of ocean chemistry during the mid-Proterozoic (∼1.8–0.8 Ga). Given the coupling between redox-sensitive trace element cycles and planktonic productivity, various models for mid-Proterozoic ocean chemistry imply different effects on the biogeochemical cycling of major and trace nutrients, with potential ecological constraints on emerging eukaryotic life. Here, we exploit the differing redox behavior of molybdenum and chromium to provide constraints on seafloor redox evolution by coupling a large database of sedimentary metal enrichments to a mass balance model that includes spatially variant metal burial rates. We find that the metal enrichment record implies a Proterozoic deep ocean characterized by pervasive anoxia relative to the Phanerozoic (at least ∼30–40% of modern seafloor area) but a relatively small extent of euxinic (anoxic and sulfidic) seafloor (less than ∼1–10% of modern seafloor area). Our model suggests that the oceanic Mo reservoir is extremely sensitive to perturbations in the extent of sulfidic seafloor and that the record of Mo and chromium enrichments through time is consistent with the possibility of a Mo–N colimited marine biosphere during many periods of Earth’s history. PMID:23515332

  6. Redox Regulation in Plant Immune Function

    PubMed Central

    Frederickson Matika, Debra E.

    2014-01-01

    Abstract Significance: Production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) occurs rapidly in response to attempted pathogen invasion of potential host plants. Such reduction–oxidation (redox) changes are sensed and transmitted to engage immune function, including the hypersensitive response, a programmed execution of challenged plant cells. Recent Advances: Pathogen elicitors trigger changes in calcium that are sensed by calmodulin, calmodulin-like proteins, and calcium-dependent protein kinases, which activate ROS and RNS production. The ROS and RNS production is compartmentalized within the cell and occurs through multiple routes. Mitogen-activated protein kinase (MAPK) cascades are engaged upstream and downstream of ROS and nitric oxide (NO) production. NO is increasingly recognized as a key signaling molecule, regulating downstream protein function through S-nitrosylation, the addition of an NO moiety to a reactive cysteine thiol. Critical Issues: How multiple sources of ROS and RNS are coordinated is unclear. The putative protein sensors that detect and translate fluxes in ROS and RNS into differential gene expression are obscure. Protein tyrosine nitration following reaction of peroxynitrite with tyrosine residues has been proposed as another signaling mechanism or as a marker leading to protein degradation, but the reversibility remains to be established. Future Directions: Research is needed to identify the full spectrum of NO-modified proteins with special emphasis on redox-activated transcription factors and their cognate target genes. A systems approach will be required to uncover the complexities integral to redox regulation of MAPK cascades, transcription factors, and defense genes through the combined effects of calcium, phosphorylation, S-nitrosylation, and protein tyrosine nitration. Antioxid. Redox Signal. 21, 1373–1388. PMID:24206122

  7. Redox equilibria of iron oxides in aqueous-based magnetite dispersions: effect of pH and redox potential.

    PubMed

    Pang, Suh Cem; Chin, Suk Fun; Anderson, Marc A

    2007-07-01

    The effect of pH and redox potential on the redox equilibria of iron oxides in aqueous-based magnetite dispersions was investigated. The ionic activities of each dissolved iron species in equilibrium with magnetite nanoparticles were determined and contoured within the Eh-pH framework of a composite stability diagram. Both standard redox potentials and equilibrium constants for all major iron oxide redox equilibria in magnetite dispersions were found to differ from values reported for noncolloidal systems. The "triple point" position of redox equilibrium among Fe(II) ions, magnetite, and hematite shifted to a higher standard redox potential and an equilibrium constant which was several orders of magnitude higher. The predominant area of magnetite stability was enlarged to cover a wider range of both pH and redox potentials as compared to that of a noncolloidal magnetite system.

  8. Membrane development for vanadium redox flow batteries.

    PubMed

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become the main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion, as the preferred membrane material, is responsible for about 11% of the overall cost of a 1 MW/8 MWh system. Therefore, in recent years two main membrane related research threads have emerged: 1) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and 2) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic scientific issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  9. Measurement of Redox Potential in Nanoecotoxicological Investigations

    PubMed Central

    Tantra, Ratna; Cackett, Alex; Peck, Roger; Gohil, Dipak; Snowden, Jacqueline

    2012-01-01

    Redox potential has been identified by the Organisation for Economic Co-operation and Development (OECD) as one of the parameters that should be investigated for the testing of manufactured nanomaterials. There is still some ambiguity concerning this parameter, i.e., as to what and how to measure, particularly when in a nanoecotoxicological context. In this study the redox potentials of six nanomaterials (either zinc oxide (ZnO) or cerium oxide (CeO2)) dispersions were measured using an oxidation-reduction potential (ORP) electrode probe. The particles under testing differed in terms of their particle size and dispersion stability in deionised water and in various ecotox media. The ORP values of the various dispersions and how they fluctuate relative to each other are discussed. Results show that the ORP values are mainly governed by the type of liquid media employed, with little contributions from the nanoparticles. Seawater was shown to have reduced the ORP value, which was attributed to an increase in the concentration of reducing agents such as sulphites or the reduction of dissolved oxygen concentration. The lack of redox potential value contribution from the particles themselves is thought to be due to insufficient interaction of the particles at the Pt electrode of the ORP probe. PMID:22131988

  10. A redox-mediated Kemp eliminase

    NASA Astrophysics Data System (ADS)

    Li, Aitao; Wang, Binju; Ilie, Adriana; Dubey, Kshatresh D.; Bange, Gert; Korendovych, Ivan V.; Shaik, Sason; Reetz, Manfred T.

    2017-03-01

    The acid/base-catalysed Kemp elimination of 5-nitro-benzisoxazole forming 2-cyano-4-nitrophenol has long served as a design platform of enzymes with non-natural reactions, providing new mechanistic insights in protein science. Here we describe an alternative concept based on redox catalysis by P450-BM3, leading to the same Kemp product via a fundamentally different mechanism. QM/MM computations show that it involves coordination of the substrate's N-atom to haem-Fe(II) with electron transfer and concomitant N-O heterolysis liberating an intermediate having a nitrogen radical moiety Fe(III)-N. and a phenoxyl anion. Product formation occurs by bond rotation and H-transfer. Two rationally chosen point mutations cause a notable increase in activity. The results shed light on the prevailing mechanistic uncertainties in human P450-catalysed metabolism of the immunomodulatory drug leflunomide, which likewise undergoes redox-mediated Kemp elimination by P450-BM3. Other isoxazole-based pharmaceuticals are probably also metabolized by a redox mechanism. Our work provides a basis for designing future artificial enzymes.

  11. Redox alters yellow dragonflies into red.

    PubMed

    Futahashi, Ryo; Kurita, Ryoji; Mano, Hiroaki; Fukatsu, Takema

    2012-07-31

    Body color change associated with sexual maturation--so-called nuptial coloration--is commonly found in diverse vertebrates and invertebrates, and plays important roles for their reproductive success. In some dragonflies, whereas females and young males are yellowish in color, aged males turn vivid red upon sexual maturation. The male-specific coloration plays pivotal roles in, for example, mating and territoriality, but molecular basis of the sex-related transition in body coloration of the dragonflies has been poorly understood. Here we demonstrate that yellow/red color changes in the dragonflies are regulated by redox states of epidermal ommochrome pigments. Ratios of reduced-form pigments to oxidized-form pigments were significantly higher in red mature males than yellow females and immature males. The ommochrome pigments extracted from the dragonflies changed color according to redox conditions in vitro: from red to yellow in the presence of oxidant and from yellow to red in the presence of reductant. By injecting the reductant solution into live insects, the yellow-to-red color change was experimentally reproduced in vivo in immature males and mature females. Discontinuous yellow/red mosaicism was observed in body coloration of gynandromorphic dragonflies, suggesting a cell-autonomous regulation over the redox states of the ommochrome pigments. Our finding extends the mechanical repertoire of pigment-based body color change in animals, and highlights an impressively simple molecular mechanism that regulates an ecologically important color trait.

  12. Redox alters yellow dragonflies into red

    PubMed Central

    Futahashi, Ryo; Kurita, Ryoji; Mano, Hiroaki; Fukatsu, Takema

    2012-01-01

    Body color change associated with sexual maturation—so-called nuptial coloration—is commonly found in diverse vertebrates and invertebrates, and plays important roles for their reproductive success. In some dragonflies, whereas females and young males are yellowish in color, aged males turn vivid red upon sexual maturation. The male-specific coloration plays pivotal roles in, for example, mating and territoriality, but molecular basis of the sex-related transition in body coloration of the dragonflies has been poorly understood. Here we demonstrate that yellow/red color changes in the dragonflies are regulated by redox states of epidermal ommochrome pigments. Ratios of reduced-form pigments to oxidized-form pigments were significantly higher in red mature males than yellow females and immature males. The ommochrome pigments extracted from the dragonflies changed color according to redox conditions in vitro: from red to yellow in the presence of oxidant and from yellow to red in the presence of reductant. By injecting the reductant solution into live insects, the yellow-to-red color change was experimentally reproduced in vivo in immature males and mature females. Discontinuous yellow/red mosaicism was observed in body coloration of gynandromorphic dragonflies, suggesting a cell-autonomous regulation over the redox states of the ommochrome pigments. Our finding extends the mechanical repertoire of pigment-based body color change in animals, and highlights an impressively simple molecular mechanism that regulates an ecologically important color trait. PMID:22778425

  13. A redox-mediated Kemp eliminase

    PubMed Central

    Li, Aitao; Wang, Binju; Ilie, Adriana; Dubey, Kshatresh D.; Bange, Gert; Korendovych, Ivan V.; Shaik, Sason; Reetz, Manfred T.

    2017-01-01

    The acid/base-catalysed Kemp elimination of 5-nitro-benzisoxazole forming 2-cyano-4-nitrophenol has long served as a design platform of enzymes with non-natural reactions, providing new mechanistic insights in protein science. Here we describe an alternative concept based on redox catalysis by P450-BM3, leading to the same Kemp product via a fundamentally different mechanism. QM/MM computations show that it involves coordination of the substrate's N-atom to haem-Fe(II) with electron transfer and concomitant N–O heterolysis liberating an intermediate having a nitrogen radical moiety Fe(III)–N· and a phenoxyl anion. Product formation occurs by bond rotation and H-transfer. Two rationally chosen point mutations cause a notable increase in activity. The results shed light on the prevailing mechanistic uncertainties in human P450-catalysed metabolism of the immunomodulatory drug leflunomide, which likewise undergoes redox-mediated Kemp elimination by P450-BM3. Other isoxazole-based pharmaceuticals are probably also metabolized by a redox mechanism. Our work provides a basis for designing future artificial enzymes. PMID:28348375

  14. Membrane Development for Vanadium Redox Flow Batteries

    SciTech Connect

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become a main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range, and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion{reg_sign} as the preferred membrane material is responsible for {approx}11% of the overall cost of a 1 MW/8 MWh system. Therefore in recent years two main membrane-related research threads have emerged: (a) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and (b) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic science issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  15. Redox Regulation in Amyotrophic Lateral Sclerosis

    PubMed Central

    Parakh, Sonam; Spencer, Damian M.; Halloran, Mark A.; Soo, Kai Y.; Atkin, Julie D.

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results from the death of upper and lower motor neurons. Due to a lack of effective treatment, it is imperative to understand the underlying mechanisms and processes involved in disease progression. Regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in disease. Here we discuss the possible involvement of redox dysregulation in the pathophysiology of ALS, either as a cause of cellular abnormalities or a consequence. We focus on its possible role in oxidative stress, protein misfolding, glutamate excitotoxicity, lipid peroxidation and cholesterol esterification, mitochondrial dysfunction, impaired axonal transport and neurofilament aggregation, autophagic stress, and endoplasmic reticulum (ER) stress. We also speculate that an ER chaperone protein disulphide isomerase (PDI) could play a key role in this dysregulation. PDI is essential for normal protein folding by oxidation and reduction of disulphide bonds, and hence any disruption to this process may have consequences for motor neurons. Addressing the mechanism underlying redox regulation and dysregulation may therefore help to unravel the molecular mechanism involved in ALS. PMID:23533690

  16. Statins: Pleiotropic Regulators of Cardiovascular Redox State

    PubMed Central

    Channon, Keith M.

    2014-01-01

    Abstract Lipid-lowering treatment with statins is one of the most effective therapeutic strategies in cardiovascular medicine because they reduce cardiovascular risk in both primary and secondary prevention. Despite the well-established links between low-density lipoprotein and cardiovascular risk, the clinical benefit from statin treatment is not fully explained by their lipid-lowering potential. A number of pleiotropic effects of statins have been described over the past decade, and their ability to suppress global oxidative stress is probably one of the most important mechanisms by which they exert their beneficial effects on the cardiovascular system. In this Forum, there are review articles discussing the molecular mechanisms by which statins modify redox signaling in the vasculature and the heart. They exert direct effects on the vascular wall and the myocardium or indirect by targeting the interactions between the cardiovascular system and adipose tissue or circulating cell types. The review articles in this Forum follow a translational approach and link the molecular mechanisms by which statins modify cardiovascular redox signaling with their clinical benefit in the prevention and treatment of cardiovascular diseases. Antioxid. Redox Signal. 20, 1195–1197. PMID:24409984

  17. Reactive oxygen species and redox compartmentalization.

    PubMed

    Kaludercic, Nina; Deshwal, Soni; Di Lisa, Fabio

    2014-01-01

    Reactive oxygen species (ROS) formation and signaling are of major importance and regulate a number of processes in physiological conditions. A disruption in redox status regulation, however, has been associated with numerous pathological conditions. In recent years it has become increasingly clear that oxidative and reductive modifications are confined in a spatio-temporal manner. This makes ROS signaling similar to that of Ca(2+) or other second messengers. Some subcellular compartments are more oxidizing (such as lysosomes or peroxisomes) whereas others are more reducing (mitochondria, nuclei). Moreover, although more reducing, mitochondria are especially susceptible to oxidation, most likely due to the high number of exposed thiols present in that compartment. Recent advances in the development of redox probes allow specific measurement of defined ROS in different cellular compartments in intact living cells or organisms. The availability of these tools now allows simultaneous spatio-temporal measurements and correlation between ROS generation and organelle and/or cellular function. The study of ROS compartmentalization and microdomains will help elucidate their role in physiology and disease. Here we will examine redox probes currently available and how ROS generation may vary between subcellular compartments. Furthermore, we will discuss ROS compartmentalization in physiological and pathological conditions focusing our attention on mitochondria, since their vulnerability to oxidative stress is likely at the basis of several diseases.

  18. Crossing redox boundaries--aquifer redox history and effects on iron mineralogy and arsenic availability.

    PubMed

    Banning, Andre; Rüde, Thomas R; Dölling, Bettina

    2013-11-15

    Cretaceous shallow marine sediments from northwestern Germany exhibit a distinct colour and geochemical boundary in a depth of several decametres, witnessing a terrestrial oxidative paleo redox process which resulted in cement loss and oxidation of Fe(II) phases. Sediment samples were obtained from boreholes drilled in near-coastal and further basinward paleo environments, including both reduced and oxidized redox facies, to characterize As and Fe occurrence in unaltered layers and redistributional consequences of the redox event. Geochemical and mineralogical composition and As fractionation were assessed. Arsenic resides in pyrite in the reduced section with a bulk rock maximum concentration of 39 μg g(-1), calculated Aspyrite is ~0.2 wt.%. Siderite concretions in the fine sands do not function as As sinks, neither does glauconite whose general As/Fe leaching behaviour was characterized. In the zone of redox transition, reduced and oxidized phases coexist and elevated As concentrations (up to 73 μg g(-1)) with high proportions of reactive As were detected. Arsenic behaviour changes from relatively homogeneous Fe sulphide-control in the unaltered sediments to very heterogeneous Fe hydroxide-control above the paleo redox boundary. The studied characteristics determine recent As availability in the subsurface and must be considered during groundwater extraction from this highly important aquifer.

  19. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress

    PubMed Central

    Hossain, M. Sazzad; Dietz, Karl-Josef

    2016-01-01

    Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g., the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS) generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH), alternative oxidase (AOX), the plastid terminal oxidase (PTOX) and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants. PMID:27242807

  20. Redox Indicator Mice Stably Expressing Genetically Encoded Neuronal roGFP: Versatile Tools to Decipher Subcellular Redox Dynamics in Neuropathophysiology

    PubMed Central

    Wagener, Kerstin C.; Kolbrink, Benedikt; Dietrich, Katharina; Kizina, Kathrin M.; Terwitte, Lukas S.; Kempkes, Belinda; Bao, Guobin

    2016-01-01

    Abstract Aims: Reactive oxygen species (ROS) and downstream redox alterations not only mediate physiological signaling but also neuropathology. For long, ROS/redox imaging was hampered by a lack of reliable probes. Genetically encoded redox sensors overcame this gap and revolutionized (sub)cellular redox imaging. Yet, the successful delivery of sensor-coding DNA, which demands transfection/transduction of cultured preparations or stereotaxic microinjections of each subject, remains challenging. By generating transgenic mice, we aimed to overcome limiting cultured preparations, circumvent surgical interventions, and to extend effectively redox imaging to complex and adult preparations. Results: Our redox indicator mice widely express Thy1-driven roGFP1 (reduction–oxidation-sensitive green fluorescent protein 1) in neuronal cytosol or mitochondria. Negative phenotypic effects of roGFP1 were excluded and its proper targeting and functionality confirmed. Redox mapping by ratiometric wide-field imaging reveals most oxidizing conditions in CA3 neurons. Furthermore, mitochondria are more oxidized than cytosol. Cytosolic and mitochondrial roGFP1s reliably report cell endogenous redox dynamics upon metabolic challenge or stimulation. Fluorescence lifetime imaging yields stable, but marginal, response ranges. We therefore developed automated excitation ratiometric 2-photon imaging. It offers superior sensitivity, spatial resolution, and response dynamics. Innovation and Conclusion: Redox indicator mice enable quantitative analyses of subcellular redox dynamics in a multitude of preparations and at all postnatal stages. This will uncover cell- and compartment-specific cerebral redox signals and their defined alterations during development, maturation, and aging. Cross-breeding with other disease models will reveal molecular details on compartmental redox homeostasis in neuropathology. Combined with ratiometric 2-photon imaging, this will foster our mechanistic understanding

  1. Redox Control of Liver Function in Health and Disease

    PubMed Central

    Marí, Montserrat; Colell, Anna; Morales, Albert; von Montfort, Claudia; Garcia-Ruiz, Carmen

    2010-01-01

    Abstract Reactive oxygen species (ROS), a heterogeneous population of biologically active intermediates, are generated as by-products of the aerobic metabolism and exhibit a dual role in biology. When produced in controlled conditions and in limited quantities, ROS may function as signaling intermediates, contributing to critical cellular functions such as proliferation, differentiation, and cell survival. However, ROS overgeneration and, particularly, the formation of specific reactive species, inflicts cell death and tissue damage by targeting vital cellular components such as DNA, lipids, and proteins, thus arising as key players in disease pathogenesis. Given the predominant role of hepatocytes in biotransformation and metabolism of xenobiotics, ROS production constitutes an important burden in liver physiology and pathophysiology and hence in the progression of liver diseases. Despite the recognized role of ROS in disease pathogenesis, the efficacy of antioxidants as therapeutics has been limited. A better understanding of the mechanisms, nature, and location of ROS generation, as well as the optimization of cellular defense strategies, may pave the way for a brighter future for antioxidants and ROS scavengers in the therapy of liver diseases. Antioxid. Redox Signal. 12, 1295—1331. PMID:19803748

  2. Redox regulation by thioredoxin superfamily; protection against oxidative stress and aging.

    PubMed

    Tanaka, T; Nakamura, H; Nishiyama, A; Hosoi, F; Masutani, H; Wada, H; Yodoi, J

    2000-12-01

    Thioredoxin (TRX) is a 12 kD protein with redox-active dithiol in the active site; -Cys-Gly-Pro-Cys-. We originally cloned human TRX as adult T cell leukemia derived factor (ADF) produced by HTLV-I transformed cells. TRX and related molecules maintain a cellular reducing enviroment, working in concert with the glutathione system. Physiologically, TRX has cytoprotective effects against oxidative stress. TRX promotes DNA binding of transcription factors such as NF-kB, AP-1, p53, and PEBP-2. The TRX superfamily, including thioredoxin-2 (mitochondrial thioredoxin) and glutaredoxin, are involved in biologically important phenomena via the redox-regulating system. Thioredoxin-binding protein-2, which we recently identified by a yeast two-hybrid system, is a type of endogenous modulator of TRX activity. TRX is secreted from the cells and exhibits cytokine-like and chemokine-like activities. Redox regulation by TRX plays a crucial role in biological responses against oxidative stress.

  3. Celebrating Professor Britton Chance (1913-2010), a founding father of redox sciences.

    PubMed

    Ohnishi, Tomoko; Zweier, Jay L

    2011-12-01

    Renowned great scientist and redox pioneer, Dr. Britton Chance, closed his 97 years of legendary life on November 16, 2010. He was the Eldridge Reeves Johnson emeritus professor of biophysics, physical chemistry, and radiologic physics at the University of Pennsylvania. He achieved fame as a prominent biophysicist and developer of highly innovative biomedical instrumentation. His scientific career stretched over almost one century and he achieved many scientific and engineering breakthroughs throughout his long prolific career. The advances that he and his colleagues achieved led to great strides in our understanding of biology and disease. He was among the first scientists to recognize the importance of free radicals and reactive oxygen species in mitochondrial metabolism and cells as well as to map pathways of redox biology and signaling. Dr. Chance served as a pioneer and inspiration to generations of researchers in the fields of redox biochemistry, metabolism, and disease. He will be missed by all of us in the research community but will live on through his monumental scientific accomplishments, the novel instrumentation he developed, as well as the many scientists whom he trained and influenced.

  4. Behavioral responses of Escherichia coli to changes in redox potential.

    PubMed

    Bespalov, V A; Zhulin, I B; Taylor, B L

    1996-09-17

    Escherichia coli bacteria sensed the redox state in their surroundings and they swam to a niche that had a preferred reduction potential. In a spatial redox gradient of benzoquinone/benzoquinol, E. coli cells migrated to form a sharply defined band. Bacteria swimming out of either face of the band tumbled and returned to the preferred conditions at the site of the band. This behavioral response was named redox taxis. Redox molecules, such as substituted quinones, that elicited redox taxis, interact with the bacterial electron transport system, thereby altering electron transport and the proton motive force. The magnitude of the behavioral response was dependent on the reduction potential of the chemoeffector. The Tsr, Tar, Trg, Tap, and CheR proteins, which have a role in chemotaxis, were not essential for redox taxis. A cheB mutant had inverted responses in redox taxis, as previously demonstrated in aerotaxis. A model is proposed in which a redox effector molecule perturbs the electron transport system, and an unknown sensor in the membrane detects changes in the proton motive force or the redox status of the electron transport system, and transduces this information into a signal that regulates phosphorylation of the CheA protein. A similar mechanism has been proposed for aerotaxis. Redox taxis may play an important role in the distribution of bacterial species in natural environments.

  5. Conformational changes in redox pairs of protein structures

    PubMed Central

    Fan, Samuel W; George, Richard A; Haworth, Naomi L; Feng, Lina L; Liu, Jason Y; Wouters, Merridee A

    2009-01-01

    Disulfides are conventionally viewed as structurally stabilizing elements in proteins but emerging evidence suggests two disulfide subproteomes exist. One group mediates the well known role of structural stabilization. A second redox-active group are best known for their catalytic functions but are increasingly being recognized for their roles in regulation of protein function. Redox-active disulfides are, by their very nature, more susceptible to reduction than structural disulfides; and conversely, the Cys pairs that form them are more susceptible to oxidation. In this study, we searched for potentially redox-active Cys Pairs by scanning the Protein Data Bank for structures of proteins in alternate redox states. The PDB contains over 1134 unique redox pairs of proteins, many of which exhibit conformational differences between alternate redox states. Several classes of structural changes were observed, proteins that exhibit: disulfide oxidation following expulsion of metals such as zinc; major reorganisation of the polypeptide backbone in association with disulfide redox-activity; order/disorder transitions; and changes in quaternary structure. Based on evidence gathered supporting disulfide redox activity, we propose disulfides present in alternate redox states are likely to have physiologically relevant redox activity. PMID:19598234

  6. Organelle Redox of CF and CFTR-Corrected Airway Epithelia

    PubMed Central

    Schwarzer, Christian; Illek, Beate; Suh, Jung H.; Remington, S. James; Fischer, Horst; Machen, Terry E.

    2014-01-01

    In cystic fibrosis reduced CFTR function may alter redox properties of airway epithelial cells. Redox-sensitive GFP (roGFP1) and imaging microscopy were used to measure redox potentials of cytosol, ER, mitochondria and cell surface of cystic fibrosis nasal epithelial cells and CFTR-corrected cells. We also measured glutathione and cysteine thiol redox states in cell lysates and apical fluids to provide coverage over a range of redox potentials and environments that might be affected by CFTR. As measured with roGFP1, redox potentials at the cell surface (~ -207 ±8 mV) and in the ER (~ -217 ±1 mV) and rates of regulation of the apical fluid and ER lumen following DTT treatment were similar for CF and CFTR-corrected cells. CF and CFTR-corrected cells had similar redox potentials in mitochondria (-344 ±9 mV) and cytosol (-322 ±7 mV). Oxidation of carboxy-dichlorodihydrofluoresceindiacetate and of apical Amplex Red occurred at equal rates in CF and CFTR-corrected cells. Glutathione and cysteine redox couples in cell lysates and apical fluid were equal in CF and CFTR-corrected cells. These quantitative estimates of organelle redox potentials combined with apical and cell measurements using small molecule couples confirmed there were no differences in redox properties of CF and CFTR-corrected cells. PMID:17603939

  7. EQCM Measurements: Redox-Induced Changes in Solvent and Ion Content in Anchored Redox Monolayers of Organosulfur Compounds and Their Electrocatalysis on Gold Electrodes

    DTIC Science & Technology

    1990-08-01

    EQCM Mwasurements: Redox-Induced Changes in Solvent and M0 Content in Anchored Redox Monolayers of Organosulfur CD Compounds and their Electrocatalysis ...REDOX-INDUCED CHANGES IN SOLVENT AND ION CONTENT IN ANCHORED REDOX MONOLAYERS OF ORGANOSULFUR COMPOUNDS AND THEIR ELECTROCATALYSIS ON GOLD...Measurements: Redox-Induced Changes in Solvent and Ion Content in Anchored Redox Monolayers of Organosulfur Compounds and their Electrocatalysis on

  8. Tailoring partially reduced graphene oxide as redox mediator for enhanced biotransformation of iopromide under methanogenic and sulfate-reducing conditions.

    PubMed

    Toral-Sánchez, Eduardo; Rangel-Mendez, J Rene; Ascacio Valdés, Juan A; Aguilar, Cristóbal N; Cervantes, Francisco J

    2016-10-22

    This work reports the first successful application of graphene oxide (GO) and partially reduced GO (rGO) as redox mediator (RM) to increase the biotransformation of the recalcitrant iodinated contrast medium, iopromide (IOP). Results showed that GO-based materials promoted up to 5.5 and 2.8-fold faster biotransformation of IOP by anaerobic sludge under methanogenic and sulfate-reducing conditions, respectively. Correlation between the extent of reduction of GO and its redox-mediating capacity was demonstrated, which was reflected in faster removal and greater extent of biotransformation of IOP. Further analysis indicated that the biotransformation pathway of IOP involved multiple reactions including deiodination, decarboxylation, demethylation, dehydration and N-dealkylation. GO-based materials could be strategically tailored and integrated in biological treatment systems to effectively enhance the redox conversion of recalcitrant pollutants commonly found in wastewater treatment systems and industrial effluents.

  9. Trapped in the coordination sphere: Nitrate ion transfer driven by the cerium(III/IV) redox couple

    SciTech Connect

    Ellis, Ross J.; Bera, Mrinal K.; Reinhart, Benjamin; Antonio, Mark R.

    2016-11-07

    Redox-driven ion transfer between phases underpins many biological and technological processes, including industrial separation of ions. Here we investigate the electrochemical transfer of nitrate anions between oil and water phases, driven by the reduction and oxidation of cerium coordination complexes in oil phases. We find that the coordination environment around the cerium cation has a pronounced impact on the overall redox potential, particularly with regard to the number of coordinated nitrate anions. Our results suggest a new fundamental mechanism for tuning ion transfer between phases; by 'trapping' the migrating ion inside the coordination sphere of a redox-active complex. Here, this presents a new route for controlling anion transfer in electrochemically-driven separation applications.

  10. Trapped in the coordination sphere: Nitrate ion transfer driven by the cerium(III/IV) redox couple

    DOE PAGES

    Ellis, Ross J.; Bera, Mrinal K.; Reinhart, Benjamin; ...

    2016-11-07

    Redox-driven ion transfer between phases underpins many biological and technological processes, including industrial separation of ions. Here we investigate the electrochemical transfer of nitrate anions between oil and water phases, driven by the reduction and oxidation of cerium coordination complexes in oil phases. We find that the coordination environment around the cerium cation has a pronounced impact on the overall redox potential, particularly with regard to the number of coordinated nitrate anions. Our results suggest a new fundamental mechanism for tuning ion transfer between phases; by 'trapping' the migrating ion inside the coordination sphere of a redox-active complex. Here, thismore » presents a new route for controlling anion transfer in electrochemically-driven separation applications.« less

  11. Differentiation of chemical reaction activity of various carbon nanotubes using redox potential: Classification by physical and chemical structures

    PubMed Central

    Castranova, Vincent; Porter, Dale W.; Yanagisawa, Takashi; Saito, Naoto; Kobayashi, Shinsuke; Endo, Morinobu

    2016-01-01

    The present study systematically examined the kinetics of a hydroxyl radical scavenging reaction of various carbon nanotubes (CNTs) including double-walled and multi-walled carbon nanotubes (DWCNTs and MWCNTs), and carbon nano peapods (AuCl3@DWCNT). The theoretical model that we recently proposed based on the redox potential of CNTs was used to analyze the experimental results. The reaction kinetics for DWCNTs and thin MWCNTs agreed well with the theoretical model and was consistent with each other. On the other hand, thin and thick MWCNTs behaved differently, which was consistent with the theory. Additionally, surface morphology of CNTs substantially influenced the reaction kinetics, while the doped particles in the center hollow parts of CNTs (AuCl3@DWCNT) shifted the redox potential in a different direction. These findings make it possible to predict the chemical and biological reactivity of CNTs based on the structural and chemical nature and their influence on the redox potential. PMID:26783369

  12. Differentiation of chemical reaction activity of various carbon nanotubes using redox potential: Classification by physical and chemical structures.

    PubMed

    Tsuruoka, Shuji; Matsumoto, Hidetoshi; Castranova, Vincent; Porter, Dale W; Yanagisawa, Takashi; Saito, Naoto; Kobayashi, Shinsuke; Endo, Morinobu

    2015-12-01

    The present study systematically examined the kinetics of a hydroxyl radical scavenging reaction of various carbon nanotubes (CNTs) including double-walled and multi-walled carbon nanotubes (DWCNTs and MWCNTs), and carbon nano peapods (AuCl3@DWCNT). The theoretical model that we recently proposed based on the redox potential of CNTs was used to analyze the experimental results. The reaction kinetics for DWCNTs and thin MWCNTs agreed well with the theoretical model and was consistent with each other. On the other hand, thin and thick MWCNTs behaved differently, which was consistent with the theory. Additionally, surface morphology of CNTs substantially influenced the reaction kinetics, while the doped particles in the center hollow parts of CNTs (AuCl3@DWCNT) shifted the redox potential in a different direction. These findings make it possible to predict the chemical and biological reactivity of CNTs based on the structural and chemical nature and their influence on the redox potential.

  13. Redox cycling with facing interdigitated array electrodes as a method for selective detection of redox species.

    PubMed

    Dam, V A T; Olthuis, W; van den Berg, A

    2007-04-01

    A pair of interdigitated ultramicroelectrodes (UMEs) is used to electrochemically detect a weak reductor (dopamine) in the presence of a stronger one (K(4)[Fe(CN)(6)]). In the mixture of both reductors, one of the two interdigitated electrodes (the generator electrode) is used to oxidize both species at 700 mV vs. Ag/AgCl, followed by subsequent (selective) reduction of the oxidized dopamine at 400 mV. A regenerated dopamine molecule can thus be oxidized several times (redox cycling) and enable selective detection even in the presence of the stronger reductor. In order to obtain high redox cycling efficiency, we designed and realized platinum electrodes with widths of 2 and 4 microm and spacing of 2 microm, which gave redox cycling efficiencies of 9 and 4 respectively. Using this electrode design, a dopamine/K(4)[Fe(CN)(6)] selectivity of 2 could be obtained.

  14. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.

    PubMed

    Gorski, Christopher A; Klüpfel, Laura E; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2013-01-01

    Structural Fe in clay minerals is an important redox-active species in many pristine and contaminated environments as well as in engineered systems. Understanding the extent and kinetics of redox reactions involving Fe-bearing clay minerals has been challenging due to the inability to relate structural Fe(2+)/Fe(total) fractions to fundamental redox properties, such as reduction potentials (EH). Here, we overcame this challenge by using mediated electrochemical reduction (MER) and oxidation (MEO) to characterize the fraction of redox-active structural Fe (Fe(2+)/Fe(total)) in smectites over a wide range of applied EH-values (-0.6 V to +0.6 V). We examined Fe(2+)/Fe(total )- EH relationships of four natural Fe-bearing smectites (SWy-2, SWa-1, NAu-1, NAu-2) in their native, reduced, and reoxidized states and compared our measurements with spectroscopic observations and a suite of mineralogical properties. All smectites exhibited unique Fe(2+)/Fe(total) - EH relationships, were redox active over wide EH ranges, and underwent irreversible electron transfer induced structural changes that were observable with X-ray absorption spectroscopy. Variations among the smectite Fe(2+)/Fe(total) - EH relationships correlated well with both bulk and molecular-scale properties, including Fe(total) content, layer charge, and quadrupole splitting values, suggesting that multiple structural parameters determined the redox properties of smectites. The Fe(2+)/Fe(total) - EH relationships developed for these four commonly studied clay minerals may be applied to future studies interested in relating the extent of structural Fe reduction or oxidation to EH-values.

  15. Multiple redox states of multiheme cytochromes may enable bacterial response to changing redox environments

    NASA Astrophysics Data System (ADS)

    Arbour, T.; Wrighton, K. C.; Mullin, S. W.; Castelle, C.; Luef, B.; Gilbert, B.; Banfield, J. F.

    2013-12-01

    Multiheme c-type cytochromes (MHCs) are key components in electron-transport pathways that enable some microorganisms to transfer electron byproducts of metabolism to a variety of minerals. As a response to changes in mineral redox potential, microbial communities may shift their membership, or individual organisms may adjust protein expression. Alternatively, the ability to respond may be conferred by the innate characteristics of certain electron-transport-chain components. Here, we used potentiostat-controlled microbial fuel cells (MFCs) to measure the timescale of response to imposed changes in redox conditions, thus placing constraints on the importance of these different mechanisms. In the experiments, a solid electrode acts as an electron-accepting mineral whose redox potential can be precisely controlled. We inoculated duplicate MFCs with a sediment/groundwater mixture from an aquifer at Rifle, Colorado, supplied acetate as an electron donor, and obtained stable, mixed-species biofilms dominated by Geobacter and a novel Geobacter-related family. We poised the anode at potentials spanning the range of natural Fe(III)-reduction, then performed cyclic voltammetry (CV) to characterize the overall biofilm redox signature. The apparent biofilm midpoint potential shifted directly with anode set potential when the latter was changed within the range from about -250 to -50 mV vs. SHE. Following a jump in set potential by 200 mV, the CV-midpoint shift by ~100 mV over a timescale of ~30 minutes to a few hours, depending on the direction of the potential change. The extracellular electron transfer molecules, whose overall CV signature is very similar to those of purified MHCs, appear to span a broad redox range (~200 mV), supporting the hypothesis that MHCs confer substantial redox flexibility. This flexibility may be a principle reason for the abundance of MHCs expressed by microorganisms capable of extracellular electron transfer to minerals.

  16. Surface Redox Chemistry of Immobilized Nanodiamond: Effects of Particle Size and Electrochemical Environment

    NASA Astrophysics Data System (ADS)

    Gupta, S.; McDonald, B.; Carrizosa, S. B.

    2017-07-01

    The size of the diamond particle is tailored to nanoscale (nanodiamond, ND), and the ND surface is engineered targeting specific (electrochemical and biological) applications. In this work, we investigated the complex surface redox chemistry of immobilized ND layer on conductive boron-doped diamond electrode with a broad experimental parameter space such as particle size (nano versus micron), scan rate, pH (cationic/acidic versus anionic/basic), electrolyte KCl concentration (four orders of magnitude), and redox agents (neutral and ionic). We reported on the significant enhancement of ionic currents while recording reversible oxidation of neutral ferrocene methanol (FcMeOH) by almost one order of magnitude than traditional potassium ferricyanide (K3Fe(CN)6) redox agent. The current enhancement is inversely related to ND particle diameter in the following order: 1 μm << 1000 nm < 100 nm < 10 nm ≤ 5 nm < 2 nm. We attribute the current enhancement to concurrent electrocatalytic processes, i.e. the electron transfer between redox probes and electroactive surface functional (e.g. hydroxyl, carboxyl, epoxy) moieties and the electron transfer mediated by adsorbed FcMeOH+ (or Fe(CN) 6 3+ ) ions onto ND surface. The first process is pH dependent since it depends upon ND surface functionalities for which the electron transfer is coupled to proton transfer. The adsorption mediated process is observed most apparently at slower scan rates owing to self-exchange between adsorbed FcMeOH+ ions and FcMeOH redox agent molecules in diffusion-limited bulk electrolyte solution. Alternatively, it is hypothesized that the surface functionality and defect sites ( sp 2-bonded C shell and unsaturated bonds) give rise to surface electronic states with energies within the band gap (midgap states) in undoped ND. These surface states serve as electron donors (and acceptors) depending upon their bonding (and antibonding) character and, therefore, they can support electrocatalytic redox

  17. In vivo ROS and redox potential fluorescent detection in plants: Present approaches and future perspectives.

    PubMed

    Ortega-Villasante, Cristina; Burén, Stefan; Barón-Sola, Ángel; Martínez, Flor; Hernández, Luis E

    2016-10-15

    Reactive oxygen species (ROS) are metabolic by-products in aerobic organisms including plants. Endogenously produced ROS act as cellular messengers and redox regulators involved in several plant biological processes, but excessive accumulation of ROS cause oxidative stress and cell damage. Understanding ROS signalling and stress responses requires precise imaging and quantification of local, subcellular and global ROS dynamics with high selectivity, sensitivity, and spatiotemporal resolution. Several fluorescent vital dyes have been tested so far, which helped to provide relevant spatially resolved information of oxidative stress dynamics in plants subjected to harmful environmental conditions. However, certain plant characteristics, such as high background fluorescence of plant tissues in vivo and antioxidant mechanisms, can interfere with ROS detection. The development of improved small-molecule fluorescent dyes and protein-based ROS sensors targeted to subcellular compartments will enable in vivo monitoring of ROS and redox changes in photosynthetic organisms.

  18. Reactive oxygen species, redox signaling and neuroinflammation in Alzheimer's disease: the NF-κB connection.

    PubMed

    Kaur, Upinder; Banerjee, Priyanjalee; Bir, Aritri; Sinha, Maitrayee; Biswas, Atanu; Chakrabarti, Sasanka

    2015-01-01

    Oxidative stress and inflammatory response are important elements of Alzheimer's disease (AD) pathogenesis, but the role of redox signaling cascade and its cross-talk with inflammatory mediators have not been elucidated in details in this disorder. The review summarizes the facts about redox-signaling cascade in the cells operating through an array of kinases, phosphatases and transcription factors and their downstream components. The biology of NF-κB and its activation by reactive oxygen species (ROS) and proinflammatory cytokines in the pathogenesis of AD have been specially highlighted citing evidence both from post-mortem studies in AD brain and experimental research in animal or cell-based models of AD. The possibility of identifying new disease-modifying drugs for AD targeting NF-κBsignaling cascade has been discussed in the end.

  19. Microbially-enhanced redox solution reoxidation for sweetening sour natural gas

    SciTech Connect

    Rai, C.

    1995-06-01

    About twenty five percent of natural gas produced in the United States is sour containing significant volumes of hydrogen sulfide and other contaminants. Liquid redox processes remove hydrogen sulfide from natural gas. Aqueous solution of chelated ferric ions oxidize the hydrogen sulfide to elemental sulfur. The reduced iron chelate is then oxidized by contact with air and recycled. This requires expensive equipment for regeneration, costly chemicals and the process is usually energy intensive. Recent studies show that the ferric ion regeneration rates are substantially enhanced in presence of acidophilic bacteria. The specific objectives of this project are to advance the technology and improve the economics of the commercial iron-based chelate processes utilizing biologically-enhanced reoxidation of the redox solutions used in these processes, such as LO-CAT II and SulFerox.

  20. Composition, removal, redox, and metal complexation properties of dissolved organic nitrogen in composting leachates.

    PubMed

    He, Xiao-Song; Xi, Bei-Dou; Zhang, Zong-Yong; Gao, Ru-Tai; Tan, Wen-Bing; Cui, Dong-Yu; Yuan, Ying

    2015-01-01

    This study investigated the composition, removal, redox, and metal complexation characteristics of dissolved organic nitrogen (DON) in composting leachates. Results showed that the leachate-derived DON comprised proteinaceous compounds and amines, and most of them were integrated into the fulvic- and humic-like substances. Neutral, basic, acidic, hydroxylic, aromatic, and sulfuric amino acids all were detected in the influent leachates. However, most of them were removed by the biological and physical processes, and only neutral amino acids were detected in the effluent. The DON was not the main contributor to the redox capability of the leachate dissolved organic matter (DOM). However, it exhibited a strong capability for metal complexation. The amines formed strong complexes with the metals Mo, Co, Cr, and Ni, while the proteinaceous matter interacted with the metals Cr and Ni. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Involvement of electron and hydrogen transfers through redox metabolism on activity and toxicity of the nimesulide.

    PubMed

    Borges, Rosivaldo S; Oliveira, Juliana P; Matos, Rafaelle F; Chaves Neto, Antonio M J; Carneiro, Agnaldo S; Monteiro, Marta C

    2015-07-01

    An electronic study of nimesulide was performed by using density functional theory calculations. The activities of the six different derivatives were related with electron donating or accepting capacities. All compounds which had nitro moiety had low electron donating and high electron accepting capacities. However, the reduced derivative of nimesulide have more electron donating capacity than other compounds. The highest spin density contribution in nitro and lowest spin density contribution on phenoxyl moieties can be related with preferential metabolism by reduction when compared with the oxidation. The redox behavior between nitro and amino groups can be related with anti-inflammatory mechanism of nimesulide. These results explain the redox influence of nitro moiety on biological metabolism and mechanism of nimesulide.

  2. A Low Glutathione Redox State Couples with a Decreased Ascorbate Redox Ratio to Accelerate Flowering in Oncidium Orchid.

    PubMed

    Chin, Dan-Chu; Hsieh, Chia-Chi; Lin, Hsin-Yi; Yeh, Kai-Wun

    2016-02-01

    Glutathione (GSH) plays multiple roles in plants, including stress defense and regulation of growth/development. Previous studies have demonstrated that the ascorbate (AsA) redox state is involved in flowering initiation in Oncidium orchid. In this study, we discovered that a significantly decreased GSH content and GSH redox ratio are correlated with a decline in the AsA redox state during flowering initiation and high ambient temperature-induced flowering. At the same time, the expression level and enzymatic activity of GSH redox-regulated genes, glutathione reductase (GR1), and the GSH biosynthesis genes γ-glutamylcysteine synthetase (GSH1) and glutathione synthase (GSH2), are down-regulated. Elevating dehydroascorbate (DHA) content in Oncidium by artificial addition of DHA resulted in a decreased AsA and GSH redox ratio, and enhanced dehydroascorbate reductase (DHAR) activity. This demonstrated that the lower GSH redox state could be influenced by the lower AsA redox ratio. Moreover, exogenous application of buthionine sulfoximine (BSO), to inhibit GSH biosynthesis, and glutathione disulfide (GSSG), to decrease the GSH redox ratio, also caused early flowering. However, spraying plants with GSH increased the GSH redox ratio and delayed flowering. Furthermore, transgenic Arabidopsis overexpressing Oncidium GSH1, GSH2 and GR1 displayed a high GSH redox ratio as well as delayed flowering under high ambient temperature treatment, while pad2, cad2 and gr1 mutants exhibited early flowering and a low GSH redox ratio. In conclusion, our results provide evidence that the decreased GSH redox state is linked to the decline in the AsA redox ratio and mediated by down-regulated expression of GSH metabolism-related genes to affect flowering time in Oncidium orchid.

  3. Organic non-aqueous cation-based redox flow batteries

    DOEpatents

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.

    2016-03-29

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  4. Probing redox states in the ancient and modern crust and possible biosphere-lithosphere interactions

    NASA Astrophysics Data System (ADS)

    Trail, D.

    2015-12-01

    The oxidation states of modern-day terrestrial environments are broadly constrained, though we are at the earliest stages of directly quantifying redox states during the first 700 million years. Redox states are constrainable through a combination of high temperature laboratory experiments, analyses of detrital Hadean zircon, and younger well-studied zircons and their host rocks. The redox state of the solid earth and the biosphere are believed to be interwoven: how might we exploit this to probe for the existence of possible biosphere-lithosphere interactions on the early Earth? Some insight comes from the investigation of "modern-day" zircon-bearing rocks and the new application of techniques that allow us to directly probe element valence as a proxy for magma redox state (XANES). Other insights are possible through the study of young ~400 Ma (S)edimentary- and (I)gneous-type granitoids from Lachlan Fold Belt (LFB), where the magma chemical properties in the former may be influenced by the assimilation of sedimentary material containing organic matter. We observe that zircons from LFB S-type granitoids formed under more reducing conditions when compared to LFB zircon formed in I-type granitoids. This observation, while reflecting 9 granitoids and 289 analyses of zircons where over 400 different plutons have been identified, is consistent with the incorporation of (reduced) organic matter in the former and highlights one possible manner in which life may influence the composition of igneous minerals. The chemical properties of rocks or igneous minerals such as zircon may extend the search for ancient biological activity to the earliest period of known igneous activity, which dates back to ~4.4 billion years ago. If organic matter was incorporated into Hadean sediments that were then buried and melted, then these biological remnants could imprint a chemical signature within the subsequent melt and the resulting crystal assemblage, including zircon.

  5. Redox homeostasis: The Golden Mean of healthy living

    PubMed Central

    Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay

    2016-01-01

    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary

  6. Superconductivity in nonclassical superconductors as a periodical (oscillating) redox reaction

    SciTech Connect

    Kostikova, G.P.; Korol`kov, D.V.; Kostikov, Yu.P.

    1995-10-20

    Comparison of the properties of high-temperature superconductors with those of chemical systems where a periodical (oscillating) redox reaction is realized suggests that the high-temperature superconducting of nonclassical superconductors (in particular, ternary oxides) results from activation of a periodical redox reaction within a single compounds containing heterovalent forms of each of two dissimilar elements. In this redox reaction, reversible converison of the corresponding heterovalent forms occur. 37 refs., 1 fig., 1 tab.

  7. Redox homeostasis: The Golden Mean of healthy living.

    PubMed

    Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay

    2016-08-01

    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve "reactive oxygen species" rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary

  8. Targeting Redox Homeostasis in LKB1-deficient NSCLC

    DTIC Science & Technology

    2014-09-01

    AWARD NUMBER: W81XWH-12-1-0383 TITLE: Targeting Redox Homeostasis in LKB1-deficient NSCLC...5a. CONTRACT NUMBER Targeting Redox Homeostasis in LKB1-deficient NSCLC 5b. GRANT NUMBER W81XWH-12-1-0383 5c. PROGRAM ELEMENT...in regulating redox homeostasis of LKB1- deficient NSCLC cells. Reactive oxygen species (ROS) production correlates with Nrf2-associated gene

  9. Involvement of Redox State in the Aging of Drosophila melanogaster

    PubMed Central

    Radyuk, Svetlana N.; Sohal, Rajindar S.

    2013-01-01

    Abstract Significance: The main objective of this review was to provide an exposition of investigations, conducted in Drosophila melanogaster, on the role of reactive oxygen species and redox state in the aging process. While early transgenic studies did not clearly support the validity of the oxidative stress hypothesis of aging, predicated on the accumulation of structural damage, they spawned a broader search for redox-related effects that might impact the aging process. Recent Advances: Initial evidence implicating the thiol redox state as a possible causative factor in aging has been obtained in Drosophila. Overexpression of genes, such as GCL, G6PD, Prx2, and Prx5, which are involved in the maintenance of thiol redox homeostasis, has strong positive effects on longevity. Further, the depletion of peroxiredoxin activity in the mitochondria through the double knockdown of Prx5 and Prx3 not only results in a redox crisis but also elicits a rapid aging phenotype. Critical Issues: Herein, we summarize the present status of knowledge about the main components of the machinery controlling thiol redox homeostasis and describe how age-related redox fluctuations might impact aging more acutely through disruption of the redox-sensitive signaling mechanisms rather than via the simple accumulation of structural damage. Future Directions: Based on these initial insights into the plausible impact of redox fluctuations on redox signaling, future studies should focus on the pathways that have been explicitly implicated in aging, such as insulin signaling, TOR, and JNK/FOXO, with particular attention to elements that are redox sensitive. Antioxid. Redox Signal. 19, 788–803. PMID:23458359

  10. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    SciTech Connect

    Paulenova, Alena; Vandegrift, III, George F.

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  11. Redox-iodometry: a new potentiometric method.

    PubMed

    Gottardi, Waldemar; Pfleiderer, Jörg

    2005-07-01

    A new iodometric method for quantifying aqueous solutions of iodide-oxidizing and iodine-reducing substances, as well as plain iodine/iodide solutions, is presented. It is based on the redox potential of said solutions after reaction with iodide (or iodine) of known initial concentration. Calibration of the system and calculations of unknown concentrations was performed on the basis of developed algorithms and simple GWBASIC-programs. The method is distinguished by a short analysis time (2-3 min) and a simple instrumentation consisting of pH/mV meter, platinum and reference electrodes. In general the feasible concentration range encompasses 0.1 to 10(-6) mol/L, although it goes down to 10(-8) mol/L (0.001 mg Cl2/L) for oxidants like active chlorine compounds. The calculated imprecision and inaccuracy of the method were found to be 0.4-0.9% and 0.3-0.8%, respectively, resulting in a total error of 0.5-1.2%. Based on the experiments, average imprecisions of 1.0-1.5% at c(Ox)>10(-5) M, 1.5-3% at 10(-5) to 10(-7) M, and 4-7% at <10(-7) M were found. Redox-iodometry is a simple, precise, and time-saving substitute for the more laborious and expensive iodometric titration method, which, like other well-established colorimetric procedures, is clearly outbalanced at low concentrations; this underlines the practical importance of redox-iodometry.

  12. Biogeochemical redox processes and their impact on contaminant dynamics.

    PubMed

    Borch, Thomas; Kretzschmar, Ruben; Kappler, Andreas; Cappellen, Philippe Van; Ginder-Vogel, Matthew; Voegelin, Andreas; Campbell, Kate

    2010-01-01

    Life and element cycling on Earth is directly related to electron transfer (or redox) reactions. An understanding of biogeochemical redox processes is crucial for predicting and protecting environmental health and can provide new opportunities for engineered remediation strategies. Energy can be released and stored by means of redox reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors) by microorganisms coupled to the reduction of electron acceptors including humic substances, iron-bearing minerals, transition metals, metalloids, and actinides. Environmental redox processes play key roles in the formation and dissolution of mineral phases. Redox cycling of naturally occurring trace elements and their host minerals often controls the release or sequestration of inorganic contaminants. Redox processes control the chemical speciation, bioavailability, toxicity, and mobility of many major and trace elements including Fe, Mn, C, P, N, S, Cr, Cu, Co, As, Sb, Se, Hg, Tc, and U. Redox-active humic substances and mineral surfaces can catalyze the redox transformation and degradation of organic contaminants. In this review article, we highlight recent advances in our understanding of biogeochemical redox processes and their impact on contaminant fate and transport, including future research needs.

  13. Biogeochemical redox processes and their impact on contaminant dynamics

    USGS Publications Warehouse

    Borch, Thomas; Kretzschmar, Ruben; Kappler, Andreas; Van Cappellen, Philippe; Ginder-Vogel, Matthew; Campbell, Kate M.

    2010-01-01

    Life and element cycling on Earth is directly related to electron transfer (or redox) reactions. An understanding of biogeochemical redox processes is crucial for predicting and protecting environmental health and can provide new opportunities for engineered remediation strategies. Energy can be released and stored by means of redox reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors) by microorganisms coupled to the reduction of electron acceptors including humic substances, iron-bearing minerals, transition metals, metalloids, and actinides. Environmental redox processes play key roles in the formation and dissolution of mineral phases. Redox cycling of naturally occurring trace elements and their host minerals often controls the release or sequestration of inorganic contaminants. Redox processes control the chemical speciation, bioavailability, toxicity, and mobility of many major and trace elements including Fe, Mn, C, P, N, S, Cr, Cu, Co, As, Sb, Se, Hg, Tc, and U. Redox-active humic substances and mineral surfaces can catalyze the redox transformation and degradation of organic contaminants. In this review article, we highlight recent advances in our understanding of biogeochemical redox processes and their impact on contaminant fate and transport, including future research needs.

  14. Redox-sensitive probes for the measurement of redox chemistries within phagosomes of macrophages and dendritic cells☆

    PubMed Central

    Balce, Dale R.; Yates, Robin M.

    2013-01-01

    There is currently much interest in factors that affect redox chemistries within phagosomes of macrophages and dendritic cells. In addition to the antimicrobial role of reactive oxygen species generation within phagosomes, accumulating evidence suggests that phagosomal redox chemistries influence other phagosomal functions such as macromolecular degradation and antigen processing. Whilst the redox chemistries within many sub-cellular compartments are being heavily scrutinized with the increasing use of fluorescent probe technologies, there is a paucity of tools to assess redox conditions within phagosomes. Hence the systems that control redox homeostasis in these unique environments remain poorly defined. This review highlights current redox-sensitive probes that can measure oxidative or reductive activity in phagosomes and discusses their suitability and limitations of use. Probes that are easily targeted to the phagosome by using established approaches are emphasized. PMID:24191242

  15. Sedimentary cobalt concentrations track marine redox evolution

    NASA Astrophysics Data System (ADS)

    Swanner, Elizabeth; Planavsky, Noah; Lalonde, Stefan; Robbins, Jamie; Bekker, Andrey; Rouxel, Olivier; Konhauser, Kurt O.; Mojzsis, Stephen J.

    2013-04-01

    Oxygen production by photosynthesis drove the redox evolution of the atmosphere and ocean. Primary productivity by oxygenic photosynthesizers in the modern surface ocean is limited by trace nutrients such as iron, but previous studies have also observed high Co uptake associated with natural cyanobacterial populations. Constraining the size and variation of the oceanic reservoir of Co through time will help to understand the regulation of primary productivity and hence oxygenation through time. In this study, Co concentrations from iron formations (IF), shales and marine pyrites deposited over nearly 4 billion years of Earth's history are utilized to reconstruct secular changes in the mechanisms of Co removal from the oceanic reservoir. The Co reservoir prior to ~2 Ga was dominated by hydrothermal inputs and Fe(III)oxyhydroxides were likely involved in the removal of Co from the water column. Fe(II) oxidation in the water column resulted in the deposition of IF in the Archean and Paleoproterozoic, and the Co inventory of IF records a large oceanic reservoir of Co during this time. Lower Co concentrations in sediments during the Middle Proterozoic signify a decrease in the oceanic reservoir due to the expansion euxinic environments, corresponding to the results of previous studies. A transition to an oxidized deep ocean in the Phanerozoic is evidenced by correlation between Co and manganese (Mn) concentrations in hydrothermal and exhalative deposits, and in marine pyrites. This relationship between Co and Mn, signifying deposition of Co in association with Mn(IV)oxides, does not occur in the Precambrian. Mn(II) oxidation occurs at higher redox potentials than that required for Fe(II) oxidation, and the extent of Mn redox cycling prior to full ventilation of the oceans at the end of the Neoproterozoic was likely limited to spatially restricted oxic surface waters. In this regard, Co is another valuable redox proxy for tracking the growth and decline in oxygenated

  16. Redox polymer mediation for enzymatic biofuel cells

    NASA Astrophysics Data System (ADS)

    Gallaway, Joshua

    Mediated biocatalytic cathodes prepared from the oxygen-reducing enzyme laccase and redox-conducting osmium hydrogels were characterized for use as cathodes in enzymatic biofuel cells. A series of osmium-based redox polymers was synthesized with redox potentials spanning the range from 0.11 V to 0.85 V (SHE), and the resulting biocatalytic electrodes were modeled to determine reaction kinetic constants using the current response, measured osmium concentration, and measured apparent electron diffusion. As in solution-phase systems, the bimolecular rate constant for mediation was found to vary greatly with mediator potential---from 250 s-1M-1 when mediator and enzyme were close in potential to 9.4 x 10 4 s-1M-1 when this overpotential was large. Optimum mediator potential for a cell operating with a non-limiting platinum anode and having no mass transport limitation from bulk solution was found to be 0.66 V (SHE). Redox polymers were synthesized under different concentrations, producing osmium variation. An increase from 6.6% to 7.2% osmium increased current response from 1.2 to 2.1 mA/cm2 for a planar film in 40°C oxygen-saturated pH 4 buffer, rotating at 900 rpm. These results translated to high surface area electrodes, nearly doubling current density to 13 mA/cm2, the highest to date for such an electrode. The typical fungal laccase from Trametes versicolor was replaced by a bacterially-expressed small laccase from Streptomyces coelicolor, resulting in biocatalytic films that reduced oxygen at increased pH, with full functionality at pH 7, producing 1.5 mA/cm 2 in planar configuration. Current response was biphasic with pH, matching the activity profile of the free enzyme in solution. The mediated enzyme electrode system was modeled with respect to apparent electron diffusion, mediator concentration, and transport of oxygen from bulk solution, all of which are to some extent controlled by design. Each factor was found to limit performance in certain circumstances

  17. Electronic Tongue Containing Redox and Conductivity Sensors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin

    2007-01-01

    The Electronic Tongue (E-tongue 2) is an assembly of sensors for measuring concentrations of metal ions and possibly other contaminants in water. Potential uses for electronic tongues include monitoring the chemical quality of water in a variety of natural, industrial, and laboratory settings, and detecting micro-organisms indirectly by measuring microbially influenced corrosion. The device includes a heater, a temperature sensor, an oxidation/reduction (redox) sensor pair, an electrical sensor, an array of eight galvanic cells, and eight ion-specific electrodes.

  18. Methane oxidation over dual redox catalysts

    SciTech Connect

    Klier, K.; Herman, R.G.

    1992-01-01

    The objectives of this research were to achieve and understand the partial oxidation of methane to oxygenates and C{sub 2} hydrocarbons over dual redox catalysts. The catalysts were based on oxidic materials that will exhibit structural and thermal stability for long reactor lifetimes. A continuous flow reactor system with oxygen or air as the oxidizing gas, rather than nitrous oxide, was utilized over a wide range of temperatures ({le}1000{degrees}C), with variable gas hourly space velocity, in order to maximize the space time yields of the desired products. All of the investigated processes are catalytic and are aimed at minimizing gas phase reactions.

  19. Methane oxidation over dual redox catalysts

    SciTech Connect

    Klier, K.; Herman, R.G.

    1992-06-01

    The objectives of this research were to achieve and understand the partial oxidation of methane to oxygenates and C{sub 2} hydrocarbons over dual redox catalysts. The catalysts were based on oxidic materials that will exhibit structural and thermal stability for long reactor lifetimes. A continuous flow reactor system with oxygen or air as the oxidizing gas, rather than nitrous oxide, was utilized over a wide range of temperatures ({le}1000{degrees}C), with variable gas hourly space velocity, in order to maximize the space time yields of the desired products. All of the investigated processes are catalytic and are aimed at minimizing gas phase reactions.

  20. Fe-V redox flow batteries

    DOEpatents

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-07-08

    A redox flow battery having a supporting solution that includes Cl.sup.- anions is characterized by an anolyte having V.sup.2+ and V.sup.3+ in the supporting solution, a catholyte having Fe.sup.2+ and Fe.sup.3+ in the supporting solution, and a membrane separating the anolyte and the catholyte. The anolyte and catholyte can have V cations and Fe cations, respectively, or the anolyte and catholyte can each contain both V and Fe cations in a mixture. Furthermore, the supporting solution can contain a mixture of SO.sub.4.sup.2- and Cl.sup.- anions.

  1. Redox shuttles for lithium ion batteries

    DOEpatents

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  2. Rebalancing electrolytes in redox flow battery systems

    DOEpatents

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  3. Performance Mapping Studies in Redox Flow Cells

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.; Thaller, L. H.

    1981-01-01

    Pumping power requirements in any flow battery system constitute a direct parasitic energy loss. It is therefore useful to determine the practical lower limit for reactant flow rates. Through the use of a theoretical framework based on electrochemical first principles, two different experimental flow mapping techniques were developed to evaluate and compare electrodes as a function of flow rate. For the carbon felt electrodes presently used in NASA-Lewis Redox cells, a flow rate 1.5 times greater than the stoichiometric rate seems to be the required minimum.

  4. The Thermodynamics and Kinetics of Iron Redox Metabolism in Hot Spring Ecosystems

    NASA Astrophysics Data System (ADS)

    St Clair, B. E.; Shock, E.

    2012-12-01

    The oxidation of ferrous iron and the reduction of ferric minerals are widespread sources of metabolic energy for microorganisms in hot spring ecosystems. How these energy sources are used can be determined by combining thermodynamic calculations with kinetic experiments. By measuring concentrations of ferrous iron, total iron, pH, dissolved hydrogen and oxygen, as well as temperature and many other parameters in hot springs at Yellowstone National Park, we can calculate chemical affinities of iron redox reactions, which reveal the maximum amount of energy an organism can derive from the catalysis of a given reaction. Iron redox reactions typically involve protons, and energy yields are greatly affected by pH. The heterotrophic reduction of ferric minerals typically consumes a large stoichiometric number of protons compared to the other components. For example, the reduction of hematite (Fe2O3), to ferrous ions with glucose requires 48 moles of protons per mole of glucose oxidized. Calculations indicate this proton requirement increases the energy yield with decreasing pH. The opposite trend is observed for iron oxidation reactions. The autotrophic oxidation of ferrous iron to hematite releases four protons per mole of hematite formed. As a consequence, the energy yield from this reaction decreases with decreasing pH. How effectively energy sources are tapped depends on the efficiencies of microbial metabolism compared with the rates of abiotic mechanisms for the same redox reactions. Experiments were performed across the pH spectrum on isolated sediments incubated in situ and assayed for biological oxidation and reduction by monitoring changing concentrations of Fe2+. In hot springs with pH values <2, particularly those with large gas flows, abiological reduction is rapid. Biological reduction, nevertheless, occasionally proceeded faster than the abiological rate. The quick abiological reduction rate, combined with the high solubility of ferrous iron, leads to

  5. Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species.

    PubMed

    Kelley, Matthew A; Hebert, Valeria Y; Thibeaux, Taylor M; Orchard, Mackenzie A; Hasan, Farhana; Cormier, Stephania A; Thevenot, Paul T; Lomnicki, Slawomir M; Varner, Kurt J; Dellinger, Barry; Latimer, Brian M; Dugas, Tammy R

    2013-12-16

    Particulate matter (PM) is emitted during thermal decomposition of waste. During this process, aromatic compounds chemisorb to the surface of metal-oxide-containing PM, forming a surface-stabilized environmentally persistent free radical (EPFR). We hypothesized that EPFR-containing PM redox cycle to produce ROS and that this redox cycle is maintained in biological environments. To test our hypothesis, we incubated model EPFRs with the fluorescent probe dihydrorhodamine (DHR). Marked increases in DHR fluorescence were observed. Using a more specific assay, hydroxyl radicals ((•)OH) were also detected, and their level was further increased by cotreatment with thiols or ascorbic acid (AA), known components of epithelial lining fluid. Next, we incubated our model EPFR in bronchoalveolar lavage fluid (BALF) or serum. Detection of EPFRs and (•)OH verified that PM generate ROS in biological fluids. Moreover, incubation of pulmonary epithelial cells with EPFR-containing PM increased (•)OH levels compared to those in PM lacking EPFRs. Finally, measurements of oxidant injury in neonatal rats exposed to EPFRs by inhalation suggested that EPFRs induce an oxidant injury within the lung lining fluid and that the lung responds by increasing antioxidant levels. In summary, our EPFR-containing PM redox cycle to produce ROS, and these ROS are maintained in biological fluids and environments. Moreover, these ROS may modulate toxic responses of PM in biological tissues such as the lung.

  6. A designed redox-controlled caspase

    SciTech Connect

    Witkowski, Witold A.; Hardy, Jeanne A.

    2011-09-15

    Caspases are a powerful class of cysteine proteases. Introduction of activated caspases in healthy or cancerous cells results in induction of apoptotic cell death. In this study, we have designed and characterized a version of caspase-7 that can be inactivated under oxidizing extracellular conditions and then reactivated under reducing intracellular conditions. This version of caspase-7 is allosterically inactivated when two of the substrate-binding loops are locked together via an engineered disulfide. When this disulfide is reduced, the protein regains its full function. The inactive loop-locked version of caspase-7 can be readily observed by immunoblotting and mass spectrometry. The reduced and reactivated form of the enzyme observed crystallographically is the first caspase-7 structure in which the substrate-binding groove is properly ordered even in the absence of an active-site ligand. In the reactivated structure, the catalytic-dyad cysteine-histidine are positioned 3.5 {angstrom} apart in an orientation that is capable of supporting catalysis. This redox-controlled version of caspase-7 is particularly well suited for targeted cell death in concert with redox-triggered delivery vehicles.

  7. Mitochondrial Redox Dysfunction and Environmental Exposures

    PubMed Central

    Caito, Samuel W.

    2015-01-01

    Abstract Significance: Mitochondria are structurally and biochemically diverse, even within a single type of cell. Protein complexes localized to the inner mitochondrial membrane synthesize ATP by coupling electron transport and oxidative phosphorylation. The organelles produce reactive oxygen species (ROS) from mitochondrial oxygen and ROS can, in turn, alter the function and expression of proteins used for aerobic respiration by post-translational and transcriptional regulation. Recent Advances: New interest is emerging not only into the roles of mitochondria in disease development and progression but also as a target for environmental toxicants. Critical Issues: Dysregulation of respiration has been linked to cell death and is a major contributor to acute neuronal trauma, peripheral diseases, as well as chronic neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Future Directions: Here, we discuss the mechanisms underlying the sensitivity of the mitochondrial respiratory complexes to redox modulation, as well as examine the effects of environmental contaminants that have well-characterized mitochondrial toxicity. The contaminants discussed in this review are some of the most prevalent and potent environmental contaminants that have been linked to neurological dysfunction, altered cellular respiration, and oxidation. Antioxid. Redox Signal. 23, 578–595. PMID:25826672

  8. Cooperative redox activation for carbon dioxide conversion

    PubMed Central

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-01-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing ‘waste', produced through oxygen insertion into the Si–Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2. PMID:27981967

  9. Redox regulation of mammalian sperm capacitation

    PubMed Central

    O’Flaherty, Cristian

    2015-01-01

    Capacitation is a series of morphological and metabolic changes necessary for the spermatozoon to achieve fertilizing ability. One of the earlier happenings during mammalian sperm capacitation is the production of reactive oxygen species (ROS) that will trigger and regulate a series of events including protein phosphorylation, in a time-dependent fashion. The identity of the sperm oxidase responsible for the production of ROS involved in capacitation is still elusive, and several candidates are discussed in this review. Interestingly, ROS-induced ROS formation has been described during human sperm capacitation. Redox signaling during capacitation is associated with changes in thiol groups of proteins located on the plasma membrane and subcellular compartments of the spermatozoon. Both, oxidation of thiols forming disulfide bridges and the increase on thiol content are necessary to regulate different sperm proteins associated with capacitation. Reducing equivalents such as NADH and NADPH are necessary to support capacitation in many species including humans. Lactate dehydrogenase, glucose-6-phospohate dehydrogenase, and isocitrate dehydrogenase are responsible in supplying NAD (P) H for sperm capacitation. Peroxiredoxins (PRDXs) are newly described enzymes with antioxidant properties that can protect mammalian spermatozoa; however, they are also candidates for assuring the regulation of redox signaling required for sperm capacitation. The dysregulation of PRDXs and of enzymes needed for their reactivation such as thioredoxin/thioredoxin reductase system and glutathione-S-transferases impairs sperm motility, capacitation, and promotes DNA damage in spermatozoa leading to male infertility. PMID:25926608

  10. Statins: pleiotropic regulators of cardiovascular redox state.

    PubMed

    Antoniades, Charalambos; Channon, Keith M

    2014-03-10

    Lipid-lowering treatment with statins is one of the most effective therapeutic strategies in cardiovascular medicine because they reduce cardiovascular risk in both primary and secondary prevention. Despite the well-established links between low-density lipoprotein and cardiovascular risk, the clinical benefit from statin treatment is not fully explained by their lipid-lowering potential. A number of pleiotropic effects of statins have been described over the past decade, and their ability to suppress global oxidative stress is probably one of the most important mechanisms by which they exert their beneficial effects on the cardiovascular system. In this Forum, there are review articles discussing the molecular mechanisms by which statins modify redox signaling in the vasculature and the heart. They exert direct effects on the vascular wall and the myocardium or indirect by targeting the interactions between the cardiovascular system and adipose tissue or circulating cell types. The review articles in this Forum follow a translational approach and link the molecular mechanisms by which statins modify cardiovascular redox signaling with their clinical benefit in the prevention and treatment of cardiovascular diseases.

  11. Mechanotransduction: Forces, Sensors, and Redox Signaling

    PubMed Central

    Chatterjee, Shampa

    2014-01-01

    Abstract Mechanotransduction describes the molecular mechanisms by which cells response to changes in their physical environment by translating mechanical stimuli into biochemical signals. It is now clear that reactive oxygen species (ROS) and redox signaling play a crucial role in mechanotransduction analogous to their role in chemotransduction. This Forum has particular emphasis on ROS generation with altered mechanical stress, the upstream signal transduction pathways that initiate ROS production, and the downstream effectors that lead to physiological responses. There is particular emphasis on the role of ion channels in the initial response and the role of NADPH oxidases as the major source of ROS. The latter enzyme serves as the fulcrum of the mechanotransduction cascade. Although it seems likely that all cells are mechanosensitive to some degree, we have highlighted the responses of unicellular organisms (bacteria), bone cells, and particularly cells of the vasculature (endothelial cells and vascular smooth muscle cells). These cell types have been useful for studying the responses to altered osmotic pressure, hemodynamic pressure, shear stress, and compressive forces while exploring the link between signal transduction and physiological/pathophysiological responses. Antioxid. Redox Signal. 20, 868–871. PMID:24354342

  12. Redox Regulation in Cancer Stem Cells

    PubMed Central

    Ding, Shijie; Li, Chunbao; Cheng, Ninghui; Cui, Xiaojiang; Xu, Xinglian; Zhou, Guanghong

    2015-01-01

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs) has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs). We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment. PMID:26273424

  13. Redox Non-Innocence of Nitrosobenzene at Nickel

    SciTech Connect

    Kundu, Subrata; Stieber, S. Chantal; Ferrier, Maryline Ghislaine; Kozimor, Stosh Anthony; Bertke, Jeffery A.; Warren, Timothy H.

    2016-08-22

    Nitrosobenzene (PhNO) serves as a stable analogue of nitroxyl (HNO), a biologically relevant, redox-active nitric oxide derivative. Capture of nitrosobenzene at the electrondeficient β-diketiminato nickel(I) complex [iPr2NNF6]Ni results in reduction of the PhNO ligand to a (PhNO)./ ⁻ species coordinated to a square planar NiII center in [iPr2NNF6]Ni(η2- ONPh). Ligand centered reduction leads to the (PhNO)-2 moiety bound to NiII supported by XAS studies. Ultimately, systematic investigation of structure–reactivity patterns of (PhNO)./ ⁻ and (PhNO)2- ligands reveals parallels with superoxo (O2)./ ⁻ and peroxo (O2)2- ligands, respectively, and forecasts reactivity patterns of the more transient HNO ligand.

  14. Exogenous antioxidants—Double-edged swords in cellular redox state

    PubMed Central

    Bohn, Torsten

    2010-01-01

    The balance between oxidation and antioxidation is believed to be critical in maintaining healthy biological systems. Under physiological conditions, the human antioxidative defense system including e.g., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH) and others, allows the elimination of excess reactive oxygen species (ROS) including, among others superoxide anions (O2.-), hydroxyl radicals (OH.), alkoxyl radicals (RO.) and peroxyradicals (ROO.). However, our endogenous antioxidant defense systems are incomplete without exogenous originating reducing compounds such as vitamin C, vitamin E, carotenoids and polyphenols, playing an essential role in many antioxidant mechanisms in living organisms. Therefore, there is continuous demand for exogenous antioxidants in order to prevent oxidative stress, representing a disequilibrium redox state in favor of oxidation. However, high doses of isolated compounds may be toxic, owing to prooxidative effects at high concentrations or their potential to react with beneficial concentrations of ROS normally present at physiological conditions that are required for optimal cellular functioning. This review aims to examine the double-edged effects of dietary originating antioxidants with a focus on the most abundant compounds, especially polyphenols, vitamin C, vitamin E and carotenoids. Different approaches to enrich our body with exogenous antioxidants such as via synthetic antioxidants, diets rich in fruits and vegetables and taking supplements will be reviewed and experimental and epidemiological evidences discussed, highlighting that antioxidants at physiological doses are generally safe, exhibiting interesting health beneficial effects. PMID:20972369

  15. The carbon cycle and associated redox processes through time

    PubMed Central

    Hayes, John M; Waldbauer, Jacob R

    2006-01-01

    Earth's biogeochemical cycle of carbon delivers both limestones and organic materials to the crust. In numerous, biologically catalysed redox reactions, hydrogen, sulphur, iron, and oxygen serve prominently as electron donors and acceptors. The progress of these reactions can be reconstructed from records of variations in the abundance of 13C in sedimentary carbonate minerals and organic materials. Because the crust is always receiving new CO2 from the mantle and a portion of it is being reduced by photoautotrophs, the carbon cycle has continuously released oxidizing power. Most of it is represented by Fe3+ that has accumulated in the crust or been returned to the mantle via subduction. Less than 3% of the estimated, integrated production of oxidizing power since 3.8 Gyr ago is represented by O2 in the atmosphere and dissolved in seawater. The balance is represented by sulphate. The accumulation of oxidizing power can be estimated from budgets summarizing inputs of mantle carbon and rates of organic-carbon burial, but levels of O2 are only weakly and indirectly coupled to those phenomena and thus to carbon-isotopic records. Elevated abundances of 13C in carbonate minerals ca 2.3 Gyr old, in particular, are here interpreted as indicating the importance of methanogenic bacteria in sediments rather than increased burial of organic carbon. PMID:16754608

  16. Redox interactions of nitric oxide with dopamine and its derivatives.

    PubMed

    Antunes, Fernando; Nunes, Carla; Laranjinha, João; Cadenas, Enrique

    2005-03-15

    Nitric oxide (*NO) is a ubiquitous diffusible messenger in the central nervous system. *NO and derived nitrogen species may interact with catecholamines, thus, modifying not only its regulatory actions but also producing oxidants and free radicals that are likely to trigger toxic pathways in the nervous system. Oxidative pathways and chain oxidation reactions triggered by catecholamines may be broken by ascorbate and glutathione, of which there is ample supply in the brain. At the subcellular level, mitochondria and cytosolic dopamine storage vesicles are likely to provide site-specific settings for *NO and catecholamines interactions. Thus, a complex picture emerges in which the steady- state levels of the individual reactants, the rate constants of the reactions involved, the oxygen tension, and the compartmentalization of reactions determine the biological significance of the redox interactions between *NO and dopamine metabolism in the brain. The physiological relevance of *NO-driven chemical modifications of dopamine and its derivatives and the ensuing free radical production are discussed in connection with the neurodegeneration inherent in Parkinson's disease.

  17. The impact of thiol peroxidases on redox regulation.

    PubMed

    Flohé, Leopold

    2016-01-01

    The biology of glutathione peroxidases and peroxiredoxins is reviewed with emphasis on their role in metabolic regulation. Apart from their obvious function in balancing oxidative challenge, these thiol peroxidases are not only implicated in orchestrating the adaptive response to oxidative stress, but also in regulating signaling triggered by hormones, growth factors and cytokines. The mechanisms presently discussed comprise dampening of redox-sensitive regulatory processes by elimination of hydroperoxides, suppression of lipoxygenase activity, committing suicide to save H2O2 for signaling, direct binding to receptors or regulatory proteins in a peroxidase activity-independent manner, or acting as sensors for hydroperoxides and as transducers of oxidant signals. The various mechanistic proposals are discussed in the light of kinetic data, which unfortunately are scarce. Taking into account pivotal criteria of a meaningful regulatory circuit, kinetic plausibility and specificity, the mechanistic concepts implying a direct sensor/transducer function of the thiol peroxidases appear most appealing. With rate constants for the reaction with hydroperoxide of 10(5)-10(8) M(-1) s(-1), thiol peroxidases are qualified as kinetically preferred hydroperoxide sensors, and the ability of the oxidized enzymes to react with defined protein thiols lends specificity to the transduction process. The versatility of thiol peroxidases, however, allows multiple ways of interaction with regulatory pathways.

  18. Redox regulation of FoxO transcription factors

    PubMed Central

    Klotz, Lars-Oliver; Sánchez-Ramos, Cristina; Prieto-Arroyo, Ignacio; Urbánek, Pavel; Steinbrenner, Holger; Monsalve, Maria

    2015-01-01

    Transcription factors of the forkhead box, class O (FoxO) family are important regulators of the cellular stress response and promote the cellular antioxidant defense. On one hand, FoxOs stimulate the transcription of genes coding for antioxidant proteins located in different subcellular compartments, such as in mitochondria (i.e. superoxide dismutase-2, peroxiredoxins 3 and 5) and peroxisomes (catalase), as well as for antioxidant proteins found extracellularly in plasma (e.g., selenoprotein P and ceruloplasmin). On the other hand, reactive oxygen species (ROS) as well as other stressful stimuli that elicit the formation of ROS, may modulate FoxO activity at multiple levels, including posttranslational modifications of FoxOs (such as phosphorylation and acetylation), interaction with coregulators, alterations in FoxO subcellular localization, protein synthesis and stability. Moreover, transcriptional and posttranscriptional control of the expression of genes coding for FoxOs is sensitive to ROS. Here, we review these aspects of FoxO biology focusing on redox regulation of FoxO signaling, and with emphasis on the interplay between ROS and FoxOs under various physiological and pathophysiological conditions. Of particular interest are the dual role played by FoxOs in cancer development and their key role in whole body nutrient homeostasis, modulating metabolic adaptations and/or disturbances in response to low vs. high nutrient intake. Examples discussed here include calorie restriction and starvation as well as adipogenesis, obesity and type 2 diabetes. PMID:26184557

  19. Redox Conductivity of Current-Producing Mixed Species Biofilms

    PubMed Central

    Fan, Yanzhen; Liu, Hong

    2016-01-01

    While most biological materials are insulating in nature, efficient extracellular electron transfer is a critical property of biofilms associated with microbial electrochemical systems and several microorganisms are capable of establishing conductive aggregates and biofilms. Though construction of these conductive microbial networks is an intriguing and important phenomenon in both natural and engineered systems, few studies have been published related to conductive biofilms/aggregates and their conduction mechanisms, especially in mixed-species environments. In the present study, current-producing mixed species biofilms exhibited high conductivity across non-conductive gaps. Biofilm growth observed on the inactive electrode contributed to overall power outputs, suggesting that an electrical connection was established throughout the biofilm assembly. Electrochemical gating analysis of the biofilms over a range of potentials (-600–200 mV, vs. Ag/AgCl) resulted in a peak-manner response with maximum conductance of 3437 ± 271 μS at a gate potential of -360 mV. Following removal of the electron donor (acetate), a 96.6% decrease in peak conductivity was observed. Differential responses observed in the absence of an electron donor and over varying potentials suggest a redox driven conductivity mechanism in mixed-species biofilms. These results demonstrated significant differences in biofilm development and conductivity compared to previous studies using pure cultures. PMID:27159497

  20. Redox Non-Innocence of Nitrosobenzene at Nickel

    SciTech Connect

    Kundu, Subrata; Stieber, S. Chantal; Ferrier, Maryline Ghislaine; Kozimor, Stosh Anthony; Bertke, Jeffery A.; Warren, Timothy H.

    2016-08-22

    Nitrosobenzene (PhNO) serves as a stable analogue of nitroxyl (HNO), a biologically relevant, redox-active nitric oxide derivative. Capture of nitrosobenzene at the electrondeficient β-diketiminato nickel(I) complex [iPr2NNF6]Ni results in reduction of the PhNO ligand to a (PhNO)./ ⁻ species coordinated to a square planar NiII center in [iPr2NNF6]Ni(η2- ONPh). Ligand centered reduction leads to the (PhNO)-2 moiety bound to NiII supported by XAS studies. Ultimately, systematic investigation of structure–reactivity patterns of (PhNO)./ ⁻ and (PhNO)2- ligands reveals parallels with superoxo (O2)./ ⁻ and peroxo (O2)2- ligands, respectively, and forecasts reactivity patterns of the more transient HNO ligand.

  1. "JCE" Classroom Activity #111: Redox Reactions in Three Representations

    ERIC Educational Resources Information Center

    Nieves, Edgardo L. Ortiz; Barreto, Reizelie; Medina, Zuleika

    2012-01-01

    This activity introduces students to the concept of reduction-oxidation (redox) reactions. To help students obtain a thorough understanding of redox reactions, the concept is explored at three levels: macroscopic, submicroscopic, and symbolic. In this activity, students perform hands-on investigations of the three levels as they work at different…

  2. "JCE" Classroom Activity #111: Redox Reactions in Three Representations

    ERIC Educational Resources Information Center

    Nieves, Edgardo L. Ortiz; Barreto, Reizelie; Medina, Zuleika

    2012-01-01

    This activity introduces students to the concept of reduction-oxidation (redox) reactions. To help students obtain a thorough understanding of redox reactions, the concept is explored at three levels: macroscopic, submicroscopic, and symbolic. In this activity, students perform hands-on investigations of the three levels as they work at different…

  3. Cerium redox cycles and rare earth elements in the Sargasso Sea

    SciTech Connect

    Sholkovitz, E.R.; Schneider, D.L. )

    1991-10-01

    Two profiles of the rare earth elements (REEs) are reported for the upper water column of the Sargasso Sea. The trivalent-only REEs have remarkably constant concentrations in the upper 500m of an April 1989 profile and in the upper 200m of a May 1989 profile. In contrast, Ce concentrations decrease smoothly with increasing depth. In April 1989 Ce decreases from 15.7 pmol/kg at 20 m to 5.1 pmol/kg at 750 m. Cerium, which has Redox transformations in seawater, behaves anomalously with respect to its REE(III) neighbors. While both dissolved Ce and Mn have elevated concentrations in the upper 200m, their vertical gradients are distinctly different. In contrast to Mn, which reaches a minimum dissolved concentration near the zone (150-250 m) of a particulate Mn maximum, Ce is being removed both near this zone and to depths of at least 750m. These new profiles indicate that Ce is involved in an upper ocean redox cycle. This interpretation is consistent with the MOFFETT (1990) incubation tracer experiments on the same May 1989 seawater. He showed that Ce(III) oxidation is biologically mediated, probably light inhibited, increases with depth, and 3-4 times slower than Mn(II) oxidation in the 100-200 m zone. CERoclines provide new information into the fine scale zonation of redox process operating in the upper columns of oligotrophic oceans.

  4. Scleroglucan-borax hydrogel: a flexible tool for redox protein immobilization.

    PubMed

    Frasconi, Marco; Rea, Sara; Matricardi, Pietro; Favero, Gabriele; Mazzei, Franco

    2009-09-15

    A highly stable biological film was prepared by casting an aqueous dispersion of protein and composite hydrogel obtained from the polysaccharide Scleroglucan (Sclg) and borax as a cross-linking agent. Heme proteins, such as hemoglobin (Hb), myoglobin (Mb), and horseradish peroxidase (HRP), were chosen as model proteins to investigate the immobilized system. A pair of well-defined quasi-reversible redox peaks, characteristics of the protein heme FeII/FeIII redox couples, were obtained at the Sclg-borax/proteins films on pyrolytic graphite (PG) electrodes, as a consequence of the direct electron transfer between the protein and the PG electrode. A full characterization of the electron transfer kinetic was performed by opportunely modeling data obtained from cyclic voltammetry and square wave voltammetry experiments. The efficiency of our cross-linking approach was investigated by studying the influence of different borax groups percentage in the Sclg matrix, revealing the versatility of this hydrogel in the immobilization of redox proteins. The native conformation of the three heme proteins entrapped in the hydrogel films were proved to be unchanged, reflected by the unaltered Soret adsorption band and by the catalytic activity toward hydrogen peroxide (H2O2). The main kinetic parameters, such as the apparent Michaelis-Menten constant, for the electrocatalytic reaction were also evaluated. The peculiar characteristics of Sclg-borax matrix make it possible to find wide opportunities as proteins immobilizing agent for studies of direct electrochemistry and biosensors development.

  5. Redox-Inactive Metals Modulate the Reduction Potential in Heterometallic Manganese-Oxido Clusters

    PubMed Central

    Tsui, Emily Y.; Tran, Rosalie; Yano, Junko; Agapie, Theodor

    2013-01-01

    Redox-inactive metals are found in biological and heterogeneous water oxidation catalysts, but their roles in catalysis are currently not well understood. A series of high oxidation state tetranuclear-dioxido clusters comprised of three manganese centers and a redox-inactive metal (M) of various charge is reported. Crystallographic studies show an unprecedented Mn3M(μ4-O)(μ2-O) core that remains intact upon changing M or the manganese oxidation state. Electrochemical studies reveal that the reduction potentials span a window of 700 mV, dependent upon the Lewis acidity of the second metal. With the pKa of the redox-inactive metal-aqua complex as a measure of Lewis acidity, these compounds display a linear dependence between reduction potential and acidity with a slope of ca. 100 mV per pKa unit. The Sr2+ and Ca2+ compounds show similar potentials, an observation that correlates with the behavior of the OEC, which is active only in the presence of one of these two metals. PMID:23511417

  6. Inhibition of Ape1 Redox Activity Promotes Odonto/osteogenic Differentiation of Dental Papilla Cells

    PubMed Central

    Chen, Tian; Liu, Zhi; Sun, Wenhua; Li, Jingyu; Liang, Yan; Yang, Xianrui; Xu, Yang; Yu, Mei; Tian, Weidong; Chen, Guoqing; Bai, Ding

    2015-01-01

    Dentinogenesis is the formation of dentin, a substance that forms the majority of teeth, and this process is performed by odontoblasts. Dental papilla cells (DPCs), as the progenitor cells of odontoblasts, undergo the odontogenic differentiation regulated by multiple cytokines and paracrine signal molecules. Ape1 is a perfect paradigm of the function complexity of a biological macromolecule with two major functional regions for DNA repair and redox regulation, respectively. To date, it remains unclear whether Ape1 can regulate the dentinogenesis in DPCs. In the present study, we firstly examed the spatio-temporal expression of Ape1 during tooth germ developmental process, and found the Ape1 expression was initially high and then gradually reduced along with the tooth development. Secondly, the osteo/odontogenic differentiation capacity of DPCs was up-regulated when treated with either Ape1-shRNA or E3330 (a specific inhibitor of the Ape1 redox function), respectively. Moreover, we found that the canonical Wnt signaling pathway was activated in this process, and E3330 reinforced-osteo/odontogenic differentiation capacity was suppressed by Dickkopf1 (DKK1), a potent antagonist of canonical Wnt signaling pathway. Taken together, we for the first time showed that inhibition of Ape1 redox regulation could promote the osteo/odontogenic differentiation capacity of DPCs via canonical Wnt signaling pathway. PMID:26639148

  7. Structural basis of redox-dependent modulation of galectin-1 dynamics and function

    PubMed Central

    Guardia, Carlos M; Caramelo, Julio J; Trujillo, Madia; Méndez-Huergo, Santiago P; Radi, Rafael; Estrin, Darío A; Rabinovich, Gabriel A

    2014-01-01

    Galectin-1 (Gal-1), a member of a family of multifunctional lectins, plays key roles in diverse biological processes including cell signaling, immunomodulation, neuroprotection and angiogenesis. The presence of an unusual number of six cysteine residues within Gal-1 sequence prompted a detailed analysis of the impact of the redox environment on the functional activity of this lectin. We examined the role of each cysteine residue in the structure and function of Gal-1 using both experimental and computational approaches. Our results show that: (i) only three cysteine residues present in each carbohydrate recognition domain (CRD) (Cys2, Cys16 and Cys88) were important in protein oxidation, (ii) oxidation promoted the formation of the Cys16–Cys88 disulfide bond, as well as multimers through Cys2, (iii) the oxidized protein did not bind to lactose, probably due to poor interactions with Arg48 and Glu71, (iv) in vitro oxidation by air was completely reversible and (v) oxidation by hydrogen peroxide was relatively slow (1.7 ± 0.2 M−1 s−1 at pH 7.4 and 25°C). Finally, an analysis of key cysteines in other human galectins is also provided in order to predict their behaviour in response to redox variations. Collectively, our data provide new insights into the structural basis of Gal-1 redox regulation with critical implications in physiology and pathology. PMID:24451991

  8. Meristem Plant Cells as a Sustainable Source of Redox Actives for Skin Rejuvenation.

    PubMed

    Korkina, Liudmila G; Mayer, Wolfgang; de Luca, Chiara

    2017-05-12

    Recently, aggressive advertisement claimed a "magic role" for plant stem cells in human skin rejuvenation. This review aims to shed light on the scientific background suggesting feasibility of using plant cells as a basis of anti-age cosmetics. When meristem cell cultures obtained from medicinal plants are exposed to appropriate elicitors/stressors (ultraviolet, ultrasound ultraviolet (UV), ultrasonic waves, microbial/insect metabolites, heavy metals, organic toxins, nutrient deprivation, etc.), a protective/adaptive response initiates the biosynthesis of secondary metabolites. Highly bioavailable and biocompatible to human cells, low-molecular weight plant secondary metabolites share structural/functional similarities with human non-protein regulatory hormones, neurotransmitters, pigments, polyamines, amino-/fatty acids. Their redox-regulated biosynthesis triggers in turn plant cell antioxidant and detoxification molecular mechanisms resembling human cell pathways. Easily isolated in relatively large quantities from contaminant-free cell cultures, plant metabolites target skin ageing mechanisms, above all redox imbalance. Perfect modulators of cutaneous oxidative state via direct/indirect antioxidant action, free radical scavenging, UV protection, and transition-metal chelation, they are ideal candidates to restore photochemical/redox/immune/metabolic barriers, gradually deteriorating in the ageing skin. The industrial production of plant meristem cell metabolites is toxicologically and ecologically sustainable for fully "biological" anti-age cosmetics.

  9. Reduction potentials of heterometallic manganese-oxido cubane complexes modulated by redox-inactive metals.

    PubMed

    Tsui, Emily Y; Agapie, Theodor

    2013-06-18

    Understanding the effect of redox-inactive metals on the properties of biological and heterogeneous water oxidation catalysts is important both fundamentally and for improvement of future catalyst designs. In this work, heterometallic manganese-oxido cubane clusters [MMn3O4] (M = Sr(2+), Zn(2+), Sc(3+), Y(3+)) structurally relevant to the oxygen-evolving complex (OEC) of photosystem II were prepared and characterized. The reduction potentials of these clusters and other related mixed metal manganese-tetraoxido complexes are correlated with the Lewis acidity of the apical redox-inactive metal in a manner similar to a related series of heterometallic manganese-dioxido clusters. The redox potentials of the [SrMn3O4] and [CaMn3O4] clusters are close, which is consistent with the observation that the OEC is functional only with one of these two metals. Considering our previous studies of [MMn3O2] moieties, the present results with more structurally accurate models of the OEC ([MMn3O4]) suggest a general relationship between the reduction potentials of heterometallic oxido clusters and the Lewis acidities of incorporated cations that applies to diverse structural motifs. These findings support proposals that one function of calcium in the OEC is to modulate the reduction potential of the cluster to allow electron transfer.

  10. Nerves Control Redox Levels in Mature Tissues Through Schwann Cells and Hedgehog Signaling

    PubMed Central

    Meda, Francesca; Gauron, Carole; Rampon, Christine; Teillon, Jérémie; Volovitch, Michel

    2016-01-01

    Abstract Aims: Recent advances in redox biology have emphasized the role of hydrogen peroxide (H2O2) in the modulation of signaling pathways and revealed that H2O2 plays a role in cellular remodeling in adults. Thus, an understanding of the mechanisms that control H2O2 levels in mature tissue would be of great interest. Results: We used a denervation strategy to demonstrate that sensory neurons are responsible for controlling H2O2 levels under normal conditions and after being lesioned. Moreover, we demonstrate that severed nerves respond to appendage amputation via the induction of Hedgehog signaling and that this signaling is responsible for H2O2 production in the wounded epidermis. Finally, we show that H2O2 and nerve growth are regulated via reciprocal action in adults. Innovation and Conclusion: These data support a new paradigm for the regulation of tissue homeostasis: H2O2 attracts nerves and nerves control H2O2 levels in a positive feedback loop. This finding suggests that the peripheral nerve redox environment could be a target for manipulating cell plasticity in adults. Antioxid. Redox Signal. 24, 299–311. PMID:26442784

  11. Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay.

    PubMed

    Cai, Wei-Jun; Huang, Wei-Jen; Luther, George W; Pierrot, Denis; Li, Ming; Testa, Jeremy; Xue, Ming; Joesoef, Andrew; Mann, Roger; Brodeur, Jean; Xu, Yuan-Yuan; Chen, Baoshan; Hussain, Najid; Waldbusser, George G; Cornwell, Jeffrey; Kemp, W Michael

    2017-08-28

    The combined effects of anthropogenic and biological CO2 inputs may lead to more rapid acidification in coastal waters compared to the open ocean. It is less clear, however, how redox reactions would contribute to acidification. Here we report estuarine acidification dynamics based on oxygen, hydrogen sulfide (H2S), pH, dissolved inorganic carbon and total alkalinity data from the Chesapeake Bay, where anthropogenic nutrient inputs have led to eutrophication, hypoxia and anoxia, and low pH. We show that a pH minimum occurs in mid-depths where acids are generated as a result of H2S oxidation in waters mixed upward from the anoxic depths. Our analyses also suggest a large synergistic effect from river-ocean mixing, global and local atmospheric CO2 uptake, and CO2 and acid production from respiration and other redox reactions. Together they lead to a poor acid buffering capacity, severe acidification and increased carbonate mineral dissolution in the USA's largest estuary.The potential contribution of redox reactions to acidification in coastal waters is unclear. Here, using measurements from the Chesapeake Bay, the authors show that pH minimum occurs at mid-depths where acids are produced via hydrogen sulfide oxidation in waters mixed upward from anoxic depths.

  12. The Isotope-Coded Affinity Tag Method for Quantitative Protein Profile Comparison and Relative Quantitation of Cysteine Redox Modifications.

    PubMed

    Chan, James Chun Yip; Zhou, Lei; Chan, Eric Chun Yong

    2015-11-02

    The isotope-coded affinity tag (ICAT) technique has been applied to measure pairwise changes in protein expression through differential stable isotopic labeling of proteins or peptides followed by identification and quantification using a mass spectrometer. Changes in protein expression are observed when the identical peptide from each of two biological conditions is identified and a difference is detected in the measurements comparing the peptide labeled with the heavy isotope to the one with a normal isotopic distribution. This approach allows the simultaneous comparison of the expression of many proteins between two different biological states (e.g., yeast grown on galactose versus glucose, or normal versus cancer cells). Due to the cysteine-specificity of the ICAT reagents, the ICAT technique has also been applied to perform relative quantitation of cysteine redox modifications such as oxidation and nitrosylation. This unit describes both protein quantitation and profiling of cysteine redox modifications using the ICAT technique.

  13. Redox-inactive metal ions promoted the catalytic reactivity of non-heme manganese complexes towards oxygen atom transfer.

    PubMed

    Choe, Cholho; Yang, Ling; Lv, Zhanao; Mo, Wanling; Chen, Zhuqi; Li, Guangxin; Yin, Guochuan

    2015-05-21

    Redox-inactive metal ions can modulate the reactivity of redox-active metal ions in a variety of biological and chemical oxidations. Many synthetic models have been developed to help address the elusive roles of these redox-inactive metal ions. Using a non-heme manganese(II) complex as the model, the influence of redox-inactive metal ions as a Lewis acid on its catalytic efficiency in oxygen atom transfer was investigated. In the absence of redox-inactive metal ions, the manganese(II) catalyst is very sluggish, for example, in cyclooctene epoxidation, providing only 9.9% conversion with 4.1% yield of epoxide. However, addition of 2 equiv. of Al(3+) to the manganese(II) catalyst sharply improves the epoxidation, providing up to 97.8% conversion with 91.4% yield of epoxide. EPR studies of the manganese(II) catalyst in the presence of an oxidant reveal a 16-line hyperfine structure centered at g = 2.0, clearly indicating the formation of a mixed valent di-μ-oxo-bridged diamond core, Mn(III)-(μ-O)2-Mn(IV). The presence of a Lewis acid like Al(3+) causes the dissociation of this diamond Mn(III)-(μ-O)2-Mn(IV) core to form monomeric manganese(iv) species which is responsible for improved epoxidation efficiency. This promotional effect has also been observed in other manganese complexes bearing various non-heme ligands. The findings presented here have provided a promising strategy to explore the catalytic reactivity of some di-μ-oxo-bridged complexes by adding non-redox metal ions to in situ dissociate those dimeric cores and may also provide clues to understand the mechanism of methane monooxygenase which has a similar diiron diamond core as the intermediate.

  14. Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding.

    PubMed

    Pfannschmidt, T; Bräutigam, K; Wagner, R; Dietzel, L; Schröter, Y; Steiner, S; Nykytenko, A

    2009-02-01

    Photosynthetic electron transport is performed by a chain of redox components that are electrochemically connected in series. Its efficiency depends on the balanced action of the photosystems and on the interaction with the dark reaction. Plants are sessile and cannot escape from environmental conditions such as fluctuating illumination, limitation of CO(2) fixation by low temperatures, salinity, or low nutrient or water availability, which disturb the homeostasis of the photosynthetic process. Photosynthetic organisms, therefore, have developed various molecular acclimation mechanisms that maintain or restore photosynthetic efficiency under adverse conditions and counteract abiotic stresses. Recent studies indicate that redox signals from photosynthetic electron transport and reactive oxygen species (ROS) or ROS-scavenging molecules play a central role in the regulation of acclimation and stress responses. The underlying signalling network of photosynthetic redox control is largely unknown, but it is already apparent that gene regulation by redox signals is of major importance for plants. Signalling cascades controlling the expression of chloroplast and nuclear genes have been identified and dissection of the different pathways is advancing. Because of the direction of information flow, photosynthetic redox signals can be defined as a distinct class of retrograde signals in addition to signals from organellar gene expression or pigment biosynthesis. They represent a vital signal of mature chloroplasts that report their present functional state to the nucleus. Here we describe possible problems in the elucidation of redox signalling networks and discuss some aspects of plant cell biology that are important for developing suitable experimental approaches. The photosynthetic function of chloroplasts represents an important sensor that integrates various abiotic changes in the environment into corresponding molecular signals, which, in turn, regulate cellular

  15. Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria

    NASA Astrophysics Data System (ADS)

    Li, Shan-Wei; Sheng, Guo-Ping; Cheng, Yuan-Yuan; Yu, Han-Qing

    2016-12-01

    Although the capacity for electroactive bacteria to convert environmental metallic minerals and organic pollutants is well known, the role of the redox properties of microbial extracellular polymeric substances (EPS) in this process is poorly understood. In this work, the redox properties of EPS from two widely present electroactive bacterial strains (Shewanella oneidensis and Pseudomonas putida) were explored. Electrochemical analysis demonstrates that the EPS extracted from the two strains exhibited redox properties. Spectroelectrochemical and protein electrophoresis analyses indicate that the extracted EPS from S. oneidensis and P. putida contained heme-binding proteins, which were identified as the possible redox components in the EPS. The results of heme-mediated behavior of EPS may provide an insight into the important roles of EPS in electroactive bacteria to maximize their redox capability for biogeochemical cycling, environmental bioremediation and wastewater treatment.

  16. Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria

    PubMed Central

    Li, Shan-Wei; Sheng, Guo-Ping; Cheng, Yuan-Yuan; Yu, Han-Qing

    2016-01-01

    Although the capacity for electroactive bacteria to convert environmental metallic minerals and organic pollutants is well known, the role of the redox properties of microbial extracellular polymeric substances (EPS) in this process is poorly understood. In this work, the redox properties of EPS from two widely present electroactive bacterial strains (Shewanella oneidensis and Pseudomonas putida) were explored. Electrochemical analysis demonstrates that the EPS extracted from the two strains exhibited redox properties. Spectroelectrochemical and protein electrophoresis analyses indicate that the extracted EPS from S. oneidensis and P. putida contained heme-binding proteins, which were identified as the possible redox components in the EPS. The results of heme-mediated behavior of EPS may provide an insight into the important roles of EPS in electroactive bacteria to maximize their redox capability for biogeochemical cycling, environmental bioremediation and wastewater treatment. PMID:27991531

  17. Energy storage device including a redox-enhanced electrolyte

    DOEpatents

    Stucky, Galen; Evanko, Brian; Parker, Nicholas; Vonlanthen, David; Auston, David; Boettcher, Shannon; Chun, Sang-Eun; Ji, Xiulei; Wang, Bao; Wang, Xingfeng; Chandrabose, Raghu Subash

    2017-08-08

    An electrical double layer capacitor (EDLC) energy storage device is provided that includes at least two electrodes and a redox-enhanced electrolyte including two redox couples such that there is a different one of the redox couples for each of the electrodes. When charged, the charge is stored in Faradaic reactions with the at least two redox couples in the electrolyte and in a double-layer capacitance of a porous carbon material that comprises at least one of the electrodes, and a self-discharge of the energy storage device is mitigated by at least one of electrostatic attraction, adsorption, physisorption, and chemisorption of a redox couple onto the porous carbon material.

  18. Redox-Based Regulation of Bacterial Development and Behavior.

    PubMed

    Sporer, Abigail J; Kahl, Lisa J; Price-Whelan, Alexa; Dietrich, Lars E P

    2017-06-20

    Severe changes in the environmental redox potential, and resulting alterations in the oxidation states of intracellular metabolites and enzymes, have historically been considered negative stressors, requiring responses that are strictly defensive. However, recent work in diverse organisms has revealed that more subtle changes in the intracellular redox state can act as signals, eliciting responses with benefits beyond defense and detoxification. Changes in redox state have been shown to influence or trigger chromosome segregation, sporulation, aerotaxis, and social behaviors, including luminescence as well as biofilm establishment and dispersal. Connections between redox state and complex behavior allow bacteria to link developmental choices with metabolic state and coordinate appropriate responses. Promising future directions for this area of study include metabolomic analysis of species- and condition-dependent changes in metabolite oxidation states and elucidation of the mechanisms whereby the redox state influences circadian regulation.

  19. The biphasic nature of nitric oxide responses in tumor biology.

    PubMed

    Ridnour, Lisa A; Thomas, Douglas D; Donzelli, Sonia; Espey, Michael G; Roberts, David D; Wink, David A; Isenberg, Jeffrey S

    2006-01-01

    The dual or biphasic responses of cancer to nitric oxide (NO) arise from its concentration dependent ability to regulate tumor growth, migration, invasion, survival, angiogenesis, and metastasis. The outcome of these various NO-dependent processes is dictated by several factors including NO flux, the chemical redox environment, and the duration of NO exposure. Further, it was recently discovered that an NO-induced redox flux in vascular endothelial cells hypersensitizes these cells to the antiangiogenic effects of thrombospondin-1. This suggests a novel treatment paradigm for targeting tumor-driven angiogenesis that combines redox modulation with mimetic derivatives of thrombospondin-1. This article discusses the biphasic nature of NO in cancer biology and the implications of NO-driven redox flux for modulation of tumor-stimulated angiogenesis, growth, and metastasis.

  20. Mammalian thioredoxin reductase 1: roles in redox homoeostasis and characterization of cellular targets

    PubMed Central

    Turanov, Anton A.; Kehr, Sebastian; Marino, Stefano M.; Yoo, Min-Hyuk; Carlson, Bradley A.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2012-01-01

    The classical Trx (thioredoxin) system, composed of TR (Trx reductase), Trx and NADPH, defines a major pathway of cellular thiol-based redox regulation. Three TRs have been identified in mammals: (i) cytosolic TR1, (ii) mitochondrial TR3 and (iii) testes-specific TGR (Trx-glutathione reductase). All three are selenocysteine-containing enzymes with broad substrate specificity in in vitro assays, but which protein substrates are targeted by TRs in vivo is not well understood. In the present study, we used a mechanism-based approach to characterize the molecular targets of TR1. Cytosolic Trx1 was the major target identified in rat and mouse liver, as well as in rat brain and mouse serum. The results suggest that the main function of TR1 is to reduce Trx1. We also found that TR1-based affinity resins provide a convenient tool for specific isolation of Trxs from a variety of biological samples. To better assess the role of TRs in redox homoeostasis, we comparatively analysed TR1- and TR3-knockdown cells. Although cells deficient in TR1 were particularly sensitive to diamide, TR3-knockdown cells were more sensitive to hydrogen peroxide. To further examine the TR1–Trx1 redox pair, we used mice with a liver-specific knockout of selenocysteine tRNA. In this model, selenocysteine insertion into TR1 was blocked, but the truncated form of this protein was not detected. Instead, TR1 and TR3 levels were decreased in the knockout samples. Diminished hepatic TR1 function was associated with elevated Trx1 levels, but this protein was mostly in the oxidized state. Overall, this study provides evidence for the key role of the TR1–Trx1 pair in redox homoeostasis. PMID:20536427

  1. Mammalian thioredoxin reductase 1: roles in redox homoeostasis and characterization of cellular targets.

    PubMed

    Turanov, Anton A; Kehr, Sebastian; Marino, Stefano M; Yoo, Min-Hyuk; Carlson, Bradley A; Hatfield, Dolph L; Gladyshev, Vadim N

    2010-09-01

    The classical Trx (thioredoxin) system, composed of TR (Trx reductase), Trx and NADPH, defines a major pathway of cellular thiol-based redox regulation. Three TRs have been identified in mammals: (i) cytosolic TR1, (ii) mitochondrial TR3 and (iii) testes-specific TGR (Trx-glutathione reductase). All three are selenocysteine-containing enzymes with broad substrate specificity in in vitro assays, but which protein substrates are targeted by TRs in vivo is not well understood. In the present study, we used a mechanism-based approach to characterize the molecular targets of TR1. Cytosolic Trx1 was the major target identified in rat and mouse liver, as well as in rat brain and mouse serum. The results suggest that the main function of TR1 is to reduce Trx1. We also found that TR1-based affinity resins provide a convenient tool for specific isolation of Trxs from a variety of biological samples. To better assess the role of TRs in redox homoeostasis, we comparatively analysed TR1- and TR3-knockdown cells. Although cells deficient in TR1 were particularly sensitive to diamide, TR3-knockdown cells were more sensitive to hydrogen peroxide. To further examine the TR1-Trx1 redox pair, we used mice with a liver-specific knockout of selenocysteine tRNA. In this model, selenocysteine insertion into TR1 was blocked, but the truncated form of this protein was not detected. Instead, TR1 and TR3 levels were decreased in the knockout samples. Diminished hepatic TR1 function was associated with elevated Trx1 levels, but this protein was mostly in the oxidized state. Overall, this study provides evidence for the key role of the TR1-Trx1 pair in redox homoeostasis.

  2. Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor

    PubMed Central

    2017-01-01

    Abstract Significance: Soluble guanylyl cyclase (sGC), which produces the second messenger cyclic guanosine 3′, 5′-monophosphate (cGMP), is at the crossroads of nitric oxide (NO) signaling: sGC catalytic activity is both stimulated by NO binding to the heme and inhibited by NO modification of its cysteine (Cys) thiols (S-nitrosation). Modulation of sGC activity by thiol oxidation makes sGC a therapeutic target for pathologies originating from oxidative or nitrosative stress. sGC has an unusually high percentage of Cys for a cytosolic protein, the majority solvent exposed and therefore accessible modulatory targets for biological and pathophysiological signaling. Recent Advances: Thiol oxidation of sGC contributes to the development of cardiovascular diseases by decreasing NO-dependent cGMP production and thereby vascular reactivity. This thiol-based resistance to NO (e.g., increase in peripheral resistance) is observed in hypertension and hyperaldosteronism. Critical Issues: Some roles of specific Cys thiols have been identified in vitro. So far, it has not been possible to pinpoint the roles of specific Cys of sGC in vivo and to investigate the molecular mechanisms in an animal model. Future Directions: The role of Cys as redox sensors, intermediates of activation, and mediators of change in sGC conformation, activity, and dimerization remains largely unexplored. To understand modulation of sGC activity, it is critical to investigate the roles of specific oxidative thiol modifications that are formed during these processes. Where the redox state of sGC thiols contribute to pathologies (vascular resistance and sGC desensitization by NO donors), it becomes crucial to design therapeutic strategies to restore sGC to its normal, physiological thiol redox state. Antioxid. Redox Signal. 26, 137–149. PMID:26906466

  3. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling.

    PubMed

    Brand, Martin D

    2016-11-01

    have important roles in redox signaling (e.g. hypoxic signaling and ER-stress) and in causing oxidative damage in a variety of biological contexts. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Redox Modulation Matters: Emerging Functions for Glutaredoxins in Plant Development and Stress Responses

    PubMed Central

    Li, Shutian

    2014-01-01

    Glutaredoxins (GRXs) are small ubiquitous glutathione (GSH)-dependent oxidoreductases that catalyze the reversible reduction of protein disulfide bridges or protein-GSH mixed disulfide bonds via a dithiol or monothiol mechanism, respectively. Three major classes of GRXs, with the CPYC-type, the CGFS-type or the CC-type active site, have been identified in many plant species. In spite of the well-characterized roles for GRXs in Escherichia coli, yeast and humans, the biological functions of plant GRXs have been largely enigmatic. The CPYC-type and CGFS-type GRXs exist in all organisms, from prokaryotes to eukaryotes, whereas the CC-type class has thus far been solely identified in land plants. Only the number of the CC-type GRXs has enlarged dramatically during the evolution of land plants, suggesting their participation in the formation of more complex plants adapted to life on land. A growing body of evidence indicates that plant GRXs are involved in numerous cellular pathways. In this review, emphasis is placed on the recently emerging functions for GRXs in floral organ development and disease resistance. Notably, CC-type GRXs have been recruited to participate in these two seemingly unrelated processes. Besides, the current knowledge of plant GRXs in the assembly and delivery of iron-sulfur clusters, oxidative stress responses and arsenic resistance is also presented. As GRXs require GSH as an electron donor to reduce their target proteins, GSH-related developmental processes, including the control of flowering time and the development of postembryonic roots and shoots, are further discussed. Profiling the thiol redox proteome using high-throughput proteomic approaches and measuring cellular redox changes with fluorescent redox biosensors will help to further unravel the redox-regulated physiological processes in plants. PMID:27135520

  5. Incorporating redox processes improves prediction of carbon and nutrient cycling and greenhouse gas emission

    NASA Astrophysics Data System (ADS)

    Tang, Guoping; Zheng, Jianqiu; Yang, Ziming; Graham, David; Gu, Baohua; Mayes, Melanie; Painter, Scott; Thornton, Peter

    2016-04-01

    Among the coupled thermal, hydrological, geochemical, and biological processes, redox processes play major roles in carbon and nutrient cycling and greenhouse gas (GHG) emission. Increasingly, mechanistic representation of redox processes is acknowledged as necessary for accurate prediction of GHG emission in the assessment of land-atmosphere interactions. Simple organic substrates, Fe reduction, microbial reactions, and the Windermere Humic Aqueous Model (WHAM) were added to a reaction network used in the land component of an Earth system model. In conjunction with this amended reaction network, various temperature response functions used in ecosystem models were assessed for their ability to describe experimental observations from incubation tests with arctic soils. Incorporation of Fe reduction reactions improves the prediction of the lag time between CO2 and CH4 accumulation. The inclusion of the WHAM model enables us to approximately simulate the initial pH drop due to organic acid accumulation and then a pH increase due to Fe reduction without parameter adjustment. The CLM4.0, CENTURY, and Ratkowsky temperature response functions better described the observations than the Q10 method, Arrhenius equation, and ROTH-C. As electron acceptors between O2 and CO2 (e.g., Fe(III), SO42-) are often involved, our results support inclusion of these redox reactions for accurate prediction of CH4 production and consumption. Ongoing work includes improving the parameterization of organic matter decomposition to produce simple organic substrates, examining the influence of redox potential on methanogenesis under thermodynamically favorable conditions, and refining temperature response representation near the freezing point by additional model-experiment iterations. We will use the model to describe observed GHG emission at arctic and tropical sites.

  6. Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor.

    PubMed

    Beuve, Annie

    2017-01-20

    Soluble guanylyl cyclase (sGC), which produces the second messenger cyclic guanosine 3', 5'-monophosphate (cGMP), is at the crossroads of nitric oxide (NO) signaling: sGC catalytic activity is both stimulated by NO binding to the heme and inhibited by NO modification of its cysteine (Cys) thiols (S-nitrosation). Modulation of sGC activity by thiol oxidation makes sGC a therapeutic target for pathologies originating from oxidative or nitrosative stress. sGC has an unusually high percentage of Cys for a cytosolic protein, the majority solvent exposed and therefore accessible modulatory targets for biological and pathophysiological signaling. Recent Advances: Thiol oxidation of sGC contributes to the development of cardiovascular diseases by decreasing NO-dependent cGMP production and thereby vascular reactivity. This thiol-based resistance to NO (e.g., increase in peripheral resistance) is observed in hypertension and hyperaldosteronism. Some roles of specific Cys thiols have been identified in vitro. So far, it has not been possible to pinpoint the roles of specific Cys of sGC in vivo and to investigate the molecular mechanisms in an animal model. The role of Cys as redox sensors, intermediates of activation, and mediators of change in sGC conformation, activity, and dimerization remains largely unexplored. To understand modulation of sGC activity, it is critical to investigate the roles of specific oxidative thiol modifications that are formed during these processes. Where the redox state of sGC thiols contribute to pathologies (vascular resistance and sGC desensitization by NO donors), it becomes crucial to design therapeutic strategies to restore sGC to its normal, physiological thiol redox state. Antioxid. Redox Signal. 26, 137-149.

  7. Thioredoxin-dependent redox regulation of chloroplastic phosphoglycerate kinase from Chlamydomonas reinhardtii.

    PubMed

    Morisse, Samuel; Michelet, Laure; Bedhomme, Mariette; Marchand, Christophe H; Calvaresi, Matteo; Trost, Paolo; Fermani, Simona; Zaffagnini, Mirko; Lemaire, Stéphane D

    2014-10-24

    In photosynthetic organisms, thioredoxin-dependent redox regulation is a well established mechanism involved in the control of a large number of cellular processes, including the Calvin-Benson cycle. Indeed, 4 of 11 enzymes of this cycle are activated in the light through dithiol/disulfide interchanges controlled by chloroplastic thioredoxin. Recently, several proteomics-based approaches suggested that not only four but all enzymes of the Calvin-Benson cycle may withstand redox regulation. Here, we characterized the redox features of the Calvin-Benson enzyme phosphoglycerate kinase (PGK1) from the eukaryotic green alga Chlamydomonas reinhardtii, and we show that C. reinhardtii PGK1 (CrPGK1) activity is inhibited by the formation of a single regulatory disulfide bond with a low midpoint redox potential (-335 mV at pH 7.9). CrPGK1 oxidation was found to affect the turnover number without altering the affinity for substrates, whereas the enzyme activation appeared to be specifically controlled by f-type thioredoxin. Using a combination of site-directed mutagenesis, thiol titration, mass spectrometry analyses, and three-dimensional modeling, the regulatory disulfide bond was shown to involve the not strictly conserved Cys(227) and Cys(361). Based on molecular mechanics calculation, the formation of the disulfide is proposed to impose structural constraints in the C-terminal domain of the enzyme that may lower its catalytic efficiency. It is therefore concluded that CrPGK1 might constitute an additional light-modulated Calvin-Benson cycle enzyme with a low activity in the dark and a TRX-dependent activation in the light. These results are also discussed from an evolutionary point of view. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Electrolytes based on TEMPO-Co tandem redox systems outperform single redox systems in dye-sensitized solar cells.

    PubMed

    Cong, Jiayan; Hao, Yan; Boschloo, Gerrit; Kloo, Lars

    2015-01-01

    A new TEMPO-Co tandem redox system with TEMPO and Co(bpy)3 (2+/3+) has been investigated for the use in dye-sensitized solar cells (DSSCs). A large open-circuit voltage (VOC ) increase, from 862 mV to 965 mV, was observed in the tandem redox system, while the short-circuit current density (JSC ) was maintained. The conversion efficiency was observed to increase from 7.1 % for cells containing the single Co(bpy)3 (2+/3+) redox couple, to 8.4 % for cells containing the TEMPO-Co tandem redox system. The reason for the increase in VOC and overall efficiency is ascribed to the involvement of partial regeneration of the sensitizing dye molecules by TEMPO. This assumption can be verified through the observed much faster regeneration dynamics exhibited in the presence of the tandem system. Using the tandem redox system, the faster recombination problem of the single TEMPO redox couple is resolved and the mass-transport of the metal-complex-based electrolyte is also improved. This TEMPO-Co tandem system is so far the most efficient tandem redox electrolyte reported not involving iodine. The current results show a promising future for tandem system as replacements for single redox systems in electrolytes for DSSCs.

  9. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.

    PubMed

    Liu, Pei; Zhang, Huoming; Wang, Hai; Xia, Yiji

    2014-03-01

    Cellular redox status plays a key role in mediating various physiological and developmental processes often through modulating activities of redox-sensitive proteins. Various stresses trigger over-production of reactive oxygen/nitrogen species which lead to oxidative modifications of redox-sensitive proteins. Identification and characterization of redox-sensitive proteins are important steps toward understanding molecular mechanisms of stress responses. Here, we report a high-throughput quantitative proteomic approach termed OxiTRAQ for identifying proteins whose thiols undergo reversible oxidative modifications in Arabidopsis cells subjected to oxidative stress. In this approach, a biotinylated thiol-reactive reagent is used for differential labeling of reduced and oxidized thiols. The biotin-tagged peptides are affinity purified, labeled with iTRAQ reagents, and analyzed using a paralleled HCD-CID fragmentation mode in an LTQ-Orbitrap. With this approach, we identified 195 cysteine-containing peptides from 179 proteins whose thiols underwent oxidative modifications in Arabidopsis cells following the treatment with hydrogen peroxide. A majority of those redox-sensitive proteins, including several transcription factors, were not identified by previous redox proteomics studies. This approach allows identification of the specific redox-regulated cysteine residues, and offers an effective tool for elucidation of redox proteomes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electrolytes Based on TEMPO–Co Tandem Redox Systems Outperform Single Redox Systems in Dye‐sensitized Solar Cells

    PubMed Central

    Cong, Jiayan; Hao, Yan; Boschloo, Gerrit

    2014-01-01

    Abstract A new TEMPO–Co tandem redox system with TEMPO and Co(bpy)3 2+/3+ has been investigated for the use in dye‐sensitized solar cells (DSSCs). A large open‐circuit voltage (V OC) increase, from 862 mV to 965 mV, was observed in the tandem redox system, while the short‐circuit current density (J SC) was maintained. The conversion efficiency was observed to increase from 7.1 % for cells containing the single Co(bpy)3 2+/3+ redox couple, to 8.4 % for cells containing the TEMPO–Co tandem redox system. The reason for the increase in V OC and overall efficiency is ascribed to the involvement of partial regeneration of the sensitizing dye molecules by TEMPO. This assumption can be verified through the observed much faster regeneration dynamics exhibited in the presence of the tandem system. Using the tandem redox system, the faster recombination problem of the single TEMPO redox couple is resolved and the mass‐transport of the metal‐complex‐based electrolyte is also improved. This TEMPO–Co tandem system is so far the most effienct tandem redox electrolyte reported not involving iodine. The current results show a promising future for tandem system as replacements for single redox systems in electrolytes for DSSCs. PMID:25504818

  11. Exercise and Glycemic Control: Focus on Redox Homeostasis and Redox-Sensitive Protein Signaling

    PubMed Central

    Parker, Lewan; Shaw, Christopher S.; Stepto, Nigel K.; Levinger, Itamar

    2017-01-01

    Physical inactivity, excess energy consumption, and obesity are associated with elevated systemic oxidative stress and the sustained activation of redox-sensitive stress-activated protein kinase (SAPK) and mitogen-activated protein kinase signaling pathways. Sustained SAPK activation leads to aberrant insulin signaling, impaired glycemic control, and the development and progression of cardiometabolic disease. Paradoxically, acute exercise transiently increases oxidative stress and SAPK signaling, yet postexercise glycemic control and skeletal muscle function are enhanced. Furthermore, regular exercise leads to the upregulation of antioxidant defense, which likely assists in the mitigation of chronic oxidative stress-associated disease. In this review, we explore the complex spatiotemporal interplay between exercise, oxidative stress, and glycemic control, and highlight exercise-induced reactive oxygen species and redox-sensitive protein signaling as important regulators of glucose homeostasis. PMID:28529499

  12. A redox-neutral catechol synthesis.

    PubMed

    Wu, Qian; Yan, Dingyuan; Chen, Ying; Wang, Ting; Xiong, Feng; Wei, Wei; Lu, Yi; Sun, Wei-Yin; Li, Jie Jack; Zhao, Jing

    2017-01-27

    Ubiquitous tyrosinase catalyses the aerobic oxidation of phenols to catechols through the binuclear copper centres. Here, inspired by the Fischer indole synthesis, we report an iridium-catalysed tyrosinase-like approach to catechols, employing an oxyacetamide-directed C-H hydroxylation on phenols. This method achieves one-step, redox-neutral synthesis of catechols with diverse substituent groups under mild conditions. Mechanistic studies confirm that the directing group (DG) oxyacetamide acts as the oxygen source. This strategy has been applied to the synthesis of different important catechols with fluorescent property and bioactivity from the corresponding phenols. Finally, our method also provides a convenient route to (18)O-labelled catechols using (18)O-labelled acetic acid.

  13. An electrochemical rebalance cell for Redox systems

    NASA Technical Reports Server (NTRS)

    Acevedo, J. C.; Stalnaker, D. K.

    1983-01-01

    An electrochemical rebalance cell for maintaining electrochemical balance, at the system level, of the acidified aqueous iron chloride and chromium chloride reactant solutions in the redox energy storage system was constructed and evaluated. The electrochemical reaction for the cathode is Fe(+3) + e(-) yields Fe(+2), and that for the anode is 1/2H2 yields H(+) + e(-). The iron (carbon felt) electrode and the hydrogen (platinized carbon) electrode are separated by an anion exchange membrane. The performance of the rebalance cell is discussed as well as the assembly of a single rebalance cell and multicell stacks. Various cell configurations were tested and the results are presented and discussed. The rebalance cell was also used to demonstrate its ability, as a preparative tool, for making high purity solutions of soluble reduced metal ionic species. Preparations of titanium, copper, vanadium and chromium ions in acidified solutions were evaluated.

  14. Iron-sulfide redox flow batteries

    DOEpatents

    Xia, Guanguang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2016-06-14

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  15. Iron-sulfide redox flow batteries

    DOEpatents

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  16. Economics of vanadium redox flow battery membranes

    NASA Astrophysics Data System (ADS)

    Minke, Christine; Turek, Thomas

    2015-07-01

    The membrane is a key component of the vanadium redox flow battery (VRFB) in terms of electrochemical performance as well as costs. The standard material Nafion® is cost intensive and therefore several alternative materials are in the focus of research. In this paper a substantial analytical approach is presented in order to quantify bottom price limits for different types of membranes. An in-depth analysis of material and production cost allows statements concerning cost potentials of different ion exchange membranes (IEM) and nano filtration membranes (NFM). The final result reveals that expected costs of IEM and NFM at high production volumes differ by one order of magnitude. Moreover, an analysis of the current market situation is made to provide a framework for economic considerations at present.

  17. High energy density redox flow device

    SciTech Connect

    Chiang, Yet -Ming; Carter, W. Craig; Duduta, Mihai; Limthongkul, Pimpa

    2015-10-06

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  18. Zinc-redox battery: A technology update

    NASA Astrophysics Data System (ADS)

    Hollandsworth, R. P.

    Since 1977, scientists at Lockheed Missiles and Space Company, Inc., have been developing the Zinc-Redox Battery for large-scale electrical energy storage. The current state of technology for this battery has demonstrated a number o