Science.gov

Sample records for a-derived peptide inhibits

  1. Peptide bioregulators inhibit apoptosis.

    PubMed

    Khavinson, V K; Kvetnoii, I M

    2000-12-01

    The effects of peptide bioregulators epithalon and vilon on the dynamics of irradiation-induced apoptotic death of spleen lymphocytes in rats indicate that these agents inhibit physiologically programmed cell death. The antiapoptotic effect of vilon was more pronounced, which corroborates the concept on tissue-specific effect of peptide bioregulators.

  2. A derivative of wheat germ agglutinin specifically inhibits formyl-peptide-induced polymorphonuclear leukocyte chemotaxis by blocking re-expression (or recycling) of receptors.

    PubMed

    Perez, H D; Elfman, F; Lobo, E; Sklar, L; Chenoweth, D; Hooper, C

    1986-03-01

    We examined the mechanism of action of a derivative of wheat germ agglutinin (WGA-D) which specifically and irreversibly inhibits N-formyl-methionyl-leucyl-phenylalanine (FMLP)-induced polymorphonuclear leukocyte (PMN) chemotaxis. At a concentration that completely inhibited PMN chemotaxis, WGA-D had no effect on either the uptake or release of [3H]-FMLP by PMN. Similarly, WGA-D did not affect either the short-term binding to, or internalization by, PMN of a fluoresceinated FMLP analog. WGA-D did interfere, however, with the re-expression (or recycling) of FMLP receptors by PMN that had been preincubated with 1 microM FMLP for 10 min at 4 degrees C. This effect was specific for WGA-D, because it was not observed when concanavalin A was used. Scatchard plot analysis of FMLP binding to PMN after receptor re-expression demonstrated that WGA-D-treated PMN had a significant diminution in the number of high affinity receptors. WGA-D-mediated inhibition of FMLP receptor re-expression was associated with inhibition of FMLP-induced PMN chemotaxis, but had no effect on either FMLP-induced PMN superoxide anion generation or degranulation. Studies using [125I]-WGA-D demonstrated that PMN did not internalize WGA-D spontaneously. PMN did internalize [125I]-WGA-D, however, when stimulated with FMLP. Internalization of WGA-D by FMLP-stimulated PMN was rapid, dependent on the concentration of FMLP, and specific. Internalization of [125I]-WGA-D by PMN did not occur when highly purified human C5a, instead of FMLP, was used as a stimulus. Subcellular fractionation studies demonstrated that [125I]-WGA-D and [3H]-FMLP were co-internalized by PMN, and segregated to a compartment co-migrating with Golgi markers. Western blot analysis, using PMN plasma membranes, demonstrated that WGA-D bound to a single membrane glycoprotein that migrated with an apparent m.w. of 62,000. The data indicate that WGA-D, perhaps by binding to the FMLP receptor, inhibits FMLP-induced PMN chemotaxis by blocking

  3. Thrombin inhibition by cyclic peptides from thrombomodulin.

    PubMed Central

    Lougheed, J. C.; Bowman, C. L.; Meininger, D. P.; Komives, E. A.

    1995-01-01

    Peptides corresponding to the loop regions of the fourth, fifth, and sixth epidermal growth factor (EGF)-like domains of thrombomodulin (TM) have been synthesized and assayed for thrombin inhibition, as indicated by both inhibition of thrombin-mediated fibrinogen clotting and inhibition of the association of thrombin with TM that results in protein C activation. Peptides from the fifth EGF-like domain showed significant inhibition of fibrinogen clotting and protein C activation, whereas peptides from the fourth and sixth EGF-like domains were weak inhibitors in both assays. Two structural features were important for inhibitory potency of the peptides from the fifth EGF-like domain: cyclization by a disulfide bond and attachment of the "tail" amino acids C-terminal to the disulfide loop. Linear control peptides did not significantly inhibit clotting or protein C activation. The C-terminal loop alone, the "tail" peptide, or a mixture of the two were at least 10-fold less potent inhibitors of clotting or protein C activation. A more constrained peptide analog was designed by deletion of an isoleucine within the C5-C6 disulfide loop, TM52-1 + 5C. This analog was a better inhibitor in both assay systems, having a Ki for protein C activation of 26 microM. PMID:7613475

  4. Tailoring elastase inhibition with synthetic peptides.

    PubMed

    Vasconcelos, Andreia; Azoia, Nuno G; Carvalho, Ana C; Gomes, Andreia C; Güebitz, Georg; Cavaco-Paulo, Artur

    2011-09-01

    Chronic wounds are the result of excessive amounts of tissue destructive proteases such as human neutrophil elastase (HNE). The high levels of this enzyme found on those types of wounds inactivate the endogenous inhibitor barrier thus, the search for new HNE inhibitors is required. This work presents two new HNE inhibitor peptides, which were synthesized based on the reactive-site loop of the Bowman-Birk inhibitor protein. The results obtained indicated that these new peptides are competitive inhibitors for HNE and, the inhibitory activity can be modulated by modifications introduced at the N- and C-terminal of the peptides. Furthermore, these peptides were also able to inhibit elastase from a human wound exudate while showing no cytotoxicity against human skin fibroblasts in vitro, greatly supporting their potential application in chronic wound treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. New biological aspects of chromogranin A-derived peptides: focus on vasostatins.

    PubMed

    Tota, Bruno; Quintieri, Anna Maria; Di Felice, Valentina; Cerra, Maria Carmela

    2007-05-01

    Chromogranin A (CgA), one component of the granin family, represents the major soluble protein co-stored and co-released with catecholamines, within chromaffin cells secretory granules. It is considered a diagnostic and prognostic marker of several diseases, including a variety of tumours and cardiac heart failure. It also represents a precursor of biologically active fragments, generated after proteolytic cleavage at the level of the multiple pairs of dibasic sites which enrich its sequence. CgA, and its derived fragments show an old evolutionary history being ubiquitously present throughout the animal word, from mammals to invertebrates. Their biological functions include control of hormone production, and several paracrine and autocrine actions mainly attributed to its derived peptides. Two N-terminal fragments, named vasostatins 1 (VS-1: CgA(1-76)) and vasostatin 2 (VS-2: CgA(1-113)) due to their ability to dilate pre-constricted vessels, exert a large spectrum of homeostatic actions, including antifungal and antimicrobial effect, modulation of cell adhesion, and inhibition of parathyroid hormone secretion. Recently, on isolated heart preparations from eel, frog and rat they were shown to act as negative inotropic agents able to counteract the effects of beta-adrenergic stimulation. This short note introduces the abstracts of the contributions at the "International Workshop on Vasostatins and Chromogranin A-derived peptides" (Island of Capri, Italy; September 2005). The Workshop was focused on recent findings on the role of vasostatins (VSs) in cardiovascular and gastrointestinal systems, extracellular fluids composition, and innate immunity. Particular attention has been given to the still elusive mechanism of action of these peptides.

  6. Immunogenicity of HLA Class I and II Double Restricted Influenza A-Derived Peptides.

    PubMed

    Pedersen, Sara Ram; Christensen, Jan Pravsgaard; Buus, Søren; Rasmussen, Michael; Korsholm, Karen Smith; Nielsen, Morten; Claesson, Mogens Helweg

    2016-01-01

    The aim of the present study was to identify influenza A-derived peptides which bind to both HLA class I and -II molecules and by immunization lead to both HLA class I and class II restricted immune responses. Eight influenza A-derived 9-11mer peptides with simultaneous binding to both HLA-A*02:01 and HLA-DRB1*01:01 molecules were identified by bioinformatics and biochemical technology. Immunization of transgenic HLA-A*02:01/HLA-DRB1*01:01 mice with four of these double binding peptides gave rise to both HLA class I and class II restricted responses by CD8 and CD4 T cells, respectively, whereas four of the double binding peptides did result in HLA-A*02:01 restricted responses only. According to their cytokine profile, the CD4 T cell responses were of the Th2 type. In influenza infected mice, we were unable to detect natural processing in vivo of the double restricted peptides and in line with this, peptide vaccination did not decrease virus titres in the lungs of intranasally influenza challenged mice. Our data show that HLA class I and class II double binding peptides can be identified by bioinformatics and biochemical technology. By immunization, double binding peptides can give rise to both HLA class I and class I restricted responses, a quality which might be of potential interest for peptide-based vaccine development.

  7. Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides.

    PubMed

    Xiao, Y; Karttunen, M; Jalkanen, J; Mussi, M C M; Liao, Y; Grohe, B; Lagugné-Labarthet, F; Siqueira, W L

    2015-08-01

    In our recent studies, we have shown that in vivo-acquired enamel pellicle is a sophisticated biological structure containing a significant portion of naturally occurring salivary peptides. From a functional aspect, the identification of peptides in the acquired enamel pellicle is of interest because many salivary proteins exhibit functional domains that maintain the activities of the native protein. Among the in vivo-acquired enamel pellicle peptides that have been newly identified, 5 peptides are derived from statherin. Here, we assessed the ability of these statherin pellicle peptides to inhibit hydroxyapatite crystal growth. In addition, atomistic molecular dynamics (MD) simulations were performed to better understand the underlying physical mechanisms of hydroxyapatite growth inhibition. A microplate colorimetric assay was used to quantify hydroxyapatite growth. Statherin protein, 5 statherin-derived peptides, and a peptide lacking phosphate at residues 2 and 3 were analyzed. Statherin peptide phosphorylated on residues 2 and 3 indicated a significant inhibitory effect when compared with the 5 other peptides (P < 0.05). MD simulations showed a strong affinity and fast adsorption to hydroxyapatite for phosphopeptides, whereas unphosphorylated peptides interacted weakly with the hydroxyapatite. Our data suggest that the presence of a covalently linked phosphate group (at residues 2 and 3) in statherin peptides modulates the effect of hydroxyapatite growth inhibition. This study provides a mechanism to account for the composition and function of acquired enamel pellicle statherin peptides that will contribute as a base for the development of biologically stable and functional synthetic peptides for therapeutic use against dental caries and/or periodontal disease.

  8. Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis

    PubMed Central

    Merriman, Joseph A.; Nemeth, Kimberly A.; Schlievert, Patrick M.

    2014-01-01

    Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges. PMID:24748386

  9. Novel antimicrobial peptides that inhibit gram positive bacterial exotoxin synthesis.

    PubMed

    Merriman, Joseph A; Nemeth, Kimberly A; Schlievert, Patrick M

    2014-01-01

    Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges.

  10. Two Chromogranin A-Derived Peptides Induce Calcium Entry in Human Neutrophils by Calmodulin-Regulated Calcium Independent Phospholipase A2

    PubMed Central

    Zhang, Dan; Shooshtarizadeh, Peiman; Laventie, Benoît-Joseph; Colin, Didier André; Chich, Jean-François; Vidic, Jasmina; de Barry, Jean; Chasserot-Golaz, Sylvette; Delalande, François; Van Dorsselaer, Alain; Schneider, Francis; Helle, Karen; Aunis, Dominique; Prévost, Gilles; Metz-Boutigue, Marie-Hélène

    2009-01-01

    Background Antimicrobial peptides derived from the natural processing of chromogranin A (CgA) are co-secreted with catecholamines upon stimulation of chromaffin cells. Since PMNs play a central role in innate immunity, we examine responses by PMNs following stimulation by two antimicrobial CgA-derived peptides. Methodology/Principal Findings PMNs were treated with different concentrations of CgA-derived peptides in presence of several drugs. Calcium mobilization was observed by using flow cytometry and calcium imaging experiments. Immunocytochemistry and confocal microscopy have shown the intracellular localization of the peptides. The calmodulin-binding and iPLA2 activating properties of the peptides were shown by Surface Plasmon Resonance and iPLA2 activity assays. Finally, a proteomic analysis of the material released after PMNs treatment with CgA-derived peptides was performed by using HPLC and Nano-LC MS-MS. By using flow cytometry we first observed that after 15 s, in presence of extracellular calcium, Chromofungin (CHR) or Catestatin (CAT) induce a concentration-dependent transient increase of intracellular calcium. In contrast, in absence of extra cellular calcium the peptides are unable to induce calcium depletion from the stores after 10 minutes exposure. Treatment with 2-APB (2-aminoethoxydiphenyl borate), a store operated channels (SOCs) blocker, inhibits completely the calcium entry, as shown by calcium imaging. We also showed that they activate iPLA2 as the two CaM-binding factors (W7 and CMZ) and that the two sequences can be aligned with the two CaM-binding domains reported for iPLA2. We finally analyzed by HPLC and Nano-LC MS-MS the material released by PMNs following stimulation by CHR and CAT. We characterized several factors important for inflammation and innate immunity. Conclusions/Significance For the first time, we demonstrate that CHR and CAT, penetrate into PMNs, inducing extracellular calcium entry by a CaM-regulated iPLA2 pathway. Our

  11. Peptide-derivatized albumins that inhibit fibrin polymerization.

    PubMed

    Watson, Joseph W; Doolittle, Russell F

    2011-11-15

    Synthetic peptides patterned on sequences that appear during thrombin proteolysis of fibrinogen are known to influence fibrin formation in very different ways. A-Knob sequences (GPR-) inhibit polymerization, but B-knob sequences (GHR-) can actually enhance the process. We now report that when such peptides are attached to albumin carriers, both knob conjugates inhibit fibrin formation. In contrast, the 2-aminoethylthiol-albumin conjugate control enhances the polymerization to the same degree as albumin. The peptide AHRPam, which is known to bind exclusively to the βC holes of fibrinogen/fibrin, nullifies the inhibitory effects of the GHRPYGGGCam-albumin conjugate on fibrin polymerization, indicating that the inhibition was exclusively due to interactions with βC holes. AHRPam was much less effective in countering inhibition by the GPRPGGGGCam-albumin conjugate, suggesting that the observed effects with this conjugate involve mainly the γC holes of fibrin/fibrinogen. This study demonstrates that peptides modeled on fibrin polymerization knobs tethered to albumin retain their capacity to interact with fibrinogen/fibrin and may prove useful as inhibitors of clotting in vivo.

  12. Tumor-Penetrating iRGD Peptide Inhibits Metastasis

    PubMed Central

    Sugahara, Kazuki N.; Braun, Gary B.; de Mendoza, Tatiana Hurtado; Kotamraju, Venkata Ramana; French, Randall P.; Lowy, Andrew M.; Teesalu, Tambet; Ruoslahti, Erkki

    2014-01-01

    Tumor-specific tissue-penetrating peptides deliver drugs into extravascular tumor tissue by increasing tumor vascular permeability through interaction with neuropilin (NRP). Here we report that a prototypic tumor-penetrating peptide iRGD (amino acid sequence: CRGDKGPDC) potently inhibits spontaneous metastasis in mice. The anti-metastatic effect was mediated by the NRP-binding RXXK peptide motif (CendR motif), and not by the integrin-binding RGD motif. iRGD inhibited migration of tumor cells and caused chemorepulsion in vitro in a CendR- and NRP-1-dependent manner. The peptide induced dramatic collapse of cellular processes and partial cell detachment, resulting in the repellent activity. These effects were prominently displayed when the cells were seeded on fibronectin, suggesting a role of CendR in functional regulation of integrins. The anti-metastatic activity of iRGD may provide a significant additional benefit when this peptide is used for drug delivery to tumors. PMID:25392370

  13. A synthetic manassantin a derivative inhibits hypoxia-inducible factor 1 and tumor growth.

    PubMed

    Lang, Liwei; Liu, Xiaoyu; Li, Yan; Zhou, Qing; Xie, Ping; Yan, Chunhong; Chen, Xiaoguang

    2014-01-01

    The dineolignan manassantin A from Saururaceae was recently identified as a hypoxia-inducible factor 1 (HIF-1) inhibitor, but its in-vivo anti-tumor effect has not been explored. We synthesized a series of manassantin A derivatives, and found that replacing the central tetrahydrofuran moiety with a cyclopentane ring yielded a compound (LXY6006) with increased HIF-1-inhibitory activity yet decreased stereochemically complexity amenable to a simplified synthesis scheme. LXY6006 inhibited HIF-1α nuclear accumulation induced by hypoxia, and inhibited cancer cell growth as a consequence of G2/M arrest. Oral administration of LXY6006 significantly inhibited growth of breast, lung, and pancreatic tumors implanted in nude mice. These results indicate that LXY6006 represents a novel class of agents targeting a broad range of human cancers.

  14. A Synthetic Manassantin A Derivative Inhibits Hypoxia-Inducible Factor 1 and Tumor Growth

    PubMed Central

    Li, Yan; Zhou, Qing; Xie, Ping; Yan, Chunhong; Chen, Xiaoguang

    2014-01-01

    The dineolignan manassantin A from Saururaceae was recently identified as a hypoxia-inducible factor 1 (HIF-1) inhibitor, but its in-vivo anti-tumor effect has not been explored. We synthesized a series of manassantin A derivatives, and found that replacing the central tetrahydrofuran moiety with a cyclopentane ring yielded a compound (LXY6006) with increased HIF-1-inhibitory activity yet decreased stereochemically complexity amenable to a simplified synthesis scheme. LXY6006 inhibited HIF-1α nuclear accumulation induced by hypoxia, and inhibited cancer cell growth as a consequence of G2/M arrest. Oral administration of LXY6006 significantly inhibited growth of breast, lung, and pancreatic tumors implanted in nude mice. These results indicate that LXY6006 represents a novel class of agents targeting a broad range of human cancers. PMID:24925080

  15. Bioactive peptides: are there more antihypertensive mechanisms beyond ACE inhibition?

    PubMed

    Marques, Claudia; Amorim, Maria Manuela; Pereira, Joana Odila; Pintado, Manuela Estevez; Moura, Daniel; Calhau, Conceicao; Pinheiro, Helder

    2012-01-01

    Diet has a high relevance in health. Hypertension is a major risk factor for cardiovascular diseases and has an important impact on public health, and consequently on countries economy. Scientific research gathered strong evidence about the role of several dietary factors either in etiology or in treatment/prevention of these diseases. Peptides from different food matrices have been studied, and indicated as compounds with particular interest in the context of hypertension. The classical approach involves the identification of peptides with an in vitro ACE inhibitory activity and the assumption that the observed in vivo effects are due to this enzyme blockade. However, in some cases the potency of ACE blockade does not correlate with the antihypertensive activity in vivo. This paper reviews the current literature that identifies mechanisms of action, other than ACE inhibition, that might explain antihypertensive effects of biologically active peptides from different food sources.

  16. Inhibition of Orthopaedic Implant Infections by Immunomodulatory Effects of Host Defense Peptides

    DTIC Science & Technology

    2011-10-01

    10-1-0872 TITLE: Inhibition of Orthopaedic Implant Infections by Immunomodulatory Effects of Host Defense Peptides PRINCIPAL...Orthopaedic Implant Infections by Immunomodulatory Effects of Host Defense Peptides Edward Greenfield Case Western Reserve University...Cleveland, OH 44106 Host defense peptides represent a promising new approach to inhibit infection . The anti

  17. Isolation of peptide aptamers that inhibit intracellular processes

    PubMed Central

    Blum, Jonathan H.; Dove, Simon L.; Hochschild, Ann; Mekalanos, John J.

    2000-01-01

    We have developed a method for isolation of random peptides that inhibit intracellular processes in bacteria. A library of random peptides expressed as fusions to Escherichia coli thioredoxin (aptamers) were expressed under the tight control of the arabinose-inducible PBAD promoter. A selection was applied to the library to isolate aptamers that interfered with the activity of thymidylate synthase (ThyA) in vivo. Expression of an aptamer isolated by this method resulted in a ThyA− phenotype that was suppressed by simultaneous overexpression of ThyA. Two-hybrid analysis showed that this aptamer is likely to interact with ThyA in vivo. The library also was screened for aptamers that inhibited growth of bacteria expressing them, and five such aptamers were characterized. Four aptamers were bacteriostatic when expressed, whereas one showed a bactericidal effect. Introduction of translational stop codons into various aptamers blocked their activity, suggesting that their biological effects were likely to be due to protein aptamer rather than RNA. Combinatorial aptamers provide a new genetic and biochemical tool for identifying targets for antibacterial drug development. PMID:10688899

  18. Interaction of jack bean (Canavalia ensiformis) urease and a derived peptide with lipid vesicles.

    PubMed

    Micheletto, Yasmine Miguel Serafini; Moro, Carlo Frederico; Lopes, Fernanda Cortez; Ligabue-Braun, Rodrigo; Martinelli, Anne Helene Souza; Marques, Carlos Manuel; Schroder, André Pierre; Carlini, Célia Regina; da Silveira, Nádya Pesce

    2016-09-01

    Ureases are metalloenzymes that catalyze the hydrolysis of urea to ammonia and carbon dioxide. Jack bean (Canavalia ensiformis) produces three isoforms of urease (Canatoxin, JBU and JBURE-II). Canatoxin and JBU display several biological properties independent of their ureolytic activity, such as neurotoxicity, exocytosis-inducing and pro-inflammatory effects, blood platelets activation, insecticidal and antifungal activities. The Canatoxin entomotoxic activity is mostly due to an internal peptide, named pepcanatox, released upon the hydrolysis of the protein by insect cathepsin-like digestive enzymes. Based on pepcanatox sequence, Jaburetox-2Ec was produced in Escherichia coli. JBU and its peptides were shown to permeabilize membranes through an ion channel-based mechanism. Here we studied the JBU and Jaburetox-2Ec interaction with platelet-like multilamellar liposomes (PML) using Dynamic Light Scattering and Small Angle X-ray Scattering techniques. We also analyzed the interaction of JBU with giant unilamellar vesicles (GUVs) using Fluorescence Microscopy. The interaction of vesicles with JBU led to a slight reduction of hydrodynamic radius, and caused an increase in the lamellar repeat distance of PML, suggesting a membrane disordering effect. In contrast, Jaburetox-2Ec decreased the lamellar repeat distance of PML membranes, while also diminishing their hydrodynamic radius. Fluorescence microscopy showed that the interaction of GUVs with JBU caused membrane perturbation with formation of tethers. In conclusion, JBU can interact with PML, probably by inserting its Jaburetox "domain" into the PML external membrane. Additionally, the interaction of Jaburetox-2Ec affects the vesicle's internal bilayers and hence causes more drastic changes in the PML membrane organization in comparison with JBU.

  19. Peptide redesign for inhibition of the complement system: Targeting age-related macular degeneration

    PubMed Central

    Mohan, Rohith R.; Cabrera, Andrea P.; Harrison, Reed E. S.; Gorham, Ronald D.; Johnson, Lincoln V.; Ghosh, Kaustabh

    2016-01-01

    Purpose To redesign a complement-inhibiting peptide with the potential to become a therapeutic for dry and wet age-related macular degeneration (AMD). Methods We present a new potent peptide (Peptide 2) of the compstatin family. The peptide is developed by rational design, based on a mechanistic binding hypothesis, and structural and physicochemical properties derived from molecular dynamics (MD) simulation. The inhibitory activity, efficacy, and solubility of Peptide 2 are evaluated using a hemolytic assay, a human RPE cell–based assay, and ultraviolet (UV) absorption properties, respectively, and compared to the respective properties of its parent peptide (Peptide 1). Results The sequence of Peptide 2 contains an arginine-serine N-terminal extension (a characteristic of parent Peptide 1) and a novel 8-polyethylene glycol (PEG) block C-terminal extension. Peptide 2 has significantly improved aqueous solubility compared to Peptide 1 and comparable complement inhibitory activity. In addition, Peptide 2 is more efficacious in inhibiting complement activation in a cell-based model that mimics the pathobiology of dry AMD. Conclusions We have designed a new peptide analog of compstatin that combines N-terminal polar amino acid extensions and C-terminal PEGylation extensions. This peptide demonstrates significantly improved aqueous solubility and complement inhibitory efficacy, compared to the parent peptide. The new peptide overcomes the aggregation limitation for clinical translation of previous compstatin analogs and is a candidate to become a therapeutic for the treatment of AMD. PMID:27829783

  20. Somatostatin peptides inhibit basolateral potassium channels in human colonic crypts.

    PubMed

    Sandle, G I; Warhurst, G; Butterfield, I; Higgs, N B; Lomax, R B

    1999-11-01

    Somatostatin is a powerful inhibitor of intestinal Cl(-) secretion. We used patch-clamp recording techniques to investigate the effects of somatostatin on low-conductance (23-pS) K(+) channels in the basolateral membrane of human colonic crypts, which are an important component of the Cl(-) secretory process. Somatostatin (2 microM) elicited a >80% decrease in "spontaneous" K(+) channel activity in cell-attached patches in nonstimulated crypts (50% inhibition = approximately 8 min), which was voltage-independent and was prevented by pretreating crypts for 18 h with pertussis toxin (200 ng/ml), implicating a G protein-dependent mechanism. In crypts stimulated with 100-200 microM dibutyryl cAMP, 2 microM somatostatin and its synthetic analog octreotide (2 microM) both produced similar degrees of K(+) channel inhibition to that seen in nonstimulated crypts, which was also present under low-Cl(-) (5 mM) conditions. In addition, 2 microM somatostatin abolished the increase in K(+) channel activity stimulated by 2 microM thapsigargin but had no effect on the thapsigargin-stimulated rise in intracellular Ca(2+). These results indicate that somatostatin peptides inhibit 23-pS basolateral K(+) channels in human colonic crypt cells via a G protein-dependent mechanism, which may result in loss of the channel's inherent Ca(2+) sensitivity.

  1. Structural basis of Rap phosphatase inhibition by Phr peptides.

    PubMed

    Gallego del Sol, Francisca; Marina, Alberto

    2013-01-01

    Two-component systems, composed of a sensor histidine kinase and an effector response regulator (RR), are the main signal transduction devices in bacteria. In Bacillus, the Rap protein family modulates complex signaling processes mediated by two-component systems, such as competence, sporulation, or biofilm formation, by inhibiting the RR components involved in these pathways. Despite the high degree of sequence homology, Rap proteins exert their activity by two completely different mechanisms of action: inducing RR dephosphorylation or blocking RR binding to its target promoter. However the regulatory mechanism involving Rap proteins is even more complex since Rap activity is antagonized by specific signaling peptides (Phr) through a mechanism that remains unknown at the molecular level. Using X-ray analyses, we determined the structure of RapF, the anti-activator of competence RR ComA, alone and in complex with its regulatory peptide PhrF. The structural and functional data presented herein reveal that peptide PhrF blocks the RapF-ComA interaction through an allosteric mechanism. PhrF accommodates in the C-terminal tetratricopeptide repeat domain of RapF by inducing its constriction, a conformational change propagated by a pronounced rotation to the N-terminal ComA-binding domain. This movement partially disrupts the ComA binding site by triggering the ComA disassociation, whose interaction with RapF is also sterically impaired in the PhrF-induced conformation of RapF. Sequence analyses of the Rap proteins, guided by the RapF-PhrF structure, unveil the molecular basis of Phr recognition and discrimination, allowing us to relax the Phr specificity of RapF by a single residue change.

  2. Structural Basis of Rap Phosphatase Inhibition by Phr Peptides

    PubMed Central

    Gallego del Sol, Francisca; Marina, Alberto

    2013-01-01

    Two-component systems, composed of a sensor histidine kinase and an effector response regulator (RR), are the main signal transduction devices in bacteria. In Bacillus, the Rap protein family modulates complex signaling processes mediated by two-component systems, such as competence, sporulation, or biofilm formation, by inhibiting the RR components involved in these pathways. Despite the high degree of sequence homology, Rap proteins exert their activity by two completely different mechanisms of action: inducing RR dephosphorylation or blocking RR binding to its target promoter. However the regulatory mechanism involving Rap proteins is even more complex since Rap activity is antagonized by specific signaling peptides (Phr) through a mechanism that remains unknown at the molecular level. Using X-ray analyses, we determined the structure of RapF, the anti-activator of competence RR ComA, alone and in complex with its regulatory peptide PhrF. The structural and functional data presented herein reveal that peptide PhrF blocks the RapF-ComA interaction through an allosteric mechanism. PhrF accommodates in the C-terminal tetratricopeptide repeat domain of RapF by inducing its constriction, a conformational change propagated by a pronounced rotation to the N-terminal ComA-binding domain. This movement partially disrupts the ComA binding site by triggering the ComA disassociation, whose interaction with RapF is also sterically impaired in the PhrF-induced conformation of RapF. Sequence analyses of the Rap proteins, guided by the RapF-PhrF structure, unveil the molecular basis of Phr recognition and discrimination, allowing us to relax the Phr specificity of RapF by a single residue change. PMID:23526880

  3. Competitive inhibition of transcription factors by small interfering peptides.

    PubMed

    Seo, Pil Joon; Hong, Shin-Young; Kim, Sang-Gyu; Park, Chung-Mo

    2011-10-01

    Combinatorial assortment by dynamic dimer formation diversifies gene transcriptional specificities of transcription factors. A similar but biochemically distinct mechanism is competitive inhibition in which small proteins act as negative regulators by competitively forming nonfunctional heterodimers with specific transcription factors. The most extensively studied is the negative regulation of auxin response factors by AUXIN/INDOLE-3-ACETIC ACID repressors. Similarly, Arabidopsis thaliana (Arabidopsis) little zipper and mini finger proteins act as competitive inhibitors of target transcription factors. Competitive inhibitors are also generated by alternative splicing and controlled proteolytic processing. Because they provide a way of attenuating transcription factors we propose to call them small interfering peptides (siPEPs). The siPEP-mediated strategy could be applied to deactivate specific transcription factors in crop plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Inhibition Effect of a Custom Peptide on Lung Tumors

    PubMed Central

    Huang, Chih-Yu; Huang, Hsuan-Yu; Forrest, Michael D.; Pan, Yun-Ru; Wu, Wei-Jen; Chen, Hueih-Min

    2014-01-01

    Cecropin B is a natural antimicrobial peptide and CB1a is a custom, engineered modification of it. In vitro, CB1a can kill lung cancer cells at concentrations that do not kill normal lung cells. Furthermore, in vitro, CB1a can disrupt cancer cells from adhering together to form tumor-like spheroids. Mice were xenografted with human lung cancer cells; CB1a could significantly inhibit the growth of tumors in this in vivo model. Docetaxel is a drug in present clinical use against lung cancers; it can have serious side effects because its toxicity is not sufficiently limited to cancer cells. In our studies in mice: CB1a is more toxic to cancer cells than docetaxel, but dramatically less toxic to healthy cells. PMID:25310698

  5. Novel Antifungal Peptides Produced by Leuconostoc mesenteroides DU15 Effectively Inhibit Growth of Aspergillus niger.

    PubMed

    Muhialdin, Belal J; Hassan, Zaiton; Abu Bakar, Fatimah; Algboory, Hussein L; Saari, Nazamid

    2015-05-01

    The ability of Leuconostoc mesenteroides DU15 to produce antifungal peptides that inhibit growth of Aspergillus niger was evaluated under optimum growth conditions of 30 °C for 48 h. The cell-free supernatant showed inhibitory activity against A. niger. Five novel peptides were isolated with the sequences GPFPL, YVPLF, LLHGVPLP, GPFPLEMTLGPT, and TVYPFPGPL as identified by de novo sequencing using PEAKS 6 software. Peptide LLHGVPLP was the only positively charged (cationic peptides) and peptide GPFPLEMTLGPT negatively charged (anionic), whereas the rest are neutral. The identified peptides had high hydrophobicity ratio and low molecular weights with amino acids sequences ranging from 5 to 12 residues. The mode of action of these peptides is observed under the scanning electron microscope and is due to cell lysis of fungi. This work reveals the potential of peptides from L. mesenteroides DU15 as natural antifungal preservatives in inhibiting the growth of A. niger that is implicated to the spoilage during storage.

  6. Grafting MAP peptide to dental polymer inhibits MMP-8 activity.

    PubMed

    Dixit, Namrata; Settle, Jenifer K; Ye, Qiang; Berrie, Cindy L; Spencer, Paulette; Laurence, Jennifer S

    2015-02-01

    Matrix metalloproteinases (MMPs) are a class of zinc and calcium-dependent endopeptidases responsible for degrading extracellular matrix (ECM) components. Their activity is critical for both normal biological function and pathological processes (Dejonckheere et al., Cytokine Growth Factor Rev 2011;22:73-81). In dental restorations, the release and subsequent acid activation of MMPs contributes to premature failure. In particular, MMP-8 accelerates degradation by cleaving the collagen matrix within the dentin substrate in incompletely infiltrated aged bonded dentin (Buzalaf et al., Adv Dent Res 2012;24:72-76), hastening the need for replacement of restorations. Therefore, development of a dental adhesive that better resists MMP-8 activity is of significant interest. We hypothesize that modification of the polymer surface with an inhibitor would disable MMP-8 activity. Here, we identify the metal abstraction peptide (MAP) as an inhibitor of MMP-8 and demonstrate that tethering MAP to methacrylate polymers effectively inhibits catalysis. Our findings indicate complete inhibition of MMP-8 is achievable using a grafting approach. This strategy has potential to improve longevity of dental adhesives and other polymers and enable rational design of a new generation of biocompatible materials.

  7. Novel peptide isomer strategy for stable inhibition of catecholamine release: Application to hypertension

    PubMed Central

    Biswas, Nilima; Gayen, Jiaur; Mahata, Manjula; Su, Ying; Mahata, Sushil K.; O’Connor, Daniel T.

    2012-01-01

    Although hypertension remains the most potent and widespread cardiovascular risk factor, its pharmacological treatment has achieved only limited success. The chromogranin A derived fragment catestatin inhibits catecholamine release by acting as an endogenous nicotinic cholinergic antagonist, and can “rescue” hypertension in the setting of CHGA targeted ablation. Here we undertook novel peptide chemistry to synthesize isomers of catestatin: normal/wild-type (W-T) as well as a retro-inverso (R-I) version, with not only inversion of chirality (L→D amino acids) but also reversal of sequence (carboxyl→amino). The R-I peptide was entirely resistant to proteolytic digestion, and displayed enhanced potency as well as preserved specificity of action towards nicotinic cholinergic events: catecholamine secretion, agonist desensitization, secretory protein transcription, and cationic signal transduction. Structural modeling suggested similar side chain orientations of the W-T and R-I isomers, while CD spectroscopy documented inversion of chirality. In vivo, the R-I peptide “rescued” hypertension in two mouse models of the human trait: monogenic Chga targeted ablation, with prolonged efficacy of the R-I version; and a polygenic model, with magnified efficacy of the R-I version. These results may have general implications for generation of metabolically stable mimics of biologically active peptides for cardiovascular pathways. The findings also point the way toward a potential new class of drug therapeutics for an important risk trait, and more generally open the door to broader applications of the retro-inverso strategy in other pathways involved in cardiovascular biology, with the potential for synthesis of diagnostic and therapeutic probes for both physiology and disease. PMID:23129699

  8. Inhibition of the ferric uptake regulator by peptides derived from anti-FUR peptide aptamers: coupled theoretical and experimental approaches.

    PubMed

    Cissé, Cheickna; Mathieu, Sophie V; Abeih, Mohamed B Ould; Flanagan, Lindsey; Vitale, Sylvia; Catty, Patrice; Boturyn, Didier; Michaud-Soret, Isabelle; Crouzy, Serge

    2014-12-19

    The FUR protein (ferric uptake regulator) is an iron-dependent global transcriptional regulator. Specific to bacteria, FUR is an attractive antibacterial target since virulence is correlated to iron bioavailability. Recently, four anti-FUR peptide aptamers, composed of 13 amino acid variable loops inserted into a thioredoxinA scaffold, were identified, which were able to interact with Escherichia coli FUR (EcFUR), inhibit its binding to DNA and to decrease the virulence of pathogenic E. coli in a fly infection model. The first characterization of anti-FUR linear peptides (pF1 6 to 13 amino acids) derived from the variable part of the F1 anti-FUR peptide aptamer is described herein. Theoretical and experimental approaches, in original combination, were used to study interactions of these peptides with FUR in order to understand their mechanism of inhibition. After modeling EcFUR by homology, docking with Autodock was combined with molecular dynamics simulations in implicit solvent to take into account the flexibility of the partners. All calculations were cross-checked either with other programs or with experimental data. As a result, reliable structures of EcFUR and its complex with pF1 are given and an inhibition pocket formed by the groove between the two FUR subunits is proposed. The location of the pocket was validated through experimental mutation of key EcFUR residues at the site of proposed peptide interaction. Cyclisation of pF1, mimicking the peptide constraint in F1, improved inhibition. The details of the interactions between peptide and protein were analyzed and a mechanism of inhibition of these anti-FUR molecules is proposed.

  9. Surfactant protein A (SP-A) and SP-A-derived peptide attenuate chemotaxis of mast cells induced by human β-defensin 3.

    PubMed

    Uehara, Yasuaki; Takahashi, Motoko; Murata, Masaki; Saito, Atsushi; Takamiya, Rina; Hasegawa, Yoshihiro; Kuronuma, Koji; Chiba, Hirofumi; Hashimoto, Jiro; Sawada, Norimasa; Takahashi, Hiroki; Kuroki, Yoshio; Ariki, Shigeru

    2017-03-25

    Human β-defensin 3 (hBD3) is known to be involved in mast cell activation. However, molecular mechanisms underlying the regulation of hBD3-induced mast cell activation have been poorly understood. We previously reported that SP-A and SP-A-derived peptide 01 (SAP01) regulate the function of hBD3. In this study, we focused on the effects of SP-A and SAP01 on the activation of mast cells induced by hBD3. SAP01 directly bound to hBD3. Mast cell-mediated vascular permeability and edema in hBD3 administered rat ears were decreased when injected with SP-A or SAP01. Compatible with the results in rat ear model, both SP-A and SAP01 inhibited hBD3-induced chemotaxis of mast cells in vitro. Direct interaction between SP-A or SAP01 and hBD3 seemed to be responsible for the inhibitory effects on chemotaxis. Furthermore, SAP01 attenuated hBD3-induced accumulation of mast cells and eosinophils in tracheas of the OVA-sensitized inflammatory model. SP-A might contribute to the regulation of inflammatory responses mediated by mast cells during infection.

  10. Endosomolytic Nano-Polyplex Platform Technology for Cytosolic Peptide Delivery To Inhibit Pathological Vasoconstriction.

    PubMed

    Evans, Brian C; Hocking, Kyle M; Kilchrist, Kameron V; Wise, Eric S; Brophy, Colleen M; Duvall, Craig L

    2015-06-23

    A platform technology has been developed and tested for delivery of intracellular-acting peptides through electrostatically complexed nanoparticles, or nano-polyplexes, formulated from an anionic endosomolytic polymer and cationic therapeutic peptides. This delivery platform has been initially tested and optimized for delivery of two unique vasoactive peptides, a phosphomimetic of heat shock protein 20 and an inhibitor of MAPKAP kinase II, to prevent pathological vasoconstriction (i.e., vasospasm) in human vascular tissue. These peptides inhibit vasoconstriction and promote vasorelaxation by modulating actin dynamics in vascular smooth muscle cells. Formulating these peptides into nano-polyplexes significantly enhances peptide uptake and retention, facilitates cytosolic delivery through a pH-dependent endosomal escape mechanism, and enhances peptide bioactivity in vitro as measured by inhibition of F-actin stress fiber formation. In comparison to treatment with the free peptides, which were endowed with cell-penetrating sequences, the nano-polyplexes significantly increased vasorelaxation, inhibited vasoconstriction, and decreased F-actin formation in the human saphenous vein ex vivo. These results suggest that these formulations have significant potential for treatment of conditions such as cerebral vasospasm following subarachnoid hemorrhage. Furthermore, because many therapeutic peptides include cationic cell-penetrating segments, this simple and modular platform technology may have broad applicability as a cost-effective approach for enhancing the efficacy of cytosolically active peptides.

  11. Inhibition of Streptococcus mutans adherence and biofilm formation using analogues of the SspB peptide.

    PubMed

    Okuda, Kentaro; Hanada, Nobuhiro; Usui, Yoshie; Takeuchi, Hiroaki; Koba, Hidehiko; Nakao, Ryoma; Watanabe, Haruo; Senpuku, Hidenobu

    2010-10-01

    Streptococcus gordonii is a pioneer colonizer of the enamel salivary pellicle that forms biofilm on the tooth surfaces. Recent reports show the surface protein analogue peptide {400 (T) of SspB 390-402 is substituted to K forming SspB (390-T400K-402)} from S. gordonii interacts strongly with salivary receptors to cariogenic bacteria, Streptococcus mutans. To characterize the analogue peptide biological activities, we investigated its binding and inhibiting effects, and the role of its amino acid moities. We measured binding activity of analogue peptides to salivary components using the BIAcore assay; assayed inhibition activities of peptides for bacterial binding and growth on saliva-coated hydroxyapatite beads (s-HA); and describe the peptides interfering with biofilm formation of S. mutans on polystyrene surfaces. The SspB (390-T400K-402 and -401) peptides significantly bound with salivary components and inhibited the binding of S. mutans and S. gordonii to s-HA without bactericidal activity; but did not inhibit binding of Streptococcus mitis, a beneficial commensal. Further, the lack of D and E-L at position 390 and 401-402 in the peptide, and substituted peptide SspB (D390H- or D390K-T400K-402) did not bind to salivary components or inhibit binding of S. mutans. The SspB (390-T400K-402) peptide inhibited biofilm formation on salivary components-coated polystyrene surfaces in absence of conditioned planktonic cells. We found constructing the peptide to include positions 390(D), 400(K) and 401(E), two surface positive and negative connective charges, and at least 12 amino acids are required to bind salivary components and inhibit the binding of S. mutans and S. gordonii. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Inhibition of breast cancer growth and metastasis by a biomimetic peptide.

    PubMed

    Lee, Esak; Lee, Seung Jae; Koskimaki, Jacob E; Han, Zheyi; Pandey, Niranjan B; Popel, Aleksander S

    2014-11-20

    Metastasis is the main cause of mortality in cancer patients. Though there are many anti-cancer drugs targeting primary tumor growth, anti-metastatic agents are rarely developed. Angiogenesis and lymphangiogenesis are crucial for cancer progression, particularly, lymphangiogenesis is pivotal for metastasis in breast cancer. Here we report that a novel collagen IV derived biomimetic peptide inhibits breast cancer growth and metastasis by blocking angiogenesis and lymphangiogenesis. The peptide inhibits blood and lymphatic endothelial cell viability, migration, adhesion, and tube formation by targeting IGF1R and Met signals. The peptide blocks MDA-MB-231 tumor growth by inhibiting tumor angiogenesis in vivo. Moreover, the peptide inhibits lymphangiogenesis in primary tumors. MDA-MB-231 tumor conditioned media (TCM) was employed to accelerate spontaneous metastasis in tumor xenografts, and the anti-metastatic activity of the peptide was tested in this model. The peptide prevents metastasis to the lungs and lymph nodes by inhibiting TCM-induced lymphangiogenesis and angiogenesis in the pre-metastatic organs. In summary, a novel biomimetic peptide inhibits breast cancer growth and metastasis by blocking angiogenesis and lymphangiogenesis in the pre-metastatic organs as well as primary tumors.

  13. Inhibition of breast cancer growth and metastasis by a biomimetic peptide

    PubMed Central

    Lee, Esak; Lee, Seung Jae; Koskimaki, Jacob E.; Han, Zheyi; Pandey, Niranjan B.; Popel, Aleksander S.

    2014-01-01

    Metastasis is the main cause of mortality in cancer patients. Though there are many anti-cancer drugs targeting primary tumor growth, anti-metastatic agents are rarely developed. Angiogenesis and lymphangiogenesis are crucial for cancer progression, particularly, lymphangiogenesis is pivotal for metastasis in breast cancer. Here we report that a novel collagen IV derived biomimetic peptide inhibits breast cancer growth and metastasis by blocking angiogenesis and lymphangiogenesis. The peptide inhibits blood and lymphatic endothelial cell viability, migration, adhesion, and tube formation by targeting IGF1R and Met signals. The peptide blocks MDA-MB-231 tumor growth by inhibiting tumor angiogenesis in vivo. Moreover, the peptide inhibits lymphangiogenesis in primary tumors. MDA-MB-231 tumor conditioned media (TCM) was employed to accelerate spontaneous metastasis in tumor xenografts, and the anti-metastatic activity of the peptide was tested in this model. The peptide prevents metastasis to the lungs and lymph nodes by inhibiting TCM-induced lymphangiogenesis and angiogenesis in the pre-metastatic organs. In summary, a novel biomimetic peptide inhibits breast cancer growth and metastasis by blocking angiogenesis and lymphangiogenesis in the pre-metastatic organs as well as primary tumors. PMID:25409905

  14. Purification and characterization of angiotensin I converting enzyme inhibition peptides from sandworm Sipunculus nudus

    NASA Astrophysics Data System (ADS)

    Sun, Xueping; Wang, Man; Liu, Buming; Sun, Zhenliang

    2017-10-01

    Three angiotensin I converting enzyme (ACE) inhibition peptides were isolated from sandworm Sipunculus nudus protein hydrolysate prepared using protamex. Consecutive purification methods, including size exclusion chromatography and reverse-phase high performance liquid chromatography (RP-HPLC), were used to isolate the ACE inhibition peptides. The amino acid sequences of the peptides were identified as Ile-Asn-Asp, Val-Glu-Pro-Gly and Leu-Ala-Asp-Glu-Phe. The IC50 values of the purified peptides for ACE inhibition activity were 34.72 μmol L-1, 20.55 μmol L-1 and 22.77 μmol L-1, respectively. These results suggested that S. nudus proteins contain specific peptides that can be released by enzymatic hydrolysis. This study may provide an experimental basis for further systematic research, rational development and clinical utilization of sandworm resources.

  15. Inhibition of Orthopaedic Implant Infections by Immunomodulatory Effects of Host Defense Peptides

    DTIC Science & Technology

    2013-10-01

    effects of host defense peptides on macrophages in vitro and on implants infected with Staph . aureus or Acinetobacter baumannii in our murine model of... Infections by Immunomodulatory Effects of Host Defense Peptides PRINCIPAL INVESTIGATOR: Edward Greenfield, Ph D...TYPE Annual 3. DATES COVERED 15 September 201 - 14 September 201 4. TITLE AND SUBTITLE Inhibition of Orthopaedic Implant Infections by

  16. Inhibition of multidrug resistant Listeria monocytogenes by peptides isolated from combinatorial phage display libraries.

    PubMed

    Flachbartova, Z; Pulzova, L; Bencurova, E; Potocnakova, L; Comor, L; Bednarikova, Z; Bhide, M

    2016-01-01

    The aim of the study was to isolate and characterize novel antimicrobial peptides from peptide phage library with antimicrobial activity against multidrug resistant Listeria monocytogenes. Combinatorial phage-display library was used to affinity select peptides binding to the cell surface of multidrug resistant L. monocytogenes. After several rounds of affinity selection followed by sequencing, three peptides were revealed as the most promising candidates. Peptide L2 exhibited features common to antimicrobial peptides (AMPs), and was rich in Asp, His and Lys residues. Peptide L3 (NSWIQAPDTKSI), like peptide L2, inhibited bacterial growth in vitro, without any hemolytic or cytotoxic effects on eukaryotic cells. L1 peptide showed no inhibitory effect on Listeria. Structurally, peptides L2 and L3 formed random coils composed of α-helix and β-sheet units. Peptides L2 and L3 exhibited antimicrobial activity against multidrug resistant isolates of L. monocytogenes with no haemolytic or toxic effects. Both peptides identified in this study have the potential to be beneficial in human and veterinary medicine.

  17. Peptide interactions with steel surfaces: Inhibition of corrosion and calcium carbonate precipitation

    SciTech Connect

    Mueller, E.; Sikes, C.S. . Mineralization Center); Little, B.J. . Naval Research Lab.)

    1993-10-01

    Polyaspartate, a polyanionic peptide analog of an oyster-shell protein fraction, inhibited corrosion of AISI 1018 mild steel (UNS G10180) in seawater in a dose-dependent manner. A maximal inhibition of [approximately] 60% was obtained at a concentration of 100[mu]g mL[sup [minus]1]. Related peptides containing hydrophobic and/or phosphorylated amino acids had corrosion inhibition activities similar to or lower than polyaspartate in fresh and brackish waters. Binding studies demonstrated polyaspartate bound to mild steel in a dose- and time-dependent manner. Evidence for stainless steel (SS) binding was based on inhibition of calcium carbonate precipitation of the SS surface.

  18. Hydroxyapatite-binding peptides for bone growth and inhibition

    DOEpatents

    Bertozzi, Carolyn R [Berkeley, CA; Song, Jie [Shrewsbury, MA; Lee, Seung-Wuk [Walnut Creek, CA

    2011-09-20

    Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.

  19. Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide.

    PubMed

    Smith, Brian C; Denu, John M

    2007-12-18

    Sir2 protein deacetylases (or sirtuins) catalyze NAD+-dependent conversion of epsilon-amino-acetylated lysine residues to deacetylated lysine, nicotinamide, and 2'-O-acetyl-ADP-ribose. Small-molecule modulation of sirtuin activity might treat age-associated diseases, such as type II diabetes, obesity, and neurodegenerative disorders. Here, we have evaluated the mechanisms of sirtuin inhibition of histone peptides containing thioacetyl or mono-, di-, and trifluoroacetyl groups at the epsilon-amino of lysine. Although all substituted peptides yielded inhibition of the deacetylation reaction, the thioacetyl-lysine peptide exhibited exceptionally potent inhibition of sirtuins Sirt1, Sirt2, Sirt3, and Hst2. Using Hst2 as a representative sirtuin, the trifluoroacetyl-lysine peptide displayed competitive inhibition with acetyl-lysine substrate and yielded an inhibition constant (Kis) of 4.8 microM, similar to its Kd value of 3.3 microM. In contrast, inhibition by thioacetyl-lysine peptide yielded an inhibition constant (Kis) of 0.017 microM, 280-fold lower than its Kd value of 4.7 microM. Examination of thioacetyl-lysine peptide as an alternative sirtuin substrate revealed conserved production of deacetylated peptide and 1'-SH-2'-O-acetyl-ADP-ribose. Pre-steady-state and steady-state analysis of the thioacetyl-lysine peptide showed rapid nicotinamide formation (4.5 s-1) but slow overall turnover (0.0024 s-1), indicating that the reaction stalled at an intermediate after nicotinamide formation. Mass spectral analysis yielded a novel species (m/z 1754.3) that is consistent with an ADP-ribose-peptidyl adduct (1'-S-alkylamidate) as the stalled intermediate. Additional experiments involving solvent isotope effects, general base mutational analysis, and density functional calculations are consistent with impaired 2'-hydroxyl attack on the ADP-ribose-peptidyl intermediate. These results have implications for the development of mechanism-based inhibitors of Sir2 deacetylases.

  20. Production of BP178, a derivative of the synthetic antibacterial peptide BP100, in the rice seed endosperm.

    PubMed

    Montesinos, Laura; Bundó, Mireia; Badosa, Esther; San Segundo, Blanca; Coca, María; Montesinos, Emilio

    2017-03-14

    BP178 peptide is a synthetic BP100-magainin derivative possessing strong inhibitory activity against plant pathogenic bacteria, offering a great potential for future applications in plant protection and other fields. Here we report the production and recovery of a bioactive BP178 peptide using rice seeds as biofactories. A synthetic gene encoding the BP178 peptide was prepared and introduced in rice plants. The gene was efficiently expressed in transgenic rice under the control of an endosperm-specific promoter. Among the three endosperm-specific rice promoters (Glutelin B1, Glutelin B4 or Globulin 1), best results were obtained when using the Globulin 1 promoter. The BP178 peptide accumulated in the seed endosperm and was easily recovered from rice seeds using a simple procedure with a yield of 21 μg/g. The transgene was stably inherited for at least three generations, and peptide accumulation remained stable during long term storage of transgenic seeds. The purified peptide showed in vitro activity against the bacterial plant pathogen Dickeya sp., the causal agent of the dark brown sheath rot of rice. Seedlings of transgenic events showed enhanced resistance to the fungal pathogen Fusarium verticillioides, supporting that the in planta produced peptide was biologically active. The strategy developed in this work for the sustainable production of BP178 peptide using rice seeds as biofactories represents a promising system for future production of peptides for plant protection and possibly in other fields.

  1. Protein-protein interface-binding peptides inhibit the cancer therapy target human thymidylate synthase.

    PubMed

    Cardinale, Daniela; Guaitoli, Giambattista; Tondi, Donatella; Luciani, Rosaria; Henrich, Stefan; Salo-Ahen, Outi M H; Ferrari, Stefania; Marverti, Gaetano; Guerrieri, Davide; Ligabue, Alessio; Frassineti, Chiara; Pozzi, Cecilia; Mangani, Stefano; Fessas, Dimitrios; Guerrini, Remo; Ponterini, Glauco; Wade, Rebecca C; Costi, M Paola

    2011-08-23

    Human thymidylate synthase is a homodimeric enzyme that plays a key role in DNA synthesis and is a target for several clinically important anticancer drugs that bind to its active site. We have designed peptides to specifically target its dimer interface. Here we show through X-ray diffraction, spectroscopic, kinetic, and calorimetric evidence that the peptides do indeed bind at the interface of the dimeric protein and stabilize its di-inactive form. The "LR" peptide binds at a previously unknown binding site and shows a previously undescribed mechanism for the allosteric inhibition of a homodimeric enzyme. It inhibits the intracellular enzyme in ovarian cancer cells and reduces cellular growth at low micromolar concentrations in both cisplatin-sensitive and -resistant cells without causing protein overexpression. This peptide demonstrates the potential of allosteric inhibition of hTS for overcoming platinum drug resistance in ovarian cancer.

  2. A novel C5a-derived immunobiotic peptide reduces Streptococcus agalactiae colonization through targeted bacterial killing.

    PubMed

    Cavaco, Courtney K; Patras, Kathryn A; Zlamal, Jaime E; Thoman, Marilyn L; Morgan, Edward L; Sanderson, Sam D; Doran, Kelly S

    2013-11-01

    Streptococcus agalactiae (group B Streptococcus [GBS]) is a Gram-positive bacterium that colonizes the cervicovaginal tract in approximately 25% of healthy women. Although colonization is asymptomatic, GBS can be vertically transmitted to newborns peripartum, causing severe disease such as pneumonia and meningitis. Current prophylaxis, consisting of late gestation screening and intrapartum antibiotics, has failed to completely prevent transmission, and GBS remains a leading cause of neonatal sepsis and meningitis in the United States. Lack of an effective vaccine and emerging antibiotic resistance necessitate exploring novel therapeutic strategies. We have employed a host-directed immunomodulatory therapy using a novel peptide, known as EP67, derived from the C-terminal region of human complement component C5a. Previously, we have demonstrated in vivo that EP67 engagement of the C5a receptor (CD88) effectively limits staphylococcal infection by promoting cytokine release and neutrophil infiltration. Here, using our established mouse model of GBS vaginal colonization, we observed that EP67 treatment results in rapid clearance of GBS from the murine vagina. However, this was not dependent on functional neutrophil recruitment or CD88 signaling, as EP67 treatment reduced the vaginal bacterial load in mice lacking CD88 or the major neutrophil receptor CXCr2. Interestingly, we found that EP67 inhibits GBS growth in vitro and in vivo and that antibacterial activity was specific to Streptococcus species. Our work establishes that EP67-mediated clearance of GBS is likely due to direct bacterial killing rather than to enhanced immune stimulation. We conclude that EP67 may have potential as a therapeutic to control GBS vaginal colonization.

  3. LYR71, a derivative of trimeric resveratrol, inhibits tumorigenesis by blocking STAT3-mediated matrix metalloproteinase 9 expression

    PubMed Central

    Kim, Ja Eun; Kim, Hong Sook; Shin, Yong-Jae; Lee, Chang Seok; Won, Cheolhee; Lee, Sin-Ae; Lee, Jung Weon; Kim, Youngsoo; Kang, Jae-Seung; Chung, Myung-Hee

    2008-01-01

    Tumor migration/invasion is the main cause of tumor progression and STAT3 is needed to enhance tumor migration/invasion by up-regulating MMP-9. Thus, agents that inhibit STAT3 activation may be used as an anticancer drug. We present herein that 6-methyl-2-propylimino-6, 7-dihydro-5H-benzo [1, 3]-oxathiol-4-one (LYR71) , a derivative of trimeric resveratrol, has an anticancer activity through inhibition of STAT3 activation. We found that LYR71 suppressed STAT3 activation and inhibited the expression and activity of MMP-9 in RANTES-stimulated breast cancer cells. In addition, LYR71 reduced RANTES-induced MMP-9 transcripts by blocking STAT3 recruitment, dissociating p300 and deacetylating histone H3 and H4 on the MMP-9 promoter. Furthermore, LYR71 inhibited tumor migration/invasion in RANTES-treated breast cancer cells and consequently blocked tumor progression in tumor-bearing mice. Taken together, the results of this study suggest that LYR71 can be therapeutically useful due to the inhibition effect of STAT3-mediated MMP-9 expression in breast cancer cells. PMID:18985009

  4. Major Peptides from Amaranth (Amaranthus cruentus) Protein Inhibit HMG-CoA Reductase Activity

    PubMed Central

    Soares, Rosana Aparecida Manólio; Mendonça, Simone; de Castro, Luíla Ívini Andrade; Menezes, Amanda Caroline Cardoso Corrêa Carlos; Arêas, José Alfredo Gomes

    2015-01-01

    The objective of this study was to identify the major peptides generated by the in vitro hydrolysis of Amaranthus cruentus protein and to verify the effect of these peptides on the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), a key enzyme in cholesterol biosynthesis. A protein isolate was prepared, and an enzymatic hydrolysis that simulated the in vivo digestion of the protein was performed. After hydrolysis, the peptide mixture was filtered through a 3 kDa membrane. The peptide profile of this mixture was determined by reversed phase high performance chromatography (RP-HPLC), and the peptide identification was performed by LC-ESI MS/MS. Three major peptides under 3 kDa were detected, corresponding to more than 90% of the peptides of similar size produced by enzymatic hydrolysis. The sequences identified were GGV, IVG or LVG and VGVI or VGVL. These peptides had not yet been described for amaranth protein nor are they present in known sequences of amaranth grain protein, except LVG, which can be found in amaranth α‑amylase. Their ability to inhibit the activity of HMG-CoA reductase was determined, and we found that the sequences GGV, IVG, and VGVL, significantly inhibited this enzyme, suggesting a possible hypocholesterolemic effect. PMID:25690031

  5. A p7 Ion Channel-derived Peptide Inhibits Hepatitis C Virus Infection in Vitro*

    PubMed Central

    Hong, Wei; Lang, Yange; Li, Tian; Zeng, Zhengyang; Song, Yu; Wu, Yingliang; Li, Wenxin; Cao, Zhijian

    2015-01-01

    Viral infection is an early stage of its life cycle and represents a promising target for antiviral drug development. Here we designed and characterized three peptide inhibitors of hepatitis C virus (HCV) infection based on the structural features of the membrane-associated p7 polypeptide of HCV. The three peptides exhibited low toxicity and high stability while potently inhibiting initial HCV infection and suppressed established HCV infection at non-cytotoxic concentrations in vitro. The most efficient peptide (designated H2-3), which is derived from the H2 helical region of HCV p7 ion channel, inhibited HCV infection by inactivating both intracellular and extracellular viral particles. The H2-3 peptide inactivated free HCV with an EC50 (50% effective concentration) of 82.11 nm, which is >1000-fold lower than the CC50 (50% cytotoxic concentration) of Huh7.5.1 cells. H2-3 peptide also bound to cell membrane and protected host cells from viral infection. The peptide H2-3 did not alter the normal electrophysiological profile of the p7 ion channel or block viral release from Huh7.5.1 cells. Our work highlights a new anti-viral peptide design strategy based on ion channel, giving the possibility that ion channels are potential resources to generate antiviral peptides. PMID:26251517

  6. A Short Double-Stapled Peptide Inhibits Respiratory Syncytial Virus Entry and Spreading

    PubMed Central

    Gaillard, Vanessa; Galloux, Marie; Eléouët, Jean-François; Larcher, Thibaut; Rameix-Welti, Marie-Anne; Boukadiri, Abdelhak; Héritier, Julien; Segura, Jean-Manuel; Baechler, Elodie; Arrell, Miriam; Mottet-Osman, Geneviève

    2017-01-01

    ABSTRACT Synthetic peptides derived from the heptad repeat (HR) of fusion (F) proteins can be used as dominant negative inhibitors to inhibit the fusion mechanism of class I viral F proteins. Here, we have performed a stapled-peptide scan across the HR2 domain of the respiratory syncytial virus (RSV) F protein with the aim to identify a minimal domain capable of disrupting the formation of the postfusion six-helix bundle required for viral cell entry. Constraining the peptides with a single staple was not sufficient to inhibit RSV infection. However, the insertion of double staples led to the identification of novel short stapled peptides that display nanomolar potency in HEp-2 cells and are exceptionally robust to proteolytic degradation. By replacing each amino acid of the peptides by an alanine, we found that the substitution of residues 506 to 509, located in a patch of polar contacts between HR2 and HR1, severely affected inhibition. Finally, we show that intranasal delivery of the most potent peptide to BALB/c mice significantly decreased RSV infection in upper and lower respiratory tracts. The discovery of this minimal HR2 sequence as a means for inhibition of RSV infection provides the basis for further medicinal chemistry efforts toward developing RSV fusion antivirals. PMID:28137809

  7. A Short Double-Stapled Peptide Inhibits Respiratory Syncytial Virus Entry and Spreading.

    PubMed

    Gaillard, Vanessa; Galloux, Marie; Garcin, Dominique; Eléouët, Jean-François; Le Goffic, Ronan; Larcher, Thibaut; Rameix-Welti, Marie-Anne; Boukadiri, Abdelhak; Héritier, Julien; Segura, Jean-Manuel; Baechler, Elodie; Arrell, Miriam; Mottet-Osman, Geneviève; Nyanguile, Origène

    2017-04-01

    Synthetic peptides derived from the heptad repeat (HR) of fusion (F) proteins can be used as dominant negative inhibitors to inhibit the fusion mechanism of class I viral F proteins. Here, we have performed a stapled-peptide scan across the HR2 domain of the respiratory syncytial virus (RSV) F protein with the aim to identify a minimal domain capable of disrupting the formation of the postfusion six-helix bundle required for viral cell entry. Constraining the peptides with a single staple was not sufficient to inhibit RSV infection. However, the insertion of double staples led to the identification of novel short stapled peptides that display nanomolar potency in HEp-2 cells and are exceptionally robust to proteolytic degradation. By replacing each amino acid of the peptides by an alanine, we found that the substitution of residues 506 to 509, located in a patch of polar contacts between HR2 and HR1, severely affected inhibition. Finally, we show that intranasal delivery of the most potent peptide to BALB/c mice significantly decreased RSV infection in upper and lower respiratory tracts. The discovery of this minimal HR2 sequence as a means for inhibition of RSV infection provides the basis for further medicinal chemistry efforts toward developing RSV fusion antivirals. Copyright © 2017 Gaillard et al.

  8. Selected antimicrobial peptides inhibit in vitro growth of Campylobacter spp.

    USDA-ARS?s Scientific Manuscript database

    Novel alternatives to traditional antibiotics are urgently needed for food-animal production. A goal of our laboratory is to develop and evaluate antimicrobial peptides (AMP) to control and reduce foodborne pathogens in poultry. AMP have been found in most every class of living organism where they h...

  9. Peptides in common bean fractions inhibit human colorectal cancer cells.

    PubMed

    Luna Vital, Diego A; González de Mejía, Elvira; Dia, Vermont P; Loarca-Piña, Guadalupe

    2014-08-15

    The aim of this study was to characterize peptides present in common bean non-digestible fractions (NDF) produced after enzymatic digestion and determine their antiproliferative action on human colorectal cancer cells. Five NDF peptides represented 70% of total protein (GLTSK, LSGNK, GEGSGA, MPACGSS and MTEEY) with antiproliferative activity on human colon cancer cells. Based on the antiproliferative effect, HCT116 cell line was most sensitive to bean Azufrado Higuera (IC50=0.53 mg/ml) and RKO to Bayo Madero (IC50=0.51 mg/ml) peptide extracts. Both cultivars increased significantly (p<0.05) the expression of p53 in HCT116 by 76% and 68%, respectively. Azufrado Higuera modified the expression of cell cycle regulation proteins p21 and cyclin B1. Bayo Madero modified the expression of mitochondrial activated apoptotic proteins BAD, cytC, c-casp3, Survivin, BIRC7. Results suggest that peptides present in common bean NDF contributed to the antiproliferative effect on human colorectal cancer cells by modifying molecules involved in either cell cycle arrest or apoptosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. [A novel HIF-1 inhibitor--manassantin A derivative LXY6099 inhibits tumor growth].

    PubMed

    Lai, Fang-Fang; Liu, Xiao-Yu; Niu, Fei; Lang, Li-Wei; Xie, Ping; Chen, Xiao-Guang

    2014-05-01

    Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor on hypoxia responses in mammalian tissues. HIF-1 plays as a positive factor in solid tumor and leads to hypoxia-driven responses that enhance its downstream gene expression for tumor growth and survival. LXY6099 was obtained by the structural modification and optimization of manassantin A (MA) as a high potent HIF-1 inhibitor. Antitumor activity of LXY6099 was observed in this study. LXY6099 with an IC50 value of 2.46 x 10(-10) mol x L(-1) showed more sensitive inhibition activity to HIF-1 than that of MA detected by reporter gene assay (> 100 folds). It showed strong inhibition on the growth of human solid tumor cell lines. Furthermore, LXY6099 exhibited significant antitumor activity against established human tumor xenografts in nu/nu mice with treatment of MX-1 breast cancer. Thus, LXY6099 as a novel HIF-1 inhibitor could be further developed into anti-cancer agents.

  11. In vitro inhibition of feline leukaemia virus infection by synthetic peptides derived from the transmembrane domain.

    PubMed

    Boenzli, Eva; Robert-Tissot, Céline; Sabatino, Giuseppina; Cattori, Valentino; Meli, Marina Luisa; Gutte, Bernd; Rovero, Paolo; Flynn, Norman; Hofmann-Lehmann, Regina; Lutz, Hans

    2011-01-01

    The feline leukaemia virus (FeLV) is a gammaretrovirus commonly affecting cats. Infection with this virus often leads to fatal outcomes and, so far, no cure is available for this disease. Synthetic peptides with structures mimicking the transmembrane protein of the viral surface proteins hold the potential to effectively interfere with viral entry by hampering the fusion of viral and host cell membranes and constitute a novel approach for the treatment of infections with retroviruses. We identified and synthetically produced 11 FeLV peptides and evaluated their potential to block FeLV infection in vitro. Cell cultures were exposed to FeLV subgroup A prior to the addition of the peptides. The inhibitory effect of the peptides was assessed by measuring FeLV gag protein in the supernatant of peptide versus mock-treated cell cultures using an ELISA. A peptide (EPK364) of 37 amino acids in length, with sequence homology to the HIV fusion inhibitor T-20, significantly suppressed viral replication by 88%, whereas no effects were found for shorter peptides. Two structurally modified variants of EPK364 also inhibited viral replication by up to 58% (EPK397) and 27% (EPK398). Our data support the identification of synthetic FeLV peptides that have the potential for a curative short-term therapy of viraemic cats. In addition, these peptides might become an important tool in xenotransplantation, where endogenous gammaretroviruses of the donor species might be able to infect the host. © 2011 International Medical Press

  12. HHX-5, a derivative of sesquiterpene from Chinese agarwood, suppresses innate and adaptive immunity via inhibiting STAT signaling pathways.

    PubMed

    Zhu, Zhixiang; Zhao, Yunfang; Huo, Huixia; Gao, Xiaoli; Zheng, Jiao; Li, Jun; Tu, Pengfei

    2016-11-15

    Induction of excessive, prolonged, or dysregulated immune responses causes immunological disorders, such as inflammatory diseases, autoimmune diseases, allergic diseases, and organ-graft rejections. In the present study, we investigated the inhibitory effects of HHX-5, a derivative of sesquiterpene from Chinese agarwood, on innate and adaptive immunity for revealing its potential to treat above immunological disorders. The results showed that HHX-5 significantly inhibited the activation of macrophages and neutrophils which play important roles in innate immunity. Furthermore, HHX-5 strongly suppressed adaptive immunity via inhibiting differentiation of naive CD4(+) T cells into Th1, Th2, and Th17 cells and suppressing activation, proliferation and differentiation of CD8(+) T cells and B cells. The mechanism study showed that HHX-5 significantly inhibited STAT1 signaling pathway in macrophages and suppressed STAT1, STAT4, STAT5, and STAT6 signaling pathways in naive CD4(+) T cells. In conclusion, we demonstrated that HHX-5 can strongly inhibit innate and adaptive immunity via suppressing STAT signaling pathways and has potential to be developed into therapeutic drug for treat immunological disorders.

  13. Derivatives of the mouse cathelicidin-related antimicrobial peptide (CRAMP) inhibit fungal and bacterial biofilm formation.

    PubMed

    De Brucker, Katrijn; Delattin, Nicolas; Robijns, Stijn; Steenackers, Hans; Verstraeten, Natalie; Landuyt, Bart; Luyten, Walter; Schoofs, Liliane; Dovgan, Barbara; Fröhlich, Mirjam; Michiels, Jan; Vanderleyden, Jos; Cammue, Bruno P A; Thevissen, Karin

    2014-09-01

    We identified a 26-amino-acid truncated form of the 34-amino-acid cathelicidin-related antimicrobial peptide (CRAMP) in the islets of Langerhans of the murine pancreas. This peptide, P318, shares 67% identity with the LL-37 human antimicrobial peptide. As LL-37 displays antimicrobial and antibiofilm activity, we tested antifungal and antibiofilm activity of P318 against the fungal pathogen Candida albicans. P318 shows biofilm-specific activity as it inhibits C. albicans biofilm formation at 0.15 μM without affecting planktonic survival at that concentration. Next, we tested the C. albicans biofilm-inhibitory activity of a series of truncated and alanine-substituted derivatives of P318. Based on the biofilm-inhibitory activity of these derivatives and the length of the peptides, we decided to synthesize the shortened alanine-substituted peptide at position 10 (AS10; KLKKIAQKIKNFFQKLVP). AS10 inhibited C. albicans biofilm formation at 0.22 μM and acted synergistically with amphotericin B and caspofungin against mature biofilms. AS10 also inhibited biofilm formation of different bacteria as well as of fungi and bacteria in a mixed biofilm. In addition, AS10 does not affect the viability or functionality of different cell types involved in osseointegration of an implant, pointing to the potential of AS10 for further development as a lead peptide to coat implants. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Derivatives of the Mouse Cathelicidin-Related Antimicrobial Peptide (CRAMP) Inhibit Fungal and Bacterial Biofilm Formation

    PubMed Central

    De Brucker, Katrijn; Delattin, Nicolas; Robijns, Stijn; Steenackers, Hans; Verstraeten, Natalie; Landuyt, Bart; Luyten, Walter; Schoofs, Liliane; Dovgan, Barbara; Fröhlich, Mirjam; Michiels, Jan; Vanderleyden, Jos; Thevissen, Karin

    2014-01-01

    We identified a 26-amino-acid truncated form of the 34-amino-acid cathelicidin-related antimicrobial peptide (CRAMP) in the islets of Langerhans of the murine pancreas. This peptide, P318, shares 67% identity with the LL-37 human antimicrobial peptide. As LL-37 displays antimicrobial and antibiofilm activity, we tested antifungal and antibiofilm activity of P318 against the fungal pathogen Candida albicans. P318 shows biofilm-specific activity as it inhibits C. albicans biofilm formation at 0.15 μM without affecting planktonic survival at that concentration. Next, we tested the C. albicans biofilm-inhibitory activity of a series of truncated and alanine-substituted derivatives of P318. Based on the biofilm-inhibitory activity of these derivatives and the length of the peptides, we decided to synthesize the shortened alanine-substituted peptide at position 10 (AS10; KLKKIAQKIKNFFQKLVP). AS10 inhibited C. albicans biofilm formation at 0.22 μM and acted synergistically with amphotericin B and caspofungin against mature biofilms. AS10 also inhibited biofilm formation of different bacteria as well as of fungi and bacteria in a mixed biofilm. In addition, AS10 does not affect the viability or functionality of different cell types involved in osseointegration of an implant, pointing to the potential of AS10 for further development as a lead peptide to coat implants. PMID:24982087

  15. Inhibition of enteroaggregative Escherichia coli cell adhesion in-vitro by designed peptides.

    PubMed

    Gupta, Deepika; Sarkar, Subendu; Sharma, Monica; Thapa, B R; Chakraborti, Anuradha

    2016-09-01

    Enteroaggregative Escherichia coli (EAEC) bears remarkable capacity to adhere the host intestinal mucosal surface and results in acute or persistent childhood diarrhea worldwide. In this study, an attempt has been made to inhibit EAEC cell adherence in-vitro using synthetic peptides. E. coli isolates (n = 54) were isolated from the stool samples of clinically diagnosed pediatric diarrheal patients. 92.8% isolates showed different types of aggregative adherence patterns with HEp-2 cells. AAF-II (Aggregative Adherence Fimbriae-II) EAEC exhibited the maximum ability to form biofilm and intracellular survival. Peptides were designed against the high antigenic epitopic regions of AAF-II adhesin of EAEC O42 using prediction algorithms like BcePred and ProPred software to block the EAEC cell adhesion in-vitro. Peptides P2 (DITITPATNRDVNV) and P3 (MRIKAWGEANHGQL) demonstrated higher inhibition of EAEC cell adhesion than P1 (GMQGSITPAIPLRPG). Interestingly, increasing the pre-incubation time of the peptides with HEp-2 cells from 1 h to 2 h showed the maximum inhibition. The data suggested the potential role of P2 and P3 peptides in successfully blocking the binding of AAF-II EAEC with HEp-2 cell receptors. Hence, the peptides may be efficacious in designing new chemotherapeutic for the management of EAEC mediated diarrhea.

  16. Inhibition of peptide aggregation by means of enzymatic phosphorylation

    PubMed Central

    Folmert, Kristin; Broncel, Malgorzata; v. Berlepsch, Hans; Ullrich, Christopher Hans; Siegert, Mary-Ann

    2016-01-01

    As is the case in numerous natural processes, enzymatic phosphorylation can be used in the laboratory to influence the conformational populations of proteins. In nature, this information is used for signal transduction or energy transfer, but has also been shown to play an important role in many diseases like tauopathies or diabetes. With the goal of determining the effect of phosphorylation on amyloid fibril formation, we designed a model peptide which combines structural characteristics of α-helical coiled-coils and β-sheets in one sequence. This peptide undergoes a conformational transition from soluble structures into insoluble amyloid fibrils over time and under physiological conditions and contains a recognition motif for PKA (cAMP-dependent protein kinase) that enables enzymatic phosphorylation. We have analyzed the pathway of amyloid formation and the influence of enzymatic phosphorylation on the different states along the conformational transition from random-coil to β-sheet-rich oligomers to protofilaments and on to insoluble amyloid fibrils, and we found a remarkable directing effect from β-sheet-rich structures to unfolded structures in the initial growth phase, in which small oligomers and protofilaments prevail if the peptide is phosphorylated. PMID:28144314

  17. Vasoactive Intestinal Peptide Inhibits Human Small-Cell Lung Cancer Proliferation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Maruno, Kaname; Absood, Afaf; Said, Sami I.

    1998-11-01

    Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.

  18. Inhibition of the angiogenesis by the MCP-1 (monocyte chemoattractant protein-1) binding peptide.

    PubMed

    Kim, Mee Young; Byeon, Cheol Woo; Hong, Kyung Hee; Han, Ki Hoon; Jeong, Sunjoo

    2005-03-14

    The CC chemokine, monocyte chemoattractant protein-1 (MCP-1), plays a crucial role in the initiation of atherosclerosis and has direct effects that promote angiogenesis. To develop a specific inhibitor for MCP-1-induced angiogenesis, we performed in vitro selection employing phage display random peptide libraries. Most of the selected peptides were found to be homologous to the second extracellular loops of CCR2 and CCR3. We synthesized the peptide encoding the homologous sequences of the receptors and tested its effect on the MCP-1 induced angiogenesis. Surface plasmon resonance measurements demonstrated specific binding of the peptide to MCP-1 but not to the other homologous protein, MCP-3. Flow cytometry revealed that the peptide inhibited the MCP-1 binding to THP-1 monocytes. Moreover, CAM and rat aortic ring assays showed that the peptide inhibited MCP-1 induced angiogenesis. Our observations indicate that the MCP-1-binding peptide exerts its anti-angiogenic effect by interfering with the interaction between MCP-1 and its receptor.

  19. The molecular mechanism of fullerene-inhibited aggregation of Alzheimer's β-amyloid peptide fragment.

    PubMed

    Xie, Luogang; Luo, Yin; Lin, Dongdong; Xi, Wenhui; Yang, Xinju; Wei, Guanghong

    2014-08-21

    Amyloid deposits are implicated in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease (AD). The inhibition of β-sheet formation has been considered as the primary therapeutic strategy for AD. Increasing data show that nanoparticles can retard or promote the fibrillation of amyloid-β (Aβ) peptides depending on the physicochemical properties of nanoparticles, however, the underlying molecular mechanism remains elusive. In this study, our replica exchange molecular dynamics (REMD) simulations show that fullerene nanoparticle - C60 (with a fullerene :  peptide molar ratio greater than 1 : 8) can dramatically prevent β-sheet formation of Aβ(16-22) peptides. Atomic force microscopy (AFM) experiments further confirm the inhibitory effect of C60 on Aβ(16-22) fibrillation, in support of our REMD simulations. An important finding from our REMD simulations is that fullerene C180, albeit with the same number of carbon atoms as three C60 molecules (3C60) and smaller surface area than 3C60, displays an unexpected stronger inhibitory effect on the β-sheet formation of Aβ(16-22) peptides. A detailed analysis of the fullerene-peptide interaction reveals that the stronger inhibition of β-sheet formation by C180 results from the strong hydrophobic and aromatic-stacking interactions of the fullerene hexagonal rings with the Phe rings relative to the pentagonal rings. The strong interactions between the fullerene nanoparticles and Aβ(16-22) peptides significantly weaken the peptide-peptide interaction that is important for β-sheet formation, thus retarding Aβ(16-22) fibrillation. Overall, our studies reveal the significant role of fullerene hexagonal rings in the inhibition of Aβ(16-22) fibrillation and provide novel insight into the development of drug candidates against Alzheimer's disease.

  20. Designed Coiled-Coil Peptides Inhibit the Type Three Secretion System of Enteropathogenic Escherichia coli

    PubMed Central

    Larzábal, Mariano; Mercado, Elsa C.; Vilte, Daniel A.; Salazar-González, Hector; Cataldi, Angel; Navarro-Garcia, Fernando

    2010-01-01

    Background Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are two categories of E. coli strains associated with human disease. A major virulence factor of both pathotypes is the expression of a type three secretion system (TTSS), responsible for their ability to adhere to gut mucosa causing a characteristic attaching and effacing lesion (A/E). The TTSS translocates effector proteins directly into the host cell that subvert mammalian cell biochemistry. Methods/Principal Findings We examined synthetic peptides designed to inhibit the TTSS. CoilA and CoilB peptides, both representing coiled-coil regions of the translocator protein EspA, and CoilD peptide, corresponding to a coiled–coil region of the needle protein EscF, were effective in inhibiting the TTSS dependent hemolysis of red blood cells by the EPEC E2348/69 strain. CoilA and CoilB peptides also reduced the formation of actin pedestals by the same strain in HEp-2 cells and impaired the TTSS-mediated protein translocation into the epithelial cell. Interestingly, CoilA and CoilB were able to block EspA assembly, destabilizing the TTSS and thereby Tir translocation. This blockage of EspA polymerization by CoilA or CoilB peptides, also inhibited the correct delivery of EspB and EspD as detected by immunoblotting. Interestingly, electron microscopy of bacteria incubated with the CoilA peptide showed a reduction of the length of EspA filaments. Conclusions Our data indicate that coiled-coil peptides can prevent the assembly and thus the functionality of the TTSS apparatus and suggest that these peptides could provide an attractive tool to block EPEC and EHEC pathogenesis. PMID:20140230

  1. Nandinine, a Derivative of Berberine, Inhibits Inflammation and Reduces Insulin Resistance in Adipocytes via Regulation of AMP-Kinase Activity.

    PubMed

    Zhao, Wenwen; Ge, Haixia; Liu, Kang; Chen, Xiuping; Zhang, Jian; Liu, Baolin

    2017-02-01

    Nandinine is a derivative of berberine that has high efficacy for treating cardiovascular diseases. This study investigated the effects of berberine and nandinine on the regulation of insulin sensitivity in adipocytes. Through treatment with macrophage-derived conditioned medium in 3T3-L1 adipocytes, dysregulation of adipokine production and activation of the IκB kinase β/nuclear factor-kappa B pathway was induced. However, these phenomena were effectively reversed by berberine, nandinine, and salicylate pretreatments. Furthermore, both berberine and nandinine inhibited serine phosphorylation of insulin receptor substrate-1 induced by IκB kinase β and increased tyrosine phosphorylation of insulin receptor substrate-1 to activate the PI3K/Akt pathway, which finally led to insulin-mediated glucose uptake. In addition, berberine and nandinine significantly increased AMP-activated protein kinase activity, thereby contributing to their anti-inflammatory effect by inhibiting IκB kinase β activation. Finally, in vivo studies demonstrated that both berberine (100 or 200 mg/kg) and nandinine (100 or 200 mg/kg) effectively ameliorated glucose intolerance and induced the insulin sensitivity index in mice. In conclusion, berberine and nandinine attenuated insulin resistance in adipocytes by inhibiting inflammation in an AMP-activated protein kinase-dependent manner. Berberine and nandinine may be used as dietary supplements and nandinine is a new candidate for obesity treatment.

  2. Immunohistochemical Localization of Chromostatin and Pancreastatin, Chromogranin A-Derived Bioactive Peptides, in Normal and Neoplastic Neuroendocrine Tissues.

    PubMed

    Kimura, Noriko; Funakoshi, Akihiro; Aunis, Dominique; Tateishi, Kayoko; Miura, Wakako; Nagura, Hiroshi

    1995-01-01

    Despite the widespread distribution of chromogranin A (CgA) in neuroendocrine tissues, the biological function of CgA has not yet been elucidated. The primary amino acid sequence of CgA, elucidated by cDNA analysis, has been revealed to include several pairs of basic amino acid residues that are homologous to the bioactive peptides, such as pancreastatin (PST) and chromostatin (CST). Using antibodies for human PST and CST, the immunohistochemical localization of these peptides was investigated in neuroendocrine tissues, including human pituitary glands, pancreas, adrenal medulla, various types of neuroendocrine neoplasms (13 pheochromocytomas, 10 medullary thyroid carcinomas, 11 pancreatic endocrine tumors, and 19 carcinoid tumors), and the cell line QGP-1N derived from human somatostatin-producing pancreatic endocrine tumor. Variable immunoreactive intensities of PST and CST were seen, but both peptides were detectable in all neuroendocrine tissues and in most of the neoplasms. Immunoreactivity for both PST and CST was observed in 100 and 73%, respectively, of pancreatic endocrine tumors, all pheochromocytomas, and 80 and 40%, respectively, of medullary thyroid carcinomas, as well as all nonrectal carcinoid tumors. In rectal carcinoids, cells immunoreactive for PST and CST were sparse. The distribution of PST and CST was similar to that of CgA, and it is considered that these peptides are simultaneously processed from CgA, and may play roles in autocrine and paracrine regulation on various hormones in addition to their previously known functions.

  3. Molecular mechanism of viomycin inhibition of peptide elongation in bacteria.

    PubMed

    Holm, Mikael; Borg, Anneli; Ehrenberg, Måns; Sanyal, Suparna

    2016-01-26

    Viomycin is a tuberactinomycin antibiotic essential for treating multidrug-resistant tuberculosis. It inhibits bacterial protein synthesis by blocking elongation factor G (EF-G) catalyzed translocation of messenger RNA on the ribosome. Here we have clarified the molecular aspects of viomycin inhibition of the elongating ribosome using pre-steady-state kinetics. We found that the probability of ribosome inhibition by viomycin depends on competition between viomycin and EF-G for binding to the pretranslocation ribosome, and that stable viomycin binding requires an A-site bound tRNA. Once bound, viomycin stalls the ribosome in a pretranslocation state for a minimum of ∼ 45 s. This stalling time increases linearly with viomycin concentration. Viomycin inhibition also promotes futile cycles of GTP hydrolysis by EF-G. Finally, we have constructed a kinetic model for viomycin inhibition of EF-G catalyzed translocation, allowing for testable predictions of tuberactinomycin action in vivo and facilitating in-depth understanding of resistance development against this important class of antibiotics.

  4. Molecular mechanism of viomycin inhibition of peptide elongation in bacteria

    PubMed Central

    Holm, Mikael; Borg, Anneli; Ehrenberg, Måns; Sanyal, Suparna

    2016-01-01

    Viomycin is a tuberactinomycin antibiotic essential for treating multidrug-resistant tuberculosis. It inhibits bacterial protein synthesis by blocking elongation factor G (EF-G) catalyzed translocation of messenger RNA on the ribosome. Here we have clarified the molecular aspects of viomycin inhibition of the elongating ribosome using pre-steady-state kinetics. We found that the probability of ribosome inhibition by viomycin depends on competition between viomycin and EF-G for binding to the pretranslocation ribosome, and that stable viomycin binding requires an A-site bound tRNA. Once bound, viomycin stalls the ribosome in a pretranslocation state for a minimum of ∼45 s. This stalling time increases linearly with viomycin concentration. Viomycin inhibition also promotes futile cycles of GTP hydrolysis by EF-G. Finally, we have constructed a kinetic model for viomycin inhibition of EF-G catalyzed translocation, allowing for testable predictions of tuberactinomycin action in vivo and facilitating in-depth understanding of resistance development against this important class of antibiotics. PMID:26755601

  5. The Hsp70 inhibiting peptide aptamer A17 potentiates radiosensitization of tumor cells by Hsp90 inhibition.

    PubMed

    Schilling, Daniela; Garrido, Carmen; Combs, Stephanie E; Multhoff, Gabriele

    2017-04-01

    The inhibition of heat shock protein 90 (Hsp90) is a promising strategy to increase the radiosensitivity of tumor cells. However, Hsp90 inhibition induces the expression of Hsp70 which is a prominent cytoprotective protein. Therefore, dual targeting of Hsp70 and Hsp90 might be beneficial to increase the radiosensitivity of tumor cells. Hsp70 inhibiting peptide aptamers have been shown to increase the sensitivity of tumor cells to apoptosis induced by different anticancer drugs. Herein, we studied the radiosensitizing activity of the Hsp70 inhibiting peptide aptamer A17 in combination with the Hsp90 inhibitor NVP-AUY922. Whereas A17 significantly increased apoptosis induction by NVP-AUY922 it did not significantly affect the radiosensitivity of human lung and breast cancer cells. However, Hsp70 inhibition by the aptamer A17 potentiated the radiosensitizing effects of the Hsp90 inhibitor NVP-AUY922. Mechanistically we speculate that an increased number of DNA double strand breaks and an enhanced G2/M arrest might be responsible for the increased radiosensitization in A17 expressing tumor cells. Therefore, the simultaneous inhibition of Hsp90 and Hsp70 combined with radiotherapy might provide a promising anti-cancer strategy.

  6. Inhibition of Growth and Gene Expression by PNA-peptide Conjugates in Streptococcus pyogenes

    PubMed Central

    Patenge, Nadja; Pappesch, Roberto; Krawack, Franziska; Walda, Claudia; Mraheil, Mobarak Abu; Jacob, Anette; Hain, Torsten; Kreikemeyer, Bernd

    2013-01-01

    While Streptococcus pyogenes is consistently susceptible toward penicillin, therapeutic failure of penicillin treatment has been reported repeatedly and a considerable number of patients exhibit allergic reactions to this substance. At the same time, streptococcal resistance to alternative antibiotics, e.g., macrolides, has increased. Taken together, these facts demand the development of novel therapeutic strategies. In this study, S. pyogenes growth was inhibited by application of peptide-conjugated antisense-peptide nucleic acids (PNAs) specific for the essential gyrase A gene (gyrA). Thereby, HIV-1 Tat peptide-coupled PNAs were more efficient inhibitors of streptococcal growth as compared with (KFF)3K-coupled PNAs. Peptide-anti-gyrA PNAs decreased the abundance of gyrA transcripts in S. pyogenes. Growth inhibition by antisense interference was enhanced by combination of peptide-coupled PNAs with protein-level inhibitors. Antimicrobial synergy could be detected with levofloxacin and novobiocin, targeting the gyrase enzyme, and with spectinomycin, impeding ribosomal function. The prospective application of carrier peptide-coupled antisense PNAs in S. pyogenes covers the use as an antimicrobial agent and the employment as a knock-down strategy for the investigation of virulence factor function. PMID:24193033

  7. Inhibition of HIV-1 infection by synthetic peptides derived CCR5 fragments

    SciTech Connect

    Imai, Masaki; Baranyi, Lajos; Okada, Noriko; Okada, Hidechika; E-mail: hiokada@med.nagoya-cu.ac.jp

    2007-02-23

    HIV-1 infection requires interaction of viral envelope protein gp160 with CD4 and a chemokine receptor, CCR5 or CXCR4 as entry coreceptor. We designed HIV-inhibitory peptides targeted to CCR5 using a novel computer program (ANTIS), which searched all possible sense-antisense amino acid pairs between proteins. Seven AHBs were found in CCR5 receptor. All AHB peptides were synthesized and tested for their ability to prevent HIV-1 infection to human T cells. A peptide fragment (LC5) which is a part of the CCR5 receptor corresponding to the loop between the fifth and sixth transmembrane regions (amino acids 222-240) proved to inhibit HIV-1{sub IIIB} infection of MT-4 cells. Interaction of these antisense peptides could be involved in sustaining HIV-1 infectivity. LC5 effectively indicated dose-dependent manner, and the suppression was enhanced additively by T20 peptide, which inhibits infection in vitro by disrupting the gp41 conformational changes necessary for membrane fusion. Thus, these results indicate that CCR5-derived AHB peptides could provide a useful tool to define the mechanism(s) of HIV infection, and may provide insight which will contribute to the development of an anti-HIV-1 reagent.

  8. Melanocyte stimulating hormone peptides inhibit TNF-alpha signaling in human dermal fibroblast cells.

    PubMed

    Hill, R P; MacNeil, S; Haycock, J W

    2006-02-01

    Alpha-melanocyte stimulating hormone (alpha-MSH) has been identified as a potent anti-inflammatory in various tissues including the skin. It has previously been shown in skin cell keratinocytes and melanocytes/melanoma cells that MSH peptides inhibit TNF-alpha stimulated NF-kappaB activity and intercellular adhesion molecule-1 (ICAM-1) upregulation. However, the precise anti-inflammatory role of MSH peptides in dermal fibroblasts is unclear. Some studies report on pro-inflammatory responses, while others on anti-inflammatory responses. The present study confirms MC1R expression in cultured human dermal fibroblasts and reports that the MSH peptides alpha-MSH and KP(-D-)V inhibit TNF-alpha stimulated NF-kappaB activity and ICAM-1 upregulation, consistent with an anti-inflammatory role. However, involvement of IkappaB-alpha regulation by either peptide was not confirmed, supporting a mechanism independent of the NF-kappaB inhibitor. In conclusion, alpha-MSH and KP(-D-)V peptides have an anti-inflammatory action on dermal fibroblast signaling by inhibiting the pro-inflammatory activity of TNF-alpha in vitro.

  9. Experimental inhibition of peptide fibrillogenesis by synthetic peptides, carbohydrates and drugs.

    PubMed

    Srinivasan, Alagiri

    2012-01-01

    Peptide fibrillogenesis generally begins by the transformation of normally soluble proteins into elongated aggregates which are called as amyloid. These fibrils mainly consist of ß-sheets. They share certain common characteristics such as a cross-ß x-ray diffraction pattern, association with other common proteins and typical staining by the dye Congo Red. The individual form of the deposit consists of a disease-specific peptide/protein. The disease-specific protein serves as the basis for the classification of the amyloids. The association of fibril-forming peptides/proteins with diseases makes them primary disease-targets. Understanding the molecular interactions involved in the fibril formation becomes the foremost requirement to characterize the target. Interference with these interactions of ß-sheets in vitro prevents and sometimes reverses the fibril assembly. A small molecule capable of interfering with the formation of fibril could have therapeutic applications in these diseases. This anti-aggregation approach appears to be a viable treatment option. A search for such a molecule is pursued actively world over. All types of compounds and approaches to slow down or prevent the aggregation process have been described in the literature. These efforts are reviewed in this chapter.

  10. SHORT PEDF-DERIVED PEPTIDE INHIBITS ANGIOGENESIS AND TUMOR GROWTH

    PubMed Central

    Mirochnik, Yelena; Aurora, Arin; Schulze-Hoepfner, Frank T.; Deabes, Ahmed; Shifrin, Victor; Beckmann, Richard; Polsky, Charles; Volpert, Olga V.

    2010-01-01

    Purpose Pigment epithelial-derived factor (PEDF) is a potent angiogenesis inhibitor with multiple other functions, some of which enhance tumor growth. Our previous studies mapped PEDF anti-angiogenic and pro-survival activities to distinct epitopes. This study was aimed to determine the minimal fragment of PEDF, which maintains anti-angiogenic and anti-tumor efficacy. Experimental Design We analyzed antigenicity, hydrophilicity, and charge distribution of the angioinhibitory epitope (the 34-mer) and designed three peptides covering its C-terminus, P14, P18 and P23. We analyzed their ability to block endothelial cell (EC) chemotaxis and induce apoptosis in vitro and their anti-angiogenic activity in vivo. The selected peptide was tested for the anti-tumor activity against mildly aggressive xenografted prostate carcinoma and highly aggressive renal cell carcinoma. To verify that P18 acts in the same manner as PEDF, we used immunohistochemistry to measure PEDF targets, VEGFR2 and CD95L expression in P18-treated vasculature. Results P14 and P18 blocked endothelial cell chemotaxis; P18 and P23 induced apoptosis. P18 showed the highest IC50 and blocked angiogenesis in vivo: P23 was inactive and P14 was pro-angiogenic. P18 increased the production of CD95L and reduced the expression of VEGFR-2 by the endothelial cells in vivo. In tumor studies, P18 was more effective in blocking the angiogenesis and growth of the prostate cancer then parental 34-mer; in the renal cell carcinoma P18 strongly decreased angiogenesis and halted the progression of established tumors. Conclusions P18 is a novel and potent anti-angiogenic biotherapeutic agent, which has potential to be developed for the treatment of prostate and renal cancer. PMID:19223494

  11. Antibodies against dengue virus E protein peptide bind to human plasminogen and inhibit plasmin activity

    PubMed Central

    HUANG, Y H; CHANG, B I; LEI, H Y; LIU, H S; LIU†, C C; WU, H L; YEH, T M

    1997-01-01

    Both mice and rabbits immunized with dengue virus E protein peptide spanning amino acids 100–119 (D4E) produced antibodies that reacted not only with the D4E peptide itself but also with human plasminogen, as shown by ELISA and Western blot. Sera from dengue virus-hyperimmunized mice and dengue patients also contained antibodies against D4E and plasminogen. Furthermore, such sera all contained plasmin inhibitory activity. Using affinity-purified anti-D4E antibodies and free D4E peptide for competitive inhibition, we demonstrated that the inhibition of plasmin activity was due to anti-D4E antibodies rather than other substances in the sera. Taken together, these results suggest dengue virus E protein amino acids 100–119 are a cross-reactive immunogenic region, and antibodies against this region may interfere with human fibrinolysis. PMID:9353146

  12. Inhibition of Orthopaedic Implant Infections by Immunomodulatory Effects of Host Defense Peptides

    DTIC Science & Technology

    2012-10-01

    the murine model of orthopaedic implant infection . Appropriate concentrations of Staph . aureus were identified that reproducibly provide chronic... Infections by Immunomodulatory Effects of Host Defense Peptides PRINCIPAL INVESTIGATOR: Edward Greenfield, PhD...TYPE Annual 3. DATES COVERED 15 September 2011- 14 September 2012 4. TITLE AND SUBTITLE Inhibition of Orthopaedic Implant Infections by

  13. Inhibition of LtxA toxicity by blocking cholesterol binding with peptides.

    PubMed

    Brown, A C; Koufos, E; Balashova, N V; Boesze-Battaglia, K; Lally, E T

    2016-02-01

    The leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans kills host immune cells, allowing the bacterium to establish an ecological niche in the upper aerodigestive tract of its human host. The interaction of LtxA with human immune cells is both complex and multifaceted, involving membrane lipids as well as cell-surface proteins. In the initial encounter with the host cell, LtxA associates with lymphocyte function-associated antigen-1, a cell surface adhesion glycoprotein. However, we have also demonstrated that the toxin associates strongly with the plasma membrane lipids, specifically cholesterol. This association with cholesterol is regulated by a cholesterol recognition amino acid consensus (CRAC) motif, with a sequence of (334) LEEYSKR(340), in the N-terminal region of the toxin. Here, we have demonstrated that removal of cholesterol from the plasma membrane or mutation of the LtxA CRAC motif inhibits the activity of the toxin in THP-1 cells. To inhibit LtxA activity, we designed a short peptide corresponding to the CRAC(336) motif of LtxA (CRAC(336WT)). This peptide binds to cholesterol and thereby inhibits the toxicity of LtxA in THP-1 cells. Previously, we showed that this peptide inhibits LtxA toxicity against Jn.9 (Jurkat) cells, indicating that peptides derived from the cholesterol-binding site of LtxA may have a potential clinical applicability in controlling infections of repeats-in-toxin-producing organisms.

  14. Inhibition of LtxA Toxicity by Blocking Cholesterol Binding With Peptides

    PubMed Central

    Brown, Angela C.; Koufos, Evan; Balashova, Nataliya; Boesze-Battaglia, Kathleen; Lally, Edward T.

    2015-01-01

    Summary The leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans kills host immune cells, allowing the bacterium to establish an ecological niche in the upper aerodigestive tract of its human host. The interaction of LtxA with human immune cells is both complex and multifaceted, involving membrane lipids as well as cell-surface proteins. In the initial encounter with the host cell, LtxA associates with lymphocyte function-associated antigen-1 (LFA-1), a cell surface adhesion glycoprotein. However, we have also demonstrated that the toxin associates strongly with the plasma membrane lipids, specifically cholesterol. This association with cholesterol is regulated by a cholesterol recognition amino acid consensus (CRAC) motif, with a sequence of 334LEEYSKR340, in the N-terminal region of the toxin. Here, we have demonstrated that removal of cholesterol from the plasma membrane or mutation of the LtxA CRAC motif inhibits the activity of the toxin in THP-1 cells. To inhibit LtxA activity, we designed a short peptide corresponding to the CRAC336 motif of LtxA (CRAC336WT). This peptide binds to cholesterol and thereby inhibits the toxicity of LtxA in THP-1 cells. Previously, we showed that this peptide inhibits LtxA toxicity against Jn.9 (Jurkat) cells, indicating that peptides derived from the cholesterol-binding site of LtxA may have a potential clinical applicability in controlling infections of RTX-producing organisms. PMID:26352738

  15. A TLR4-interacting SPA4 peptide inhibits LPS-induced lung inflammation.

    PubMed

    Ramani, Vijay; Madhusoodhanan, Rakhesh; Kosanke, Stanley; Awasthi, Shanjana

    2013-12-01

    The interaction between surfactant protein-A (SP-A) and TLR4 is important for host defense. We have recently identified an SPA4 peptide region from the interface of SP-A-TLR4 complex. Here, we studied the involvement of the SPA4 peptide region in SP-A-TLR4 interaction using a two-hybrid system, and biological effects of SPA4 peptide in cell systems and a mouse model. HEK293 cells were transfected with plasmid DNAs encoding SP-A or a SP-A-mutant lacking SPA4 peptide region and TLR4. Luciferase activity was measured as the end-point of SP-A-TLR4 interaction. NF-κB activity was also assessed simultaneously. Next, the dendritic cells or mice were challenged with Escherichia coli-derived LPS and treated with SPA4 peptide. Endotoxic shock-like symptoms and inflammatory parameters (TNF-α, NF-κB, leukocyte influx) were assessed. Our results reveal that the SPA4 peptide region contributes to the SP-A-TLR4 interaction and inhibits the LPS-induced NF-κB activity and TNF-α. We also observed that the SPA4 peptide inhibits LPS-induced expression of TNF-α, nuclear localization of NF-κB-p65 and cell influx, and alleviates the endotoxic shock-like symptoms in a mouse model. Our results suggest that the anti-inflammatory activity of the SPA4 peptide through its binding to TLR4 can be of therapeutic benefit.

  16. Macrocyclized Extended Peptides: Inhibiting the Substrate-Recognition Domain of Tankyrase

    PubMed Central

    2017-01-01

    We report a double-click macrocyclization approach for the design of constrained peptide inhibitors having non-helical or extended conformations. Our targets are the tankyrase proteins (TNKS), poly(ADP-ribose) polymerases (PARP) that regulate Wnt signaling by targeting Axin for degradation. TNKS are deregulated in many different cancer types, and inhibition of TNKS therefore represents an attractive therapeutic strategy. However, clinical development of TNKS-specific PARP catalytic inhibitors is challenging due to off-target effects and cellular toxicity. We instead targeted the substrate-recognition domain of TNKS, as it is unique among PARP family members. We employed a two-component strategy, allowing peptide and linker to be separately engineered and then assembled in a combinatorial fashion via click chemistry. Using the consensus substrate-peptide sequence as a starting point, we optimized the length and rigidity of the linker and its position along the peptide. Optimization was further guided by high-resolution crystal structures of two of the macrocyclized peptides in complex with TNKS. This approach led to macrocyclized peptides with submicromolar affinities for TNKS and high proteolytic stability that are able to disrupt the interaction between TNKS and Axin substrate and to inhibit Wnt signaling in a dose-dependent manner. The peptides therefore represent a promising starting point for a new class of substrate-competitive inhibitors of TNKS with potential for suppressing Wnt signaling in cancer. Moreover, by demonstrating the application of the double-click macrocyclization approach to non-helical, extended, or irregularly structured peptides, we greatly extend its potential and scope, especially given the frequency with which such motifs mediate protein–protein interactions. PMID:28084734

  17. Macrocyclized Extended Peptides: Inhibiting the Substrate-Recognition Domain of Tankyrase.

    PubMed

    Xu, Wenshu; Lau, Yu Heng; Fischer, Gerhard; Tan, Yaw Sing; Chattopadhyay, Anasuya; de la Roche, Marc; Hyvönen, Marko; Verma, Chandra; Spring, David R; Itzhaki, Laura S

    2017-02-15

    We report a double-click macrocyclization approach for the design of constrained peptide inhibitors having non-helical or extended conformations. Our targets are the tankyrase proteins (TNKS), poly(ADP-ribose) polymerases (PARP) that regulate Wnt signaling by targeting Axin for degradation. TNKS are deregulated in many different cancer types, and inhibition of TNKS therefore represents an attractive therapeutic strategy. However, clinical development of TNKS-specific PARP catalytic inhibitors is challenging due to off-target effects and cellular toxicity. We instead targeted the substrate-recognition domain of TNKS, as it is unique among PARP family members. We employed a two-component strategy, allowing peptide and linker to be separately engineered and then assembled in a combinatorial fashion via click chemistry. Using the consensus substrate-peptide sequence as a starting point, we optimized the length and rigidity of the linker and its position along the peptide. Optimization was further guided by high-resolution crystal structures of two of the macrocyclized peptides in complex with TNKS. This approach led to macrocyclized peptides with submicromolar affinities for TNKS and high proteolytic stability that are able to disrupt the interaction between TNKS and Axin substrate and to inhibit Wnt signaling in a dose-dependent manner. The peptides therefore represent a promising starting point for a new class of substrate-competitive inhibitors of TNKS with potential for suppressing Wnt signaling in cancer. Moreover, by demonstrating the application of the double-click macrocyclization approach to non-helical, extended, or irregularly structured peptides, we greatly extend its potential and scope, especially given the frequency with which such motifs mediate protein-protein interactions.

  18. A defined peptide that inhibits the formation of the glycoprotein IIb and IIIa complex.

    PubMed

    Chiang, Thomas M; Zhu, Jiaqian

    2005-01-01

    Collagen-platelet interaction plays an important role in hemostasis and pathological thrombosis. The proposed mechanism of the interaction was the activation of platelets-->releasing of contents from granules-->aggregation. The common end point is the platelets and fibrin aggregates. Platelet glycoprotein (GP) IIb/IIIa (the alphaIIbbeta3 integrin) complexes serve as a receptor for the binding of fibrinogen to form firmed aggregates. Blockading of GP IIb/IIIa has been proposed to prevent platelet aggregation independent of the substance(s) responsible for activating the platelets. The development of various forms of GP IIb/IIIa inhibitor has resulted in the inhibition of platelet aggregation, although studies of alphaIIbbeta3 receptor function and various GP IIb/IIIa inhibitors have demonstrated the potential for these agents to produce effects on other aspects of platelet function as well as having nonplatelet effects. This study investigated platelet inhibition provided by blocking the GP IIb/IIIa complex formation by using a peptide derived from the GP IIIa molecule. The peptide inhibits both types I and III collagen-induced platelet aggregation in a dose-dependent manner. The defined peptide interferes with the formation of the GP IIb/IIIa complex by inhibiting the binding of FITC-PAC-1 onto ADP-, type I collagen-, and type III collagen-activated platelets. However, P-selectin secretion is not affected by the peptide. In addition, the peptide is not interfering with the binding of FITC-PAC-1 to platelets that were preincubated with indomethacin. Results from this study may suggest that the defined peptide is an effective agent to block the interaction of types I and III collagen with platelets.

  19. Inhibition of Vaccinia virus entry by a broad spectrum antiviral peptide

    SciTech Connect

    Altmann, S.E.; Jones, J.C.; Schultz-Cherry, S.; Brandt, C.R.

    2009-06-05

    Concerns about the possible use of Variola virus, the causative agent of smallpox, as a weapon for bioterrorism have led to renewed efforts to identify new antivirals against orthopoxviruses. We identified a peptide, EB, which inhibited infection by Vaccinia virus with an EC{sub 50} of 15 muM. A control peptide, EBX, identical in composition to EB but differing in sequence, was inactive (EC{sub 50} > 200 muM), indicating sequence specificity. The inhibition was reversed upon removal of the peptide, and EB treatment had no effect on the physical integrity of virus particles as determined by electron microscopy. Viral adsorption was unaffected by the presence of EB, and the addition of EB post-entry had no effect on viral titers or on early gene expression. The addition of EB post-adsorption resulted in the inhibition of beta-galactosidase expression from an early viral promoter with an EC{sub 50} of 45 muM. A significant reduction in virus entry was detected in the presence of the peptide when the number of viral cores released into the cytoplasm was quantified. Electron microscopy indicated that 88% of the virions remained on the surface of cells in the presence of EB, compared to 37% in the control (p < 0.001). EB also blocked fusion-from-within, suggesting that virus infection is inhibited at the fusion step. Analysis of EB derivatives suggested that peptide length may be important for the activity of EB. The EB peptide is, to our knowledge, the first known small molecule inhibitor of Vaccinia virus entry.

  20. Targeted Proapoptotic Peptides Depleting Adipose Stromal Cells Inhibit Tumor Growth

    PubMed Central

    Daquinag, Alexes C; Tseng, Chieh; Zhang, Yan; Amaya-Manzanares, Felipe; Florez, Fernando; Dadbin, Ali; Zhang, Tao; Kolonin, Mikhail G

    2016-01-01

    Progression of many cancers is associated with tumor infiltration by mesenchymal stromal cells (MSC). Adipose stromal cells (ASC) are MSC that serve as adipocyte progenitors and endothelium-supporting cells in white adipose tissue (WAT). Clinical and animal model studies indicate that ASC mobilized from WAT are recruited by tumors. Direct evidence for ASC function in tumor microenvironment has been lacking due to unavailability of approaches to specifically inactivate these cells. Here, we investigate the effects of a proteolysis-resistant targeted hunter-killer peptide D-WAT composed of a cyclic domain CSWKYWFGEC homing to ASC and of a proapoptotic domain KLAKLAK2. Using mouse bone marrow transplantation models, we show that D-WAT treatment specifically depletes tumor stromal and perivascular cells without directly killing malignant cells or tumor-infiltrating leukocytes. In several mouse carcinoma models, targeted ASC cytoablation reduced tumor vascularity and cell proliferation resulting in hemorrhaging, necrosis, and suppressed tumor growth. We also validated a D-WAT derivative with a proapoptotic domain KFAKFAK2 that was found to have an improved cytoablative activity. Our results for the first time demonstrate that ASC, recruited as a component of tumor microenvironment, support cancer progression. We propose that drugs targeting ASC can be developed as a combination therapy complementing conventional cancer treatments. PMID:26316391

  1. Novel mode of action of plant defense peptides - hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases.

    PubMed

    Slavokhotova, Anna A; Naumann, Todd A; Price, Neil P J; Rogozhin, Eugene A; Andreev, Yaroslav A; Vassilevski, Alexander A; Odintsova, Tatyana I

    2014-10-01

    The multilayered plant immune system relies on rapid recognition of pathogen-associated molecular patterns followed by activation of defense-related genes, resulting in the reinforcement of plant cell walls and the production of antimicrobial compounds. To suppress plant defense, fungi secrete effectors, including a recently discovered Zn-metalloproteinase from Fusarium verticillioides, named fungalysin Fv-cmp. This proteinase cleaves class IV chitinases, which are plant defense proteins that bind and degrade chitin of fungal cell walls. In this study, we investigated plant responses to such pathogen invasion, and discovered novel inhibitors of fungalysin. We produced several recombinant hevein-like antimicrobial peptides named wheat antimicrobial peptides (WAMPs) containing different amino acids (Ala, Lys, Glu, and Asn) at the nonconserved position 34. An additional Ser at the site of fungalysin proteolysis makes the peptides resistant to the protease. Moreover, an equal molar concentration of WAMP-1b or WAMP-2 to chitinase was sufficient to block the fungalysin activity, keeping the chitinase intact. Thus, WAMPs represent novel protease inhibitors that are active against fungal metalloproteases. According to in vitro antifungal assays WAMPs directly inhibited hyphal elongation, suggesting that fungalysin plays an important role in fungal development. A novel molecular mechanism of dynamic interplay between host defense molecules and fungal virulence factors is suggested. © 2014 FEBS.

  2. Peptide-modified chitosan hydrogels promote skin wound healing by enhancing wound angiogenesis and inhibiting inflammation

    PubMed Central

    Chen, Xionglin; Zhang, Min; Wang, Xueer; Chen, Yinghua; Yan, Yuan; Zhang, Lu; Zhang, Lin

    2017-01-01

    Cutaneous wound healing following trauma is a complex and dynamic process involving multiple overlapping events following trauma. Two critical elements affecting skin wound healing are neovascularization and inflammation. A nascent vessel can provide nutrition and oxygen to a healing wound. Therefore, treatments strategies that enhance angiogenesis and inhibit inflammation can promote skin wound healing. Previous studies have shown that the SIKVAV peptide (Ser-Ile-Lys-Val-Ala-Val) from laminin can promote angiogenesis in vitro. This study evaluated the effects of peptide SIKVAV-modified chitosan hydrogels on skin wound healing. We established skin wounds established in mice and treated them with SIKVAV-modified chitosan hydrogels. H&E staining showed that peptide-modified chitosan hydrogels accelerated the reepithelialization of wounds compared with the negative and positive controls. Immunohistochemistry analysis demonstrated that more myofibroblasts were deposited at wounds treated with peptide-modified chitosan hydrogels that at those treated with negative and positive controls. In addition, peptide-modified chitosan hydrogels promoted angiogenesis as well as keratinocyte proliferation and differentiation, but inhibited inflammation in skin wounds. Taken together, these results suggest that SIKVAV-modified chitosan hydrogels are a promising treatment component for healing-impaired wounds. PMID:28559985

  3. Tryptophan inhibits Proteus vulgaris TnaC leader peptide elongation, activating tna operon expression.

    PubMed

    Cruz-Vera, Luis R; Yang, Rui; Yanofsky, Charles

    2009-11-01

    Expression of the tna operon of Escherichia coli and of Proteus vulgaris is induced by L-tryptophan. In E. coli, tryptophan action is dependent on the presence of several critical residues (underlined) in the newly synthesized TnaC leader peptide, WFNIDXXL/IXXXXP. These residues are conserved in TnaC of P. vulgaris and of other bacterial species. TnaC of P. vulgaris has one additional feature, distinguishing it from TnaC of E. coli; it contains two C-terminal lysine residues following the conserved proline residue. In the present study, we investigated L-tryptophan induction of the P. vulgaris tna operon, transferred on a plasmid into E. coli. Induction was shown to be L-tryptophan dependent; however, the range of induction was less than that observed for the E. coli tna operon. We compared the genetic organization of both operons and predicted similar folding patterns for their respective leader mRNA segments. However, additional analyses revealed that L-tryptophan action in the P. vulgaris tna operon involves inhibition of TnaC elongation, following addition of proline, rather than inhibition of leader peptide termination. Our findings also establish that the conserved residues in TnaC of P. vulgaris are essential for L-tryptophan induction, and for inhibition of peptide elongation. TnaC synthesis is thus an excellent model system for studies of regulation of both peptide termination and peptide elongation, and for studies of ribosome recognition of the features of a nascent peptide.

  4. Potent and Selective Peptide-based Inhibition of the G Protein Gαq.

    PubMed

    Charpentier, Thomas H; Waldo, Gary L; Lowery-Gionta, Emily G; Krajewski, Krzysztof; Strahl, Brian D; Kash, Thomas L; Harden, T Kendall; Sondek, John

    2016-12-02

    In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gαq binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gαq within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gαq in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gαq A representative peptide was specific for active Gαq because it did not bind inactive Gαq or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ1γ2 In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gαq; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gαq in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gαq-dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gαq in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gαq in cells.

  5. Inhibition of infectious human immunodeficiency virus type 1 particle formation by Gag protein-derived peptides.

    PubMed

    Niedrig, M; Gelderblom, H R; Pauli, G; März, J; Bickhard, H; Wolf, H; Modrow, S

    1994-06-01

    Sequential overlapping Gag protein-derived oligopeptides of human immunodeficiency virus type 1 (HIV-1) 22 to 24 amino acids long, were synthesized and tested in vitro for antiviral activity. Two synthetic peptides, one derived from the matrix protein p17 (NPGLLETSEGCRQ, amino acids 47 to 59) and one located in the capsid protein p24 (PAATLEEMMTA, amino acids 339 to 349) inhibited the production of infectious virus when added to HIV-1-infected cultures when used in the range of 20 to 200 micrograms/ml. As shown by thin section electron microscopy, peptide treatment resulted in the release of immature, deformed virus particles suggesting that the two peptides interfered with assembly and maturation. Other Gag protein-derived oligopeptides had little or no influence on virus production. To characterize further the functionally active regions we synthesized peptide derivatives with three consecutive amino acids substituted by alanine; they did not cause inhibition. Therefore the regions responsible for inhibition were located between amino acids 50 to 61 in p17, and 342 to 350 in p24. These observations might lead to the development of a new antiviral strategy affecting the late stage of virus replication.

  6. Inhibition of new vessel growth in mouse model of laser-induced choroidal neovascularization by adiponectin peptide II

    PubMed Central

    Lyzogubov, Valeriy V.; Tytarenko, Ruslana G.; Thotakura, Sushma; Viswanathan, Tito; Bora, Nalini S.; Bora, Puran S.

    2012-01-01

    We have investigated the effect of adiponectin (APN) peptide II on new vessel growth in mouse model of choroidal neovascularization (CNV) or wet type age-related macular degeneration (AMD). Mice were injected intraperitoneally with APN peptide II, control peptide, or PBS on day 1–7 or day 5–14. APN, AdipoR1, PCNA, and VEGF localization was investigated using confocal microscopy, immunohistochemistry, and RT-PCR. APN peptide II decreased the relative area of FITC-dextran perfused vessels by 4-fold, PCNA expression by 3-fold, and the number of PCNA stained HUVEC and MAVEC cells by 38 and 46%, respectively. We concluded that APN peptide II inhibits CNV size on days 7 and 14 by inhibiting the proliferation of endothelial cells in vivo and in vitro. APN peptide II may have therapeutic potential to inhibit CNV or wet AMD. PMID:19422927

  7. Inhibition of Sendai virus fusion with phospholipid vesicles and human erythrocyte membranes by hydrophobic peptides

    SciTech Connect

    Kelsey, D.R.; Flanagan, T.D.; Young, J.E.; Yeagle, P.L. )

    1991-06-01

    Hydrophobic di- and tripeptides which are capable of inhibiting enveloped virus infection of cells are also capable of inhibiting at least three different types of membrane fusion events. Large unilamellar vesicles (LUV) of N-methyl dioleoylphosphatidylethanolamine (N-methyl DOPE), containing encapsulated 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and/or p-xylene bis(pyridinium bromide) (DPX), were formed by extrusion. Vesicle fusion and leakage were then monitored with the ANTS/DPX fluorescence assay. Sendai virus fusion with lipid vesicles and Sendai virus fusion with human erythrocyte membranes were measured by following the relief of fluorescence quenching of virus labeled with octadecylrhodamine B chloride (R18). This study found that the effectiveness of the peptides carbobenzoxy-L-Phe-L-Phe (Z-L-Phe-L-Phe), Z-L-Phe, Z-D-Phe, and Z-Gly-L-Phe-L-Phe in inhibiting N-methyl DOPE LUV fusion or fusion of virus with N-methyl DOPE LUV also paralleled their reported ability to block viral infectivity. Furthermore, Z-D-Phe-L-PheGly and Z-Gly-L-Phe inhibited Sendai virus fusion with human erythrocyte membranes with the same relative potency with which they inhibited vesicle-vesicle and virus-vesicle fusion. The evidence suggests a mechanism by which these peptides exert their inhibition of plaque formation by enveloped viruses. This class of inhibitors apparently acts by inhibiting fusion of the viral envelope with the target cell membrane, thereby preventing viral infection. The physical pathway by which these peptides inhibit membrane fusion was investigated. {sup 31}P nuclear magnetic resonance (NMR) of proposed intermediates in the pathway for membrane fusion in LUV revealed that the potent fusion inhibitor Z-D-Phe-L-PheGly selectively altered the structure (or dynamics) of the hypothesized fusion intermediates and that the poor inhibitor Z-Gly-L-Phe did not.

  8. Identification of the primary peptide contaminant that inhibits fibrillation and toxicity in synthetic amyloid-β42

    PubMed Central

    Adams, Daniel J.; Nemkov, Travis G.; Mayer, John P.; Old, William M.

    2017-01-01

    Understanding the pathophysiology of Alzheimer disease has relied upon the use of amyloid peptides from a variety of sources, but most predominantly synthetic peptides produced using t-butyloxycarbonyl (Boc) or 9-fluorenylmethoxycarbonyl (Fmoc) chemistry. These synthetic methods can lead to minor impurities which can have profound effects on the biological activity of amyloid peptides. Here we used a combination of cytotoxicity assays, fibrillation assays and high resolution mass spectrometry (MS) to identify impurities in synthetic amyloid preparations that inhibit both cytotoxicity and aggregation. We identify the Aβ42Δ39 species as the major peptide contaminant responsible for limiting both cytotoxicity and fibrillation of the amyloid peptide. In addition, we demonstrate that the presence of this minor impurity inhibits the formation of a stable Aβ42 dimer observable by MS in very pure peptide samples. These results highlight the critical importance of purity and provenance of amyloid peptides in Alzheimer’s research in particular, and biological research in general. PMID:28792968

  9. Subunit disassembly and inhibition of TNFα by a semi-synthetic bicyclic peptide

    PubMed Central

    Luzi, Stefan; Kondo, Yasushi; Bernard, Elise; Stadler, Lukas K. J.; Vaysburd, Marina; Winter, Greg; Holliger, Philipp

    2015-01-01

    Macrocyclic peptides are potentially a source of powerful drugs, but their de novo discovery remains challenging. Here we describe the discovery of a high-affinity (Kd = 10 nM) peptide macrocycle (M21) against human tumor necrosis factor-alpha (hTNFα), a key drug target in the treatment of inflammatory disorders, directly from diverse semi-synthetic phage peptide repertoires. The bicyclic peptide M21 (ACPPCLWQVLC) comprises two loops covalently anchored to a 2,4,6-trimethyl-mesitylene core and upon binding induces disassembly of the trimeric TNFα cytokine into dimers and monomers. A 2.9 Å crystal structure of the M21/hTNFα complex reveals the peptide bound to a hTNFα dimer at a normally buried epitope in the trimer interface overlapping the binding site of a previously discovered small molecule ligand (SPD304), which also induces TNF trimer dissociation and synergizes with M21 in the inhibition of TNFα cytotoxicity. The discovery of M21 underlines the potential of semi-synthetic bicyclic peptides as ligands for the discovery of cryptic epitopes, some of which are poorly accessible to antibodies. PMID:25614525

  10. Phage Display against Corneal Epithelial Cells Produced Bioactive Peptides That Inhibit Aspergillus Adhesion to the Corneas

    PubMed Central

    Zhao, Ge; Li, Siyuan; Zhao, Wei; He, Kun; Xi, Haijie; Li, Weihua; Zhou, Qingjun; Wang, Yiqiang

    2012-01-01

    Dissection of host-pathogen interactions is important for both understanding the pathogenesis of infectious diseases and developing therapeutics for the infectious diseases like various infectious keratitis. To enhance the knowledge about pathogenesis infectious keratitis, a random 12-mer peptide phage display library was screened against cultured human corneal epithelial cells (HCEC). Fourteen sequences were obtained and BLASTp analysis showed that most of their homologue counterparts in GenBank were for defined or putative proteins in various pathogens. Based on known or predicted functions of the homologue proteins, ten synthetic peptides (Pc-A to Pc-J) were measured for their affinity to bind cells and their potential efficacy to interfere with pathogen adhesion to the cells. Besides binding to HCEC, most of them also bound to human corneal stromal cells and umbilical endothelial cells to different extents. When added to HCEC culture, the peptides induced expression of MyD88 and IL-17 in HCEC, and the stimulated cell culture medium showed fungicidal potency to various extents. While peptides Pc-C and Pc-E inhibited Aspergillus fumigatus (A.f) adhesion to HCEC in a dose-dependent manner, the similar inhibition ability of peptides Pc-A and Pc-B required presence of their homologue ligand Alb1p on A.f. When utilized in an eyeball organ culture model and an in vivo A.f keratitis model established in mouse, Pc-C and Pc-E inhibited fungal adhesion to corneas, hence decreased corneal disruption caused by inflammatory infiltration. Affinity pull-down of HCEC membrane proteins with peptide Pc-C revealed several molecules as potential receptors for this peptide. In conclusion, besides proving that phage display-selected peptides could be utilized to interfere with adhesion of pathogens to host cells, hence could be exploited for managing infectious diseases including infectious keratitis, we also proposed that the phage display technique and the resultant peptides could

  11. Synthetic peptide with inhibin-like activity preferentially inhibits follitropin secretion in comparison with lutropin-releasing hormone antagonists

    SciTech Connect

    Sairam, M.R.; Ramasharma, K.; Li, C.H.

    1987-04-01

    Biological activity of a synthetic peptide with inhibin-like activity under in vitro and in vivo conditions was compared with three highly potent synthetic lutropin-releasing hormone antagonists. Unlike the synthetic lutropin-releasing hormone antagonists, which effectively inhibited both lutropin and follitropin secretion from the pituitary, the inhibin-like peptide showed a preferential effect by inhibiting follitropin release both in vitro and in vivo. Thus, small peptides such as inhibin-like peptide with a sequence unrelated to lutropin-releasing hormone may provide a basis for design of selective inhibitors of gonadotropin release. FSH and LH were measured by radioimmunoassay.

  12. Peptides of Matrix Gla Protein Inhibit Nucleation and Growth of Hydroxyapatite and Calcium Oxalate Monohydrate Crystals

    PubMed Central

    Goiko, Maria; Dierolf, Joshua; Gleberzon, Jared S.; Liao, Yinyin; Grohe, Bernd; Goldberg, Harvey A.; de Bruyn, John R.; Hunter, Graeme K.

    2013-01-01

    Matrix Gla protein (MGP) is a phosphorylated and γ-carboxylated protein that has been shown to prevent the deposition of hydroxyapatite crystals in the walls of blood vessels. MGP is also expressed in kidney and may inhibit the formation of kidney stones, which mainly consist of another crystalline phase, calcium oxalate monohydrate. To determine the mechanism by which MGP prevents soft-tissue calcification, we have synthesized peptides corresponding to the phosphorylated and γ-carboxylated sequences of human MGP in both post-translationally modified and non-modified forms. The effects of these peptides on hydroxyapatite formation and calcium oxalate crystallization were quantified using dynamic light scattering and scanning electron microscopy, respectively. Peptides YGlapS (MGP1-14: YγEpSHEpSMEpSYELNP), YEpS (YEpSHEpSMEpSYELNP), YGlaS (YγESHESMESYELNP) and SK-Gla (MGP43-56: SKPVHγELNRγEACDD) inhibited formation of hydroxyapatite in order of potency YGlapS > YEpS > YGlaS > SK-Gla. The effects of YGlapS, YEpS and YGlaS on hydroxyapatite formation were on both crystal nucleation and growth; the effect of SK-Gla was on nucleation. YGlapS and YEpS significantly inhibited the growth of calcium oxalate monohydrate crystals, while simultaneously promoting the formation of calcium oxalate dihydrate. The effects of these phosphopeptides on calcium oxalate monohydrate formation were on growth of crystals rather than nucleation. We have shown that the use of dynamic light scattering allows inhibitors of hydroxyapatite nucleation and growth to be distinguished. We have also demonstrated for the first time that MGP peptides inhibit the formation of calcium oxalate monohydrate. Based on the latter finding, we propose that MGP function not only to prevent blood-vessel calcification but also to inhibit stone formation in kidney. PMID:24265810

  13. Peptides of Matrix Gla protein inhibit nucleation and growth of hydroxyapatite and calcium oxalate monohydrate crystals.

    PubMed

    Goiko, Maria; Dierolf, Joshua; Gleberzon, Jared S; Liao, Yinyin; Grohe, Bernd; Goldberg, Harvey A; de Bruyn, John R; Hunter, Graeme K

    2013-01-01

    Matrix Gla protein (MGP) is a phosphorylated and γ-carboxylated protein that has been shown to prevent the deposition of hydroxyapatite crystals in the walls of blood vessels. MGP is also expressed in kidney and may inhibit the formation of kidney stones, which mainly consist of another crystalline phase, calcium oxalate monohydrate. To determine the mechanism by which MGP prevents soft-tissue calcification, we have synthesized peptides corresponding to the phosphorylated and γ-carboxylated sequences of human MGP in both post-translationally modified and non-modified forms. The effects of these peptides on hydroxyapatite formation and calcium oxalate crystallization were quantified using dynamic light scattering and scanning electron microscopy, respectively. Peptides YGlapS (MGP1-14: YγEpSHEpSMEpSYELNP), YEpS (YEpSHEpSMEpSYELNP), YGlaS (YγESHESMESYELNP) and SK-Gla (MGP43-56: SKPVHγELNRγEACDD) inhibited formation of hydroxyapatite in order of potency YGlapS > YEpS > YGlaS > SK-Gla. The effects of YGlapS, YEpS and YGlaS on hydroxyapatite formation were on both crystal nucleation and growth; the effect of SK-Gla was on nucleation. YGlapS and YEpS significantly inhibited the growth of calcium oxalate monohydrate crystals, while simultaneously promoting the formation of calcium oxalate dihydrate. The effects of these phosphopeptides on calcium oxalate monohydrate formation were on growth of crystals rather than nucleation. We have shown that the use of dynamic light scattering allows inhibitors of hydroxyapatite nucleation and growth to be distinguished. We have also demonstrated for the first time that MGP peptides inhibit the formation of calcium oxalate monohydrate. Based on the latter finding, we propose that MGP function not only to prevent blood-vessel calcification but also to inhibit stone formation in kidney.

  14. The insect peptide CopA3 inhibits lipopolysaccharide-induced macrophage activation.

    PubMed

    Nam, Hyo Jung; Oh, Ah Reum; Nam, Seung Taek; Kang, Jin Ku; Chang, Jong Soo; Kim, Dae Hong; Lee, Ji Hye; Hwang, Jae Sam; Shong, Ko Eun; Park, Mi Jung; Seok, Heon; Kim, Ho

    2012-10-01

    We recently demonstrated that the insect peptide CopA3 (LLCIALRKK), a disulfide-linked dimeric peptide, exerts antimicrobial and anti-inflammatory activities in a mouse colitis model. Here, we examined whether CopA3 inhibited activation of macrophages by LPS. Exposure of an unseparated mouse peritoneal cell population or isolated peritoneal macrophages to LPS markedly increased secretion of IL-6 and TNF-α; these effects were significantly inhibited by CopA3 treatment. The inhibitory effect of CopA3 was also evident in murine macrophage cell line, RAW 264.7. Western blotting revealed that LPS-induced activation of STAT1 and STAT5 in macrophages was significantly inhibited by CopA3. Inhibition of JAK (STAT1/STAT5 kinase) with AG490 markedly reduced the production of IL-6 and TNF-α in macrophages. Collectively, these observations suggest that CopA3 inhibits macrophage activation by inhibiting activating phosphorylations of the transcription factors, STAT1 and STAT5, and blocking subsequent production of IL-6 and TNF-α and indicate that CopA3 may be useful as an immune-modulating agent.

  15. Isolation and characterization of two peptides with prolactin release-inhibiting activity from porcine hypothalami.

    PubMed Central

    Schally, A V; Guoth, J G; Redding, T W; Groot, K; Rodriguez, H; Szonyi, E; Stults, J; Nikolics, K

    1991-01-01

    Two peptides with in vitro prolactin release-inhibiting activity were purified from stalk median eminence (SME) fragments of 20,000 pig hypothalami. Monolayer cultures of rat anterior pituitary cells were incubated with aliquots of chromatographic fractions and the inhibition of release of prolactin in vitro was measured by RIA in order to monitor the purification. The hypothalamic tissue extract was separated into 11 fractions by high-performance aqueous size-exclusion chromatography with one fraction showing a 4-fold increase in prolactin release-inhibiting factor (PIF) activity. This material was further purified by semipreparative reversed-phase (RP) HPLC. This process resulted in the separation of two distinct fractions that showed high PIF activity. These were further purified by semipreparative and analytical RP-HPLC to apparent homogeneity as judged by the UV absorbance profiles. Neither of the two peptides showed cross-reactivity with gonadotropin releasing hormone-associated peptide or with somatostatin-14 antibodies. Protein sequence analysis revealed that one of the PIF peptides was Trp-Cys-Leu-Glu-Ser-Ser-Gln-Cys-Gln-Asp-Leu-Ser-Thr-Glu-Ser-Asn-Leu-Leu- Ala-Cys - Ile-Arg-Ala-Cys-Lys-Pro, identical to residues 27-52 of the N-terminal region of the proopiomelanocortin (POMC) precursor (corresponding to amino acids 1-26 of the 16-kDa fragment). The sequence of the other PIF was Ala-Ser-Asp-Arg-Ser-Asn-Ala-Thr-Leu-Leu-Asp-Gly-Pro-Ser-Gly-Ala-Leu-Leu- Leu-Arg - Leu-Val-Gln-Leu-Ala-Gly-Ala-Pro-Glu-Pro-Ala-Glu-Pro-Ala-Gln-Pro-Gly-Val- Tyr, representing residues 109-147 of the vasopressin-neurophysin precursor. Synthetic peptides corresponding to the N-terminal region of POMC had significant PIF activity in vitro. PMID:2023899

  16. FKBPL and Peptide Derivatives: Novel Biological Agents That Inhibit Angiogenesis by a CD44-Dependent Mechanism

    PubMed Central

    Valentine, Andrea; O’Rourke, Martin; Yakkundi, Anita; Worthington, Jenny; Hookham, Michelle; Bicknell, Roy; McCarthy, Helen O.; McClelland, Keeva; McCallum, Lynn; Dyer, Hayder; McKeen, Hayley; Waugh, David; Roberts, Jennifer; McGregor, Joanne; Cotton, Graham; James, Iain; Harrison, Timothy; Hirst, David G.; Robson, Tracy

    2011-01-01

    Purpose Anti-angiogenic therapies can be an important adjunct to the management of many malignancies. Here we investigated a novel protein, FKBPL, and peptide derivative for their anti-angiogenic activity and mechanism of action. Experimental Design Recombinant FKBPL (rFKBPL) and its peptide derivative were assessed in a range of human microvascular endothelial cell (HMEC-1) assays in vitro. Their ability to inhibit proliferation, migration and Matrigel dependent tubule formation was determined. They were further evaluated in an ex-vivo rat model of neo-vascularisation and in two in vivo mouse models of angiogenesis; the sponge implantation and the intra-vital microscopy models. Anti-tumor efficacy was determined in two human tumor xenograft models grown in SCID mice. Finally, the dependence of peptide on CD44 was determined using a CD44 targeted siRNA approach or in cell lines of differing CD44 status. Results rFKBPL inhibited endothelial cell migration, tubule formation and microvessel formation in vitro and in vivo. The region responsible for FKBPL’s anti-angiogenic activity was identified and a 24 amino acid peptide (AD-01) spanning this sequence was synthesised. It was potently anti-angiogenic and inhibited growth in two human tumor xenograft models (DU145 and MDA-231) when administered systemically, either on its own, or in combination with docetaxel. The anti-angiogenic activity of FKBPL and AD-01 was dependent on the cell surface receptor CD44 and signalling downstream of this receptor promoted an anti-migratory phenotype. Conclusion FKBPL and its peptide derivative AD-01 have potent anti-angiogenic activity. Thus, these agents offer the potential of an attractive new approach to anti-angiogenic therapy. PMID:21364036

  17. PEDF-derived peptide inhibits corneal angiogenesis by suppressing VEGF expression.

    PubMed

    Matsui, Takanori; Nishino, Yuri; Maeda, Sayaka; Yamagishi, Sho-ichi

    2012-07-01

    Pigment epithelium-derived factor (PEDF) a glycoprotein that belongs to the superfamily of serine protease inhibitors, has been recently shown to be the most potent inhibitor of angiogenesis in the mammalian eye. However, which active domain of PEDF protein could be involved in its anti-angiogenic properties remains unknown. Therefore, in this study, we examined which PEDF-derived synthetic peptides could inhibit corneal neovascularization induced by chemical cauterization in vivo. Rats treated with topical application of PEDF protein had 31% less corneal neovascularization at day 7 after the injury than phosphate-buffered saline (PBS)-treated rats. P5-2 and P5-3 peptides (residues 388-393 and 394-400 of PEDF protein, respectively) significantly suppressed the corneal neovascularization after chemical cauterization at day 7, and its anti-angiogenic potential was almost equal to that of full-length PEDF protein. Further, full-length PEDF protein and P5-3 peptide significantly decreased 8-hydroxy-2'-deoxyguanosine and vascular endothelial growth factor (VEGF) levels in the corneal. Our present study suggests that PEDF-derived synthetic peptide, P5-3 could inhibit the corneal neovascularization induced by chemical cauterization in rats by suppressing VEGF expression via its anti-oxidative properties.

  18. Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases.

    PubMed

    Yu, Hao; Dranchak, Patricia; Li, Zhiru; MacArthur, Ryan; Munson, Matthew S; Mehzabeen, Nurjahan; Baird, Nathan J; Battalie, Kevin P; Ross, David; Lovell, Scott; Carlow, Clotilde K S; Suga, Hiroaki; Inglese, James

    2017-04-03

    Glycolytic interconversion of phosphoglycerate isomers is catalysed in numerous pathogenic microorganisms by a cofactor-independent mutase (iPGM) structurally distinct from the mammalian cofactor-dependent (dPGM) isozyme. The iPGM active site dynamically assembles through substrate-triggered movement of phosphatase and transferase domains creating a solvent inaccessible cavity. Here we identify alternate ligand binding regions using nematode iPGM to select and enrich lariat-like ligands from an mRNA-display macrocyclic peptide library containing >10(12) members. Functional analysis of the ligands, named ipglycermides, demonstrates sub-nanomolar inhibition of iPGM with complete selectivity over dPGM. The crystal structure of an iPGM macrocyclic peptide complex illuminated an allosteric, locked-open inhibition mechanism placing the cyclic peptide at the bi-domain interface. This binding mode aligns the pendant lariat cysteine thiolate for coordination with the iPGM transition metal ion cluster. The extended charged, hydrophilic binding surface interaction rationalizes the persistent challenges these enzymes have presented to small-molecule screening efforts highlighting the important roles of macrocyclic peptides in expanding chemical diversity for ligand discovery.

  19. Synthesis and proteasome inhibition of N-allyl vinyl ester-based peptides.

    PubMed

    Baldisserotto, Anna; Franceschini, Christian; Scalambra, Franco; Trapella, Claudio; Marastoni, Mauro; Sforza, Fabio; Gavioli, Riccardo; Tomatis, Roberto

    2010-11-01

    Inhibition of the proteasome, the multicatalytic protease complex responsible for the turnover of many cellular proteins, represents an attractive target in the development of new drug therapies, proteasome inhibitors being potentially useful tools for the treatment of pathologies such as cancer, as well as inflammatory, immune and neurodegenerative diseases. Based on our previous development of a new class of inhibitors bearing a C-terminal VE cluster able to interact with catalytic threonine, we report herein the synthesis and activity of new VE-based peptide analogs bearing an additional allyl pharmacophore unit at the C- or N-terminal position of the pseudotripeptide sequence. In the new series, the structural modification carried out to the prototype determine a decrease of proteasome inhibition. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.

  20. Inhibition of plant-pathogenic bacteria by short synthetic cecropin A-melittin hybrid peptides.

    PubMed

    Ferre, Rafael; Badosa, Esther; Feliu, Lidia; Planas, Marta; Montesinos, Emili; Bardají, Eduard

    2006-05-01

    Short peptides of 11 residues were synthesized and tested against the economically important plant pathogenic bacteria Erwinia amylovora, Pseudomonas syringae, and Xanthomonas vesicatoria and compared to the previously described peptide Pep3 (WKLFKKILKVL-NH(2)). The antimicrobial activity of Pep3 and 22 analogues was evaluated in terms of the MIC and the 50% effective dose (ED(50)) for growth. Peptide cytotoxicity against human red blood cells and peptide stability toward protease degradation were also determined. Pep3 and several analogues inhibited growth of the three pathogens and had a bactericidal effect at low micromolar concentrations (ED(50) of 1.3 to 7.3 microM). One of the analogues consisting of a replacement of both Trp and Val with Lys and Phe, respectively, resulted in a peptide with improved bactericidal activity and minimized cytotoxicity and susceptibility to protease degradation compared to Pep3. The best analogues can be considered as potential lead compounds for the development of new antimicrobial agents for use in plant protection either as components of pesticides or expressed in transgenic plants.

  1. Inhibition of Plant-Pathogenic Bacteria by Short Synthetic Cecropin A-Melittin Hybrid Peptides

    PubMed Central

    Ferre, Rafael; Badosa, Esther; Feliu, Lidia; Planas, Marta; Montesinos, Emili; Bardají, Eduard

    2006-01-01

    Short peptides of 11 residues were synthesized and tested against the economically important plant pathogenic bacteria Erwinia amylovora, Pseudomonas syringae, and Xanthomonas vesicatoria and compared to the previously described peptide Pep3 (WKLFKKILKVL-NH2). The antimicrobial activity of Pep3 and 22 analogues was evaluated in terms of the MIC and the 50% effective dose (ED50) for growth. Peptide cytotoxicity against human red blood cells and peptide stability toward protease degradation were also determined. Pep3 and several analogues inhibited growth of the three pathogens and had a bactericidal effect at low micromolar concentrations (ED50 of 1.3 to 7.3 μM). One of the analogues consisting of a replacement of both Trp and Val with Lys and Phe, respectively, resulted in a peptide with improved bactericidal activity and minimized cytotoxicity and susceptibility to protease degradation compared to Pep3. The best analogues can be considered as potential lead compounds for the development of new antimicrobial agents for use in plant protection either as components of pesticides or expressed in transgenic plants. PMID:16672470

  2. Quantification of ACE inhibiting peptides in human plasma using high performance liquid chromatography-mass spectrometry.

    PubMed

    van Platerink, Chris J; Janssen, Hans-Gerd M; Horsten, Roos; Haverkamp, Johan

    2006-01-02

    An HPLC-MRM-MS method was developed for the quantification of 17 small ACE inhibiting (ACEI) peptides in plasma samples collected from human volunteers after the consumption of a peptide-enriched drink. The assay shows the high selectivity and sensitivity necessary to monitor small changes in the levels of the ACEI peptides after consumption of drinks developed to effect lowering of the blood pressure. Four different sample preparation methods were tested and evaluated. The final sample preparation method selected is simple and effective and consists mainly of the removal of proteins by acidification and heating, followed by a large volume injection. Additional sample preparation steps such as solid phase extraction and liquid/liquid partitioning were studied. Although they resulted in cleaner extracts, losses of specific peptides such as SAP were frequently seen. The isotope labeled form of one of the peptides to be quantified, [U(13)C]IPP, was used as an internal standard. The limit of detection of the assay is below 0.01 ng ml(-1). The limit of quantification is between 0.05 and 0.2 ng ml(-1), which is approximately 10% of the expected peptide concentration in plasma based on a normal diet. The intra- and inter-day relative standard deviations for all peptides have shown to be below 25% and the method has an accuracy of better than 75%. The long-term stability is good. At least 200 samples could be analysed before the system had to be cleaned. The assay has been successfully applied to blood samples collected from volunteers during a human trial.

  3. The inhibition of proinsulin-processing endopeptidase activities by active-site-directed peptides.

    PubMed Central

    Rhodes, C J; Zumbrunn, A; Bailyes, E M; Shaw, E; Hutton, J C

    1989-01-01

    Inhibitor studies were performed on the two endopeptidase activities involved in proinsulin conversion in isolated insulin secretory granules [Davidson, Rhodes & Hutton (1988) Nature (London) 333, 93-96]. The active-site-directed peptides L-alanyl-L-arginyl-L-arginylmethyldimethylsulphonium and L-alanyl-L-lysyl-L-arginylmethyldimethylsulphonium inhibited these activities in accordance with the observed cleavage pattern, suggesting that the primary amino acid sequence of the dibasic site was an important determinant of the endopeptidase substrate specificities. PMID:2649090

  4. Potent Inhibition of Late Stages of Hepadnavirus Replication by a Modified Cell Penetrating Peptide

    PubMed Central

    Abdul, Fabien; Ndeboko, Bénédicte; Buronfosse, Thierry; Zoulim, Fabien; Kann, Michael; Nielsen, Peter E.; Cova, Lucyna

    2012-01-01

    Cationic cell-penetrating peptides (CPPs) and their lipid domain-conjugates (CatLip) are agents for the delivery of (uncharged) biologically active molecules into the cell. Using infection and transfection assays we surprisingly discovered that CatLip peptides were able to inhibit replication of Duck Hepatitis B Virus (DHBV), a reference model for human HBV. Amongst twelve CatLip peptides we identified Deca-(Arg)8 having a particularly potent antiviral activity, leading to a drastic inhibition of viral particle secretion without detectable toxicity. Inhibition of virion secretion was correlated with a dose-dependent increase in intracellular viral DNA. Deca-(Arg)8 peptide did neither interfere with DHBV entry, nor with formation of mature nucleocapsids nor with their travelling to the nucleus. Instead, Deca-(Arg)8 caused envelope protein accumulation in large clusters as revealed by confocal laser scanning microscopy indicating severe structural changes of preS/S. Sucrose gradient analysis of supernatants from Deca-(Arg)8-treated cells showed unaffected naked viral nucleocapsids release, which was concomitant with a complete arrest of virion and surface protein-containing subviral particle secretion. This is the first report showing that a CPP is able to drastically block hepadnaviral release from infected cells by altering late stages of viral morphogenesis via interference with enveloped particle formation, without affecting naked nucleocapsid egress, thus giving a view inside the mode of inhibition. Deca-(Arg)8 may be a useful tool for elucidating the hepadnaviral secretory pathway, which is not yet fully understood. Moreover we provide the first evidence that a modified CPP displays a novel antiviral mechanism targeting another step of viral life cycle compared to what has been so far described for other enveloped viruses. PMID:23173037

  5. Potent inhibition of late stages of hepadnavirus replication by a modified cell penetrating peptide.

    PubMed

    Abdul, Fabien; Ndeboko, Bénédicte; Buronfosse, Thierry; Zoulim, Fabien; Kann, Michael; Nielsen, Peter E; Cova, Lucyna

    2012-01-01

    Cationic cell-penetrating peptides (CPPs) and their lipid domain-conjugates (CatLip) are agents for the delivery of (uncharged) biologically active molecules into the cell. Using infection and transfection assays we surprisingly discovered that CatLip peptides were able to inhibit replication of Duck Hepatitis B Virus (DHBV), a reference model for human HBV. Amongst twelve CatLip peptides we identified Deca-(Arg)₈ having a particularly potent antiviral activity, leading to a drastic inhibition of viral particle secretion without detectable toxicity. Inhibition of virion secretion was correlated with a dose-dependent increase in intracellular viral DNA. Deca-(Arg)₈ peptide did neither interfere with DHBV entry, nor with formation of mature nucleocapsids nor with their travelling to the nucleus. Instead, Deca-(Arg)₈ caused envelope protein accumulation in large clusters as revealed by confocal laser scanning microscopy indicating severe structural changes of preS/S. Sucrose gradient analysis of supernatants from Deca-(Arg)₈-treated cells showed unaffected naked viral nucleocapsids release, which was concomitant with a complete arrest of virion and surface protein-containing subviral particle secretion. This is the first report showing that a CPP is able to drastically block hepadnaviral release from infected cells by altering late stages of viral morphogenesis via interference with enveloped particle formation, without affecting naked nucleocapsid egress, thus giving a view inside the mode of inhibition. Deca-(Arg)₈ may be a useful tool for elucidating the hepadnaviral secretory pathway, which is not yet fully understood. Moreover we provide the first evidence that a modified CPP displays a novel antiviral mechanism targeting another step of viral life cycle compared to what has been so far described for other enveloped viruses.

  6. Method of Peptide Nucleic Acid (PNA)-Mediated Antisense Inhibition of Gene Expression in Campylobacter jejuni.

    PubMed

    Oh, Euna; Jeon, Byeonghwa

    2017-01-01

    Peptide nucleic acid (PNA) is an oligonucleotide mimic that recognizes and binds to nucleic acids. The strong binding affinity of PNA to mRNA coupled with its high sequence specificity enable antisense PNA to selectively inhibit (i.e., knockdown) the protein synthesis of a target gene. This novel technology provides a powerful tool for Campylobacter studies because molecular techniques have been relatively less well-developed for this bacterium as compared to other pathogens, such as Escherichia coli and Salmonella. This chapter describes a protocol for PNA-mediated antisense inhibition of gene expression in Campylobacter jejuni.

  7. The chromogranin A- derived N-terminal peptide vasostatin-I: In vivo effects on cardiovascular variables in the rabbit.

    PubMed

    Roatta, Silvestro; Passatore, Magda; Novello, Matteo; Colombo, Barbara; Dondossola, Eleonora; Mohammed, Mazher; Losano, Gianni; Corti, Angelo; Helle, Karen B

    2011-06-07

    This study is the first to report on vascular effect of the chromogranin A derived Vasostatin-I (CgA(1-76)) in vivo. Cardiovascular parameters were recorded in 29 rabbits with sympathetically decentralized right carotid vascular bed. The recombinant human STA CgA(1-78) (VS-1) was infused at 480 μg/kg over 25 min. Group I was kept awake while groups II-V were anesthetized with Ketamine-xylazine. VS-1 was given alone in groups I-II while in presence of either phentolamine, phentolamine plus propranolol or hexamethonium in groups III-V. Serum VS-1 peaked at 2 μg/ml (200 nM) before onset of vascular effects and declined rapidly to ~200 ng/ml within 30 min. In all groups but III and IV VS-1 induced a brief vasoconstriction, being larger in intact than in sympathetically decentralized beds. The VS-1 induced vasoconstriction was not altered by hexamethonium but was abolished by phentolamine. In presence of the α-adrenergic blocker a long lasting vasodilatation, unaffected by propranolol, was apparent on both innervated and decentralized sides. In conclusion, VS-1 induced an α-adrenoceptor-mediated vasoconstriction presumably brought about by noradrenaline release from sympathetic nerves when infused at a dose giving an initial serum concentration of ~200 nM. This initial vasoconstriction masked a persistent adrenoceptor-independent vasodilatation, consistent with previous reports from in vitro models.

  8. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Calcitonin gene-related peptide inhibits local acute inflammation and protects mice against lethal endotoxemia.

    PubMed

    Gomes, Rachel Novaes; Castro-Faria-Neto, Hugo C; Bozza, Patricia T; Soares, Milena B P; Shoemaker, Charles B; David, John R; Bozza, Marcelo T

    2005-12-01

    Calcitonin gene-related peptide (CGRP), a potent vasodilatory peptide present in central and peripheral neurons, is released at inflammatory sites and inhibits several macrophage, dendritic cell, and lymphocyte functions. In the present study, we investigated the role of CGRP in models of local and systemic acute inflammation and on macrophage activation induced by lipopolysaccharide (LPS). Intraperitoneal pretreatment with synthetic CGRP reduces in approximately 50% the number of neutrophils in the blood and into the peritoneal cavity 4 h after LPS injection. CGRP failed to inhibit neutrophil recruitment induced by the direct chemoattractant platelet-activating factor, whereas it significantly inhibited LPS-induced KC generation, suggesting that the effect of CGRP on neutrophil recruitment is indirect, acting on chemokine production by resident cells. Pretreatment of mice with 1 mug of CGRP protects against a lethal dose of LPS. The CGRP-induced protection is receptor mediated because it is completely reverted by the CGRP receptor antagonist, CGRP 8-37. The protective effect of CGRP correlates with an inhibition of TNF-alpha and an induction of IL-6 and IL-10 in mice sera 90 min after LPS challenge. Finally, CGRP significantly inhibits LPS-induced TNF-alpha released from mouse peritoneal macrophages. These results suggest that activation of the CGRP receptor on macrophages during acute inflammation could be part of the negative feedback mechanism controlling the extension of acute inflammatory responses.

  10. Ambuic acid inhibits the biosynthesis of cyclic peptide quormones in gram-positive bacteria.

    PubMed

    Nakayama, Jiro; Uemura, Yumi; Nishiguchi, Kenzo; Yoshimura, Norito; Igarashi, Yasuhiro; Sonomoto, Kenji

    2009-02-01

    Quorum sensing is a cell-density-dependent regulatory system in gram-positive bacteria and is often regulated by cyclic peptides called "quormones," which function as extracellular communication signals. With an aim to discover an antipathogenic agent targeting quorum sensing in gram-positive bacteria, we screened 153 samples of fungal butanol extracts with the guidance of the inhibition of quorum-sensing-mediated gelatinase production in Enterococcus faecalis. Following the screenings, we found that ambuic acid, a known secondary fungal metabolite, inhibited the quorum-sensing-mediated gelatinase production without influencing the growth of E. faecalis. We further demonstrated that ambuic acid targeted the biosynthesis of a cyclic peptide quormone called gelatinase biosynthesis-activating pheromone. Furthermore, ambuic acid also inhibited the biosynthesis of the cyclic peptide quormones of Staphylococcus aureus and Listeria innocua. These results suggest the potential use of ambuic acid as a lead compound of antipathogenic drugs that target the quorum-sensing-mediated virulence expression of gram-positive bacteria.

  11. Inhibition of pepsin by analogues of pepsinogen-(1-12)-peptide with substitutions in the 4-7 sequence region.

    PubMed Central

    Dunn, B M; Lewitt, M; Pham, C

    1983-01-01

    Derivatives of the 1-12 sequence of pig pepsinogen were prepared by solid-phase peptide synthesis. The three derivatives contain substitutions in the 4-7 region of the 1-12 sequence. Glycine was used to replace the hydrophobic residues -Val-Pro-Leu-Val- in pairs. After cleavage and purification, the synthetic peptides were compared with a synthetic peptide of the native sequence, prepared at the same time, with respect to their ability to inhibit the pepsin-catalysed clotting of milk. Inhibitory potency, determined from plots of percentage inhibition versus concentration of synthetic peptide, is inversely correlated with the substitution of glycine residues for the hydrophobic residues. Therefore the equilibrium inhibition of pepsin by these peptides is dominated by the hydrophobic nature of the 4-7 sequence region. PMID:6405735

  12. The molecular mechanism of fullerene-inhibited aggregation of Alzheimer's β-amyloid peptide fragment

    NASA Astrophysics Data System (ADS)

    Xie, Luogang; Luo, Yin; Lin, Dongdong; Xi, Wenhui; Yang, Xinju; Wei, Guanghong

    2014-07-01

    Amyloid deposits are implicated in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease (AD). The inhibition of β-sheet formation has been considered as the primary therapeutic strategy for AD. Increasing data show that nanoparticles can retard or promote the fibrillation of amyloid-β (Aβ) peptides depending on the physicochemical properties of nanoparticles, however, the underlying molecular mechanism remains elusive. In this study, our replica exchange molecular dynamics (REMD) simulations show that fullerene nanoparticle - C60 (with a fullerene : peptide molar ratio greater than 1 : 8) can dramatically prevent β-sheet formation of Aβ(16-22) peptides. Atomic force microscopy (AFM) experiments further confirm the inhibitory effect of C60 on Aβ(16-22) fibrillation, in support of our REMD simulations. An important finding from our REMD simulations is that fullerene C180, albeit with the same number of carbon atoms as three C60 molecules (3C60) and smaller surface area than 3C60, displays an unexpected stronger inhibitory effect on the β-sheet formation of Aβ(16-22) peptides. A detailed analysis of the fullerene-peptide interaction reveals that the stronger inhibition of β-sheet formation by C180 results from the strong hydrophobic and aromatic-stacking interactions of the fullerene hexagonal rings with the Phe rings relative to the pentagonal rings. The strong interactions between the fullerene nanoparticles and Aβ(16-22) peptides significantly weaken the peptide-peptide interaction that is important for β-sheet formation, thus retarding Aβ(16-22) fibrillation. Overall, our studies reveal the significant role of fullerene hexagonal rings in the inhibition of Aβ(16-22) fibrillation and provide novel insight into the development of drug candidates against Alzheimer's disease.Amyloid deposits are implicated in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease (AD). The inhibition of

  13. An Analog of the Antimicrobial Peptide CopA5 Inhibits Lipopolysaccharide-Induced Macrophage Activation.

    PubMed

    Yoon, I Na; Hong, Ji; Zhang, Peng; Hwang, Jae Sam; Kim, Ho

    2017-02-28

    We previously reported that the CopA3 peptide (LLCIALRKK, D-form) originally isolated from the Korean dung beetle has antimicrobial and immunosuppressive effects. However, the high cost of producing the synthetic peptide, especially the D-form, has limited the development of CopA3 for therapeutic purposes. Here, we investigated whether the CopA3 deletion derivative, CopA5, which is composed of only five amino acids (LLCIA) and has the L-form structure, could inhibit the lipopolysaccharide (LPS)-induced activation of macrophages. Peritoneal exudate macrophages (PEM) were isolated from mice and exposed to LPS in the presence or absence of CopA5, and biomarkers of macrophage activation were measured. Our results revealed that LPS-induced nitric oxide (NO) production, tumor necrosis factor (TNF)-α secretion, and phagocytic activity of PEM were significantly inhibited by CopA5 treatment. Similar to CopA3, the structurally modified CopA5 peptide had no cell toxicity (as assessed by measurement of cell viability loss and apoptosis) in PEM. Moreover, the LPS-induced upregulation of the activating phosphorylation of signal transducer and activator of transcription 1 (STAT1) was markedly inhibited by CopA5 treatment. These results suggest that, similar to CopA3, CopA5 inhibits macrophage activation by inhibiting STAT1 phosphorylation and blocking the release of NO and TNF-α. CopA5 may therefore prove therapeutically useful in the realm of immune suppression.

  14. A Novel Trypsin Inhibitor-Like Cysteine-Rich Peptide from the Frog Lepidobatrachus laevis Containing Proteinase-Inhibiting Activity.

    PubMed

    Wang, Yu-Wei; Tan, Ji-Min; Du, Can-Wei; Luan, Ning; Yan, Xiu-Wen; Lai, Ren; Lu, Qiu-Min

    2015-08-01

    Various bio-active substances in amphibian skins play important roles in survival of the amphibians. Many protease inhibitor peptides have been identified from amphibian skins, which are supposed to negatively modulate the activity of proteases to avoid premature degradation or release of skin peptides, or to inhibit extracellular proteases produced by invading bacteria. However, there is no information on the proteinase inhibitors from the frog Lepidobatrachus laevis which is unique in South America. In this work, a cDNA encoding a novel trypsin inhibitor-like (TIL) cysteine-rich peptide was identified from the skin cDNA library of L. laevis. The 240-bp coding region encodes an 80-amino acid residue precursor protein containing 10 half-cysteines. By sequence comparison and signal peptide prediction, the precursor was predicted to release a 55-amino acid mature peptide with amino acid sequence, IRCPKDKIYKFCGSPCPPSCKDLTPNCIAVCKKGCFCRDGTVDNNHGKCVKKENC. The mature peptide was named LL-TIL. LL-TIL shares significant domain similarity with the peptides from the TIL supper family. Antimicrobial and trypsin-inhibitory abilities of recombinant LL-TIL were tested. Recombinant LL-TIL showed no antimicrobial activity, while it had trypsin-inhibiting activity with a Ki of 16.5178 μM. These results suggested there was TIL peptide with proteinase-inhibiting activity in the skin of frog L. laevis. To the best of our knowledge, this is the first report of TIL peptide from frog skin.

  15. Discovery of macrocyclic peptides armed with a mechanism-based warhead: isoform-selective inhibition of human deacetylase SIRT2.

    PubMed

    Morimoto, Jumpei; Hayashi, Yuuki; Suga, Hiroaki

    2012-04-02

    Designed to inhibit: by using the random nonstandard peptide integrated discovery (RaPID) system, highly potent isoform-selective inhibitors can be identified from a library of nonstandard macrocyclic peptides. These inhibitors, which contain a mechanism-based warhead residue, are active against the human deacetylase SIRT2, with IC(50) values in the low nanomolar region.

  16. CXCL9-Derived Peptides Differentially Inhibit Neutrophil Migration In Vivo through Interference with Glycosaminoglycan Interactions

    PubMed Central

    Vanheule, Vincent; Boff, Daiane; Mortier, Anneleen; Janssens, Rik; Petri, Björn; Kolaczkowska, Elzbieta; Kubes, Paul; Berghmans, Nele; Struyf, Sofie; Kungl, Andreas J.; Teixeira, Mauro Martins; Amaral, Flavio Almeida; Proost, Paul

    2017-01-01

    Several acute and chronic inflammatory diseases are driven by accumulation of activated leukocytes due to enhanced chemokine expression. In addition to specific G protein-coupled receptor-dependent signaling, chemokine–glycosaminoglycan (GAG) interactions are important for chemokine activity in vivo. Therefore, the GAG–chemokine interaction has been explored as target for inhibition of chemokine activity. It was demonstrated that CXCL9(74-103) binds with high affinity to GAGs, competed with active chemokines for GAG binding and thereby inhibited CXCL8- and monosodium urate (MSU) crystal-induced neutrophil migration to joints. To evaluate the affinity and specificity of the COOH-terminal part of CXCL9 toward different GAGs in detail, we chemically synthesized several COOH-terminal CXCL9 peptides including the shorter CXCL9(74-93). Compared to CXCL9(74-103), CXCL9(74-93) showed equally high affinity for heparin and heparan sulfate (HS), but lower affinity for binding to chondroitin sulfate (CS) and cellular GAGs. Correspondingly, both peptides competed with equal efficiency for CXCL8 binding to heparin and HS but not to cellular GAGs. In addition, differences in anti-inflammatory activity between both peptides were detected in vivo. CXCL8-induced neutrophil migration to the peritoneal cavity and to the knee joint were inhibited with similar potency by intravenous or intraperitoneal injection of CXCL9(74-103) or CXCL9(74-93), but not by CXCL9(86-103). In contrast, neutrophil extravasation in the MSU crystal-induced gout model, in which multiple chemoattractants are induced, was not affected by CXCL9(74-93). This could be explained by (1) the lower affinity of CXCL9(74-93) for CS, the most abundant GAG in joints, and (2) by reduced competition with GAG binding of CXCL1, the most abundant ELR+ CXC chemokine in this gout model. Mechanistically we showed by intravital microscopy that fluorescent CXCL9(74-103) coats the vessel wall in vivo and that CXCL9

  17. CXCL9-Derived Peptides Differentially Inhibit Neutrophil Migration In Vivo through Interference with Glycosaminoglycan Interactions.

    PubMed

    Vanheule, Vincent; Boff, Daiane; Mortier, Anneleen; Janssens, Rik; Petri, Björn; Kolaczkowska, Elzbieta; Kubes, Paul; Berghmans, Nele; Struyf, Sofie; Kungl, Andreas J; Teixeira, Mauro Martins; Amaral, Flavio Almeida; Proost, Paul

    2017-01-01

    Several acute and chronic inflammatory diseases are driven by accumulation of activated leukocytes due to enhanced chemokine expression. In addition to specific G protein-coupled receptor-dependent signaling, chemokine-glycosaminoglycan (GAG) interactions are important for chemokine activity in vivo. Therefore, the GAG-chemokine interaction has been explored as target for inhibition of chemokine activity. It was demonstrated that CXCL9(74-103) binds with high affinity to GAGs, competed with active chemokines for GAG binding and thereby inhibited CXCL8- and monosodium urate (MSU) crystal-induced neutrophil migration to joints. To evaluate the affinity and specificity of the COOH-terminal part of CXCL9 toward different GAGs in detail, we chemically synthesized several COOH-terminal CXCL9 peptides including the shorter CXCL9(74-93). Compared to CXCL9(74-103), CXCL9(74-93) showed equally high affinity for heparin and heparan sulfate (HS), but lower affinity for binding to chondroitin sulfate (CS) and cellular GAGs. Correspondingly, both peptides competed with equal efficiency for CXCL8 binding to heparin and HS but not to cellular GAGs. In addition, differences in anti-inflammatory activity between both peptides were detected in vivo. CXCL8-induced neutrophil migration to the peritoneal cavity and to the knee joint were inhibited with similar potency by intravenous or intraperitoneal injection of CXCL9(74-103) or CXCL9(74-93), but not by CXCL9(86-103). In contrast, neutrophil extravasation in the MSU crystal-induced gout model, in which multiple chemoattractants are induced, was not affected by CXCL9(74-93). This could be explained by (1) the lower affinity of CXCL9(74-93) for CS, the most abundant GAG in joints, and (2) by reduced competition with GAG binding of CXCL1, the most abundant ELR(+) CXC chemokine in this gout model. Mechanistically we showed by intravital microscopy that fluorescent CXCL9(74-103) coats the vessel wall in vivo and that CXCL9(74-103) inhibits

  18. Systematic Mutational Analysis of Peptide Inhibition of the p53-MDM2/MDMX Interactions

    PubMed Central

    Li, Chong; Pazgier, Marzena; Li, Changqing; Yuan, Weirong; Liu, Min; Wei, Gang; Lu, Wei-Yue; Lu, Wuyuan

    2010-01-01

    Inhibition of the interaction between the tumor suppressor protein p53 and its negative regulators MDM2 and MDMX is of great interest in cancer biology and drug design. We previously reported a potent duodecimal peptide inhibitor, termed PMI (TSFAEYWNLLSP), of the p53-MDM2 and -MDMX interactions. PMI competes with p53 for MDM2 and MDMX binding at an affinity roughly two orders of magnitude higher than that of 17–28p53 (ETFSDLWKLLPE) of the same length; both peptides adopt nearly identical α-helical conformations in the complexes, where the three highlighted hydrophobic residues Phe, Trp and Leu dominate PMI or 17–28p53 binding to MDM2 and MDMX. To elucidate the molecular determinants for PMI activity and specificity, we performed a systematic Ala scanning mutational analysis of PMI and 17–28p53. The binding affinities for MDM2 and MDMX of a total of 35 peptides including 10 truncation analogs were quantified, affording a complete dissection of energetic contributions of individual residues of PMI and 17–28p53 to MDM2 and MDMX association. Importantly, the N8A mutation turned PMI into the most potent dual specific antagonist of MDM2 and MDMX reported to date, registering respective Kd values of 490 pM and 2.4 nM. The co-crystal structure of N8A-PMI-25–109MDM2 was determined at 1.95 Å, affirming that high-affinity peptide binding to MDM2/MDMX necessitates, in addition to optimized inter-molecular interactions, enhanced helix stability or propensity contributed by non-contact residues. The powerful empirical binding data and crystal structures present a unique opportunity for computational studies of peptide inhibition of the p53-MDM2/MDMX interactions. PMID:20226197

  19. Inhibition of influenza A virus infection in vitro by peptides designed in silico.

    PubMed

    López-Martínez, Rogelio; Ramírez-Salinas, G Lizbeth; Correa-Basurto, José; Barrón, Blanca L

    2013-01-01

    Influenza A viruses are enveloped, segmented negative single-stranded RNA viruses, capable of causing severe human respiratory infections. Currently, only two types of drugs are used to treat influenza A infections, the M2 H(+) ion channel blockers (amantadine and rimantadine) and the neuraminidase inhibitors (NAI) (oseltamivir and zanamivir). Moreover, the emergence of drug-resistant influenza A virus strains has emphasized the need to develop new antiviral agents to complement or replace the existing drugs. Influenza A virus has on the surface a glycoprotein named hemagglutinin (HA) which due to its important role in the initial stage of infection: receptor binding and fusion activities of viral and endosomal membranes, is a potential target for new antiviral drugs. In this work we designed nine peptides using several bioinformatics tools. These peptides were derived from the HA1 and HA2 subunits of influenza A HA with the aim to inhibit influenza A virus infection. The peptides were synthetized and their antiviral activity was tested in vitro against several influenza A viral strains: Puerto Rico/916/34 (H1N1), (H1N1)pdm09, swine (H1N1) and avian (H5N2). We found these peptides were able to inhibit the influenza A viral strains tested, without showing any cytotoxic effect. By docking studies we found evidence that all the peptides were capable to bind to the viral HA, principally to important regions on the viral HA stalk, thus could prevent the HA conformational changes required to carry out its membranes fusion activity.

  20. Food-derived opioid peptides inhibit cysteine uptake with redox and epigenetic consequences

    PubMed Central

    Trivedi, Malav S; Shah, Jayni S; Al-Mughairy, Sara; Hodgson, Nathaniel W; Simms, Benjamin; Trooskens, Geert A; Van Criekinge, Wim; Deth, Richard C

    2014-01-01

    Dietary interventions like gluten-free and casein-free diets have been reported to improve intestinal, autoimmune and neurological symptoms in patients with a variety of conditions; however, the underlying mechanism of benefit for such diets remains unclear. Epigenetic programming, including CpG methylation and histone modifications, occurring during early postnatal development can influence the risk of disease in later life, and such programming may be modulated by nutritional factors such as milk and wheat, especially during the transition from a solely milk-based diet to one that includes other forms of nutrition. The hydrolytic digestion of casein (a major milk protein) and gliadin (a wheat-derived protein) releases peptides with opioid activity, and in the present study, we demonstrate that these food-derived proline-rich opioid peptides modulate cysteine uptake in cultured human neuronal and gastrointestinal (GI) epithelial cells via activation of opioid receptors. Decreases in cysteine uptake were associated with changes in the intracellular antioxidant glutathione and the methyl donor S-adenosylmethionine. Bovine and human casein-derived opioid peptides increased genome-wide DNA methylation in the transcription start site region with a potency order similar to their inhibition of cysteine uptake. Altered expression of genes involved in redox and methylation homeostasis was also observed. These results illustrate the potential of milk- and wheat-derived peptides to exert antioxidant and epigenetic changes which may be particularly important during the postnatal transition from placental to GI nutrition. Differences between peptides derived from human and bovine milk may contribute to developmental differences between breastfed and formula-fed infants. Restricted antioxidant capacity, caused by wheat- and milk-derived opioid peptides, may predispose susceptible individuals to inflammation and systemic oxidation, partly explaining the benefits of gluten

  1. Food-derived opioid peptides inhibit cysteine uptake with redox and epigenetic consequences.

    PubMed

    Trivedi, Malav S; Shah, Jayni S; Al-Mughairy, Sara; Hodgson, Nathaniel W; Simms, Benjamin; Trooskens, Geert A; Van Criekinge, Wim; Deth, Richard C

    2014-10-01

    Dietary interventions like gluten-free and casein-free diets have been reported to improve intestinal, autoimmune and neurological symptoms in patients with a variety of conditions; however, the underlying mechanism of benefit for such diets remains unclear. Epigenetic programming, including CpG methylation and histone modifications, occurring during early postnatal development can influence the risk of disease in later life, and such programming may be modulated by nutritional factors such as milk and wheat, especially during the transition from a solely milk-based diet to one that includes other forms of nutrition. The hydrolytic digestion of casein (a major milk protein) and gliadin (a wheat-derived protein) releases peptides with opioid activity, and in the present study, we demonstrate that these food-derived proline-rich opioid peptides modulate cysteine uptake in cultured human neuronal and gastrointestinal (GI) epithelial cells via activation of opioid receptors. Decreases in cysteine uptake were associated with changes in the intracellular antioxidant glutathione and the methyl donor S-adenosylmethionine. Bovine and human casein-derived opioid peptides increased genome-wide DNA methylation in the transcription start site region with a potency order similar to their inhibition of cysteine uptake. Altered expression of genes involved in redox and methylation homeostasis was also observed. These results illustrate the potential of milk- and wheat-derived peptides to exert antioxidant and epigenetic changes that may be particularly important during the postnatal transition from placental to GI nutrition. Differences between peptides derived from human and bovine milk may contribute to developmental differences between breastfed and formula-fed infants. Restricted antioxidant capacity, caused by wheat- and milk-derived opioid peptides, may predispose susceptible individuals to inflammation and systemic oxidation, partly explaining the benefits of gluten-free or

  2. A novel sea anemone peptide that inhibits acid-sensing ion channels.

    PubMed

    Rodríguez, Armando Alexei; Salceda, Emilio; Garateix, Anoland Georgina; Zaharenko, André Junqueira; Peigneur, Steve; López, Omar; Pons, Tirso; Richardson, Michael; Díaz, Maylín; Hernández, Yasnay; Ständker, Ludger; Tytgat, Jan; Soto, Enrique

    2014-03-01

    Sea anemones produce ion channels peptide toxins of pharmacological and biomedical interest. However, peptides acting on ligand-gated ion channels, including acid-sensing ion channel (ASIC) toxins, remain poorly explored. PhcrTx1 is the first compound characterized from the sea anemone Phymanthus crucifer, and it constitutes a novel ASIC inhibitor. This peptide was purified by gel filtration, ion-exchange and reversed-phase chromatography followed by biological evaluation on ion channels of isolated rat dorsal root ganglia (DRG) neurons using patch clamp techniques. PhcrTx1 partially inhibited ASIC currents (IC50∼100 nM), and also voltage-gated K(+) currents but the effects on the peak and on the steady state currents were lower than 20% in DRG neurons, at concentrations in the micromolar range. No significant effect was observed on Na(+) voltage-gated currents in DRG neurons. The N-terminal sequencing yielded 32 amino acid residues, with a molecular mass of 3477 Da by mass spectrometry. No sequence identity to other sea anemone peptides was found. Interestingly, the bioinformatic analysis of Cys-pattern and secondary structure arrangement suggested that this peptide presents an Inhibitor Cystine Knot (ICK) scaffold, which has been found in other venomous organisms such as spider, scorpions and cone snails. Our results show that PhcrTx1 represents the first member of a new structural group of sea anemones toxins acting on ASIC and, with much lower potency, on Kv channels. Moreover, this is the first report of an ICK peptide in cnidarians, suggesting that the occurrence of this motif in venomous animals is more ancient than expected. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Inhibition by FK506 of formyl peptide-induced neutrophil activation and associated protein synthesis.

    PubMed

    Burnett, D; Adams, D H; Martin, T J; Liu, Q; Grant, R A; Stockley, R A; Lord, J M

    1994-09-15

    The macrolide FK506 inhibited, by up to 50%, neutrophil migration and the production of the superoxide radical in response to the formyl peptide, formyl-methionyl-leucyl-phenylalanine (FMLP). The production of the superoxide radical in response to phorbol 12-myristate 13-acetate (PMA) was unaffected by FK506. The inhibition of neutrophil functions was accompanied by a partial reversal of FMLP-induced synthesis of cellular proteins, despite a rise in intracellular Ca2+. Neutrophils treated with FK506 demonstrated a small (average 23%) though significant decrease in formyl-peptide receptor numbers but receptor binding affinity was unaffected. The effects of FK506 on neutrophil activation appear to be analogous to those in T-lymphocytes. The incomplete inhibition, by FK506, of neutrophil responses suggests further that activation by FMLP is mediated via distinct multiple signalling pathways, including protein kinase activation and protein synthesis. The inability of FK506 to reduce FMLP-induced rises in cellular Ca2+ or PMA-induced activation of neutrophils suggests that its action is distal to Ca2+ mobilization and distinct from pathways relying on PKC activation. Thus the immunosuppressive effects of FK506 in vivo might be mediated through the inhibition of inflammatory cells other than lymphocytes and the drug therefore has therapeutic potential in a variety of inflammatory conditions. The drug also has potential in vitro for the characterization of signalling pathways from the plasma membrane to the nucleus.

  4. Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of Zooxanthellae.

    PubMed

    Banin, E; Khare, S K; Naider, F; Rosenberg, E

    2001-04-01

    The coral-bleaching bacterium Vibrio shiloi biosynthesizes and secretes an extracellular peptide, referred to as toxin P, which inhibits photosynthesis of coral symbiotic algae (zooxanthellae). Toxin P was produced during the stationary phase when the bacterium was grown on peptone or Casamino Acids media at 29 degrees C. Glycerol inhibited the production of toxin P. Toxin P was purified to homogeneity, yielding the following 12-residue peptide: PYPVYAPPPVVP (molecular weight, 1,295.54). The structure of toxin P was confirmed by chemical synthesis. In the presence of 12.5 mM NH(4)Cl, pure natural or synthetic toxin P (10 microM) caused a 64% decrease in the photosynthetic quantum yield of zooxanthellae within 5 min. The inhibition was proportional to the toxin P concentration. Toxin P bound avidly to zooxanthellae, such that subsequent addition of NH(4)Cl resulted in rapid inhibition of photosynthesis. When zooxanthellae were incubated in the presence of NH(4)Cl and toxin P, there was a rapid decrease in the pH (pH 7.8 to 7.2) of the bulk liquid, suggesting that toxin P facilitates transport of NH(3) into the cell. It is known that uptake of NH(3) into cells can destroy the pH gradient and block photosynthesis. This mode of action of toxin P can help explain the mechanism of coral bleaching by V. shiloi.

  5. Identification of Equine Lactadherin-derived Peptides That Inhibit Rotavirus Infection via Integrin Receptor Competition*

    PubMed Central

    Civra, Andrea; Giuffrida, Maria Gabriella; Donalisio, Manuela; Napolitano, Lorenzo; Takada, Yoshikazu; Coulson, Barbara S.; Conti, Amedeo; Lembo, David

    2015-01-01

    Human rotavirus is the leading cause of severe gastroenteritis in infants and children under the age of 5 years in both developed and developing countries. Human lactadherin, a milk fat globule membrane glycoprotein, inhibits human rotavirus infection in vitro, whereas bovine lactadherin is not active. Moreover, it protects breastfed infants against symptomatic rotavirus infections. To explore the potential antiviral activity of lactadherin sourced by equines, we undertook a proteomic analysis of milk fat globule membrane proteins from donkey milk and elucidated its amino acid sequence. Alignment of the human, bovine, and donkey lactadherin sequences revealed the presence of an Asp-Gly-Glu (DGE) α2β1 integrin-binding motif in the N-terminal domain of donkey sequence only. Because integrin α2β1 plays a critical role during early steps of rotavirus host cell adhesion, we tested a minilibrary of donkey lactadherin-derived peptides containing DGE sequence for anti-rotavirus activity. A 20-amino acid peptide containing both DGE and RGD motifs (named pDGE-RGD) showed the greatest activity, and its mechanism of antiviral action was characterized; pDGE-RGD binds to integrin α2β1 by means of the DGE motif and inhibits rotavirus attachment to the cell surface. These findings suggest the potential anti-rotavirus activity of equine lactadherin and support the feasibility of developing an anti-rotavirus peptide that acts by hindering virus-receptor binding. PMID:25814665

  6. Inhibition of bovine platelets aggregation in response to Hyalomma anatolicum salivary gland proteins/peptides

    PubMed Central

    Surbhi; Sangwan, Nirmal; Sangwan, Arun K.; Singh, Vijender; Kumar, Ankit

    2016-01-01

    Aim: Ticks are obligate ectoparasites that have an impact on wide range of vertebrates and also act as a potential vector for the transmission of tropical theileriosis, babesiosis, etc., causing significant loss to livestock production worldwide. While feeding, they introduce their saliva containing different bioactive molecules into the host. These molecules have the capability to counteract the host hemostatic mechanism to suck host blood successfully. Therefore, the study was aimed to isolate anti-platelet aggregating peptides from salivary gland extract (SGE) of Hyalomma anatolicum ticks, a commonly available tick in India. Materials and Methods: Female H. anatolicum salivary glands were dissected out and SGE was prepared by homogenizing it in a suitable buffer under ice. Extract so obtained was fractionated by gel filtration chromatography using Sephacryl S-200 column. Total protein concentration in fractions was estimated and bovine platelets were isolated, stimulated with thrombin (positive control), treated with Gly-Pro-Arg-Pro amide (negative control) and with salivary gland fractions for identification of proteins/peptides having anti-platelet aggregating activities. Results: Proteins/peptides present in various salivary gland fractions inhibited the bovine platelet aggregation and the percent inhibition ranged between 33% and 35.8%. Conclusion: The results suggests that the fractions of H. anatolicum salivary glands possess thrombin-induced anti-platelet aggregating activity and which could be further exploited for raising anti-tick vaccine and also for therapeutic purpose. PMID:27956779

  7. Non-chaperone proteins can inhibit aggregation and cytotoxicity of Alzheimer amyloid β peptide.

    PubMed

    Luo, Jinghui; Wärmländer, Sebastian K T S; Gräslund, Astrid; Abrahams, Jan Pieter

    2014-10-03

    Many factors are known to influence the oligomerization, fibrillation, and amyloid formation of the Aβ peptide that is associated with Alzheimer disease. Other proteins that are present when Aβ peptides deposit in vivo are likely to have an effect on these aggregation processes. To separate specific versus broad spectrum effects of proteins on Aβ aggregation, we tested a series of proteins not reported to have chaperone activity: catalase, pyruvate kinase, albumin, lysozyme, α-lactalbumin, and β-lactoglobulin. All tested proteins suppressed the fibrillation of Alzheimer Aβ(1-40) peptide at substoichiometric ratios, albeit some more effectively than others. All proteins bound non-specifically to Aβ, stabilized its random coils, and reduced its cytotoxicity. Surprisingly, pyruvate kinase and catalase were at least as effective as known chaperones in inhibiting Aβ aggregation. We propose general mechanisms for the broad-spectrum inhibition Aβ fibrillation by proteins. The mechanisms we discuss are significant for prognostics and perhaps even for prevention and treatment of Alzheimer disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. A GBP 130 derived peptide from Plasmodium falciparum binds to human erythrocytes and inhibits merozoite invasion in vitro.

    PubMed

    Suarez, J E; Urquiza, M; Curtidor, H; Rodriguez, L E; Ocampo, M; Torres, E; Guzman, F; Patarroyo, M E

    2000-01-01

    The malarial GBP 130 protein binds weakly to intact human erythrocytes; the binding sites seem to be located in the repeat region and this region's antibodies block the merozoite invasion. A peptide from this region (residues from 701 to 720) which binds to human erythrocytes was identified. This peptide named 2220 did not bind to sialic acid; the binding site on human erythrocyte was affected by treatment with trypsin but not by chymotrypsin. The peptide was able to inhibit Plasmodium falciparum merozoite invasion of erythrocytes. The residues F701, K703, L705, T706, E713 (FYKILTNTDPNDEVERDNAD) were found to be critical for peptide binding to erythrocytes.

  9. Identification of Linear Heparin-Binding Peptides Derived from Human Respiratory Syncytial Virus Fusion Glycoprotein That Inhibit Infectivity▿

    PubMed Central

    Crim, Roberta L.; Audet, Susette A.; Feldman, Steven A.; Mostowski, Howard S.; Beeler, Judy A.

    2007-01-01

    It has been shown previously that the fusion glycoprotein of human respiratory syncytial virus (RSV-F) interacts with cellular heparan sulfate. Synthetic overlapping peptides derived from the F-protein sequence of RSV subtype A (strain A2) were tested for their ability to bind heparin using heparin-agarose affinity chromatography (HAAC). This evaluation identified 15 peptides representing eight linear heparin-binding domains (HBDs) located within F1 and F2 and spanning the protease cleavage activation site. All peptides bound to Vero and A549 cells, and binding was inhibited by soluble heparins and diminished by either enzymatic treatment to remove cell surface glycosaminoglycans or by treatment with sodium chlorate to decrease cellular sulfation. RSV-F HBD peptides were less likely to bind to glycosaminoglycan-deficient CHO-745 cells than parental CHO-K1 cells that express these molecules. Three RSV-F HBD peptides (F16, F26, and F55) inhibited virus infectivity; two of these peptides (F16 and F55) inhibited binding of virus to Vero cells, while the third (F26) did not. These studies provided evidence that two of the linear HBDs mapped by peptides F16 and F55 may mediate one of the first steps in the attachment of virus to cells while the third, F26, inhibited infectivity at a postattachment step, suggesting that interactions with cell surface glycosaminoglycans may play a role in infectivity of some RSV strains. PMID:17050595

  10. The inhibition of calcium carbonate crystal growth by the cysteine-rich Mdm2 peptide.

    PubMed

    Dalas, E; Chalias, A; Gatos, D; Barlos, K

    2006-08-15

    The crystal growth of calcite, the most stable calcium carbonate polymorph, in the presence of the cysteine-rich Mdm2 peptide (containing 48 amino acids in the ring finger configuration), has been investigated by the constant composition technique. Crystallization took place exclusively on well-characterized calcite crystals in solutions supersaturated only with respect to this calcium carbonate salt. The kinetic results indicated a surface diffusion spiral growth mechanism. The presence of the Mdm2 peptide inhibited the crystal growth of calcite by 22-58% in the concentration range tested, through adsorption onto the active growth sites of the calcite crystal surface. The kinetic results favored a Langmuir-type adsorption model, and the value of the calculated affinity constant was k(aff)=147x10(4) dm(3)mol(-1), a(ads)=0.29.

  11. HIV-Enhancing and HIV-Inhibiting Properties of Cationic Peptides and Proteins.

    PubMed

    Cole, Alexander M; Cole, Amy L

    2017-05-15

    Cationic antimicrobial peptides and proteins have historically been ascribed roles in innate immunity that infer killing of microbial and viral pathogens and protection of the host. In the context of sexually transmitted HIV-1, we take an unconventional approach that questions this paradigm. It is becoming increasingly apparent that many of the cationic polypeptides present in the human genital or anorectal mucosa, or human semen, are capable of enhancing HIV-1 infection, often in addition to other reported roles as viral inhibitors. We explore how the in vivo environment may select for or against the HIV-enhancing aspects of these cationic polypeptides by focusing on biological relevance. We stress that the distinction between enhancing and inhibiting HIV-1 infection is not mutually exclusive to specific classes of cationic polypeptides. Understanding how virally enhancing peptides and proteins act to promote sexual transmission of HIV-1 would be important for the design of topical microbicides, mucosal vaccines, and other preventative measures.

  12. Receptor kinase complex transmits RALF peptide signal to inhibit root growth in Arabidopsis

    PubMed Central

    Du, Changqing; Li, Xiushan; Chen, Jia; Chen, Weijun; Li, Bin; Li, Chiyu; Wang, Long; Li, Jianglin; Zhao, Xiaoying; Lin, Jianzhong; Liu, Xuanming; Luan, Sheng; Yu, Feng

    2016-01-01

    A number of hormones work together to control plant cell growth. Rapid Alkalinization Factor 1 (RALF1), a plant-derived small regulatory peptide, inhibits cell elongation through suppression of rhizosphere acidification in plants. Although a receptor-like kinase, FERONIA (FER), has been shown to act as a receptor for RALF1, the signaling mechanism remains unknown. In this study, we identified a receptor-like cytoplasmic kinase (RPM1-induced protein kinase, RIPK), a plasma membrane-associated member of the RLCK-VII subfamily, that is recruited to the receptor complex through interacting with FER in response to RALF1. RALF1 triggers the phosphorylation of both FER and RIPK in a mutually dependent manner. Genetic analysis of the fer-4 and ripk mutants reveals RIPK, as well as FER, to be required for RALF1 response in roots. The RALF1–FER–RIPK interactions may thus represent a mechanism for peptide signaling in plants. PMID:27930296

  13. Peptides derived from CXCL8 based on in silico analysis inhibit CXCL8 interactions with its receptor CXCR1

    NASA Astrophysics Data System (ADS)

    Jiang, Shinn-Jong; Liou, Je-Wen; Chang, Chun-Chun; Chung, Yi; Lin, Lee-Fong; Hsu, Hao-Jen

    2015-12-01

    Chemokine CXCL8 is crucial for regulation of inflammatory and immune responses via activating its cognate receptor CXCR1. In this study, molecular docking and binding free energy calculations were combined to predict the initial binding event of CXCL8 to CXCR1 for peptide drug design. The simulations reveal that in the initial binding, the N-loop of CXCL8 interacts with the N-terminus of CXCR1, which is dominated by electrostatic interactions. The derived peptides from the binding region of CXCL8 are synthesized for further confirmation. Surface plasmon resonance analyses indicate that the CXCL8 derived peptide with 14 residues is able to bind to the receptor CXCR1 derived peptide with equilibrium KD of 252 μM while the peptide encompassing a CXCL8 K15A mutation hardly binds to CXCR1 derived peptide (KD = 1553 μM). The cell experiments show that the designed peptide inhibits CXCL8-induced and LPS-activated monocytes adhesion and transmigration. However, when the peptides were mutated on two lysine residues (K15 and K20), the inhibition effects were greatly reduced indicating these two amino acids are key residues for the initial binding of CXCL8 to CXCR1. This study demonstrates that in silico prediction based functional peptide design can be effective for developing anti-inflammation drugs.

  14. Development of an at-line method for the identification of angiotensin-I inhibiting peptides in protein hydrolysates.

    PubMed

    van Platerink, Chris J; Janssen, Hans-Gerd M; Haverkamp, Johan

    2007-02-01

    A fast at-line method was developed for the identification of ACE inhibiting (ACEI) peptides in protein hydrolysates. The method consists of activity measurements of fractions collected from a two-dimensional HPLC fractionation of the peptide mixture followed by MS identification of the peptides in the inhibiting fractions. The inhibition assay is based on the inhibiting effect of ACEI peptides on the hydrolytic scission of the substrate Hippuric acid-His-Leu (HHL) during the ACE-catalysed hydrolysis reaction. A fast LC method was developed for the quantification of Hippuric acid (H) and Hippuric acid-Histidine-Leucine (HHL), allowing a large number of fractions to be analysed within a reasonable time period. The method is sensitive and uses only standard laboratory equipment. The limit of detection is 0.34 microM for the known ACEI peptide IPP. This is sufficiently sensitive for the identification of only moderately active peptides and/or ACEI peptides present at low concentrations. The relative standard deviation of the inhibition assay was 12% measured over a time period of 2 months. The IC50 value of IPP measured with the assay was 5.6 microM, which is comparable to the values of 5 microM and 5.15 microM reported in literature for the standard Matsui method. The assay was successfully applied in the identification of ACEI peptides in enzymatically hydrolysed caseinate samples. Two new, not earlier published ACEI peptides were identified; MAP (beta-casein f102-104) and ITP (alpha-s2-casein f119-121) with IC50 values of 3.8 microM and 50 microM, respectively.

  15. Neonatal NET-inhibitory factor and related peptides inhibit neutrophil extracellular trap formation

    PubMed Central

    Yost, Christian C.; Schwertz, Hansjörg; Cody, Mark J.; Wallace, Jared A.; Campbell, Robert A.; Vieira-de-Abreu, Adriana; Araujo, Claudia V.; Schubert, Sebastian; Harris, Estelle S.; Rowley, Jesse W.; Rondina, Matthew T.; Koening, Curry L.; Weyrich, Andrew S.; Zimmerman, Guy A.

    2016-01-01

    Neutrophil granulocytes, also called polymorphonuclear leukocytes (PMNs), extrude molecular lattices of decondensed chromatin studded with histones, granule enzymes, and antimicrobial peptides that are referred to as neutrophil extracellular traps (NETs). NETs capture and contain bacteria, viruses, and other pathogens. Nevertheless, experimental evidence indicates that NETs also cause inflammatory vascular and tissue damage, suggesting that identifying pathways that inhibit NET formation may have therapeutic implications. Here, we determined that neonatal NET-inhibitory factor (nNIF) is an inhibitor of NET formation in umbilical cord blood. In human neonatal and adult neutrophils, nNIF inhibits key terminal events in NET formation, including peptidyl arginine deiminase 4 (PAD4) activity, neutrophil nuclear histone citrullination, and nuclear decondensation. We also identified additional nNIF-related peptides (NRPs) that inhibit NET formation. nNIFs and NRPs blocked NET formation induced by pathogens, microbial toxins, and pharmacologic agonists in vitro and in mouse models of infection and systemic inflammation, and they improved mortality in murine models of systemic inflammation, which are associated with NET-induced collateral tissue injury. The identification of NRPs as neutrophil modulators that selectively interrupt NET generation at critical steps suggests their potential as therapeutic agents. Furthermore, our results indicate that nNIF may be an important regulator of NET formation in fetal and neonatal inflammation. PMID:27599294

  16. Inhibiting complex IL-17A and IL-17RA interactions with a linear peptide

    PubMed Central

    Liu, Shenping; Desharnais, Joel; Sahasrabudhe, Parag V.; Jin, Ping; Li, Wei; Oates, Bryan D.; Shanker, Suman; Banker, Mary Ellen; Chrunyk, Boris A.; Song, Xi; Feng, Xidong; Griffor, Matt; Jimenez, Judith; Chen, Gang; Tumelty, David; Bhat, Abhijit; Bradshaw, Curt W.; Woodnutt, Gary; Lappe, Rodney W.; Thorarensen, Atli; Qiu, Xiayang; Withka, Jane M.; Wood, Lauren D.

    2016-01-01

    IL-17A is a pro-inflammatory cytokine that has been implicated in autoimmune and inflammatory diseases. Monoclonal antibodies inhibiting IL-17A signaling have demonstrated remarkable efficacy, but an oral therapy is still lacking. A high affinity IL-17A peptide antagonist (HAP) of 15 residues was identified through phage-display screening followed by saturation mutagenesis optimization and amino acid substitutions. HAP binds specifically to IL-17A and inhibits the interaction of the cytokine with its receptor, IL-17RA. Tested in primary human cells, HAP blocked the production of multiple inflammatory cytokines. Crystal structure studies revealed that two HAP molecules bind to one IL-17A dimer symmetrically. The N-terminal portions of HAP form a β-strand that inserts between two IL-17A monomers while the C-terminal section forms an α helix that directly blocks IL-17RA from binding to the same region of IL-17A. This mode of inhibition suggests opportunities for developing peptide antagonists against this challenging target. PMID:27184415

  17. Neonatal NET-inhibitory factor and related peptides inhibit neutrophil extracellular trap formation.

    PubMed

    Yost, Christian C; Schwertz, Hansjörg; Cody, Mark J; Wallace, Jared A; Campbell, Robert A; Vieira-de-Abreu, Adriana; Araujo, Claudia V; Schubert, Sebastian; Harris, Estelle S; Rowley, Jesse W; Rondina, Matthew T; Fulcher, James M; Koening, Curry L; Weyrich, Andrew S; Zimmerman, Guy A

    2016-10-03

    Neutrophil granulocytes, also called polymorphonuclear leukocytes (PMNs), extrude molecular lattices of decondensed chromatin studded with histones, granule enzymes, and antimicrobial peptides that are referred to as neutrophil extracellular traps (NETs). NETs capture and contain bacteria, viruses, and other pathogens. Nevertheless, experimental evidence indicates that NETs also cause inflammatory vascular and tissue damage, suggesting that identifying pathways that inhibit NET formation may have therapeutic implications. Here, we determined that neonatal NET-inhibitory factor (nNIF) is an inhibitor of NET formation in umbilical cord blood. In human neonatal and adult neutrophils, nNIF inhibits key terminal events in NET formation, including peptidyl arginine deiminase 4 (PAD4) activity, neutrophil nuclear histone citrullination, and nuclear decondensation. We also identified additional nNIF-related peptides (NRPs) that inhibit NET formation. nNIFs and NRPs blocked NET formation induced by pathogens, microbial toxins, and pharmacologic agonists in vitro and in mouse models of infection and systemic inflammation, and they improved mortality in murine models of systemic inflammation, which are associated with NET-induced collateral tissue injury. The identification of NRPs as neutrophil modulators that selectively interrupt NET generation at critical steps suggests their potential as therapeutic agents. Furthermore, our results indicate that nNIF may be an important regulator of NET formation in fetal and neonatal inflammation.

  18. A Truncated Nef Peptide from SIVcpz Inhibits the Production of HIV-1 Infectious Progeny

    PubMed Central

    Sabino Cunha, Marcela; Lima Sampaio, Thatiane; Peterlin, B. Matija; Jesus da Costa, Luciana

    2016-01-01

    Nef proteins from all primate Lentiviruses, including the simian immunodeficiency virus of chimpanzees (SIVcpz), increase viral progeny infectivity. However, the function of Nef involved with the increase in viral infectivity is still not completely understood. Nonetheless, until now, studies investigating the functions of Nef from SIVcpz have been conducted in the context of the HIV-1 proviruses. In an attempt to investigate the role played by Nef during the replication cycle of an SIVcpz, a Nef-defective derivative was obtained from the SIVcpzWTGab2 clone by introducing a frame shift mutation at a unique restriction site within the nef sequence. This nef-deleted clone expresses an N-terminal 74-amino acid truncated peptide of Nef and was named SIVcpz-tNef. We found that the SIVcpz-tNef does not behave as a classic nef-deleted HIV-1 or simian immunodeficiency virus of macaques SIVmac. Markedly, SIVcpz-tNef progeny from both Hek-293T and Molt producer cells were completely non-infectious. Moreover, the loss in infectivity of SIVcpz-tNef correlated with the inhibition of Gag and GagPol processing. A marked accumulation of Gag and very low levels of reverse transcriptase were detected in viral lysates. Furthermore, these observations were reproduced once the tNef peptide was expressed in trans both in SIVcpzΔNef and HIV-1WT expressing cells, demonstrating that the truncated peptide is a dominant negative for viral processing and infectivity for both SIVcpz and HIV-1. We demonstrated that the truncated Nef peptide binds to GagPol outside the protease region and by doing so probably blocks processing of both GagPol and Gag precursors at a very early stage. This study demonstrates for the first time that naturally-occurring Nef peptides can potently block lentiviral processing and infectivity. PMID:27399760

  19. Small molecule and peptide-mediated inhibition of Epstein-Barr virus nuclear antigen 1 dimerization

    SciTech Connect

    Kim, Sun Young; Song, Kyung-A; Kieff, Elliott; Kang, Myung-Soo

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Evidence that targeting EBNA1 dimer, an EBV onco-antigen, can be achievable. Black-Right-Pointing-Pointer A small molecule and a peptide as EBNA1 dimerization inhibitors identified. Black-Right-Pointing-Pointer Both inhibitors associated with EBNA1 and blocked EBNA1 DNA binding activity. Black-Right-Pointing-Pointer Also, prevented its dimerization, and repressed viral gene transcription. -- Abstract: Latent Epstein-Barr virus (EBV) infection is associated with human B cell lymphomas and certain carcinomas. EBV episome persistence, replication, and gene expression are dependent on EBV-encoded nuclear antigen 1 (EBNA1)'s DNA binding domain (DBD)/dimerization domain (DD)-mediated sequence-specific DNA binding activity. Homodimerization of EBNA1 is essential for EBNA1 DNA binding and transactivation. In this study, we characterized a novel small molecule EBNA1 inhibitor EiK1, screened from the previous high throughput screening (HTS). The EiK1 compound specifically inhibited the EBNA1-dependent, OriP-enhanced transcription, but not EBNA1-independent transcription. A Surface Plasmon Resonance Biacore assay revealed that EiK1 associates with EBNA1 amino acid 459-607 DBD/DD. Consistent with the SPR data, in vitro gel shift assays showed that EiK1 suppressed the activity of EBNA1 binding to the cognate familial repeats (FR) sequence, but not control RBP-J{kappa} binding to the J{kappa} site. Subsequently, a cross-linker-mediated in vitro multimerization assay and EBNA1 homodimerization-dependent yeast two-hybrid assay showed that EiK1 significantly inhibited EBNA1 dimerization. In an attempt to identify more highly specific peptide inhibitors, small peptides encompassing the EBNA1 DBD/DD were screened for inhibition of EBNA1 DBD-mediated DNA binding function. The small peptide P85, covering EBNA1 a.a. 560-574, significantly blocked EBNA1 DNA binding activity in vitro, prevented dimerization in vitro and in vivo, associated with

  20. Signal peptide-dependent inhibition of MHC class I heavy chain translation by rhesus cytomegalovirus.

    PubMed

    Powers, Colin J; Früh, Klaus

    2008-10-03

    The US2-11 region of human and rhesus cytomegalovirus encodes a conserved family of glycoproteins that inhibit MHC-I assembly with viral peptides, thus preventing cytotoxic T cell recognition. Since HCMV lacking US2-11 is no longer able to block assembly and transport of MHC-I, we examined whether this is also observed for RhCMV lacking the corresponding region. Unexpectedly, recombinant RhCMV lacking US2-11 was still able to inhibit MHC-I expression in infected fibroblasts, suggesting the presence of an additional MHC-I evasion mechanism. Progressive deletion analysis of RhCMV-specific genomic regions revealed that MHC-I expression is fully restored upon additional deletion of rh178. The protein encoded by this RhCMV-specific open reading frame is anchored in the endoplasmic reticulum membrane. In the presence of rh178, RhCMV prevented MHC-I heavy chain (HC) expression, but did not inhibit mRNA transcription or association of HC mRNA with translating ribosomes. Proteasome inhibitors stabilized a HC degradation intermediate in the absence of rh178, but not in its presence, suggesting that rh178 prevents completion of HC translation. This interference was signal sequence-dependent since replacing the signal peptide with that of CD4 or murine HC rendered human HCs resistant to rh178. We have identified an inhibitor of antigen presentation encoded by rhesus cytomegalovirus unique in both its lack of homology to any other known protein and in its mechanism of action. By preventing signal sequence-dependent HC translocation, rh178 acts prior to US2, US3 and US11 which attack MHC-I proteins after protein synthesis is completed. Rh178 is the first viral protein known to interfere at this step of the MHC-I pathway, thus taking advantage of the conserved nature of HC leader peptides, and represents a new mechanism of translational interference.

  1. A synthetic peptide blocking TRPV1 activation inhibits UV-induced skin responses.

    PubMed

    Kang, So Min; Han, Sangbum; Oh, Jang-Hee; Lee, Young Mee; Park, Chi-Hyun; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-10-01

    Transient receptor potential type 1 (TRPV1) can be activated by ultraviolet (UV) irradiation, and mediates UV-induced matrix metalloproteinase (MMP)-1 and proinflammatory cytokines in keratinocytes. Various chemicals and compounds targeting TRPV1 activation have been developed, but are not in clinical use mostly due to their safety issues. We aimed to develop a novel TRPV1-targeting peptide to inhibit UV-induced responses in human skin. We designed and generated a novel TRPV1 inhibitory peptide (TIP) which mimics the specific site in TRPV1 (aa 701-709: Gln-Arg-Ala-Ile-Thr-Ile-Leu-Asp-Thr, QRAITILDT), Thr(705), and tested its efficacy of blocking UV-induced responses in HaCaT, mouse, and human skin. TIP effectively inhibited capsaicin-induced calcium influx and TRPV1 activation. Treatment of HaCaT with TIP prevented UV-induced increases of MMP-1 and pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α. In mouse skin in vivo, TIP inhibited UV-induced skin thickening and prevented UV-induced expression of MMP-13 and MMP-9. Moreover, TIP attenuated UV-induced erythema and the expression of MMP-1, MMP-2, IL-6, and IL-8 in human skin in vivo. The novel synthetic peptide targeting TRPV1 can ameliorate UV-induced skin responses in vitro and in vivo, providing a promising therapeutic approach against UV-induced inflammation and photoaging. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  2. agr receptor mutants reveal distinct modes of inhibition by staphylococcal autoinducing peptides

    PubMed Central

    Geisinger, Edward; Muir, Tom W.; Novick, Richard P.

    2009-01-01

    Through the agr quorum-sensing system, staphylococci secrete unique autoinducing peptides (AIPs) and detect their concentration via the AgrC transmembrane receptor, coordinating local bacterial population density with global changes in gene expression. Unique AIP and AgrC variants exist within and between species, and although autologous interactions lead to agr activation, heterologous interactions usually lead to cross-inhibition, resulting in natural quorum-sensing interference. To gain insight into the mechanisms responsible for these phenomena at the level of the receptor, we used random mutagenesis to isolate variants of Staphylococcus aureus AgrC-I with constitutive activity. Constitutive mutations in the sensor domain of the receptor were localized to the last transmembrane helix, whereas those in the histidine kinase domain were mostly clustered to a region near the phosphorylation site histidine. Analysis of these mutants with a range of noncognate AIPs revealed that inhibition is manifested by inverse agonism in certain heterologous pairings and by neutral antagonism in others. In addition, we isolated and characterized an AgrC sensor domain mutant with dramatically broadened activation specificity and reduced sensitivity to inhibition, identifying a single amino acid as a critical determinant of ligand-mediated inhibition. These results suggest that certain noncognate AIPs stabilize an inhibitory receptor conformation that may be a critical feature of the ligand–receptor interaction not initially appreciated in previous analyses of agr inhibition. PMID:19147840

  3. [Inhibition of tumor growth by a peptide fusion protein binding to vascular endothelial growth factor receptor Flt-1].

    PubMed

    Lei, Hetian; Shou, Chengchao; Wu, Jian; Liu, Xiaoying; He, Luowen; Liu, Meisheng; Guo, Qi; Jiang, Beihai

    2002-10-10

    Investigating the bio-activities of peptides selected from phage display peptide library with vascular endothelial growth factor receptor Flt-1. Activities of DHFR-F56/F90 binding to human ubilial vein endothelial cells were detected by immunocytochemistry, and the activity of antiangiogenesis was determined with chick embryo chorioallantoric membrane (CAM) assay. Balb/c nude mice were used as model to detect the activity of DHFR-F56/F90 on inhibiting tumor growth, and immunohistochemistry was employed to determine the localization of the DHFR-F56/F90 in tumor. DHFR-F56/F90 can bind to HUVEC, and DHFR-F56 inhibite angiogenesis in CAM. Meanwhile DHFR-F56 can bind with tumor cells, induce tumor necrosis and inhibit tumor growth in vivo. The peptide F56 is an effective antagonist of VEGF binding to Flt-1 and has a potent utility in antiangiogenesis and inhibiting tumor growth.

  4. Mechanism of beta-purothionin antimicrobial peptide inhibition by metal ions: molecular dynamics simulation study.

    PubMed

    Oard, Svetlana; Karki, Bijaya

    2006-04-20

    Wheat beta-purothionin is a highly potent antimicrobial peptide which, however, is inactivated by metal ions. The key structural properties and mechanisms of inhibition of beta-purothionin were investigated for the first time using unconstrained molecular dynamics simulations in explicit water. A series of simulations were performed to determine effects of temperature and the metal ions. Analyses of the unconstrained simulations allowed the experimentally unavailable structural and dynamic details to be unambiguously examined. The global fold and the alpha1 helix of beta-purothionin are thermally stable and not affected by metal ions. In contrast, the alpha2 helix unfolds with shift of temperature from 300 K and in the presence of metal ions. The network of conserved residues including Arg30 and Lys5 is sensitive to environmental changes and triggers unfolding. Loop regions display high flexibility and elevated dynamics, but are affected by metal ions. Our study provides insights into the mechanism of metal ion-based inhibition.

  5. Growth hormone-releasing peptide-6 inhibits cerebellar cell death in aged rats.

    PubMed

    Pañeda, Covadonga; Arroba, Ana I; Frago, Laura M; Holm, Anne Mette; Rømer, John; Argente, Jesús; Chowen, Julie A

    2003-08-26

    Insulin-like growth factor (IGF)-I is essential for cerebellar granule neuron survival and a decline in IGF-I is implicated in various age-dependent processes. Here we show that IGF-I mRNA levels are decreased in the cerebellum of old rats compared with young rats and this was associated with increased cell death and activation of caspases 3 and 9. Growth hormone-releasing peptide (GHRP)-6, a synthetic ligand for the ghrelin receptor, increased IGF-I mRNA levels, decreased cell death and inhibited caspase 3 and 9 activation in the cerebellum of aged rats. These results suggest that increasing IGF-I expression in the cerebellum can decrease cell death in aged rats via inhibition of caspase 3 and 9 activation.

  6. Binding proteins for linear renin-inhibiting peptides in basolateral plasma membranes of rat liver.

    PubMed

    Ziegler, K; Sänger, U

    1992-01-31

    A linear hydrophobic peptide, (Code no. EMD 55068), a synthetic renin-antagonist, competitively inhibits the uptake of taurocholate and of another linear peptide (EMD 51921) but not of oleic acid, serine or thiamin hydrochloride into isolated rat liver cells. EMD 55068 was attached to a gel matrix at a position that is not involved in the protein ligand interaction. The gel matrix used did not interact nonspecifically with solubilized proteins from rat liver. The quantity of bound ligand was determined to be 3.6 mg/ml of gel matrix. In the fraction of EDTA extracted hydrophilic membrane-associated proteins, no binding proteins were detected. Affinity chromatography of integral plasma membrane proteins resulted in four protein bands with molecular masses of 46, 49, 53 and 56 kDa in SDS-PAGE. In contrast, solubilized plasma membrane proteins from AS-30D ascites hepatoma cells, which are unable to transport bile acids and linear peptides, did not bind specifically to the affinity matrix.

  7. The Antitumor Peptide CIGB-552 Increases COMMD1 and Inhibits Growth of Human Lung Cancer Cells.

    PubMed

    Fernández Massó, Julio R; Oliva Argüelles, Brizaida; Tejeda, Yelaine; Astrada, Soledad; Garay, Hilda; Reyes, Osvaldo; Delgado-Roche, Livan; Bollati-Fogolín, Mariela; Vallespí, Maribel G

    2013-01-01

    We have demonstrated that the peptide L-2 designed from an alanine scanning of the Limulus-derived LALF32-51 region is a potential candidate for the anticancer therapy and its cell-penetrating capacity is an associated useful property. By the modification in the primary structure of L-2, a second-generation peptide (CIGB-552) was developed. However, the molecular mechanism underlying its cytotoxic activity remains partially unknown. In this study, it was shown that CIGB-552 increases the levels of COMMD1, a protein involved in copper homeostasis, sodium transport, and the NF-κB signaling pathway. We found that CIGB-552 induces ubiquitination of RelA and inhibits the antiapoptotic activity regulated by NF-κB, whereas the knockdown of COMMD1 blocks this effect. We also found that CIGB-552 decreases the antioxidant capacity and induces the peroxidation of proteins and lipids in the tumor cells. Altogether, this study provides new insights into the mechanism of action of the peptide CIGB-552, which could be relevant in the design of future anticancer therapies.

  8. The Antitumor Peptide CIGB-552 Increases COMMD1 and Inhibits Growth of Human Lung Cancer Cells

    PubMed Central

    Fernández Massó, Julio R.; Oliva Argüelles, Brizaida; Tejeda, Yelaine; Astrada, Soledad; Garay, Hilda; Reyes, Osvaldo; Delgado-Roche, Livan; Bollati-Fogolín, Mariela; Vallespí, Maribel G.

    2013-01-01

    We have demonstrated that the peptide L-2 designed from an alanine scanning of the Limulus-derived LALF32-51 region is a potential candidate for the anticancer therapy and its cell-penetrating capacity is an associated useful property. By the modification in the primary structure of L-2, a second-generation peptide (CIGB-552) was developed. However, the molecular mechanism underlying its cytotoxic activity remains partially unknown. In this study, it was shown that CIGB-552 increases the levels of COMMD1, a protein involved in copper homeostasis, sodium transport, and the NF-κB signaling pathway. We found that CIGB-552 induces ubiquitination of RelA and inhibits the antiapoptotic activity regulated by NF-κB, whereas the knockdown of COMMD1 blocks this effect. We also found that CIGB-552 decreases the antioxidant capacity and induces the peroxidation of proteins and lipids in the tumor cells. Altogether, this study provides new insights into the mechanism of action of the peptide CIGB-552, which could be relevant in the design of future anticancer therapies. PMID:23401744

  9. Myostatin inhibition by a follistatin-derived peptide ameliorates the pathophysiology of muscular dystrophy model mice.

    PubMed

    Tsuchida, K

    2008-07-01

    Gene-targeted therapies, such as adeno-associated viral vector (AAV)-mediated gene therapy and cell-mediated therapy using myogenic stem cells, are hopeful molecular strategies for muscular dystrophy. In addition, drug therapies based on the pathophysiology of muscular dystrophy patients are desirable. Multidisciplinary approaches to drug design would offer promising therapeutic strategies. Myostatin, a member of the transforming growth factor-beta superfamily, is predominantly produced by skeletal muscle and negatively regulates the growth and differentiation of cells of the skeletal muscle lineage. Myostatin inhibition would increase the skeletal muscle mass and prevent muscle degeneration, regardless of the type of muscular dystrophy. Myostatin inhibitors include myostatin antibodies, myostatin propeptide, follistatin and follistatin-related protein. Although follistatin possesses potent myostatin-inhibiting activity, it works as an efficient inhibitor of activins. Unlike myostatin, activins regulate the growth and differentiation of nearly all cell types, including cells of the gonads, pituitary gland and skeletal muscle. We have developed a myostatin-specific inhibitor derived from follistatin, designated FS I-I. Transgenic mice expressing this myostatin-inhibiting peptide under the control of a skeletal muscle-specific promoter showed increased skeletal muscle mass and strength. mdx mice were crossed with FS I-I transgenic mice and any improvement of the pathological signs was investigated. The resulting mdx/FS I-I mice exhibited increased skeletal muscle mass and reduced cell infiltration in muscles. Muscle strength was also recovered in mdx/FS I-I mice. Our data indicate that myostatin inhibition by this follistatin-derived peptide has therapeutic potential for muscular dystrophy.

  10. Simultaneous inhibition of key growth pathways in melanoma cells and tumor regression by a designed bidentate constrained helical peptide.

    PubMed

    Dhar, Amlanjyoti; Mallick, Shampa; Ghosh, Piya; Maiti, Atanu; Ahmed, Israr; Bhattacharya, Seemana; Mandal, Tapashi; Manna, Asit; Roy, Koushik; Singh, Sandeep; Nayak, Dipak Kumar; Wilder, Paul T; Markowitz, Joseph; Weber, David; Ghosh, Mrinal K; Chattopadhyay, Samit; Guha, Rajdeep; Konar, Aditya; Bandyopadhyay, Santu; Roy, Siddhartha

    2014-07-01

    Protein-protein interactions are part of a large number of signaling networks and potential targets for drug development. However, discovering molecules that can specifically inhibit such interactions is a major challenge. S100B, a calcium-regulated protein, plays a crucial role in the proliferation of melanoma cells through protein-protein interactions. In this article, we report the design and development of a bidentate conformationally constrained peptide against dimeric S100B based on a natural tight-binding peptide, TRTK-12. The helical conformation of the peptide was constrained by the substitution of α-amino isobutyric acid--an amino acid having high helical propensity--in positions which do not interact with S100B. A branched bidentate version of the peptide was bound to S100B tightly with a dissociation constant of 8 nM. When conjugated to a cell-penetrating peptide, it caused growth inhibition and rapid apoptosis in melanoma cells. The molecule exerts antiproliferative action through simultaneous inhibition of key growth pathways, including reactivation of wild-type p53 and inhibition of Akt and STAT3 phosphorylation. The apoptosis induced by the bidentate constrained helix is caused by direct migration of p53 to mitochondria. At moderate intravenous dose, the peptide completely inhibits melanoma growth in a mouse model without any significant observable toxicity. The specificity was shown by lack of ability of a double mutant peptide to cause tumor regression at the same dose level. The methodology described here for direct protein-protein interaction inhibition may be effective for rapid development of inhibitors against relatively weak protein-protein interactions for de novo drug development.

  11. Exploring monovalent and multivalent peptides for the inhibition of FBP21-tWW

    PubMed Central

    Bertazzon, Miriam; Marczynke, Michaela; Seitz, Oliver; Volkmer, Rudolf; Haag, Rainer

    2015-01-01

    Summary The coupling of peptides to polyglycerol carriers represents an important route towards the multivalent display of protein ligands. In particular, the inhibition of low affinity intracellular protein–protein interactions can be addressed by this design. We have applied this strategy to develop binding partners for FBP21, a protein which is important for the splicing of pre-mRNA in the nucleus of eukaryotic cells. Firstly, by using phage display the optimized sequence WPPPPRVPR was derived which binds with K Ds of 80 μM and 150 µM to the individual WW domains and with a K D of 150 μM to the tandem-WW1–WW2 construct. Secondly, this sequence was coupled to a hyperbranched polyglycerol (hPG) that allowed for the multivalent display on the surface of the dendritic polymer. This novel multifunctional hPG-peptide conjugate displayed a K D of 17.6 µM which demonstrates that the new carrier provides a venue for the future inhibition of proline-rich sequence recognition by FBP21 during assembly of the spliceosome. PMID:26124874

  12. Exploring monovalent and multivalent peptides for the inhibition of FBP21-tWW.

    PubMed

    Henning, Lisa Maria; Bhatia, Sumati; Bertazzon, Miriam; Marczynke, Michaela; Seitz, Oliver; Volkmer, Rudolf; Haag, Rainer; Freund, Christian

    2015-01-01

    The coupling of peptides to polyglycerol carriers represents an important route towards the multivalent display of protein ligands. In particular, the inhibition of low affinity intracellular protein-protein interactions can be addressed by this design. We have applied this strategy to develop binding partners for FBP21, a protein which is important for the splicing of pre-mRNA in the nucleus of eukaryotic cells. Firstly, by using phage display the optimized sequence WPPPPRVPR was derived which binds with K Ds of 80 μM and 150 µM to the individual WW domains and with a K D of 150 μM to the tandem-WW1-WW2 construct. Secondly, this sequence was coupled to a hyperbranched polyglycerol (hPG) that allowed for the multivalent display on the surface of the dendritic polymer. This novel multifunctional hPG-peptide conjugate displayed a K D of 17.6 µM which demonstrates that the new carrier provides a venue for the future inhibition of proline-rich sequence recognition by FBP21 during assembly of the spliceosome.

  13. Selective inhibition by a synthetic hirudin peptide of fibrin-dependent thrombosis in baboons

    SciTech Connect

    Cadroy, Y.; Hanson, S.R.; Harker, L.A. ); Maraganore, J.M. )

    1991-02-15

    To determine the importance of the thrombin substrate recognition exosite for fibrinogen binding in the formation of both arterial and venous thrombi the authors evaluated the antithrombotic effects of the tyrosine-sulfated dodecapeptide from residues 53-64 of hirudin (H peptide) in a nonhuman primate model. This peptide was studied because it inhibits thrombin cleavages of fibrinogen by simple competition without blocking enzyme catalytic-site function. When an exteriorized arteriovenous access shunt model was used in baboons (Papio anubis), thrombus formation was induced by placing a thrombogenic device made of (i) a segment of tubing coated covalently with type I collagen, which generated platelet-rich thrombi under arterial flow conditions, and (ii) two subsequent annular regions of flow expansion that produced fibrin-rich thrombi typically associated with venous valves and veins. Thrombus formation was quantified by measurements of {sup 111}In-labeled platelet and {sup 125}I-labeled fibrinogen deposition in both arterial-flow and venous-flow portions of the device. These finding suggest that, by competitive inhibition of fibrinogen binding to thrombin, fibrin-rich venous-type thrombus formation may be selectively prevented. This strategy may be therapeutically attractive for preserving normal platelet function when conventional anticoagulant therapy is contraindicated.

  14. CIGB-300, a proapoptotic peptide, inhibits angiogenesis in vitro and in vivo.

    PubMed

    Farina, Hernán G; Benavent Acero, Fernando; Perera, Yasser; Rodríguez, Arielis; Perea, Silvio E; Castro, Boris Acevedo; Gomez, Roberto; Alonso, Daniel F; Gomez, Daniel E

    2011-07-15

    We have previously demonstrated that a proapoptotic cyclic peptide CIGB-300, formerly known as P15-Tat delivered into the cells by the cell-penetrating peptide Tat, was able to abrogate the CK2-mediated phosphorylation and induce tumor regression when injected directly into solid tumors in mice or by systemic administration. In this work, we studied the role of CIGB-300 on the main events that take place in angiogenesis. At non-cytotoxic doses, CIGB-300 was able to inhibit adhesion, migration, and tubular network formation induced by human umbilical vein endothelial cells (HUVEC) growing upon Matrigel in vitro. Likewise, we evaluated the cellular penetration and localization into the HUVEC cells of CIGB-300. Our results confirmed a quick cellular penetration and a cytoplasmic accumulation in the early minutes of incubation and a translocation into the nuclei beginning at 12h of treatment, with a strong presence in the perinuclear area. A microarray analysis was used to determine the genes affected by the treatment. We observed that CIGB-300 significantly decreased four genes strongly associated with tubulogenesis, growth, and differentiation of endothelial cells. The CIGB-300 was tested in vivo on chicken embryo chorioallantoic membranes (CAM), and a large number of newly formed blood vessels were significantly regressed. The results suggested that CIGB-300 has a potential as an antiangiogenic treatment. The mechanism of action may be associated with partial inhibition of VEGF and Notch pathways.

  15. Thioredoxin-mimetic peptides (TXM) inhibit inflammatory pathways associated with high-glucose and oxidative stress.

    PubMed

    Lejnev, Katia; Khomsky, Lena; Bokvist, Krister; Mistriel-Zerbib, Shani; Naveh, Tahel; Farb, Thomas Bradley; Alsina-Fernandez, Jorge; Atlas, Daphne

    2016-10-01

    Impaired insulin signaling and the associated insulin-resistance in liver, adipose tissue, and skeletal muscle, represents a hallmark of the pathogenesis of type 2-diabetes-mellitus. Here we show that in the liver of db/db mice, a murine model of obesity, type 2 diabetes, and dyslipidemia, the elevated activities of mitogen-activated protein kinases (MAPK; ERK1/2 and p38(MAPK)), and Akt/PKB are abolished by rosiglitazone-treatment, which normalizes blood glucose in db/db mice. This is unequivocal evidence of a functional link between the activation of the MAPK specific inflammatory-pathway and high-blood sugar. A similar reduction in ERK1/2, p38(MAPK), and Akt activities but without affecting blood-glucose was observed in the liver of db/db mice treated with a molecule that mimics the action of thioredoxin, called thioredoxin-mimetic peptide (TXM). N-Acetyl-Cys-Pro-Cys-amide (TXM-CB3) is a free radical scavenger, a reducing and denitrosylating reagent that protects the cells from early death induced by inflammatory pathways. TXM-CB3 also lowered MAPK signaling activated by the disruption of the thioredoxin-reductase-thioredoxin (Trx-TrxR) redox-system and restored Akt activity in rat hepatoma FAO cells. Similarly, two other TXM-peptides, N-Acetyl-Cys-Met-Lys-Cys-amide (TXM-CB13; DY70), and N-Acetyl-Cys-γGlu-Cys-Cys-amide (TXM-CB16; DY71), lowered insulin- and oxidative stress-induced ERK1/2 activation, and rescued HepG2 cells from cell death. The potential impact of TXM-peptides on inhibiting inflammatory pathways associated with high-glucose could be effective in reversing low-grade inflammation. TXM-peptides might also have the potential to improve insulin resistance by protecting from posttranslational modifications like nitrosylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Optimization of adiponectin-derived peptides for inhibition of cancer cell growth and signaling.

    PubMed

    Otvos, Laszlo; Kovalszky, Ilona; Olah, Julia; Coroniti, Roberta; Knappe, Daniel; Nollmann, Friederike I; Hoffmann, Ralf; Wade, John D; Lovas, Sandor; Surmacz, Eva

    2015-05-01

    Adiponectin, an adipose tissue-excreted adipokine plays protective roles in metabolic and cardiovascular diseases and exerts anti-cancer activities, partially by interfering with leptin-induced signaling. Previously we identified the active site in the adiponectin protein, and generated both a nanomolar monomeric agonist of the adiponectin receptor (10-mer ADP355) and an antagonist (8-mer ADP400) to modulate various adiponectin receptor-mediated cellular functions. As physiologically circulating adiponectin forms multimeric complexes, we also generated an agonist dimer with improved biodistribution and in vitro efficacy. In the current report, we attempted to optimize the monomeric agonist structure. Neither extension of the peptide up to 14-mer analogs nor reinstallation of native residues in permissible positions enhanced significantly the activity profile. The only substitutions that resulted in 5-10-fold improved agonistic activity were the replacement of turn-forming Gly4 and Tyr7 residues with Pro and Hyp, respectively, yielding the more active native β-sheet structure. All peptides retained good stability in human serum exhibiting half-lives >2 h. The cellular efficacy and stability rankings among the peptides followed expected structure-activity relationship trends. To investigate whether simultaneous activation of adiponectin pathways and inhibition of leptin-induced signals can result in cytostatic and anti-oncogenic signal transduction processes, we developed a chimera of the leptin receptor antagonist peptide Allo-aca (placed to the N-terminus) and ADP355 (at the C-terminus). The in vitro anti-tumor activity and intracellular signaling of the chimera were dominated by the more active Allo-aca component. The ADP355 part, however, reversed unfavorable in vivo metabolic effects of the leptin receptor antagonist.

  17. Inhibition of PDC-E2 human combinatorial autoantibodies by peptide mimotopes.

    PubMed

    Leung, P S; Cha, S; Joplin, R E; Galperin, C; Van de Water, J; Ansari, A A; Coppel, R L; Schatz, P J; Cwirla, S; Fabris, L E; Neuberger, J M; Gershwin, M E

    1996-12-01

    Immunohistochemical studies have shown that a unique immunoreactive molecule is present near the apical region of human biliary epithelial (BE) cells in patients with primary biliary cirrhosis (PBC). This can be visualized by confocal microscopy in PBC livers using a number of unique monoclonal antibodies to the E2 component of pyruvate dehydrogenase complex (PDC-E2), the autoantigen most commonly recognized by antimitochondrial antibodies (AMA). One such antibody, the murine mAb C355.1 was used to identify peptide mimotopes of PDC-E2 by screening a random dodecapeptide phage library ON 159.2 to identify the possible biochemical nature of this apical staining molecule. Out of 36 independent clones, 29 showed a common sequence and seven other sequences were singly represented. Three common amino acid motifs (SYP, TYVS and VRH) were found among these eight sequences. Similar to C355.1, the human combinatorial antibodies derived from a patient with PBC, SP1 and SP4, recognize the inner lipoyl domain of PDC-E2. However, when these antibodies are used to stain PBC BE cells, SP4 stains the apical region of PBC BE cells with high intensity whereas SP1 produces only cytoplasmic staining. Competitive inhibition of immunohistochemical staining using PDC-E2 specific human combinatorial antibodies SP1 and SP4 was performed using five of the above dodecapeptides. Interestingly, the peptides selected with C355.1 differentially inhibited the binding of SP1 and SP4 to PBC BE cells. Finally, rabbit sera raised against one such peptide (WMSYPDRTLRTS) stained BE cells from patients with PBC with a higher intensity than controls. Comparable data was obtained with immunoelectronmicroscopy. These data suggest that a molecular mimic of PDC-E2 is present at the external aspect of PBC BE cells.

  18. Inhibition of Listeria locomotion by mosquito oostatic factor, a natural oligoproline peptide uncoupler of profilin action.

    PubMed Central

    Southwick, F S; Purich, D L

    1995-01-01

    Mosquito oostatic factor, a naturally occurring decapeptide (YDPAPPPPPP), strikingly resembles the primary structure of oligoproline-rich regions within the protein ActA, a bacterial surface protein required for Listeria motility in host cells. When microinjected into Listeria-infected PtK2 cells, the insect oostatic factor rapidly blocks Listeria-induced actin rocket tail assembly as well as intracellular locomotion of this pathogen. At intracellular concentrations of about 90 nM, transient inhibition of rocket tail formation and bacterial locomotion occurs, followed by full recovery of tail length and motility. However, at 0.9 microM oostatic factor, both processes are permanently arrested. Introduction of oostatic factor by microinjection also causes PtK2 peripheral membrane retraction in both Listeria-infected and uninfected cells. Epifluorescence microscopy with bodipy-phallacidin reveals that cells microinjected with the insect factor lose all actin stress fibers and accumulate F-actin in regions of membrane retraction. When the insect peptide is combined with profilin as an equimolar binary solution (1 microM [final concentration] each), intracellular addition fails to inhibit Listeria rocket-tail formation, fails to block intracellular bacterial movement, and no longer causes marked membrane retraction. The ability of profilin to neutralize the inhibitory action of oostatic factor is consistent with complex formation, and this finding suggests that profilin may interact directly with ActA peptide as well as a host cell peripheral membrane component to promote actin filament assembly by locally generating ATP-actin. Dispersal of profilin from such sites by oligoproline-rich peptide inhibitors suggests that profilin is directly involved in intracellular pathogen locomotion and reorganization of actin cytoskeleton of the host cell peripheral membrane. PMID:7806356

  19. Dynamic behavior of small heat shock protein inhibition on amyloid fibrillization of a small peptide (SSTSAA) from RNase A

    SciTech Connect

    Xi, Dong; Dong, Xiao; Deng, Wei; Lai, Luhua

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Mechanism of small heat shock protein inhibition on fibril formation was studied. Black-Right-Pointing-Pointer Peptide SSTSAA with modified ends was used for amyloid fibril formation. Black-Right-Pointing-Pointer FRET signal was followed during the fibril formation. Black-Right-Pointing-Pointer Mj HSP16.5 inhibits fibril formation when introduced in the lag phase. Black-Right-Pointing-Pointer Mj HSP16.5 slows down fibril formation when introduced after the lag phase. -- Abstract: Small heat shock proteins, a class of molecular chaperones, are reported to inhibit amyloid fibril formation in vitro, while the mechanism of inhibition remains unknown. In the present study, we investigated the mechanism by which Mj HSP16.5 inhibits amyloid fibril formation of a small peptide (SSTSAA) from RNase A. A model peptide (dansyl-SSTSAA-W) was designed by introducing a pair of fluorescence resonance energy transfer (FRET) probes into the peptide, allowing for the monitoring of fibril formation by this experimental model. Mj HSP16.5 completely inhibited fibril formation of the model peptide at a molar ratio of 1:120. The dynamic process of fibril formation, revealed by FRET, circular dichroism, and electron microscopy, showed a lag phase of about 2 h followed by a fast growth period. The effect of Mj HSP16.5 on amyloid fibril formation was investigated by adding it into the incubation solution during different growth phases. Adding Mj HSP16.5 to the incubating peptide before or during the lag phase completely inhibited fibril formation. However, introducing Mj HSP16.5 after the lag phase only slowed down the fibril formation process by adhering to the already formed fibrils. These findings provide insight into the inhibitory roles of small heat shock proteins on amyloid fibril formation at the molecular level.

  20. The Chemopreventive Peptide Lunasin Inhibits d-Galactose- Induced Experimental Cataract in Rats.

    PubMed

    Dai, Guangzhi; Zhang, Ping; Ye, Pei; Zhang, Miaoqing; Han, Ning; Shuai, Haoyue; Tan, Shuhua

    2016-01-01

    Oxidative damage to the constituents of the eye lens is a major mechanism in the initiation and development of cataract. Lunasin, a 43-amino acids chemoprevention peptide, has been proved to possess potent anti-oxidative activity other than its established anticancer activities. Herein, we explored whether lunasin has preventative effects on d-galactose-induced experimental cataract in rat. After modeling, SD rats were administrated by instillation, 80 µM of lunasin eye drops to each eye thrice daily and consecutively for 30 days. As a result, lunasin treatment effectively inhibited the progression of d-galactose-induced experimental cataract, and protected the lenses of rats from oxidative damage and attenuated the lipid peroxidation through up-regulation of antioxidant enzymes, and inhibited the activation of polyol pathway by decreasing AR activity. Additionally, in vitro studies proved that lunasin treatment could protect human lens epithelial cells (hLECs) against d-galactose induced cell damage and apoptosis, and up-regulate antioxidant enzymes. This is the first demonstration that lunasin could inhibit d-galactose-induced experimental cataract in rats by protecting against oxidative damage and inhibiting the activation of polyol pathway.

  1. Vasoactive intestinal peptide inhibits fMLP-induced respiratory burst in human lymphocytes.

    PubMed

    Bellido, L; López-González, M A; Pedrera, C; Lucas, M

    1994-01-01

    N-Formyl-Methionyl-Leucyl-Phenylalanine (fMLP) induced in lymphocytes the production of reactive oxygen intermediates in a process which was inhibited by the presence of Vasoactive Intestinal Peptide (VIP) in a dose-dependent response at VIP concentrations in the range 10(-10)-10(-7) M. The dissociation constant for the high-affinity receptors of VIP agrees with the ID50 of the activation of adenylate cyclase which are close to 0.2 nM VIP, whereas the ID50 for the inhibition by VIP of fMLP-induced chemiluminescence approaches to 5 nM VIP. Both IBMX and Forskolin produced in lymphocytes an inhibition of fMLP-induced chemiluminescence. The degree of inhibition was ascertained to be additive in the presence of the above indicated agents and suboptimal concentrations of VIP. The saturation by cAMP of its putative target, the regulatory subunit of protein kinase A, appears to be required for the onset of the inhibitory effect of VIP. This study provides evidence of the molecular signal, namely cAMP, which provokes an inhibitory effect on chemoatractant-stimulated human lymphocytes and further support a role for VIP as a mediator in the neuroimmune system.

  2. Purification and amino acid composition of a peptide with molt-inhibiting activity from the lobster, Homarus americanus.

    PubMed

    Chang, E S; Bruce, M J; Newcomb, R W

    1987-01-01

    A peptide was isolated and purified from sinus glands of the lobster, Homarus americanus, that was able to decrease circulating titers of ecdysteroids and increase the molt interval of eyestalk-ablated juvenile lobsters. This molt-inhibiting activity was demonstrated to consist of two very closely related peptides by means of high-performance liquid chromatography and gel electrophoresis. By means of amino acid analyses, a molecular weight of approximately 8700 was obtained.

  3. Does the cis/trans configuration of peptide bonds in bioactive tripeptides play a role in ACE-1 enzyme inhibition?

    PubMed Central

    Siltari, Aino; Viitanen, Riikka; Kukkurainen, Sampo; Vapaatalo, Heikki; Valjakka, Jarkko

    2014-01-01

    Background The milk casein-derived bioactive tripeptides isoleucine-proline-proline (IPP) and valine-proline-proline (VPP) have been shown to prevent development of hypertension in animal models and to lower blood pressure in moderately hypertensive subjects in most but not all clinical trials. Inhibition of angiotensin-converting enzyme 1 (ACE-1) has been suggested as the explanation for these antihypertensive and beneficial vascular effects. Previously, human umbilical vein endothelial cells (HUVEC) have not been used to test ACE-1 inhibiting properties of casein derived tripeptides in vasculature. Purpose We focused on the cis/trans configurations of the peptide bonds in proline-containing tripeptides in order to discover whether the different structural properties of these peptides influence their activity in ACE-1 inhibition. We hypothesized that the configuration of proline-containing peptides plays a significant role in enzyme inhibition. Methods AutoDock 4.2 docking software was used to predict suitable peptide bond configurations of the tripeptides. Besides modeling studies, we completed ACE-1 activity measurements in vitro using HUVEC cultures. Results In HUVEC cells, both IPP and VPP inhibited ACE-1. Based on molecular docking studies, we propose that in ACE-1 inhibition IPP and VPP share a similar cis configuration between the first aliphatic (isoleucine or valine) and the second (proline) amino acid residues and more different configurations between two proline residues. In vivo experiments are needed to validate the significance of the present findings. PMID:24596454

  4. Calcitonin Peptide Family Members Are Differentially Regulated by LPS and Inhibit Functions of Rat Alveolar NR8383 Macrophages

    PubMed Central

    Soultanova, Aichurek; Mikulski, Zbigniew; Pfeil, Uwe; Grau, Veronika; Kummer, Wolfgang

    2016-01-01

    Members of the calcitonin peptide family—calcitonin gene-related peptide (CGRP), adrenomedullin (AM), and adrenomedullin2/intermedin (IMD)–exert modulatory effects upon monocytes and macrophages of various extrapulmonary origins. Utilizing the rat alveolar macrophage (AMφ) cell line NR8383, we here set out to determine to which extent these three peptides and their receptors are differentially regulated in AMφ and what specific effects they have on AMφ key functions. LPS treatment differentially up-regulated expression of the peptides and receptors. Among the three peptides, IMD mRNA content was lowest both in primary rat AMφ and NR8383 cells, whereas IMD peptide dominated in basal and LPS-stimulated secretion from NR8383 cells. Fcγ receptor-mediated phagocytosis and TNF-α production were inhibited by AM, IMD, and CGRP, whereas pro-IL-1β mRNA was slightly down-regulated exclusively by CGRP. Neither of these peptides affected IL-6 or IL-10 production. None increased intracellular calcium concentration, but AM significantly inhibited store-operated calcium entry. In conclusion, the rat AMφ cell line NR8383 is both a source and a target of the calcitonin peptide family members AM, IMD, and CGRP. Despite sharing proteins of the receptor complexes, AM, IMD, and CGRP each showed a characteristic pattern of effects and regulation, suggesting that these closely related peptides are not just redundant members of one common signaling pathway but act in concert by addressing parallel signaling cascades. Since peptide and receptor expression are up-regulated by LPS, these signaling pathways might act as inhibitory feedback mechanisms in pulmonary bacterial infection. PMID:27737007

  5. Differential Inhibition of Signal Peptide Peptidase Family Members by Established γ-Secretase Inhibitors

    PubMed Central

    Ran, Yong; Ladd, Gabriela Z.; Ceballos-Diaz, Carolina; Jung, Joo In; Greenbaum, Doron; Felsenstein, Kevin M.; Golde, Todd E.

    2015-01-01

    The signal peptide peptidases (SPPs) are biomedically important proteases implicated as therapeutic targets for hepatitis C (human SPP, (hSPP)), plasmodium (Plasmodium SPP (pSPP)), and B-cell immunomodulation and neoplasia (signal peptide peptidase like 2a, (SPPL2a)). To date, no drug-like, selective inhibitors have been reported. We use a recombinant substrate based on the amino-terminus of BRI2 fused to amyloid β 1-25 (Aβ1-25) (FBA) to develop facile, cost-effective SPP/SPPL protease assays. Co-transfection of expression plasmids expressing the FBA substrate with SPP/SPPLs were conducted to evaluate cleavage, which was monitored by ELISA, Western Blot and immunoprecipitation/MALDI-TOF Mass spectrometry (IP/MS). No cleavage is detected in the absence of SPP/SPPL overexpression. Multiple γ-secretase inhibitors (GSIs) and (Z-LL)2 ketone differentially inhibited SPP/SPPL activity; for example, IC50 of LY-411,575 varied from 51±79 nM (on SPPL2a) to 5499±122 nM (on SPPL2b), while Compound E showed inhibition only on hSPP with IC50 of 1465±93 nM. Data generated were predictive of effects observed for endogenous SPPL2a cleavage of CD74 in a murine B-Cell line. Thus, it is possible to differentially inhibit SPP family members. These SPP/SPPL cleavage assays will expedite the search for selective inhibitors. The data also reinforce similarities between SPP family member cleavage and cleavage catalyzed by γ-secretase. PMID:26046535

  6. Novel peptide VIP-TAT with higher affinity for PAC1 inhibited scopolamine induced amnesia.

    PubMed

    Yu, Rongjie; Yang, Yanxu; Cui, Zekai; Zheng, Lijun; Zeng, Zhixing; Zhang, Huahua

    2014-10-01

    A novel peptide VIP-TAT with a cell penetrating peptide TAT at the C-terminus of VIP was constructed and prepared using intein mediated purification with an affinity chitin-binding tag (IMPACT) system to enhance the brain uptake efficiency for the medical application in central nervous system. It was found by labeling VIP-TAT and VIP with fluorescein isothiocyanate (FITC) that the extension with TAT increased the brain uptake efficiency of VIP-TAT significantly. Then short-term and long-term treatment with scopolamine (Scop) was used to evaluate the effect of VIP-TAT or VIP on Scop induced amnesia. Both short-term and long-term administration of VIP-TAT inhibited the latent time reduction in step-through test induced by Scop significantly, but long-term administration of VIP aggravated the Scop induced amnesia. Long-term i.p. injection of VIP-TAT was shown to have positive effect by inhibiting the oxidative damage, apoptosis and the cholinergic system activity reduction that induced by Scop, while VIP exerted negative effect in brain opposite to that in periphery system. The in vitro data showed that VIP-TAT had not only protective but also proliferative effect on Neuro2a cells which was inhibited by PAC1 antagonist PACAP(6-38). Competition binding assay and cAMP assay confirmed that VIP-TAT had higher affinity and activation for PAC1 than VIP. So it was concluded that the significantly stronger protective effect of VIP-TAT against Scop induced amnesia than VIP was due to (1) the enhanced brain uptake efficiency of VIP-TAT and (2) the increased affinity and activation of VIP-TAT for receptor PAC1.

  7. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc.

    PubMed

    Barriga, Gonzalo P; Villalón-Letelier, Fernando; Márquez, Chantal L; Bignon, Eduardo A; Acuña, Rodrigo; Ross, Breyan H; Monasterio, Octavio; Mardones, Gonzalo A; Vidal, Simon E; Tischler, Nicole D

    2016-07-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.

  8. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc

    PubMed Central

    Barriga, Gonzalo P.; Villalón-Letelier, Fernando; Márquez, Chantal L.; Bignon, Eduardo A.; Acuña, Rodrigo; Ross, Breyan H.; Monasterio, Octavio; Mardones, Gonzalo A.; Vidal, Simon E.; Tischler, Nicole D.

    2016-01-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses

  9. A peptide targeted against phosphoprotein and leader RNA interaction inhibits growth of Chandipura virus -- an emerging rhabdovirus.

    PubMed

    Roy, Arunava; Chakraborty, Prasenjit; Polley, Smarajit; Chattopadhyay, Dhrubajyoti; Roy, Siddhartha

    2013-11-01

    The fatal illness caused by Chandipura virus (CHPV), an emerging pathogen, presently lacks any therapeutic option. Previous research suggested that interaction between the virally encoded phosphoprotein (P) and the positive sense leader RNA (le-RNA) may play an important role in the viral lifecycle. In this report, we have identified a β-sheet/loop motif in the C-terminal domain of the CHPV P protein as essential for this interaction. A synthetic peptide encompassing this motif and spanning a continuous stretch of 36 amino acids (Pep208-243) was found to bind the le-RNA in vitro and inhibit CHPV growth in infected cells. Furthermore, a stretch of three amino acid residues at position 217-219 was identified as essential for this interaction, both in vitro and in infected cells. siRNA knockdown-rescue experiments demonstrated that these three amino acid residues are crucial for the leader RNA binding function of P protein in the CHPV life cycle. Mutations of these three amino acid residues render the peptide completely ineffective against CHPV. Effect of inhibition of phosphoprotein-leader RNA interaction on viral replication was assayed. Peptide Pep208-243 tagged with a cell penetrating peptide was found to inhibit CHPV replication as ascertained by real time RT-PCR. The specific inhibition of viral growth observed using this peptide suggests a new possibility for designing of anti-viral agents against Mononegavirale group of human viruses.

  10. A non-peptide NK1-receptor antagonist, RP 67580, inhibits neurogenic inflammation postsynaptically.

    PubMed Central

    Moussaoui, S. M.; Montier, F.; Carruette, A.; Blanchard, J. C.; Laduron, P. M.; Garret, C.

    1993-01-01

    1. The non-peptide neurokinin NK1-receptor antagonist, RP 67580 (3aR, 7aR), a perhydroisoindolone derivative, powerfully reduced plasma extravasation in rat hind paw skin induced by local application of xylene (ID50 = 0.03 mg kg-1, i.v.) or capsaicin (ID50 = 0.06 mg kg-1, i.v.), or by i.v. injection of exogenous substance P (SP) or septide ([pGlu6,Pro9]SP(6-11)) (ID50 = 0.04-0.05 mg kg-1, i.v.). RP 67580 (1 mg kg-1, i.v.) also abolished capsaicin-induced nasal fluid hypersecretion (by 82 +/- 5%). These effects were found to be stereospecific, the enantiomer, RP 68651 (3aS, 7aS), being inactive at 1 mg kg-1, i.v. 2. In rats neonatally treated with capsaicin (50 mg kg-1, s.c.), plasma extravasation induced by SP was significantly increased (by 43 +/- 7%). RP 67580 (1 mg kg-1, i.v.) completely inhibited the SP-induced plasma extravasation in capsaicin neonatally treated-animals, as it did in control animals. This result suggests that RP 67580 acts at the postsynaptic level for the inhibition of plasma extravasation. 3. Opioid receptor agonists, mu-(morphine) and kappa-(PD-117302) at 10 mg kg-1, s.c., in contrast to NK1-receptor antagonists, did not inhibit plasma extravasation induced by exogenous SP. They were, however, partially effective against plasma extravasation induced by electrical nerve stimulation (74 +/- 4% and 48 +/- 9% inhibition at 10 mg kg-1, s.c. of morphine and PD-117302, respectively, compared to 90 +/- 3% inhibition obtained with RP 67580, 3 mg kg-1, s.c.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7684305

  11. Structural and Biochemical Basis for Intracellular Kinase Inhibition by Src-specific Peptidic Macrocycles.

    PubMed

    Aleem, Saadat; Georghiou, George; Kleiner, Ralph E; Guja, Kip; Craddock, Barbara P; Lyczek, Agatha; Chan, Alix I; Garcia-Diaz, Miguel; Miller, W Todd; Liu, David R; Seeliger, Markus A

    2016-09-22

    Protein kinases are attractive therapeutic targets because their dysregulation underlies many diseases, including cancer. The high conservation of the kinase domain and the evolution of drug resistance, however, pose major challenges to the development of specific kinase inhibitors. We recently discovered selective Src kinase inhibitors from a DNA-templated macrocycle library. Here, we reveal the structural basis for how these inhibitors retain activity against a disease-relevant, drug-resistant kinase mutant, while maintaining Src specificity. We find that these macrocycles display a degree of modularity: two of their three variable groups interact with sites on the kinase that confer selectivity, while the third group interacts with the universally conserved catalytic lysine and thereby retains the ability to inhibit the "gatekeeper" kinase mutant. We also show that these macrocycles inhibit migration of MDA-MB-231 breast tumor cells. Our findings establish intracellular kinase inhibition by peptidic macrocycles, and inform the development of potent and specific kinase inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C

    SciTech Connect

    Park, Yu-Kyoung; Lee, Tae-Yoon; Choi, Jong-Soon; Hong, Victor Sukbong; Lee, Jinho; Park, Jong-Wook; Jang, Byeong-Churl

    2014-10-03

    Highlights: • Compound 7b, a meridianin C derivative, inhibits adipogenesis. • Compound 7b inhibits C/EBP-α, PPAR-γ, FAS, STAT-3, and STAT-5 in 3T3-L1 adipocytes. • Compound 7b inhibits leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Compound 7b thus may have therapeutic potential against obesity. - Abstract: Meridianin C, a marine alkaloid, is a potent protein kinase inhibitor and has anti-cancer activity. We have recently developed a series of meridianin C derivatives (compound 7a–7j) and reported their proviral integration Moloney Murine Leukemia Virus (pim) kinases’ inhibitory and anti-proliferative effects on human leukemia cells. Here we investigated the effect of these meridianin C derivatives on adipogenesis. Strikingly, among the derivatives tested, compound 7b most strongly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. However, meridianin C treatment was largely cytotoxic to 3T3-L1 adipocytes. On mechanistic levels, compound 7b reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and fatty acid synthase (FAS) but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during adipocyte differentiation. Moreover, compound 7b repressed leptin, but not adiponectin, expression during adipocyte differentiation. Collectively, these findings demonstrate that a meridianin C derivative inhibits adipogenesis by down-regulating expressions and/or phosphorylations of C/EBP-α, PPAR-γ, FAS, STAT-3 and STAT-5.

  13. Inhibition of NF-kappa B activation by peptides targeting NF-kappa B essential modulator (nemo) oligomerization.

    PubMed

    Agou, Fabrice; Courtois, Gilles; Chiaravalli, Jeanne; Baleux, Françoise; Coïc, Yves-Marie; Traincard, François; Israël, Alain; Véron, Michel

    2004-12-24

    NF-kappa B essential modulator/IKK-gamma (NEMO/IKK-gamma) plays a key role in the activation of the NF-kappa B pathway in response to proinflammatory stimuli. Previous studies suggested that the signal-dependent activation of the IKK complex involves the trimerization of NEMO. The minimal oligomerization domain of this protein consists of two coiled-coil subdomains named Coiled-coil 2 (CC2) and leucine zipper (LZ) (Agou, F., Traincard, F., Vinolo, E., Courtois, G., Yamaoka, S., Israel, A., and Veron, M. (2004) J. Biol. Chem. 279, 27861-27869). To search for drugs inhibiting NF-kappa B activation, we have rationally designed cell-permeable peptides corresponding to the CC2 and LZ subdomains that mimic the contact areas between NEMO subunits. The peptides were tagged with the Antennapedia/Penetratin motif and delivered to cells prior to stimulation with lipopolysaccharide. Peptide transduction was monitored by fluorescence-activated cell sorter, and their effect on lipopolysaccharide-induced NF-kappa B activation was quantified using an NF-kappa B-dependent beta-galactosidase assay in stably transfected pre-B 70Z/3 lymphocytes. We show that the peptides corresponding to the LZ and CC2 subdomains inhibit NF-kappa B activation with an IC(50) in the mum range. Control peptides, including mutated CC2 and LZ peptides and a heterologous coiled-coil peptide, had no inhibitory effect. The designed peptides are able to induce cell death in human retinoblastoma Y79 cells exhibiting constitutive NF-kappa B activity. Our results provide the "proof of concept" for a new and promising strategy for the inhibition of NF-kappa B pathway activation through targeting the oligomerization state of the NEMO protein.

  14. A novel approach to the design of inhibitors of human secreted phospholipase A2 based on native peptide inhibition.

    PubMed

    Church, W B; Inglis, A S; Tseng, A; Duell, R; Lei, P W; Bryant, K J; Scott, K F

    2001-08-31

    Human Type IIA secreted phospholipase A(2) (sPLA(2)-IIA) is an important modulator of cytokine-dependent inflammatory responses and a member of a growing superfamily of structurally related phospholipases. We have previously shown that sPLA(2)-IIA is inhibited by a pentapeptide sequence comprising residues 70-74 of the native sPLA(2)-IIA protein and that peptides derived from the equivalent region of different sPLA(2)-IIA species specifically inhibit the enzyme from which they are derived. We have now used an analogue screen of the human pentapeptide (70)FLSYK(74) in which side-chain residues were substituted, together with molecular docking approaches that modeled low-energy conformations of (70)FLSYK(74) bound to human sPLA(2)-IIA, to generate inhibitors with improved potency. Importantly, the modeling studies showed a close association between the NH(2) and COOH termini of the peptide, predicting significant enhancement of the potency of inhibition by cyclization. Cyclic compounds were synthesized and indeed showed 5-50-fold increased potency over the linear peptide in an Escherichia coli membrane assay. Furthermore, the potency of inhibition correlated with steady-state binding of the cyclic peptides to sPLA(2)-IIA as determined by surface plasmon resonance studies. Two potential peptide interaction sites were identified on sPLA(2)-IIA from the modeling studies, one in the NH(2)-terminal helix and the other in the beta-wing region, and in vitro association assays support the potential for interaction of the peptides with these sites. The inhibitors were effective at nanomolar concentrations in blocking sPLA(2)-IIA-mediated amplification of cytokine-induced prostaglandin synthesis in human rheumatoid synoviocytes in culture. These studies provide an example where native peptide sequences can be used for the development of potent and selective inhibitors of enzyme function.

  15. Thiosemicarbazone modification of 3-acetyl coumarin inhibitspeptide aggregation and protect against Aβ-induced cytotoxicity.

    PubMed

    Ranade, Dnyanesh S; Bapat, Archika M; Ramteke, Shefali N; Joshi, Bimba N; Roussel, Pascal; Tomas, Alain; Deschamps, Patrick; Kulkarni, Prasad P

    2016-10-04

    Aggregation of amyloid β peptide (Aβ) is an important event in the progression of Alzheimer's disease. Therefore, among the available therapeutic approaches to fight with disease, inhibition of Aβ aggregation is widely studied and one of the promising approach for the development of treatments for Alzheimer's disease. Thiosemicarbazone compounds are known for their variety of biological activities. However, the potential of thiosemicarbazone compounds towards inhibition of Aβ peptide aggregation and the subsequent toxicity is little explored. Herein, we report synthesis and x-ray crystal structure of novel compound 3-acetyl coumarin thiosemicarbazone and its efficacy toward inhibition of Aβ(1-42) peptide aggregation. Our results indicate that 3-acetyl coumarin thiosemicarbazone inhibits Aβ(1-42) peptide aggregation up to 80% compared to the parent 3-acetyl coumarin which inhibits 52%. Further, 3-acetyl coumarin thiosemicarbazone provides neuroprotection against Aβ-induced cytotoxicity in SH-SY5Y cell line. These findings indicate that thiosemicarbazone modification renders 3-acetyl coumarin neuroprotective properties.

  16. Injection of Cocaine-Amphetamine Regulated Transcript (CART) peptide into the nucleus accumbens does not inhibit caffeine-induced locomotor activity: Implications for CART peptide mechanism.

    PubMed

    Job, Martin O

    2016-09-01

    Much evidence suggests that intra-nucleus accumbens (NAc) CART peptide (CART 55-102) injection inhibits locomotor activity (LMA) when there is an increase in the release and activity of dopamine (DA) in the NAc. However, this hypothesis has not been fully tested. One way to examine this is to determine if there is a lack of effect of intra-NAc CART peptide on LMA that does not involve increases in DA release in the NAc. Several studies have suggested that caffeine-induced LMA does not involve extracellular DA release in the NAc core. Therefore, in this study, we have examined the effect of injections of CART peptide (2.5μg) into the NAc core on the locomotor effects of caffeine in male Sprague-Dawley rats. Several LMA relevant doses of caffeine were used (0, 10, 20mg/kg i.p.), and an inverted U response curve was found as expected. We determined, in the same animals, that intra-NAc CART peptide had no effect on caffeine-induced LMA whereas it blunted cocaine-mediated LMA, as shown by other reports. We also extended a previous observation in mice by showing that at a LMA activating dose of caffeine there is no alteration of CART peptide levels in the NAc of rats. Our study supports the hypothesis that the inhibitory effects of CART peptide in the NAc may be exerted only under conditions of increased extracellular DA release and activity in this region. Our results also suggest that intra-NAc CART 55-102 does not generally inhibit increases in LMA due to all drugs, but has a more specific inhibitory effect on dopaminergic neurotransmission. Published by Elsevier Inc.

  17. Developmental changes in the inhibition of cultured rat uterine cell proliferation by opioid peptides.

    PubMed

    Környei, J L; Vértes, Z; Kovács, K A; Göcze, P M; Vértes, M

    2003-06-01

    Opioid peptides are negative regulators of cell proliferation in several organs including the uterus. In the present study, the ontogeny of the direct inhibitory action of opioid peptides on the proliferation of cultured rat uterine cells was investigated. Uteri of 7, 14, 21, 28, 35 and 60-day-old rats were removed in a sterile way. Tissue blocks were dispersed by limited digestions with trypsin and collagenase. Cells were cultured in enriched Dulbecco's modified Eagle's medium (DMEM). Treatments were present during the entire culture period. Cell densities of the monolayers were determined by counting the cells following trypsinization and trypan blue exclusion. Rat uterine mixed cell cultures grew to confluence within 10 days. The average population doubling time gradually increased with the age of animals. Epidermal growth factor (EGF) increased cell densities of cultures from all age groups. The oestradiol (E2)-responsiveness appeared at 21 days of age. The effect of [D-Met2-Pro5]-enkephalinamide (ENK) was biphasic. ENK and [Met5]-enkephalin (OGF) decreased cell densities of both unstimulated and EGF-stimulated cultures from 7-day-old rats to the same extent. ENK failed to act in 14-day-old animals. From 21 days of age on, the E2- or EGF-stimulated proliferation was inhibited only by ENK and DAMGO, while 30 nm DPDPE, Dynorhin-A, OGF, [Leu5]-enkephalin, beta-endorphin, and morphiceptin were ineffective. The half-inhibitory concentration of ENK was 0.3 nm. The effects of ENK were prevented by concomitant treatment with naloxone. Our novel data demonstrate two different phases of the inhibitory action of opioid peptides on rat uterine cell proliferation during ontogeny with an insensitive interval in between.

  18. Feedback Inhibition in the PhoQ/PhoP Signaling System by a Membrane Peptide

    PubMed Central

    Lippa, Andrew M.; Goulian, Mark

    2009-01-01

    The PhoQ/PhoP signaling system responds to low magnesium and the presence of certain cationic antimicrobial peptides. It regulates genes important for growth under these conditions, as well as additional genes important for virulence in many gram-negative pathogens. PhoQ is a sensor kinase that phosphorylates and activates the transcription factor PhoP. Since feedback inhibition is a common theme in stress-response circuits, we hypothesized that some members of the PhoP regulon may play such a role in the PhoQ/PhoP pathway. We therefore screened for PhoP-regulated genes that mediate feedback in this system. We found that deletion of mgrB (yobG), which encodes a 47 amino acid peptide, results in a potent increase in PhoP-regulated transcription. In addition, over-expression of mgrB decreased transcription at both high and low concentrations of magnesium. Localization and bacterial two-hybrid studies suggest that MgrB resides in the inner-membrane and interacts directly with PhoQ. We further show that MgrB homologs from Salmonella typhimurium and Yersinia pestis also repress PhoP-regulated transcription in these organisms. In cell regulatory circuits, feedback has been associated with modulating the induction kinetics and/or the cell-to-cell variability in response to stimulus. Interestingly, we found that elimination of MgrB-mediated feedback did not have a significant effect on the kinetics of reporter protein production and did not decrease the variability in expression among cells. Our results indicate MgrB is a broadly conserved membrane peptide that is a critical mediator of negative feedback in the PhoQ/PhoP circuit. This new regulator may function as a point of control that integrates additional input signals to modulate the activity of this important signaling system. PMID:20041203

  19. Peptide-based inhibition of the HOXA9/PBX interaction retards the growth of human meningioma.

    PubMed

    Ando, Hitoshi; Natsume, Atsushi; Senga, Takeshi; Watanabe, Reiko; Ito, Ichiro; Ohno, Masasuke; Iwami, Kenichiro; Ohka, Fumiharu; Motomura, Kazuya; Kinjo, Sayano; Ito, Maki; Saito, Kiyoshi; Morgan, Richard; Wakabayashi, Toshishiko

    2014-01-01

    Meningiomas are the most common type of intracranial tumor, accounting for between 24 and 30 % of primary intracranial tumors. Thus far, no biomarkers exist to reliably predict the clinical outcome of meningiomas. A previous genome-wide methylation analysis revealed that HOXA9 is one of the most functionally relevant biomarkers. In this study, we have examined whether HOXA9 is a potential therapeutic target in meningiomas, using HXR9, a peptide inhibitor of the interaction between HOXA9 and its cofactor PBX. We determined the expression level of HOXA9 in human meningiomas, meningioma cell lines, and normal brain tissue. Meningioma in culture and in subcutaneous tumors was treated with HXR9. We also examined the disruption of HOXA9/PBX dimers. We first confirmed that HOXA9 is highly expressed in meningiomas, but not in normal brain tissue. The HXR9 peptide blocks the binding of HOXA9 to PBX, leading to an alteration of DNA binding, and subsequent regulation of their target genes. HXR9 markedly inhibited the growth of meningioma cells and subcutaneous meningeal tumors. There is no effective chemotherapy for meningiomas at present, and targeting the HOXA9/PBX interaction may represent a novel treatment option for this disease.

  20. Hsp70 and antifibrillogenic peptides promote degradation and inhibit intracellular aggregation of amyloidogenic light chains.

    SciTech Connect

    Dul, J. L.; Davis, D. P.; Williamson, E. K.; Stevens, F. J.; Argon, Y.; Univ. of Chicago

    2001-02-19

    In light chain (LC) amyloidosis an immunoglobulin LC assembles into fibrils that are deposited in various tissues. Little is known about how these fibrils form in vivo. We previously showed that a known amyloidogenic LC, SMA, can give rise to amyloid fibrils in vitro when a segment of one of its {beta} sheets undergoes a conformational change, exposing an Hsp70 binding site. To examine SMA aggregation in vivo, we expressed it and its wild-type counterpart, LEN, in COS cells. While LEN is rapidly oxidized and subsequently secreted, newly synthesized SMA remains in the reduced state. Most SMA molecules are dislocated out of the ER into the cytosol, where they are ubiquitinylated and degraded by proteasomes. A parallel pathway for molecules that are not degraded is condensation into perinuclear aggresomes that are surrounded by vimentin-containing intermediate filaments and are dependent upon intact microtubules. Inhibition of proteasome activity shifts the balance toward aggresome formation. Intracellular aggregation is decreased and targeting to proteasomes improved by overexpression of the cytosolic chaperone Hsp70. Importantly, transduction into the cell of an Hsp70 target peptide, derived from the LC sequence, also reduces aggresome formation and increases SMA degradation. These results demonstrate that an amyloidogenic LC can aggregate intracellularly despite the common presentation of extracellular aggregates, and that a similar molecular surface mediates both in vitro fibril formation and in vivo aggregation. Furthermore, rationally designed peptides can be used to suppress this aggregation and may provide a feasible therapeutic approach.

  1. Small stress molecules inhibit aggregation and neurotoxicity of prion peptide 106-126

    SciTech Connect

    Kanapathipillai, Mathumai; Ku, Sook Hee; Girigoswami, Koyeli; Park, Chan Beum

    2008-01-25

    In prion diseases, the posttranslational modification of host-encoded prion protein PrP{sup c} yields a high {beta}-sheet content modified protein PrP{sup sc}, which further polymerizes into amyloid fibrils. PrP106-126 initiates the conformational changes leading to the conversion of PrP{sup c} to PrP{sup sc}. Molecules that can defunctionalize such peptides can serve as a potential tool in combating prion diseases. In microorganisms during stressed conditions, small stress molecules (SSMs) are formed to prevent protein denaturation and maintain protein stability and function. The effect of such SSMs on PrP106-126 amyloid formation is explored in the present study using turbidity, atomic force microscopy (AFM), and cellular toxicity assay. Turbidity and AFM studies clearly depict that the SSMs-ectoine and mannosylglyceramide (MGA) inhibit the PrP106-126 aggregation. Our study also connotes that ectoine and MGA offer strong resistance to prion peptide-induced toxicity in human neuroblastoma cells, concluding that such molecules can be potential inhibitors of prion aggregation and toxicity.

  2. Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state

    PubMed Central

    Osterman, Ilya A.; Khabibullina, Nelli F.; Komarova, Ekaterina S.; Kasatsky, Pavel; Kartsev, Victor G.; Bogdanov, Alexey A.; Dontsova, Olga A.

    2017-01-01

    Abstract The emergence of multi-drug resistant bacteria is limiting the effectiveness of commonly used antibiotics, which spurs a renewed interest in revisiting older and poorly studied drugs. Streptogramins A is a class of protein synthesis inhibitors that target the peptidyl transferase center (PTC) on the large subunit of the ribosome. In this work, we have revealed the mode of action of the PTC inhibitor madumycin II, an alanine-containing streptogramin A antibiotic, in the context of a functional 70S ribosome containing tRNA substrates. Madumycin II inhibits the ribosome prior to the first cycle of peptide bond formation. It allows binding of the tRNAs to the ribosomal A and P sites, but prevents correct positioning of their CCA-ends into the PTC thus making peptide bond formation impossible. We also revealed a previously unseen drug-induced rearrangement of nucleotides U2506 and U2585 of the 23S rRNA resulting in the formation of the U2506•G2583 wobble pair that was attributed to a catalytically inactive state of the PTC. The structural and biochemical data reported here expand our knowledge on the fundamental mechanisms by which peptidyl transferase inhibitors modulate the catalytic activity of the ribosome. PMID:28505372

  3. Cyclodepsipeptides produced by actinomycetes inhibit cyclic-peptide-mediated quorum sensing in Gram-positive bacteria.

    PubMed

    Desouky, Said E; Shojima, Akane; Singh, Ravindra Pal; Matsufuji, Takahisa; Igarashi, Yasuhiro; Suzuki, Takashi; Yamagaki, Tohru; Okubo, Ken-Ichi; Ohtani, Kaori; Sonomoto, Kenji; Nakayama, Jiro

    2015-07-01

    Cyclic peptides are commonly used as quorum-sensing autoinducers in Gram-positive Firmicutes bacteria. Well-studied examples of such molecules are thiolactone and lactone, used to regulate the expression of a series of virulence genes in the agr system of Staphylococcus aureus and the fsr system of Enterococcus faecalis, respectively. Three cyclodepsipeptides WS9326A, WS9326B and cochinmicin II/III were identified as a result of screening actinomycetes culture extracts for activity against the agr/fsr system. These molecules are already known as receptor antagonists, the first two for tachykinin and the last one for endothelin. WS9326A also inhibited the transcription of pfoA regulated by the VirSR two-component system in Clostridium perfringens. Receptor-binding assays using a fluorescence-labeled autoinducer (FITC-GBAP) showed that WS9326A and WS9326B act as receptor antagonists in this system. In addition, an ex vivo assay showed that WS9326B substantially attenuated the toxicity of S. aureus for human corneal epithelial cells. These results suggest that these three natural cyclodepsipeptides have therapeutic potential for targeting the cyclic peptide-mediated quorum sensing of Gram-positive pathogens. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function.

    PubMed

    Borcherding, Jennifer; Baltrusaitis, Jonas; Chen, Haihan; Stebounova, Larissa; Wu, Chia-Ming; Rubasinghege, Gayan; Mudunkotuwa, Imali A; Caraballo, Juan Carlos; Zabner, Joseph; Grassian, Vicki H; Comellas, Alejandro P

    2014-04-01

    Given the increased use of iron-containing nanoparticles in a number of applications, it is important to understand any effects that iron-containing nanoparticles can have on the environment and human health. Since iron concentrations are extremely low in body fluids, there is potential that iron-containing nanoparticles may influence the ability of bacteria to scavenge iron for growth, affect virulence and inhibit antimicrobial peptide (AMP) function. In this study, Pseudomonas aeruginosa (PA01) and AMPs were exposed to iron oxide nanoparticles, hematite (α-Fe2O3), of different sizes ranging from 2 to 540 nm (2 ± 1, 43 ± 6, 85 ± 25 and 540 ± 90 nm) in diameter. Here we show that the greatest effect on bacterial growth, biofilm formation, and AMP function impairment is found when exposed to the smallest particles. These results are attributed in large part to enhanced dissolution observed for the smallest particles and an increase in the amount of bioavailable iron. Furthermore, AMP function can be additionally impaired by adsorption onto nanoparticle surfaces. In particular, lysozyme readily adsorbs onto the nanoparticle surface which can lead to loss of peptide activity. Thus, this current study shows that co-exposure of nanoparticles and known pathogens can impact host innate immunity. Therefore, it is important that future studies be designed to further understand these types of impacts.

  5. Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function†

    PubMed Central

    Borcherding, Jennifer; Baltrusaitis, Jonas; Chen, Haihan; Stebounova, Larissa; Wu, Chia-Ming; Rubasinghege, Gayan; Mudunkotuwa, Imali A.; Caraballo, Juan Carlos; Zabner, Joseph

    2014-01-01

    Given the increased use of iron-containing nanoparticles in a number of applications, it is important to understand any effects that iron-containing nanoparticles can have on the environment and human health. Since iron concentrations are extremely low in body fluids, there is potential that iron-containing nanoparticles may influence the ability of bacteria to scavenge iron for growth, affect virulence and inhibit antimicrobial peptide (AMP) function. In this study, Pseudomonas aeruginosa (PA01) and AMPs were exposed to iron oxide nanoparticles, hematite (α-Fe2O3), of different sizes ranging from 2 to 540 nm (2 ± 1, 43 ± 6, 85 ± 25 and 540 ± 90 nm) in diameter. Here we show that the greatest effect on bacterial growth, biofilm formation, and AMP function impairment is found when exposed to the smallest particles. These results are attributed in large part to enhanced dissolution observed for the smallest particles and an increase in the amount of bioavailable iron. Furthermore, AMP function can be additionally impaired by adsorption onto nanoparticle surfaces. In particular, lysozyme readily adsorbs onto the nanoparticle surface which can lead to loss of peptide activity. Thus, this current study shows that co-exposure of nanoparticles and known pathogens can impact host innate immunity. Therefore, it is important that future studies be designed to further understand these types of impacts. PMID:25221673

  6. Structural insight into the inhibition of tubulin by vinca domain peptide ligands.

    PubMed

    Cormier, Anthony; Marchand, Matthieu; Ravelli, Raimond B G; Knossow, Marcel; Gigant, Benoît

    2008-11-01

    The tubulin vinca domain is the target of widely different microtubule inhibitors that interfere with the binding of vinblastine. Although all these ligands inhibit the hydrolysis of GTP, they affect nucleotide exchange to variable extents. The structures of two vinca domain antimitotic peptides--phomopsin A and soblidotin (a dolastatin 10 analogue)--bound to tubulin in a complex with a stathmin-like domain show that their sites partly overlap with that of vinblastine and extend the definition of the vinca domain. The structural data, together with the biochemical results from the ligands we studied, highlight two main contributors in nucleotide exchange: the flexibility of the tubulin subunits' arrangement at their interfaces and the residues in the carboxy-terminal part of the beta-tubulin H6-H7 loop. The structures also highlight common features of the mechanisms by which vinca domain ligands favour curved tubulin assemblies and destabilize microtubules.

  7. Inhibition of amyloid fiber assembly by both BiP and its target peptide.

    SciTech Connect

    Davis, D. P.; Raffen, R.; Vogen, S.; Williamson, E.; Stevens, F. J.; Argon, Y.; Biosciences Division; Univ. of Chicago

    2000-10-01

    Immunoglobulin light chain (LC) normally is a soluble, secreted protein, but some LC assemble into ordered fibrils whose deposition in tissues results in amyloidosis and organ failure. Here we reconstitute fibril formation in vitro and show that preformed fibrils can nucleate polymerization of soluble LC. This prion-like behavior has important physiological implications, since somatic mutations generate multiple related LC sequences. Furthermore, we demonstrate that fibril formation in vitro and aggregation of whole LC within cells are inhibited by BiP and by a synthetic peptide that is identical to a major LC binding site for BiP. We propose that LC form fibrils via an interprotein loop swap and that the underlying conformational change should be amenable to drug therapy.

  8. An optimized B lymphocyte stimulator (BLyS) antagonist peptide inhibits the interaction of BLyS with BCMA.

    PubMed

    Tian, Yu; Zhu, Yan-Feng; Wu, Zhen; Feng, Jian-Nan; Li, Yan; Shen, Bei-Fen; Sun, Jian

    2013-04-01

    B lymphocyte stimulator (BLyS) antagonists are new therapeutic reagents for treating the autoimmune diseases. Peptibodies can inhibit the bioactivity of BLyS, the same as other BLyS antagonists: decoyed BLyS receptors and anti-BLyS antibodies. In this study, a new optimized BLyS antagonist peptide was designed according to our previous work by the computer-aided homology modeling. Competitive ELISA showed that the peptide at 100 μg/ml could inhibit 54 % of the BCMA-Fc binding to BLyS. To maintain its stability and spatial conformation, the peptide was fused to human IgG1 Fc to form a peptide-Fc fusion protein-a novel peptibody by gene engineering. ELISA indicated that the peptibody could bind with BLyS in dosage-dependent manner as BCMA-Fc did. This study highlights the possibility of designing and optimizing BLyS antagonist peptides with high biopotency by the computer-aided design. Thus, these peptides could neutralize BLyS activity and be potential antagonists to treat autoimmune diseases related with BLyS overexpression.

  9. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction

    PubMed Central

    Ochiya, Takahiro; Takenaga, Keizo; Asagiri, Masataka; Nakano, Kazumi; Satoh, Hitoshi; Watanabe, Toshiki; Imajoh-Ohmi, Shinobu; Endo, Hideya

    2015-01-01

    The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD) indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy. PMID:26029719

  10. An extract of Gymnema sylvestre leaves and purified gymnemic acid inhibits glucose-stimulated gastric inhibitory peptide secretion in rats.

    PubMed

    Fushiki, T; Kojima, A; Imoto, T; Inoue, K; Sugimoto, E

    1992-12-01

    Gastric inhibitory peptide release into the portal vein in response to duodenal infusion of D-glucose was studied in the presence of a leaf extract of Gymnema sylvestre, purified gymnemic acid and inhibitors of some putative glucose sensors and carriers in the intestinal lumen. Intraduodenal infusion of D-glucose significantly increased the portal immunoreactive gastric inhibitory peptide concentration in a dose-dependent manner. The increase in the portal immunoreactive gastric inhibitory peptide induced by glucose was significantly depressed by concomitantly infused leaf extract of Gymnema sylvestre, purified gymnemic acid and phlorizin but not by cytochalasin B. Mannoheptulose, which inhibits glycolysis, and procaine and lidocaine, which inhibit the vagal glucoreceptor in the lumen, did not affect portal immunoreactive gastric inhibitory peptide concentrations. These results suggest that a glucose receptor, which interacts with the leaf extract of Gymnema sylvestre, purified gymnemic acid and phlorizin, exists for the release of immunoreactive gastric inhibitory peptide and that the glucose receptor for gastric inhibitory peptide release is not likely to be identical with a glucose transporter or a vagal glucoreceptor in the lumen.

  11. Inhibition of Pseudomonas aeruginosa by Peptide-Conjugated Phosphorodiamidate Morpholino Oligomers.

    PubMed

    Howard, James J; Sturge, Carolyn R; Moustafa, Dina A; Daly, Seth M; Marshall-Batty, Kimberly R; Felder, Christina F; Zamora, Danniel; Yabe-Gill, Marium; Labandeira-Rey, Maria; Bailey, Stacey M; Wong, Michael; Goldberg, Joanna B; Geller, Bruce L; Greenberg, David E

    2017-04-01

    Pseudomonas aeruginosa is a highly virulent, multidrug-resistant pathogen that causes significant morbidity and mortality in hospitalized patients and is particularly devastating in patients with cystic fibrosis. Increasing antibiotic resistance coupled with decreasing numbers of antibiotics in the developmental pipeline demands novel antibacterial approaches. Here, we tested peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs), which inhibit translation of complementary mRNA from specific, essential genes in P. aeruginosa PPMOs targeted to acpP, lpxC, and rpsJ, inhibited P. aeruginosa growth in many clinical strains and activity of PPMOs could be enhanced 2- to 8-fold by the addition of polymyxin B nonapeptide at subinhibitory concentrations. The PPMO targeting acpP was also effective at preventing P. aeruginosa PAO1 biofilm formation and at reducing existing biofilms. Importantly, treatment with various combinations of a PPMO and a traditional antibiotic demonstrated synergistic growth inhibition, the most effective of which was the PPMO targeting rpsJ with tobramycin. Furthermore, treatment of P. aeruginosa PA103-infected mice with PPMOs targeting acpP, lpxC, or rpsJ significantly reduced the bacterial burden in the lungs at 24 h by almost 3 logs. Altogether, this study demonstrates that PPMOs targeting the essential genes acpP, lpxC, or rpsJ in P. aeruginosa are highly effective at inhibiting growth in vitro and in vivo These data suggest that PPMOs alone or in combination with antibiotics represent a novel approach to addressing the problems associated with rapidly increasing antibiotic resistance in P. aeruginosa. Copyright © 2017 American Society for Microbiology.

  12. Fusion protein of CDR mimetic peptide with Fc inhibit TNF-alpha induced cytotoxicity.

    PubMed

    Qin, Weisong; Feng, Jiannan; Li, Yan; Lin, Zhou; Shen, Beifen

    2006-02-01

    The variable regions of antibodies play central roles in the binding with antigens. Based on the model of a tumour necrosis factor-alpha (TNF-alpha) neutralizing monoclonal antibody (named as Z12) with TNF-alpha, heavy chain CDR2 (HCDR2) and light chain CDR3 (LCDR3) of Z12 were found to be the most responsible to bind with TNF-alpha. A mimetic peptide (PT) was designed based on the sequence derived from HCDR2 and LCDR3. Fusion protein PT-Fc was constructed by linking PT with Fc of human IgG1 through a flexible linker (GGGGGS). The primary structural characteristics of Fc and PT-Fc were analyzed, including the flexibility, hydrophilicity and epitopes. It was demonstrated that PT and Fc in the fusion protein possessed bio-function properly and non-interfering with each other. Furthermore, PT-Fc was expressed in Escherichia coli by fusion with thioredoxin (Trx). After trx-PT-Fc was cleaved with recombinant enterokinase, PT-Fc was obtained. The results of in vitro cytotoxic assays showed that both PT and PT-Fc could efficiently inhibit TNF-alpha induced apoptosis on L929 cells. At the same micromole concentration, the inhibition activity of PT-Fc was significantly higher than PT.

  13. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition

    PubMed Central

    Xiong, Haitao; Guo, Bingxiu; Gan, Zhenshun; Song, Deguang; Lu, Zeqing; Yi, Hongbo; Wu, Yueming; Wang, Yizhen; Du, Huahua

    2016-01-01

    Butyrate has been used to treat different inflammatory disease with positive outcomes, the mechanisms by which butyrate exerts its anti-inflammatory effects remain largely undefined. Here we proposed a new mechanism that butyrate manipulate endogenous host defense peptides (HDPs) which contributes to the elimination of Escherichia coli O157:H7, and thus affects the alleviation of inflammation. An experiment in piglets treated with butyrate (0.2% of diets) 2 days before E. coli O157:H7 challenge was designed to investigate porcine HDP expression, inflammation and E. coli O157:H7 load in feces. The mechanisms underlying butyrate-induced HDP gene expression and the antibacterial activity and bacterial clearance of macrophage 3D4/2 cells in vitro were examined. Butyrate treatment (i) alleviated the clinical symptoms of E. coli O157:H7-induced hemolytic uremic syndrome (HUS) and the severity of intestinal inflammation; (ii) reduced the E. coli O157:H7 load in feces; (iii) significantly upregulated multiple, but not all, HDPs in vitro and in vivo via histone deacetylase (HDAC) inhibition; and (iv) enhanced the antibacterial activity and bacterial clearance of 3D4/2 cells. Our findings indicate that butyrate enhances disease resistance, promotes the clearance of E. coli O157:H7, and alleviates the clinical symptoms of HUS and inflammation, partially, by affecting HDP expression via HDAC inhibition. PMID:27230284

  14. Mo polyoxometalate nanoclusters capable of inhibiting the aggregation of Aβ-peptide associated with Alzheimer's disease.

    PubMed

    Chen, Qingchang; Yang, Licong; Zheng, Chuping; Zheng, Wenjing; Zhang, Jingnan; Zhou, Yunshan; Liu, Jie

    2014-06-21

    A neuropathological hallmark of Alzheimer's disease (AD) is aggregation of a forty-residue peptide known as amyloid beta forty (Aβ40). While past work has indicated that blocking Aβ40 aggregation could be an effective strategy for the treatment of AD, developing therapies with this goal has been met with limited success. Polyoxometalates (POMs) have been previously investigated for their anti-viral and anti-tumoral properties and we report here that three representative POM nanoclusters have been synthesized for use against Aβ40 aggregation. Through the use of thioflavin T fluorescence, turbidity, circular dichroism spectroscopy, and transmission electron microscopy (TEM), we found that all three POM complexes can significantly inhibit both natural Aβ40 self-aggregation and metal-ion induced Aβ40 aggregation. We also evaluated the protective effect of POM complexes on Aβ40-induced neurotoxicity in cultured PC12 cells and found that treatment with POM complexes can elevate cell viability, decrease levels of intracellular reactive oxygen species, and stabilize mitochondrial membrane potential. These findings indicate that all three representative POM complexes are capable of inhibiting Aβ40 aggregation and subsequent neurotoxicity. While a complete mechanistic understanding remains to be elucidated, the synthesized POM complexes may work through a synergistic interaction with metal ions and Aβ40. These data indicate that POM complexes have high therapeutic potential for use against one of the primary neuropathological features of AD.

  15. Inhibition of serotonin release by bombesin-like peptides in rat hypothalamus in vitro

    SciTech Connect

    Saporito, M.S.; Warwick, R.O. Jr.

    1989-01-01

    We investigated the activity of bombesin (BN), neuromedin-C (NM-C) and neuromedin-B (NM-B) on serotonin (5-HT) release and reuptake in rat hypothalamus (HYP) in vitro. BN and NM-C but not NM-B decreased K/sup +/ evoked /sup 3/H-5-HT release from superfused HYP slices by 25%. Bacitracin, a nonspecific peptidase inhibitor, reversed the inhibitory effect of BN on K/sup +/ evoked /sup 3/H-5-HT release. Phosphoramidon (PAN, 10 /mu/M) an endopeptidase 24.11 inhibitor, abolished the inhibitory effect of BN, but not NM-C, on K/sup +/ evoked /sup 3/H-5-HT release. The peptidyl dipeptidase A inhibitor enalaprilat (ENP, 10 /mu/M), enhanced both BN and NM-C inhibition of /sup 3/H-5-HT release. Bestatin (BST, 10 /mu/M) had no effect on BN or NM-C inhibitory activity on /sup 3/H-5-HT release. Neither BN, NM-C nor NM-B affected reuptake of /sup 3/H-5-HT into HYP synaptosomes alone or in combination with any of the peptidase inhibitors, nor did these peptides alter the ability of fluoxetine to inhibit /sup 3/H-5-HT uptake.

  16. Identification and Evaluation of Cryoprotective Peptides from Chicken Collagen: Ice-Growth Inhibition Activity Compared to That of Type I Antifreeze Proteins in Sucrose Model Systems.

    PubMed

    Du, Lihui; Betti, Mirko

    2016-06-29

    The ability of chicken collagen peptides to inhibit the growth of ice crystals was evaluated and compared to that of fish antifreeze proteins (AFPs). This ice inhibition activity was assessed using a polarized microscope by measuring ice crystal dimensions in a sucrose model system with and without collagen peptides after seven thermal cycles. The system was stabilized at -25 °C and cycled between -16 and -12 °C. Five candidate peptides with ice inhibition activity were identified using liquid chromatography and tandem mass spectrometry and were then synthesized. Their ice inhibition capacity was compared to that of type I AFPs in a 23% sucrose model system. Specific collagen peptides with certain amino acid sequences reduced the extent of ice growth by approximately 70% at a relatively low concentration (1 mg/mL). These results suggest that specific collagen peptides may act in a noncolligative manner, inhibiting ice crystal growth like type I AFPs, but less efficiently.

  17. A derivative of chrysin suppresses two-stage skin carcinogenesis by inhibiting mitogen- and stress-activated kinase 1.

    PubMed

    Liu, Haidan; Hwang, Joonsung; Li, Wei; Choi, Tae Woong; Liu, Kangdong; Huang, Zunnan; Jang, Jae-Hyuk; Thimmegowda, N R; Lee, Ki Won; Ryoo, In-Ja; Ahn, Jong-Seog; Bode, Ann M; Zhou, Xinmin; Yang, Yifeng; Erikson, Raymond L; Kim, Bo-Yeon; Dong, Zigang

    2014-01-01

    Mitogen- and stress-activated kinase 1 (MSK1) is a nuclear serine/threonine protein kinase that acts downstream of both extracellular signal-regulated kinases and p38 mitogen-activated protein kinase in response to stress or mitogenic extracellular stimuli. Increasing evidence has shown that MSK1 is closely associated with malignant transformation and cancer development. MSK1 should be an effective target for cancer chemoprevention and chemotherapy. However, very few MSK1 inhibitors, especially natural compounds, have been reported. We used virtual screening of a natural products database and the active conformation of the C-terminal kinase domain of MSK1 (PDB id 3KN) as the receptor structure to identify chrysin and its derivative, compound 69407, as inhibitors of MSK1. Compared with chrysin, compound 69407 more strongly inhibited proliferation and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ cells with lower cytotoxicity. Western blot data demonstrated that compound 69407 suppressed phosphorylation of the MSK1 downstream effector histone H3 in intact cells. Knocking down the expression of MSK1 effectively reduced the sensitivity of JB6 P+ cells to compound 69407. Moreover, topical treatment with compound 69407 before TPA application significantly reduced papilloma development in terms of number and size in a two-stage mouse skin carcinogenesis model. The reduction in papilloma development was accompanied by the inhibition of histone H3 phosphorylation at Ser10 in tumors extracted from mouse skin. The results indicated that compound 69407 exerts inhibitory effects on skin tumorigenesis by directly binding with MSK1 and attenuates the MSK1/histone H3 signaling pathway, which makes it an ideal chemopreventive agent against skin cancer. ©2013 AACR.

  18. A derivative of chrysin suppresses two-stage skin carcinogenesis by inhibiting mitogen- and stress-activated kinase 1

    PubMed Central

    Liu, Haidan; Hwang, Joon-Sung; Li, Wei; Choi, Tae Woong; Liu, Kangdong; Huang, Zunnan; Jang, Jae-Hyuk; Thimmegowda, N. R.; Lee, Ki-Won; Ryoo, In-Ja; Ahn, Jong-Seog; Bode, Ann M.; Zhou, Xinmin; Yang, Yifeng; Erikson, Raymond L.; Kim, Bo-Yeon; Dong, Zigang

    2013-01-01

    Mitogen-activated and stress-activated kinase 1 (MSK1) is a nuclear serine/threonine protein kinase that acts downstream of both ERKs and p38 MAP kinases in response to stress or mitogenic extracellular stimuli. Increasing evidence has shown that MSK1 is closely associated with malignant transformation and cancer development. MSK1 should be an effective target for cancer chemoprevention and chemotherapy. However, very few MSK1 inhibitors, especially natural compounds, have been reported. We used virtual screening of a natural products database and the active conformation of the C-terminal kinase domain of MSK1 (PDB id 3KN) as the receptor structure to identify chrysin and its derivative, compound 69407, as inhibitors of MSK1. Compared with chrysin, compound 69407 more strongly inhibited proliferation and TPA-induced neoplastic transformation of JB6 P+ cells with lower cytotoxicity. Western blot data demonstrated that compound 69407 suppressed phosphorylation of the MSK1 downstream effector histone H3 in intact cells. Knocking down the expression of MSK1 effectively reduced the sensitivity of JB6 P+ cells to compound 69407. Moreover, topical treatment with compound 69407 prior to TPA application significantly reduced papilloma development in terms of number and size in a two-stage mouse skin carcinogenesis model. The reduction in papilloma development was accompanied by the inhibition of histone H3 phosphorylation at Ser10 in tumors extracted from mouse skin. The results indicated that compound 69407 exerts inhibitory effects on skin tumorigenesis by directly binding with MSK1 and attenuates the MSK1/histone H3 signaling pathway, which makes it an ideal chemopreventive agent against skin cancer. PMID:24169959

  19. Heptad repeat 2-based peptides inhibit avian sarcoma and leukosis virus subgroup a infection and identify a fusion intermediate.

    PubMed

    Netter, Robert C; Amberg, Sean M; Balliet, John W; Biscone, Mark J; Vermeulen, Arwen; Earp, Laurie J; White, Judith M; Bates, Paul

    2004-12-01

    Fusion proteins of enveloped viruses categorized as class I are typified by two distinct heptad repeat domains within the transmembrane subunit. These repeats are important structural elements that assemble into the six-helix bundles characteristic of the fusion-activated envelope trimer. Peptides derived from these domains can be potent and specific inhibitors of membrane fusion and virus infection. To facilitate our understanding of retroviral entry, peptides corresponding to the two heptad repeat domains of the avian sarcoma and leukosis virus subgroup A (ASLV-A) TM subunit of the envelope protein were characterized. Two peptides corresponding to the C-terminal heptad repeat (HR2), offset from one another by three residues, were effective inhibitors of infection, while two overlapping peptides derived from the N-terminal heptad repeat (HR1) were not. Analysis of envelope mutants containing substitutions within the HR1 domain revealed that a single amino acid change, L62A, significantly reduced sensitivity to peptide inhibition. Virus bound to cells at 4 degrees C became sensitive to peptide within the first 5 min of elevating the temperature to 37 degrees C and lost sensitivity to peptide after 15 to 30 min, consistent with a transient intermediate in which the peptide binding site is exposed. In cell-cell fusion experiments, peptide inhibitor sensitivity occurred prior to a fusion-enhancing low-pH pulse. Soluble receptor for ASLV-A induces a lipophilic character in the envelope which can be measured by stable liposome binding, and this activation was found to be unaffected by inhibitory HR2 peptide. Finally, receptor-triggered conformational changes in the TM subunit were also found to be unaffected by inhibitory peptide. These changes are marked by a dramatic shift in mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, from a subunit of 37 kDa to a complex of about 80 kDa. Biotinylated HR2 peptide bound specifically to the 80-kDa complex

  20. Small molecule functional analogs of peptides that inhibit lambda site-specific recombination and bind Holliday junctions.

    PubMed

    Ranjit, Dev K; Rideout, Marc C; Nefzi, Adel; Ostresh, John M; Pinilla, Clemencia; Segall, Anca M

    2010-08-01

    Our lab has isolated hexameric peptides that are structure-selective ligands of Holliday junctions (HJ), central intermediates of several DNA recombination reactions. One of the most potent of these inhibitors, WRWYCR, has shown antibacterial activity in part due to its inhibition of DNA repair proteins. To increase the therapeutic potential of these inhibitors, we searched for small molecule inhibitors with similar activities. We screened 11 small molecule libraries comprising over nine million individual compounds and identified a potent N-methyl aminocyclic thiourea inhibitor that also traps HJs formed during site-specific recombination reactions in vitro. This inhibitor binds specifically to protein-free HJs and can inhibit HJ resolution by RecG helicase, but only showed modest growth inhibition of bacterial with a hyperpermeable outer membrane; nonetheless, this is an important step in developing a functional analog of the peptide inhibitors. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. LXY6090 – a novel manassantin A derivative – limits breast cancer growth through hypoxia-inducible factor-1 inhibition

    PubMed Central

    Lai, Fangfang; Liu, Qian; Liu, Xiaoyu; Ji, Ming; Xie, Ping; Chen, Xiaoguang

    2016-01-01

    Hypoxia-inducible factor-1 (HIF-1) represents a novel antitumor target owing to its involvement in vital processes considered hallmarks of cancer phenotypes. Manassantin A (MA) derived from Saururus cernuus has been reported as a selective HIF-1 inhibitor. Herein, the structure of MA was optimized to achieve new derivatives with simple chemical properties while retaining its activity. LXY6090 was designed to replace the central tetrahydrofuran moiety of MA with a cyclopentane ring and was identified as a potent HIF-1 inhibitor with an IC50 value of 4.11 nM. It not only inhibited the activity of HIF-1 in breast cancer cells but also downregulated the protein level of HIF-1α, which depended on von Hippel–Lindau for proteasome degradation. The related biological evaluation showed that the activity of HIF-1 target genes, VEGF and IGF-2, was decreased by LXY6090 in breast cancer cell lines. LXY6090 presented potent antitumor activity in vitro. Furthermore, LXY6090 showed in vivo anticancer efficacy by decreasing the HIF-1α expression in nude mice bearing MX-1 tumor xenografts. In conclusion, our data provide a basis for the future development of the novel compound LXY6090 as a potential therapeutic agent for breast cancer. PMID:27445487

  2. LXY6090 - a novel manassantin A derivative - limits breast cancer growth through hypoxia-inducible factor-1 inhibition.

    PubMed

    Lai, Fangfang; Liu, Qian; Liu, Xiaoyu; Ji, Ming; Xie, Ping; Chen, Xiaoguang

    2016-01-01

    Hypoxia-inducible factor-1 (HIF-1) represents a novel antitumor target owing to its involvement in vital processes considered hallmarks of cancer phenotypes. Manassantin A (MA) derived from Saururus cernuus has been reported as a selective HIF-1 inhibitor. Herein, the structure of MA was optimized to achieve new derivatives with simple chemical properties while retaining its activity. LXY6090 was designed to replace the central tetrahydrofuran moiety of MA with a cyclopentane ring and was identified as a potent HIF-1 inhibitor with an IC50 value of 4.11 nM. It not only inhibited the activity of HIF-1 in breast cancer cells but also downregulated the protein level of HIF-1α, which depended on von Hippel-Lindau for proteasome degradation. The related biological evaluation showed that the activity of HIF-1 target genes, VEGF and IGF-2, was decreased by LXY6090 in breast cancer cell lines. LXY6090 presented potent antitumor activity in vitro. Furthermore, LXY6090 showed in vivo anticancer efficacy by decreasing the HIF-1α expression in nude mice bearing MX-1 tumor xenografts. In conclusion, our data provide a basis for the future development of the novel compound LXY6090 as a potential therapeutic agent for breast cancer.

  3. Partial Peptide of α-Synuclein Modified with Small-Molecule Inhibitors Specifically Inhibits Amyloid Fibrillation of α-Synuclein

    PubMed Central

    Yoshida, Wataru; Kobayashi, Natsuki; Sasaki, Yasuhiko; Ikebukuro, Kazunori; Sode, Koji

    2013-01-01

    We have previously reported that pyrroloquinoline quinone (PQQ) prevents the amyloid formation of α-synuclein, amyloid β1–42 (Aβ1–42), and mouse prion protein. Moreover, PQQ-modified α-synuclein and a proteolytic fragment of the PQQ-modified α-synuclein are able to inhibit the amyloid formation of α-synuclein. Here, we identified the peptide sequences that play an important role as PQQ-modified specific peptide inhibitors of α-synuclein. We demonstrate that the PQQ-modified α-Syn36–46 peptide, which is a partial sequence of α-synuclein, prevented α-synuclein amyloid fibril formation but did not inhibit Aβ1–42 fibril formation. In addition, the α-synuclein partial peptide modified with other small-molecule inhibitors, Baicalein and epigallocatechin gallate (EGCG), prevented α-synuclein fibril formation. Currently reported quinone amyloid inhibitors do not have selectivity toward protein molecules. Therefore, our achievements provide a novel strategy for the development of targeted specific amyloid formation inhibitors: the combination of quinone compounds with specific peptide sequence from target proteins involved in amyloid formation. PMID:23358249

  4. Self-assembled peptide-polyoxometalate hybrid nanospheres: two in one enhances targeted inhibition of amyloid β-peptide aggregation associated with Alzheimer's disease.

    PubMed

    Li, Meng; Xu, Can; Wu, Li; Ren, Jinsong; Wang, Enbo; Qu, Xiaogang

    2013-10-25

    Amyloid fibril formation is a critical step in Alzheimer's disease (AD) pathogenesis. Inhibition of Aβ aggregation has shown promising against AD and has been used in clinic trials. Here, a novel strategy is reported for the self-assembly of polyoxometalate-peptide (POM@P) hybrid particles as bifunctional Aβ inhibitors. The two-in-one bifunctional POM@P nanoparticles show an enhanced inhibition effect on amyloid aggregation in mice cerebrospinal fluid. Incorporating a clinically used Aβ fibril-staining dye, congo red (CR), into the hybrid colloidal spheres, the nanoparticles can also act as an effective fluorescent probe to monitor the inhibition process of POM@P via CR fluorescence change in real time. It is believed that such flexible organic-inorganic hybrid systems may prompt the design of new multifunctional materials for AD treatment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Inhibition of Enterovirus 71 (EV-71) Infections by a Novel Antiviral Peptide Derived from EV-71 Capsid Protein VP1

    PubMed Central

    Tan, Chee Wah; Chan, Yoke Fun; Sim, Kooi Mow; Tan, Eng Lee; Poh, Chit Laa

    2012-01-01

    Enterovirus 71 (EV-71) is the main causative agent of hand, foot and mouth disease (HFMD). In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers) overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD) cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC50 values ranging from 6–9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71. PMID:22563456

  6. A novel recombinant slow-release TNF α-derived peptide effectively inhibits tumor growth and angiogensis.

    PubMed

    Ma, Yi; Zhao, Shaojun; Shen, Shutao; Fang, Shixiong; Ye, Zulu; Shi, Zhi; Hong, An

    2015-09-04

    RMP16, a recombinant TNF α-derived polypeptide comprising a specific human serum albumin (HSA)-binding 7-mer peptide identified by phage display screening (WQRPSSW), a cleavage peptide for Factor Xa (IEGR), and a 20-amino acid bioactive peptide P16 (TNF α segment including amino acid residues 75-94), was prepared by gene-engineering technology. RMP16 showed prolonged half-life, 13.11 hours in mice (half-lives of P16 and TNF α are 5.77 and 29.0 minutes, respectively), and obviously higher receptor selectivity for TNFRI than TNF α. RMP16 had significant inhibition effects for multiple tumor cells, especially prostate cancer Du145 cells, and human vascular endothelial cells but not for human mammary non-tumorigenic epithelial cells. RMP16 can more effectively induce apoptosis and inhibit proliferation for DU145 cells than P16 and TNF α via the caspase-dependent apoptosis pathway and G0/G1 cell cycle arrest. In nude mice with transplanted tumor of DU145 cells, RMP16 significantly induced apoptosis and necrosis of tumor tissues but causing less side effects, and tumor inhibitory rate reached nearly 80%, furthermore, RMP16 can potently inhibit tumor angiogenesis and neovascularization. These findings suggest that RMP16 may represent a promising long-lasting antitumor therapeutic peptide with less TNF α-induced toxicity.

  7. A novel recombinant slow-release TNF α-derived peptide effectively inhibits tumor growth and angiogensis

    PubMed Central

    Ma, Yi; Zhao, Shaojun; Shen, Shutao; Fang, Shixiong; Ye, Zulu; Shi, Zhi; Hong, An

    2015-01-01

    RMP16, a recombinant TNF α-derived polypeptide comprising a specific human serum albumin (HSA)-binding 7-mer peptide identified by phage display screening (WQRPSSW), a cleavage peptide for Factor Xa (IEGR), and a 20-amino acid bioactive peptide P16 (TNF α segment including amino acid residues 75–94), was prepared by gene-engineering technology. RMP16 showed prolonged half-life, 13.11 hours in mice (half-lives of P16 and TNF α are 5.77 and 29.0 minutes, respectively), and obviously higher receptor selectivity for TNFRI than TNF α. RMP16 had significant inhibition effects for multiple tumor cells, especially prostate cancer Du145 cells, and human vascular endothelial cells but not for human mammary non-tumorigenic epithelial cells. RMP16 can more effectively induce apoptosis and inhibit proliferation for DU145 cells than P16 and TNF α via the caspase-dependent apoptosis pathway and G0/G1 cell cycle arrest. In nude mice with transplanted tumor of DU145 cells, RMP16 significantly induced apoptosis and necrosis of tumor tissues but causing less side effects, and tumor inhibitory rate reached nearly 80%, furthermore, RMP16 can potently inhibit tumor angiogenesis and neovascularization. These findings suggest that RMP16 may represent a promising long-lasting antitumor therapeutic peptide with less TNF α-induced toxicity. PMID:26337231

  8. Engineering D-Amino Acid Containing Collagen Like Peptide at the Cleavage Site of Clostridium histolyticum Collagenase for Its Inhibition

    PubMed Central

    Velmurugan, Punitha; Jonnalagadda, Raghava Rao; Unni Nair, Balachandran

    2015-01-01

    Collagenase is an important enzyme which plays an important role in degradation of collagen in wound healing, cancer metastasis and even in embryonic development. However, the mechanism of this degradation has not yet been completely understood. In the field of biomedical and protein engineering, the design and development of new peptide based materials is of main concern. In the present work an attempt has been made to study the effect of DAla in collagen like peptide (imino-poor region of type I collagen) on the structure and stability of peptide against enzyme hydrolysis. Effect of replacement of DAla in the collagen like peptide has been studied using circular dichroic spectroscopy (CD). Our findings suggest that, DAla substitution leads to conformational changes in the secondary structure and favours the formation of polyproline II conformation than its L-counterpart in the imino-poor region of collagen like peptides. Change in the chirality of alanine at the cleavage site of collagenase in the imino-poor region inhibits collagenolytic activity. This may find application in design of peptides and peptidomimics for enzyme-substrate interaction, specifically with reference to collagen and other extra cellular matrix proteins. PMID:25973613

  9. Empirical and bioinformatic characterization of buffalo (Bubalus bubalis) colostrum whey peptides & their angiotensin I-converting enzyme inhibition.

    PubMed

    Ashok, N R; Aparna, H S

    2017-08-01

    Whey based peptides are well known for their nutritional and multifunctional properties. In this context, whey proteins from buffalo colostrum & milk were digested by in vitro simulation digestion and analyzed by nano-LC-MS/MS. Functional protein association networks, gene annotations and localization of identified proteins were carried out. An ACE inhibitory peptide sorted from the library was custom synthesized and an in vitro ACE assay was performed. The study led to the identification of 74 small peptides which were clustered into 5 gene functional groups and majority of them were secretory proteins. Among the identified peptides, majority of them were found identical to angiotensin I-converting enzyme (ACE) inhibitors, antioxidant, antimicrobial, immunomodulatory and opioidal peptides. An octapeptide (m/z - 902.51, IQKVAGTW) synthesized was found to inhibit ACE with an IC50 of 300±2µM. The present investigation thus establishes newer vista for food derived peptides having ACE inhibitory potential for nutraceutical or therapeutic applications.

  10. Engineering D-Amino Acid Containing Collagen Like Peptide at the Cleavage Site of Clostridium histolyticum Collagenase for Its Inhibition.

    PubMed

    Velmurugan, Punitha; Jonnalagadda, Raghava Rao; Nair, Balachandran Unni

    2015-01-01

    Collagenase is an important enzyme which plays an important role in degradation of collagen in wound healing, cancer metastasis and even in embryonic development. However, the mechanism of this degradation has not yet been completely understood. In the field of biomedical and protein engineering, the design and development of new peptide based materials is of main concern. In the present work an attempt has been made to study the effect of DAla in collagen like peptide (imino-poor region of type I collagen) on the structure and stability of peptide against enzyme hydrolysis. Effect of replacement of DAla in the collagen like peptide has been studied using circular dichroic spectroscopy (CD). Our findings suggest that, DAla substitution leads to conformational changes in the secondary structure and favours the formation of polyproline II conformation than its L-counterpart in the imino-poor region of collagen like peptides. Change in the chirality of alanine at the cleavage site of collagenase in the imino-poor region inhibits collagenolytic activity. This may find application in design of peptides and peptidomimics for enzyme-substrate interaction, specifically with reference to collagen and other extra cellular matrix proteins.

  11. Inhibition of the aggregation of lactoferrin and (-)-epigallocatechin gallate in the presence of polyphenols, oligosaccharides, and collagen peptide.

    PubMed

    Yang, Wei; Liu, Fuguo; Xu, Chenqi; Sun, Cuixia; Yuan, Fang; Gao, Yanxiang

    2015-05-27

    The aggregation of lactoferrin and (-)-epigallocatechin gallate (EGCG) was inhibited by polyphenols, oligosaccharides, and collagen peptide in this study. Polyphenols, oligosaccharides, or collagen peptide can effectively prevent the formation of lactoferrin-EGCG aggregates, respectively. The addition sequence of lactoferrin, polyphenols (oligosaccharides or collagen peptide) and EGCG can affect the turbidity and particle size of the ternary complexes in the buffer solution; however, it hardly affected the ζ-potential and fluorescence characteristics. With either positive or negative charge, polyphenols and collagen peptide disrupted the formation of lactoferrin-EGCG aggregate mainly through the mechanism of its competition with EGCG molecules which surrounded the lactoferrin molecule surface with weaker binding affinities, forming polyphenols or a collagen peptide-lactoferrin-EGCG ternary complex; for neutral oligosaccharides, the ternary complex was generated mainly through steric effects, accompanied by a change in the lactoferrin secondary structure induced by gallic acid, chlorogenic acid, and xylo-oligosaccharide. Polyphenols, oligosaccharides, or collagen peptide restraining the formation of lactoferrin-EGCG aggregate could be applied in the design of clear products in the food, pharmaceutical, and cosmetic industries.

  12. Inhibition of the 26S proteasome by peptide mimics of the coiled-coil region of its ATPase subunits.

    PubMed

    Inobe, Tomonao; Genmei, Reiko

    Regulation of proteasomal degradation is an indispensable tool for biomedical studies. Thus, there is demand for novel proteasome inhibitors. Proteasomal degradation requires formation of coiled-coil structure by the N-terminal region of ATPase subunits of the proteasome cap. Here we show that peptides that mimic the N-terminal coiled-coil region of ATPase subunits interfere with proteasome function. These results suggest that coiled-coil peptides represent promising new proteasome inhibitors and that N-terminal coiled-coil regions of ATPase subunits are targets for proteasome inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Inhibitory Effect of a Callophycin A Derivative on iNOS Expression via Inhibition of Akt in Lipopolysaccharide-stimulated RAW 264.7 Cells

    PubMed Central

    Park, Eun-Jung; Shen, Li; Sun, Dianqing; Pezzuto, John M.

    2014-01-01

    In previous studies, (R)-2-isobutyl 3-methyl 3,4-dihydro-1H-pyrido[3,4-b] indole-2,3(9H)-dicarboxylate (1), a callophycin A derivative, was found to strongly inhibit nitrite production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, while (R)- or (S)-callophycin A showed only weak inhibition. We currently report additional studies to define the mechanisms underlying the inhibitory action of 1. Expression of inducible nitric oxide synthase (iNOS) was reduced at both protein and mRNA levels. Major upstream signaling molecules and transcription factors regulating iNOS expression were examined, but it was found that 1 did not affect the phosphorylated and total protein levels of p38 mitogen-activated protein kinase (p38 MAPK), Jun N-terminal kinase (JNK), extracellular signalregulated kinase 1/2 (ERK1/2), and signal transducer and activator of transcription 1 (STAT1), nor did it mediate the degradation of the inhibitor of nuclear factor-κBα-isoform (IκBα). However, starting at early time points, 1 consistently inhibited the phosphorylation of protein kinase B/Akt at serine 473. In addition, 1 suppressed the protein expression of octamer-binding transcription factor-2 (Oct-2) and the expression of microRNA 155 (miR-155). In sum, compound 1 inhibits LPS-induced nitrite production by a unique and complex mechanism. Reduction of iNOS expression is accompanied by inhibition of Akt activation, Oct-2 protein expression, and miR-155 expression. PMID:24299616

  14. The synthetic peptide P111-136 derived from the C-terminal domain of heparin affin regulatory peptide inhibits tumour growth of prostate cancer PC-3 cells

    PubMed Central

    2011-01-01

    Background Heparin affin regulatory peptide (HARP), also called pleiotrophin, is a heparin-binding, secreted factor that is overexpressed in several tumours and associated to tumour growth, angiogenesis and metastasis. The C-terminus part of HARP composed of amino acids 111 to 136 is particularly involved in its biological activities and we previously established that a synthetic peptide composed of the same amino acids (P111-136) was capable of inhibiting the biological activities of HARP. Here we evaluate the ability of P111-136 to inhibit in vitro and in vivo the growth of a human tumour cell line PC-3 which possess an HARP autocrine loop. Methods A total lysate of PC-3 cells was incubated with biotinylated P111-136 and pulled down for the presence of the HARP receptors in Western blot. In vitro, the P111-136 effect on HARP autocrine loop in PC-3 cells was determined by colony formation in soft agar. In vivo, PC-3 cells were inoculated in the flank of athymic nude mice. Animals were treated with P111-136 (5 mg/kg/day) for 25 days. Tumour volume was evaluated during the treatment. After the animal sacrifice, the tumour apoptosis and associated angiogenesis were evaluated by immunohistochemistry. In vivo anti-angiogenic effect was confirmed using a mouse Matrigel™ plug assay. Results Using pull down experiments, we identified the HARP receptors RPTPβ/ζ, ALK and nucleolin as P111-136 binding proteins. In vitro, P111-136 inhibits dose-dependently PC-3 cell colony formation. Treatment with P111-136 inhibits significantly the PC-3 tumour growth in the xenograft model as well as tumour angiogenesis. The angiostatic effect of P111-136 on HARP was also confirmed using an in vivo Matrigel™ plug assay in mice Conclusions Our results demonstrate that P111-136 strongly inhibits the mitogenic effect of HARP on in vitro and in vivo growth of PC-3 cells. This inhibition could be linked to a direct or indirect binding of this peptide to the HARP receptors (ALK, RPTP

  15. Mo polyoxometalate nanoclusters capable of inhibiting the aggregation of Aβ-peptide associated with Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Chen, Qingchang; Yang, Licong; Zheng, Chuping; Zheng, Wenjing; Zhang, Jingnan; Zhou, Yunshan; Liu, Jie

    2014-05-01

    A neuropathological hallmark of Alzheimer's disease (AD) is aggregation of a forty-residue peptide known as amyloid beta forty (Aβ40). While past work has indicated that blocking Aβ40 aggregation could be an effective strategy for the treatment of AD, developing therapies with this goal has been met with limited success. Polyoxometalates (POMs) have been previously investigated for their anti-viral and anti-tumoral properties and we report here that three representative POM nanoclusters have been synthesized for use against Aβ40 aggregation. Through the use of thioflavin T fluorescence, turbidity, circular dichroism spectroscopy, and transmission electron microscopy (TEM), we found that all three POM complexes can significantly inhibit both natural Aβ40 self-aggregation and metal-ion induced Aβ40 aggregation. We also evaluated the protective effect of POM complexes on Aβ40-induced neurotoxicity in cultured PC12 cells and found that treatment with POM complexes can elevate cell viability, decrease levels of intracellular reactive oxygen species, and stabilize mitochondrial membrane potential. These findings indicate that all three representative POM complexes are capable of inhibiting Aβ40 aggregation and subsequent neurotoxicity. While a complete mechanistic understanding remains to be elucidated, the synthesized POM complexes may work through a synergistic interaction with metal ions and Aβ40. These data indicate that POM complexes have high therapeutic potential for use against one of the primary neuropathological features of AD.A neuropathological hallmark of Alzheimer's disease (AD) is aggregation of a forty-residue peptide known as amyloid beta forty (Aβ40). While past work has indicated that blocking Aβ40 aggregation could be an effective strategy for the treatment of AD, developing therapies with this goal has been met with limited success. Polyoxometalates (POMs) have been previously investigated for their anti-viral and anti-tumoral properties

  16. Histone deacetylase inhibition enhances antimicrobial peptide but not inflammatory cytokine expression upon bacterial challenge

    PubMed Central

    Fischer, Natalie; Sechet, Emmanuel; Friedman, Robin; Amiot, Aurélien; Sobhani, Iradj; Nigro, Giulia; Sansonetti, Philippe J.; Sperandio, Brice

    2016-01-01

    Antimicrobial peptides (AMP) are defense effectors of the innate immunity playing a crucial role in the intestinal homeostasis with commensals and protection against pathogens. Herein we aimed to investigate AMP gene regulation by deciphering specific characteristics allowing their enhanced expression among innate immune genes, particularly those encoding proinflammatory mediators. Our emphasis was on epigenetic regulation of the gene encoding the AMP β-defensin 2 (HBD2), taken as a model of possibly specific induction, upon challenge with a commensal bacterium, compared with the proinflammatory cytokine IL-8. Using an in vitro model of colonic epithelial cells challenged with Escherichia coli K12, we showed that inhibition of histone deacetylases (HDAC) by trichostatin A dramatically enhanced induction of HBD2 expression, without affecting expression of IL-8. This mechanism was supported by an increased phosphorylation of histone H3 on serine S10, preferentially at the HBD2 promoter. This process occurred through activation of the IκB kinase complex, which also led to activation of NF-κB. Moreover, we demonstrated that NF-κB was modified by acetylation upon HDAC inhibition, partly by the histone acetyltransferase p300, and that both NF-κB and p300 supported enhanced induction of HBD2 expression. Furthermore, we identified additional genes belonging to antimicrobial defense and epithelial restitution pathways that showed a similar pattern of epigenetic control. Finally, we confirmed our finding in human colonic primary cells using an ex vivo organoid model. This work opens the way to use epigenetic pharmacology to achieve induction of epithelial antimicrobial defenses, while limiting the deleterious risk of an inflammatory response. PMID:27162363

  17. In Vitro Modulation of Renin-Angiotensin System Enzymes by Amaranth (Amaranthus hypochondriacus) Protein-Derived Peptides: Alternative Mechanisms Different from ACE Inhibition.

    PubMed

    Quiroga, Alejandra V; Aphalo, Paula; Nardo, Agustina E; Añón, María C

    2017-08-30

    Among the factors affecting the development of cardiovascular diseases, hypertension is one of the most important. Research done on amaranth proteins has demonstrated their hypotensive capacity in vivo and in vitro; nevertheless, the mechanism underlying this effect remains unclear. The aim of this study was to analyze in vitro the inhibition of peptides derived from an amaranth hydrolysate (AHH) on other RAS enzymes other than ACE. The chymase and renin activities were studied. AHH was not able to inhibit chymase activity, although a dose-response effect was found on renin activity (IC50 0.6 mg/mL). To provide an approach to the renin inhibition mechanism, we analyzed AHH renin inhibition kinetics and performed a structural characterization of the peptides involved in the effect in terms of molecular size and hydrophobicity. Results suggest that amaranth peptides exhibit renin competitive inhibition behavior. Renin inhibition potency was directly related to peptide hydrophobicity. RP-HPLC separation of AHH and subsequent analysis of the peptide sequences showed 6 peptides belonging to 11S globulin (that can be grouped into 3 families) that would be responsible for renin inhibition. These results demonstrate that Amaranthus hypochondriacus seeds are an adequate source of peptides with renin inhibitory properties that could be used in functional food formulations.

  18. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells.

    PubMed

    Trabelsi, Mohamed-Sami; Daoudi, Mehdi; Prawitt, Janne; Ducastel, Sarah; Touche, Véronique; Sayin, Sama I; Perino, Alessia; Brighton, Cheryl A; Sebti, Yasmine; Kluza, Jérôme; Briand, Olivier; Dehondt, Hélène; Vallez, Emmanuelle; Dorchies, Emilie; Baud, Grégory; Spinelli, Valeria; Hennuyer, Nathalie; Caron, Sandrine; Bantubungi, Kadiombo; Caiazzo, Robert; Reimann, Frank; Marchetti, Philippe; Lefebvre, Philippe; Bäckhed, Fredrik; Gribble, Fiona M; Schoonjans, Kristina; Pattou, François; Tailleux, Anne; Staels, Bart; Lestavel, Sophie

    2015-07-02

    Bile acids are signalling molecules, which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex bile acids in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces glucagon-like peptide-1 (GLP-1) production by L cells which potentiates β-cell glucose-induced insulin secretion. Whether FXR is expressed in L cells and controls GLP-1 production is unknown. Here, we show that FXR activation in L cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycaemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes.

  19. A Cyclic Peptide Inhibitor of HIF-1 Heterodimerization That Inhibits Hypoxia Signaling in Cancer Cells

    PubMed Central

    2013-01-01

    Hypoxia inducible factor-1 (HIF-1) is a heterodimeric transcription factor that acts as the master regulator of cellular response to reduced oxygen levels, thus playing a key role in the adaptation, survival, and progression of tumors. Here we report cyclo-CLLFVY, identified from a library of 3.2 million cyclic hexapeptides using a genetically encoded high-throughput screening platform, as an inhibitor of the HIF-1α/HIF-1β protein–protein interaction in vitro and in cells. The identified compound inhibits HIF-1 dimerization and transcription activity by binding to the PAS-B domain of HIF-1α, reducing HIF-1-mediated hypoxia response signaling in a variety of cell lines, without affecting the function of the closely related HIF-2 isoform. The reported cyclic peptide demonstrates the utility of our high-throughput screening platform for the identification of protein–protein interaction inhibitors, and forms the starting point for the development of HIF-1 targeted cancer therapeutics. PMID:23796364

  20. Farnesoid X Receptor Inhibits Glucagon-Like Peptide-1 Production by Enteroendocrine L-cells

    PubMed Central

    TRABELSI, Mohamed-Sami; DAOUDI, Mehdi; PRAWITT, Janne; DUCASTEL, Sarah; TOUCHE, Véronique; SAYIN, Sama I.; PERINO, Alessia; BRIGHTON, Cheryl A.; SEBTI, Yasmine; KLUZA, Jérôme; BRIAND, Olivier; DEHONDT, Hélène; VALLEZ, Emmanuelle; DORCHIES, Emilie; BAUD, Grégory; SPINELLI, Valeria; HENNUYER, Nathalie; CARON, Sandrine; BANTUBUNGI, Kadiombo; CAIAZZO, Robert; REIMANN, Frank; MARCHETTI, Philippe; LEFEBVRE, Philippe; BÄCKHED, Fredrik; GRIBBLE, Fiona M.; SCHOONJANS, Kristina; PATTOU, François; TAILLEUX, Anne; STAELS, Bart; LESTAVEL, Sophie

    2015-01-01

    Bile acids (BA) are signalling molecules which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex BA in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces Glucagon-Like Peptide-1 (GLP-1) production by L-cells which potentiates β-cell glucose-induced insulin secretion. Whether FXR is expressed in L-cells and controls GLP-1 production is unknown. Here we show that FXR activation in L-cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR-deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes. PMID:26134028

  1. Efficient inhibition of miR-155 function in vivo by peptide nucleic acids

    PubMed Central

    Fabani, Martin M.; Abreu-Goodger, Cei; Williams, Donna; Lyons, Paul A.; Torres, Adrian G.; Smith, Kenneth G. C.; Enright, Anton J.; Gait, Michael J.; Vigorito, Elena

    2010-01-01

    MicroRNAs (miRNAs) play an important role in diverse physiological processes and are potential therapeutic agents. Synthetic oligonucleotides (ONs) of different chemistries have proven successful for blocking miRNA expression. However, their specificity and efficiency have not been fully evaluated. Here, we show that peptide nucleic acids (PNAs) efficiently block a key inducible miRNA expressed in the haematopoietic system, miR-155, in cultured B cells as well as in mice. Remarkably, miR-155 inhibition by PNA in primary B cells was achieved in the absence of any transfection agent. In mice, the high efficiency of the treatment was demonstrated by a strong overlap in global gene expression between B cells isolated from anti-miR-155 PNA-treated and miR-155-deficient mice. Interestingly, PNA also induced additional changes in gene expression. Our analysis provides a useful platform to aid the design of efficient and specific anti-miRNA ONs for in vivo use. PMID:20223773

  2. Propofol inhibits superoxide production, elastase release, and chemotaxis in formyl peptide-activated human neutrophils by blocking formyl peptide receptor 1.

    PubMed

    Yang, Shun-Chin; Chung, Pei-Jen; Ho, Chiu-Ming; Kuo, Chan-Yen; Hung, Min-Fa; Huang, Yin-Ting; Chang, Wen-Yi; Chang, Ya-Wen; Chan, Kwok-Hon; Hwang, Tsong-Long

    2013-06-15

    Neutrophils play a critical role in acute and chronic inflammatory processes, including myocardial ischemia/reperfusion injury, sepsis, and adult respiratory distress syndrome. Binding of formyl peptide receptor 1 (FPR1) by N-formyl peptides can activate neutrophils and may represent a new therapeutic target in either sterile or septic inflammation. Propofol, a widely used i.v. anesthetic, has been shown to modulate immunoinflammatory responses. However, the mechanism of propofol remains to be established. In this study, we showed that propofol significantly reduced superoxide generation, elastase release, and chemotaxis in human neutrophils activated by fMLF. Propofol did not alter superoxide generation or elastase release in a cell-free system. Neither inhibitors of γ-aminobutyric acid receptors nor an inhibitor of protein kinase A reversed the inhibitory effects of propofol. In addition, propofol showed less inhibitory effects in non-FPR1-induced cell responses. The signaling pathways downstream from FPR1, involving calcium, AKT, and ERK1/2, were also competitively inhibited by propofol. These results show that propofol selectively and competitively inhibits the FPR1-induced human neutrophil activation. Consistent with the hypothesis, propofol inhibited the binding of N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein, a fluorescent analog of fMLF, to FPR1 in human neutrophils, differentiated THP-1 cells, and FPR1-transfected human embryonic kidney-293 cells. To our knowledge, our results identify, for the first time, a novel anti-inflammatory mechanism of propofol by competitively blocking FPR1 in human neutrophils. Considering the importance of N-formyl peptides in inflammatory processes, our data indicate that propofol may have therapeutic potential to attenuate neutrophil-mediated inflammatory diseases by blocking FPR1.

  3. A bioinformatics approach to identify natural autoantibodies from healthy blood donors' sera reactive with the HCV NS5A-derived peptide by immunoassay.

    PubMed

    Vasiljevic, Nada; Veljkovic, Nevena; Kosec, Tatjana; Ma, Xue-Zhong; Glisic, Sanja; Prljic, Jelena; Vujicic, Ana Djordjevic; Markovic, Ljiljana; Branch, Donald R

    2011-04-01

    Natural autoantibodies (NAbs) are continually produced throughout life and have an ability to recognize self and altered self, as well as foreign antigens, by recognizing cellular pattern recognition receptors. Sometimes NAb specificity demonstrates overlap between human and pathologic proteomes. This information can be useful in selecting target sequences for screening purposes. In this study we undertook a multi-step bioinformatics search to predict a virus-derived peptide that can be recognized by NAbs in sera of uninfected individuals. We selected protein hepatitis C virus (HCV) NS5A as a target sequence, motivated by the fact that the HCV proteome is characterized by extensive sequence similarities to the human proteome, and because screening for anti-HCV antibodies, including anti-NS5A, is important clinically, particularly in screening of potential blood donors. The virus-specific peptide P1, and the homologous human peptide derived from enzyme-inducible nitric oxide synthase (iNOS), P2, exhibiting not only simple homology, but also complementarities of physicochemical patterns, were synthesized and 80 HCV-negative and 50 HCV-positive blood donor sera were tested by ELISA. These peptides reacted similarly (p<0.001) with HCV-negative sera, and in several cases the measured reactivity was significantly above the cut-off value of commercial anti-HCV screening assays. In HCV-positive sera, the titers of antibodies reactive with analyzed HCV NS5A peptide were not significantly increased (p<0.001) compared to host peptide, the implications of which are unclear, but may be consistent with these antibodies being "naturally produced." Finally, we extended our bioinformatics analyses to the dataset of human self-binding sequences, and propose a general approach for the selection of specific diagnostic and screening antigens for use in immunoassays.

  4. α-Helix-peptides comprising the human nuclear receptor ERRγ competitively provoke inhibition of functional homomeric dimerization.

    PubMed

    Liu, Xiaohui; Nishimura, Hirokazu; Fujiyama, Akina; Matsushima, Ayami; Shimohigashi, Miki; Shimohigashi, Yasuyuki

    2016-11-04

    Estrogen-related receptor γ (ERRγ) is a constitutively active nuclear receptor functioning as a transcription factor. ERRγ binds to a single half site designated as ERRE that has only a single DNA-binding motif. However, with regard to the subunit structure, it remains a matter of controversy whether ERRγ binds as a monomer or dimer. Because the ligand-binding domain (LBD) of ERRγ was in a homodimer form in its X-ray crystal structure, the peptide fragments present in the dimer interfaces would perturb or destabilize the dimer structure by inhibiting the mutual interaction among ERRγ molecules. Thus, to demonstrate the essential homodimer structure of ERRγ, we utilized the peptides corresponding to the α-helix peptides 7 (H7), H9, and H10/11 in order to test such inhibitor activity. These selections were done based on a structural analysis of the X-ray crystal structures of ERRγ-LBD, which forms a head-to-head dimer structure. Peptides were evaluated by means of a luciferase reporter gene assay, in which ERRγ exhibited a high constitutive activity with no ligand. When the peptide was expressed in the HeLa cells together with ERRγ, these peptides clearly showed a concentration-dependent activity inhibition, indicating that ERRγ is indeed homodimerized as required for DNA transcription activity. The present results strongly suggest that human nuclear receptor ERRγ functions as a genuine homomeric dimer with symmetrical dimeric interface regions. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 547-554, 2016. © 2015 Wiley Periodicals, Inc.

  5. Peptides derived from the copper-binding region of lysyl oxidase exhibit antiangiogeneic properties by inhibiting enzyme activity: an in vitro study.

    PubMed

    Mohankumar, Arun; Renganathan, Bhuvanasundar; Karunakaran, Coral; Chidambaram, Subbulakshmi; Konerirajapuram Natarajan, Sulochana

    2014-11-01

    Despite the rigorous research on abnormal angiogenesis, there is a persistent need for the development of new and efficient therapies against angiogenesis-related diseases. The role of Lysyl oxidase (LOX) in angiogenesis and cancer has been established in prior studies. Copper is known to induce the synthesis of LOX, and hence regulates its activity. Hypoxia-induced metastasis is dependent on LOX expression and activity. It has been believed that the inhibition of LOX would be a therapeutic strategy to inhibit angiogenesis. To explore this, we designed peptides (M peptides) from the copper-binding region of LOX and hypothesized them to modulate LOX. The peptides were characterized, and their copper-binding ability was confirmed by mass spectrometry. The M peptides were found to reduce the levels of intracellular copper when the cells were co-treated with copper. The peptides showed promising effect on aortic LOX, recombinant human LOX and LOX produced by human umbilical vein endothelial cells (HUVECs). The study also explores the effect of these peptides on copper and hypoxia-stimulated angiogenic response in HUVECs. It was found that the M peptides inhibited copper/hypoxia-induced LOX activity and inhibited stimulated HUVEC tube formation and migration. This clearly indicated the potential of M peptides in inhibiting angiogenesis, highlighting their role in the formulation of drugs for the same.

  6. Inhibition of HLA-DM Mediated MHC Class II Peptide Loading by HLA-DO Promotes Self Tolerance.

    PubMed

    Denzin, Lisa K

    2013-12-17

    Major histocompatibility class II (MHCII) molecules are loaded with peptides derived from foreign and self-proteins within the endosomes and lysosomes of antigen presenting cells (APCs). This process is mediated by interaction of MHCII with the conserved, non-polymorphic MHCII like molecule HLA-DM (DM). DM activity is directly opposed by HLA-DO (DO), another conserved, non-polymorphic MHCII like molecule. DO is an MHCII substrate mimic. Binding of DO to DM prevents MHCII from binding to DM, thereby inhibiting peptide loading. Inhibition of DM function enables low stability MHC complexes to survive and populate the surface of APCs. As a consequence, DO promotes the display of a broader pool of low abundance self-peptides. Broadening the peptide repertoire theoretically reduces the likelihood of inadvertently acquiring a density of self-ligands that is sufficient to activate self-reactive T cells. One function of DO, therefore, is to promote T cell tolerance by shaping the visible image of self. Recent data also shows that DO influences the adaptive immune response by controlling B cell entry into the germinal center reaction. This review explores the data supporting these concepts.

  7. Inhibition of HLA-DM Mediated MHC Class II Peptide Loading by HLA-DO Promotes Self Tolerance

    PubMed Central

    Denzin, Lisa K.

    2013-01-01

    Major histocompatibility class II (MHCII) molecules are loaded with peptides derived from foreign and self-proteins within the endosomes and lysosomes of antigen presenting cells (APCs). This process is mediated by interaction of MHCII with the conserved, non-polymorphic MHCII like molecule HLA-DM (DM). DM activity is directly opposed by HLA-DO (DO), another conserved, non-polymorphic MHCII like molecule. DO is an MHCII substrate mimic. Binding of DO to DM prevents MHCII from binding to DM, thereby inhibiting peptide loading. Inhibition of DM function enables low stability MHC complexes to survive and populate the surface of APCs. As a consequence, DO promotes the display of a broader pool of low abundance self-peptides. Broadening the peptide repertoire theoretically reduces the likelihood of inadvertently acquiring a density of self-ligands that is sufficient to activate self-reactive T cells. One function of DO, therefore, is to promote T cell tolerance by shaping the visible image of self. Recent data also shows that DO influences the adaptive immune response by controlling B cell entry into the germinal center reaction. This review explores the data supporting these concepts. PMID:24381574

  8. Identifying and characterising PPE7 (Rv0354c) high activity binding peptides and their role in inhibiting cell invasion.

    PubMed

    Díaz, Diana P; Ocampo, Marisol; Varela, Yahson; Curtidor, Hernando; Patarroyo, Manuel A; Patarroyo, Manuel E

    2017-02-15

    This study was aimed at characterising the PPE7 protein from the PE/PPE protein family. The presence and transcription of the rv0354c gene in the Mycobacterium tuberculosis complex was determined and the subcellular localisation of the PPE7 protein on mycobacterial membrane was confirmed by immunoelectron microscope. Two peptides were identified as having high binding activity (HABPs) and were tested in vitro regarding the invasion of Mycobacterium tuberculosis H37Rv. HABP 39224 inhibited invasion in A549 epithelial cells and U937 macrophages by more than 50%, whilst HABP 39225 inhibited invasion by 40% in U937 cells. HABP 39224, located in the protein's C-terminal region, has a completely conserved amino acid sequence in M. tuberculosis complex species and could be selected as a base peptide when designing a subunit-based, anti-tuberculosis vaccine.

  9. Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor.

    PubMed

    Zhang, Yingnan; Eigenbrot, Charles; Zhou, Lijuan; Shia, Steven; Li, Wei; Quan, Clifford; Tom, Jeffrey; Moran, Paul; Di Lello, Paola; Skelton, Nicholas J; Kong-Beltran, Monica; Peterson, Andrew; Kirchhofer, Daniel

    2014-01-10

    PCSK9 (proprotein convertase subtilisin/kexin type 9) is a negative regulator of the hepatic LDL receptor, and clinical studies with PCSK9-inhibiting antibodies have demonstrated strong LDL-c-lowering effects. Here we screened phage-displayed peptide libraries and identified the 13-amino acid linear peptide Pep2-8 as the smallest PCSK9 inhibitor with a clearly defined mechanism of inhibition that has been described. Pep2-8 bound to PCSK9 with a KD of 0.7 μm but did not bind to other proprotein convertases. It fully restored LDL receptor surface levels and LDL particle uptake in PCSK9-treated HepG2 cells. The crystal structure of Pep2-8 bound to C-terminally truncated PCSK9 at 1.85 Å resolution showed that the peptide adopted a strand-turn-helix conformation, which is remarkably similar to its solution structure determined by NMR. Consistent with the functional binding site identified by an Ala scan of PCSK9, the structural Pep2-8 contact region of about 400 Å(2) largely overlapped with that contacted by the EGF(A) domain of the LDL receptor, suggesting a competitive inhibition mechanism. Consistent with this, Pep2-8 inhibited LDL receptor and EGF(A) domain binding to PCSK9 with IC50 values of 0.8 and 0.4 μm, respectively. Remarkably, Pep2-8 mimicked secondary structural elements of the EGF(A) domain that interact with PCSK9, notably the β-strand and a discontinuous short α-helix, and it engaged in the same β-sheet hydrogen bonds as EGF(A) does. Although Pep2-8 itself may not be amenable to therapeutic applications, this study demonstrates the feasibility of developing peptidic inhibitors to functionally relevant sites on PCSK9.

  10. Inhibition of Competence Development, Horizontal Gene Transfer and Virulence in Streptococcus pneumoniae by a Modified Competence Stimulating Peptide

    PubMed Central

    Zhu, Luchang; Lau, Gee W.

    2011-01-01

    Competence stimulating peptide (CSP) is a 17-amino acid peptide pheromone secreted by Streptococcus pneumoniae. Upon binding of CSP to its membrane-associated receptor kinase ComD, a cascade of signaling events is initiated, leading to activation of the competence regulon by the response regulator ComE. Genes encoding proteins that are involved in DNA uptake and transformation, as well as virulence, are upregulated. Previous studies have shown that disruption of key components in the competence regulon inhibits DNA transformation and attenuates virulence. Thus, synthetic analogues that competitively inhibit CSPs may serve as attractive drugs to control pneumococcal infection and to reduce horizontal gene transfer during infection. We performed amino acid substitutions on conserved amino acid residues of CSP1 in an effort to disable DNA transformation and to attenuate the virulence of S. pneumoniae. One of the mutated peptides, CSP1-E1A, inhibited development of competence in DNA transformation by outcompeting CSP1 in time and concentration-dependent manners. CSP1-E1A reduced the expression of pneumococcal virulence factors choline binding protein D (CbpD) and autolysin A (LytA) in vitro, and significantly reduced mouse mortality after lung infection. Furthermore, CSP1-E1A attenuated the acquisition of an antibiotic resistance gene and a capsule gene in vivo. Finally, we demonstrated that the strategy of using a peptide inhibitor is applicable to other CSP subtype, including CSP2. CSP1-E1A and CSP2-E1A were able to cross inhibit the induction of competence and DNA transformation in pneumococcal strains with incompatible ComD subtypes. These results demonstrate the applicability of generating competitive analogues of CSPs as drugs to control horizontal transfer of antibiotic resistance and virulence genes, and to attenuate virulence during infection by S. pneumoniae. PMID:21909280

  11. Theaflavins, dimeric catechins, inhibit peptide transport across Caco-2 cell monolayers via down-regulation of AMP-activated protein kinase-mediated peptide transporter PEPT1.

    PubMed

    Takeda, Junko; Park, Ha-Young; Kunitake, Yuri; Yoshiura, Keiko; Matsui, Toshiro

    2013-06-15

    In the small intestine, peptide transporter 1 (PEPT1) plays a role in the transport of di- and tripeptides. In this study, we investigated whether theaflavins (TFs) affect the absorption of small peptides in human intestinal Caco-2 cells, since TFs do not penetrate through the cells and might be involved in intestinal transport systems. In transport experiments, the transport of glycyl-sarcosine (Gly-Sar, a model molecule for PEPT1 transport) and other dipeptides (Val-Tyr and Ile-Phe) were significantly reduced (P<0.05) in TFs-pretreated cells. In TF 3'-O-gallate-pretreated cells, Western blot analysis revealed attenuated expression of PEPT1 transporter and Gly-Sar transport was completely ameliorated by 10 μM Compound C, an AMP-activated protein kinase (AMPK) inhibitor. In conclusion, the present study demonstrated that TFs inhibit peptide transport across Caco-2 cell monolayers, probably through suppression of AMPK-mediated PEPT1 expression, which should be considered a new bioactivity of TFs in black tea. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Receptor-directed inhibition of chemotactic factor-induced neutrophil hyperactivity by pyrazolon derivatives. Definition of a chemotactic peptide antagonist.

    PubMed

    Dahinden, C; Fehr, J

    1980-11-01

    The two pyrazolon derivatives, phenylbutazone and sulfinpyrazone, selectively inhibit chemotactic peptide-induced effects on neutrophils. As they antagonize the induction of acute neutropenia in vivo and of cellular hyperadhesiveness, lysosomal enzyme release, hexose monophosphate shunt activity, and superoxide production in vitro, these effects occur with a specificity not shared with other prostaglandin biosynthesis inhibition by these drugs resembles the competitive type of antagonism and occurs at concentrations attainable in vivo under clinical conditions. The locomotory machinery, the direction-finding mechanisms, and the basic metabolic machinery of the cell are unaffected. These drugs interfere with specific binding of the formylpeptide to its receptor on neutrophils.

  13. Receptor-directed inhibition of chemotactic factor-induced neutrophil hyperactivity by pyrazolon derivatives. Definition of a chemotactic peptide antagonist.

    PubMed Central

    Dahinden, C; Fehr, J

    1980-01-01

    The two pyrazolon derivatives, phenylbutazone and sulfinpyrazone, selectively inhibit chemotactic peptide-induced effects on neutrophils. As they antagonize the induction of acute neutropenia in vivo and of cellular hyperadhesiveness, lysosomal enzyme release, hexose monophosphate shunt activity, and superoxide production in vitro, these effects occur with a specificity not shared with other prostaglandin biosynthesis inhibition by these drugs resembles the competitive type of antagonism and occurs at concentrations attainable in vivo under clinical conditions. The locomotory machinery, the direction-finding mechanisms, and the basic metabolic machinery of the cell are unaffected. These drugs interfere with specific binding of the formylpeptide to its receptor on neutrophils. PMID:7430350

  14. Peptide nucleic acids targeting β-globin mRNAs selectively inhibit hemoglobin production in murine erythroleukemia cells

    PubMed Central

    MONTAGNER, GIULIA; GEMMO, CHIARA; FABBRI, ENRICA; MANICARDI, ALEX; ACCARDO, IGEA; BIANCHI, NICOLETTA; FINOTTI, ALESSIA; BREVEGLIERI, GIULIA; SALVATORI, FRANCESCA; BORGATTI, MONICA; LAMPRONTI, ILARIA; BRESCIANI, ALBERTO; ALTAMURA, SERGIO; CORRADINI, ROBERTO; GAMBARI, ROBERTO

    2015-01-01

    In the treatment of hemoglobinopathies, amending altered hemoglobins and/or globins produced in excess is an important part of therapeutic strategies and the selective inhibition of globin production may be clinically beneficial. Therefore the development of drug-based methods for the selective inhibition of globin accumulation is required. In this study, we employed peptide nucleic acids (PNAs) to alter globin gene expression. The main conclusion of the present study was that PNAs designed to target adult murine β-globin mRNA inhibit hemoglobin accumulation and erythroid differentiation of murine erythroleukemia (MEL) cells with high efficiency and fair selectivity. No major effects were observed on cell proliferation. Our study supports the concept that PNAs may be used to target mRNAs that, similar to globin mRNAs, are expressed at very high levels in differentiating erythroid cells. Our data suggest that PNAs inhibit the excess production of globins involved in the pathophysiology of hemoglobinopathies. PMID:25405921

  15. Sequence-specific bacterial growth inhibition by peptide nucleic acid targeted to the mRNA binding site of 16S rRNA.

    PubMed

    Hatamoto, Masashi; Nakai, Kazufumi; Ohashi, Akiyoshi; Imachi, Hiroyuki

    2009-10-01

    Peptide nucleic acid (PNA) targeted to the functional domains of 23S rRNA can inhibit translation and cell growth. However, effective inhibition of translation and cell growth using 16S rRNA-targeted PNA has still not been achieved. Here, we report that PNA targeted to the functional site of 16S rRNA could inhibit both gene expression in vitro and bacterial growth in pure culture with sequence specificity. We used 10-mer PNAs conjugated with a cell-penetrating peptide, which targeted the mRNA binding site at the 3' end of 16S rRNA. Using 0.6 microM of the peptide-PNAs, cell-free ss-galactosidase production decreased by 50%, whereas peptide-PNAs with one or two mismatches to the target sequence showed much weaker inhibition effects. To determine the growth inhibition and bactericidal effects of the peptide-PNA conjugate, we performed OD measurement and viable cell counting. We observed dose- and sequence-dependent inhibition of cell growth and bactericidal effects. These growth inhibitory effects are observed both in the Gram-negative bacterium of Escherichia coli and the Gram-positive bacteria Bacillus subtilis and Corynebacterium efficiens, although inhibitory concentrations were different for each bacterial species. These results present possibilities for 16S rRNA sequence-based specific bacterial growth inhibition using a peptide-PNA conjugate.

  16. Inhibition of AKT/FoxO3a signaling induced PUMA expression in response to p53-independent cytotoxic effects of H1: A derivative of tetrandrine.

    PubMed

    Zhang, Yin-Xu; Liu, Xiao-Mei; Wang, Jing; Li, Jun; Liu, Ying; Zhang, Hua; Yu, Xue-Wen; Wei, Ning

    2015-01-01

    PUMA (p53 unregulated modulator of apoptosis), a BH3-only Bcl-2 family member, can be induced by p53-dependent and p53-independent manners. It plays an important role as regulator of cellular apoptosis. Herein, we evaluate the effects of H1 (a derivative of tetrandrine) on induction of PUMA and underlie its potential mechanism in p53-independent cytotoxic response. Anti-proliferative activity and evidently cytotoxic activity of H1 were observed in wild-type and p53 null cells. Further studies demonstrated that H1 resulted in an increase of cleaved PARP, decease of survivin and elevation of p-H2AX. What is more, H1 significantly induced PUMA expression in a concentration- and time-dependent manner and caused an increase of Bax/Bcl-2 ratio in p53 null cells. Of note, knockdown of PUMA attenuated cytotoxic activity of H1. Further studies demonstrated that inhibition of AKT/FoxO3a signaling contributed to H1-mediated PUMA induction. Targeted suppression of AKT/FoxO3a signaling by siRNA could overcome H1-mediated PUMA induction. In addition, H1 significantly suppressed NF-κB activity and caused an increase of early apoptotic and late apoptotic cells, and elevated caspase-3 activity. Taken together, we found that inhibition of AKT/FoxO3a signaling may contribute to H1-mediated PUMA induction, suggesting that inhibition of AKT/FoxO3a signaling result in PUMA expression in response to p53-independent cytotoxic effects of H1.

  17. Bax inhibiting peptide reduces apoptosis in neonatal rat hypoxic-ischemic brain damage

    PubMed Central

    Sun, Meng-Ya; Cui, Kai-Jie; Yu, Mao-Min; Zhang, Hui; Peng, Xiang-Li; Jiang, Hong

    2015-01-01

    Neonatal hypoxic ischemic encephalopathy (HIE) has been reported to induce apoptosis in neonates. We, therefore, analyzed the ability of Bax-inhibiting peptide (BIP) to provide neuroprotective effects during hypoxic-ischemic brain damage (HIBD). Seven-day-old wistar rat pups (n = 198) were randomly divided into a sham-operated group (Group S, n = 18), saline group (Group C, n = 90) and BIP group (Group B, n = 90). Pathological changes in the cerebral tissues of rat pups were analyzed using hematoxylin and eosin stain, TUNEL and Western blot. The expression of cytochrome c and caspase-3 was determined using western blot technique. Rat pups demonstrated neurobehavioral alteration in Groups C and B. TUNEL-positive cells in the left hippocampus were significantly increased in Group C and Group B after HIBD (P < 0.01) when compared with Group S. There was a marked reduction in TUNEL positive cells in subgroups B1 through B4 when compared with the respective subgroups C1 through C5. Compared with Group S, the expression of caspase-3 and cytochrome c was significantly increased in Groups C and B (P < 0.01). The difference in expression of caspase-3 and cytochrome c between subgroups B1 through B4 and C1 through C4 was significant (P < 0.01). In conclusions, the neuro-protective effect of BIP was due to a reduction of nerve cell apoptosis in our neonatal HIE rat model. We propose that BIP has potential as a neuro-protective drug in neonatal HIE cases. PMID:26823794

  18. Cytokine-mediated inhibition of fibrillar amyloid-β peptide degradation by human mononuclear phagocytes1

    PubMed Central

    Yamamoto, Masaru; Kiyota, Tomomi; Walsh, Shannon M.; Liu, Jianuo; Kipnis, Jonathan; Ikezu, Tsuneya

    2008-01-01

    Vaccination therapy of AD animal models and patients strongly suggests an active role of brain mononuclear phagocytes in immune-mediated clearance of amyloid-β peptides (Aβ) in brain. Although Aβ uptake by macrophages can be regulated by pro- and anti-inflammatory cytokines, their effects on macrophage-mediated Aβ degradation are poorly understood. To better understand this mechanism of degradation, we examined whether pro- and anti-inflammatory cytokines affect the degradation of Aβ using primary cultured human monocyte-derived macrophages (MDM) and microglia using pulse-chase analysis of fibrillar and oligomer 125I-Aβ40 and Aβ42. Initial uptake of fibrillar Aβ40 and Aβ42 was 40% and its degradation was saturated by 120 hrs in both MDM and microglia, compared to an initial uptake of oligomeric Aβ less than 0.5% and saturation of degradation within 24 hrs. Interferon-γ (IFN-γ) increased the intracellular retention of fibrillar Aβ40 and Aβ42 by inhibiting degradation, whereas interleukin-4 (IL-4), IL-10, and transforming growth factor-β1 (TGF-β1), but not IL-13 and IL-27, enhanced degradation. Fibrillar Aβ degradation in MDM is sensitive to lysosomal and insulin degrading enzyme (IDE) inhibitors but insensitive to proteasomal and neprilysin inhibitors. IFN-γ and TNF-α directly reduced the expression of IDE and chaperone molecules (Hsp70 and Hsc70), which are involved in refolding of aggregated proteins. Co-culture of MDM with activated, but not naïve T cells, suppressed Aβ degradation in MDM, which was partially blocked by a combination of neutralizing antibodies against pro-inflammatory cytokines. These data suggest that pro-inflammatory cytokines suppress Aβ degradation in MDM, whereas select anti-inflammatory and regulatory cytokines antagonize these effects. PMID:18768842

  19. [Prokaryotic expression and purification of antimicrobial peptide LL-37 and the inhibiting effect against Candida albicans].

    PubMed

    Huo, Y; Wang, F; Sun, B; Yin, L R; Zhang, P P; Zhang, Y J; Zhang, B M

    2016-02-01

    To study the inhibitory effect of antimicrobial peptide LL-37 on Candida albicans through its ability to promote the secretion of immune factors by vaginal epithelial cells. (1) LL-37 prokaryotic expression vector pET-Duet/LL-37 was constructed and its expression was induced in Escherichia coli M15. The expressed LL-37 fusion protein was purified and identified by western blot. Antifungal activity of the purified protein was initially identified by Kirby-Bauer (K-B) method. (2) Purified LL-37 protein was added to human vaginal epithelial cells co-cultured with Candida, and inhibitory effect on Candida growth was determined by the glucose consumption method. Interferon γ (IFN-γ), interleukin 10 (IL-10) concentration and IFN-γ/IL-10 ratio were measured by ELISA at different time points. (1) LL-37 fusion protein was purified to 96% purity at a concentration of 433.92 μg/ml, and was shown to possess anti-fungal activity confirmed by the K-B method. (2) A Candida-vaginal epithelial cells co-culture system was successfully constructed. LL-37 recombinant protein inhibited the growth of Candida with absorbance values significantly higher in the treatment group compared to the control group at all measured time points (12-hour: 3.008±0.003 versus 2.967±0.003, 24-hour: 2.941±0.003 versus 2.601±0.003, 48-hour: 2.893 ± 0.004 versus 2.409 ± 0.003; all P<0.01). Furthermore, the rate of decrease was also much slower compared to the control group. In both control and experimental groups, IFN-γ and IL-10 secretion levels were observed to rise at first peaking at 24 hours and subsequently decrease. For each time period, IFN-γ concentration in the experimental group was significantly higher at 24 hours compared to the control group [(104.00 ± 1.07) versus (85.17 ± 0.28) pg/ml,P<0.01]. In contrast, IL-10 concentrations were significantly lower than the control group at all time points (P<0.01). IFN-γ/IL-10 ratio was also observed to be significantly higher than the

  20. Recombinant albumins containing additional peptide sequences smaller than barbourin retain the ability of barbourin-albumin to inhibit platelet aggregation.

    PubMed

    Sheffield, William P; Wilson, Brianna; Eltringham-Smith, Louise J; Gataiance, Sharon; Bhakta, Varsha

    2005-05-01

    The previously described fusion protein BLAH(6) (Marques JA et al.,Thromb Haemost 2001; 86: 902-8) is a recombinant protein that combines the small disintegrin barbourin with hexahistidine-tagged rabbit serumalbumin (RSA) produced in Pichia pastoris yeast. We sought to determine: (1) if BLAH(6) was immunogenic; and (2) if its barbourin domain could be productively replaced with smaller peptides. Purified BLAH(6) was injected into rabbits, and anti-barbourin antibodies were universally detected in plasma 28 days later; BLAH(6) was, however, equally effective in reducing platelet aggregation in both naive and pre-treated rabbits. Thrombocytopenia was not observed, and complexing BLAH(6) to alpha(IIb)beta(3) had no effect on antibody detection. The barbourin moiety of BLAH(6) was replaced with each of four sequences: Pep I (VCKGDWPC); PepII (VCRGDWPC); PepIII (bar-bourin 41-54); and PepIV (LPSPGDWR). The corresponding fusion proteins were tested for their ability to inhibit ADP-induced platelet aggregation. PepIII-LAH(6) inhibited neither rabbit nor human platelets. PepI-LAH(6) and PepIV-LAH(6) inhibited rabbit platelet aggregation as effectively as BLAH(6), but PepIV-LAH(6) did not inhibit human platelet aggregation. PepI-LAH(6) and PepIILAH(6) inhibited human platelet aggregation with IC(50)s 10- and 20-fold higher than BLAH(6). Cross-immunoprecipitation assays with human platelet lysates confirmed that all proteins and peptides interacted with the platelet integrin alpha(IIb)beta(3), but with greatly varying affinities. Our results suggest that the antiplatelet activity of BLAH(6) can be retained in albumin fusion proteins in which smaller peptides replace the barbourin domain; these proteins may be less immunogenic than BLAH(6).

  1. Inhibition of discoidin domain receptor 2-mediated lung cancer cells progression by gold nanoparticle-aptamer-assisted delivery of peptides containing transmembrane-juxtamembrane 1/2 domain

    SciTech Connect

    Kim, Daehwan; Yeom, Ji-Hyun; Lee, Boeun; Lee, Kangseok; Bae, Jeehyeon; Rhee, Sangmyung

    2015-08-21

    The delivery of biologically functional peptides into mammalian cells can be a direct and effective method for cancer therapy and treatment of other diseases. Discoidin domain receptor 2 (DDR2) is a collagen-induced receptor tyrosine kinase recently identified as a novel therapeutic target in lung cancer. In this study, we report that peptides containing the functional domain of DDR2 can be efficiently delivered into lung malignant cancer cells via a gold nanoparticle-DNA aptamer conjugate (AuNP-Apt)-based system. Peptide delivery resulted in the abrogation of DDR2 activation triggered by collagen. Moreover, the peptide delivered by the AuNP-Apt system inhibited cancer cell proliferation and invasion mediated by DDR2 activation. Thus, these results suggest that peptide loaded onto AuNP-Apt conjugates can be used for the development of peptide-based biomedical applications for the treatment of DDR2-positive cancer. - Highlights: • TM-JM1/2 peptides are efficiently delivered into cells by AuNP-Apt-conjugates. • TM-JM1/2 peptides loaded onto AuNP-Apt conjugates inhibit DDR2 activation. • Inhibition of DDR2 activation by TM-JM1/2 peptides decreases tumor progression.

  2. Antimicrobial Peptides from Amphibian Skin Potently Inhibit Human Immunodeficiency Virus Infection and Transfer of Virus from Dendritic Cells to T Cells

    PubMed Central

    VanCompernolle, Scott E.; Taylor, R. Jeffery; Oswald-Richter, Kyra; Jiang, Jiyang; Youree, Bryan E.; Bowie, John H.; Tyler, Michael J.; Conlon, J. Michael; Wade, David; Aiken, Christopher; Dermody, Terence S.; KewalRamani, Vineet N.; Rollins-Smith, Louise A.; Unutmaz, Derya

    2005-01-01

    Topical antimicrobicides hold great promise in reducing human immunodeficiency virus (HIV) transmission. Amphibian skin provides a rich source of broad-spectrum antimicrobial peptides including some that have antiviral activity. We tested 14 peptides derived from diverse amphibian species for the capacity to inhibit HIV infection. Three peptides (caerin 1.1, caerin 1.9, and maculatin 1.1) completely inhibited HIV infection of T cells within minutes of exposure to virus at concentrations that were not toxic to target cells. These peptides also suppressed infection by murine leukemia virus but not by reovirus, a structurally unrelated nonenveloped virus. Preincubation with peptides prevented viral fusion to target cells and disrupted the HIV envelope. Remarkably, these amphibian peptides also were highly effective in inhibiting the transfer of HIV by dendritic cells (DCs) to T cells, even when DCs were transiently exposed to peptides 8 h after virus capture. These data suggest that amphibian-derived peptides can access DC-sequestered HIV and destroy the virus before it can be transferred to T cells. Thus, amphibian-derived antimicrobial peptides show promise as topical inhibitors of mucosal HIV transmission and provide novel tools to understand the complex biology of HIV capture by DCs. PMID:16140737

  3. A novel Omp25-binding peptide screened by phage display can inhibit Brucella abortus 2308 infection in vitro and in vivo

    PubMed Central

    Zhang, Junbo; Guo, Fei; Huang, Xiaoqiang; Zhang, Hui; Wang, Yuanzhi; Yin, Shuanghong; Li, Zhiqiang

    2014-01-01

    Brucellosis is a globally distributed zoonotic disease affecting animals and humans, and current antibiotic and vaccine strategies are not optimal. The surface-exposed protein Omp25 is involved in Brucella virulence and plays an important role in Brucella pathogenesis during infection, suggesting that Omp25 could be a useful target for selecting potential therapeutic molecules to inhibit Brucella pathogenesis. In this study, we identified, we believe for the first time, peptides that bind specifically to the Omp25 protein of pathogens, using a phage panning technique, After four rounds of panning, 42 plaques of eluted phages were subjected to pyrosequencing. Four phage clones that bound better than the other clones were selected following confirmation by ELISA and affinity constant determination. The peptides selected could significantly inhibit Brucella abortus 2308 (S2308) internalization and intracellular growth in RAW264.7 macrophages, and significantly induce secretion of TNF-α and IL-12 in peptide- and S2308-treated cells. Any observed peptide (OP11, OP27, OP35 or OP40) could significantly inhibit S2308 infection in BALB/c mice. Moreover, the peptide OP11 was the best candidate peptide for inhibiting S2308 infection in vitro and in vivo. These results suggest that peptide OP11 has potential for exploitation as a peptide drug in resisting S2308 infection. PMID:24722798

  4. A fertilization promoting peptide (FPP)-related tripeptide competitively inhibits responses to FPP: a cause of male subfertility?

    PubMed

    Fraser, L R; Hanyaloglu, A; Cockle, S M

    1997-12-01

    Fertilization promoting peptide (FPP; pGlu-Glu-ProNH2), a tripeptide structurally related to thyrotrophin releasing hormone (TRH; pGlu-His-ProNH2), is present in the prostate gland and seminal plasma of several mammalian species. FPP has been shown not only to stimulate the capacitation and fertilizing ability of epididymal mouse and ejaculated human spermatozoa, but also to inhibit spontaneous acrosome loss in mouse spermatozoa. These results suggest a possible role in vivo for FPP to maximize the fertilizing potential of the few cells that reach the ampulla. In this study we have investigated the effects of FPP-related peptides on mouse sperm capacitation and the acrosome reaction (using chlortetracycline fluorescence) and in vitro fertilizing ability. Deamidated FPP neither stimulated capacitation when tested at 50-200 nM nor interfered with FPP's stimulation of capacitation. Three neutral peptides (pGlu-Phe-ProNH2, MeO-FPP, pGlu-Gln-ProNH2) were also evaluated. pGlu-Phe-ProNH2, slightly stimulatory when used alone, had no additive effect when used in combination with FPP and the methyl derivative of FPP had no bioactivity itself and did not inhibit responses to FPP. In marked contrast, pGlu-Gln-ProNH2 (Gln-FPP), which had no bioactivity when added to uncapacitated suspensions at 50-100 nM, significantly inhibited FPP's stimulation of capacitation and fertilizing ability in vitro. Furthermore, when Gln-FPP + FPP were added to capacitated suspensions, Gln-FPP prevented FPP's inhibition of spontaneous acrosome loss. Our recent studies have indicated that FPP and adenosine can elicit similar responses but appear to act at different sites. The fact that Gln-FPP inhibited responses to FPP, but not to adenosine, indicates that Gln-FPP is acting at an FPP-specific site. We, therefore, conclude that the specific structure of the FPP molecule is crucial for biological activity. Removal of the terminal amide group abolishes bioactivity and changes to the central amino

  5. Inhibition of iron/ascorbate-induced lipid peroxidation by an N-terminal peptide of bovine lactoferrin and its acylated derivatives.

    PubMed

    Wakabayashi, H; Matsumoto, H; Hashimoto, K; Teraguchi, S; Takase, M; Hayasawa, H

    1999-05-01

    Bovine lactoferrin (LF) and lactoferricin B (LFcin B), an antimicrobial peptide derived from bovine LF, inhibited thiobarbituric acid-reactive substance (TBARS) formation in a iron/ascorbate-induced liposomal phospholipid peroxidation system. The inhibition of TBARS formation occurred with N-acylated 9-mer peptides with a core sequence of LFcin B and, compared to LFcin B, their antioxidant effect was clearly observed at a concentration almost 100 times lower.

  6. Identification of IGFBP-3 fragments generated by KLK2 and prevention of fragmentation by KLK2-inhibiting peptides.

    PubMed

    Hekim, Can; Riipi, Tero; Weisell, Janne; Närvänen, Ale; Koistinen, Riitta; Stenman, Ulf-Håkan; Koistinen, Hannu

    2010-04-01

    Kallikrein-related peptidase 2 (KLK2) degrades insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) in vitro. IGFBP-3 forms complexes with IGFs, preventing them from binding to their receptors and stimulating cell proliferation and survival. IGF-independent actions have also been described for IGFBP-3. The degradation of IGFBP-3 by KLK2 or other proteases in the prostate may promote the growth of prostate cancer. We studied IGFBP-3 degradation by immunoblotting and two specific immunoassays, one recognizing only native non-fragmented IGFBP-3 and the other one recognizing both intact and proteolytically cleaved IGFBP-3. Peptides were used to inhibit the enzyme activity of KLK2 and cleavage sites in IGFBP-3 were identified by mass spectrometry. KLK2 proteolyzed IGFBP-3 into several small fragments, mostly after Arg residues, in keeping with the trypsin-like activity of KLK2. The fragmentation could be inhibited by KLK2-inhibiting peptides in a dose-dependent fashion. As degradation of IGFBP-3 could lead to a more aggressive cancer phenotype, inhibition of KLK2 activity might be useful for treatment of prostate cancer and other diseases associated with increased KLK2 activity.

  7. Characterization of peptides from common bean protein isolates and their potential to inhibit markers of type-2 diabetes, hypertension and oxidative stress.

    PubMed

    Mojica, Luis; Luna-Vital, Diego A; González de Mejía, Elvira

    2017-06-01

    Diabetes and hypertension are diseases affecting a high proportion of the world population; the use of food-based products such as common bean peptides may contribute to reduce the risk of complications associated to chronic diseases. The aim was to produce and characterize peptides from common bean protein isolates and evaluate their potential to inhibit markers of type-2 diabetes, hypertension and oxidative stress. Mexican black and Brazilian Carioca bean isolated proteins were characterized after pepsin/pancreatin digestion. Also, four synthesized pure peptides, originally found in these beans, were evaluated. Bean protein digests and pure peptides exerted dipeptidyl peptidase-IV (DPP-IV) inhibition (IC50 = 0.03-0.87 mg dry weight (DW) mL(-1) ). Lineweaver-Burk plots and computational modeling showed competitive inhibition of DPP-IV. Angiotensin-converting enzyme (ACE) inhibition ranged from IC50 = 0.09 to 0.99 mg DW mL(-1) , and α-glucosidase inhibition ranged from 36.3 to 50.1% mg(-1) DW. Carioca Perola bean digested proteins presented the highest antioxidant capacity (269.3 mmol L(-1) Trolox equivalent g(-1) DW) as the peptide KTYGL (P > 0.05) with the most potent DPP-IV and ACE inhibition. Peptides from common bean have antidiabetic and antihypertensive potential regardless of their antioxidant capacity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Structural Basis for High-Affinity Peptide Inhibition of Human Pin1

    PubMed Central

    Zhang, Yan; Daum, Sebastian; Wildemann, Dirk; Zhou, Xiao Zhen; Verdecia, Mark A.; Bowman, Marianne E.; Lücke, Christian; Hunter, Tony; Lu, Kun-Ping; Fischer, Gunter; Noel, Joseph P.

    2009-01-01

    Human Pin1 is a key regulator of cell-cycle progression and plays growth-promoting roles in human cancers. High-affinity inhibitors of Pin1 may provide a unique opportunity for disrupting oncogenic pathways. Here we report two high-resolution X-ray crystal structures of human Pin1 bound to non-natural peptide inhibitors. The structures of the bound high-affinity peptides identify a type-I β-turn conformation for Pin1 prolyl peptide isomerase domain–peptide binding and an extensive molecular interface for high-affinity recognition. Moreover, these structures suggest chemical elements that may further improve the affinity and pharmacological properties of future peptide-based Pin inhibitors. Finally, an intramolecular hydrogen bond observed in both peptide complexes mimics the cyclic conformation of FK506 and rapamycin. Both FK506 and rapamycin are clinically important inhibitors of other peptidyl-prolyl cis-trans isomerases. This comparative discovery suggests that a cyclic peptide polyketide bridge, like that found in FK506 and rapamycin or a similar linkage, may significantly improve the binding affinity of structure-based Pin1 inhibitors. PMID:17518432

  9. Peptide inhibitors of botulinum neurotoxin serotype A: design, inhibition, cocrystal structures, structure-activity relationship and pharmacophore modeling

    SciTech Connect

    Kumar G.; Swaminathan S.; Kumaran, D.; Ahmed, S. A.

    2012-05-01

    Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC{sub 50} of 0.9 {micro}M and a K{sub i} of 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features.

  10. Single residue deletions along the length of the influenza HA fusion peptide lead to inhibition of membrane fusion function

    SciTech Connect

    Langley, William A.; Thoennes, Sudha; Bradley, Konrad C.; Galloway, Summer E.; Talekar, Ganesh R.; Cummings, Sandra F.; Vareckova, Eva; Russell, Rupert J.; Steinhauer, David A.

    2009-11-25

    A panel of eight single amino acid deletion mutants was generated within the first 24 residues of the fusion peptide domain of the of the hemagglutinin (HA) of A/Aichi/2/68 influenza A virus (H3N2 subtype). The mutant HAs were analyzed for folding, cell surface transport, cleavage activation, capacity to undergo acid-induced conformational changes, and membrane fusion activity. We found that the mutant DELTAF24, at the C-terminal end of the fusion peptide, was expressed in a non-native conformation, whereas all other deletion mutants were transported to the cell surface and could be cleaved into HA1 and HA2 to activate membrane fusion potential. Furthermore, upon acidification these cleaved HAs were able to undergo the characteristic structural rearrangements that are required for fusion. Despite this, all mutants were inhibited for fusion activity based on two separate assays. The results indicate that the mutant fusion peptide domains associate with target membranes in a non-functional fashion, and suggest that structural features along the length of the fusion peptide are likely to be relevant for optimal membrane fusion activity.

  11. Galectin-1-asialofetuin interaction is inhibited by peptides containing the tyr-xxx-tyr motif acting on the glycoprotein.

    PubMed

    Wéber, Edit; Hetényi, Anasztázia; Váczi, Balázs; Szolnoki, Eva; Fajka-Boja, Roberta; Tubak, Vilmos; Monostori, Eva; Martinek, Tamás A

    2010-01-25

    Galectin-1 (Gal-1), a ubiquitous beta-galactoside-binding protein expressed by various normal and pathological tissues, has been implicated in cancer and autoimmune/inflammatory diseases in consequence of its regulatory role in adhesion, cell viability, proliferation, and angiogenesis. The functions of Gal-1 depend on its affinity for beta-galactoside-containing glycoconjugates; accordingly, the inhibition of sugar binding blocks its functions, hence promising potential therapeutic tools. The Tyr-Xxx-Tyr peptide motifs have been reported to be glycomimetic sequences, mainly on the basis of their inhibitory effect on the Gal-1-asialofetuin (ASF) interaction. However, the results regarding the efficacy of the Tyr-Xxx-Tyr motif as a glycomimetic inhibitor are still controversial. The present STD and trNOE NMR experiments reveal that the Tyr-Xxx-Tyr peptides studied do not bind to Gal-1, whereas their binding to ASF is clearly detected. (15)N,(1)H HSQC titrations with (15)N-labeled Gal-1 confirm the absence of any peptide-Gal-1 interaction. These data indicate that the Tyr-Xxx-Tyr peptides tested in this work are not glycomimetics as they interact with ASF via an unrevealed molecular linkage.

  12. A novel physiological property of snake bradykinin-potentiating peptides-reversion of MK-801 inhibition of nicotinic acetylcholine receptors.

    PubMed

    Nery, Arthur A; Trujillo, Cleber A; Lameu, Claudiana; Konno, Katsuhiro; Oliveira, Vitor; Camargo, Antonio C M; Ulrich, Henning; Hayashi, Mirian A F

    2008-10-01

    The first naturally occurring angiotensin-converting enzyme (ACE) inhibitors described are pyroglutamyl proline-rich oligopeptides, found in the venom of the viper Bothrops jararaca, and named as bradykinin-potentiating peptides (BPPs). Biochemical and pharmacological properties of these peptides were essential for the development of Captopril, the first active site-directed inhibitor of ACE, currently used for the treatment of human hypertension. However, a number of data have suggested that the pharmacological activity of BPPs could not only be explained by their inhibitory action on enzymatic activity of somatic ACE. In fact, we showed recently that the strong and long-lasting anti-hypertensive effect of BPP-10c [inhibition. On the other hand, nicotinic acetylcholine receptors expressed in blood vessels have been related to blood pressure regulation. Therefore, we have studied the effects of BPP-10c on acetylcholine receptor function in the PC12 pheochromocytoma cell line, which following induction to neuronal differentiation expresses most of the nicotinic receptor subtypes. BPP-10c did not induce receptor-mediated ion flux, nor potentiated carbamoylcholine-provoked receptor activity as determined by whole-cell recording. This peptide, however, alleviated MK-801-induced inhibition of nicotinic acetylcholine receptor activity. Although more data are needed for understanding the mechanism of the BPP-10c effect on nicotinic receptor activity and its relationship with the anti-hypertensive activity, this work reveals possible therapeutic applications for BPP-10c in establishing normal acetylcholine receptor activity.

  13. Inhibition of PKCalpha and rhoA translocation in differentiated smooth muscle by a caveolin scaffolding domain peptide.

    PubMed

    Taggart, M J; Leavis, P; Feron, O; Morgan, K G

    2000-07-10

    Receptor-coupled contraction of smooth muscle involves recruitment to the plasma membrane of downstream effector molecules PKCalpha and rhoA but the mechanism of this signal integration is unclear. Caveolins, the principal structural proteins of caveolar plasma membrane invaginations, have been implicated in the organization and regulation of many signal transducing molecules. Thus, using laser scanning confocal immunofluorescent microscopy, we tested the hypothesis that caveolin is involved in smooth muscle signaling by investigating caveolin isoform expression and localization, together with the effect of a peptide inhibitor of caveolin function, in intact differentiated smooth muscle cells. All three main caveolin isoforms were identified in uterine, stomach, and ileal smooth muscles and assumed a predominantly plasma membranous localization in myometrial cells. Cytoplasmic introduction of a peptide corresponding to the caveolin-1 scaffolding domain-an essential region for caveolin interaction with signaling molecules--significantly inhibited agonist-induced translocation of both PKCalpha and rhoA. Translocation was unimpaired by a scrambled peptide and was unaltered in sham-treated cells. The membranous localization of caveolins, and direct inhibition of receptor-coupled PKCalpha and rhoA translocation by the caveolin-1 scaffolding domain, supports the concept that caveolins can regulate the integration of extracellular contractile stimuli and downstream intracellular effectors in smooth muscle.

  14. Inhibition of TLR4 signaling by Brucella TIR-containing protein TcpB-derived decoy peptides.

    PubMed

    Ke, Yuehua; Li, Wenna; Wang, Yufei; Yang, Mingjuan; Guo, Jinpeng; Zhan, Shaoxia; Du, Xinying; Wang, Zhoujia; Yang, Min; Li, Juan; Li, Wenfeng; Chen, Zeliang

    2016-09-01

    Brucella spp. avoid host immune recognition and thus, weaken the immune response to infection. The Toll/interleukin-1 receptor (TIR) domain-containing protein (TcpB/Btp1) of Brucella spp. is thought to be involved in blocking host innate immune responses by binding to adaptors downstream of Toll-like receptors. In this study, based on the observation that TcpB binds to the host target proteins, MAL, through the TIR domain, we examined decoy peptides from TcpB TIR domains and found that TB-8 and TB-9 substantially inhibit lipopolysaccharide (LPS)-induced signaling in vitro and in vivo. Both these peptides share a common loop, the DD loop, indicating a novel structural region mediating TIR interactions. The inhibition of LPS signaling by TB-8 and TB-9 shows no preference to MyD88-dependent cytokines, such as TNF-α and IL-1β or TRIF-dependent cytokines including IFN-β and IL-6. Furthermore, these two peptides rescue the virulence of Brucella ΔtcpB mutants at the cellular level, indicating key roles of the DD loop in Brucella pathogenesis. In conclusion, identification of inhibitors from the bacterial TIR domains is helpful not only for illustrating interacting mechanisms between TIR domains and bacterial pathogenesis, but also for developing novel signaling inhibitors and therapeutics for human inflammatory diseases.

  15. Evidence That Bacteriophage λ Kil Peptide Inhibits Bacterial Cell Division by Disrupting FtsZ Protofilaments and Sequestering Protein Subunits*

    PubMed Central

    Hernández-Rocamora, Víctor M.; Alfonso, Carlos; Margolin, William; Zorrilla, Silvia; Rivas, Germán

    2015-01-01

    The effects of Kil peptide from bacteriophage λ on the assembly of Escherichia coli FtsZ into one subunit thick protofilaments were studied using combined biophysical and biochemical methods. Kil peptide has recently been identified as the factor from bacteriophage λ responsible for the inhibition of bacterial cell division during lytic cycle, targeting FtsZ polymerization. Here, we show that this antagonist blocks FtsZ assembly into GTP-dependent protofilaments, producing a wide distribution of smaller oligomers compared with the average size of the intact protofilaments. The shortening of FtsZ protofilaments by Kil is detectable at concentrations of the peptide in the low micromolar range, the mid-point of the inhibition being close to its apparent affinity for GDP-bound FtsZ. This antagonist not only interferes with FtsZ assembly but also reverses the polymerization reaction. The negative regulation by Kil significantly reduces the GTPase activity of FtsZ protofilaments, and FtsZ polymers assembled in guanosine-5′-[(α,β)-methyleno]triphosphate are considerably less sensitive to Kil. Our results suggest that, at high concentrations, Kil may use an inhibition mechanism involving the sequestration of FtsZ subunits, similar to that described for other inhibitors like the SOS response protein SulA or the moonlighting enzyme OpgH. This mechanism is different from those employed by the division site selection antagonists MinC and SlmA. This work provides new insight into the inhibition of FtsZ assembly by phages, considered potential tools against bacterial infection. PMID:26124275

  16. Evidence That Bacteriophage λ Kil Peptide Inhibits Bacterial Cell Division by Disrupting FtsZ Protofilaments and Sequestering Protein Subunits.

    PubMed

    Hernández-Rocamora, Víctor M; Alfonso, Carlos; Margolin, William; Zorrilla, Silvia; Rivas, Germán

    2015-08-14

    The effects of Kil peptide from bacteriophage λ on the assembly of Escherichia coli FtsZ into one subunit thick protofilaments were studied using combined biophysical and biochemical methods. Kil peptide has recently been identified as the factor from bacteriophage λ responsible for the inhibition of bacterial cell division during lytic cycle, targeting FtsZ polymerization. Here, we show that this antagonist blocks FtsZ assembly into GTP-dependent protofilaments, producing a wide distribution of smaller oligomers compared with the average size of the intact protofilaments. The shortening of FtsZ protofilaments by Kil is detectable at concentrations of the peptide in the low micromolar range, the mid-point of the inhibition being close to its apparent affinity for GDP-bound FtsZ. This antagonist not only interferes with FtsZ assembly but also reverses the polymerization reaction. The negative regulation by Kil significantly reduces the GTPase activity of FtsZ protofilaments, and FtsZ polymers assembled in guanosine-5'-[(α,β)-methyleno]triphosphate are considerably less sensitive to Kil. Our results suggest that, at high concentrations, Kil may use an inhibition mechanism involving the sequestration of FtsZ subunits, similar to that described for other inhibitors like the SOS response protein SulA or the moonlighting enzyme OpgH. This mechanism is different from those employed by the division site selection antagonists MinC and SlmA. This work provides new insight into the inhibition of FtsZ assembly by phages, considered potential tools against bacterial infection.

  17. Peptide Inhibitor of Complement C1 (PIC1) Rapidly Inhibits Complement Activation after Intravascular Injection in Rats

    PubMed Central

    Sharp, Julia A.; Hair, Pamela S.; Pallera, Haree K.; Kumar, Parvathi S.; Mauriello, Clifford T.; Nyalwidhe, Julius O.; Phelps, Cody A.; Park, Dalnam; Thielens, Nicole M.; Pascal, Stephen M.; Chen, Waldon; Duffy, Diane M.; Lattanzio, Frank A.; Cunnion, Kenji M.; Krishna, Neel K.

    2015-01-01

    The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1). In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases. PMID:26196285

  18. Saturation mutagenesis of selected residues of the α-peptide of the lantibiotic lacticin 3147 yields a derivative with enhanced antimicrobial activity

    PubMed Central

    Field, Des; Molloy, Evelyn M; Iancu, Catalin; Draper, Lorraine A; O' Connor, Paula M; Cotter, Paul D; Hill, Colin; Ross, R Paul

    2013-01-01

    Summary The lantibiotic lacticin 3147 consists of two ribosomally synthesized and post-translationally modified antimicrobial peptides, Ltnα and Ltnβ, which act synergistically against a wide range of Gram-positive microorganisms. We performed saturation mutagenesis of specific residues of Ltnα to determine their functional importance. The results establish that Ltnα is more tolerant to change than previously suggested by alanine scanning mutagenesis. One substitution, LtnαH23S, was identified which improved the specific activity of lacticin 3147 against one pathogenic strain, Staphylococcus aureus NCDO1499. This represents the first occasion upon which the activity of a two peptide lantibiotic has been enhanced through bioengineering. Funding Information Work in the authors' laboratory is supported by the Irish Government under the National Development Plan; by the Irish Research Council for Science Engineering and Technology (IRCSET); by Enterprise Ireland; and by Science Foundation Ireland (SFI), through the Alimentary Pharmabiotic Centre (APC) at University College Cork, Ireland, which is supported by the SFI-funded Centre for Science, Engineering and Technology (SFI-CSET) and provided P.D.C., C.H and R.P.R. with SFI Principal Investigator funding. PMID:23433070

  19. Characterization of angiotensin-I converting enzyme inhibiting peptide from Venerupis philippinarum with nano-liquid chromatography in combination with orbitrap mass spectrum detection and molecular docking

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Wu, Tizhi; Sheng, Naijuan; Yang, Li; Wang, Qian; Liu, Rui; Wu, Hao

    2017-06-01

    The complexity and diversity of peptide mixture from protein hydrolysates make their characterization difficult. In this study, a method combining nano LC-MS/MS with molecular docking was applied to identifying and characterizing a peptide with angiotensin-I converting enzyme (ACE-I) inhibiting activity from Venerupis philippinarum hydrolysate. Firstly, ethanol supernatant of V. philippinarum hydrolysate was separated into active fractions with chromatographic methods such as ion-exchange chromatography and high performance liquid chromatography in combination. Then seven peptides from active fraction were identified according to the searching result of the MS/MS spectra against protein databases. Peptides were synthesized and subjected to ACE-I-inhibition assay. The peptide NTLTLIDTGIGMTK showed the highest potency with an IC50 of 5.75 μmol L-1. The molecular docking analysis showed that the ACE-I inhibiting peptide NTLTLIDTGIGMTK bond with residues Glu123, Glu403, Arg522, Glu376, Gln281 and Asn285 of ACE-I. Therefore, active peptides could be identified with the present method rather than the traditional purification and identification strategies. It may also be feasible to identify other food-derived peptides which target other enzymes and receptors with the method developed in this study.

  20. Inhibition of altered peptide ligand-mediated antagonism of human GAD65-responsive CD4+ T cells by non-antagonizable T cells.

    PubMed

    Gebe, John A; Masewicz, Susan A; Kochik, Sharon A; Reijonen, Helena; Nepom, Gerald T

    2004-12-01

    Altered peptide ligands derived from T cell-reactive self antigens have been shown to be protective therapeutic agents in animal models of autoimmunity. In this study we identified several altered peptide ligands derived from the type 1 diabetes-associated autoantigen human glutamic acid decarboxylase 65 (hGAD65) epitope that were capable of antagonizing a subset of a panel of human CD4(+) GAD65 (555-567)-responsive T cell clones derived from a diabetic individual. While no altered peptide ligand was able to antagonize all six clones in the T cell panel, a single-substituted peptide of isoleucine to methionine at position 561, which resides at the TCR contact p5 position, was able to antagonize five out of the six hGAD65-responsive clones. In a mixed T cell culture system we observed that altered peptide ligand-mediated antagonism is inhibited in a dose-dependent manner by the presence of non-antagonizable hGAD65 (555-567)-responsive T cells. From an analysis of the cytokines present in the mixed T cell cultures, interleukin-2 was sufficient to inhibit altered peptide ligand-induced antagonism. The inhibition of altered peptide ligand-mediated antagonism of self-antigen-responsive T cells by non-antagonizable T cells has implications in altered peptide ligand therapy where T cell antagonism is the goal.

  1. New substrates of the multispecific bile acid transporter in liver cells: interference of some linear renin inhibiting peptides with transport protein(s) for bile acids.

    PubMed

    Bertrams, A A; Ziegler, K

    1991-01-23

    Interactions between some stable linear peptides with renin inhibitory activity and a multispecific transport system in the basolateral plasma membrane of liver cells was studied on cell suspensions. The peptides used in our experiments were taken up by liver cells and subsequently eliminated without any biotransformation (e.g., proteolysis). No degradation products could be detected in the extracellular medium by thin-layer chromatography. All peptides tested inhibited the uptake of physiological and of some foreign substrates of the multispecific bile acid transporter (MT). The phalloidin response of liver cells was also inhibited to a similar degree in a concentration-dependent manner. The potency of inhibition did not correlate with the lipophilic properties of the peptides. On the other hand a tight correlation could be documented between the inhibition of cholate transport and that of the phalloidin response. Transport inhibition of typical substrates of the MT by the above renin inhibitors was competitive. In contrast, the transport of a typical substrate of the bilirubin carrier (rifampicin), of amino acids (alpha-aminoisobutyric acid), long chain fatty acids (oleic acid) and cationic compounds (thiamin hydrochloride) was not inhibited by the same renin inhibitors. These results indicate that linear renin inhibiting peptides are taken up into liver cells by carrier proteins related to the MT.

  2. Cytotoxic amyloid peptides inhibit cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by enhancing MTT formazan exocytosis.

    PubMed

    Liu, Y; Schubert, D

    1997-12-01

    Amyloid beta peptide (A beta) neurotoxicity is believed to play a central role in the pathogenesis of Alzheimer's disease. An early indicator of A beta toxicity is the inhibition of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction to MTT formazan, a widely used assay for measuring cell viability. In this report we show that A beta and other cytotoxic amyloid peptides such as human amylin dramatically enhance MTT formazan exocytosis, resulting in the inhibition of cellular MTT reduction. Only the amyloid peptides that are known to be cytotoxic enhanced MTT formazan exocytosis. Basal MTT formazan exocytosis and amyloid peptide-enhanced MTT formazan exocytosis are blocked by several drugs with diverse known effects. These and other data suggest that MTT formazan exocytosis is a multistep process and that cytotoxic amyloid peptides enhance MTT formazan exocytosis through an intracellular signal transduction pathway.

  3. Inhibition of fibronectin binding and fibronectin-mediated cell adhesion to collagen by a peptide from the second type I repeat of thrombospondin

    PubMed Central

    1993-01-01

    The platelet and extracellular matrix glycoprotein thrombospondin interacts with various types of cells as both a positive and negative modulator of cell adhesion, motility, and proliferation. These effects may be mediated by binding of thrombospondin to cell surface receptors or indirectly by binding to other extracellular matrix components. The role of peptide sequences from the type I repeats of thrombospondin in its interaction with fibronectin were investigated. Fibronectin bound specifically to the peptide Gly-Gly-Trp-Ser-His-Trp from the second type I repeat of thrombospondin but not to the corresponding peptides from the first or third repeats or flanking sequences from the second repeat. The two Trp residues and the His residue were essential for binding, and the two Gly residues enhanced the affinity of binding. Binding of the peptide and intact thrombospondin to fibronectin were inhibited by the gelatin-binding domain of fibronectin. The peptide specifically inhibited binding of fibronectin to gelatin or type I collagen and inhibited fibronectin-mediated adhesion of breast carcinoma and melanoma cells to gelatin or type I collagen substrates but not direct adhesion of the cells to fibronectin, which was inhibited by the peptide Gly-Arg-Gly-Asp-Ser. Thus, the fibronectin- binding thrombospondin peptide Gly-Gly-Trp-Ser-His-Trp is a selective inhibitor of fibronectin-mediated interactions of cells with collagen in the extracellular matrix. PMID:8468356

  4. Specific Inhibition of Herpes Simplex Virus DNA Polymerase by Helical Peptides Corresponding to the Subunit Interface

    NASA Astrophysics Data System (ADS)

    Digard, Paul; Williams, Kevin P.; Hensley, Preston; Brooks, Ian S.; Dahl, Charles E.; Coen, Donald M.

    1995-02-01

    The herpes simplex virus DNA polymerase consists of two subunits-a catalytic subunit and an accessory subunit, UL42, that increases processivity. Mutations affecting the extreme C terminus of the catalytic subunit specifically disrupt subunit interactions and ablate virus replication, suggesting that new antiviral drugs could be rationally designed to interfere with polymerase heterodimerization. To aid design, we performed circular dichroism (CD) spectroscopy and analytical ultracentrifugation studies, which revealed that a 36-residue peptide corresponding to the C terminus of the catalytic subunit folds into a monomeric structure with partial α-helical character. CD studies of shorter peptides were consistent with a model where two separate regions of α-helix interact to form a hairpin-like structure. The 36-residue peptide and a shorter peptide corresponding to the C-terminal 18 residues blocked UL42-dependent long-chain DNA synthesis at concentrations that had no effect on synthesis by the catalytic subunit alone or by calf thymus DNA polymerase δ and its processivity factor. These peptides, therefore, represent a class of specific inhibitors of herpes simplex virus DNA polymerase that act by blocking accessory-subunit-dependent synthesis. These peptides or their structures may form the basis for the synthesis of clinically effective drugs.

  5. Minimum requirements for inhibition of smooth-muscle myosin light-chain kinase by synthetic peptides.

    PubMed Central

    Hunt, J T; Floyd, D M; Lee, V G; Little, D K; Moreland, S

    1989-01-01

    Although the amino acid residues that are important for peptide substrates of myosin light-chain kinase have been reported, those that are important for peptide inhibitors of this enzyme have not previously been investigated. Synthetic peptides based on the sequence Lys11-Lys12-Arg13-Ala-Ala-Arg16-Ala-Thr-Ser19 -Asn-Val21-Phe22-Ala of the chicken gizzard myosin light chain were tested as inhibitors of pig carotid-artery myosin light-chain kinase. The basic amino acid residues of the known myosin light-chain kinase inhibitor Lys-Lys-Arg-Ala-Ala-Arg-Ala-Thr-Ser-NH2 (IC50 = 14 microM) [Pearson, Misconi & Kemp (1986) J. Biol. Chem. 261, 25-27] were shown to be the important residues that contribute to inhibitor potency, as evidence by the finding that the hexapeptide Lys-Lys-Arg-Ala-Ala-Arg-NH2 had an IC50 value of 22 microM. This indicates that binding of the phosphorylatable serine residue to myosin light-chain kinase, which is of obvious importance for a substrate, does not enhance the potency of an inhibitor. With the aim of preparing more potent inhibitors, peptides Lys-Lys-Arg-Ala-Ala-Arg-Ala-Ala-Xaa-NH2 were prepared with a variety of amino acids substituted for the phosphorylatable serine residue. None of these peptides was a more potent inhibitor than the serine peptide. PMID:2920029

  6. Identifying Plasmodium falciparum merozoite surface antigen 3 (MSP3) protein peptides that bind specifically to erythrocytes and inhibit merozoite invasion

    PubMed Central

    Rodríguez, Luis E.; Curtidor, Hernando; Ocampo, Marisol; Garcia, Javier; Puentes, Alvaro; Valbuena, John; Vera, Ricardo; López, Ramses; Patarroyo, Manuel E.

    2005-01-01

    Receptor–ligand interactions between synthetic peptides and normal human erythrocytes were studied to determine Plasmodium falciparum merozoite surface protein-3 (MSP-3) FC27 strain regions that specifically bind to membrane surface receptors on human erythrocytes. Three MSP-3 protein high activity binding peptides (HABPs) were identified; their binding to erythrocytes became saturable, had nanomolar affinity constants, and became sensitive on being treated with neuraminidase and trypsin but were resistant to chymotrypsin treatment. All of them specifically recognized 45-, 55-, and 72-kDa erythrocyte membrane proteins. They all presented α-helix structural elements. All HABPs inhibited in vitro P. falciparum merozoite invasion of erythrocytes by ~55%–85%, suggesting that MSP-3 protein’s role in the invasion process probably functions by using mechanisms similar to those described for other MSP family antigens. PMID:15987906

  7. Inhibition of retinal detachment-induced apoptosis in photoreceptors by a small peptide inhibitor of the fas receptor.

    PubMed

    Besirli, Cagri G; Chinskey, Nicholas D; Zheng, Qiong-Duan; Zacks, David N

    2010-04-01

    Purpose. To test the effect of a small peptide inhibitor (Met12) of the Fas receptor on the activation of extrinsic and intrinsic apoptosis pathways after retinal detachment. Methods. Retinal-RPE separation was created in Brown Norway rats by subretinal injection of 1% hyaluronic acid. Met12, derived from the Fas-binding extracellular domain of the oncoprotein Met, was injected into the subretinal space at the time of separation. A mutant peptide and vehicle administered in a similar fashion acted as inactive controls. The extrinsic apoptotic pathway was induced in 661W cells using a Fas-activating antibody in the presence or absence of Met12. Caspase 3, caspase 8, and caspase 9 activities were measured with calorimetric and luminescent assays in retinal extracts and cell lysates. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) was performed in retinal sections 3 days after separation. Histology was performed in retinal sections 2 months after retinal detachment. Results. Met12 inhibited Fas-induced caspase 8 activation in 661W cells. Similarly, administration of Met12 into the subretinal space inhibited the activation of caspase 3, caspase 8, and caspase 9 after retinal detachment. This corresponded to a decreased level of TUNEL-positive staining of photoreceptors after retinal-RPE separation in animals that received Met12, but not inactive mutant, peptide treatment. After 2 months, the outer nuclear layer was significantly thicker, and the photoreceptor count was higher in animals treated with subretinal Met12. Conclusions. The small peptide Met12 may serve as a photoreceptor-protective agent in the setting of retinal-RPE separation.

  8. The structure of phosphorylated GSK-3beta complexed with a peptide, FRATtide, that inhibits beta-catenin phosphorylation.

    PubMed

    Bax, B; Carter, P S; Lewis, C; Guy, A R; Bridges, A; Tanner, R; Pettman, G; Mannix, C; Culbert, A A; Brown, M J; Smith, D G; Reith, A D

    2001-12-01

    Glycogen synthase kinase-3 (GSK-3) sequentially phosphorylates four serine residues on glycogen synthase (GS), in the sequence SxxxSxxxSxxx-SxxxS(p), by recognizing and phosphorylating the first serine in the sequence motif SxxxS(P) (where S(p) represents a phosphoserine). FRATtide (a peptide derived from a GSK-3 binding protein) binds to GSK-3 and blocks GSK-3 from interacting with Axin. This inhibits the Axin-dependent phosphorylation of beta-catenin by GSK-3. Structures of uncomplexed Tyr216 phosphorylated GSK-3beta and of its complex with a peptide and a sulfate ion both show the activation loop adopting a conformation similar to that in the phosphorylated and active forms of the related kinases CDK2 and ERK2. The sulfate ion, adjacent to Val214 on the activation loop, represents the binding site for the phosphoserine residue on 'primed' substrates. The peptide FRATtide forms a helix-turn-helix motif in binding to the C-terminal lobe of the kinase domain; the FRATtide binding site is close to, but does not obstruct, the substrate binding channel of GSK-3. FRATtide (and FRAT1) does not inhibit the activity of GSK-3 toward GS. The Axin binding site on GSK-3 presumably overlaps with that for FRATtide; its proximity to the active site explains how Axin may act as a scaffold protein promoting beta-catenin phosphorylation. Tyrosine 216 phosphorylation can induce an active conformation in the activation loop. Pre-phosphorylated substrate peptides can be modeled into the active site of the enzyme, with the P1 residue occupying a pocket partially formed by phosphotyrosine 216 and the P4 phosphoserine occupying the 'primed' binding site.

  9. PDZ1 inhibitor peptide protects neurons against ischemia via inhibiting GluK2-PSD-95-module-mediated Fas signaling pathway.

    PubMed

    Yin, Xiao-Hui; Yan, Jing-Zhi; Yang, Guo; Chen, Li; Xu, Xiao-Feng; Hong, Xi-Ping; Wu, Shi-Liang; Hou, Xiao-Yu; Zhang, GuangYi

    2016-04-15

    Respecting the selective inhibition of peptides on protein-protein interactions, they might become potent methods in ischemic stroke therapy. In this study, we investigated the effect of PDZ1 inhibitor peptide on ischemic neuron apoptosis and the relative mechanism. Results showed that PDZ1 inhibitor peptide, which significantly disrupted GluK2-PSD-95 interaction, efficiently protected neuron from ischemia/reperfusion-induced apoptosis. Further, PDZ1 inhibited FasL expression, DISC assembly and activation of Caspase 8, Bid, Caspase 9 and Caspase 3 after global brain ischemia. Based on our previous report that GluK2-PSD-95 pathway increased FasL expression after global brain ischemia, the neuron protection effect of PDZ1 inhibitor peptide was considered to be achieved by disrupting GluK2-PSD-95 interaction and subsequently inhibiting FasL expression and Fas apoptosis pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Impact of commercial precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin-pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase-IV.

    PubMed

    Mojica, Luis; Chen, Karen; de Mejía, Elvira González

    2015-01-01

    The objective of this research was to determine the bioactive properties of the released peptides from commercially available precook common beans (Phaseolus vulgaris). Bioactive properties and peptide profiles were evaluated in protein hydrolysates of raw and commercially precooked common beans. Five varieties (Black, Pinto, Red, Navy, and Great Northern) were selected for protein extraction, protein and peptide molecular mass profiles, and peptide sequences. Potential bioactivities of hydrolysates, including antioxidant capacity and inhibition of α-amylase, α-glucosidase, dipeptidyl peptidase-IV (DPP-IV), and angiotensin converting enzyme I (ACE) were analyzed after digestion with pepsin/pancreatin. Hydrolysates from Navy beans were the most potent inhibitors of DPP-IV with no statistical differences between precooked and raw (IC50 = 0.093 and 0.095 mg protein/mL, respectively). α-Amylase inhibition was higher for raw Red, Navy and Great Northern beans (36%, 31%, 27% relative to acarbose (rel ac)/mg protein, respectively). α-Glucosidase inhibition among all bean hydrolysates did not show significant differences; however, inhibition values were above 40% rel ac/mg protein. IC50 values for ACE were not significantly different among all bean hydrolysates (range 0.20 to 0.34 mg protein/mL), except for Red bean that presented higher IC50 values. Peptide molecular mass profile ranged from 500 to 3000 Da. A total of 11 and 17 biologically active peptide sequences were identified in raw and precooked beans, respectively. Peptide sequences YAGGS and YAAGS from raw Great Northern and precooked Pinto showed similar amino acid sequences and same potential ACE inhibition activity. Processing did not affect the bioactive properties of released peptides from precooked beans. Commercially precooked beans could contribute to the intake of bioactive peptides and promote health.

  11. The role of citric acid in oral peptide and protein formulations: relationship between calcium chelation and proteolysis inhibition.

    PubMed

    Welling, Søren H; Hubálek, František; Jacobsen, Jette; Brayden, David J; Rahbek, Ulrik L; Buckley, Stephen T

    2014-04-01

    The excipient citric acid (CA) has been reported to improve oral absorption of peptides by different mechanisms. The balance between its related properties of calcium chelation and permeation enhancement compared to a proteolysis inhibition was examined. A predictive model of CA's calcium chelation activity was developed and verified experimentally using an ion-selective electrode. The effects of CA, its salt (citrate, Cit) and the established permeation enhancer, lauroyl carnitine chloride (LCC) were compared by measuring transepithelial electrical resistance (TEER) and permeability of insulin and FD4 across Caco-2 monolayers and rat small intestinal mucosae mounted in Ussing chambers. Proteolytic degradation of insulin was determined in rat luminal extracts across a range of pH values in the presence of CA. CA's capacity to chelate calcium decreased ~10-fold for each pH unit moving from pH 6 to pH 3. CA was an inferior weak permeation enhancer compared to LCC in both in vitro models using physiological buffers. At pH 4.5 however, degradation of insulin in rat luminal extracts was significantly inhibited in the presence of 10mM CA. The capacity of CA to chelate luminal calcium does not occur significantly at the acidic pH values where it effectively inhibits proteolysis, which is its dominant action in oral peptide formulations. On account of insulin's low basal permeability, inclusion of alternative permeation enhancers is likely to be necessary to achieve sufficient oral bioavailability since this is a weak property of CA.

  12. Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300

    PubMed Central

    Dornan, David; Hupp, Ted R.

    2001-01-01

    The N-terminal BOX-I domain of p53 containing a docking site for the negative regulator MDM2 and the positive effector p300, harbours two recently identified phosphorylation sites at Thr18 or Ser20 whose affect on p300 is undefined. Biochemical assays demonstrate that although MDM2 binding is inhibited by these phosphorylations, p300 binding is strikingly stabilized by Thr18 or Ser20 phosphorylation. Introducing EGFP-BOX-I domain peptides with an aspartate substitution at Thr18 or Ser20 induced a significant inhibition of endogenous p53-dependent transcription in cycling cells, in irradiated cells, as well as in cells transiently co-transfected with p300 and p53. In contrast an EGFP-wild-type BOX-I domain peptide stimulated p53 activity via inhibition of MDM2 protein binding. These results suggest that phosphorylation of p53 at Thr18 or Ser20 can activate p53 by stabilizing the p300–p53 complex and also identify a class of small molecular weight ligands capable of selective discrimination between MDM2- and p300-dependent activities. PMID:11258706

  13. Inhibition of discoidin domain receptor 2-mediated lung cancer cells progression by gold nanoparticle-aptamer-assisted delivery of peptides containing transmembrane-juxtamembrane 1/2 domain.

    PubMed

    Kim, Daehwan; Yeom, Ji-Hyun; Lee, Boeun; Lee, Kangseok; Bae, Jeehyeon; Rhee, Sangmyung

    2015-08-21

    The delivery of biologically functional peptides into mammalian cells can be a direct and effective method for cancer therapy and treatment of other diseases. Discoidin domain receptor 2 (DDR2) is a collagen-induced receptor tyrosine kinase recently identified as a novel therapeutic target in lung cancer. In this study, we report that peptides containing the functional domain of DDR2 can be efficiently delivered into lung malignant cancer cells via a gold nanoparticle-DNA aptamer conjugate (AuNP-Apt)-based system. Peptide delivery resulted in the abrogation of DDR2 activation triggered by collagen. Moreover, the peptide delivered by the AuNP-Apt system inhibited cancer cell proliferation and invasion mediated by DDR2 activation. Thus, these results suggest that peptide loaded onto AuNP-Apt conjugates can be used for the development of peptide-based biomedical applications for the treatment of DDR2-positive cancer.

  14. A novel leptin antagonist peptide inhibits breast cancer growth in vitro and in vivo

    PubMed Central

    Catalano, Stefania; Leggio, Antonella; Barone, Ines; De Marco, Rosaria; Gelsomino, Luca; Campana, Antonella; Malivindi, Rocco; Panza, Salvatore; Giordano, Cinzia; Liguori, Alessia; Bonofiglio, Daniela; Liguori, Angelo; Andò, Sebastiano

    2015-01-01

    The role of the obesity cytokine leptin in breast cancer progression has raised interest in interfering with leptin's actions as a valuable therapeutic strategy. Leptin interacts with its receptor through three different binding sites: I–III. Site I is crucial for the formation of an active leptin–leptin receptor complex and in its subsequent activation. Amino acids 39-42 (Leu-Asp-Phe-Ile- LDFI) were shown to contribute to leptin binding site I and their mutations in alanine resulted in muteins acting as typical antagonists. We synthesized a small peptide based on the wild-type sequence of leptin binding site I (LDFI) and evaluated its efficacy in antagonizing leptin actions in breast cancer using in vitro and in vivo experimental models. The peptide LDFI abolished the leptin-induced anchorage-dependent and -independent growth as well as the migration of ERα-positive (MCF-7) and -negative (SKBR3) breast cancer cells. These results were well correlated with a reduction in the phosphorylation levels of leptin downstream effectors, as JAK2/STAT3/AKT/MAPK. Importantly, the peptide LDFI reversed the leptin-mediated up-regulation of its gene expression, as an additional mechanism able to enhance the peptide antagonistic activity. The described effects were specific for leptin signalling, since the developed peptide was not able to antagonize the other growth factors' actions on signalling activation, proliferation and migration. Finally, we showed that the LDFI pegylated peptide markedly reduced breast tumour growth in xenograft models. The unmodified peptide LDFI acting as a full leptin antagonist could become an attractive option for breast cancer treatment, especially in obese women. PMID:25721149

  15. Opioid Peptides Inhibit Excitatory But Not Inhibitory Synaptic Transmission in the Rat Dorsal Motor Nucleus of the Vagus

    PubMed Central

    Browning, Kirsteen N.; Kalyuzhny, Alexander E.; Travagli, R. Alberto

    2011-01-01

    Opioid peptides produce gastrointestinal inhibition and increase feeding when applied to the brainstem. The present studies were designed to determine the actions of opioid peptides on synaptic transmission within the dorsal motor nucleus of the vagus (DMV) and the localization of μ-opioid receptors. Whole-cell recordings were made from identified gastrointestinal-projecting DMV neurons in thin brainstem slices of the rat. Electrical stimulation of the nucleus of the tractus solitarius evoked EPSCs and IPSCs. In all neurons tested, methionine (Met)-enkephalin (0.003–30 μm) inhibited the peak amplitude of the EPSCs. The effect was prevented by naloxone (1 μm) as well as by naloxonazine (0.2 μm). An increase in the ratio of the evoked paired pulses indicated that the inhibition was attributable to actions at presynaptic receptors. This presynaptic inhibitory action was mimicked by [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (0.1 μm) and the analgesic dipeptide kyotorphin (10 μm) but not by cyclic[d-Pen2, d-Pen5]-enkephalin (1 μm) and trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide methanesulfonate (1 μm). In contrast, the amplitude of evoked IPSCs was not altered either by Met-enkephalin or by any of the opioid receptor-selective agonists. Immunohistochemical studies revealed that nerve terminals apposing DMV neurons showed immunoreactivity to μ-opioid receptors colocalized with glutamate immunoreactivity but not glutamic acid decarboxylase immunoreactivity. These results suggest that within the DMV, μ-opioid receptors are present on the nerve terminals of excitatory but not inhibitory inputs to GI motoneurons. Such specificity may imply that the central inhibitory action of opioid peptides on gastrointestinal function targets selected pathways. PMID:11943802

  16. Selective inhibition of miR-21 by phage display screened peptide

    PubMed Central

    Bose, Debojit; Nahar, Smita; Rai, Manish Kumar; Ray, Arjun; Chakraborty, Kausik; Maiti, Souvik

    2015-01-01

    miRNAs are nodal regulators of gene expression and deregulation of miRNAs is causally associated with different diseases, including cancer. Modulation of miRNA expression is thus of therapeutic importance. Small molecules are currently being explored for their potential to downregulate miRNAs. Peptides have shown to have better potency and selectivity toward their targets but their potential in targeting and modulating miRNAs remain unexplored. Herein, using phage display we found a very selective peptide against pre-miR-21. Interestingly, the peptide has the potential to downregulate miR-21, by binding to pre-miR-21 and hindering Dicer processing. It is selective towards miR-21 inside the cell. By antagonising miR-21 function, the peptide is able to increase the expression of its target proteins and thereby increase apoptosis and suppress cell proliferation, invasion and migration. This peptide can further be explored for its anti-cancer activity in vivo and may be even extended to clinical studies. PMID:25824952

  17. Inhibition of Hepatocyte Apoptosis: An Important Mechanism of Corn Peptides Attenuating Liver Injury Induced by Ethanol.

    PubMed

    Ma, Zhili; Hou, Tao; Shi, Wen; Liu, Weiwei; He, Hui

    2015-09-11

    In this study, the effects of mixed corn peptides and synthetic pentapeptide (QLLPF) on hepatocyte apoptosis induced by ethanol were investigated in vivo. QLLPF, was previously characterized from corn protein hydrolysis, which had been shown to exert good facilitating alcohol metabolism activity. Mice were pre-treated with the mixed corn peptides and the pentapeptide for 1 week and then treated with ethanol. After treatment of three weeks, the biochemical indices and the key ethanol metabolizing enzymes, the serum TNF-α, liver TGF-β1 concentrations and the protein expressions related to apoptosis were determined. We found that the Bcl-2, Bax and cytochrome c expressions in the intrinsic pathway and the Fas, FasL and NF-κB expressions in the extrinsic pathway together with higher TNF-α and TGF-β1 concentrations were reversed compared with the model group by both the mixed corn peptides and the pentapeptide. The activation of caspase3 was also suppressed. Additionally, apoptosis was further confirmed with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and the TUNEL assay demonstrated peptides suppressed hepatocyte apoptosis. Our results suggest that apoptosis induced by ethanol is alleviated in response to the treatment of corn peptides, potentially due to reversing the related protein expression.

  18. A novel phage-library-selected peptide inhibits human TNF-α binding to its receptors.

    PubMed

    Brunetti, Jlenia; Lelli, Barbara; Scali, Silvia; Falciani, Chiara; Bracci, Luisa; Pini, Alessandro

    2014-06-03

    We report the identification of a new human tumor necrosis factor-alpha (TNF-α) specific peptide selected by competitive panning of a phage library. Competitive elution of phages was obtained using the monoclonal antibody adalimumab, which neutralizes pro-inflammatory processes caused by over-production of TNF-α in vivo, and is used to treat severe symptoms of rheumatoid arthritis. The selected peptide was synthesized in monomeric and branched form and analyzed for binding to TNF-α and competition with adalimumab and TNF-α receptors. Results of competition with TNF-α receptors in surface plasmon resonance and melanoma cells expressing both TNF receptors make the peptide a candidate compound for the development of a novel anti-TNF-α drug.

  19. Sea anemone peptide with uncommon β-hairpin structure inhibits acid-sensing ion channel 3 (ASIC3) and reveals analgesic activity.

    PubMed

    Osmakov, Dmitry I; Kozlov, Sergey A; Andreev, Yaroslav A; Koshelev, Sergey G; Sanamyan, Nadezhda P; Sanamyan, Karen E; Dyachenko, Igor A; Bondarenko, Dmitry A; Murashev, Arkadii N; Mineev, Konstantin S; Arseniev, Alexander S; Grishin, Eugene V

    2013-08-09

    Three novel peptides were isolated from the venom of the sea anemone Urticina grebelnyi. All of them are 29 amino acid peptides cross-linked by two disulfide bridges, with a primary structure similar to other sea anemone peptides belonging to structural group 9a. The structure of the gene encoding the shared precursor protein of the identified peptides was determined. One peptide, π-AnmTX Ugr 9a-1 (short name Ugr 9-1), produced a reversible inhibition effect on both the transient and the sustained current of human ASIC3 channels expressed in Xenopus laevis oocytes. It completely blocked the transient component (IC50 10 ± 0.6 μM) and partially (48 ± 2%) inhibited the amplitude of the sustained component (IC50 1.44 ± 0.19 μM). Using in vivo tests in mice, Ugr 9-1 significantly reversed inflammatory and acid-induced pain. The other two novel peptides, AnmTX Ugr 9a-2 (Ugr 9-2) and AnmTX Ugr 9a-3 (Ugr 9-3), did not inhibit the ASIC3 current. NMR spectroscopy revealed that Ugr 9-1 has an uncommon spatial structure, stabilized by two S-S bridges, with three classical β-turns and twisted β-hairpin without interstrand disulfide bonds. This is a novel peptide spatial structure that we propose to name boundless β-hairpin.

  20. Sea Anemone Peptide with Uncommon β-Hairpin Structure Inhibits Acid-sensing Ion Channel 3 (ASIC3) and Reveals Analgesic Activity*

    PubMed Central

    Osmakov, Dmitry I.; Kozlov, Sergey A.; Andreev, Yaroslav A.; Koshelev, Sergey G.; Sanamyan, Nadezhda P.; Sanamyan, Karen E.; Dyachenko, Igor A.; Bondarenko, Dmitry A.; Murashev, Arkadii N.; Mineev, Konstantin S.; Arseniev, Alexander S.; Grishin, Eugene V.

    2013-01-01

    Three novel peptides were isolated from the venom of the sea anemone Urticina grebelnyi. All of them are 29 amino acid peptides cross-linked by two disulfide bridges, with a primary structure similar to other sea anemone peptides belonging to structural group 9a. The structure of the gene encoding the shared precursor protein of the identified peptides was determined. One peptide, π-AnmTX Ugr 9a-1 (short name Ugr 9-1), produced a reversible inhibition effect on both the transient and the sustained current of human ASIC3 channels expressed in Xenopus laevis oocytes. It completely blocked the transient component (IC50 10 ± 0.6 μm) and partially (48 ± 2%) inhibited the amplitude of the sustained component (IC50 1.44 ± 0.19 μm). Using in vivo tests in mice, Ugr 9-1 significantly reversed inflammatory and acid-induced pain. The other two novel peptides, AnmTX Ugr 9a-2 (Ugr 9-2) and AnmTX Ugr 9a-3 (Ugr 9-3), did not inhibit the ASIC3 current. NMR spectroscopy revealed that Ugr 9-1 has an uncommon spatial structure, stabilized by two S-S bridges, with three classical β-turns and twisted β-hairpin without interstrand disulfide bonds. This is a novel peptide spatial structure that we propose to name boundless β-hairpin. PMID:23801332

  1. Reversible blocking of amino groups of octreotide for the inhibition of formation of acylated peptide impurities in poly(lactide-co-glycolide) delivery systems.

    PubMed

    Ahn, Jae Hwa; Park, Eun Ji; Lee, Hye Suk; Lee, Kang Choon; Na, Dong Hee

    2011-12-01

    The purpose of this study was to develop a novel method to inhibit the formation of acylated peptide impurities in poly(D,L-lactide-co-glycolide) (PLGA) formulations by reversely blocking the amino groups of octreotide with maleic anhydride (MA). Two mono-MA conjugates with different modification sites (N terminus and Lys residue) and di-MA conjugate of octreotide were prepared and isolated by reversed-phase high-performance liquid chromatography (RP-HPLC). The polymer interaction of peptides and the formation of acylated peptides were monitored by RP-HPLC. The stability of MA-octreotide conjugates in PLGA films was studied in 0.1 M phosphate buffer (pH 7.4) at 37°C. The conjugation of MA to octreotide substantially inhibited the interaction of peptide with PLGA polymer and the subsequent formation of acylated peptide impurities. The MA-octreotides were successfully converted to intact octreotide as pH drops by PLGA hydrolysis. In PLGA films, MA-octreotide also showed complete inhibition of peptide acylation. In conclusion, MA conjugation provides a viable approach for stabilizing peptides in PLGA delivery systems.

  2. Inhibition of highly pathogenic avian influenza (HPAI) virus by a peptide derived from vFLIP through its direct destabilization of viruses.

    PubMed

    Moon, Ho-Jin; Nikapitiya, Chamilani; Lee, Hyun-Cheol; Park, Min-Eun; Kim, Jae-Hoon; Kim, Tae-Hwan; Yoon, Ji-Eun; Cho, Won-Kyung; Ma, Jin Yeul; Kim, Chul-Joong; Jung, Jae U; Lee, Jong-Soo

    2017-07-07

    The antiviral activities of synthesized Kα2-helix peptide, which was derived from the viral FLICE-like inhibitor protein (vFLIP) of Kaposi's sarcoma-associated herpesvirus (KSHV), against influenza A virus (IAV) were investigated in vitro and in vivo, and mechanisms of action were suggested. In addition to the robust autophagy activity of the Kα2-helix peptide, the present study showed that treatment with the Kα2 peptide fused with the TAT peptide significantly inhibited IAV replication and transmission. Moreover, TAT-Kα2 peptide protected the mice, that were challenged with lethal doses of highly pathogenic influenza A H5N1 or H1N1 viruses. Mechanistically, we found that TAT-Kα2 peptide destabilized the viral membranes, depending on their lipid composition of the viral envelop. In addition to IAV, the Kα2 peptide inhibited infections with enveloped viruses, such as Vesicular Stomatitis Virus (VSV) and Respiratory Syncytial Virus (RSV), without cytotoxicity. These results suggest that TAT-Kα2 peptide is a potential antiviral agent for controlling emerging or re-emerging enveloped viruses, particularly diverse subtypes of IAVs.

  3. Crucial role of cytoskeleton reorganization in the negative inotropic effect of chromogranin A-derived peptides in eel and frog hearts.

    PubMed

    Mazza, Rosa; Mannarino, Cinzia; Imbrogno, Sandra; Barbieri, Sandra Francesca; Adamo, Cristina; Angelone, Tommaso; Corti, Angelo; Tota, Bruno

    2007-02-01

    Vasostatins (VSs), i.e. the main biologically active peptides generated by the proteolytic processing of chromogranin A (CGA) N-terminus, exert negative inotropism in vertebrate hearts. Here, using isolated working eel (Anguilla anguilla) and frog (Rana esculenta) heart preparations, we have studied the role of the cytoskeleton in the VSs-mediated inotropic response. In both eel and frog hearts, VSs-mediated-negative inotropy was abolished by treatment with inhibitors of cytoskeleton reorganization, such as cytochalasin-D (eel: 10 nM; frog: 1 nM), an inhibitor of actin polymerisation, wortmannin (0.01 nM), an inhibitor of PI3-kinase (PI3-K)/protein kinase B (Akt) signal-transduction cascade, butanedione 2-monoxime (BDM) (eel: 100 nM; frog: 10 nM), an antagonist of myosin ATPase, and N-(6-aminohexil)-5-chloro-1-naphthalenesulfonamide (W7) (eel: 100 nM; frog: 1 nM), a calcium-calmodulin antagonist. These results demonstrate that changes in cytoskeletal dynamics play a crucial role in the negative inotropic influence of VSs on eel and frog hearts.

  4. Cisplatin inhibits the formation of a reactive intermediate during copper-catalyzed oxidation of amyloid β peptide.

    PubMed

    Walke, Gulshan R; Rapole, Srikanth; Kulkarni, Prasad P

    2014-10-06

    Cisplatin was studied for its effect on the copper-catalyzed oxidation of amyloid β (Aβ) peptide. The interaction of cisplatin with Aβ1-16 in the presence of Cu(II) was investigated using cyclic voltammetry and mass spectrometry. The positive shift in the E1/2 value of Aβ1-16-Cu(II) suggests that the interaction of cisplatin alters the copper-binding properties of Aβ1-16. The mass spectrometry data show complete inhibition of copper-catalyzed decarboxylation/deamination of the Asp1 residue of Aβ1-16, while there is a significant decrease in copper-catalyzed oxidation of Aβ1-16 in the presence of cisplatin. Overall, our results provide a novel mode by which cisplatin inhibits copper-catalyzed oxidation of Aβ. These findings may lead to the design of better platinum complexes to treat oxidative stress in Alzheimer's disease and other related neurological disorders.

  5. Na/K-ATPase Mimetic pNaKtide Peptide Inhibits the Growth of Human Cancer Cells*

    PubMed Central

    Li, Zhichuan; Zhang, Zhongbing; Xie, Joe X.; Li, Xin; Tian, Jiang; Cai, Ting; Cui, Hongjuan; Ding, Hanfei; Shapiro, Joseph I.; Xie, Zijian

    2011-01-01

    Cells contain a large pool of nonpumping Na/K-ATPase that participates in signal transduction. Here, we show that the expression of α1 Na/K-ATPase is significantly reduced in human prostate carcinoma as well as in several human cancer cell lines. This down-regulation impairs the ability of Na/K-ATPase to regulate Src-related signaling processes. A supplement of pNaKtide, a peptide derived from α1 Na/K-ATPase, reduces the activities of Src and Src effectors. Consequently, these treatments stimulate apoptosis and inhibit growth in cultures of human cancer cells. Moreover, administration of pNaKtide inhibits angiogenesis and growth of tumor xenograft. Thus, the new findings demonstrate the in vivo effectiveness of pNaKtide and suggest that the defect in Na/K-ATPase-mediated signal transduction may be targeted for developing new anticancer therapeutics. PMID:21784855

  6. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis.

    PubMed

    Mardirossian, Mario; Grzela, Renata; Giglione, Carmela; Meinnel, Thierry; Gennaro, Renato; Mergaert, Peter; Scocchi, Marco

    2014-12-18

    Antimicrobial peptides (AMPs) are molecules from innate immunity with high potential as novel anti-infective agents. Most of them inactivate bacteria through pore formation or membrane barrier disruption, but others cross the membrane without damages and act inside the cells, affecting vital processes. However, little is known about their intracellular bacterial targets. Here we report that Bac71-35, a proline-rich AMP belonging to the cathelicidin family, can reach high concentrations (up to 340 μM) inside the E. coli cytoplasm. The peptide specifically and completely inhibits in vitro translation in the micromolar concentration range. Experiments of incorporation of radioactive precursors in macromolecules with E. coli cells confirmed that Bac71-35 affects specifically protein synthesis. Ribosome coprecipitation and crosslinking assays showed that the peptide interacts with ribosomes, binding to a limited subset of ribosomal proteins. Overall, these results indicate that the killing mechanism of Bac71-35 is based on a specific block of protein synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Targeting Inhibition of SmpB by Peptide Aptamer Attenuates the Virulence to Protect Zebrafish against Aeromonas veronii Infection.

    PubMed

    Liu, Peng; Huang, Dongyi; Hu, Xinwen; Tang, Yanqiong; Ma, Xiang; Yan, Rihui; Han, Qian; Guo, Jianchun; Zhang, Yueling; Sun, Qun; Liu, Zhu

    2017-01-01

    Aeromonas veronii is an important pathogen of aquatic animals, wherein Small protein B (SmpB) is required for pathogenesis by functioning as both a component in stalled-ribosome rescue and a transcription factor in upregulation of virulence gene bvgS expression. Here a specific peptide aptamer PA-1 was selected from peptide aptamer library by bacterial two-hybrid system employing pBT-SmpB as bait. The binding affinity between SmpB and PA-1 was evaluated using enzyme-linked immunosorbent assay. The key amino acids of SmpB that interact with PA-1 were identified. After PA-1 was introduced into A. veronii, the engineered strain designated as A. veronii (pN-PA-1) was more sensitive and grew slower under salt stress in comparison with wild type, as the disruption of SmpB by PA-1 resulted in significant transcription reductions of virulence-related genes. Consistent with these observations, A. veronii (pN-PA-1) was severely attenuated in model organism zebrafish, and vaccination of zebrafish with A. veronii (pN-PA-1) induced a strong antibody response. The vaccinated zebrafish were well protected against subsequent lethal challenges with virulent parental strain. Collectively, we propose that targeting inhibition of SmpB by peptide aptamer PA-1 possesses the desired qualities for a live attenuated vaccine against pathogenic A. veronii.

  8. Effects of endopeptidase inhibition on the relaxation response of isolated human penile erectile tissue to vasoactive peptides.

    PubMed

    Rahardjo, H E; Reichelt, K; Sonnenberg, J E; Sohn, M; Kuczyk, M A; Ückert, S

    2016-12-01

    Peptides, such as CNP, CGRP and VIP, are involved in the function of male penile erectile tissue. Tissue levels of said peptides are controlled by the endopeptidase enzymes. Theoretically, the inhibition of the degradation of CNP, CGRP and/or VIP should result in an enhancement in penile smooth muscle relaxation. The effects were investigated of CNP or VIP (0.1 nm-1 μm), without and following pre-exposure of the tissue to a threshold concentration of the endopeptidase inhibitor KC 12615 (10 μm, for 20 min), on the reversion of tension induced by means of electrical field stimulation. Drug effects on the production of cyclic AMP/GMP were also evaluated. Neither KC 12615, CNP and VIP nor the combination of CNP plus KC 12615 or VIP plus KC 12615 increased the response of the tissue to EFS. While no effects were observed of a pre-exposure of the tissue to KC 12615 on the production of cyclic AMP in the presence of VIP, an enhancement was registered in the accumulation of cyclic AMP in the presence of CNP plus KC 12615. Further studies are indicated to investigate whether endopeptidase inhibitors might tend to be more effective in tissues affected by a decreased local production of vasoactive peptides. © 2016 Blackwell Verlag GmbH.

  9. An autoinhibitory peptide from the erythrocyte Ca-ATPase aggregates and inhibits both muscle Ca-ATPase isoforms.

    PubMed Central

    Reddy, L G; Shi, Y; Kutchai, H; Filoteo, A G; Penniston, J T; Thomas, D D

    1999-01-01

    We have studied the effects of C28R2, a basic peptide derived from the autoinhibitory domain of the plasma membrane Ca-ATPase, on enzyme activity, oligomeric state, and E1-E2 conformational equilibrium of the Ca-ATPase from skeletal and cardiac sarcoplasmic reticulum (SR). Time-resolved phosphorescence anisotropy (TPA) was used to determine changes in the distribution of Ca-ATPase among its different oligomeric species in SR. C28R2, at a concentration of 1-10 microM, inhibits the Ca-ATPase activity of both skeletal and cardiac SR (CSR). In skeletal SR, this inhibition by C28R2 is much greater at low (0.15 microM) than at high (10 microM) Ca2+, whereas in CSR the inhibition is the same at low and high Ca2+. The effects of the peptide on the rotational mobility of the Ca-ATPase correlated well with function, indicating that C28R2-induced protein aggregation and Ca-ATPase inhibition are much more Ca-dependent in skeletal than in CSR. In CSR at low Ca2+, phospholamban (PLB) antibody (functionally equivalent to PLB phosphorylation) increased the inhibitory effect of C28R2 slightly. Fluorescence of fluorescein 5-isothiocyanate-labeled SR suggests that C28R2 stabilizes the E1 conformation of the Ca-ATPase in skeletal SR, whereas in CSR it stabilizes E2. After the addition of PLB antibody, C28R2 still stabilizes the E2 conformational state of CSR. Therefore, we conclude that C28R2 affects Ca-ATPase activity, conformation, and self-association differently in cardiac and skeletal SR and that PLB is probably not responsible for the differences. PMID:10354431

  10. Transgenic tobacco expressing a modified spider peptide inhibits the growth of plant pathogens and insect larvae

    USDA-ARS?s Scientific Manuscript database

    The gene encoding lycotoxin I, an amphipathic pore-forming peptide, was modified to increase oral toxicity to insects. One of the most active modified genes was then constitutively expressed in tobacco (Nicotiana tabacum) and transformants were evaluated for insect and disease resistance. Pathogenic...

  11. Metacaspase-binding peptide inhibits heat shock-induced death in Leishmania (L.) amazonensis.

    PubMed

    Peña, Mauricio S; Cabral, Guilherme C; Fotoran, Wesley L; Perez, Katia R; Stolf, Beatriz S

    2017-03-02

    Leishmania (Leishmania) amazonensis is an important agent of cutaneous leishmaniasis in Brazil. This parasite faces cell death in some situations during transmission to the vertebrate host, and this process seems to be dependent on the activity of metacaspase (MCA), an enzyme bearing trypsin-like activity present in protozoans, plants and fungi. In fact, the association between MCA expression and cell death induced by different stimuli has been demonstrated for several Leishmania species. Regulators and natural substrates of MCA are poorly known. To fulfill this gap, we have employed phage display over recombinant L. (L.) amazonensis MCA to identify peptides that could interact with the enzyme and modulate its activity. Four peptides were selected for their capacity to specifically bind to MCA and interfere with its activity. One of these peptides, similar to ecotin-like ISP3 of L. (L.) major, decreases trypsin-like activity of promastigotes under heat shock, and significantly decreases parasite heat shock-induced death. These findings indicate that peptide ligands identified by phage display affect trypsin-like activity and parasite death, and that an endogenous peptidase inhibitor is a possible natural regulator of the enzyme.

  12. Peptide inhibition of p22phox and Rubicon interaction as a therapeutic strategy for septic shock.

    PubMed

    Kim, Ye-Ram; Koh, Hyun-Jung; Kim, Jae-Sung; Yun, Jin-Seung; Jang, Kiseok; Lee, Joo-Youn; Jung, Jae U; Yang, Chul-Su

    2016-09-01

    Sepsis is a clinical syndrome that complicates severe infection and is characterized by the systemic inflammatory response syndrome (SIRS), is a life threatening disease characterized by inflammation of the entire body. Upon microbial infection, p22phox-gp91phox NADPH oxidase (NOX) complexes produce reactive oxygen species (ROS) that are critical for the elimination of invading microbes. However, excess production of ROS represents a key element in the cascade of deleterious processes in sepsis. We have previously reported direct crosstalk between autophagy and phagocytosis machineries by demonstrating that the Rubicon protein interacts with p22phox upon microbial infection, facilitating phagosomal trafficking of the p22phox-gp91phox NOX complex to induce a ROS burst, inflammatory cytokine production, and thereby, potent anti-microbial activities. Here, we showed N8 peptide, an N-terminal 8-amino acid peptide derived from p22phox, was sufficient for Rubicon interaction and thus, capable of robustly blocking the Rubicon-p22phox interaction and profoundly suppressing ROS and inflammatory cytokine production. Consequently, treatment with the Tat-N8 peptide or a N8 peptide-mimetic small-molecule dramatically reduced the mortality associated with Cecal-Ligation-and-Puncture-induced polymicrobial sepsis in mice. This study demonstrates a new anti-sepsis therapeutic strategy by blocking the crosstalk between autophagy and phagocytosis innate immunity machineries, representing a potential paradigm shift for urgently needed therapeutic intervention against this life-threatening SIRS.

  13. Inhibition of the wine spoilage yeast Dekkera bruxellensis by bovine lactoferrin-derived peptides.

    PubMed

    Enrique, María; Marcos, Jose F; Yuste, María; Martínez, Mireia; Vallés, Salvador; Manzanares, Paloma

    2008-10-31

    The antimicrobial action of lactoferrin (LF)-derived peptides against Dekkera bruxellensis strains isolated from spoiled wines has been examined. The study included a fifteen-residue peptide (LfcinB(17-31)) derived from bovine lactoferricin B and a bovine LF pepsin hydrolysate (LFH). In vitro assays showed the inhibitory properties of LfcinB(17-31) on D. bruxellensis growth with IC(50) and MIC values in the micromolar range. Strains tested showed different sensitivity to the peptide. LfcinB(17-31) showed fungicidal properties towards all strains tested in laboratory growth medium. However, the extent of fungicidal activity was strain-dependent in must and wine, confirming the different antimicrobial action of peptides depending on both the food matrix and the target micro-organism. The binding of LfcinB(17-31) to D. bruxellensis cells was visualized by fluorescence microscopy and correlated with the fungicidal activity in the different matrixes. LfcinB(17-31) and LFH showed growth inhibitory properties in wine suggesting their potential use for spoilage control.

  14. In vitro growth of growth of campylobacter spp. inhibited by selected antimicrobial peptides

    USDA-ARS?s Scientific Manuscript database

    Background: Novel alternatives to traditional antibiotics are urgently needed for food-animal production. A goal of our laboratory is to develop and evaluate antimicrobial peptides (AMP) to control and reduce foodborne pathogens in poultry. AMP have been found in most every class of living organism...

  15. Drug Efflux by a Small Multidrug Resistance Protein Is Inhibited by a Transmembrane Peptide

    PubMed Central

    Poulsen, Bradley E.

    2012-01-01

    Drug-resistant bacteria use several families of membrane-embedded transporters to remove antibiotics from the cell. One such family is the small multidrug resistance proteins (SMRs) that, because of their relatively small size (ca. 110 residues with four transmembrane [TM] helices), must form (at least) dimers to efflux drugs. Here, we use a Lys-tagged synthetic peptide with exactly the same sequence as TM4 of the full-length SMR Hsmr from Halobacterium salinarum [TM4 sequence: AcA(Sar)3-VAGVVGLALIVAGVVVLNVAS-KKK (Sar = N-methylglycine)] to compete with and disrupt the native TM4-TM4 interactions believed to constitute the locus of Hsmr dimerization. Using a cellular efflux assay of the fluorescent SMR substrate ethidium bromide, we determined that bacterial cells containing Hsmr are able to remove cellular ethidium via first-order exponential decay with a rate constant (k) of 10.1 × 10−3 ± 0.7 × 10−3 s−1. Upon treatment of the cells with the TM4 peptide, we observed a saturable ∼60% decrease in the efflux rate constant to 3.7 × 10−3 ± 0.2 × 10−3 s−1. In corresponding experiments with control peptides, including scrambled sequences and a sequence with d-chirality, a decrease in ethidium efflux either was not observed or was marginal, likely from nonspecific effects. The designed peptides did not evoke bacterial lysis, indicating that they act via the α-helicity and membrane insertion propensities of the native TM4 helix. Our overall results suggest that this approach could conceivably be used to design hydrophobic peptides for disruption of key TM-TM interactions of membrane proteins and represent a valuable route to the discovery of new therapeutics. PMID:22526304

  16. Peptides Derived from a Phage Display Library Inhibit Adhesion and Protect the Host against Infection by Paracoccidioides brasiliensis and Paracoccidioides lutzii.

    PubMed

    de Oliveira, Haroldo C; Michaloski, Jussara S; da Silva, Julhiany F; Scorzoni, Liliana; de Paula E Silva, Ana C A; Marcos, Caroline M; Assato, Patrícia A; Yamazaki, Daniella S; Fusco-Almeida, Ana M; Giordano, Ricardo J; Mendes-Giannini, Maria J S

    2016-01-01

    Paracoccidioides brasiliensis and Paracoccidioides lutzii are dimorphic fungi and are the etiological agents of paracoccidioidomycosis (PCM). Adhesion is one of the most important steps in infections with Paracoccidioides and is responsible for the differences in the virulence of isolates of these fungi. Because of the importance of adhesion to the establishment of an infection, this study focused on the preliminary development of a new therapeutic strategy to inhibit adhesion by Paracoccidioides, thus inhibiting infection and preventing the disease. We used two phage display libraries to select peptides that strongly bind to the Paracoccidioides cell wall to inhibit adhesion to host cells and extracellular matrix (ECM) components (laminin, fibronectin, and type I and type IV collagen). This approach allowed us to identify four peptides that inhibited up to 64% of the adhesion of Paracoccidioides to pneumocytes in vitro and inhibited the adhesion to the ECM components by up to 57%. Encouraged by these results, we evaluated the ability of these peptides to protect Galleria mellonella from Paracoccidioides infection by treating G. mellonella larvae with the different peptides prior to infection with Paracoccidioides and observing larval survival. The results show that all of the peptides tested increased the survival of the larvae infected with P. brasiliensis by up to 64% and by up to 60% in those infected with P. lutzii. These data may open new horizons for therapeutic strategies to prevent PCM, and anti-adhesion therapy could be an important strategy.

  17. Peptides Derived from a Phage Display Library Inhibit Adhesion and Protect the Host against Infection by Paracoccidioides brasiliensis and Paracoccidioides lutzii

    PubMed Central

    de Oliveira, Haroldo C.; Michaloski, Jussara S.; da Silva, Julhiany F.; Scorzoni, Liliana; de Paula e Silva, Ana C. A.; Marcos, Caroline M.; Assato, Patrícia A.; Yamazaki, Daniella S.; Fusco-Almeida, Ana M.; Giordano, Ricardo J.; Mendes-Giannini, Maria J. S.

    2016-01-01

    Paracoccidioides brasiliensis and Paracoccidioides lutzii are dimorphic fungi and are the etiological agents of paracoccidioidomycosis (PCM). Adhesion is one of the most important steps in infections with Paracoccidioides and is responsible for the differences in the virulence of isolates of these fungi. Because of the importance of adhesion to the establishment of an infection, this study focused on the preliminary development of a new therapeutic strategy to inhibit adhesion by Paracoccidioides, thus inhibiting infection and preventing the disease. We used two phage display libraries to select peptides that strongly bind to the Paracoccidioides cell wall to inhibit adhesion to host cells and extracellular matrix (ECM) components (laminin, fibronectin, and type I and type IV collagen). This approach allowed us to identify four peptides that inhibited up to 64% of the adhesion of Paracoccidioides to pneumocytes in vitro and inhibited the adhesion to the ECM components by up to 57%. Encouraged by these results, we evaluated the ability of these peptides to protect Galleria mellonella from Paracoccidioides infection by treating G. mellonella larvae with the different peptides prior to infection with Paracoccidioides and observing larval survival. The results show that all of the peptides tested increased the survival of the larvae infected with P. brasiliensis by up to 64% and by up to 60% in those infected with P. lutzii. These data may open new horizons for therapeutic strategies to prevent PCM, and anti-adhesion therapy could be an important strategy. PMID:28066254

  18. TRAM-Derived Decoy Peptides inhibits the inflammatory response in mouse mammary epithelial cells and a mastitis model in mice.

    PubMed

    Hu, Xiaoyu; Tian, Yuan; Wang, Tiancheng; Zhang, Wenlong; Wang, Wei; Gao, Xuejiao; Qu, Shihui; Cao, Yongguo; Zhang, Naisheng

    2015-10-05

    It has been proved that TRAM-Derived Decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRAM-Derived decoy peptide (TM6), belongs to TRAM TIR domain, of which sequence is "N"-RQIKIWFQNRRMKWK, KENFLRDTWCNFQFY-"C" and evaluated the effects of TM6 on lipopolysaccharide-induced mastitis in mice. In vivo, LPS-induced mice mastitis model was established by injection of LPS through the duct of mammary gland. TM6 was injected 1h before or after LPS treatment. In vitro, primary mouse mammary epithelial cells were used to investigate the effects of TM6 on LPS-induced inflammatory responses. The results showed that TM6 inhibited LPS-induced mammary gland histopathologic changes, MPO activity, and TNF-α, IL-1β and IL-6 production in mice. In vitro, TM6 significantly inhibited LPS-induced TNF-α and IL-6 production, as well as NF-κB and MAPKs activation. In conclusion, this study demonstrated that TM6 had protective effects on LPS-mastitis and may be a promising therapeutic reagent for mastitis treatment.

  19. Preparation and characterization of novel bioactive peptides responsible for angiotensin I-converting enzyme inhibition from wheat germ.

    PubMed

    Matsui, T; Li, C H; Osajima, Y

    1999-07-01

    Reported is the preparation of wheat germ (WG) hydrolyzate with potent angiotensin I-converting enzyme (ACE) inhibitory activity, and the characterization of peptides responsible for ACE inhibition. Successful hydrolyzate with the most potent ACE inhibitory activity was obtained by 0.5 wt.%-8 h Bacillus licheniformis alkaline protease hydrolysis after 3.0 wt.%-3 h alpha-amylase treatment of defatted WG (IC50; 0.37 mg protein ml(-1)). The activity of WG hydrolyzate was markedly increased by ODS and subsequent AG50W purifications (IC50; 0.018 mg protein ml(-1)). As a result of isolations by high performance liquid chromatographies, 16 peptides with the IC50 value of less than 20 microM, composed of 2-7 amino acid residues were identified from the WG hydrolyzate. Judging from the high content (260 mg in 100 g of AG50W fraction) and powerful ACE inhibitory activity (IC50; 0.48 microM), Ile-Val-Tyr was identified as a main contributor to the ACE inhibition of the hydrolyzate.

  20. Esculentin-1a-Derived Peptides Promote Clearance of Pseudomonas aeruginosa Internalized in Bronchial Cells of Cystic Fibrosis Patients and Lung Cell Migration: Biochemical Properties and a Plausible Mode of Action.

    PubMed

    Cappiello, Floriana; Di Grazia, Antonio; Segev-Zarko, Li-Av; Scali, Silvia; Ferrera, Loretta; Galietta, Luis; Pini, Alessandro; Shai, Yechiel; Di, Y Peter; Mangoni, Maria Luisa

    2016-12-01

    Pseudomonas aeruginosa is the major microorganism colonizing the respiratory epithelium in cystic fibrosis (CF) sufferers. The widespread use of available antibiotics has drastically reduced their efficacy, and antimicrobial peptides (AMPs) are a promising alternative. Among them, the frog skin-derived AMPs, i.e., Esc(1-21) and its diastereomer, Esc(1-21)-1c, have recently shown potent activity against free-living and sessile forms of P. aeruginosa Importantly, this pathogen also escapes antibiotics treatment by invading airway epithelial cells. Here, we demonstrate that both AMPs kill Pseudomonas once internalized into bronchial cells which express either the functional or the ΔF508 mutant of the CF transmembrane conductance regulator. A higher efficacy is displayed by Esc(1-21)-1c (90% killing at 15 μM in 1 h). We also show the peptides' ability to stimulate migration of these cells and restore the induction of cell migration that is inhibited by Pseudomonas lipopolysaccharide when used at concentrations mimicking lung infection. This property of AMPs was not investigated before. Our findings suggest new therapeutics that not only eliminate bacteria but also can promote reepithelialization of the injured infected tissue. Confocal microscopy indicated that both peptides are intracellularly localized with a different distribution. Biochemical analyses highlighted that Esc(1-21)-1c is significantly more resistant than the all-l peptide to bacterial and human elastase, which is abundant in CF lungs. Besides proposing a plausible mechanism underlying the properties of the two AMPs, we discuss the data with regard to differences between them and suggest Esc(1-21)-1c as a candidate for the development of a new multifunctional drug against Pseudomonas respiratory infections.

  1. Acceleration and inhibition of amyloid-β fibril formation by peptide-conjugated fluorescent-maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Skaat, Hadas; Shafir, Gilead; Margel, Shlomo

    2011-08-01

    The formation of amyloid aggregates by association of peptides into ordered structures is hallmark of certain neurodegenerative disorders. Exploring the effect of specific nanoparticles on the formation of amyloid fibrils may contribute toward a mechanistic understanding of the aggregation processes, leading to design nanoparticles that modulate the formation of toxic amyloid plaques. Uniform maghemite (γ-Fe2O3) magnetic nanoparticles, containing fluorescein covalently encapsulated within (F-γ-Fe2O3), were prepared. These F-γ-Fe2O3 nanoparticles of 14.0 ± 4.0 nm were then coated with human serum albumin (HSA) via a precipitation process. Covalent conjugation of the spacer arm succinimidyl polyethylene glycol succinimidyl ester (NHS-PEG-NHS) to the F-γ-Fe2O3 HSA nanoparticles was then accomplished by interacting the primary amine groups of the HSA coating with excess NHS-PEG-NHS molecules. Covalent conjugation of the peptides amyloid-β 40 (Aβ40) or Leu-Pro-Phe-Phe-Asp (LPFFD) onto the surface of the former fluorescent nanoparticles was then performed, by interacting the terminal activated NHS groups of the PEG derivatized F-γ-Fe2O3 HSA nanoparticles with primary amino groups of the peptides. Kinetics of the Aβ40 fibrillation process in the absence and presence of varying concentrations of the Aβ40 or LPFFD conjugated nanoparticles were also elucidated. The non-peptide conjugated fluorescent nanoparticles do not affect the Aβ40 fibrillation process significantly. However, the Aβ40-conjugated nanoparticles (F-γ-Fe2O3 HSA-PEG-Aβ40) accelerate the fibrillation process while the LPFFD-conjugated nanoparticles (F-γ-Fe2O3 HSA-PEG-LPFFD) inhibit it. By applying MRI and fluorescence imaging techniques simultaneously these bioactive fluorescent magnetic iron oxide nanoparticles can be used as an efficient tool to study and control the Aβ40 amyloid fibril formation process.

  2. Release of Membrane-Bound Vesicles and Inhibition of Tumor Cell Adhesion by the Peptide Neopetrosiamide A

    PubMed Central

    Austin, Pamela; Heller, Markus; Williams, David E.; McIntosh, Lawrence P.; Vogl, A. Wayne; Foster, Leonard J.; Andersen, Raymond J.; Roberge, Michel; Roskelley, Calvin D.

    2010-01-01

    Background Neopetrosiamide A (NeoA) is a 28-amino acid tricyclic peptide originally isolated from a marine sponge as a tumor cell invasion inhibitor whose mechanism of action is unknown. Methodology/Principal Findings We show that NeoA reversibly inhibits tumor cell adhesion, disassembles focal adhesions in pre-attached cells, and decreases the level of β1 integrin subunits on the cell surface. NeoA also induces the formation of dynamic, membrane-bound protrusions on the surface of treated cells and the release of membrane-bound vesicles into the culture medium. Proteomic analysis indicates that the vesicles contain EGF and transferrin receptors as well as a number of proteins involved in adhesion and migration including: β1 integrin and numerous α integrin subunits; actin and actin-binding proteins such as cofilin, moesin and myosin 1C; and membrane modulating eps15 homology domain (EHD) proteins. Surface labeling, trafficking inhibition, and real-time imaging experiments all suggest that β1 integrin-containing vesicles are released directly from NeoA-induced cell surface protrusions rather than from vesicles generated intracellularly. The biological activity of NeoA is dependent on its disulfide bond pattern and NMR spectroscopy indicates that the peptide is globular with a continuous ridge of hydrophobic groups flanked by charged amino acid residues that could facilitate a simultaneous interaction with lipids and proteins in the membrane. Conclusions/Significance NeoA is an anti-adhesive peptide that decreases cell surface integrin levels through a novel, yet to be elucidated, mechanism that involves the release of adhesion molecule-containing vesicles from the cell surface. PMID:20520768

  3. Identification of Plasmodium falciparum RhopH3 protein peptides that specifically bind to erythrocytes and inhibit merozoite invasion

    PubMed Central

    Pinzón, Carlos Giovanni; Curtidor, Hernando; Reyes, Claudia; Méndez, David; Patarroyo, Manuel Elkin

    2008-01-01

    The identification of sequences involved in binding to erythrocytes is an important step for understanding the molecular basis of merozoite–erythrocyte interactions that take place during invasion of the Plasmodium falciparum malaria parasite into host cells. Several molecules located in the apical organelles (micronemes, rhoptry, dense granules) of the invasive-stage parasite are essential for erythrocyte recognition, invasion, and establishment of the nascent parasitophorous vacuole. Particularly, it has been demonstrated that rhoptry proteins play an important role in binding to erythrocyte surface receptors, among which is the PfRhopH3 protein, which triggers important immune responses in patients from endemic regions. It has also been reported that anti-RhopH3 antibodies inhibit in vitro invasion of erythrocytes, further supporting its direct involvement in erythrocyte invasion processes. In this study, PfRhopH3 consecutive peptides were synthesized and tested in erythrocyte binding assays for identifying those regions mediating binding to erythrocytes. Fourteen PfRhopH3 peptides presenting high specific binding activity were found, whose bindings were saturable and presented nanomolar dissociation constants. These high-activity binding peptides (HABPs) were characterized by having α-helical structural elements, as determined by circular dichroism, and having receptors of a possible sialic acid-dependent and/or glycoprotein-dependent nature, as evidenced in enzyme-treated erythrocyte binding assays and further corroborated by cross-linking assay results. Furthermore, these HABPs inhibited merozoite in vitro invasion of normal erythrocytes at 200 μM by up to 60% and 90%, suggesting that some RhopH3 protein regions are involved in the P. falciparum erythrocyte invasion. PMID:18593818

  4. Identification of Plasmodium falciparum RhopH3 protein peptides that specifically bind to erythrocytes and inhibit merozoite invasion.

    PubMed

    Pinzón, Carlos Giovanni; Curtidor, Hernando; Reyes, Claudia; Méndez, David; Patarroyo, Manuel Elkin

    2008-10-01

    The identification of sequences involved in binding to erythrocytes is an important step for understanding the molecular basis of merozoite-erythrocyte interactions that take place during invasion of the Plasmodium falciparum malaria parasite into host cells. Several molecules located in the apical organelles (micronemes, rhoptry, dense granules) of the invasive-stage parasite are essential for erythrocyte recognition, invasion, and establishment of the nascent parasitophorous vacuole. Particularly, it has been demonstrated that rhoptry proteins play an important role in binding to erythrocyte surface receptors, among which is the PfRhopH3 protein, which triggers important immune responses in patients from endemic regions. It has also been reported that anti-RhopH3 antibodies inhibit in vitro invasion of erythrocytes, further supporting its direct involvement in erythrocyte invasion processes. In this study, PfRhopH3 consecutive peptides were synthesized and tested in erythrocyte binding assays for identifying those regions mediating binding to erythrocytes. Fourteen PfRhopH3 peptides presenting high specific binding activity were found, whose bindings were saturable and presented nanomolar dissociation constants. These high-activity binding peptides (HABPs) were characterized by having alpha-helical structural elements, as determined by circular dichroism, and having receptors of a possible sialic acid-dependent and/or glycoprotein-dependent nature, as evidenced in enzyme-treated erythrocyte binding assays and further corroborated by cross-linking assay results. Furthermore, these HABPs inhibited merozoite in vitro invasion of normal erythrocytes at 200 microM by up to 60% and 90%, suggesting that some RhopH3 protein regions are involved in the P. falciparum erythrocyte invasion.

  5. C-type natriuretic peptide inhibits leukocyte recruitment and platelet-leukocyte interactions via suppression of P-selectin expression

    NASA Astrophysics Data System (ADS)

    Scotland, Ramona S.; Cohen, Marc; Foster, Paul; Lovell, Matthew; Mathur, Anthony; Ahluwalia, Amrita; Hobbs, Adrian J.

    2005-10-01

    The multifaceted process of immune cell recruitment to sites of tissue injury is key to the development of an inflammatory response and involved in the pathogenesis of numerous cardiovascular disorders. We recently identified C-type natriuretic peptide (CNP) as an important endothelium-derived mediator that regulates vascular tone and protects against myocardial ischemia/reperfusion injury. Herein, we investigated whether CNP inhibits leukocyte recruitment and platelet aggregation and thereby exerts a potential antiinflammatory influence on the blood vessel wall. We assessed the effects of CNP on leukocyte-endothelial cell interactions in mouse mesenteric postcapillary venules in vivo in animals with high basal leukocyte activation (endothelial nitric oxide synthase knockout mice, eNOS-/-) or under acute inflammatory conditions (induced by interleukin-1 or histamine). CNP suppressed basal leukocyte rolling in eNOS-/- mice in a rapid, reversible, and concentration-dependent manner. These effects of CNP were mimicked by the selective natriuretic peptide receptor-C agonist cANF4-23. CNP also suppressed leukocyte rolling induced by IL-1 or histamine, inhibited platelet-leukocyte interactions, and prevented thrombin-induced platelet aggregation of human blood. Furthermore, analysis of human umbilical vein endothelial cells, leukocytes, and platelets revealed that CNP selectively attenuates expression of P-selectin. Thus, CNP is a modulator of acute inflammation in the blood vessel wall characterized by leukocyte and platelet activation. These antiinflammatory effects appear to be mediated, at least in part, via suppression of P-selectin expression. These observations suggest that endothelial CNP might maintain an anti-atherogenic influence on the blood vessel wall and represent a target for therapeutic intervention in inflammatory cardiovascular disorders. endothelium | natriuretic peptide receptor type C | atherosclerosis | thrombosis

  6. Short Proline-Rich Antimicrobial Peptides Inhibit Either the Bacterial 70S Ribosome or the Assembly of its Large 50S Subunit.

    PubMed

    Krizsan, Andor; Prahl, Caroline; Goldbach, Tina; Knappe, Daniel; Hoffmann, Ralf

    2015-11-02

    Short proline-rich antimicrobial peptides (PrAMPs) are a promising class of antibiotics that use novel mechanisms, thus offering the potential to overcome the health threat of multiresistant pathogens. The peptides bind to the bacterial 70S ribosome and can inhibit protein translation. We report that PrAMPs can be divided into two classes, with each class binding to a different site, and thus use different lethal mechanisms. Oncocin-type peptides inhibit protein translation in Escherichia coli by binding to the exit tunnel of the 70S ribosome with half maximal inhibitory concentrations (IC50 values) of around 2 to 6 μmol  L(-1), whereas apidaecin-type peptides block the assembly of the large (50S) subunit of the ribosome, resulting in similar IC50 values. The revealed mechanisms should allow the design of new antibiotics to overcome current bacterial resistance mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. CopA3 peptide prevents ultraviolet-induced inhibition of type-I procollagen and induction of matrix metalloproteinase-1 in human skin fibroblasts.

    PubMed

    Kim, Dong-Hee; Kim, Han-Hyuk; Kim, Hyeon-Jeong; Jung, Hyun-Gug; Yu, Jae-Myo; Lee, Eun-Su; Cho, Yong-Hun; Kim, Dong-In; An, Bong-Jeun

    2014-05-20

    Ultraviolet (UV) exposure is well-known to induce premature aging, which is mediated by matrix metalloproteinase-1 (MMP-1) activity. A 9-mer peptide, CopA3 (CopA3) was synthesized from a natural peptide, coprisin, which is isolated from the dung beetle Copris tripartitus. As part of our continuing search for novel bioactive natural products, CopA3 was investigated for its in vitro anti-skin photoaging activity. UV-induced inhibition of type-I procollagen and induction of MMP-1 were partially prevented in human skin fibroblasts by CopA3 peptide in a dose-dependent manner. At a concentration of 25 μM, CopA3 nearly completely inhibited MMP-1 expression. These results suggest that CopA3, an insect peptide, is a potential candidate for the prevention and treatment of skin aging.

  8. Anti-TAR Polyamide Nucleotide Analog Conjugated with a Membrane-Permeating Peptide Inhibits Human Immunodeficiency Virus Type 1 Production

    PubMed Central

    Kaushik, Neerja; Basu, Amartya; Palumbo, Paul; Myers, Rene L.; Pandey, Virendra N.

    2002-01-01

    The emergence of drug-resistant variants has posed a significant setback against effective antiviral treatment for human immunodeficiency virus (HIV) infections. The choice of a nonmutable region of the viral genome such as the conserved transactivation response element (TAR element) in the 5′ long terminal repeat (LTR) may potentially be an effective target for drug development. We have earlier demonstrated that a polyamide nucleotide analog (PNA) targeted to the TAR hairpin element, when transfected into cells, can effectively inhibit Tat-mediated transactivation of HIV type 1 (HIV-1) LTR (T. Mayhood et al., Biochemistry 39:11532-11539, 2000). Here we show that this anti-TAR PNA (PNATAR), upon conjugation with a membrane-permeating peptide vector (transportan) retained its affinity for TAR in vitro similar to the unconjugated analog. The conjugate was efficiently internalized into the cells when added to the culture medium. Examination of the functional efficacy of the PNATAR-transportan conjugate in cell culture using luciferase reporter gene constructs resulted in a significant inhibition of Tat-mediated transactivation of HIV-1 LTR. Furthermore, PNATAR-transportan conjugate substantially inhibited HIV-1 production in chronically HIV-1-infected H9 cells. The mechanism of this inhibition appeared to be regulated at the level of transcription. These results demonstrate the efficacy of PNATAR-transportan as a potential anti-HIV agent. PMID:11907228

  9. Post-intoxication inhibition of botulinum neurotoxin serotype A within neurons by small-molecule, non-peptidic inhibitors.

    PubMed

    Ruthel, Gordon; Burnett, James C; Nuss, Jonathan E; Wanner, Laura M; Tressler, Lyal E; Torres-Melendez, Edna; Sandwick, Sarah J; Retterer, Cary J; Bavari, Sina

    2011-03-01

    Botulinum neurotoxins (BoNTs) comprise seven distinct serotypes that inhibit the release of neurotransmitter across neuromuscular junctions, resulting in potentially fatal flaccid paralysis. BoNT serotype A (BoNT/A), which targets synaptosomal-associated protein of 25kDa (SNAP-25), is particularly long-lived within neurons and requires a longer time for recovery of neuromuscular function. There are currently no treatments available to counteract BoNT/A after it has entered the neuronal cytosol. In this study, we examined the ability of small molecule non-peptidic inhibitors (SMNPIs) to prevent SNAP-25 cleavage post-intoxication of neurons. The progressive cleavage of SNAP-25 observed over 5 h following 1 h BoNT/A intoxication was prevented by addition of SMNPIs. In contrast, anti-BoNT/A neutralizing antibodies that strongly inhibited SNAP-25 cleavage when added during intoxication were completely ineffective when added post-intoxication. Although Bafilomycin A1, which blocks entry of BoNT/A into the cytosol by preventing endosomal acidification, inhibited SNAP-25 cleavage post-intoxication, the degree of inhibition was significantly reduced versus addition both during and after intoxication. Post-intoxication application of SMNPIs, on the other hand, was nearly as effective as application both during and after intoxication. Taken together, the results indicate that competitive SMNPIs of BoNT/A light chain can be effective within neurons post-intoxication.

  10. Inhibition of protein misfolding/aggregation using polyglutamine binding peptide QBP1 as a therapy for the polyglutamine diseases.

    PubMed

    Popiel, H Akiko; Takeuchi, Toshihide; Burke, James R; Strittmatter, Warren J; Toda, Tatsushi; Wada, Keiji; Nagai, Yoshitaka

    2013-07-01

    Protein misfolding and aggregation in the brain have been recognized to be crucial in the pathogenesis of various neurodegenerative diseases, including Alzheimer's, Parkinson's, and the polyglutamine (polyQ) diseases, which are collectively called the "protein misfolding diseases". In the polyQ diseases, an abnormally expanded polyQ stretch in the responsible proteins causes the proteins to misfold and aggregate, eventually resulting in neurodegeneration. Hypothesizing that polyQ protein misfolding and aggregation could be inhibited by molecules specifically binding to the expanded polyQ stretch, we identified polyQ binding peptide 1 (QBP1). We show that QBP1 does, indeed, inhibit misfolding and aggregation of the expanded polyQ protein in vitro. Furthermore overexpression of QBP1 by the crossing of transgenic animals inhibits neurodegeneration in Drosophila models of the polyQ diseases. We also introduce our attempts to deliver QBP1 into the brain by administration using viral vectors and protein transduction domains. Interestingly, recent data suggest that QBP1 can also inhibit the misfolding/aggregation of proteins responsible for other protein misfolding diseases, highlighting the potential of QBP1 as a general therapeutic molecule for a wide range of neurodegenerative diseases. We hope that in the near future, aggregation inhibitor-based drugs will be developed and bring relief to patients suffering from these currently intractable protein misfolding diseases.

  11. Inhibition of Myeloperoxidase Activity in Cystic Fibrosis Sputum by Peptide Inhibitor of Complement C1 (PIC1)

    PubMed Central

    Hair, Pamela S.; Sass, Laura A.; Krishna, Neel K.

    2017-01-01

    Myeloperoxidase is the major peroxidase enzyme in neutrophil granules and implicated in contributing to inflammatory lung damage in cystic fibrosis. Free myeloperoxidase is present in cystic fibrosis lung fluid and generates hypochlorous acid. Here we report a new inhibitor of myeloperoxidase activity, Peptide Inhibitor of Complement C1 (PIC1). Using TMB as the oxidizing substrate, PIC1 inhibited myeloperoxidase activity in cystic fibrosis sputum soluble fractions by an average of a 3.4-fold decrease (P = 0.02). PIC1 also dose-dependently inhibited myeloperoxidase activity in a neutrophil lysate or purified myeloperoxidase by up to 28-fold (P < 0.001). PIC1 inhibited myeloperoxidase activity similarly, on a molar basis, as the specific myeloperoxidase inhibitor 4-Aminobenzoic acid hydrazide (ABAH) for various oxidizing substrates. PIC1 was able to protect the heme ring of myeloperoxidase from destruction by NaOCl, assayed by spectral analysis. PIC1 incubated with oxidized TMB reversed the oxidation state of TMB, as measured by absorbance at 450 nm, with a 20-fold reduction in oxidized TMB (P = 0.02). This result was consistent with an antioxidant mechanism for PIC1. In summary, PIC1 inhibits the peroxidase activity of myeloperoxidase in CF sputum likely via an antioxidant mechanism. PMID:28135312

  12. Potent inhibition of HIV type 1 infection of mononuclear phagocytes by synthetic peptide analogs of HIV type 1 protease substrates.

    PubMed

    Dukes, C S; Matthews, T J; Lambert, D M; Dreyer, G B; Petteway, S R; Weinberg, J B

    1996-06-10

    The HIV-1 genome encodes a protease that is required for viral processing of the precursor polyproteins Pr55gag and Pr160gag-pol. Interference with this process in human lymphocytes inhibits production of infectious virus. We tested the ability of several protease inhibitors to decrease replication of HIV-1BaL in human monocytes and peritoneal macrophages. The compounds tested are oligopeptide analogs of HIV-1 protease substrates in which the scissile dipeptide has been replaced by a hydroxyethylene isostere. The protease inhibitors were added only once, 1 hr prior to inoculation with virus. Every 3-5 days, half the medium was replaced with fresh medium. Inhibition of virus production was assessed by measuring reverse transcriptase (RT) activity in supernatant medium 14 days after infection. The concentration of drug required to inhibit infection by 50% (IC50) in monocytes ranged from 0.17 to 2.99 microM; IC50 values for peritoneal macrophages ranged from 0.21 to 1.9 microM. The IC50 values for these compounds were 1.1- to 10-fold higher when tested in monocytes compared to their inhibitory effect in lymphocytes, although still potently effective in the dosage range that appeared nontoxic to cells. Cell toxicity was seen only at concentrations greater than 10 microM, and varied among the drugs tested. Immunoblot analysis of two of the drugs (SB205700 and SB108922) confirmed inhibition of polyprotein processing. In control cells, 22% of viral protein pr55 was processed to p24 by 24 hr, and 51% was processed by 48 hr. In cells treated with the protease inhibitors (2 microM), Pr55 processing was inhibited 77% at 24 hr and 89% at 48 hr. Thus, these synthetic peptide analogs potently inhibit productive infection of mononuclear phagocytes by HIV-1. Drugs of this class may be useful for the treatment of HIV-1 infection in humans.

  13. Inhibition of primary breast tumor growth and metastasis using a neuropilin-1 transmembrane domain interfering peptide

    PubMed Central

    Arpel, Alexia; Gamper, Coralie; Spenlé, Caroline; Fernandez, Aurore; Jacob, Laurent; Baumlin, Nadège; Laquerriere, Patrice; Orend, Gertraud; Crémel, Gérard; Bagnard, Dominique

    2016-01-01

    The transmembrane domains (TMD) in membrane receptors play a key role in cell signaling. As previously shown by us a peptide targeting the TMD of neuropilin-1 (MTP-NRP1), blocks cell proliferation, cell migration and angiogenesis in vitro, and decreases glioblastoma growth in vivo. We now explored the clinical potential of MTP-NRP1 on breast cancer models and demonstrate that MTP-NRP1 blocks proliferation of several breast cancer lines including the MDA-MB-231, a triple negative human breast cancer cell line. In models with long term in vivo administration of the peptide, MTP-NRP1 not only reduced tumor volume but also decreased number and size of breast cancer metastases. Strikingly, treating mice before tumors developed protected from metastasis establishment/formation. Overall, our results report that targeting the TMD of NRP1 in breast cancer is a potent new strategy to fight against breast cancer and related metastasis. PMID:27351129

  14. Selection of Small Synthetic Antimicrobial Peptides Inhibiting Xanthomonas citri subsp. citri Causing Citrus Canker

    PubMed Central

    Choi, Jeahyuk; Park, Euiho; Lee, Se-Weon; Hyun, Jae-Wook; Baek, Kwang-Hyun

    2017-01-01

    Citrus canker disease decreases the fruit quality and yield significantly, furthermore, emerging of streptomycin-resistant pathogens threatens the citrus industry seriously because of a lack of proper control agents. Small synthetic antimicrobial peptides (AMPs) could be a promising alternative. Fourteen hexapeptides were selected by using positional scanning of synthetic peptide combinatorial libraries. Each hexapeptide showed different antimicrobial spectrum against Bacillus, Pseudomonas, Xanthomonas, and Candida species. Intriguingly, BHC10 showed bactericidal activity exclusively on Xanthomonas citri subsp. citri (Xcc), while BHC7 was none-active exclusively against two Pseudomonas spp. at concentration of 100 μg/ml suggesting potential selectivity constrained in hexapeptide frame. Three hexapeptides, BHC02, 06 and 11, showed bactericidal activities against various Xcc strains at concentration of 10 μg/ml. When they were co-infiltrated with pathogens into citrus leaves the disease progress was suppressed significantly. Further study would be needed to confirm the actual disease control capacity of the selected hexapeptides. PMID:28167892

  15. Synthetic peptides from heat-shock protein 65 inhibit proinflammatory cytokine secretion by peripheral blood mononuclear cells from rheumatoid arthritis patients.

    PubMed

    Zhou, Jun; Wang, Li-Ping; Feng, Xuan; Fan, Dan-Dan; Zang, Wei-Jin; Wang, Bing

    2014-01-01

    1. Rheumatoid arthritis (RA) is a systemic autoimmune disease mediated by T cells. Proinflammatory cytokines plays a critical role in the pathogenesis of RA. The aim of the present study was to investigate the effects of synthetic peptides (HP-R1, HP-R2 and HP-R3), derived from the sequence of 65 kDa mycobacterial heat shock protein (HSP), on the proliferation of and cytokine secretion by peripheral blood mononuclear cells (PBMC) from RA patients. 2. The PBMC were obtained from RA patients and collected by Ficoll-Hypaque density centrifugation. Peripheral blood mononuclear cells were treated with one of the three synthetic peptides for 4 h, after which time proliferation and cytokine production were determined. The effects of the three peptides on the proliferation of PBMC were analysed by the colorimetric cell proliferation (CCK-8) assay. Cytokine production was measured in culture supernatants using specific ELISAs. 3. None of the three peptides had any significant effect on the proliferation of PBMC from healthy controls. However, the proliferation of PBMC from RA patients was inhibited by all three peptides. The production of tumour necrosis factor-α from RA patients was significantly inhibited by all three peptides. The secretion of interferon-γ was significantly suppressed by HP-R1 and HP-R2. Unlike the other two peptides, HP-R2 increased the secretion of interleukin (IL)-4. None of the peptides had any significant effect on the production of IL-10. 4. The results of the present study suggest that the synthetic peptides derived from HSP65 exhibit antiproliferative and anti-inflammatory activity, and support the potential use of synthetic peptides as therapeutic drugs in RA patients. © 2013 Wiley Publishing Asia Pty Ltd.

  16. Combination treatment with Grb7 peptide and Doxorubicin or Trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells.

    PubMed

    Pero, S C; Shukla, G S; Cookson, M M; Flemer, S; Krag, D N

    2007-05-21

    Grb7 has potential importance in the progression of cancer. We have previously identified a novel peptide that binds to the SH2 domain of Grb7 and inhibits its association with several different receptor tyrosine kinases. We have synthesised the Grb7 peptide, G7-18NATE, with two different cell penetrating peptides, Penetratin and Tat. In this study, we have shown that both Penetratin- and Tat-conjugated G7-18NATE peptides are able to inhibit the proliferation of SK-BR-3, ZR-75-30, MDA-MB-361 and MDA-MB-231 breast cancer cells. There was no significant effects on breast cancer MCF-7cells, non-malignant MCF 10A or 3T3 cells. In addition, there was no significant inhibition of proliferation by Penetratin or Tat alone or by their conjugates with arbitrary peptide sequence in any of the cell lines tested. We determined the EC50 of G7-18NATE-P peptide for SK-BR-3 cell proliferation to be 7.663 x 10(-6) M. Co-treatment of G7-18NATE-P peptide plus Doxorubicin in SK-BR-3 breast cancer cells resulted in an additional inhibition of proliferation, resulting in 56 and 84% decreases in the Doxorubicin EC50 value in the presence of 5 x 10(-6) and 1.0 x 10(-5) M G7-18NATE-P peptide, respectively. Importantly, the co-treatment with Doxorubicin and the delivery peptide did not change the Doxorubicin EC50. Since Grb7 associates with ErbB2, we assessed whether the peptide inhibitor would have a combined effect with a molecule that targets ErbB2, Herceptin. Co-treatment of Herceptin plus 1.0 x 10(-5) M G7-18NATE-P peptide in SK-BR-3 cells resulted in a 46% decrease in the Herceptin EC50 value and no decrease following the co-treatment with Herceptin and penetratin alone. This Grb7 peptide has potential to be developed as a therapeutic agent alone, in combination with traditional chemotherapy, or in combination with other targeting molecules.

  17. Short communication: Inhibition of angiotensin 1-converting enzyme by peptides derived from variants of bovine β-casein upon apical exposure to a Caco-2 cell monolayer.

    PubMed

    Petrat-Melin, Bjørn; Le, Thao T; Møller, Hanne S; Larsen, Lotte B; Young, Jette F

    2017-02-01

    This study investigated the consequence of genetically contingent amino acid substitutions in bovine β-casein (CN) genetic variants A(1), A(2), B, and I on the structure and bioactive potential of peptides following in vitro digestion. The β-CN variants were digested in vitro using pepsin and pancreatin, and a peptide profile was obtained by liquid chromatography tandem mass spectrometry, revealing among others, the β-casomorphin precursor peptides VYPFPGPIHN and VYPFPGPIPN, derived from variant A(1)/B and from A(2)/I, respectively. These 2 peptides were synthesized and assessed for angiotensin 1-converting enzyme (ACE) inhibitory capacity before and after incubation with a monolayer of Caco-2 intestinal cells. The VYPFPGPIHN was a stronger ACE inhibitor than VYPFPGPIPN, with the concentration needed to reach half-maximal inhibition (IC50) of 123 ± 14.2 μM versus 656 ± 7.6 μM. Exposure to a Caco-2 intestinal cell monolayer did not affect ACE inhibition by VYPFPGPIHN, but resulted in an almost 2-fold increase in inhibition by VYPFPGPIPN after incubation. Subsequent tandem mass spectrometric analysis identified the truncated peptide VYPFPGPIP, suggesting hydrolysis by a cell membrane associated peptidase. Thus, genetic variation in bovine β-CN results in the generation of peptides that differ in bioactivity, and are differently affected by intestinal brush border peptidases.

  18. Antisecretory Factor Peptide AF-16 Inhibits the Secreted Autotransporter Toxin-Stimulated Transcellular and Paracellular Passages of Fluid in Cultured Human Enterocyte-Like Cells

    PubMed Central

    Nicolas, Valérie

    2014-01-01

    Both the endogenous antisecretory factor (AF) protein and peptide AF-16, which has a sequence that matches that of the active N-terminal region of AF, inhibit the increase in the epithelial transport of fluid and electrolytes induced by bacterial toxins in animal and ex vivo models. We conducted a study to investigate the inhibitory effect of peptide AF-16 against the increase of transcellular passage and paracellular permeability promoted by the secreted autotransporter toxin (Sat) in a cultured cellular model of the human intestinal epithelial barrier. Peptide AF-16 produced a concentration-dependent inhibition of the Sat-induced increase in the formation of fluid domes, in the mucosal-to-serosal passage of d-[1-14C]mannitol, and in the rearrangements in the distribution and protein expression of the tight junction (TJ)-associated proteins ZO-1 and occludin in cultured human enterocyte-like Caco-2/TC7 cell monolayers. In addition, we show that peptide AF-16 also inhibits the cholera toxin-induced increase of transcellular passage and the Clostridium difficile toxin-induced effects on paracellular permeability and TJ protein organization in Caco-2/TC7 cell monolayers. Treatment of cell monolayers by the lipid raft disorganizer methyl-β-cyclodextrin abolished the inhibitory activity of peptide AF-16 at the transcellular passage level and did not modify the effect of the peptide at the paracellular level. PMID:25534938

  19. A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition

    PubMed Central

    Kuo, Ping-Hsueh; Chang, Pei-Lin; Wang, Wen-Ching; Chuang, Yung-Jen; Chang, Margaret Dah-Tsyr

    2015-01-01

    As heparan sulfate proteoglycans (HSPGs) are known as co-receptors to interact with numerous growth factors and then modulate downstream biological activities, overexpression of HS/HSPG on cell surface acts as an increasingly reliable prognostic factor in tumor progression. Cell penetrating peptides (CPPs) are short-chain peptides developed as functionalized vectors for delivery approaches of impermeable agents. On cell surface negatively charged HS provides the initial attachment of basic CPPs by electrostatic interaction, leading to multiple cellular effects. Here a functional peptide (CPPecp) has been identified from critical HS binding region in hRNase3, a unique RNase family member with in vitro antitumor activity. In this study we analyze a set of HS-binding CPPs derived from natural proteins including CPPecp. In addition to cellular binding and internalization, CPPecp demonstrated multiple functions including strong binding activity to tumor cell surface with higher HS expression, significant inhibitory effects on cancer cell migration, and suppression of angiogenesis in vitro and in vivo. Moreover, different from conventional highly basic CPPs, CPPecp facilitated magnetic nanoparticle to selectively target tumor site in vivo. Therefore, CPPecp could engage its capacity to be developed as biomaterials for diagnostic imaging agent, therapeutic supplement, or functionalized vector for drug delivery. PMID:26064887

  20. Highly selective inhibition of histone demethylases by de novo macrocyclic peptides.

    PubMed

    Kawamura, Akane; Münzel, Martin; Kojima, Tatsuya; Yapp, Clarence; Bhushan, Bhaskar; Goto, Yuki; Tumber, Anthony; Katoh, Takayuki; King, Oliver N F; Passioura, Toby; Walport, Louise J; Hatch, Stephanie B; Madden, Sarah; Müller, Susanne; Brennan, Paul E; Chowdhury, Rasheduzzaman; Hopkinson, Richard J; Suga, Hiroaki; Schofield, Christopher J

    2017-04-06

    The JmjC histone demethylases (KDMs) are linked to tumour cell proliferation and are current cancer targets; however, very few highly selective inhibitors for these are available. Here we report cyclic peptide inhibitors of the KDM4A-C with selectivity over other KDMs/2OG oxygenases, including closely related KDM4D/E isoforms. Crystal structures and biochemical analyses of one of the inhibitors (CP2) with KDM4A reveals that CP2 binds differently to, but competes with, histone substrates in the active site. Substitution of the active site binding arginine of CP2 to N-ɛ-trimethyl-lysine or methylated arginine results in cyclic peptide substrates, indicating that KDM4s may act on non-histone substrates. Targeted modifications to CP2 based on crystallographic and mass spectrometry analyses results in variants with greater proteolytic robustness. Peptide dosing in cells manifests KDM4A target stabilization. Although further development is required to optimize cellular activity, the results reveal the feasibility of highly selective non-metal chelating, substrate-competitive inhibitors of the JmjC KDMs.

  1. Symbiotic Plant Peptides Eliminate Candida albicans Both In Vitro and in an Epithelial Infection Model and Inhibit the Proliferation of Immortalized Human Cells

    PubMed Central

    Ördögh, Lilla; Vörös, Andrea; Nagy, István; Kondorosi, Éva

    2014-01-01

    The increasing number of multidrug-resistant microbes now emerging necessitates the identification of novel antimicrobial agents. Plants produce a great variety of antimicrobial peptides including hundreds of small, nodule-specific cysteine-rich NCR peptides that, in the legume Medicago truncatula, govern the differentiation of endosymbiotic nitrogen fixing bacteria and, in vitro, can display potent antibacterial activities. In this study, the potential candidacidal activity of 19 NCR peptides was investigated. Cationic NCR peptides having an isoelectric point above 9 were efficient in killing Candida albicans, one of the most common fungal pathogens of humans. None of the tested NCR peptides were toxic for immortalized human epithelial cells at concentrations that effectively killed the fungus; however, at higher concentrations, some of them inhibited the division of the cells. Furthermore, the cationic peptides successfully inhibited C. albicans induced human epithelial cell death in an in vitro coculture model. These results highlight the therapeutic potential of cationic NCR peptides in the treatment of candidiasis. PMID:25243129

  2. Direct inhibition of NF-κB activation by peptide targeting the NOA ubiquitin binding domain of NEMO.

    PubMed

    Chiaravalli, Jeanne; Fontan, Elisabeth; Fsihi, Hafida; Coic, Yves-Marie; Baleux, Françoise; Véron, Michel; Agou, Fabrice

    2011-11-01

    Aberrant and constitutive NF-κB activation are frequently reported in numerous tumor types, making its inhibition an attractive target for the treatment of certain cancers. NEMO (NF-κB essential modulator) is the crucial component of the canonical NF-κB pathway that mediates IκB kinase (IKK) complex activation. IKK activation resides in the ability of the C-terminal domain of NEMO to properly dimerize and interact with linear and K63-linked polyubiquitin chains. Here, we have identified a new NEMO peptide inhibitor, termed UBI (ubiquitin binding inhibitor) that derives from the NOA/NUB/UBAN ubiquitin binding site located in the CC2-LZ domain of NEMO. UBI specifically inhibits the NF-κB pathway at the IKK level in different cell types stimulated by a variety of NF-κB signals. Circular dichroïsm and fluorescence studies showed that UBI exhibits an increased α-helix character and direct, good-affinity binding to the NOA-LZ region of NEMO. We also showed that UBI targets NEMO in cells but its mode of inhibition is completely different from the previously reported LZ peptide (herein denoted NOA-LZ). UBI does not promote dissociation of NEMO subunits in cells but impairs the interaction between the NOA UBD of NEMO and polyubiquitin chains. Importantly, we showed that UBI efficiently competes with the in vitro binding of K63-linked chains, but not with linear chains. The identification of this new NEMO inhibitor emphasizes the important contribution of K63-linked chains for IKK activation in NF-κB signaling and would provide a new tool for studying the complex role of NF-κB in inflammation and cancer.

  3. Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus

    PubMed Central

    Haggarty, Beth S.; Duong, Jennifer; Jordon, Andrea P. O.; Romano, Josephine; DeClercq, Joshua J.; Gregory, Philip D.; Riley, James L.; Holmes, Michael C.

    2016-01-01

    HIV-1 entry can be inhibited by soluble peptides from the gp41 heptad repeat-2 (HR2) domain that interfere with formation of the 6-helix bundle during fusion. Inhibition has also been seen when these peptides are conjugated to anchoring molecules and over-expressed on the cell surface. We hypothesized that potent anti-HIV activity could be achieved if a 34 amino acid peptide from HR2 (C34) were brought to the site of virus-cell interactions by conjugation to the amino termini of HIV-1 coreceptors CCR5 or CXCR4. C34-conjugated coreceptors were expressed on the surface of T cell lines and primary CD4 T cells, retained the ability to mediate chemotaxis in response to cognate chemokines, and were highly resistant to HIV-1 utilization for entry. Notably, C34-conjugated CCR5 and CXCR4 each exhibited potent and broad inhibition of HIV-1 isolates from diverse clades irrespective of tropism (i.e., each could inhibit R5, X4 and dual-tropic isolates). This inhibition was highly specific and dependent on positioning of the peptide, as HIV-1 infection was poorly inhibited when C34 was conjugated to the amino terminus of CD4. C34-conjugated coreceptors could also inhibit HIV-1 isolates that were resistant to the soluble HR2 peptide inhibitor, enfuvirtide. When introduced into primary cells, CD4 T cells expressing C34-conjugated coreceptors exhibited physiologic responses to T cell activation while inhibiting diverse HIV-1 isolates, and cells containing C34-conjugated CXCR4 expanded during HIV-1 infection in vitro and in a humanized mouse model. Notably, the C34-conjugated peptide exerted greater HIV-1 inhibition when conjugated to CXCR4 than to CCR5. Thus, antiviral effects of HR2 peptides can be specifically directed to the site of viral entry where they provide potent and broad inhibition of HIV-1. This approach to engineer HIV-1 resistance in functional CD4 T cells may provide a novel cell-based therapeutic for controlling HIV infection in humans. PMID:27855210

  4. Inhibition of HIV-1 Env-Mediated Cell-Cell Fusion by Lectins, Peptide T-20, and Neutralizing Antibodies

    PubMed Central

    Yee, Michael; Konopka, Krystyna; Balzarini, Jan; Düzgüneş, Nejat

    2011-01-01

    Background: Broadly cross-reactive, neutralizing human monoclonal antibodies, including 2F5, 2G12, 4E10 and IgG1 b12, can inhibit HIV-1 infection in vitro at very low concentrations. We examined the ability of these antibodies to inhibit cell-cell fusion between Clone69TRevEnv cells induced to express the viral envelope proteins, gp120/gp41 (Env), and highly CD4-positive SupT1 cells. The cells were loaded with green and red-orange cytoplasmic fluorophores, and fusion was monitored by fluorescence microscopy. Results: Cell-cell fusion was inhibited completely by the carbohydrate binding proteins (CBPs), Hippeastrum hybrid (Amaryllis) agglutinin (HHA), and Galanthus nivalis (Snowdrop) agglutinin (GNA), and by the peptide, T-20, at relatively low concentrations. Anti-gp120 and anti-gp41 antibodies, at concentrations much higher than those required for neutralization, were not particularly effective in inhibiting fusion. Monoclonal antibodies b12, m14 IgG and 2G12 had moderate inhibitory activity; the IC50 of 2G12 was about 80 µg/ml. Antibodies 4E10 and 2F5 had no inhibitory activity at the concentrations tested. Conclusions: These observations raise concerns about the ability of neutralizing antibodies to inhibit the spread of viral genetic material from infected cells to uninfected cells via cell-cell fusion. The interaction of gp120/gp41 with cell membrane CD4 may be different in cell-cell and virus-cell membrane fusion reactions, and may explain the differential effects of antibodies in these two systems. The fluorescence assay described here may be useful in high throughput screening of potential HIV fusion inhibitors. PMID:21660189

  5. Inhibition of HIV-1 Env-Mediated Cell-Cell Fusion by Lectins, Peptide T-20, and Neutralizing Antibodies.

    PubMed

    Yee, Michael; Konopka, Krystyna; Balzarini, Jan; Düzgüneş, Nejat

    2011-01-01

    Broadly cross-reactive, neutralizing human monoclonal antibodies, including 2F5, 2G12, 4E10 and IgG1 b12, can inhibit HIV-1 infection in vitro at very low concentrations. We examined the ability of these antibodies to inhibit cell-cell fusion between Clone69TRevEnv cells induced to express the viral envelope proteins, gp120/gp41 (Env), and highly CD4-positive SupT1 cells. The cells were loaded with green and red-orange cytoplasmic fluorophores, and fusion was monitored by fluorescence microscopy. Cell-cell fusion was inhibited completely by the carbohydrate binding proteins (CBPs), Hippeastrum hybrid (Amaryllis) agglutinin (HHA), and Galanthus nivalis (Snowdrop) agglutinin (GNA), and by the peptide, T-20, at relatively low concentrations. Anti-gp120 and anti-gp41 antibodies, at concentrations much higher than those required for neutralization, were not particularly effective in inhibiting fusion. Monoclonal antibodies b12, m14 IgG and 2G12 had moderate inhibitory activity; the IC(50) of 2G12 was about 80 µg/ml. Antibodies 4E10 and 2F5 had no inhibitory activity at the concentrations tested. These observations raise concerns about the ability of neutralizing antibodies to inhibit the spread of viral genetic material from infected cells to uninfected cells via cell-cell fusion. The interaction of gp120/gp41 with cell membrane CD4 may be different in cell-cell and virus-cell membrane fusion reactions, and may explain the differential effects of antibodies in these two systems. The fluorescence assay described here may be useful in high throughput screening of potential HIV fusion inhibitors.

  6. Beta-conglycinin embeds active peptides that inhibit lipid accumulation in 3T3-L1 adipocytes in vitro.

    PubMed

    Martinez-Villaluenga, Cristina; Bringe, Neal A; Berhow, Mark A; Gonzalez de Mejia, Elvira

    2008-11-26

    Obesity is a worldwide health concern because it is a well-recognized predictor of premature mortality. The objective was to identify soybean varieties that have improved potential to inhibit fat accumulation in adipocytes by testing the effects of soy hydrolysates having a range of protein subunit compositions on lipid accumulation and adiponectin expression in 3T3-L1 adipocytes. The results showed that differences in the protein distribution of 15 soy genotypes led to different potentials for the reduction of fat accumulation. The inhibition of lipid accumulation of soy alcalase hydrolysates in 3T3-L1 adipocytes ranged from 29 to 46%. Soy hydrolysates made from genotypes with 45.3 +/- 3.3% of total protein as beta-conglycinin, on average, showed significantly higher inhibition of lipid accumulation compared to those with 24.7 +/- 1.5% of extracted total protein as beta-conglycinin. Moreover, after in vitro simulated digestion with pepsin-pancreatin of the soy alcalase hydrolysates, 86% of the original activity remained. Adiponectin expression was induced in 3T3-L1 adipocytes treated with 15 soy hydrolysates up to 2.49- and 2.63-fold for high and low molecular weight adiponectin, respectively. The inhibition of lipid accumulation calculated from a partial least squares (PLS) analysis model correlated well with experimental data (R(2) = 0.91). In conclusion, it was feasible to differentiate soy varieties on the basis of the potential of their proteins to reduce fat accumulation using a statistical model and a cell-based assay in vitro. Furthermore, beta-conglycinin embeds more peptides than glycinin subunits that inhibit lipid accumulation and induce adiponectin in 3T3-L1 adipocytes. Therefore, soy ingredients containing beta-conglycinin may be important food components for the control of lipid accumulation in adipose tissue.

  7. C-reactive protein-derived peptide 201-206 inhibits neutrophil adhesion to endothelial cells and platelets through CD32.

    PubMed

    El Kebir, Driss; Zhang, Ying; Potempa, Lawrence A; Wu, Yi; Fournier, Alain; Filep, János G

    2011-12-01

    The role of CRP as a regulator of inflammation is not fully understood. Structural rearrangement in CRP results in expression of potent proinflammatory actions. Proteolysis of CRP yields the C-terminal peptide Lys(201)-Pro-Gln-Leu-Trp-Pro(206). Here, we investigated the impact of this peptide on neutrophil interactions with endothelial cells and platelets, critical inflammatory events triggering acute coronary artery disease. CRP peptide 201-206 induced L-selectin shedding from human neutrophils and inhibited L-selectin-mediated neutrophil adhesion to TNF-α-activated HCAECs under nonstatic conditions. CRP peptide 201-206 also attenuated shear-induced up-regulation of platelet P-selectin expression, platelet capture of neutrophils, and subsequent homotypic neutrophil adhesion in human whole blood. Anti-CD32 but not anti-CD16 or anti-CD64 mAb effectively prevented the inhibitory actions of CRP peptide 201-206. Substitution of Lys(201), Gln(203), or Trp(205) with Ala in CRP peptide 201-206 resulted in loss of the biological activities, whereas peptides in which Pro(202), Leu(204), or Pro(206) was substituted with Ala retained biological activity. We identified amino acid residues involved in CRP peptide 201-206-FcγRII (CD32) interactions, which mediate potent antineutrophil and antiplatelet adhesion actions, and these findings open up new perspectives for limiting inflammation and thrombosis underlying coronary artery disease.

  8. Inhibition of isoflurane-induced increase of cell-surface redistribution and activity of glutamate transporter type 3 by serine 465 sequence-specific peptides.

    PubMed

    Huang, Yueming; Li, Liaoliao; Washington, Jacqueline M; Xu, Xuebing; Sando, Julianne J; Lin, Daowei; Zuo, Zhiyi

    2011-03-25

    Excitatory amino acid transporters (EAAT) transport glutamate into cells to regulate glutamate neurotransmission and to maintain nontoxic extracellular glutamate levels for neurons. We showed previously that the commonly used volatile anesthetic isoflurane increases the transporting activity of EAAT3, the major neuronal EAAT. This effect requires a protein kinase C (PKC) α-mediated and S465-dependent EAAT3 redistribution to the plasma membrane. Thus, we hypothesize that specific peptides can be designed to block this effect. We conjugated a 10-amino acid synthetic peptide with a sequence identical to that of EAAT3 around the S465 to a peptide that can facilitate permeation of the plasma membrane. This fusion peptide inhibited the isoflurane-increased EAAT3 activity and redistribution to the plasma membrane in C6 cells and hippocampus. It did not affect the basal EAAT3 activity. This peptide also attenuated isoflurane-induced increase of PKCα in the immunoprecipitates produced by an anti-EAAT3 antibody. A scrambled peptide that has the same amino acid composition as the S465 sequence-specific peptide but has a random sequence did not change the effects of isoflurane on EAAT3. The S465 sequence-specific peptide, but not the scrambled peptide, is a good PKCα substrate in in vitro assay. These peptides did not affect cell viability. These results, along with our previous findings, strongly suggest that PKCα interacts with EAAT3 to regulate its functions. The S465 sequence-specific peptide may interrupt this interaction and is an effective inhibitor for the regulation of EAAT3 activity and trafficking by PKCα and isoflurane.

  9. Combinative effect of sardine peptides and quercetin alleviates hypertension through inhibition of angiotensin I converting enzyme activity and inflammation.

    PubMed

    Luo, Jianming; Zhang, Cheng; Liu, Qianyue; Ou, Shiyi; Zhang, Lili; Peng, Xichun

    2017-10-01

    Hypertension had relation to angiotensin I converting enzyme (ACE) activity and inflammation. In our previous research, sardine peptides (SP) with ACE inhibitory activity were prepared. However, the combinative effect of SP and quercetin (QC) on hypertension alleviation was still unknown. In the present study, the antihypertensive effect of SP and QC was discovered and the optimal proportion of SP and QC (v/v=8:2, with 20.00mg/mL of SP and 12.99μg/mL of QC for their original concentrations) was screened on ACE activity inhibition in vitro. And the in vivo experiment supported it by indicating that the mixture reduced the systolic blood pressure, heart, left ventricular and kidney weight and their corresponding indices, serum ACE activity, angiotensin-II (ANG-II) and tumor necrosis factor-α (TNF-α) (in high dose) concentration in SHR rats. Besides, the mixture also lowers NO, TNF-α andinterleukin-6 (IL-6) concentration significantly in vitro. Hence, the combinative effect of SP and QC in optimal proportion had stronger inhibition on ACE activity than SP or QC alone, and could alleviate hypertension through inhibition of ACE activity and inflammation. Copyright © 2017. Published by Elsevier Ltd.

  10. PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide.

    PubMed

    Shan, LiXin; Pang, Ling; Zhang, Rumin; Murgolo, Nicholas J; Lan, Hong; Hedrick, Joseph A

    2008-10-10

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low density lipoprotein receptor (LDLR) and induces its internalization and degradation. PCSK9 binding to LDLR is mediated through the LDLR epidermal growth factor-like repeat A (EGF-A) domain. We show for the first time that an EGF-A peptide inhibits PCSK9-mediated degradation of LDLR in HepG2 cells. In addition to LDLR, we show that PCSK9 also binds directly to ApoER2 and mouse VLDLR. Importantly, binding of PCSK9 to either LDLR or mouse VLDLR was effectively inhibited by EGF-A while binding to ApoER2 was less affected. In contrast, LDL receptor-associated protein (RAP), which interacts with LDL receptor repeat type A (LA) domains, inhibited PCSK9 binding to ApoER2 with greater efficacy than either LDLR or mVLDLR. These data demonstrate that while PCSK9 binds several receptors via its EGF-A binding domain, additional contacts with other receptor domains are also involved.

  11. IGF-1R peptide vaccines/mimics inhibit the growth of BxPC3 and JIMT-1 cancer cells and exhibit synergistic antitumor effects with HER-1 and HER-2 peptides.

    PubMed

    Foy, Kevin Chu; Miller, Megan J; Overholser, Jay; Donnelly, Siobhan M; Nahta, Rita; Kaumaya, Pravin Tp

    2014-11-01

    The insulin-like growth factor-1 receptor (IGF-1R) plays a crucial role in cellular growth, proliferation, transformation, and inhibition of apoptosis. A myriad of human cancer types have been shown to overexpress IGF-1R, including breast and pancreatic adenocarcinoma. IGF-1R signaling interferes with numerous receptor pathways, rendering tumor cells resistant to chemotherapy, anti-hormonal therapy, and epidermal growth factor receptor (EGFR, also known as HER-1) and v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2, (ERBB2, best known as HER-2) -targeted therapies. Targeting the IGF:IGF-1R axis with innovative peptide inhibitors and vaccine antibodies thus represents a promising therapeutic strategy to overcome drug resistance and to provide new avenues for individualized and combinatorial treatment strategies. In this study, we designed, synthesized, and characterized several B-cell epitopes from the IGF-1:IGF-1R axis. The chimeric peptide epitopes were highly immunogenic in outbred rabbits, eliciting high levels of peptide vaccine antibodies. The IGF-1R peptide antibodies and peptide mimics inhibited cell proliferation and receptor phosphorylation, induced apoptosis and antibody-dependent cellular cytotoxicity (ADCC), and significantly inhibited tumor growth in the transplantable BxPC-3 pancreatic and JIMT-1 breast cancer models. Our results showed that the peptides and antibodies targeting residues 56-81 and 233-251 are potential therapeutic and vaccine candidates for the treatment of IGF-1R-expressing cancers, including those that are resistant to the HER-2-targeted antibody, trastuzumab. Additionally, we found additive antitumor effects for the combination treatment of the IGF-1R 56-81 epitope with HER-1-418 and HER-2-597 epitopes. Treatment with the IGF-1R/HER-1 or IGF-1R/HER-2 combination inhibited proliferation, invasion, and receptor phosphorylation, and induced apoptosis and ADCC, to a greater degree than single agents.

  12. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells.

    PubMed

    He, Xuedan; Alves, Carla S; Oliveira, Nilsa; Rodrigues, João; Zhu, Jingyi; Bányai, István; Tomás, Helena; Shi, Xiangyang

    2015-01-01

    Development of multifunctional nanoscale drug-delivery systems for targeted cancer therapy still remains a great challenge. Here, we report the synthesis of cyclic arginine-glycine-aspartic acid (RGD) peptide-conjugated generation 5 (G5) poly(amidoamine) dendrimers for anticancer drug encapsulation and targeted therapy of cancer cells overexpressing αvβ3 integrins. In this study, amine-terminated G5 dendrimers were used as a platform to be sequentially modified with fluorescein isothiocyanate (FI) via a thiourea linkage and RGD peptide via a polyethylene glycol (PEG) spacer, followed by acetylation of the remaining dendrimer terminal amines. The developed multifunctional dendrimer platform (G5.NHAc-FI-PEG-RGD) was then used to encapsulate an anticancer drug doxorubicin (DOX). We show that approximately six DOX molecules are able to be encapsulated within each dendrimer platform. The formed complexes are water-soluble, stable, and able to release DOX in a sustained manner. One- and two-dimensional NMR techniques were applied to investigate the interaction between dendrimers and DOX, and the impact of the environmental pH on the release rate of DOX from the dendrimer/DOX complexes was also explored. Furthermore, cell biological studies demonstrate that the encapsulation of DOX within the G5.NHAc-FI-PEG-RGD dendrimers does not compromise the anticancer activity of DOX and that the therapeutic efficacy of the dendrimer/DOX complexes is solely related to the encapsulated DOX drug. Importantly, thanks to the role played by RGD-mediated targeting, the developed dendrimer/drug complexes are able to specifically target αvβ3 integrin-overexpressing cancer cells and display specific therapeutic efficacy to the target cells. The developed RGD peptide-targeted multifunctional dendrimers may thus be used as a versatile platform for targeted therapy of different types of αvβ3 integrin-overexpressing cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. MEPE-Derived ASARM Peptide Inhibits Odontogenic Differentiation of Dental Pulp Stem Cells and Impairs Mineralization in Tooth Models of X-Linked Hypophosphatemia

    PubMed Central

    Khaddam, Mayssam; Naji, Jiar; Coyac, Benjamin R.; Baroukh, Brigitte; Letourneur, Franck; Lesieur, Julie; Decup, Franck; Le Denmat, Dominique; Nicoletti, Antonino; Poliard, Anne; Rowe, Peter S.; Huet, Eric; Vital, Sibylle Opsahl; Linglart, Agnès; McKee, Marc D.; Chaussain, Catherine

    2013-01-01

    Mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X-chromosome) cause X-linked familial hypophosphatemic rickets (XLH), a disorder having severe bone and tooth dentin mineralization defects. The absence of functional PHEX leads to abnormal accumulation of ASARM (acidic serine- and aspartate-rich motif) peptide − a substrate for PHEX and a strong inhibitor of mineralization − derived from MEPE (matrix extracellular phosphoglycoprotein) and other matrix proteins. MEPE-derived ASARM peptide accumulates in tooth dentin of XLH patients where it may impair dentinogenesis. Here, we investigated the effects of ASARM peptides in vitro and in vivo on odontoblast differentiation and matrix mineralization. Dental pulp stem cells from human exfoliated deciduous teeth (SHEDs) were seeded into a 3D collagen scaffold, and induced towards odontogenic differentiation. Cultures were treated with synthetic ASARM peptides (phosphorylated and nonphosphorylated) derived from the human MEPE sequence. Phosphorylated ASARM peptide inhibited SHED differentiation in vitro, with no mineralized nodule formation, decreased odontoblast marker expression, and upregulated MEPE expression. Phosphorylated ASARM peptide implanted in a rat molar pulp injury model impaired reparative dentin formation and mineralization, with increased MEPE immunohistochemical staining. In conclusion, using complementary models to study tooth dentin defects observed in XLH, we demonstrate that the MEPE-derived ASARM peptide inhibits both odontogenic differentiation and matrix mineralization, while increasing MEPE expression. These results contribute to a partial mechanistic explanation of XLH pathogenesis: direct inhibition of mineralization by ASARM peptide leads to the mineralization defects in XLH teeth. This process appears to be positively reinforced by the increased MEPE expression induced by ASARM. The MEPE-ASARM system can therefore be considered as a potential therapeutic

  14. MEPE-derived ASARM peptide inhibits odontogenic differentiation of dental pulp stem cells and impairs mineralization in tooth models of X-linked hypophosphatemia.

    PubMed

    Salmon, Benjamin; Bardet, Claire; Khaddam, Mayssam; Naji, Jiar; Coyac, Benjamin R; Baroukh, Brigitte; Letourneur, Franck; Lesieur, Julie; Decup, Franck; Le Denmat, Dominique; Nicoletti, Antonino; Poliard, Anne; Rowe, Peter S; Huet, Eric; Vital, Sibylle Opsahl; Linglart, Agnès; McKee, Marc D; Chaussain, Catherine

    2013-01-01

    Mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X-chromosome) cause X-linked familial hypophosphatemic rickets (XLH), a disorder having severe bone and tooth dentin mineralization defects. The absence of functional PHEX leads to abnormal accumulation of ASARM (acidic serine- and aspartate-rich motif) peptide - a substrate for PHEX and a strong inhibitor of mineralization - derived from MEPE (matrix extracellular phosphoglycoprotein) and other matrix proteins. MEPE-derived ASARM peptide accumulates in tooth dentin of XLH patients where it may impair dentinogenesis. Here, we investigated the effects of ASARM peptides in vitro and in vivo on odontoblast differentiation and matrix mineralization. Dental pulp stem cells from human exfoliated deciduous teeth (SHEDs) were seeded into a 3D collagen scaffold, and induced towards odontogenic differentiation. Cultures were treated with synthetic ASARM peptides (phosphorylated and nonphosphorylated) derived from the human MEPE sequence. Phosphorylated ASARM peptide inhibited SHED differentiation in vitro, with no mineralized nodule formation, decreased odontoblast marker expression, and upregulated MEPE expression. Phosphorylated ASARM peptide implanted in a rat molar pulp injury model impaired reparative dentin formation and mineralization, with increased MEPE immunohistochemical staining. In conclusion, using complementary models to study tooth dentin defects observed in XLH, we demonstrate that the MEPE-derived ASARM peptide inhibits both odontogenic differentiation and matrix mineralization, while increasing MEPE expression. These results contribute to a partial mechanistic explanation of XLH pathogenesis: direct inhibition of mineralization by ASARM peptide leads to the mineralization defects in XLH teeth. This process appears to be positively reinforced by the increased MEPE expression induced by ASARM. The MEPE-ASARM system can therefore be considered as a potential therapeutic

  15. Antibacterial peptide nisin: a potential role in the inhibition of oral pathogenic bacteria.

    PubMed

    Tong, Zhongchun; Ni, Longxing; Ling, Junqi

    2014-10-01

    Although the antimicrobial peptide nisin has been extensively studied in the food industry for decades, its application in the oral cavity remains to develop and evaluate its feasibility in treating oral common diseases. Nisin is an odorless, colorless, tasteless substance with low toxicity and with antibacterial activities against Gram-positive bacteria. These biologic properties may establish its use in promising products for oral diseases. This article summarizes the antibacterial efficiency of nisin against pathogenic bacteria related to dental caries and root canal infection and discusses the combination of nisin and common oral drugs.

  16. Inhibition of HIV-1 enhancer-controlled transcription by artificial enhancer-binding peptides derived from bacteriophage 434 repressor.

    PubMed

    Caderas, G; Klauser, S; Liu, N; Bienz, A; Gutte, B

    1999-12-01

    An artificial HIV-1 enhancer-binding 42-residue peptide (R42) that had been derived from bacteriophage 434 repressor inhibited the cell-free in vitro transcription of HIV-1 enhancer-containing plasmids [Hehlgans, T., Stolz, M., Klauser, S., Cui, T., Salgam, P., Brenz Verca, S., Widmann, M., Leiser, A., Städler, K. & Gutte, B. (1993) FEBS Lett. 315, 51-55; Caderas, G. (1997) PhD Thesis, University of Zürich]. Here we show that, after N-terminal extension of R42 with a viral nuclear localization signal, the resulting nucR42 peptide was active in intact cells. NucR42 could be detected immunologically in nuclear extracts and produced a 60-70% reduction of the rate of transcription of an HIV-1 enhancer-carrying plasmid in COS-1 cells that had been cotransfected with the HIV enhancer plasmid, an expression plasmid for nucR42, and a control. NucR42 was also synthesized chemically and the synthetic product characterized by HPLC, mass spectrometry, and quantitative amino acid analysis. Band shift, footprint, and in vitro transcription assays in the presence of exogenous NF-kappaBp50 indicated that the binding sites of nucR42 and NF-kappaB on the HIV enhancers overlapped and that a relatively small excess of nucR42 sufficed to displace NF-kappaBp50. Band shift and in vitro transcription experiments showed also that exchange of the 434 repressor-derived nine-residue recognition helix of nucR42 for four glycines abolished the HIV enhancer binding specificity whereas leucine zipper- or retro-leucine zipper-mediated dimerization of R42 analogues increased it suggesting the potential application of such dimeric HIV enhancer-binding peptides as intracellular inhibitors of HIV replication.

  17. Modification of Titanium Substrates with Chimeric Peptides Comprising Antimicrobial and Titanium-Binding Motifs Connected by Linkers To Inhibit Biofilm Formation.

    PubMed

    Liu, Zihao; Ma, Shiqing; Duan, Shun; Xuliang, Deng; Sun, Yingchun; Zhang, Xi; Xu, Xinhua; Guan, Binbin; Wang, Chao; Hu, Meilin; Qi, Xingying; Zhang, Xu; Gao, Ping

    2016-03-02

    Bacterial adhesion and biofilm formation are the primary causes of implant-associated infection, which is difficult to eliminate and may induce failure in dental implants. Chimeric peptides with both binding and antimicrobial motifs may provide a promising alternative to inhibit biofilm formation on titanium surfaces. In this study, chimeric peptides were designed by connecting an antimicrobial motif (JH8194: KRLFRRWQWRMKKY) with a binding motif (minTBP-1: RKLPDA) directly or via flexible/rigid linkers to modify Ti surfaces. We evaluated the binding behavior of peptides using quartz crystal microbalance (QCM) and atomic force microscopy (AFM) techniques and investigated the effect of the modification of titanium surfaces with these peptides on the bioactivity of Streptococcus gordonii (S. gordonii) and Streptococcus sanguis (S. sanguis). Compared with the flexible linker (GGGGS), the rigid linker (PAPAP) significantly increased the adsorption of the chimeric peptide on titanium surfaces (p < 0.05). Concentration-dependent adsorption is consistent with a single Langmuir model, whereas time-dependent adsorption is in line with a two-domain Langmuir model. Additionally, the chimeric peptide with the rigid linker exhibited more effective antimicrobial ability than the peptide with the flexible linker. This finding was ascribed to the ability of the rigid linker to separate functional domains and reduce their interference to the maximum extent. Consequently, the performance of chimeric peptides with specific titanium-binding motifs and antimicrobial motifs against bacteria can be optimized by the proper selection of linkers. This rational design of chimeric peptides provides a promising alternative to inhibit the formation of biofilms on titanium surfaces with the potential to prevent peri-implantitis and peri-implant mucositis.

  18. Plasmodium falciparum rhoptry neck protein 5 peptides bind to human red blood cells and inhibit parasite invasion.

    PubMed

    Curtidor, Hernando; Patiño, Liliana C; Arévalo-Pinzón, Gabriela; Vanegas, Magnolia; Patarroyo, Manuel E; Patarroyo, Manuel A

    2014-03-01

    Plasmodium falciparum malaria parasite invasion of erythrocytes is an essential step in host infection and the proteins involved in such invasion are the main target in developing an antimalarial vaccine. Secretory organelle-derived proteins (micronemal AMA1 protein and the RON2, 4, and 5 rhoptry neck proteins) have been recently described as components of moving junction complex formation allowing merozoites to move into a newly created parasitophorous vacuole. This study led to identifying RON5 regions involved in binding to human erythrocytes by using a highly robust, sensitive and specific receptor-ligand interaction assay; it is further shown that the RON5 protein remains highly conserved throughout different parasite strains. It is shown that the binding peptide-erythrocyte interaction is saturable and sensitive to chymotrypsin and trypsin. Invasion inhibition assays using erythrocyte binding peptides showed that the RON5-erythrocyte interaction could be critical for merozoite invasion of erythrocytes. This work provides evidence (for the first time) suggesting a fundamental role for RON5 in erythrocyte invasion. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Specific interaction between Mycobacterium tuberculosis lipoprotein-derived peptides and target cells inhibits mycobacterial entry in vitro.

    PubMed

    Ocampo, Marisol; Curtidor, Hernando; Vanegas, Magnolia; Patarroyo, Manuel A; Patarroyo, Manuel E

    2014-12-01

    Tuberculosis (TB) continues being one of the diseases having the greatest mortality rates around the world, 8.7 million cases having been reported in 2011. An efficient vaccine against TB having a great impact on public health is an urgent need. Usually, selecting antigens for vaccines has been based on proteins having immunogenic properties for patients suffering TB and having had promising results in mice and non-human primates. Our approach has been based on a functional approach involving the pathogen-host interaction in the search for antigens to be included in designing an efficient, minimal, subunit-based anti-TB vaccine. This means that Mycobacterium tuberculosis has mainly been involved in studies and that lipoproteins represent an important kind of protein on the cell envelope which can also contribute towards this pathogen's virulence. This study has assessed the expression of four lipoproteins from M. tuberculosis H37Rv, that is, Rv1411c (LprG), Rv1911c (LppC), Rv2270 (LppN) and Rv3763 (LpqH), and the possible biological activity of peptides derived from these. Five peptides were found for these proteins which had high specific binding to both alveolar A549 epithelial cells and U937 monocyte-derived macrophages which were able to significantly inhibit mycobacterial entry to these cells in vitro.

  20. Specific interaction between Mycobacterium tuberculosis lipoprotein-derived peptides and target cells inhibits mycobacterial entry in vitro

    PubMed Central

    Ocampo, Marisol; Curtidor, Hernando; Vanegas, Magnolia; Patarroyo, Manuel Alfonso; Patarroyo, Manuel Elkin

    2014-01-01

    Summary Tuberculosis (TB) continues being one of the diseases having the greatest mortality rates around the world, 8.7 million cases having been reported in 2011. An efficient vaccine against TB having a great impact on public health is an urgent need. Usually, selecting antigens for vaccines has been based on proteins having immunogenic properties for patients suffering TB and having had promising results in mice and non-human primates. Our approach has been based on a functional approach involving the pathogen–host interaction in the search for antigens to be included in designing an efficient, minimal, subunit-based anti-tuberculosis vaccine. This means that Mycobacterium tuberculosis has mainly been involved in studies and that lipoproteins represent an important kind of protein on the cell envelope which can also contribute towards this pathogen's virulence. This study has assessed the expression of four lipoproteins from M. tuberculosis H37Rv, i.e. Rv1411c (LprG), Rv1911c (LppC), Rv2270 (LppN) and Rv3763 (LpqH), and the possible biological activity of peptides derived from these. Five peptides were found for these proteins which had high specific binding to both alveolar A549 epithelial cells and U937 monocyte-derived macrophages which were able to significantly inhibit mycobacterial entry to these cells in vitro. PMID:25041568

  1. Folic Acid Inhibits Amyloid β-Peptide Production through Modulating DNA Methyltransferase Activity in N2a-APP Cells.

    PubMed

    Li, Wen; Jiang, Mingyue; Zhao, Shijing; Liu, Huan; Zhang, Xumei; Wilson, John X; Huang, Guowei

    2015-10-20

    Alzheimer's disease (AD) is a common neurodegenerative disease resulting in progressive dementia, and is a principal cause of dementia among older adults. Folate acts through one-carbon metabolism to support the methylation of multiple substrates. We hypothesized that folic acid supplementation modulates DNA methyltransferase (DNMT) activity and may alter amyloid β-peptide (Aβ) production in AD. Mouse Neuro-2a cells expressing human APP695 were incubated with folic acid (2.8-40 μmol/L), and with or without zebularine (the DNMT inhibitor). DNMT activity, cell viability, Aβ and DNMTs expression were then examined. The results showed that folic acid stimulated DNMT gene and protein expression, and DNMT activity. Furthermore, folic acid decreased Aβ protein production, whereas inhibition of DNMT activity by zebularine increased Aβ production. The results indicate that folic acid induces methylation potential-dependent DNMT enzymes, thereby attenuating Aβ production.

  2. Slow-binding inhibition of peptide deformylase by cyclic peptidomimetics as revealed by a new spectrophotometric assay.

    PubMed

    Nguyen, Kiet T; Hu, Xubo; Pei, Dehua

    2004-06-01

    A new spectrophotometric/fluorimetric assay for peptide deformylase (PDF) has been developed by coupling the PDF reaction with that of dipeptidyl peptidase I (DPPI) and using N-formyl-Met-Lys-AMC as substrate. Removal of the N-terminal formyl group by PDF renders the dipeptide an efficient substrate of DPPI, which subsequently removes the dipeptidyl units to release 7-amino-4-methylcoumarin as the chromophore/fluorophore. The PDF reaction is conveniently monitored on a UV-Vis spectrophotometer or a fluorimeter in a continuous fashion. The utility of the assay was demonstrated by determining the catalytic activity of PDF and the inhibition constants of PDF inhibitors. These studies revealed the slow-binding behavior of a previously reported macrocyclic PDF inhibitor. This method offers several advantages over the existing PDF assays and should be particularly useful for screening PDF inhibitors in the continuous fashion.

  3. Synthesis of peptide nucleic acids (PNA) with a crosslinking agent to RNA and effective inhibition of dicer.

    PubMed

    Akisawa, Takuya; Yamada, Ken; Nagatsugi, Fumi

    2016-12-15

    Peptide nucleic acids (PNAs) are structural mimics of nucleic acids that form stable hybrids with DNA and RNA. Due to these characteristics, PNAs are widely used as biochemical tools, for example, in antisense/antigene therapy. In this study, we have synthesized PNAs incorporating 2-amino-6-vinylpurine (AVP) for the covalent targeting of single-stranded DNA and RNA, and evaluated their reactivities for these targets. PNA containing AVP at the N-terminal position showed a high reactivity to uracil in RNA and thymine in DNA at the complementary site with AVP. In addition, the crosslinking reactions to pre-miR122 with PNA containing AVP increased the inhibition effect for the Dicer processing of pre-miR122 in vitro. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Inhibition of formyl peptide receptor in high-grade astrocytoma by CHemotaxis Inhibitory Protein of S. aureus.

    PubMed

    Boer, J C; Domanska, U M; Timmer-Bosscha, H; Boer, I G J; de Haas, C J C; Joseph, J V; Kruyt, F A E; de Vries, E G E; den Dunnen, W F A; van Strijp, J A G; Walenkamp, A M E

    2013-02-19

    High-grade astrocytomas are malignant brain tumours that infiltrate the surrounding brain tissue and have a poor prognosis. Activation of formyl peptide receptor (FPR1) on the human astrocytoma cell line U87 promotes cell motility, growth and angiogenesis. We therefore investigated the FPR1 inhibitor, Chemotaxis Inhibitory Protein of S. aureus (CHIPS), as a potential anti-astrocytoma drug. FPR1 expression was studied immunohistochemically in astrocytomas WHO grades I-IV. With intracellular calcium mobilisation and migration assays, human ligands were tested for their ability to activate FPR1 on U87 cells and on a cell line derived from primary astrocytoma grade IV patient material. Thereafter, we selectively inhibited these ligand-induced responses of FPR1 with an anti-inflammatory compound called Chemotaxis Inhibitory Protein of S. aureus (CHIPS). U87 xenografts in NOD-SCID mice served to investigate the effects of CHIPS in vivo. FPR1 was expressed in 29 out of 32 (90%) of all grades of astrocytomas. Two human mitochondrial-derived formylated peptides, formyl-methionil-leucine-lysine-isoleucine-valine (fMLKLIV) and formyl-methionil-methionil-tyrosine-alanine-leucine-phenylalanine (fMMYALF), were potent activators of FPR1 on tumour cells. Ligand-induced responses of FPR1-expressing tumour cells could be inhibited with FPR1 inhibitor CHIPS. Treatment of tumour-bearing mice with CHIPS slightly reduced tumour growth and improved survival as compared to non-treated animals (P=0.0019). Targeting FPR1 with CHIPS reduces cell motility and tumour cell activation, and prolongs the survival of tumour-bearing mice. This strategy could be explored in future research to improve treatment results for astrocytoma patients.

  5. pH-(low)-insertion-peptide (pHLIP) translocation of membrane impermeable phalloidin toxin inhibits cancer cell proliferation

    PubMed Central

    An, Ming; Wijesinghe, Dayanjali; Andreev, Oleg A.; Reshetnyak, Yana K.; Engelman, Donald M.

    2010-01-01

    We find that pH-(low)-insertion-peptide (pHLIP)-facilitated translocation of phalloidin, a cell-impermeable polar toxin, inhibits the proliferation of cancer cells in a pH-dependent fashion. The monomeric pHLIP inserts its C terminus across a membrane under slightly acidic conditions (pH 6–6.5), forming a transmembrane helix. The delivery construct carries phalloidin linked to its inserting C terminus via a disulfide bond that is cleaved inside cells, releasing the toxin. To facilitate delivery of the polar agent, a lipophilic rhodamine moiety is also attached to the inserting end of pHLIP. After a 3 h incubation at pH 6.1–6.2 with 2–4 μM concentrations of the construct, proliferation in cultures of HeLa, JC, and M4A4 cancer cells is severely disrupted (> 90% inhibition of cell growth). Treated cells also show signs of cytoskeletal immobilization and multinucleation, consistent with the expected binding of phalloidin to F actin, stabilizing the filaments against depolymerization. The antiproliferative effect was not observed without the hydrophobic facilitator (rhodamine). The biologically active delivery construct inserts into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipid bilayers with an apparent pKa of ∼6.15, similar to that of the parent pHLIP peptide. Sedimentation velocity experiments show that the delivery construct is predominantly monomeric (> 90%) in solution under the conditions employed to treat cells (pH 6.2, 4 μM). These results provide a lead for antitumor agents that would selectively destroy cells in acidic tumors. Such a targeted approach may reduce both the doses needed for cancer chemotherapy and the side effects in tissues with a normal pH. PMID:21048084

  6. Toxin Inhibition - Deconvolution Strategies and Assay Screening of Combinatorial Peptide Libraries

    DTIC Science & Technology

    2007-08-01

    concentration of 0.5 mM. DMSO (0.5%) was found to have no effect on the three assays used in these studies. Captopril (1 - 5 mlM) was used as reference...significant amounts of inhibition Percent Inhibition Capped tetrapeptide Uncapped tripeptide Captopril * Ac - X 1X2--X3X4 - NH 2 X1-*X203 BoNT/A M2C4 75... captopril was used as control inhibitor in BoNT/A and /B assays. ’Hayden 2003 reference 7, 2this work. In this work we observed differences in the

  7. Activity and biophysical inhibition resistance of a novel synthetic lung surfactant containing Super-Mini-B DATK peptide

    PubMed Central

    Notter, Robert H.; Wang, Zhengdong

    2016-01-01

    Background/objectives. This study examines the surface activity, resistance to biophysical inhibition, and pulmonary efficacy of a synthetic lung surfactant containing glycerophospholipids combined with Super Mini-B (S-MB) DATK, a novel and stable molecular mimic of lung surfactant protein (SP)-B. The objective of the work is to test whether S-MB DATK synthetic surfactant has favorable biophysical and physiological activity for future use in treating surfactant deficiency or dysfunction in lung disease or injury. Methods. The structure of S-MB DATK peptide was analyzed by homology modeling and by FTIR spectroscopy. The in vitro surface activity and inhibition resistance of synthetic S-MB DATK surfactant was assessed in the presence and absence of albumin, lysophosphatidylcholine (lyso-PC), and free fatty acids (palmitoleic and oleic acid). Adsorption and dynamic surface tension lowering were measured with a stirred subphase dish apparatus and a pulsating bubble surfactometer (20 cycles/min, 50% area compression, 37 °C). In vivo pulmonary activity of S-MB DATK surfactant was measured in ventilated rabbits with surfactant deficiency/dysfunction induced by repeated lung lavages that resulted in arterial PO2 values <100 mmHg. Results. S-MB DATK surfactant had very high surface activity in all assessments. The preparation adsorbed rapidly to surface pressures of 46–48 mN/m at 37 °C (low equilibrium surface tensions of 22–24 mN/m), and reduced surface tension to <1 mN/m under dynamic compression on the pulsating bubble surfactometer. S-MB DATK surfactant showed a significant ability to resist inhibition by serum albumin, C16:0 lyso-PC, and free fatty acids, but surfactant inhibition was mitigated by increasing surfactant concentration. S-MB DATK synthetic surfactant quickly improved arterial oxygenation and lung compliance after intratracheal instillation to ventilated rabbits with severe surfactant deficiency. Conclusions. S-MB DATK is an active mimic of native SP

  8. Inhibition of human immunodeficiency virus type 1 infection and syncytium formation in human cells by V3 loop synthetic peptides from gp120.

    PubMed Central

    Nehete, P N; Arlinghaus, R B; Sastry, K J

    1993-01-01

    Because V3 loop-specific antibodies have been shown to inhibit human immunodeficiency virus type 1 (HIV-1) infection of human cells and because specific mutations in the V3 loop render the virus ineffective for infection and syncytium formation, we tested the anti-HIV effects of V3 loop peptides from different HIV-1 strains. We obtained evidence that V3 loop synthetic peptides of 8 to 15 amino acids at nanogram concentrations efficiently blocked HIV-1 IIIB infection of several human T-cell lines and of freshly prepared normal human T cells. More importantly, syncytium formation by three different primary clinical HIV isolates was inhibited by the V3 loop peptide from HIV-1 IIIB at a concentration of 1 micrograms/ml. Concentrations of V3 peptides up to 50 micrograms/ml were not toxic to any of the human cells studied. Additionally, V3 peptides incubated in normal human serum or plasma exhibited biological and physical stability for up to 24 h. Taken together, these results suggest that the V3 loop peptides have medical utility as therapeutic reagents to either prevent HIV-1 infection in humans or reduce the spread of virus infection in HIV-infected individuals. These findings are especially significant because a number of reports in the literature indicate that the V3 loop region in gp120 plays an important role in the initial stages of HIV-1 infection of cells. Images PMID:7692087

  9. Benzothiazole Aniline Tetra(ethylene glycol) and 3-Amino-1,2,4-triazole Inhibit Neuroprotection against Amyloid Peptides by Catalase Overexpression in Vitro

    PubMed Central

    2013-01-01

    Alzheimer’s disease, Familial British dementia, Familial Danish dementia, Type 2 diabetes mellitus, plus Creutzfeldt-Jakob disease are associated with amyloid fibril deposition and oxidative stress. The antioxidant enzyme catalase is a neuroprotective amyloid binding protein. Herein the effects of catalase overexpression in SH-SY5Y neuronal cells on the toxicity of amyloid-β (Aβ), amyloid-Bri (ABri), amyloid-Dan (ADan), amylin (IAPP), and prion protein (PrP) peptides were determined. Results showed catalase overexpression was neuroprotective against Aβ, ABri, ADan, IAPP, and PrP peptides. The catalase inhibitor 3-amino-1,2,4-triazole (3-AT) and catalase-amyloid interaction inhibitor benzothiazole aniline tetra(ethylene glycol) (BTA-EG4) significantly enhanced neurotoxicity of amyloid peptides in catalase overexpressing neuronal cells. This suggests catalase neuroprotection involves breakdown of hydrogen peroxide (H2O2) plus a direct binding interaction between catalase and the Aβ, ABri, ADan, IAPP, and PrP peptides. Kisspeptin 45–50 had additive neuroprotective actions against the Aβ peptide in catalase overexpressing cells. The effects of 3-AT had an intracellular site of action, while catalase-amyloid interactions had an extracellular component. These results suggest that the 3-AT and BTA-EG4 compounds may be able to inhibit endogenous catalase mediated neuroprotection. Use of BTA-EG4, or compounds that inhibit catalase binding to amyloid peptides, as potential therapeutics for Neurodegenerative diseases may therefore result in unwanted effects. PMID:23968537

  10. Benzothiazole aniline tetra(ethylene glycol) and 3-amino-1,2,4-triazole inhibit neuroprotection against amyloid peptides by catalase overexpression in vitro.

    PubMed

    Chilumuri, Amrutha; Odell, Mark; Milton, Nathaniel G N

    2013-11-20

    Alzheimer's disease, Familial British dementia, Familial Danish dementia, Type 2 diabetes mellitus, plus Creutzfeldt-Jakob disease are associated with amyloid fibril deposition and oxidative stress. The antioxidant enzyme catalase is a neuroprotective amyloid binding protein. Herein the effects of catalase overexpression in SH-SY5Y neuronal cells on the toxicity of amyloid-β (Aβ), amyloid-Bri (ABri), amyloid-Dan (ADan), amylin (IAPP), and prion protein (PrP) peptides were determined. Results showed catalase overexpression was neuroprotective against Aβ, ABri, ADan, IAPP, and PrP peptides. The catalase inhibitor 3-amino-1,2,4-triazole (3-AT) and catalase-amyloid interaction inhibitor benzothiazole aniline tetra(ethylene glycol) (BTA-EG4) significantly enhanced neurotoxicity of amyloid peptides in catalase overexpressing neuronal cells. This suggests catalase neuroprotection involves breakdown of hydrogen peroxide (H2O2) plus a direct binding interaction between catalase and the Aβ, ABri, ADan, IAPP, and PrP peptides. Kisspeptin 45-50 had additive neuroprotective actions against the Aβ peptide in catalase overexpressing cells. The effects of 3-AT had an intracellular site of action, while catalase-amyloid interactions had an extracellular component. These results suggest that the 3-AT and BTA-EG4 compounds may be able to inhibit endogenous catalase mediated neuroprotection. Use of BTA-EG4, or compounds that inhibit catalase binding to amyloid peptides, as potential therapeutics for Neurodegenerative diseases may therefore result in unwanted effects.

  11. Inhibition of Transmitter Release and Attenuation of Anti-retroviral-associated and Tibial Nerve Injury-related Painful Peripheral Neuropathy by Novel Synthetic Ca2+ Channel Peptides*

    PubMed Central

    Wilson, Sarah M.; Schmutzler, Brian S.; Brittain, Joel M.; Dustrude, Erik T.; Ripsch, Matthew S.; Pellman, Jessica J.; Yeum, Tae-Sung; Hurley, Joyce H.; Hingtgen, Cynthia M.; White, Fletcher A.; Khanna, Rajesh

    2012-01-01

    N-type Ca2+ channels (CaV2.2) are a nidus for neurotransmitter release and nociceptive transmission. However, the use of CaV2.2 blockers in pain therapeutics is limited by side effects resulting from inhibition of the physiological functions of CaV2.2 within the CNS. We identified an anti-nociceptive peptide (Brittain, J. M., Duarte, D. B., Wilson, S. M., Zhu, W., Ballard, C., Johnson, P. L., Liu, N., Xiong, W., Ripsch, M. S., Wang, Y., Fehrenbacher, J. C., Fitz, S. D., Khanna, M., Park, C. K., Schmutzler, B. S., Cheon, B. M., Due, M. R., Brustovetsky, T., Ashpole, N. M., Hudmon, A., Meroueh, S. O., Hingtgen, C. M., Brustovetsky, N., Ji, R. R., Hurley, J. H., Jin, X., Shekhar, A., Xu, X. M., Oxford, G. S., Vasko, M. R., White, F. A., and Khanna, R. (2011) Suppression of inflammatory and neuropathic pain by uncoupling CRMP2 from the presynaptic Ca2+ channel complex. Nat. Med. 17, 822–829) derived from the axonal collapsin response mediator protein 2 (CRMP2), a protein known to bind and enhance CaV2.2 activity. Using a peptide tiling array, we identified novel peptides within the first intracellular loop (CaV2.2(388–402), “L1”) and the distal C terminus (CaV1.2(2014–2028) “Ct-dis”) that bound CRMP2. Microscale thermophoresis demonstrated micromolar and nanomolar binding affinities between recombinant CRMP2 and synthetic L1 and Ct-dis peptides, respectively. Co-immunoprecipitation experiments showed that CRMP2 association with CaV2.2 was inhibited by L1 and Ct-dis peptides. L1 and Ct-dis, rendered cell-penetrant by fusion with the protein transduction domain of the human immunodeficiency virus TAT protein, were tested in in vitro and in vivo experiments. Depolarization-induced calcium influx in dorsal root ganglion (DRG) neurons was inhibited by both peptides. Ct-dis, but not L1, peptide inhibited depolarization-stimulated release of the neuropeptide transmitter calcitonin gene-related peptide in mouse DRG neurons. Similar results were obtained in DRGs

  12. Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11

    PubMed Central

    Morici, Paola; Fais, Roberta; Rizzato, Cosmeri

    2016-01-01

    The aim of this study was to evaluate the in vitro activity of the synthetic peptide hLF1-11 against biofilm produced by clinical isolates of Candida albicans with different fluconazole susceptibility. The antibiofilm activity of the peptide hLF1-11 was assessed in terms of reduction of biofilm cellular density, metabolic activity and sessile cell viability. The extent of morphogenesis in hLF1-11 treated and untreated biofilms was also investigated microscopically. Transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production were analysed by qRT-PCR in hLF1-11 treated and untreated biofilms. Exogenous dibutyryl-cAMP (db-cAMP) was used to rescue morphogenesis in cells exposed to the peptide. The results revealed that hLF1-11 exhibited an inhibitory effect on biofilm formation by all C. albicans isolates tested in a dose-dependent manner, regardless of their fluconazole susceptibility. Visual inspection of treated or untreated biofilm cells with an inverted microscope revealed a significant reduction in hyphal formation by hLF1-11 treated cells, as early as 3 hours of incubation. Moreover, hLF1-11 showed a reduced activity on preadherent cells. hLF1-11 induced the down-regulation of biofilm and hyphal-associated genes, which were predominantly regulated via the Ras1-cAMP-Efg1 pathway. Indeed, exogenous db-cAMP restored morphogenesis in hLF1-11 treated cells. The hLF1-11 peptide significantly inhibited biofilm formation by C. albicans mainly at early stages, interfering with biofilm cellular density and metabolic activity, and affected morphogenesis through the Ras1-cAMP-Efg1 pathway. Our findings provide the first evidence that hLF1-11 could represent a potential candidate for the prevention of biofilm formation by C. albicans. PMID:27902776

  13. Fibronectin connecting segment-1 peptide inhibits pathogenic leukocyte trafficking and inflammatory demyelination in experimental models of chronic inflammatory demyelinating polyradiculoneuropathy.

    PubMed

    Dong, Chaoling; Greathouse, Kelsey M; Beacham, Rebecca L; Palladino, Steven P; Helton, E Scott; Ubogu, Eroboghene E

    2017-06-01

    The molecular determinants of pathogenic leukocyte migration across the blood-nerve barrier (BNB) in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) are unknown. Specific disease modifying therapies for CIDP are also lacking. Fibronectin connecting segment-1 (FNCS1), an alternatively spliced fibronectin variant expressed by microvascular endothelial cells at sites of inflammation in vitro and in situ, is a counterligand for leukocyte α4 integrin (also known as CD49d) implicated in pathogenic leukocyte trafficking in multiple sclerosis and inflammatory bowel disease. We sought to determine the role of FNCS1 in CIDP patient leukocyte trafficking across the BNB in vitro and in severe chronic demyelinating neuritis in vivo using a representative spontaneous murine CIDP model. Peripheral blood mononuclear leukocytes from 7 untreated CIDP patients were independently infused into a cytokine-treated, flow-dependent in vitro BNB model system. Time-lapse digital video microscopy was performed to visualize and quantify leukocyte trafficking, comparing FNCS1 peptide blockade to relevant controls. Fifty 24-week old female B7-2 deficient non-obese diabetic mice with spontaneous autoimmune peripheral polyneuropathy (SAPP) were treated daily with 2mg/kg FNCS1 peptide for 5days via intraperitoneal injection with appropriate controls. Neurobehavioral measures of disease severity, motor nerve electrophysiology assessments and histopathological quantification of inflammation and morphometric assessment of demyelination were performed to determine in vivo efficacy. The biological relevance of FNCS1 and CD49d in CIDP was evaluated by immunohistochemical detection in affected patient sural nerve biopsies. 25μM FNCS1 peptide maximally inhibited CIDP leukocyte trafficking at the human BNB in vitro. FNCS1 peptide treatment resulted in significant improvements in disease severity, motor electrophysiological parameters of demyelination and histological measures of

  14. Inhibition of calcitonin gene-related peptide function: a promising strategy for treating migraine.

    PubMed

    Durham, Paul L

    2008-09-01

    The neuropeptide calcitonin gene-related peptide (CGRP) is implicated in the underlying pathology of migraine. Serum levels of CGRP, which are elevated during a migraine attack, have been reported to return to normal with alleviation of pain. In addition, CGRP administration has been shown to cause a migraine-like headache in susceptible individuals. Importantly, CGRP receptors are found on many cell types within the trigeminovascular system that are thought to play important roles in controlling inflammatory and nociceptive processes. Based on these findings, it was proposed that blockage of CGRP receptor function and, hence, the physiological effects of CGRP would be effective in aborting a migraine attack. This review will summarize key preclinical data that support the therapeutic potential of using CGRP receptor antagonists or molecules that bind CGRP within the context of current neurovascular theories on migraine pathology.

  15. Matrix Metalloproteinase Inhibition by Heterotrimeric Triple-Helical Peptide Transition State Analogs

    PubMed Central

    Bhowmick, Manishabrata; Stawikowska, Roma; Tokmina-Roszyk, Dorota; Fields, Gregg B.

    2015-01-01

    Matrix metalloproteinases (MMPs) have been implicated in numerous pathologies. An overall lack of selectivity has rendered active site targeted MMP inhibitors problematic. The present study describes MMP inhibitors that function by binding both secondary binding sites (exosites) and the active site. Heterotrimeric triple-helical peptide transition-state analog inhibitors (THPIs) were assembled utilizing click chemistry. Three different heterotrimers were constructed, allowing for the inhibitory phosphinate moiety to be present uniquely in the leading, middle, or trailing strand of the triple-helix. All heterotrimeric constructs had sufficient thermally stability to warrant analysis as inhibitors. The heterotrimeric THPIs were effective against MMP-13 and MT1-MMP, with Ki spanning 100–400 nM. Unlike homotrimeric THPIs, the heterotrimeric THPIs offered complete selectivity between MT1-MMP and MMP-1. Exosite-based approaches are providing inhibitors with desired MMP selectivities. PMID:25766890

  16. Protein matrices for improved wound healing: elastase inhibition by a synthetic peptide model.

    PubMed

    Vasconcelos, Andreia; Pêgo, Ana Paula; Henriques, Lara; Lamghari, Meriem; Cavaco-Paulo, Artur

    2010-09-13

    The unique properties of silk fibroin were combined with keratin to develop new wound-dressing materials. Silk fibroin/keratin (SF/K) films were prepared to reduce high levels of elastase found on chronic wounds. This improved biological function was achieved by the incorporation of a small peptide synthesized based on the reactive-site loop of the Bowman-Birk Inhibitor (BBI) protein. In vitro degradation and release were evaluated using porcine pancreatic elastase (PPE) solution as a model of wound exudate. It was found that biological degradation and release rate are highly dependent on film composition. Furthermore, the level of PPE activity can be tuned by changing the film composition, thus showing an innovative way of controlling the elastase-antielastase imbalance found on chronic wounds.

  17. Inhibition of Human Respiratory Syncytial Virus Infectivity by a Dendrimeric Heparan Sulfate-Binding Peptide

    PubMed Central

    Donalisio, Manuela; Rusnati, Marco; Cagno, Valeria; Civra, Andrea; Bugatti, Antonella; Giuliani, Andrea; Pirri, Giovanna; Volante, Marco; Papotti, Mauro; Landolfo, Santo

    2012-01-01

    Respiratory syncytial virus (RSV) interacts with cell surface heparan sulfate proteoglycans (HSPGs) to initiate infection. The interaction of RSV with HSPGs thus presents an attractive target for the development of novel inhibitors of RSV infection. In the present study, a minilibrary of linear, dimeric, and dendrimeric peptides containing clusters of basic amino acids was screened with the aim of identifying peptides able to bind HSPGs and thus block RSV attachment and infectivity. Of the compounds identified, the dendrimer SB105-A10 was the most potent inhibitor of RSV infectivity, with 50% inhibitory concentrations (IC50s) of 0.35 μM and 0.25 μM measured in Hep-2 and A549 cells, respectively. SB105-A10 was found to bind to both cell types via HSPGs, suggesting that its antiviral activity is indeed exerted by competing with RSV for binding to cell surface HSPGs. SB105-A10 prevented RSV infection when added before the viral inoculum, in line with its proposed HSPG-binding mechanism of action; moreover, antiviral activity was also exhibited when SB105-A10 was added postinfection, as it was able to reduce the cell-to-cell spread of the virus. The antiviral potential of SB105-A10 was further assessed using human-derived tracheal/bronchial epithelial cells cultured to form a pseudostratified, highly differentiated model of the epithelial tissue of the human respiratory tract. SB105-A10 strongly reduced RSV infectivity in this model and exhibited no signs of cytotoxicity or proinflammatory effects. Together, these features render SB105-A10 an attractive candidate for further development as a RSV inhibitor to be administered by aerosol delivery. PMID:22850525

  18. Ascalin, a new anti-fungal peptide with human immunodeficiency virus type 1 reverse transcriptase-inhibiting activity from shallot bulbs.

    PubMed

    Wang, H X; Ng, T B

    2002-06-01

    An isolation procedure comprising ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on SP-Sepharose and gel filtration on Superdex 75 was used to isolate an anti-fungal peptide from the bulbs of the shallot Allium ascalonicum. The peptide demonstrated a molecular weight of 9.5kDa, and possessed an N-terminal sequence YQCGQGG somewhat similar to chitinases from other Allium species which are however much larger in molecular weight. The peptide designated ascalin manifested a unique specific anti-fungal activity. It inhibited mycelial growth in the fungus Botrytis cinerea but not in the fungi Mycosphaerella arachidicola and Fusarium oxysporum. Ascalin inhibited HIV-1 reverse transcriptase with an IC(50) of 10 microM, much more potently than Allium tuberosum anti-fungal protein and other anti-fungal proteins.

  19. Discovery of three toxin peptides with Kv1.3 channel and IL-2 cytokine inhibiting activities from Non-Buthidae scorpions Chaerilus tricostatus and Chaerilus tryznai.

    PubMed

    Ding, Li; Chen, Jing; Hao, Jinbo; Zhang, Jiahui; Huang, Xuejun; Hu, Fangfang; Wu, Zheng; Liu, Yaru; Li, Wenxin; Cao, Zhijian; Wu, Yingliang; Li, Jian; Li, Shan; Liu, Hongyan; Wu, Wenlong; Chen, Zongyun

    2017-03-11

    Non-Buthidae venomous scorpions are huge natural sources, however, only a few works have been done to understand their toxin peptides. Here, we described three new potential immunomodulating toxin peptides Ctri18, Ctry68 and Ctry2908 from two Non-Buthidae scorpions Chaerilus tricostatus and Chaerilus tryznai. Sequence alignment analyses showed that Ctri18, Ctry68 and Ctry2908 are three new members of scorpion toxin α-KTx15 subfamily. Electrophysiological experiments showed that Ctri18, Ctry68 and Ctry2908 blocked the Kv1.3 channel at micromole to nanomole levels, but had weak effects on potassium channel KCNQ1 and sodium channel Nav1.4, which indicated that Ctri18, Ctry68 and Ctry2908 might have specific inhibiting effects on the Kv1.3 channel. ELISA experiments showed that Ctri18, Ctry68 and Ctry2908 inhibited IL-2 cytokine secretions of activated T lymphocyte in human PBMCs. Excitingly, consistent with the good Kv1.3 channel inhibitory activity, Ctry2908 inhibited cytokine IL-2 secretion in nanomole level, which indicated that Ctry2908 might be a new lead drug template towards Kv1.3 channels. Together, these studies discovered three new toxin peptides Ctri18, Ctry68 and Ctry2908 with Kv1.3 channel and IL-2 cytokine inhibiting activities from two scorpions Chaerilus tricostatus and Chaerilus tryznai, and highlighted that non-Buthidae venomous scorpions are new natural toxin peptide sources.

  20. Hard-to-cook bean (Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress.

    PubMed

    Oseguera-Toledo, Miguel E; Gonzalez de Mejia, Elvira; Amaya-Llano, Silvia L

    2015-10-01

    The objective was to evaluate the effect of bioactive peptide fractions from de-hulled hard-to-cook (HTC) bean on enzyme targets of type-2 diabetes and oxidative stress. Protein isolates from Pinto Durango and Negro 8025 beans were hydrolyzed (120min) with either alcalase® or bromelain and separated into five peptide fractions (<1, 1-3.5, 3.5-5, 5-10, and >10kDa) using an ultrafiltration membrane system. The <1kDa pinto Durango-bromelain fraction showed the best inhibition of α-amylase (49.9±1.4%), and the <1kDa pinto Durango-alcalase fraction inhibited both, α-glucosidase (76.4±0.5%), and dipeptidyl peptidase-IV (DPP-IV, 55.3±1.6%). Peptides LLSL, QQEG and NEGEAH were present in the most potent fractions. Hydrolysates and peptide fractions showed antioxidant capacity (ORAC: 159.6±2.9 to 932.6±1.1mmolTE/g) and nitric oxide inhibition (57.5±0.9 to 68.3±4.2%). Hydrolysates and fractions <1 and 1-3kDa were able to increase glucose-stimulated insulin secretion from iNS-1E cells up to 57% compared to glucose control. Hydrolysates from HTC beans inhibited enzymes related to diabetes management, being the smallest peptides (<1kDa) the most potent. HTC bean could be a source of protein to produce bioactive peptides with potential antidiabetic properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. [The correlation between postsynaptic inhibition and GABA, opioid peptides, SP in electroacupuncture].

    PubMed

    Fang, Z; Yu, Q; Li, Y

    1993-01-01

    Identified tract cells in lumbar enlargement were recorded from intact anaesthetized rats. The prolongation of the latency of antidromic action potential was a measure of postsynaptic inhibition. Both ST 36 and SP 6 were stimulated electrically. In EA group (N = 12) EA prolonged the latency for 0.111 +/- 0.022 ms (P < 0.001). In bicuculline group (N = 12) the prolongation of the latency for 0.010 +/- 0.004 ms (P < 0.05) by EA was less than that of EA group with statistical significance. In naloxone group (N = 12) and SP antiserum group (N = 12) EA did not induce a significant prolongation of the latency. It suggested that GABA, opioides and SP might be involved in postsynaptic inhibition induced by EA.

  2. Dual antifungal properties of cationic antimicrobial peptides polybia-MPI: membrane integrity disruption and inhibition of biofilm formation.

    PubMed

    Wang, Kairong; Yan, Jiexi; Dang, Wen; Xie, Junqiu; Yan, Bo; Yan, Wenjin; Sun, Mengyang; Zhang, Bangzhi; Ma, Mingxia; Zhao, Yanyan; Jia, Fengjing; Zhu, Ranran; Chen, Wei; Wang, Rui

    2014-06-01

    With the increasing emergence of resistant fungi, the discovery and development of novel antifungal therapeutics were urgently needed. Compared with conventional antibiotics, the limited propensity of AMPs to induce resistance in pathogens has attracted great interest. In the present study, the antifungal activity and its mechanism-of-action of polybia-MPI, a cationic peptide from the venom of Social wasp Polybia Paulista was investigated. We demonstrated that polybia-MPI could potently inhibit the growth of Candida albicans (C. albicans) and Candida glabrata (C. glabrata). The 50% inhibitory concentrations (IC50) of Polybia-MPI against cancer cells were much higher than the MICs against the tested C. albicans and C. glabrata cells, indicating that polybia-MPI had high selectivity between the fungal and mammalian cells. Our results also indicated that membrane disturbance mechanism was involved in the antifungal activity. Furthermore, polybia-MPI could inhibit the bio film forming of C. glabrata, which was frequently associated with clinically significant biofilm. These results suggest that polybia-MPI has great advantages in the development of antifungal agents.

  3. Phosphorylated Peptides from Antarctic Krill (Euphausia superba) Prevent Estrogen Deficiency Induced Osteoporosis by Inhibiting Bone Resorption in Ovariectomized Rats.

    PubMed

    Xia, Guanghua; Zhao, Yanlei; Yu, Zhe; Tian, Yingying; Wang, Yiming; Wang, Shanshan; Wang, Jingfeng; Xue, Changhu

    2015-11-04

    In the current study, we investigated the improvement of phosphorylated peptides from Antarctic krill Euphausia superba (PP-AKP) on osteoporosis in ovariectomized rats. PP-AKP was supplemented to ovariectomized Sprague-Dawley rats for 90 days. The results showed that PP-AKP treatment remarkably prevented the reduction of bone mass and improved cancellous bone structure and biochemical properties. PP-AKP also significantly decreased serum contents of tartrate-resistant acid phosphatase (TRACP), cathepsin K (Cath-k), matrix metalloproteinases-9 (MMP-9), deoxypyridinoline (DPD), C-terminal telopeptide of collagen I (CTX-1), Ca, and P. Mechanism investigation revealed that PP-AKP significantly increased the osteoprotegerin (OPG)/receptor activator of nuclear factor κB ligand (RANKL) ratio in mRNA expression, protein expression, and serum content. Further research suggested that NF-κB signaling pathways were inhibited by suppressing the mRNA and protein expressions of nuclear factor of activated T-cells (NFATc1) and tumor necrosis factor receptor-associated factor 6 (TRAF6), diminishing the mRNA expression and phosphorylation of nuclear factor κB p65 (NF-κB p65), three key transcription factors in NF-κB pathways. These results suggest that PP-AKP can improve osteoporosis by inhibiting bone resorption via suppressing the activation of osteoclastogenesis related NF-κB pathways.

  4. Structure-activity relationships for a series of compounds that inhibit aggregation of the Alzheimer's peptide, Aβ42.

    PubMed

    McKoy, Angela F; Chen, Jermont; Schupbach, Trudi; Hecht, Michael H

    2014-11-01

    Inhibiting aggregation of the amyloid-beta (Aβ) peptide may be an effective strategy for combating Alzheimer's disease. As the high-resolution structure of the toxic Aβ aggregate is unknown, rational design of small molecule inhibitors is not possible, and inhibitors are best isolated by high-throughput screening. We applied high-throughput screening to a collection of 65,000 compounds to identify compound D737 as an inhibitor of Aβ aggregation. D737 diminished the formation of oligomers and fibrils, and reduced Aβ42-induced cytotoxicity. Most importantly, D737 increased the life span and locomotive ability of transgenic flies in a Drosophila melanogaster model of Alzheimer's disease (J Biol Chem, 287, 2012, 38992). To explore the chemical features that make D737 an effective inhibitor of Aβ42 aggregation and toxicity, we tested a small collection of eleven analogues of D737. Overall, the ability of a compound to inhibit Aβ aggregation was a good predictor of its efficacy in prolonging the life span and locomotive ability of transgenic flies expressing human Aβ42 in the central nervous system. Two compounds (D744 and D830) with fluorine substitutions on an aromatic ring were effective inhibitors of Aβ42 aggregation and increased the longevity of transgenic flies beyond that observed for the parent compound, D737.

  5. Inhibition of Orthopaedic Implant Infections by Immunomodulatory Effects of Host Defense Peptides

    DTIC Science & Technology

    2014-12-01

    Infectious Diseases of the National Institutes of Health awards R01AI063517 and R01AI10056 (RAB), and the Antibiotic Resistance Leadership Group under National...S, Graves DT. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis . J Immunol. 1998;160:403–409. 3... disease . J Pathol. 2008;214:149–160. 8. Burnett SH, Kershen EJ, Zhang J, Zeng L, Straley SC, Kaplan AM, Cohen DA. Conditional macrophage ablation in

  6. A cell-permeable hairpin peptide inhibits hepatitis C viral nonstructural protein 5A-mediated translation and virus production.

    PubMed

    Khachatoorian, Ronik; Arumugaswami, Vaithilingaraja; Ruchala, Piotr; Raychaudhuri, Santanu; Maloney, Eden M; Miao, Edna; Dasgupta, Asim; French, Samuel W

    2012-06-01

    NS5A is a key regulator of the hepatitis C virus (HCV) life cycle including RNA replication, assembly, and translation. We and others have shown that NS5A augments HCV internal ribosomal entry site (IRES)-mediated translation. Furthermore, Quercetin treatment and heat shock protein (HSP) 70 knockdown inhibit the NS5A-driven augmentation of IRES-mediated translation and infectious virus production. We have also coimmunoprecipitated HSP70 with NS5A and demonstrated cellular colocalization, leading to the hypothesis that the NS5A/HSP70 complex formation is important for IRES-mediated translation. Here, we have identified the NS5A region responsible for complex formation through in vitro deletion analyses. Deletion of NS5A domains II and III failed to reduce HSP70 binding, whereas domain I deletion eliminated complex formation. NS5A domain I alone also bound HSP70. Deletion mapping of domain I identified the C-terminal 34 amino acids (C34) as the interaction site. Furthermore, addition of C34 to domains II and III restored complex formation. C34 expression significantly reduced intracellular viral protein levels, in contrast to same-size control peptides from other NS5A domains. C34 also competitively inhibited NS5A-augmented IRES-mediated translation, whereas controls did not. Triple-alanine scan mutagenesis determined that an exposed beta-sheet hairpin in C34 was primarily responsible for NS5A-augmented IRES-mediated translation. Moreover, treatment with a 10-amino acid peptide derivative of C34 suppressed NS5A-augmented IRES-mediated translation and significantly inhibited intracellular viral protein synthesis, with no associated cytotoxicity. These results support the hypothesis that the NS5A/HSP70 complex augments viral IRES-mediated translation, identify a sequence-specific hairpin element in NS5A responsible for complex formation, and demonstrate the functional significance of C34 hairpin-mediated NS5A/HSP70 interaction. Identification of this element may allow

  7. The two peptide lantibiotic lacticin 3147 acts synergistically with polymyxin to inhibit Gram negative bacteria

    PubMed Central

    2013-01-01

    Background The emergence of bacterial drug resistance encourages the re-evaluation of the potential of existing antimicrobials. Lantibiotics are post-translationally modified, ribosomally synthesised antimicrobial peptides with a broad spectrum antimicrobial activity. Here, we focussed on expanding the potential of lacticin 3147, one of the most studied lantibiotics and one which possesses potent activity against a wide range of Gram positive species including many nosocomial pathogens. More specifically, our aim was to investigate if lacticin 3147 activity could be enhanced when combined with a range of different clinical antibiotics. Results Initial screening revealed that polymyxin B and polymyxin E (colistin) exhibited synergistic activity with lacticin 3147. Checkerboard assays were performed against a number of strains, including both Gram positive and Gram negative species. The resultant fractional inhibitory concentration (FIC) index values established that, while partial synergy was detected against Gram positive targets, synergy was obvious against Gram negative species, including Cronobacter and E. coli. Conclusions Combining lacticin 3147 with low levels of a polymyxin could provide a means of broadening target specificity of the lantibiotic, while also reducing polymyxin use due to the lower concentrations required as a result of synergy. PMID:24069959

  8. Cholesterol inhibits the insertion of the Alzheimer's peptide Abeta(25-35) in lipid bilayers.

    PubMed

    Dante, Silvia; Hauss, Thomas; Dencher, Norbert A

    2006-08-01

    The physiological relationship between brain cholesterol content and the action of amyloid beta (Abeta) peptide in Alzheimer's disease (AD) is a highly controversially discussed topic. Evidences for modulations of the Abeta/membrane interaction induced by plasma membrane cholesterol have already been observed. We have recently reported that Abeta(25-35) is capable of inserting in lipid membranes and perturbing their structure. Applying neutron diffraction and selective deuteration, we now demonstrate that cholesterol alters, at the molecular level, the capability of Abeta(25-35) to penetrate into the lipid bilayers; in particular, a molar weight content of 20% of cholesterol hinders the intercalation of monomeric Abeta(25-35) completely. At very low cholesterol content (about 1% molar weight) the location of the C-terminal part of Abeta(25-35) has been unequivocally established in the hydrocarbon region of the membrane, in agreement with our previous results on pure phospholipids membrane. These results link a structural property to a physiological and functional behavior and point to a therapeutical approach to prevent the AD by modulation of membrane properties.

  9. Small Molecule Inhibited Parathyroid Hormone Mediated cAMP Response by N–Terminal Peptide Binding

    PubMed Central

    Kumar, Amit; Baumann, Monika; Balbach, Jochen

    2016-01-01

    Ligand binding to certain classes of G protein coupled receptors (GPCRs) stimulates the rapid synthesis of cAMP through G protein. Human parathyroid hormone (PTH), a member of class B GPCRs, binds to its receptor via its N–terminal domain, thereby activating the pathway to this secondary messenger inside cells. Presently, GPCRs are the target of many pharmaceuticals however, these drugs target only a small fraction of structurally known GPCRs (about 10%). Coordination complexes are gaining interest due to their wide applications in the medicinal field. In the present studies we explored the potential of a coordination complex of Zn(II) and anthracenyl–terpyridine as a modulator of the parathyroid hormone response. Preferential interactions at the N–terminal domain of the peptide hormone were manifested by suppressed cAMP generation inside the cells. These observations contribute a regulatory component to the current GPCR–cAMP paradigm, where not the receptor itself, but the activating hormone is a target. To our knowledge, this is the first report about a coordination complex modulating GPCR activity at the level of deactivating its agonist. Developing such molecules might help in the control of pathogenic PTH function such as hyperparathyroidism, where control of excess hormonal activity is essentially required. PMID:26932583

  10. Inhibiting effects of Streptococcus salivarius on competence-stimulating peptide-dependent biofilm formation by Streptococcus mutans.

    PubMed

    Tamura, S; Yonezawa, H; Motegi, M; Nakao, R; Yoneda, S; Watanabe, H; Yamazaki, T; Senpuku, H

    2009-04-01

    The effects of Streptococcus salivarius on the competence-stimulating peptide (CSP)-dependent biofilm formation by Streptococcus mutans were investigated. Biofilms were grown on 96-well microtiter plates coated with salivary components in tryptic soy broth without dextrose supplemented with 0.25% sucrose. Biofilm formations were stained using safranin and quantification of stained biofilms was performed by measuring absorbance at 492 nm. S. mutans formed substantial biofilms, whereas biofilms of S. salivarius were formed poorly in the medium conditions used. Furthermore, in combination cultures, S. salivarius strongly inhibited biofilm formation when cultured with S. mutans. This inhibition occurred in the early phase of biofilm formation and was dependent on inactivation of the CSP of S. mutans, which is associated with competence, biofilm formation, and antimicrobial activity of the bacterium, and is induced by expression of the comC gene. Comparisons between the S. mutans clinical strains FSC-3 and FSC-3DeltaglrA in separate dual-species cultures with S. salivarius indicated that the presence of the bacitracin transport ATP-binding protein gene glrA caused susceptibility to inhibition of S. mutans biofilm formation by S. salivarius, and was also associated with the regulation of CSP production by com gene-dependent quorum sensing systems. It is considered that regulation of CSP by glrA in S. mutans and CSP inactivation by S. salivarius are important functions for cell-to-cell communication between biofilm bacteria and oral streptococci such as S. salivarius. Our results provide useful information for understanding the ecosystem of oral streptococcal biofilms, as well as the competition between and coexistence of multiple species in the oral cavity.

  11. Inhibition of APP trafficking by tau protein does not increase the generation of amyloid-beta peptides.

    PubMed

    Goldsbury, Claire; Mocanu, Maria-Magdalena; Thies, Edda; Kaether, Christoph; Haass, Christian; Keller, Patrick; Biernat, Jacek; Mandelkow, Eckhard; Mandelkow, Eva-Maria

    2006-07-01

    Amyloid-beta, a peptide derived from the precursor protein APP, accumulates in the brain and contributes to the neuropathology of Alzheimer's disease. Increased generation of amyloid-beta might be caused by axonal transport inhibition, via increased dwell time of APP vesicles and thereby higher probability of APP cleavage by secretase enzymes residing on the same vesicles. We tested this hypothesis using a neuronal cell culture model of inhibited axonal transport and by imaging vesicular transport of fluorescently tagged APP and beta-secretase (BACE1). Microtubule-associated tau protein blocks vesicle traffic by inhibiting the access of motor proteins to the microtubule tracks. In neurons co-transfected with CFP-tau, APP-YFP traffic into distal neurites was strongly reduced. However, this did not increase amyloid-beta levels. In singly transfected axons, APP-YFP was transported in large tubules and vesicles moving very fast (on average 3 microm/s) and with high fluxes in the anterograde direction (on average 8.4 vesicles/min). By contrast, BACE1-CFP movement was in smaller tubules and vesicles that were almost 2x slower (on average 1.6 microm/s) with approximately 18x lower fluxes (on average 0.5 vesicles/min). Two-colour microscopy of co-transfected axons confirmed that the two proteins were sorted into distinct carriers. The results do not support the above hypothesis. Instead, they indicate that APP is transported on vesicles distinct from the secretase components and that amyloid-beta is not generated in transit when transport is blocked by tau.

  12. Intestinal Sodium Glucose Cotransporter 1 Inhibition Enhances Glucagon-Like Peptide-1 Secretion in Normal and Diabetic Rodents.

    PubMed

    Oguma, Takahiro; Nakayama, Keiko; Kuriyama, Chiaki; Matsushita, Yasuaki; Yoshida, Kumiko; Hikida, Kumiko; Obokata, Naoyuki; Tsuda-Tsukimoto, Minoru; Saito, Akira; Arakawa, Kenji; Ueta, Kiichiro; Shiotani, Masaharu

    2015-09-01

    The sodium glucose cotransporter (SGLT) 1 plays a major role in glucose absorption and incretin hormone release in the gastrointestinal tract; however, the impact of SGLT1 inhibition on plasma glucagon-like peptide-1 (GLP-1) levels in vivo is controversial. We analyzed the effects of SGLT1 inhibitors on GLP-1 secretion in normoglycemic and hyperglycemic rodents using phloridzin, CGMI [3-(4-cyclopropylphenylmethyl)-1-(β-d-glucopyranosyl)-4-methylindole], and canagliflozin. These compounds are SGLT2 inhibitors with moderate SGLT1 inhibitory activity, and their IC50 values against rat SGLT1 and mouse SGLT1 were 609 and 760 nM for phloridzin, 39.4 and 41.5 nM for CGMI, and 555 and 613 nM for canagliflozin, respectively. Oral administration of these inhibitors markedly enhanced and prolonged the glucose-induced plasma active GLP-1 (aGLP-1) increase in combination treatment with sitagliptin, a dipeptidyl peptidase-4 (DPP4) inhibitor, in normoglycemic mice and rats. CGMI, the most potent SGLT1 inhibitor among them, enhanced glucose-induced, but not fat-induced, plasma aGLP-1 increase at a lower dose compared with canagliflozin. Both CGMI and canagliflozin delayed intestinal glucose absorption after oral administration in normoglycemic rats. The combined treatment of canagliflozin and a DPP4 inhibitor increased plasma aGLP-1 levels and improved glucose tolerance compared with single treatment in both 8- and 13-week-old Zucker diabetic fatty rats. These results suggest that transient inhibition of intestinal SGLT1 promotes GLP-1 secretion by delaying glucose absorption and that concomitant inhibition of intestinal SGLT1 and DPP4 is a novel therapeutic option for glycemic control in type 2 diabetes mellitus. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Inhibition of adamalysin II and MMPs by phosphonate analogues of snake venom peptides.

    PubMed

    D'Alessio, S; Gallina, C; Gavuzzo, E; Giordano, C; Gorini, B; Mazza, F; Paradisi, M P; Panini, G; Pochetti, G; Sella, A

    1999-02-01

    Phosphonate analogues of the peptidomimetic N-(Furan-2-yl)carbonyl-Leu-Trp-OH were prepared with the goal of evaluating the effect of phosphonate for carboxylate replacement on binding with snake venom metalloproteinases and MMPs. N-(Furan-2-yl)carbonyl-Leu-L-Trp(P)-(OH)2 showed a 75-fold increase of the inhibiting activity against adamalysin II, a snake venom metalloproteinase structurally related to MMPs and TACE. Both the phosphonate and carboxylate peptidomimetics fit into the active site adopting a retrobinding mode and provide the structural base for a new class of metalloproteinases inhibitors.

  14. Inhibition of gastric secretion by fat and hypertonic glucose in the dog: role of gastric inhibitory peptide.

    PubMed Central

    Creutzfeldt, W; Ebert, R; Finke, U; Konturek, S J; Kwiecień, N; Radecki, T

    1983-01-01

    1. The gastric and intestinal phases of gastric secretion were selectively evoked by 'meals' of 5% liver extract or saline in five dogs provided with a special cannula that allowed complete separation of the stomach from the duodenum. 2. The gastric phase in response to liver extract administered into the stomach amounted to an increase in acid output equivalent to about 70% of the maximum output in response to histamine. There was also a significant rise in the concentration of gastrin but not of gastric inhibitory peptide (GIP) in the serum. 3. The addition of fat (2 or 4% corn oil) or glucose (20%) to this liver extract meal inhibited secretion of gastric acid by 50 and 30%, respectively, without affecting the concentration of gastrin or GIP in the serum. 4. The 5% liver extract in the duodenum stimulated an increase in gastric acid output amounting to about 40% of the maximum response to histamine. Serum gastrin and GIP levels were not affected. Additional fat (0.5-4.0%) or glucose (10-20%) reduced acid secretion under these conditions by between 50 and 80% without affecting serum gastrin concentrations. Significant increases in the concentration of GIP in the serum occurred in response to intraduodenal glucose (5%), and to fat at the highest dose used (4%). 5. Intraduodenal infusions of glucose (5-20%) significantly increased serum GIP levels. Gastric secretion in response to 5% liver extract in the stomach was significantly inhibited at the highest dose (10 or 20%) although gastrin release was unaffected. 6. These results show that intraduodenal fat and glucose both exhibit potent inhibitory effects on post-prandial gastric acid secretion but that there is no correlation between the changes in serum GIP concentration and the inhibition of gastric secretion under these conditions. 7. We conclude that GIP is unlikely to mediate fat-induced inhibition of gastric secretion, but it is still possible that it might be involved in the inhibition that occurs during

  15. Inhibiting effects of fructanase on competence-stimulating peptide-dependent quorum sensing system in Streptococcus mutans.

    PubMed

    Suzuki, Yusuke; Nagasawa, Ryo; Senpuku, Hidenobu

    2017-09-01

    Streptococcus mutans produces glucosyltransferases encoded by the gtfB and gtfC genes, which synthesize insoluble glucan, and both insoluble and soluble glucans by conversion of sucrose, and are known as principal agents to provide strong biofilm formation and demineralization on tooth surfaces. S. mutans possess a Com-dependent quorum sensing (QS) system, which is important for survival in severe conditions. The QS system is stimulated by the interaction between ComD {Receptor to competence-stimulating peptide (CSP)} encoded by the comD and CSP encoded by the comC, and importantly associated with bacteriocin production and genetic competence. Previously, we found enzyme fructanase (FruA) as a new inhibitor for the glucan-dependent biofilm formation. In the present study, inhibiting effects by FruA on glucan-independent biofilm formation of S. mutans UA159, UA159.gtfB(-), UA159.gtfC(-), and UA159.gtfBC(-) were observed in sucrose and no sucrose sugars-supplemented conditions using the plate assay. The reduction of UA159.comC(-) and UA159.comD(-) biofilm formation were also observed as compared with UA159 in same conditions. These results suggested that inhibitions of glucan-independent and Com-dependent biofilm formation were involved in the inhibiting mechanism by FruA. To more thoroughly investigate effects by FruA on the QS system, we examined on CSP-stimulated and Com-dependent bacteriocin production and genetic transformation. FruA inhibited bacteriocin production in collaboration with CSP and genetic transformation in bacterial cell conditions treated with FruA. Our findings show that FruA has multiple effects that inhibit survival functions of S. mutans, including biofilm formation and CSP-dependent QS responses, indicating its potential use as an agent for prevention of dental caries. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  16. Mambalgin-1 Pain-relieving Peptide, Stepwise Solid-phase Synthesis, Crystal Structure, and Functional Domain for Acid-sensing Ion Channel 1a Inhibition.

    PubMed

    Mourier, Gilles; Salinas, Miguel; Kessler, Pascal; Stura, Enrico A; Leblanc, Mathieu; Tepshi, Livia; Besson, Thomas; Diochot, Sylvie; Baron, Anne; Douguet, Dominique; Lingueglia, Eric; Servent, Denis

    2016-02-05

    Mambalgins are peptides isolated from mamba venom that specifically inhibit a set of acid-sensing ion channels (ASICs) to relieve pain. We show here the first full stepwise solid phase peptide synthesis of mambalgin-1 and confirm the biological activity of the synthetic toxin both in vitro and in vivo. We also report the determination of its three-dimensional crystal structure showing differences with previously described NMR structures. Finally, the functional domain by which the toxin inhibits ASIC1a channels was identified in its loop II and more precisely in the face containing Phe-27, Leu-32, and Leu-34 residues. Moreover, proximity between Leu-32 in mambalgin-1 and Phe-350 in rASIC1a was proposed from double mutant cycle analysis. These data provide information on the structure and on the pharmacophore for ASIC channel inhibition by mambalgins that could have therapeutic value against pain and probably other neurological disorders.

  17. A chimeric peptide of intestinal trefoil factor containing cholesteryl ester transfer protein B cell epitope significantly inhibits atherosclerosis in rabbits after oral administration.

    PubMed

    Qi, Gaofu; Li, Jingjing; Wang, Shengying; Xin, Shanshan; Du, Peng; Zhang, Qingye; Zhao, Xiuyun

    2011-04-01

    Vaccination against cholesteryl ester transfer protein (CETP) is proven to be effective for inhibiting atherosclerosis in animal models. In this study, the proteases-resistant intestinal trefoil factor (TFF3) was used as a molecular vehicle to construct chimeric TFF3 (cTFF3) containing CETP B cell epitope and tetanus toxin helper T cell epitope. It was found that cTFF3 still preserved a trefoil structure, and can resist proteases digestion in vitro. After oral immunization with cTFF3, the CETP-specific IgA and IgG could be found in intestine lavage fluid and serum, and the anti-CETP antibodies could inhibit partial CETP activity to increase high-density lipoprotein cholesterol, decrease low-density lipoprotein cholesterol, and inhibit atherosclerosis in animals. Therefore, TFF3 is a potential molecular vehicle for developing oral peptide vaccines. Our research highlights a novel strategy for developing oral peptide vaccines in the future.

  18. Mambalgin-1 Pain-relieving Peptide, Stepwise Solid-phase Synthesis, Crystal Structure, and Functional Domain for Acid-sensing Ion Channel 1a Inhibition*

    PubMed Central

    Mourier, Gilles; Salinas, Miguel; Kessler, Pascal; Stura, Enrico A.; Leblanc, Mathieu; Tepshi, Livia; Besson, Thomas; Diochot, Sylvie; Baron, Anne; Douguet, Dominique; Lingueglia, Eric; Servent, Denis

    2016-01-01

    Mambalgins are peptides isolated from mamba venom that specifically inhibit a set of acid-sensing ion channels (ASICs) to relieve pain. We show here the first full stepwise solid phase peptide synthesis of mambalgin-1 and confirm the biological activity of the synthetic toxin both in vitro and in vivo. We also report the determination of its three-dimensional crystal structure showing differences with previously described NMR structures. Finally, the functional domain by which the toxin inhibits ASIC1a channels was identified in its loop II and more precisely in the face containing Phe-27, Leu-32, and Leu-34 residues. Moreover, proximity between Leu-32 in mambalgin-1 and Phe-350 in rASIC1a was proposed from double mutant cycle analysis. These data provide information on the structure and on the pharmacophore for ASIC channel inhibition by mambalgins that could have therapeutic value against pain and probably other neurological disorders. PMID:26680001

  19. Looped host defense peptide CLP-19 binds to microtubules and inhibits surface expression of TLR4 on mouse macrophages.

    PubMed

    Li, Di; Liu, Yao; Yang, Ya; Chen, Jian-hong; Yang, Jie; Zou, Lin-yun; Tian, Zhi-qiang; Lv, Jun; Xia, Pei-yuan

    2013-06-15

    The looped host defense peptide CLP-19 is derived from a highly functional core region of the Limulus anti-LPS factor and exerts robust anti-LPS activity by directly interacting with LPS in the extracellular space. We previously showed that prophylactic administration of CLP-19 even 20 h prior to LPS challenge might significantly increase the survival rate in a lethal endotoxin shock mouse model. Such an effect may be associated with immune regulation of CLP-19. To investigate the underlying mechanisms, peptide affinity chromatography, immunofluorescence, and Western blotting procedures were used to identify α- and β-tubulin as direct and specific binding partners of CLP-19 in the mouse macrophage cell line RAW 264.7. Bioinformatic analysis using the AutoDock Vina molecular docking and PyMOL molecular graphics system predicted that CLP-19 would bind to the functional residues of both α- and β-tubulin and would be located within the groove of microtubules. Tubulin polymerization assay revealed that CLP-19 might induce polymerization of microtubules and prevent depolymerization. The immunoregulatory effect of CLP-19 involving microtubules was investigated by flow cytometry, immunofluorescence, and Western blotting, which showed that CLP-19 prophylactic treatment of RAW 264.7 cells significantly inhibited LPS-induced surface expression of TLR4. Taken together, these results suggest that CLP-19 binding to microtubules disrupts the dynamic equilibrium of microtubules, reducing the efficacy of microtubule-dependent vesicular transport that would otherwise translocate TLR4 from the endoplasmic reticulum to the cell surface.

  20. Inhibition of human spermatozoa-zona pellucida binding by a combinatorially derived peptide from a synthetic target.

    PubMed

    Pieczenik, George; Garrisi, John; Cohen, Jacques

    2006-09-01

    Intact zona-free human oocytes were screened using a combinatorial peptide library selection protocol. Pieczenik Peptide Sequence 1 (PPS1) HEHRKRG binds human spermatozoa. A complementary and unique binding sequence HNSSLSPLATPA (PPS2) was developed from the first PPS1 ligand that binds to the human zona pellucida or oolemma. Cytoplasm-free zonae from unfertilized eggs were obtained and used as an assay system to test the effects of exposure to these two ligands. Spermatozoa were inserted into evacuated zonae and their behaviour and binding activity were assessed at regular intervals. The behaviour of spermatozoa exposed to PPS1 and unlabelled spermatozoa injected into unexposed zonae was similar as far as binding was concerned (50 and 54% binding), but PPS1 exposed spermatozoa had higher motility and displacement, marked by their escape from the zona pellucida. Zonae exposed to PPS2 inhibited the interaction between injected spermatozoa and the inside of the zona when compared with controls (8.3 and 53.8% attached respectively, P < 0.001). The sperm-zona pellucida interaction described in this paper is applied as a functional assay for molecular interactions of sperm binding and can be used to assess function for potential surface markers on gametes. It is shown here that a unique binding ligand (PPS2) can be synthesized from another complimentary ligand (PPS1) without the need for a known intermediate substrate. PPS1 and PPS2 may have properties that can be used to target processes involved in conception and assisted reproduction. A movie sequence taken approximately 30 min after injection of spermatozoa into empty human zonae pellucidae shows behaviour of non-manipulated spermatozoa into zonae not exposed or exposed to ligand. This may be purchased for viewing on the Internet at www.rbmonline.com/Article/2159 (free to web subscribers).

  1. Amaranth lunasin-like peptide internalizes into the cell nucleus and inhibits chemical carcinogen-induced transformation of NIH-3T3 cells.

    PubMed

    Maldonado-Cervantes, Enrique; Jeong, Hyung Jin; León-Galván, Fabiola; Barrera-Pacheco, Alberto; De León-Rodríguez, Antonio; González de Mejia, Elvira; de Lumen, Ben O; Barba de la Rosa, Ana P

    2010-09-01

    Because an unbalanced diet is an important risk factor for several illnesses, interest has increased in finding novel health-promoting foods. Amaranth produces seeds that not only have substantial nutritional properties but that also contain phytochemical compounds as rutin and nicotiflorin and peptides with antihypertensive and anticarcinogenic activities. We report that a cancer-preventive peptide in amaranth has activities similar to those of soybean lunasin. The amaranth lunasin-like peptide, however, requires less time than the soybean lunasin to internalize into the nucleus of NIH-3T3 cells, and inhibits histone acetylation (H(3) and H(4) in a 70 and 77%, respectively). The amaranth lunasin-like peptide inhibited the transformation of NIH-3T3 cells to cancerous foci. The open reading frame (ORF) of amaranth lunasin corresponds to a bifunctional inhibitor/lipid-transfer protein (LTP). LTPs are a family of proteins that in plants are implicated in different functions, albeit all linked to developmental processes and biotic and abiotic stress resistance. Our results open new intriguing questions about the function of lunasin in plants and support that amaranth is a food alternative containing natural peptides with health-promoting benefits.

  2. Peptide deformylase in Staphylococcus aureus: resistance to inhibition is mediated by mutations in the formyltransferase gene.

    PubMed

    Margolis, P S; Hackbarth, C J; Young, D C; Wang, W; Chen, D; Yuan, Z; White, R; Trias, J

    2000-07-01

    Peptide deformylase, a bacterial enzyme, represents a novel target for antibiotic discovery. Two deformylase homologs, defA and defB, were identified in Staphylococcus aureus. The defA homolog, located upstream of the transformylase gene, was identified by genomic analysis and was cloned from chromosomal DNA by PCR. A distinct homolog, defB, was cloned from an S. aureus genomic library by complementation of the arabinose-dependent phenotype of a P(BAD)-def Escherichia coli strain grown under arabinose-limiting conditions. Overexpression in E. coli of defB, but not defA, correlated to increased deformylase activity and decreased susceptibility to actinonin, a deformylase-specific inhibitor. The defB gene could not be disrupted in wild-type S. aureus, suggesting that this gene, which encodes a functional deformylase, is essential. In contrast, the defA gene could be inactivated; the function of this gene is unknown. Actinonin-resistant mutants grew slowly in vitro and did not show cross-resistance to other classes of antibiotics. When compared to the parent, an actinonin-resistant strain produced an attenuated infection in a murine abscess model, indicating that this strain also has a growth disadvantage in vivo. Sequence analysis of the actinonin-resistant mutants revealed that each harbors a loss-of-function mutation in the fmt gene. Susceptibility to actinonin was restored when the wild-type fmt gene was introduced into these mutant strains. An S. aureus Deltafmt strain was also resistant to actinonin, suggesting that a functional deformylase activity is not required in a strain that lacks formyltransferase activity. Accordingly, the defB gene could be disrupted in an fmt mutant.

  3. Apolipoprotein A-I mimetic peptide treatment inhibits inflammatory responses and improves survival in septic rats

    PubMed Central

    Zhang, Zhenghao; Datta, Geeta; Zhang, Yun; Miller, Andrew P.; Mochon, Paulina; Chen, Yiu-Fai; Chatham, John; Anantharamaiah, G. M.; White, C. Roger

    2009-01-01

    Systemic inflammation induces a multiple organ dysfunction syndrome that contributes to morbidity and mortality in septic patients. Since increasing plasma apolipoprotein A-I (apoA-I) and HDL may reduce the complications of sepsis, we tested the hypothesis that the apoA-I mimetic peptide 4F confers similar protective effects in rats undergoing cecal ligation and puncture (CLP) injury. Male Sprague-Dawley rats were randomized to undergo CLP or sham surgery. IL-6 levels were significantly elevated in plasma by 6 h after CLP surgery compared with shams. In subsequent studies, CLP rats were further subdivided to receive vehicle or 4F (10 mg/kg) by intraperitoneal injection, 6 h after sepsis induction. Sham-operated rats received saline. Echocardiographic studies showed a reduction in left ventricular end-diastolic volume, stroke volume, and cardiac output (CO) 24 h after CLP surgery. These changes were associated with reduced blood volume and left ventricular filling pressure. 4F treatment improved blood volume status, increased CO, and reduced plasma IL-6 in CLP rats. Total cholesterol (TC) and HDL were 79 ± 5 and 61 ± 4 mg/dl, respectively, in sham rats. TC was significantly reduced in CLP rats (54 ± 3 mg/dl) due to a reduction in HDL (26 ± 3 mg/dl). 4F administration to CLP rats attenuated the reduction in TC (69 ± 4 mg/dl) and HDL (41 ± 3 mg/dl) and prevented sepsis-induced changes in HDL protein composition. Increased plasma HDL in 4F-treated CLP rats was associated with an improvement in CO and reduced mortality. It is proposed that protective effects of 4F are related to its ability to prevent the sepsis-induced reduction in plasma HDL. PMID:19561306

  4. Role of atrial natriuretic peptide in mediating the blood pressure-independent natriuresis elicited by systemic inhibition of nitric oxide.

    PubMed

    Dobrowolski, Leszek; Kuczeriszka, Marta; Castillo, Alexander; Majid, Dewan S; Navar, L Gabriel

    2015-04-01

    While it is clearly recognized that increased intrarenal nitric oxide (NO) levels elicit natriuresis, confounding data showing that systemic nitric oxide synthase inhibition (NOSi) also increases sodium excretion (UNaV) poses a conundrum. This response has been attributed to the associated increases in arterial pressure (AP); however, the increases in AP and in UNaV are temporally dissociated. The changes in regional renal haemodynamics induced by NOSi could also contribute to the alterations of UNaV. To evaluate the roles of AP and non-AP mechanisms mediating the natriuresis, N ω-nitro-L-arginine methyl ester hydrochloride (L-NAME) was infused i.v. at doses ranging from 5 to 50 μg/kg/min in anaesthetized rats. UNaV, perfusion of the cortex (cortical blood flow, CBF) and medulla (medullary blood flow, MBF) with laser-Doppler flowmetry and glomerular filtration rate (GFR) were measured. UNaV increased from 0.6 ± 0.2 to 1.6 ± 0.1 μmol/kg/min (P < 0.05) with the lower nonpressor doses. With the higher doses, AP increased from 116 ± 4 to 122 ± 4 mmHg and UNaV increased from 1.1 ± 0.3 to 3.3 ± 0.7 μmol/min/g (P < 0.002). UNaV increased similarly in a group where renal AP was maintained at baseline levels. The associated reductions in CBF (17 ± 5 and 38 ± 5 %) and MBF (27 ± 6 and 52 ± 6 %) would be expected to attenuate rather than contribute to the natriuresis. Plasma atrial natriuretic peptide (ANP) concentrations increased significantly following NOSi. Anantin, a natriuretic peptide receptor-A blocker, prevented or reversed the L-NAME-induced natriuresis without altering the L-NAME-induced changes in AP or CBF. The results indicate that increased ANP and related natriuretic peptides mediate the AP-independent natriuresis, at least partly, elicited by systemic L-NAME infusion and help resolve the conundrum of natriuresis during systemic NOSi.

  5. Inhibition of Intracellular Growth of Salmonella enterica Serovar Typhimurium in Tissue Culture by Antisense Peptide-Phosphorodiamidate Morpholino Oligomer ▿

    PubMed Central

    Mitev, Georgi M.; Mellbye, Brett L.; Iversen, Patrick L.; Geller, Bruce L.

    2009-01-01

    Two types of phosphorodiamidate morpholino oligomers (PMOs) were tested for inhibition of growth of Salmonella enterica serovar Typhimurium. Both PMOs have the same 11-base sequence that is antisense to the region near the start codon of acpP, which is essential for lipid biosynthesis and viability. To the 3′ end of each is attached the membrane-penetrating peptide (RXR)4XB (R, X, and B indicate arginine, 6-aminohexanoic acid, and β-alanine, respectively). One peptide-PMO (AcpP PPMO) has no charge on the PMO moiety. The second PPMO has three cations (piperazine) attached to the phosphorodiamidate linkages (3+Pip-AcpP PPMO). A scrambled-sequence PPMO (Scr PPMO) was synthesized for each type of PMO. The MICs of AcpP PPMO, 3+Pip-AcpP PPMO, and either one of the Scr PPMOs were 1.25 μM (7 μg/ml), 0.156 μM (0.94 μg/ml), and >160 μM (>900 μg/ml), respectively. 3+Pip-AcpP PPMO at 1.25 or 2.5 μM significantly reduced the growth rates of pure cultures, whereas AcpP PPMO or either Scr PPMO had no effect. However, the viable cell count was significantly reduced at either concentration of 3+Pip-AcpP PPMO or AcpP PPMO, but not with either Scr PPMO. In other experiments, macrophages were infected intracellularly with S. enterica and treated with 3 μM 3+Pip-AcpP PPMO. Intracellular bacteria were reduced >99% with 3+Pip-AcpP PPMO, whereas intracellular bacteria increased 3 orders of magnitude in untreated or Scr PPMO-treated cultures. We conclude that either AcpP PPMO or 3+Pip-AcpP PPMO inhibited growth of S. enterica in pure culture and that 3+Pip-AcpP PPMO reduced intracellular viability of S. enterica in macrophages. PMID:19581453

  6. Inhibition of Adhesion of Enteropathogenic Escherichia coli to HEp-2 Cells by Binding of a Novel Peptide to EspB Protein.

    PubMed

    Li, Duoyun; Chen, Zhong; Cheng, Hang; Zheng, Jin-Xin; Pan, Wei-Guang; Yang, Wei-Zhi; Yu, Zhi-Jian; Deng, Qi-Wen

    2016-09-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea in developing countries. The translocator EspB is a key virulence factor in the process of the attaching and effacing effect of EPEC and plays a critical role in the pathogenesis of the bacteria. In this study, we aimed to select the peptides binding to EspB protein by phage display library and further investigate whether these peptides can decrease the extent of invasion and virulence of EPEC on host cells by targeting to EspB protein. The expression and purification of EspB protein from E. coli was demonstrated by Western blotting. The Ph.D. 12-mer peptide phage display library was used to screen the candidate peptides binding specifically to EspB protein. Furthermore, the affinity of these candidate peptides bound to EspB was identified by enzyme-linked immunosorbent assay (ELISA). Moreover, we investigated whether these screened peptides could decrease the adherence ratio of EPEC to HEp-2 cells with increasing concentration. Successful purification of EspB protein from pET21b-EspB-transformed E. coli was identified by Western blotting. Then, the candidate peptides including phages 6, 7, 8, and 12 were screened by the Ph.D. 12-mer peptide phage display library and ELISA test demonstrated that their affinity binding to EspB protein was high compared with the control. Functional analysis indicated that synthetic peptide-6 (YFPYSHTSPRQP) significantly decreased the adherence ratio of EPEC to HEp-2 cells with increasing concentration (P < 0.01). Peptide-6 (100 µg/mL) could lead to a 40 % decrease in the adherence ratio of EPEC to HEp-2 cells compared with control (P < 0.01). However, the other three peptides at different concentrations showed only a slight ability to block the adherence of EPEC to host cells. Our data provided a potential strategy to inhibit the adhesion of EPEC to epithelial cells by a candidate peptide targeted toward EspB protein.

  7. Calcitonin gene-related peptide inhibits autophagic-lysosomal proteolysis through cAMP/PKA signaling in rat skeletal muscles.

    PubMed

    Machado, Juliano; Manfredi, Leandro H; Silveira, Wilian A; Gonçalves, Dawit A P; Lustrino, Danilo; Zanon, Neusa M; Kettelhut, Isis C; Navegantes, Luiz C

    2016-03-01

    Calcitonin gene-related peptide (CGRP) is a neuropeptide released by motor neuron in skeletal muscle and modulates the neuromuscular transmission by induction of synthesis and insertion of acetylcholine receptor on postsynaptic muscle membrane; however, its role in skeletal muscle protein metabolism remains unclear. We examined the in vitro and in vivo effects of CGRP on protein breakdown and signaling pathways in control skeletal muscles and muscles following denervation (DEN) in rats. In isolated muscles, CGRP (10(-10) to 10(-6)M) reduced basal and DEN-induced activation of overall proteolysis in a concentration-dependent manner. The in vitro anti-proteolytic effect of CGRP was completely abolished by CGRP8-37, a CGRP receptor antagonist. CGRP down-regulated the lysosomal proteolysis, the mRNA levels of LC3b, Gabarapl1 and cathepsin L and the protein content of LC3-II in control and denervated muscles. In parallel, CGRP elevated cAMP levels, stimulated PKA/CREB signaling and increased Foxo1 phosphorylation in both conditions. In denervated muscles and starved C2C12 cells, Rp-8-Br-cAMPs or PKI, two PKA inhibitors, completely abolished the inhibitory effect of CGRP on Foxo1, 3 and 4 and LC3 lipidation. A single injection of CGRP (100 μg kg(-1)) in denervated rats increased the phosphorylation levels of CREB and Akt, inhibited Foxo transcriptional activity, the LC3 lipidation as well as the mRNA levels of LC3b and cathepsin L, two bona fide targets of Foxo. This study shows for the first time that CGRP exerts a direct inhibitory action on autophagic-lysosomal proteolysis in control and denervated skeletal muscle by recruiting cAMP/PKA signaling, effects that are related to inhibition of Foxo activity and LC3 lipidation.

  8. Allosteric Inhibition of a Semaphorin 4D Receptor Plexin B1 by a High-Affinity Macrocyclic Peptide.

    PubMed

    Matsunaga, Yukiko; Bashiruddin, Nasir K; Kitago, Yu; Takagi, Junichi; Suga, Hiroaki

    2016-11-17

    Semaphorin axonal guidance factors are multifunctional proteins that play important roles in immune response, cancer cell proliferation, and organogenesis, making semaphorins and their signaling receptor plexins important drug targets for various diseases. However, the large and flat binding surface of the semaphorin-plexin interaction interface is difficult to target by traditional small-molecule drugs. Here, we report the discovery of a high-affinity plexin B1 (PlxnB1)-binding macrocyclic peptide, PB1m6 (KD = 3.5 nM). PB1m6 specifically inhibited the binding of physiological ligand semaphorin 4D (Sema4D) in vitro and completely suppressed Sema4D-induced cell collapse. Structural studies revealed that PB1m6 binds at a groove between the fifth and sixth blades of the sema domain in PlxnB1 distant from the Sema4D-binding site, indicating the non-competitive and allosteric nature of the inhibitory activity. The discovery of this novel allosteric site can potentially be used to target plexin family proteins for the development of drugs that modulate semaphorin and plexin signaling.

  9. A Shrimp C-type Lectin Inhibits Proliferation of the Hemolymph Microbiota by Maintaining the Expression of Antimicrobial Peptides*

    PubMed Central

    Wang, Xian-Wei; Xu, Ji-Dong; Zhao, Xiao-Fan; Vasta, Gerardo Raul; Wang, Jin-Xing

    2014-01-01

    Some aquatic invertebrates such as shrimp contain low albeit stable numbers of bacteria in the circulating hemolymph. The proliferation of this hemolymph microbiota in such a nutrient-rich environment is tightly controlled in healthy animals, but the mechanisms responsible had remained elusive. In the present study, we report a C-type lectin (MjHeCL) from the kuruma shrimp (Marsupenaeus japonicus) that participates in restraining the hemolymph microbiota. Although the expression of MjHeCL did not seem to be modulated by bacterial challenge, the down-regulation of its expression by RNA interference led to proliferation of the hemolymph microbiota, ultimately resulting in shrimp death. This phenotype was rescued by the injection of recombinant MjHeCL, which restored the healthy status of the knockdown shrimp. A mechanistic analysis revealed that MjHeCL inhibited bacterial proliferation by modulating the expression of antimicrobial peptides. The key function of MjHeCL in the shrimp immune homeostasis might be related to its broader recognition spectrum of the hemolymph microbiota components than other lectins. Our study demonstrates the role of MjHeCL in maintaining the healthy status of shrimp and provides new insight into the biological significance of C-type lectins, a diversified and abundant lectin family in invertebrate species. PMID:24619414

  10. The disodium salt of EDTA inhibits the binding of vasoactive intestinal peptide to macrophage membranes: endodontic implications.

    PubMed

    Segura, J J; Calvo, J R; Guerrero, J M; Sampedro, C; Jimenez, A; Llamas, R

    1996-07-01

    The purpose of this study was to investigate the effect of the disodium salt of ethylenediamine tetraacetate (EDTA), a calcium ion chelator used in the root canal therapy, on vasoactive intestinal peptide (VIP) binding to macrophage membranes (MM's). Binding assays were conducted at 15 degrees C in 0.5 ml of 50 mM Tris-HCl buffer (pH 7.5) containing 1.6% (w/v) bovine serum albumin, 1.2 mg/ml of bacitracin, and different EDTA concentrations, using 45 pM of [125I]VIP as tracer. Results showed that EDTA inhibits VIP binding to MM's in a dose-dependent manner, with an IC50 value of 5.4 mM (p < 0.01). EDTA concentrations equal or higher than 100 mM of abolished VIP-MM interaction. Taking into account that the macrophage plays an essential role in inflammatory reactions and the immune response, we conclude that the apical extrusion of EDTA during root canal therapy could modify VIP-macrophage interaction modulating the inflammatory mechanisms involved in periapical lesions.

  11. Structure, Sulfatide Binding Properties, and Inhibition of Platelet Aggregation by a Disabled-2 Protein-derived Peptide*

    PubMed Central

    Xiao, Shuyan; Charonko, John J.; Fu, Xiangping; Salmanzadeh, Alireza; Davalos, Rafael V.; Vlachos, Pavlos P.; Finkielstein, Carla V.; Capelluto, Daniel G. S.

    2012-01-01

    Disabled-2 (Dab2) targets membranes and triggers a wide range of biological events, including endocytosis and platelet aggregation. Dab2, through its phosphotyrosine-binding (PTB) domain, inhibits platelet aggregation by competing with fibrinogen for αIIbβ3 integrin receptor binding. We have recently shown that the N-terminal region, including the PTB domain (N-PTB), drives Dab2 to the platelet membrane surface by binding to sulfatides through two sulfatide-binding motifs, modulating the extent of platelet aggregation. The three-dimensional structure of a Dab2-derived peptide encompassing the sulfatide-binding motifs has been determined in dodecylphosphocholine micelles using NMR spectroscopy. Dab2 sulfatide-binding motif contains two helices when embedded in micelles, reversibly binds to sulfatides with moderate affinity, lies parallel to the micelle surface, and when added to a platelet mixture, reduces the number and size of sulfatide-induced aggregates. Overall, our findings identify and structurally characterize a minimal region in Dab2 that modulates platelet homotypic interactions, all of which provide the foundation for rational design of a new generation of anti-aggregatory low-molecular mass molecules for therapeutic purposes. PMID:22977233

  12. ARF1(2-17) does not specifically interact with ARF1-dependent pathways. Inhibition by peptide of phospholipases C beta, D and exocytosis in HL60 cells.

    PubMed

    Fensome, A; Cunningham, E; Troung, O; Cockcroft, S

    1994-07-25

    The small GTP-binding protein ARF has been shown recently to regulate phospholipase D (PLD). In order to investigate the role of ARF proteins in regulated exocytosis, we have used the N-terminal peptide ARF1(2-17) of the ARF1 protein. ARF1 reconstituted PLD activity in cytosol-depleted HL60 cells was inhibited by ARF1(2-17). In the presence of endogenous cytosol, ARF1(2-17) also inhibited GTP-gamma-S-stimulated PLD activity and exocytosis. Mastoparan Politses jadwagae and mastoparan Vespula lewisii which exhibit similar structural properties to ARF1(2-17) also inhibited GTP-gamma-S-stimulated PLD and exocytosis. GTP-gamma-S-stimulated phospholipase C-beta (PLC-beta) was also inhibited by ARF(2-17) and mastoparan. In cytosol-depleted HL60 cells, the ARF(2-17) inhibited the reconstitution of GTP-gamma-S-stimulated PLC-beta activity with exogenously-added PLC-beta 1 and phosphatidylinositol transfer protein. We conclude that the widely-used ARF1(2-17) peptide inhibits both ARF-independent (i.e. PLC-beta) and ARF-dependent pathways (i.e. PLD) and therefore cannot be regarded as a specific inhibitor of ARF function.

  13. A click chemistry approach to pleuromutilin derivatives. Part 3: extended footprinting analysis and excellent MRSA inhibition for a derivative with an adenine phenyl side chain.

    PubMed

    Dreier, Ida; Hansen, Lykke H; Nielsen, Poul; Vester, Birte

    2014-02-15

    Five promising pleuromutilin derivatives from our former studies, all containing adenine on various linkers, were supplemented with two new compounds. The binding to Escherichia coli ribosomes was verified by extensive chemical footprinting analysis. The ability to inhibit bacterial growth was investigated on two Staphylococcus aureus strains and compared to the pleuromutilin drugs tiamulin and valnemulin. Three of the compounds show an effect similar to tiamulin and one compound shows an excellent effect similar to valnemulin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Peripheral Administration of a Long-Acting Peptide Oxytocin Receptor Agonist Inhibits Fear-Induced Freezing

    PubMed Central

    Modi, Meera E.; Majchrzak, Mark J.; Fonseca, Kari R.; Doran, Angela; Osgood, Sarah; Vanase-Frawley, Michelle; Feyfant, Eric; McInnes, Heather; Darvari, Ramin; Buhl, Derek L.

    2016-01-01

    Oxytocin (OT) modulates the expression of social and emotional behaviors and consequently has been proposed as a pharmacologic treatment of psychiatric diseases, including autism spectrum disorders and schizophrenia; however, endogenous OT has a short half-life in plasma and poor permeability across the blood-brain barrier. Recent efforts have focused on the development of novel drug delivery methods to enhance brain penetration, but few efforts have aimed at improving its half-life. To explore the behavioral efficacy of an OT analog with enhanced plasma stability, we developed PF-06655075 (PF1), a novel non–brain-penetrant OT receptor agonist with increased selectivity for the OT receptor and significantly increased pharmacokinetic stability. PF-06478939 was generated with only increased stability to disambiguate changes to selectivity versus stability. The efficacy of these compounds in evoking behavioral effects was tested in a conditioned fear paradigm. Both central and peripheral administration of PF1 inhibited freezing in response to a conditioned fear stimulus. Peripheral administration of PF1 resulted in a sustained level of plasma concentrations for greater than 20 hours but no detectable accumulation in brain tissue, suggesting that plasma or cerebrospinal fluid exposure was sufficient to evoke behavioral effects. Behavioral efficacy of peripherally administered OT receptor agonists on conditioned fear response opens the door to potential peripheral mechanisms in other behavioral paradigms, whether they are mediated by direct peripheral activation or feed-forward responses. Compound PF1 is freely available as a tool compound to further explore the role of peripheral OT in behavioral response. PMID:27217590

  15. Inhibition of /sup 125/I-labeled ristocetin binding to Micrococcus luteus cells by the peptides related to bacterial cell wall mucopeptide precursors: quantitative structure-activity relationships

    SciTech Connect

    Kim, K.H.; Martin, Y.; Otis, E.; Mao, J.

    1989-01-01

    Quantitative structure-activity relationships (QSAR) of N-Ac amino acids, N-Ac dipeptides, and N-Ac tripeptides in inhibition of /sup 125/I-labeled ristocetin binding to Micrococcus luteus cell wall have been developed to probe the details of the binding between ristocetin and N-acetylated peptides. The correlation equations indicate that (1) the binding is stronger for peptides in which the side chain of the C-terminal amino acid has a large molar refractivity (MR) value, (2) the binding is weaker for peptides with polar than for those with nonpolar C-terminal side chains, (3) the N-terminal amino acid in N-Ac dipeptides contributes 12 times that of the C-terminal amino acid to binding affinity, and (4) the interactions between ristocetin and the N-terminal amino acid of N-acetyl tripeptides appear to be much weaker than those with the first two amino acids.

  16. Selective Inhibition on RAGE-binding AGEs Required by Bioactive Peptide Alpha-S2 Case in Protein from Goat Ethawah Breed Milk: Study of Biological Modeling

    PubMed Central

    Fatchiyah, Fatchiyah; Hardiyanti, Ferlany; Widodo, Nashi

    2015-01-01

    Background: Advanced Glycation End Products (AGE) play a pivotal role in the development various degenerative diseases such as diabetes, cardiovascular disease, stroke, neuropathy, and nephropathy. Different studies have been done to employ AGEs as drug targets for the diseases therapy. In previous study, we have found bioactive peptide from Ethawah goat milk for anti-diabetic that may work through inhibition of AGE receptor function. However, the mechanism of bioactive peptides inhibits AGE- AGE receptor (RAGE) bonding still not clear yet. Therefore we investigated the inhibition mechanism by calculate the potential energy binding among the peptides, AGEs and RAGE using molecular docking system. Methods: Modeling 3D-structure was predicted by SWISS-MODEL web server. The virtual interaction was analyzed by docking system using HEX 8.0, Pymol and Discovery Studio 4.0 software. Results: this study showed that AGEs (Argypirimidine, Imidazole, Pentosidine and Pyrraline) bind to C-domain of RAGE. The total energy binding of RAGE with Argypirimidine, Imidazole, Pentosidine and Pyrraline were 378.35kJ/mol, -74.57kJ/mol, -301.25kJ/mol and -400.72kJ/mol, respectively. We have found three peptides among eight peptides from Ethawah goat milk, which are able bind to C-domain of RAGE, there are CSN1S2 f41-47, CSN1S2 f182-189, and CSN1S2 f214-221. The CSN1S22 f41-47 at arginine residue 47 interacts with proline162, leusine163 and leusine158 of RAGE. The total binding energy between CSN1S2 f41-47, CSN1S2 f182-189, and CSN1S2 f214-221 with RAGE were -378.35 kJ/mol, -359.97kJ/mol, -356.78 kJ/mol, respectively. Total binding energy and binding pattern indicated that RAGE more prefer bind with peptide and block AGE bind to functional site of RAGE. Further analysis showed that complex peptide-RAGE shifted binding site of AGE on function domain RAGE. Conclusion: This study suggested that the peptides from Ethawah goat milk may act as an inhibitor of AGEs-RAGE interaction that impaired

  17. Human biliverdin reductase-based peptides activate and inhibit glucose uptake through direct interaction with the kinase domain of insulin receptor

    PubMed Central

    Gibbs, Peter E. M.; Lerner-Marmarosh, Nicole; Poulin, Amelia; Farah, Elie; Maines, Mahin D.

    2014-01-01

    Insulin binding changes conformation of the insulin receptor kinase (IRK) domain and initiates glucose uptake through the insulin, IGF-1, phosphatidyl inositol 3-kinase (PI3K), and MAPK pathways; human biliverdin reductase (hBVR) is an IRK substrate and pathway effector. This is the first report on hBVR peptide-mediated IRK activation and conformational change. 290KYCCSRK, which increased IRK Vmax without changing Km, stimulated glucose uptake and potentiated insulin and IGF-1 stimulation in 4 cell lines. KYCCSRK in native hBVR was necessary for the hBVR and IRK cross-activation. Peptide treatment also activated PI3K downstream effectors, Akt and ERK, phosphorylation, and Elk transcriptional activity. In cells transfected with CMV-regulated EGFP-VP-peptide plasmid, C292→A mutant did not stimulate glucose uptake; K296→A decreased uptake and kinase activity. KEDQYMKMTV, corresponding to hBVR's SH2-binding domain, was a potent inhibitor of glucose uptake and IRK. The mechanism of action of peptides was examined using cells expressing IRK (aa 988–1263) activated by coexpressed KYCCSRK. Three active cys-mutants of IRK, with fluorophore coupled to cysteines, C1056, C1138, or C1234, were examined for changes in fluorescence emission spectra in the presence of peptides. KYCCSRK and KEDQYMKMTV bound to different sites in IRK. The findings identify novel agents for activating or inhibiting insulin signaling and offer a new approach for treatment of type 2 diabetes and hypoglycemia.—Gibbs, P. E. M., Lerner-Marmarosh, N., Poulin, A., Farah, E., Maines, M. D. Human biliverdin reductase-based peptides activate and inhibit glucose uptake through direct interaction with the kinase domain of insulin receptor. PMID:24568842

  18. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein

    PubMed Central

    Sainz, Bruno; Mossel, Eric C.; Gallaher, William R.; Wimley, William C.; Peters, C.J.; Wilson, Russell B.; Garry, Robert F.

    2008-01-01

    Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is the cause of an atypical pneumonia that affected Asia, North America and Europe in 2002–2003. The viral spike (S) glycoprotein is responsible for mediating receptor binding and membrane fusion. Recent studies have proposed that the carboxyl terminal portion (S2 subunit) of the S protein is a class I viral fusion protein. The Wimley and White interfacial hydrophobicity scale was used to identify regions within the CoV S2 subunit that may preferentially associate with lipid membranes with the premise that peptides analogous to these regions may function as inhibitors of viral infectivity. Five regions of high interfacial hydrophobicity spanning the length of the S2 subunit of SARS-CoV and murine hepatitis virus (MHV) were identified. Peptides analogous to regions of the N-terminus or the pre-transmembrane domain of the S2 subunit inhibited SARS-CoV plaque formation by 40–70% at concentrations of 15–30 μM. Interestingly, peptides analogous to the SARS-CoV or MHV loop region inhibited viral plaque formation by >80% at similar concentrations. The observed effects were dose-dependent (IC50 values of 2–4 μM) and not a result of peptide-mediated cell cytotoxicity. The antiviral activity of the CoV peptides tested provides an attractive basis for the development of new fusion peptide inhibitors corresponding to regions outside the fusion protein heptad repeat regions. PMID:16616792

  19. The immune modulatory peptide FhHDM-1 secreted by the helminth Fasciola hepatica prevents NLRP3 inflammasome activation by inhibiting endolysosomal acidification in macrophages.

    PubMed

    Alvarado, Raquel; To, Joyce; Lund, Maria E; Pinar, Anita; Mansell, Ashley; Robinson, Mark W; O'Brien, Bronwyn A; Dalton, John P; Donnelly, Sheila

    2017-01-01

    The NLRP3 inflammasome is a multimeric protein complex that controls the production of IL-1β, a cytokine that influences the development of both innate and adaptive immune responses. Helminth parasites secrete molecules that interact with innate immune cells, modulating their activity to ultimately determine the phenotype of differentiated T cells, thus creating an immune environment that is conducive to sustaining chronic infection. We show that one of these molecules, FhHDM-1, a cathelicidin-like peptide secreted by the helminth parasite, Fasciola hepatica, inhibits the activation of the NLRP3 inflammasome resulting in reduced secretion of IL-1β by macrophages. FhHDM-1 had no effect on the synthesis of pro-IL-1β. Rather, the inhibitory effect was associated with the capacity of the peptide to prevent acidification of the endolysosome. The activation of cathepsin B protease by lysosomal destabilization was prevented in FhHDM-1-treated macrophages. By contrast, peptide derivatives of FhHDM-1 that did not alter the lysosomal pH did not inhibit secretion of IL-1β. We propose a novel immune modulatory strategy used by F. hepatica, whereby secretion of the FhHDM-1 peptide impairs the activation of NLRP3 by lysosomal cathepsin B protease, which prevents the downstream production of IL-1β and the development of protective T helper 1 type immune responses that are detrimental to parasite survival.-Alvarado, R., To, J., Lund, M. E., Pinar, A., Mansell, A., Robinson, M. W., O'Brien, B. A., Dalton, J. P., Donnelly, S. The immune modulatory peptide FhHDM-1 secreted by the helminth Fasciola hepatica prevents NLRP3 inflammasome activation by inhibiting endolysosomal acidification in macrophages.

  20. Peptide Fraction pOh2 Exerts Antiadipogenic Activity through Inhibition of C/EBP-α and PPAR-γ Expression in 3T3-L1 Adipocytes.

    PubMed

    Nguyen, Thi Tuyet Nhung; Ha, Thi Thu; Nguyen, Thi Hoa; Vu, Thi Hien; Truong, Nam Hai; Chu, Hoang Ha; Van Quyen, Dong

    2017-01-01

    Many studies have comprehensively examined the venom of Ophiophagus hannah snake. Its venom comprises different compounds exhibiting a wide range of pharmacological activities. In this investigation, four peptide fractions (PFs), ranging from 3 kDa to 10 kDa, isolated from the Vietnamese snake venom of O. hannah were separated by HPLC and investigated for their inhibitory activity on adipogenesis in 3T3-L1 adipocytes. The most effective PF was then further purified, generating two peptides, pOh1 and pOh2. Upon investigation of these two peptides on 3T3-L1 adipocytes, it was revealed that, at 10 μg/mL, pOh2 was able to inhibit the lipid accumulation in 3T3-L1 adipocytes by up to 56%, without affecting cell viability. Furthermore, the pOh2 downregulated the gene expression of important transcription factors C/EBP-α and PPAR-γ. In addition, aP2 and GPDH adipocyte-specific markers were also significantly reduced compared to untreated differentiated cells. Taken together, pOh2 inhibited the expression of key transcription factors C/EBP-α and PPAR-γ and their target genes, aP2 and GPDH, thereby blocking the adipocyte differentiation. In conclusion, this novel class of peptide might have potential for in vivo antiobesity effects.

  1. Human coronavirus NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives including Alisporivir.

    PubMed

    Carbajo-Lozoya, Javier; Ma-Lauer, Yue; Malešević, Miroslav; Theuerkorn, Martin; Kahlert, Viktoria; Prell, Erik; von Brunn, Brigitte; Muth, Doreen; Baumert, Thomas F; Drosten, Christian; Fischer, Gunter; von Brunn, Albrecht

    2014-05-12

    Until recently, there were no effective drugs available blocking coronavirus (CoV) infection in humans and animals. We have shown before that CsA and FK506 inhibit coronavirus replication (Carbajo-Lozoya, J., Müller, M.A., Kallies, S., Thiel, V., Drosten, C., von Brunn, A. Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK506. Virus Res. 2012; Pfefferle, S., Schöpf, J., Kögl, M., Friedel, C., Müller, M.A., Stellberger, T., von Dall'Armi, E., Herzog, P., Kallies, S., Niemeyer, D., Ditt, V., Kuri, T., Züst, R., Schwarz, F., Zimmer, R., Steffen, I., Weber, F., Thiel, V., Herrler, G., Thiel, H.-J., Schwegmann-Weßels, C., Pöhlmann, S., Haas, J., Drosten, C. and von Brunn, A. The SARS-Coronavirus-host interactome: identification of cyclophilins as target for pan-Coronavirus inhibitors. PLoS Pathog., 2011). Here we demonstrate that CsD Alisporivir, NIM811 as well as novel non-immunosuppressive derivatives of CsA and FK506 strongly inhibit the growth of human coronavirus HCoV-NL63 at low micromolar, non-cytotoxic concentrations in cell culture. We show by qPCR analysis that virus replication is diminished up to four orders of magnitude to background levels. Knockdown of the cellular Cyclophilin A (CypA/PPIA) gene in Caco-2 cells prevents replication of HCoV-NL63, suggesting that CypA is required for virus replication. Collectively, our results uncover Cyclophilin A as a host target for CoV infection and provide new strategies for urgently needed therapeutic approaches.

  2. Identification of the peptide derived from S1 domain that inhibits type I and type II feline infectious peritonitis virus infection.

    PubMed

    Doki, Tomoyoshi; Takano, Tomomi; Koyama, Yusuke; Hohdatsu, Tsutomu

    2015-06-02

    Feline infectious peritonitis virus (FIPV) can cause a lethal disease in cats, feline infectious peritonitis (FIP). A therapeutic drug that is effective against FIP has not yet been developed. Peptides based on viral protein amino acid sequences have recently been attracting attention as new antiviral drugs. In the present study, we synthesized 30 overlapping peptides based on the amino acid sequence of the S1 domain of the type I FIPV strain KU-2 S protein, and investigated their inhibitory effects on FIPV infection. To evaluate the inhibitory effects on type I FIPV infection of these peptides, we investigated a method to increase the infection efficiency of poorly replicative type I FIPV. The efficiency of type I FIPV infection was increased by diluting the virus with medium containing a polycation. Of the 30 peptides, I-S1-8 (S461-S480), I-S1-9 (S471-S490), I-S1-10 (S481-S500), I-S1-16 (S541-S560), and I-S1-22 (S601-S620) significantly decreased the infectivity of FIPV strain KU-2 while I-S1-9 and I-S1-16 exhibited marked inhibitory effects on FIPV infection. The inhibitory effects on FIPV infection of these 2 peptides on other type I and type II FIPV strains, feline herpesvirus (FHV), and feline calicivirus (FCV) were also examined. These 2 peptides specifically inhibited type I and type II FIPV, but did FHV or FCV infection. In conclusion, the possibility of peptides derived from the S protein of type I FIPV strain KU-2 as anti-FIPV agents effective not only for type I, but also type II FIPV was demonstrated in vitro.

  3. Oral administration of L-mR18L, a single domain cationic amphipathic helical peptide, inhibits lesion formation in ApoE null mice.

    PubMed

    Handattu, Shaila P; Datta, Geeta; Epand, Richard M; Epand, Raquel F; Palgunachari, Mayakonda N; Mishra, Vinod K; Monroe, Candyce E; Keenum, Tamara D; Chaddha, Manjula; Anantharamaiah, G M; Garber, David W

    2010-12-01

    We have shown that Ac-hE18A-NH₂, a dual-domain cationic apolipoprotein-mimetic peptide, reduces plasma cholesterol levels in dyslipidemic mice. Two single-domain cationic peptides based on the lytic class L peptide 18L were developed to test the hypothesis that a single-domain cationic amphipathic peptide can reduce atherosclerosis in apolipoprotein (apo)E null mice when orally administered. To incorporate anti-inflammatory properties, aromatic residues were clustered in the nonpolar face similar to peptide 4F, resulting in modified 18L (m18L). To reduce lytic properties, the Lys residues of 18L were replaced with Arg with the resulting peptide called modified R18L (mR18L). Biophysical studies showed that mR18L had stronger interactions with lipids than did m18L. Peptide mR18L was also more effective than m18L in promoting LDL uptake by HepG2 cells. ApoE null mice received normal chow or chow containing m18L or mR18L for six weeks. A significant reduction in plasma cholesterol and aortic sinus lesion area was seen only in the mR18L group. Plasma from mice administered mR18L, unlike those from the control and m18L groups, did not enhance monocyte adhesion to endothelial cells. Thus oral administration of mR18L reduces plasma cholesterol and lesion formation and inhibits monocyte adhesion.

  4. A naturally occurring α(s1)-casein-derived peptide in bovine milk inhibits apoptosis of granulosa cells induced by serum-free conditions.

    PubMed

    Shimizu, T; Ganzorig, K; Miyamoto, A; Ishii, T; Urashima, T; Fukuda, K

    2014-03-01

    Several naturally occurring peptides in bovine milk were characterized by tandem mass spectrometry and Edman degradation. Chromatograms of peptide fractions (passed through an ultra-filtration membrane, nominal molecular weight limit 3000) prepared from colostrum (collected immediately after parturition) and transitional milk (collected 5 days postpartum) showed that they were almost identical. In total, six peptides, α(s1)-CN (f16-23) (RPKHPIKH), α(s1)-CN (f16-24) (RPKHPIKHQ), α(s1)-CN (f17-25) (PKHPIKHQG), α(s1)-CN (f46-52) (VFGKEKV), α(s1)-CN (f94-105) (HIQKEDVPSER), and β-CN (f121-128) (HKEMPFPK), were identified. One of the major peptides, the N-terminal fragment of αs1 -casein, varied structurally during early lactation: α(s1)-CN (f17-25) (PKHPIKHQG) and α(s1)-CN (f16-23) (RPKHPIKH)/α(s1)-CN (f16-24) (RPKHPIKHQ) were found in colostrum and transitional milk, respectively. A chemically synthesized peptide, α(s1)-CN (f16-23) (RPKHPIKH), inhibited apoptosis of bovine granulosa cells induced by serum-free conditions in a dose-dependent manner, in consequence of caspase-3 and caspase-9 suppressions. The physiological function of the peptide remains unclear, but it may have potential use as pharmaceutical agent and as an anti-apoptotic agent in cell culture medium. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  5. [Effect of a derivative of GABA, phenibut, on behavior and the activity of visual cortex neurons of the rabbit during elaboration of a defensive reflex and internal inhibition].

    PubMed

    Shul'gina, G I; Petrishcheva, A P; Kuznetsova, G G

    1985-01-01

    In experiments on alert non-immobilized rabbits the effect of subcutaneous administration of the GABA-derivate--phenibut on behaviour, slow potentials and impulse activity of neurones of the visual cortex was studied during elaboration of a defensive reflex to light flashes and of conditioned inhibition. During the action of phenibut late negative-positive components of the evoked potentials to flashes, corresponding inhibitory pauses and postinhibitory activation gradually increased; then stable predominance of slow high-amplitude potential oscillations and corresponding neuronal group bursts appeared, separated by inhibitory pauses and in intersignal periods. Reinforcing stimulus, as before phenibut administration, lowered the amplitudes of slow potential oscillations and weakened inhibitory pauses in neuronal impulse activity. Dynamics of movements in response to the stimuli was of a phasic character. 3 hours after phenibut administration the discrimination of reinforced and inhibitory light flashes has distinctly improved. The obtained results confirm the initial concept of the significant role of the GABA-ergic inhibitory system in the process of elaboration of internal inhibition.

  6. Increased efflux of amyloid-β peptides through the blood-brain barrier by muscarinic acetylcholine receptor inhibition reduces pathological phenotypes in mouse models of brain amyloidosis.

    PubMed

    Paganetti, Paolo; Antoniello, Katia; Devraj, Kavi; Toni, Nicolas; Kieran, Dairin; Madani, Rime; Pihlgren, Maria; Adolfsson, Oskar; Froestl, Wolfgang; Schrattenholz, André; Liebner, Stefan; Havas, Daniel; Windisch, Manfred; Cirrito, John R; Pfeifer, Andrea; Muhs, Andreas

    2014-01-01

    The formation and accumulation of toxic amyloid-β peptides (Aβ) in the brain may drive the pathogenesis of Alzheimer's disease. Accordingly, disease-modifying therapies for Alzheimer's disease and related disorders could result from treatments regulating Aβ homeostasis. Examples are the inhibition of production, misfolding, and accumulation of Aβ or the enhancement of its clearance. Here we show that oral treatment with ACI-91 (Pirenzepine) dose-dependently reduced brain Aβ burden in AβPPPS1, hAβPPSL, and AβPP/PS1 transgenic mice. A possible mechanism of action of ACI-91 may occur through selective inhibition of muscarinic acetylcholine receptors (AChR) on endothelial cells of brain microvessels and enhanced Aβ peptide clearance across the blood-brain barrier. One month treatment with ACI-91 increased the clearance of intrathecally-injected Aβ in plaque-bearing mice. ACI-91 also accelerated the clearance of brain-injected Aβ in blood and peripheral tissues by favoring its urinal excretion. A single oral dose of ACI-91 reduced the half-life of interstitial Aβ peptide in pre-plaque mhAβPP/PS1d mice. By extending our studies to an in vitro model, we showed that muscarinic AChR inhibition by ACI-91 and Darifenacin augmented the capacity of differentiated endothelial monolayers for active transport of Aβ peptide. Finally, ACI-91 was found to consistently affect, in vitro and in vivo, the expression of endothelial cell genes involved in Aβ transport across the Blood Brain Brain (BBB). Thus increased Aβ clearance through the BBB may contribute to reduced Aβ burden and associated phenotypes. Inhibition of muscarinic AChR restricted to the periphery may present a therapeutic advantage as it avoids adverse central cholinergic effects.

  7. Inhibition of phospho-MurNAc-pentapeptide translocase (MraY) by nucleoside natural product antibiotics, bacteriophage ϕX174 lysis protein E, and cationic antibacterial peptides.

    PubMed

    Bugg, Timothy D H; Rodolis, Maria T; Mihalyi, Agnes; Jamshidi, Shirin

    2016-12-15

    This review covers recent developments in the inhibition of translocase MraY and related phospho-GlcNAc transferases WecA and TagO, and insight into the inhibition and catalytic mechanism of this class of integral membrane proteins from the structure of Aquifex aeolicus MraY. Recent studies have also identified a protein-protein interaction site in Escherichia coli MraY, that is targeted by bacteriophage ϕX174 lysis protein E, and also by cationic antimicrobial peptides containing Arg-Trp close to their N- or C-termini. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. [STUDIES IN VITRO INHIBITION OF THE ANGIOTENSIN-CONVERTING ENZYME-I, HYPOTENSIVE AND ANTIHYPERTENSIVE EFFECTS OF PEPTIDE FRACTIONS OF V. UNGUICULATA].

    PubMed

    Cú-Cañetas, Trinidad; Betancur Ancona, David; Gallegos Tintoré, Santiago; Sandoval Peraza, Mukthar; Chel Guerrero, Luis

    2015-11-01

    Inhibition of angiotensin-converting enzyme I (ACE-I) in vitro and in vivo from peptide fractions by enzymatic hydrolysis of the Vigna unguiculata protein concentrate was evaluated. Hydrolysis was done with Pepsin-Pancreatin and Flavourzima in two separate systems. The resulting hidrolysates were ultrafiltrated to obtain fractions with different molecular weight. The fractions with better inhibition Flavourzima were size > 1 kDa (> 1 kDa-F) and < 1 kDa (< 1 kDa-F), with an IC50 of 1222.84 and 1098.6 μg/ml respectively. Pepsin-Pancreatin fraction.

  9. Inhibition by atrial and brain natriuretic peptides of endothelin-1 secretion after stimulation with angiotensin II and thrombin of cultured human endothelial cells.

    PubMed Central

    Kohno, M; Yasunari, K; Yokokawa, K; Murakawa, K; Horio, T; Takeda, T

    1991-01-01

    We examined the inhibition by atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) of endothelin-1 secretion stimulated by angiotensin II (ANGII) and thrombin using cultured human umbilical-vein endothelial cells. ANGII and thrombin dose-dependently stimulated immunoreactive (ir) endothelin-1 secretion. Human ANP(1-28) and human BNP-32 both inhibited such secretion in a dose-dependent way. Inhibition of this secretion by ANP and BNP was paralleled by an increase in the level of cyclic guanosine 5'-monophosphate (GMP). The addition of a cyclic GMP analogue, 8-bromo cyclic GMP, reduced this stimulated secretion. Rat ANP(5-25) was weaker than human ANP(1-28) at inhibiting ir-endothelin-1 secretion and increasing cyclic GMP in the cells. ir-Endothelin-1 in the medium consisted of two components separated by high pressure liquid chromatography; the major one corresponded to endothelin-1(1-21) and the minor one corresponded to big endothelin-1(1-38). Treatment with ANP and BNP did not affect this profile. These findings suggest that human ANP and BNP inhibit endothelin-1 secretion stimulated by ANGII and thrombin in these cells through a cyclic GMP-dependent process. Taken together with endothelin stimulation of ANP and BNP secretion from the heart, our results suggest the existence of a cardiac-endothelium feedback. PMID:1645748

  10. Synergistic inhibition of the lethal fungal pathogen Batrachochytrium dendrobatidis: the combined effect of symbiotic bacterial metabolites and antimicrobial peptides of the frog Rana muscosa.

    PubMed

    Myers, Jillian M; Ramsey, Jeremy P; Blackman, Alison L; Nichols, A Elizabeth; Minbiole, Kevin P C; Harris, Reid N

    2012-08-01

    A powerful mechanism for protection against disease in animals is synergy between metabolites present in the natural microbiota of the host and antimicrobial peptides (AMPs) produced by the host. We studied this method of protection in amphibians in regard to the lethal disease chytridiomycosis, which is caused by Batrachochytrium dendrobatidis (Bd). In this study, we show that the AMPs of Rana muscosa, as well as the metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) from Pseudomonas fluorescens, a bacterial species normally found on the skin of R. muscosa, were inhibitory to the growth of Bd in vitro. When both AMPs and 2,4-DAPG were used in growth inhibition assays, they worked synergistically to inhibit the growth of Bd. This synergy resulted in reduced minimum concentrations necessary for inhibition by either 2,4-DAPG or AMPs. This inhibitory concentration of AMPs did not inhibit the growth of a P. fluorescens strain that produced 2,4-DAPG in vitro, although its growth was inhibited at higher peptide concentrations. These data suggest that the AMPs secreted onto frog skin and the metabolites secreted by the resident beneficial bacteria may work synergistically to enhance protection against Bd infection on amphibian skin. These results may aid conservation efforts to augment amphibian skins' resistance to chytridiomycosis by introducing anti-Bd bacterial species that work synergistically with amphibian AMPs.

  11. Velvet antler peptide prevents pressure overload-induced cardiac fibrosis via transforming growth factor (TGF)-β1 pathway inhibition.

    PubMed

    Zhao, Lihong; Mi, Yang; Guan, Hongya; Xu, Yan; Mei, Yingwu

    2016-07-15

    Velvet antlers (VAs) are commonly used in traditional Chinese medicine and invigorant and contain many functional components for health promotion. The velvet antler peptide sVAP32 is one of active components in VAs; based on structural study, the sVAP32 interacts with TGF-β1 receptors and disrupts the TGF-β1 pathway. We hypothesized that sVAP32 prevents cardiac fibrosis from pressure overload by blocking TGF-β1 signaling. Sprague-Dawley rats underwent transverse aortic constriction (TAC) or a sham operation. After one month, rats received either sVAP32 (15mg/kg/day) or vehicle for an additional one month. TAC surgery induced significant cardiac dysfunction, fibroblast activation and fibrosis; these effects were improved by treatment with sVAP32. In the heart tissue, TAC remarkably increased the expression of TGF-β1 and connective tissue growth factor (CTGF), reactive oxygen species levels, and the phosphorylation levels of Smad2/3 and extracellular signal-regulated kinases 1/2 (ERK1/2). SVAP32 inhibited the increases in reactive oxygen species levels, CTGF expression and the phosphorylation of Smad2/3 and ERK1/2, but not TGF-β1 expression. In cultured cardiac fibroblasts, angiotensin II (Ang II) had similar effects compared to TAC surgery, such as increases in α-SMA-positive cardiac fibroblasts and collagen synthesis. SVAP32 eliminated these effects by disrupting TGF-β1 binding to its receptors and blocking Ang II/TGF-β1 downstream signaling. These results demonstrated that sVAP32 has anti-fibrotic effects by blocking the TGF-β1 pathway in cardiac fibroblasts.

  12. Inhibition of CD4+ T lymphocyte binding to fibronectin and immune-cell accumulation in inflammatory sites by non-peptidic mimetics of Arg-Gly-Asp.

    PubMed Central

    Hershkoviz, R; Greenspoon, N; Mekori, Y A; Hadari, R; Alon, R; Kapustina, G; Lider, O

    1994-01-01

    The Arg-Gly-Asp (RGD) cell adhesion motif has been demonstrated in various studies to play a pivotal role in leucocyte and platelet interactions with plasma and extracellular matrix (ECM) glycoproteins. The recognition of the RGD sequence is mediated by heterodimeric receptors designated integrins of the beta 1 subfamily, expressed on distinct cell types, including T lymphocytes. We have recently shown that flexible non-peptidic mimetics of RGD, in which the two ionic side groups were separated by a linear spacer of 11 atoms, bound specifically to the platelet integrin alpha 11b beta 3, and inhibited T cell-mediated immune responses. The present study was designed to (i) further characterize the structural requirements for RGD interactions with CD4+ T cells, and (ii) examine the mechanisms by which the RGD mimetics interfere with immune cell reactivity in vivo. We now report that freezing the conformational degrees of freedom in the spacer chain, which fixes the relative orientation of the guanidinium and carboxylate side groups in a favourable manner, results in a higher level of inhibition of T cell binding to immobilized fibronectin, an RGD-containing ECM glycoprotein. In vivo, treatment of mice with relatively low doses of the RGD mimetics, but not the RGD peptide, inhibited the elicitation of an adoptively transferred DTH reaction. This inhibition was achieved by direct impairment of the ability of antigen-primed lymph node cells to migrate and accumulate in inflammatory sites. Hence, we suggest that the design and production of non-peptidic mimetics of RGD offers a novel approach to study defined parameters related to the structure-function requirements of small adhesion epitopes. Furthermore, this approach could be used therapeutically to inhibit pathological processes which depend on RGD recognition. PMID:7905794

  13. Brain RVD-haemopressin, a haemoglobin-derived peptide, inhibits bombesin-induced central activation of adrenomedullary outflow in the rat.

    PubMed

    Tanaka, Kenjiro; Shimizu, Takahiro; Yanagita, Toshihiko; Nemoto, Takayuki; Nakamura, Kumiko; Taniuchi, Keisuke; Dimitriadis, Fotios; Yokotani, Kunihiko; Saito, Motoaki

    2014-01-01

    Haemopressin and RVD-haemopressin, derived from the haemoglobin α-chain, are bioactive peptides found in brain and are ligands for cannabinoid CB1 receptors. Activation of brain CB1 receptors inhibited the secretion of adrenal catecholamines (noradrenaline and adrenaline) induced by i.c.v. bombesin in the rat. Here, we investigated the effects of two haemoglobin-derived peptides on this bombesin-induced response Anaesthetised male Wistar rats were pretreated with either haemoglobin-derived peptide, given i.c.v., 30 min before i.c.v. bombesin and plasma catecholamines were subsequently measured electrochemically after HPLC. Direct effects of bombesin on secretion of adrenal catecholamines were examined using bovine adrenal chromaffin cells. Furthermore, activation of haemoglobin α-positive spinally projecting neurons in the rat hypothalamic paraventricular nucleus (PVN, a regulatory centre of central adrenomedullary outflow) after i.c.v. bombesin was assessed by immunohistochemical techniques. Bombesin given i.c.v. dose-dependently elevated plasma catecholamines whereas incubation with bombesin had no effect on spontaneous and nicotine-induced secretion of catecholamines from chromaffin cells. The bombesin-induced increase in catecholamines was inhibited by pretreatment with i.c.v. RVD-haemopressin (CB1 receptor agonist) but not after pretreatment with haemopressin (CB1 receptor inverse agonist). Bombesin activated haemoglobin α-positive spinally projecting neurons in the PVN. The haemoglobin-derived peptide RVD-haemopressin in the brain plays an inhibitory role in bombesin-induced activation of central adrenomedullary outflow via brain CB1 receptors in the rat. These findings provide basic information for the therapeutic use of haemoglobin-derived peptides in the modulation of central adrenomedullary outflow. © 2013 The British Pharmacological Society.

  14. HbAHP-25, an In-Silico Designed Peptide, Inhibits HIV-1 Entry by Blocking gp120 Binding to CD4 Receptor

    PubMed Central

    Bashir, Tahir; Patgaonkar, Mandar; Kumar C, Selvaa; Pasi, Achhelal; Reddy, Kudumula Venkata Rami

    2015-01-01

    Human Immunodeficiency Virus (HIV-1) poses a serious threat to the developing world and sexual transmission continues to be the major source of new infections. Therefore, the development of molecules, which prevent new HIV-1 infections, is highly warranted. In the present study, a panel of human hemoglobin (Hb)-α subunit derived peptides and their analogues, with an ability to bind gp120, were designed in-silico and their anti-HIV-1 activity was evaluated. Of these peptides, HbAHP-25, an analogue of Hb-α derived peptide, demonstrated significant anti-HIV-1 activity. HbAHP-25 was found to be active against CCR5-tropic HIV-1 strains (ADA5 and BaL) and CXCR4-tropic HIV-1 strains (IIIB and NL4-3). Surface plasmon resonance (SPR) and ELISA revealed direct interaction between HbAHP-25 and HIV-1 envelope protein, gp120. The peptide prevented binding of CD4 to gp120 and blocked subsequent steps leading to entry and/or fusion or both. Anti-HIV activity of HbAHP-25 appeared to be specific as it failed to inhibit the entry of HIV-1 pseudotyped virus (HIV-1 VSV). Further, HbAHP-25 was found to be non-cytotoxic to TZM-bl cells, VK2/E6E7 cells, CEM-GFP cells and PBMCs, even at higher concentrations. Moreover, HbAHP-25 retained its anti-HIV activity in presence of seminal plasma and vaginal fluid. In brief, the study identified HbAHP-25, a novel anti-HIV peptide, which directly interacts with gp120 and thus has a potential to inhibit early stages of HIV-1 infection. PMID:25915507

  15. Brain RVD-haemopressin, a haemoglobin-derived peptide, inhibits bombesin-induced central activation of adrenomedullary outflow in the rat

    PubMed Central

    Tanaka, Kenjiro; Shimizu, Takahiro; Yanagita, Toshihiko; Nemoto, Takayuki; Nakamura, Kumiko; Taniuchi, Keisuke; Dimitriadis, Fotios; Yokotani, Kunihiko; Saito, Motoaki

    2014-01-01

    BACKGROUND AND PURPOSE Haemopressin and RVD-haemopressin, derived from the haemoglobin α-chain, are bioactive peptides found in brain and are ligands for cannabinoid CB1 receptors. Activation of brain CB1 receptors inhibited the secretion of adrenal catecholamines (noradrenaline and adrenaline) induced by i.c.v. bombesin in the rat. Here, we investigated the effects of two haemoglobin-derived peptides on this bombesin-induced response EXPERIMENTAL APPROACH Anaesthetised male Wistar rats were pretreated with either haemoglobin-derived peptide, given i.c.v., 30 min before i.c.v. bombesin and plasma catecholamines were subsequently measured electrochemically after HPLC. Direct effects of bombesin on secretion of adrenal catecholamines were examined using bovine adrenal chromaffin cells. Furthermore, activation of haemoglobin α-positive spinally projecting neurons in the rat hypothalamic paraventricular nucleus (PVN, a regulatory centre of central adrenomedullary outflow) after i.c.v. bombesin was assessed by immunohistochemical techniques. KEY RESULTS Bombesin given i.c.v. dose-dependently elevated plasma catecholamines whereas incubation with bombesin had no effect on spontaneous and nicotine-induced secretion of catecholamines from chromaffin cells. The bombesin-induced increase in catecholamines was inhibited by pretreatment with i.c.v. RVD-haemopressin (CB1 receptor agonist) but not after pretreatment with haemopressin (CB1 receptor inverse agonist). Bombesin activated haemoglobin α-positive spinally projecting neurons in the PVN. CONCLUSIONS AND IMPLICATIONS The haemoglobin-derived peptide RVD-haemopressin in the brain plays an inhibitory role in bombesin-induced activation of central adrenomedullary outflow via brain CB1 receptors in the rat. These findings provide basic information for the therapeutic use of haemoglobin-derived peptides in the modulation of central adrenomedullary outflow. PMID:24138638

  16. Structure-Based Design and Synthesis of Potent Cyclic Peptides Inhibiting the YAP–TEAD Protein–Protein Interaction

    PubMed Central

    2014-01-01

    The YAP–TEAD protein–protein interaction (PPI) mediates the oncogenic function of YAP, and inhibitors of this PPI have potential usage in treatment of YAP-involved cancers. Here we report the design and synthesis of potent cyclic peptide inhibitors of the YAP–TEAD interaction. A truncation study of YAP interface 3 peptide identified YAP84–100 as a weak peptide inhibitor (IC50 = 37 μM), and an alanine scan revealed a beneficial mutation, D94A. Subsequent replacement of a native cation−π interaction with an optimized disulfide bridge for conformational constraint and synergistic effect between macrocyclization and modification at positions 91 and 93 greatly boosted inhibitory activity. Peptide 17 was identified with an IC50 of 25 nM, and the binding affinity (Kd = 15 nM) of this 17mer peptide to TEAD1 proved to be stronger than YAP50–171 (Kd = 40 nM). PMID:25221655

  17. Structure-Based Design and Synthesis of Potent Cyclic Peptides Inhibiting the YAP-TEAD Protein-Protein Interaction.

    PubMed

    Zhang, Zhisen; Lin, Zhaohu; Zhou, Zheng; Shen, Hong C; Yan, S Frank; Mayweg, Alexander V; Xu, Zhiheng; Qin, Ning; Wong, Jason C; Zhang, Zhenshan; Rong, Yiping; Fry, David C; Hu, Taishan

    2014-09-11

    The YAP-TEAD protein-protein interaction (PPI) mediates the oncogenic function of YAP, and inhibitors of this PPI have potential usage in treatment of YAP-involved cancers. Here we report the design and synthesis of potent cyclic peptide inhibitors of the YAP-TEAD interaction. A truncation study of YAP interface 3 peptide identified YAP(84-100) as a weak peptide inhibitor (IC50 = 37 μM), and an alanine scan revealed a beneficial mutation, D94A. Subsequent replacement of a native cation-π interaction with an optimized disulfide bridge for conformational constraint and synergistic effect between macrocyclization and modification at positions 91 and 93 greatly boosted inhibitory activity. Peptide 17 was identified with an IC50 of 25 nM, and the binding affinity (K d = 15 nM) of this 17mer peptide to TEAD1 proved to be stronger than YAP(50-171) (K d = 40 nM).

  18. Inhibition of Efflux Transporter-Mediated Fungicide Resistance in Pyrenophora tritici-repentis by a Derivative of 4′-Hydroxyflavone and Enhancement of Fungicide Activity

    PubMed Central

    Reimann, Sven; Deising, Holger B.

    2005-01-01

    Populations of the causal agent of wheat tan spot, Pyrenophora tritici-repentis, that are collected from fields frequently treated with reduced fungicide concentrations have reduced sensitivity to strobilurin fungicides and azole fungicides (C14-demethylase inhibitors). Energy-dependent efflux transporter activity can be induced under field conditions and after in vitro application of sublethal amounts of fungicides. Efflux transporters can mediate cross-resistance to a number of fungicides that belong to different chemical classes and have different modes of action. Resistant isolates can grow on substrata amended with fungicides and can infect plants treated with fungicides at levels above recommended field concentrations. We identified the hydroxyflavone derivative 2-(4-ethoxy-phenyl)-chromen-4-one as a potent inhibitor of energy-dependent fungicide efflux transporters in P. tritici-repentis. Application of this compound in combination with fungicides shifted fungicide-resistant P. tritici-repentis isolates back to normal sensitivity levels and prevented infection of wheat leaves. These results highlight the role of energy-dependent efflux transporters in fungicide resistance and could enable a novel disease management strategy based on the inhibition of fungicide efflux to be developed. PMID:15933029

  19. T-Tropic Human Immunodeficiency Virus Type 1 (HIV-1)-Derived V3 Loop Peptides Directly Bind to CXCR-4 and Inhibit T-Tropic HIV-1 Infection

    PubMed Central

    Sakaida, Hitoshi; Hori, Toshiyuki; Yonezawa, Akihito; Sato, Akihiko; Isaka, Yoshitaka; Yoshie, Osamu; Hattori, Toshio; Uchiyama, Takashi

    1998-01-01

    Certain types of chemokine receptors have been identified as coreceptors for HIV-1 infection. The process of viral entry is initiated by the interaction between an envelope protein gp120 of HIV-1, CD4, and one of the relevant coreceptors. To understand the precise mechanism of the Env-mediated fusion and entry of HIV-1, we examined whether the V3 region of gp120 of T-cell line tropic (T-tropic) virus directly interacts with the coreceptor, CXCR-4, by using five synthetic V3 peptides: two cyclized V3 peptides (V3-BH10 and V3-ELI) which correspond to the V3 regions of the T-tropic HIV-1 IIIB and HIV-1 ELI strains, respectively, a linear V3 peptide (CTR36) corresponding to that of HIV-1 IIIB strain; and cyclized V3 peptides corresponding to that of the macrophage-tropic (M-tropic) HIV-1 ADA strain (V3-ADA) or the dualtropic HIV-1 89.6 strain (V3-89.6). FACScan analysis with a CXCR-4+ human B-cell line, JY, showed that V3-BH10, V3-ELI, and V3-89.6 but not CTR36 or V3-ADA blocked the binding of IVR7, an anti-CXCR-4 monoclonal antibody (MAb), to CXCR-4 with different magnitudes in a dose-dependent manner, while none of the V3 peptides influenced binding of an anti-CD19 MAb at all. Next, the effects of the V3 peptides on SDF-1β-induced transient increases in intracellular Ca2+ were investigated. Three V3 peptides (V3-BH10, V3-ELI, and V3-89.6) prevented Ca2+ mobilization. Furthermore, the three peptides inhibited infection by T-tropic HIV-1 in a dose-dependent manner as revealed by an MTT assay and a reverse transcriptase assay, while the other peptides had no effects. These results present direct evidence that the V3 loop of gp120 of T-tropic HIV-1 can interact with its coreceptor CXCR-4 independently of the V1/V2 regions of gp120 or cellular CD4. PMID:9811711

  20. Development of a high-affinity peptide that prevents phospholemman (PLM) inhibition of the sodium/calcium exchanger 1 (NCX1).

    PubMed

    Wanichawan, Pimthanya; Hodne, Kjetil; Hafver, Tandekile Lubelwana; Lunde, Marianne; Martinsen, Marita; Louch, William Edward; Sejersted, Ole Mathias; Carlson, Cathrine Rein

    2016-08-01

    NCX1 (Na(+)/Ca(2+) exchanger 1) is an important regulator of intracellular Ca(2+) and a potential therapeutic target for brain ischaemia and for diastolic heart failure with preserved ejection fraction. PLM (phospholemman), a substrate for protein kinases A and C, has been suggested to regulate NCX1 activity. However, although several studies have demonstrated that binding of phosphorylated PLM (pSer(68)-PLM) leads to NCX1 inhibition, other studies have failed to demonstrate a functional interaction of these proteins. In the present study, we aimed to analyse the biological function of the pSer(68)-PLM-NCX1 interaction by developing high-affinity blocking peptides. PLM was observed to co-fractionate and co-immunoprecipitate with NCX1 in rat left ventricle, and in co-transfected HEK (human embryonic kidney)-293 cells. For the first time, the NCX1-PLM interaction was also demonstrated in the brain. PLM binding sites on NCX1 were mapped to two regions by peptide array assays, containing the previously reported PASKT and QKHPD motifs. Conversely, the two NCX1 regions bound identical sequences in the cytoplasmic domain of PLM, suggesting that NCX1-PASKT and NCX1-QKHPD might bind to each PLM monomer. Using two-dimensional peptide arrays of the native NCX1 sequence KHPDKEIEQLIELANYQVLS revealed that double substitution of tyrosine for positions 1 and 4 (K1Y and D4Y) enhanced pSer(68)-PLM binding 8-fold. The optimized peptide blocked binding of NCX1-PASKT and NCX1-QKHPD to PLM and reversed PLM(S68D) inhibition of NCX1 activity (both forward and reverse mode) in HEK-293 cells. Altogether our data indicate that PLM interacts directly with NCX1 and inhibits NCX1 activity when phosphorylated at Ser(68).

  1. The proteolytically stable peptidomimetic Pam-(Lys-βNSpe)6-NH2 selectively inhibits human neutrophil activation via formyl peptide receptor 2.

    PubMed

    Skovbakke, Sarah Line; Heegaard, Peter M H; Larsen, Camilla J; Franzyk, Henrik; Forsman, Huamei; Dahlgren, Claes

    2015-01-15

    Immunomodulatory host defense peptides (HDPs) are considered to be lead compounds for novel anti-sepsis and anti-inflammatory agents. However, development of drugs based on HDPs has been hampered by problems with toxicity and low bioavailability due to in vivo proteolysis. Here, a subclass of proteolytically stable HDP mimics consisting of lipidated α-peptide/β-peptoid oligomers was investigated for their effect on neutrophil function. The most promising compound, Pam-(Lys-βNSpe)6-NH2, was shown to inhibit formyl peptide receptor 2 (FPR2) agonist-induced neutrophil granule mobilization and release of reactive oxygen species. The potency of Pam-(Lys-βNSpe)6-NH2 was comparable to that of PBP10, the most potent FPR2-selective inhibitor known. The immunomodulatory effects of structural analogs of Pam-(Lys-βNSpe)6-NH2 emphasized the importance of both the lipid and peptidomimetic parts. By using imaging flow cytometry in primary neutrophils and FPR-transfected cell lines, we found that a fluorescently labeled analog of Pam-(Lys-βNSpe)6-NH2 interacted selectively with FPR2. Furthermore, the interaction between Pam-(Lys-βNSpe)6-NH2 and FPR2 was found to prevent binding of the FPR2-specific activating peptide agonist Cy5-WKYMWM, while the binding of an FPR1-selective agonist was not inhibited. To our knowledge, Pam-(Lys-βNSpe)6-NH2 is the first HDP mimic found to inhibit activation of human neutrophils via direct interaction with FPR2. Hence, we consider Pam-(Lys-βNSpe)6-NH2 to be a convenient tool in the further dissection of the role of FPR2 in inflammation and homeostasis as well as for investigation of the importance of neutrophil stimulation in anti-infective therapy involving HDPs. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Development of a high-affinity peptide that prevents phospholemman (PLM) inhibition of the sodium/calcium exchanger 1 (NCX1)

    PubMed Central

    Wanichawan, Pimthanya; Hodne, Kjetil; Hafver, Tandekile Lubelwana; Lunde, Marianne; Martinsen, Marita; Louch, William Edward; Sejersted, Ole Mathias; Carlson, Cathrine Rein

    2016-01-01

    NCX1 (Na+/Ca2+ exchanger 1) is an important regulator of intracellular Ca2+ and a potential therapeutic target for brain ischaemia and for diastolic heart failure with preserved ejection fraction. PLM (phospholemman), a substrate for protein kinases A and C, has been suggested to regulate NCX1 activity. However, although several studies have demonstrated that binding of phosphorylated PLM (pSer68-PLM) leads to NCX1 inhibition, other studies have failed to demonstrate a functional interaction of these proteins. In the present study, we aimed to analyse the biological function of the pSer68-PLM–NCX1 interaction by developing high-affinity blocking peptides. PLM was observed to co-fractionate and co-immunoprecipitate with NCX1 in rat left ventricle, and in co-transfected HEK (human embryonic kidney)-293 cells. For the first time, the NCX1–PLM interaction was also demonstrated in the brain. PLM binding sites on NCX1 were mapped to two regions by peptide array assays, containing the previously reported PASKT and QKHPD motifs. Conversely, the two NCX1 regions bound identical sequences in the cytoplasmic domain of PLM, suggesting that NCX1-PASKT and NCX1-QKHPD might bind to each PLM monomer. Using two-dimensional peptide arrays of the native NCX1 sequence KHPDKEIEQLIELANYQVLS revealed that double substitution of tyrosine for positions 1 and 4 (K1Y and D4Y) enhanced pSer68-PLM binding 8-fold. The optimized peptide blocked binding of NCX1-PASKT and NCX1-QKHPD to PLM and reversed PLM(S68D) inhibition of NCX1 activity (both forward and reverse mode) in HEK-293 cells. Altogether our data indicate that PLM interacts directly with NCX1 and inhibits NCX1 activity when phosphorylated at Ser68. PMID:27247424

  3. Peptides based on alphaV-binding domains of erythrocyte ICAM-4 inhibit sickle red cell-endothelial interactions and vaso-occlusion in the microcirculation.

    PubMed

    Kaul, Dhananjay K; Liu, Xiao-du; Zhang, Xiaoqin; Mankelow, Tosti; Parsons, Stephen; Spring, Frances; An, Xiuli; Mohandas, Narla; Anstee, David; Chasis, Joel Anne

    2006-11-01

    Growing evidence shows that adhesion molecules on sickle erythrocytes interact with vascular endothelium leading to vaso-occlusion. Erythrocyte intercellular adhesion molecule-4 (ICAM-4) binds alphaV-integrins, including alphaVbeta3 on endothelial cells. To explore the contribution of ICAM-4 to vascular pathology of sickle cell disease, we tested the effects of synthetic peptides, V(16)PFWVRMS (FWV) and T(91)RWATSRI (ATSR), based on alphaV-binding domains of ICAM-4 and capable of inhibiting ICAM-4 and alphaV-binding in vitro. For these studies, we utilized an established ex vivo microvascular model system that enables intravital microscopy and quantitation of adhesion under shear flow. In this model, the use of platelet-activating factor, which causes endothelial oxidant generation and endothelial activation, mimicked physiological states known to occur in sickle cell disease. Infusion of sickle erythrocytes into platelet-activating factor-treated ex vivo rat mesocecum vasculature produced pronounced adhesion of erythrocytes; small-diameter venules were sites of maximal adhesion and frequent blockage. Both FWV and ATSR peptides markedly decreased adhesion, and no vessel blockage was observed with either of the peptides, resulting in improved hemodynamics. ATSR also inhibited adhesion in unactivated microvasculature. Although infused fluoresceinated ATSR colocalized with vascular endothelium, pretreatment with function-blocking antibody to alphaVbeta3-integrin markedly inhibited this interaction. Our data strengthen the thesis that ICAM-4 on sickle erythrocytes binds endothelium via alphaVbeta3 and that this interaction contributes to vaso-occlusion. Thus peptides or small molecule mimetics of ICAM-4 may have therapeutic potential.

  4. Seasonal plasticity in the peptide neuronal systems: potential roles of gonadotrophin-releasing hormone, gonadotrophin-inhibiting hormone, neuropeptide Y and vasoactive intestinal peptide in the regulation of the reproductive axis in subtropical Indian weaver birds.

    PubMed

    Surbhi; Rastogi, A; Rani, S; Kumar, V

    2015-05-01

    Two experiments examined the expression of gonadotrophin-releasing and inhibiting hormones (GnRH-I, GnRH-II and GnIH), neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) in subtropical Indian weaver birds, which demonstrate relative photorefractoriness. Experiment 1 measured peptide expression levels in the form of immunoreactive (-IR) cells, percentage cell area and cell optical density in the preoptic area (GnRH-I), midbrain (GnRH-II), paraventricular nucleus (GnIH), mediobasal hypothalamus [dorsomedial hypothalamus (DMH), infundibular complex (INc), NPY and VIP] and lateral septal organ (VIP) during the progressive, breeding, regressive and nonbreeding phases of the annual reproductive cycle. GnRH-I was decreased in the nonbreeding and VIP was increased in INc in the breeding and regressive states. GnRH-II and NPY levels did not differ between the testicular phases. Double-labelled immunohistochemistry (IHC) revealed a close association between the GnRH/GnIH, GnRH/NPY, GnRH/VIP and GnIH/NPY peptide systems, implicating them interacting and playing roles in the reproductive regulation in weaver birds. Experiment 2 further measured these peptide levels in the middle of day and night in weaver birds that were maintained under short days (8 : 16 h light /dark cycle; photosensitive), exposed to ten long days (16 : 8 h light /dark cycle; photostimulated) or maintained for approximately 2 years on a 16 : 8 h light /dark cycle (photorefractory). Reproductively immature testes in these groups precluded the possible effect of an enhanced gonadal feedback on the hypothalamic peptide expression. There were group differences in the GnRH-I (not GnRH-II), GnIH, NPY and VIP immunoreactivity, albeit with variations in immunoreactivity measures in the present study. These results, which are consistent with those reported in birds with relative photorefractoriness, show the distribution and possibly a complex interaction of key neuropeptides in the regulation of the

  5. CLE14/CLE20 peptides may interact with CLAVATA2/CORYNE receptor-like kinases to irreversibly inhibit cell division in the root meristem of Arabidopsis

    PubMed Central

    Meng, Ling

    2010-01-01

    Towards an understanding of the interacting nature of the CLAVATA (CLV) complex, we predicted the 3D structures of CLV3/ESR-related (CLE) peptides and the ectodomain of their potential receptor proteins/kinases, and docking models of these molecules. The results show that the ectodomain of CLV1 can form homodimers and that the 12-/13-amino-acid CLV3 peptide fits into the binding clefts of the CLV1 dimers. Our results also demonstrate that the receptor domain of CORYNE (CRN), a recently identified receptor-like kinase, binds tightly to the ectodomain of CLV2, and this likely leads to an increased possibility for docking with CLV1. Furthermore, our docking models reveal that two CRN-CLV2 ectodomain heterodimers are able to form a tetramer receptor complex. Peptides of CLV3, CLE14, CLE19, and CLE20 are also able to bind a potential CLV2-CRN heterodimer or heterotetramer complex. Using a cell-division reporter line, we found that synthetic 12-amino-acid CLE14 and CLE20 peptides inhibit, irreversibly, root growth by reducing cell division rates in the root apical meristem, resulting in a short-root phenotype. Intriguingly, we observed that exogenous application of cytokinin can partially rescue the short-root phenotype induced by over-expression of either CLE14 or CLE20 in planta. However, cytokinin treatment does not rescue the short-root phenotype caused by exogenous application of the synthetic CLE14/CLE20 peptides, suggesting a requirement for a condition provided only in living plants. These results therefore imply that the CLE14/CLE20 peptides may act through the CLV2-CRN receptor kinase, and that their availabilities and/or abundances may be affected by cytokinin activity in planta. PMID:20697738

  6. Natriuretic peptide receptor A inhibition suppresses gastric cancer development through reactive oxygen species-mediated G2/M cell cycle arrest and cell death.

    PubMed

    Li, Zheng; Wang, Ji-Wei; Wang, Wei-Zhi; Zhi, Xiao-Fei; Zhang, Qun; Li, Bo-Wen; Wang, Lin-Jun; Xie, Kun-Ling; Tao, Jin-Qiu; Tang, Jie; Wei, Song; Zhu, Yi; Xu, Hao; Zhang, Dian-Cai; Yang, Li; Xu, Ze-Kuan

    2016-10-01

    Natriuretic peptide receptor A (NPRA), the major receptor for atrial natriuretic peptide (ANP), has been implicated in tumorigenesis; however, the role of ANP-NPRA signaling in the development of gastric cancer remains unclear. Immunohistochemical analyses indicated that NPRA expression was positively associated with gastric tumor size and cancer stage. NPRA inhibition by shRNA induced G2/M cell cycle arrest, cell death, and autophagy in gastric cancer cells, due to accumulation of reactive oxygen species (ROS). Either genetic or pharmacologic inhibition of autophagy led to caspase-dependent cell death. Therefore, autophagy induced by NPRA silencing may represent a cytoprotective mechanism. ROS accumulation activated c-Jun N-terminal kinase (JNK) and AMP-activated protein kinase (AMPK). ROS-mediated activation of JNK inhibited cell proliferation by disturbing cell cycle and decreased cell viability. In addition, AMPK activation promoted autophagy in NPRA-downregulated cancer cells. Overall, our results indicate that the inhibition of NPRA suppresses gastric cancer development and targeting NPRA may represent a promising strategy for the treatment of gastric cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Inhibition of cell migration and invasion mediated by the TAT-RasGAP317-326 peptide requires the DLC1 tumor suppressor.

    PubMed

    Barras, D; Lorusso, G; Rüegg, C; Widmann, C

    2014-10-30

    TAT-RasGAP(317-326), a peptide corresponding to the 317-326 sequence of p120 RasGAP coupled with a cell-permeable TAT-derived peptide, sensitizes the death response of various tumor cells to several anticancer treatments. We now report that this peptide is also able to increase cell adherence, prevent cell migration and inhibit matrix invasion. This is accompanied by a marked modification of the actin cytoskeleton and focal adhesion redistribution. Interestingly, integrins and the small Rho GTP-binding protein, which are well-characterized proteins modulating actin fibers, adhesion and migration, do not appear to be required for the pro-adhesive properties of TAT-RasGAP(317-326). In contrast, deleted in liver cancer-1, a tumor suppressor protein, the expression of which is often deregulated in cancer cells, was found to be required for TAT-RasGAP(317-326) to promote cell adherence and inhibit migration. These results show that TAT-RasGAP(317-326), besides its ability to favor tumor cell death, hampers cell migration and invasion.

  8. Inhibition of protein interactions with the beta 2 sliding clamp of Escherichia coli DNA polymerase III by peptides from beta 2-binding proteins.

    PubMed

    Wijffels, Gene; Dalrymple, Brian P; Prosselkov, Pavel; Kongsuwan, Kritaya; Epa, V Chandana; Lilley, Penelope E; Jergic, Slobodan; Buchardt, Jens; Brown, Susan E; Alewood, Paul F; Jennings, Philip A; Dixon, Nicholas E

    2004-05-18

    The sliding clamp of the Escherichia coli replisome is now understood to interact with many proteins involved in DNA synthesis and repair. A universal interaction motif is proposed to be one mechanism by which those proteins bind the E. coli sliding clamp, a homodimer of the beta subunit, at a single site on the dimer. The numerous beta(2)-binding proteins have various versions of the consensus interaction motif, including a related hexameric sequence. To determine if the variants of the motif could contribute to the competition of the beta-binding proteins for the beta(2) site, synthetic peptides derived from the putative beta(2)-binding motifs were assessed for their abilities to inhibit protein-beta(2) interactions, to bind directly to beta(2), and to inhibit DNA synthesis in vitro. A hierarchy emerged, which was consistent with sequence similarity to the pentameric consensus motif, QL(S/D)LF, and peptides containing proposed hexameric motifs were shown to have activities comparable to those containing the consensus sequence. The hierarchy of peptide binding may be indicative of a competitive hierarchy for the binding of proteins to beta(2) in various stages or circumstances of DNA replication and repair.

  9. OMP peptides activate the DegS stress-sensor protease by a relief of inhibition mechanism.

    PubMed

    Sohn, Jungsan; Grant, Robert A; Sauer, Robert T

    2009-10-14

    In the E. coli periplasm, C-terminal peptides of misfolded outer-membrane porins (OMPs) bind to the PDZ domains of the trimeric DegS protease, triggering cleavage of a transmembrane regulator and transcriptional activation of stress genes. We show that an active-site DegS mutation partially bypasses the requirement for peptide activation and acts synergistically with mutations that disrupt contacts between the protease and PDZ domains. Biochemical results support an allosteric model, in which these mutations, active-site modification, and peptide/substrate binding act in concert to stabilize proteolytically active DegS. Cocrystal structures of DegS in complex with different OMP peptides reveal activation of the protease domain with varied conformations of the PDZ domain and without specific contacts from the bound OMP peptide. Taken together, these results indicate that the binding of OMP peptides activates proteolysis principally by relieving inhibitory contacts between the PDZ domain and the protease domain of DegS.

  10. OMP Peptides Activate the DegS Stress-Sensor Protease by a Relief of Inhibition Mechanism

    SciTech Connect

    Sohn, Jungsan; Grant, Robert A.; Sauer, Robert T.; MIT

    2010-03-19

    In the E. coli periplasm, C-terminal peptides of misfolded outer-membrane porins (OMPs) bind to the PDZ domains of the trimeric DegS protease, triggering cleavage of a transmembrane regulator and transcriptional activation of stress genes. We show that an active-site DegS mutation partially bypasses the requirement for peptide activation and acts synergistically with mutations that disrupt contacts between the protease and PDZ domains. Biochemical results support an allosteric model, in which these mutations, active-site modification, and peptide/substrate binding act in concert to stabilize proteolytically active DegS. Cocrystal structures of DegS in complex with different OMP peptides reveal activation of the protease domain with varied conformations of the PDZ domain and without specific contacts from the bound OMP peptide. Taken together, these results indicate that the binding of OMP peptides activates proteolysis principally by relieving inhibitory contacts between the PDZ domain and the protease domain of DegS.

  11. Investigation the Possibility of Using Peptides with a Helical Repeating Pattern of Hydro-Phobic and Hydrophilic Residues to Inhibit IL-10.

    PubMed

    Ni, Guoying; Chen, Shu; Yang, Yuedong; Cummins, Scott F; Zhan, Jian; Li, Zhixiu; Zhu, Bin; Mounsey, Kate; Walton, Shelley; Wei, Ming Q; Wang, Yuejian; Zhou, Yaoqi; Wang, Tianfang; Liu, Xiaosong

    2016-01-01

    Blockade of IL-10 signalling clears chronic viral and bacterial infections. Immunization together with blockade of IL-10 signalling or relatively low level of IL-10 further enhances viral and bacterial clearance. IL-10 functions through binding to interleukin 10 receptor (IL-10R). Here we showed that peptides P1 and P2 with the hydrophobic and hydrophilic pattern of the IL10R-binding helix in IL-10 could bind with either IL-10R1 or IL-10, and inhibit inflammatory signals with long duration and negligible cytotoxicity in vitro. Furthermore, P2 can enhance antigen specific CD8+ T cell responses in mice induced by the vaccine based on a long peptide of protein E7 in a human papillomavirus type 16.

  12. Investigation the Possibility of Using Peptides with a Helical Repeating Pattern of Hydro-Phobic and Hydrophilic Residues to Inhibit IL-10

    PubMed Central

    Ni, Guoying; Chen, Shu; Yang, Yuedong; Cummins, Scott F.; Zhan, Jian; Li, Zhixiu; Zhu, Bin; Mounsey, Kate; Walton, Shelley; Wei, Ming Q.; Wang, Yuejian; Zhou, Yaoqi; Wang, Tianfang; Liu, Xiaosong

    2016-01-01

    Blockade of IL-10 signalling clears chronic viral and bacterial infections. Immunization together with blockade of IL-10 signalling or relatively low level of IL-10 further enhances viral and bacterial clearance. IL-10 functions through binding to interleukin 10 receptor (IL-10R). Here we showed that peptides P1 and P2 with the hydrophobic and hydrophilic pattern of the IL10R-binding helix in IL-10 could bind with either IL-10R1 or IL-10, and inhibit inflammatory signals with long duration and negligible cytotoxicity in vitro. Furthermore, P2 can enhance antigen specific CD8+ T cell responses in mice induced by the vaccine based on a long peptide of protein E7 in a human papillomavirus type 16. PMID:27100390

  13. HLA-DO increases bacterial superantigen binding to human MHC molecules by inhibiting dissociation of class II-associated invariant chain peptides.

    PubMed

    Pezeshki, Abdul Mohammad; Azar, Georges A; Mourad, Walid; Routy, Jean-Pierre; Boulassel, Mohamed-Rachid; Denzin, Lisa K; Thibodeau, Jacques

    2013-10-01

    HLA-DO (H2-O in mice) is an intracellular non-classical MHC class II molecule (MHCII). It forms a stable complex with HLA-DM (H2-M in mice) and shapes the MHC class II-associated peptide repertoire. Here, we tested the impact of HLA-DO and H2-O on the binding of superantigens (SAgs), which has been shown previously to be sensitive to the structural nature of the class II-bound peptides. We found that the binding of staphylococcal enterotoxin (SE) A and B, as well as toxic shock syndrome toxin 1 (TSST-1), was similar on the HLA-DO(+) human B cell lines 721.45 and its HLA-DO(-) counterpart. However, overexpressing HLA-DO in MHC class II(+) HeLa cells (HeLa-CIITA-DO) improved binding of SEA and TSST-1. Accordingly, knocking down HLA-DO expression using specific siRNAs decreased SEA and TSST-1 binding. We tested directly the impact of the class II-associated invariant chain peptide (CLIP), which dissociation from MHC class II molecules is inhibited by overexpressed HLA-DO. Loading of synthetic CLIP on HLA-DR(+) cells increased SEA and TSST-1 binding. Accordingly, knocking down HLA-DM had a similar effect. In mice, H2-O deficiency had no impact on SAgs binding to isolated splenocytes. Altogether, our results demonstrate that the sensitivity of SAgs to the MHCII-associated peptide has physiological basis and that the effect of HLA-DO on SEA and TSST-1 is mediated through the inhibition of CLIP release.

  14. Microinjection of CART (cocaine- and amphetamine-regulated transcript) peptide into the nucleus accumbens inhibits the cocaine-induced upregulation of dopamine receptors and locomotor sensitization.

    PubMed

    Peng, Qinghua; Sun, Xi; Liu, Ziyong; Yang, Jianghua; Oh, Ki-Wan; Hu, Zhenzhen

    2014-09-01

    Repeated exposure to addictive drugs enhances dopamine receptor (DR) signaling and the ultimate phosphorylation of the cyclic adenosine 5'-monophosphate (cAMP)-response element-binding protein (CREB)-regulated cocaine- and amphetamine-regulated transcript (CART) expression in the nucleus accumbens (NAcc). These effects are known to contribute to the expression of behavioral sensitization. CART peptides are neuropeptides that modulate drug reward and reinforcement. The present experiments investigated the effects of CART 55-102 microinjection into the NAcc on (1) the phosphorylation of CREB, (2) cAMP/protein kinase A (PKA) signaling and (3) extracellular signal-regulated kinase (ERK) phosphorylated kinase signaling. Here, we show that repeated microinjections into the NAcc of CART 55-102 peptides (1.0 or 2.5μg, 0.5μl/side) attenuates cocaine-induced enhancements of D1R, D2R and D3R phosphorylation in this sites. Furthermore, the microinjection of CART 55-102 followed by repeated injections of cocaine (15mg/kg) dose-dependently blocked the enhancement of cAMP levels, PKA activity and pERK and pCREB levels on the fifth day of cocaine administration. The cocaine-induced locomotor activity and behavioral sensitization in rats were also inhibited by the 5-day-microinjection of CART peptides. These results suggest that the phosphorylation of CREB by cocaine in the NAcc was blocked by the CART 55-102 peptide via the inhibition of D1R and D2R stimulation, D3R phosphorylation, cAMP/PKA signaling and ERK phosphorylated kinase signaling. These effects may have played a compensatory inhibitory role in the behavioral sensitization of rats that received microinjections of CART 55-102. Copyright © 2014 Elsevier Ltd. All rights reserved.