Sample records for a-encoding messenger ribonucleic

  1. Presence of gonadotropin-releasing hormone and its messenger ribonucleic acid in human ovarian epithelial carcinoma.

    PubMed

    Ohno, T; Imai, A; Furui, T; Takahashi, K; Tamaya, T

    1993-09-01

    The purpose of this study was to investigate the expression of gonadotropin-releasing hormone messenger ribonucleic acid and the presence of gonadotropin-releasing hormone in human ovarian carcinoma known to have gonadotropin-releasing hormone binding sites and to be affected by gonadotropin-releasing hormone analog. Human ovarian carcinomas surgically removed and human ovarian carcinoma cell lines were examined. Gonadotropin-releasing hormone was determined by a radioimmunoassay and a bioassay. Gonadotropin-releasing hormone messenger ribonucleic acid was determined by reverse transcription polymerase chain reaction using oligonucleotide primers synthesized according to the published human gonadotropin-releasing hormone sequence. Gonadotropin-releasing hormone was shown to be present in extracts of ovarian mucinous cystadenocarcinoma sample (0.8 +/- 0.12 pg/mg of protein) and ovarian adenocarcinoma cell line SK-OV3 (0.92 +/- 0.17 pg/mg of protein) but not in the normal ovary and placenta. Two of two extract samples from individual cases evoked dose-dependent phosphoinositide breakdown in rat granulosa cells similar to that caused by authentic gonadotropin-releasing hormone. Gonadotropin-releasing hormone messenger ribonucleic acid was detected in two of two mucinous cystadenocarcinoma specimens, one of one serous cystadenocarcinoma, and SK-OV3 cells but not in the dysgerminoma, mucinous cystadenoma, and normal ovary and placenta. The demonstration of gonadotropin-releasing hormone and its messenger ribonucleic acid raises the possibility that gonadotropin-releasing hormone may play an autocrine regulatory role in the growth of ovarian carcinoma.

  2. Effect of Thymine Starvation on Messenger Ribonucleic Acid Synthesis in Escherichia coli

    PubMed Central

    Luzzati, Denise

    1966-01-01

    Luzzati, Denise (Institut de Biologie Physico-Chimique, Paris, France). Effect of thymine starvation on messenger ribonucleic acid synthesis in Escherichia coli. J. Bacteriol. 92:1435–1446. 1966.—During the course of thymine starvation, the rate of synthesis of messenger ribonucleic acid (mRNA, the rapidly labeled fraction of the RNA which decays in the presence of dinitrophenol or which hybridizes with deoxyribonucleic acid) decreases exponentially, in parallel with the viability of the thymine-starved bacteria. The ability of cell-free extracts of starved bacteria to incorporate ribonucleoside triphosphates into RNA was determined; it was found to be inferior to that of extracts from control cells. The analysis of the properties of cell-free extracts of starved cells shows that their decreased RNA polymerase activity is the consequence of a modification of their deoxyribonucleic acid, the ability of which to serve as a template for RNA polymerase decreases during starvation. PMID:5332402

  3. Comparison of methods of extracting messenger Ribonucleic Acid from ejaculated Porcine (Sus Scrofa) Spermatozoa

    USDA-ARS?s Scientific Manuscript database

    H. D. Guthrie, G.R. Welch, and L. A. Blomberg. Comparison of Methods of Extracting Messenger Ribonucleic Acid from Ejaculated Porcine (Sus Scrofa) Spermatozoa. Biotechnology and Germplasm Laboratory, Agricultural Research Service U. S. Department of Agriculture, Beltsville, MD 20705 The purpos...

  4. TNF-α messenger ribonucleic acid (mRNA) in patients with nonalcoholic steatohepatitis.

    PubMed

    Alaaeddine, Nada; Sidaoui, Joseph; Hilal, George; Serhal, Reem; Abedelrahman, Abir; Khoury, Salem

    2012-01-01

    tumor necrosis factor (TNF)-α plays a significant role in the pathogenesis of nonalcoholic steatohepatitis (NASH). A few studies have confirmed high TNF-α plasma protein levels in patients with NASH compared to healthy volunteers. We herein aimed to revisit these findings using other molecular techniques. a cross-sectional evaluation of patients newly diagnosed with NASH. A quantitative assay for the measurement of TNF-α messenger ribonucleic acid (mRNA) was performed for NASH patients and controls using real-time reverse transcription polymerase chain reaction (RT-PCR). in 39 patients with NASH (mean age 38.6 ± 9.4 years, range 28-60 years; 79% males), the mean TNF-α mRNA level was significantly higher than that found for controls (137.6 ± 102.3 ng/mL versus 83.5 ± 43.8 ng/mL, respectively; P = 0.012). A TNF-α mRNA cut-off of 100 ng/mL predicted NASH most optimally (AUC 0.685 ± 0.066, P = 0.01; with 66.7% sensitivity and 74.1% specificity). Serum TNF-α and soluble TNF-α receptor II (sTNFRII) levels were significantly higher in patients compared to controls using ELISA. high TNF-α mRNA levels, determined by RT-PCR, characterize patients with NASH.

  5. A Contemporary, Laboratory-Intensive Course on Messenger RNA Transcription and Processing

    ERIC Educational Resources Information Center

    Carson, Sue; Miller, Heather

    2012-01-01

    Messenger ribonucleic acid (mRNA) plays a pivotal role in the central dogma of molecular biology. Importantly, molecular events occurring during and after mRNA synthesis have the potential to create multiple proteins from one gene, leading to some of the remarkable protein diversity that genomes hold. The North Carolina State University…

  6. Expression of messenger RNAs encoding ionotropic glutamate receptors in rat brain: regulation by haloperidol.

    PubMed

    Brené, S; Messer, C; Nestler, E J

    1998-06-01

    In situ hybridization was used to study the regional distribution of messenger RNAs encoding ionotropic glutamate receptor subtypes in the rat brain's dopaminergic cell body regions and their forebrain projection areas. Short oligonucleotide probes specific for the messenger RNAs encoding the flip or flop splice forms of the GluR1 and GluR2 AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) receptor subunits, or for the messenger RNAs encoding the N-methyl-D-aspartate R1 subunit, were used. Significant differences were seen in the relative messenger RNA levels, and the distribution of the flip and flop splice forms, of GluR1 and GluR2. In the dopaminergic cell groups of the substantia nigra pars compacta and the ventral tegmental area, the flip form of both GluR1 and GluR2 dominated over the flop form. Similarly, in the core division of the nucleus accumbens, GluR1 and GluR2 flip forms dominated over the flop forms. In contrast, in the accumbens shell, the GluR1 and GluR2 flop forms dominated over the flip forms. As a comparison to the AMPA receptor subunits, N-methyl-D-aspartate R1 messenger RNA was relatively evenly distributed in all the regions analysed. The results demonstrate a heterogeneous distribution of the flip and flop splice forms of GluR1 and GluR2 in the brain's dopaminergic pathways, which could contribute to physiological differences in regulation of the pathways by glutamatergic neurotransmission. We also studied regulation of glutamate receptor subunit expression in these regions by antipsychotic drugs, based on previous reports of altered levels of subunit immunoreactivity after drug treatment. Chronic administration of the typical antipsychotic drug, haloperidol, caused a small but significant induction of GluR2 flip messenger RNA in the dorsolateral caudate putamen. This effect was not seen after chronic administration of the atypical antipsychotic drug, clozapine. Significant drug regulation of the other glutamate receptor subunits

  7. Assessment Effects of Resveratrol on Human Telomerase Reverse Transcriptase Messenger Ribonucleic Acid Transcript in Human Glioblastoma.

    PubMed

    Mirzazadeh, Azin; Kheirollahi, Majid; Farashahi, Ehsan; Sadeghian-Nodoushan, Fatemeh; Sheikhha, Mohammad Hasan; Aflatoonian, Behrouz

    2017-01-01

    Glioblastoma (GBM) is the most common and aggressive brain tumor, which has a poor prognosis despite the advent of different therapeutic strategies. There are numerous molecular biomarkers to contribute diagnosis, prognosis, and prediction of response to the current therapy in GBM. One of the most important markers that are potentially valuable is immortalization-specific or immortalization-associated marker named "hTERT messenger ribonucleic acid (mRNA)" the key subunit of telomerase enzyme, which is expressed in more than 85% of cancer cells, in spite of the majority of normal somatic cells. In this study, we investigated the effects of resveratrol (RSV) on this mRNA marker level, leading to cancer progression. U-87MG cell line was obtained from Pasteur Institute of Iran and treated with various concentrations of 0-160 μg/mL of RSV and at different time points (24, 48, and 72 h). To evaluate viability of U-87MG cells, standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed. Real-time polymerase chain reaction (RT-PCR) was used for comparative and quantitative assessment of human telomerase reverse transcriptase (hTERT) mRNA copy number versus control-untreated group. The results of our investigation suggested that RSV effectively inhibited cell growth and caused cell death in dose-dependent ( P < 0.05) and not in time-dependent manner ( P > 0.05), in vitro . Interestingly, quantitative RT-PCR analysis demonstrated that at half inhibition concentration, RSV dramatically decreased mRNA expression of hTERT, the catalytic subunit of telomerase enzyme, which leads to prevention of cell division and tumor progression. With regard to downregulation of this immortalization-associated marker, RSV may potentially be used as a therapeutic agent against GBM.

  8. Assessment Effects of Resveratrol on Human Telomerase Reverse Transcriptase Messenger Ribonucleic Acid Transcript in Human Glioblastoma

    PubMed Central

    Mirzazadeh, Azin; Kheirollahi, Majid; Farashahi, Ehsan; Sadeghian-Nodoushan, Fatemeh; Sheikhha, Mohammad Hasan; Aflatoonian, Behrouz

    2017-01-01

    Background: Glioblastoma (GBM) is the most common and aggressive brain tumor, which has a poor prognosis despite the advent of different therapeutic strategies. There are numerous molecular biomarkers to contribute diagnosis, prognosis, and prediction of response to the current therapy in GBM. One of the most important markers that are potentially valuable is immortalization-specific or immortalization-associated marker named “hTERT messenger ribonucleic acid (mRNA)” the key subunit of telomerase enzyme, which is expressed in more than 85% of cancer cells, in spite of the majority of normal somatic cells. In this study, we investigated the effects of resveratrol (RSV) on this mRNA marker level, leading to cancer progression. Materials and Methods: U-87MG cell line was obtained from Pasteur Institute of Iran and treated with various concentrations of 0–160 μg/mL of RSV and at different time points (24, 48, and 72 h). To evaluate viability of U-87MG cells, standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed. Real-time polymerase chain reaction (RT-PCR) was used for comparative and quantitative assessment of human telomerase reverse transcriptase (hTERT) mRNA copy number versus control–untreated group. Results: The results of our investigation suggested that RSV effectively inhibited cell growth and caused cell death in dose-dependent (P < 0.05) and not in time-dependent manner (P > 0.05), in vitro. Interestingly, quantitative RT-PCR analysis demonstrated that at half inhibition concentration, RSV dramatically decreased mRNA expression of hTERT, the catalytic subunit of telomerase enzyme, which leads to prevention of cell division and tumor progression. Conclusion: With regard to downregulation of this immortalization-associated marker, RSV may potentially be used as a therapeutic agent against GBM. PMID:28706881

  9. Strain of Escherichia coli with a temperature-sensitive mutation affecting ribosomal ribonucleic acid accumulation.

    PubMed Central

    Frey, T; Newlin, L L; Atherly, A G

    1975-01-01

    A mutant of Escherichia coli has been isolated that has a temperature-sensitive mutation that results in specific loss of ribosomal ribonucleic acid (RNA) synthesis and some reduction in messenger RNA synthesis. When the strain was grown in glucose medium at a restrictive temperature, RNA accumulation ceased, but both messenger RNA and protein synthesis continued for an extended time. Because carbon metabolism was slowed drastically when strain AA-157 was placed at the restrictive temperature, this phenotype can be compared with carbon depletion conditions present during diauxic lag. However, the phenotype of mutant AA-157 differs from shift-down conditions in that guanosine-3',5'-tetraphosphate levels are unaffected; therefore, a different site is affected. This mutant strain (AA-157) thus shows many characteristics similar to an aldolase mutant previously reported (Böck and Neidhardt, 1966). However, the mutation occurred in a different position on the E. coli genetic map, and furthermore, aldolase was not temperature sensitive in strain AA-157. In this paper we present a study of macromolecular biosynthesis in this mutant. PMID:1090609

  10. Effect of the mutation (C3435T) at exon 26 of the MDR1 gene on expression level of MDR1 messenger ribonucleic acid in duodenal enterocytes of healthy Japanese subjects.

    PubMed

    Nakamura, Tsutomu; Sakaeda, Toshiyuki; Horinouchi, Masanori; Tamura, Takao; Aoyama, Nobuo; Shirakawa, Toshiro; Matsuo, Masafumi; Kasuga, Masato; Okumura, Katsuhiko

    2002-04-01

    The effect of the C3435T mutation at exon 26 of the MDR1 gene on the expression levels of MDR1 messenger ribonucleic acid (mRNA) was evaluated by means of real-time polymerase chain reaction in 51 biopsy specimens of duodenum obtained from 13 healthy Japanese subjects. The mRNA levels of MDR1 were 0.38 +/- 0.15, 0.56 +/- 0.14, and 1.13 +/- 0.42 (mean value +/- SE) in the subjects with the homozygote of wild-type allele (C/C), compound heterozygote with mutant T allele (C/T), and the homozygote of the mutant allele (T/T), respectively, reasonably explaining the lower digoxin serum concentration after administration of a single oral dose to subjects harboring a mutant T allele. Good correlation (r =.797; P <.01) was observed between the mRNA concentrations of MDR1 and CYP3A4 in the individual biopsy specimens. This finding suggested a lower plasma concentration of the substrates for CYP3A4 in subjects harboring the C3435T mutation of the MDR1 gene.

  11. A comparison of cell-free placental messenger ribonucleic acid and color Doppler ultrasound for the prediction of placental invasion in patients with placenta accreta.

    PubMed

    Naghshineh, Elham; Khorvash, Elahe; Kamali, Sara

    2015-01-01

    The aim of the present study was to comparison between cell-free placental messenger ribonucleic acid (mRNA) and Doppler ultrasound for the prediction of placental invasion in women with placenta accreta. In this cross-sectional study, 50 pregnant women at risk for placenta accreta underwent color Doppler and assessment of cell-free placental mRNA. Real-time reverse-transcription polymerase chain reaction was used for measurement of cell-free placental mRNA in maternal plasma. Based on the findings at cesarean delivery and histological examination, patients were divided into two groups of women with and without placenta accrete. To compare of the mean of mRNA levels between the two groups we used independent t-test and to compare of the mean of age and gestational age at sonography we used Mann-Whitney test. For determination of sensitivity and specificity and the cut-off point of mRNA levels we used the receiver operating characteristic curve. A total of 50 women with a mean age of 30.24 ± 4.905 years entered the study and 12 (24%) patients were diagnosed with placenta accreta. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of Doppler ultrasound were 83.3%, 78.9%, 56% and 94%, respectively. Results of our study showed if we consider a cut-off point equal to 3.325, with sensitivity and specificity of 0.917 and 0.789, respectively and the sensitivity, specificity, PPV and NPV of mRNA with were cut-off point of 3.325 were 91.7%, 78.9%, 57.9% and 96.8%, respectively. Cell-free mRNA is an acceptable, easy made, functional test with sensitivity, specificity, PPV and NPV more than Doppler ultrasound for diagnosis and prediction of incidence of placenta accrete and we recommend the use of cell-free mRNA test for diagnosis of placenta accreta.

  12. Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus

    PubMed Central

    Dinamarca, Margarita C; Guzzetti, Francesca; Karpova, Anna; Lim, Dmitry; Mitro, Nico; Musardo, Stefano; Mellone, Manuela; Marcello, Elena; Stanic, Jennifer; Samaddar, Tanmoy; Burguière, Adeline; Caldarelli, Antonio; Genazzani, Armando A; Perroy, Julie; Fagni, Laurent; Canonico, Pier Luigi; Kreutz, Michael R; Gardoni, Fabrizio; Luca, Monica Di

    2016-01-01

    Synapses and nuclei are connected by bidirectional communication mechanisms that enable information transfer encoded by macromolecules. Here, we identified RNF10 as a novel synaptonuclear protein messenger. RNF10 is activated by calcium signals at the postsynaptic compartment and elicits discrete changes at the transcriptional level. RNF10 is enriched at the excitatory synapse where it associates with the GluN2A subunit of NMDA receptors (NMDARs). Activation of synaptic GluN2A-containing NMDARs and induction of long term potentiation (LTP) lead to the translocation of RNF10 from dendritic segments and dendritic spines to the nucleus. In particular, we provide evidence for importin-dependent long-distance transport from synapto-dendritic compartments to the nucleus. Notably, RNF10 silencing prevents the maintenance of LTP as well as LTP-dependent structural modifications of dendritic spines. DOI: http://dx.doi.org/10.7554/eLife.12430.001 PMID:26977767

  13. A comparison of cell-free placental messenger ribonucleic acid and color Doppler ultrasound for the prediction of placental invasion in patients with placenta accreta

    PubMed Central

    Naghshineh, Elham; Khorvash, Elahe; Kamali, Sara

    2015-01-01

    Background: The aim of the present study was to comparison between cell-free placental messenger ribonucleic acid (mRNA) and Doppler ultrasound for the prediction of placental invasion in women with placenta accreta. Materials and Methods: In this cross-sectional study, 50 pregnant women at risk for placenta accreta underwent color Doppler and assessment of cell-free placental mRNA. Real-time reverse-transcription polymerase chain reaction was used for measurement of cell-free placental mRNA in maternal plasma. Based on the findings at cesarean delivery and histological examination, patients were divided into two groups of women with and without placenta accrete. To compare of the mean of mRNA levels between the two groups we used independent t-test and to compare of the mean of age and gestational age at sonography we used Mann-Whitney test. For determination of sensitivity and specificity and the cut-off point of mRNA levels we used the receiver operating characteristic curve. Results: A total of 50 women with a mean age of 30.24 ± 4.905 years entered the study and 12 (24%) patients were diagnosed with placenta accreta. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of Doppler ultrasound were 83.3%, 78.9%, 56% and 94%, respectively. Results of our study showed if we consider a cut-off point equal to 3.325, with sensitivity and specificity of 0.917 and 0.789, respectively and the sensitivity, specificity, PPV and NPV of mRNA with were cut-off point of 3.325 were 91.7%, 78.9%, 57.9% and 96.8%, respectively. Conclusions: Cell-free mRNA is an acceptable, easy made, functional test with sensitivity, specificity, PPV and NPV more than Doppler ultrasound for diagnosis and prediction of incidence of placenta accrete and we recommend the use of cell-free mRNA test for diagnosis of placenta accreta. PMID:25709996

  14. Distinctive ribonucleic acid patterns of human rotavirus subgroups 1 and 2.

    PubMed Central

    Kalica, A R; Greenberg, H B; Espejo, R T; Flores, J; Wyatt, R G; Kapikian, A Z; Chanock, R M

    1981-01-01

    The ribonucleic acid migration patterns of 7 subgroup 1 and 16 subgroup 2 human rotaviruses recovered from four geographic areas were compared. The subgroup 1 ribonucleic acid patterns had strikingly slower-moving segments 10 and 11, suggesting a correlation between the ribonucleic acid pattern and the subgroup specificity. Images PMID:6270002

  15. Melatonin: a universal time messenger.

    PubMed

    Erren, Thomas C; Reiter, Russel J

    2015-01-01

    Temporal organization plays a key role in humans, and presumably all species on Earth. A core building block of the chronobiological architecture is the master clock, located in the suprachi asmatic nuclei [SCN], which organizes "when" things happen in sub-cellular biochemistry, cells, organs and organisms, including humans. Conceptually, time messenging should follow a 5 step-cascade. While abundant evidence suggests how steps 1 through 4 work, step 5 of "how is central time information transmitted througout the body?" awaits elucidation. Step 1: Light provides information on environmental (external) time; Step 2: Ocular interfaces between light and biological (internal) time are intrinsically photosensitive retinal ganglion cells [ipRGS] and rods and cones; Step 3: Via the retinohypothalamic tract external time information reaches the light-dependent master clock in the brain, viz the SCN; Step 4: The SCN translate environmental time information into biological time and distribute this information to numerous brain structures via a melanopsin-based network. Step 5: Melatonin, we propose, transmits, or is a messenger of, internal time information to all parts of the body to allow temporal organization which is orchestrated by the SCN. Key reasons why we expect melatonin to have such role include: First, melatonin, as the chemical expression of darkness, is centrally involved in time- and timing-related processes such as encoding clock and calendar information in the brain; Second, melatonin travels throughout the body without limits and is thus a ubiquitous molecule. The chemial conservation of melatonin in all tested species could make this molecule a candidate for a universal time messenger, possibly constituting a legacy of an all-embracing evolutionary history.

  16. Digital encoding of cellular mRNAs enabling precise and absolute gene expression measurement by single-molecule counting.

    PubMed

    Fu, Glenn K; Wilhelmy, Julie; Stern, David; Fan, H Christina; Fodor, Stephen P A

    2014-03-18

    We present a new approach for the sensitive detection and accurate quantitation of messenger ribonucleic acid (mRNA) gene transcripts in single cells. First, the entire population of mRNAs is encoded with molecular barcodes during reverse transcription. After amplification of the gene targets of interest, molecular barcodes are counted by sequencing or scored on a simple hybridization detector to reveal the number of molecules in the starting sample. Since absolute quantities are measured, calibration to standards is unnecessary, and many of the relative quantitation challenges such as polymerase chain reaction (PCR) bias are avoided. We apply the method to gene expression analysis of minute sample quantities and demonstrate precise measurements with sensitivity down to sub single-cell levels. The method is an easy, single-tube, end point assay utilizing standard thermal cyclers and PCR reagents. Accurate and precise measurements are obtained without any need for cycle-to-cycle intensity-based real-time monitoring or physical partitioning into multiple reactions (e.g., digital PCR). Further, since all mRNA molecules are encoded with molecular barcodes, amplification can be used to generate more material for multiple measurements and technical replicates can be carried out on limited samples. The method is particularly useful for small sample quantities, such as single-cell experiments. Digital encoding of cellular content preserves true abundance levels and overcomes distortions introduced by amplification.

  17. Prostanoid-induced expression of matrix metalloproteinase-1 messenger ribonucleic acid in rat osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Clohisy, J. C.; Connolly, T. J.; Bergman, K. D.; Quinn, C. O.; Partridge, N. C.

    1994-01-01

    Individual prostanoids have distinct potencies in activating intracellular signaling pathways and regulating gene expression in osteoblastic cells. The E-series prostaglandins (PGs) are known to stimulate matrix metalloproteinase-1 (MMP-1) synthesis and secretion in certain rodent and human osteoblastic cells, yet the intracellular events involved remain unclear. To further characterize this response and its signal transduction pathway(s), we examined prostanoid-induced expression of the MMP-1 gene in the rat osteoblastic osteosarcoma cell line UMR 106-01. Northern blot analysis demonstrated that prostaglandin E2 (PGE2) and PGE1 were very potent stimulators (40-fold) of MMP-1 transcript abundance, PGF2 alpha and prostacyclin were weak stimulators (4-fold), and thromboxane-B2 had no effect. The marked increase in MMP-1 transcript abundance after PGE2 treatment was first detected at 2 h, became maximal at 4 h, and persisted beyond 24 h. This response was dose dependent and elicited maximal and half-maximal effects with concentrations of 10(-6) and 0.6 x 10(-7) M, respectively. Cycloheximide, a protein synthesis inhibitor, completely blocked this effect of PGE2, suggesting that the expression of other genes is required. Nuclear run-on experiments demonstrated that PGE2 rapidly activates MMP-1 gene transcription, with a maximal increase at 2-4 h. The second messenger analog, 8-bromo-cAMP, mimicked the effects of PGE2 by stimulating a dose-dependent increase in MMP-1 messenger RNA (mRNA) levels, with a maximal effect quantitatively similar to that observed with PGE2. Thus, in UMR 106-01 cells, different prostanoids have distinct potencies in stimulating MMP-1 mRNA abundance. Our data suggest that PGE2 stimulation of MMP-1 synthesis is due to activation of MMP-1 gene transcription and a subsequent marked increase in MMP-1 mRNA abundance. This effect is dependent on de novo protein synthesis and is mimicked by protein kinase-A activation.

  18. Characterization and distribution of a maize cDNA encoding a peptide similar to the catalytic region of second messenger dependent protein kinases

    NASA Technical Reports Server (NTRS)

    Biermann, B.; Johnson, E. M.; Feldman, L. J.

    1990-01-01

    Maize (Zea mays) roots respond to a variety of environmental stimuli which are perceived by a specialized group of cells, the root cap. We are studying the transduction of extracellular signals by roots, particularly the role of protein kinases. Protein phosphorylation by kinases is an important step in many eukaryotic signal transduction pathways. As a first phase of this research we have isolated a cDNA encoding a maize protein similar to fungal and animal protein kinases known to be involved in the transduction of extracellular signals. The deduced sequence of this cDNA encodes a polypeptide containing amino acids corresponding to 33 out of 34 invariant or nearly invariant sequence features characteristic of protein kinase catalytic domains. The maize cDNA gene product is more closely related to the branch of serine/threonine protein kinase catalytic domains composed of the cyclic-nucleotide- and calcium-phospholipid-dependent subfamilies than to other protein kinases. Sequence identity is 35% or more between the deduced maize polypeptide and all members of this branch. The high structural similarity strongly suggests that catalytic activity of the encoded maize protein kinase may be regulated by second messengers, like that of all members of this branch whose regulation has been characterized. Northern hybridization with the maize cDNA clone shows a single 2400 base transcript at roughly similar levels in maize coleoptiles, root meristems, and the zone of root elongation, but the transcript is less abundant in mature leaves. In situ hybridization confirms the presence of the transcript in all regions of primary maize root tissue.

  19. Retinoic acid stimulates interstitial collagenase messenger ribonucleic acid in osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Connolly, T. J.; Clohisy, J. C.; Shilt, J. S.; Bergman, K. D.; Partridge, N. C.; Quinn, C. O.

    1994-01-01

    The rat osteoblastic osteosarcoma cell line UMR 106-01 secretes interstitial collagenase in response to retinoic acid (RA). The present study demonstrates by Northern blot analysis that RA causes an increase in collagenase messenger RNA (mRNA) at 6 h, which is maximal at 24 h (20.5 times basal) and declines toward basal level by 72 h. This stimulation is dose dependent, with a maximal response at 5 x 10(-7) M RA. Nuclear run-on assays show a greater than 20-fold increase in the rate of collagenase mRNA transcription between 12-24 h after RA treatment. Cycloheximide blocks RA stimulation of collagenase mRNA, demonstrating the need for de novo protein synthesis. RA not only causes an increase in collagenase secretion, but is known to decrease collagen synthesis in UMR 106-01 cells. In this study, the increase in collagenase mRNA is accompanied by a concomitant decrease in the level of alpha 1(I) procollagen mRNA, which is maximal at 24 h (70% decrease), with a return to near-control levels by 72 h. Nuclear run-on assays demonstrated that the decrease in alpha 1 (I) procollagen expression does not have a statistically significant transcriptional component. RA did not statistically decrease the stability of alpha 1 (I) procollagen mRNA (calculated t1/2 = 8.06 +/- 0.30 and 9.01 +/- 0.62 h in the presence and absence of RA, respectively). However, transcription and stability together probably contribute to the major decrease in stable alpha 1 (I) procollagen mRNA observed. Cycloheximide treatment inhibits basal level alpha 1 (I) procollagen mRNA accumulation, demonstrating the need for on-going protein synthesis to maintain basal expression of this gene.

  20. How does hydroxyl introduction influence the double helical structure: the stabilization of an altritol nucleic acid:ribonucleic acid duplex

    PubMed Central

    Ovaere, Margriet; Sponer, Jiri; Sponer, Judit E.; Herdewijn, Piet; Van Meervelt, Luc

    2012-01-01

    Altritol nucleic acids (ANAs) are a promising new tool in the development of artificial small interfering ribonucleic acids (siRNAs) for therapeutical applications. To mimic the siRNA:messenger RNA (mRNA) interactions, the crystal structure of the ANA:RNA construct a(CCGUAAUGCC-P):r(GGCAUUACGG) was determined to 1.96 Å resolution which revealed the hybrid to form an A-type helix. As this A-form is a major requirement in the RNAi process, this crystal structure confirms the potential of altritol-modified siRNAs. Moreover, in the ANA strands, a new type of intrastrand interactions was found between the O2′ hydroxyl group of one residue and the sugar ring O4′ atom of the next residue. These interactions were further investigated by quantum chemical methods. Besides hydration effects, these intrastrand hydrogen bonds may also contribute to the stability of ANA:RNA duplexes. PMID:22638588

  1. Saw palmetto extract enhances erectile responses by inhibition of phosphodiesterase 5 activity and increase in inducible nitric oxide synthase messenger ribonucleic acid expression in rat and rabbit corpus cavernosum.

    PubMed

    Yang, Surong; Chen, Changrui; Li, Yiying; Ren, Zhenghua; Zhang, Yungang; Wu, Gantong; Wang, Hao; Hu, Zhenzhen; Yao, Minghui

    2013-06-01

    To evaluate whether saw palmetto extract (SPE) relaxes corpus cavernosum and explore the underlying mechanisms. Forty Sprague-Dawley rats and 30 New Zealand rabbits were randomly allocated into 3 SPE-treated groups (low-, middle-, and high-dose) and 1 saline-treated control group. SPE was administered intragastrically for 7 consecutive days. Another 23 rats treated with sildenafil were used to appraise the erectile response to electrical stimulation of nerves in the corpus cavernosum. The erectile functions of rats and rabbits were evaluated 24 hours after the last SPE administration or 15 minutes after intragastric sildenafil. Outcome measures included corpus cavernosum electrical activity recording, phosphodiesterase 5 (PDE5) activity detected by the colorimetric quantitative method, and messenger ribonucleic acid (mRNA) expression level for PDE5 and inducible nitric oxide synthase (iNOS) determined using real-time polymerase chain reaction. In the SPE-treated animals, the relaxant response to electrical stimulation of nerves in the corpus cavernosum, reflected by the amplitude of the electrical activity within the cavernosum, was significantly and dose-dependently augmented. Similar effects were observed in the sildenafil-treated rats. PDE5 activity in rat and rabbit corpus cavernosum tissues was significantly and dose-dependently inhibited in SPE-treated animals, whereas the iNOS mRNA level increased compared with the saline group. PDE5 mRNA, however, was only significantly enhanced in the rats treated with the middle dose of SPE. The results suggest that SPE may have potential application value for the prevention or treatment of erectile dysfunction through an increase in iNOS mRNA expression and inhibition of PDE5 activity in corpus cavernosum smooth muscles. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Comparing the effects of tetrabromobisphenol-A, bisphenol A, and their potential replacement alternatives, TBBPA-bis(2,3-dibromopropyl ether) and bisphenol S, on cell viability and messenger ribonucleic acid expression in chicken embryonic hepatocytes.

    PubMed

    Ma, Melissa; Crump, Doug; Farmahin, Reza; Kennedy, Sean W

    2015-02-01

    A market for alternative brominated flame retardants (BFRs) has emerged recently due to the phase out of persistent and inherently toxic BFRs. Several of these replacement compounds have been detected in environmental matrices, including wild birds. A chicken embryonic hepatocyte (CEH) assay was utilized to assess the effects of the BFR, tetrabromobisphenol-A (TBBPA), and its replacement alternative, tetrabromobisphenol A bis(2,3-dibromopropyl ether [TBBPA-DBPE]) on cell viability and messenger ribonucleic acid (mRNA) expression. Bisphenol A (BPA) and 1 of its replacement alternatives, bisphenol S (BPS), were also screened for effects. Both TBBPA and BPA decreased CEH viability with calculated median lethal concentration (LC50) values of 40.6 μM and 61.7 μM, respectively. However, the replacement alternatives, TBBPA-DBPE and BPS, did not affect cell viability (up to 300 μM). Effects on mRNA expression were determined using an Avian ToxChip polymerse chain reaction (PCR) array and a real-time (RT)-PCR assay for the estrogen-responsive genes, apolipoproteinII (ApoII) and vitellogenin (Vtg). A luciferase reporter gene assay was used to assess dioxin-like effects. Tetrabromobisphenol-A altered mRNA levels of 4 genes from multiple toxicity pathways and increased luciferase activity in the luciferase reporter gene assay, whereas its alternative, TBBPA-DBPE, only altered 1 gene on the array, Cyp1a4, and increased luciferase activity. At 300 μM, a concentration that decreased cell viability for TBBPA and BPA, the BPA replacement, BPS, altered the greatest number of transcripts, including both ApoII and Vtg. Bisphenol A exposure did not alter any genes on the array but did up-regulate Vtg at 10 μM. Characterization of the potential toxicological and molecular-level effects of these compounds will ideally be useful to chemical regulators tasked with assessing the risk of new and existing chemicals. © 2014 SETAC.

  3. Pro-opiomelanocortin messenger ribonucleic acid and posttranslational processing of beta endorphin in spleen macrophages.

    PubMed Central

    Lolait, S J; Clements, J A; Markwick, A J; Cheng, C; McNally, M; Smith, A I; Funder, J W

    1986-01-01

    We have previously demonstrated low levels of immunoreactive (ir)-beta-endorphin (beta-EP) and ir-ACTH in a subpopulation of mouse spleen macrophages, which is consistent with an involvement of opioid peptides in modulation of immune responses. Gel chromatography studies suggested the presence of an approximately 3.5,000-molecular weight (mol wt) species, putatively beta-EP, an approximately 11.5,000-mol-wt species, putatively beta-lipotropin, and a higher molecular weight species (putative beta-EP precursor, pro-opiomelanocortin (POMC). In this study we have extended our original findings by demonstrating the presence of messenger RNA for POMC by the use of a complementary DNA probe and Northern blot analysis of extracts of mouse and rat spleen. In addition, using high performance liquid chromatography (HPLC), we have shown that the major endorphin species in mouse spleen macrophages is beta-EP1-31, and that there are smaller amounts of each of the acetylated forms, N-acetyl-beta-EP1-16 (alpha-endorphin), N-acetyl-beta-EP1-17 (gamma-endorphin), N-acetyl-beta-EP1-27, and N-acetyl-beta-EP1-31. We interpret these studies as showing that (a) the spleen is an organ of POMC synthesis and that (b) the predominant COOH-terminal product of macrophage POMC is the opiate-receptor active species beta-EP1-31. Images PMID:2423557

  4. Factors affecting citrus tree absorption of double-stranded ribonucleic acid, and RNAi delivery to psyllids

    USDA-ARS?s Scientific Manuscript database

    Modern molecular biological techniques allow for the design of molecules of ribonucleic acid capable of disrupting key biological processes of pests and diseases. A major requirement for the practical application of ribonucleic acid interference (RNAi) against insect pests is an efficient entry path...

  5. Ribonucleic acid interference (RNAi) and control of citrus pests

    USDA-ARS?s Scientific Manuscript database

    Ribonucleic acid interference, RNAi, applications and function are described for the non-scientist to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control. ...

  6. The Ribosome Shape Directs mRNA Translocation through Entrance and Exit Dynamics

    USDA-ARS?s Scientific Manuscript database

    The protein-synthesizing ribosome undergoes large motions to effect the translocation of tRNAs (transfer ribonucleic acids) and mRNA (messenger ribonucleic acid); here the domain motions of this system are explored with a coarse-grained elastic network model using normal mode analysis. Crystal struc...

  7. Inactivation of Encephalomyocarditis Virus in Aerosols: Fate of Virus Protein and Ribonucleic Acid

    PubMed Central

    De Jong, J. C.; Harmsen, M.; Trouwborst, T.; Winkler, K. C.

    1974-01-01

    After aerosolization at relative humidities of 50% or lower, encephalomyocarditis virus is rapidly inactivated. In this process the protein coat of the virion is damaged. This appears as a loss of hemagglutination activity and loss of affinity for hemagglutination inhibiting antibodies. The ribonucleic acid of the virus retains its infectivity but it becomes susceptible to ribonuclease. It sediments in sucrose gradients when centrifuged at high speed with the same velocity as free infectious ribonucleic acid extracted with phenol from intact encephalomyocarditis virus. PMID:4358862

  8. Encephalomyocarditis Virus Ribonucleic Acid Polymerase Associated with 150S Cytoplasmic Particles

    PubMed Central

    Bases, Robert; Tarikas, Helgi

    1969-01-01

    Cytoplasmic particles which sedimented at 150S were the smallest structures containing detectable viral ribonucleic acid polymerase in mouse cells infected with encephalomyocarditis virus. PMID:4307906

  9. The dependence of neuronal encoding efficiency on Hebbian plasticity and homeostatic regulation of neurotransmitter release

    PubMed Central

    Faghihi, Faramarz; Moustafa, Ahmed A.

    2015-01-01

    Synapses act as information filters by different molecular mechanisms including retrograde messenger that affect neuronal spiking activity. One of the well-known effects of retrograde messenger in presynaptic neurons is a change of the probability of neurotransmitter release. Hebbian learning describe a strengthening of a synapse between a presynaptic input onto a postsynaptic neuron when both pre- and postsynaptic neurons are coactive. In this work, a theory of homeostatic regulation of neurotransmitter release by retrograde messenger and Hebbian plasticity in neuronal encoding is presented. Encoding efficiency was measured for different synaptic conditions. In order to gain high encoding efficiency, the spiking pattern of a neuron should be dependent on the intensity of the input and show low levels of noise. In this work, we represent spiking trains as zeros and ones (corresponding to non-spike or spike in a time bin, respectively) as words with length equal to three. Then the frequency of each word (here eight words) is measured using spiking trains. These frequencies are used to measure neuronal efficiency in different conditions and for different parameter values. Results show that neurons that have synapses acting as band-pass filters show the highest efficiency to encode their input when both Hebbian mechanism and homeostatic regulation of neurotransmitter release exist in synapses. Specifically, the integration of homeostatic regulation of feedback inhibition with Hebbian mechanism and homeostatic regulation of neurotransmitter release in the synapses leads to even higher efficiency when high stimulus intensity is presented to the neurons. However, neurons with synapses acting as high-pass filters show no remarkable increase in encoding efficiency for all simulated synaptic plasticity mechanisms. This study demonstrates the importance of cooperation of Hebbian mechanism with regulation of neurotransmitter release induced by rapid diffused retrograde

  10. Cosmic Microwave Background Mapmaking with a Messenger Field

    NASA Astrophysics Data System (ADS)

    Huffenberger, Kevin M.; Næss, Sigurd K.

    2018-01-01

    We apply a messenger field method to solve the linear minimum-variance mapmaking equation in the context of Cosmic Microwave Background (CMB) observations. In simulations, the method produces sky maps that converge significantly faster than those from a conjugate gradient descent algorithm with a diagonal preconditioner, even though the computational cost per iteration is similar. The messenger method recovers large scales in the map better than conjugate gradient descent, and yields a lower overall χ2. In the single, pencil beam approximation, each iteration of the messenger mapmaking procedure produces an unbiased map, and the iterations become more optimal as they proceed. A variant of the method can handle differential data or perform deconvolution mapmaking. The messenger method requires no preconditioner, but a high-quality solution needs a cooling parameter to control the convergence. We study the convergence properties of this new method and discuss how the algorithm is feasible for the large data sets of current and future CMB experiments.

  11. Towards the elements of successful insect Ribonucleic acid interference (RNAi)

    USDA-ARS?s Scientific Manuscript database

    Ribonucleic acid interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that ...

  12. 12 CFR 7.1012 - Messenger service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Messenger service. 7.1012 Section 7.1012 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Bank Powers § 7.1012 Messenger service. (a) Definition. For purposes of this section, amessenger...

  13. Ribonucleic acid interference (RNAi) technology for control of Asian citrus psyllid

    USDA-ARS?s Scientific Manuscript database

    Ribonucleic acid interference, RNAi, applications and function are described for the non-scientist to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control to the citrus industry. Two part Video presentation....

  14. Mercury MESSENGER Stamp Unveiling

    NASA Image and Video Library

    2011-05-03

    United States Postal Service Vice President of Finance Steve Masse, left, and NASA Mercury Astronaut Scott Carpenter, unveil two USPS stamps to commemorate and celebrate 50 years of US Spaceflight and the MESSENGER program during an event, Wednesday, May 4, 2011 at the NASA Kennedy Space Center in Cape Canaveral, Fla. One stamp commemorates NASA’s Project Mercury, America’s first manned spaceflight program, and NASA astronaut Alan Shepard’s historic flight on May 5, 1961, aboard spacecraft Freedom 7. The other stamp draws attention to NASA’s unmanned MESSENGER mission, a scientific investigation of the planet Mercury. On March 17, 2011, MESSENGER became the first spacecraft to enter into orbit around Mercury. Photo Credit: (NASA/Bill Ingalls)

  15. Mercury MESSENGER Stamp Unveiling

    NASA Image and Video Library

    2011-05-03

    Daughters of NASA astronaut Alan Shepard, Laura Shepard Churchley, left, Alice Wackermann and Julie Jenkins, right, speak during an unveiling ceremony of two USPS stamps that commemorate and celebrate 50 years of US Spaceflight and the MESSENGER program during an event, Wednesday, May 4, 2011 at the NASA Kennedy Space Center in Cape Canaveral, Fla. One stamp commemorates NASA’s Project Mercury, America’s first manned spaceflight program, and NASA astronaut Alan Shepard’s historic flight on May 5, 1961, aboard spacecraft Freedom 7. The other stamp draws attention to NASA’s unmanned MESSENGER mission, a scientific investigation of the planet Mercury. On March 17, 2011, MESSENGER became the first spacecraft to enter into orbit around Mercury. Photo Credit: (NASA/Bill Ingalls)

  16. Mercury MESSENGER Stamp Unveiling

    NASA Image and Video Library

    2011-05-03

    Daughters of NASA astronaut Alan Shepard, Laura Shepard Churchley, standing left, Alice Wackermann and Julie Jenkins, standing right, speak during an unveiling ceremony of two USPS stamps that commemorate and celebrate 50 years of US Spaceflight and the MESSENGER program during an event, Wednesday, May 4, 2011 at the NASA Kennedy Space Center in Cape Canaveral, Fla. One stamp commemorates NASA’s Project Mercury, America’s first manned spaceflight program, and NASA astronaut Alan Shepard’s historic flight on May 5, 1961, aboard spacecraft Freedom 7. The other stamp draws attention to NASA’s unmanned MESSENGER mission, a scientific investigation of the planet Mercury. On March 17, 2011, MESSENGER became the first spacecraft to enter into orbit around Mercury. Photo Credit: (NASA/Bill Ingalls)

  17. Ribonucleic acid interference (RNAi) Technology for control of Asian citrus psyllid - You Tube

    USDA-ARS?s Scientific Manuscript database

    RNAi, Ribonucleic acid interference, function and application are described to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control to the citrus industry....

  18. Expression of peroxisome proliferator-activated receptor alpha messenger ribonucleic acid and protein in human and rat testis.

    PubMed

    Schultz, R; Yan, W; Toppari, J; Völkl, A; Gustafsson, J A; Pelto-Huikko, M

    1999-07-01

    Peroxisome proliferator-activated receptor a (PPARalpha), a member of the steroid hormone receptor superfamily, has been linked to lipid homeostasis and tumorigenesis in tissues with high expression of receptor protein. On the other hand, the role of PPARalpha in tissues with a lower expression is not well known. Here we demonstrate the localization of PPARalpha messenger RNA (mRNA) and protein in developing and adult rat testis. Additionally, we demonstrate the expression of PPARalpha protein in adult human testis. Our experiments with Northern analysis, in situ hybridization and immunocytochemistry reveal a complex distribution of PPARalpha in tubular and interstitial cells of both adult and developing rat testis. The overall expression is rather low but may be modified by exogenous or endogenous stimuli. An up-regulation of PPARalpha mRNA could be observed after stimulation with FSH. In the developing rat testis, a clear expression of PPARalpha mRNA was present from the first days after birth. Additionally, PPARalpha mRNA and protein increased toward adulthood. In adult human testis PPARalpha immunoreactivity (IR) was present in interstitial Leydig cells and tubular cells. In the seminiferous epithelium of adult human testis the expression of PPARalpha-IR could be seen in meiotic spermatocytes, spermatids and myoid peritubular cells. The findings of our study suggest that PPARalpha may be involved in the regulation of growth and differentiation of tubular and interstitial cells in rat and human testis.

  19. Assessment of psyllid double-stranded Ribonucleic acid, RNA, off-target effects on a ladybird beetle predator

    USDA-ARS?s Scientific Manuscript database

    Development of Ribonucleic acid interference, RNAi against insect pests needs to show species target specificity so that beneficial insects remain unharmed, as many pest insects are a food source for predatory insects like lady beetles. We evaluated an RNAi product specific to Asian citrus psyllid f...

  20. Mercury MESSENGER Stamp Unveiling

    NASA Image and Video Library

    2011-05-03

    Patty Carpenter, wife of NASA Mercury Astronaut Scott Carpenter, left, Daughters of NASA astronaut Alan Shepard, Laura Shepard Churchley, and, Alice Wackermann, right, sing the National Anthem during an unveiling ceremony of two USPS stamps that commemorate and celebrate 50 years of US Spaceflight and the MESSENGER program during an event, Wednesday, May 4, 2011 at the NASA Kennedy Space Center in Cape Canaveral, Fla. One stamp commemorates NASA’s Project Mercury, America’s first manned spaceflight program, and NASA astronaut Alan Shepard’s historic flight on May 5, 1961, aboard spacecraft Freedom 7. The other stamp draws attention to NASA’s unmanned MESSENGER mission, a scientific investigation of the planet Mercury. On March 17, 2011, MESSENGER became the first spacecraft to enter into orbit around Mercury. Photo Credit: (NASA/Bill Ingalls)

  1. Parameters on plant absortion of double-stranded Ribonucleic acid, dsRNA

    USDA-ARS?s Scientific Manuscript database

    Efficient absorption of double-stranded Ribonucleic acid, dsRNA, into citrus is critical for effective psyllid management by RNA interference, RNAi. Parameters which might affect absorption into citrus trees and subsequent ingestion by Asian citrus psyllid were evaluated. Age of leaves, variety of c...

  2. Reovirus-induced Ribonucleic Acid Polymerase

    PubMed Central

    Watanabe, Y.; Gauntt, C. J.; Graham, A. F.

    1968-01-01

    A virus-induced ribonucleic acid (RNA) polymerase activity was found in L cells infected with type 3 reovirus. Most of the enzyme is associated with the “large particle” fraction of the infected cells. The enzyme first appeared at 3 to 5 hr after infection and increased in amount until 7 to 9 hr. All four ribonucleoside triphosphates are incorporated in vitro into an acid-insoluble form by the enzyme. The major part of the product formed in vitro is a double-stranded RNA indistinguishable from viral RNA by electrophoresis on polyacrylamide gel. Approximately 40% of the product is a single-stranded RNA of relatively small molecular weight. More than 95% of the nucleotides incorporated into double-stranded RNA by the enzyme are bound in internal 3′-5′-phosphodiester linkages extending back from both 3′- and 5′-termini of the RNA strands. PMID:5725319

  3. Changes in insulin-like growth factor-binding protein-3 messenger ribonucleic acid in endothelial cells of the human corpus luteum: a possible role in luteal development and rescue.

    PubMed

    Fraser, H M; Lunn, S F; Kim, H; Duncan, W C; Rodger, F E; Illingworth, P J; Erickson, G F

    2000-04-01

    In the human menstrual cycle, extensive angiogenesis accompanies luteinization; and the process is physiologically important for corpus luteum (CL) function. During luteolysis, the vasculature collapses, and the endothelial cells die. In a conceptual cycle, the CL persists both functionally and structurally beyond the luteoplacental shift. Although luteal rescue is not associated with increased angiogenesis, endothelial survival is extended. Despite the central role of the luteal vasculature in fertility, the mechanisms regulating its development and demise are poorly understood. There is increasing evidence that insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) may be important effectors of luteal function. Here, we have found that IGFBP-3 messenger RNA is expressed in the endothelium of the human CL and that the levels of message change during luteal development and rescue by human CG. The signal was strong during the early luteal phase, but it showed significant reduction during the mid- and late luteal phases. Interestingly, administration of human CG caused a marked increase in the levels of IGFBP-3 messenger RNA in luteal endothelial cells that was comparable to that observed during the early luteal phase. We conclude that endothelial cell IGFBP-3 expression is a physiological property of the CL of menstruation and pregnancy. These observations raise the intriguing possibility that the regulated expression of endothelial IGFBP-3 may play a role in controlling angiogenesis and cell responses in the human CL by autocrine/paracrine mechanisms.

  4. Understanding LiP Promoters from Phanerochaete chrysosporium: A Bioinformatic Analysis

    Treesearch

    Sergio Lobos; Rubén Polanco; Mario Tello; Dan Cullen; Daniela Seelenfreund; Rafael Vicuña

    2011-01-01

    DNA contains the coding information for the entire set of proteins produced by an organism. The specific combination of proteins synthesized varies with developmental, metabolic and environmental circumstances. This variation is generated by regulatory mechanisms that direct the production of messenger ribonucleic acid (mRNA) and subsequent translation of the...

  5. How Messenger RNA and Nascent Chain Sequences Regulate Translation Elongation.

    PubMed

    Choi, Junhong; Grosely, Rosslyn; Prabhakar, Arjun; Lapointe, Christopher P; Wang, Jinfan; Puglisi, Joseph D

    2018-06-20

    Translation elongation is a highly coordinated, multistep, multifactor process that ensures accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of translated messenger RNA (mRNA). Although translation elongation is heavily regulated by external factors, there is clear evidence that mRNA and nascent-peptide sequences control elongation dynamics, determining both the sequence and structure of synthesized proteins. Advances in methods have driven experiments that revealed the basic mechanisms of elongation as well as the mechanisms of regulation by mRNA and nascent-peptide sequences. In this review, we highlight how mRNA and nascent-peptide elements manipulate the translation machinery to alter the dynamics and pathway of elongation.

  6. MESSENGER Education and Public Outreach Arranges a Ride to the Innermost Planet

    NASA Astrophysics Data System (ADS)

    Weir, H. M.; Chapman, C. R.; Edmonds, J.; Goldstein, J.; Hallau, K. G.; Hirshon, B.; Vanhala, H.; Solomon, S. C.; Messenger Education; Public Outreach Team

    2010-12-01

    Exploration of the mysterious planet Mercury offers an unprecedented opportunity for teachers, students, and citizens to tag along for the ride, and the Education and Public Outreach (EPO) Team for MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) is making sure the public gets quite a show. Since 2004, when MESSENGER was launched, MESSENGER has been gathering intriguing data and information about the Solar System's innermost planet. That journey will continue at a quickened pace after March 18, 2011, when MESSENGER enters into orbit around Mercury for one year of observations of the planet and its environment. The EPO Team - an extensive network of individuals and institutions - has sought to convey the excitement and complexity of the mission as MESSENGER's team overcomes challenges, achieves triumphs, and shares the adventure of space exploration with the American and global public. The EPO Team has developed a broad and comprehensive set of educational and outreach activities, ranging from curricular materials, teacher training, and unique mission-related student investigations to museum displays and special outreach to underserved communities and minority students. One of the most visible aspects of this effort is the MESSENGER Educator Fellows program: master science educators who conduct teacher training workshops throughout the nation for pre-K-12 educators. Educator Fellows train teachers on the EPO Team's MESSENGER Education Modules, which are also relevant to other NASA missions reaching important milestones this year (see http://www.messenger-education.org/teachers/educ_modules.php). By the time MESSENGER goes into orbit, Educator Fellows will have trained an estimated 18,000 teachers, who in turn, facilitate classroom experiences to over 1.8 million students. The EPO Team comprises individuals from the American Association for the Advancement of Science (AAAS); Carnegie Academy for Science Education (CASE); Center for

  7. Cloning, Characterization, and Expression of Animal Toxin Genes for Vaccine Development

    DTIC Science & Technology

    1990-04-27

    amino acids have been modified to pyroglutamate . The function of this modification is not known. There are additional venom components that are...been constructed from the messenger ribonucleic acid (mRNA) isolated from venom glands of different poisonous animals such as snakes, scorpions, and...ribonucleic acid (mRNA) isolated from venom glands of different poisonous animals such as snakes, scorpions, and snails. The gene banks thus created con

  8. Mercury MESSENGER Stamp Unveiling

    NASA Image and Video Library

    2011-05-03

    From left, NASA Deputy Director, Planetary Science Division, Science Mission Directorate, Jim Adams, NASA Kennedy Space Center Director of Education and External Relations Cheryl Hurst, United States Postal Service Vice President of Finance Steve Masse, NASA Mercury Astronaut Scott Carpenter, NASA Administrator Charles Boldin, Daughters of NASA astronaut Alan Shepard, Alice Wackermann, Laura Shepard Churchley, and Julie Jenkins, and NASA Kennedy Space Center Director Robert Cabana pose for a photograph during an unveiling ceremony of two USPS stamps that commemorate and celebrate 50 years of US Spaceflight and the MESSENGER program during an event, Wednesday, May 4, 2011 at the NASA Kennedy Space Center in Cape Canaveral, Fla. One stamp commemorates NASA’s Project Mercury, America’s first manned spaceflight program, and NASA astronaut Alan Shepard’s historic flight on May 5, 1961, aboard spacecraft Freedom 7. The other stamp draws attention to NASA’s unmanned MESSENGER mission, a scientific investigation of the planet Mercury. On March 17, 2011, MESSENGER became the first spacecraft to enter into orbit around Mercury. Photo Credit: (NASA/Bill Ingalls)

  9. Sweet Spot Supersymmetry and Composite Messengers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibe, Masahiro; Kitano, Ryuichiro

    2007-10-30

    Sweet spot supersymmetry is a phenomenologically and cosmologically perfect framework to realize a supersymmetric world at short distance. We discuss a class of dynamical models of supersymmetry breaking and its mediation whose low-energy effective description falls into this framework. Hadron fields in the dynamical models play a role of the messengers of the supersymmetry breaking. As is always true in the models of the sweet spot supersymmetry, the messenger scale is predicted to be 10{sup 5} GeV {approx}< M{sub mess} {approx}< 10{sup 10} GeV. Various values of the effective number of messenger fields N{sub mess} are possible depending on themore » choice of the gauge group.« less

  10. MESSENGER Departs Mercury

    NASA Image and Video Library

    2008-01-30

    After NASA MESSENGER spacecraft completed its successful flyby of Mercury, the Narrow Angle Camera NAC, part of the Mercury Dual Imaging System MDIS, took these images of the receding planet. This is a frame from an animation.

  11. Comparison of Two Serologically Distinct Ribonucleic Acid Bacteriophages I. Properties of the Viral Particles

    PubMed Central

    Overby, L. R.; Barlow, G. H.; Doi, R. H.; Jacob, Monique; Spiegelman, S.

    1966-01-01

    Overby, L. R. (University of Illinois, Urbana), G. H. Barlow, R. H. Doi, Monique Jacob, and S. Spiegelman. Comparison of two serologically distinct ribonucleic acid bacteriophages. I. Properties of the viral particle. J. Bacteriol. 91:442–448. 1966.—Two ribonucleic acid (RNA) coliphages, MS-2 and Qβ, have been characterized physically and serologically. MS-2 has an S20, w value of 79, a molecular weight of 3.6 × 106, a density of 1.422, and pH 3.9 as its isoelectric point. Qβ has an S20, w of 84, a molecular weight of 4.2 × 106, a density of 1.439, and an isoelectric point at pH 5.3. One host (Escherichia coli A-19) permits a distinction between the two on the basis of a marked difference in plaque size. They are distinct immunochemically, no serological cross-reaction being detectable. Images PMID:5903109

  12. Ribonucleic Acid and Ribosomes of Bacillus stearothermophilus1

    PubMed Central

    Saunders, Grady F.; Campbell, L. Leon

    1966-01-01

    Saunders, Grady F. (University of Illinois, Urbana), and L. Leon Campbell. Ribonucleic acid and ribosomes of Bacillus stearothermophilus. J. Bacteriol. 91:332–339. 1966.—The ability of some thermophilic bacteria to grow at temperatures as high as 76 C emphasizes the remarkable thermal stability of their crucial macromolecules. An investigation of the ribonucleic acid (RNA) and ribosomes of Bacillus stearothermophilus was conducted. Washed log-phase cells were disrupted either by sonic treatment or by alumina grinding in 10−2m MgCl2–10−2m tris-(hydroxymethyl)aminomethane buffer, pH 7.4 (TM buffer). Ultracentrifugal analysis revealed peaks at 72.5S, 101S, and 135S, with the 101S peak being the most prominent. By lowering the Mg++ concentration to 10−3m, the ribosome preparation was dissociated to give 40S, 31S, and 54S peaks. These in turn were reassociated in the presence of 10−2m Mg++ to give the larger 73S and 135S particles. When heated in TM buffer, Escherichia coli ribosomes began a gradual dissociation at 58 C, and at 70 C underwent a large hyperchromic shift with a Tm at 72.8 C. In contrast, B. stearothermophilus ribosomes did not show a hyperchromic shift below 70 C; they had a Tm of 77.9 C. The thermal denaturation curves of the 4S, 16S, and 23S RNA from both organisms were virtually identical. The gross amino acid composition of B. stearothermophilus ribosomes showed no marked differences from that reported for E. coli ribosomes. These data suggest that the unusual thermal stability of B. stearothermophilus ribosomes may reflect either an unusual packing arrangement of the protein to the RNA or differences in the primary structure of the ribosomal proteins. Images PMID:5903099

  13. Mercury's Reference Frames After the MESSENGER Mission

    NASA Astrophysics Data System (ADS)

    Stark, A.; Oberst, J.; Preusker, F.; Burmeister, S.; Steinbrügge, G.; Hussmann, H.

    2018-05-01

    We provide an overview of Mercury's reference frames based on MESSENGER observations. We discuss the dynamical, the principal-axes, the ellipsoid, as well as the cartographic frame, which was adopted for MESSENGER data products.

  14. Ribonucleic Acid Synthesis and Glutamate Excretion in Escherichia coli

    PubMed Central

    Broda, Paul

    1968-01-01

    Cultures of Escherichia coli excreted glutamate into the medium when protein synthesis was blocked in RCrel strains or when it was blocked with chloramphenicol in either RCstr or RCrel strains. Both of these conditions resulted in continued ribonucleic acid (RNA) synthesis in the absence of protein synthesis. Glutamate was also excreted by both RCstr and RCrel strains when RNA synthesis was inhibited by uracil starvation or by treatment with actinomycin D. It is proposed that, in each of these cases, glutamate excretion resulted from an increase in the permeability of the cell membrane. PMID:4973126

  15. Geodesy at Mercury with MESSENGER

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria t.; Peale, Stanley J.; Phillips, Roger J.; Solomon, Sean C.

    2006-01-01

    In 2011 the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft will enter Mercury orbit and begin the mapping phase of the mission. As part of its science objectives the MESSENGER mission will determine the shape and gravity field of Mercury. These observations will enable the topography and the crustal thickness to be derived for the planet and will determine the small libration of the planet about its axis, the latter critical to constraining the state of the core. These measurements require very precise positioning of the MESSENGER spacecraft in its eccentric orbit, which has a periapsis altitude as low as 200 km, an apoapsis altitude near 15,000 km, and a closest approach to the surface varying from latitude 60 to about 70 N. The X-band tracking of MESSENGER and the laser altimetry are the primary data that will be used to measure the planetary shape and gravity field. The laser altimeter, which has an expected range of 1000 to 1200 km, is expected to provide significant data only over the northern hemisphere because of MESSENGER's eccentric orbit. For the southern hemisphere, radio occultation measurements obtained as the spacecraft passes behind the planet as seen from Earth and images obtained with the imaging system will be used to provide the long-wavelength shape of the planet. Gravity, derived from the tracking data, will also have greater resolution in the northern hemisphere, but full global models for both topography and gravity will be obtained at low harmonic order and degree. The limiting factor for both gravity and topography is expected to be knowledge of the spacecraft location. Present estimations are that in a combined tracking, altimetry, and occultation solution the spacecraft position uncertainty is likely to be of order 10 m. This accuracy should be adequate for establishing an initial geodetic coordinate system for Mercury that will enable positioning of imaged features on the surface, determination of

  16. MESSENGER at Mercury: Early Orbital Operations

    NASA Technical Reports Server (NTRS)

    McNutt, Ralph L., Jr; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; hide

    2013-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008-2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974-1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90% coverage and at least 250 m average resolution, a global color image mosaic at better than 90% coverage and at least 1 km average resolution, and global stereo imaging at better than 80% coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission

  17. MESSENGER at Mercury: Early Orbital Operations

    NASA Technical Reports Server (NTRS)

    McNutt, Ralph L., Jr.; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; hide

    2012-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008-2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974-1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90%coverage and at least 250 m average resolution, a global color image mosaic at better than 90%coverage and at least 1 km average resolution, and global stereo imaging at better than 80%coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission angles

  18. Mercury's Messenger

    ERIC Educational Resources Information Center

    Chapman, Clark R.

    2004-01-01

    Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…

  19. Nitric oxide: a physiologic messenger.

    PubMed

    Lowenstein, C J; Dinerman, J L; Snyder, S H

    1994-02-01

    To review the physiologic role of nitric oxide, an unusual messenger molecule that mediates blood vessel relaxation, neurotransmission, and pathogen suppression. A MEDLINE search of articles published from 1987 to 1993 that addressed nitric oxide and the enzyme that synthesizes it, nitric oxide synthase. Animal and human studies were selected from 3044 articles to analyze the clinical importance of nitric oxide. Descriptions of the structure and function of nitric oxide synthase were selected to show how nitric oxide acts as a biological messenger molecule. Biochemical and physiologic studies were analyzed if the same results were found by three or more independent observers. Two major classes of nitric oxide synthase enzymes produce nitric oxide. The constitutive isoforms found in endothelial cells and neurons release small amounts of nitric oxide for brief periods to signal adjacent cells, whereas the inducible isoform found in macrophages releases large amounts of nitric oxide continuously to eliminate bacteria and parasites. By diffusing into adjacent cells and binding to enzymes that contain iron, nitric oxide plays many important physiologic roles. It regulates blood pressure, transmits signals between neurons, and suppresses pathogens. Excess amounts, however, can damage host cells, causing neurotoxicity during strokes and causing the hypotension associated with sepsis. Nitric oxide is a simple molecule with many physiologic roles in the cardiovascular, neurologic, and immune systems. Although the general principles of nitric oxide synthesis are known, further research is necessary to determine what role it plays in causing disease.

  20. Using an Instant Messenger to Learn a Foreign Language in a Peer-Tutoring Environment

    ERIC Educational Resources Information Center

    Baek, Joeun; Yoo, Yungtai; Lee, Kyungsuk; Jung, Bokmoon; Baek, Youngkyun

    2017-01-01

    This study explores useful ways of using an instant messenger in a peer-tutoring environment when two students exchange their mother languages. Seven learners of Korean and seven Korean students learning English were paired randomly to conduct language exchange via an instant messenger, KakaoTalk. The pairs (five of male and female pair and two of…

  1. GENETIC INDICATORS OF ENVIRONMENTAL STRESS IN HERMATYPIC CORALS

    EPA Science Inventory

    An efficient, low cost method was developed for the detection of rapid changes in coral gene expression at the messenger ribonucleic acid (mRNA) level. Hermatypic (stony) corals were exposed to a variety of organic and inorganic toxicants and physical stressors at several concent...

  2. MESSENGER's first Mercury flyby: A summary of scientific observations

    NASA Astrophysics Data System (ADS)

    Solomon, Sean C.; McNutt, Ralph L.; Boynton, William V.; Evans, Larry G.; Head, James W.; Krimigis, Stamatios M.; Murchie, Scott; Phillips, Roger J.; Slavin, James A.; Zuber, Maria T.

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, developed under NASA's Discovery Program, will be the first probe to orbit the planet Mercury in March 2011. Launched in August 2004, MESSENGER successfully completed the first of three flybys of Mercury in January 2008. The Mercury Dual Imaging System acquired an 11-color mosaic of part of the hemisphere not seen by Mariner 10, including the entire Caloris basin; several large monochrome mosaics at a range of resolutions; a series of color frames designed for photometric analysis; and inbound and outbound movies. The Mercury Atmospheric and Surface Composition Spectrometer obtained the first high-resolution spectral reflectance measurements (at ultraviolet to near-infrared wavelengths) of surface composition, conducted limb scans of exospheric species, and mapped the composition and structure of the tail region. The Magnetometer measured Mercury's internal field at low latitudes and documented the major plasma boundaries of Mercury's magnetosphere. The Energetic Particle and Plasma Spectrometer made the first measurements of low-energy ions in Mercury's magnetosphere. The Mercury Laser Altimeter carried out the first space altimetric profile of the planet. Other instruments in the payload provided baseline measurements that will aid in the interpretation of data from the mission orbital phase. Together, the MESSENGER flyby observations have begun to advance our understanding of the innermost planet.

  3. Bacterial nucleotide-based second messengers.

    PubMed

    Pesavento, Christina; Hengge, Regine

    2009-04-01

    In all domains of life nucleotide-based second messengers transduce signals originating from changes in the environment or in intracellular conditions into appropriate cellular responses. In prokaryotes cyclic di-GMP has emerged as an important and ubiquitous second messenger regulating bacterial life-style transitions relevant for biofilm formation, virulence, and many other bacterial functions. This review describes similarities and differences in the architecture of the cAMP, (p)ppGpp, and c-di-GMP signaling systems and their underlying signaling principles. Moreover, recent advances in c-di-GMP-mediated signaling will be presented and the integration of c-di-GMP signaling with other nucleotide-based signaling systems will be discussed.

  4. Control of protein synthesis in Escherichia coli: strain differences in control of translational initiation after energy source shift-down.

    PubMed Central

    Jacobson, L A; Jen-Jacobson, L

    1980-01-01

    We have studied the parameters of protein synthesis in a number of Escherichia coli strains after a shift-down from glucose-minimal to succinate-minimal medium. One group of strains, including K-12(lambda) (ATCC 10798) and NF162, showed a postshift translational yield of 50 to 65% and a 2- to 2.5-fold increase in the functional lifetime of general messenger ribonucleic acid. There was no change in the lag time for beta-galactosidase induction in these strains after the shift-down. A second group, including W1 and W2, showed no reduction in translational yield, no change in the functional lifetime of messenger ribonucleic acid, and a 50% increase in the lag time for beta-galactosidase induction. Evidence is presented which indicates that this increased lag time is not the result of a decreased rate of polypeptide chain propagation. A third group of strains, including NF161, CP78, and NF859, showed an intermediate pattern: translational yield was reduced to about 75% of normal, and the messenger ribonucleic acid functional lifetime was increased by about 50%. Calculation of the relative postshift rates of translational initiation gave about 0.2, 1.0, and 0.5, respectively, for the three groups. There was no apparent correlation between the ability to control translation and the genotypes of these strains at the relA, relX, or spoT loci. Measurements of the induction lag for beta-galactosidase during short-term glucose starvation or after a down-shift induced by alpha-methylglucoside indicated that these regimens elicit responses that are physiologically distinct from those elicited by a glucose-to-succinate shift-down. PMID:6155375

  5. Control of protein synthesis in Escherichia coli: strain differences in control of translational initiation after energy source shift-down.

    PubMed

    Jacobson, L A; Jen-Jacobson, L

    1980-06-01

    We have studied the parameters of protein synthesis in a number of Escherichia coli strains after a shift-down from glucose-minimal to succinate-minimal medium. One group of strains, including K-12(lambda) (ATCC 10798) and NF162, showed a postshift translational yield of 50 to 65% and a 2- to 2.5-fold increase in the functional lifetime of general messenger ribonucleic acid. There was no change in the lag time for beta-galactosidase induction in these strains after the shift-down. A second group, including W1 and W2, showed no reduction in translational yield, no change in the functional lifetime of messenger ribonucleic acid, and a 50% increase in the lag time for beta-galactosidase induction. Evidence is presented which indicates that this increased lag time is not the result of a decreased rate of polypeptide chain propagation. A third group of strains, including NF161, CP78, and NF859, showed an intermediate pattern: translational yield was reduced to about 75% of normal, and the messenger ribonucleic acid functional lifetime was increased by about 50%. Calculation of the relative postshift rates of translational initiation gave about 0.2, 1.0, and 0.5, respectively, for the three groups. There was no apparent correlation between the ability to control translation and the genotypes of these strains at the relA, relX, or spoT loci. Measurements of the induction lag for beta-galactosidase during short-term glucose starvation or after a down-shift induced by alpha-methylglucoside indicated that these regimens elicit responses that are physiologically distinct from those elicited by a glucose-to-succinate shift-down.

  6. TCCTA Messenger, 1999-2000.

    ERIC Educational Resources Information Center

    TCCTA Messenger, 2000

    2000-01-01

    The Texas Community College Teachers Association (TCCTA), formerly known as the Texas Junior College Teachers Association (TJCTA), publishes the TCCTA Messenger newsletter four times a year to cover events, legislation and TCCTA activities affecting Texas community colleges and their faculty. This document contains four newsletter issues…

  7. Influence of the stringent control system on the transcription of ribosomal ribonucleic acid and ribosomal protein genes in Escherichia coli.

    PubMed Central

    Dennis, P P

    1977-01-01

    The fraction of the total ribonucleic acid (RNA) synthesis rate that is messenger RNA (mRNA) for ribosomal protein (r-protein) and ribosomal RNA (rRNA) has been estimated in valS(Ts) rel+ stringent and valS(Ts) relA1 relaxed strains of Escherichia coli during a partial inhibition of valyl-transfer RNA aminoacylation. The partial inhibition was accomplished by shifting the strains from the permissive growth temperature of 29.5 degrees C to the semipermissive temperature of 35.5 degrees C. The RNA synthesized at the elevated temperature was pulse labeled with [3H]uracil. The fraction of the total incorpoarted 3H radioactivity in r-protein mRNA or in rRNA was estimated by specific hybridization to the transducing phages gammaspc1, which carries about 15 r-protein genes and lambdailv5, which carries an rRNA transcription unit. The results clearly demonstrate that the rel gene influences the fraction of the total RNA synthesis rate that is r protein mRNA and rRNA; in the rel+ strain they are significantly increased relative to control cultures. This indicates that the expression of the genes coding for the RNA and protein component of the ribosome are most likely regulated at the level of transcription. Furthermore, it appears that the distribution of functioning RNA polymerase between rRNA genes, r-protein genes, and other types of genes is influenced by the rel gene control system; presumably this influence is mediated through the unusual nucleotide guanosine tetraphosphate. PMID:320185

  8. A Test of General Relativity with MESSENGER Mission Data

    NASA Astrophysics Data System (ADS)

    Genova, A.; Mazarico, E.; Goossens, S. J.; Lemoine, F. G.; Neumann, G. A.; Nicholas, J. B.; Rowlands, D. D.; Smith, D. E.; Zuber, M. T.; Solomon, S. C.

    2016-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft initiated collection of scientific data from the innermost planet during its first flyby of Mercury in January 2008. After two additional Mercury flybys, MESSENGER was inserted into orbit around Mercury on 18 March 2011 and operated for more than four Earth years through 30 April 2015. Data acquired during the flyby and orbital phases have provided crucial information on the formation and evolution of Mercury. The Mercury Laser Altimeter (MLA) and the radio science system, for example, obtained geodetic observations of the topography, gravity field, orientation, and tides of Mercury, which helped constrain its surface and deep interior structure. X-band radio tracking data collected by the NASA Deep Space Network (DSN) allowed the determination of Mercury's gravity field to spherical harmonic degree and order 100, as well as refinement of the planet's obliquity and estimation of the tidal Love number k2. These geophysical parameters are derived from the range-rate observables that measure precisely the motion of the spacecraft in orbit around the planet. However, the DSN stations acquired two other kinds of radio tracking data, range and delta-differential one-way ranging, which also provided precise measurements of Mercury's ephemeris. The proximity of Mercury's orbit to the Sun leads to a significant perihelion precession, which was used by Einstein as confirmation of general relativity (GR) because of its inconsistency with the effects predicted from classical Newtonian theory. MESSENGER data allow the estimation of the GR parameterized post-Newtonian (PPN) coefficients γ and β. Furthermore, determination of Mercury's orbit also allows estimation of the gravitational parameter (GM) and the flattening (J2) of the Sun. We modified our orbit determination software, NASA GSFC's GEODYN II, to enable simultaneous orbit integration of both MESSENGER and the planet Mercury. The

  9. Optimal and fast E/B separation with a dual messenger field

    NASA Astrophysics Data System (ADS)

    Kodi Ramanah, Doogesh; Lavaux, Guilhem; Wandelt, Benjamin D.

    2018-05-01

    We adapt our recently proposed dual messenger algorithm for spin field reconstruction and showcase its efficiency and effectiveness in Wiener filtering polarized cosmic microwave background (CMB) maps. Unlike conventional preconditioned conjugate gradient (PCG) solvers, our preconditioner-free technique can deal with high-resolution joint temperature and polarization maps with inhomogeneous noise distributions and arbitrary mask geometries with relative ease. Various convergence diagnostics illustrate the high quality of the dual messenger reconstruction. In contrast, the PCG implementation fails to converge to a reasonable solution for the specific problem considered. The implementation of the dual messenger method is straightforward and guarantees numerical stability and convergence. We show how the algorithm can be modified to generate fluctuation maps, which, combined with the Wiener filter solution, yield unbiased constrained signal realizations, consistent with observed data. This algorithm presents a pathway to exact global analyses of high-resolution and high-sensitivity CMB data for a statistically optimal separation of E and B modes. It is therefore relevant for current and next-generation CMB experiments, in the quest for the elusive primordial B-mode signal.

  10. Messenger RNA transcripts

    Treesearch

    Dan Cullen

    2004-01-01

    In contrast to DNA, messenger RNA (mRNA) in complex substrata is rarely analyzed, in large part because labile RNA molecules are difficult to purify. Nucleic acid extractions from fungi that colonize soil are particularly difficult and plagued by humic substances that interfere with Taq polymerase (Tebbe and Vahjen 1993 and references therein). Magnetic capture...

  11. To Be Connected or Not To Be Connected? Mobile Messenger Overload, Fatigue, and Mobile Shunning.

    PubMed

    Shin, Jaewook; Shin, Mincheol

    2016-10-01

    With the increased adoption of mobile devices, mobile communication is all around us and we are connected anywhere, anytime. Mobile communication in general and mobile messenger service in particular make interpersonal communication in Korea so frequent and convenient. However, being connected too much anywhere and anytime via mobile messenger service appears to lead an increasing number of people to feel fatigue and to decrease mobile communication under some conditions. Based on a sample of 334 respondents, this study empirically investigated the relationships among commercial, noncommercial mobile messenger overload, mobile messenger fatigue, relational self-concept, and mobile shunning behavior. The findings show that (a) the effect of noncommercial mobile messenger overload is stronger than that of commercial mobile messenger overload in increasing mobile messenger fatigue although both positively affect mobile messenger fatigue, (b) relational self-concept has moderating effects on the relationship between mobile messenger overload and mobile messenger fatigue, and that (c) mobile messenger fatigue triggers mobile communicators' shunning behavior through which the communicators increase their intention to avoid mobile communication, to change their mobile phone numbers, and to subscribe to dual number service on one mobile device. When confronted with mobile messenger fatigue caused by mobile messenger overload, mobile messaging service users are likely to shun their mobile communication. Being constantly and conveniently connected appears to be a blessing in disguise.

  12. MESSENGER: The Discovery Mission to Mercury

    NASA Astrophysics Data System (ADS)

    McNutt, R. L.; Solomon, S. C.; Gold, R. E.; Domingue, D. L.

    2004-12-01

    NASA's MErcury, Surface, Space ENvironment, GEochenistry, and Ranging (MESSENGER) spacecraft, launched on 3 August 2004, has begun its voyage to initiate a new era in our understanding of the terrestrial planets. The mission, spacecraft, and payload are designed to answer six fundamental questions regarding the innermost planet: What planetary formational processes led to Mercury's high metal/silicate ratio? What is the geological history of Mercury? What are the nature and origin of Mercury's magnetic field? What are the structure and state of Mercury's core? What are the radar-reflective materials at Mercury's poles? What are the important volatile species and their sources and sinks on and near Mercury? Planet formational hypotheses will be tested by measuring the surface abundances of major elements by X-ray and gamma-ray spectrometry. The geological history will be determined from high-resolution color imaging of the heavily cratered highlands, intercrater plains, and smooth plains. MESSENGER will provide detailed views of both the Caloris basin and its antipodal terrain. Topographic, mineralogical, and elemental abundance data will be used to seek evidence of volcanic features and units. Measurement of Mercury's magnetic field and its interaction with the solar wind will distinguish the intrinsic dipole and quadrupole components while separating these from the current systems driven by solar-wind-induced convection. The structure of the internal field will put constraints on dynamo models. Such models will also be constrained by measuring Mercury's libration to determine the extent of a fluid outer core. Both water ice and sulfur have been postulated as major constituents of the high-radar-backscatter polar deposits. MESSENGER will combine gamma-ray and neutron spectrometry of the surface with ultraviolet spectrometry and in situ particle measurements to detect both neutral and charged species originating from the surface. Such measurements will address the

  13. MESSENGER View of Mercury's Caloris Basin

    NASA Image and Video Library

    2017-12-08

    NASA image acquired October 28, 2011 This stunning, and as of yet unnamed, crater lies within the Caloris basin. Its floor provides another example of the beautiful "hollows" found on Mercury and has an etched appearance similar to that found in the crater Tyagaraja. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 250-meter/pixel (820 feet/pixel) morphology base map or the 1-kilometer/pixel (0.6 miles/pixel) color base map. It is not possible to cover all of Mercury's surface at this high resolution during MESSENGER's one-year mission, but several areas of high scientific interest are generally imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MDIS is scheduled to acquire more than 75,000 images in support of MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Current Research on Non-Coding Ribonucleic Acid (RNA).

    PubMed

    Wang, Jing; Samuels, David C; Zhao, Shilin; Xiang, Yu; Zhao, Ying-Yong; Guo, Yan

    2017-12-05

    Non-coding ribonucleic acid (RNA) has without a doubt captured the interest of biomedical researchers. The ability to screen the entire human genome with high-throughput sequencing technology has greatly enhanced the identification, annotation and prediction of the functionality of non-coding RNAs. In this review, we discuss the current landscape of non-coding RNA research and quantitative analysis. Non-coding RNA will be categorized into two major groups by size: long non-coding RNAs and small RNAs. In long non-coding RNA, we discuss regular long non-coding RNA, pseudogenes and circular RNA. In small RNA, we discuss miRNA, transfer RNA, piwi-interacting RNA, small nucleolar RNA, small nuclear RNA, Y RNA, single recognition particle RNA, and 7SK RNA. We elaborate on the origin, detection method, and potential association with disease, putative functional mechanisms, and public resources for these non-coding RNAs. We aim to provide readers with a complete overview of non-coding RNAs and incite additional interest in non-coding RNA research.

  15. The development of fixed-ratio performance under the influence of ribonucleic acid12

    PubMed Central

    Gott, C. Thomas; Weiss, Bernard

    1972-01-01

    The transition from fixed-ratio 1 performance (every response reinforced) to fixed-ratio 30 performance (every thirtieth response reinforced) was studied in nine pigeons. These were divided into three treatment groups given daily oral doses of saline, or 250 mg/kg/day or 500 mg/kg/day of yeast ribonucleic acid. Detailed computer-assisted analyses of how fixed-ratio behavior develops revealed the following typical sequence. After the transition, the first few ratios typically were emitted without long interresponse times within the ratio. Steady responding then ceased, and numerous long interresponse times occurred, with no systematic relationship to ordinal position within the ratio. Gradually, a new pattern evolved, characterized by a consistently long post-reinforcement time, a border region of the next few interresponse times within which the mean interresponse time monotonically decreased, and short interresponse times within the last 80% of the ratio. Long interresponse times were eliminated from this last section of the ratio without regard to proximity to reinforcement. Various analytical procedures suggested that the final pattern can be conceived, in part, as the shaping of a reliable response topography. The group of three pigeons given 250 mg/kg/day of yeast ribonucleic acid responded at higher rates than the saline and 500 mg/kg/day groups. The latter group, in contrast to the saline and lower dose groups, which continued to increase their rates, reached a rate asymptote very early. PMID:4574711

  16. How MESSENGER Meshes Simulations and Games with Citizen Science

    NASA Astrophysics Data System (ADS)

    Hirshon, B.; Chapman, C. R.; Edmonds, J.; Goldstein, J.; Hallau, K. G.; Solomon, S. C.; Vanhala, H.; Weir, H. M.; Messenger Education; Public Outreach (Epo) Team

    2010-12-01

    How MESSENGER Meshes Simulations and Games with Citizen Science In the film The Last Starfighter, an alien civilization grooms their future champion—a kid on Earth—using a video game. As he gains proficiency in the game, he masters the skills he needs to pilot a starship and save their civilization. The NASA MESSENGER Education and Public Outreach (EPO) Team is using the same tactic to train citizen scientists to help the Science Team explore the planet Mercury. We are building a new series of games that appear to be designed primarily for fun, but that guide players through a knowledge and skill set that they will need for future science missions in support of MESSENGER mission scientists. As players score points, they gain expertise. Once they achieve a sufficiently high score, they will be invited to become participants in Mercury Zoo, a new program being designed by Zooniverse. Zooniverse created Galaxy Zoo and Moon Zoo, programs that allow interested citizens to participate in the exploration and interpretation of galaxy and lunar data. Scientists use the citizen interpretations to further refine their exploration of the same data, thereby narrowing their focus and saving precious time. Mercury Zoo will be designed with input from the MESSENGER Science Team. This project will not only support the MESSENGER mission, but it will also add to the growing cadre of informed members of the public available to help with other citizen science projects—building on the concept that engaged, informed citizens can help scientists make new discoveries. The MESSENGER EPO Team comprises individuals from the American Association for the Advancement of Science (AAAS); Carnegie Academy for Science Education (CASE); Center for Educational Resources (CERES) at Montana State University (MSU) - Bozeman; National Center for Earth and Space Science Education (NCESSE); Johns Hopkins University Applied Physics Laboratory (JHU/APL); National Air and Space Museum (NASM); Science

  17. 30 CFR 77.704-11 - Use of grounded messenger wires; ungrounded systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Use of grounded messenger wires; ungrounded... AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-11 Use of grounded messenger wires; ungrounded systems. Solely for purposes of grounding ungrounded high-voltage power systems, grounded messenger wires...

  18. 30 CFR 75.705-11 - Use of grounded messenger wires; ungrounded systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of grounded messenger wires; ungrounded....705-11 Use of grounded messenger wires; ungrounded systems. Solely for purposes of grounding ungrounded high-voltage power systems, grounded messenger wires used to suspend the cables of such systems...

  19. 30 CFR 75.705-11 - Use of grounded messenger wires; ungrounded systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Use of grounded messenger wires; ungrounded....705-11 Use of grounded messenger wires; ungrounded systems. Solely for purposes of grounding ungrounded high-voltage power systems, grounded messenger wires used to suspend the cables of such systems...

  20. 30 CFR 77.704-11 - Use of grounded messenger wires; ungrounded systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of grounded messenger wires; ungrounded... AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-11 Use of grounded messenger wires; ungrounded systems. Solely for purposes of grounding ungrounded high-voltage power systems, grounded messenger wires...

  1. THE CONTENT AND RELATIVE BASE RATIOS OF RIBONUCLEIC ACID IN AMOEBA

    PubMed Central

    Iverson, Ray M.

    1964-01-01

    The amount and relative base ratios of ribonucleic acid (RNA) in the nucleus and cytoplasm of Amoeba proteus and A. dubia, and of homospecies cells obtained by nuclear transfer with A. proteus, have been determined by microelectrophoresis. In A. proteus the average amounts of RNA in the nucleus and the cytoplasm were 134. micromicrograms and 2520. micromicrograms; in A. dubia the averages for the nucleus and cytoplasm were 67. micromicrograms and 1427. micromicrograms. The relative base ratio of RNA of the nucleus is similar to that of the RNA of the cytoplasm within a species, but the two species differed in this respect. Homospecies nuclear transfer did not affect the relative base ratio or amount of RNA. PMID:14105213

  2. Students Engaging the Public in Exciting Discoveries by NASA's MESSENGER Mission

    NASA Astrophysics Data System (ADS)

    Hallau, K. G.; Morison, J.; Schuele, H.

    2012-12-01

    In March 2011, NASA's MESSENGER spacecraft entered into orbit around Mercury, the closest planet to the Sun. As the first mission to orbit and study Mercury in depth, MESSENGER sought to answer six primary scientific questions: why is Mercury so dense; what is the geologic history of Mercury; what is the nature of Mercury's magnetic field; what is the structure of Mercury's core; what are the unusual materials at Mercury's poles; and what volatiles are important at Mercury? In the first year of orbit, MESSENGER answered all of these questions, and also made several surprising discoveries. Student interns working with the MESSENGER Education and Public Outreach (EPO) team are using MESSENGER Mosaic Postcards (MPC) in both print and digital formats to present this new information to a broad audience. These MPCs, in conjunction with the rest of the MESSENGER EPO tools, present a unified and global resource for the public. By creating this resource in a variety of media, from printable cards to interactive features on the EPO website (http://www.messenger-education.org/), the EPO team can reach a larger audience, further the goal of the MPC project to share newly discovered features and phenomena with the general public, and thereby generate increased interest in and excitement about science and planetary exploration. One side of each MPC shows a MESSENGER image of a portion of Mercury's surface, and together the postcards can be arranged to form a complete image of the planet. On the reverse side of some cards is information pertaining to an item of interest in view on the image-side. One of us (physics undergraduate JEM) researches interesting features on the surface of Mercury and creates descriptions for the informational side of the postcards, and another (computer science undergraduate HCS) creates the digital versions of cards and associated resources for the Surface Interactive, an interactive tool on the MESSENGER EPO website. Postcards already in distribution

  3. Nuclear Export of Messenger RNA

    PubMed Central

    Katahira, Jun

    2015-01-01

    Transport of messenger RNA (mRNA) from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP) particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex. PMID:25836925

  4. Messenger in the Barn: Networking in a Learning Environment

    ERIC Educational Resources Information Center

    Rutter, Malcolm

    2009-01-01

    This case study describes the use of a synchronous communication application (MSN Messenger) in a large academic computing environment. It draws on data from interviews, questionnaires and student marks to examine the link between use of the application and success measured through module marks. The relationship is not simple. Total abstainers and…

  5. MESSENGER soft X-ray observations of the quiet solar corona

    NASA Astrophysics Data System (ADS)

    Schwartz, Richard A.; Hudson, Hugh S.; Tolbert, Anne K; Dennis, Brian R.

    2014-06-01

    In a remarkable result from their "SphinX" experiment, Sylwester et al. (2012) found a non-varying base level of soft X-ray emission at the quietest times in 2009. We describe comparable data from the soft X-ray monitor on board MESSENGER (en route to Mercury) which had excellent coverage both in 2009 and during the true solar minimum of 2008. These observations overlap SphinX's and also are often exactly at Sun-MESSENGER-Earth conjunctions. During solar minimum the Sun-MESSENGER distance varied substantially, allowing us to use the inverse-square law to help distinguish the aperture flux (ie, solar X-rays) from that due to sources of background in the 2-5 keV range. The MESSENGER data show a non-varying background level for many months in 2008 when no active regions were present. We compare these data in detail with those from SphinX. Both sets of data reveal a different behavior when magnetic active regions are present on the Sun, and when they are not.Reference: Sylwester et al., ApJ 751, 111 (2012)

  6. Coronal mass ejection hits mercury: A.I.K.E.F. hybrid-code results compared to MESSENGER data

    NASA Astrophysics Data System (ADS)

    Exner, W.; Heyner, D.; Liuzzo, L.; Motschmann, U.; Shiota, D.; Kusano, K.; Shibayama, T.

    2018-04-01

    Mercury is the closest orbiting planet around the sun and is therefore embedded in an intensive and highly varying solar wind. In-situ data from the MESSENGER spacecraft of the plasma environment near Mercury indicates that a coronal mass ejection (CME) passed the planet on 23 November 2011 over the span of the 12 h MESSENGER orbit. Slavin et al. (2014) derived the upstream parameters of the solar wind at the time of that orbit, and were able to explain the observed MESSENGER data in the cusp and magnetopause segments of MESSENGER's trajectory. These upstream parameters will be used for our first simulation run. We use the hybrid code A.I.K.E.F. which treats ions as individual particles and electrons as a mass-less fluid, to conduct hybrid simulations of Mercury's magnetospheric response to the impact of the CME on ion gyro time scales. Results from the simulation are in agreement with magnetic field measurements from the inner day-side magnetosphere and the bow-shock region. However, at the planet's nightside, Mercury's plasma environment seemed to be governed by different solar wind conditions, in conclusion, Mercury's interaction with the CME is not sufficiently describable by only one set of upstream parameters. Therefore, to simulate the magnetospheric response while MESSENGER was located in the tail region, we use parameters obtained from the MHD solar wind simulation code SUSANOO (Shiota et al. (2014)) for our second simulation run. The parameters of the SUSANOO model achieve a good agreement of the data concerning the plasma tail crossing and the night-side approach to Mercury. However, the polar and closest approach are hardly described by both upstream parameters, namely, neither upstream dataset is able to reproduce the MESSENGER crossing of Mercury's magnetospheric cusp. We conclude that the respective CME was too variable on the timescale of the MESSENGER orbit to be described by only two sets of upstream conditions. Our results suggest locally strong

  7. 29 CFR 520.410 - How long does a messenger, learner, or apprentice certificate remain in effect?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certificate remain in effect? 520.410 Section 520.410 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS EMPLOYMENT UNDER SPECIAL CERTIFICATE OF MESSENGERS... effect? (a) Messenger and/or learner certificates may be issued for a period of not longer than one year...

  8. MESSENGER Observation of Mercury's Magnetopause: Structure and Dynamics

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Acuna, M. H.; Anderson, B. J.; Baker, D. N.; Benna, M.; Boardsen, S. A.; Gloeckler, G.; Gold, R. E.; Ho, G. C.; Korth, H.; hide

    2008-01-01

    MESSENGER'S 14 January 2008 encounter with Mercury has provided new observations of the magnetopause of this small magnetosphere, particularly concerning the effect of the direction of the interplanetary magnetic field (IMF) on the structure and dynamics of this boundary. The IMF was northward immediately prior to and following the passage of the MESSENGER spacecraft through Mercury's magnetosphere. However, several-minute episodes of southward IMF were observed in the magnetosheath during the inbound portion of the encounter. Evidence for reconnection at the dayside magnetopause in the form of well-developed flux transfer events (FTEs) was observed in the magnetosheath following some of these southward-B, intervals. The inbound magnetopause crossing seen in the magnetic field measurements is consistent with a transition from the magnetosheath into the plasma sheet. Immediately following MESSENGER'S entry into the magnetosphere, rotational perturbations in the magnetic field similar to those seen at the Earth in association with large-scale plasma sheet vortices driven by Kelvin-Helmholtz waves along the magnetotail boundary at the Earth were observed. The outbound magnetopause occurred during northward IMF B(sub z) and had the characteristics of a tangential discontinuity. These new observations by MESSENGER may be combined and compared with the magnetopause measurements collected by Mariner 10 to derive new understanding of the response of Mercury's magnetopause to IMF direction and its effect on the rate of solar wind energy and mass input to this small magnetosphere.

  9. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering.

    PubMed

    Ni, PeiYan; Fu, ShaoZhi; Fan, Min; Guo, Gang; Shi, Shuai; Peng, JinRong; Luo, Feng; Qian, ZhiYong

    2011-01-01

    Polylactide (PLA) electrospun fibers have been reported as a scaffold for bone tissue engineering application, however, the great hydrophobicity limits its broad application. In this study, the hybrid amphiphilic poly(ethylene glycol) (PEG)/hydrophobic PLA fibrous scaffolds exhibited improved morphology with regular and continuous fibers compared to corresponding blank PLA fiber mats. The prepared PEG/PLA fibrous scaffolds favored mesenchymal stem cell (MSC) attachment and proliferation by providing an interconnected porous extracellular environment. Meanwhile, MSCs can penetrate into the fibrous scaffold through the interstitial pores and integrate well with the surrounding fibers, which is very important for favorable application in tissue engineering. More importantly, the electrospun hybrid PEG/PLA fibrous scaffolds can enhance MSCs to differentiate into bone-associated cells by comprehensively evaluating the representative markers of the osteogenic procedure with messenger ribonucleic acid quantitation and protein analysis. MSCs on the PEG/PLA fibrous scaffolds presented better differentiation potential with higher messenger ribonucleic acid expression of the earliest osteogenic marker Cbfa-1 and mid-stage osteogenic marker Col I. The significantly higher alkaline phosphatase activity of the PEG/PLA fibrous scaffolds indicated that these can enhance the differentiation of MSCs into osteoblast-like cells. Furthermore, the higher messenger ribonucleic acid level of the late osteogenic differentiation markers OCN (osteocalcin) and OPN (osteopontin), accompanied by the positive Alizarin red S staining, showed better maturation of osteogenic induction on the PEG/PLA fibrous scaffolds at the mineralization stage of differentiation. After transplantation into the thigh muscle pouches of rats, and evaluating the inflammatory cells surrounding the scaffolds and the physiological characteristics of the surrounding tissues, the PEG/PLA scaffolds presented good

  10. Discrimination of Self and Non-Self Ribonucleic Acids

    PubMed Central

    Gebhardt, Anna; Laudenbach, Beatrice T.

    2017-01-01

    Most virus infections are controlled through the innate and adaptive immune system. A surprisingly limited number of so-called pattern recognition receptors (PRRs) have the ability to sense a large variety of virus infections. The reason for the broad activity of PRRs lies in the ability to recognize viral nucleic acids. These nucleic acids lack signatures that are present in cytoplasmic cellular nucleic acids and thereby marking them as pathogen-derived. Accumulating evidence suggests that these signatures, which are predominantly sensed by a class of PRRs called retinoic acid-inducible gene I (RIG-I)-like receptors and other proteins, are not unique to viruses but rather resemble immature forms of cellular ribonucleic acids generated by cellular polymerases. RIG-I-like receptors, and other cellular antiviral proteins, may therefore have mainly evolved to sense nonprocessed nucleic acids typically generated by primitive organisms and pathogens. This capability has not only implications on induction of antiviral immunity but also on the function of cellular proteins to handle self-derived RNA with stimulatory potential. PMID:28475460

  11. One Small Collection of Images, Many Giant Strides Forward for MESSENGER

    NASA Image and Video Library

    2012-07-23

    This image compilation shows some of the most exciting images taken thus far on the MESSENGER mission. A mural-sized copy hangs next to the MESSENGER Science Operations Center at the Johns Hopkins University Applied Physics Laboratory. http://photojournal.jpl.nasa.gov/catalog/PIA16364

  12. Structural insights into the role of diphthamide on elongation factor 2 in messenger RNA reading frame maintenance.

    PubMed

    Pellegrino, Simone; Demeshkina, Natalia; Mancera-Martinez, Eder; Melnikov, Sergey; Simonetti, Angelita; Myasnikov, Alexander; Yusupov, Marat; Yusupova, Gulnara; Hashem, Yaser

    2018-06-07

    One of the most critical steps of protein biosynthesis is the coupled movement of messenger RNA (mRNA), that encodes genetic information, with transfer RNAs (tRNAs) on the ribosome. In eukaryotes this process is catalyzed by a conserved G-protein, the elongation factor 2 (eEF2), which carries a unique post-translational modification, called diphthamide, found in all eukaryotic species. Here we present near-atomic resolution cryo-EM structures of yeast 80S ribosome complexes containing mRNA, tRNA and eEF2 trapped in different GTP-hydrolysis states which provide further structural insights on the role of diphthamide in the mechanism of translation fidelity in eukaryotes. Copyright © 2018. Published by Elsevier Ltd.

  13. Analysis of Isoaccepting Transfer Ribonucleic Acid Species of Bacillus subtilis: Chromatographic Differences Between Transfer Ribonucleic Acids from Spores and Cells in Exponential Growth

    PubMed Central

    Vold, Barbara S.

    1973-01-01

    Differences between the transfer ribonucleic acid (tRNA) of spores and exponentially growing cells of Bacillus subtilis 168 were compared by co-chromatography on reversed-phase column RPC-5. This system gave excellent resolution of isoaccepting species in 1 to 2 hr using a 200-ml gradient. Two methods were used to extract spore tRNAs, a procedure using a Braun homogenizer and a pretreatment with dithiothreitol followed by lysis with lysozyme. Where changes were observed, column elution profiles of spore tRNAs were independent of the extraction method used. Three kinds of changes between the profiles of vegetative cell tRNA and spore tRNA were observed: (i) no change; phe-, val-, ala-, asp-, ileu-, pro-, met-, fmet-, and his-tRNAs, (ii) a change in the ratio of existing peaks; gly-, tyr-, leu-, ser-, thr-, aspn-, and arg-tRNAs, and (iii) the appearance or disappearance of unique peaks; lys-, glu-, and trp-tRNAs. PMID:4632322

  14. Small interfering ribonucleic acid induces liquid-to-ripple phase transformation in a phospholipid membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choubey, Amit; Nomura, Ken-ichi; Kalia, Rajiv K.

    Small interfering ribonucleic acid (siRNA) molecules play a pivotal role in silencing gene expression via the RNA interference mechanism. A key limitation to the widespread implementation of siRNA therapeutics is the difficulty of delivering siRNA-based drugs to cells. Here, we examine changes in the structure and dynamics of a dipalmitoylphosphatidylcholine bilayer in the presence of a siRNA molecule and mechanical barriers to siRNA transfection in the bilayer. Our all-atom molecular dynamics simulation shows that siRNA induces a liquid crystalline-to-ripple phase transformation in the bilayer. The ripple phase consists of a major region of non-interdigitated and a minor region of interdigitatedmore » lipid molecules with an intervening kink. In the ripple phase, hydrocarbon chains of lipid molecules have large compressive stresses, which present a considerable barrier to siRNA transfection.« less

  15. MESSENGER Team Presents Latest Science Results

    NASA Image and Video Library

    2009-04-30

    This mosaic was assembled using NAC images acquired as the MESSENGER spacecraft approached the planet during the mission second Mercury flyby The Rembrandt impact basin is seen at the center of the mosaic.

  16. Effects of local structural transformation of lipid-like compounds on delivery of messenger RNA

    NASA Astrophysics Data System (ADS)

    Li, Bin; Luo, Xiao; Deng, Binbin; Giancola, Jolynn B.; McComb, David W.; Schmittgen, Thomas D.; Dong, Yizhou

    2016-02-01

    Lipid-like nanoparticles (LLNs) have shown great potential for RNA delivery. Lipid-like compounds are key components in LLNs. In this study, we investigated the effects of local structural transformation of lipid-like compounds on delivery of messenger RNA. Our results showed that position change of functional groups on lipid-like compounds can dramatically improve delivery efficiency. We then optimized formulation ratios of TNT-b10 LLNs, a lead material, increasing delivery efficiency over 2-fold. More importantly, pegylated TNT-b10 LLNs is stable for over four weeks and is over 10-fold more efficient than that of its counterpart TNT-a10 LLNs. Additionally, the optimal formulation O-TNT-b10 LLNs is capable of delivering mRNA encoding luciferase in vivo. These results provide useful insights into the design of next generation LLNs for mRNA delivery.

  17. The gravity field and orientation of Mercury after the MESSENGER mission

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Genova, A.; Goossens, S. J.; Lemoine, F. G.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.; Solomon, S. C.

    2015-12-01

    After more than four years in orbit about Mercury, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft impacted the planet's surface north of Shakespeare crater (54.44° N, 210.12° E,) on 30 April 2015. One of the main goals of the mission was to determine the gravity field of Mercury in order to learn about Mercury's interior. Together with ground-based radar measurements of the obliquity and forced librations, MESSENGER-derived gravity models helped revise models of Mercury's interior. Nevertheless, the refinement of Mercury's orientation with the latest data from MESSENGER can further improve the interior modeling of the planet. The last eight months of the mission provided a special opportunity to conduct low-altitude measurements, with extensive radio tracking coverage below 200 km altitude north of ~30°N. MESSENGER's Mercury Laser Altimeter (MLA) mapped the topography of Mercury's northern hemisphere with a sub-meter vertical precision, an along-track sampling of ~500 m, and a longitudinal resolution (~0.1°) limited by the number of spacecraft orbits (~4,000). The combination of gravity and topography helps determine crustal thickness and interior properties. Altimetric ranges provide geodetic constraints to improve the spacecraft orbit determination, and thus the gravity field model. In particular, whereas the MESSENGER spacecraft was not tracked at each periapsis passage, MLA operated nearly continuously (outside of thermally challenging periods). From an analysis of the entire radiometric and altimetric datasets acquired by MESSENGER, a new gravity field to degree and order 100 has been obtained, resolving features down to ~75 km horizontal scale. The altimetric data help reduce the uncertainties in the determination of the pole position. A reanalysis of the Mercury flybys also constrains the spin rate over the longest available time span.

  18. Return to Mercury: a global perspective on MESSENGER's first Mercury flyby.

    PubMed

    Solomon, Sean C; McNutt, Ralph L; Watters, Thomas R; Lawrence, David J; Feldman, William C; Head, James W; Krimigis, Stamatios M; Murchie, Scott L; Phillips, Roger J; Slavin, James A; Zuber, Maria T

    2008-07-04

    In January 2008, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft became the first probe to fly past the planet Mercury in 33 years. The encounter revealed that Mercury is a dynamic system; its liquid iron-rich outer core is coupled through a dominantly dipolar magnetic field to the surface, exosphere, and magnetosphere, all of which interact with the solar wind. MESSENGER images confirm that lobate scarps are the dominant tectonic landform and record global contraction associated with cooling of the planet. The history of contraction can be related to the history of volcanism and cratering, and the total contractional strain is at least one-third greater than inferred from Mariner 10 images. On the basis of measurements of thermal neutrons made during the flyby, the average abundance of iron in Mercury's surface material is less than 6% by weight.

  19. Color Image of Mercury from NASA's MESSENGER Satellite

    NASA Image and Video Library

    2017-12-08

    NASA image acquired September 3, 2011 Dominici crater, the very bright crater to the top of this image, exhibits bright rays and contains hollows. This crater lies upon the peak ring of Homer Basin, a very degraded peak ring basin that has been filled by volcanism. This image contains several examples of craters that have excavated materials from depth that are spectrally distinct from the surface volcanic layers, providing windows into the subsurface. MESSENGER scientists are estimating the approximate depths of these spectrally distinct materials by applying knowledge of how impacts excavate material during the cratering process. The 1000, 750, and 430 nm bands of the Wide Angle Camera are displayed in red, green, and blue, respectively. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 250-meter/pixel (820 feet/pixel) morphology base map or the 1-kilometer/pixel (0.6 miles/pixel) color base map. It is not possible to cover all of Mercury's surface at this high resolution during MESSENGER's one-year mission, but several areas of high scientific interest are generally imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MDIS is scheduled to acquire more than 75,000 images in support of MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System

  20. MESSENGER Reveals Mercury in New Detail

    NASA Image and Video Library

    2008-01-16

    As NASA MESSENGER approached Mercury on January 14, 2008, the spacecraft Narrow-Angle Camera on the Mercury Dual Imaging System MDIS instrument captured this view of the planet rugged, cratered landscape illuminated obliquely by the Sun.

  1. Astronomy's New Messengers: A traveling exhibit to reach out to a young adult audience

    NASA Astrophysics Data System (ADS)

    Cavaglià, Marco; Hendry, Martin; Márka, Szabolcs; Reitze, David H.; Riles, Keith

    2010-05-01

    The Laser Interferometer Gravitational-wave Observatory exhibit Astronomy's New Messengers: Listening to the Universe with Gravitational Waves is traveling to colleges, universities, museums and other public institutions throughout the United States. In 2010, an extended version of this exhibit will appear in a New York City venue that is accessible to a large and diverse cross section of the general public. Astronomy's New Messengers primarily communicates with an adolescent and young adult audience, potentially inspiring them into the field of science. Acknowledging that this audience is traditionally a difficult one to attract, the exhibit publicly announces itself in a charismatic fashion to reach its principal goals of broadening the community of people interested in science and encouraging interest in science among young people.

  2. Mercury's Na Exosphere from MESSENGER Data

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Burger, M. H.; Cassidy, T. A.; Sarantos, M.; Vervack, R. J.; McClintock, W. El; Merkel, A. W.; Sprague, A. L.; Solomon, S. C.

    2012-01-01

    MESSENGER entered orbit about Mercury on March 18, 2011. Since then, the Ultraviolet and Visible Spectrometer (UWS) channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) has been observing Mercury's exosphere nearly continuously. Daily measurements of Na brightness were fitted with non-uniform exospheric models. With Monte Carlo sampling we traced the trajectories of a representative number of test particles, generally one million per run per source process, until photoionization, escape from the gravitational well, or permanent sticking at the surface removed the atom from the simulation. Atoms were assumed to partially thermally accommodate on each encounter with the surface with accommodation coefficient 0.25. Runs for different assumed source processes are run separately, scaled and co-added. Once these model results were saved onto a 3D grid, we ran lines of sight from the MESSENGER spacecraft :0 infinity using the SPICE kernels and we computed brightness integrals. Note that only particles that contribute to the measurement can be constrained with our method. Atoms and molecules produced on the nightside must escape the shadow in order to scatter light if the excitation process is resonant-light scattering, as assumed here. The aggregate distribution of Na atoms fits a 1200 K gas, with a PSD distribution, along with a hotter component. Our models constrain the hot component, assumed to be impact vaporization, to be emitted with a 2500 K Maxwellian. Most orbits show a dawnside enhancement in the hot component broadly spread over the leading hemisphere. However, on some dates there is no dawn/dusk asymmetry. The portion of the hot/cold source appears to be highly variable.

  3. Tomographic Reconstruction of Mercury's Exosphere from MESSENGER Flyby Data

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; McClintock, William E.; Slavin, James A.; Solomon, Sean C.; Vervack, Ronald J., Jr.

    2011-01-01

    The exosphere of Mercury is among the best-studied examples of a common type of atmosphere, a surface-bounded exosphere. Mercury's exosphere was probed in 2008-2009 with Ultraviolet and Visible Spectrometer (UVVS) measurements obtained during three planetary flybys by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft [1-3]. The measurements detailed the distribution of two previously known metallic constituents of Mercury's exosphere, Na and Ca, and indicated the presence in the gas phase of yet another metallic species, Mg. Such measurements can answer fundamental scientific questions regarding the relative importance of possible source and loss processes for exospheric species ejected from a surface boundary [4]. The trajectory of MESSENGER during the last of its three flybys provided the best spatial coverage prior to orbit insertion. The measurements by MESSENGER of Na, Ca, and Mg during the third flyby have been analyzed with a novel tomographic method. This approach maximizes the amount of information that can be extracted from line-of-sight measurements because it yields three-dimensional distributions of neutrals consistent with the data.

  4. Attitude Sensor and Gyro Calibration for Messenger

    NASA Technical Reports Server (NTRS)

    O'Shaughnessy, Daniel; Pittelkau, Mark E.

    2007-01-01

    The Redundant Inertial Measurement Unit Attitude Determination/Calibration (RADICAL(TM)) filter was used to estimate star tracker and gyro calibration parameters using MESSENGER telemetry data from three calibration events. We present an overview of the MESSENGER attitude sensors and their configuration is given, the calibration maneuvers are described, the results are compared with previous calibrations, and variations and trends in the estimated calibration parameters are examined. The warm restart and covariance bump features of the RADICAL(TM) filter were used to estimate calibration parameters from two disjoint telemetry streams. Results show that the calibration parameters converge faster with much less transient variation during convergence than when the filter is cold-started at the start of each telemetry stream.

  5. Water avoidance stress induces frequency through cyclooxygenase-2 expression: a bladder rat model.

    PubMed

    Yamamoto, Keisuke; Takao, Tetsuya; Nakayama, Jiro; Kiuchi, Hiroshi; Okuda, Hidenobu; Fukuhara, Shinichiro; Yoshioka, Iwao; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Tsujimura, Akira; Nonomura, Norio

    2012-02-01

    Water avoidance stress is a potent psychological stressor and it is associated with visceral hyperalgesia, which shows degeneration of the urothelial layer mimicking interstitial cystitis. Cyclooxygenase-2 inhibitors have been recognized to ameliorate frequency both in clinical and experimental settings. We investigated the voiding pattern and cyclooxygenase-2 expression in a rat bladder model of water avoidance stress. After being subjected to water avoidance stress or a sham procedure, rats underwent metabolic cage analysis and cystometrography. Real time reverse transcription polymerase chain reaction was carried out to examine cyclooxygenase-2 messenger ribonucleic acid in bladders of rats. Protein expression of cyclooxygenase-2 was analyzed with immunohistochemistry and western blotting. Furthermore, the effects of the cyclooxygenase-2 inhibitor, etodolac, were investigated by carrying out cystometrography, immunohistochemistry and western blotting. Metabolic cage analysis and cystometrography showed significantly shorter intervals and less volume of voiding in water avoidance stress rats. Significantly higher expression of cyclooxygenase-2 messenger ribonucleic acid was verified by reverse transcription polymerase chain reaction. Immunohistochemistry and western blotting showed significantly higher cyclooxygenase-2 protein levels in water avoidance stress bladders. Furthermore, immunohistochemistry showed high cyclooxygenase-2 expression exclusively in smooth muscle cells. All water avoidance stress-induced changes were reduced by cyclooxygenase-2 inhibitor pretreatment. Chronic stress might cause frequency through cyclooxygenase-2 gene upregulation in bladder smooth muscle cells. Further study of cyclooxygenase-2 in the water avoidance stress bladder might provide novel therapeutic modalities for interstitial cystitis. © 2011 The Japanese Urological Association.

  6. Intercultural Learning via Instant Messenger Interaction

    ERIC Educational Resources Information Center

    Jin, Li; Erben, Tony

    2007-01-01

    This paper reports on a qualitative study investigating the viability of instant messenger (IM) interaction to facilitate intercultural learning in a foreign language class. Eight students in a Chinese as a foreign language (CFL) class participated in the study. Each student was paired with a native speaker (NS) of Chinese, and each pair…

  7. Mercury-arc photolysis: a method for examining second messenger regulation of endothelial cell monolayer integrity.

    PubMed

    Patton, W F; Alexander, J S; Dodge, A B; Patton, R J; Hechtman, H B; Shepro, D

    1991-07-01

    Cell-cell apposition in bovine pulmonary endothelial cell monolayers was modulated by inducing transient increases in intracellular adenosine 3':5'-cyclic monophosphate (cAMP) and 1,4,5-inositol triphosphate (IP3). This was accomplished by mercury-arc flash photolysis of o-nitrobenzyl derivatives of the second messengers (caged compounds). Second messenger release by the mercury-arc lamp was determined by radioimmunoassay of cAMP to have a t1/2 of approximately 8 min. Each second messenger induced the phosphorylation of a distinct subset of cytoskeletal proteins; however, both IP3 and cAMP increased vimentin phosphorylation. Actin isoform patterns were not altered by the second messengers. Intracellular pulses of IP3 in pulmonary endothelial cells caused disruption of endothelial monolayer integrity as determined by phase-contrast microscopy and by visualization of actin stress fibers with rhodamine-phalloidin. Intracellular pulses of cAMP increased cell-cell contact, cell surface area, and apposition. IP3 appeared to have its greatest effect on the actin peripheral band. In silicone rubber contractility assays this agent caused contraction of pulmonary microvascular endothelial cells as visualized by an increase in wrinkles beneath the cells. On the other hand, cAMP appeared to effect both the peripheral band and centralized actin domains. Caged cAMP caused relaxation of endothelial cells as visualized by a disappearance of wrinkles beneath the cells.

  8. 12 CFR 7.1012 - Messenger service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... service” means any service, such as a courier service or armored car service, used by a national bank and... service do not advertise, or otherwise represent, that the bank itself is providing the service, although the bank may advertise that its customers may use one or more third party messenger services to...

  9. Mechanical forces and their second messengers in stimulating cell growth in vitro

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1992-01-01

    Mechanical forces play an important role in modulating the growth of a number of different tissues including skeletal muscle, smooth muscle, cardiac muscle, bone, endothelium, epithelium, and lung. As interest increases in the molecular mechanisms by which mechanical forces are transduced into growth alterations, model systems are being developed to study these processes in tissue culture. This paper reviews the current methods available for mechanically stimulating tissue cultured cells. It then outlines some of the putative 'mechanogenic' second messengers involved in altering cell growth. Not surprisingly, many mechanogenic second messengers are the same as those involved in growth factor-induced cell growth. It is hypothesized that from an evolutionary standpoint, some second messenger systems may have initially evolved for unicellular organisms to respond to physical forces such as gravity and mechanical perturbation in their environment. As multicellular organisms came into existence, they appropriated these mechanogenic second messenger cascades for cellular regulation by growth factors.

  10. Structure, dynamics and RNA binding of the multi-domain splicing factor TIA-1

    PubMed Central

    Wang, Iren; Hennig, Janosch; Jagtap, Pravin Kumar Ankush; Sonntag, Miriam; Valcárcel, Juan; Sattler, Michael

    2014-01-01

    Alternative pre-messenger ribonucleic acid (pre-mRNA) splicing is an essential process in eukaryotic gene regulation. The T-cell intracellular antigen-1 (TIA-1) is an apoptosis-promoting factor that modulates alternative splicing of transcripts, including the pre-mRNA encoding the membrane receptor Fas. TIA-1 is a multi-domain ribonucleic acid (RNA) binding protein that recognizes poly-uridine tract RNA sequences to facilitate 5′ splice site recognition by the U1 small nuclear ribonucleoprotein (snRNP). Here, we characterize the RNA interaction and conformational dynamics of TIA-1 by nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC) and small angle X-ray scattering (SAXS). Our NMR-derived solution structure of TIA-1 RRM2–RRM3 (RRM2,3) reveals that RRM2 adopts a canonical RNA recognition motif (RRM) fold, while RRM3 is preceded by an non-canonical helix α0. NMR and SAXS data show that all three RRMs are largely independent structural modules in the absence of RNA, while RNA binding induces a compact arrangement. RRM2,3 binds to pyrimidine-rich FAS pre-mRNA or poly-uridine (U9) RNA with nanomolar affinities. RRM1 has little intrinsic RNA binding affinity and does not strongly contribute to RNA binding in the context of RRM1,2,3. Our data unravel the role of binding avidity and the contributions of the TIA-1 RRMs for recognition of pyrimidine-rich RNAs. PMID:24682828

  11. MESSENGER Orbital Observations of Mercury's Hydrogen Exosphere

    NASA Astrophysics Data System (ADS)

    Vervack, R. J.; Hurley, D. M.; Pryor, W.; Killen, R. M.

    2018-05-01

    We present a complete analysis of the MESSENGER H Lyman alpha altitude profiles. These data confirm the two-temperature nature of the Mariner 10 observations of H and address long-outstanding questions on the origin of Mercury's H exosphere.

  12. Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers

    PubMed Central

    Gründling, Angelika; Jenal, Urs; Ryan, Robert; Yildiz, Fitnat

    2015-01-01

    The first International Symposium on c-Di-GMP Signaling in Bacteria (22 to 25 March 2015, Harnack-Haus, Berlin, Germany) brought together 131 molecular microbiologists from 17 countries to discuss recent progress in our knowledge of bacterial nucleotide second messenger signaling. While the focus was on signal input, synthesis, degradation, and the striking diversity of the modes of action of the current second messenger paradigm, i.e., cyclic di-GMP (c-di-GMP), “classics” like cAMP and (p)ppGpp were also presented, in novel facets, and more recent “newcomers,” such as c-di-AMP and c-AMP-GMP, made an impressive appearance. A number of clear trends emerged during the 30 talks, on the 71 posters, and in the lively discussions, including (i) c-di-GMP control of the activities of various ATPases and phosphorylation cascades, (ii) extensive cross talk between c-di-GMP and other nucleotide second messenger signaling pathways, and (iii) a stunning number of novel effectors for nucleotide second messengers that surprisingly include some long-known master regulators of developmental pathways. Overall, the conference made it amply clear that second messenger signaling is currently one of the most dynamic fields within molecular microbiology, with major impacts in research fields ranging from human health to microbial ecology. PMID:26055111

  13. Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems.

    PubMed Central

    Robb, S; Cheek, T R; Hannan, F L; Hall, L M; Midgley, J M; Evans, P D

    1994-01-01

    A cloned seven transmembrane-spanning Drosophila octopamine/tyramine receptor, permanently expressed in a Chinese hamster ovary cell line, both inhibits adenylate cyclase activity and leads to the elevation of intracellular Ca2+ levels by separate G-protein-coupled pathways. Agonists of this receptor (octopamine and tyramine), differing by only a single hydroxyl group in their side chain, may be capable of differentially coupling it to different second messenger systems. Thus, a single receptor may have a different pharmacological profile depending on which second messenger system is used to assay its efficacy. PMID:8137817

  14. [Irisin: a messenger from the gods?].

    PubMed

    Moreno, María; Moreno-Navarrete, José María; Fernández-Real, José Manuel

    2014-01-01

    Due to the need to understand the basis of the metabolic benefits of exercise, irisin was discovered a few years ago. This cytokine, secreted by skeletal muscle due to exercise, should have positive effects on energetic metabolism. In particular, it could act as a messenger on white adipose tissue, modifying its phenotype into the beige adipocyte, and increasing its thermogenic capacity. Since it was described, there have been numerous studies led to depict its function, with the aim of determining if irisin could become a therapeutic target in the context of diseases associated with a caloric excess, such as obesity and diabetes. In this review, the irisin discovery is summarized, along with its in vitro and in vivo effects described up until now. Copyright © 2013 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  15. The Gravity Field of Mercury After the Messenger Low-Altitude Campaign

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Smith, David E.; Zuber, Maria T.; Neumann, Gary A.; Solomon, Sean C.

    2015-01-01

    The final year of the MESSENGER mission was designed to take advantage of the remaining propellant onboard to provide a series of lowaltitude observation campaigns and acquire novel scientific data about the innermost planet. The lower periapsis altitude greatly enhances the sensitivity to the short-wavelength gravity field, but only when the spacecraft is in view of Earth. After more than 3 years in orbit around Mercury, the MESSENGER spacecraft was tracked for the first time below 200-km altitude on 5 May 2014 by the NASA Deep Space Network (DSN). Between August and October, periapsis passages down to 25-km altitude were routinely tracked. These periods considerably improved the quality of the data coverage. Before the end of its mission, MESSENGER will fly at very low altitudes for extended periods of time. Given the orbital geometry, however the periapses will not be visible from Earth and so no new tracking data will be available for altitudes lower than 75 km. Nevertheless, the continuous tracking of MESSENGER in the northern hemisphere will help improve the uniformity of the spatial coverage at altitudes lower than 150 km, which will further improve the overall quality of the Mercury gravity field.

  16. Details of MESSENGER Impact Location

    NASA Image and Video Library

    2015-04-29

    These graphics show the current best prediction of the location and time of NASA MESSENGER impact on Mercury surface. These current best estimates are: Date: 30 April 2015 Time: 3:26:02 pm EDT 19:26:02 UTC Latitude: 54.4° N Longitude: 210.1° E. Traveling at 3.91 kilometers per second (over 8,700 miles per hour), the MESSENGER spacecraft will collide with Mercury's surface, creating a crater estimated to be 16 meters (52 feet) in diameter. View this image to learn about the named features and geology of this region on Mercury. Instruments: Mercury Dual Imaging System (MDIS) and Mercury Laser Altimeter (MLA) Top Image Latitude Range: 49°-59° N Top Image Longitude Range: 204°-217° E Topography in Top Image: Exaggerated by a factor of 5.5. Colors in Top Image: Coded by topography. The tallest regions are colored red and are roughly 3 kilometers (1.9 miles) higher than low-lying areas such as the floors of impact craters, colored blue. Scale in Top Image: The large crater on the left side of the image is Janacek, with a diameter of 48 kilometers (30 miles) http://photojournal.jpl.nasa.gov/catalog/PIA19443

  17. Comparing Strategies for Health Information Dissemination: Messengers That Can Help or Hinder.

    PubMed

    Fishman, Jessica; Greenberg, Patricia; Bagga, Margy Barbieri; Casarett, David; Propert, Kathleen

    2018-05-01

    To test the effects of different messengers on the dissemination of health information. An experimental study exposed participants to 12 news articles pertaining to 1 of 3 health topics framed from the perspective of 4 generic messengers: religious figures, doctors, celebrity patients, or ordinary patients. Participants select as many of the 12 articles as desired. A cancer clinic within a large, urban hospital serving a sociodemographically diverse patient population. Eighty-nine patients with a history of cancer. The primary outcome was the frequency with which each news story was selected. Summary statistics and a general estimating equation model. For each health topic, news articles using celebrity messengers were the least likely to be selected; almost half of the participants (36 [41.4%] of 87) rejected all such articles. Articles linked to religious figures were equally unpopular ( P = .59). Articles that used doctors or ordinary patients as the messenger were very likely to be selected: Nearly all women (84 [96.6%] of 87) selected at least one of these. Furthermore, the odds of choosing articles linked to celebrities or religious leaders were statistically significantly lower than the odds of choosing those linked to ordinary patients or doctors ( P < .01). Commonly used generic messengers had large effects on the dissemination of information. Health materials linked to celebrities or religious figures were consistently less likely to be selected than those linked to ordinary patients, or doctors.

  18. Anti-inflammatory effect of linear polarized infrared irradiation on interleukin-1beta-induced chemokine production in MH7A rheumatoid synovial cells.

    PubMed

    Shibata, Yasuko; Ogura, Naomi; Yamashiro, Keisuke; Takashiba, Shogo; Kondoh, Toshirou; Miyazawa, Keiji; Matsui, Masaru; Abiko, Yoshimitsu

    2005-12-01

    We examined the anti-inflammatory effect of infrared linear polarized light irradiation on the MH7A rheumatoid fibroblast-like synoviocytes (FLS) stimulated with the proinflammatory cytokine interleukin (IL)-1beta. Expression of messenger ribonucleic acids (mRNAs) encoding IL-8, RANTES (regulated upon activation, normal T cell expressed and secreted), growth-related gene alpha (GROalpha), and macrophage inflammatory protein-1alpha (MIP1alpha) was measured using real-time reverse transcription polymerase chain reaction, and the secreted proteins were measured in the conditioned media using enzyme-linked immunosorbent assays. We found that irradiation with linear polarized infrared light suppressed IL-1beta-induced expression of IL-8 mRNA and, correspondingly, the synthesis and release of IL-8 protein in MH7A cells. This anti-inflammatory effect was equivalent to that obtained with the glucocorticoid dexamethasone. Likewise, irradiation suppressed the IL-1beta-induced expression of RANTES and GROalpha mRNA. These results suggest that the irradiation of the areas around the articular surfaces of joints affected by rheumatoid arthritis (RA) using linear polarized light may represent a useful new approach to treatment.

  19. Is the Pharmacological Mode of Action of Chromium(III) as a Second Messenger?

    PubMed

    Vincent, John B

    2015-07-01

    Although recent studies have shown that chromium (as the trivalent ion) is not an essential trace element, it has been demonstrated to generate beneficial effects at pharmacologically relevant doses on insulin sensitivity and cholesterol levels of rodent models of insulin insensitivity, including models of type 2 diabetes. The mode of action of Cr(III) at a molecular level is still an area of active debate; however, the movement of Cr(III) in the body, particularly in response to changes in insulin concentration, suggests that Cr(III) could act as a second messenger, amplifying insulin signaling. The evidence for the pharmacological mechanism of Cr(III)'s ability to increase insulin sensitivity by acting as a second messenger is reviewed, and proposals for testing this hypothesis are described.

  20. In Vitro Product of a Ribonucleic Acid Polymerase Induced by Influenza Virus

    PubMed Central

    Mahy, B. W. J.; Bromley, P. A.

    1970-01-01

    The ribonucleic acid (RNA)-dependent RNA polymerase induced in the microsomal fraction of cells infected with influenza virus synthesized a mixture of single-and double-stranded RNA in vitro. The single-stranded RNA sedimented mainly in the 8S region on sucrose density gradients, with a smaller proportion of the RNA sedimenting at 18S. This sedimentation pattern corresponds closely to that of incomplete influenza virus RNA. The double-stranded RNA formed in vitro sedimented at 11S, but molecules which may be replicative intermediate, sedimenting at 14 to 20S, were also detected in the in vitro reaction product. Similar species of RNA were detected in vivo by pulse-labeling infected cells at the time of polymerase harvest, but the proportion of each RNA species was different, most of the RNA being single-stranded and sedimenting in the 18S region. An 11S double-stranded RNA was also synthesized in vivo. Pulse chase analysis of the double-stranded RNA synthesized in vitro showed that most is stable, and only a small proportion turns over during the reaction. A proportion of the RNA formed in vitro could be annealed to RNA formed in infected cells and to RNA extracted from purified virus. PMID:5480408

  1. Localization and physical mapping of genes encoding the A+U-rich element RNA-binding protein AUF1 to human chromosomes 4 and X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, B.J.; Long, L.; Pettenati, M.J.

    Messenger RNAs encoding many oncoproteins and cytokines are relatively unstable. Their instability, which ensures appropriate levels and timing of expression, is controlled in part by proteins that bind to A + U-rich instability elements (AREs) present in the 3{prime}-untranslated regions of the mRNAs. cDNAs encoding the AUF1 family of ARE-binding proteins were cloned from human and murine cDNA libraries. In the present study monochromosomal somatic cell hybrids were used to localize two AUF1 loci to human chromosomes 4 and X. In situ hybridization analyses using P1 clones as probes identified the 4q21.1-q21.2 and Xq12 regions as the locations of themore » AUF1 genes. 10 refs., 2 figs.« less

  2. Control of a Salmonella virulence locus by an ATP-sensing leader messenger RNA.

    PubMed

    Lee, Eun-Jin; Groisman, Eduardo A

    2012-06-13

    The facultative intracellular pathogen Salmonella enterica resides within a membrane-bound compartment inside macrophages. This compartment must be acidified for Salmonella to survive within macrophages, possibly because acidic pH promotes expression of Salmonella virulence proteins. We reasoned that Salmonella might sense its surroundings have turned acidic not only upon protonation of the extracytoplasmic domain of a protein sensor but also by an increase in cytosolic ATP levels, because conditions that enhance the proton gradient across the bacterial inner membrane stimulate ATP synthesis. Here we report that an increase in cytosolic ATP promotes transcription of the coding region for the virulence gene mgtC, which is the most highly induced horizontally acquired gene when Salmonella is inside macrophages. This transcript is induced both upon media acidification and by physiological conditions that increase ATP levels independently of acidification. ATP is sensed by the coupling/uncoupling of transcription of the unusually long mgtC leader messenger RNA and translation of a short open reading frame located in this region. A mutation in the mgtC leader messenger RNA that eliminates the response to ATP hinders mgtC expression inside macrophages and attenuates Salmonella virulence in mice. Our results define a singular example of an ATP-sensing leader messenger RNA. Moreover, they indicate that pathogens can interpret extracellular cues by the impact they have on cellular metabolites.

  3. Multi-Messenger Astronomy and Dark Matter

    NASA Astrophysics Data System (ADS)

    Bergström, Lars

    This chapter presents the elaborated lecture notes on Multi-Messenger Astronomy and Dark Matter given by Lars Bergström at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". One of the main problems of astrophysics and astro-particle physics is that the nature of dark matter remains unsolved. There are basically three complementary approaches to try to solve this problem. One is the detection of new particles with accelerators, the second is the observation of various types of messengers from radio waves to gamma-ray photons and neutrinos, and the third is the use of ingenious experiments for direct detection of dark matter particles. After giving an introduction to the particle universe, the author discusses the relic density of particles, basic cross sections for neutrinos and gamma-rays, supersymmetric dark matter, detection methods for neutralino dark matter, particular dark matter candidates, the status of dark matter detection, a detailled calculation on an hypothetical "Saas-Fee Wimp", primordial black holes, and gravitational waves.

  4. Selective probing of mRNA expression levels within a living cell.

    PubMed

    Nawarathna, D; Turan, T; Wickramasinghe, H Kumar

    2009-08-24

    We report on a selective and nondestructive measurement of mRNA (messenger ribonucleic acid) expression levels within a living cell. We first modify an atomic force microscope tip to create a tapered nanoscale coaxial cable. Application of an ac (alternating potential) between the inner and outer electrodes of this cable creates a dielectrophoretic force attracting mRNA molecules toward the tip-end which is pretreated with gene specific primers. We selectively extracted and analyzed both high ( approximately 2500) and extremely low (11 0) copy number mRNA from a living cell mRNA in less than 10 s.

  5. Selective probing of mRNA expression levels within a living cell

    PubMed Central

    Nawarathna, D.; Turan, T.; Wickramasinghe, H. Kumar

    2009-01-01

    We report on a selective and nondestructive measurement of mRNA (messenger ribonucleic acid) expression levels within a living cell. We first modify an atomic force microscope tip to create a tapered nanoscale coaxial cable. Application of an ac (alternating potential) between the inner and outer electrodes of this cable creates a dielectrophoretic force attracting mRNA molecules toward the tip-end which is pretreated with gene specific primers. We selectively extracted and analyzed both high (∼2500) and extremely low (11¯0) copy number mRNA from a living cell mRNA in less than 10 s. PMID:19777090

  6. Evaluation of the reversal of multidrug resistance by MDR1 ribonucleic acid interference in a human colon cancer model using a Renilla luciferase reporter gene and coelenterazine.

    PubMed

    Jeon, Yong Hyun; Bae, Seon-ae; Lee, Yong Jin; Lee, You La; Lee, Sang-Woo; Yoon, Ghil-Suk; Ahn, Byeong-Cheol; Ha, Jeoung-Hee; Lee, Jaetae

    2010-12-01

    The reversal effect of multidrug resistance (MDR1) gene expression by adenoviral vector-mediated MDR1 ribonucleic acid interference was assessed in a human colon cancer animal model using bioluminescent imaging with Renilla luciferase (Rluc) gene and coelenterazine, a substrate for Rluc or MDR1 gene expression. A fluorescent microscopic examination demonstrated an increased green fluorescent protein signal in Ad-shMDR1- (recombinant adenovirus that coexpressed MDR1 small hairpin ribonucleic acid [shRNA] and green fluorescent protein) infected HCT-15/Rluc cells in a virus dose-dependent manner. Concurrently, with an increasing administered virus dose (0, 15, 30, 60, and 120 multiplicity of infection), Rluc activity was significantly increased in Ad-shMDR1-infected HCT-15/Rluc cells in a virus dose-dependent manner. In vivo bioluminescent imaging showed about 7.5-fold higher signal intensity in Ad-shMDR1-infected tumors than in control tumors (p < .05). Immunohistologic analysis demonstrated marked reduction of P-glycoprotein expression in infected tumor but not in control tumor. In conclusion, the reversal of MDR1 gene expression by MDR1 shRNA was successfully evaluated by bioluminescence imaging with Rluc activity using an in vivo animal model with a multidrug resistance cancer xenograft.

  7. Reprogramming human umbilical cord mesenchymal stromal cells to islet-like cells with the use of in vitro-synthesized pancreatic-duodenal homebox 1 messenger RNA.

    PubMed

    Wang, Xiao Li; Hu, Pei; Guo, Xing Rong; Yan, Ding; Yuan, Yahong; Yan, Shi Rong; Li, Dong Sheng

    2014-11-01

    Human umbilical cord mesenchymal stromal cells (hUC-MSCs) hold great potential as a therapeutic candidate to treat diabetes, owing to their unlimited source and ready availability. In this study, we differentiated hUC-MSCs with in vitro-synthesized pancreatic-duodenal homebox 1 (PDX1) messenger (m)RNA into islet-like cell clusters. hUC-MSCs were confirmed by both biomarker detection and functional differentiation. In vitro-synthesized PDX1 messenger RNA can be transfected into hUC-MSCs efficiently. The upregulated expression of PDX1 protein can be detected 4 h after transfection and remains detectable for 36 h. The induction of islet-like structures was confirmed by means of morphology and dithizone staining. Reverse transcriptase-polymerase chain reaction results revealed the expression of some key pancreatic transcription factors, such as PDX1, NeuroD, NKX6.1, Glut-2 and insulin in islet-like cell clusters. Immunofluorescence analysis showed that differentiated cells express both insulin and C-peptide. Enzyme-linked immunosorbent assay analysis validated the insulin secretion of islet-like cell clusters in response to the glucose stimulation. Our results demonstrate the use of in vitro-synthesized PDX1 messenger RNA to differentiate hUC-MSCs into islet-like cells and pave the way toward the development of reprogramming and directed-differentiation methods for the expression of encoded proteins. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. WhatsApp Messenger as an Adjunctive Tool for Telemedicine: An Overview

    PubMed Central

    2017-01-01

    Background The advent of telemedicine has allowed physicians to deliver medical treatment to patients from a distance. Mobile apps such as WhatsApp Messenger, an instant messaging service, came as a novel concept in all fields of social life, including medicine. The use of instant messaging services has been shown to improve communication within medical teams by providing means for quick teleconsultation, information sharing, and starting treatment as soon as possible. Objective The aim of this study was to perform a comprehensive systematic review of present literature on the use of the WhatsApp Messenger app as an adjunctive health care tool for medical doctors. Methods Searches were performed in PubMed, EMBASE, and the Cochrane Library using the term “whatsapp*” in articles published before January 2016. A bibliography of all relevant original articles that used the WhatsApp Messenger app was created. The level of evidence of each study was determined according to the Oxford Levels of Evidence ranking system produced by the Oxford Centre for Evidence-Based Medicine. The impact and the indications of WhatsApp Messenger are discussed in order to understand the extent to which this app currently functions as an adjunctive tool for telemedicine. Results The database search identified a total of 30 studies in which the term “whatsapp*” was used. Each article’s list of references was evaluated item-by-item. After literature reviews, letters to the editor, and low-quality studies were excluded, a total of 10 studies were found to be eligible for inclusion. Of these studies, 9 had been published in the English language and 1 had been published in Spanish. Five were published by medical doctors. Conclusions The pooled data presents compelling evidence that the WhatsApp Messenger app is a promising system, whether used as a communication tool between health care professionals, as a means of communication between health care professionals and the general public

  9. WhatsApp Messenger as an Adjunctive Tool for Telemedicine: An Overview.

    PubMed

    Giordano, Vincenzo; Koch, Hilton; Godoy-Santos, Alexandre; Dias Belangero, William; Esteves Santos Pires, Robinson; Labronici, Pedro

    2017-07-21

    The advent of telemedicine has allowed physicians to deliver medical treatment to patients from a distance. Mobile apps such as WhatsApp Messenger, an instant messaging service, came as a novel concept in all fields of social life, including medicine. The use of instant messaging services has been shown to improve communication within medical teams by providing means for quick teleconsultation, information sharing, and starting treatment as soon as possible. The aim of this study was to perform a comprehensive systematic review of present literature on the use of the WhatsApp Messenger app as an adjunctive health care tool for medical doctors. Searches were performed in PubMed, EMBASE, and the Cochrane Library using the term "whatsapp*" in articles published before January 2016. A bibliography of all relevant original articles that used the WhatsApp Messenger app was created. The level of evidence of each study was determined according to the Oxford Levels of Evidence ranking system produced by the Oxford Centre for Evidence-Based Medicine. The impact and the indications of WhatsApp Messenger are discussed in order to understand the extent to which this app currently functions as an adjunctive tool for telemedicine. The database search identified a total of 30 studies in which the term "whatsapp*" was used. Each article's list of references was evaluated item-by-item. After literature reviews, letters to the editor, and low-quality studies were excluded, a total of 10 studies were found to be eligible for inclusion. Of these studies, 9 had been published in the English language and 1 had been published in Spanish. Five were published by medical doctors. The pooled data presents compelling evidence that the WhatsApp Messenger app is a promising system, whether used as a communication tool between health care professionals, as a means of communication between health care professionals and the general public, or as a learning tool for providing health care information

  10. Audience and Witnessing: Research into Dramatherapy using Vignettes and aMSN Messenger

    ERIC Educational Resources Information Center

    Jones, Phil

    2008-01-01

    This article describes the process of research undertaken to examine therapists' responses to the concept of the core processes of change in dramatherapy. The research uses a combination of vignette description and analysis using aMSN messenger. The article describes the theoretical underpinning and rationale to the approach, and the…

  11. Global Distribution of Mercury's Neutrals from MESSENGER Measurements Combined with a Tomographic Method

    NASA Technical Reports Server (NTRS)

    Sarantos, Menelaos; McClintock, Bill; Vervack, Ron, Jr.; Killen, Rosemary; Merkel, Aimee; Slavin, James; Solomon, Sean C.

    2011-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft entered orbit about Mercury on March 18, 2011. Since then, the Ultraviolet and Visible Spectrometer (UVVS) onboard this spacecraft has been observing Mercury's collisionless exosphere. We present measurements by MESSENGER UVVS of the sodium, calcium, and magnesium distributions that were obtained during multiple passes through the tail over a period of one month. Global maps of the exosphere were constructed daily from such measurements using a recently developed tomographic technique. During this period, Mercury moved towards the Sun from being about 0.44 astronomical units (AU) to approximately 0.32 AU from the Sun. Hence, our reconstructions provide information about the three-dimensional structure of the exosphere, the source processes for these species, and their dependence with orbital distance during the entire in-leg of Mercury's orbit.

  12. Effects of the foliar-applied protein "Harpin(Ea)" (messenger) on tomatoes infected with Phytophthora infestans.

    PubMed

    Fontanilla, M; Montes, M; De Prado, R

    2005-01-01

    The active ingredient in Messenger, is Harpin(Ea), a naturally occurring protein derived from Erwinia amylovora, a causal agent of fire blight. When Messenger is applied to a plant, the protein Harpin(Ea) binds foliar receptors to it. The receptors recognize the presence of Harpin(Ea), sending a signal that a pathogen is present, actually "tricking" the plant into thinking that it is under attack. This binding process triggers a cascade of responses affecting a global change of gene expressions, stimulating several distinct biochemical pathways within the plant responsible for growth and disease and insect resistance. The objective of this work is to characterize the development of an induced resistance against Phytophthora infestans. No effective treatment is currently available against this pathogenic agent, which causes the loss of complete harvests of different crops. Tomato plants with and without Messenger applications were inoculated with Phytophthora infestans in the same way. In addition, some plants with and without Messenger applications were not inoculated. Inoculated plants were symptomatologically checked for local and systemic symptoms. Evaluations of the number of tomatoes produced, with or without damage, and their growth, were also carried out. Based on the data obtained from the assays, significant changes were observed in the parameters measured due to Messenger treatment. The severe damage of this disease was reduced in the plants which received Messenger applications. These results open up new pathways in the control of diseases like Phytophthora infestans, in which effective means to combat them still do not exist, or these means are harmful to the environment.

  13. Realising effective theories of tribrid inflation: are there effects from messenger fields?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antusch, Stefan; Max-Planck-Institut für Physik; Nolde, David

    2015-09-22

    Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUTmore » and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.« less

  14. Realising effective theories of tribrid inflation: are there effects from messenger fields?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antusch, Stefan; Nolde, David, E-mail: stefan.antusch@unibas.ch, E-mail: david.nolde@unibas.ch

    2015-09-01

    Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUTmore » and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.« less

  15. Realising effective theories of tribrid inflation: are there effects from messenger fields?

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Nolde, David

    2015-09-01

    Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.

  16. Brain clock driven by neuropeptides and second messengers

    NASA Astrophysics Data System (ADS)

    Miro-Bueno, Jesus; Sosík, Petr

    2014-09-01

    The master circadian pacemaker in mammals is localized in a small portion of the brain called the suprachiasmatic nucleus (SCN). It is unclear how the SCN produces circadian rhythms. A common interpretation is that the SCN produces oscillations through the coupling of genetic oscillators in the neurons. The coupling is effected by a network of neuropeptides and second messengers. This network is crucial for the correct function of the SCN. However, models that study a possible oscillatory behavior of the network itself have received little attention. Here we propose and analyze a model to examine this oscillatory potential. We show that an intercellular oscillator emerges in the SCN as a result of the neuropeptide and second messenger dynamics. We find that this intercellular clock can produce circadian rhythms by itself with and without genetic clocks. We also found that the model is robust to perturbation of parameters and can be entrained by light-dark cycles.

  17. Brain clock driven by neuropeptides and second messengers.

    PubMed

    Miro-Bueno, Jesus; Sosík, Petr

    2014-09-01

    The master circadian pacemaker in mammals is localized in a small portion of the brain called the suprachiasmatic nucleus (SCN). It is unclear how the SCN produces circadian rhythms. A common interpretation is that the SCN produces oscillations through the coupling of genetic oscillators in the neurons. The coupling is effected by a network of neuropeptides and second messengers. This network is crucial for the correct function of the SCN. However, models that study a possible oscillatory behavior of the network itself have received little attention. Here we propose and analyze a model to examine this oscillatory potential. We show that an intercellular oscillator emerges in the SCN as a result of the neuropeptide and second messenger dynamics. We find that this intercellular clock can produce circadian rhythms by itself with and without genetic clocks. We also found that the model is robust to perturbation of parameters and can be entrained by light-dark cycles.

  18. First observations of Mercury's plasma mantle by MESSENGER

    NASA Astrophysics Data System (ADS)

    DiBraccio, Gina A.; Slavin, James A.; Raines, Jim M.; Gershman, Daniel J.; Tracy, Patrick J.; Boardsen, Scott A.; Zurbuchen, Thomas H.; Anderson, Brian J.; Korth, Haje; McNutt, Ralph L.; Solomon, Sean C.

    2015-11-01

    We present the first observations of Mercury's plasma mantle, a primary region for solar wind entry into the planetary magnetosphere, located in the high-latitude magnetotail. MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) observations from two orbits on 10 November 2012 have been analyzed. The main plasma mantle features are (1) a steady decrease in proton density as MESSENGER moved deeper into the magnetotail; (2) frequent flux transfer events throughout the magnetosheath and into the magnetotail, suggesting that these events are the primary source for solar wind plasma injection; (3) a diamagnetic depression, due to the presence of plasma, as pressure balance is maintained; and (4) a clear proton velocity dispersion, resulting from lower-energy protons being transported deep into the magnetosphere as higher-energy protons escape downtail. From these velocity dispersions we infer cross-magnetosphere electric potentials of 23 kV and 29 kV, consistent with estimates determined from measurements of magnetopause reconnection rate and tail loading and unloading events.

  19. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Krimigis, Stamatios M.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Koehn, Patrick L.; Korth, Haje; Levi, Stefano; Mauk, Barry H.; Solomon, Sean C.; hide

    2005-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet s miniature magnetosphere since the brief flybys of Mariner 10. Mercury s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. The characteristic time scales for wave propagation and convective transport are short and kinetic and fluid modes may be coupled. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury s interior. In addition, Mercury s magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, - 1-2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury s magnetic tail. Because of Mercury s proximity to the sun, 0.3 - 0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and re-cycling of neutrals and ions between the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection at the magnetopause and in the tail, and the pick-up of planetary ions all

  20. Planetary Ions at Mercury: Unanswered Questions After MESSENGER

    NASA Astrophysics Data System (ADS)

    Raines, J. M.

    2018-05-01

    We will discuss the key open questions relating to planetary ions, including the behavior of recently created photoions, the near absence of Ca+ / K+ in MESSENGER ion measurements, and the role of ion sputtering in the system.

  1. Interferon Action on Parental Semliki Forest Virus Ribonucleic Acid

    PubMed Central

    Friedman, Robert M.; Fantes, Karl H.; Levy, Hilton B.; Carter, William B.

    1967-01-01

    Actinomycin D-treated chick fibroblasts were infected with purified 32P-labeled Semliki forest virus, and ribonucleic acid (RNA) was extracted after 1 or 2 hr. Within 1 hr, viral RNA forms sedimenting in sucrose gradients at 42S, 30S, and 16S were present. The 42S form corresponded to the RNA of the virion. The 16S form appeared to be a double-stranded template for the formation of new viral RNA, since nascent RNA was associated with it and the molecule could be heat-denatured and subsequently reannealed by slow cooling. Interferon treatment before infection, or puromycin (50 μg/ml) or cycloheximide (200 μg/ml) added at the time of virus infection, had no effect on the formation of the 30S RNA but inhibited the production of the 16S form. Several findings made it unlikely that these results were due to breakdown of parental RNA and reincorporation of 32P into progeny structures. The results suggested that the mechanism of interferon action involves inhibition of protein synthesis by parental viral RNA, since a specific viral RNA polymerase had previously been demonstrated to be necessary for production of 16S RNA. No protein synthesis appears necessary for formation of 30S RNA from parental virus RNA. PMID:5621488

  2. A Novel Route Controlling Begomovirus Resistance by the Messenger RNA Surveillance Factor Pelota

    PubMed Central

    Lapidot, Moshe; Karniel, Uri; Gelbart, Dana; Fogel, Doron; Evenor, Dalia; Kutsher, Yaarit; Makhbash, Zion; Nahon, Sahadia; Shlomo, Haviva; Chen, Lea; Reuveni, Moshe; Levin, Ilan

    2015-01-01

    Tomato yellow leaf curl virus (TYLCV) is a devastating disease of tomato (Solanum lycopersicum) that can be effectively controlled by the deployment of resistant cultivars. The TYLCV-resistant line TY172 carries a major recessive locus for TYLCV resistance, designated ty-5, on chromosome 4. In this study, the association between 27 polymorphic DNA markers, spanning the ty-5 locus, and the resistance characteristics of individual plants inoculated with TYLCV in 51 segregating recombinant populations were analyzed. These analyses localized ty-5 into a 425 bp region containing two transversions: one in the first exon of a gene encoding the tomato homolog of the messenger RNA surveillance factor Pelota (Pelo), and a second in its proximal promoter. Analyses of susceptible and resistant lines revealed that the relative transcript level of the gene remained unchanged, regardless of whether the plants were infected with TYLCV or not. This suggests that the polymorphism discovered in the coding region of the gene controls the resistance. Silencing of Pelo in a susceptible line rendered the transgenic plants highly resistant, while in the resistant line TY172 had no effect on symptom development. In addition, over-expression of the susceptible allele of the gene in the resistant TY172 line rendered it susceptible, while over-expression of the resistant allele in susceptible plants had no effect. These results confirm that Pelo is the gene controlling resistance at the ty-5 locus. Pelo, implicated in the ribosome recycling-phase of protein synthesis, offers an alternative route to promote resistance to TYLCV and other viruses. PMID:26448569

  3. Mercury's Sodium Exosphere: Observations during the MESSENGER Orbital Phase

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Cassidy, Timothy A.; Vervack, Ronald J., Jr.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos; Sprague, Ann L.; McClintock, William E.; Benna, Mehdi; Solomon, Sean C.

    2012-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft entered into orbit about Mercury on March 18,2011. We now have approximately five Mercury years of data from orbit. Prior to the MESSENGER mission, Mercury's surface-bounded exosphere was known to contain H, He, Na. K, and Ca. The Ultraviolet and Visible Spectrometer (UVVS) began routine orbital observations of both the dayside and nightside exosphere on March 29. 2011, measuring altitude profiles for all previously detected neutral species except for He and K. We focus here on what we have learned about the sodium exosphere: its spatial, seasonal, and sporadic variation. Observations to date permit delineation of the relative roles of photon-stimulated desorption (PSD) and impact vaporization (IV) from seasonal and spatial effects, as well as of the roles of ions both as sputtering agents and in their possible role to enhance the efficiency of PSD. Correlations of Mercury's neutral sodium exosphere with measurements from MESSENGER's Magnetometer (MAG) and Energetic Particle and Plasma Spectrometer (EPPS) provide insight into the roles of ions and electrons. Models incorporating MAG observations provide a basis for identifying the location and area of the surface exposed to solar wind plasma, and EPPS observations reveal episodic populations of energetic electrons in the magnetosphere and the presence of planetary He(+), 0(+), and Na(+),

  4. MESSENGER Observations of Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    2010-01-01

    During MESSENGER's second and third flybys of Mercury on October 6, 2008 and September 29, 2009, respectively, southward interplanetary magnetic field (IMF) produced intense reconnection signatures in the dayside and nightside magnetosphere and markedly different system-level responses. The IMF during the second flyby was continuously southward and the magnetosphere appeared very active, with large magnetic field components normal to the magnetopause and the generation of flux transfer events at the magnetopause and plasmoids in the tail current sheet every 30 to 90 s. However, the strength and direction of the tail magnetic field was stable. In contrast, the IMF during the third flyby varied from north to south on timescales of minutes. Although the MESSENGER measurements were limited during that encounter to the nightside magnetosphere, numerous examples of plasmoid release in the tail were detected, but they were not periodic. Instead, plasmoid release was highly correlated with four large enhancements of the tail magnetic field (i.e. by factors > 2) with durations of approx. 2 - 3 min. The increased flaring of the magnetic field during these intervals indicates that the enhancements were caused by loading of the tail with magnetic flux transferred from the dayside magnetosphere. New analyses of the second and third flyby observations of reconnection and its system-level effects provide a basis for comparison and contrast with what is known about the response of the Earth s magnetosphere to variable versus steady southward IMF.

  5. Live-cell imaging of cell signaling using genetically encoded fluorescent reporters.

    PubMed

    Ni, Qiang; Mehta, Sohum; Zhang, Jin

    2018-01-01

    Synergistic advances in fluorescent protein engineering and live-cell imaging techniques in recent years have fueled the concurrent development and application of genetically encoded fluorescent reporters that are tailored for tracking signaling dynamics in living systems over multiple length and time scales. These biosensors are uniquely suited for this challenging task, owing to their specificity, sensitivity, and versatility, as well as to the noninvasive and nondestructive nature of fluorescence and the power of genetic encoding. Over the past 10 years, a growing number of fluorescent reporters have been developed for tracking a wide range of biological signals in living cells and animals, including second messenger and metabolite dynamics, enzyme activation and activity, and cell cycle progression and neuronal activity. Many of these biosensors are gaining wide use and are proving to be indispensable for unraveling the complex biological functions of individual signaling molecules in their native environment, the living cell, shedding new light on the structural and molecular underpinnings of cell signaling. In this review, we highlight recent advances in protein engineering that are likely to help expand and improve the design and application of these valuable tools. We then turn our focus to specific examples of live-cell imaging using genetically encoded fluorescent reporters as an important platform for advancing our understanding of G protein-coupled receptor signaling and neuronal activity. © 2017 Federation of European Biochemical Societies.

  6. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata.

    PubMed

    Hitz, Benjamin C; Rowe, Laurence D; Podduturi, Nikhil R; Glick, David I; Baymuradov, Ulugbek K; Malladi, Venkat S; Chan, Esther T; Davidson, Jean M; Gabdank, Idan; Narayana, Aditi K; Onate, Kathrina C; Hilton, Jason; Ho, Marcus C; Lee, Brian T; Miyasato, Stuart R; Dreszer, Timothy R; Sloan, Cricket A; Strattan, J Seth; Tanaka, Forrest Y; Hong, Eurie L; Cherry, J Michael

    2017-01-01

    The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package.

  7. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata

    PubMed Central

    Podduturi, Nikhil R.; Glick, David I.; Baymuradov, Ulugbek K.; Malladi, Venkat S.; Chan, Esther T.; Davidson, Jean M.; Gabdank, Idan; Narayana, Aditi K.; Onate, Kathrina C.; Hilton, Jason; Ho, Marcus C.; Lee, Brian T.; Miyasato, Stuart R.; Dreszer, Timothy R.; Sloan, Cricket A.; Strattan, J. Seth; Tanaka, Forrest Y.; Hong, Eurie L.; Cherry, J. Michael

    2017-01-01

    The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package. PMID:28403240

  8. MESSENGER, MErcury: Surface, Space ENvironment, GEochemistry, and Ranging; A Mission to Orbit and Explore the Planet Mercury

    NASA Technical Reports Server (NTRS)

    1999-01-01

    MESSENGER is a scientific mission to Mercury. Understanding this extraordinary planet and the forces that have shaped it is fundamental to understanding the processes that have governed the formation, evolution, and dynamics of the terrestrial planets. MESSENGER is a MErcury Surface, Space ENvironment, GEochemistry and Ranging mission to orbit Mercury for one Earth year after completing two flybys of that planet following two flybys of Venus. The necessary flybys return significant new data early in the mission, while the orbital phase, guided by the flyby data, enables a focused scientific investigation of this least-studied terrestrial planet. Answers to key questions about Mercury's high density, crustal composition and structure, volcanic history, core structure, magnetic field generation, polar deposits, exosphere, overall volatile inventory, and magnetosphere are provided by an optimized set of miniaturized space instruments. Our goal is to gain new insight into the formation and evolution of the solar system, including Earth. By traveling to the inner edge of the solar system and exploring a poorly known world, MESSENGER fulfills this quest.

  9. The Crust of Mercury After the MESSENGER Gravity Investigation

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Genova, A.; Goossens, S.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2018-05-01

    We present the results of an improved analysis of the entire MESSENGER radio tracking dataset to derive key geophysical parameters of Mercury such as its gravity field. In particular, we derive and interpret a new crustal thickness model.

  10. Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2003-01-01

    The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in

  11. The Morphology of Craters on Mercury: Results from MESSENGER Flybys

    NASA Technical Reports Server (NTRS)

    Barnouin, Oliver S.; Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Herrick, Robert R.; Chappelow, John E.; Murchie, Scott L.; Prockter, Louise M.

    2012-01-01

    Topographic data measured from the Mercury Laser Altimeter (MLA) and the Mercury Dual Imaging System (MDIS) aboard the MESSENGER spacecraft were used for investigations of the relationship between depth and diameter for impact craters on Mercury. Results using data from the MESSENGER flybys of the innermost planet indicate that most of the craters measured with MLA are shallower than those previously measured by using Mariner 10 images. MDIS images of these same MLA-measured craters show that they have been modified. The use of shadow measurement techniques, which were found to be accurate relative to the MLA results, indicate that both small bowl-shaped and large complex craters that are fresh possess depth-to-diameter ratios that are in good agreement with those measured from Mariner 10 images. The preliminary data also show that the depths of modified craters are shallower relative to fresh ones, and might provide quantitative estimates of crater in-filling by subsequent volcanic or impact processes. The diameter that defines the transition from simple to complex craters on Mercury based on MESSENGER data is consistent with that reported from Mariner 10 data.

  12. Calcium ion as intracellular messenger and cellular toxin.

    PubMed

    Rasmussen, H; Barrett, P; Smallwood, J; Bollag, W; Isales, C

    1990-03-01

    Ca2+ serves a nearly universal intracellular messenger function in cell activation, but excess Ca2+ is also a cellular toxin. The possibility of Ca2+ intoxication is minimized by an elaborate autoregulatory system in which changes in Ca2+ influx rate across the plasma membrane are rapidly compensated for by parallel changes in Ca2+ efflux rate. By this mean, cellular Ca2+ homestasis is maintained so that minimal changes in total cell calcium and cytosolic Ca2+ concentration occur during sustained Ca2(+)-mediated responses. Rather than a sustained increase in cytosolic Ca2+ concentration, it is the localized cycling of Ca2+ across the plasma membrane that is the critically important Ca2+ messenger during the sustained phase of cellular responses mediated via surface receptors linked to the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 hydrolysis gives rise to inositol(1,4,5)trisphosphate (IP3) and diacylglycerol (DAG). The IP3 acts to release Ca2+ from an intracellular pool, thereby causing a transient rise in cytosolic Ca2+ concentration. This transient Ca2+ signal activates calmodulin-dependent protein kinases transiently, and hence, causes the transient phosphorylation of a subset of cellular proteins that mediate the initial phase of the response. The DAG brings about the association of protein kinase C (PKC) with the plasma membrane where a receptor-mediated increase in Ca2+ cycling across the membrane regulates PKC activity. The sustained phosphorylation of a second subset of proteins by PKC mediates the sustained phase of the response. Hence, Ca2+ serves as a messenger during both phases of the cellular response, but its cellular sites of action, its mechanisms of generation, and its molecular targets differ during the initial and sustained phases of the response.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Calcium ion as intracellular messenger and cellular toxin.

    PubMed Central

    Rasmussen, H; Barrett, P; Smallwood, J; Bollag, W; Isales, C

    1990-01-01

    Ca2+ serves a nearly universal intracellular messenger function in cell activation, but excess Ca2+ is also a cellular toxin. The possibility of Ca2+ intoxication is minimized by an elaborate autoregulatory system in which changes in Ca2+ influx rate across the plasma membrane are rapidly compensated for by parallel changes in Ca2+ efflux rate. By this mean, cellular Ca2+ homestasis is maintained so that minimal changes in total cell calcium and cytosolic Ca2+ concentration occur during sustained Ca2(+)-mediated responses. Rather than a sustained increase in cytosolic Ca2+ concentration, it is the localized cycling of Ca2+ across the plasma membrane that is the critically important Ca2+ messenger during the sustained phase of cellular responses mediated via surface receptors linked to the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 hydrolysis gives rise to inositol(1,4,5)trisphosphate (IP3) and diacylglycerol (DAG). The IP3 acts to release Ca2+ from an intracellular pool, thereby causing a transient rise in cytosolic Ca2+ concentration. This transient Ca2+ signal activates calmodulin-dependent protein kinases transiently, and hence, causes the transient phosphorylation of a subset of cellular proteins that mediate the initial phase of the response. The DAG brings about the association of protein kinase C (PKC) with the plasma membrane where a receptor-mediated increase in Ca2+ cycling across the membrane regulates PKC activity. The sustained phosphorylation of a second subset of proteins by PKC mediates the sustained phase of the response. Hence, Ca2+ serves as a messenger during both phases of the cellular response, but its cellular sites of action, its mechanisms of generation, and its molecular targets differ during the initial and sustained phases of the response.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2190811

  14. Coulomb interactions between cytoplasmic electric fields and phosphorylated messenger proteins optimize information flow in cells.

    PubMed

    Gatenby, Robert A; Frieden, B Roy

    2010-08-11

    Normal cell function requires timely and accurate transmission of information from receptors on the cell membrane (CM) to the nucleus. Movement of messenger proteins in the cytoplasm is thought to be dependent on random walk. However, Brownian motion will disperse messenger proteins throughout the cytosol resulting in slow and highly variable transit times. We propose that a critical component of information transfer is an intracellular electric field generated by distribution of charge on the nuclear membrane (NM). While the latter has been demonstrated experimentally for decades, the role of the consequent electric field has been assumed to be minimal due to a Debye length of about 1 nanometer that results from screening by intracellular Cl- and K+. We propose inclusion of these inorganic ions in the Debye-Huckel equation is incorrect because nuclear pores allow transit through the membrane at a rate far faster than the time to thermodynamic equilibrium. In our model, only the charged, mobile messenger proteins contribute to the Debye length. Using this revised model and published data, we estimate the NM possesses a Debye-Huckel length of a few microns and find this is consistent with recent measurement using intracellular nano-voltmeters. We demonstrate the field will accelerate isolated messenger proteins toward the nucleus through Coulomb interactions with negative charges added by phosphorylation. We calculate transit times as short as 0.01 sec. When large numbers of phosphorylated messenger proteins are generated by increasing concentrations of extracellular ligands, we demonstrate they generate a self-screening environment that regionally attenuates the cytoplasmic field, slowing movement but permitting greater cross talk among pathways. Preliminary experimental results with phosphorylated RAF are consistent with model predictions. This work demonstrates that previously unrecognized Coulomb interactions between phosphorylated messenger proteins and

  15. Composition of ribonucleic acid from various parts of spider oocytes.

    PubMed

    EDSTROM, J E

    1960-09-01

    Microphoretic purine-pyrimidine analyses of the ribonucleic acid (RNA) in nucleoli, nucleoplasm, cytoplasm, and yolk nuclei of spider oocytes have been carried out. The material necessary for the analyses was isolated by micromanipulation. Determinations of the amounts of RNA in the different parts of the cell were also performed. No differences between the composition of RNA in the nucleolus and the cytoplasm could be disclosed. Nucleoplasmic RNA was, on the other hand, distinctly different from that in the nucleolus and in the cytoplasm. The difference lies in the content of adenine, which is highest in nucleoplasmic RNA. The few analyses carried out on yolk nuclei showed their RNA to be variable in composition with a tendency to high purine values. The cytoplasm contains about 99 per cent of the total RNA in these cells, the nucleoplasm about 1 per cent, and the nucleolus not more than 0.3 per cent, although the highest concentrations are found in these latter structures. When considered in the light of other recent findings the results are compatible with the view that nucleolar RNA is the precursor of cytoplasmic RNA.

  16. MESSENGER Observations of Extreme Space Weather in Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Slavin, J. A.

    2013-09-01

    Increasing activity on the Sun is allowing MESSENGER to make its first observations of Mercury's magnetosphere under extreme solar wind conditions. At Earth interplanetary shock waves and coronal mass ejections produce severe "space weather" in the form of large geomagnetic storms that affect telecommunications, space systems, and ground-based power grids. In the case of Mercury the primary effect of extreme space weather in on the degree to which this it's weak global magnetic field can shield the planet from the solar wind. Direct impact of the solar wind on the surface of airless bodies like Mercury results in space weathering of the regolith and the sputtering of atomic species like sodium and calcium to high altitudes where they contribute to a tenuous, but highly dynamic exosphere. MESSENGER observations indicate that during extreme interplanetary conditions the solar wind plasma gains access to the surface of Mercury through three main regions: 1. The magnetospheric cusps, which fill with energized solar wind and planetary ions; 2. The subsolar magnetopause, which is compressed and eroded by reconnection to very low altitudes where the natural gyro-motion of solar wind protons may result in their impact on the surface; 3. The magnetotail where hot plasma sheet ions rapidly convect sunward to impact the surface on the nightside of Mercury. The possible implications of these new MESSENGER observations for our ability to predict space weather at Earth and other planets will be described.

  17. Zinc as a second messenger of mitogenic induction. Effects on diadenosine tetraphosphate (Ap4A) and DNA synthesis.

    PubMed

    Grummt, F; Weinmann-Dorsch, C; Schneider-Schaulies, J; Lux, A

    1986-03-01

    DNA synthesis and adenosine(5')tetraphosphate(5')adenosine (Ap4A) levels decrease in cells treated with EDTA. The inhibitory effect of EDTA can be reversed with micromolar amounts of ZnCl2. ZnCl2 in micromolar concentrations also inhibits Ap4A hydrolase and stimulates amino acid-dependent Ap4A synthesis, suggesting that Zn2+ is modulating intracellular Ap4A pools. Serum addition to G1-arrested cells enhances uptake of Zn, whereas serum depletion leads to a fivefold decrease of the rates of zinc uptake. These results are discussed by regarding Zn2+ as a putative 'second messenger' of mitogenic induction and Ap4A as a possible 'third messenger' and trigger of DNA synthesis.

  18. The Energy Messenger, Number 1, Volume 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancil, J.

    1995-01-01

    `The Energy Messenger` is a Department of Energy publication on energy activities of interest to American Indians. The first issue of 1995 (in a magazine format) includes articles on: tribes winning grants to develop energy resources, recruiting of internships for DOE, information about Title XXVI-Indian Energy Resources, American Indian Heritage Month, tribal perspective on DOE actions, joint ventures between tribes and the DOE, and brief description of recent DOE activities.

  19. Polarimetry of X-rays and messengers of High Energy phenomena

    NASA Astrophysics Data System (ADS)

    Costa, E.

    2017-05-01

    Astrophysics of High Energies has been historically based on radio, X-ray and γ -ray data. Understanding the mechanism and the site of acceleration of Cosmic Rays, has been probably the most important goal of this discipline. Recently high energy neutrinos and gravitational waves have shown up as new messengers and we expect a major role from X-ray observations, to understand the nature and location of the emitters. In fact X-rays have been for more than half a century the driver to study the Violent Universe. Yet one feature of this messengers, the Polarimetry, is still totally unexploited. Within a few years, a mission will add two important parameters to understand the physical context of high energy phenomena, namely the amount and angle of X-ray polarimetry.

  20. Riboswitches in eubacteria sense the second messenger c-di-AMP

    PubMed Central

    Nelson, James W.; Sudarsan, Narasimhan; Furukawa, Kazuhiro; Weinberg, Zasha; Wang, Joy X.; Breaker, Ronald R.

    2013-01-01

    Cyclic di-adenosine monophosphate (c-di-AMP) is a recently discovered bacterial second messenger implicated in the control of cell wall metabolism, osmotic stress responses, and sporulation. However, the mechanisms by which c-di-AMP triggers these physiological responses have remained largely unknown. Intriguingly, a candidate riboswitch class called ydaO associates with numerous genes involved in these same processes. Although a representative ydaO motif RNA recently was reported to weakly bind ATP, we report that numerous members of this noncoding RNA class selectively respond to c-di-AMP with sub-nanomolar affinity. Our findings resolve the mystery regarding the primary ligand for this extremely common riboswitch class and expose a major portion of the super-regulon of genes that are controlled by the widespread bacterial second messenger c-di-AMP. PMID:24141192

  1. Early Clinical Diagnosis of PC1/3 Deficiency in a Patient With a Novel Homozygous PCSK1 Splice-Site Mutation.

    PubMed

    Härter, Bettina; Fuchs, Irene; Müller, Thomas; Akbulut, Ulas Emre; Cakir, Murat; Janecke, Andreas R

    2016-04-01

    Autosomal recessive proprotein convertase 1/3 (PC1/3) deficiency, caused by mutations in the PCSK1 gene, is characterized by severe congenital malabsorptive diarrhea, early-onset obesity, and certain endocrine abnormalities. We suspected PC1/3 deficiency in a 4-month-old girl based on the presence of congenital diarrhea and polyuria. Sequencing the whole coding region and splice sites detected a novel homozygous PCSK1 splice-site mutation, c.544-2A>G, in the patient. The mutation resulted in the skipping of exon 5, the generation of a premature termination codon, and nonsense-mediated PCSK1 messenger ribonucleic acid decay, which was demonstrated in complementary DNA derived from fibroblasts.

  2. PERSISTENCE OF MESSENGER RNA THROUGH MITOSIS IN HELA CELLS

    PubMed Central

    Hodge, L. D.; Robbins, E.; Scharff, M. D.

    1969-01-01

    The decrease in protein synthesis which occurs in mammalian cells during cell division is associated with significant disaggregation of polyribosomes. For determining whether messenger RNA survives this disaggregation, the reformation of polyribosomes was investigated in synchronized HeLa cells as they progressed from metaphase into interphase in the presence of 2 µg/ml Actinomycin D. The persistence of messenger during cell division was evidenced by: (1) a progressive increase in the rate of protein synthesis in both treated and untreated cells for 45 min after metaphase; (2) reformation of polyribosomes, as determined by both sucrose gradients and electron microscopy, within 30 min after the addition of Actinomycin D to metaphase cells; (3) the persistence of approximately 50% of the rapidly labeled nonribosomal RNA which had associated with polyribosomes just before metaphase; (4) the resumption of synthesis, following cell division, of 6 selected peptides in Actinomycin-treated cells. PMID:5761922

  3. Early MESSENGER Results for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Now that the Messenger spacecraft is in orbit about Mercury, the extended observing time enables searches for exospheric species that are less abundant or weakly emitting compared with those for which emission has previously been detected. Many of these species cannot be observed from the ground because of terrestrial atmospheric absorption. We report here on the status of MESSENGER orbital-phase searches for additional species in Mercury's exosphere.

  4. MESSENGER Observations of Large Flux Transfer Events at Mercury

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Lepping, Ronald P.; Wu, Chin-Chun; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Killen, Rosemary M.; Korth, Haje; Krimigis, Stamatios M.; hide

    2010-01-01

    Six flux transfer events (FTEs) were encountered during MESSENGER's first two flybys of Mercury (M1 and M2). For M1 the interplanetary magnetic field (IMF) was predominantly northward and four FTEs with durations of 1 to 6 s were observed in the magnetosheath following southward IMF turnings. The IMF was steadily southward during M2, and an FTE 4 s in duration was observed just inside the dawn magnetopause followed approx. 32 s later by a 7 s FTE in the magnetosheath. Flux rope models were fit to the magnetic field data to determine FTE dimensions and flux content. The largest FTE observed by MESSENGER had a diameter of approx. 1 R(sub M) (where R(sub M) is Mercury s radius), and its open magnetic field increased the fraction of the surface exposed to the solar wind by 10 - 20 percent and contributed up to approx. 30 kV to the cross-magnetospheric electric potential.

  5. Mercury's Interior from MESSENGER Radio Science Data

    NASA Astrophysics Data System (ADS)

    Genova, A.; Mazarico, E.; Goossens, S. J.; Lemoine, F. G.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2017-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft provided precise radio tracking data in orbit about Mercury for more than 4 years, from March 2011 to April 2015. These geodetic measurements enable us to investigate the interior structure of the planet from the inner core to the crust. The first three years of radio data allowed us to determine the gravity field of Mercury with a resolution of 150 km in the northern hemisphere (degree and order 50 in spherical harmonics) since the periapsis was located at higher latitudes (>65˚N) and 200-500 km altitudes. The comparison of this gravity solution with Mercury's topography, which was retrieved by using over 25 million individual measurements of the Mercury Laser Altimeter (MLA), resulted in a preliminary map of the crustal thickness of the planet. However, those results were limited by the resolution of the gravity field since the topography was defined in spherical harmonics up to degree and order 125. The last year of the MESSENGER extended mission was dedicated to a low-altitude campaign, where the spacecraft periapsis was maintained at altitudes between 25 and 100 km. The radio data collected during this mission phase allowed us to significantly improve the resolution of the gravity field locally in the northern hemisphere up to degree and order 100 in spherical harmonics. We present the gravity anomalies and crustal thickness maps that lead to a better understanding on the formation and evolution of specific regions. We present our estimated orientation model, which slightly differs from the solutions that were obtained by using Earth-based radar measurements and the co-registration of MESSENGER imaging and altimetry data. These previous estimates provide a direct measurement of the surface response, whereas the orientation model from gravity is more sensitive to the inner and outer core. A discrepancy between core and surface obliquities may provide fundamental

  6. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.

    PubMed

    Mohsin, Mohd; Ahmad, Altaf; Iqbal, Muhammad

    2015-10-01

    Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.

  7. Electrochemical branched-DNA assay for polymerase chain reaction-free detection and quantification of oncogenes in messenger RNA.

    PubMed

    Lee, Ai-Cheng; Dai, Ziyu; Chen, Baowei; Wu, Hong; Wang, Jun; Zhang, Aiguo; Zhang, Lurong; Lim, Tit-Meng; Lin, Yuehe

    2008-12-15

    We describe a novel electrochemical branched-DNA (bDNA) assay for polymerase chain reaction (PCR)-free detection and quantification of p185 BCR-ABL leukemia fusion transcripts in the population of messenger ribonucleic acid (mRNA) extracted from cell lines. The bDNA amplifier carrying high loading of alkaline phosphatase (ALP) tracers was used to amplify the target signal. The targets were captured on microplate well surfaces through cooperative sandwich hybridization prior to the labeling of bDNA. The activity of captured ALP was monitored by square-wave voltammetric (SWV) analysis of the electroactive enzymatic product in the presence of 1-naphthyl phosphate. The voltammetric characteristics of substrate and enzymatic product as well as the parameters of SWV analysis were systematically optimized. A detection limit of 1 fM (1 x 10(-19) mol of target transcripts in 100 microL) and a 3-order-wide dynamic range of target concentration were achieved by the electrochemical bDNA assay. Such limit corresponded to approximately 17 fg of the p185 BCR-ABL fusion transcripts. The specificity and sensitivity of assay enabled direct detection of target transcripts in as little as 4.6 ng of mRNA population without PCR amplification. In combination with the use of a well-quantified standard, the electrochemical bDNA assay was capable of direct use for a PCR-free quantitative analysis of target transcripts in mRNA population. A mean transcript copy number of 62,900/ng of mRNA was determined, which was at least 50-fold higher than that of real-time quantitative PCR (qPCR). The finding was consistent with the underestimation of targets by qPCR reported earlier. In addition, the unique design based on bDNA technology increases the assay specificity as only the p185 BCR-ABL fusion transcripts will respond to the detection. The approach thus provides a simple, sensitive, accurate, and quantitative tool alternative to the qPCR for early disease diagnosis.

  8. Micro-ribonucleic acid-binding site variants of type 2 diabetes candidate loci predispose to gestational diabetes mellitus in Chinese Han women.

    PubMed

    Wang, Xiaojing; Li, Wei; Ma, Liangkun; Ping, Fan; Liu, Juntao; Wu, Xueyan; Mao, Jiangfeng; Wang, Xi; Nie, Min

    2018-01-20

    Emerging evidence has suggested that the genetic background of gestational diabetes mellitus (GDM) was analogous to type 2 diabetes mellitus. In contrast to type 2 diabetes mellitus, the genetic studies for GDM were limited. Accordingly, the aim of the present study was to extensively explore the influence of micro-ribonucleic acid-binding single-nucleotide polymorphisms (SNPs) in type 2 diabetes mellitus candidate loci on GDM susceptibility in Chinese. A total of 839 GDM patients and 900 controls were enrolled. Six micro-ribonucleic acid-binding SNPs were selected from 30 type 2 diabetes mellitus susceptibility loci and genotyped using TaqMan allelic discrimination assays. The minor allele of three SNPs, PAX4 rs712699 (OR 1.366, 95% confidence interval 1.021-1.828, P = 0.036), KCNB1 rs1051295 (OR 1.579, 95% confidence interval 1.172-2.128, P = 0.003) and MFN2 rs1042842 (OR 1.398, 95% confidence interval 1.050-1.862, P = 0.022) were identified to significantly confer higher a risk of GDM in the additive model. The association between rs1051295 and increased fasting plasma glucose (b = 0.006, P = 0.008), 3-h oral glucose tolerance test plasma glucose (b = 0.058, P = 0.025) and homeostatic model assessment of insulin resistance (b = 0.065, P = 0.017) was also shown. Rs1042842 was correlated with higher 3-h oral glucose tolerance test plasma glucose (b = 0.056, P = 0.028). However, no significant correlation between the other included SNPs (LPIN1 rs1050800, VPS26A rs1802295 and NLRP3 rs10802502) and GDM susceptibility were observed. The present findings showed that micro-ribonucleic acid-binding SNPs in type 2 diabetes mellitus candidate loci were also associated with GDM susceptibility, which further highlighted the similar genetic basis underlying GDM and type 2 diabetes mellitus. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  9. Gravitational Waves and Multi-Messenger Astronomy

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2010-01-01

    Gravitational waves are produced by a wide variety of sources throughout the cosmos, including the mergers of black hole and neutron star binaries/compact objects spiraling into central black holes in galactic nuclei, close compact binaries/and phase transitions and quantum fluctuations in the early universe. Observing these signals can bring new, and often very precise, information about their sources across vast stretches of cosmic time. In this talk we will focus on thee opening of this gravitational-wave window on the universe, highlighting new opportunities for discovery and multi-messenger astronomy.

  10. Termination of second messenger signaling in olfaction.

    PubMed Central

    Boekhoff, I; Breer, H

    1992-01-01

    By using isolated rat olfactory cilia and a fast kinetics methodology, it has been demonstrated that odorant-induced second messenger signaling in the millisecond time range is terminated via phosphorylation reactions catalyzed by specific protein kinases. The cyclic adenosine nucleotide pathway is turned off by kinase A activity, whereas the inositol trisphosphate cascade is terminated by kinase C. The data support the concept that desensitization of odorant responses involves phosphorylation of key elements in the transduction cascade. PMID:1370581

  11. Insights into the Nature of Mercury's Exosphere: Early Results from the MESSENGER Orbital Mission Phase

    NASA Technical Reports Server (NTRS)

    McClintock, William E.; Burger, Matthew H.; Killen, Rosemary M.; Merkel, Aimee W.; Sarantos, Menelaos; Sprague, Ann L.; Solomon, Sean C.; Vervack, Ronald J., Jr.

    2011-01-01

    The Ultraviolet and Visible Spectrometer aboard the MESSENGER spacecraft has been making routine observations of Mercury's exosphere since March 29, 2011. Correlations of the spatial distributions of Ca, Mg, and Na with MESSENGER magnetic field and energetic particle distribution data provide insight into the processes that populate the neutral exosphere

  12. MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Korth, Haje; Krimigis, Stamatios M.; hide

    2010-01-01

    During MESSENGER's third flyby of Mercury, a series of 2-3 minute long enhancements of the magnetic field in the planet's magnetotail were observed. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is approximately 10 times less and the durations are 1 hr. These observations of extreme loading imply that the relative intensity of substorms at Mercury must be much larger than at Earth. The correspondence between the duration of tail enhancements and the calculated approximately 2 min Dungey cycle, which describes plasma circulation through Mercury's magnetosphere, suggests that such circulation determines substorm timescale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles. Such signatures are puzzlingly absent from the MESSENGER flyby measurements.

  13. Astroparticles: Messengers from Outer Space

    NASA Astrophysics Data System (ADS)

    Desiati, Paolo

    2016-07-01

    Since Galileo pointed a spyglass toward the sky, 400 years ago, observations empowered by man-made instrumentation have provided us with an enormous leap in the knowledge of how the Universe functions. More and more powerful optical telescopes made it possible for us to reach the farthest corners of space. At the same time, the advances in microphysics and the discovery of the electromagnetic spectrum, made it possible to directly look at the Universe in a way that our eyes cannot see. The discoveries of the intimate structure of matter, of subatomic particles and of how they interact with each other, have led astronomers to use the smallest objects in Nature to observe the farthest reaches of the otherwise invisible Universe. Not unlike Galileo, today we observe Outer Space with visible light and beyond, across the entire electromagnetic spectrum, from long wavelength radio waves to short wavelength gamma rays. But also with instruments detecting cosmic rays (the atomic nuclei we know on Earth) neutrinos (neutral subatomic particles that interact very weakly with matter) and gravitational waves (perturbations of spacetime predicted by General Relativity). Each cosmic messenger provides us with a unique piece of information about their source and the history of their journey to us. Modern astrophysics has the challenging goal to collect as much information as possible from all those messengers, to reconstruct the story of the Universe and how it became what it is today. This journey started with the unsettling discovery that we are only one minuscule dot in the immensity of the Universe and yet we are able to observe objects that are far in space and time. This journey is yet to complete its course, and the more we advance our knowledge, the more we need to understand. This interdisciplinary talk provides an overview of this journey and the future perspectives.

  14. Modeling MESSENGER Observations of Calcium in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Burger, Matthew Howard; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Merkel, Aimee W.; Sprague, Ann L.; Sarantos, Menelaos

    2012-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MESSENGER spacecraft has made the first high-spatial-resolution observations of exospheric calcium at Mercury. We use a Monte Carlo model of the exosphere to track the trajectories of calcium atoms ejected from the surface until they are photoionized, escape from the system, or stick to the surface. This model permits an exploration of exospheric source processes and interactions among neutral atoms, solar radiation, and the planetary surface. The MASCS data have suggested that a persistent, high-energy source of calcium that was enhanced in the dawn, equatorial region of Mercury was active during MESSENGER's three flybys of Mercury and during the first seven orbits for which MASCS obtained data. The total Ca source rate from the surface varied between 1.2x10(exp 23) and 2.6x10(exp 23) Ca atoms/s, if its temperature was 50,000 K. The origin of this high-energy, asymmetric source is unknown, although from this limited data set it does not appear to be consistent with micrometeoroid impact vaporization, ion sputtering, electron-stimulated desorption, or vaporization at dawn of material trapped on the cold nightside.

  15. Mapping the Topography of Mercury with MESSENGER Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Smith, David E..; Zubor, Maria T.

    2012-01-01

    The Mercury Laser Altimeter onboard MESSENGER involves unique design elements that deal with the challenges of being in orbit around Mercury. The Mercury Laser Altimeter (MLA) is one of seven instruments on NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. MESSENGER was launched on 3 August 2004, and entered into orbit about Mercury on 18 March 2011 after a journey through the inner solar system. This involved six planetary flybys, including three of Mercury. MLA is designed to map the topography and landforms of Mercury's surface. It also measures the planet's forced libration (motion about the spin axis), which helps constrain the state of the core. The first science measurements from orbit taken with MLA were made on 29 March 2011 and continue to date. MLA had accumulated about 8.3 million laser ranging measurements to Mercury's surface, as of 31 July 2012, i.e., over six Mercury years (528 Earth days). Although MLA is the third planetary lidar built at the NASA Goddard Space Flight Center (GSFC), MLA must endure a much harsher thermal environment near Mercury than the previous instruments on Mars and Earth satellites. The design of MLA was derived in part from that of the Mars Orbiter Laser Altimeter on Mars Global Surveyor. However, MLA must range over greater distances and often in off-nadir directions from a highly eccentric orbit. In MLA we use a single-mode diode-pumped Nd:YAG (neodymium-doped yttrium aluminum garnet) laser that is highly collimated to maintain a small footprint on the planet. The receiver has both a narrow field of view and a narrow spectral bandwidth to minimize the amount of background light detected from the sunlit hemisphere of Mercury. We achieve the highest possible receiver sensitivity by employing the minimum receiver detection threshold.

  16. Evidence for young volcanism on Mercury from the third MESSENGER flyby.

    PubMed

    Prockter, Louise M; Ernst, Carolyn M; Denevi, Brett W; Chapman, Clark R; Head, James W; Fassett, Caleb I; Merline, William J; Solomon, Sean C; Watters, Thomas R; Strom, Robert G; Cremonese, Gabriele; Marchi, Simone; Massironi, Matteo

    2010-08-06

    During its first two flybys of Mercury, the MESSENGER spacecraft acquired images confirming that pervasive volcanism occurred early in the planet's history. MESSENGER's third Mercury flyby revealed a 290-kilometer-diameter peak-ring impact basin, among the youngest basins yet seen, having an inner floor filled with spectrally distinct smooth plains. These plains are sparsely cratered, postdate the formation of the basin, apparently formed from material that once flowed across the surface, and are therefore interpreted to be volcanic in origin. An irregular depression surrounded by a halo of bright deposits northeast of the basin marks a candidate explosive volcanic vent larger than any previously identified on Mercury. Volcanism on the planet thus spanned a considerable duration, perhaps extending well into the second half of solar system history.

  17. MESSENGER Observations of Mercury's Dynamic Magnetosphere During Three Flybys

    NASA Astrophysics Data System (ADS)

    Slavin, James; Krimigis, Stamatios; Anderson, Brian J.; Benna, Mehdi; Gold, Robert E.; Ho, George; McNutt, Ralph; Raines, James; Schriver, David; Solomon, Sean C.

    MESSENGER's 14 January and 6 October 2008 and 29 September 2009 encounters with Mer-cury have provided new measurements of dynamic variations in the planet's coupled atmo-sphere-magnetosphere system. The three flybys took place under very different interplanetary magnetic field (IMF) conditions. Consistent with predictions of magnetospheric models for northward IMF, the neutral atmosphere was observed to have its strongest sources in the high latitude northern hemisphere for the first flyby. The southward IMF for the second encounter revealed a highly dynamic magnetosphere. Reconnection between the interplanetary and plan-etary magnetic fields is known to control the rate of energy transfer from the solar wind and to drive magnetospheric convection. The MESSENGER magnetic field measurements revealed that the rate at which interplanetary magnetic fields were reconnecting to the planetary fields was a factor of 10 greater than is usually observed at Earth. This extremely high reconnection rate results in a large magnetic field component normal to the magnetopause and the formation of flux transfer events that are much larger relative to the size of the forward magnetosphere than is observed at Earth. The resulting magnetospheric configuration allows the solar wind access to much of the dayside surface of Mercury. During MESSENGER's third Mercury flyby, a variable interplanetary magnetic field produced a series of several-minute-long enhancements of the tail magnetic field by factors of 2 to 3.5. The magnetic field flaring during these intervals indicates that they resulted from loading of the tail with magnetic flux transferred from the dayside magnetosphere. The unloading intervals were associated with plasmoids and traveling compression regions, signatures of tail reconnection. The peak tail magnetic flux during the smallest loading events equaled 30

  18. Developmental regulation of vascular endothelial growth/permeability factor messenger ribonucleic acid levels in and vascularization of the villous placenta during baboon pregnancy.

    PubMed

    Hildebrandt, V A; Babischkin, J S; Koos, R D; Pepe, G J; Albrecht, E D

    2001-05-01

    Vascular endothelial growth/permeability factor (VEG/PF) has an important role in angiogenesis; however, very little is known about the developmental regulation of VEG/PF and the vascular system within the placenta during human pregnancy. In the present study, therefore, a developmental approach was used in the baboon to determine the placental source of VEG/PF and its fms-like tyrosine kinase (flt-1) and kinase-insert domain containing (KDR/flk-1) receptors, and whether the rise in estrogen with advancing pregnancy was associated with a corresponding increase in placental VEG/PF expression and vascularization. VEG/PF messenger RNA (mRNA) levels were determined by competitive RT-PCR in villous cell fractions isolated by Percoll gradient centrifugation from placentas obtained on days 45 and 54 (very early), 60 (early), 100 (mid), and 165-170 (late) of baboon pregnancy (term = 184 days). Maternal peripheral serum estradiol increased from very low concentrations early in gestation (0.15-0.20 ng/ml) to an early surge of over 2.5 ng/ml on days 60-85, and peak levels of 4-6 ng/ml late in baboon pregnancy. VEG/PF mRNA was expressed in low level in the syncytiotrophoblast (<2,000 attomol/microgram total RNA), and values in this fraction did not change significantly with advancing gestation. VEG/PF mRNA expression was slightly greater in the inner villous core cell fraction; however, levels decreased (P < 0.05) between early and late gestation. Cytotrophoblasts were a major source of VEG/PF mRNA and levels increased (P < 0.01) from 3,631 +/- 844 attomol/microgram total RNA on day 45 to 25,807 +/- 5,873 attomol/microgram total RNA on day 170. VEG/PF protein expression determined by immunocytochemistry was abundant in cytotrophoblasts and lower in the syncytiotrophoblast and inner villous core cells. The flt-1 and KDR/flk-1 receptors were expressed in the vascular endothelial cells of the baboon villous placenta. The percentage of villous placenta occupied by blood vessels

  19. MESSENGER observations of Mercury's exosphere: detection of magnesium and distribution of constituents.

    PubMed

    McClintock, William E; Vervack, Ronald J; Bradley, E Todd; Killen, Rosemary M; Mouawad, Nelly; Sprague, Ann L; Burger, Matthew H; Solomon, Sean C; Izenberg, Noam R

    2009-05-01

    Mercury is surrounded by a tenuous exosphere that is supplied primarily by the planet's surface materials and is known to contain sodium, potassium, and calcium. Observations by the Mercury Atmospheric and Surface Composition Spectrometer during MESSENGER's second Mercury flyby revealed the presence of neutral magnesium in the tail (anti-sunward) region of the exosphere, as well as differing spatial distributions of magnesium, calcium, and sodium atoms in both the tail and the nightside, near-planet exosphere. Analysis of these observations, supplemented by observations during the first Mercury flyby, as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.

  20. A comprehensive study of Mercury and MESSENGER orbit determination

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Nicholas, Joseph B.; Rowlands, David D.; Smith, David E.; Zuber, Maria; Solomon, Sean C.

    2016-10-01

    The MErcury, Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury for more than 4 years. The probe started its science mission in orbit around Mercury on 18 March 2011. The Mercury Laser Altimeter (MLA) and radio science system were the instruments dedicated to geodetic observations of the topography, gravity field, orientation, and tides of Mercury. X-band radio-tracking range-rate data collected by the NASA Deep Space Network (DSN) allowed the determination of Mercury's gravity field to spherical harmonic degree and order 100, the planet's obliquity, and the Love number k2.The extensive range data acquired in orbit around Mercury during the science mission (from April 2011 to April 2015), and during the three flybys of the planet in 2008 and 2009, provide a powerful dataset for the investigation of Mercury's ephemeris. The proximity of Mercury's orbit to the Sun leads to a significant perihelion precession attributable to the gravitational flattening of the Sun (J2) and the Parameterized Post-Newtonian (PPN) coefficients γ and β, which describe the space curvature produced by a unit rest mass and the nonlinearity in superposition of gravity, respectively. Therefore, the estimation of Mercury's ephemeris can provide crucial information on the interior structure of the Sun and Einstein's general theory of relativity. However, the high correlation among J2, γ, and β complicates the combined recovery of these parameters, so additional assumptions are required, such as the Nordtvedt relationship η = 4β - γ - 3.We have modified our orbit determination software, GEODYN II, to enable the simultaneous integration of the spacecraft and central body trajectories. The combined estimation of the MESSENGER and Mercury orbits allowed us to determine a more accurate gravity field, orientation, and tides of Mercury, and the values of GM and J2 for the Sun, where G is the gravitational constant and M is the solar mass

  1. Development of a microcapillary column for detecting targeted messenger RNA molecules.

    PubMed

    Ohnishi, Michihiro

    2006-03-24

    A capillary column in a rapid-flow system has been developed for detecting targeted messenger RNA (mRNA) molecules. The column has a structure made of two beds-one bed of porous microbeads and one bed of microbeads with a polythymidine base sequence. The targeted eukaryotic mRNA molecules are detected by two-step hybridization (sandwich hybridization) composed of polyadenosine selection of mRNA molecules and formation of a probe-target (targeted mRNA) hybrid. The sandwich hybridization, which is accomplished within 1 h, was tested using synthetic polydeoxynucleotides. Ten picomoles of the targeted polydeoxynucleotide were detected.

  2. The nucleotides they are a-changin': function of RNA binding proteins in post-transcriptional messenger RNA editing and modification in Arabidopsis.

    PubMed

    Kramer, Marianne C; Anderson, Stephen J; Gregory, Brian D

    2018-06-05

    During and after transcription, the fate of an RNA molecule is almost entirely directed by the cohorts of interacting RNA-binding proteins (RBPs). RBPs regulate all stages of the life cycle of a messenger RNA (mRNA) molecule, including splicing, polyadenylation, transport out of the nucleus, RNA stability, and translation. In addition to these functions, RBPs can function to modify or edit the sequences encoded by the RNA. While the sequence for each transcript is determined in the genome, by the time an RNA reaches its final fate, the sequence may have been edited, where one nucleotide is converted to another, or modified, where a chemical group, or sometimes others moieties, are covalently linked to a nucleotide base. These changes to the RNA sequence have major consequences on the function of the RNA. Additionally, variation in the levels of the RBPs that perform the editing or modification can drastically affect the fitness of an organism. Here, we review RBPs that are known to edit or modify RNA ribonucleotides, focusing on the RNA editing ability of the pentatricopeptide repeat (PPR) proteins and the RBPs that modify adenosine to N 6 - methyladenosine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Korth, Haje; Krimigis, Stamatios M.; hide

    2010-01-01

    During MESSENGER's third flyby of Mercury, the magnetic field in the planet's magnetotail increased by factors of 2 to 3.5 over intervals of 2 to 3 min. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is approx.10 times less and typical durations are approx.1 hour. The extreme tail loading observed at Mercury implies that the relative intensity of sub storms must be much larger than at Earth. The correspondence between the duration of tail field enhancements and the characteristic time for the Dungey cycle, which describes plasma circulation through Mercury's magnetosphere. suggests that such circulation determines substorm timescale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles, but no acceleration signatures were seen during the MESSENGER flyby.

  4. Sharing Planetary Exploration: The Education and Public Outreach Program for the NASA MESSENGER Mission to Orbit Mercury

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.; Stockman, S.; Chapman, C. R.; Leary, J. C.; McNutt, R. L.

    2003-12-01

    The Education and Public Outreach (EPO) Program of the MESSENGER mission to the planet Mercury, supported by the NASA Discovery Program, is a full partnership between the project's science and engineering teams and a team of professionals from the EPO community. The Challenger Center for Space Science Education (CCSSE) and the Carnegie Academy for Science Education (CASE) are developing sets of MESSENGER Education Modules targeting grade-specific education levels across K-12. These modules are being disseminated through a MESSENGER EPO Website developed at Montana State University, an Educator Fellowship Program managed by CCSSE to train Fellows to conduct educator workshops, additional workshops planned for NASA educators and members of the Minority University - SPace Interdisciplinary Network (MU-SPIN), and existing inner-city science education programs (e.g., the CASE Summer Science Institute in Washington, D.C.). All lessons are mapped to national standards and benchmarks by MESSENGER EPO team members trained by the American Association for the Advancement of Science (AAAS) Project 2061, all involve user input and feedback and quality control by the EPO team, and all are thoroughly screened by members of the project science and engineering teams. At the college level, internships in science and engineering are provided to students at minority institutions through a program managed by MU-SPIN, and additional opportunities for student participation across the country are planned as the mission proceeds. Outreach efforts include radio spots (AAAS), museum displays (National Air and Space Museum), posters and traveling exhibits (CASE), general language books (AAAS), programs targeting underserved communities (AAAS, CCSSE, and MU-SPIN), and a documentary highlighting the scientific and technical challenges involved in exploring Mercury and how the MESSENGER team has been meeting these challenges. As with the educational elements, science and engineering team members

  5. Lymphomas in Ile-Ife, Nigeria: Immunohistochemical Characterization and Detection of Epstein-Barr virus Encoded RNA.

    PubMed

    Onwubuya, Ifeyinwa M; Adelusola, Kayode A; Durosinmi, Muheez A; Sabageh, Donatus; Ezike, Kevin N

    2015-06-01

    The proper histopathological characterization of malignant lymphomas requires the use of immunohistochemistry along with other molecular pathology techniques. Malignant lymphomas histologically diagnosed in our hospital were reclassified according to the WHO scheme using immunohistochemistry while in-situ hybridization was performed for the detection of Epstein-Barr virus encoded RNA. There were 83 cases of lymphoma. The male to female ratio was 1.9:1 while the overall mean age was 41.7 years. Non-Hodgkin lymphomas (NHL) constituted about 79.5% of cases. The majority of cases (98.8%) were B-cell lymphomas. Nine subtypes of lymphomas were identified with diffuse large B-cell lymphomas (56.4% of which were of the germinal centre type) constituting the largest group (47.0%). Intermediate and high grade subtypes were more common. The majority of cases (72.3%) were nodal lymphomas with cervical lymph node being the commonest site (48.2%). Only classical Hodgkin lymphoma (HL) (20.5%) was seen of which the mixed cellularity subtype was the most common. Epstein Barr virus (EBV) encoded ribonucleic acid was detected in 7 cases (8.4%) including 4 cases of HL, 2 cases of Burkitt lymphoma and the only case of plasmablastic lymphoma. About five cases were reclassified as non-lymphoid malignant lesions. Immunohistochemistry is vital to the proper classification of lymphomas even in a resource poor environment. Although nine subtypes of lymphomas were identified, diffuse large B-cell lymphomas formed the largest single group. Epstein-Barr virus probably plays an important role in lymphomatogenesis in this environment. A larger multicentre study is required to prove this.

  6. 3',5'-cIMP as Potential Second Messenger in the Vascular Wall.

    PubMed

    Leung, Susan W S; Gao, Yuansheng; Vanhoutte, Paul M

    2017-01-01

    Traditionally, only the 3',5'-cyclic monophosphates of adenosine and guanosine (produced by adenylyl cyclase and guanylyl cyclase, respectively) are regarded as true "second messengers" in the vascular wall, despite the presence of other cyclic nucleotides in different tissues. Among these noncanonical cyclic nucleotides, inosine 3',5'-cyclic monophosphate (cIMP) is synthesized by soluble guanylyl cyclase in porcine coronary arteries in response to hypoxia, when the enzyme is activated by endothelium-derived nitric oxide. Its production is associated with augmentation of vascular contraction mediated by stimulation of Rho kinase. Based on these findings, cIMP appears to meet most, if not all, of the criteria required for it to be accepted as a "second messenger," at least in the vascular wall.

  7. MESSENGER Final Image

    NASA Image and Video Library

    2015-04-30

    Today, the MESSENGER spacecraft sent its final image. Originally planned to orbit Mercury for one year, the mission exceeded all expectations, lasting for over four years and acquiring extensive datasets with its seven scientific instruments and radio science investigation. This afternoon, the spacecraft succumbed to the pull of solar gravity and impacted Mercury's surface. The image shown here is the last one acquired and transmitted back to Earth by the mission. The image is located within the floor of the 93-kilometer-diameter crater Jokai. The spacecraft struck the planet just north of Shakespeare basin. Date acquired: April 30, 2015 Image Mission Elapsed Time (MET): 72716050 Image ID: 8422953 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 72.0° Center Longitude: 223.8° E Resolution: 2.1 meters/pixel Scale: This image is about 1 kilometers (0.6 miles) across Incidence Angle: 57.9° Emission Angle: 56.5° Phase Angle: 40.7° http://photojournal.jpl.nasa.gov/catalog/PIA19448

  8. Translation of globin messenger RNA by the mouse ovum

    PubMed Central

    Brinster, R. L.; Chen, H. Y.; Trumbauer, M. E.; Avarbock, M. R.

    2016-01-01

    It has been demonstrated that the Xenopus oocyte can translate rabbit haemoglobin messenger RNA (mRNA) following microinjection of the message into the cell1. The Xenopus oocyte has since been shown to be capable of translating a variety of messenger RNAs from different species2–4. This system has proved useful in understanding the mechanism of message translation and has also provided information about the translation capability of the Xenopus oocyte5,6. Several other cell types, including HeLa cells and fibroblasts, can also translate exogenous message injected into the cell7,8. However, there have been no reports of injection of mRNA into oocytes or fertilised one-cell ova of mammalian species. Nevertheless, the latter system could be of considerable use in studying the processing of exogenous messages in a mammalian system undergoing development, as well as providing insight into the way the early embryo processes injected messages and the protein products of such messages. We report here the results of injecting message into the fertilised one-cell mouse ovum and show that both mouse and rabbit globin mRNA are translated in this system. PMID:7352032

  9. A multiplexed fluorescent assay for independent second-messenger systems: decoding GPCR activation in living cells.

    PubMed

    Tewson, Paul H; Quinn, Anne Marie; Hughes, Thomas E

    2013-08-01

    There is a growing need in drug discovery and basic research to measure multiple second-messenger components of cell signaling pathways in real time and in relevant tissues and cell types. Many G-protein-coupled receptors activate the heterotrimeric protein, Gq, which in turn activates phospholipase C (PLC). PLC cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) to produce two second messengers: diacylglycerol (DAG), which remains in the plasma membrane, and inositol triphosphate (IP3), which diffuses through the cytosol to release stores of intracellular calcium ions (Ca(2+)). Our goal was to create a series of multiplex sensors that would make it possible to simultaneously measure two different components of the Gq pathway in living cells. Here we describe new fluorescent sensors for DAG and PIP2 that produce robust changes in green or red fluorescence and can be combined with one another, or with existing Ca(2+) sensors, in a live-cell assay. These assays can detect multiple components of Gq signaling, simultaneously in real time, on standard fluorescent plate readers or live-cell imaging systems.

  10. Imaging During MESSENGER's Second Flyby of Mercury

    NASA Astrophysics Data System (ADS)

    Chabot, N. L.; Prockter, L. M.; Murchie, S. L.; Robinson, M. S.; Laslo, N. R.; Kang, H. K.; Hawkins, S. E.; Vaughan, R. M.; Head, J. W.; Solomon, S. C.; MESSENGER Team

    2008-12-01

    During MESSENGER's second flyby of Mercury on October 6, 2008, the Mercury Dual Imaging System (MDIS) will acquire 1287 images. The images will include coverage of about 30% of Mercury's surface not previously seen by spacecraft. A portion of the newly imaged terrain will be viewed during the inbound portion of the flyby. On the outbound leg, MDIS will image additional previously unseen terrain as well as regions imaged under different illumination geometry by Mariner 10. These new images, when combined with images from Mariner 10 and from MESSENGER's first Mercury flyby, will enable the first regional- resolution global view of Mercury constituting a combined total coverage of about 96% of the planet's surface. MDIS consists of both a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). During MESSENGER's second Mercury flyby, the following imaging activities are planned: about 86 minutes before the spacecraft's closest pass by the planet, the WAC will acquire images through 11 different narrow-band color filters of the approaching crescent planet at a resolution of about 5 km/pixel. At slightly less than 1 hour to closest approach, the NAC will acquire a 4-column x 11-row mosaic with an approximate resolution of 450 m/pixel. At 8 minutes after closest approach, the WAC will obtain the highest-resolution multispectral images to date of Mercury's surface, imaging a portion of the surface through 11 color filters at resolutions of about 250-600 m/pixel. A strip of high-resolution NAC images, with a resolution of approximately 100 m/pixel, will follow these WAC observations. The NAC will next acquire a 15-column x 13- row high-resolution mosaic of the northern hemisphere of the departing planet, beginning approximately 21 minutes after closest approach, with resolutions of 140-300 m/pixel; this mosaic will fill a large gore in the Mariner 10 data. At about 42 minutes following closest approach, the WAC will acquire a 3x3, 11-filter, full- planet mosaic with an

  11. The effects of orbital spaceflight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats

    NASA Technical Reports Server (NTRS)

    Cavolina, J. M.; Evans, G. L.; Harris, S. A.; Zhang, M.; Westerlind, K. C.; Turner, R. T.

    1997-01-01

    A 14-day orbital spaceflight was performed using ovariectomized Fisher 344 rats to determine the combined effects of estrogen deficiency and near weightlessness on tibia radial bone growth and cancellous bone turnover. Twelve ovariectomized rats with established cancellous osteopenia were flown aboard the space shuttle Columbia (STS-62). Thirty ovariectomized rats were housed on earth as ground controls: 12 in animal enclosure modules, 12 in vivarium cages, and 6 killed the day of launch for baseline measurements. An additional 18 ovary-intact rats were housed in vivarium cages as ground controls: 8 rats were killed as baseline controls and the remaining 10 rats were killed 14 days later. Ovariectomy increased periosteal bone formation at the tibia-fibula synostosis; cancellous bone resorption and formation in the secondary spongiosa of the proximal tibial metaphysis; and messenger RNA (mRNA) levels for the prepro-alpha2(1) subunit of type 1 collagen, osteocalcin, transforming growth factor-beta, and insulin-like growth factor I in the contralateral proximal tibial metaphysis and for the collagen subunit in periosteum pooled from tibiae and femora and decreased cancellous bone area. Compared to ovariectomized weight-bearing rats, the flight group experienced decreases in periosteal bone formation, collagen subunit mRNA levels, and cancellous bone area. The flight rats had a small decrease in the cancellous mineral apposition rate, but no change in the calculated bone formation rate. Also, spaceflight had no effect on cancellous osteoblast and osteoclast perimeters or on mRNA levels for bone matrix proteins and signaling peptides. On the other hand, spaceflight resulted in an increase in bone resorption, as ascertained from the diminished retention of a preflight fluorochrome label. This latter finding suggests that osteoclast activity was increased. In a follow-up ground-based experiment, unilateral sciatic neurotomy of ovariectomized rats resulted in cancellous

  12. Nuclear Synthesis of Cytoplasmic Ribonucleic Acid in Amoeba proteus

    PubMed Central

    Prescott, David M.

    1959-01-01

    The enucleation technique has been applied to Amoeba proteus by several laboratories in attempts to determine whether the cytoplasm is capable of nucleus-independent ribonucleic acid synthesis. This cell is very convenient for micrurgy, but its use requires a thorough starvation period to eliminate the possibility of metabolic influence by food vacuoles and frequent washings and medium renewal to maintain asepsis. In the experiments described here, amoebae were starved for periods of 24 to 96 hours, cut into nucleated and enucleated halves, and exposed to either C-14 uracil, C-14 adenine, C-14 orotic acid, or a mixture of all three. When the starvation period was short (less than 72 hours), organisms (especially yeast cells) contained within amoeba food vacuoles frequently showed RNA synthesis in both nucleated and enucleated amoebae. When the preperiod of starvation was longer than 72 hours, food vacuole influence was apparently negligible, and a more meaningful comparison between enucleated and nucleated amoebae was possible. Nucleated cells incorporated all three precursors into RNA; enucleated cells were incapable of such incorporation. The experiments indicate a complete dependence on the nucleus for RNA synthesis. The conflict with the experimental results of others on this problem could possibly stem from differences in culture conditions, starvation treatment, or experimental conditions. For an unequivocal answer in experiments of this design, ideally the cells should be capable of growth on an entirely synthetic medium under aseptic conditions. The use of a synthetic medium (experiments with A. proteus are done under starvation conditions) would permit, moreover, a more realistic comparison of metabolic capacities of nucleated and enucleated cells. PMID:14434750

  13. Nuclear synthesis of cytoplasmic ribonucleic acid in Amoeba proteus.

    PubMed

    PRESCOTT, D M

    1959-10-01

    The enucleation technique has been applied to Amoeba proteus by several laboratories in attempts to determine whether the cytoplasm is capable of nucleus-independent ribonucleic acid synthesis. This cell is very convenient for micrurgy, but its use requires a thorough starvation period to eliminate the possibility of metabolic influence by food vacuoles and frequent washings and medium renewal to maintain asepsis. In the experiments described here, amoebae were starved for periods of 24 to 96 hours, cut into nucleated and enucleated halves, and exposed to either C-14 uracil, C-14 adenine, C-14 orotic acid, or a mixture of all three. When the starvation period was short (less than 72 hours), organisms (especially yeast cells) contained within amoeba food vacuoles frequently showed RNA synthesis in both nucleated and enucleated amoebae. When the preperiod of starvation was longer than 72 hours, food vacuole influence was apparently negligible, and a more meaningful comparison between enucleated and nucleated amoebae was possible. Nucleated cells incorporated all three precursors into RNA; enucleated cells were incapable of such incorporation. The experiments indicate a complete dependence on the nucleus for RNA synthesis. The conflict with the experimental results of others on this problem could possibly stem from differences in culture conditions, starvation treatment, or experimental conditions. For an unequivocal answer in experiments of this design, ideally the cells should be capable of growth on an entirely synthetic medium under aseptic conditions. The use of a synthetic medium (experiments with A. proteus are done under starvation conditions) would permit, moreover, a more realistic comparison of metabolic capacities of nucleated and enucleated cells.

  14. The evolution of Mercury's crust: a global perspective from MESSENGER.

    PubMed

    Denevi, Brett W; Robinson, Mark S; Solomon, Sean C; Murchie, Scott L; Blewett, David T; Domingue, Deborah L; McCoy, Timothy J; Ernst, Carolyn M; Head, James W; Watters, Thomas R; Chabot, Nancy L

    2009-05-01

    Mapping the distribution and extent of major terrain types on a planet's surface helps to constrain the origin and evolution of its crust. Together, MESSENGER and Mariner 10 observations of Mercury now provide a near-global look at the planet, revealing lateral and vertical heterogeneities in the color and thus composition of Mercury's crust. Smooth plains cover approximately 40% of the surface, and evidence for the volcanic origin of large expanses of plains suggests that a substantial portion of the crust originated volcanically. A low-reflectance, relatively blue component affects at least 15% of the surface and is concentrated in crater and basin ejecta. Its spectral characteristics and likely origin at depth are consistent with its apparent excavation from a lower crust or upper mantle enriched in iron- and titanium-bearing oxides.

  15. Impacts of Center of Mass Shifts on Messenger Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    O'Shaughnessy, D. J.; Vaughan, R. M.; Chouinard, T. L., III; Jaekle, D. E.

    2007-01-01

    The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) has successfully completed its first three years of flight operations following launch on August 3, 2004. As part of NASA s Discovery Program, MESSENGER will observe Mercury during flybys in 2008 and 2009, as well as from orbit beginning in March 2011. This paper discusses the impact that center of mass (CM) location changes have had on many mission activities, particularly angular momentum management and maneuver execution. Momentum trends were altered significantly following the first deep-space maneuver, and these changes were related to a change in the CM. The CM location also impacts maneuver execution, and uncertainties in its location led to the significant direction errors experienced at trajectory correction maneuver 11. Because of the spacecraft sensitivity to CM location, efforts to estimate its position are important to momentum and maneuver prediction. This paper summarizes efforts to estimate the CM from flight data, as well as the operational strategy to handle CM uncertainties and their impact on momentum trends and maneuver execution accuracy.

  16. Distribution of messenger RNAs for D1 dopamine receptors and DARPP-32 in striatum and cerebral cortex of the cynomolgus monkey: relationship to D1 dopamine receptors.

    PubMed

    Brené, S; Hall, H; Lindefors, N; Karlsson, P; Halldin, C; Sedvall, G

    1995-07-01

    Messenger RNAs for the D1 dopamine receptor and dopamine- and cyclic AMP-regulated phosphoprotein of relative mass 32,000 (DARPP-32) were examined by in situ hybridization in the cynomolgus monkey brain. The messenger RNA distribution was compared to the distribution of D1 dopamine receptors using [3H]SCH 23390 autoradiography. In the caudate nucleus and putamen, D1 dopamine receptor messenger RNA-positive cells were unevenly distributed. Clusters of cells with an approximately three-fold higher intensity of labeling, as compared to surrounding regions, were found. Some of these D1 dopamine receptor messenger RNA intensive cell clusters in the caudate nucleus appeared to some extent to be matched to regions of higher intensity of [3H]SCH 23390 binding. The distribution of cells expressing DARPP-32 messenger RNA in the caudate nucleus and putamen was found to be non-clustered. In neocortical regions, cells of different sizes expressing D1 dopamine receptor messenger RNA were present in layers II-VI. D1 dopamine receptor messenger RNA-positive cells were most abundant in layer V. Unexpectedly, no DARPP-32 messenger RNA signal was detected in neocortex. Chronic SCH 23390 administration did not change the relative levels of messenger RNAs for the D1 dopamine receptor and DARPP-32 or [3H]SCH 23390 binding as measured by quantitative image analysis. The clustered distribution of D1 dopamine receptor messenger RNA is in contrast to that of DARPP-32 messenger RNA. This suggests that D1 dopamine receptors may play a more significant role in regulating DARPP-32 function in patch regions as compared to matrix regions. D1 dopamine receptor messenger RNA-expressing cells could also be visualized in several layers of the primate neocortex, implying that dopamine acts through D1 dopamine receptors within functionally different neuronal circuits of the neocortex.

  17. Evaluating the reproducibility of quantifying modified nucleosides from ribonucleic acids by LC–UV–MS

    PubMed Central

    Russell, Susan P.; Limbach, Patrick A.

    2013-01-01

    Post-transcriptional chemical covalent modification of adenosine, guanosine, uridine and cytidine occurs frequently in all types of ribonucleic acids (RNAs). In ribosomal RNA (rRNA) and transfer RNA (tRNA) these modifications make important contributions to RNA structure and stability and to the accuracy and efficiency of protein translation. The functional dynamics, synergistic nature and regulatory roles of these posttranscriptional nucleoside modifications within the cell are not well characterized. These modifications are present at very low levels and isolation of individual nucleosides for analysis requires a complex multi-step approach. The focus of this study is to characterize the reproducibility of a liquid chromatography method used to isolate and quantitatively characterize modified nucleosides in tRNA and rRNA when nucleoside detection is performed using ultraviolet and mass spectrometric detection (UV and MS, respectively). Despite the analytical challenges of sample isolation and dynamic range, quantitative profiling of modified nucleosides obtained from bacterial tRNAs and rRNAs is feasible at relative standard deviations of 5% RSD or less. PMID:23500350

  18. Partial purification, characterization and translation in vitro of rat liver metallothionein messenger ribonucleic acid.

    PubMed Central

    Andersen, R D; Weser, U

    1978-01-01

    Poly(A)+ (polyadenylated) mRNA coding for metallothioneins was purified 13-fold from rat liver polyribosomes and was identified by its ability to direct the biosynthesis of these proteins in a wheat-germ cell-free system. The carboxymethylated products of the protein-synthesizing system in vitro were analysed with sodium dodecyl sulphate/20% polyacrylamide-gel electrophoresis. The labelled compounds [3H]serine and [35S]cysteine were incorporated at high specific radioactivity into proteins that co-migrated with authentic metallothioneins. No [3H]leucine incorporation was found, in agreement with the amino acid composition of the metallothioneins. Metallothionein mRNA had a sedimentation coefficient of 9 S and carried a maximum of four ribosomes. At 5 h after a subcutaneous injection of ZnCl2 or CdCl2 (10 mumol/kg body wt.), the amount of this mRNA increased approx. 2- and 4-fold respectively, on the basis of translation in vitro. The increase in metallothionein mRNA (defined by translation in the wheat-germ system) was transient and, after CdCl2 treatment, fell back to control values by 17 h. Metallothioneins constituted a maximum of 0.8% of the total protein products synthesized in the wheat-germ system by total mRNA isolated from rat liver after CdCl2 treatment. Images Fig. 5. Fig. 6. PMID:743237

  19. Measurement of messenger RNA encoding the alpha-chain, polymeric immunoglobulin receptor, and J-chain in duodenal mucosa from dogs with and without chronic diarrhea by use of quantitative real-time reverse transcription-polymerase chain reaction assays.

    PubMed

    Peters, Iain R; Helps, Chris R; Calvert, Emma L; Hall, Edward J; Day, Michael J

    2005-01-01

    To examine the difference in expression of messenger RNA (mRNA) transcripts for polymeric immunoglobulin receptor (plgR), alpha-chain, and J-chain determined by use of quantitative real-time reverse transcription-polymerase chain reaction (QRT-PCR) assays in duodenal biopsy specimens obtained from dogs with and without chronic diarrhea. Biopsy specimens of the proximal portion of the duodenum were obtained endoscopically from 39 dogs evaluated because of chronic diarrhea (12 German Shepherd Dogs and 27 non-German Shepherd Dog breeds); specimens were also obtained from a control group of 7 dogs evaluated because of other gastrointestinal tract diseases and 2 dogs that were euthanatized as a result of nongastrointestinal tract disease. Dogs were anesthetized, and multiple mucosal biopsy specimens were obtained endoscopically at the level of the caudal duodenal flexure by use of biopsy forceps; in 2 control dogs, samples were obtained from the descending duodenum within 5 minutes of euthanasia. One-step QRT-PCR was used to quantify the level of expression of transcripts for the housekeeper gene glyceraldehyde-3-phosphate dehydrogenase, plgR, alpha-chain, and J-chain in duodenal mucosal tissue. There was no significant difference in the level of expression of any transcript among non-German Shepherd Dog breeds without diarrhea (control group), non-German Shepherd Dog breeds with chronic diarrhea, and German Shepherd Dogs with chronic diarrhea. Conclusions and Clinical Relevance-Results indicated that the susceptibility of German Shepherd Dogs to chronic diarrhea is not a result of simple failure of transcription of the key genes that encode molecules involved in mucosal IgA secretion.

  20. Mercury's thermo-chemical evolution from numerical models constrained by Messenger observations

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Breuer, D.; Plesa, A. C.; Wagner, F.; Laneuville, M.

    2012-04-01

    The Messenger spacecraft, in orbit around Mercury for almost one year, has been delivering a great deal of new information that is changing dramatically our understanding of the solar system's innermost planet. Tracking data of the Radio Science experiment yielded improved estimates of the first coefficients of the gravity field that permit to determine the normalized polar moment of inertia of the planet (C/MR2) and the ratio of the moment of inertia of the mantle to that of the whole planet (Cm/C). These two parameters provide a strong constraint on the internal mass distribution and, in particular, on the core mass fraction. With C/MR2 = 0.353 and Cm/C = 0.452 [1], interior structure models predict a core radius as large as 2000 km [2], leaving room for a silicate mantle shell with a thickness of only ~ 400 km, a value significantly smaller than that of 600 km usually assumed in parametrized [3] as well as in numerical models of Mercury's mantle dynamics and evolution [4]. Furthermore, the Gamma-Ray Spectrometer measured the surface abundance of radioactive elements, revealing, besides uranium and thorium, the presence of potassium. The latter, being moderately volatile, rules out traditional formation scenarios from highly refractory materials, favoring instead a composition not much dissimilar from a chondritic model. Considering a 400 km thick mantle, we carry out a large series of 2D and 3D numerical simulations of the thermo-chemical evolution of Mercury's mantle. We model in a self-consistent way the formation of crust through partial melting using Lagrangian tracers to account for the partitioning of radioactive heat sources between mantle and crust and variations of thermal conductivity. Assuming the relative surface abundance of radiogenic elements observed by Messenger to be representative of the bulk mantle composition, we attempt at constraining the degree to which uranium, thorium and potassium are concentrated in the silicate mantle through a broad

  1. Mercury's Exosphere During MESSENGER's Second Flyby: Detection of Magnesium and Distinct Distributions of Neutral Species

    NASA Technical Reports Server (NTRS)

    McClintock, William E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; Killen, Rosemary M.; Mouawad, Nelly; Sprague, Ann L.; Burger, Matthew H.; Solomon, Sean C.; Izenberg, Noam R.

    2009-01-01

    During MESSENGER's second Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer observed emission from Mercury's neutral exosphere. These observations include the first detection of emission from magnesium. Differing spatial distributions for sodium, calcium, and magnesium were revealed by observations beginning in Mercury's tail region, approximately 8 Mercury radii anti-sunward of the planet, continuing past the nightside, and ending near the dawn terminator. Analysis of these observations, supplemented by observations during the first Mercury flyby as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.

  2. Mercury's magnetosphere after MESSENGER's first flyby.

    PubMed

    Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Gloeckler, George; Gold, Robert E; Ho, George C; Killen, Rosemary M; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Nittler, Larry R; Raines, Jim M; Schriver, David; Solomon, Sean C; Starr, Richard D; Trávnícek, Pavel; Zurbuchen, Thomas H

    2008-07-04

    Observations by MESSENGER show that Mercury's magnetosphere is immersed in a comet-like cloud of planetary ions. The most abundant, Na+, is broadly distributed but exhibits flux maxima in the magnetosheath, where the local plasma flow speed is high, and near the spacecraft's closest approach, where atmospheric density should peak. The magnetic field showed reconnection signatures in the form of flux transfer events, azimuthal rotations consistent with Kelvin-Helmholtz waves along the magnetopause, and extensive ultralow-frequency wave activity. Two outbound current sheet boundaries were observed, across which the magnetic field decreased in a manner suggestive of a double magnetopause. The separation of these current layers, comparable to the gyro-radius of a Na+ pickup ion entering the magnetosphere after being accelerated in the magnetosheath, may indicate a planetary ion boundary layer.

  3. Lymphomas in Ile-Ife, Nigeria: Immunohistochemical Characterization and Detection of Epstein-Barr virus Encoded RNA

    PubMed Central

    Onwubuya, Ifeyinwa M.; Adelusola, Kayode A.; Durosinmi, Muheez A.; Ezike, Kevin N.

    2015-01-01

    Background The proper histopathological characterization of malignant lymphomas requires the use of immunohistochemistry along with other molecular pathology techniques. Materials and Methods Malignant lymphomas histologically diagnosed in our hospital were reclassified according to the WHO scheme using immunohistochemistry while in-situ hybridization was performed for the detection of Epstein-Barr virus encoded RNA. Results There were 83 cases of lymphoma. The male to female ratio was 1.9:1 while the overall mean age was 41.7 years. Non-Hodgkin lymphomas (NHL) constituted about 79.5% of cases. The majority of cases (98.8%) were B-cell lymphomas. Nine subtypes of lymphomas were identified with diffuse large B-cell lymphomas (56.4% of which were of the germinal centre type) constituting the largest group (47.0%). Intermediate and high grade subtypes were more common. The majority of cases (72.3%) were nodal lymphomas with cervical lymph node being the commonest site (48.2%). Only classical Hodgkin lymphoma (HL) (20.5%) was seen of which the mixed cellularity subtype was the most common. Epstein Barr virus (EBV) encoded ribonucleic acid was detected in 7 cases (8.4%) including 4 cases of HL, 2 cases of Burkitt lymphoma and the only case of plasmablastic lymphoma. About five cases were reclassified as non-lymphoid malignant lesions. Conclusion Immunohistochemistry is vital to the proper classification of lymphomas even in a resource poor environment. Although nine subtypes of lymphomas were identified, diffuse large B-cell lymphomas formed the largest single group. Epstein-Barr virus probably plays an important role in lymphomatogenesis in this environment. A larger multicentre study is required to prove this. PMID:26266128

  4. Optimisation of high-quality total ribonucleic acid isolation from cartilaginous tissues for real-time polymerase chain reaction analysis.

    PubMed

    Peeters, M; Huang, C L; Vonk, L A; Lu, Z F; Bank, R A; Helder, M N; Doulabi, B Zandieh

    2016-11-01

    Studies which consider the molecular mechanisms of degeneration and regeneration of cartilaginous tissues are seriously hampered by problematic ribonucleic acid (RNA) isolations due to low cell density and the dense, proteoglycan-rich extracellular matrix of cartilage. Proteoglycans tend to co-purify with RNA, they can absorb the full spectrum of UV light and they are potent inhibitors of polymerase chain reaction (PCR). Therefore, the objective of the present study is to compare and optimise different homogenisation methods and RNA isolation kits for an array of cartilaginous tissues. Tissue samples such as the nucleus pulposus (NP), annulus fibrosus (AF), articular cartilage (AC) and meniscus, were collected from goats and homogenised by either the MagNA Lyser or Freezer Mill. RNA of duplicate samples was subsequently isolated by either TRIzol (benchmark), or the RNeasy Lipid Tissue, RNeasy Fibrous Tissue, or Aurum Total RNA Fatty and Fibrous Tissue kits. RNA yield, purity, and integrity were determined and gene expression levels of type II collagen and aggrecan were measured by real-time PCR. No differences between the two homogenisation methods were found. RNA isolation using the RNeasy Fibrous and Lipid kits resulted in the purest RNA (A260/A280 ratio), whereas TRIzol isolations resulted in RNA that is not as pure, and show a larger difference in gene expression of duplicate samples compared with both RNeasy kits. The Aurum kit showed low reproducibility. For the extraction of high-quality RNA from cartilaginous structures, we suggest homogenisation of the samples by the MagNA Lyser. For AC, NP and AF we recommend the RNeasy Fibrous kit, whereas for the meniscus the RNeasy Lipid kit is advised.Cite this article: M. Peeters, C. L. Huang, L. A. Vonk, Z. F. Lu, R. A. Bank, M. N. Helder, B. Zandieh Doulabi. Optimisation of high-quality total ribonucleic acid isolation from cartilaginous tissues for real-time polymerase chain reaction analysis. Bone Joint Res 2016

  5. Optimisation of high-quality total ribonucleic acid isolation from cartilaginous tissues for real-time polymerase chain reaction analysis

    PubMed Central

    Peeters, M.; Huang, C. L.; Vonk, L. A.; Lu, Z. F.; Bank, R. A.; Doulabi, B. Zandieh

    2016-01-01

    Objectives Studies which consider the molecular mechanisms of degeneration and regeneration of cartilaginous tissues are seriously hampered by problematic ribonucleic acid (RNA) isolations due to low cell density and the dense, proteoglycan-rich extracellular matrix of cartilage. Proteoglycans tend to co-purify with RNA, they can absorb the full spectrum of UV light and they are potent inhibitors of polymerase chain reaction (PCR). Therefore, the objective of the present study is to compare and optimise different homogenisation methods and RNA isolation kits for an array of cartilaginous tissues. Materials and Methods Tissue samples such as the nucleus pulposus (NP), annulus fibrosus (AF), articular cartilage (AC) and meniscus, were collected from goats and homogenised by either the MagNA Lyser or Freezer Mill. RNA of duplicate samples was subsequently isolated by either TRIzol (benchmark), or the RNeasy Lipid Tissue, RNeasy Fibrous Tissue, or Aurum Total RNA Fatty and Fibrous Tissue kits. RNA yield, purity, and integrity were determined and gene expression levels of type II collagen and aggrecan were measured by real-time PCR. Results No differences between the two homogenisation methods were found. RNA isolation using the RNeasy Fibrous and Lipid kits resulted in the purest RNA (A260/A280 ratio), whereas TRIzol isolations resulted in RNA that is not as pure, and show a larger difference in gene expression of duplicate samples compared with both RNeasy kits. The Aurum kit showed low reproducibility. Conclusion For the extraction of high-quality RNA from cartilaginous structures, we suggest homogenisation of the samples by the MagNA Lyser. For AC, NP and AF we recommend the RNeasy Fibrous kit, whereas for the meniscus the RNeasy Lipid kit is advised. Cite this article: M. Peeters, C. L. Huang, L. A. Vonk, Z. F. Lu, R. A. Bank, M. N. Helder, B. Zandieh Doulabi. Optimisation of high-quality total ribonucleic acid isolation from cartilaginous tissues for real

  6. New insights into the molecular mechanism of Boletus edulis ribonucleic acid fraction (BE3) concerning antiproliferative activity on human colon cancer cells.

    PubMed

    Lemieszek, Marta Kinga; Ribeiro, Miguel; Marques, Guilhermina; Nunes, Fernando Milheiro; Pożarowski, Piotr; Rzeski, Wojciech

    2017-05-24

    One of the relatively new and promising strategies of cancer treatment is chemoprevention, which involves the use of natural or synthetic compounds to block, inhibit or reverse carcinogenesis. A valuable and still untapped source of chemopreventive compounds seems to be edible mushrooms belonging to higher Basidiomycetes. Boletus edulis biopolymers extracted with hot water and purified by anion-exchange chromatography showed antiproliferative activity in colon cancer cells, but only fraction BE3, mostly composed of ribonucleic acids, was able to inhibit DNA synthesis in HT-29 cells. The present work aims to elucidate the molecular mechanism of this Boletus edulis ribonucleic acid fraction and in this sense flow cytometry and western blotting were applied to cell cycle analysis in HT-29 cells. We found that the antiproliferative ability of fraction BE3 observed in HT-29 cells was associated with the modulation of expression of cell cycle regulatory proteins (Cyclin D1, Cyclin A, p21 and p27) leading to cell accumulation in the S phase of the cell cycle. Furthermore, the BE3 fraction showed effective silencing of the signal transduction in an MAPK/Erk pathway in HT-29 and LS180 colon cancer cell lines. Thus, the previously and currently obtained results indicate that the BE3 fraction from Boletus edulis has great potential and needs to be further exploited through animal and clinical studies in order to develop a new efficient and safe therapeutic strategy for people who have been threatened by or suffered from colon cancer.

  7. Prostaglandin E2-induced up-regulation of c-fos messenger ribonucleic acid is primarily mediated by 3',5'-cyclic adenosine monophosphate in MC3T3-E1 osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Dietz, T. J.; Hughes-Fulford, M.

    2000-01-01

    The mechanism by which the proto-oncogene, c-fos, is up-regulated in response to PGE2 in the mouse osteoblastic (MC3T3-E1) cell line was investigated using RT-PCR. c-fos messenger RNA up-regulation by dmPGE2 is rapid, starting 10 min post stimulation, and transient. The specific protein kinase A (PKA) inhibitor, H89, inhibited c-fos induction. Moreover, down-regulation of protein kinase C (PKC) activity by chronic TPA treatment had no effect on the induction of c-fos by dmPGE2. We conclude that up-regulation of c-fos by dmPGE2 is primarily dependent on PKA in MC3T3-E1 osteoblasts. In S49 lymphoma wild-type but not S49 cyc- cells, which are deficient in cAMP signaling, dmPGE2 up-regulates c-fos and increases cell growth compared with unstimulated cells. Thus in S49 lymphoma cells, c-fos induction by PGE2 is also dependent on cAMP signaling. The minimal c-fos promoter region required for dmPGE2-induced expression was identified by transfecting c-fos promoter deletion constructs coupled to the chloramphenicol acetyltransferase (CAT) reporter gene into Vero cells. Transfection of a plasmid containing 99 bp c-fos proximal promoter was sufficient to direct c-fos/CAT expression following stimulation with dmPGE2. Because induction of c-fos is mediated by cAMP, these data are consistent with activation of c-fos via the CRE/ATF cis element.

  8. Short-Duration Gamma-Ray Burst in the Multi-Messenger Era

    NASA Astrophysics Data System (ADS)

    Lazzati, Davide

    2016-12-01

    The detection of gravitational waves (GW) from binary black hole mergers has been an historical, transformative event in physics and astronomy, heralded by most as the beginning of multi-messenger astronomy. With the increase of sensitivity over the next few years, LIGO and Virgo are predicted to detect mergers from neutron-star (NS) binaries. These are expected to be the first true multi-messenger sources, being the progenitors of short-duration gamma-ray burst (SGRB). The simultaneous detection of a gravitational, electromagnetic, and possibly neutrino signals from the same source would dramatically enhance the scientific output of each individual detection. Important details of the connection between SGRBs and NS binary mergers are however poorly known. These include the nature of the merging compact objects, their equation of state, the physics of SGRB jets - such as their Lorentz factors and opening angles, and the possibility of small temporal delays among the GW, n! eutrino, and gamma-ray signals. In view of the expected increased sensitivity of LIGO during the upcoming observing period and beyond, there is urgent need of improving our understanding of the physics of SGRBs to support the detection of GWs (and possibly neutrinos) and to develop a context in which the expected multi-messenger signal can be properly interpreted and its potential fully exploited. To achieve such goals, we propose to carry out a comprehensive study of relativistic jets from compact binary mergers, exploiting the most recent advances in numerical techniques developed within this research group. The ansatz of this study will be that within a short time after a compact merger a relativistic jet is created. Subsequently, the jet interacts with the merger environment, imprinting a signature that can be detected in the temporal and spectral properties of the prompt radiation, both in its electromagnetic and neutrino components. Analogous dynamical effects have been observed and studied

  9. Mercury's complex exosphere: results from MESSENGER's third flyby.

    PubMed

    Vervack, Ronald J; McClintock, William E; Killen, Rosemary M; Sprague, Ann L; Anderson, Brian J; Burger, Matthew H; Bradley, E Todd; Mouawad, Nelly; Solomon, Sean C; Izenberg, Noam R

    2010-08-06

    During MESSENGER's third flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer detected emission from ionized calcium concentrated 1 to 2 Mercury radii tailward of the planet. This measurement provides evidence for tailward magnetospheric convection of photoions produced inside the magnetosphere. Observations of neutral sodium, calcium, and magnesium above the planet's north and south poles reveal altitude distributions that are distinct for each species. A two-component sodium distribution and markedly different magnesium distributions above the two poles are direct indications that multiple processes control the distribution of even single species in Mercury's exosphere.

  10. Comparison of MESSENGER Optical Images with Thermal and Radar Data for the Surface of MERCURY

    NASA Astrophysics Data System (ADS)

    Blewett, D. T.; Coman, E. I.; Chabot, N. L.; Izenberg, N. R.; Harmon, J. K.; Neish, C.

    2010-12-01

    Images collected by the MESSENGER spacecraft during its three Mercury flybys cover nearly the entire surface of the planet that was not imaged by Mariner 10. The MESSENGER data now allow us to observe features at optical wavelengths that were previously known only through remote sensing in other portions of the electromagnetic spectrum. For example, the Mariner 10 infrared (IR) radiometer made measurements along a track on the night side of Mercury during the spacecraft's first encounter in 1974. Analysis of the IR radiometer data identified several thermal anomalies that we have correlated to craters with extensive rays or ejecta deposits, including Xiao Zhao and Eminescu. The thermal properties are consistent with a greater exposure of bare rock (exposed in steep walls or as boulders and cobbles) in and around these craters compared with the lower-thermal-inertia, finer-grained regolith of the surrounding older surface. The portion of Mercury not viewed by Mariner 10 has also been imaged by Earth-based radar. The radar backscatter gives information on the wavelength-scale surface roughness. Arecibo S-band (12.6-cm wavelength) radar observations have produced images of Eminescu and also revealed two spectacular rayed craters (Debussy and Hokusai) that have since been imaged by MESSENGER. We are examining radial profiles for these craters, extracted from both the radar images and MESSENGER narrow-angle camera mosaics, that extend from the crater center outwards to a distance of several crater diameters. Comparison of optical and radar profiles for the craters, as well as similar profiles for lunar craters, can provide insight into ejecta deposition, the effect of surface gravity on the cratering process, and space weathering.

  11. Cellular distribution and regulation of ghrelin messenger ribonucleic acid in the rat pituitary gland.

    PubMed

    Caminos, J E; Nogueiras, R; Blanco, M; Seoane, L M; Bravo, S; Alvarez, C V; García-Caballero, T; Casanueva, F F; Diéguez, C

    2003-11-01

    Ghrelin, a 28-amino-acid acylated peptide, strongly stimulates GH release and food intake. In the present study, we found that ghrelin is expressed in somatotrophs, lactotrophs, and thyrotrophs but not in corticotrophs or gonadotrophs of rat pituitary. Persistent expression of the ghrelin gene is found during postnatal development in male and female rats, although the levels significantly decrease in both cases from pituitaries of 20-d-old rats onward, but at 60 d old, the levels were higher in male than female rats. This sexually dimorphic pattern appears to be mediated by estrogens because ovariectomy, but not orchidectomy, increases pituitary ghrelin mRNA levels. Taking into account that somatotroph cell function is markedly influenced by thyroid hormones, glucocorticoids, GH, and metabolic status, we also assessed such influence. We found that ghrelin mRNA levels decrease in hypothyroid- and glucocorticoid-treated rats, increase in GH-deficient rats (dwarf rats), and remain unaffected by food deprivation. In conclusion, we have defined the specific cell types that express ghrelin in the rat anterior pituitary gland. These data provide direct morphological evidence that ghrelin may well be acting in a paracrine-like fashion in the regulation of anterior pituitary cell function. In addition, we clearly demonstrate that pituitary ghrelin mRNA levels are age and gender dependent. Finally, we show that pituitary ghrelin mRNA levels are influenced by alteration on thyroid hormone, glucocorticoids, and GH levels but not by fasting, which indicates that the regulation of ghrelin gene expression is tissue specific.

  12. Complete nucleotide sequences of the coat protein messenger RNAs of brome mosaic virus and cowpea chlorotic mottle virus.

    PubMed Central

    Dasgupta, R; Kaesberg, P

    1982-01-01

    The nucleotide sequences of the subgenomic coat protein messengers (RNA4's) of two related bromoviruses, brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV), have been determined by direct RNA and CDNA sequencing without cloning. BMV RNA4 is 876 b long including a 5' noncoding region of nine nucleotides and a 3' noncoding region of 300 nucleotides. CCMV RNA 4 is 824 b long, including a 5' noncoding region of 10 nucleotides and a 3' noncoding region of 244 nucleotides. The encoded coat proteins are similar in length (188 amino acids for BMV and 189 amino acids for CCMV) and display about 70% homology in their amino acid sequences. Length difference between the two RNAs is due mostly to a single deletion, in CCMV with respect to BMV, of about 57 b immediately following the coding region. Allowing for this deletion the RNAs are indicate that mutations leading to divergence were constrained in the coding region primarily by the requirement of maintaining a favorable coat protein structure and in the 3' noncoding region primarily by the requirement of maintaining a favorable RNA spatial configuration. PMID:6895941

  13. Tenascin in meningioma: expression is correlated with anaplasia, vascular endothelial growth factor expression, and peritumoral edema but not with tumor border shape.

    PubMed

    Kiliç, Türker; Bayri, Yaşar; Ozduman, Koray; Acar, Melih; Diren, Semin; Kurtkaya, Ozlem; Ekinci, Gazanfer; Buğra, Kuyaş; Sav, Aydin; Ozek, M Memet; Pamir, M Necmettin

    2002-07-01

    Tenascin is an extracellular matrix glycoprotein that is expressed during embryogenesis, inflammation, angiogenesis, and carcinogenesis. The aim of this study was to investigate how tenascin expression relates to histological grade, angiogenesis, and radiological findings in meningiomas. Twenty typical, 20 atypical, and 5 malignant meningiomas were studied retrospectively. Tenascin expression and vascular endothelial growth factor (VEGF) expression in the tumor tissue were investigated by immunohistochemistry. Tenascin messenger ribonucleic acid expression was also studied by comparative reverse transcriptase-polymerase chain reaction. Magnetic resonance images from each case were assessed for peritumoral edema and tumor border shape. The atypical and malignant meningiomas showed higher levels of tenascin expression than the typical meningiomas. The more sensitive messenger ribonucleic acid-based methods confirmed this finding. Tenascin expression was correlated with peritumoral edema and VEGF expression but not with tumor border shape. In the 13 tumors with marked tenascin expression, peritumoral edema was Grade 0 in one, Grade 1 in three, and Grade 2 in nine specimens. In the same 13 tumors, VEGF expression was Grade 1 in five and Grade 2 in eight specimens, and the findings for tumor border shape were Grade 0 in seven, Grade 1 in four, and Grade 2 in two specimens. In meningiomas, tenascin expression is correlated with anaplasia, tumor-associated edema, and VEGF expression but not with tumor border shape. This protein may play a role in the neoplastic and/or angiogenic processes in atypical and malignant meningiomas and may thus be a potential target for meningioma therapy.

  14. Mercury's exosphere: observations during MESSENGER's First Mercury flyby.

    PubMed

    McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C

    2008-07-04

    During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby.

  15. Social and Virtual Networks: Evaluating Synchronous Online Interviewing Using Instant Messenger

    ERIC Educational Resources Information Center

    Hinchcliffe, Vanessa; Gavin, Helen

    2009-01-01

    This paper describes an evaluation of the quality and utility of synchronous online interviewing for data collection in social network research. Synchronous online interviews facilitated by Instant Messenger as the communication medium, were undertaken with ten final year university students. Quantitative and qualitative content analysis of…

  16. The Mercury exosphere after MESSENGER

    NASA Astrophysics Data System (ADS)

    Killen, Rosemary; McClintock, William; Vervack, Ronald; Merkel, Aimee; Burger, Matthew; Cassidy, Timothy; Sarantos, Menelaos

    2016-07-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft observed sodium, calcium and magnesium emisison in Mercury's exosphere on a near-daily basis for >16 Mercury years. The MASCS observations showed that calcium in Mercury's exosphere is persistently concentrated in the dawn hemisphere and is of extreme temperature (>50,000 K). The column abundance varies seasonally, and is extremely repeatable each Mercury year. In addition, the calcium exhibits a persistent maximum not at perihelion but 20° after perihelion, an enhancement that was shown to be coincident with the probable intersection of Mercury's orbit with a dust stream originating at Comet Encke. Any mechanism producing the Mercurian Ca exosphere must explain the facts that the Ca is extremely hot, that it is seen almost exclusively on the dawnside of the planet, and that its content varies seasonally, not sporadically. Energization of the Ca atoms was suggested to originate through dissociation of Ca-bearing molecules ejected by meteoritic impacts. Magnesium was also observed on a daily basis throughout the MESSENGER orbital phase. Mg has its own spatial and temporal pattern, peaking at mid-morning instead of early morning like Ca, and exhibiting a warm thermal profile, about 5000 K, unlike the extreme temperature of Ca which is an order of magnitude hotter. Although Mercury's sodium exosphere has been observed from the ground for many decades, the MASCS observations showed that, like calcium, the sodium exosphere is dominated by seasonal variations, not sporadic variations. However a conundrum exists as to why ground-based observations show highly variable high-latitude variations that eluded the MASCS. The origin of a persistent south polar enhancement has not been explained. The more volatile element, Na, is again colder, about 1200 K, but not thermally accommodated to the surface temperature. A

  17. Performance Assessment of the Mercury Laser Altimeter on MESSENGER from Mercury Orbit

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Mazarico, Edward M.

    2009-01-01

    The Mercury Laser Altimeter (MLA) is one of seven instruments on the MErcury Surface, Space ENvironment GEochemistry, and Ranging (MESSENGER) spacecraft,a mission in NASA's Discovery Program. MESSENGER was launched on August 3, 2004, and entered into orbit about Mercury on March 29, 2011. As of June 30, 2011 MLA started to collect science Measurements on March 29, 2011. As of June 30, 2011 MLA had accumulated about 3 million laser ranging measurements to the Mercury surface through one Mercury year, i.e ., one complete cycle of the spacecraft thermal environment. The average MLA laser output-pulse energy remained steady despite the harsh thermal environment, in which the laser bench temperature changed by as much as 15 C over a 35 min operating period . The laser beam-collimating telescope experienced a 30 C temperature swing over the same period, and the thermal cycling repeated every 12 hours. Nonetheless, MLA receiver optics appeared to be aligned and in focus throughout these temperature excursions. The maximum ranging distance of MLA was 1500 km at near-zero laser-beam incidence angle (and emission angle) and 600 km at 60 deg incidence angle. The MLA instrument performance in Mercury orbit has been consistent with the performance demonstrated during MESSENGER's Mercury flybys in January and October 2008 and during pre-launch testing. In addition to range measurements, MLA data are being used to estimate the surface reflectance of Mercury at 1064 nm wavelength, including regions of permanent shadow on the floors of polar craters. MLA also provides a measurement of the surface reflectance of sunlight at 1064 nm wavelength by its noise counters, for which output is a monotonic function of the background light.

  18. Navajo Code Talker Joe Morris, Sr. shared insights from his time as a secret World War Two messenger

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Navajo Code Talker Joe Morris, Sr. shared insights from his time as a secret World War Two messenger with his audience at NASA's Dryden Flight Research Center on Nov. 26, 2002. NASA Dryden is located on Edwards Air Force Base in California's Mojave Desert.

  19. A 20-basepair duplication in the human thyroid peroxidase gene results in a total iodide organification defect and congenital hypothyroidism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bikker, H.; Hartog, M.T. den; Gons, M.H.

    1994-07-01

    In this study, the authors present the molecular basis of a total iodide organification defect causing severe congenital hypothyroidism. In the thyroid gland of the patient, thyroid peroxidase (TPO) activity and the iodination degree of thyroglobulin were below detection limits, and no TPO messenger ribonucleic acid was detectable by Northern blot analysis. Denaturing gradient gel electrophoretic analysis of the TPO gene of the patient revealed a homozygous mutation in exon 2. Sequence analysis showed the presence of a 20-basepair duplication, 47 basepairs down-stream of the ATG start codon. This duplication generates a frame shift, resulting in a termination signal inmore » exon 3, compatible with the complete absence of TPO. Both parents of the patient are heterozygous for the same duplication, confirming the recessive mode of inheritance of the mutation. 32 refs., 4 figs.« less

  20. Emotion elicitor or emotion messenger? Subliminal priming reveals two faces of facial expressions.

    PubMed

    Ruys, Kirsten I; Stapel, Diederik A

    2008-06-01

    Facial emotional expressions can serve both as emotional stimuli and as communicative signals. The research reported here was conducted to illustrate how responses to both roles of facial emotional expressions unfold over time. As an emotion elicitor, a facial emotional expression (e.g., a disgusted face) activates a response that is similar to responses to other emotional stimuli of the same valence (e.g., a dirty, nonflushed toilet). As an emotion messenger, the same facial expression (e.g., a disgusted face) serves as a communicative signal by also activating the knowledge that the sender is experiencing a specific emotion (e.g., the sender feels disgusted). By varying the duration of exposure to disgusted, fearful, angry, and neutral faces in two subliminal-priming studies, we demonstrated that responses to faces as emotion elicitors occur prior to responses to faces as emotion messengers, and that both types of responses may unfold unconsciously.

  1. Monte Carlo Modeling of Sodium in Mercury's Exosphere During the First Two MESSENGER Flybys

    NASA Technical Reports Server (NTRS)

    Burger, Matthew H.; Killen, Rosemary M.; Vervack, Ronald J., Jr.; Bradley, E. Todd; McClintock, William E.; Sarantos, Menelaos; Benna, Mehdi; Mouawad, Nelly

    2010-01-01

    We present a Monte Carlo model of the distribution of neutral sodium in Mercury's exosphere and tail using data from the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft during the first two flybys of the planet in January and September 2008. We show that the dominant source mechanism for ejecting sodium from the surface is photon-stimulated desorption (PSD) and that the desorption rate is limited by the diffusion rate of sodium from the interior of grains in the regolith to the topmost few monolayers where PSD is effective. In the absence of ion precipitation, we find that the sodium source rate is limited to approximately 10(exp 6) - 10(exp 7) per square centimeter per second, depending on the sticking efficiency of exospheric sodium that returns to the surface. The diffusion rate must be at least a factor of 5 higher in regions of ion precipitation to explain the MASCS observations during the second MESSENGER f1yby. We estimate that impact vaporization of micrometeoroids may provide up to 15% of the total sodium source rate in the regions observed. Although sputtering by precipitating ions was found not to be a significant source of sodium during the MESSENGER flybys, ion precipitation is responsible for increasing the source rate at high latitudes through ion-enhanced diffusion.

  2. Gradient enhanced-fluidity liquid hydrophilic interaction chromatography of ribonucleic acid nucleosides and nucleotides: A "green" technique.

    PubMed

    Beilke, Michael C; Beres, Martin J; Olesik, Susan V

    2016-03-04

    A "green" hydrophilic interaction liquid chromatography (HILIC) technique for separating the components of mixtures with a broad range of polarities is illustrated using enhanced-fluidity liquid mobile phases. Enhanced-fluidity liquid chromatography (EFLC) involves the addition of liquid CO2 to conventional liquid mobile phases. Decreased mobile phase viscosity and increased analyte diffusivity results when a liquefied gas is dissolved in common liquid mobile phases. The impact of CO2 addition to a methanol:water (MeOH:H2O) mobile phase was studied to optimize HILIC gradient conditions. For the first time a fast separation of 16 ribonucleic acid (RNA) nucleosides/nucleotides was achieved (16min) with greater than 1.3 resolution for all analyte pairs. By using a gradient, the analysis time was reduced by over 100% compared to similar separations conducted under isocratic conditions. The optimal separation using MeOH:H2O:CO2 mobile phases was compared to MeOH:H2O and acetonitrile:water (ACN:H2O) mobile phases. Based on chromatographic performance parameters (efficiency, resolution and speed of analysis) and an assessment of the environmental impact of the mobile phase mixtures, MeOH:H2O:CO2 mixtures are preferred over ACN:H2O or MeOH:H2O mobile phases for the separation of mixtures of RNA nucleosides and nucleotides. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Gravity, Topography, and Magnetic Field of Mercury from Messenger

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory A.; Solomon, Sean C.; Zuber, Maria T.; Phillips, Roger J.; Barnouin, Olivier; Ernst, Carolyn; Goosens, Sander; Hauck, Steven A., II; Head, James W., III; Johnson, Catherine L.; hide

    2012-01-01

    On 18 March 2011, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was inserted into a 12-hour, near-polar orbit around Mercury, with an initial periapsis altitude of 200 km, initial periapse latitude of 60 deg N, and apoapsis at approximately 15,200 km altitude in the southern hemisphere. This orbit has permitted the mapping of regional gravitational structure in the northern hemisphere, and laser altimetry from the MESSENGER spacecraft has yielded a geodetically controlled elevation model for the same hemisphere. The shape of a planet combined with gravity provides fundamental information regarding its internal structure and geologic and thermal evolution. Elevations in the northern hemisphere exhibit a unimodal distribution with a dynamic range of 9.63 km, less than that of the Moon (19.9 km), but consistent with Mercury's higher surface gravitational acceleration. After one Earth-year in orbit, refined models of gravity and topography have revealed several large positive gravity anomalies that coincide with major impact basins. These candidate mascons have anomalies that exceed 100 mGal and indicate substantial crustal thinning and superisostatic uplift of underlying mantle. An additional uncompensated 1000-km-diameter gravity and topographic high at 68 deg N, 33 deg E lies within Mercury's northern volcanic plains. Mercury's northern hemisphere crust is generally thicker at low latitudes than in the polar region. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR2 = 0.353 +/- 0.017, where M=3.30 x 10(exp 23) kg and R=2440 km are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of Cm/C = 0.452 +/- 0.035. One proposed model for Mercury's radial density distribution consistent with these results includes silicate crust and mantle layers overlying a dense solid (possibly Fe-S) layer, a liquid Fe

  4. Multi-Messenger Astronomy: White Dwarf Binaries, LISA and GAIA

    NASA Astrophysics Data System (ADS)

    Bueno, Michael; Breivik, Katelyn; Larson, Shane L.

    2017-01-01

    The discovery of gravitational waves has ushered in a new era in astronomy. The low-frequency band covered by the future LISA detector provides unprecedented opportunities for multi-messenger astronomy. With the Global Astrometric Interferometer for Astrophysics (GAIA) mission, we expect to discover about 1,000 eclipsing binary systems composed of a WD and a main sequence star - a sizeable increase from the approximately 34 currently known binaries of this type. In advance of the first GAIA data release and the launch of LISA within the next decade, we used the Binary Stellar Evolution (BSE) code simulate the evolution of White Dwarf Binaries (WDB) in a fixed galaxy population of about 196,000 sources. Our goal is to assess the detectability of a WDB by LISA and GAIA using the parameters from our population synthesis, we calculate GW strength h, and apparent GAIA magnitude G. We can then use a scale factor to make a prediction of how many multi- messenger sources we expect to be detectable by both LISA and GAIA in a galaxy the size of the Milky Way. We create binaries 10 times to ensure randomness in distance assignment and average our results. We then determined whether or not astronomical chirp is the difference between the total chirp and the GW chirp. With Astronomical chirp and simulations of mass transfer and tides, we can gather more information about the internal astrophysics of stars in ultra-compact binary systems.

  5. Mercury's gravity field, orientation, and ephemeris after MESSENGER's Low-Altitude Campaign

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander J.; Lemoine, Frank G.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.

    2015-04-01

    In April 2015, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft will complete more than 4 years of operations in orbit around Mercury. In its last year, as part of MESSENGER's Second Extended Mission (XM2) started in March 2013, the spacecraft has been collecting radio tracking data at unprecedented low altitudes in Mercury's northern hemisphere. During the first two years in orbit, the spacecraft periapsis altitude was kept between 200 and 500 km, while its location drifted slowly northward from 60˚N to 84˚N. The orbital period initially was 12 h, but it was decreased to 8 h in April 2012. The remaining fuel onboard the spacecraft enabled two extended missions, the last of which will end with an impact expected on or before 28 April 2015. During the second extended mission, the periapsis altitude has been as low as 15-25 km. NASA's Deep Space Network (DSN) tracked the spacecraft during periapsis passages from April to October 2014, when the spacecraft periapsis altitude was between 25 and 100 km. In the last six months of the mission, the closest approaches of MESSENGER were occulted by Mercury and were thus not visible from Earth. However, additional radio tracking data have been collected at altitudes (75-100 km) that are still substantially below the initial periapsis altitude. The new low-altitude radio tracking data have enabled an updated model of the gravity field of Mercury. With these data, the resolution of the field in the northern hemisphere has been improved, revealing features that were previously undetectable and that correlate well with topography. The zonal harmonics are in good agreement with those in previous models of the gravity field. We also focused our study on the determination of other geophysical parameters, such as the orientation of Mercury. The new data were acquired not only at lower altitudes but also at latitudes closer to the equator, so they provide important information on tides, the

  6. Boletus edulis ribonucleic acid - a potent apoptosis inducer in human colon adenocarcinoma cells.

    PubMed

    Lemieszek, Marta Kinga; Ribeiro, Miguel; Guichard Alves, Helena; Marques, Guilhermina; Nunes, Fernando Milheiro; Rzeski, Wojciech

    2016-07-13

    Despite the large popularity of the Boletus edulis mushroom, little is known about its influence on human health and the possibilities of its therapeutic use. Nevertheless, several reports revealed the usefulness of biopolymers isolated from it in cancer treatment. Our previous studies have shown that B. edulis water soluble biopolymers are not toxic against normal colon epithelial cells (CCD841 CoTr) and at the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells (LS180) which was accompanied with cell cycle arrest in the G0/G1 phase. The purpose of the present study was to verify the proapoptotic properties of a selected fraction from B. edulis - BE3, as well as determine its chemical nature. The BE3 fraction was extracted with hot water and purified by anion-exchange chromatography. Further chemical examinations revealed that BE3 consists mainly of ribonucleic acid (59.1%). The ability of BE3 to induce programmed cell death was examined in human colon cancer cell lines LS180 and HT-29 by measuring caspase activation, DNA fragmentation and expression of BAX, BCL2, TP53 and CDKN1A genes. The sensitivity of colon cancer cells with silenced BAX, TP53 and CDKN1A expression to BE3 treatment was also evaluated. We have demonstrated for the first time that the BE3 fraction is a potent apoptosis inducer in human colon cancer cells. The revealed mechanism of apoptosis triggering was dependent on the presence of functional p53 and consequently was a little different in investigated cell lines. Our results indicated that BE3 stimulated proapoptotic genes BAX (LS180, HT-29), TP53 (LS180) and CDKN1A (HT-29) while at the same time silenced the expression of the key prosurvival gene BCL2 (LS180, HT-29). The obtained results indicate the high therapeutic potential of the BE3 fraction against colon cancer, yet it is necessary to further confirm fraction efficacy and safety in animal and clinical studies.

  7. The MESSENGER Earth Flyby: Results from the Mercury Dual Imaging System

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Murchie, S. L.; Hawkins, S. E.; Robinson, M. S.; Shelton, R. G.; Vaughan, R. M.; Solomon, S. C.

    2005-12-01

    The MESSENGER (MErcury Surface, Space ENvironment, Geochemistry, and Ranging) spacecraft was launched from Cape Canaveral Air Force Station, Fla., on 3 August 2004. It returned to Earth for a gravity assist on 2 August 2005, providing an exceptional opportunity for the Science Team to perform instrument calibrations and to test some of the data acquisition sequences that will be used to meet Mercury science goals. The Mercury Dual Imaging System (MDIS), one of seven science instruments on MESSENGER, consists of a wide-angle and a narrow-angle imager that together can map landforms, track variations in surface color, and carry out stereogrammetry. The two imagers are mounted on a pivot platform that enables the instrument to point in a different direction from the spacecraft boresight, allowing great flexibility and increased imaging coverage. During the week prior to the closest approach to Earth, MDIS acquired a number of images of the Moon for radiometric calibration and to test optical navigation sequences that will be used to target planetary flybys. Twenty-four hours before closest approach, images of the Earth were acquired with 11 filters of the wide-angle camera. After MDIS flew over the nightside of the Earth, additional color images centered on South America were obtained at sufficiently high resolution to discriminate small-scale features such as the Amazon River and Lake Titicaca. During its departure from Earth, MDIS acquired a sequence of images taken in three filters every 4 minutes over a period of 24 hours. These images have been assembled into a movie of a crescent Earth that begins as South America slides across the terminator into darkness and continues for one full Earth rotation. This movie and the other images have provided a successful test of the sequences that will be used during the MESSENGER Mercury flybys in 2008 and 2009 and have demonstrated the high quality of the MDIS wide-angle camera.

  8. Laser altimeter observations from MESSENGER's first Mercury flyby.

    PubMed

    Zuber, Maria T; Smith, David E; Solomon, Sean C; Phillips, Roger J; Peale, Stanton J; Head, James W; Hauck, Steven A; McNutt, Ralph L; Oberst, Jürgen; Neumann, Gregory A; Lemoine, Frank G; Sun, Xiaoli; Barnouin-Jha, Olivier; Harmon, John K

    2008-07-04

    A 3200-kilometers-long profile of Mercury by the Mercury Laser Altimeter on the MESSENGER spacecraft spans approximately 20% of the near-equatorial region of the planet. Topography along the profile is characterized by a 5.2-kilometer dynamic range and 930-meter root-mean-square roughness. At long wavelengths, topography slopes eastward by 0.02 degrees , implying a variation of equatorial shape that is at least partially compensated. Sampled craters on Mercury are shallower than their counterparts on the Moon, at least in part the result of Mercury's higher gravity. Crater floors vary in roughness and slope, implying complex modification over a range of length scales.

  9. Solving the muon g -2 anomaly in deflected anomaly mediated SUSY breaking with messenger-matter interactions

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wang, Wenyu; Yang, Jin Min

    2017-10-01

    We propose to introduce general messenger-matter interactions in the deflected anomaly mediated supersymmetry (SUSY) breaking (AMSB) scenario to explain the gμ-2 anomaly. Scenarios with complete or incomplete grand unified theory (GUT) multiplet messengers are discussed, respectively. The introduction of incomplete GUT mulitiplets can be advantageous in various aspects. We found that the gμ-2 anomaly can be solved in both scenarios under current constraints including the gluino mass bounds, while the scenarios with incomplete GUT representation messengers are more favored by the gμ-2 data. We also found that the gluino is upper bounded by about 2.5 TeV (2.0 TeV) in scenario A and 3.0 TeV (2.7 TeV) in scenario B if the generalized deflected AMSB scenarios are used to fully account for the gμ-2 anomaly at 3 σ (2 σ ) level. Such a gluino should be accessible in the future LHC searches. Dark matter (DM) constraints, including DM relic density and direct detection bounds, favor scenario B with incomplete GUT multiplets. Much of the allowed parameter space for scenario B could be covered by the future DM direct detection experiments.

  10. Models and Messengers of Resilience: A Theoretical Model of College Students' Resilience, Regulatory Strategy Use, and Academic Achievement

    ERIC Educational Resources Information Center

    Johnson, Marcus L.; Taasoobshirazi, Gita; Kestler, Jessica L.; Cordova, Jackie R.

    2015-01-01

    We tested a theoretical model of college students' ratings of messengers of resilience and models of resilience, students' own perceived resilience, regulatory strategy use and achievement. A total of 116 undergraduates participated in this study. The results of a path analysis indicated that ratings of models of resilience had a direct effect on…

  11. MESSENGER Searches for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Mercury's exosphere is composed of material that originates at the planet's surface, whether that material is native or delivered by the solar wind and micrometeoroids. Many exospheric species have been detected by remote sensing, including H and He by Mariner 10, Na, K, and Ca by ground-based observations, and H, Na, Ca, Mg, and Ca+ by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Other exospheric species, including Fe, AI, Si, 0, S, Mn, CI, Ti, OH, and their ions, are expected to be present on the basis of MESSENGER surface measurements and models of Mercury's surface chemistry. Here we report on searches for these species made with the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). No obvious signatures of the listed species have yet been observed in Mercury's exosphere by the UVVS as of this writing. It is possible that detections are elusive because the optimum regions of the exosphere have not been sampled. The Sun-avoidance constraints on MESSENGER place tight limits on instrument boresight directions, and some regions are probed infrequently. If there are strong spatial gradients in the distribution of weakly emitting species, a high-resolution sampling of specific regions may be required to detect them. Summing spectra over time will also aid in the ability to detect weaker emission. Observations to date nonetheless permit strong upper limits to be placed on the abundances of many undetected species, in some cases as functions of time and space. As those limits are lowered with time, the absence of detections can provide insight into surface composition and the potential source mechanisms of exospheric material.

  12. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field.

    PubMed

    Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C

    2015-05-22

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. Copyright © 2015, American Association for the Advancement of Science.

  13. Expected Geochemical and Mineralogical Properties of Meteorites from Mercury: Inferences from Messenger Data

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; McCoy, T. J.

    2016-01-01

    Meteorites from the Moon, Mars, and many types of asteroid bodies have been identified among our global inventory of meteorites, however samples of Mercury and Venus have not been identified. The absence of mercurian and venusian meteorites could be attributed to an inability to recognize them in our collections due to a paucity of geochemical information for Venus and Mercury. In the case of mercurian meteorites, this possibility is further supported by dynamical calculations that suggest mercurian meteorites should be present on Earth at a factor of 2-3 less than meteorites from Mars [1]. In the present study, we focus on the putative mineralogy of mercurian meteorites using data obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which has provided us with our first quantitative constraints on the geochemistry of planet Mercury. We have used the MESSENGER data to compile a list of mineralogical and geochemical characteristics that a meteorite from Mercury is likely to exhibit.

  14. Synthesis of Messenger RNA and Chromosome Structure in the Cellular Slime Mold*

    PubMed Central

    Lodish, Harvey F.; Jacobson, Allan; Firtel, Richard; Alton, Tom; Tuchman, Jessica

    1974-01-01

    This paper summarizes our knowledge of the structure and biosynthesis of messenger RNA in the slime mold Dictyostelium discoideum, the arrangement of DNA sequences in the Dictyostelium chromosome, and the changes in the pattern of predominant polypeptides synthesized during Dictyostelium development. Images PMID:4531041

  15. Calcium in Mercury's Exosphere: Modeling MESSENGER Data

    NASA Technical Reports Server (NTRS)

    Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Merkel, Aimee; Vervack, Ronald J.; Sarantos, Menelaos; Sprague, Ann L.

    2011-01-01

    Mercury is surrounded by a surface-bounded exosphere comprised of atomic species including hydrogen, sodium, potassium, calcium, magnesium, and likely oxygen. Because it is collisionless. the exosphere's composition represents a balance of the active source and loss processes. The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface. Space ENvironment. GEochemistry. and Ranging (MESSENGER) spacecraft has made high spatial-resolution observations of sodium, calcium, and magnesium near Mercury's surface and in the extended, anti-sunward direction. The most striking feature of these data has been the substantial differences in the spatial distribution of each species, Our modeling demonstrates that these differences cannot be due to post-ejection dynamics such as differences in photo-ionization rate and radiation pressure. but instead point to differences in the source mechanisms and regions on the surface from which each is ejected. The observations of calcium have revealed a strong dawn/dusk asymmetry. with the abundance over the dawn hemisphere significantly greater than over the dusk. To understand this asymmetry, we use a Monte Carlo model of Mercury's exosphere that we developed to track the motions of exospheric neutrals under the influence of gravity and radiation pressure. Ca atoms can be ejected directly from the surface or produced in a molecular exosphere (e.g., one consisting of CaO). Particles are removed from the system if they stick to the surface or escape from the model region of interest (within 15 Mercury radii). Photoionization reduces the final weighting given to each particle when simulating the Ca radiance. Preliminary results suggest a high temperature ( I-2x 10(exp 4) K) source of atomic Ca concentrated over the dawn hemisphere. The high temperature is consistent with the dissociation of CaO in a near-surface exosphere with scale height <= 100 km, which imparts 2 eV to the freshly produced Ca atom. This

  16. WhatsApp Messenger as a Learning Tool: An Investigation of Pre-Service Teachers' Learning without Instructor Presence

    ERIC Educational Resources Information Center

    Alenazi, Ali A.

    2018-01-01

    This study investigated the extent to which pre-service teachers can utilize WhatsApp Messenger to create an effective learning platform without instructor interference. Twenty-six male pre-service teachers created a WhatsApp group and interacted through it independently for nine weeks. Each pre-service teacher was required to share a minimum of…

  17. Encoder: A Connectionist Model of How Learning to Visually Encode Fixated Text Images Improves Reading Fluency

    ERIC Educational Resources Information Center

    Martin, Gale L.

    2004-01-01

    This article proposes that visual encoding learning improves reading fluency by widening the span over which letters are recognized from a fixated text image so that fewer fixations are needed to cover a text line. Encoder is a connectionist model that learns to convert images like the fixated text images human readers encode into the…

  18. Magnetosphere of Mercury : Observations and Insights from MESSENGER

    NASA Astrophysics Data System (ADS)

    Krimigis, Stamatios

    The MESSENGER spacecraft executed three flyby encounters with Mercury in 2008 and 2009, was inserted into orbit about Mercury on 18 March 2011, and has returned a wealth of data on the magnetic field, plasma, and energetic particle environment of Mercury. These observations reveal a profoundly dynamic and active solar wind interaction. In addition to establishing the average structures of the bow shock, magnetopause, northern cusp, and tail plasma sheet, MESSENGER measurements document magnetopause boundary processes (reconnection and surface waves), global convection and dynamics (tail loading and unloading, magnetic flux transport, and Birkeland currents), surface precipitation of particles (protons and electrons), particle heating and acceleration, and wave generation processes (ions and electrons). Mercury’s solar wind interaction presents new challenges to our understanding of the physics of magnetospheres. The offset of the planetary moment relative to the geographic equator creates a larger hemispheric asymmetry relative to magnetospheric dimensions than at any other planet. The prevalence, magnitude, and repetition rates of flux transfer events at the magnetopause as well as plasmoids in the magnetotail indicate that, unlike at Earth, episodic convection may dominate over steady-state convection. The magnetopause reconnection rate is not only an order of magnitude greater than at Earth, but reconnection occurs over a much broader range of interplanetary magnetic field orientations than at Earth. Finally, the planetary body itself plays a significant role in Mercury’s magnetosphere. Birkeland currents close through the planet, induction at the planetary core-mantle boundary modifies the magnetospheric response to solar wind pressure excursions, the surface in darkness exhibits sporadic X-ray fluorescence consistent with precipitation of 10 to 100 keV electrons, magnetospheric plasmas precipitate directly onto the planetary surface and contribute to

  19. Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger

    PubMed Central

    Galperin, Michael Y.; Gomelsky, Mark

    2013-01-01

    SUMMARY Twenty-five years have passed since the discovery of cyclic dimeric (3′→5′) GMP (cyclic di-GMP or c-di-GMP). From the relative obscurity of an allosteric activator of a bacterial cellulose synthase, c-di-GMP has emerged as one of the most common and important bacterial second messengers. Cyclic di-GMP has been shown to regulate biofilm formation, motility, virulence, the cell cycle, differentiation, and other processes. Most c-di-GMP-dependent signaling pathways control the ability of bacteria to interact with abiotic surfaces or with other bacterial and eukaryotic cells. Cyclic di-GMP plays key roles in lifestyle changes of many bacteria, including transition from the motile to the sessile state, which aids in the establishment of multicellular biofilm communities, and from the virulent state in acute infections to the less virulent but more resilient state characteristic of chronic infectious diseases. From a practical standpoint, modulating c-di-GMP signaling pathways in bacteria could represent a new way of controlling formation and dispersal of biofilms in medical and industrial settings. Cyclic di-GMP participates in interkingdom signaling. It is recognized by mammalian immune systems as a uniquely bacterial molecule and therefore is considered a promising vaccine adjuvant. The purpose of this review is not to overview the whole body of data in the burgeoning field of c-di-GMP-dependent signaling. Instead, we provide a historic perspective on the development of the field, emphasize common trends, and illustrate them with the best available examples. We also identify unresolved questions and highlight new directions in c-di-GMP research that will give us a deeper understanding of this truly universal bacterial second messenger. PMID:23471616

  20. The Text Encoding Initiative: Flexible and Extensible Document Encoding.

    ERIC Educational Resources Information Center

    Barnard, David T.; Ide, Nancy M.

    1997-01-01

    The Text Encoding Initiative (TEI), an international collaboration aimed at producing a common encoding scheme for complex texts, examines the requirement for generality versus the requirement to handle specialized text types. Discusses how documents and users tax the limits of fixed schemes requiring flexible extensible encoding to support…

  1. Active site structure and catalytic mechanism of phosphodiesterase for degradation of intracellular second messengers

    NASA Astrophysics Data System (ADS)

    Zhan, Chang-Guo

    2002-03-01

    Phosphodiesterases are clinical targets for a variety of biological disorders, because this superfamily of enzymes regulate intracellular concentration of cyclic nucleotides that serve as the second messengers playing a critical role in a variety of physiological processes. Understanding structure and mechanism of a phosphodiesterase will provide a solid basis for rational design of the more efficient therapeutics. Although a three-dimensional X-ray crystal structure of the catalytic domain of human phosphodiesterase 4B2B was recently reported, it was uncertain whether a critical bridging ligand in the active site is a water molecule or a hydroxide ion. The identity of this bridging ligand has been determined by performing first-principles quantum chemical calculations on models of the active site. All the results obtained indicate that this critical bridging ligand in the active site of the reported X-ray crystal structure is a hydroxide ion, rather than a water molecule, expected to serve as the nucleophile to initialize the catalytic degradation of the intracellular second messengers.

  2. Changes in hepatic levels of tyrosine aminotransferase messenger RNA during induction by hydrocortisone. [Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickol, J.M.; Lee, K.L.; Kenney, F.T.

    Messenger RNA specific for tyrosine aminotransferase was quantitated by microinjection into oocytes of Xenopus laevis. The heterologously translated enzyme was identified by specific immunoprecipitation and found to be identical with authentic aminotransferase by several criteria. The level of functional message present in rat liver increases during hydrocortisone induction, and this increase is directly proportional to the increased rate of synthesis of the enzyme. Kinetic analysis of the changes in tyrosine aminotransferase mRNA levels during induction and withdrawal indicates that the steroid does not affect the stability of the message, which has a half-life of approximately 1.2 h. Hydrocortisone, therefore, actsmore » to increase the rate of synthesis of the specific messenger by stimulating either its transcription or processing to functional mRNA.« less

  3. Defective control of pre–messenger RNA splicing in human disease

    PubMed Central

    Shkreta, Lulzim

    2016-01-01

    Examples of associations between human disease and defects in pre–messenger RNA splicing/alternative splicing are accumulating. Although many alterations are caused by mutations in splicing signals or regulatory sequence elements, recent studies have noted the disruptive impact of mutated generic spliceosome components and splicing regulatory proteins. This review highlights recent progress in our understanding of how the altered splicing function of RNA-binding proteins contributes to myelodysplastic syndromes, cancer, and neuropathologies. PMID:26728853

  4. mRNA localization: an orchestration of assembly, traffic and synthesis.

    PubMed

    Xing, Lei; Bassell, Gary J

    2013-01-01

    Asymmetrical mRNA localization and subsequent local translation provide efficient mechanisms for protein sorting in polarized cells. Defects in mRNA localization have been linked to developmental abnormalities and neurological diseases. Thus, it is critical to understand the machineries mediating and mechanisms underlying the asymmetrical distribution of mRNA and its regulation. The goal of this review is to summarize recent advances in the understanding of mRNA transport and localization, including the assembly and sorting of transport messenger ribonucleic protein (mRNP) granules, molecular mechanisms of active mRNP transport, cytoskeletal interactions and regulation of these events by extracellular signals. © 2012 John Wiley & Sons A/S.

  5. MESSENGER observations of magnetic reconnection in Mercury's magnetosphere.

    PubMed

    Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Boardsen, Scott A; Gloeckler, George; Gold, Robert E; Ho, George C; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Raines, Jim M; Sarantos, Menelaos; Schriver, David; Solomon, Sean C; Trávnícek, Pavel; Zurbuchen, Thomas H

    2009-05-01

    Solar wind energy transfer to planetary magnetospheres and ionospheres is controlled by magnetic reconnection, a process that determines the degree of connectivity between the interplanetary magnetic field (IMF) and a planet's magnetic field. During MESSENGER's second flyby of Mercury, a steady southward IMF was observed and the magnetopause was threaded by a strong magnetic field, indicating a reconnection rate ~10 times that typical at Earth. Moreover, a large flux transfer event was observed in the magnetosheath, and a plasmoid and multiple traveling compression regions were observed in Mercury's magnetotail, all products of reconnection. These observations indicate that Mercury's magnetosphere is much more responsive to IMF direction and dominated by the effects of reconnection than that of Earth or the other magnetized planets.

  6. Mobile Immersion: An Experiment Using Mobile Instant Messenger to Support Second-Language Learning

    ERIC Educational Resources Information Center

    Lai, Arthur

    2016-01-01

    Immersion has been an acclaimed approach for second-language acquisition, but is not available to most students. The idea of this study was to create a mobile immersion environment on a smartphone using a mobile instant messenger, WhatsApp™. Forty-five Form-1 (7th grade) students divided into the Mobile Group and Control Group participated in a…

  7. Stress as a mnemonic filter: Interactions between medial temporal lobe encoding processes and post-encoding stress

    PubMed Central

    Ritchey, Maureen; McCullough, Andrew M.; Ranganath, Charan; Yonelinas, Andrew P.

    2016-01-01

    Acute stress has been shown to modulate memory for recently learned information, an effect attributed to the influence of stress hormones on medial temporal lobe (MTL) consolidation processes. However, little is known about which memories will be affected when stress follows encoding. One possibility is that stress interacts with encoding processes to selectively protect memories that had elicited responses in the hippocampus and amygdala, two MTL structures important for memory formation. There is limited evidence for interactions between encoding processes and consolidation effects in humans, but recent studies of consolidation in rodents have emphasized the importance of encoding “tags” for determining the impact of consolidation manipulations on memory. Here, we used fMRI in humans to test the hypothesis that the effects of post-encoding stress depend on MTL processes observed during encoding. We found that changes in stress hormone levels were associated with an increase in the contingency of memory outcomes on hippocampal and amygdala encoding responses. That is, for participants showing high cortisol reactivity, memories became more dependent on MTL activity observed during encoding, thereby shifting the distribution of recollected events toward those that had elicited relatively high activation. Surprisingly, this effect was generally larger for neutral, compared to emotionally negative, memories. The results suggest that stress does not uniformly enhance memory, but instead selectively preserves memories tagged during encoding, effectively acting as mnemonic filter. PMID:27774683

  8. DNA encoding a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-08-15

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  9. Lyman-α Models for LRO LAMP from MESSENGER MASCS and SOHO SWAN Data

    NASA Astrophysics Data System (ADS)

    Pryor, Wayne R.; Holsclaw, Gregory M.; McClintock, William E.; Snow, Martin; Vervack, Ronald J.; Gladstone, G. Randall; Stern, S. Alan; Retherford, Kurt D.; Miles, Paul F.

    From models of the interplanetary Lyman-α glow derived from observations by the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) interplanetary Lyman-α data obtained in 2009-2011 on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft mission, daily all-sky Lyman-α maps were generated for use by the Lunar Reconnaissance Orbiter (LRO) LAMP Lyman-Alpha Mapping Project (LAMP) experiment. These models were then compared with Solar and Heliospheric Observatory (SOHO) Solar Wind ANistropy (SWAN) Lyman-α maps when available. Although the empirical agreement across the sky between the scaled model and the SWAN maps is adequate for LAMP mapping purposes, the model brightness values best agree with the SWAN values in 2008 and 2009. SWAN's observations show a systematic decline in 2010 and 2011 relative to the model. It is not clear if the decline represents a failure of the model or a decline in sensitivity in SWAN in 2010 and 2011. MESSENGER MASCS and SOHO SWAN Lyman-α calibrations systematically differ in comparison with the model, with MASCS reporting Lyman-α values some 30 % lower than SWAN.

  10. Evaluation of a Salmonella Strain Lacking the Secondary Messenger C-di-GMP and RpoS as a Live Oral Vaccine

    PubMed Central

    García, Begoña; Gil, Carmen; García-Ona, Enrique; Burgui, Saioa; Casares, Noelia; Hervás-Stubbs, Sandra; Lasarte, Juan José; Lasa, Iñigo

    2016-01-01

    Salmonellosis is one of the most important bacterial zoonotic diseases transmitted through the consumption of contaminated food, with chicken and pig related products being key reservoirs of infection. Although numerous studies on animal vaccination have been performed in order to reduce Salmonella prevalence, there is still a need for an ideal vaccine. Here, with the aim of constructing a novel live attenuated Salmonella vaccine candidate, we firstly analyzed the impact of the absence of cyclic-di-GMP (c-di-GMP) in Salmonella virulence. C-di-GMP is an intracellular second messenger that controls a wide range of bacterial processes, including biofilm formation and synthesis of virulence factors, and also modulates the host innate immune response. Our results showed that a Salmonella multiple mutant in the twelve genes encoding diguanylate cyclase proteins that, as a consequence, cannot synthesize c-di-GMP, presents a moderate attenuation in a systemic murine infection model. An additional mutation of the rpoS gene resulted in a synergic attenuating effect that led to a highly attenuated strain, referred to as ΔXIII, immunogenic enough to protect mice against a lethal oral challenge of a S. Typhimurium virulent strain. ΔXIII immunogenicity relied on activation of both antibody and cell mediated immune responses characterized by the production of opsonizing antibodies and the induction of significant levels of IFN-γ, TNF-α, IL-2, IL-17 and IL-10. ΔXIII was unable to form a biofilm and did not survive under desiccation conditions, indicating that it could be easily eliminated from the environment. Moreover, ΔXIII shows DIVA features that allow differentiation of infected and vaccinated animals. Altogether, these results show ΔXIII as a safe and effective live DIVA vaccine. PMID:27537839

  11. A New Quantum Gray-Scale Image Encoding Scheme

    NASA Astrophysics Data System (ADS)

    Naseri, Mosayeb; Abdolmaleky, Mona; Parandin, Fariborz; Fatahi, Negin; Farouk, Ahmed; Nazari, Reza

    2018-02-01

    In this paper, a new quantum images encoding scheme is proposed. The proposed scheme mainly consists of four different encoding algorithms. The idea behind of the scheme is a binary key generated randomly for each pixel of the original image. Afterwards, the employed encoding algorithm is selected corresponding to the qubit pair of the generated randomized binary key. The security analysis of the proposed scheme proved its enhancement through both randomization of the generated binary image key and altering the gray-scale value of the image pixels using the qubits of randomized binary key. The simulation of the proposed scheme assures that the final encoded image could not be recognized visually. Moreover, the histogram diagram of encoded image is flatter than the original one. The Shannon entropies of the final encoded images are significantly higher than the original one, which indicates that the attacker can not gain any information about the encoded images. Supported by Kermanshah Branch, Islamic Azad University, Kermanshah, IRAN

  12. MESSENGER Observations of ULF Waves in Mercury's Foreshock Region

    NASA Technical Reports Server (NTRS)

    Le, Guan; Chi, Peter J.; Bardsen, Scott; Blanco-Cano, Xochitl; Slavin, James A.; Korth, Haje

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth s is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury s bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury s foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury s foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the 1-Hz waves in the Earth s foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth s foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  13. 29 CFR 516.30 - Learners, apprentices, messengers, students, or handicapped workers employed under special...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Learners, apprentices, messengers, students, or handicapped... handicapped workers employed under special certificates as provided in section 14 of the Act. (a) With respect... education, or handicapped workers employed at special minimum hourly rates under Special Certificates...

  14. 29 CFR 516.30 - Learners, apprentices, messengers, students, or handicapped workers employed under special...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Learners, apprentices, messengers, students, or handicapped... handicapped workers employed under special certificates as provided in section 14 of the Act. (a) With respect... education, or handicapped workers employed at special minimum hourly rates under Special Certificates...

  15. 29 CFR 516.30 - Learners, apprentices, messengers, students, or handicapped workers employed under special...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Learners, apprentices, messengers, students, or handicapped... handicapped workers employed under special certificates as provided in section 14 of the Act. (a) With respect... education, or handicapped workers employed at special minimum hourly rates under Special Certificates...

  16. 29 CFR 516.30 - Learners, apprentices, messengers, students, or handicapped workers employed under special...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Learners, apprentices, messengers, students, or handicapped... handicapped workers employed under special certificates as provided in section 14 of the Act. (a) With respect... education, or handicapped workers employed at special minimum hourly rates under Special Certificates...

  17. 29 CFR 516.30 - Learners, apprentices, messengers, students, or handicapped workers employed under special...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Learners, apprentices, messengers, students, or handicapped... handicapped workers employed under special certificates as provided in section 14 of the Act. (a) With respect... education, or handicapped workers employed at special minimum hourly rates under Special Certificates...

  18. Parecoxib Increases Blood Pressure Through Inhibition of Cyclooxygenase-2 Messenger RNA in an Experimental Model.

    PubMed

    Vértiz-Hernández, Ángel Antonio; Martínez-Morales, Flavio; Valle-Aguilera, Roberto; López-Sánchez, Pedro; Villalobos-Molina, Rafael; Pérez-Urizar, José

    2015-01-01

    Cyclooxygenase-2 selective inhibitors have been developed to alleviate pain and inflammation; however, the use of a selective cyclooxygenase-2 inhibitor is associated with mild edema, hypertension, and cardiovascular risk. To evaluate, in an experimental model in normotensive rats, the effect of treatment with parecoxib in comparison with diclofenac and aspirin and L-NAME, a non-selective nitric oxide synthetase, on mean arterial blood pressure, and cyclooxygenase-1 and -2 messenger RNA and protein expression in aortic tissue. Rats were treated for seven days with parecoxib (10 mg/kg/day), diclofenac (3.2 mg/kg/day), aspirin (10 mg/kg/day), or L-NAME (10 mg/kg/day). Mean arterial blood pressure was evaluated in rat tail; cyclooxygenase-1 and -2 were evaluated by reverse transcription-polymerase chain reaction and Western blot analysis in aortic tissue. Parecoxib and L-NAME, but not aspirin and diclofenac, increased mean arterial blood pressure by about 50% (p < 0.05) without changes in cardiac frequency. Messenger RNA cyclooxygenase-1 expression in aortic tissue was not modified with any drug (p < 0.05). L-NAME and parecoxib treatment decreased messenger RNA cyclooxygenase-2 and cyclooxygenase-2 (p < 0.05). While cyclooxygenase-1 protein decreased with the three drugs tested but not with L-NAME (p < 0.05), the cyclooxygenase-2 protein decreased only with aspirin and parecoxib (p < 0.05). Parecoxib increases the blood pressure of normotensive rats by the suppression of COX-2 gene expression, which apparently induced cardiovascular control.

  19. The ribosome uses two active mechanisms to unwind messenger RNA during translation.

    PubMed

    Qu, Xiaohui; Wen, Jin-Der; Lancaster, Laura; Noller, Harry F; Bustamante, Carlos; Tinoco, Ignacio

    2011-07-06

    The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs. ©2011 Macmillan Publishers Limited. All rights reserved

  20. A method for encoding clinical datasets with SNOMED CT.

    PubMed

    Lee, Dennis H; Lau, Francis Y; Quan, Hue

    2010-09-17

    Over the past decade there has been a growing body of literature on how the Systematised Nomenclature of Medicine Clinical Terms (SNOMED CT) can be implemented and used in different clinical settings. Yet, for those charged with incorporating SNOMED CT into their organisation's clinical applications and vocabulary systems, there are few detailed encoding instructions and examples available to show how this can be done and the issues involved. This paper describes a heuristic method that can be used to encode clinical terms in SNOMED CT and an illustration of how it was applied to encode an existing palliative care dataset. The encoding process involves: identifying input data items; cleaning the data items; encoding the cleaned data items; and exporting the encoded terms as output term sets. Four outputs are produced: the SNOMED CT reference set; interface terminology set; SNOMED CT extension set and unencodeable term set. The original palliative care database contained 211 data elements, 145 coded values and 37,248 free text values. We were able to encode ~84% of the terms, another ~8% require further encoding and verification while terms that had a frequency of fewer than five were not encoded (~7%). From the pilot, it would seem our SNOMED CT encoding method has the potential to become a general purpose terminology encoding approach that can be used in different clinical systems.

  1. Global Controlled Mosaic of Mercury from MESSENGER Orbital Images

    NASA Astrophysics Data System (ADS)

    Becker, K. J.; Weller, L. A.; Edmundson, K. L.; Becker, T. L.; Robinson, M. S.; Solomon, S. C.

    2011-12-01

    The MESSENGER spacecraft entered orbit around Mercury in March 2011. Since then, the Mercury Dual Imaging System (MDIS) has been steadily acquiring images from the monochrome, narrow-angle camera (NAC) and the multispectral, wide-angle camera (WAC). With these images, the U.S. Geological Survey (USGS) is constructing a global, controlled monochrome base map of the planet using the Integrated Software for Imagers and Spectrometers (ISIS3) [1]. Although the characterization of MESSENGER spacecraft's navigation and attitude data has proven to be reliable to date, an element of uncertainty in these parameters is unavoidable. This leads to registration offsets between images in the base map. To minimize these errors, images are controlled using a least-squares bundle adjustment that provides refined spacecraft attitude and position parameters plus triangulated ground coordinates of image tie points. As a first effort, 4542 images (2781 NAC, 1761 WAC G filter) have been controlled with a root mean squared error of 0.25 pixels in image space [2]. A preliminary digital elevation model (DEM) is also being produced from the large number of ground points (~ 47,000) triangulated in this adjustment. The region defined by these points ranges from 80°S to 86°N latitude and 158°E to 358°E longitude. A symmetric, unimodal distribution and a dynamic range of 10.5 km characterize the hypsometry of this area. Minimum, maximum, and mean elevations are -5.0, 5.5, and -0.2 km relative to the mean radius of Mercury (2440 km) as defined by the mission. The USGS will use the DEM and base map for the construction of a registered color (WAC) map of high spatial integrity essential for reliable scientific interpretation of the color data. Ongoing improvements to the base map will be made as new images from MDIS become available, providing continuity in resolution, illumination, and viewing conditions. Additional bundle adjustments will further improve spacecraft attitude. The results from

  2. Time Domain Astronomy with Fermi GBM in the Multi-messenger Era

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Fermi GBM team, GBM-LIGO team

    2018-01-01

    As the Multi-Messenger era begins with detections of gravitational waves with LIGO/Virgo and neutrinos with IceCube, the Fermi Gamma-ray Burst Monitor (GBM) provides context observations of gamma-ray transients between 8 keV and 40 MeV. Fermi GBM has a wide field of view, high uptime, and both in-orbit triggering and high time resolution continuous data enabling offline searches for weaker transients. GBM detects numerous gamma-ray bursts (GRBs), soft gamma-ray repeaters, X-ray bursters, solar flares and terrestrial gamma-ray flashes. Longer timescale transients, predominantly in our galaxy so far, are detected using the Earth occultation technique and epoch-folding for periodic sources. The GBM team has developed two ground-based searches to enhance detections of faint transients, especially short GRBs. The targeted search uses the time and location of an event detected with another instrument to coherently search the GBM data, increasing the sensitivity to a transient. The untargeted search agnostically searches the GBM data for all directions and times to find weaker transients. This search finds about 80 short GRBs per year, adding to the 40 per year triggered on-orbit. With its large field of view, high duty cycle and increasingly sophisticated detection methods, Fermi GBM is expected to have a major role in the Multi-Messenger era.

  3. A discontinuous hammerhead ribozyme embedded in a mammalian messenger RNA

    PubMed Central

    Martick, Monika; Horan, Lucas H.; Noller, Harry F.; Scott, William G.

    2008-01-01

    Structured RNAs embedded in the untranslated regions (UTRs) of messenger RNAs can regulate gene expression. In bacteria, control of a metabolite gene is mediated by the self-cleaving activity of a ribozyme embedded in its 5′ UTR1. This discovery has raised the question of whether gene-regulating ribozymes also exist in eukaryotic mRNAs. Here we show that highly active hammerhead ribozymes2,3 are present in the 3′ UTRs of rodent C-type lectin type II (Clec2) genes4–7. Using a hammerhead RNA motif search with relaxed delimitation of the non-conserved regions, we detected ribozyme sequences in which the invariant regions, in contrast to the previously identified continuous hammerheads8–10, occur as two fragments separated by hundreds of nucleotides. Notably, a fragment pair can assemble to form an active hammerhead ribozyme structure between the translation termination and the poly-adenylation signals within the 3′ UTR. We demonstrate that this hammerhead structure can self-cleave both in vitro and in vivo, and is able to reduce protein expression in mouse cells. These results indicate that an unrecognized mechanism of post-transcriptional gene regulation involving association of discontinuous ribozyme sequences within an mRNA may be modulating the expression of several CLEC2 proteins that function in bone remodelling and the immune response of several mammals. PMID:18615019

  4. The Effects of a Synchronous Communication Tool (Yahoo Messenger) on Online Learners' Sense of Community and Their Multimedia Authoring Skills

    ERIC Educational Resources Information Center

    Wang, Shiang-Kwei

    2008-01-01

    Literature suggests that developing a community of learners is the key to a successful online-learning experience. In this study, the instructor of a multimedia authoring course adopted a synchronous communication tool (Yahoo Messenger) to interact with learners orally on a weekly basis and, thereby, to establish a sense among the learners that…

  5. Navigating the MESSENGER Spacecraft through End of Mission

    NASA Astrophysics Data System (ADS)

    Bryan, C. G.; Williams, B. G.; Williams, K. E.; Taylor, A. H.; Carranza, E.; Page, B. R.; Stanbridge, D. R.; Mazarico, E.; Neumann, G. A.; O'Shaughnessy, D. J.; McAdams, J. V.; Calloway, A. B.

    2015-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury from March 2011 until the end of April 2015, when it impacted the planetary surface after propellant reserves used to maintain the orbit were depleted. This highly successful mission was led by the principal investigator, Sean C. Solomon, of Columbia University. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and assembled the spacecraft and served as the home for spacecraft operations. Spacecraft navigation for the entirety of the mission was provided by the Space Navigation and Flight Dynamics Practice (SNAFD) of KinetX Aerospace. Orbit determination (OD) solutions were generated through processing of radiometric tracking data provided by NASA's Deep Space Network (DSN) using the MIRAGE suite of orbital analysis tools. The MESSENGER orbit was highly eccentric, with periapsis at a high northern latitude and periapsis altitude in the range 200-500 km for most of the orbital mission phase. In a low-altitude "hover campaign" during the final two months of the mission, periapsis altitudes were maintained within a narrow range between about 35 km and 5 km. Navigating a spacecraft so near a planetary surface presented special challenges. Tasks required to meet those challenges included the modeling and estimation of Mercury's gravity field and of solar and planetary radiation pressure, and the design of frequent orbit-correction maneuvers. Superior solar conjunction also presented observational modeling issues. One key to the overall success of the low-altitude hover campaign was a strategy to utilize data from an onboard laser altimeter as a cross-check on the navigation team's reconstructed and predicted estimates of periapsis altitude. Data obtained from the Mercury Laser Altimeter (MLA) on a daily basis provided near-real-time feedback that proved invaluable in evaluating alternative orbit estimation strategies, and

  6. MESSENGER Observations of Reconnection and Its Effects on Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Imber, Suzanne M.; Korth, Haje; hide

    2010-01-01

    During MESSENGER's second and third flybys of Mercury on October 6, 2008 and September 29, 2009, respectively, southward interplanetary magnetic fields produced very intense reconnection signatures in the dayside and nightside magnetosphere and very different systemlevel responses. The IMF during the second flyby was continuously southward and the magnetosphere appeared very active with very large magnetic fields normal to the magnetopause and the generation of flux transfer events at the magnetopause and plasmoids in the tail current sheet every 30 s to 90 s. However, the strength and direction of the tail magnetic field was very stable. In contrast the third flyby experienced a variable IMF with it varying from north to south on timescales of minutes. Although the MESSENGER measurements were limited this time to the nightside magnetosphere, numerous examples of plasmoid release in the tail were detected, but they were not periodic. Rather, plasmoid release was highly correlated with the four large enhancements of the tail magnetic field (i.e. by factors > 2) with durations of approx. 2 - 3 min. The increased flaring of the magnetic field during these intervals indicates that the enhancements were caused by loading of the tail with magnetic flux transferred from the dayside magnetosphere. New analyses of the second and third flyby observations of reconnection and its system-level effects will be presented. The results will be examined in light of what is known about the response of the Earth's magnetosphere to variable versus steady southward IMF.

  7. Expression of endothelin-1 and constitutional nitric oxide synthase messenger RNA in saphenous vein endothelial cells exposed to arterial flow shear stress.

    PubMed

    Zhu, Z G; Li, H H; Zhang, B R

    1997-11-01

    It has long been speculated that increased blood flow shear stress might be one of the major factors affecting the patency of grafted saphenous vein in coronary artery bypass operations. The underlying cellular and molecular mechanisms for so-called "shear stress damage" have not yet been well elucidated. Endothelial cells harvested from human saphenous vein were cultured in vitro and then exposed to a high arterial level flow shear stress in the parallel flow chamber. The expression levels of endothelin-1 and constitutional nitric oxide synthase by the endothelial cells were evaluated semiquantitatively at the gene transcription (messenger RNA) level using reverse transcription polymerase chain reaction. After 7 hours of exposure to arterial level shear stress, the expression of constitutional nitric oxide synthase messenger RNA by saphenous vein endothelial cells was significantly reduced, whereas the expression of endothelin-1 messenger RNA was substantially increased. These changes were more predominant at 24 hours. Arterial level flow shear stress could cause important changes in the gene transcription level in saphenous vein endothelial cells within a short period of time. The functional alterations of saphenous vein endothelial cells, as manifested by the increased expression of endothelin-1 and decreased expression of nitric oxide synthase messenger RNA, might play a crucial role in the vein graft remodeling process.

  8. Results and prospects in multi-messenger particle astrophysics

    NASA Astrophysics Data System (ADS)

    Mostafa, Miguel

    2017-01-01

    In high-energy particle astrophysics the old days were certainly not better than these. Our field has thrived in the past decade with experiments covering thousands of square kilometers to measure the suppression in the flux of the highest energy cosmic rays ever observed, instrumenting a cubic kilometer of Antarctic ice to discover astrophysical neutrinos, and measuring a change in arm length as small as 10-19 m for the ground-breaking direct observation of gravitational waves. Additionally, the current generation of space-borne and ground-based gamma-ray experiments have revealed a plethora of gamma-ray sources, including pulsars, compact binaries, the galactic center, and extragalactic sources such as starburst galaxies and radio galaxies. Before the next generation of instruments bring us yet another order of magnitude in sensitivity, we can combine current observations to probe physics beyond the standard model, and to extend the high-energy frontier well above the energies accessible to laboratory accelerators. One example of this potential is the search for dark-matter annihilation and decay products. To use the multi-messenger approach effectively for probing dark-matter signatures and physics beyond the LHC energy requires understanding the origin (or acceleration mechanism) and the propagation processes. High energy protons and nuclei, neutrinos, gamma-rays, X-rays, and gravitational waves bring new and complementary views of the astrophysical sources. By comparing observations through different windows, we can use the sites of violent phenomena as a laboratory to probe the physical processes under extreme conditions throughout the Universe, and to test the fundamental laws of particle physics and gravitation. As a community we need to engage in a bold synergistic approach to understanding the violent processes that give rise to the high-energy cosmic phenomena in the Universe. In this invited talk, I will present on-going multi-messenger studies to

  9. A novel frameshift mutation in the lipoprotein lipase gene is rescued by alternative messenger RNA splicing.

    PubMed

    Laurie, Andrew D; Kyle, Campbell V

    Type I hyperlipoproteinemia, manifesting as chylomicronemia and severe hypertriglyceridemia, is a rare autosomal recessive disorder usually caused by mutations in the lipoprotein lipase gene (LPL). We sought to determine whether mutations in LPL could explain the clinical indications of a patient presenting with pancreatitis and hypertriglyceridemia. Coding regions of LPL were amplified by polymerase chain reaction and analyzed by nucleotide sequencing. The LPL messenger RNA transcript was also analyzed to investigate whether alternative splicing was occurring. The patient was homozygous for the mutation c.767_768insTAAATATT in exon 5 of the LPL gene. This mutation is predicted to result in either a truncated nonfunctional LPL, or alternatively a new 5' donor splice site may be used, resulting in a full-length LPL with an in-frame deletion of 3 amino acids. Analysis of messenger RNA from the patient showed that the new splice site is used in vivo. Homozygosity for a mutation in the LPL gene was consistent with the clinical findings. Use of the new splice site created by the insertion mutation rescues an otherwise damaging frameshift mutation, resulting in expression of an almost full-length LPL that is predicted to be partially functional. The patient therefore has a less severe form of type I hyperlipoproteinemia than would be expected if she lacked any functional LPL. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  10. A PAR-1–dependent orientation gradient of dynamic microtubules directs posterior cargo transport in the Drosophila oocyte

    PubMed Central

    Parton, Richard M.; Hamilton, Russell S.; Ball, Graeme; Yang, Lei; Cullen, C. Fiona; Lu, Weiping; Ohkura, Hiroyuki

    2011-01-01

    Cytoskeletal organization is central to establishing cell polarity in various cellular contexts, including during messenger ribonucleic acid sorting in Drosophila melanogaster oocytes by microtubule (MT)-dependent molecular motors. However, MT organization and dynamics remain controversial in the oocyte. In this paper, we use rapid multichannel live-cell imaging with novel image analysis, tracking, and visualization tools to characterize MT polarity and dynamics while imaging posterior cargo transport. We found that all MTs in the oocyte were highly dynamic and were organized with a biased random polarity that increased toward the posterior. This organization originated through MT nucleation at the oocyte nucleus and cortex, except at the posterior end of the oocyte, where PAR-1 suppressed nucleation. Our findings explain the biased random posterior cargo movements in the oocyte that establish the germline and posterior. PMID:21746854

  11. MESSENGER and Venus Express Observations of the Near-tail of Venus: Magnetic Flux Transport, Current Sheet Structure, and Flux Rope Formation

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Boardsen, S. A.; Sarantos, M.; Acuna, M. H.; Anderson, B. J.; Barabash, S.; Benna, M.; Fraenz, M.; Gloeckler, G.; Gold, R. E.; hide

    2008-01-01

    At 23:08 UT on 5 June 2007 the MESSENGER spacecraft reached its closest approach altitude (338 km) during its second flyby of Venus en route to its 2011 orbit insertion at Mercury. Whereas no measurements were collected during MESSENGER'S first Venus flyby in October 2006, the Magnetometer (MAG) and the Energetic Particle and Plasma Spectrometer (EPPS) operated successfully throughout this second encounter. Venus provides the solar system's best example to date of a solar wind - ionosphere planetary interaction. We present MESSENGER observations of the near-tail of Venus with emphasis on determining the time scales for magnetic flux transport, the structure of the cross-tail current sheet at very low altitudes (approx. 300 to 1000 km), and the nature and origin of a magnetic flux rope observed in the current sheet. The availability of the simultaneous Venus Express upstream measurements provides a unique opportunity to examine the influence of solar wind plasma and interplanetary magnetic field conditions on this planet's solar wind interaction at solar minimum.

  12. A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Y.; Vardi, Moshe Y.

    2011-01-01

    Formal behavioral specifications written early in the system-design process and communicated across all design phases have been shown to increase the efficiency, consistency, and quality of the system under development. To prevent introducing design or verification errors, it is crucial to test specifications for satisfiability. Our focus here is on specifications expressed in linear temporal logic (LTL). We introduce a novel encoding of symbolic transition-based Buchi automata and a novel, "sloppy," transition encoding, both of which result in improved scalability. We also define novel BDD variable orders based on tree decomposition of formula parse trees. We describe and extensively test a new multi-encoding approach utilizing these novel encoding techniques to create 30 encoding variations. We show that our novel encodings translate to significant, sometimes exponential, improvement over the current standard encoding for symbolic LTL satisfiability checking.

  13. A Blood-based Test for the Detection of ROS1 and RET Fusion Transcripts from Circulating Ribonucleic Acid Using Digital Polymerase Chain Reaction

    PubMed Central

    Mellert, Hestia S.; Alexander, Kristin E.; Jackson, Leisa P.; Pestano, Gary A.

    2018-01-01

    We have developed novel methods for the isolation and characterization of tumor-derived circulating ribonucleic acid (cRNA) for blood-based liquid biopsy. Robust detection of cRNA recovered from blood represents a solution to a critical unmet need in clinical diagnostics. The test begins with the collection of whole blood into blood collection tubes containing preservatives that stabilize cRNA. Cell-free, exosomal, and platelet-associated RNA is isolated from plasma in this test system. The cRNA is reverse transcribed to complementary DNA (cDNA) and amplified using digital polymerase chain reaction (dPCR). Samples are evaluated for both the target biomarker as well as a control gene. Test validation included limit of detection, accuracy, and robustness studies with analytic samples. The method developed as a result of these studies reproducibly detect multiple fusion variants for ROS1 (C-Ros proto-oncogene 1; 8 variants) and RET (rearranged during transfection proto-oncogene; 8 variants). The sample processing workflow has been optimized so that test results can consistently be generated within 72 hours of sample receipt. PMID:29683453

  14. Light is a Messenger - The Life and Science of William Lawrence Bragg

    NASA Astrophysics Data System (ADS)

    Hunter, Graeme K.

    2004-10-01

    Light is a Messenger , is the first biography of William Lawrence Bragg, who was only 25 when he won the 1915 Nobel Prize in Physics-the youngest person ever to win a Nobel Prize. It describes how bragg discovered how to use X-rays to determine the arrangement of atoms in crystals and his pivotal role in developing this technique to the point that the structures of the most complex molecules known to man-the proteins and nucelic acids-could be solved. Although Bragg's Nobel Prize was for Physics, his research profoundly affected chemistry and the new field of molecular biology, of which he became a founding figure. This book explains how these revolutionary scientific events occurred while Bragg struggled to emerge from the shadow of his father, Sir William Bragg, and amidst a career-long rivalry with the brilliant American chemist, Linus Pauling.

  15. Insight into the messenger role of reactive oxygen intermediates in immunostimulated hemocytes from the scallop Argopecten purpuratus.

    PubMed

    Oyanedel, Daniel; Gonzalez, Roxana; Brokordt, Katherina; Schmitt, Paulina; Mercado, Luis

    2016-12-01

    Reactive oxygen intermediates (ROI) are metabolites produced by aerobic cells which have been linked to oxidative stress. Evidence reported in vertebrates indicates that ROI can also act as messengers in a variety of cellular signaling pathways, including those involved in innate immunity. In a recent study, an inhibitor of NF-kB transcription factors was identified in the scallop Argopecten purpuratus, and its functional characterization suggested that it may regulate the expression of the big defensin antimicrobial peptide ApBD1. In order to give new insights into the messenger role of ROI in the immune response of bivalve mollusks, the effect of ROI production on gene transcription of ApBD1 was assessed in A. purpuratus. The results showed that 48 h-cultured hemocytes were able to display phagocytic activity and ROI production in response to the β-glucan zymosan. The immune stimulation also induced the transcription of ApBD1, which was upregulated in cultured hemocytes. After neutralizing the ROI produced by the stimulated hemocytes with the antioxidant trolox, the transcription of ApBD1 was reduced near to base levels. The results suggest a potential messenger role of intracellular ROI on the regulation of ApBD1 transcription during the immune response of scallops. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Biochips Containing Arrays of Carbon-Nanotube Electrodes

    NASA Technical Reports Server (NTRS)

    Li, Jun; Meyyappan, M.; Koehne, Jessica; Cassell, Alan; Chen, Hua

    2008-01-01

    Biochips containing arrays of nanoelectrodes based on multiwalled carbon nanotubes (MWCNTs) are being developed as means of ultrasensitive electrochemical detection of specific deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) biomarkers for purposes of medical diagnosis and bioenvironmental monitoring. In mass production, these biochips could be relatively inexpensive (hence, disposable). These biochips would be integrated with computer-controlled microfluidic and microelectronic devices in automated hand-held and bench-top instruments that could be used to perform rapid in vitro genetic analyses with simplified preparation of samples. Carbon nanotubes are attractive for use as nanoelectrodes for detection of biomolecules because of their nanoscale dimensions and their chemical properties.

  17. Muscarinic receptors mediate cold stress-induced detrusor overactivity in type 2 diabetes mellitus rats.

    PubMed

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Gautam, Sudha Silwal; Nishizawa, Osamu

    2014-10-01

    This study determined if muscarinic receptors could mediate the cold stress-induced detrusor overactivity induced in type 2 diabetes mellitus rats. Ten-week-old female Goto-Kakizaki diabetic rats (n = 12) and Wister Kyoto non-diabetic rats (n = 12) were maintained on a high-fat diet for 4 weeks. Cystometric investigations of the unanesthetized rats were carried out at room temperature (27 ± 2°C) for 20 min. They were intravenously administered imidafenacin (0.3 mg/kg, n = 6) or vehicle (n = 6). After 5 min, the rats were transferred to a low temperature (4 ± 2°C) for 40 min where the cystometry was continued. The rats were then returned to room temperature for the final cystometric measurements. Afterwards, expressions of bladder muscarinic receptor M3 and M2 messenger ribonucleic acids and proteins were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. In non-diabetic Wister Kyoto rats, imidafenacin did not reduce cold stress-induced detrusor overactivity. In diabetic Goto-Kakizaki rats, just after transfer to a low temperature, the cold stress-induced detrusor overactivity in imidafenacin-treated rats was reduced compared with vehicle-treated rats. Within the urinary bladders, the ratio of M3 to M2 receptor messenger ribonucleic acid in the diabetic Goto-Kakizaki rats was significantly higher than that of the non-diabetic Wister Kyoto rats. The proportion of muscarinic M3 receptor-positive area within the detrusor in diabetic Goto-Kakizaki rats was also significantly higher than that in non-diabetic Wister Kyoto rats. Imidafenacin partially inhibits cold stress-induced detrusor overactivity in diabetic Goto-Kakizaki rats. In this animal model, muscarinic M3 receptors partially mediate cold stress-induced detrusor overactivity. © 2014 The Japanese Urological Association.

  18. Simplified Identification of mRNA or DNA in Whole Cells

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo; Kadambi, Geeta

    2007-01-01

    A recently invented method of detecting a selected messenger ribonucleic acid (mRNA) or deoxyribonucleic acid (DNA) sequence offers two important advantages over prior such methods: it is simpler and can be implemented by means of compact equipment. The simplification and miniaturization achieved by this invention are such that this method is suitable for use outside laboratories, in field settings in which space and power supplies may be limited. The present method is based partly on hybridization of nucleic acid, which is a powerful technique for detection of specific complementary nucleic acid sequences and is increasingly being used for detection of changes in gene expression in microarrays containing thousands of gene probes.

  19. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices.

    PubMed

    Grassi, S; Pettorossi, V E

    2001-08-01

    The analysis of cellular-molecular events mediating synaptic plasticity within vestibular nuclei is an attempt to explain the mechanisms underlying vestibular plasticity phenomena. The present review is meant to illustrate the main results, obtained in vitro, on the mechanisms underlying long-term changes in synaptic strength within the medial vestibular nuclei. The synaptic plasticity phenomena taking place at the level of vestibular nuclei could be useful for adapting and consolidating the efficacy of vestibular neuron responsiveness to environmental requirements, as during visuo-vestibular recalibration and vestibular compensation. Following a general introduction on the most salient features of vestibular compensation and visuo-vestibular adaptation, which are two plastic events involving neuronal circuitry within the medial vestibular nuclei, the second and third sections describe the results from rat brainstem slice studies, demonstrating the possibility to induce long-term potentiation and depression in the medial vestibular nuclei, following high frequency stimulation of the primary vestibular afferents. In particular the mechanisms sustaining the induction and expression of vestibular long-term potentiation and depression, such as the role of various glutamate receptors and retrograde messengers have been described. The relevant role of the interaction between the platelet-activating factor, acting as a retrograde messenger, and the presynaptic metabotropic glutamate receptors, in determining the full expression of vestibular long-term potentiation is also underlined. In addition, the mechanisms involved in vestibular long-term potentiation have been compared with those leading to long-term potentiation in the hippocampus to emphasize the most significant differences emerging from vestibular studies. The fourth part, describes recent results demonstrating the essential role of nitric oxide, another retrograde messenger, in the induction of vestibular

  20. 5S ribosomal ribonucleic acid sequences in Bacteroides and Fusobacterium: evolutionary relationships within these genera and among eubacteria in general

    NASA Technical Reports Server (NTRS)

    Van den Eynde, H.; De Baere, R.; Shah, H. N.; Gharbia, S. E.; Fox, G. E.; Michalik, J.; Van de Peer, Y.; De Wachter, R.

    1989-01-01

    The 5S ribosomal ribonucleic acid (rRNA) sequences were determined for Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides capillosus, Bacteroides veroralis, Porphyromonas gingivalis, Anaerorhabdus furcosus, Fusobacterium nucleatum, Fusobacterium mortiferum, and Fusobacterium varium. A dendrogram constructed by a clustering algorithm from these sequences, which were aligned with all other hitherto known eubacterial 5S rRNA sequences, showed differences as well as similarities with respect to results derived from 16S rRNA analyses. In the 5S rRNA dendrogram, Bacteroides clustered together with Cytophaga and Fusobacterium, as in 16S rRNA analyses. Intraphylum relationships deduced from 5S rRNAs suggested that Bacteroides is specifically related to Cytophaga rather than to Fusobacterium, as was suggested by 16S rRNA analyses. Previous taxonomic considerations concerning the genus Bacteroides, based on biochemical and physiological data, were confirmed by the 5S rRNA sequence analysis.

  1. MESSENGER Observations of the Spatial Distribution of Planetary Ions Near Mercury

    NASA Technical Reports Server (NTRS)

    Zurbuchen, Thomas H.; Raines, Jim M.; Slavin, James A.; Gershman, Daniel J.; Gilbert, Jason A.; Gloeckler, George; Anderson, Brian J.; Baker, Daniel N.; Korth, Haje; Krimigis, Stamatios M.; hide

    2011-01-01

    Global measurements by MESSENGER of the fluxes of heavy ions at Mercury, particularly sodium (Na(+)) and oxygen (O(+)), exhibit distinct maxima in the northern magnetic-cusp region, indicating that polar regions are important sources of Mercury's ionized exosphere, presumably through solar-wind sputtering near the poles. The observed fluxes of helium (He(+)) are more evenly distributed, indicating a more uniform source such as that expected from evaporation from a helium-saturated surface. In some regions near Mercury, especially the nightside equatorial region, the Na(+) pressure can be a substantial fraction of the proton pressure.

  2. Exosomes as divine messengers: are they the Hermes of modern molecular oncology?

    PubMed Central

    Braicu, C; Tomuleasa, C; Monroig, P; Cucuianu, A; Berindan-Neagoe, I; Calin, G A

    2015-01-01

    Exosomes are cell-derived vesicles that convey key elements with the potential to modulate intercellular communication. They are known to be secreted from all types of cells, and are crucial messengers that can regulate cellular processes by ‘trafficking' molecules from cells of one tissue to another. The exosomal content has been shown to be broad, composed of different types of cytokines, growth factors, proteins, or nucleic acids. Besides messenger RNA (mRNA) they can also contain noncoding transcripts such as microRNAs (miRNAs), which are small endogenous cellular regulators of protein expression. In diseases such as cancer, exosomes can facilitate tumor progression by altering their vesicular content and supplying the tumor niche with molecules that favor the progression of oncogenic processes such as proliferation, invasion and metastasis, or even drug resistance. The packaging of their molecular content is known to be tissue specific, a fact that makes them interesting tools in clinical diagnostics and ideal candidates for biomarkers. In the current report, we describe the main properties of exosomes and explain their involvement in processes such as cell differentiation and cell death. Furthermore, we emphasize the need of developing patient-targeted treatments by applying the conceptualization of exosomal-derived miRNA-based therapeutics. PMID:25236394

  3. ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching

    PubMed Central

    Yeung, Nick

    2016-01-01

    Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075

  4. Identification of messenger RNA of fetoplacental source in maternal plasma of women with normal pregnancies and pregnancies with intrauterine growth restriction.

    PubMed

    Ayala Ramírez, Paola; García Robles, Reggie; Rojas, Juan Diego; Bermúdez, Martha; Bernal, Jaime

    2012-07-01

    to quantify placenta-specific RNA in plasma of women carrying foetuses with intrauterine growth restriction and pregnant women with normal pregnancies. 8 pregnant women with foetuses with intrauterine growth restriction were studied as well as 18 women with uncomplicated pregnancies in the third pregnancy trimester. Total free RNA was quantified in maternal plasma by spectrophotometry and the gene expression of hPL (Human Placental Lactogen) at the messenger RNA level through technical Real Time-Chain Reaction Polymerase. plasma RNA of fetoplacental origin was successfully detected in 100% of pregnant women. There were no statistically significant differences between the values of total RNA extracted from plasma (p= 0.5975) nor in the messenger RNA expression of hPL gene (p= 0.5785) between cases and controls. messenger RNA of fetoplacental origin can be detected in maternal plasma during pregnancy.

  5. A whole new Mercury: MESSENGER reveals a dynamic planet at the last frontier of the inner solar system

    NASA Astrophysics Data System (ADS)

    Johnson, Catherine L.; Hauck, , Steven A.

    2016-11-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission yielded a wealth of information about the innermost planet. For the first time, visible images of the entire planet, absolute altimetry measurements and a global gravity field, measurements of Mercury's surface composition, magnetic field, exosphere, and magnetosphere taken over more than four Earth years are available. From these data, two overarching themes emerge. First, multiple data sets and modeling efforts point toward a dynamic ancient history. Signatures of graphite in the crust suggest solidification of an early magma ocean, image data show extensive volcanism and tectonic features indicative of subsequent global contraction, and low-altitude measurements of magnetic fields reveal an ancient magnetic field. Second, the present-day Mercury environment is far from quiescent. Convective motions in the outer core support a modern magnetic field whose strength and geometry are unique among planets with global magnetic fields. Furthermore, periodic and aperiodic variations in the magnetosphere and exosphere have been observed, some of which couple to the surface and the planet's deep interior. Finally, signatures of geologically recent volatile activity at the surface have been detected. Mercury's early history and its present-day environment have common elements with the other inner solar system bodies. However, in each case there are also crucial differences and these likely hold the key to further understanding of Mercury and terrestrial planet evolution. MESSENGER's exploration of Mercury has enabled a new view of the innermost planet, and more importantly has set the stage for much-needed future exploration.

  6. WhatsApp Messenger is useful and reproducible in the assessment of tibial plateau fractures: inter- and intra-observer agreement study.

    PubMed

    Giordano, Vincenzo; Koch, Hilton Augusto; Mendes, Carlos Henrique; Bergamin, André; de Souza, Felipe Serrão; do Amaral, Ney Pecegueiro

    2015-02-01

    The aim of this study was to evaluate the inter- and intra-observer agreement in the initial diagnosis and classification by means of plain radiographs and CT scans of tibial plateau fractures photographed and sent via WhatsApp Messenger. The increasing popularity of smartphones has driven the development of technology for data transmission and imaging and generated a growing interest in the use of these devices as diagnostic tools. The emergence of WhatsApp Messenger technology, which is available for various platforms used by smartphones, has led to an improvement in the quality and resolution of images sent and received. The images (plain radiographs and CT scans) were obtained from 13 cases of tibial plateau fractures using the iPhone 5 (Apple Inc., Cupertino, CA, USA) and were sent to six observers via the WhatsApp Messenger application. The observers were asked to determine the standard deviation and type of injury, the classification according to the Schatzker and the Luo classifications schemes, and whether the CT scan changed the classification. The six observers independently assessed the images on two separate occasions, 15 days apart. The inter- and intra-observer agreement for both periods of the study ranged from excellent to perfect (0.75<κ<1.0) across all survey questions. When asked if the inclusion of the CT images would change their final X-ray classification (Schatzker or Luo), the inter- and intra-observer agreement was perfect (k=1) on both assessment occasions. We found an excellent inter- and intra-observer agreement in the imaging assessment of tibial plateau fractures sent via WhatsApp Messenger. The authors now propose the systematic use of the application to facilitate faster documentation and obtaining the opinion of an experienced consultant when not on call. Finally, we think the use of the WhatsApp Messenger as an adjuvant tool could be broadened to other clinical centres to assess its viability in other skeletal and non

  7. NASA's MESSENGER Finds New Evidence for Water Ice at Mercury's Poles

    NASA Image and Video Library

    2017-12-08

    New observations by the MESSENGER spacecraft provide compelling support for the long-held hypothesis that Mercury harbors abundant water ice and other frozen volatile materials in its permanently shadowed polar craters. Three independent lines of evidence support this conclusion: the first measurements of excess hydrogen at Mercury's north pole with MESSENGER's Neutron Spectrometer, the first measurements of the reflectance of Mercury's polar deposits at near-infrared wavelengths with the Mercury Laser Altimeter (MLA), and the first detailed models of the surface and near-surface temperatures of Mercury's north polar regions that utilize the actual topography of Mercury's surface measured by the MLA. These findings are presented in three papers published online today in Science Express. Given its proximity to the Sun, Mercury would seem to be an unlikely place to find ice. But the tilt of Mercury's rotational axis is almost zero — less than one degree — so there are pockets at the planet's poles that never see sunlight. Scientists suggested decades ago that there might be water ice and other frozen volatiles trapped at Mercury's poles. The idea received a boost in 1991, when the Arecibo radio telescope in Puerto Rico detected unusually radar-bright patches at Mercury's poles, spots that reflected radio waves in the way one would expect if there were water ice. Many of these patches corresponded to the location of large impact craters mapped by the Mariner 10 spacecraft in the 1970s. But because Mariner saw less than 50 percent of the planet, planetary scientists lacked a complete diagram of the poles to compare with the images. MESSENGER's arrival at Mercury last year changed that. Images from the spacecraft's Mercury Dual Imaging System taken in 2011 and earlier this year confirmed that radar-bright features at Mercury's north and south poles are within shadowed regions on Mercury's surface, findings that are consistent with the water-ice hypothesis. To read

  8. The Air Forces on a Model of the Sperry Messenger Airplane Without Propeller

    NASA Technical Reports Server (NTRS)

    Munk, Max M; Diehl, Walter S

    1926-01-01

    This is a report on a scale effect research which was made in the variable-density wind tunnel of the National Advisory Committee for Aeronautics at the request of the Army Air Service. A 1/10 scale model of the sperry messenger airplane with USA-5 wings was tested without a propeller at various Reynolds numbers up to the full scale value. Two series of tests were: the first on the original model which was of the usual simplified construction, and the second on a modified model embodying a great amount of detail. The experimental results show that the scale effect is almost entirely confined to the drag. It was also found that the model should be geometrically similar to the full-scale airplane if the test data are to be directly applicable to full scale.

  9. Corrective Feedback via Instant Messenger Learning Activities in NS-NNS and NNS-NNS Dyads

    ERIC Educational Resources Information Center

    Sotillo, Susana

    2005-01-01

    This exploratory study examines corrective feedback in native speaker-nonnative speaker (NS-NNS) and NNS-NNS dyads while participants were engaged in communicative and problem-solving activities via "Yahoo! Instant Messenger" (YIM). As "negotiation of meaning" studies of the 1990s have shown, linguistic items which learners negotiate in…

  10. Current Status of Messenger RNA Delivery Systems.

    PubMed

    Stanton, Matthew G

    2018-06-01

    Messenger RNA is emerging as a highly versatile biological construct for creation of impactful medicines. mRNA vaccines directed toward infectious disease and cancer are in clinical development with encouraging early reads on tolerability and efficacy. The use of mRNA to direct intense but transient expression of paracrine factors is finding utility in reprogramming progenitor cells for wound healing and cardiac regeneration and for stimulation of antitumor immune responses, at least preclinically as we await clinical results. The use of mRNA for prolonged and repeated expression of proteins and enzymes to treat rare, typically monogenic disease is nearing clinical entry. These uses of mRNA require delivery solutions, and the application of and improvement to existing nanoparticle nucleic acid delivery systems have jump started the pace of development and reenergized the field of particle based nucleic acid delivery. The current status of mRNA delivery is reviewed in this article with an eye toward clinical tractability.

  11. Integrating Instant Messenger into Online Office Hours to Enhance Synchronous Online Interaction in Teacher Education

    ERIC Educational Resources Information Center

    Lih-Ching, Chen Wang; Beasley, William

    2006-01-01

    Modern communication technologies have modified the tradition of instructor's office hours in numerous ways. This article explores the use of Instant Messenger (IM) software in the context of "online office hours". The authors discuss strengths and weaknesses of IM interactions for instructor/student communication, and examine a sample of such…

  12. MESSENGER Orbital Observations of Large-Amplitude Kelvin-Helmholtz Waves at Mercury's Magnetopause

    NASA Technical Reports Server (NTRS)

    Sundberg, Torbjorn; Boardsen, Scott A.; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Zurbuchen, Thomas H.; Raines, Jim M.; Solomon, Sean C.

    2012-01-01

    We present a survey of Kelvi\\ n-Helmholtz (KH) waves at Mercury's magnetopause during MESSENGER's first Mercury year in orb it. The waves were identified on the basis of the well-established sawtooth wave signatures that are associated with non-linear KH vortices at the magnetopause. MESSENGER frequently observed such KH waves in the dayside region of the magnetosphere where the magnetosheath flow velocity is still sub -sonic, which implies that instability growth rates at Mercury's magnetopau are much larger than at Earth. We attribute these greater rates to the limited wave energy dissipation in Mercury's highly resistive regolith. The wave amplitude was often on the order of ' 00 nT or more, and the wave periods were - 10- 20 s. A clear dawn-dusk asymmetry is present in the data, in that all of the observed wave events occurred in the post-noon and dusk-side sectors of the magnetopause. This asymmetry is like ly related to finite Larmor-radius effects and is in agreement with results from particle-in-cell simulations of the instability. The waves were observed almost exclusively during periods when the north-south component of the magnetosheath magnetic field was northward, a pattern similar to that for most terrestrial KH wave events. Accompanying plasma measurements show that the waves were associated with the transport of magnetosheath plasma into the magnetosphere.

  13. Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger RNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jbilo, O.; Barteles, C.F.; Chatonnet, A.

    1994-12-31

    Tissue distribution of human acetyicholinesterase and butyryicholinesterase messenger RNA. 1 Cholinesterase inhibitors occur naturally in the calabar bean (eserine), green potatoes (solanine), insect-resistant crab apples, the coca plant (cocaine) and snake venom (fasciculin). There are also synthetic cholinesterase inhibitors, for example man-made insecticides. These inhibitors inactivate acetyicholinesterase and butyrylcholinesterase as well as other targets. From a study of the tissue distribution of acetylcholinesterase and butyrylcholinesterase mRNA by Northern blot analysis, we have found the highest levels of butyrylcholinesterase mRNA in the liver and lungs, tissues known as the principal detoxication sites of the human body. These results indicate that butyrylcholinesterasemore » may be a first line of defense against poisons that are eaten or inhaled.« less

  14. Identification of messenger RNA of fetoplacental source in maternal plasma of women with normal pregnancies and pregnancies with intrauterine growth restriction

    PubMed Central

    García Robles, Reggie; Rojas, Juan Diego; Bermúdez, Martha; Bernal, Jaime

    2012-01-01

    Objective: to quantify placenta-specific RNA in plasma of women carrying foetuses with intrauterine growth restriction and pregnant women with normal pregnancies. Methods: 8 pregnant women with foetuses with intrauterine growth restriction were studied as well as 18 women with uncomplicated pregnancies in the third pregnancy trimester. Total free RNA was quantified in maternal plasma by spectrophotometry and the gene expression of hPL (Human Placental Lactogen) at the messenger RNA level through technical Real Time-Chain Reaction Polymerase. Results: plasma RNA of fetoplacental origin was successfully detected in 100% of pregnant women. There were no statistically significant differences between the values of total RNA extracted from plasma (p= 0.5975) nor in the messenger RNA expression of hPL gene (p= 0.5785) between cases and controls. Conclusion: messenger RNA of fetoplacental origin can be detected in maternal plasma during pregnancy. PMID:24893189

  15. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, a lift begins lowering NASA’s MESSENGER spacecraft onto the ground. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, a lift begins lowering NASA’s MESSENGER spacecraft onto the ground. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  16. FATHEAD MINNOW VITELLOGENIN: COMPLEMENTARY DNA SEQUENCE AND MESSENGER RNA AND PROTEIN EXPRESSION AFTER 17B-ESTRADIOL TREATMENT

    EPA Science Inventory

    Induction of vitellogenin (VTG) in oviparous animals has been proposed as a sensitive indicator of invironmental contaminants that activate the estrogen receptor. In the present study, a sensitive ribonuclease protection assay (RPA) for VTG messenger RNA (mRNA) was developed for ...

  17. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, Samuel Lee; Miller, William Michael; McWhorter, Paul Jackson

    1997-01-01

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals.

  18. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, S.L.; Miller, W.M.; McWhorter, P.J.

    1997-10-21

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals. 32 figs.

  19. FMRP acts as a key messenger for dopamine modulation in the forebrain.

    PubMed

    Wang, Hansen; Wu, Long-Jun; Kim, Susan S; Lee, Frank J S; Gong, Bo; Toyoda, Hiroki; Ren, Ming; Shang, Yu-Ze; Xu, Hui; Liu, Fang; Zhao, Ming-Gao; Zhuo, Min

    2008-08-28

    The fragile X mental retardation protein (FMRP) is an RNA-binding protein that controls translational efficiency and regulates synaptic plasticity. Here, we report that FMRP is involved in dopamine (DA) modulation of synaptic potentiation. AMPA glutamate receptor subtype 1 (GluR1) surface expression and phosphorylation in response to D1 receptor stimulation were reduced in cultured Fmr1(-/-) prefrontal cortex (PFC) neurons. Furthermore, D1 receptor signaling was impaired, accompanied by D1 receptor hyperphosphorylation at serine sites and subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in both PFC and striatum of Fmr1(-/-) mice. FMRP interacted with GRK2, and pharmacological inhibition of GRK2 rescued D1 receptor signaling in Fmr1(-/-) neurons. Finally, D1 receptor agonist partially rescued hyperactivity and enhanced the motor function of Fmr1(-/-) mice. Our study has identified FMRP as a key messenger for DA modulation in the forebrain and may provide insights into the cellular and molecular mechanisms underlying fragile X syndrome.

  20. Exploration of Mercury: The MESSENGER Mission

    NASA Astrophysics Data System (ADS)

    McNutt, Ralph

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA’s Discovery Program, has been collecting orbital observations of Mercury since March 2011. Elemental remote sensing of Mercury’s surface indicates that the moderately volatile elements Na, K, and S are not depleted relative to other terrestrial planets. Orbital images document widespread evidence for ancient volcanic activity ranging from effusive to explosive eruptions. High-resolution images have revealed the presence of irregular rimless depressions or “hollows” likely produced by the loss to diurnal heating or sputtering of some volatile-rich material. Polar deposits in permanently shadowed high-latitude regions are dominated by water ice on the basis of neutron spectrometry, surface reflectance, and thermal modeling with measured topography; in most locations the ice is covered by 10-30 cm of anomalously dark volatile material postulated to consist of complex organic compounds. The tectonic history of Mercury is dominated by greater planetary contraction than previously recognized; long-wavelength changes in topography postdated the emplacement of large expanses of volcanic plains. Gravity and topography measurements indicate that mascons and crustal thinning are associated with some impact basins. Mercury’s internal magnetic field is that of a dipole offset from the planet’s center by ~0.2 Mercury radii, a geometry difficult to reconcile with existing dynamo models. Magnetospheric measurements have revealed a highly time-variable and spatially structured particle environment. Despite complex feedbacks among the exosphere, magnetosphere, and surface, the large-scale structure of the exosphere - dominated by Na, Ca, and Mg - shows seasonal variations in general agreement with those expected from variations in solar flux with Mercury true anomaly but little variation with changing solar conditions. Energetic electron events are

  1. Cloud-based uniform ChIP-Seq processing tools for modENCODE and ENCODE.

    PubMed

    Trinh, Quang M; Jen, Fei-Yang Arthur; Zhou, Ziru; Chu, Kar Ming; Perry, Marc D; Kephart, Ellen T; Contrino, Sergio; Ruzanov, Peter; Stein, Lincoln D

    2013-07-22

    Funded by the National Institutes of Health (NIH), the aim of the Model Organism ENCyclopedia of DNA Elements (modENCODE) project is to provide the biological research community with a comprehensive encyclopedia of functional genomic elements for both model organisms C. elegans (worm) and D. melanogaster (fly). With a total size of just under 10 terabytes of data collected and released to the public, one of the challenges faced by researchers is to extract biologically meaningful knowledge from this large data set. While the basic quality control, pre-processing, and analysis of the data has already been performed by members of the modENCODE consortium, many researchers will wish to reinterpret the data set using modifications and enhancements of the original protocols, or combine modENCODE data with other data sets. Unfortunately this can be a time consuming and logistically challenging proposition. In recognition of this challenge, the modENCODE DCC has released uniform computing resources for analyzing modENCODE data on Galaxy (https://github.com/modENCODE-DCC/Galaxy), on the public Amazon Cloud (http://aws.amazon.com), and on the private Bionimbus Cloud for genomic research (http://www.bionimbus.org). In particular, we have released Galaxy workflows for interpreting ChIP-seq data which use the same quality control (QC) and peak calling standards adopted by the modENCODE and ENCODE communities. For convenience of use, we have created Amazon and Bionimbus Cloud machine images containing Galaxy along with all the modENCODE data, software and other dependencies. Using these resources provides a framework for running consistent and reproducible analyses on modENCODE data, ultimately allowing researchers to use more of their time using modENCODE data, and less time moving it around.

  2. Cloud-based uniform ChIP-Seq processing tools for modENCODE and ENCODE

    PubMed Central

    2013-01-01

    Background Funded by the National Institutes of Health (NIH), the aim of the Model Organism ENCyclopedia of DNA Elements (modENCODE) project is to provide the biological research community with a comprehensive encyclopedia of functional genomic elements for both model organisms C. elegans (worm) and D. melanogaster (fly). With a total size of just under 10 terabytes of data collected and released to the public, one of the challenges faced by researchers is to extract biologically meaningful knowledge from this large data set. While the basic quality control, pre-processing, and analysis of the data has already been performed by members of the modENCODE consortium, many researchers will wish to reinterpret the data set using modifications and enhancements of the original protocols, or combine modENCODE data with other data sets. Unfortunately this can be a time consuming and logistically challenging proposition. Results In recognition of this challenge, the modENCODE DCC has released uniform computing resources for analyzing modENCODE data on Galaxy (https://github.com/modENCODE-DCC/Galaxy), on the public Amazon Cloud (http://aws.amazon.com), and on the private Bionimbus Cloud for genomic research (http://www.bionimbus.org). In particular, we have released Galaxy workflows for interpreting ChIP-seq data which use the same quality control (QC) and peak calling standards adopted by the modENCODE and ENCODE communities. For convenience of use, we have created Amazon and Bionimbus Cloud machine images containing Galaxy along with all the modENCODE data, software and other dependencies. Conclusions Using these resources provides a framework for running consistent and reproducible analyses on modENCODE data, ultimately allowing researchers to use more of their time using modENCODE data, and less time moving it around. PMID:23875683

  3. Thickness of Mercury's crust from MESSENGER gravity and altimetry data

    NASA Astrophysics Data System (ADS)

    Padovan, S.; Wieczorek, M. A.; Margot, J. L.; Tosi, N.; Solomon, S. C.

    2014-12-01

    The major igneous events that form and shape the crust of a rocky body, such as magma ocean solidification and volcanism, affect the interior thermo-chemical evolution through control on the bulk volatile content, partitioning of heat-producing elements, and heat loss. Therefore, characterizing the crust of a body provides information on that object's origin, differentiation, and subsequent geologic evolution. For Mercury, the crust may hold clues in particular to the still poorly understood processes of formation of this planet. Analysis of geoid-to-topography ratios (GTRs) has been previously applied to infer the thickness of the crust of the Moon, Mars, and Venus. We perform a similar analysis for Mercury with the gravity and altimetry data acquired by the MESSENGER spacecraft. We consider only the northern hemisphere, where the gravity field and topography are well constrained. We assume that Airy isostasy is the principal mechanism of support of variations in topography, and we therefore exclude from the analysis regions that might not be compatible with this assumption, such as large expanses of smooth plains and large impact basins. For a conservative range of densities of the crust, we infer a crustal thickness of 35±18 km (one standard deviation). This new mean value is substantially less than earlier estimates that were based on viscous relaxation of topography, on the relation between the low-degree gravity field and equatorial ellipticity, and on the depth of the brittle-ductile transition as constrained by models of thrust faulting and thermal evolution. This relatively thin crust allows for the possibility of excavation of mantle material during the formation of large impact basins (such as Caloris). Such material might be observed with instruments on MESSENGER and the BepiColombo spacecraft now in development.

  4. WhatsApp messenger as a tool to supplement medical education for medical students on clinical attachment.

    PubMed

    Raiman, Lewis; Antbring, Richard; Mahmood, Asad

    2017-01-06

    Instant messaging applications have the potential to improve and facilitate communication between hospital doctors and students, hence generating and improving learning opportunities. This study aims to demonstrate the feasibility and acceptability of instant messaging communication to supplement medical education for medical students whilst on clinical attachment. A total of 6 WhatsApp Messenger (WhatsApp Inc.) groups were created for medical students on clinical attachment. These were used to provide communication within Problem Based Learning (PBL) groups for a duration of 8 weeks. The frequency and type of communication were recorded. Students' opinions were evaluated through a structured interview process at the end of the study period. A thematic analysis was performed on the content of the instant messaging groups and on the results of the structured interviews. All of the participants were active in their respective messaging groups (19 students and 6 tutors). A total of 582 messages, 22 images and 19 webpage links were sent. Thematic analysis on content of the instant messaging groups identified the following themes: organisational, educational and social. Thematic analysis on the content of interviews identified themes such as the ease of use of instant messaging, benefit of instant messaging to foster understanding and learning, and the ability to access recorded discussions. The findings of this study illustrate a method by which communication within PBL groups can be facilitated by the use of instant messaging. The results indicate the feasibility and acceptability of WhatsApp Messenger in supplementing PBL teaching for medical students, and provides a framework for studies to investigate use amongst larger cohorts of students.

  5. Modeling the Solar Probe Plus Dust Environment: Comparison with MESSENGER Observations

    NASA Astrophysics Data System (ADS)

    Strong, S. B.; Strikwerda, T.

    2009-12-01

    NASA’s Solar Probe Plus mission will be the first to approach the Sun as close as 9 solar radii from the surface. This mission will provide the only in-situ observations of the Sun’s corona. In the absence of observational data (e.g. Helios, Pioneer), specifically at distances less than 0.4 AU, the precise ambient dust distributions at these distances remain unknown and limited to extrapolative models for distances < 1 AU (e.g. Mann et al. 2004). For the Solar Probe Plus mission, it has become critical to characterize the inner solar system dust environment in order to examine potential impacts on spacecraft health and attitude. We have implemented the Mann et al. (2004) and Grün et al. (1985) dust distribution theory along with Mie scattering effects to determine the magnitude of solar irradiance scattered towards an optical sensor such as a star tracker as a function of ecliptic latitude and longitude for distances 0.05 to 1 AU. Background irradiance data from NASA’s MESSENGER mission (down to 0.3 AU) reveal trends consistent with our model predictions, potentially validating Mann et al. (2004) and Grün et al. (1985) theory, but perhaps suggesting an enhancement of dust density short ward of 0.3 AU. This paper will present the scattering model and analysis of MESSENGER data gathered to date, during the phasing orbits, and includes star tracker background irradiance, irradiance distribution over the sky, and effects on star magnitude sensitivity and position accuracy.

  6. Complementary-encoding holographic associative memory using a photorefractive crystal

    NASA Astrophysics Data System (ADS)

    Yuan, ShiFu; Wu, Minxian; Yan, Yingbai; Jin, Guofan

    1996-06-01

    We present a holographic implementation of accurate associative memory with only one holographic memory system. In the implementation, the stored and test images are coded by using complementary-encoding method. The recalled complete image is also a coded image that can be decoded with a decoding mask to get an original image or its complement image. The experiment shows that the complementary encoding can efficiently increase the addressing accuracy in a simple way. Instead of the above complementary-encoding method, a scheme that uses complementary area-encoding method is also proposed for the holographic implementation of gray-level image associative memory with accurate addressing.

  7. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, workers begin moving NASA’s MESSENGER spacecraft into the building MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - is being taken into a high bay clean room where employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, workers begin moving NASA’s MESSENGER spacecraft into the building MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - is being taken into a high bay clean room where employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  8. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, workers check the moveable pallet holding NASA’s MESSENGER spacecraft. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, workers check the moveable pallet holding NASA’s MESSENGER spacecraft. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  9. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., is offloaded. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., is offloaded. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  10. Silence of the transcripts: RNA interference in medicine.

    PubMed

    Barik, Sailen

    2005-10-01

    Silencing of gene expression by ribonucleic acid (RNA), known as RNA interference (RNAi), is now recognized as a major means of gene regulation in biology. In this mechanism, small noncoding double-stranded RNA molecules knock down gene expression through a variety of mechanisms that include messenger RNA (mRNA) degradation, inhibition of mRNA translation, or chromatin remodeling. The posttranscriptional mechanism of RNAi has been embraced by researchers as a powerful tool for generating deficient phenotypes without mutating the gene. In parallel, exciting recent results have promised its application in disease therapy. This review aims to summarize the current knowledge in this area and provide a roadmap that may eventually launch RNAi from the research bench to the medicine chest.

  11. Plasmonic Encoding

    DTIC Science & Technology

    2014-10-06

    The nanosheets, like many SERS platforms, are ideally suited for encoding schemes based on the SERS signal from a variety of thiolated small...counterfeiting purposes. The nanosheets, like many SERS platforms, are ideally suited for encoding schemes based on the SERS signal from a variety of...environments ( like the surface of human hair). 2. Nanoflares In 2007, we first introduced the concept of nanoflares. Nanoflares are a new class of

  12. Effect of the Intelligent Health Messenger Box on health care professionals' knowledge, attitudes, and practice related to hand hygiene and hand bacteria counts.

    PubMed

    Saffari, Mohsen; Ghanizadeh, Ghader; Fattahipour, Rasoul; Khalaji, Kazem; Pakpour, Amir H; Koenig, Harold G

    2016-12-01

    We assessed the effectiveness of the Intelligent Health Messenger Box in promoting hand hygiene using a quasiexperimental design. Knowledge, attitudes, and self-reported practices related to hand hygiene as well as hand bacteria counts and amount of liquid soap used were measured. The intervention involved broadcasting preventive audio messages. All outcomes showed significant change after the intervention compared with before. The Intelligent Health Messenger Box can serve as a practical way to improve hand hygiene. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  13. Correlation of genetic risk and messenger RNA expression in a Th17/IL23 pathway analysis in inflammatory bowel disease.

    PubMed

    Fransen, Karin; van Sommeren, Suzanne; Westra, Harm-Jan; Veenstra, Monique; Lamberts, Letitia E; Modderman, Rutger; Dijkstra, Gerard; Fu, Jingyuan; Wijmenga, Cisca; Franke, Lude; Weersma, Rinse K; van Diemen, Cleo C

    2014-05-01

    The Th17/IL23 pathway has both genetically and biologically been implicated in the pathogenesis of the inflammatory bowel diseases (IBD), Crohn's disease, and ulcerative colitis. So far, it is unknown whether and how associated risk variants affect expression of the genes encoding for Th17/IL23 pathway proteins. Ten IBD-associated SNPs residing near Th17/IL23 genes were used to construct a genetic risk model in 753 Dutch IBD cases and 1045 controls. In an independent cohort of 40 Crohn's disease, 40 ulcerative colitis, and 40 controls, the genetic risk load and presence of IBD were correlated to quantitative PCR-generated messenger RNA (mRNA) expression of 9 representative Th17/IL23 genes in both unstimulated and PMA/CaLo stimulated peripheral blood mononuclear cells. In 1240 individuals with various immunological diseases with whole genome genotype and mRNA-expression data, we also assessed correlation between genetic risk load and differential mRNA expression and sought for SNPs affecting expression of all currently known Th17/IL23 pathway genes (cis-expression quantitative trait locus). The presence of IBD, but not the genetic risk load, was correlated to differential mRNA expression for IL6 in unstimulated peripheral blood mononuclear cells and to IL23A and RORC in response to stimulation. The cis-expression quantitative trait locus analysis showed little evidence for correlation between genetic risk load and mRNA expression of Th17/IL23 genes, because we identified for only 2 of 22 Th17/IL23 genes a cis-expression quantitative trait locus single nucleotide polymorphism that is also associated to IBD (STAT3 and CCR6). Our results suggest that only the presence of IBD and not the genetic risk load alters mRNA expression levels of IBD-associated Th17/IL23 genes.

  14. Label-free serum ribonucleic acid analysis for colorectal cancer detection by surface-enhanced Raman spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Chen, Gang; Feng, Shangyuan; Pan, Jianji; Zheng, Xiongwei; Su, Ying; Chen, Yan; Huang, Zufang; Lin, Xiaoqian; Lan, Fenghua; Chen, Rong; Zeng, Haishan

    2012-06-01

    Studies with circulating ribonucleic acid (RNA) not only provide new targets for cancer detection, but also open up the possibility of noninvasive gene expression profiling for cancer. In this paper, we developed a surface-enhanced Raman scattering (SERS), platform for detection and differentiation of serum RNAs of colorectal cancer. A novel three-dimensional (3-D), Ag nanofilm formed by dry MgSO4 aggregated silver nanoparticles, Ag NP, as the SERS-active substrate was presented to effectively enhance the RNA Raman signals. SERS measurements were performed on two groups of serum RNA samples. One group from patients, n=55 with pathologically diagnosed colorectal cancer and the other group from healthy controls, n=45. Tentative assignments of the Raman bands in the normalized SERS spectra demonstrated that there are differential expressions of cancer-related RNAs between the two groups. Linear discriminate analysis, based on principal component analysis, generated features can differentiate the colorectal cancer SERS spectra from normal SERS spectra with sensitivity of 89.1 percent and specificity of 95.6 percent. This exploratory study demonstrated great potential for developing serum RNA SERS analysis into a useful clinical tool for label-free, noninvasive screening and detection of colorectal cancers.

  15. Encoding processes during retrieval tasks.

    PubMed

    Buckner, R L; Wheeler, M E; Sheridan, M A

    2001-04-01

    Episodic memory encoding is pervasive across many kinds of task and often arises as a secondary processing effect in tasks that do not require intentional memorization. To illustrate the pervasive nature of information processing that leads to episodic encoding, a form of incidental encoding was explored based on the "Testing" phenomenon: The incidental-encoding task was an episodic memory retrieval task. Behavioral data showed that performing a memory retrieval task was as effective as intentional instructions at promoting episodic encoding. During fMRI imaging, subjects viewed old and new words and indicated whether they remembered them. Relevant to encoding, the fate of the new words was examined using a second, surprise test of recognition after the imaging session. fMRI analysis of those new words that were later remembered revealed greater activity in left frontal regions than those that were later forgotten - the same pattern of results as previously observed for traditional incidental and intentional episodic encoding tasks. This finding may offer a partial explanation for why repeated testing improves memory performance. Furthermore, the observation of correlates of episodic memory encoding during retrieval tasks challenges some interpretations that arise from direct comparisons between "encoding tasks" and "retrieval tasks" in imaging data. Encoding processes and their neural correlates may arise in many tasks, even those nominally labeled as retrieval tasks by the experimenter.

  16. The Message or the Messenger: Reflection on the Volatility of Evoking Novice Teachers' Courageous Conversations on Race

    ERIC Educational Resources Information Center

    Amobi, Funmi A.

    2007-01-01

    Every teacher is a messenger. The message that a teacher communicates and portrays is acquired formally and informally through systematic study, and environmental and socialization processes. While formal study happens consciously within a particular period of time, experiential learning that impinges on the development of the message happens all…

  17. Just How Important Is the Messenger versus the Message? The Case of Framing Physician-Assisted Suicide

    ERIC Educational Resources Information Center

    Haider-Markel, Donald P.; Joslyn, Mark R.

    2004-01-01

    As a political issue, death and dying topics only sometimes reach the political agenda. However, some issues, such as physician-assisted suicide (PAS) have been highly salient. This article explores attitudes toward PAS by examining the malleability of opinion when respondents are exposed to issue frames and when specific messengers present those…

  18. Recent advances on the encoding and selection methods of DNA-encoded chemical library.

    PubMed

    Shi, Bingbing; Zhou, Yu; Huang, Yiran; Zhang, Jianfu; Li, Xiaoyu

    2017-02-01

    DNA-encoded chemical library (DEL) has emerged as a powerful and versatile tool for ligand discovery in chemical biology research and in drug discovery. Encoding and selection methods are two of the most important technological aspects of DEL that can dictate the performance and utilities of DELs. In this digest, we have summarized recent advances on the encoding and selection strategies of DEL and also discussed the latest developments on DNA-encoded dynamic library, a new frontier in DEL research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER

    NASA Astrophysics Data System (ADS)

    Izenberg, Noam R.; Klima, Rachel L.; Murchie, Scott L.; Blewett, David T.; Holsclaw, Gregory M.; McClintock, William E.; Malaret, Erick; Mauceri, Calogero; Vilas, Faith; Sprague, Ann L.; Helbert, Jörn; Domingue, Deborah L.; Head, James W.; Goudge, Timothy A.; Solomon, Sean C.; Hibbitts, Charles A.; Dyar, M. Darby

    2014-01-01

    The MESSENGER spacecraft's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) obtained more than 1.6 million reflectance spectra of Mercury's surface from near-ultraviolet to near-infrared wavelengths during the first year of orbital operations. A global analysis of spectra in the wavelength range 300-1450 nm shows little regional variation in absolute reflectance or spectral slopes and a lack of mineralogically diagnostic absorptions. In particular, reflectance spectra show no clear evidence for an absorption band centered near 1 μm that would be associated with the presence of ferrous iron in silicates. There is, however, evidence for an ultraviolet absorption possibly consistent with a very low iron content (2-3 wt% FeO or less) in surface silicates and for the presence of small amounts of metallic iron or other opaque minerals in the form of nano- or micrometer-sized particles. These findings are consistent with MESSENGER X-ray and gamma-ray measurements of Mercury's surface iron abundance. Although X-ray and gamma-ray observations indicate higher than expected quantities of sulfur on the surface, reflectance spectra show no absorption bands diagnostic of sulfide minerals. Whereas there is strong evidence of water ice in permanently shadowed craters near Mercury's poles, MASCS spectra provide no evidence for hydroxylated materials near permanently shadowed craters.

  20. Synthesis and characterization of non-hydrolysable diphosphoinositol polyphosphate second messengers.

    PubMed

    Wu, Mingxuan; Dul, Barbara E; Trevisan, Alexandra J; Fiedler, Dorothea

    2013-01-01

    The diphosphoinositol polyphosphates (PP-IPs) are a central group of eukaryotic second messengers. They regulate numerous processes, including cellular energy homeostasis and adaptation to environmental stresses. To date, most of the molecular details in PP-IP signalling have remained elusive, due to a lack of appropriate methods and reagents. Here we describe the expedient synthesis of methylene-bisphosphonate PP-IP analogues. Their characterization revealed that the analogues exhibit significant stability and mimic their natural counterparts very well. This was further confirmed in two independent biochemical assays, in which our analogues potently inhibited phosphorylation of the protein kinase Akt and hydrolytic activity of the Ddp1 phosphohydrolase. The non-hydrolysable PP-IPs thus emerge as important tools and hold great promise for a variety of applications.

  1. Synthesis and characterization of non-hydrolysable diphosphoinositol polyphosphate second messengers

    PubMed Central

    Wu, Mingxuan; Dul, Barbara E.; Trevisan, Alexandra J.; Fiedler, Dorothea

    2012-01-01

    The diphosphoinositol polyphosphates (PP-IPs) are a central group of eukaryotic second messengers. They regulate numerous processes, including cellular energy homeostasis and adaptation to environmental stresses. To date, most of the molecular details in PP-IP signalling have remained elusive, due to a lack of appropriate methods and reagents. Here we describe the expedient synthesis of methylene-bisphosphonate PP-IP analogues. Their characterization revealed that the analogues exhibit significant stability and mimic their natural counterparts very well. This was further confirmed in two independent biochemical assays, in which our analogues potently inhibited phosphorylation of the protein kinase Akt and hydrolytic activity of the Ddp1 phosphohydrolase. The non-hydrolysable PP-IPs thus emerge as important tools and hold great promise for a variety of applications. PMID:23378892

  2. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  3. 47 CFR 11.32 - EAS Encoder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false EAS Encoder. 11.32 Section 11.32....32 EAS Encoder. (a) EAS Encoders must at a minimum be capable of encoding the EAS protocol described... must additionally provide the following minimum specifications: (1) Encoder programming. Access to...

  4. The Mercury Laser Altimeter Instrument for the MESSENGER Mission

    NASA Technical Reports Server (NTRS)

    Cavanaugh, John F.; Smith, James C.; Sun, Xiaoli; Bartels, Arlin E.; Ramos-Izquierdo, Luis; Krebs, Danny J.; Novo-Gradac, Anne marie; McGarry, Jan F.; Trunzo, Raymond; Britt, Jamie L.

    2006-01-01

    The Mercury Laser Altimeter (MLA) is one of the payload science instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which launched on 3 August 2004. The altimeter will measure the round trip time-of-flight of transmitted laser pulses reflected from the surface of the planet that, in combination with the spacecraft orbit position and pointing data, gives a high-precision measurement of surface topography referenced to Mercury's center of mass. The altimeter measurements will be used to determine the planet's forced librations by tracking the motion of large-scale topographic features as a function of time. MLA's laser pulse energy monitor and the echo pulse energy estimate will provide an active measurement of the surface reflectivity at 1064 nm. This paper describes the instrument design, prelaunch testing, calibration, and results of post-launch testing.

  5. Genetic variants in AKR1B10 associate with human eating behavior.

    PubMed

    Rohde, Kerstin; Federbusch, Martin; Horstmann, Annette; Keller, Maria; Villringer, Arno; Stumvoll, Michael; Tönjes, Anke; Kovacs, Peter; Böttcher, Yvonne

    2015-03-25

    The human Aldoketoreductase 1B10 gene (AKR1B10) encodes one of the enzymes belonging to the family of aldoketoreductases and may be involved in detoxification of nutrients during digestion. Further, AKR1B10 mRNA (messenger ribonucleic acid) expression was diminished in brain regions potentially involved in the regulation of eating behavior in rats which are more sensitive to cocaine and alcohol. We hypothesized that the human AKR1B10 gene may also play a role in the regulation of human eating behavior. We investigated the effects of 5 genetic variants of AKR1B10 on human eating behavior among 548 subjects from a German self-contained population, the Sorbs, and in 350 subjects from another independent German cohort. Among the Sorbs, we observed nominal associations with disinhibition at the 5' untranslated region (5' UTR) variant rs10232478 and the intragenic variants rs1834150 and rs782881 (all P ≤ 0.05). Further, we detected a relationship of rs1834150 and rs782881 with waist, smoking consumption (rs782881) and coffee consumption (rs1834150) (all P ≤ 0.05). Albeit non-significant, replication analyses revealed similar effect directions for disinhibition at rs1834150 (combined P = 0.0096). Moreover, in the replication cohort we found rs1834150 related to increased restraint scores with a similar direction as in the Sorbs (combined P = 0.0072). Our data suggest that genetic variants in the AKR1B10 locus may influence human eating behavior.

  6. Farm Women, Solidarity, and "The Suffrage Messenger": Nebraska Suffrage Activism on the Plains, 1915-1917

    ERIC Educational Resources Information Center

    Heider, Carmen

    2012-01-01

    In 1914 Nebraska men once again voted against the amendment that would have granted full suffrage to Nebraska women. This article focuses on the three years immediately after that defeat. It explores the remaining seventeen issues of the "Suffrage Messenger" and asks the following question: how did the suffrage newspaper portray and…

  7. Ghrelin, MicroRNAs, and Critical Limb Ischemia: Hungering for a Novel Treatment Option.

    PubMed

    Neale, Joshua P H; Pearson, James T; Katare, Rajesh; Schwenke, Daryl O

    2017-01-01

    Critical limb ischemia (CLI) is the most severe manifestation of peripheral artery disease. It is characterized by chronic pain at rest, skin ulcerations, and gangrene tissue loss. CLI is a highly morbid condition, resulting in a severely diminished quality of life and a significant risk of mortality. The primary goal of therapy for CLI is to restore blood flow to the affected limb, which is only possible by surgery, but is inadvisable in up to 50% of patients. This subset of patients who are not candidates for revascularisation are referred to as "no-option" patients and are the focus of investigation for novel therapeutic strategies. Angiogenesis, arteriogenesis and vasculogenesis are the processes whereby new blood vessel networks form from the pre-existing vasculature and primordial cells, respectively. In therapeutic angiogenesis, exogenous stimulants are administered to promote angiogenesis and augment limb perfusion, offering a potential treatment option for "no option" patients. However, to date, very few clinical trials of therapeutic angiogenesis in patients with CLI have reported clinically significant results, and it remains a major challenge. Ghrelin, a 28-amino acid peptide, is emerging as a potential novel therapeutic for CLI. In pre-clinical models, exogenous ghrelin has been shown to induce therapeutic angiogenesis, promote muscle regeneration, and reduce oxidative stress via the modulation of microRNAs (miRs). miRs are endogenous, small, non-coding ribonucleic acids of ~20-22 nucleotides which regulate gene expression at the post-transcriptional level by either translational inhibition or by messenger ribonucleic acid cleavage. This review focuses on the mounting evidence for the use of ghrelin as a novel therapeutic for CLI, and highlights the miRs which orchestrate these physiological events.

  8. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  9. Mercury's Internal Magnetic Field: Results from MESSENGER's Search for Remanent Crustal Magnetization Associated with Impact Basins

    NASA Astrophysics Data System (ADS)

    Purucker, M. E.; Johnson, C. L.; Nicholas, J. B.; Philpott, L. C.; Korth, H.; Anderson, B. J.; Head, J. W., III; Phillips, R. J.; Solomon, S. C.

    2014-12-01

    Magnetic field measurements obtained by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft in orbit around Mercury have entered a new phase since April 2014, with periapsis altitudes below 200 km. MESSENGER is now obtaining magnetic profiles across large impact features at altitudes less than the horizontal scale of those features. We use data from this latest phase to investigate evidence for remanent crustal magnetization specifically associated with impact basins and large craters. The spatial resolution of magnetic field measurements for investigating crustal magnetization is approximately equal to the altitude of the observations. We focus on large impact features because their relative ages provide a powerful chronological tool for interpreting any associated magnetic signatures. We examine profiles across large impact basins such as Caloris, Shakespeare, Budh-Sobkou and Goethe. For example, coverage over Caloris during the last year of the mission will be largely at night and will comprise 18 profiles with altitudes between 125 and 200 km and 12 profiles with altitudes between 50 and 125 km over the northern part of the basin. We use large-scale magnetospheric models developed with MESSENGER data to remove contributions from the offset axial dipole, magnetopause, and magnetotail. The residual magnetic fields above 200 km are still dominated by poorly understood magnetospheric fields such as those from the cusp and from Birkeland currents. We empirically average, or exclude observations from these local times, in order to search for repeatable internal field signals. We use local basis functions such as equivalent source dipoles, applied with regularization tools, in order to map the altitude-normalized magnetic field from internal sources. These internal sources may comprise both crustal and core contributions, and we use the information from the along-track magnetic gradient in order to separate these contributions.

  10. Space vehicle onboard command encoder

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.

  11. High-Resolution Topography of Mercury from Messenger Orbital Stereo Imaging - the Southern Hemisphere Quadrangles

    NASA Astrophysics Data System (ADS)

    Preusker, F.; Oberst, J.; Stark, A.; Burmeister, S.

    2018-04-01

    We produce high-resolution (222 m/grid element) Digital Terrain Models (DTMs) for Mercury using stereo images from the MESSENGER orbital mission. We have developed a scheme to process large numbers, typically more than 6000, images by photogrammetric techniques, which include, multiple image matching, pyramid strategy, and bundle block adjustments. In this paper, we present models for map quadrangles of the southern hemisphere H11, H12, H13, and H14.

  12. RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse

    PubMed Central

    Hüttenhofer, Alexander; Kiefmann, Martin; Meier-Ewert, Sebastian; O’Brien, John; Lehrach, Hans; Bachellerie, Jean-Pierre; Brosius, Jürgen

    2001-01-01

    In mouse brain cDNA libraries generated from small RNA molecules we have identified a total of 201 different expressed RNA sequences potentially encoding novel small non-messenger RNA species (snmRNAs). Based on sequence and structural motifs, 113 of these RNAs can be assigned to the C/D box or H/ACA box subclass of small nucleolar RNAs (snoRNAs), known as guide RNAs for rRNA. While 30 RNAs represent mouse homologues of previously identified human C/D or H/ACA snoRNAs, 83 correspond to entirely novel snoRNAs. Among these, for the first time, we identified four C/D box snoRNAs and four H/ACA box snoRNAs predicted to direct modifications within U2, U4 or U6 small nuclear RNAs (snRNAs). Furthermore, 25 snoRNAs from either class lacked antisense elements for rRNAs or snRNAs. Therefore, additional snoRNA targets have to be considered. Surprisingly, six C/D box snoRNAs and one H/ACA box snoRNA were expressed exclusively in brain. Of the 88 RNAs not belonging to either snoRNA subclass, at least 26 are probably derived from truncated heterogeneous nuclear RNAs (hnRNAs) or mRNAs. Short interspersed repetitive elements (SINEs) are located on five RNA sequences and may represent rare examples of transcribed SINEs. The remaining RNA species could not as yet be assigned either to any snmRNA class or to a part of a larger hnRNA/mRNA. It is likely that at least some of the latter will represent novel, unclassified snmRNAs. PMID:11387227

  13. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, a lift helps offload NASA’s MESSENGER spacecraft shipped from NASA’s Goddard Space Flight Center in Greenbelt, Md. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, a lift helps offload NASA’s MESSENGER spacecraft shipped from NASA’s Goddard Space Flight Center in Greenbelt, Md. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  14. A novel optical rotary encoder with eccentricity self-detection ability.

    PubMed

    Li, Xuan; Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2017-11-01

    Eccentricity error is the main error source of optical rotary encoders. Real-time detection and compensation of the eccentricity error is an effective way of improving the accuracy of rotary optical encoders. In this paper, a novel rotary optical encoder is presented to realize eccentricity self-detection. The proposed encoder adopts a spider-web-patterned scale grating as a measuring standard which is scanned by a dual-head scanning unit. Two scanning heads of the dual-head scanning unit, which are arranged orthogonally, have the function of scanning the periodic pattern of the scale grating along the angular and radial directions, respectively. By this means, synchronous measurement of angular and radial displacements of the scale grating is realized. This paper gives the details of the operating principle of the rotary optical encoder, developing and testing work of a prototype. The eccentricity self-detection result agrees well with the result measured by an optical microscope. The experimental result preliminarily proves the feasibility and effectiveness of the proposed optical encoder.

  15. A novel optical rotary encoder with eccentricity self-detection ability

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2017-11-01

    Eccentricity error is the main error source of optical rotary encoders. Real-time detection and compensation of the eccentricity error is an effective way of improving the accuracy of rotary optical encoders. In this paper, a novel rotary optical encoder is presented to realize eccentricity self-detection. The proposed encoder adopts a spider-web-patterned scale grating as a measuring standard which is scanned by a dual-head scanning unit. Two scanning heads of the dual-head scanning unit, which are arranged orthogonally, have the function of scanning the periodic pattern of the scale grating along the angular and radial directions, respectively. By this means, synchronous measurement of angular and radial displacements of the scale grating is realized. This paper gives the details of the operating principle of the rotary optical encoder, developing and testing work of a prototype. The eccentricity self-detection result agrees well with the result measured by an optical microscope. The experimental result preliminarily proves the feasibility and effectiveness of the proposed optical encoder.

  16. Mercury's Seasonal Sodium Exosphere: MESSENGER Orbital Observations

    NASA Technical Reports Server (NTRS)

    Cassidy, Timothy A.; Merkel, Aimee W.; Burger, Matthew H.; Sarantos, Menelaos; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.

    2014-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) Ultraviolet and Visible Spectrometer (UVVS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft now orbiting Mercury provides the first close-up look at the planet's sodium exosphere. UVVS has observed the exosphere from orbit almost daily for over 10 Mercury years. In this paper we describe and analyze a subset of these data: altitude profiles taken above the low-latitude dayside and south pole. The observations show spatial and temporal variation but there is little or no year-to-year variation; we do not see the episodic variability reported by ground-based observers. We used these altitude profiles to make estimates of sodium density and temperature. The bulk of the exosphere is about 1200 K, much warmer than Mercury's surface. This value is consistent with some ground-based measurements and suggests that photon-stimulated desorption is the primary ejection process. We also observe a tenuous energetic component but do not see evidence of the predicted thermalized (or partially thermalized) sodium near Mercury's surface temperature. Overall we do not see the variable mixture of temperatures predicted by most Monte Carlo models of the exosphere.

  17. Nanoscale platforms for messenger RNA delivery.

    PubMed

    Li, Bin; Zhang, Xinfu; Dong, Yizhou

    2018-05-04

    Messenger RNA (mRNA) has become a promising class of drugs for diverse therapeutic applications in the past few years. A series of clinical trials are ongoing or will be initiated in the near future for the treatment of a variety of diseases. Currently, mRNA-based therapeutics mainly focuses on ex vivo transfection and local administration in clinical studies. Efficient and safe delivery of therapeutically relevant mRNAs remains one of the major challenges for their broad applications in humans. Thus, effective delivery systems are urgently needed to overcome this limitation. In recent years, numerous nanoscale biomaterials have been constructed for mRNA delivery in order to protect mRNA from extracellular degradation and facilitate endosomal escape after cellular uptake. Nanoscale platforms have expanded the feasibility of mRNA-based therapeutics, and enabled its potential applications to protein replacement therapy, cancer immunotherapy, therapeutic vaccines, regenerative medicine, and genome editing. This review focuses on recent advances, challenges, and future directions in nanoscale platforms designed for mRNA delivery, including lipid and lipid-derived nanoparticles, polymer-based nanoparticles, protein derivatives mRNA complexes, and other types of nanomaterials. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures. © 2018 Wiley Periodicals, Inc.

  18. Observations of Kelvin-Helmholtz Waves Along the Dusk-Side Boundary of Mercury's Magnetosphere During MESSENGER's Third Flyby

    NASA Technical Reports Server (NTRS)

    Boardsen, Scott A.; Sundberg, Torgjoern; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Solomon, Sean C.; Blomberg, Lars G.

    2010-01-01

    During the third MESSENGER flyby of Mercury on 29 September 2009, 15 crossings of the dusk-side magnetopause were observed in the magnetic field data over a 2-min period, during which the spacecraft traveled a distance of 0.2 R(sub M) (where R(sub M) is Mercury's radius). The quasi-periodic nature of the magnetic field variations during the crossings, the characteristic time separations of approx.16 s between pairs of crossings, and the variations of the magnetopause normal directions indicate that the signals are likely the signature of surface waves highly steepened at their leading edge that arose from the Kelvin-Helmholtz instability. At Earth, the Kelvin- Helmholtz instability is believed to lead to the turbulent transport of solar wind plasma into Earth's plasma sheet. This solar wind entry mechanism could also be important at Mercury. Citation: Boardsen, S. A., T. Sundberg, J. A.Slavin, B. J. Anderson, H. Korth, S. C. Solomon, and L. G. Blomberg (2010), Observations of Kelvin-Helmholtz waves along the dusk-side boundary of Mercury s magnetosphere during MESSENGER's third flyby,

  19. fMRI differences in encoding and retrieval of pictures due to encoding strategy in the elderly.

    PubMed

    Mandzia, Jennifer L; Black, Sandra E; McAndrews, Mary Pat; Grady, Cheryl; Graham, Simon

    2004-01-01

    Functional MRI (fMRI) was used to examine the neural correlates of depth of processing during encoding and retrieval of photographs in older normal volunteers (n = 12). Separate scans were run during deep (natural vs. man-made decision) and shallow (color vs. black-and-white decision) encoding and during old/new recognition of pictures initially presented in one of the two encoding conditions. A baseline condition consisting of a scrambled, color photograph was used as a contrast in each scan. Recognition accuracy was greater for the pictures on which semantic decisions were made at encoding, consistent with the expected levels of processing effect. A mixed-effects model was used to compare fMRI differences between conditions (deep-baseline vs. shallow-baseline) in both encoding and retrieval. For encoding, this contrast revealed greater activation associated with deep encoding in several areas, including the left parahippocampal gyrus (PHG), left middle temporal gyrus, and left anterior thalamus. Increased left hippocampal, right dorsolateral, and inferior frontal activations were found for recognition of items that had been presented in the deep relative to the shallow encoding condition. We speculate that the modulation of activity in these regions by the depth of processing manipulation shows that these regions support effective encoding and successful retrieval. A direct comparison between encoding and retrieval revealed greater activation during retrieval in the medial temporal (right hippocampus and bilateral PHG), anterior cingulate, and bilateral prefrontal (inferior and dorsolateral). Most notably, greater right posterior PHG was found during encoding compared to recognition. Focusing on the medial temporal lobe (MTL) region, our results suggest a greater involvement of both anterior MTL and prefrontal regions in retrieval compared to encoding. Copyright 2003 Wiley-Liss, Inc.

  20. Probing the Milky Way electron density using multi-messenger astronomy

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Larson, Shane

    2015-04-01

    Multi-messenger observations of ultra-compact binaries in both gravitational waves and electromagnetic radiation supply highly complementary information, providing new ways of characterizing the internal dynamics of these systems, as well as new probes of the galaxy itself. Electron density models, used in pulsar distance measurements via the electron dispersion measure, are currently not well constrained. Simultaneous radio and gravitational wave observations of pulsars in binaries provide a method of measuring the average electron density along the line of sight to the pulsar, thus giving a new method for constraining current electron density models. We present this method and assess its viability with simulations of the compact binary component of the Milky Way using the public domain binary evolution code, BSE. This work is supported by NASA Award NNX13AM10G.

  1. MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P. J.; Boardsen, S.; Blanco-Cano, X.; Anderosn, B. J.; Korth, H.

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  2. Multiplexed Sequence Encoding: A Framework for DNA Communication

    PubMed Central

    Zakeri, Bijan; Carr, Peter A.; Lu, Timothy K.

    2016-01-01

    Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication—data encoding, data transfer & data extraction—and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system—Multiplexed Sequence Encoding (MuSE)—that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages. To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA. PMID:27050646

  3. Multiplexed Sequence Encoding: A Framework for DNA Communication.

    PubMed

    Zakeri, Bijan; Carr, Peter A; Lu, Timothy K

    2016-01-01

    Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication-data encoding, data transfer & data extraction-and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system-Multiplexed Sequence Encoding (MuSE)-that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages. To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA.

  4. Gravity Field and Internal Structure of Mercury from MESSENGER

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.; Hauck, Steven A., II; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Peale, Stanton J.; Margot, Jean-Luc; hide

    2012-01-01

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/M(R(exp 2) = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(sub m)/C = 0.452 +/- 0.035. A model for Mercury s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.

  5. Gravity field and internal structure of Mercury from MESSENGER.

    PubMed

    Smith, David E; Zuber, Maria T; Phillips, Roger J; Solomon, Sean C; Hauck, Steven A; Lemoine, Frank G; Mazarico, Erwan; Neumann, Gregory A; Peale, Stanton J; Margot, Jean-Luc; Johnson, Catherine L; Torrence, Mark H; Perry, Mark E; Rowlands, David D; Goossens, Sander; Head, James W; Taylor, Anthony H

    2012-04-13

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 ± 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 ± 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.

  6. New Understanding of Mercury's Magnetosphere from MESSENGER'S First Flyby

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Gloeckler, George; Gold, Robert E.; Ho, George C.; Killen, M.; Korth, Haje; hide

    2008-01-01

    Observations by the MESSENGER spacecraft on 14 January 2008 have revealed new features of the solar system's smallest planetary magnetosphere. The interplanetary magnetic field orientation was unfavorable for large inputs of energy from the solar wind and no evidence of magnetic substorms, internal magnetic reconnection, or energetic particle acceleration was detected. Large-scale rotations of the magnetic field were measured along the dusk flank of the magnetosphere and ultra-tow frequency waves were frequently observed beginning near closest approach. Outbound the spacecraft encountered two current-sheet boundaries across which the magnetic field intensity decreased in a step-like manner. The outer current sheet is the magnetopause boundary. The inner current sheet is similar in structure, but weaker and -1000 km closer to the planet. Between these two current sheets the magnetic field intensity is depressed by the diamagnetic effect of planetary ions created by the photo-ionization of Mercury's exosphere.

  7. Imaging Mercury's Polar Deposits during MESSENGER's Low-altitude Campaign.

    PubMed

    Chabot, Nancy L; Ernst, Carolyn M; Paige, David A; Nair, Hari; Denevi, Brett W; Blewett, David T; Murchie, Scott L; Deutsch, Ariel N; Head, James W; Solomon, Sean C

    2016-09-28

    Images obtained during MESSENGER's low-altitude campaign in the final year of the mission provide the highest-spatial-resolution views of Mercury's polar deposits. Images for distinct areas of permanent shadow within 35 north polar craters were successfully captured during the campaign. All of these regions of permanent shadow were found to have low-reflectance surfaces with well-defined boundaries. Additionally, brightness variations across the deposits correlate with variations in the biannual maximum surface temperature across the permanently shadowed regions, supporting the conclusion that multiple volatile organic compounds are contained in Mercury's polar deposits, in addition to water ice. A recent large impact event or ongoing bombardment by micrometeoroids could deliver water as well as many volatile organic compounds to Mercury. Either scenario is consistent with the distinctive reflectance properties and well-defined boundaries of Mercury's polar deposits and the presence of volatiles in all available cold traps.

  8. Multigene Family Encoding 3′,5′-Cyclic-GMP-Dependent Protein Kinases in Paramecium tetraurelia Cells

    PubMed Central

    Kissmehl, Roland; Krüger, Tim P.; Treptau, Tilman; Froissard, Marine; Plattner, Helmut

    2006-01-01

    In the ciliate Paramecium tetraurelia, 3′,5′-cyclic GMP (cGMP) is one of the second messengers involved in several signal transduction pathways. The enzymes for its production and degradation are well established for these cells, whereas less is known about the potential effector proteins. On the basis of a current Paramecium genome project, we have identified a multigene family with at least 35 members, all of which encode cGMP-dependent protein kinases (PKGs). They can be classified into 16 subfamilies with several members each. Two of the genes, PKG1-1 and PKG2-1, were analyzed in more detail after molecular cloning. They encode monomeric enzymes of 770 and 819 amino acids, respectively, whose overall domain organization resembles that in higher eukaryotes. The enzymes contain a regulatory domain of two tandem cyclic nucleotide-binding sites flanked by an amino-terminal region for intracellular localization and a catalytic domain with highly conserved regions for ATP binding and catalysis. However, some Paramecium PKGs show a different structure. In Western blots, PKGs are detected both as cytosolic and as structure-bound forms. Immunofluorescence labeling shows enrichment in the cell cortex, notably around the dense-core secretory vesicles (trichocysts), as well as in cilia. Immunogold electron microscopy analysis reveals consistent labeling of ciliary membranes, of the membrane complex composed of cell membrane and cortical Ca2+ stores, and of regions adjacent to ciliary basal bodies, trichocysts, and trafficking vesicles. Since PKGs (re)phosphorylate the exocytosis-sensitive phosphoprotein pp63/pf upon stimulation, the role of PKGs during stimulated exocytosis is discussed, in addition to a role in ciliary beat regulation. PMID:16400170

  9. The Velocity Distribution Of Pickup He+ Measured at 0.3 AU by MESSENGER

    NASA Astrophysics Data System (ADS)

    Gershman, Daniel J.; Fisk, Lennard A.; Gloeckler, George; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.

    2014-06-01

    During its interplanetary trajectory in 2007-2009, the MErcury Surface, Space ENvrionment, GEochemistry, and Ranging (MESSENGER) spacecraft passed through the gravitational focusing cone for interstellar helium multiple times at a heliocentric distance R ≈ 0.3 AU. Observations of He+ interstellar pickup ions made by the Fast Imaging Plasma Spectrometer sensor on MESSENGER during these transits provide a glimpse into the structure of newly formed inner heliospheric pickup-ion distributions. This close to the Sun, these ions are picked up in a nearly radial interplanetary magnetic field. Compared with the near-Earth environment, pickup ions observed near 0.3 AU will not have had sufficient time to be energized substantially. Such an environment results in a nearly pristine velocity distribution function that should depend only on pickup-ion injection velocities (related to the interstellar gas), pitch-angle scattering, and cooling processes. From measured energy-per-charge spectra obtained during multiple spacecraft observational geometries, we have deduced the phase-space density of He+ as a function of magnetic pitch angle. Our measurements are most consistent with a distribution that decreases nearly monotonically with increasing pitch angle, rather than the more commonly modeled isotropic or hemispherically symmetric forms. These results imply that pitch-angle scattering of He+ may not be instantaneous, as is often assumed, and instead may reflect the velocity distribution of initially injected particles. In a slow solar wind stream, we find a parallel-scattering mean free path of λ || ~ 0.1 AU and a He+ production rate of ~0.05 m-3 s-1 within 0.3 AU.

  10. [The role of miRNA in endometrial cancer in the context of miRNA 205].

    PubMed

    Wilczyński, Miłosz; Danielska, Justyna; Dzieniecka, Monika; Malinowski, Andrzej

    2015-11-01

    MiRNAs are small, non-coding molecules of ribonucleic acids of approximately 22 bp length, which serve as regulators of gene expression and protein translation due to interference with messenger RNA (mRNA). MiRNAs, which take part in the regulation of cell cycle and apoptosis, may be associated with carcinogenesis. Aberrant expression of miRNAs in endometrial cancer might contribute to the endometrial cancer initiation or progression, as well as metastasis formation, and may influence cancer invasiveness. Specific-miRNAs expressed in endometrial cancer tissues may serve as diagnostic markers of the disease, prognostic biomarkers, or play an important part in oncological therapy We aimed to describe the role of miRNAs in endometrial cancer with special consideration of miRNA 205.

  11. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells.

    PubMed

    Kwon, Ilmin; Xiang, Siheng; Kato, Masato; Wu, Leeju; Theodoropoulos, Pano; Wang, Tao; Kim, Jiwoong; Yun, Jonghyun; Xie, Yang; McKnight, Steven L

    2014-09-05

    Many RNA regulatory proteins controlling pre-messenger RNA splicing contain serine:arginine (SR) repeats. Here, we found that these SR domains bound hydrogel droplets composed of fibrous polymers of the low-complexity domain of heterogeneous ribonucleoprotein A2 (hnRNPA2). Hydrogel binding was reversed upon phosphorylation of the SR domain by CDC2-like kinases 1 and 2 (CLK1/2). Mutated variants of the SR domains changing serine to glycine (SR-to-GR variants) also bound to hnRNPA2 hydrogels but were not affected by CLK1/2. When expressed in mammalian cells, these variants bound nucleoli. The translation products of the sense and antisense transcripts of the expansion repeats associated with the C9orf72 gene altered in neurodegenerative disease encode GRn and PRn repeat polypeptides. Both peptides bound to hnRNPA2 hydrogels independent of CLK1/2 activity. When applied to cultured cells, both peptides entered cells, migrated to the nucleus, bound nucleoli, and poisoned RNA biogenesis, which caused cell death. Copyright © 2014, American Association for the Advancement of Science.

  12. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.

    PubMed

    Landt, Stephen G; Marinov, Georgi K; Kundaje, Anshul; Kheradpour, Pouya; Pauli, Florencia; Batzoglou, Serafim; Bernstein, Bradley E; Bickel, Peter; Brown, James B; Cayting, Philip; Chen, Yiwen; DeSalvo, Gilberto; Epstein, Charles; Fisher-Aylor, Katherine I; Euskirchen, Ghia; Gerstein, Mark; Gertz, Jason; Hartemink, Alexander J; Hoffman, Michael M; Iyer, Vishwanath R; Jung, Youngsook L; Karmakar, Subhradip; Kellis, Manolis; Kharchenko, Peter V; Li, Qunhua; Liu, Tao; Liu, X Shirley; Ma, Lijia; Milosavljevic, Aleksandar; Myers, Richard M; Park, Peter J; Pazin, Michael J; Perry, Marc D; Raha, Debasish; Reddy, Timothy E; Rozowsky, Joel; Shoresh, Noam; Sidow, Arend; Slattery, Matthew; Stamatoyannopoulos, John A; Tolstorukov, Michael Y; White, Kevin P; Xi, Simon; Farnham, Peggy J; Lieb, Jason D; Wold, Barbara J; Snyder, Michael

    2012-09-01

    Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP experiments that are updated routinely. The current guidelines address antibody validation, experimental replication, sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.org/) portals.

  13. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia

    PubMed Central

    Landt, Stephen G.; Marinov, Georgi K.; Kundaje, Anshul; Kheradpour, Pouya; Pauli, Florencia; Batzoglou, Serafim; Bernstein, Bradley E.; Bickel, Peter; Brown, James B.; Cayting, Philip; Chen, Yiwen; DeSalvo, Gilberto; Epstein, Charles; Fisher-Aylor, Katherine I.; Euskirchen, Ghia; Gerstein, Mark; Gertz, Jason; Hartemink, Alexander J.; Hoffman, Michael M.; Iyer, Vishwanath R.; Jung, Youngsook L.; Karmakar, Subhradip; Kellis, Manolis; Kharchenko, Peter V.; Li, Qunhua; Liu, Tao; Liu, X. Shirley; Ma, Lijia; Milosavljevic, Aleksandar; Myers, Richard M.; Park, Peter J.; Pazin, Michael J.; Perry, Marc D.; Raha, Debasish; Reddy, Timothy E.; Rozowsky, Joel; Shoresh, Noam; Sidow, Arend; Slattery, Matthew; Stamatoyannopoulos, John A.; Tolstorukov, Michael Y.; White, Kevin P.; Xi, Simon; Farnham, Peggy J.; Lieb, Jason D.; Wold, Barbara J.; Snyder, Michael

    2012-01-01

    Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP experiments that are updated routinely. The current guidelines address antibody validation, experimental replication, sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.org/) portals. PMID:22955991

  14. A Neural Signature Encoding Decisions under Perceptual Ambiguity

    PubMed Central

    Sun, Sai; Yu, Rongjun

    2017-01-01

    Abstract People often make perceptual decisions with ambiguous information, but it remains unclear whether the brain has a common neural substrate that encodes various forms of perceptual ambiguity. Here, we used three types of perceptually ambiguous stimuli as well as task instructions to examine the neural basis for both stimulus-driven and task-driven perceptual ambiguity. We identified a neural signature, the late positive potential (LPP), that encoded a general form of stimulus-driven perceptual ambiguity. In addition to stimulus-driven ambiguity, the LPP was also modulated by ambiguity in task instructions. To further specify the functional role of the LPP and elucidate the relationship between stimulus ambiguity, behavioral response, and the LPP, we employed regression models and found that the LPP was specifically associated with response latency and confidence rating, suggesting that the LPP encoded decisions under perceptual ambiguity. Finally, direct behavioral ratings of stimulus and task ambiguity confirmed our neurophysiological findings, which could not be attributed to differences in eye movements either. Together, our findings argue for a common neural signature that encodes decisions under perceptual ambiguity but is subject to the modulation of task ambiguity. Our results represent an essential first step toward a complete neural understanding of human perceptual decision making. PMID:29177189

  15. Is junk DNA bunk? A critique of ENCODE.

    PubMed

    Doolittle, W Ford

    2013-04-02

    Do data from the Encyclopedia Of DNA Elements (ENCODE) project render the notion of junk DNA obsolete? Here, I review older arguments for junk grounded in the C-value paradox and propose a thought experiment to challenge ENCODE's ontology. Specifically, what would we expect for the number of functional elements (as ENCODE defines them) in genomes much larger than our own genome? If the number were to stay more or less constant, it would seem sensible to consider the rest of the DNA of larger genomes to be junk or, at least, assign it a different sort of role (structural rather than informational). If, however, the number of functional elements were to rise significantly with C-value then, (i) organisms with genomes larger than our genome are more complex phenotypically than we are, (ii) ENCODE's definition of functional element identifies many sites that would not be considered functional or phenotype-determining by standard uses in biology, or (iii) the same phenotypic functions are often determined in a more diffuse fashion in larger-genomed organisms. Good cases can be made for propositions ii and iii. A larger theoretical framework, embracing informational and structural roles for DNA, neutral as well as adaptive causes of complexity, and selection as a multilevel phenomenon, is needed.

  16. A Neural Signature Encoding Decisions under Perceptual Ambiguity.

    PubMed

    Sun, Sai; Yu, Rongjun; Wang, Shuo

    2017-01-01

    People often make perceptual decisions with ambiguous information, but it remains unclear whether the brain has a common neural substrate that encodes various forms of perceptual ambiguity. Here, we used three types of perceptually ambiguous stimuli as well as task instructions to examine the neural basis for both stimulus-driven and task-driven perceptual ambiguity. We identified a neural signature, the late positive potential (LPP), that encoded a general form of stimulus-driven perceptual ambiguity. In addition to stimulus-driven ambiguity, the LPP was also modulated by ambiguity in task instructions. To further specify the functional role of the LPP and elucidate the relationship between stimulus ambiguity, behavioral response, and the LPP, we employed regression models and found that the LPP was specifically associated with response latency and confidence rating, suggesting that the LPP encoded decisions under perceptual ambiguity. Finally, direct behavioral ratings of stimulus and task ambiguity confirmed our neurophysiological findings, which could not be attributed to differences in eye movements either. Together, our findings argue for a common neural signature that encodes decisions under perceptual ambiguity but is subject to the modulation of task ambiguity. Our results represent an essential first step toward a complete neural understanding of human perceptual decision making.

  17. Deoxyribonucleic Acid Replication and Expression of Early and Late Bacteriophage Functions in Bacillus subtilis

    PubMed Central

    Pène, Jacques J.; Marmur, Julius

    1967-01-01

    The role of deoxyribonucleic acid (DNA) replication in the control of the synthesis of deoxycytidylate (dCMP) deaminase and lysozyme in Bacillus subtilis infected with bacteriophage 2C has been studied. These phage-induced enzymes are synthesized at different times during the latent period. It was shown by actinomycin inhibition that the formation of the late enzyme (lysozyme) required messenger ribonucleic acid (mRNA) synthesized de novo after the initiation of translation of mRNA which specifies the early function (dCMP deaminase). The inhibition of phage DNA synthesis by mitomycin C prevented the synthesis of lysozyme only when added before the onset of phage DNA replication, but it did not affect the synthesis or action of dCMP deaminase when added at any time during the latent period. Treatment of infected cells with mitomycin C after phage DNA synthesis had reached 8 to 10% of its maximal rate resulted in the production of normal amounts of lysozyme. These observations suggest that mRNA specifying early enzymes can be transcribed from parental (and probably also from progeny) DNA, whereas late functional messengers can be transcribed only after the formation of progeny DNA. PMID:4990039

  18. Ubiquitous learning model using interactive internet messenger group (IIMG) to improve engagement and behavior for smart campus

    NASA Astrophysics Data System (ADS)

    Umam, K.; Mardi, S. N. S.; Hariadi, M.

    2017-01-01

    The recent popularity of internet messenger based smartphone technologies has motivated some university lecturers to use them for educational activities. These technologies have enormous potential to enhance the teaching and ubiquitous learning experience for smart campus development. However, the design ubiquitous learning model using interactive internet messenger group (IIMG) and empirical evidence that would favor a broad application of mobile and ubiquitous learning in smart campus settings to improve engagement and behavior is still limited. In addition, the expectation that mobile learning could improve engagement and behavior on smart campus cannot be confirmed because the majority of the reviewed studies followed instructions paradigms. This article aims to present ubiquitous learning model design and showing learners’ experiences in improved engagement and behavior using IIMG for learner-learner and learner-lecturer interactions. The method applied in this paper includes design process and quantitative analysis techniques, with the purpose of identifying scenarios of ubiquitous learning and realize the impressions of learners and lecturers about engagement and behavior aspect, and its contribution to learning.

  19. Modeling of the Magnetosphere of Mercury at the Time of the First MESSENGER Flyby

    NASA Technical Reports Server (NTRS)

    Benna, Mehdi; Anderson, Brian J.; Baker, Daniel N.; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Killen, Rosemary M.; Korth, Haje; Krimigis, Stamatios M.; hide

    2010-01-01

    The MESSENGER spacecraft flyby of Mercury on 14 January 2008 provided a new opportunity to study the intrinsic magnetic field of the innermost planet and its interaction with the solar wind, The model presented in this paper is based on the solution of the three-dimensional, bi-f1uid equations for solar wind protons and electrons in the absence of mass loading, In this study we provide new estimates of Mercury's intrinsic magnetic field and the solar wind conditions that prevailed at the time of the flyby. We show that the location of the boundary layers and the strength of the magnetic field along the spacecraft trajectory can be reproduced with a solar wind ram pressure P(sub sw) = 6.8 nPa and a planetary magnetic dipole having a magnitude of 210 R(sub M)(exp 3)- nT and an offset of 0.18 R(sub M) to the north of the equator, where R(sub M) is Mercury's radius. Analysis of the plasma flow reveals the existence of a stable drift belt around the planet; such a belt can account for the locations of diamagnetic decreases observed by the MESSENGER Magnetometer. Moreover, we determine that the ion impact rate at the n011hern cusp was four times higher than at the southern cusp, a result that provides a possible explanation for the observed north-south asymmetry in exospheric sodium in the neutral tail.

  20. Unconscious relational encoding depends on hippocampus

    PubMed Central

    Duss, Simone B.; Reber, Thomas P.; Hänggi, Jürgen; Schwab, Simon; Wiest, Roland; Müri, René M.; Brugger, Peter; Gutbrod, Klemens

    2014-01-01

    Textbooks divide between human memory systems based on consciousness. Hippocampus is thought to support only conscious encoding, while neocortex supports both conscious and unconscious encoding. We tested whether processing modes, not consciousness, divide between memory systems in three neuroimaging experiments with 11 amnesic patients (mean age = 45.55 years, standard deviation = 8.74, range = 23–60) and 11 matched healthy control subjects. Examined processing modes were single item versus relational encoding with only relational encoding hypothesized to depend on hippocampus. Participants encoded and later retrieved either single words or new relations between words. Consciousness of encoding was excluded by subliminal (invisible) word presentation. Amnesic patients and controls performed equally well on the single item task activating prefrontal cortex. But only the controls succeeded on the relational task activating the hippocampus, while amnesic patients failed as a group. Hence, unconscious relational encoding, but not unconscious single item encoding, depended on hippocampus. Yet, three patients performed normally on unconscious relational encoding in spite of amnesia capitalizing on spared hippocampal tissue and connections to language cortex. This pattern of results suggests that processing modes divide between memory systems, while consciousness divides between levels of function within a memory system. PMID:25273998

  1. N-Consecutive-Phase Encoder

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Lee, Ho-Kyoung; Weber, Charles

    1995-01-01

    N-consecutive-phase encoder (NCPE) is conceptual encoder for generating alphabet of N consecutive full-response continuous-phase-modulation (CPM) signals. Enables use of binary preencoder of higher rate than used with simple continuous-phase encoder (CPE). NCPE makes possible to achieve power efficiencies and bandwidth efficiencies greater than conventional trellis coders with continuous-phase frequency-shift keying (CPFSK).

  2. Postage for the messenger: Designating routes for Nuclear mRNA Export

    PubMed Central

    Natalizio, Barbara J.; Wente, Susan R.

    2013-01-01

    Transcription of messenger(m) RNA occurs in the nucleus, making the translocation of mRNA across the nuclear envelope (NE) boundary a critical determinant of proper gene expression and cell survival. A major mRNA export route occurs via the NXF1-dependent pathway through the nuclear pore complexes (NPCs) embedded in the NE. However, recent findings have discovered new evidence supporting the existence of multiple mechanisms for crossing the NE, including both NPC-mediated and NE budding-mediated pathways. An analysis of the trans-acting factors and cis components that define these pathways reveals shared elements as well as mechanistic differences. We review here the current understanding of the mechanisms that characterize each pathway and highlight the determinants that influence mRNA transport fate. PMID:23583578

  3. MESSENGER Educator Fellows Taking the Nation on a Ride to the Innermost Planet

    NASA Astrophysics Data System (ADS)

    Vanhala, H. A.; Goldstein, J. J.; Chapman, C. R.; Edmonds, J. P.; Hallau, K. G.; Hirshon, B.; Weir, H. M.; Solomon, S. C.

    2011-12-01

    Exploration of the mysterious planet Mercury offers an unprecedented opportunity for teachers, students, and citizens to tag along for the ride, and the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) Educator Fellows are making sure classrooms across the U.S. are treated to quite a show. The Fellows, a nationally selected team of 30 master science educator volunteers, conduct workshops to teachers on how to bring educational materials developed in support of the mission into the classroom. The goal of the program is to provide teachers and school districts with exceptional educational materials and professional development strongly tied to the space science curriculum, and the materials are designed to inspire the next generation of America's scientists and engineers through NASA missions. Since the program's inception in 2003, more than 17,000 educators have been trained by the Fellows. On the basis of data gathered from the Fellows, this figure could translate to over two million student experiences. The success of the Fellowship program can also be gauged by determining how well it has maintained its volunteer corps over the years. The Fellows, selected to the program through a national announcement of opportunity every two years, reflect a geographically and institutionally diverse mix of individuals from a variety of settings such as science centers, museums, school districts, and universities. The Fellows sign up to the program for two years at a time, and at the end of their term they have the option to reapply. To keep the number of Fellows at 30 in each cadre, new Fellows are recruited to replace those who have retired. The current, fourth cadre of Fellows includes 30 individuals in 19 states and territories. Of these, seven have been in the program since the first cadre, and the other 23 include Fellows from the second, third, and fourth recruitment campaigns in 2006, 2008, and 2010. The current cadre is conducting its work

  4. Mercury's Seasonal Sodium Exosphere: MESSENGER Orbital Observations

    NASA Technical Reports Server (NTRS)

    Cassidy, Timothy A.; Merkel, Aimee W.; Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Sarantos, Menelaos

    2014-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) Ultraviolet and Visible Spectrometer (UVVS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft now orbiting Mercury provides the first close-up look at the planet's sodium exosphere. UVVS has observed the exosphere from orbit almost daily for over 10 Mercury years. In this paper we describe and analyze a subset of these data: altitude profiles taken above the low-latitude dayside and south pole. The observations show spatial and temporal variations, but there are no obvious year-to-year variations in most of the observations. We do not see the episodic variability reported by some ground-based observers. We used these altitude profiles to make estimates of sodium density and temperature. The bulk of the exosphere, at about 1200 K, is much warmer than Mercury's surface. This value is consistent with some ground-based measurements and suggests that photon-stimulated desorption is the primary ejection process. We also observe a tenuous energetic component but do not see evidence of the predicted thermalized (or partially thermalized) sodium near Mercury's surface temperature. Overall we do not see the variable mixture of temperatures predicted by most Monte Carlo models of the exosphere.

  5. A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP).

    PubMed

    Zhao, Xing; Zhao, Dechun; Wang, Xia; Hou, Xiaorong

    2017-01-01

    SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift-Keying (FSK) method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent "Bit 0," "Bit 1" and "Bit 2" respectively. Different to common BFSK in digital communication, "Bit 0" and "Bit 1" composited the unique identifier of stimuli in binary bit stream form, while "Bit 2" indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2 n -1 ( n is the length of bit command) stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations.

  6. The Effectiveness of Using WhatsApp Messenger as One of Mobile Learning Techniques to Develop Students' Writing Skills

    ERIC Educational Resources Information Center

    Fattah, Said Fathy El Said Abdul

    2015-01-01

    The present study was an attempt to determine the effectiveness of using a WhatsApp Messenger as one of mobile learning techniques to develop students' writing skills. Participants were 30 second year college students, English department from a private university in Saudi Arabia. The experimental group (N = 15) used WhatsApp technology to develop…

  7. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K [Idaho Falls, ID

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  8. Semantic Encoding in Children: A New Method of Investigation.

    ERIC Educational Resources Information Center

    Kraut, Alan G.; Smothergill, Daniel W.

    A familiarization procedure was used in two experiments investigating word encoding in second and sixth graders. Previous studies using release from proactive inhibition had indicated that developmental changes on some encoding dimensions occur during this period. It is argued that the dependence of release from proactive inhibition on deliberate…

  9. Video time encoding machines.

    PubMed

    Lazar, Aurel A; Pnevmatikakis, Eftychios A

    2011-03-01

    We investigate architectures for time encoding and time decoding of visual stimuli such as natural and synthetic video streams (movies, animation). The architecture for time encoding is akin to models of the early visual system. It consists of a bank of filters in cascade with single-input multi-output neural circuits. Neuron firing is based on either a threshold-and-fire or an integrate-and-fire spiking mechanism with feedback. We show that analog information is represented by the neural circuits as projections on a set of band-limited functions determined by the spike sequence. Under Nyquist-type and frame conditions, the encoded signal can be recovered from these projections with arbitrary precision. For the video time encoding machine architecture, we demonstrate that band-limited video streams of finite energy can be faithfully recovered from the spike trains and provide a stable algorithm for perfect recovery. The key condition for recovery calls for the number of neurons in the population to be above a threshold value.

  10. Landscape Encodings Enhance Optimization

    PubMed Central

    Klemm, Konstantin; Mehta, Anita; Stadler, Peter F.

    2012-01-01

    Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state. PMID:22496860

  11. PNA-encoded chemical libraries.

    PubMed

    Zambaldo, Claudio; Barluenga, Sofia; Winssinger, Nicolas

    2015-06-01

    Peptide nucleic acid (PNA)-encoded chemical libraries along with DNA-encoded libraries have provided a powerful new paradigm for library synthesis and ligand discovery. PNA-encoding stands out for its compatibility with standard solid phase synthesis and the technology has been used to prepare libraries of peptides, heterocycles and glycoconjugates. Different screening formats have now been reported including selection-based and microarray-based methods that have yielded specific ligands against diverse target classes including membrane receptors, lectins and challenging targets such as Hsp70. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. RoboOligo: software for mass spectrometry data to support manual and de novo sequencing of post-transcriptionally modified ribonucleic acids

    PubMed Central

    Sample, Paul J.; Gaston, Kirk W.; Alfonzo, Juan D.; Limbach, Patrick A.

    2015-01-01

    Ribosomal ribonucleic acid (RNA), transfer RNA and other biological or synthetic RNA polymers can contain nucleotides that have been modified by the addition of chemical groups. Traditional Sanger sequencing methods cannot establish the chemical nature and sequence of these modified-nucleotide containing oligomers. Mass spectrometry (MS) has become the conventional approach for determining the nucleotide composition, modification status and sequence of modified RNAs. Modified RNAs are analyzed by MS using collision-induced dissociation tandem mass spectrometry (CID MS/MS), which produces a complex dataset of oligomeric fragments that must be interpreted to identify and place modified nucleosides within the RNA sequence. Here we report the development of RoboOligo, an interactive software program for the robust analysis of data generated by CID MS/MS of RNA oligomers. There are three main functions of RoboOligo: (i) automated de novo sequencing via the local search paradigm. (ii) Manual sequencing with real-time spectrum labeling and cumulative intensity scoring. (iii) A hybrid approach, coined ‘variable sequencing’, which combines the user intuition of manual sequencing with the high-throughput sampling of automated de novo sequencing. PMID:25820423

  13. Star Messenger: Galileo at the Millennium

    NASA Astrophysics Data System (ADS)

    White, R. E.

    1999-05-01

    Smith College has recently established the Louise B. and Edmund J. Kahn Liberal Arts Institute to foster interdisciplinary scholarship among the faculty. In the 1999-2000 academic year, the Kahn Institute is sponsoring a project entitled "Star Messenger: Galileo at the Millennium." The project will explore the impact of the astronomical discoveries of Galileo and his contemporaries on the Renaissance world-view and also use Galileo's experience as a lens for examining scientific and cultural developments at the symbolic juncture represented by the year 2000. Seven faculty fellows and 10-12 student fellows will participate in a year-long colloquium pursuing these themes, aided by the participation of some five Visiting Fellows. The inaugural public event will be a symposium on the historical Galileo, with presentation by three noted scholars, each of whom will return to campus for a second meeting with the Kahn colloquium. Additional events will include an exhibit of prints, artifacts, and rare books related to Galileo and his time, an early music concert featuring music composed by Galileo's father, and a series of other events sponsored by diverse departments and programs, all related to the broad themes of the Galileo project. The culminating events will be the premiere of a new music theater work, which will encapsulate the insights of the colloquium about human reactions to novel insights about the world, and a symposium presenting the research results of faculty and student fellows. The symposium will feature a capstone lecture by an visionary scholar projecting the implication of historical and contemporary trends into the future.

  14. A Bayesian approach to multi-messenger astronomy: identification of gravitational-wave host galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, XiLong; Messenger, Christopher; Heng, Ik Siong

    We present a general framework for incorporating astrophysical information into Bayesian parameter estimation techniques used by gravitational wave data analysis to facilitate multi-messenger astronomy. Since the progenitors of transient gravitational wave events, such as compact binary coalescences, are likely to be associated with a host galaxy, improvements to the source sky location estimates through the use of host galaxy information are explored. To demonstrate how host galaxy properties can be included, we simulate a population of compact binary coalescences and show that for ∼8.5% of simulations within 200 Mpc, the top 10 most likely galaxies account for a ∼50% ofmore » the total probability of hosting a gravitational wave source. The true gravitational wave source host galaxy is in the top 10 galaxy candidates ∼10% of the time. Furthermore, we show that by including host galaxy information, a better estimate of the inclination angle of a compact binary gravitational wave source can be obtained. We also demonstrate the flexibility of our method by incorporating the use of either the B or K band into our analysis.« less

  15. Spatially Fourier-encoded photoacoustic microscopy using a digital micromirror device.

    PubMed

    Liang, Jinyang; Gao, Liang; Li, Chiye; Wang, Lihong V

    2014-02-01

    We have developed spatially Fourier-encoded photoacoustic (PA) microscopy using a digital micromirror device. The spatial intensity distribution of laser pulses is Fourier-encoded, and a series of such encoded PA measurements allows one to decode the spatial distribution of optical absorption. The throughput and Fellgett advantages were demonstrated by imaging a chromium target. By using 63 spatial elements, the signal-to-noise ratio in the recovered PA signal was enhanced by ∼4×. The system was used to image two biological targets, a monolayer of red blood cells and melanoma cells.

  16. Spatially Fourier-encoded photoacoustic microscopy using a digital micromirror device

    PubMed Central

    Liang, Jinyang; Gao, Liang; Li, Chiye; Wang, Lihong V.

    2014-01-01

    We have developed spatially Fourier-encoded photoacoustic microscopy using a digital micromirror device. The spatial intensity distribution of laser pulses is Fourier-encoded, and a series of such encoded photoacoustic measurements allows one to decode the spatial distribution of optical absorption. The throughput and Fellgett advantages were demonstrated by imaging a chromium target. By using 63 spatial elements, the signal-to-noise ratio in the recovered photoacoustic signal was enhanced by ~4×. The system was used to image two biological targets, a monolayer of red blood cells and melanoma cells. PMID:24487832

  17. A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP)

    PubMed Central

    Zhao, Xing; Zhao, Dechun; Wang, Xia; Hou, Xiaorong

    2017-01-01

    SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift–Keying (FSK) method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent “Bit 0,” “Bit 1” and “Bit 2” respectively. Different to common BFSK in digital communication, “Bit 0” and “Bit 1” composited the unique identifier of stimuli in binary bit stream form, while “Bit 2” indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2n−1 (n is the length of bit command) stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations. PMID:28626393

  18. Plasma Distribution in Mercury's Magnetosphere Derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer Observations

    NASA Technical Reports Server (NTRS)

    Korth, Haje; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.; McNutt, Ralph L.

    2014-01-01

    We assess the statistical spatial distribution of plasma in Mercury's magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of approximately 3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury's offset dipole magnetic field.

  19. Impact of a Computer System and the Encoding Staff Organization on the Encoding Stays and on Health Institution Financial Production in France.

    PubMed

    Sarazin, Marianne; El Merini, Amine; Staccini, Pascal

    2016-01-01

    In France, medicalization of information systems program (PMSI) is an essential tool for the management planning and funding of health. The performance of encoding data inherent to hospital stays has become a major challenge for health institutions. Some studies have highlighted the impact of organizations set up on encoding quality and financial production. The aim of this study is to evaluate a computerized information system and new staff organization impact for treatment of the encoded information.

  20. Spectrally-encoded color imaging

    PubMed Central

    Kang, DongKyun; Yelin, Dvir; Bouma, Brett E.; Tearney, Guillermo J.

    2010-01-01

    Spectrally-encoded endoscopy (SEE) is a technique for ultraminiature endoscopy that encodes each spatial location on the sample with a different wavelength. One limitation of previous incarnations of SEE is that it inherently creates monochromatic images, since the spectral bandwidth is expended in the spatial encoding process. Here we present a spectrally-encoded imaging system that has color imaging capability. The new imaging system utilizes three distinct red, green, and blue spectral bands that are configured to illuminate the grating at different incident angles. By careful selection of the incident angles, the three spectral bands can be made to overlap on the sample. To demonstrate the method, a bench-top system was built, comprising a 2400-lpmm grating illuminated by three 525-μm-diameter beams with three different spectral bands. Each spectral band had a bandwidth of 75 nm, producing 189 resolvable points. A resolution target, color phantoms, and excised swine small intestine were imaged to validate the system's performance. The color SEE system showed qualitatively and quantitatively similar color imaging performance to that of a conventional digital camera. PMID:19688002

  1. The intracellular distribution and heterogeneity of ribonucleic acid in starfish oocytes.

    PubMed

    EDSTROM, J E; GRAMPP, W; SCHOR, N

    1961-12-01

    A study has been made of the content and composition of RNA in cytoplasm, nucleoplasm, and nucleoli from growing oocytes of the starfish Asterias rubens. The determinations were carried out, using ultramicrochemical methods, on units isolated by microdissection from fixed sections. Macrochemical and interferometric control experiments show that RNA can be quantitatively evaluated in this way. The results show that the growing oocyte represents a system in which the relations between the quantities of nucleolar, nucleoplasmic, and cytoplasmic RNA undergo great changes. These changes are continuous for nucleolar and cytoplasmic RNA so that their amounts may be predicted from the size of the cell. Nucleoplasmic RNA, on the other hand, shows great variations among different cells, independent of cell size. Purine-pyrimidine analyses show that each cell component contains an RNA which differs significantly from that of the other two. Cytoplasmic and nucleolar RNA are closely related, the only difference being a slightly higher guanine/uracil quotient for the nucleolar RNA. They are both of the usual tissue RNA type, i.e., they show a preponderance of guanine and cytosine over adenine and uracil. Nucleoplasmic RNA deviates grossly from the RNA of the other two components. Here the concentrations of adenine and uracil are higher than those of guanine and cytosine, respectively. This RNA consequently shows some resemblance to the general type of animal DNA although the purine/pyrimidine ratio is far from unity. Our data favor a nucleolar origin for the stable part of the ribosomal RNA and a nucleoplasmic one for the unstable part (the messenger RNA).

  2. Navajo Code Talker Joe Morris, Sr. shared insights from his time as a secret World War Two messenger with his audience at NASA's Dryden Flight Research Center

    NASA Image and Video Library

    2002-11-26

    Navajo Code Talker Joe Morris, Sr. shared insights from his time as a secret World War Two messenger with his audience at NASA's Dryden Flight Research Center on Nov. 26, 2002. NASA Dryden is located on Edwards Air Force Base in California's Mojave Desert.

  3. Neutrinos as the messengers of CPT violation

    NASA Astrophysics Data System (ADS)

    Borissov, Liubomir Anguelov

    CPT violation has the potential to explain all three existing neutrino oscillation signals without enlarging the neutrino sector. CPT violation in the Dirac mass terms of the three neutrino flavors preserves Lorentz invariance, but generates in dependent masses for neutrinos and antineutrinos. This specific signature can be motivated by braneworld scenarios with extra dimensions, where neutrinos are the natural messengers for Standard Model physics of CPT violation in the bulk. A simple model of maximal CPT violation is sufficient to explain the exisiting neutrino data, while accommodating the recent results from the KamLAND experiment and making dramatic predictions for the ongoing MiniBooNE experiment. In addition, the model fits the existing SuperKamiokande data, at least as well as the standard atmospheric neutrino oscillation models. Another attractive feature of the presented model is that it provides a new promising mechanism for baryogenesis, which obviates two of the three Sakharov conditions necessary to generate the baryon asymmetry of the universe. CPT-violating scenarios can give new insights about the possible nature of neutrinos. Majorana neutrino masses are still allowed, but in general, there are no longer Majorana neutrinos in the conventional sense. However, CPT-violating models still have interesting consequences for neutrinoless double beta decay. Compared to the usual case, while the larger mass scale (from LSND) may appear, a greater degree of suppression can also occur.

  4. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, Paul G.; Ohlrogge, John B.

    1996-01-01

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives thereof which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides.

  5. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, John; Piddington, Chris S.; Kovacevich, Brian R.; Young, Kevin D.; Denome, Sylvia A.

    1994-01-01

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous.

  6. Video Time Encoding Machines

    PubMed Central

    Lazar, Aurel A.; Pnevmatikakis, Eftychios A.

    2013-01-01

    We investigate architectures for time encoding and time decoding of visual stimuli such as natural and synthetic video streams (movies, animation). The architecture for time encoding is akin to models of the early visual system. It consists of a bank of filters in cascade with single-input multi-output neural circuits. Neuron firing is based on either a threshold-and-fire or an integrate-and-fire spiking mechanism with feedback. We show that analog information is represented by the neural circuits as projections on a set of band-limited functions determined by the spike sequence. Under Nyquist-type and frame conditions, the encoded signal can be recovered from these projections with arbitrary precision. For the video time encoding machine architecture, we demonstrate that band-limited video streams of finite energy can be faithfully recovered from the spike trains and provide a stable algorithm for perfect recovery. The key condition for recovery calls for the number of neurons in the population to be above a threshold value. PMID:21296708

  7. A User's Guide to the Encyclopedia of DNA Elements (ENCODE)

    PubMed Central

    2011-01-01

    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome. PMID:21526222

  8. A new phase encoding approach for a compact head-up display

    NASA Astrophysics Data System (ADS)

    Suszek, Jaroslaw; Makowski, Michal; Sypek, Maciej; Siemion, Andrzej; Kolodziejczyk, Andrzej; Bartosz, Andrzej

    2008-12-01

    The possibility of encoding multiple asymmetric symbols into a single thin binary Fourier hologram would have a practical application in the design of simple translucent holographic head-up displays. A Fourier hologram displays the encoded images at the infinity so this enables an observation without a time-consuming eye accommodation. Presenting a set of the most crucial signs for a driver in this way is desired, especially by older people with various eyesight disabilities. In this paper a method of holographic design is presented that assumes a combination of a spatial segmentation and carrier frequencies. It allows to achieve multiple reconstructed images selectable by the angle of the incident laser beam. In order to encode several binary symbols into a single Fourier hologram, the chessboard shaped segmentation function is used. An optimized sequence of phase encoding steps and a final direct phase binarization enables recording of asymmetric symbols into a binary hologram. The theoretical analysis is presented, verified numerically and confirmed in the optical experiment. We suggest and describe a practical and highly useful application of such holograms in an inexpensive HUD device for the use of the automotive industry. We present two alternative propositions of car viewing setups.

  9. Tumor-specific RNA interference targeting Pokemon suppresses tumor growth and induces apoptosis in prostate cancer.

    PubMed

    Li, Yining; Xu, Shuxiong; Wang, Xiangwei; Shi, Hua; Sun, Zhaolin; Yang, Zhao

    2013-02-01

    To explore the exact mechanism of Pokemon in prostate cancer. Pokemon is a member of the POK family of transcriptional repressors. Its main function is suppression of the p14ARF (alternate reading frame) tumor suppressor gene. Although Pokemon expression has been found to be increased in various types of lymphoma, the exact mechanism of the gene in prostate cancer is not clear. In the present study, prostate cancer cells were transfected with the specific short hairpin ribonucleic acid (RNA) expression vector targeting Pokemon. The expression of Pokemon messenger RNA and its protein was detected by semiquantitative reverse transcriptase-polymerase chain reaction and Western blotting, respectively. The cell growth and cell apoptosis were also examined using the methyl thiazolyl tetrazolium assay and flow cytometry. The results demonstrated that specific RNA interference (RNAi) could decrease the expression levels of Pokemon gene messenger RNA and protein in prostate cancer cells. In addition, that specific RNAi significantly inhibited the cell proliferation and increased the apoptotic rate. In vivo experiments showed that specific RNAi inhibited the tumorigenicity of prostate cancer cells and significantly suppressed tumor growth. Therefore, an RNAi-targeted Pokemon gene strategy could be a potential approach to prostate cancer therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Dependence of the Interplanetary Magnetic Field on Heliocentric Distance between 0.3 and 1.7 AU from MESSENGER, ACE and MAVEN data

    NASA Astrophysics Data System (ADS)

    Hanneson, C.; Johnson, C.; Al Asad, M.

    2017-12-01

    Magnetometer data from the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER), Advanced Composition Explorer (ACE) and Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft were used to characterize the variation of the interplanetary magnetic field (IMF) with heliocentric distance from 0.3 to 1.7 AU. MESSENGER and ACE data form a set of simultaneous observations that spans eight years, from March 2007 until April 2015, with ACE observations continuing until the present. MAVEN data have been collected since November 2014. Furthermore, for the period 2008-2015, MESSENGER and ACE observations were taken over the same range of heliocentric distances: 0.31-0.47 AU and 0.94-1.00 AU respectively. The IMF varies with the solar sunspot cycle, and so data taken simultaneously at different heliocentric distances allow solar-cycle effects to be decoupled from the radial evolution of the IMF. The data were averaged temporally by taking 1-hour means, and median values were then computed in 0.01-AU bins. For the time interval spanned by all observations, the median value of the magnitude of the IMF decreases steadily from 30.1 nT at 0.3 AU to 4.3 nT at 1.0 AU and 2.5 nT at 1.6 AU. The magnitude of the IMF was found to decay with heliocentric distance according to an inverse power law with an exponent equal to the adiabatic index for an ideal monatomic gas, 5/3, within 95% confidence limits. The magnitude of the radial component decays with distance as an inverse square law within 95% confidence limits. We also consider temporal variations of the heliocentric-dependence of the IMF over the current solar cycle by computing power law fits to the simultaneous MESSENGER and ACE observations using a moving window. Our study complements the recent study of Gruesbeck et al. (2017) that used Juno data to consider the variation in IMF properties over the heliocentric distance range 1 to 6 AU.

  11. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  12. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, J.; Piddington, C.S.; Kovacevich, B.R.; Young, K.D.; Denome, S.A.

    1994-10-18

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous. 13 figs.

  13. A new methodology for vibration error compensation of optical encoders.

    PubMed

    Lopez, Jesus; Artes, Mariano

    2012-01-01

    Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions. In case the encoder is working under vibrations, the oscillating movement of the scanning head is registered by the encoder system as a displacement, introducing an error into the counter to be added up to graduation, system and installation errors. Behavior improvement can be based on different techniques trying to compensate the error from measurement signals processing. In this work a new "ad hoc" methodology is presented to compensate the error of the encoder when is working under the influence of vibration. The methodology is based on fitting techniques to the Lissajous figure of the deteriorated measurement signals and the use of a look up table, giving as a result a compensation procedure in which a higher accuracy of the sensor is obtained.

  14. A New Methodology for Vibration Error Compensation of Optical Encoders

    PubMed Central

    Lopez, Jesus; Artes, Mariano

    2012-01-01

    Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions. In case the encoder is working under vibrations, the oscillating movement of the scanning head is registered by the encoder system as a displacement, introducing an error into the counter to be added up to graduation, system and installation errors. Behavior improvement can be based on different techniques trying to compensate the error from measurement signals processing. In this work a new “ad hoc” methodology is presented to compensate the error of the encoder when is working under the influence of vibration. The methodology is based on fitting techniques to the Lissajous figure of the deteriorated measurement signals and the use of a look up table, giving as a result a compensation procedure in which a higher accuracy of the sensor is obtained. PMID:22666067

  15. Experiments in encoding multilevel images as quadtrees

    NASA Technical Reports Server (NTRS)

    Lansing, Donald L.

    1987-01-01

    Image storage requirements for several encoding methods are investigated and the use of quadtrees with multigray level or multicolor images are explored. The results of encoding a variety of images having up to 256 gray levels using three schemes (full raster, runlength and quadtree) are presented. Although there is considerable literature on the use of quadtrees to store and manipulate binary images, their application to multilevel images is relatively undeveloped. The potential advantage of quadtree encoding is that an entire area with a uniform gray level may be encoded as a unit. A pointerless quadtree encoding scheme is described. Data are presented on the size of the quadtree required to encode selected images and on the relative storage requirements of the three encoding schemes. A segmentation scheme based on the statistical variation of gray levels within a quadtree quadrant is described. This parametric scheme may be used to control the storage required by an encoded image and to preprocess a scene for feature identification. Several sets of black and white and pseudocolor images obtained by varying the segmentation parameter are shown.

  16. Evaluation of messenger plant activator as a preharvest and postharvest treatment of sweet cherry fruit under a controlled atmosphere.

    PubMed

    Akbudak, Bulent; Tezcan, Himmet; Eris, Atilla

    2009-08-01

    The preservation methods as an alternative to chemical control to prevent postharvest quality losses of sweet cherry were examined. The efficacy of preharvest and postharvest messenger (M) treatments on sweet cherry cv. '0900 Ziraat' was tested under a controlled atmosphere in 2004 and 2005. The factors investigated included the separate or combined effect of low oxygen, high carbon dioxide and M on the quality and fungal pathogens of sweet cherries in a normal atmosphere (NA) and in a controlled atmosphere (CA). Cherries were placed at six different atmosphere combinations (0.03%:21% [NA, control], 5%:5%, 10%:5%, 15%:5%, 20%:5% and 25%:5% CO(2):O(2)) at 0°C and 90% relative humidity for up to 8 weeks. Mass values were higher in cherries stored under NA compared with CA. Initial firmness was 1.45 kg and 1.41 kg in fruits without messenger (WM) and in M fruits, respectively; and was measured as 0.30-0.59 kg in WM and 0.57-0.95 kg in M at the end of the trials. The highest acidity and ascorbic acid values were recorded at the end of storage from the fruit stored under CA + M. The CA + M treatment proved the most effective with regard to delaying the maturity and preserving the fruit quality in sweet cherries during storage. Moreover, the CA + M treatments reduced the rotten fruit from 24.06% to 3.80% in cv. '0900 Ziraat'. Better fruit quality was obtained under CA + M compared with NA and CA. The fungi most frequently isolated from sweet cherries were Botrytis cinerea, Penicillium expansum, Monilinia fructicola, Alternaria alternata and Rhizopus stolonifer. It was concluded that sweet cherry cv. '0900 Ziraat' could be stored successfully under CA (20%:5%) + M, and partially under CA (25%:5%) + M, conditions for more than 60 days. Thus, it is recommended that CO(2) levels for sweet cherry storage can be increased above 15% with M.

  17. MESSENGER Observations of Rapid and Impulsive Magnetic Reconnection in Mercury's Magnetotail

    NASA Astrophysics Data System (ADS)

    Zhong, J.; Wei, Y.; Pu, Z. Y.; Wang, X. G.; Wan, W. X.; Slavin, J. A.; Cao, X.; Raines, J. M.; Zhang, H.; Xiao, C. J.; Du, A. M.; Wang, R. S.; Dewey, R. M.; Chai, L. H.; Rong, Z. J.; Li, Y.

    2018-06-01

    The nature of magnetic reconnection in planetary magnetospheres may differ between various planets. We report the first observations of a rapidly evolving magnetic reconnection process in Mercury’s magnetotail by the MESSENGER spacecraft. The reconnection process was initialized in the plasma sheet and then evolved into the lobe region during a ∼35 s period. The tailward reconnection fronts of primary and secondary flux ropes with clear Hall signatures and energetic electron bursts were observed. The reconnection timescale of a few seconds is substantially shorter than that of terrestrial magnetospheric plasmas. The normalized reconnection rate during a brief quasi-steady period is estimated to be ∼0.2 on average. The observations show the rapid and impulsive nature of the exceedingly driven reconnection in Mercury’s magnetospheric plasma that may be responsible for the much more dynamic magnetosphere of Mercury.

  18. Distribution of the messenger RNA for the small conductance calcium-activated potassium channel SK3 in the adult rat brain and correlation with immunoreactivity.

    PubMed

    Tacconi, S; Carletti, R; Bunnemann, B; Plumpton, C; Merlo Pich, E; Terstappen, G C

    2001-01-01

    Small conductance calcium-activated potassium channels are voltage independent potassium channels which modulate the firing patterns of neurons by activating the slow component of the afterhyperpolarization. The genes encoding a family of small conductance calcium-activated potassium channels have been cloned and up to now three known members have been described and named small conductance calcium-activated potassium channel type 1, small conductance calcium-activated potassium channel type 2 and small conductance calcium-activated potassium channel type 3; the distribution of their messenger RNA in the rat CNS has already been performed but only in a limited detail. The present study represents the first detailed analysis of small conductance calcium-activated potassium channel type 3 mRNA distribution in the adult rat brain and resulted in a strong to moderate expression of signal in medial habenular nucleus, substantia nigra compact part, suprachiasmatic nucleus, ventral tegmental area, lateral septum, dorsal raphe and locus coeruleus. Immunohistological experiments were also performed and confirmed the presence of small conductance calcium-activated potassium channel type 3 protein in medial habenular nucleus, locus coeruleus and dorsal raphe. Given the importance of dorsal raphe, locus coeruleus and substantia nigra/ventral tegmental area for serotonergic, noradrenergic and dopaminergic transmission respectively, our results pose the morphological basis for further studies on the action of small conductance calcium-activated potassium channel type 3 in serotonergic, noradrenergic and dopaminergic transmission.

  19. Pneumatic binary encoder replaces multiple solenoid system

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Pneumatic binary encoder replaces solenoid system in the pilot stage of a digital actuator. The encoder operates in flip-flop manner to valve gas at either high or low pressures. By rotating the disk in a pinion-to-encoding gear ratio, six to eight adder circuits may be operated from single encoder.

  20. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    USGS Publications Warehouse

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant

  1. Emotional arousal and memory after deep encoding.

    PubMed

    Leventon, Jacqueline S; Camacho, Gabriela L; Ramos Rojas, Maria D; Ruedas, Angelica

    2018-05-22

    Emotion often enhances long-term memory. One mechanism for this enhancement is heightened arousal during encoding. However, reducing arousal, via emotion regulation (ER) instructions, has not been associated with reduced memory. In fact, the opposite pattern has been observed: stronger memory for emotional stimuli encoded with an ER instruction to reduce arousal. This pattern may be due to deeper encoding required by ER instructions. In the current research, we examine the effects of emotional arousal and deep-encoding on memory across three studies. In Study 1, adult participants completed a writing task (deep-encoding) for encoding negative, neutral, and positive picture stimuli, whereby half the emotion stimuli had the ER instruction to reduce the emotion. Memory was strong across conditions, and no memory enhancement was observed for any condition. In Study 2, adult participants completed the same writing task as Study 1, as well as a shallow-encoding task for one-third of negative, neutral, and positive trials. Memory was strongest for deep vs. shallow encoding trials, with no effects of emotion or ER instruction. In Study 3, adult participants completed a shallow-encoding task for negative, neutral, and positive stimuli, with findings indicating enhanced memory for negative emotional stimuli. Findings suggest that deep encoding must be acknowledged as a source of memory enhancement when examining manipulations of emotion-related arousal. Copyright © 2018. Published by Elsevier B.V.

  2. Multidimensionally encoded magnetic resonance imaging.

    PubMed

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.

  3. Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Zuber,Maria T.; Smith, David E.; Phillips, Roger J.; Solomon, Sean C.; Neumann, Gregory A.; Hauck, Steven A., Jr.; Peale, Stanton J.; Barnouin, Oliver S.; Head, James W.; Johnson, Catherine L.; hide

    2012-01-01

    Laser altimetry by the MESSENGER spacecraft has yielded a topographic model of the northern hemisphere of Mercury. The dynamic range of elevations is considerably smaller than those of Mars or the Moon. The most prominent feature is an extensive lowland at high northern latitudes that hosts the volcanic northern plains. Within this lowland is a broad topographic rise that experienced uplift after plains emplacement. The interior of the 1500-km-diameter Caloris impact basin has been modified so that part of the basin floor now stands higher than the rim. The elevated portion of the floor of Caloris appears to be part of a quasi-linear rise that extends for approximately half the planetary circumference at mid-latitudes. Collectively, these features imply that long-wavelength changes to Mercury s topography occurred after the earliest phases of the planet s geological history.

  4. [Deregulation of pre-messenger RNA splicing and rare diseases].

    PubMed

    de la Grange, Pierre

    2016-12-01

    Most of protein-coding human genes are subjected to alternative pre-mRNA splicing. This mechanism is highly regulated to precisely modulate detection of specific splice sites. This regulation is under control of the spliceosome and several splicing factors are also required to modulate the alternative usage of splice sites. Splicing factors and spliceosome components recognize splicing signals and regulatory sequences of the pre-mRNAs. These splicing sequences make splicing susceptible to polymorphisms and mutations. Examples of associations between human rare diseases and defects in pre-messenger RNA splicing are accumulating. Although many alterations are caused by mutations in splicing sequence (i.e., cis acting mutations), recent studies described the disruptive impact of mutations within spliceosome components or splicing factors (i.e., trans acting mutations). Following growing of knowledge regarding splicing regulation, several approaches have been developed to compensate for the effect of deleterious mutations and to restore sufficient amounts of functional protein. © 2016 médecine/sciences – Inserm.

  5. Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA

    NASA Astrophysics Data System (ADS)

    Lin, Chenxiang; Jungmann, Ralf; Leifer, Andrew M.; Li, Chao; Levner, Daniel; Church, George M.; Shih, William M.; Yin, Peng

    2012-10-01

    The identification and differentiation of a large number of distinct molecular species with high temporal and spatial resolution is a major challenge in biomedical science. Fluorescence microscopy is a powerful tool, but its multiplexing ability is limited by the number of spectrally distinguishable fluorophores. Here, we used (deoxy)ribonucleic acid (DNA)-origami technology to construct submicrometre nanorods that act as fluorescent barcodes. We demonstrate that spatial control over the positioning of fluorophores on the surface of a stiff DNA nanorod can produce 216 distinct barcodes that can be decoded unambiguously using epifluorescence or total internal reflection fluorescence microscopy. Barcodes with higher spatial information density were demonstrated via the construction of super-resolution barcodes with features spaced by ˜40 nm. One species of the barcodes was used to tag yeast surface receptors, which suggests their potential applications as in situ imaging probes for diverse biomolecular and cellular entities in their native environments.

  6. The major-element composition of Mercury's surface from MESSENGER X-ray spectrometry.

    PubMed

    Nittler, Larry R; Starr, Richard D; Weider, Shoshana Z; McCoy, Timothy J; Boynton, William V; Ebel, Denton S; Ernst, Carolyn M; Evans, Larry G; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Schlemm, Charles E; Solomon, Sean C; Sprague, Ann L

    2011-09-30

    X-ray fluorescence spectra obtained by the MESSENGER spacecraft orbiting Mercury indicate that the planet's surface differs in composition from those of other terrestrial planets. Relatively high Mg/Si and low Al/Si and Ca/Si ratios rule out a lunarlike feldspar-rich crust. The sulfur abundance is at least 10 times higher than that of the silicate portion of Earth or the Moon, and this observation, together with a low surface Fe abundance, supports the view that Mercury formed from highly reduced precursor materials, perhaps akin to enstatite chondrite meteorites or anhydrous cometary dust particles. Low Fe and Ti abundances do not support the proposal that opaque oxides of these elements contribute substantially to Mercury's low and variable surface reflectance.

  7. Compact, Passively Q-Switched Nd:YAG Laser for the MESSENGER Mission to the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Krebs, Danny J.; Novo-Gradac, Anne-Marie; Li, Steven X.; Lindauer, Steven J.; Afzal, Robert S.; Yu, Antony

    2004-01-01

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter (MLA) instrument which is an instrument on the MESSENGER mission to the planet Mercury. The laser achieves 5.4 percent efficiency with a near diffraction limited beam. It has passed all space flight environmental tests at system, instrument, and satellite integration. The laser design draws on a heritage of previous laser altimetry missions, specifically ISESAT and Mars Global Surveyor; but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  8. Choline acetyltransferase expression during periods of behavioral activity and across natural sleep-wake states in the basal forebrain.

    PubMed

    Greco, M A; McCarley, R W; Shiromani, P J

    1999-01-01

    The present study examined whether the expression of the messenger RNA encoding the protein responsible for acetylcholine synthesis is associated with sleep-wakefulness. Choline acetyltransferase messenger RNA levels were analysed using a semi-quantitative assay in which reverse transcription was coupled to complementary DNA amplification using the polymerase chain reaction. To examine the relationship between steady-state messenger RNA and behavioral activity, rats were killed during the day (4.00 p.m.) or night (4.00 a.m.), and tissue from the vertical and horizontal limbs of the diagonal bands of Broca was analysed. Choline acetyltransferase messenger RNA levels were higher during the day than during the night. The second study examined more closely the association between choline acetyltransferase messenger RNA levels and individual bouts of wakefulness, slow-wave sleep or rapid eye movement sleep. Choline acetyltransferase messenger RNA levels were low during wakefulness, intermediate in slow-wave sleep and high during rapid eye movement sleep. In contrast, protein activity, measured at a projection site of cholinergic neurons of the basal forebrain, was higher during wakefulness than during sleep. These findings suggest that choline acetyltransferase protein and messenger RNA levels exhibit an inverse relationship during sleep and wakefulness. The increased messenger RNA expression during sleep is consistent with a restorative function of sleep.

  9. Toward a Better Compression for DNA Sequences Using Huffman Encoding

    PubMed Central

    Almarri, Badar; Al Yami, Sultan; Huang, Chun-Hsi

    2017-01-01

    Abstract Due to the significant amount of DNA data that are being generated by next-generation sequencing machines for genomes of lengths ranging from megabases to gigabases, there is an increasing need to compress such data to a less space and a faster transmission. Different implementations of Huffman encoding incorporating the characteristics of DNA sequences prove to better compress DNA data. These implementations center on the concepts of selecting frequent repeats so as to force a skewed Huffman tree, as well as the construction of multiple Huffman trees when encoding. The implementations demonstrate improvements on the compression ratios for five genomes with lengths ranging from 5 to 50 Mbp, compared with the standard Huffman tree algorithm. The research hence suggests an improvement on all such DNA sequence compression algorithms that use the conventional Huffman encoding. The research suggests an improvement on all DNA sequence compression algorithms that use the conventional Huffman encoding. Accompanying software is publicly available (AL-Okaily, 2016). PMID:27960065

  10. Toward a Better Compression for DNA Sequences Using Huffman Encoding.

    PubMed

    Al-Okaily, Anas; Almarri, Badar; Al Yami, Sultan; Huang, Chun-Hsi

    2017-04-01

    Due to the significant amount of DNA data that are being generated by next-generation sequencing machines for genomes of lengths ranging from megabases to gigabases, there is an increasing need to compress such data to a less space and a faster transmission. Different implementations of Huffman encoding incorporating the characteristics of DNA sequences prove to better compress DNA data. These implementations center on the concepts of selecting frequent repeats so as to force a skewed Huffman tree, as well as the construction of multiple Huffman trees when encoding. The implementations demonstrate improvements on the compression ratios for five genomes with lengths ranging from 5 to 50 Mbp, compared with the standard Huffman tree algorithm. The research hence suggests an improvement on all such DNA sequence compression algorithms that use the conventional Huffman encoding. The research suggests an improvement on all DNA sequence compression algorithms that use the conventional Huffman encoding. Accompanying software is publicly available (AL-Okaily, 2016 ).

  11. Dissociative effects of true and false recall as a function of different encoding strategies.

    PubMed

    Goodwin, Kerri A

    2007-01-01

    Goodwin, Meissner, and Ericsson (2001) proposed a path model in which elaborative encoding predicted the likelihood of verbalisation of critical, nonpresented words at encoding, which in turn predicted the likelihood of false recall. The present study tested this model of false recall experimentally with a manipulation of encoding strategy and the implementation of the process-tracing technique of protocol analysis. Findings indicated that elaborative encoding led to more verbalisations of critical items during encoding than rote rehearsal of list items, but false recall rates were reduced under elaboration conditions (Experiment 2). Interestingly, false recall was more likely to occur when items were verbalised during encoding than not verbalised (Experiment 1), and participants tended to reinstate their encoding strategies during recall, particularly after elaborative encoding (Experiment 1). Theoretical implications for the interplay of encoding and retrieval processes of false recall are discussed.

  12. A complexity-scalable software-based MPEG-2 video encoder.

    PubMed

    Chen, Guo-bin; Lu, Xin-ning; Wang, Xing-guo; Liu, Ji-lin

    2004-05-01

    With the development of general-purpose processors (GPP) and video signal processing algorithms, it is possible to implement a software-based real-time video encoder on GPP, and its low cost and easy upgrade attract developers' interests to transfer video encoding from specialized hardware to more flexible software. In this paper, the encoding structure is set up first to support complexity scalability; then a lot of high performance algorithms are used on the key time-consuming modules in coding process; finally, at programming level, processor characteristics are considered to improve data access efficiency and processing parallelism. Other programming methods such as lookup table are adopted to reduce the computational complexity. Simulation results showed that these ideas could not only improve the global performance of video coding, but also provide great flexibility in complexity regulation.

  13. Regulation of Bacteriophage T5 Development by ColI Factors

    PubMed Central

    Moyer, R. W.; Fu, A. S.; Szabo, C.

    1972-01-01

    The I-type colicinogenic factor ColIb transforms Escherichia coli from a permissive to a nonpermissive host for bacteriophage T5 reproduction by preventing complete expression of the phage genome. T5-infected ColIb+ cells synthesize only class I (early) phage protein and ribonucleic acid (RNA). Neither phage-specific class II proteins [associated with viral deoxyribonucleic acid (DNA) replication] nor class III proteins (phage structural components) are formed due to the failure of the infected ColIb+ cells to synthesize class II or class III phage-specific messenger RNA. Comparable studies with T5-infected cells colicinogenic for the related ColIa factor revealed no decrease in the yield of progeny phage although the presence of the ColIa factor leads to a significant reduction in the amount of phage-directed class III protein synthesis. Images PMID:4554465

  14. KENNEDY SPACE CENTER, FLA. - Doors are open on the air-conditioned transportation van that carried NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., to the Astrotech Space Operations processing facilities near KSC. After offloading, MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - Doors are open on the air-conditioned transportation van that carried NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., to the Astrotech Space Operations processing facilities near KSC. After offloading, MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  15. Observations of Mercury's Surface-Bounded Exosphere from Orbit: Results from the Mercury Atmospheric and Surface Composition Spectrometer aboard the MESSENGER Spacecraft

    NASA Astrophysics Data System (ADS)

    McClintock, W. E.; Burger, M. H.; Cassidy, T. A.; Killen, R. M.; Merkel, A. W.; Sarantos, M.; Solomon, S. C.; Vervack, R. J., Jr.

    2015-12-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS), on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, conducted orbital observations of Mercury's dayside and nightside exosphere from 29 March 2011 to the end of the mission on 30 April 2015. Over slightly more than four Earth-years, MASCS measured emission profiles versus altitude for calcium (Ca), sodium (Na), and magnesium (Mg) at a daily cadence. These species exhibit different spatial distributions, suggesting distinct source processes. MASCS observed seasonal variations in all three species that are remarkably repeatable from one Mercury year to the next, and did so consistently during the entire 17-Mercury-year duration of the orbital phase of the mission. Whereas MASCS has characterized the seasonal variation, it has provided, at best, only weak evidence for the episodic behavior observed in ground-based studies of Na. Joint analyses of MASCS observations and surface precipitation patterns for energetic particles inferred from observations by the Energetic Particle Spectrometer (EPS) and the Fast Imaging Plasma Spectrometer (FIPS) on MESSENGER have not yielded clear correlations. This lack of correlation may be due in part to the MASCS observational geometries. MASCS has conducted a number of searches for other, weakly emitting species. Hydrogen data from the orbital phase are consistent with profiles observed during MESSENGER's flybys of Mercury. Oxygen detections have proven elusive, and the previously reported observation with a brightness of 4 R may only be an upper limit. Ongoing analysis of weak species data suggests that additional species are present.

  16. In vitro evaluation of demineralized freeze-dried bone allograft in combination with enamel matrix derivative.

    PubMed

    Miron, Richard J; Bosshardt, Dieter D; Laugisch, Oliver; Dard, Michel; Gemperli, Anja C; Buser, Daniel; Gruber, Reinhard; Sculean, Anton

    2013-11-01

    Preclinical and clinical studies suggest that a combination of enamel matrix derivative (EMD) with demineralized freeze-dried bone allograft (DFDBA) may improve periodontal wound healing and regeneration. To date, no single study has characterized the effects of this combination on in vitro cell behavior. The aim of this study is to test the ability of EMD to adsorb to the surface of DFDBA particles and determine the effect of EMD coating on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. DFDBA particles were precoated with EMD or human blood and analyzed for protein adsorption patterns via scanning electron microscopy. Cell attachment and proliferation were quantified using a commercial assay. Cell differentiation was analyzed using real-time polymerase chain reaction for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen 1α1, and mineralization was assessed using alizarinred staining. Analysis of cell attachment revealed no significant differences among control, blood-coated, and EMD-coated DFDBA particles. EMD significantly increased cell proliferation at 3 and 5 days after seeding for both osteoblasts and PDL cells compared to control and blood-coated samples. Moreover, there were significantly higher messenger ribonucleic acid levels of osteogenic differentiation markers, including collagen 1α1, alkaline phosphatase, and osteocalcin, in osteoblasts and PDL cells cultured on EMD-coated DFDBA particles at 3, 7, and 14 days. The results suggest that the addition of EMD to DFDBA particles may influence periodontal regeneration by stimulating PDL cell and osteoblast proliferation and differentiation.

  17. cCMP, cUMP, cTMP, cIMP and cXMP as possible second messengers: development of a hypothesis based on studies with soluble guanylyl cyclase α(1)β(1).

    PubMed

    Beste, Kerstin Y; Seifert, Roland

    2013-02-01

    Adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate are second messengers that regulate multiple physiological functions. The existence of additional cyclic nucleotides in mammalian cells was postulated many years ago, but technical problems hampered development of the field. Using highly specific and sensitive mass spectrometry methods, soluble guanylyl cyclase has recently been shown to catalyze the formation of several cyclic nucleotides in vitro. This minireview discusses the broad substrate-specificity of soluble guanylyl cyclase and the possible second messenger roles of cyclic nucleotides other than adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate. We hope that this article stimulates productive and critical research in an area that has been neglected for many years.

  18. Encoders for block-circulant LDPC codes

    NASA Technical Reports Server (NTRS)

    Andrews, Kenneth; Dolinar, Sam; Thorpe, Jeremy

    2005-01-01

    In this paper, we present two encoding methods for block-circulant LDPC codes. The first is an iterative encoding method based on the erasure decoding algorithm, and the computations required are well organized due to the block-circulant structure of the parity check matrix. The second method uses block-circulant generator matrices, and the encoders are very similar to those for recursive convolutional codes. Some encoders of the second type have been implemented in a small Field Programmable Gate Array (FPGA) and operate at 100 Msymbols/second.

  19. Seismic waveform tomography with shot-encoding using a restarted L-BFGS algorithm.

    PubMed

    Rao, Ying; Wang, Yanghua

    2017-08-17

    In seismic waveform tomography, or full-waveform inversion (FWI), one effective strategy used to reduce the computational cost is shot-encoding, which encodes all shots randomly and sums them into one super shot to significantly reduce the number of wavefield simulations in the inversion. However, this process will induce instability in the iterative inversion regardless of whether it uses a robust limited-memory BFGS (L-BFGS) algorithm. The restarted L-BFGS algorithm proposed here is both stable and efficient. This breakthrough ensures, for the first time, the applicability of advanced FWI methods to three-dimensional seismic field data. In a standard L-BFGS algorithm, if the shot-encoding remains unchanged, it will generate a crosstalk effect between different shots. This crosstalk effect can only be suppressed by employing sufficient randomness in the shot-encoding. Therefore, the implementation of the L-BFGS algorithm is restarted at every segment. Each segment consists of a number of iterations; the first few iterations use an invariant encoding, while the remainder use random re-coding. This restarted L-BFGS algorithm balances the computational efficiency of shot-encoding, the convergence stability of the L-BFGS algorithm, and the inversion quality characteristic of random encoding in FWI.

  20. Gamma-Ray Bursts and Fast Transients. Multi-wavelength Observations and Multi-messenger Signals

    NASA Astrophysics Data System (ADS)

    Willingale, R.; Mészáros, P.

    2017-07-01

    The current status of observations and theoretical models of gamma-ray bursts and some other related transients, including ultra-long bursts and tidal disruption events, is reviewed. We consider the impact of multi-wavelength data on the formulation and development of theoretical models for the prompt and afterglow emission including the standard fireball model utilizing internal shocks and external shocks, photospheric emission, the role of the magnetic field and hadronic processes. In addition, we discuss some of the prospects for non-photonic multi-messenger detection and for future instrumentation, and comment on some of the outstanding issues in the field.

  1. Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with high-resolution observations from MESSENGER.

    PubMed

    Baker, Daniel N; Dewey, Ryan M; Lawrence, David J; Goldsten, John O; Peplowski, Patrick N; Korth, Haje; Slavin, James A; Krimigis, Stamatios M; Anderson, Brian J; Ho, George C; McNutt, Ralph L; Raines, Jim M; Schriver, David; Solomon, Sean C

    2016-03-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

  2. Architecture for VLSI design of Reed-Solomon encoders

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.

    1981-01-01

    The logic structure of a universal VLSI chip called the symbol-slice Reed-Solomon (RS) encoder chip is discussed. An RS encoder can be constructed by cascading and properly interconnecting a group of such VLSI chips. As a design example, it is shown that a (255,223) RD encoder requiring around 40 discrete CMOS ICs may be replaced by an RS encoder consisting of four identical interconnected VLSI RS encoder chips. Besides the size advantage, the VLSI RS encoder also has the potential advantages of requiring less power and having a higher reliability.

  3. Internet messenger based smart virtual class learning using ubiquitous computing

    NASA Astrophysics Data System (ADS)

    Umam, K.; Mardi, S. N. S.; Hariadi, M.

    2017-06-01

    Internet messenger (IM) has become an important educational technology component in college education, IM makes it possible for students to engage in learning and collaborating at smart virtual class learning (SVCL) using ubiquitous computing. However, the model of IM-based smart virtual class learning using ubiquitous computing and empirical evidence that would favor a broad application to improve engagement and behavior are still limited. In addition, the expectation that IM based SVCL using ubiquitous computing could improve engagement and behavior on smart class cannot be confirmed because the majority of the reviewed studies followed instructions paradigms. This article aims to present the model of IM-based SVCL using ubiquitous computing and showing learners’ experiences in improved engagement and behavior for learner-learner and learner-lecturer interactions. The method applied in this paper includes design process and quantitative analysis techniques, with the purpose of identifying scenarios of ubiquitous computing and realize the impressions of learners and lecturers about engagement and behavior aspect and its contribution to learning

  4. Spermatozoa micro ribonucleic acid-34c level is correlated with intracytoplasmic sperm injection outcomes.

    PubMed

    Cui, Long; Fang, Li; Shi, Biwei; Qiu, Sunquan; Ye, Yinghui

    2015-08-01

    To assess the effects of micro ribonucleic acid (miR)-34b/c expression levels in human spermatozoa on intracytoplasmic sperm injection (ICSI) outcomes. Retrospective observational study. In vitro fertilization center. A total of 162 patients with idiopathic male infertility who had undergone first ICSI cycles. None. The levels of miR-34b/c in spermatozoa were measured using real-time polymerase chain reaction. Fertilization, early cleavage, day-3 good-quality embryo, pregnancy, implantation, and live birth rate were assessed. A receiver operating characteristic curve was employed to analyze the cutoff values. No correlation was found between the spermatozoa miR-34b/c levels and the 2 pronuclei early cleavage rate. A correlation was seen between an increased level of miR-34c and a higher percentage of good-quality embryos on day 3. Although miR-34b and miR-34c levels were higher in the pregnancy group, compared with the nonpregnancy group, receiver operating characteristic curve analysis showed that miR-34c levels in spermatozoa were more strongly correlated with ICSI treatment outcomes, compared with miR-34b (area under the curve = 0.75). Patients in the miR-34c-positive group were more likely to exhibit higher rates of good-quality embryos, implantation, pregnancy, and live birth. A multivariable logistic regression analysis showed that miR-34c in spermatozoa (odds ratio: 5.699, with 95% confidence interval [CI]: 2.687-12.088) and woman's age (odds ratio: 0.843, with 95% CI: 0.736-0.966) were the 2 parameters that were significantly correlated with pregnancy. Our results demonstrate that miR-34c levels in spermatozoa are correlated with ICSI outcomes, suggesting that paternal miR-34c may play a role in the early phases of embryonic development. Levels of MiR-34c in human spermatozoa may be used as an indicator for ICSI outcomes. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Gene Expression in Archaea: Studies of Transcriptional Promoters, Messenger RNA Processing, and Five Prime Untranslated Regions in "Methanocaldococcus Jannashchii"

    ERIC Educational Resources Information Center

    Zhang, Jian

    2009-01-01

    Gene expression in Archaea is less understood than those in Bacteria and Eucarya. In general, three steps are involved in gene expression--transcription, RNA processing, and translation. To expand our knowledge of these processes in Archaea, I have studied transcriptional promoters, messenger RNA processing, and 5'-untranslated regions in…

  6. Comparison of H.265/HEVC encoders

    NASA Astrophysics Data System (ADS)

    Trochimiuk, Maciej

    2016-09-01

    The H.265/HEVC is the state-of-the-art video compression standard, which allows the bitrate reduction up to 50% compared with its predecessor, H.264/AVC, maintaining equal perceptual video quality. The growth in coding efficiency was achieved by increasing the number of available intra- and inter-frame prediction features and improvements in existing ones, such as entropy encoding and filtering. Nevertheless, to achieve real-time performance of the encoder, simplifications in algorithm are inevitable. Some features and coding modes shall be skipped, to reduce time needed to evaluate modes forwarded to rate-distortion optimisation. Thus, the potential acceleration of the encoding process comes at the expense of coding efficiency. In this paper, a trade-off between video quality and encoding speed of various H.265/HEVC encoders is discussed.

  7. Exploring Mercury's Surface-Bound Exosphere with the Mercury Atmospheric and Surface Composition Spectrometer: AN Overview of Observations during the First Messenger Flyby

    NASA Astrophysics Data System (ADS)

    McClintock, W. E.; Bradley, E. T.; Izenberg, N. R.; Killen, R. M.; Kochte, M. C.; Lankton, M. R.; Mouawad, N.; Sprague, A. L.; Vervack, R. J.

    2008-12-01

    Mercury's surface-bound exosphere is the interface between the planet's surface and the external stimuli that interact with it. Its composition and structure are controlled by surface, magnetosphere, and solar-wind processes. Prior to the MESSENGER mission the exosphere was known to contain H, He, and O from Mariner 10 observations, as well as Na, K, and Ca that were discovered during ground-based observations. Na has been extensively studied since its discovery in 1985, including observations of a neutral Na tail first reported in 2002. Undetected species, including Mg, Fe, Al, and S, are also expected to exist in the exosphere. MESSENGER's initial flyby of Mercury, which occurred on January 14, 2008, offered the first opportunity to measure the planet's neutral tail from space. As the spacecraft approached the planet from the nightside, the UltraViolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) scanned the tail beginning at altitudes of 24,500 km behind Mercury's nightside surface and covering a region of space approximately three planet diameters tall and centered on the Sun-Mercury line. The UVVS measured emissions from Na during the entire observation. It also observed neutral hydrogen beginning approximately 5,000 km above the nightside surface. The spatial distributions of both species were seen to be asymmetric, with enhanced densities occurring in the northern hemisphere. UVVS observations of Ca, which were made as the spacecraft traversed the nightside exosphere, exhibited enhanced emission toward the dawn terminator, with north-south behavior similar to that of Na and H. These observations suggest that the relatively high-energy source processes that give rise to species observed in the tail were localized near the northern and morning hemispheres during the flyby. This inference is supported by magnetic field observations made with the MESSENGER Magnetometer, which observed a strong

  8. A MPEG-4 encoder based on TMS320C6416

    NASA Astrophysics Data System (ADS)

    Li, Gui-ju; Liu, Wei-ning

    2013-08-01

    Engineering and products need to achieve real-time video encoding by DSP, but the high computational complexity and huge amount of data requires that system has high data throughput. In this paper, a real-time MPEG-4 video encoder is designed based on TMS320C6416 platform. The kernel is the DSP of TMS320C6416T and FPGA chip f as the organization and management of video data. In order to control the flow of input and output data. Encoded stream is output using the synchronous serial port. The system has the clock frequency of 1GHz and has up to 8000 MIPS speed processing capacity when running at full speed. Due to the low coding efficiency of MPEG-4 video encoder transferred directly to DSP platform, it is needed to improve the program structure, data structures and algorithms combined with TMS320C6416T characteristics. First: Design the image storage architecture by balancing the calculation spending, storage space cost and EDMA read time factors. Open up a more buffer in memory, each buffer cache 16 lines of video data to be encoded, reconstruction image and reference image including search range. By using the variable alignment mode of the DSP, modifying the definition of structure variables and change the look-up table which occupy larger space with a direct calculation array to save memory space. After the program structure optimization, the program code, all variables, buffering buffers and the interpolation image including the search range can be placed in memory. Then, as to the time-consuming process modules and some functions which are called many times, the corresponding modules are written in parallel assembly language of TMS320C6416T which can increase the running speed. Besides, the motion estimation algorithm is improved by using a cross-hexagon search algorithm, The search speed can be increased obviously. Finally, the execution time, signal-to-noise ratio and compression ratio of a real-time image acquisition sequence is given. The experimental

  9. Programmable Pulse-Position-Modulation Encoder

    NASA Technical Reports Server (NTRS)

    Zhu, David; Farr, William

    2006-01-01

    A programmable pulse-position-modulation (PPM) encoder has been designed for use in testing an optical communication link. The encoder includes a programmable state machine and an electronic code book that can be updated to accommodate different PPM coding schemes. The encoder includes a field-programmable gate array (FPGA) that is programmed to step through the stored state machine and code book and that drives a custom high-speed serializer circuit board that is capable of generating subnanosecond pulses. The stored state machine and code book can be updated by means of a simple text interface through the serial port of a personal computer.

  10. Topicality and impact in social media: diverse messages, focused messengers.

    PubMed

    Weng, Lilian; Menczer, Filippo

    2015-01-01

    We have a limited understanding of the factors that make people influential and topics popular in social media. Are users who comment on a variety of matters more likely to achieve high influence than those who stay focused? Do general subjects tend to be more popular than specific ones? Questions like these demand a way to detect the topics hidden behind messages associated with an individual or a keyword, and a gauge of similarity among these topics. Here we develop such an approach to identify clusters of similar hashtags in Twitter by detecting communities in the hashtag co-occurrence network. Then the topical diversity of a user's interests is quantified by the entropy of her hashtags across different topic clusters. A similar measure is applied to hashtags, based on co-occurring tags. We find that high topical diversity of early adopters or co-occurring tags implies high future popularity of hashtags. In contrast, low diversity helps an individual accumulate social influence. In short, diverse messages and focused messengers are more likely to gain impact.

  11. Topicality and Impact in Social Media: Diverse Messages, Focused Messengers

    PubMed Central

    Weng, Lilian; Menczer, Filippo

    2015-01-01

    We have a limited understanding of the factors that make people influential and topics popular in social media. Are users who comment on a variety of matters more likely to achieve high influence than those who stay focused? Do general subjects tend to be more popular than specific ones? Questions like these demand a way to detect the topics hidden behind messages associated with an individual or a keyword, and a gauge of similarity among these topics. Here we develop such an approach to identify clusters of similar hashtags in Twitter by detecting communities in the hashtag co-occurrence network. Then the topical diversity of a user’s interests is quantified by the entropy of her hashtags across different topic clusters. A similar measure is applied to hashtags, based on co-occurring tags. We find that high topical diversity of early adopters or co-occurring tags implies high future popularity of hashtags. In contrast, low diversity helps an individual accumulate social influence. In short, diverse messages and focused messengers are more likely to gain impact. PMID:25710685

  12. POEMMA (Probe Of Extreme Multi-Messenger Astrophysics) Science and Design

    NASA Astrophysics Data System (ADS)

    Olinto, Angela V.; Perkins, Jeremy S.; POEMMA Collaboration

    2018-01-01

    In this poster we describe the preliminary design of POEMMA (Probe Of Extreme Multi-Messenger Astrophysics). The two satellites flying in formation consists of an innovative Schmidt telescope design optimized for low energy threshold and large geometry factor for observations. The 4 meter mirror was designed to fit in a dual manifest launch vehicle. A novel corrector lens and fast optics are design to optimized the full field of view to 45 degrees. The large focal surface will be populated by two systems: a multi-anode PMT (MAPMT) array for fluorescence detection and a Silicon PM (SiPM) array for Cherenkov detection around the limb of the Earth. At an altitude of 525 km, the LEO orbit will have a 28.5o inclination the mission can be launched from KSC and have a mission life of 3 years with a 5 year goal. The mission will improve by orders of magnitude the observations of ultra-high energy cosmic rays above tens of EeV and search for neutrinos above tens of PeVs.

  13. Black-legged kittiwakes as messengers of Atlantification in the Arctic.

    PubMed

    Vihtakari, Mikko; Welcker, Jorg; Moe, Børge; Chastel, Olivier; Tartu, Sabrina; Hop, Haakon; Bech, Claus; Descamps, Sébastien; Gabrielsen, Geir Wing

    2018-01-19

    Climate warming is rapidly altering marine ecosystems towards a more temperate state on the European side of the Arctic. However, this "Atlantification" has rarely been confirmed, as long-term datasets on Arctic marine organisms are scarce. We present a 19-year time series (1982-2016) of diet samples from black-legged kittiwakes as an indicator of the changes in a high Arctic marine ecosystem (Kongsfjorden, Svalbard). Our results highlight a shift from Arctic prey dominance until 2006 to a more mixed diet with high contribution of Atlantic fishes. Capelin, an Atlantic species, dominated the diet composition in 2007, marking a shift in the food web. The occurrence of polar cod, a key Arctic fish species, positively correlated with sea ice index, whereas Atlantic species demonstrated the opposite correlation indicating that the diet shift was likely connected with recent climate warming. Kittiwakes, which gather available fish and zooplankton near the sea surface to feed their chicks, can act as messengers of ecosystem change. Changes in their diet reveal that the Kongsfjord system has drifted in an Atlantic direction over the last decade.

  14. MESSENGER observations of transient bursts of energetic electrons in Mercury's magnetosphere.

    PubMed

    Ho, George C; Krimigis, Stamatios M; Gold, Robert E; Baker, Daniel N; Slavin, James A; Anderson, Brian J; Korth, Haje; Starr, Richard D; Lawrence, David J; McNutt, Ralph L; Solomon, Sean C

    2011-09-30

    The MESSENGER spacecraft began detecting energetic electrons with energies greater than 30 kilo-electron volts (keV) shortly after its insertion into orbit about Mercury. In contrast, no energetic protons were observed. The energetic electrons arrive as bursts lasting from seconds to hours and are most intense close to the planet, distributed in latitude from the equator to the north pole, and present at most local times. Energies can exceed 200 keV but often exhibit cutoffs near 100 keV. Angular distributions of the electrons about the magnetic field suggest that they do not execute complete drift paths around the planet. This set of characteristics demonstrates that Mercury's weak magnetic field does not support Van Allen-type radiation belts, unlike all other planets in the solar system with internal magnetic fields.

  15. Dexamethasone increases expression of 5-lipoxygenase and its activating protein in human monocytes and THP-1 cells.

    PubMed

    Riddick, C A; Ring, W L; Baker, J R; Hodulik, C R; Bigby, T D

    1997-05-15

    The aim of this study was to assess the effect of dexamethasone on 5-lipoxygenase pathway expression in human peripheral blood monocytes and the acute monocytic leukemia cell line, THP-1. Cells were conditioned over a period of days with dexamethasone, at concentrations relevant in vivo, to study the effect of the glucocorticoid on calcium-ionophore-stimulated 5-lipoxygenase product and arachidonic acid release. The effect of dexamethasone on levels of immunoreactive protein and steady-state messenger RNA encoding for 5-lipoxygenase and its activating protein (5-LAP) was also assessed. Dexamethasone increased the stimulated release of 5-lipoxygenase products from both monocytes and THP-1 cells in a dose-dependent fashion. The increase in product generation was not due to changes in the availability of arachidonic acid. However, immunoreactive protein and steady-state messenger RNA encoding for 5-lipoxygenase and 5-LAP were increased by conditioning with dexamethasone. There was no apparent effect of the glucocorticoid on LTA4-hydrolase-immunoreactive protein levels or specific activity. We conclude that dexamethasone increases 5-lipoxygenase pathway expression in both monocytes and in THP-1 cells. This effect is due, at least in part, to increases in immunoreactive protein and steady-state messenger RNA encoding for 5-lipoxygenase and 5-LAP. These results suggest a role for glucocorticoids in the regulation of 5-lipoxygenase pathway expression in mononuclear phagocytes.

  16. Time Course of Grammatical Encoding in Agrammatism

    ERIC Educational Resources Information Center

    Lee, Jiyeon

    2011-01-01

    Producing a sentence involves encoding a preverbal message into a grammatical structure by retrieving lexical items and integrating them into a functional (semantic-to-grammatical) structure. Individuals with agrammatism are impaired in this grammatical encoding process. However, it is unclear what aspect of grammatical encoding is impaired and…

  17. Concurrent encoding of frequency and amplitude modulation in human auditory cortex: encoding transition.

    PubMed

    Luo, Huan; Wang, Yadong; Poeppel, David; Simon, Jonathan Z

    2007-12-01

    Complex natural sounds (e.g., animal vocalizations or speech) can be characterized by specific spectrotemporal patterns the components of which change in both frequency (FM) and amplitude (AM). The neural coding of AM and FM has been widely studied in humans and animals but typically with either pure AM or pure FM stimuli. The neural mechanisms employed to perceptually unify AM and FM acoustic features remain unclear. Using stimuli with simultaneous sinusoidal AM (at rate f(AM) = 37 Hz) and FM (with varying rates f(FM)), magnetoencephalography (MEG) is used to investigate the elicited auditory steady-state response (aSSR) at relevant frequencies (f(AM), f(FM), f(AM) + f(FM)). Previous work demonstrated that for sounds with slower FM dynamics (f(FM) < 5 Hz), the phase of the aSSR at f(AM) tracked the FM; in other words, AM and FM features were co-tracked and co-represented by "phase modulation" encoding. This study explores the neural coding mechanism for stimuli with faster FM dynamics (< or =30 Hz), demonstrating that at faster rates (f(FM) > 5 Hz), there is a transition from pure phase modulation encoding to a single-upper-sideband (SSB) response (at frequency f(AM) + f(FM)) pattern. We propose that this unexpected SSB response can be explained by the additional involvement of subsidiary AM encoding responses simultaneously to, and in quadrature with, the ongoing phase modulation. These results, using MEG to reveal a possible neural encoding of specific acoustic properties, demonstrate more generally that physiological tests of encoding hypotheses can be performed noninvasively on human subjects, complementing invasive, single-unit recordings in animals.

  18. iSS-PC: Identifying Splicing Sites via Physical-Chemical Properties Using Deep Sparse Auto-Encoder.

    PubMed

    Xu, Zhao-Chun; Wang, Peng; Qiu, Wang-Ren; Xiao, Xuan

    2017-08-15

    Gene splicing is one of the most significant biological processes in eukaryotic gene expression, such as RNA splicing, which can cause a pre-mRNA to produce one or more mature messenger RNAs containing the coded information with multiple biological functions. Thus, identifying splicing sites in DNA/RNA sequences is significant for both the bio-medical research and the discovery of new drugs. However, it is expensive and time consuming based only on experimental technique, so new computational methods are needed. To identify the splice donor sites and splice acceptor sites accurately and quickly, a deep sparse auto-encoder model with two hidden layers, called iSS-PC, was constructed based on minimum error law, in which we incorporated twelve physical-chemical properties of the dinucleotides within DNA into PseDNC to formulate given sequence samples via a battery of cross-covariance and auto-covariance transformations. In this paper, five-fold cross-validation test results based on the same benchmark data-sets indicated that the new predictor remarkably outperformed the existing prediction methods in this field. Furthermore, it is expected that many other related problems can be also studied by this approach. To implement classification accurately and quickly, an easy-to-use web-server for identifying slicing sites has been established for free access at: http://www.jci-bioinfo.cn/iSS-PC.

  19. Multicore-based 3D-DWT video encoder

    NASA Astrophysics Data System (ADS)

    Galiano, Vicente; López-Granado, Otoniel; Malumbres, Manuel P.; Migallón, Hector

    2013-12-01

    Three-dimensional wavelet transform (3D-DWT) encoders are good candidates for applications like professional video editing, video surveillance, multi-spectral satellite imaging, etc. where a frame must be reconstructed as quickly as possible. In this paper, we present a new 3D-DWT video encoder based on a fast run-length coding engine. Furthermore, we present several multicore optimizations to speed-up the 3D-DWT computation. An exhaustive evaluation of the proposed encoder (3D-GOP-RL) has been performed, and we have compared the evaluation results with other video encoders in terms of rate/distortion (R/D), coding/decoding delay, and memory consumption. Results show that the proposed encoder obtains good R/D results for high-resolution video sequences with nearly in-place computation using only the memory needed to store a group of pictures. After applying the multicore optimization strategies over the 3D DWT, the proposed encoder is able to compress a full high-definition video sequence in real-time.

  20. Is inositol (1,3,4,5)-tetrakisphosphate a new second messenger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, C.A.; Williamson, J.R.

    1986-05-01

    Hormone-stimulated hydrolysis of inositol (Ins) lipids results in the rapid formation of Ins(1,4,5)P/sub 3/, the second messenger for intracellular Ca/sup 2 +/ mobilization. Recently, a more polar inositol phosphate, Ins(1,3,4,5)P/sub 4/ as well as its probable hydrolysis product Ins(1,3,4)P/sub 3/ have been reported to accumulate in carbachol-stimulated brain slices. Vasopressin addition to hepatocytes prelabeled with (/sup 3/H)-Ins also showed a rapid increase of Ins(1,3,4,5)P/sub 4/, which was similar to that of Ins(1,4,5)P/sub 3/, while the accumulation of Ins(1,3,4)P/sub 3/ was slower. In order to examine whether Ins(1,3,4,5)P/sub 4/ has any functional effects on Ca/sup 2 +/ homeostasis, it was synthesizedmore » enzymatically from (/sup 3/H)-Ins(1,4,5)P/sub 3/ using a partially purified phosphoinositol kinase activity from rat brain cortex. (/sup 3/H)-labeled inositol phosphates were separated by anion exchange chromatography and analyzed by HPLC using ammonium formate/phosphoric acid gradient elution. Preliminary experiments indicate that Ins(1,3,4,5)P/sub 4/ up to 10 ..mu..M does not release Ca/sup 2 +/ from vesicular pools in saponin-permeabilized hepatocytes. It has a slight inhibitory effect on Ins(1,4,5)P/sub 3/-induced Ca/sup 2 +/ release. The effect of Ins(1,3,4,5)P/sub 4/ on plasma membrane Ca/sup 2 +/ fluxes are presently being investigated.« less

  1. Architecture for VLSI design of Reed-Solomon encoders

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.

    1982-01-01

    A description is given of the logic structure of the universal VLSI symbol-slice Reed-Solomon (RS) encoder chip, from a group of which an RS encoder may be constructed through cascading and proper interconnection. As a design example, it is shown that an RS encoder presently requiring approximately 40 discrete CMOS ICs may be replaced by an RS encoder consisting of four identical, interconnected VLSI RS encoder chips, offering in addition to greater compactness both a lower power requirement and greater reliability.

  2. Architecture for VLSI design of Reed-Solomon encoders

    NASA Astrophysics Data System (ADS)

    Liu, K. Y.

    1982-02-01

    A description is given of the logic structure of the universal VLSI symbol-slice Reed-Solomon (RS) encoder chip, from a group of which an RS encoder may be constructed through cascading and proper interconnection. As a design example, it is shown that an RS encoder presently requiring approximately 40 discrete CMOS ICs may be replaced by an RS encoder consisting of four identical, interconnected VLSI RS encoder chips, offering in addition to greater compactness both a lower power requirement and greater reliability.

  3. Common observations of solar X-rays from SPHINX/CORONAS-PHOTON and XRS/MESSENGER

    NASA Astrophysics Data System (ADS)

    Kepa, Anna; Sylwester, Janusz; Sylwester, Barbara; Siarkowski, Marek; Mrozek, Tomasz; Gryciuk, Magdalena; Phillips, Kenneth

    SphinX was a soft X-ray spectrophotometer constructed in the Space Research Centre of Polish Academy of Sciences. The instrument was launched on 30 January 2009 aboard CORONAS-PHOTON satellite as a part of TESIS instrument package. SphinX measured total solar X-ray flux in the energy range from 1 to 15 keV during the period of very low solar activity from 20 February to 29 November 2009. For these times the solar detector (X-ray Spectrometer - XRS) onboard MESSENGER also observed the solar X-rays from a different vantage point. XRS measured the radiation in similar energy range. We present results of the comparison of observations from both instruments and show the preliminary results of physical analysis of spectra for selected flares.

  4. MESSENGER observations of the response of Mercury's magnetosphere to northward and southward interplanetary magnetic fields

    NASA Astrophysics Data System (ADS)

    Slavin, James

    M. H. Acũa (2), B. J. Anderson (3), D. N. Baker (4), M. Benna (2), S. A. Boardsen (1), G. n Gloeckler (5), R. E. Gold (3), G. C. Ho (3), H. Korth (3), S. M. Krimigis (3), S. A. Livi (6), R. L. McNutt Jr. (3), J. M. Raines (5), M. Sarantos (1), D. Schriver (7), S. C. Solomon (8), P. Travnicek (9), and T. H. Zurbuchen (5) (1) Heliophysics Science Division, NASA GSFC, Greenbelt, MD 20771, USA, (2) Solar System Exploration Division, NASA GSFC, Greenbelt, MD 20771, USA, (3) The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA, (4) Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA, (5) Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA (6) Southwest Research Institute, San Antonio, TX 28510, USA, (7) Institute for Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024, USA, (8) Department of Terrestrial Magnetism, Carnegie Institution of Washington, DC 20015, USA, and (9) Institute of Atmospheric Physics, Prague, Czech Republic, 14131 MESSENGER's 14 January 2008 encounter with Mercury has provided new observations of the solar wind interaction with this planet. Here we report initial results concerning this miniature magnetosphere's response to the north-south component of the interplanetary magnetic field (IMF). This is the component of the IMF that is expected to exert the greatest influence over the structure of the magnetopause and the processes responsible for energy transfer into the magnetosphere. The IMF was northward immediately prior to and following the passage of the MESSENGER spacecraft through this small magnetosphere. However, several-minute episodes of southward IMF were observed in the magnetosheath during the inbound portion of the encounter. Evidence for reconnection at the dayside magnetopause in the form of welldeveloped flux transfer events (FTEs) was observed in the magnetosheath following some of

  5. Absolute angular encoder based on optical diffraction

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang

    2015-08-01

    A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.

  6. Dietary ribonucleic acid suppresses inflammation of adipose tissue and improves glucose intolerance that is mediated by immune cells in C57BL/6 mice fed a high-fat diet.

    PubMed

    Sakai, Tohru; Taki, Tomoyo; Nakamoto, Akiko; Tazaki, Shiho; Arakawa, Mai; Nakamoto, Mariko; Tsutsumi, Rie; Shuto, Emi

    2015-01-01

    Recent evidence suggests that immune cells play an important role in differentiation of inflammatory macrophages in adipose tissue, which contributes to systemic chronic inflammation. Dietary ribonucleic acid (RNA) has been shown to modulate immune function. We hypothesized that RNA affects immune cell function in adipose tissue and then improves inflammatory response in adipose tissue. C57/BL6 mice and recombination activating gene-1 (RAG-1) knockout mice on a C57BL/6 mice background were fed a high-fat diet containing 1% RNA for 12 wk. An oral glucose tolerance test was performed. Supplementation of dietary RNA in C57BL/6 mice fed a high-fat diet resulted in a smaller area under the curve (AUC) after oral glucose administration than that for control mice. The mRNA expression levels of inflammation-related cytokines in adipose tissue and serum interleukin-6 levels were reduced by dietary RNA supplementation. Interestingly, reduction of the AUC value by RNA supplementation was abolished in T and B cell-deficient RAG-1 knockout mice. These results indicate that RNA improves inflammation in adipose tissue and reduces the AUC value following oral glucose administration in a T and B cell-dependent manner.

  7. A thermostable messenger RNA based vaccine against rabies.

    PubMed

    Stitz, Lothar; Vogel, Annette; Schnee, Margit; Voss, Daniel; Rauch, Susanne; Mutzke, Thorsten; Ketterer, Thomas; Kramps, Thomas; Petsch, Benjamin

    2017-12-01

    Although effective rabies virus vaccines have been existing for decades, each year, rabies virus infections still cause around 50.000 fatalities worldwide. Most of these cases occur in developing countries, where these vaccines are not available. The reasons for this are the prohibitive high costs of cell culture or egg grown rabies virus vaccines and the lack of a functional cold chain in many regions in which rabies virus is endemic. Here, we describe the excellent temperature resistance of a non-replicating mRNA based rabies virus vaccine encoding the rabies virus glycoprotein (RABV-G). Prolonged storage of the vaccine from -80°C to up to +70°C for several months did not impact the protective capacity of the mRNA vaccine. Efficacy after storage was demonstrated by the induction of rabies specific virus neutralizing antibodies and protection in mice against lethal rabies infection. Moreover, storing the vaccine at oscillating temperatures between +4° and +56°C for 20 cycles in order to simulate interruptions of the cold chain during vaccine transport, did not affect the vaccine's immunogenicity and protective characteristics, indicating that maintenance of a cold chain is not essential for this vaccine.

  8. Prosodic Encoding in Silent Reading.

    ERIC Educational Resources Information Center

    Wilkenfeld, Deborah

    In silent reading, short-memory tasks, such as semantic and syntactic processing, require a stage of phonetic encoding between visual representation and the actual extraction of meaning, and this encoding includes prosodic as well as segmental features. To test for this suprasegmental coding, an experiment was conducted in which subjects were…

  9. Typicality as a Dimension of Encoding

    ERIC Educational Resources Information Center

    Keller, Dennis; Kellas, George

    1978-01-01

    The salience of encoding attributes in instances of differing levels of category membership was examined using the release from proactive interference (PI) task with college students. Results are discussed in terms of providing converging evidence for Rosch's (1973,1975) theory of semantic category structure. (Editor/RK)

  10. Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with high‐resolution observations from MESSENGER

    PubMed Central

    Dewey, Ryan M.; Lawrence, David J.; Goldsten, John O.; Peplowski, Patrick N.; Korth, Haje; Slavin, James A.; Krimigis, Stamatios M.; Anderson, Brian J.; Ho, George C.; McNutt, Ralph L.; Raines, Jim M.; Schriver, David; Solomon, Sean C.

    2016-01-01

    Abstract The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X‐Ray Spectrometer and Gamma‐Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near‐tail region of Mercury's magnetosphere and are subsequently “injected” onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form “quasi‐trapped” populations. PMID:27830111

  11. A deep auto-encoder model for gene expression prediction.

    PubMed

    Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua

    2017-11-17

    Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.

  12. Chemical Space of DNA-Encoded Libraries.

    PubMed

    Franzini, Raphael M; Randolph, Cassie

    2016-07-28

    In recent years, DNA-encoded chemical libraries (DECLs) have attracted considerable attention as a potential discovery tool in drug development. Screening encoded libraries may offer advantages over conventional hit discovery approaches and has the potential to complement such methods in pharmaceutical research. As a result of the increased application of encoded libraries in drug discovery, a growing number of hit compounds are emerging in scientific literature. In this review we evaluate reported encoded library-derived structures and identify general trends of these compounds in relation to library design parameters. We in particular emphasize the combinatorial nature of these libraries. Generally, the reported molecules demonstrate the ability of this technology to afford hits suitable for further lead development, and on the basis of them, we derive guidelines for DECL design.

  13. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses

    NASA Astrophysics Data System (ADS)

    Ibrahim, Ahmed M. A.; Kim, Yonggyun

    2008-01-01

    Several immunosuppressive factors are associated with parasitism of an endoparasitoid wasp, Cotesia plutellae, on the diamondback moth, Plutella xylostella. C. plutellae bracovirus (CpBV) encodes a large number of putative protein tyrosine phosphatases (PTPs), which may play a role in inhibiting host cellular immunity. To address this inhibitory hypothesis of CpBV-PTPs, we performed transient expression of individual CpBV-PTPs in hemocytes of the beet armyworm, Spodoptera exigua, and analyzed their cellular immune responses. Two different forms of CpBV-PTPs were chosen and cloned into a eukaryotic expression vector under the control of the p10 promoter of baculovirus: one with the normal cysteine active site (CpBV-PTP1) and the other with a mutated active site (CpBV-PTP5). The hemocytes transfected with CpBV-PTP1 significantly increased in PTP activity compared to control hemocytes, but those with CpBV-PTP5 exhibited a significant decrease in the PTP activity. All transfected hemocytes exhibited a significant reduction in both cell spreading and encapsulation activities compared to control hemocytes. Co-transfection of CpBV-PTP1 together with its double-stranded RNA reduced the messenger RNA (mRNA) level of CpBV-PTP1 and resulted in recovery of both hemocyte behaviors. This is the first report demonstrating that the polydnaviral PTPs can manipulate PTP activity of the hemocytes to interrupt cellular immune responses.

  14. Pulse Vector-Excitation Speech Encoder

    NASA Technical Reports Server (NTRS)

    Davidson, Grant; Gersho, Allen

    1989-01-01

    Proposed pulse vector-excitation speech encoder (PVXC) encodes analog speech signals into digital representation for transmission or storage at rates below 5 kilobits per second. Produces high quality of reconstructed speech, but with less computation than required by comparable speech-encoding systems. Has some characteristics of multipulse linear predictive coding (MPLPC) and of code-excited linear prediction (CELP). System uses mathematical model of vocal tract in conjunction with set of excitation vectors and perceptually-based error criterion to synthesize natural-sounding speech.

  15. Thermal Effects on Camera Focal Length in Messenger Star Calibration and Orbital Imaging

    NASA Astrophysics Data System (ADS)

    Burmeister, S.; Elgner, S.; Preusker, F.; Stark, A.; Oberst, J.

    2018-04-01

    We analyse images taken by the MErcury Surface, Space ENviorment, GEochemistry, and Ranging (MESSENGER) spacecraft for the camera's thermal response in the harsh thermal environment near Mercury. Specifically, we study thermally induced variations in focal length of the Mercury Dual Imaging System (MDIS). Within the several hundreds of images of star fields, the Wide Angle Camera (WAC) typically captures up to 250 stars in one frame of the panchromatic channel. We measure star positions and relate these to the known star coordinates taken from the Tycho-2 catalogue. We solve for camera pointing, the focal length parameter and two non-symmetrical distortion parameters for each image. Using data from the temperature sensors on the camera focal plane we model a linear focal length function in the form of f(T) = A0 + A1 T. Next, we use images from MESSENGER's orbital mapping mission. We deal with large image blocks, typically used for the production of a high-resolution digital terrain models (DTM). We analyzed images from the combined quadrangles H03 and H07, a selected region, covered by approx. 10,600 images, in which we identified about 83,900 tiepoints. Using bundle block adjustments, we solved for the unknown coordinates of the control points, the pointing of the camera - as well as the camera's focal length. We then fit the above linear function with respect to the focal plane temperature. As a result, we find a complex response of the camera to thermal conditions of the spacecraft. To first order, we see a linear increase by approx. 0.0107 mm per degree temperature for the Narrow-Angle Camera (NAC). This is in agreement with the observed thermal response seen in images of the panchromatic channel of the WAC. Unfortunately, further comparisons of results from the two methods, both of which use different portions of the available image data, are limited. If leaving uncorrected, these effects may pose significant difficulties in the photogrammetric analysis

  16. Neutral Details Associated with Emotional Events are Encoded: Evidence from a Cued Recall Paradigm

    PubMed Central

    Steinmetz, Katherine R. Mickley; Knight, Aubrey G.; Kensinger, Elizabeth A.

    2015-01-01

    Enhanced emotional memory often comes at the cost of memory for surrounding background information. Narrowed-encoding theories suggest that this is due to narrowed attention for emotional information at encoding, leading to impaired encoding of background information. Recent work has suggested that an encoding-based theory may be insufficient. Here, we examined whether cued recall – instead of previously used recognition memory tasks - would reveal evidence that non-emotional information associated with emotional information was effectively encoded. Participants encoded positive, negative, or neutral objects on neutral backgrounds. At retrieval, they were given either the item or the background as a memory cue and were asked to recall the associated scene element. Counter to narrowed-encoding theories, emotional items were more likely than neutral items to trigger recall of the associated background. This finding suggests that there is a memory trace of this contextual information and that emotional cues may facilitate retrieval of this information. PMID:26220708

  17. Neutral details associated with emotional events are encoded: evidence from a cued recall paradigm.

    PubMed

    Mickley Steinmetz, Katherine R; Knight, Aubrey G; Kensinger, Elizabeth A

    2016-11-01

    Enhanced emotional memory often comes at the cost of memory for surrounding background information. Narrowed-encoding theories suggest that this is due to narrowed attention for emotional information at encoding, leading to impaired encoding of background information. Recent work has suggested that an encoding-based theory may be insufficient. Here, we examined whether cued recall-instead of previously used recognition memory tasks-would reveal evidence that non-emotional information associated with emotional information was effectively encoded. Participants encoded positive, negative, or neutral objects on neutral backgrounds. At retrieval, they were given either the item or the background as a memory cue and were asked to recall the associated scene element. Counter to narrowed-encoding theories, emotional items were more likely than neutral items to trigger recall of the associated background. This finding suggests that there is a memory trace of this contextual information and that emotional cues may facilitate retrieval of this information.

  18. Design of a CAN bus interface for photoelectric encoder in the spaceflight camera

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Wan, Qiu-hua; She, Rong-hong; Zhao, Chang-hai; Jiang, Yong

    2009-05-01

    In order to make photoelectric encoder usable in a spaceflight camera which adopts CAN bus as the communication method, CAN bus interface of the photoelectric encoder is designed in this paper. CAN bus interface hardware circuit of photoelectric encoder consists of CAN bus controller SJA 1000, CAN bus transceiver TJA1050 and singlechip. CAN bus interface controlling software program is completed in C language. A ten-meter shield twisted pair line is used as the transmission medium in the spaceflight camera, and speed rate is 600kbps.The experiments show that: the photoelectric encoder with CAN bus interface which has the advantages of more reliability, real-time, transfer rate and transfer distance overcomes communication line's shortcomings of classical photoelectric encoder system. The system works well in automatic measuring and controlling system.

  19. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 2; Hypothalamic Growth Hormone-Releasing Factor, Somatostatin Immunoreactivity, and Messenger RNA Levels in Microgravity

    NASA Technical Reports Server (NTRS)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1994-01-01

    Immunohistochemical analyses of hypothalamic hormones carried out on tissue from rats flown on an earlier flight (Cosmos 1887) suggested preferential effects on hypophysiotropic principles involved in the regulation of growth hormone secretion and synthesis. We found that staining in the median eminence for peptides that provide both stimulatory (growth hormone-releasing factor, or GRF) and inhibitory (somatostatin, SS) influences on growth hormone secretion were depressed in flight animals relative to synchronous controls, while staining for other neuroendocrine peptides, cortocotropin-releasing factor and arginine vasopressin, were similar in these two groups. While this suggests some selective impact of weightlessness on the two principal central nervous system regulators of growth hormone dynamics, the fact that both GRF- and SS-immunoreactivity (IR) appeared affected in the same direction is somewhat problematic, and makes tentative any intimation that effects on CNS control mechanisms may be etiologically significant contributors to the sequelae of reduced growth hormone secretion seen in prolonged space flight. To provide an additional, and more penetrating, analysis we attempted in hypothalamic material harvested from animals flown on Cosmos 2044 to complement immunohistochemical analyses of GRF and SS staining with quantitative, in situ assessments of messenger RNAs encoding the precursors for both these hormones.

  20. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.

    PubMed

    MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M

    2015-09-14

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR

  1. KENNEDY SPACE CENTER, FLA. - Shipped in an air-conditioned transportation van from NASA’s Goddard Space Flight Center in Greenbelt, Md., NASA’s MESSENGER spacecraft, the first Mercury orbiter, arrives at the Astrotech Space Operations processing facilities near KSC. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be offloaded and taken into a high bay clean room. After the spacecraft is removed from its shipping container, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - Shipped in an air-conditioned transportation van from NASA’s Goddard Space Flight Center in Greenbelt, Md., NASA’s MESSENGER spacecraft, the first Mercury orbiter, arrives at the Astrotech Space Operations processing facilities near KSC. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be offloaded and taken into a high bay clean room. After the spacecraft is removed from its shipping container, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  2. Isolation of a gene encoding a novel spectinomycin phosphotransferase from Legionella pneumophila.

    PubMed

    Suter, T M; Viswanathan, V K; Cianciotto, N P

    1997-06-01

    A gene capable of conferring spectinomycin resistance was isolated from Legionella pneumophila, the agent of Legionnaires' disease. The gene (aph) encoded a 36-kDa protein which has similarity to aminoglycoside phosphotransferases. Biochemical analysis confirmed that aph encodes a phosphotransferase which modifies spectinomycin but not hygromycin, kanamycin, or streptomycin. The strain that was the source of aph demonstrated resistance to spectinomycin, and Southern hybridizations determined that aph also exists in other legionellae.

  3. Isolation of a gene encoding a novel spectinomycin phosphotransferase from Legionella pneumophila.

    PubMed Central

    Suter, T M; Viswanathan, V K; Cianciotto, N P

    1997-01-01

    A gene capable of conferring spectinomycin resistance was isolated from Legionella pneumophila, the agent of Legionnaires' disease. The gene (aph) encoded a 36-kDa protein which has similarity to aminoglycoside phosphotransferases. Biochemical analysis confirmed that aph encodes a phosphotransferase which modifies spectinomycin but not hygromycin, kanamycin, or streptomycin. The strain that was the source of aph demonstrated resistance to spectinomycin, and Southern hybridizations determined that aph also exists in other legionellae. PMID:9174205

  4. A novel encoding scheme for effective biometric discretization: Linearly Separable Subcode.

    PubMed

    Lim, Meng-Hui; Teoh, Andrew Beng Jin

    2013-02-01

    Separability in a code is crucial in guaranteeing a decent Hamming-distance separation among the codewords. In multibit biometric discretization where a code is used for quantization-intervals labeling, separability is necessary for preserving distance dissimilarity when feature components are mapped from a discrete space to a Hamming space. In this paper, we examine separability of Binary Reflected Gray Code (BRGC) encoding and reveal its inadequacy in tackling interclass variation during the discrete-to-binary mapping, leading to a tradeoff between classification performance and entropy of binary output. To overcome this drawback, we put forward two encoding schemes exhibiting full-ideal and near-ideal separability capabilities, known as Linearly Separable Subcode (LSSC) and Partially Linearly Separable Subcode (PLSSC), respectively. These encoding schemes convert the conventional entropy-performance tradeoff into an entropy-redundancy tradeoff in the increase of code length. Extensive experimental results vindicate the superiority of our schemes over the existing encoding schemes in discretization performance. This opens up possibilities of achieving much greater classification performance with high output entropy.

  5. Schematic driven layout of Reed Solomon encoders

    NASA Technical Reports Server (NTRS)

    Arave, Kari; Canaris, John; Miles, Lowell; Whitaker, Sterling

    1992-01-01

    Two Reed Solomon error correcting encoders are presented. Schematic driven layout tools were used to create the encoder layouts. Special consideration had to be given to the architecture and logic to provide scalability of the encoder designs. Knowledge gained from these projects was used to create a more flexible schematic driven layout system.

  6. Groundbased Observations of sodium at Mercury during the First MESSENGER Flyby

    NASA Astrophysics Data System (ADS)

    Potter, A. E.; Killen, R. M.; Mouawad, N.

    2008-09-01

    Abstract Groundbased observations of the sodium exospheric emission at Mercury taken at the McMathPierce Solar Telescope at Kitt Peak, Arizona, were conducted during the period of January 1018, 2008. During these observations, we mapped the distribution of sodium D2 emission over the planet. The procedure for mapping sodium using an image slicer and tiptilt image stabilization has been described by Potter et al. [1]. The emission maps were used to construct maps of sodium column density. Herein we discuss the temporal and spatial variability of the sodium emission on the observed side of planet. Maps of surface reflectance in the continuum near the sodium D2 line (left ) and column abundance of sodium in the exosphere (right) are shown for January 12, 13 and 14, in Figures 1, 2, and 3, respectively. The maximum column density was in the range 1.15 to 1.40 x 1011 atoms/cm2 during this period. The sodium distribution is uneven, with higher values of column density at high southern and northern E P S C EPSC Abstracts, Vol. 3, EPSC2008-A-00311, 2008 European Planetary Science Congress, Author(s) 2008 latitudes. This may be the effect of solar radiation acceleration [2] which was near its maximum value, ranging from 164 to 171 cm/sec2, or 0.44 to 0.46 of surface gravity. As a consequence of high radiation pressure, sodium atoms are driven to high latitudes. However, the distribution for January 12 shows a considerable excess in high southern latitudes, suggesting a source of sodium at those latitudes. This dataset brackets observations taken with the Ultraviolet and Visible Spectrometer (UVVS) on the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) instrument [3] onboard the MESSENGER spacecraft [4] during the first flyby of the planet, January 14, 2008. An analogy between both data sets will be discussed. References [1] Potter, A.E., Plymate C., Keller C., Killen R.M., and Morgan T.H. (2006) Adv. Space Res. 38, 599603. [2] Potter, A.E., R. M. Killen, M

  7. Reagentless Measurement of Aminoglycoside Antibiotics in Blood Serum via an Electrochemical, Ribonucleic Acid Aptamer-Based Biosensor

    PubMed Central

    Rowe, Aaron A.; Miller, Erin A.; Plaxco, Kevin W.

    2011-01-01

    Biosensors built using ribonucleic acid (RNA) aptamers show promise as tools for point-of-care medical diagnostics, but they remain vulnerable to nuclease degradation when deployed in clinical samples. To explore methods for protecting RNA-based biosensors from such degradation we have constructed and characterized an electrochemical, aptamer-based sensor for the detection of aminoglycosidic antibiotics. We find that while this sensor achieves low micromolar detection limits and subminute equilibration times when challenged in buffer, it deteriorates rapidly when immersed directly in blood serum. In order to circumvent this problem, we have developed and tested sensors employing modified versions of the same aptamer. Our first effort to this end entailed the methylation of all of the 2′-hydroxyl groups outside of the aptamer’s antibiotic binding pocket. However, while devices employing this modified aptamer are as sensitive as those employing an unmodified parent, the modification fails to confer greater stability when the sensor is challenged directly in blood serum. As a second potentially naive alternative, we replaced the RNA bases in the aptamer with their more degradation-resistant deoxyribonucleic acid (DNA) equivalents. Surprisingly and unlike control DNA-stem loops employing other sequences, this DNA aptamer retains the ability to bind aminoglycosides, albeit with poorer affinity than the parent RNA aptamer. Unfortunately, however, while sensors fabricated using this DNA aptamer are stable in blood serum, its lower affinity pushes their detection limits above the therapeutically relevant range. Finally, we find that ultrafiltration through a low-molecular-weight-cutoff spin column rapidly and efficiently removes the relevant nucleases from serum samples spiked with gentamicin, allowing the convenient detection of this aminoglycoside at clinically relevant concentrations using the original RNA-based sensor. PMID:20687587

  8. Feasibility study of a real-time operating system for a multichannel MPEG-4 encoder

    NASA Astrophysics Data System (ADS)

    Lehtoranta, Olli; Hamalainen, Timo D.

    2005-03-01

    Feasibility of DSP/BIOS real-time operating system for a multi-channel MPEG-4 encoder is studied. Performances of two MPEG-4 encoder implementations with and without the operating system are compared in terms of encoding frame rate and memory requirements. The effects of task switching frequency and number of parallel video channels to the encoding frame rate are measured. The research is carried out on a 200 MHz TMS320C6201 fixed point DSP using QCIF (176x144 pixels) video format. Compared to a traditional DSP implementation without an operating system, inclusion of DSP/BIOS reduces total system throughput only by 1 QCIF frames/s. The operating system has 6 KB data memory overhead and program memory requirement of 15.7 KB. Hence, the overhead is considered low enough for resource critical mobile video applications.

  9. Memory as discrimination: a challenge to the encoding-retrieval match principle.

    PubMed

    Poirier, Marie; Nairne, James S; Morin, Caroline; Zimmermann, Friederike G S; Koutmeridou, Kyriaki; Fowler, James

    2012-01-01

    Four experiments contrasted the predictions of a general encoding-retrieval match hypothesis with those of a view claiming that the distinctiveness of the cue-target relationship is the causal factor in retrieval. In Experiments 1, 2, and 4 participants learned the relationships between 4 targets and trios of cues; in Experiment 3 there were 3 targets, each associated with a pair of cues. A learning phase was followed by a cued-recognition task where the correct target had to be identified based on 1 or more of the cues. The main performance measurement was response time. Learning was designed to lead to high accuracy so effects could be attributed to retrieval efficiency rather than to variations in encoding. The nature of the cues and targets was varied across experiments. The critical factor was whether each cue was uniquely associated with the to-be-recalled target. All experiments orthogonally manipulated (a) how discriminative-or uniquely associated with a target-each cue was and (b) the degree of overlap between the cues present during learning and those present at retrieval. The novel finding reported here is that increasing the encoding-retrieval match can hinder performance if the increase simultaneously reduces how well cues predict a target-that is, a cue's diagnostic value. Encoding-retrieval match was not the factor that determined the effectiveness of retrieval. Our findings suggest that increasing the encoding-retrieval match can lead to no change, an increase, or a decrease in retrieval performance.

  10. Effortful Retrieval Reduces Hippocampal Activity and Impairs Incidental Encoding

    PubMed Central

    Reas, Emilie T.; Brewer, James B.

    2014-01-01

    Functional imaging studies frequently report that the hippocampus is engaged by successful episodic memory retrieval. However, considering that concurrent encoding of the background environment occurs during retrieval and influences medial temporal lobe activity, it is plausible that hippocampal encoding functions are reduced with increased attentional engagement during effortful retrieval. Expanding upon evidence that retrieval efforts suppress activity in hippocampal regions implicated in encoding, this study examines the influence of retrieval effort on encoding performance and the interactive effects of encoding and retrieval on hippocampal and neocortical activity. Functional magnetic resonance imaging was conducted while subjects performed a word recognition task with incidental picture encoding. Both lower memory strength and increased search duration were associated with encoding failure and reduced hippocampal and default network activity. Activity in the anterior hippocampus tracked encoding, which was more strongly deactivated when incidental encoding was unsuccessful. These findings highlight potential contributions from background encoding processes to hippocampal activations during neuroimaging studies of episodic memory retrieval. PMID:23378272

  11. Germination Potential of Dormant and Nondormant Arabidopsis Seeds Is Driven by Distinct Recruitment of Messenger RNAs to Polysomes

    PubMed Central

    Basbouss-Serhal, Isabelle; Soubigou-Taconnat, Ludivine; Bailly, Christophe; Leymarie, Juliette

    2015-01-01

    Dormancy is a complex evolutionary trait that temporally prevents seed germination, thus allowing seedling growth at a favorable season. High-throughput analyses of transcriptomes have led to significant progress in understanding the molecular regulation of this process, but the role of posttranscriptional mechanisms has received little attention. In this work, we have studied the dynamics of messenger RNA association with polysomes and compared the transcriptome with the translatome in dormant and nondormant seeds of Arabidopsis (Arabidopsis thaliana) during their imbibition at 25°C in darkness, a temperature preventing germination of dormant seeds only. DNA microarray analysis revealed that 4,670 and 7,028 transcripts were differentially abundant in dormant and nondormant seeds in the transcriptome and the translatome, respectively. We show that there is no correlation between transcriptome and translatome and that germination regulation is also largely translational, implying a selective and dynamic recruitment of messenger RNAs to polysomes in both dormant and nondormant seeds. The study of 5′ untranslated region features revealed that GC content and the number of upstream open reading frames could play a role in selective translation occurring during germination. Gene Ontology clustering showed that the functions of polysome-associated transcripts differed between dormant and nondormant seeds and revealed actors in seed dormancy and germination. In conclusion, our results demonstrate the essential role of selective polysome loading in this biological process. PMID:26019300

  12. Properties of Hermean plasma belt: Numerical simulations and comparison with MESSENGER data

    NASA Astrophysics Data System (ADS)

    Herčík, David; Trávníček, Pavel M.; Å tverák, Å. těpán.; Hellinger, Petr

    2016-01-01

    Using a global hybrid model and test particle simulations we present a detailed analysis of the Hermean plasma belt structure. We investigate characteristic properties of quasi-trapped particle population characteristics and its behavior under different orientations of the interplanetary magnetic field. The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than the surrounding area. On the dayside the population exhibits loss cone distribution function matching the theoretical loss cone angle. The simulation results are in good agreement with in situ observations of MESSENGER's (MErcury Surface Space ENvironment GEochemistry, and Ranging) MAG and FIPS instruments.

  13. Infrared photodissociation spectroscopy of H(+)(H2O)6·M(m) (M = Ne, Ar, Kr, Xe, H2, N2, and CH4): messenger-dependent balance between H3O(+) and H5O2(+) core isomers.

    PubMed

    Mizuse, Kenta; Fujii, Asuka

    2011-04-21

    Although messenger mediated spectroscopy is a widely-used technique to study gas phase ionic species, effects of messengers themselves are not necessarily clear. In this study, we report infrared photodissociation spectroscopy of H(+)(H(2)O)(6)·M(m) (M = Ne, Ar, Kr, Xe, H(2), N(2), and CH(4)) in the OH stretch region to investigate messenger(M)-dependent cluster structures of the H(+)(H(2)O)(6) moiety. The H(+)(H(2)O)(6), the protonated water hexamer, is the smallest system in which both the H(3)O(+) (Eigen) and H(5)O(2)(+) (Zundel) hydrated proton motifs coexist. All the spectra show narrower band widths reflecting reduced internal energy (lower vibrational temperature) in comparison with bare H(+)(H(2)O)(6). The Xe-, CH(4)-, and N(2)-mediated spectra show additional band features due to the relatively strong perturbation of the messenger. The observed band patterns in the Ar-, Kr-, Xe-, N(2)-, and CH(4)-mediated spectra are attributed mainly to the "Zundel" type isomer, which is more stable. On the other hand, the Ne- and H(2)-mediated spectra are accounted for by a mixture of the "Eigen" and "Zundel" types, like that of bare H(+)(H(2)O)(6). These results suggest that a messenger sometimes imposes unexpected isomer-selectivity even though it has been thought to be inert. Plausible origins of the isomer-selectivity are also discussed.

  14. Data Encoding using Periodic Nano-Optical Features

    NASA Astrophysics Data System (ADS)

    Vosoogh-Grayli, Siamack

    Successful trials have been made through a designed algorithm to quantize, compress and optically encode unsigned 8 bit integer values in the form of images using Nano optical features. The periodicity of the Nano-scale features (Nano-gratings) have been designed and investigated both theoretically and experimentally to create distinct states of variation (three on states and one off state). The use of easy to manufacture and machine readable encoded data in secured authentication media has been employed previously in bar-codes for bi-state (binary) models and in color barcodes for multiple state models. This work has focused on implementing 4 states of variation for unit information through periodic Nano-optical structures that separate an incident wavelength into distinct colors (variation states) in order to create an encoding system. Compared to barcodes and magnetic stripes in secured finite length storage media the proposed system encodes and stores more data. The benefits of multiple states of variation in an encoding unit are 1) increased numerically representable range 2) increased storage density and 3) decreased number of typical set elements for any ergodic or semi-ergodic source that emits these encoding units. A thorough investigation has targeted the effects of the use of multi-varied state Nano-optical features on data storage density and consequent data transmission rates. The results show that use of Nano-optical features for encoding data yields a data storage density of circa 800 Kbits/in2 via the implementation of commercially available high resolution flatbed scanner systems for readout. Such storage density is far greater than commercial finite length secured storage media such as Barcode family with maximum practical density of 1kbits/in2 and highest density magnetic stripe cards with maximum density circa 3 Kbits/in2. The numerically representable range of the proposed encoding unit for 4 states of variation is [0 255]. The number of

  15. Eddy current-nulled convex optimized diffusion encoding (EN-CODE) for distortion-free diffusion tensor imaging with short echo times.

    PubMed

    Aliotta, Eric; Moulin, Kévin; Ennis, Daniel B

    2018-02-01

    To design and evaluate eddy current-nulled convex optimized diffusion encoding (EN-CODE) gradient waveforms for efficient diffusion tensor imaging (DTI) that is free of eddy current-induced image distortions. The EN-CODE framework was used to generate diffusion-encoding waveforms that are eddy current-compensated. The EN-CODE DTI waveform was compared with the existing eddy current-nulled twice refocused spin echo (TRSE) sequence as well as monopolar (MONO) and non-eddy current-compensated CODE in terms of echo time (TE) and image distortions. Comparisons were made in simulations, phantom experiments, and neuro imaging in 10 healthy volunteers. The EN-CODE sequence achieved eddy current compensation with a significantly shorter TE than TRSE (78 versus 96 ms) and a slightly shorter TE than MONO (78 versus 80 ms). Intravoxel signal variance was lower in phantoms with EN-CODE than with MONO (13.6 ± 11.6 versus 37.4 ± 25.8) and not different from TRSE (15.1 ± 11.6), indicating good robustness to eddy current-induced image distortions. Mean fractional anisotropy values in brain edges were also significantly lower with EN-CODE than with MONO (0.16 ± 0.01 versus 0.24 ± 0.02, P < 1 x 10 -5 ) and not different from TRSE (0.16 ± 0.01 versus 0.16 ± 0.01, P = nonsignificant). The EN-CODE sequence eliminated eddy current-induced image distortions in DTI with a TE comparable to MONO and substantially shorter than TRSE. Magn Reson Med 79:663-672, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Molecular mechanisms for protein-encoded inheritance

    PubMed Central

    Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2013-01-01

    Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598

  17. Nucleic Acid Encoding A Lectin-Derived Progenitor Cell Preservation Factor

    DOEpatents

    Colucci, M. Gabriella; Chrispeels, Maarten J.; Moore, Jeffrey G.

    2001-10-30

    The invention relates to an isolated nucleic acid molecule that encodes a protein that is effective to preserve progenitor cells, such as hematopoietic progenitor cells. The nucleic acid comprises a sequence defined by SEQ ID NO:1, a homolog thereof, or a fragment thereof. The encoded protein has an amino acid sequence that comprises a sequence defined by SEQ ID NO:2, a homolog thereof, or a fragment thereof that contains an amino acid sequence TNNVLQVT. Methods of using the encoded protein for preserving progenitor cells in vitro, ex vivo, and in vivo are also described. The invention, therefore, include methods such as myeloablation therapies for cancer treatment wherein myeloid reconstitution is facilitated by means of the specified protein. Other therapeutic utilities are also enabled through the invention, for example, expanding progenitor cell populations ex vivo to increase chances of engraftation, improving conditions for transporting and storing progenitor cells, and facilitating gene therapy to treat and cure a broad range of life-threatening hematologic diseases.

  18. Implementation-intention encoding in a prospective memory task enhances spontaneous retrieval of intentions.

    PubMed

    Rummel, Jan; Einstein, Gilles O; Rampey, Hilary

    2012-01-01

    Although forming implementation intentions (Gollwitzer, 1999) has been demonstrated to generally improve prospective memory, the underlying cognitive mechanisms are not completely understood. It has been proposed that implementation-intention encoding encourages spontaneous retrieval (McDaniel & Scullin, 2010). Alternatively one could assume the positive effect of implementation-intention encoding is caused by increased or more efficient monitoring for target cues. To test these alternative explanations and to further investigate the cognitive mechanisms underlying implementation-intention benefits, in two experiments participants formed the intention to respond to specific target cues in a lexical decision task with a special key, but then had to suspend this intention during an intervening word-categorisation task. Response times on trials directly following the occurrence of target cues in the intervening task were significantly slower with implementation-intention encoding than with standard encoding, indicating that spontaneous retrieval was increased (Experiment 1). However, when activation of the target cues was controlled for, similar slowing was found with both standard and implementation-intention encoding (Experiment 2). The results imply that implementation-intention encoding as well as increased target-cue activation foster spontaneous retrieval processes.

  19. Negative base encoding in optical linear algebra processors

    NASA Technical Reports Server (NTRS)

    Perlee, C.; Casasent, D.

    1986-01-01

    In the digital multiplication by analog convolution algorithm, the bits of two encoded numbers are convolved to form the product of the two numbers in mixed binary representation; this output can be easily converted to binary. Attention is presently given to negative base encoding, treating base -2 initially, and then showing that the negative base system can be readily extended to any radix. In general, negative base encoding in optical linear algebra processors represents a more efficient technique than either sign magnitude or 2's complement encoding, when the additions of digitally encoded products are performed in parallel.

  20. Role of sleep for encoding of emotional memory.

    PubMed

    Kaida, Kosuke; Niki, Kazuhisa; Born, Jan

    2015-05-01

    Total sleep deprivation (TSD) has been consistently found to impair encoding of information during ensuing wakefulness, probably through suppressing NonREM (non-rapid eye movement) sleep. However, a possible contribution of missing REM sleep to this encoding impairment after TSD has so far not been systematically examined in humans, although such contribution might be suspected in particular for emotional information. Here, in two separate experiments in young healthy men, we compared effects of TSD and of selective REM sleep deprivation (REMD), relative to respective control conditions of undisturbed sleep, on the subsequent encoding of neutral and emotional pictures. The pictures were presented in conjunction with colored frames to also assess related source memory. REMD was achieved by tones presented contingently upon initial signs of REM sleep. Encoding capabilities were examined in the evening (18:00h) after the experimental nights, by a picture recognition test right after encoding. TSD significantly decreased both the rate of correctly recognized pictures and of recalled frames associated with the pictures. The TSD effect was robust and translated into an impaired long term memory formation, as it was likewise observed on a second recognition testing one week after the encoding phase. Contrary to our expectation, REMD did not affect encoding in general, or particularly of emotional pictures. Also, REMD did not affect valence ratings of the encoded pictures. However, like TSD, REMD distinctly impaired vigilance at the time of encoding. Altogether, these findings indicate an importance of NonREM rather than REM sleep for the encoding of information that is independent of the emotionality of the materials. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Aerobic Exercise During Encoding Impairs Hippocampus-Dependent Memory.

    PubMed

    Soga, Keishi; Kamijo, Keita; Masaki, Hiroaki

    2017-08-01

    We investigated how aerobic exercise during encoding affects hippocampus-dependent memory through a source memory task that assessed hippocampus-independent familiarity and hippocampus-dependent recollection processes. Using a within-participants design, young adult participants performed a memory-encoding task while performing a cycling exercise or being seated. The subsequent retrieval phase was conducted while sitting on a chair. We assessed behavioral and event-related brain potential measures of familiarity and recollection processes during the retrieval phase. Results indicated that source accuracy was lower for encoding with exercise than for encoding in the resting condition. Event-related brain potential measures indicated that the parietal old/new effect, which has been linked to recollection processing, was observed in the exercise condition, whereas it was absent in the rest condition, which is indicative of exercise-induced hippocampal activation. These findings suggest that aerobic exercise during encoding impairs hippocampus-dependent memory, which may be attributed to inefficient source encoding during aerobic exercise.

  2. Toward high-resolution global topography of Mercury from MESSENGER orbital stereo imaging: A prototype model for the H6 (Kuiper) quadrangle

    NASA Astrophysics Data System (ADS)

    Preusker, Frank; Stark, Alexander; Oberst, Jürgen; Matz, Klaus-Dieter; Gwinner, Klaus; Roatsch, Thomas; Watters, Thomas R.

    2017-08-01

    We selected approximately 10,500 narrow-angle camera (NAC) and wide-angle camera (WAC) images of Mercury acquired from orbit by MESSENGER's Mercury Dual Imaging System (MDIS) with an average resolution of 150 m/pixel to compute a digital terrain model (DTM) for the H6 (Kuiper) quadrangle, which extends from 22.5°S to 22.5°N and from 288.0°E to 360.0°E. From the images, we identified about 21,100 stereo image combinations consisting of at least three images each. We applied sparse multi-image matching to derive approximately 250,000 tie-points representing 50,000 ground points. We used the tie-points to carry out a photogrammetric block adjustment, which improves the image pointing and the accuracy of the ground point positions in three dimensions from about 850 m to approximately 55 m. We then applied high-density (pixel-by-pixel) multi-image matching to derive about 45 billion tie-points. Benefitting from improved image pointing data achieved through photogrammetric block adjustment, we computed about 6.3 billion surface points. By interpolation, we generated a DTM with a lateral spacing of 221.7 m/pixel (192 pixels per degree) and a vertical accuracy of about 30 m. The comparison of the DTM with Mercury Laser Altimeter (MLA) profiles obtained over four years of MESSENGER orbital operations reveals that the DTM is geometrically very rigid. It may be used as a reference to identify MLA outliers (e.g., when MLA operated at its ranging limit) or to map offsets of laser altimeter tracks, presumably caused by residual spacecraft orbit and attitude errors. After the relevant outlier removals and corrections, MLA profiles show excellent agreement with topographic profiles from H6, with a root mean square height difference of only 88 m.

  3. Simultaneously driven linear and nonlinear spatial encoding fields in MRI.

    PubMed

    Gallichan, Daniel; Cocosco, Chris A; Dewdney, Andrew; Schultz, Gerrit; Welz, Anna; Hennig, Jürgen; Zaitsev, Maxim

    2011-03-01

    Spatial encoding in MRI is conventionally achieved by the application of switchable linear encoding fields. The general concept of the recently introduced PatLoc (Parallel Imaging Technique using Localized Gradients) encoding is to use nonlinear fields to achieve spatial encoding. Relaxing the requirement that the encoding fields must be linear may lead to improved gradient performance or reduced peripheral nerve stimulation. In this work, a custom-built insert coil capable of generating two independent quadratic encoding fields was driven with high-performance amplifiers within a clinical MR system. In combination with the three linear encoding fields, the combined hardware is capable of independently manipulating five spatial encoding fields. With the linear z-gradient used for slice-selection, there remain four separate channels to encode a 2D-image. To compare trajectories of such multidimensional encoding, the concept of a local k-space is developed. Through simulations, reconstructions using six gradient-encoding strategies were compared, including Cartesian encoding separately or simultaneously on both PatLoc and linear gradients as well as two versions of a radial-based in/out trajectory. Corresponding experiments confirmed that such multidimensional encoding is practically achievable and demonstrated that the new radial-based trajectory offers the PatLoc property of variable spatial resolution while maintaining finite resolution across the entire field-of-view. Copyright © 2010 Wiley-Liss, Inc.

  4. Using XML to encode TMA DES metadata.

    PubMed

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  5. Using XML to encode TMA DES metadata

    PubMed Central

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    Background: The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs. PMID:21969921

  6. A contourlet transform based algorithm for real-time video encoding

    NASA Astrophysics Data System (ADS)

    Katsigiannis, Stamos; Papaioannou, Georgios; Maroulis, Dimitris

    2012-06-01

    In recent years, real-time video communication over the internet has been widely utilized for applications like video conferencing. Streaming live video over heterogeneous IP networks, including wireless networks, requires video coding algorithms that can support various levels of quality in order to adapt to the network end-to-end bandwidth and transmitter/receiver resources. In this work, a scalable video coding and compression algorithm based on the Contourlet Transform is proposed. The algorithm allows for multiple levels of detail, without re-encoding the video frames, by just dropping the encoded information referring to higher resolution than needed. Compression is achieved by means of lossy and lossless methods, as well as variable bit rate encoding schemes. Furthermore, due to the transformation utilized, it does not suffer from blocking artifacts that occur with many widely adopted compression algorithms. Another highly advantageous characteristic of the algorithm is the suppression of noise induced by low-quality sensors usually encountered in web-cameras, due to the manipulation of the transform coefficients at the compression stage. The proposed algorithm is designed to introduce minimal coding delay, thus achieving real-time performance. Performance is enhanced by utilizing the vast computational capabilities of modern GPUs, providing satisfactory encoding and decoding times at relatively low cost. These characteristics make this method suitable for applications like video-conferencing that demand real-time performance, along with the highest visual quality possible for each user. Through the presented performance and quality evaluation of the algorithm, experimental results show that the proposed algorithm achieves better or comparable visual quality relative to other compression and encoding methods tested, while maintaining a satisfactory compression ratio. Especially at low bitrates, it provides more human-eye friendly images compared to

  7. Dissociable roles of default-mode regions during episodic encoding.

    PubMed

    Maillet, David; Rajah, M Natasha

    2014-04-01

    We investigated the role of distinct regions of the default-mode network (DMN) during memory encoding with fMRI. Subjects encoded words using either a strategy that emphasized self-referential (pleasantness) processing, or one that emphasized semantic (man-made/natural) processing. During encoding subjects were intermittently presented with thought probes to evaluate if they were concentrated and on-task or exhibiting task-unrelated thoughts (TUT). After the scanning session subjects performed a source retrieval task to determine which of two judgments they performed for each word at encoding. Source retrieval accuracy was higher for words encoded with the pleasantness vs. the man-made/natural task and there was a trend for higher performance for words preceding on-task vs. TUT reports. fMRI results show that left anterior medial PFC and left angular gyrus activity was greater during successful vs. unsuccessful encoding during both encoding tasks. Greater activity in left anterior cingulate and bilateral lateral temporal cortex was related successful vs. unsuccessful encoding only in the pleasantness task. In contrast, posterior cingulate, right anterior cingulate and right temporoparietal junction were activated to a greater extent in unsuccessful vs. successful encoding across tasks. Finally, activation in posterior cingulate and bilateral dorsolateral prefrontal cortex was related to TUT across tasks; moreover, we observed a conjunction in posterior cingulate between encoding failure and TUT. We conclude that DMN regions play dissociable roles during memory formation, and that their association with subsequent memory may depend on the manner in which information is encoded and retrieved. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  8. Source-constrained retrieval influences the encoding of new information.

    PubMed

    Danckert, Stacey L; MacLeod, Colin M; Fernandes, Myra A

    2011-11-01

    Jacoby, Shimizu, Daniels, and Rhodes (Psychonomic Bulletin & Review, 12, 852-857, 2005) showed that new words presented as foils among a list of old words that had been deeply encoded were themselves subsequently better recognized than new words presented as foils among a list of old words that had been shallowly encoded. In Experiment 1, by substituting a deep-versus-shallow imagery manipulation for the levels-of-processing manipulation, we demonstrated that the effect is robust and that it generalizes, also occurring with a different type of encoding. In Experiment 2, we provided more direct evidence for context-related encoding during tests of deeply encoded words, showing enhanced priming for foils presented among deeply encoded targets when participants made the same deep-encoding judgments on those items as had been made on the targets during study. In Experiment 3, we established that the findings from Experiment 2 are restricted to this specific deep judgment task and are not a general consequence of these foils being associated with deeply encoded items. These findings provide support for the source-constrained retrieval hypothesis of Jacoby, Shimizu, Daniels, and Rhodes: New information can be influenced by how surrounding items are encoded and retrieved, as long as the surrounding items recruit a coherent mode of processing.

  9. Two-layer contractive encodings for learning stable nonlinear features.

    PubMed

    Schulz, Hannes; Cho, Kyunghyun; Raiko, Tapani; Behnke, Sven

    2015-04-01

    Unsupervised learning of feature hierarchies is often a good strategy to initialize deep architectures for supervised learning. Most existing deep learning methods build these feature hierarchies layer by layer in a greedy fashion using either auto-encoders or restricted Boltzmann machines. Both yield encoders which compute linear projections of input followed by a smooth thresholding function. In this work, we demonstrate that these encoders fail to find stable features when the required computation is in the exclusive-or class. To overcome this limitation, we propose a two-layer encoder which is less restricted in the type of features it can learn. The proposed encoder is regularized by an extension of previous work on contractive regularization. This proposed two-layer contractive encoder potentially poses a more difficult optimization problem, and we further propose to linearly transform hidden neurons of the encoder to make learning easier. We demonstrate the advantages of the two-layer encoders qualitatively on artificially constructed datasets as well as commonly used benchmark datasets. We also conduct experiments on a semi-supervised learning task and show the benefits of the proposed two-layer encoders trained with the linear transformation of perceptrons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Chlorella viruses contain genes encoding a complete polyamine biosynthetic pathway

    PubMed Central

    Baumann, Sascha; Sander, Adrianne; Gurnon, James R.; Yanai-Balser, Giane; VanEtten, James L.; Piotrowski, Markus

    2007-01-01

    Two genes encoding the putative polyamine biosynthetic enzymes agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase (CPA) were cloned from the chloroviruses PBCV-1, NY-2A and MT325. They were expressed in Escherichia coli to form C-terminal (His)6-tagged proteins and the recombinant proteins were purified by Ni2+- binding affinity chromatography. The biochemical properties of the two enzymes are similar to AIH and CPA enzymes from Arabidopsis thaliana and Pseudomonas aeruginosa. Together with the previously known virus genes encoding ornithine/arginine decarboxlyase (ODC/ADC) and homospermidine synthase, the chloroviruses have genes that encode a complete set of functional enzymes that synthesize the rare polyamine homospermidine from arginine via agmatine, N-carbamoylputrescine and putrescine. The PBCV-1 aih and cpa genes are expressed early during virus infection together with the odc/adc gene, suggesting that biosynthesis of putrescine is important in early stages of viral replication. The aih and cpa genes are widespread in the chlorella viruses. PMID:17101165

  11. Encoding Orientation and the Remembering of Schizophrenic Young Adults

    ERIC Educational Resources Information Center

    Koh, Soon D.; Peterson, Rolf A.

    1978-01-01

    This research examines different types of encoding strategies, in addition to semantic and organizational encodings, and their effects on schizophrenics' remembering. Based on Craik and Lockhart (1972), i.e., memory performance is a function of depth of encoding processing, this analysis compares schizophrenics' encoding processing with that of…

  12. Systemic delivery of factor IX messenger RNA for protein replacement therapy

    PubMed Central

    Ramaswamy, Suvasini; Tonnu, Nina; Tachikawa, Kiyoshi; Limphong, Pattraranee; Vega, Jerel B.; Karmali, Priya P.; Chivukula, Pad; Verma, Inder M.

    2017-01-01

    Safe and efficient delivery of messenger RNAs for protein replacement therapies offers great promise but remains challenging. In this report, we demonstrate systemic, in vivo, nonviral mRNA delivery through lipid nanoparticles (LNPs) to treat a Factor IX (FIX)-deficient mouse model of hemophilia B. Delivery of human FIX (hFIX) mRNA encapsulated in our LUNAR LNPs results in a rapid pulse of FIX protein (within 4–6 h) that remains stable for up to 4–6 d and is therapeutically effective, like the recombinant human factor IX protein (rhFIX) that is the current standard of care. Extensive cytokine and liver enzyme profiling showed that repeated administration of the mRNA–LUNAR complex does not cause any adverse innate or adaptive immune responses in immune-competent, hemophilic mice. The levels of hFIX protein that were produced also remained consistent during repeated administrations. These results suggest that delivery of long mRNAs is a viable therapeutic alternative for many clotting disorders and for other hepatic diseases where recombinant proteins may be unaffordable or unsuitable. PMID:28202722

  13. QualityML: a dictionary for quality metadata encoding

    NASA Astrophysics Data System (ADS)

    Ninyerola, Miquel; Sevillano, Eva; Serral, Ivette; Pons, Xavier; Zabala, Alaitz; Bastin, Lucy; Masó, Joan

    2014-05-01

    The scenario of rapidly growing geodata catalogues requires tools focused on facilitate users the choice of products. Having quality fields populated in metadata allow the users to rank and then select the best fit-for-purpose products. In this direction, we have developed the QualityML (http://qualityml.geoviqua.org), a dictionary that contains hierarchically structured concepts to precisely define and relate quality levels: from quality classes to quality measurements. Generically, a quality element is the path that goes from the higher level (quality class) to the lowest levels (statistics or quality metrics). This path is used to encode quality of datasets in the corresponding metadata schemas. The benefits of having encoded quality, in the case of data producers, are related with improvements in their product discovery and better transmission of their characteristics. In the case of data users, particularly decision-makers, they would find quality and uncertainty measures to take the best decisions as well as perform dataset intercomparison. Also it allows other components (such as visualization, discovery, or comparison tools) to be quality-aware and interoperable. On one hand, the QualityML is a profile of the ISO geospatial metadata standards providing a set of rules for precisely documenting quality indicator parameters that is structured in 6 levels. On the other hand, QualityML includes semantics and vocabularies for the quality concepts. Whenever possible, if uses statistic expressions from the UncertML dictionary (http://www.uncertml.org) encoding. However it also extends UncertML to provide list of alternative metrics that are commonly used to quantify quality. A specific example, based on a temperature dataset, is shown below. The annual mean temperature map has been validated with independent in-situ measurements to obtain a global error of 0.5 ° C. Level 0: Quality class (e.g., Thematic accuracy) Level 1: Quality indicator (e.g., Quantitative

  14. Role of WhatsApp Messenger in the Laboratory Management System: A Boon to Communication.

    PubMed

    Dorwal, Pranav; Sachdev, Ritesh; Gautam, Dheeraj; Jain, Dharmendra; Sharma, Pooja; Tiwari, Assem Kumar; Raina, Vimarsh

    2016-01-01

    The revolution of internet and specifically mobile internet has occurred at a blinding pace over the last decade. With the advent of smart phones, the hand held device has become much more than a medium of voice calling. Healthcare has been catching up with the digital revolution in the form of Hospital Information System and Laboratory Information System. However, the advent of instant messaging services, which are abundantly used by the youth, can be used to improve communication and coordination among the various stake holders in the healthcare sector. We have tried to look at the impact of using the WhatsApp messenger service in the laboratory management system, by forming multiple groups of the various subsections of the laboratory. A total of 35 members used this service for a period of 3 months and their response was taken on a scale of 1 to 10. There was significant improvement in the communication in the form of sharing photographic evidence, information about accidents, critical alerts, duty rosters, academic activities and getting directives from seniors. There was also some increase in the load of adding information to the application and disturbance in the routine activities; but the benefits far outweighed the minor hassles. We thereby suggest and foresee another communication revolution which will change the way information is shared in a healthcare sector, with hospital specific dedicated apps.

  15. Encoding-related brain activity during deep processing of verbal materials: a PET study.

    PubMed

    Fujii, Toshikatsu; Okuda, Jiro; Tsukiura, Takashi; Ohtake, Hiroya; Suzuki, Maki; Kawashima, Ryuta; Itoh, Masatoshi; Fukuda, Hiroshi; Yamadori, Atsushi

    2002-12-01

    The recent advent of neuroimaging techniques provides an opportunity to examine brain regions related to a specific memory process such as episodic memory encoding. There is, however, a possibility that areas active during an assumed episodic memory encoding task, compared with a control task, involve not only areas directly relevant to episodic memory encoding processes but also areas associated with other cognitive processes for on-line information. We used positron emission tomography (PET) to differentiate these two kinds of regions. Normal volunteers were engaged in deep (semantic) or shallow (phonological) processing of new or repeated words during PET. Results showed that deep processing, compared with shallow processing, resulted in significantly better recognition performance and that this effect was associated with activation of various brain areas. Further analyses revealed that there were regions directly relevant to episodic memory encoding in the anterior part of the parahippocampal gyrus, inferior frontal gyrus, supramarginal gyrus, anterior cingulate gyrus, and medial frontal lobe in the left hemisphere. Our results demonstrated that several regions, including the medial temporal lobe, play a role in episodic memory encoding.

  16. Polymers mediate a one-pot route for functionalized quantum dot barcodes with a large encoding capacity.

    PubMed

    Zhang, Ding Sheng-Zi; Jiang, Yang; Wei, Dan; Wei, Xunbin; Xu, Hong; Gu, Hongchen

    2018-06-21

    With the increasing demands for high-throughput multiplexed bioassays, quantum dot (QD)-encoded microbeads as biocarriers for various bioreactions have attracted considerable attention. However, three key requirements for these biocarriers are still longstanding issues: a stable fluorescence intensity, a large encoding capacity and abundant surface functional groups. Here, a novel one-pot strategy is developed, generating functionalized QD-encoded microspheres with a strong fluorescence intensity and optical stability. With poly(styrene-co-maleic anhydride) (PSMA) molecules as mediators, the encapsulation of QDs and carboxylation of the bead surface are integrated together, greatly improving the preparation efficiency and guaranteeing their potential application in biodetection. Moreover, the mechanism for preparing QD-doped beads is further proposed, which helps to precisely manipulate the preparation process and accurately encode the beads. Through this approach, a single- and dual-color barcode library of QD-encoded microspheres has been successfully established, which demonstrates their great potential in suspension arrays.

  17. Mercury's Crustal Magnetic Field from MESSENGER Data

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Johnson, C.

    2017-12-01

    We present a regional spherical-harmonic based crustal magnetic field model for Mercury between latitudes 45° and 70° N, derived from MESSENGER magnetic field data. In addition to contributions from the core dynamo, the bow shock, and the magnetotail, Mercury's magnetic field is also influenced by interactions with the solar wind. The resulting field-aligned currents generate magnetic fields that are typically an order of magnitude stronger at spacecraft altitude than the field from sources within Mercury's crust. These current sources lie within the satellite path and so the resulting magnetic field can not be modeled using potential-field approaches. However, these fields are organized in the local-time frame and their spatial structure differs from that of the smaller-scale crustal field. We account for large-scale magnetic fields in the local-time reference frame by subtracting from the data a low-degree localized vector spherical-harmonic model including curl components fitted at satellite altitude. The residual data exhibit consistent signals across individual satellite tracks in the body fixed reference frame, similar to those obtained via more rudimentary along-track filtering approaches. We fit a regional internal-source spherical-harmonic model to the night-time radial component of the residual data, allowing a maximum spherical-harmonic degree of L = 150. Due to the cross-track spacing of the satellite tracks, spherical-harmonic degrees beyond L = 90 are damped. The strongest signals in the resulting model are in the region around the Caloris Basin and over Suisei Planitia, as observed previously. Regularization imposed in the modeling allows the field to be downward continued to the surface. The strongest surface fields are 30 nT. Furthermore, the regional power spectrum of the model shows a downward dipping slope between spherical-harmonic degrees 40 and 80, hinting that the main component of the crustal field lies deep within the crust.

  18. JPEG2000 encoding with perceptual distortion control.

    PubMed

    Liu, Zhen; Karam, Lina J; Watson, Andrew B

    2006-07-01

    In this paper, a new encoding approach is proposed to control the JPEG2000 encoding in order to reach a desired perceptual quality. The new method is based on a vision model that incorporates various masking effects of human visual perception and a perceptual distortion metric that takes spatial and spectral summation of individual quantization errors into account. Compared with the conventional rate-based distortion minimization JPEG2000 encoding, the new method provides a way to generate consistent quality images at a lower bit rate.

  19. Cocaine Administration and Its Withdrawal Enhance the Expression of Genes Encoding Histone-Modifying Enzymes and Histone Acetylation in the Rat Prefrontal Cortex.

    PubMed

    Sadakierska-Chudy, Anna; Frankowska, Małgorzata; Jastrzębska, Joanna; Wydra, Karolina; Miszkiel, Joanna; Sanak, Marek; Filip, Małgorzata

    2017-07-01

    Chronic exposure to cocaine, craving, and relapse are attributed to long-lasting changes in gene expression arising through epigenetic and transcriptional mechanisms. Although several brain regions are involved in these processes, the prefrontal cortex seems to play a crucial role not only in motivation and decision-making but also in extinction and seeking behavior. In this study, we applied cocaine self-administration and extinction training procedures in rats with a yoked triad to determine differentially expressed genes in prefrontal cortex. Microarray analysis showed significant upregulation of several genes encoding histone modification enzymes during early extinction training. Subsequent real-time PCR testing of these genes following cocaine self-administration or early (third day) and late (tenth day) extinction revealed elevated levels of their transcripts. Interestingly, we found the enrichment of Brd1 messenger RNA in rats self-administering cocaine that lasted until extinction training during cocaine withdrawal with concomitant increased acetylation of H3K9 and H4K8. However, despite elevated levels of methyl- and demethyltransferase-encoded transcripts, no changes in global di- and tri-methylation of histone H3 at lysine 4, 9, 27, and 79 were observed. Surprisingly, at the end of extinction training (10 days of cocaine withdrawal), most of the analyzed genes in the rats actively and passively administering cocaine returned to the control level. Together, the alterations identified in the rat prefrontal cortex may suggest enhanced chromatin remodeling and transcriptional activity induced by early cocaine abstinence; however, to know whether they are beneficial or not for the extinction of drug-seeking behavior, further in vivo evaluation is required.

  20. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, N.V.; Broekaert, W.F.; Namhai Chua; Kush, A.

    1993-02-16

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids.