Science.gov

Sample records for a-i mimetic peptide

  1. Apolipoprotein A-I Mimetic Peptides: Discordance Between In Vitro and In Vivo Properties-Brief Report.

    PubMed

    Ditiatkovski, Michael; Palsson, Jonatan; Chin-Dusting, Jaye; Remaley, Alan T; Sviridov, Dmitri

    2017-07-01

    Apolipoprotein A-I (apoA-I) mimetic peptides have antiatherogenic properties of high-density lipoprotein in vitro and have been shown to inhibit atherosclerosis in vivo. It is unclear, however, if each in vitro antiatherogenic property of these peptides translates to a corresponding activity in vivo, and if so, which of these contributes most to reduce atherosclerosis. The effect of 7 apoA-I mimetic peptides, which were developed to selectively reproduce a specific component of the antiatherogenic properties of apoA-I, on the development of atherosclerosis was investigated in apolipoprotein E-deficient mice fed a high-fat diet for 4 or 12 weeks. The peptides include those that selectively upregulate cholesterol efflux, or are anti-inflammatory, or have antioxidation properties. All the peptides studied effectively inhibited the in vivo development of atherosclerosis in this model to the same extent. However, none of the peptides had the same selective effect in vivo as they had exhibited in vitro. None of the tested peptides affected plasma lipoprotein profile; capacity of plasma to support cholesterol efflux was increased modestly and similarly for all peptides. There is a discordance between the selective in vitro and in vivo functional properties of apoA-I mimetic peptides, and the in vivo antiatherosclerotic effect of apoA-I-mimetic peptides is independent of their in vitro functional profile. Comparing the properties of apoA-I mimetic peptides in plasma rather than in the lipid-free state is better for predicting their in vivo effects on atherosclerosis. © 2017 American Heart Association, Inc.

  2. Sidedness of interfacial arginine residues and anti-atherogenicity of apolipoprotein A-I mimetic peptides

    PubMed Central

    Nayyar, Gaurav; Mishra, Vinod K.; Handattu, Shaila P.; Palgunachari, Mayakonda N.; Shin, Ronald; McPherson, David T.; Deivanayagam, Champion C. S.; Garber, David W.; Segrest, Jere P.; Anantharamaiah, G. M.

    2012-01-01

    To test the hypothesis that sidedness of interfacial arginine (Arg) in apoA-I mimetic peptides, similar to that observed in apoA-I (Bashtovyy, D. et al. 2011. Sequence conservation of apolipoprotein A-I affords novel insights into HDL structure-function. J. Lipid Res. 52: 435–450.), may be important for biological activity, we compared properties of 4F and analogs, [K4,15>R]4F and [K9,13>R]4F, with Lys>Arg substitutions on the right and left side, respectively, of the 4F amphipathic helix. Intraperitoneal administration of these peptides into female apoE null mice (n = 13 in each group) reduced en face lesions significantly compared with controls; 4F and [K4,15>R]4F were equally effective whereas [K9,13>R]4F was less effective. Turnover experiments indicated that [K4,15>R]4F reached the highest, whereas [K9,13>R]4F had the lowest, plasma peak levels with a similar half life as the [K4,15>R]4F analog. The half life of 4F was two times longer than the other two peptides. The order in their abilities to associate with HDL in human plasma, generation of apoA-I particles with pre-β mobility from isolated HDL, lipid associating ability, and sensitivity of lipid complexes to trypsin digestion was: 4F>[K4,15,>R]4F>[K9,13>R]4F. These studies support our hypothesis that the sidedness of interfacial Arg residues in the polar face of apoA-I mimetics results in differential biological properties. PMID:22377531

  3. Apolipoprotein A-I mimetic peptide helix number and helix linker influence potentially anti-atherogenic properties

    PubMed Central

    Wool, Geoffrey D.; Reardon, Catherine A.; Getz, Godfrey S.

    2008-01-01

    We hypothesize that apolipoprotein A-I (apoA-I) mimetic peptides better mimicking the punctuated α-helical repeats of full-length apoA-I are more anti-inflammatory and anti-atherogenic. This study compares a monomeric apoA-I mimetic helix to three different tandem helix peptides in vitro: 4F (18 mer), 4F-proline-4F (37 mer, Pro), 4F-alanine-4F (37 mer, Ala), and 4F-KVEPLRA-4F [the human apoA-I 4/5 interhelical sequence (IHS), 43 mer]. All peptides cleared turbid lipid suspensions, with 4F being most effective. In contrast to lipid clearance, tandem peptides were more effective at remodeling mouse HDL. All four peptides displaced apoA-I and apoE from the HDL, leaving a larger particle containing apoA-II and peptide. Peptide-remodeled HDL particles show no deficit in ABCG1 cholesterol efflux despite the loss of the majority of apoA-I. Tandem peptides show greater ability to efflux cholesterol from lipid-loaded murine macrophages, compared with 4F. Although 4F inhibited oxidation of purified mouse LDL, the Ala tandem peptide increased oxidation. We compared several tandem 4F-based peptides with monomeric 4F in assays that correlated with suggested anti-inflammatory/anti-atherogenic pathways. Tandem 4F-based peptides, which better mimic full-length apoA-I, exceed monomeric 4F in HDL remodeling and cholesterol efflux but not LDL oxidation protection. In addition, apoA-I mimetic peptides may increase reverse cholesterol transport through both ABCA1 as well as ABCG1 pathways. PMID:18323574

  4. ABCA1 (ATP-Binding Cassette Transporter A1) Mediates ApoA-I (Apolipoprotein A-I) and ApoA-I Mimetic Peptide Mobilization of Extracellular Cholesterol Microdomains Deposited by Macrophages.

    PubMed

    Jin, Xueting; Sviridov, Denis; Liu, Ying; Vaisman, Boris; Addadi, Lia; Remaley, Alan T; Kruth, Howard S

    2016-12-01

    We examined the function of ABCA1 (ATP-binding cassette transporter A1) in ApoA-I (apolipoprotein A-I) mobilization of cholesterol microdomains deposited into the extracellular matrix by cholesterol-enriched macrophages. We have also determined whether an ApoA-I mimetic peptide without and with complexing to sphingomyelin can mobilize macrophage-deposited cholesterol microdomains. Extracellular cholesterol microdomains deposited by cholesterol-enriched macrophages were detected with a monoclonal antibody, 58B1. ApoA-I and an ApoA-I mimetic peptide 5A mobilized cholesterol microdomains deposited by ABCA1 +/+ macrophages but not by ABCA1 -/- macrophages. In contrast, ApoA-I mimetic peptide 5A complexed with sphingomyelin could mobilize cholesterol microdomains deposited by ABCA1 -/- macrophages. Our findings show that a unique pool of extracellular cholesterol microdomains deposited by macrophages can be mobilized by both ApoA-I and an ApoA-I mimetic peptide but that mobilization depends on macrophage ABCA1. It is known that ABCA1 complexes ApoA-I and ApoA-I mimetic peptide with phospholipid, a cholesterol-solubilizing agent, explaining the requirement for ABCA1 in extracellular cholesterol microdomain mobilization. Importantly, ApoA-I mimetic peptide already complexed with phospholipid can mobilize macrophage-deposited extracellular cholesterol microdomains even in the absence of ABCA1. © 2016 American Heart Association, Inc.

  5. Preservation of biological function despite oxidative modification of the apolipoprotein A-I mimetic peptide 4F

    PubMed Central

    White, C. Roger; Datta, Geeta; Buck, Amanda K. W.; Chaddha, Manjula; Reddy, Gautam; Wilson, Landon; Palgunachari, Mayakonda N.; Abbasi, Mohammad; Anantharamaiah, G. M.

    2012-01-01

    Myeloperoxidase (MPO)-derived hypochlorous acid induces changes in HDL function via redox modifications at the level of apolipoprotein A-I (apoA-I). As 4F and apoA-I share structural and functional properties, we tested the hypothesis that 4F acts as a reactive substrate for hypochlorous acid (HOCl). 4F reduced the HOCl-mediated oxidation of the fluorescent substrate APF in a concentration-dependent manner (ED50 ∼ 56 ± 3 μM). This reaction induced changes in the physical properties of 4F. Addition of HOCl to 4F at molar ratios ranging from 1:1 to 3:1 reduced 4F band intensity on SDS-PAGE gels and was accompanied by the formation of a higher molecular weight species. Chromatographic studies showed a reduction in 4F peak area with increasing HOCl and the formation of new products. Mass spectral analyses of collected fractions revealed oxidation of the sole tryptophan (Trp) residue in 4F. 4F was equally susceptible to oxidation in the lipid-free and lipid-bound states. To determine whether Trp oxidation influenced its apoA-I mimetic properties, we monitored effects of HOCl on 4F-mediated lipid binding and ABCA1-dependent cholesterol efflux. Neither property was altered by HOCl. These results suggest that 4F serves as a reactive substrate for HOCl, an antioxidant response that does not influence the lipid binding and cholesterol effluxing capacities of the peptide. PMID:22589558

  6. Apolipoprotein A-I mimetic peptides inhibit expression and activity of hypoxia-inducible factor-1α in human ovarian cancer cell lines and a mouse ovarian cancer model.

    PubMed

    Gao, Feng; Chattopadhyay, Arnab; Navab, Mohamad; Grijalva, Victor; Su, Feng; Fogelman, Alan M; Reddy, Srinivasa T; Farias-Eisner, Robin

    2012-08-01

    Our previous results demonstrated that the apolipoprotein A-I (apoA-I) mimetic peptides L-4F and L-5F inhibit vascular endothelial growth factor production and tumor angiogenesis. The present study was designed to test whether apoA-I mimetic peptides inhibit the expression and activity of hypoxia-inducible factor-1α (HIF-1α), which plays a critical role in the production of angiogenic factors and angiogenesis. Immunohistochemistry staining was used to examine the expression of HIF-1α in tumor tissues. Immunoblotting, real-time polymerase chain reaction, immunofluorescence, and luciferase activity assays were used to determine the expression and activity of HIF-1α in human ovarian cancer cell lines. Immunohistochemistry staining demonstrated that L-4F treatment dramatically decreased HIF-1α expression in mouse ovarian tumor tissues. L-4F inhibited the expression and activity of HIF-1α induced by low oxygen concentration, cobalt chloride (CoCl(2), a hypoxia-mimic compound), lysophosphatidic acid, and insulin in two human ovarian cancer cell lines, OV2008 and CAOV-3. L-4F had no effect on the insulin-induced phosphorylation of Akt, but inhibited the activation of extracellular signal-regulated kinase and p70s6 kinase, leading to the inhibition of HIF-1α synthesis. Pretreatment with L-4F dramatically accelerated the proteasome-dependent protein degradation of HIF-1α in both insulin- and CoCl(2)-treated cells. The inhibitory effect of L-4F on HIF-1α expression is in part mediated by the reactive oxygen species-scavenging effect of L-4F. ApoA-I mimetic peptides inhibit the expression and activity of HIF-1α in both in vivo and in vitro models, suggesting the inhibition of HIF-1α may be a critical mechanism responsible for the suppression of tumor progression by apoA-I mimetic peptides.

  7. Cumulative Brain Injury from Motor Vehicle-Induced Whole-Body Vibration and Prevention by Human Apolipoprotein A-I Molecule Mimetic (4F) Peptide (an Apo A-I Mimetic)

    PubMed Central

    Yan, Ji-Geng; Zhang, Lin-ling; Agresti, Michael; Yan, Yuhui; LoGiudice, John; Sanger, James R.; Matloub, Hani S.; Pritchard, Kirkwood A.; Jaradeh, Safwan S.; Havlik, Robert

    2017-01-01

    Background Insidious cumulative brain injury from motor vehicle-induced whole-body vibration (MV-WBV) has not yet been studied. The objective of the present study is to validate whether whole-body vibration for long periods causes cumulative brain injury and impairment of the cerebral function. We also explored a preventive method for MV-WBV injury. Methods A study simulating whole-body vibration was conducted in 72 male Sprague-Dawley rats divided into 9 groups (N = 8): (1) 2-week normal control; (2) 2-week sham control (in the tube without vibration); (3) 2-week vibration (exposed to whole-body vibration at 30 Hz and .5 G acceleration for 4 hours/day, 5 days/week for 2 weeks; vibration parameters in the present study are similar to the most common driving conditions); (4) 4-week sham control; (5) 4-week vibration; (6) 4-week vibration with human apolipoprotein A-I molecule mimetic (4F)-preconditioning; (7) 8-week sham control; (8) 8-week vibration; and (9) 8-week 4F-preconditioning group. All the rats were evaluated by behavioral, physiological, and histological studies of the brain. Results Brain injury from vibration is a cumulative process starting with cerebral vasoconstriction, squeezing of the endothelial cells, increased free radicals, decreased nitric oxide, insufficient blood supply to the brain, and repeated reperfusion injury to brain neurons. In the 8-week vibration group, which indicated chronic brain edema, shrunken neuron numbers increased and whole neurons atrophied, which strongly correlated with neural functional impairment. There was no prominent brain neuronal injury in the 4F groups. Conclusions The present study demonstrated cumulative brain injury from MV-WBV and validated the preventive effects of 4F preconditioning. PMID:26433438

  8. Cumulative Brain Injury from Motor Vehicle-Induced Whole-Body Vibration and Prevention by Human Apolipoprotein A-I Molecule Mimetic (4F) Peptide (an Apo A-I Mimetic).

    PubMed

    Yan, Ji-Geng; Zhang, Lin-ling; Agresti, Michael; Yan, Yuhui; LoGiudice, John; Sanger, James R; Matloub, Hani S; Pritchard, Kirkwood A; Jaradeh, Safwan S; Havlik, Robert

    2015-12-01

    Insidious cumulative brain injury from motor vehicle-induced whole-body vibration (MV-WBV) has not yet been studied. The objective of the present study is to validate whether whole-body vibration for long periods causes cumulative brain injury and impairment of the cerebral function. We also explored a preventive method for MV-WBV injury. A study simulating whole-body vibration was conducted in 72 male Sprague-Dawley rats divided into 9 groups (N = 8): (1) 2-week normal control; (2) 2-week sham control (in the tube without vibration); (3) 2-week vibration (exposed to whole-body vibration at 30 Hz and .5 G acceleration for 4 hours/day, 5 days/week for 2 weeks; vibration parameters in the present study are similar to the most common driving conditions); (4) 4-week sham control; (5) 4-week vibration; (6) 4-week vibration with human apolipoprotein A-I molecule mimetic (4F)-preconditioning; (7) 8-week sham control; (8) 8-week vibration; and (9) 8-week 4F-preconditioning group. All the rats were evaluated by behavioral, physiological, and histological studies of the brain. Brain injury from vibration is a cumulative process starting with cerebral vasoconstriction, squeezing of the endothelial cells, increased free radicals, decreased nitric oxide, insufficient blood supply to the brain, and repeated reperfusion injury to brain neurons. In the 8-week vibration group, which indicated chronic brain edema, shrunken neuron numbers increased and whole neurons atrophied, which strongly correlated with neural functional impairment. There was no prominent brain neuronal injury in the 4F groups. The present study demonstrated cumulative brain injury from MV-WBV and validated the preventive effects of 4F preconditioning. Copyright © 2015 National Stroke Association. All rights reserved.

  9. The apolipoprotein A-I mimetic peptide, D-4F, alleviates ox-LDL-induced oxidative stress and promotes endothelial repair through the eNOS/HO-1 pathway.

    PubMed

    Liu, Donghui; Ding, Zhenzhen; Wu, Mengzhang; Xu, Wenqi; Qian, Mingming; Du, Qian; Zhang, Le; Cui, Ye; Zheng, Jianlan; Chang, He; Huang, Caihua; Lin, Donghai; Wang, Yan

    2017-04-01

    Apolipoprotein A-I (apoA-I) mimetic peptide exerts many anti-atherogenic properties. However, the underlying mechanisms related to the endothelial protective effects remain elusive. In this study, the apoA-I mimetic peptide, D-4F, was used. Proliferation assay, wound healing, and transwell migration experiments showed that D-4F improved the impaired endothelial proliferation and migration resulting from ox-LDL. Endothelial adhesion molecules expression and monocyte adhesion assay demonstrated that D-4F inhibited endothelial inflammation. Caspase-3 activation and TUNEL stain indicated that D-4F reduced endothelial cell apoptosis. A pivotal anti-oxidant enzyme, heme oxygenase-1 (HO-1) was upregulated by D-4F. The Akt/AMPK/eNOS pathways were involved in the expression of HO-1 induced by D-4F. Moreover, the anti-oxidation, pro-proliferation, and pro-migration capacities of D-4F were diminished by the inhibitors of both eNOS (L-NAME) and HO-1 (Znpp). Additionally, downregulation of ATP-binding cassette transporter A1 (ABCA1) by siRNA abolished the activation of Akt, AMPK and eNOS, and reduced the upregulation of HO-1 triggered by D-4F. Furthermore, D-4F promoted the reendothelialization of injured intima in carotid artery injury model of C57BL/6J mice in vivo. In summary, these findings suggested that D-4F might be a powerful candidate in the protection of endothelial cells and the prevention of cardiovascular disease (CVD). Copyright © 2017. Published by Elsevier Ltd.

  10. Apolipoproteins and apolipoprotein mimetic peptides modulate phagocyte trafficking through chemotactic activity.

    PubMed

    Madenspacher, Jennifer H; Azzam, Kathleen M; Gong, Wanghua; Gowdy, Kymberly M; Vitek, Michael P; Laskowitz, Daniel T; Remaley, Alan T; Wang, Ji Ming; Fessler, Michael B

    2012-12-21

    The plasma lipoprotein-associated apolipoproteins (apo) A-I and apoE have well described anti-inflammatory actions in the cardiovascular system, and mimetic peptides that retain these properties have been designed as therapeutics. The anti-inflammatory mechanisms of apolipoprotein mimetics, however, are incompletely defined. Whether circulating apolipoproteins and their mimetics regulate innate immune responses at mucosal surfaces, sites where transvascular emigration of leukocytes is required during inflammation, remains unclear. Herein, we report that Apoai(-/-) and Apoe(-/-) mice display enhanced recruitment of neutrophils to the airspace in response to both inhaled lipopolysaccharide and direct airway inoculation with CXCL1. Conversely, treatment with apoA-I (L-4F) or apoE (COG1410) mimetic peptides reduces airway neutrophilia. We identify suppression of CXCR2-directed chemotaxis as a mechanism underlying the apolipoprotein effect. Pursuing the possibility that L-4F might suppress chemotaxis through heterologous desensitization, we confirmed that L-4F itself induces chemotaxis of human PMNs and monocytes. L-4F, however, fails to induce a calcium flux. Further exploring structure-function relationships, we studied the alternate apoA-I mimetic L-37pA, a bihelical analog of L-4F with two Leu-Phe substitutions. We find that L-37pA induces calcium and chemotaxis through formyl peptide receptor (FPR)2/ALX, whereas its D-stereoisomer (i.e. D-37pA) blocks L-37pA signaling and induces chemotaxis but not calcium flux through an unidentified receptor. Taken together, apolipoprotein mimetic peptides are novel chemotactic agents that possess complex structure-activity relationships to multiple receptors, displaying anti-inflammatory efficacy against innate immune responses in the airway.

  11. Apolipoproteins and Apolipoprotein Mimetic Peptides Modulate Phagocyte Trafficking through Chemotactic Activity*

    PubMed Central

    Madenspacher, Jennifer H.; Azzam, Kathleen M.; Gong, Wanghua; Gowdy, Kymberly M.; Vitek, Michael P.; Laskowitz, Daniel T.; Remaley, Alan T.; Wang, Ji Ming; Fessler, Michael B.

    2012-01-01

    The plasma lipoprotein-associated apolipoproteins (apo) A-I and apoE have well described anti-inflammatory actions in the cardiovascular system, and mimetic peptides that retain these properties have been designed as therapeutics. The anti-inflammatory mechanisms of apolipoprotein mimetics, however, are incompletely defined. Whether circulating apolipoproteins and their mimetics regulate innate immune responses at mucosal surfaces, sites where transvascular emigration of leukocytes is required during inflammation, remains unclear. Herein, we report that Apoai−/− and Apoe−/− mice display enhanced recruitment of neutrophils to the airspace in response to both inhaled lipopolysaccharide and direct airway inoculation with CXCL1. Conversely, treatment with apoA-I (L-4F) or apoE (COG1410) mimetic peptides reduces airway neutrophilia. We identify suppression of CXCR2-directed chemotaxis as a mechanism underlying the apolipoprotein effect. Pursuing the possibility that L-4F might suppress chemotaxis through heterologous desensitization, we confirmed that L-4F itself induces chemotaxis of human PMNs and monocytes. L-4F, however, fails to induce a calcium flux. Further exploring structure-function relationships, we studied the alternate apoA-I mimetic L-37pA, a bihelical analog of L-4F with two Leu-Phe substitutions. We find that L-37pA induces calcium and chemotaxis through formyl peptide receptor (FPR)2/ALX, whereas its D-stereoisomer (i.e. D-37pA) blocks L-37pA signaling and induces chemotaxis but not calcium flux through an unidentified receptor. Taken together, apolipoprotein mimetic peptides are novel chemotactic agents that possess complex structure-activity relationships to multiple receptors, displaying anti-inflammatory efficacy against innate immune responses in the airway. PMID:23118226

  12. Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials.

    PubMed

    Edwards-Gayle, Charlotte J C; Hamley, Ian W

    2017-07-19

    Molecular self-assembly is a multi-disciplinary field of research, with potential chemical and biological applications. One of the main driving forces of self-assembly is molecular amphiphilicity, which can drive formation of complex and stable nanostructures. Self-assembling peptide and peptide conjugates have attracted great attention due to their biocompatibility, biodegradability and biofunctionality. Understanding assembly enables the better design of peptide amphiphiles which may form useful and functional nanostructures. This review covers self-assembly of amphiphilic peptides and peptide mimetic materials, as well as their potential applications.

  13. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers

    NASA Astrophysics Data System (ADS)

    Rexeisen, Emilie Lynn

    Many therapeutic strategies incorporate peptides into their designs to mimic the natural protein ligands found in vivo. A few examples are the short peptide sequences RGD and PHSRN that mimic the primary and synergy-binding domains of the extracellular matrix protein, fibronectin, which is recognized by the cell surface receptor, alpha5beta 1 integrin. Even though scaffold modification with biomimetic peptides remains one of the most promising approaches for tissue engineering, the use of these peptides in therapeutic tissue-engineered products and drug delivery systems available on the commercial market is limited because the peptides are not easily able to mimic the natural protein. The design of a peptide that can effectively target the alpha5beta1 integrin would greatly increase biomimetic scaffold therapeutic potential. A novel peptide containing both the RGD primary binding domain and PHSRN synergy-binding domain for fibronectin joined with the appropriate linker should bind alpha 5beta1 integrin more efficiently and lead to greater cell adhesion over RGD alone. Several fibronectin mimetic peptides were designed and coupled to dialkyl hydrocarbon tails to make peptide-amphiphiles. The peptides contained different linkers connecting the two binding domains and different spacers separating the hydrophobic tails from the hydrophilic headgroups. The peptide-amphiphiles were deposited on mica substrates using the Langmuir-Blodgett technique. Langmuir isotherms indicated that the peptide-amphiphiles that contained higher numbers of serine residues formed a more tightly packed monolayer, but the increased number of serines also made transferring the amphiphiles to the mica substrate more difficult. Atomic force microscopy (AFM) images of the bilayers showed that the headgroups might be bent, forming small divots in the surface. These divots may help expose the PHSRN synergy-binding domain. Parallel studies undertaken by fellow group members showed that human

  14. Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis

    NASA Astrophysics Data System (ADS)

    Yasa, I. Ceren; Gunduz, Nuray; Kilinc, Murat; Guler, Mustafa O.; Tekinay, Ayse B.

    2015-11-01

    Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells’ growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, “IKVAV”, and fibronectin-derived well known adhesive sequence, “RGD”, into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes.

  15. Metal stabilization of collagen and de novo designed mimetic peptides

    PubMed Central

    Parmar, Avanish S.; Xu, Fei; Pike, Douglas H.; Belure, Sandeep V.; Hasan, Nida F.; Drzewiecki, Kathryn E.; Shreiber, David I.; Nanda, Vikas

    2017-01-01

    We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacency of the carboxy-termini of the three chains makes this region an attractive target for introducing metal binding sites. We engineered His3 sites based on structural modeling constraints into a series of designed homotrimeric and heterotrimeric peptides, assessing the capacity of metal binding to improve stability and in the case of heterotrimers, affect specificity of assembly. Notable enhancements in stability for both homo and heteromeric systems were observed upon addition of zinc(II) and several other metal ions only when all three histidine ligands were present. Metal binding affinities were consistent with the expected Irving-Williams series for imidazole. Unlike other metals tested, copper(II) also bound to peptides lacking histidine ligands. Acetylation of the peptide N-termini prevented copper binding, indicating proline backbone amide metal-coordination at this site. Copper similarly stabilized animal extracted Type I collagen in a metal specific fashion, highlighting the potential importance of metal homeostasis within the extracellular matrix. PMID:26225466

  16. Metal Stabilization of Collagen and de Novo Designed Mimetic Peptides.

    PubMed

    Parmar, Avanish S; Xu, Fei; Pike, Douglas H; Belure, Sandeep V; Hasan, Nida F; Drzewiecki, Kathryn E; Shreiber, David I; Nanda, Vikas

    2015-08-18

    We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacency of the carboxy-termini of the three chains makes this region an attractive target for introducing metal binding sites. We engineered His3 sites based on structural modeling constraints into a series of designed homotrimeric and heterotrimeric peptides, assessing the capacity of metal binding to improve stability and in the case of heterotrimers, affect specificity of assembly. Notable enhancements in stability for both homo- and heteromeric systems were observed upon addition of zinc(II) and several other metal ions only when all three histidine ligands were present. Metal binding affinities were consistent with the expected Irving-Williams series for imidazole. Unlike other metals tested, copper(II) also bound to peptides lacking histidine ligands. Acetylation of the peptide N-termini prevented copper binding, indicating proline backbone amide metal-coordination at this site. Copper similarly stabilized animal extracted Type I collagen in a metal-specific fashion, highlighting the potential importance of metal homeostasis within the extracellular matrix.

  17. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers.

    PubMed

    Rexeisen, Emilie L; Fan, Wei; Pangburn, Todd O; Taribagil, Rajiv R; Bates, Frank S; Lodge, Timothy P; Tsapatsis, Michael; Kokkoli, Efrosini

    2010-02-02

    Single-tailed peptide-amphiphiles have been shown to form nanofibers in solution and gel after screening of their electrostatic charges, and those containing cell-binding motifs are promising as tissue engineering scaffolds. A fibronectin-mimetic peptide sequence was developed, containing both the primary binding domain RGD and the synergy binding domain PHSRN, which has shown superior cell adhesion properties over simple RGD sequences and fibronectin in 2D culture. In order to test this sequence in a 3D environment in the future, we have designed a C(16) single-tailed peptide-amphiphile, PR_g (with a peptide headgroup of GGGSSPHSRN(SG)(5)RGDSP), that forms nanofibers and a gel in solution without any screening of its positive charge. In this study, we characterized the self-assembly properties of the PR_g peptide-amphiphile via critical micelle concentration (CMC) measurements, circular dichroism (CD) spectroscopy, cryo-transmission electron microscopy (cryo-TEM), small angle neutron scattering (SANS), and rheology measurements. The CMC of the PR_g amphiphile was determined to be 38 microM. CD measurements showed that even though the peptide formed an unordered secondary structure, the peptide-amphiphile's spectrum after aging resembled more the spectrum of an alpha+beta protein. Cryo-TEM images of a 100 microM peptide-amphiphile solution showed individual nanofibers with a diameter of approximately 10 nm and lengths on the order of several micrometers. Images taken at higher concentrations (1 mM) show a high degree of bundling among the nanofibers, and at even higher concentrations (3 and 4 mM) SANS measurements also indicated that the peptide-amphiphile formed rod-shaped structures in solution. The peptide-amphiphile gel was monitored by parallel-plate rheometry, and the elastic modulus (G') was greater than the viscous modulus (G''), which indicates that PR_g forms a gel. The shear modulus for a 2 day old gel was measured to be approximately 500 Pa, which is

  18. A novel approach to oral apoA-I mimetic therapy[S

    PubMed Central

    Chattopadhyay, Arnab; Navab, Mohamad; Hough, Greg; Gao, Feng; Meriwether, David; Grijalva, Victor; Springstead, James R.; Palgnachari, Mayakonda N.; Namiri-Kalantari, Ryan; Su, Feng; Van Lenten, Brian J.; Wagner, Alan C.; Anantharamaiah, G. M.; Farias-Eisner, Robin; Reddy, Srinivasa T.; Fogelman, Alan M.

    2013-01-01

    Transgenic tomato plants were constructed with an empty vector (EV) or a vector expressing an apoA-I mimetic peptide, 6F. EV or 6F tomatoes were harvested, lyophilized, ground into powder, added to Western diet (WD) at 2.2% by weight, and fed to LDL receptor-null (LDLR−/−) mice at 45 mg/kg/day 6F. After 13 weeks, the percent of the aorta with lesions was 4.1 ± 4%, 3.3 ± 2.4%, and 1.9 ± 1.4% for WD, WD + EV, and WD + 6F, respectively (WD + 6F vs. WD, P = 0.0134; WD + 6F vs. WD + EV, P = 0.0386; WD + EV vs. WD, not significant). While body weight did not differ, plasma serum amyloid A (SAA), total cholesterol, triglycerides, and lysophosphatidic acid (LPA) levels were less in WD + 6F mice; P < 0.0295. HDL cholesterol and paroxonase-1 activity (PON) were higher in WD + 6F mice (P = 0.0055 and P = 0.0254, respectively), but not in WD + EV mice. Plasma SAA, total cholesterol, triglycerides, LPA, and 15-hydroxyeicosatetraenoic acid (HETE) levels positively correlated with lesions (P < 0.0001); HDL cholesterol and PON were inversely correlated (P < 0.0001). After feeding WD + 6F: i) intact 6F was detected in small intestine (but not in plasma); ii) small intestine LPA was decreased compared with WD + EV (P < 0.0469); and iii) small intestine LPA 18:2 positively correlated with the percent of the aorta with lesions (P < 0.0179). These data suggest that 6F acts in the small intestine and provides a novel approach to oral apoA-I mimetic therapy. PMID:23378594

  19. Ligand selectivity of a synthetic CXCR4 mimetic peptide.

    PubMed

    Groß, Andrea; Brox, Regine; Damm, Dominik; Tschammer, Nuška; Schmidt, Barbara; Eichler, Jutta

    2015-07-15

    The chemokine receptor CXCR4 belongs to the family of seven-transmembrane G-protein coupled receptors (GPCRs). It is activated by its natural ligand SDF-1α. In addition, CXCR4, along with CCR5, serve as coreceptors during HIV-1 entry into its target cell. Recently, we introduced a CXCR4 mimetic peptide, termed CX4-M1, which presents the three extracellular loops (ECLs) of the receptor. CX4-M1 was shown to selectively bind to gp120 of X4-tropic, that is, CXCR4 using, HIV-1, as well as to peptides that present the V3-loops of these gp120 proteins. Furthermore, CX4-M1 selectively inhibits infection of cells with X4-tropic HIV-1. We have now adapted the sequence of the ECLs presented by CX4-M1 to the recently published crystal structure of CXCR4. The binding behavior, as well as the effect on HIV-1 infection, of the resulting peptide (CX4-Mc) was very similar to CX4-M1, validating retrospectively the original design of CX4-M1. A peptide presenting the ECLs of CCR5 (CR5-M), on the other hand, did neither bind to gp120 from X4-tropic HIV-1, nor did it inhibit infection of cells with X4-tropic HIV-1. Furthermore, we could show that CX4-M1, as well as CX4-Mc, but not CR5-M, are selectively recognized by anti-CXCR4 antibodies, bind to SDF-1α, and also inhibit SDF-1α signaling, extending the scope of selective functional CXCR4 mimicry through CX4-M1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. SOCS1 Mimetic Peptide Suppresses Chronic Intraocular Inflammatory Disease (Uveitis)

    PubMed Central

    He, Chang; Yu, Cheng-Rong; Mattapallil, Mary J.; Sun, Lin

    2016-01-01

    Uveitis is a potentially sight-threatening disease characterized by repeated cycles of remission and recurrent inflammation. The JAK/STAT pathway regulates the differentiation of pathogenic Th1 and Th17 cells that mediate uveitis. A SOCS1 mimetic peptide (SOCS1-KIR) that inhibits JAK2/STAT1 pathways has recently been shown to suppress experimental autoimmune uveitis (EAU). However, it is not clear whether SOCS1-KIR ameliorated uveitis by targeting JAK/STAT pathways of pathogenic lymphocytes or via inhibition of macrophages and antigen-presenting cells that also enter the retina during EAU. To further investigate mechanisms that mediate SOCS1-KIR effects and evaluate the efficacy of SOCS1-KIR as an investigational drug for chronic uveitis, we induced EAU in rats by adoptive transfer of uveitogenic T-cells and monitored disease progression and severity by slit-lamp microscopy, histology, and optical coherence tomography. Topical administration of SOCS1-KIR ameliorated acute and chronic posterior uveitis by inhibiting Th17 cells and the recruitment of inflammatory cells into retina while promoting expansion of IL-10-producing Tregs. We further show that SOCS1-KIR conferred protection of resident retinal cells that play critical role in vision from cytotoxic effects of inflammatory cytokines by downregulating proapoptotic genes. Thus, SOCS1-KIR suppresses uveitis and confers neuroprotective effects and might be exploited as a noninvasive treatment for chronic uveitis. PMID:27703302

  1. Hierachical assembly of collagen mimetic peptides into biofunctional materials

    NASA Astrophysics Data System (ADS)

    Gleaton, Jeremy W.

    Collagen is a remarkably strong and prevalent protein distributed throughout nature and as such, collagen is an ideal material for a variety of medical applications. Research efforts for the development of synthetic collagen biomaterials is an area of rapid growth. Here we present two methods for the assembly of collagen mimetic peptides (CMPs). The initial approach prompts assembly of CMPs which contain modifications for metal ion-triggered assembly. Hierarchical assembly into triple helices, followed by formation of disks via hydrophobic interactions has been demonstrated. Metal-ion mediated assembly of these disks, using iron (II)-bipyrdine interactions, has been shown to form micron-sized cages. The nature of the final structures that form depends on the number of bipyridine moieties incorporated into the CMP. These hollow spheres encapsulate a range of molecular weight fluorescently labeled dextrans. Furthermore, they demonstrate a time dependent release of contents under a variety of thermal conditions. The second approach assembles CMPs via the copper-catalyzed alkyne-azide cycloaddition (CuAAC) and the strain-promoted alkyne-azide cycloaddition (SPAAC) reactions. CMPs that incorporate the unnatural amino acids L-propargylglycine and L-azidolysine form triple helices and demonstrate higher order assembly when reacted via CuAAC. Reaction of the alkyne/azide modified CMPs under CuAAC conditions was found to produce an crosslinked 3-dimensional network. Moreover, we demonstrate that polymers, such as, PEG, can be reacted with alkyne and azide CMP triple helices via CuAAC and SPAAC. This designed covalent CMP chemistry allows for high flexibility in integrating various chemical cues, such as cell growth and differentiation within the higher order structures.

  2. A Novel Peptide Thrombopoietin Mimetic Designing and Optimization Using Computational Approach.

    PubMed

    Singh, Vimal Kishor; Kumar, Neeraj; Kalsan, Manisha; Saini, Abhishek; Chandra, Ramesh

    2016-01-01

    Thrombopoietin receptor (TPOR) is a cytokine receptor protein present on the cell surface. The activation of TPOR by thrombopoietin (TPO) (a glycoprotein hormone) triggers an intracellular cascade of megakaryocytopoiesis for the formation of platelets. Recent studies on ex vivo megakaryocytopoiesis have evolved the possibilities of therapeutics uses. These findings have paved the way for the development of various TPO alternatives (recombinant TPO, peptide, and non-peptide TPO mimetics), which are useful in regenerative medicine. However, these alternatives possess various limitations such as induction of autoimmune effects, high production cost, low specificity, and hence activity. In the present study, a novel peptidic TPO mimetic was designed through computational studies by studying the binding sites of TPO and TMP to TPOR and analogs of known mimetics. Screening of combinatorial library was done through molecular docking using ClusPro. These studies indicated mimetic-9 as a significant molecule since it was found to have better binding score of -938.8 kcal/mol with seven hydrogen bonds and a high number of hydrophobic interactions, than known mimetic TMP with docking score of -798.4 kcal/mol and TMP dimer with docking score of -811.9 kcal/mol for TPOR. Mimetic9-TPOR complex was further assessed by the molecular dynamics simulation, and their complex was found to be stable with an RMSD value of 0.091 Å. While studying the parameters, mimetic-9 was found to have overall good physiochemical properties with positive grand average hydropathy (GRAVY) score and high instability index score and was found to be localized in the extracellular region. The designed mimetic-9 might prove to be a useful lead molecule for mimicking the role of TPO for in vitro platelet production with higher efficiency.

  3. Signal transduction mechanism of a peptide mimetic of interferon-gamma.

    PubMed

    Subramaniam, Prem S; Flowers, Lawrence O; Haider, S Mohammed I; Johnson, Howard M

    2004-05-11

    The C-terminus of interferon-gamma (IFNgamma) contains a nuclear localization sequence (NLS) required for the activation and nuclear translocation of the transcription factor STAT1alpha and induction of IFNgamma-activated genes. On the basis of this and other studies, we developed a peptide mimetic of IFNgamma that possesses the IFNgamma functions of antiviral activity and upregulation of MHC class II molecules. The mimetic also shares with IFNgamma the ability to induce the activation and nuclear translocation of STAT1alpha and the IFNgamma receptor (IFNGR)-1 subunit. The mimetic, IFNgamma(95-132), is a peptide that consists of the C-terminal residues 95-132 of murine IFNgamma and contains a required alpha-helical domain and the NLS of IFNgamma. In this study, we determined the mechanism of the intracellular action of the mimetic at the level of signal transduction. We show that the mimetic mediates the nuclear transport of IFNGR-1 through its interaction with IFNGR-1 cytoplasmic region 253-287 via both the helical region and the NLS of IFNgamma(95-132). Alanine substitutions of the NLS of the mimetic showed that the NLS was required for nuclear translocation and that the nuclear transport properties of the mimetic correlated with its ability to bind IFNGR-1. These data also show that the NLS of IFNgamma(95-132) can interact simultaneously with IFNGR-1 and the nuclear import machinery. We found that in in vitro nuclear transport assays tyrosine-phosphorylated STAT1alpha failed to undergo nuclear translocation in the presence of nuclear import factors, but was transported to nucleus in the presence of IFNgamma(95-132) and JAK2-phosphorylated IFNGR-1, to which STAT1alpha binds, as a complex of IFNgamma(95-132)/IFNGR-1/STAT1alpha. Thus, the mimetic, which possesses IFNgamma function, is directly involved as a chaperone in the nuclear transport of STAT1alpha and shares this mechanism of action with that previously described for IFNgamma. The mimetic, like IFNgamma, is

  4. Student-Driven Design of Peptide Mimetics: Microwave-Assisted Synthesis of Peptoid Oligomers

    ERIC Educational Resources Information Center

    Pohl, Nicola L. B.; Kirshenbaum, Kent; Yoo, Barney; Schulz, Nathan; Zea, Corbin J.; Streff, Jennifer M.; Schwarz, Kimberly L.

    2011-01-01

    An experiment for the undergraduate organic laboratory is described in which peptide mimetic oligomers called "peptoids" are built stepwise on a solid-phase resin. Students employ two modern strategies to facilitate rapid multistep syntheses: solid-phase techniques to obviate the need for intermediate purifications and microwave irradiation to…

  5. ApoA-I mimetic administration, but not increased apoA-I-containing HDL, inhibits tumour growth in a mouse model of inherited breast cancer.

    PubMed

    Cedó, Lídia; García-León, Annabel; Baila-Rueda, Lucía; Santos, David; Grijalva, Victor; Martínez-Cignoni, Melanie Raquel; Carbó, José M; Metso, Jari; López-Vilaró, Laura; Zorzano, Antonio; Valledor, Annabel F; Cenarro, Ana; Jauhiainen, Matti; Lerma, Enrique; Fogelman, Alan M; Reddy, Srinivasa T; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2016-11-03

    Low levels of high-density lipoprotein cholesterol (HDLc) have been associated with breast cancer risk, but several epidemiologic studies have reported contradictory results with regard to the relationship between apolipoprotein (apo) A-I and breast cancer. We aimed to determine the effects of human apoA-I overexpression and administration of specific apoA-I mimetic peptide (D-4F) on tumour progression by using mammary tumour virus-polyoma middle T-antigen transgenic (PyMT) mice as a model of inherited breast cancer. Expression of human apoA-I in the mice did not affect tumour onset and growth in PyMT transgenic mice, despite an increase in the HDLc level. In contrast, D-4F treatment significantly increased tumour latency and inhibited the development of tumours. The effects of D-4F on tumour development were independent of 27-hydroxycholesterol. However, D-4F treatment reduced the plasma oxidized low-density lipoprotein (oxLDL) levels in mice and prevented oxLDL-mediated proliferative response in human breast adenocarcinoma MCF-7 cells. In conclusion, our study shows that D-4F, but not apoA-I-containing HDL, hinders tumour growth in mice with inherited breast cancer in association with a higher protection against LDL oxidative modification.

  6. ApoA-I mimetic administration, but not increased apoA-I-containing HDL, inhibits tumour growth in a mouse model of inherited breast cancer

    PubMed Central

    Cedó, Lídia; García-León, Annabel; Baila-Rueda, Lucía; Santos, David; Grijalva, Victor; Martínez-Cignoni, Melanie Raquel; Carbó, José M.; Metso, Jari; López-Vilaró, Laura; Zorzano, Antonio; Valledor, Annabel F.; Cenarro, Ana; Jauhiainen, Matti; Lerma, Enrique; Fogelman, Alan M.; Reddy, Srinivasa T.; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2016-01-01

    Low levels of high-density lipoprotein cholesterol (HDLc) have been associated with breast cancer risk, but several epidemiologic studies have reported contradictory results with regard to the relationship between apolipoprotein (apo) A-I and breast cancer. We aimed to determine the effects of human apoA-I overexpression and administration of specific apoA-I mimetic peptide (D-4F) on tumour progression by using mammary tumour virus-polyoma middle T-antigen transgenic (PyMT) mice as a model of inherited breast cancer. Expression of human apoA-I in the mice did not affect tumour onset and growth in PyMT transgenic mice, despite an increase in the HDLc level. In contrast, D-4F treatment significantly increased tumour latency and inhibited the development of tumours. The effects of D-4F on tumour development were independent of 27-hydroxycholesterol. However, D-4F treatment reduced the plasma oxidized low-density lipoprotein (oxLDL) levels in mice and prevented oxLDL-mediated proliferative response in human breast adenocarcinoma MCF-7 cells. In conclusion, our study shows that D-4F, but not apoA-I-containing HDL, hinders tumour growth in mice with inherited breast cancer in association with a higher protection against LDL oxidative modification. PMID:27808249

  7. Bioactive Mimetics of Conotoxins and other Venom Peptides.

    PubMed

    Duggan, Peter J; Tuck, Kellie L

    2015-10-16

    Ziconotide (Prialt®), a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties.

  8. Molecular Design, Structures, and Activity of Antimicrobial Peptide-Mimetic Polymers

    PubMed Central

    Takahashi, Haruko; Palermo, Edmund F.; Yasuhara, Kazuma; Caputo, Gregory A.

    2014-01-01

    There is an urgent need for new antibiotics which are effective against drug-resistant bacteria without contributing to resistance development. We have designed and developed antimicrobial copolymers with cationic amphiphilic structures based on the mimicry of naturally occurring antimicrobial peptides. These copolymers exhibit potent antimicrobial activity against a broad spectrum of bacteria including methicillin-resistant Staphylococcus aureus with no adverse hemolytic activity. Notably, these polymers also did not result in any measurable resistance development in E. coli. The peptide-mimetic design principle offers significant flexibility and diversity in the creation of new antimicrobial materials and their potential biomedical applications. PMID:23832766

  9. Supramolecular assembly of multifunctional maspin-mimetic nanostructures as a potent peptide-based angiogenesis inhibitor

    DOE PAGES

    Zha, R. Helen; Sur, Shantanu; Boekhoven, Job; ...

    2014-11-08

    Aberrant angiogenesis plays a large role in pathologies ranging from tumor growth to macular degeneration. Anti-angiogenic proteins have thus come under scrutiny as versatile, potent therapeutics but face problems with purification and tissue retention. We report here on the synthesis of supramolecular nanostructures that mimic the anti-angiogenic activity of maspin, a class II tumor suppressor protein. These maspin-mimetic nanostructures are formed via self-assembly of small peptide amphiphiles containing the g-helix motif of maspin. Using tubulogenesis assays with human umbilical vein endothelial cells, we demonstrate that maspin-mimetic nanostructures show anti-angiogenic activity at concentrations that are significantly lower than those necessary formore » the g-helix peptide. Furthermore, in vivo assays in the chick chorioallantoic membrane show maspin-mimetic nanostructures to be effective over controls at inhibiting angiogenesis. Thus, in conclusion, the nanostructures investigated here offer an attractive alternative to the use of anti-angiogenic recombinant proteins in the treatment of cancer or other diseases involving abnormal blood vessel formation.« less

  10. The action of mimetic peptides on connexins protects fibroblasts from the negative effects of ischemia reperfusion.

    PubMed

    Glass, Beverley J; Hu, Rebecca G; Phillips, Anthony R J; Becker, David L

    2015-10-15

    Connexins have been proposed as a target for therapeutic treatment of a variety of conditions. The main approaches have been by antisense or small peptides specific against connexins. Some of these peptides enhance communication while others interfere with connexin binding partners or bind to the intracellular and extracellular loops of connexins. Here, we explored the mechanism of action of a connexin mimetic peptide by evaluating its effect on gap junction channels, connexin protein levels and hemichannel activity in fibroblast cells under normal conditions and following ischemia reperfusion injury which elevates Cx43 levels, increases hemichannel activity and causes cell death. Our results showed that the effects of the mimetic peptide were concentration-dependent. High concentrations (100-300 μM) significantly reduced Cx43 protein levels and GJIC within 2 h, while these effects did not appear until 6 h when using lower concentrations (10-30 μM). Cell death can be reduced when hemichannel opening and GJIC were minimised. © 2015. Published by The Company of Biologists Ltd.

  11. A synthetic connexin 43 mimetic peptide augments corneal wound healing.

    PubMed

    Moore, Keith; Bryant, Zachary J; Ghatnekar, Gautam; Singh, Udai P; Gourdie, Robert G; Potts, Jay D

    2013-10-01

    The ability to safely and quickly close wounds and lacerations is an area of need in regenerative medicine, with implications toward healing a wide range of tissues and wounds. Using an in vivo corneal injury model, our study applied a newly developed peptide capable of promotion of wound healing and epithelial regeneration. The alpha-carboxy terminus 1 (αCT1) peptide is a 25 amino acid peptide from the C-terminus of connexin 43 (Cx43), modified to promote cellular uptake. Previous studies applying αCT1 to excisional skin wounds in porcine models produced tissues having an overall reduced level of scar tissue and decreased healing time. Rapid metabolism of αCT1 in previous work led to the investigation of extended release on wound healing rate used in this study. Here we delivered αCT1 both directly, in a concentrated pluronic solution, and in a sustained system, using polymeric alginate-poly-l-ornithine (A-PLO) microcapsules. Cell toxicity analysis showed minimal cell-loss with microcapsule treatment. Measurement of wound healing using histology and fluorescence microscopy indicated significant reduction in healing time of αCT1 microcapsule treated rat corneas compared with controls (88% vs. 38%). RT-PCR analysis showed an initial up regulation followed by down regulation of the gene keratin-19 (Krt19). Zonula occludens 1 (ZO-1) showed an opposite down regulation followed by an up regulation whereas Cx43 showed a biphasic response. Inflammatory indexes demonstrated a reduction in the inflammation of corneas treated with αCT1 microcapsules when compared with pluronic gel vehicle. These results suggest αCT1, when applied in a sustained release system, acts as a beneficial wound healing treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Collagen mimetic peptide engineered M13 bacteriophage for collagen targeting and imaging in cancer.

    PubMed

    Jin, Hyo-Eon; Farr, Rebecca; Lee, Seung-Wuk

    2014-11-01

    Collagens are over-expressed in various human cancers and subsequently degraded and denatured by proteolytic enzymes, thus making them a target for diagnostics and therapeutics. Genetically engineered bacteriophage (phage) is a promising candidate for the development of imaging or therapeutic materials for cancer collagen targeting due to its promising structural features. We genetically engineered M13 phages with two functional peptides, collagen mimetic peptide and streptavidin binding peptide, on their minor and major coat proteins, respectively. The resulting engineered phage functions as a therapeutic or imaging material to target degraded and denatured collagens in cancerous tissues. We demonstrated that the engineered phages are able to target and label abnormal collagens expressed on A549 human lung adenocarcinoma cells after the conjugation with streptavidin-linked fluorescent agents. Our engineered collagen binding phage could be a useful platform for abnormal collagen imaging and drug delivery in various collagen-related diseases. Published by Elsevier Ltd.

  13. Activity of Potent and Selective Host Defense Peptide Mimetics in Mouse Models of Oral Candidiasis

    PubMed Central

    Ryan, Lisa K.; Freeman, Katie B.; Masso-Silva, Jorge A.; Falkovsky, Klaudia; Aloyouny, Ashwag; Markowitz, Kenneth; Hise, Amy G.; Fatahzadeh, Mahnaz; Scott, Richard W.

    2014-01-01

    There is a strong need for new broadly active antifungal agents for the treatment of oral candidiasis that not only are active against many species of Candida, including drug-resistant strains, but also evade microbial countermeasures which may lead to resistance. Host defense peptides (HDPs) can provide a foundation for the development of such agents. Toward this end, we have developed fully synthetic, small-molecule, nonpeptide mimetics of the HDPs that improve safety and other pharmaceutical properties. Here we describe the identification of several HDP mimetics that are broadly active against C. albicans and other species of Candida, rapidly fungicidal, and active against yeast and hyphal cultures and that exhibit low cytotoxicity for mammalian cells. Importantly, specificity for Candida over commensal bacteria was also evident, thereby minimizing potential damage to the endogenous microbiome which otherwise could favor fungal overgrowth. Three compounds were tested as topical agents in two different mouse models of oral candidiasis and were found to be highly active. Following single-dose administrations, total Candida burdens in tongues of infected animals were reduced up to three logs. These studies highlight the potential of HDP mimetics as a new tool in the antifungal arsenal for the treatment of oral candidiasis. PMID:24752272

  14. Combining basal insulin analogs with glucagon-like peptide-1 mimetics.

    PubMed

    Perfetti, Riccardo

    2011-09-01

    Basal insulin analogs are recognized as an effective method of achieving and maintaining glycemic control for patients with type 2 diabetes. However, the progressive nature of the disease means that some individuals may require additional ways to maintain their glycemic goals. Intensification in these circumstances has traditionally been achieved by the addition of short-acting insulin to cover postprandial glucose excursions that are not targeted by basal insulin. However, intensive insulin regimens are associated with a higher risk of hypoglycemia and weight gain, which can contribute to a greater burden on patients. The combination of basal insulin with a glucagon-like peptide-1 (GLP-1) mimetic is a potentially attractive solution to this problem for some patients with type 2 diabetes. GLP-1 mimetics target postprandial glucose and should complement the activity of basal insulins; they are also associated with a relatively low risk of associated hypoglycemia and moderate, but significant, weight loss. Although the combination has not been approved by regulatory authorities, preliminary evidence from mostly small-scale studies suggests that basal insulins in combination with GLP-1 mimetics do provide improvements in A1c and postprandial glucose with concomitant weight loss and no marked increase in the risk of hypoglycemia. These results are promising, but further studies are required, including comparisons with basal-bolus therapy, before the complex value of this association can be fully appreciated.

  15. Combining Basal Insulin Analogs with Glucagon-Like Peptide-1 Mimetics

    PubMed Central

    2011-01-01

    Abstract Basal insulin analogs are recognized as an effective method of achieving and maintaining glycemic control for patients with type 2 diabetes. However, the progressive nature of the disease means that some individuals may require additional ways to maintain their glycemic goals. Intensification in these circumstances has traditionally been achieved by the addition of short-acting insulin to cover postprandial glucose excursions that are not targeted by basal insulin. However, intensive insulin regimens are associated with a higher risk of hypoglycemia and weight gain, which can contribute to a greater burden on patients. The combination of basal insulin with a glucagon-like peptide-1 (GLP-1) mimetic is a potentially attractive solution to this problem for some patients with type 2 diabetes. GLP-1 mimetics target postprandial glucose and should complement the activity of basal insulins; they are also associated with a relatively low risk of associated hypoglycemia and moderate, but significant, weight loss. Although the combination has not been approved by regulatory authorities, preliminary evidence from mostly small-scale studies suggests that basal insulins in combination with GLP-1 mimetics do provide improvements in A1c and postprandial glucose with concomitant weight loss and no marked increase in the risk of hypoglycemia. These results are promising, but further studies are required, including comparisons with basal–bolus therapy, before the complex value of this association can be fully appreciated. PMID:21711120

  16. Structurally Ordered Nanowire Formation from Co-Assembly of DNA Origami and Collagen-Mimetic Peptides

    DOE PAGES

    Jiang, Tao; Meyer, Travis A.; Modlin, Charles; ...

    2017-09-26

    In this paper, we describe the co-assembly of two different building units: collagen-mimetic peptides and DNA origami. Two peptides CP ++ and sCP ++ are designed with a sequence comprising a central block (Pro-Hyp-Gly) and two positively charged domains (Pro-Arg-Gly) at both N- and C-termini. Co-assembly of peptides and DNA origami two-layer (TL) nanosheets affords the formation of one-dimensional nanowires with repeating periodicity of similar to 10 nm. Structural analyses suggest a face-to-face stacking of DNA nanosheets with peptides aligned perpendicularly to the sheet surfaces. We demonstrate the potential of selective peptide-DNA association between face-to-face and edge-to-edge packing by tailoringmore » the size of DNA nanostructures. Finally, this study presents an attractive strategy to create hybrid biomolecular assemblies from peptide and DNA-based building blocks that takes advantage of the intrinsic chemical and physical properties of the respective components to encode structural and, potentially, functional complexity within readily accessible biomimetic materials.« less

  17. Structurally Ordered Nanowire Formation from Co-Assembly of DNA Origami and Collagen-Mimetic Peptides

    SciTech Connect

    Jiang, Tao; Meyer, Travis A.; Modlin, Charles

    2017-10-02

    We describe the co-assembly of two different building units: collagen-mimetic peptides and DNA origami. Two peptides CP++ and sCP(++) are designed with a sequence comprising a central block (Pro-Hyp-Gly) and two positively charged domains (Pro-Arg-Gly) at both N- and C-termini. Co-assembly of peptides and DNA origami two-layer (TL) nanosheets affords the formation of one-dimensional nanowires with repeating periodicity of similar to 10 nm. Structural analyses suggest a face-to-face stacking of DNA nanosheets with peptides aligned perpendicularly to the sheet surfaces. We demonstrate the potential of selective peptide-DNA association between face-to-face and edge-to-edge packing by tailoring the size of DNA nanostructures.more » This study presents an attractive strategy to create hybrid biomolecular assemblies from peptide and DNA-based building blocks that takes advantage of the intrinsic chemical and physical properties of the respective components to encode structural and, potentially, functional complexity within readily accessible biomimetic materials.« less

  18. The apolipoprotein-AI mimetic peptide L4F at a modest dose does not attenuate weight gain, inflammation, or atherosclerosis in LDLR-null mice.

    PubMed

    Averill, Michelle M; Kim, Eung Ju; Goodspeed, Leela; Wang, Shari; Subramanian, Savitha; Den Hartigh, Laura J; Tang, Chongren; Ding, Yilei; Reardon, Catherine A; Getz, Godfrey S; Chait, Alan

    2014-01-01

    High density lipoprotein (HDL) cholesterol levels are inversely related to cardiovascular disease risk and associated with a reduced risk of type 2 diabetes. Apolipoprotein A-I (apoA-I; major HDL protein) mimetics have been reported to reduce atherosclerosis and decrease adiposity. This study investigated the effect of L4F mimetic peptide and apoA-I overexpression on weight gain, insulin resistance, and atherosclerosis in an LDL receptor deficient (Ldlr-/-) model fed a high fat high sucrose with cholesterol (HFHSC) diet. Studies in differentiated 3T3-L1 adipocytes tested whether L4F could inhibit palmitate-induced adipocyte inflammation. In vivo studies used male Ldlr-/- mice fed a HFHSC diet for 12 weeks and were injected daily with L4F (100 µg/mouse) subcutaneously during the last 8 weeks. Wild-type and apoA-I overexpressing Ldlr-/- mice were fed HFHSC diet for 16 weeks. Neither L4F administration nor apoA-I overexpression affected weight gain, total plasma cholesterol or triglycerides in our studies. While pre-treatment of 3T3-L1 adipocytes with either L4F or HDL abolished palmitate-induced cytokine expression in vitro, L4F treatment did not affect circulating or adipose tissue inflammatory markers in vivo. Neither L4F administration nor apoA-I overexpression affected glucose tolerance. ApoA-I overexpression significantly reduced atherosclerotic lesion size, yet L4F treatment did not affect atherosclerosis. Our results suggest that neither L4F (100 µg/day/mouse) nor apoA-I overexpression affects adiposity or insulin resistance in this model. We also were unable to confirm a reduction in atherosclerosis with L4F in our particular model. Further studies on the effect of apoA-I mimetics on atherosclerosis and insulin resistance in a variety of dietary contexts are warranted.

  19. The Apolipoprotein-AI Mimetic Peptide L4F at a Modest Dose Does Not Attenuate Weight Gain, Inflammation, or Atherosclerosis in LDLR-Null Mice

    PubMed Central

    Averill, Michelle M.; Kim, Eung Ju; Goodspeed, Leela; Wang, Shari; Subramanian, Savitha; Den Hartigh, Laura J.; Tang, Chongren; Ding, Yilei; Reardon, Catherine A.; Getz, Godfrey S.; Chait, Alan

    2014-01-01

    Objective High density lipoprotein (HDL) cholesterol levels are inversely related to cardiovascular disease risk and associated with a reduced risk of type 2 diabetes. Apolipoprotein A-I (apoA-I; major HDL protein) mimetics have been reported to reduce atherosclerosis and decrease adiposity. This study investigated the effect of L4F mimetic peptide and apoA-I overexpression on weight gain, insulin resistance, and atherosclerosis in an LDL receptor deficient (Ldlr-/-) model fed a high fat high sucrose with cholesterol (HFHSC) diet. Methods Studies in differentiated 3T3-L1 adipocytes tested whether L4F could inhibit palmitate-induced adipocyte inflammation. In vivo studies used male Ldlr-/- mice fed a HFHSC diet for 12 weeks and were injected daily with L4F (100 µg/mouse) subcutaneously during the last 8 weeks. Wild-type and apoA-I overexpressing Ldlr-/- mice were fed HFHSC diet for 16 weeks. Results Neither L4F administration nor apoA-I overexpression affected weight gain, total plasma cholesterol or triglycerides in our studies. While pre-treatment of 3T3-L1 adipocytes with either L4F or HDL abolished palmitate-induced cytokine expression in vitro, L4F treatment did not affect circulating or adipose tissue inflammatory markers in vivo. Neither L4F administration nor apoA-I overexpression affected glucose tolerance. ApoA-I overexpression significantly reduced atherosclerotic lesion size, yet L4F treatment did not affect atherosclerosis. Conclusion Our results suggest that neither L4F (100 µg/day/mouse) nor apoA-I overexpression affects adiposity or insulin resistance in this model. We also were unable to confirm a reduction in atherosclerosis with L4F in our particular model. Further studies on the effect of apoA-I mimetics on atherosclerosis and insulin resistance in a variety of dietary contexts are warranted. PMID:25286043

  20. Collagen-binding VEGF mimetic peptide: Structure, matrix interaction, and endothelial cell activation

    NASA Astrophysics Data System (ADS)

    Chan, Tania R.

    Long term survival of artificial tissue constructs depends greatly on proper vascularization. In nature, differentiation of endothelial cells and formation of vasculature are directed by dynamic spatio-temporal cues in the extracellular matrix that are difficult to reproduce in vitro. In this dissertation, we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF), which can be used to encode spatially controlled angiogenic signals in collagen-based scaffolds. The peptide, QKCMP, contains a collagen mimetic domain (CMP) that binds to type I collagen by a unique triple helix hybridization mechanism and a VEGF mimetic domain (QK) with pro-angiogenic activity. We demonstrate QKCMP's ability to hybridize with native and heat denatured collagens through a series of binding studies on collagen and gelatin substrates. Circular dichroism experiments show that the peptide retains the triple helical structure vital for collagen binding, and surface plasmon resonance study confirms the molecular interaction between the peptide and collagen strands. Cell culture studies demonstrate QKCMP's ability to induce endothelial cell morphogenesis and network formation as a matrix-bound factor in 2D and 3D collagen scaffolds. We also show that the peptide can be used to spatially modify collagen-based substrates to promote localized endothelial cell activation and network formation. To probe the biological events that govern these angiogenic cellular responses, we investigated the cell signaling pathways activated by collagen-bound QKCMP and determined short and long-term endothelial cell response profiles for p38, ERK1/2, and Akt signal transduction cascades. Finally, we present our efforts to translate the peptide's in vitro bioactivity to an in vivo burn injury animal model. When implanted at the wound site, QKCMP functionalized biodegradable hydrogels induce enhanced neovascularization in the granulation tissue. The results show QKCMP

  1. Arginine mimetics using α-guanidino acids: introduction of functional groups and stereochemistry adjacent to recognition guanidiniums in peptides.

    PubMed

    Balakrishnan, Shalini; Scheuermann, Michael J; Zondlo, Neal J

    2012-01-23

    Arginine residues are broadly employed for specific biomolecular recognition, including in protein-protein, protein-DNA, and protein-RNA interactions. Arginine recognition commonly exploits the potential for bidentate electrostatic and hydrogen-bonding interactions. However, in arginine residues, the guanidinium functional group is located at the terminus of a flexible hydrocarbon side chain, which lacks the functionality to contribute to specific arginine-mediated recognition and may entropically disfavor binding. In order to enhance the potential for specificity and affinity in arginine-mediated molecular recognition, we have developed an approach to the synthesis of peptides that incorporates an α-guanidino acid as a novel arginine mimetic. α-Guanidino acids, derived from α-amino acids, with guanidinylation of the amino group, were incorporated stereospecifically into peptides on solid phase via coupling of an Fmoc amino acid to diaminopropionic acid (Dap), Fmoc deprotection, guanidinylation of the amine on solid phase, and deprotection, generating a peptide containing an α-functionalized arginine mimetic. This approach was examined by incorporating arginine mimetics into ligands for the Src, Grb, and Crk SH3 domains at the site of the key recognition arginine. Protein binding was examined for peptides containing guanidino acids derived from Gly, L-Val, L-Phe, L-Trp, D-Val, D-Phe, and D-Trp. We demonstrate that paralogue specificity and target site affinity may be modulated with the use of α-guanidino acid-derived arginine mimetics, generating peptides that exhibit enhanced Src specificity by selection against Grb and peptides that reverse the specificity of the native peptide ligand, with enhancements in Src target specificity of up to 15-fold (1.6 kcal mol(-1)). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. RGD and BMP-2 mimetic peptide crosstalk enhances osteogenic commitment of human bone marrow stem cells.

    PubMed

    Bilem, I; Chevallier, P; Plawinski, L; Sone, E D; Durrieu, M C; Laroche, G

    2016-05-01

    Human bone marrow mesenchymal stem cells (hBMSCs) commitment and differentiation are dictated by bioactive molecules sequestered within their Extra Cellular Matrix (ECM). One common approach to mimic the physiological environment is to functionalize biomaterial surfaces with ECM-derived peptides able to recruit stem cells and trigger their linage-specific differentiation. The objective of this work was to investigate the effect of RGD and BMP-2 ligands crosstalk and density on the extent of hBMSCs osteogenic commitment, without recourse to differentiation medium. RGD peptide promotes cell adhesion via cell transmembrane integrin receptors, while BMP-2 peptide, corresponding to residues 73-92 of Bone Morphogenetic Protein-2, was shown to induce hBMSCs osteoblast differentiation. The immobilization of peptides on aminated glass was ascertained by X-ray Photoelectron Spectroscopy (XPS), the density of grafted peptides was quantified by fluorescence microscopy and the surface roughness was evaluated using Atomic Force Microscopy (AFM). The osteogenic commitment of hBMSCs cultured on RGD and/or BMP-2 surfaces was characterized by immunohistochemistry using STRO-1 as specific stem cells marker and Runx-2 as an earlier osteogenic marker. Biological results showed that the osteogenic commitment of hBMSCs was enhanced on bifunctionalized surfaces as compared to surfaces containing BMP-2, while on RGD surfaces cells mainly preserved their stemness character. These results demonstrated that RGD and BMP-2 mimetic peptides act synergistically to enhance hBMSCs osteogenesis without supplementing the media with osteogenic factors. These findings contribute to the development of biomimetic materials, allowing a deeper understanding of signaling pathways that govern the transition of stem cells towards the osteoblastic lineage. For a long time, scientists thought that the differentiation of Mesenchymal Stem Cells (MSCs) into bone cells was dictated by growth factors. This

  3. Advances in the design and higher-order assembly of collagen mimetic peptides for regenerative medicine.

    PubMed

    Strauss, Kevin; Chmielewski, Jean

    2017-08-01

    Regenerative medicine makes use of cell-supporting biomaterials to replace lost or damaged tissue. Collagen holds great potential in this regard caused by its biocompatibility and structural versatility. While natural collagen has shown promise for regenerative medicine, collagen mimetic peptides (CMPs) have emerged that allow far higher degrees of customization and ease of preparation. A wide range of two and three-dimensional assemblies have been generated from CMPs, many of which accommodate cellular adhesion and encapsulation, through careful sequence design and the exploitation of electrostatic and hydrophobic forces. But the methodology that has generated the greatest plethora of viable biomaterials is metal-promoted assembly of CMP triple helices-a rapid process that occurs under physiological conditions. Architectures generated in this manner promote cell growth, enable directed attachment of bioactive cargo, and produce living tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Activity of Antimicrobial Peptide Mimetics in the Oral Cavity: I. Activity Against Biofilms of Candida albicans

    PubMed Central

    Hua, Jianyuan; Yamarthy, Radha; Felsenstein, Shaina; Scott, Richard W.; Markowitz, Kenneth; Diamond, Gill

    2010-01-01

    Summary Naturally occurring antimicrobial peptides hold promise as therapeutic agents against oral pathogens such as Candida albicans, however numerous difficulties have slowed their development. Synthetic, non-peptidic analogs that mimic the properties of these peptides have many advantages and exhibit potent, selective antimicrobial activity. Several series of mimetics (MW <1,000) were developed and screened against oral Candida strains as a proof-of-principle for their antifungal properties. One phenylalkyne and several arylamide compounds with reduced mammalian cytotoxicities were found to be active against C. albicans. These compounds demonstrated rapid fungicidal activity in liquid culture even in the presence of saliva, and demonstrated synergy with standard antifungal agents. When assayed against biofilms grown on denture acrylic, the compounds exhibited potent fungicidal activity as measured by metabolic and fluorescent viability assays. Repeated passages in sub-MIC levels did not lead to resistant Candida in contrast to fluconazole. Our results demonstrate the proof-of principle for the use of these compounds as anti-Candida agents, and their further testing is warranted as novel anti-Candida therapies. PMID:21040515

  5. A Small Molecule Mimetic of the Humanin Peptide as a Candidate for Modulating NMDA-Induced Neurotoxicity.

    PubMed

    Alam, Mohammad Parvez; Bilousova, Tina; Spilman, Patricia; Vadivel, Kanagasabai; Bai, Dongsheng; Elias, Chris J; Evseenko, Denis; John, Varghese

    2018-03-21

    Humanin (HN), a 24-amino acid bioactive peptide, has been shown to increase cell survival of neurons after exposure to Aβ and NMDA-induced toxicity and thus could be beneficial in the treatment of Alzheimer's disease (AD). The neuroprotection by HN is reported to be primarily through its agonist binding properties to the gp130 receptor. However, the peptidic nature of HN presents challenges in its development as a therapeutic for AD. We report here for the first time the elucidation of the binding site of Humanin (HN) peptide to the gp130 receptor extracellular domain through modeling and the synthesis of small molecule mimetics that interact with the HN binding site on the gp130 receptor and provide protection against NMDA-induced neurotoxicity in primary hippocampal neurons. A brain permeable small molecule mimetic was identified through exploratory medicinal chemistry using microfluidic flow chemistry to facilitate the synthesis of new analogues for screening and SAR optimization.

  6. Thioredoxin-mimetic peptides (TXM) inhibit inflammatory pathways associated with high-glucose and oxidative stress.

    PubMed

    Lejnev, Katia; Khomsky, Lena; Bokvist, Krister; Mistriel-Zerbib, Shani; Naveh, Tahel; Farb, Thomas Bradley; Alsina-Fernandez, Jorge; Atlas, Daphne

    2016-10-01

    Impaired insulin signaling and the associated insulin-resistance in liver, adipose tissue, and skeletal muscle, represents a hallmark of the pathogenesis of type 2-diabetes-mellitus. Here we show that in the liver of db/db mice, a murine model of obesity, type 2 diabetes, and dyslipidemia, the elevated activities of mitogen-activated protein kinases (MAPK; ERK1/2 and p38 MAPK ), and Akt/PKB are abolished by rosiglitazone-treatment, which normalizes blood glucose in db/db mice. This is unequivocal evidence of a functional link between the activation of the MAPK specific inflammatory-pathway and high-blood sugar. A similar reduction in ERK1/2, p38 MAPK , and Akt activities but without affecting blood-glucose was observed in the liver of db/db mice treated with a molecule that mimics the action of thioredoxin, called thioredoxin-mimetic peptide (TXM). N-Acetyl-Cys-Pro-Cys-amide (TXM-CB3) is a free radical scavenger, a reducing and denitrosylating reagent that protects the cells from early death induced by inflammatory pathways. TXM-CB3 also lowered MAPK signaling activated by the disruption of the thioredoxin-reductase-thioredoxin (Trx-TrxR) redox-system and restored Akt activity in rat hepatoma FAO cells. Similarly, two other TXM-peptides, N-Acetyl-Cys-Met-Lys-Cys-amide (TXM-CB13; DY70), and N-Acetyl-Cys-γGlu-Cys-Cys-amide (TXM-CB16; DY71), lowered insulin- and oxidative stress-induced ERK1/2 activation, and rescued HepG2 cells from cell death. The potential impact of TXM-peptides on inhibiting inflammatory pathways associated with high-glucose could be effective in reversing low-grade inflammation. TXM-peptides might also have the potential to improve insulin resistance by protecting from posttranslational modifications like nitrosylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic

    SciTech Connect

    Thompson, Aaron A.; Liu, Wei; Chun, Eugene

    2012-07-11

    Members of the opioid receptor family of G-protein-coupled receptors (GPCRs) are found throughout the peripheral and central nervous system, where they have key roles in nociception and analgesia. Unlike the 'classical' opioid receptors, {delta}, {kappa} and {mu} ({delta}-OR, {kappa}-OR and {mu}-OR), which were delineated by pharmacological criteria in the 1970s and 1980s, the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP, also known as ORL-1) was discovered relatively recently by molecular cloning and characterization of an orphan GPCR. Although it shares high sequence similarity with classical opioid GPCR subtypes ({approx}60%), NOP has a markedly distinct pharmacology, featuring activation by the endogenous peptidemore » N/OFQ, and unique selectivity for exogenous ligands. Here we report the crystal structure of human NOP, solved in complex with the peptide mimetic antagonist compound-24 (C-24) (ref. 4), revealing atomic details of ligand-receptor recognition and selectivity. Compound-24 mimics the first four amino-terminal residues of the NOP-selective peptide antagonist UFP-101, a close derivative of N/OFQ, and provides important clues to the binding of these peptides. The X-ray structure also shows substantial conformational differences in the pocket regions between NOP and the classical opioid receptors {kappa} (ref. 5) and {mu} (ref. 6), and these are probably due to a small number of residues that vary between these receptors. The NOP-compound-24 structure explains the divergent selectivity profile of NOP and provides a new structural template for the design of NOP ligands.« less

  8. Non-Covalent Photo-Patterning of Gelatin Matrices Using Caged Collagen Mimetic Peptides

    PubMed Central

    Li, Yang; Hoa San, Boi; L. Kessler, Julian; Hwan Kim, Jin; Xu, Qingguo; Hanes, Justin; Yu, Seungju Michael

    2015-01-01

    Advancements in photolithography have enabled us to spatially encode biochemical cues in biocompatible platforms such as synthetic hydrogels. Conventional patterning works through photo-activated chemical reactions on inert polymer networks. However, these techniques cannot be directly applied to protein hydrogels without chemically altering the protein scaffolds. To this end, we developed a non-covalent photo-patterning strategy for gelatin (denatured collagen) hydrogels utilizing a caged collagen mimetic peptide (caged CMP) which binds to gelatin strands through UV activated, triple helix hybridization. Here we present 2D and 3D photo-patterning of gelatin hydrogels enabled by the caged CMPs as well as creation of concentration gradients of CMPs. We show that photo-patterning of PEG-conjugated caged CMPs can be used to spatially control cell adhesion on gelatin films. CMP’s specificity for binding to gelatin allows patterning of almost any synthetic or natural gelatin-containing matrix, such as zymograms, gelatin-methacrylate hydrogels, and even a corneal tissue. Since the CMP is a chemically and biologically inert peptide which is proven to be an ideal carrier for bioactive molecules, our patterning method provides a radically new tool for immobilizing drugs to natural tissues and for functionalizing scaffolds for complex tissue formation. PMID:25476588

  9. Transthyretin Mimetics as Anti-β-Amyloid Agents: A Comparison of Peptide and Protein Approaches.

    PubMed

    Pate, Kayla M; Kim, Brandon J; Shusta, Eric V; Murphy, Regina M

    2018-03-07

    β-Amyloid (Aβ) aggregation is causally linked to neuronal pathology in Alzheimer's disease; therefore, several small molecules, antibodies, and peptides have been tested as anti-Aβ agents. We developed two compounds based on the Aβ-binding domain of transthyretin (TTR): a cyclic peptide cG8 and an engineered protein mTTR, and compared them for therapeutically relevant properties. Both mTTR and cG8 inhibit fibrillogenesis of Aβ, with mTTR inhibiting at a lower concentration than cG8. Both inhibit aggregation of amylin but not of α-synuclein. They both bind more Aβ aggregates than monomer, and neither disaggregates preformed fibrils. cG8 retained more of its activity in the presence of biological materials and was more resistant to proteolysis than mTTR. We examined the effect of mTTR or cG8 on Aβ binding to human neurons. When mTTR was co-incubated with Aβ under oligomer-forming conditions, Aβ morphology was drastically changed and Aβ-cell deposition significantly decreased. In contrast, cG8 did not affect morphology but decreased the amount of Aβ deposited. These results provide guidance for further evolution of TTR-mimetic anti-amyloid agents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Design and synthesis of collagen mimetic peptide derivatives for studying triple helix assembly and collagen mimetic peptide-collagen binding interaction

    NASA Astrophysics Data System (ADS)

    Mo, Xiao

    2008-10-01

    Collagen is the principal tensile clement of the extra-cellular matrix in mammals and is the basic scaffold for cells and tissues. Collagen molecules are comprised of homo-trimeric helices (e.g. collagen type II and type III), ABB type hetero-trimeric helices (e.g. collagen type I, type IV, and type V), or ABC type hetero-trimeric helices (e.g. type V). Mimicry of collagen structures can help elucidate collagen triple helical conformation and provide insights into making novel collagen-like biomaterials. Our group previously reported a new physical collagen modification method, which was based on non-covalent interaction between collagen mimetic peptide (CMP: -(Pro-Hyp-Gly) x-) and natural collagen. We hypothesized that CMP binds to collagen through a process involving both strand invasion and triple helix assembly. The aim of this dissertation is to study structural formation and stability of collagen triple helix, and to investigate CMP-collagen binding interactions using two types of CMP derivatives: covalently templated CMP trimer and CMP-nanoparticle conjugates. We demonstrated that covalently templated ABB type CMP hetero-trimers could be prepared by a versatile synthetic strategy involving both solid phase and solution peptide coupling. Our thermal melting studies showed that the templated CMP hetero-trimers formed collagen-like triple helices and their folding kinetics correlated with the amino acid compositions of the individual CMP strands. We also studied the thermal melting behavior and folding kinetics of a templated hetero-trimer complex comprised of CMP and a peptide derived from collagen. This synthetic strategy can be readily extended to synthesize other ABB type hetero-trimers to investigate their local melting behavior and biological activity. We also prepared colloidally stable CMP functionalized gold nanoparticles (Au-CMPs) as a TEM marker for investigating the CMP-collagen interaction. Au-CMP showed preferential binding to collagen fiber's gap

  11. Thioredoxin-mimetic peptide CB3 lowers MAPKinase activity in the Zucker rat brain☆

    PubMed Central

    Cohen-Kutner, Moshe; Khomsky, Lena; Trus, Michael; Ben-Yehuda, Hila; Lenhard, James M.; Liang, Yin; Martin, Tonya; Atlas, Daphne

    2014-01-01

    Diabetes is a high risk factor for dementia. High glucose may be a risk factor for dementia even among persons without diabetes, and in transgenic animals it has been shown to cause a potentiation of indices that are pre-symptomatic of Alzheimer's disease. To further elucidate the underlying mechanisms linking inflammatory events elicited in the brain during oxidative stress and diabetes, we monitored the activation of mitogen-activated kinsase (MAPKs), c-jun NH2-terminal kinase (JNK), p38 MAP kinases (p38MAPK), and extracellular activating kinsae1/2 (ERK1/2) and the anti-inflammatory effects of the thioredoxin mimetic (TxM) peptides, Ac-Cys-Pro-Cys-amide (CB3) and Ac-Cys-Gly-Pro-Cys-amide (CB4) in the brain of male leptin-receptor-deficient Zucker diabetic fatty (ZDF) rats and human neuroblastoma SH-SY5Y cells. Daily i.p. injection of CB3 to ZDF rats inhibited the phosphorylation of JNK and p38MAPK, and prevented the expression of thioredoxin-interacting-protein (TXNIP/TBP-2) in ZDF rat brain. Although plasma glucose/insulin remained high, CB3 also increased the phosphorylation of AMP-ribose activating kinase (AMPK) and inhibited p70S6K kinase in the brain. Both CB3 and CB4 reversed apoptosis induced by inhibiting thioredoxin reductase as monitored by decreasing caspase 3 cleavage and PARP dissociation in SH-SY5Y cells. The decrease in JNK and p38MAPK activity in the absence of a change in plasma glucose implies a decrease in oxidative or neuroinflammatory stress in the ZDF rat brain. CB3 not only attenuated MAPK phosphorylation and activated AMPK in the brain, but it also diminished apoptotic markers, most likely acting via the MAPK–AMPK–mTOR pathway. These results were correlated with CB3 and CB4 inhibiting inflammation progression and protection from oxidative stress induced apoptosis in human neuronal cells. We suggest that by attenuating neuro-inflammatory processes in the brain Trx1 mimetic peptides could become beneficial for preventing neurological

  12. Thioredoxin-Mimetic-Peptides Protect Cognitive Function after Mild Traumatic Brain Injury (mTBI)

    PubMed Central

    Baratz-Goldstein, Renana; Deselms, Hanna; Heim, Leore Raphael; Khomski, Lena; Hoffer, Barry J.

    2016-01-01

    Mild traumatic brain injury (mTBI) is recognized as a common injury among children, sportsmen, and elderly population. mTBI lacks visible objective structural brain damage but patients frequently suffer from long-lasting cognitive, behavioral and emotional difficulties associated with biochemical and cellular changes. Currently there is no effective treatment for patients with mTBI. The thioredoxin reductase/thioredoxin pathway (TrxR/Trx1) has both anti-inflammatory and anti-oxidative properties. If the system is compromised, Trx1 remains oxidized and triggers cell death via an ASK1-Trx1 signal transduction mechanism. We previously showed tri and tetra peptides which were derived from the canonical -CxxC- motif of the Trx1-active site, called thioredoxin mimetic (TXM) peptides, reversed inflammatory and oxidative stress damage mimicking Trx1 activity. Here, TXM-peptides were examined for protecting cognitive function following weight drop closed-head injury in a mouse model of mTBI. TXM-CB3 (AcCys-Pro-CysNH2), TXM-CB13 (DY-70; AcCys-Met-Lys-CysNH2) or AD4 (ACysNH2) were administered at 50 mg/kg, 60 min after injury and cognitive performance was monitored by the novel-object-recognition and Y-maze tests. Behavioral deficits subsequent to mTBI injury were reversed by a single dose of TXM-CB3, TXM-CB13 and, to a lesser extent, by AD4. TXM-CB13 similar to TXM-CB3 and AD4 reversed oxidative stress-induced phosphorylation of mitogen-activated kinases, p38MAPK and c-Jun N-terminal kinase, (JNK) in human neuronal SH-SY5Y cells. We conclude that significantly improved cognitive behavior post mTBI by the TXM-peptides could result from anti-apoptotic, and/or anti-inflammatory activities. Future preclinical studies are required to establish the TXM-peptides as potential therapeutic drugs for brain injuries. PMID:27285176

  13. Study on a 65-mer peptide mimetic enzyme with GPx and SOD dual function.

    PubMed

    Yin, Juxin; Zhuang, Jianjian; Lv, Shaowu; Mu, Ying

    2018-04-15

    Excessive reactive oxygen species (ROS) levels are harmful to the body. The peroxidase, GPx, and the superoxide dismutase, SOD, are important antioxidant enzymes for preventing ROS-induced damage. Se-CuZn-65P is an enzyme mimetic with dual GPx and SOD antioxidant function. However, currently, its production is mainly based on the cysteine auxotrophic expression technique, which is inefficient, expensive, and time consuming. In this study, we combined protein engineering and the chemical mutation method to synthesize Se-CuZn-65P. The DNA sequence encoding the 65 amino acid peptide with the desired sequence transformations to incorporate the SOD and the GPx catalytic sites was cloned and expressed in a soluble protein expression vector. The protein yield increased up to 152 mg/L, which is 10 times higher than in previous studies. The SOD and GPx activity of Se-CuZn-65P was high (1181 U/mg and 753 U/μmol, respectively). The binding constant of glutathione was 5.6 × 10 4  L·mol -1 , which shows that Se-CuZn-65P efficiently catalyzed hydrogen peroxide reduction by glutathione. Mitochondrial damage experiments confirmed the double protective role of the Se-CuZn-65P peptide and demonstrated functional synergy between the SOD and the GPx domains, which indicates its potential to be used in the treatment of ROS-related diseases. Our research may give a new thought to increase the yield of mimic. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Davalintide (AC2307), a Novel Amylin Mimetic Peptide: Enhanced Pharmacological Properties over Native Amylin to Reduce Food Intake and Body Weight

    USDA-ARS?s Scientific Manuscript database

    Objective: These studies describe the in vivo metabolic actions of the novel amylin mimetic peptide davalintide (AC2307) in rodents, and compare these effects to those of the native peptide. Research Design and Methods: The anti-obesity effects of davalintide were examined following intraperitoneal ...

  15. Conformational assembly and biological properties of collagen mimetic peptides and their thermally responsive polymer conjugates

    NASA Astrophysics Data System (ADS)

    Krishna, Ohm Divyam

    2011-12-01

    Collagens are one of the most abundant proteins found in body tissues and organs, endowing structural integrity, mechanical strength, and multiple biological functions. Destabilized collagen inside human body leads to various degenerative diseases (ex. osteoarthritis) and ageing. This has continued to motivate the design of synthetic peptides and bio-synthetic polypeptides to closely mimic the native collagens in terms of triple helix structure and stability, potential for higher order assembly, and biological properties. However, the widespread application of de novo collagens has been limited in part by the need for hydroxylated proline in the formation of stable triple helical structures. To address this continued need, a hydroxyproline-free, thermally stable collagen-mimetic peptide (CLP-Cys) was rationally designed via the incorporation of electrostatically stabilized amino acid triplets. CLP-Cys was synthesized via solid phase peptide synthesis. The formation and stability of the triple helical structure were indicated via circular dichroism (CD) experiments and confirmed via differential scanning calorimetry (DSC) results. CLP-Cys also self-assembled into nano-rods and micro-fibrils, as evidenced via a combination of dynamic light scattering and transmission electron microscopy. Given the high thermal stability and its propensity for higher-order assembly, CLP-Cys was further functionalized at both the ends with a thermally responsive polymer, poly(diethylene glycol methyl ether methacrylate), (PDEGMEMA) to synthesize a biohybrid triblock copolymer. The CD results indicated that the triple helical form is retained, the thermal unfolding is sustained and helix to coil transition is reversible in the triblock hybrid context. The LCST of PDEGMEMA homopolymer (26 °C) is increased (to 35 °C) upon conjugation to the hydrophilic collagen peptide domain. Further, a combination of static light scattering, Cryo-SEM, TEM and confocal microscopy elucidated that the

  16. Inhibition of Blood-Brain Barrier Disruption by an Apolipoprotein E-Mimetic Peptide Ameliorates Early Brain Injury in Experimental Subarachnoid Hemorrhage.

    PubMed

    Pang, Jinwei; Chen, Yitian; Kuai, Li; Yang, Ping; Peng, Jianhua; Wu, Yue; Chen, Yue; Vitek, Michael P; Chen, Ligang; Sun, Xiaochuan; Jiang, Yong

    2017-06-01

    Apolipoprotein E (ApoE)-mimetic peptides have been demonstrated to be beneficial in secondary brain injury following experimental subarachnoid hemorrhage (SAH). However, the molecular mechanisms underlying these benefits in SAH models have not been clearly identified. This study investigated whether an ApoE-mimetic peptide affords neuroprotection in early brain injury (EBI) following SAH by attenuating BBB disruption. SAH was induced by an endovascular perforation in young, healthy, male wild-type (WT) C57BL/6J mice. Multiple techniques, including MRI with T2-weighted imaging, 18 FDG PET-CT scanning and histological studies, were used to examine BBB integrity and neurological dysfunction in EBI following SAH. We found that SAH induced a significant increase of BBB permeability and neuron apoptosis, whereas ApoE-mimetic peptide treatment significantly reduced the degradation of tight junction proteins and endothelial cell apoptosis. These effects reduced brain edema and neuron apoptosis, increased cerebral glucose uptake, and improved neurological functions. Further investigation revealed that the ApoE-mimetic peptide inhibited the proinflammatory activators of MMP-9, including CypA, NF-κB, IL-6, TNF-α, and IL-1β, thereby ameliorating BBB disruption at the acute stage of SAH. Together, these data indicate that ApoE-mimetic peptide may be a novel and promising therapeutic strategy for EBI amelioration after SAH that are worthy of further study.

  17. Encoding physico-chemical cues in synthetic hydrogels by triple helix assembly of collagen mimetic peptides

    NASA Astrophysics Data System (ADS)

    Stahl, Patrick

    The ECM is a complex natural system evolved to promote proliferation and differentiation of cells during tissue development. In order to create synthetic biomaterials for studying cell-scaffold interactions and ultimately for engineering tissues, scientists strive to recapitulate many characteristics of ECM by developing hydrogels that contain mechanical cues and biochemical signals such as adhesion moieties and cell growth factors. While synthetic hydrogels bypass limitations of naturally-derived materials (e.g. transfer of pathogens), nature provides inspiration to enhance the functionality of synthetic hydrogels through biomimetic approaches. The collagen triple helix is the basis for the supramolecular structure of collagen in the ECM, and its adaptation in collagen mimetic peptides (CMPs) has provided hybridization mechanisms that can be employed in the formation and functionalization of synthetic hydrogels. The aim of this dissertation is to develop novel poly(ethylene glycol) (PEG)-based hydrogels that employ CMP triple helix assembly as a non-covalent yet target-specific tool to encode physical and chemical cues into the hydrogel with spatial control. We demonstrate that multi-arm PEG functionalized with CMPs form hydrogels supported by physical crosslinks mediated by CMP triple helix. Particle tracking microrheology shows that these physical crosslinks are sensitive to temperature as well as addition of exogenous CMPs that can disrupt crosslinks by competing for triple helix formation. This physical crosslink disruption enables the modulation of bulk hydrogel elasticity and the introduction of local stiffness gradients in PEG-CMP hydrogels. We also present photopolymerized PEG diacrylate (PEGDA) hydrogels displaying CMPs that can be further conjugated to CMPs with bioactive moieties via triple helix hybridization. Encoding these hydrogels with cell-adhesive CMPs induces cell spreading and proliferation. We further demonstrate generation of gradients and

  18. Fine-tuning the stimulation of MLL1 methyltransferase activity by a histone H3-based peptide mimetic

    SciTech Connect

    Avdic, Vanja; Zhang, Pamela; Lanouette, Sylvain

    2011-08-24

    The SET1 family of methyltransferases carries out the bulk of histone H3 Lys-4 methylation in vivo. One of the common features of this family is the regulation of their methyltransferase activity by a tripartite complex composed of WDR5, RbBP5, and Ash2L. To selectively probe the role of the SET1 family of methyltransferases, we have developed a library of histone H3 peptide mimetics and report herein the characterization of an N{alpha} acetylated form of histone H3 peptide (N{alpha}H3). Binding and inhibition studies reveal that the addition of an acetyl moiety to the N terminus of histone H3 significantly enhances its bindingmore » to WDR5 and prevents the stimulation of MLL1 methyltransferase activity by the WDR5-RbBP5-Ash2L complex. The crystal structure of N{alpha}H3 in complex with WDR5 reveals that a high-affinity hydrophobic pocket accommodates the binding of the acetyl moiety. These results provide the structural basis to control WDR5-RbBP5-Ash2L-MLL1 activity and a tool to manipulate stem cell differentiation programs.-Avdic, V., Zhang, P., Lanouette, S., Voronova, A., Skerjanc, I., Couture, J.-F. Fine-tuning the stimulation of MLL1 methyltransferase activity by a histone H3-based peptide mimetic.« less

  19. Transferred NOESY NMR studies of biotin mimetic peptide (FSHPQNT) bound to streptavidin: A structural model for studies of peptide-protein interactions

    PubMed Central

    Gizachew, Dawit; Dratz, Edward

    2011-01-01

    Protein-protein interactions control signaling, specific adhesion and many other biological functions. The three dimensional structures of the interfaces and bound ligand can be approached with Tr-NOESY NMR, which can be applied to much larger proteins than conventional NMR and requires less concentrated protein. However, it is not clear how accurately the structures of protein-bound peptides can be determined by Tr-NOESY. We studied the structure of a biotin-mimetic peptide (FSHPQNT) bound to streptavidin, since the x-ray structure of the complex is available to 1.74Å resolution and we found that conditions could be adjusted so that the off-rates were fast enough for Tr-NOESY NMR. The off-rate was determined with 19F NMR, using a para-fluoro-phenylalanine analog of the peptide. A new criterion for a lower limit on kinetic off-rate was found, which allowed accurate structure determination at a slower off-rate. Non-specific binding of the peptide to streptavidin was not significant, since biotin blocked the peptide Tr-NOESY. Protein mediation for the long range peptide Tr-NOESY cross-peaks was corrected by a Tr-NOESY/ROESY averaging procedure. The protein-bound structure of the peptide was determined by Tr-NOESY constrained and simulated annealing. The structure deduced from the NMR was close to the x-ray structure. PMID:21294848

  20. The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation, and on bone formation at hydroxyapatite surfaces

    PubMed Central

    Hennessy, KM; Pollot, BE; Clem, WC; Phipps, MC; Sawyer, AA; Culpepper, K; Bellis, SL

    2013-01-01

    Integrin-binding peptides increase cell adhesion to naive hydroxyapatite (HA), however, in the body, HA becomes rapidly modified by protein adsorption. Previously we reported that, when combined with an adsorbed protein layer, RGD peptides interfered with cell adhesion to HA. In the current study we evaluated mesenchymal stem cell (MSC) interactions with HA disks coated with the collagen-mimetic peptides, DGEA, P15 and GFOGER. MSCs adhered equally well to disks coated with DGEA, P15, or collagen I, and all three substrates, but not GFOGER, supported greater cell adhesion than uncoated HA. When peptide-coated disks were overcoated with proteins from serum or the tibial microenvironment, collagen mimetics did not inhibit MSC adhesion, as was observed with RGD, however neither did they enhance adhesion. Given that activation of collagen-selective integrins stimulates osteoblastic differentiation, we monitored osteocalcin secretion and alkaline phosphatase activity from MSCs adherent to DGEA or P15-coated disks. Both of these osteoblastic markers were upregulated by DGEA and P15, in the presence and absence of differentiation-inducing media. Finally, bone formation on HA tibial implants was increased by the collagen-mimetics. Collectively these results suggest that collagen-mimetic peptides improve osseointegration of HA, most probably by stimulating osteoblastic differentiation, rather than adhesion, of MSCs. PMID:19157536

  1. Influence of route of administration and lipidation of apolipoprotein A-I peptide on pharmacokinetics and cholesterol mobilization.

    PubMed

    Tang, Jie; Li, Dan; Drake, Lindsey; Yuan, Wenmin; Deschaine, Sara; Morin, Emily E; Ackermann, Rose; Olsen, Karl; Smith, David E; Schwendeman, Anna

    2017-01-01

    apoA-I, apoA-I mimetic peptides, and their lipid complexes or reconstituted high-density lipoprotein (HDL) have been studied as treatments for various pathologies. However, consensus is lacking about the best method for administration, by intravenous (IV) or intraperitoneal (IP) routes, and formulation, as an HDL particle or in a lipid-free form. The objective of this study was to systematically examine peptide plasma levels, cholesterol mobilization, and lipoprotein remodeling in vivo following administration of lipid-free apoA-I peptide (22A) or phospholipid reconstituted 22A-sHDL by IV and IP routes. The mean circulation half-life was longer for 22A-sHDL (T 1/2 = 6.27 h) than for free 22A (T 1/2 = 3.81 h). The percentage of 22A absorbed by the vascular compartment after the IP dosing was ∼50% for both 22A and 22A-sHDL. The strongest pharmacologic response came from IV injection of 22A-sHDL, specifically a 5.3-fold transient increase in plasma-free cholesterol (FC) level compared with 1.3- and 1.8-fold FC increases for 22A-IV and 22A-sHDL-IP groups. Addition of either 22A or 22A-sHDL to rat plasma caused lipoprotein remodeling and appearance of a lipid-poor apoA-I. Hence, both the route of administration and the formulation of apoA-I peptide significantly affect its pharmacokinetics and pharmacodynamics. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  2. TREATMENT OF DIABETES MELLITUS IN A GOLDEN LION TAMARIN (LEONTOPITHECUS ROSALIA) WITH THE GLUCAGON-LIKE PEPTIDE-1 MIMETIC EXENATIDE.

    PubMed

    Johnson, James G; Langan, Jennifer N; Gilor, Chen

    2016-09-01

    An 8-yr-old male golden lion tamarin ( Leontopithecus rosalia ) was diagnosed with diabetes mellitus based on hyperglycemia and persistent glycosuria. Initial treatment consisted of the oral antihyperglycemic medications glipizide and metformin that resulted in decreased blood glucose concentrations; however, marked glycosuria persisted. Insufficient improvement on oral antihyperglycemic therapy and poor feasibility of daily subcutaneous insulin therapy led to an investigation into an alternative therapy with extended-release exenatide, a glucagon-like peptide-1 (GLP-1) mimetic, at a dosage of 0.13 mg/kg subcutaneously once per month. Following treatment with exenatide, the persistent glycosuria resolved, the animal maintained normal blood glucose concentrations, and had lower serum fructosamine concentrations compared to pretreatment levels. Based on these findings, extended-release exenatide could be considered as a therapeutic option in nonhuman primates with diabetes mellitus that do not respond to oral antihyperglycemics and in which daily subcutaneous insulin is not feasible.

  3. Attenuation of mechanical pain hypersensitivity by treatment with Peptide5, a connexin-43 mimetic peptide, involves inhibition of NLRP3 inflammasome in nerve-injured mice.

    PubMed

    Tonkin, Ryan S; Bowles, Callum; Perera, Chamini J; Keating, Brooke A; Makker, Preet G S; Duffy, Samuel S; Lees, Justin G; Tran, Collin; Don, Anthony S; Fath, Thomas; Liu, Lu; O'Carroll, Simon J; Nicholson, Louise F B; Green, Colin R; Gorrie, Catherine; Moalem-Taylor, Gila

    2018-02-01

    Connexin43 (Cx43) hemichannels in spinal cord astrocytes are implicated in the maintenance of neuropathic pain following peripheral nerve injury. Peptide5 is a Cx43 mimetic peptide that blocks hemichannels. In this study, we investigated the effects of spinal delivery of Peptide5 on mechanical pain hypersensitivity in two mouse models of neuropathic pain, peripheral nerve injury and chemotherapy-induced peripheral neuropathy (CIPN). We demonstrated that 10days following a chronic constriction injury (CCI) of the sciatic nerve, Cx43 expression, co-localised predominantly with astrocytes, was increased in the ipsilateral L3-L5 lumbar spinal cord. An intrathecal injection of Peptide5 into nerve-injured mice, on day 10 when pain was well-established, caused significant improvement in mechanical pain hypersensitivity 8h after injection. Peptide5 treatment resulted in significantly reduced Cx43, and microglial and astrocyte activity in the dorsal horn of the spinal cord, as compared to control saline-treated CCI mice. Further in vitro investigations on primary astrocyte cultures showed that 1h pre-treatment with Peptide5 significantly reduced adenosine triphosphate (ATP) release in response to extracellular calcium depletion. Since ATP is a known activator of the NOD-like receptor protein 3 (NLRP3) inflammasome complex, a key mediator of neuroinflammation, we examined the effects of Peptide5 treatment on NLRP3 inflammasome expression. We found that NLRP3, its adaptor apoptosis-associated spec-like protein (ASC) and caspase-1 protein were increased in the ipsilateral spinal cord of CCI mice and reduced to naïve levels following Peptide5 treatment. In the models of oxaliplatin- and paclitaxel-induced peripheral neuropathy, treatment with Peptide5 had no effect on mechanical pain hypersensitivity. Interestingly, in these CIPN models, although spinal Cx43 expression was significantly increased at day 13 following chemotherapy, NLRP3 expression was not altered. These results

  4. Peptide-Like Molecules (PLMs): A Journey from Peptide Bond Isosteres to Gramicidin S Mimetics and Mitochondrial Targeting Agents

    PubMed Central

    Wipf, Peter; Xiao, Jingbo; Stephenson, Corey R. J.

    2010-01-01

    Peptides are natural ligands and substrates for receptors and enzymes and exhibit broad physiological effects. However, their use as therapeutic agents often suffers from poor bioavailability and insufficient membrane permeability. The success of peptide mimicry hinges on the ability of bioisosteres, in particular peptide bond replacements, to adopt suitable secondary structures relevant to peptide strands and position functional groups in equivalent space. This perspective highlights past and ongoing studies in our group that involve new methods development as well as specific synthetic library preparations and applications in chemical biology, with the goal to enhance the use of alkene and cyclopropane peptide bond isosteres. PMID:20725595

  5. Sera from children with autism induce autistic features which can be rescued with a CNTF small peptide mimetic in rats.

    PubMed

    Kazim, Syed Faraz; Cardenas-Aguayo, Maria Del Carmen; Arif, Mohammad; Blanchard, Julie; Fayyaz, Fatima; Grundke-Iqbal, Inge; Iqbal, Khalid

    2015-01-01

    Autism is a neurodevelopmental disorder characterized clinically by impairments in social interaction and verbal and non-verbal communication skills as well as restricted interests and repetitive behavior. It has been hypothesized that altered brain environment including an imbalance in neurotrophic support during early development contributes to the pathophysiology of autism. Here we report that sera from children with autism which exhibited abnormal levels of various neurotrophic factors induced cell death and oxidative stress in mouse primary cultured cortical neurons. The effects of sera from autistic children were rescued by pre-treatment with a ciliary neurotrophic factor (CNTF) small peptide mimetic, Peptide 6 (P6), which was previously shown to exert its neuroprotective effect by modulating CNTF/JAK/STAT pathway and LIF signaling and by enhancing brain derived neurotrophic factor (BDNF) expression. Similar neurotoxic effects and neuroinflammation were observed in young Wistar rats injected intracerebroventricularly with autism sera within hours after birth. The autism sera injected rats demonstrated developmental delay and deficits in social communication, interaction, and novelty. Both the neurobiological changes and the behavioral autistic phenotype were ameliorated by P6 treatment. These findings implicate the involvement of neurotrophic imbalance during early brain development in the pathophysiology of autism and a proof of principle of P6 as a potential therapeutic strategy for autism.

  6. Sera from Children with Autism Induce Autistic Features Which Can Be Rescued with a CNTF Small Peptide Mimetic in Rats

    PubMed Central

    Kazim, Syed Faraz; Cardenas-Aguayo, Maria del Carmen; Arif, Mohammad; Blanchard, Julie; Fayyaz, Fatima; Grundke-Iqbal, Inge; Iqbal, Khalid

    2015-01-01

    Autism is a neurodevelopmental disorder characterized clinically by impairments in social interaction and verbal and non-verbal communication skills as well as restricted interests and repetitive behavior. It has been hypothesized that altered brain environment including an imbalance in neurotrophic support during early development contributes to the pathophysiology of autism. Here we report that sera from children with autism which exhibited abnormal levels of various neurotrophic factors induced cell death and oxidative stress in mouse primary cultured cortical neurons. The effects of sera from autistic children were rescued by pre-treatment with a ciliary neurotrophic factor (CNTF) small peptide mimetic, Peptide 6 (P6), which was previously shown to exert its neuroprotective effect by modulating CNTF/JAK/STAT pathway and LIF signaling and by enhancing brain derived neurotrophic factor (BDNF) expression. Similar neurotoxic effects and neuroinflammation were observed in young Wistar rats injected intracerebroventricularly with autism sera within hours after birth. The autism sera injected rats demonstrated developmental delay and deficits in social communication, interaction, and novelty. Both the neurobiological changes and the behavioral autistic phenotype were ameliorated by P6 treatment. These findings implicate the involvement of neurotrophic imbalance during early brain development in the pathophysiology of autism and a proof of principle of P6 as a potential therapeutic strategy for autism. PMID:25769033

  7. Redistribution of Proximal and Distal Reabsorption of Water and Ions in Rat Kidney After Treatment with Glucagon-Like Peptide-1 Mimetic.

    PubMed

    Natochin, Yu V; Marina, A S; Kutina, A V

    2015-11-01

    Injection of a glucagon-like peptide-1 mimetic accelerated recovery of the initial status of water-salt balance in rats after water or saline load (2.5% NaCl). This effect is mediated by a decrease in proximal fluid reabsorption and change in ion and water transport in the distal part of renal tubules. We developed a new approach to calculation of additional fluid inflow from the proximal tubule to the distal tubule and distal sodium reabsorption under the influence of this mimetic in rats. The expected values corresponded to experimental results, which confirmed our hypothesis on the physiological mechanism for the involvement of the kidneys in the homeostatic effect of glucagon-like peptide-1 under variations in water-salt balance.

  8. EPOR-Based Purification and Analysis of Erythropoietin Mimetic Peptides from Human Urine by Cys-Specific Cleavage and LC/MS/MS

    NASA Astrophysics Data System (ADS)

    Vogel, Matthias; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2015-09-01

    The development of a new class of erythropoietin mimetic agents (EMA) for treating anemic conditions has been initiated with the discovery of oligopeptides capable of dimerizing the erythropoietin (EPO) receptor and thus stimulating erythropoiesis. The most promising amino acid sequences have been mounted on various different polymeric structures or carrier molecules to obtain highly active EPO-like drugs exhibiting beneficial and desirable pharmacokinetic profiles. Concomitant with creating new therapeutic options, erythropoietin mimetic peptide (EMP)-based drug candidates represent means to artificially enhance endurance performance and necessitate coverage by sports drug testing methods. Therefore, the aim of the present study was to develop a strategy for the comprehensive detection of EMPs in doping controls, which can be used complementary to existing protocols. Three model EMPs were used to provide proof-of-concept data. Following EPO receptor-facilitated purification of target analytes from human urine, the common presence of the cysteine-flanked core structure of EMPs was exploited to generate diagnostic peptides with the aid of a nonenzymatic cleavage procedure. Sensitive detection was accomplished by targeted-SIM/data-dependent MS2 analysis. Method characterization was conducted for the EMP-based drug peginesatide concerning specificity, linearity, precision, recovery, stability, ion suppression/enhancement, and limit of detection (LOD, 0.25 ng/mL). Additionally, first data for the identification of the erythropoietin mimetic peptides EMP1 and BB68 were generated, demonstrating the multi-analyte testing capability of the presented approach.

  9. Essential structural requirements for specific recognition of HIV TAR RNA by peptide mimetics of Tat protein

    PubMed Central

    Davidson, Amy; Patora-Komisarska, Krystyna; Robinson, John A.; Varani, Gabriele

    2011-01-01

    The pharmacological disruption of the interaction between the HIV Tat protein and its cognate transactivation response RNA (TAR) would generate novel anti-viral drugs with a low susceptibility to drug resistance, but efforts to discover ligands with sufficient potency to warrant pharmaceutical development have been unsuccessful. We have previously described a family of structurally constrained β-hairpin peptides that potently inhibits viral growth in HIV-infected cells. The nuclear magnetic resonance (NMR) structure of an inhibitory complex revealed that the peptide makes intimate contacts with the 3-nt bulge and the upper helix of the RNA hairpin, but that a single residue contacts the apical loop where recruitment of the essential cellular co-factor cyclin T1 occurs. Attempting to extend the peptide to form more interactions with the RNA loop, we examined a library of longer peptides and achieved >6-fold improvement in affinity. The structure of TAR bound to one of the extended peptides reveals that the peptide slides down the major groove of the RNA, relative to our design, in order to maintain critical interactions with TAR. These conserved contacts involve three amino acid side chains and identify critical interaction points required for potent and specific binding to TAR RNA. They constitute a template of essential interactions required for inhibition of this RNA. PMID:20724442

  10. Use of cloneable peptide-MBP fusion protein as a mimetic coating antigen in the standardized immunoassay for mycotoxin ochratoxin A.

    PubMed

    Xu, Yang; He, Zhenyun; He, Qinghua; Qiu, Yulou; Chen, Bo; Chen, Jing; Liu, Xing

    2014-09-03

    The quality of mycotoxin conjugates is essential to the development of reliability of immunoassays for mycotoxins. However, conventional mycotoxin conjugates are usually synthesized by chemical methods, which are harmful to the environment and yield unwanted cross-reactions. In this study, using ochratoxin A (OTA) as a model system, a selected OTA mimotope (phage-displayed peptide) that specifically binds to anti-OTA antibody was expressed as soluble and monovalent fusions to maltose binding protein (MBP). These prepared fusion proteins can serve as a mimetic coating antigen in both a quantitative chemiluminescent enzyme-linked immunoassay (CLEIA) and a qualitative dot immunoassay for OTA. One of the prepared mimetic coating antigen (L12-206-MBP)-based CLEIAs exhibited a half-inhibition concentration (IC50) of 0.82 ng/mL and a working range of 0.30-2.17 ng/mL, which resemble those of the conventional OTA-OVA conjugate-based immunoassay. The dot immunoassay developed with both the OTA-OVA conjugate and the mimetics showed identical visual cutoff values of 5 ng/mL. The mimetic coating antigen proposed here is an OTA-free product and can be prepared reproducibly as a homogeneous product and facilitates standardization of immunoassays for the mycotoxin OTA.

  11. Insulin Mimetic Peptide Disrupts the Primary Binding Site of the Insulin Receptor*

    PubMed Central

    Lawrence, Callum F.; Margetts, Mai B.; Menting, John G.; Smith, Nicholas A.; Smith, Brian J.; Ward, Colin W.; Lawrence, Michael C.

    2016-01-01

    Sets of synthetic peptides that interact with the insulin receptor ectodomain have been discovered by phage display and reported in the literature. These peptides were grouped into three classes termed Site 1, Site 2, and Site 3 based on their mutual competition of binding to the receptor. Further refinement has yielded, in particular, a 36-residue Site 2-Site 1 fusion peptide, S519, that binds the insulin receptor with subnanomolar affinity and exhibits agonist activity in both lipogenesis and glucose uptake assays. Here, we report three-dimensional crystallographic detail of the interaction of the C-terminal, 16-residue Site 1 component (S519C16) of S519 with the first leucine-rich repeat domain (L1) of the insulin receptor. Our structure shows that S519C16 binds to the same site on the L1 surface as that occupied by a critical component of the primary binding site, namely the helical C-terminal segment of the insulin receptor α-chain (termed αCT). In particular, the two phenylalanine residues within the FYXWF motif of S519C16 are seen to engage the insulin receptor L1 domain surface in a fashion almost identical to the respective αCT residues Phe701 and Phe705. The structure provides a platform for the further development of peptidic and/or small molecule agents directed toward the insulin receptor and/or the type 1 insulin-like growth factor receptor. PMID:27281820

  12. An Independent Evaluation of a Novel Peptide Mimetic, Brilacidin (PMX30063), for Ocular Anti-Infective

    PubMed Central

    Romanowski, Eric G.; Yates, Kathleen A.; Mah, Francis S.

    2016-01-01

    Abstract Purpose: Brilacidin (BRI), a novel defensin mimetic, was evaluated as an ocular anti-infective. Methods: In vitro: Potency based on MIC90s was compared for 50 Staphylococcus aureus (SA), 50 Staphylococcus epidermidis (SE), and 25 each of Streptococcus pneumonia (SP), Streptococcus viridans (SV), Moraxella (MS), Haemophilus influenzae (HI), Pseudomonas aeruginosa (PA), and Serratia marcescens (SM). In vivo: Using established methods, ocular toxicity was graded with Draize testing. For efficacy testing, both corneas of 24 rabbits were infected with methicillin-resistant S. aureus (MRSA), whereas the corneal epithelium was removed in the left eye. After 4 h, 21 topical drops over 5 h were administered to 4 groups: BRI 0.5%, vancomycin (VAN) 5%, saline, and no treatment. The eyes were clinically graded and the corneas were harvested for colony counts. Results: In vitro: Both SA and SE had the lowest minimum inhibitory concentrations among the bacterial groups. The MIC90s to BRI for SP, SV, MS, HI, PA, and SM were 4, 32, 256, 32, 16, and 128-fold higher, respectively, than SA and SE. In vivo: Draize testing determined BRI 0.5% to be minimally irritating. For abraded corneas, BRI was not statistically different from VAN for reducing MRSA. BRI was bactericidal. For intact corneas, VAN reduced more CFU than BRI. BRI reduced CFU in abraded corneas more than intact corneas suggesting poor corneal penetration. Conclusions: BRI has Gram-positive in vitro activity; topical BRI 0.5% was minimally irritating; and BRI 0.5% was equally efficacious as VAN in a MRSA keratitis model when the corneal epithelium was removed. PMID:26501484

  13. Physiological mechanisms for the increase in renal solute-free water clearance by a glucagon-like peptide-1 mimetic.

    PubMed

    Kutina, Anna V; Marina, Anna S; Shakhmatova, Elena I; Natochin, Yury V

    2013-08-01

    The aim of the present study was to clarify the mechanisms mediating the effect of a glucagon-like peptide-1 (GLP-1) mimetic on solute-free water excretion in rats. The GLP-1 mimetic exenatide (0.05-5.0 nmol/kg, i.m.), alone and in combination with either a vasopressin V2 receptor antagonist (15 nmol/kg, i.p.) or vasopressin (0.01 nmol/kg, i.m.), was injected into control and water-loaded (water 10-50 mL/kg, p.o., or 50 mL/kg of 0.6% NaCl, i.p.) rats to evaluate the role of collecting duct water permeability in the hydrouretic effect. Urinary prostaglandin (PG) E2 excretion and the effects of diclofenac (5 mg/kg, i.m.) and GLP-1 receptor antagonist (0.15 μmol/kg, i.p.) on exenatide action were assessed. The hydrouretic effect of exenatide was equivalent following oral or intraperitoneal water loading, and was proportional to the volume of water administered. Injection of exenatide, under conditions of a maximal decrease in collecting duct water permeability (V2 receptor antagonist administration in water-loaded rats), additionally stimulated solute-free water formation. The GLP-1 receptor antagonist weakened the hydrouretic action of exenatide. Urinary PGE2 excretion increased following water loading (47 ± 6 vs 24 ± 4 ng/kg over a 30 min period) and was enhanced as a result of additional exenatide injection (69 ± 10 ng/kg). Diclofenac and vasopressin delayed the hydrouretic effect of exenatide. The effect of exenatide on solute-free water clearance in water-loaded rats is presumably mediated by stimulation of PGE2 secretion and reinforcement of tubular fluid influx from the proximal tubule to the distal segment of the nephron and collecting duct. © 2013 Wiley Publishing Asia Pty Ltd.

  14. Downregulation of microglial activation by apolipoprotein E and apoE-mimetic peptides.

    PubMed

    Laskowitz, D T; Thekdi, A D; Thekdi, S D; Han, S K; Myers, J K; Pizzo, S V; Bennett, E R

    2001-01-01

    Apolipoprotein E plays an important role in recovery from acute brain injury and risk of developing Alzheimer's disease. We demonstrate that biologically relevant concentrations of apoE suppress microglial activation and release of TNFalpha and NO in a dose-dependent fashion. Peptides derived from the apoE receptor-binding region mimic the effects of the intact protein, whereas deletion of apoE residues 146-149 abolishes peptide bioactivity. These results are consistent with the hypothesis that apoE modulates microglial function by binding specific cell surface receptors and that the immunomodulatory effects of apoE in the central nervous system may account for its role in acute and chronic neurological disease.

  15. A RHAMM Mimetic Peptide Blocks Hyaluronan Signaling and Reduces Inflammation and Fibrogenesis in Excisional Skin Wounds

    PubMed Central

    Tolg, Cornelia; Hamilton, Sara R.; Zalinska, Ewa; McCulloch, Lori; Amin, Ripal; Akentieva, Natalia; Winnik, Francoise; Savani, Rashmin; Bagli, Darius J.; Luyt, Len G.; Cowman, Mary K.; McCarthy, Jim B.; Turley, Eva A.

    2013-01-01

    Hyaluronan is activated by fragmentation and controls inflammation and fibroplasia during wound repair and diseases (eg, cancer). Hyaluronan-binding peptides were identified that modify fibrogenesis during skin wound repair. Peptides were selected from 7- to 15mer phage display libraries by panning with hyaluronan-Sepharose beads and assayed for their ability to block fibroblast migration in response to hyaluronan oligosaccharides (10 kDa). A 15mer peptide (P15-1), with homology to receptor for hyaluronan mediated motility (RHAMM) hyaluronan binding sequences, was the most effective inhibitor. P15-1 bound to 10-kDa hyaluronan with an affinity of Kd = 10−7 and appeared to specifically mimic RHAMM since it significantly reduced binding of hyaluronan oligosaccharides to recombinant RHAMM but not to recombinant CD44 or TLR2,4, and altered wound repair in wild-type but not RHAMM−/− mice. One topical application of P15-1 to full-thickness excisional rat wounds significantly reduced wound macrophage number, fibroblast number, and blood vessel density compared to scrambled, negative control peptides. Wound collagen 1, transforming growth factor β-1, and α-smooth muscle actin were reduced, whereas tenascin C was increased, suggesting that P15-1 promoted a form of scarless healing. Signaling/microarray analyses showed that P15-1 blocks RHAMM-regulated focal adhesion kinase pathways in fibroblasts. These results identify a new class of reagents that attenuate proinflammatory, fibrotic repair by blocking hyaluronan oligosaccharide signaling. PMID:22889846

  16. A Peptide Mimetic Targeting Trans-Homophilic NCAM Binding Sites Promotes Spatial Learning and Neural Plasticity in the Hippocampus

    PubMed Central

    Kohler, Lene B.; Fantin, Martina; Jennings, Alistair; Venero, Cesar; Popov, Victor; Rusakov, Dmitri; Stewart, Michael G.; Bock, Elisabeth; Berezin, Vladimir; Sandi, Carmen

    2011-01-01

    The key roles played by the neural cell adhesion molecule (NCAM) in plasticity and cognition underscore this membrane protein as a relevant target to develop cognitive-enhancing drugs. However, NCAM is a structurally and functionally complex molecule with multiple domains engaged in a variety of actions, which raise the question as to which NCAM fragment should be targeted. Synthetic NCAM mimetic peptides that mimic NCAM sequences relevant to specific interactions allow identification of the most promising targets within NCAM. Recently, a decapeptide ligand of NCAM—plannexin, which mimics a homophilic trans-binding site in Ig2 and binds to Ig3—was developed as a tool for studying NCAM's trans-interactions. In this study, we investigated plannexin's ability to affect neural plasticity and memory formation. We found that plannexin facilitates neurite outgrowth in primary hippocampal neuronal cultures and improves spatial learning in rats, both under basal conditions and under conditions involving a deficit in a key plasticity-promoting posttranslational modification of NCAM, its polysialylation. We also found that plannexin enhances excitatory synaptic transmission in hippocampal area CA1, where it also increases the number of mushroom spines and the synaptic expression of the AMPAR subunits GluA1 and GluA2. Altogether, these findings provide compelling evidence that plannexin is an important facilitator of synaptic functional, structural and molecular plasticity in the hippocampal CA1 region, highlighting the fragment in NCAM's Ig3 module where plannexin binds as a novel target for the development of cognition-enhancing drugs. PMID:21887252

  17. Peptide Mimetic of the S100A4 Protein Modulates Peripheral Nerve Regeneration and Attenuates the Progression of Neuropathy in Myelin Protein P0 Null Mice

    PubMed Central

    Moldovan, Mihai; Pinchenko, Volodymyr; Dmytriyeva, Oksana; Pankratova, Stanislava; Fugleholm, Kåre; Klingelhofer, Jorg; Bock, Elisabeth; Berezin, Vladimir; Krarup, Christian; Kiryushko, Darya

    2013-01-01

    We recently found that S100A4, a member of the multifunctional S100 protein family, protects neurons in the injured brain and identified two sequence motifs in S100A4 mediating its neurotrophic effect. Synthetic peptides encompassing these motifs stimulated neuritogenesis and survival in vitro and mimicked the S100A4-induced neuroprotection in brain trauma. Here, we investigated a possible function of S100A4 and its mimetics in the pathologies of the peripheral nervous system (PNS). We found that S100A4 was expressed in the injured PNS and that its peptide mimetic (H3) affected the regeneration and survival of myelinated axons. H3 accelerated electrophysiological, behavioral and morphological recovery after sciatic nerve crush while transiently delaying regeneration after sciatic nerve transection and repair. On the basis of the finding that both S100A4 and H3 increased neurite branching in vitro, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1 disease), where the peptide attenuated the deterioration of nerve conduction, demyelination and axonal loss. From these results, S100A4 mimetics emerge as a possible means to enhance axonal sprouting and survival, especially in the context of demyelinating neuropathies with secondary axonal loss, such as Charcot-Marie-Tooth type 1 disease. Moreover, our data suggest that S100A4 is a neuroprotectant in PNS and that other S100 proteins, sharing high homology in the H3 motif, may have important functions in PNS pathologies. PMID:23508572

  18. D-4F, an apolipoprotein A-I mimetic, inhibits TGF-β1 induced epithelial-mesenchymal transition in human alveolar epithelial cell.

    PubMed

    You, Jia; Wang, Jintao; Xie, Linshen; Zhu, Chengwen; Xiong, Jingyuan

    2016-10-01

    Emerging evidences support that transforming growth factor β1 (TGF-β1) induced epithelial-mesenchymal transition (EMT) participates in the pathogenesis of pulmonary fibrosis and asthmatic airway remodeling. Recent studies demonstrated that apolipoprotein A-I (Apo A-I) is the only known substance that can resolve established pulmonary fibrotic nodules, and Apo A-I mimetic D-4F (a synthetic polypeptide consisting of 18 amino acids) plays an inhibitory role in murine asthmatic model. However, cellular mechanisms for such therapeutic effects of Apo A-I and D-4F remain to be elucidated. This study evaluated the effects of D-4F on TGF-β1 induced EMT in human type II alveolar epithelial cell line A549. A549 cells treated with 10ng/ml of TGF-β1 manifested distinct EMT, including fibroblastic morphological changes, down-regulation of epithelial marker E-cadherin and up-regulation of mesenchymal marker vimentin. These EMT related changes were all inhibited by D-4F in a concentration dependent manner. Transcriptional investigation demonstrated clearly that D-4F dose-dependently compensated for the reduced E-cadherin mRNA level and the increased vimentin mRNA level in TGF-β1 treated A549 cells. Translational analysis revealed that D-4F significantly reversed the TGF-β1 induced changes of E-cadherin and vimentin levels. These results suggested that D-4F inhibits TGF-β1 induced EMT in human alveolar epithelial cell. Given the functional similarities between D-4F and Apo A-I, it is speculated that D-4F and Apo A-I are able to exert possible anti-fibrotic and anti-asthmatic effects via inhibiting alveolar EMT, and D-4F may possess beneficial clinical potential for patients suffering from pulmonary fibrosis and asthma. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Modeling of Arylamide Helix Mimetics in the p53 Peptide Binding Site of hDM2 Suggests Parallel and Anti-Parallel Conformations Are Both Stable

    PubMed Central

    Fuller, Jonathan C.; Jackson, Richard M.; Edwards, Thomas A.; Wilson, Andrew J.; Shirts, Michael R.

    2012-01-01

    The design of novel α-helix mimetic inhibitors of protein-protein interactions is of interest to pharmaceuticals and chemical genetics researchers as these inhibitors provide a chemical scaffold presenting side chains in the same geometry as an α-helix. This conformational arrangement allows the design of high affinity inhibitors mimicking known peptide sequences binding specific protein substrates. We show that GAFF and AutoDock potentials do not properly capture the conformational preferences of α-helix mimetics based on arylamide oligomers and identify alternate parameters matching solution NMR data and suitable for molecular dynamics simulation of arylamide compounds. Results from both docking and molecular dynamics simulations are consistent with the arylamides binding in the p53 peptide binding pocket. Simulations of arylamides in the p53 binding pocket of hDM2 are consistent with binding, exhibiting similar structural dynamics in the pocket as simulations of known hDM2 binders Nutlin-2 and a benzodiazepinedione compound. Arylamide conformations converge towards the same region of the binding pocket on the 20 ns time scale, and most, though not all dihedrals in the binding pocket are well sampled on this timescale. We show that there are two putative classes of binding modes for arylamide compounds supported equally by the modeling evidence. In the first, the arylamide compound lies parallel to the observed p53 helix. In the second class, not previously identified or proposed, the arylamide compound lies anti-parallel to the p53 helix. PMID:22916232

  20. Peptide mimetics of immunoglobulin A (IgA) and FcαRI block IgA‐induced human neutrophil activation and migration

    PubMed Central

    Heineke, Marieke H.; van der Steen, Lydia P.E.; Korthouwer, Rianne M.; Hage, J. Joris; Langedijk, Johannes P.M.; Benschop, Joris J.; Bakema, Jantine E.; Slootstra, Jerry W.

    2017-01-01

    Abstract The cross‐linking of the IgA Fc receptor (FcαRI) by IgA induces release of the chemoattractant LTB4, thereby recruiting neutrophils in a positive feedback loop. IgA autoantibodies of patients with autoimmune blistering skin diseases therefore induce massive recruitment of neutrophils, resulting in severe tissue damage. To interfere with neutrophil mobilization and reduce disease morbidity, we developed a panel of specific peptides mimicking either IgA or FcαRI sequences. CLIPS technology was used to stabilize three‐dimensional structures and to increase peptides’ half‐life. IgA and FcαRI peptides reduced phagocytosis of IgA‐coated beads, as well as IgA‐induced ROS production and neutrophil migration in in vitro and ex vivo (human skin) experiments. Since topical application would be the preferential route of administration, Cetomacrogol cream containing an IgA CLIPS peptide was developed. In the presence of a skin permeation enhancer, peptides in this cream were shown to penetrate the skin, while not diffusing systemically. Finally, epitope mapping was used to discover sequences important for binding between IgA and FcαRI. In conclusion, a cream containing IgA or FcαRI peptide mimetics, which block IgA‐induced neutrophil activation and migration in the skin may have therapeutic potential for patients with IgA‐mediated blistering skin diseases. PMID:28736835

  1. Functional expression of human serum albumin-tandem thrombopoietin mimetic peptide fusion protein as a novel thrombopoietin analog in Pichia pastoris.

    PubMed

    Wang, Meizhu; Zhi, Dejuan; Xian, Jun; Ru, Yi; Wei, Suzhen; Wang, Na; Liu, Yiyao; Wang, Haiqing; Pei, Yuejuan; Song, Meijuan; Li, Yang; Li, Hongyu

    2016-05-01

    To develop a novel thrombopoietin (TPO) analog by fusing the tandem TPO mimetic peptide (TMP-TMP) to human serum albumin (HSA) and performing functional expression of recombinant fusion protein HSA-TMP-TMP. After optimizing the fusion orientation in shake-flask culture, HSA-TMP-TMP was expressed at 0.4 g/l in Pichia pastoris grown in a 20 l bioreactor, during which pH was controlled at 5 by addition of NH4OH and citric acid. The fusion protein significantly activated signal transducer and activator of transcription-mediated transcription in TPO receptor-dependent manner, which was demonstrated by a luciferase reporter assay. Following subcutaneous administration, HSA-TMP-TMP effectively stimulated the platelet production in healthy mice in a dose-dependent manner. Successful expression of HSA-TMP-TMP fusion protein in P. pastoris was achieved and the recombinant HSA-TMP-TMP is a promising TPO analog.

  2. Multi-Hierarchical Self-Assembly of Collagen Mimetic Peptides into AAB Type Heterotrimers, Nanofibers and Hydrogels Driven by Charged Pair Interactions

    NASA Astrophysics Data System (ADS)

    O'Leary, Lesley Russell

    2011-12-01

    Replicating the multi-hierarchical self-assembly of collagen (peptide chain to triple helix to nanofiber and, finally, to a hydrogel) has long attracted scientists, both from the fundamental science perspective of supramolecular chemistry and for the potential biomedical applications perceived in tissue engineering. In terms of triple helical formation, collagen is the most abundant protein in the human body with at least 28 types, yet research involving collagen mimetic systems has only recently began to consider the innate ability of collagen to control helix composition and register. Collagen triple helices can be homotrimeric or heterotrimeric and while some types of natural collagen form only one specific composition of helix, others can form multiple. It is critical to fully understand and, if possible, reproduce the control that native collagen has on helix composition and register. In terms of nanofiber formation, many approaches to drive the self-assembly of synthetic systems through the same steps as natural collagen have been partially successful, but none have simultaneously demonstrated all levels of structural assembly. In this work, advancements in the ability to control helix composition and replicate the multi-hierarchical assembly of collagen are described. Both positive and negative design for the assembly of AAB type collagen heterotrimers were utilized by promoting heterotrimer formation though the use of charged amino acids to form intra-helix electrostatic interactions, while simultaneously discouraging homotrimers, resulting in the identification of multiple peptide systems with full control over the composition of the resulting triple helix. Similar salt-bridged hydrogen bonds between charged residues were incorporated into nanofiber forming peptides, one of which successfully assembled into sticky-ended triple helices, nanofibers with characteristic triple helical packing visible in the solution state, and strong hydrogels that are

  3. EphrinA4 mimetic peptide targeted to EphA binding site impairs the formation of long-term fear memory in lateral amygdala.

    PubMed

    Dines, M; Lamprecht, R

    2014-09-30

    Fear conditioning leads to long-term fear memory formation and is a model for studying fear-related psychopathologies conditions such as phobias and posttraumatic stress disorder. Long-term fear memory formation is believed to involve alterations of synaptic efficacy mediated by changes in synaptic transmission and morphology in lateral amygdala (LA). EphrinA4 and its cognate Eph receptors are intimately involved in regulating neuronal morphogenesis, synaptic transmission and plasticity. To assess possible roles of ephrinA4 in fear memory formation we designed and used a specific inhibitory ephrinA4 mimetic peptide (pep-ephrinA4) targeted to EphA binding site. We show that this peptide, composed of the ephrinA4 binding domain, interacts with EphA4 and inhibits ephrinA4-induced phosphorylation of EphA4. Microinjection of the pep-ephrinA4 into rat LA 30 min before training impaired long- but not short-term fear conditioning memory. Microinjection of a control peptide derived from a nonbinding E helix site of ephrinA4, that does not interact with EphA, had no effect on fear memory formation. Microinjection of pep-ephrinA4 into areas adjacent to the amygdala had no effect on fear memory. Acute systemic administration of pep-ephrinA4 1 h after training also impaired long-term fear conditioning memory formation. These results demonstrate that ephrinA4 binding sites in LA are essential for long-term fear memory formation. Moreover, our research shows that ephrinA4 binding sites may serve as a target for pharmacological treatment of fear and anxiety disorders.

  4. Oral delivery of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, synthetic peptide leptin mimetics: Immunofluorescent localization in the mouse hypothalamus.

    PubMed

    Anderson, Brian M; Jacobson, Lauren; Novakovic, Zachary M; Grasso, Patricia

    2017-06-01

    This study describes the localization of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, synthetic peptide leptin mimetics, in the hypothalamus of Swiss Webster and C57BL/6J wild-type mice, leptin-deficient ob/ob mice, and leptin-resistant diet-induced obese (DIO) mice. The mice were given [D-Leu-4]-OB3 or MA-[D-Leu-4]-OB3 in 0.3% dodecyl maltoside by oral gavage. Once peak serum concentrations were reached, the mice received a lethal dose of pentobarbital and were subjected to intracardiac perfusion fixation. The brains were excised, post-fixed in paraformaldehyde, and cryo-protected in sucrose. Free-floating frozen coronal sections were cut at 25-µm and processed for imaging by immunofluorescence microscopy. In all four strains of mice, dense staining was concentrated in the area of the median eminence, at the base and/or along the inner wall of the third ventricle, and in the brain parenchyma at the level of the arcuate nucleus. These results indicate that [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 cross the blood-brain barrier and concentrate in an area of the hypothalamus known to regulate energy balance and glucose homeostasis. Most noteworthy is the localization of [D-Leu-4]-OB3 immunoreactivity within the hypothalamus of DIO mice via a conduit that is closed to leptin in this rodent model, and in most cases of human obesity. Together with our previous studies describing the effects of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 on energy balance, glucose regulation, and signal transduction pathway activation, these findings are consistent with a central mechanism of action for these synthetic peptide leptin mimetics, and suggest their potential usefulness in the management of leptin-resistant obesity and type 2 diabetes in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ocellatin-PT antimicrobial peptides: High-resolution microscopy studies in antileishmania models and interactions with mimetic membrane systems.

    PubMed

    Oliveira, Mayara; Gomes-Alves, Ana Georgina; Sousa, Carla; Mirta Marani, Mariela; Plácido, Alexandra; Vale, Nuno; Delerue-Matos, Cristina; Gameiro, Paula; Kückelhaus, Selma A S; Tomas, Ana M; S A Leite, José Roberto; Eaton, Peter

    2016-12-01

    Although the mechanism of action of antimicrobial peptides (AMPs) is not clear, they can interact electrostatically with the cell membranes of microorganisms. New ocellatin-PT peptides were recently isolated from the skin secretion of Leptodactylus pustulatus. The secondary structure of these AMPs and their effect on Leishmania infantum cells, and on different lipid surface models was characterized in this work. The results showed that all ocellatin-PT peptides have an α-helix structure and five of them (PT3, PT4, PT6 to PT8) have leishmanicidal activity; PT1 and PT2 affected the cellular morphology of the parasites and showed greater affinity for leishmania and bacteria-mimicking lipid membranes than for those of mammals. The results show selectivity of ocellatin-PTs to the membranes of microorganisms and the applicability of biophysical methods to clarify the interaction of AMPs with cell membranes. © 2016 Wiley Periodicals, Inc.

  6. Effects of synthetic neural adhesion molecule mimetic peptides and related proteins on the cardiomyogenic differentiation of mouse embryonic stem cells.

    PubMed

    Xu, Ruodan; Srinivasan, Sureshkumar Perumal; Sureshkumar, Poornima; Nembo, Erastus Nembu; Schäfer, Christoph; Semmler, Judith; Matzkies, Matthias; Albrechtsen, Morten; Hescheler, Jürgen; Nguemo, Filomain

    2015-01-01

    Pluripotent stem cells differentiating into cardiomyocyte-like cells in an appropriate cellular environment have attracted significant attention, given the potential use of such cells for regenerative medicine. However, the precise mechanisms of lineage specification of pluripotent stem cells are still largely to be explored. Identifying the role of various small synthetic peptides involved in cardiomyogenesis may provide new insights into pathways promoting cardiomyogenesis. In the present study, using a transgenic murine embryonic stem (ES) cell lineage expressing enhanced green fluorescent protein (EGFP) under the control of α-myosin heavy chain (α-MHC) promoter (pαMHC-EGFP), we investigated the cardiomyogenic effects of 7 synthetic peptides (Betrofin3, FGLs, FGL(L), hNgf_C2, EnkaminE, Plannexin and C3) on cardiac differentiation. The expression of several cardiac-specific markers was determined by RT-PCR whereas the structural and functional properties of derived cardiomyocytes were examined by immunofluorescence and electrophysiology, respectively. The results revealed that Betrofin3, an agonist of brain derived neurotrophic factor (BDNF) peptide exerted the most striking pro-cardiomyogenic effect on ES cells. We found that BDNF receptor, TrkB expression was up-regulated during differentiation. Treatment of differentiating cells with Betrofin3 between days 3 and 5 enhanced the expression of cardiac-specific markers and improved cardiomyocyte differentiation and functionality as revealed by genes regulation, flow cytometry and patch clamp analysis. Thus Betrofin3 may exert its cardiomyogenic effects on ES cells via TrkB receptor. Taken together, the results suggest that Betrofin3 modulates BDNF signaling with positive cardiomyogenic effect in stage and dose-dependent manner providing an effective strategy to increase ES cell-based generation of cardiomyocytes and offer a novel therapeutic approach to cardiac pathologies where BDNF levels are impaired.

  7. Ex vivo investigation of ocular tissue distribution following intravitreal administration of connexin43 mimetic peptide using the microdialysis technique and LC-MS/MS.

    PubMed

    Bisht, Rohit; Mandal, Abhirup; Rupenthal, Ilva D; Mitra, Ashim K

    2016-12-01

    This study aimed to develop and evaluate an ex vivo eye model for intravitreal drug sampling and tissue distribution of connexin43 mimetic peptide (Cx43MP) following intravitreal injection using the microdialysis technique and LC-MS/MS. An LC-MS/MS method was developed, validated, and applied for quantification of Cx43MP in ocular tissues. Microdialysis probes were calibrated for in vitro recovery studies. Bovine eyes were fixed in a customized eye holder and after intravitreal injection of Cx43MP, microdialysis probes were implanted in the vitreous body. Vitreous samples were collected at particular time intervals over 24 h. Moreover, 24 and 48 h after intravitreal injection ocular tissues were collected, processed, and analyzed for Cx43MP concentrations using LC-MS/MS. The LC-MS/MS method showed good linearity (r 2  = 0.9991). The mean percent recovery for lower (LQC), medium (MQC), and higher quality control (HQC) (0.244, 3.906, and 125 μg/mL) was found to be 83.83, 84.92, and 94.52, respectively, with accuracy ranges between 96 and 99 % and limits of detection (LOD) and quantification (LOQ) of 0.122 and 0.412 μg/mL. The in vitro recovery of the probes was found to be over 80 %. As per microdialysis sample analysis, the Cx43MP concentration was found to increase slowly in the vitreous body up to 16 h and thereafter declined. After 48 h, the Cx43MP concentration was higher in vitreous, cornea, and retina compared to lens, iris, and aqueous humor. This ex vivo model may therefore be a useful tool to investigate intravitreal kinetics and ocular disposition of therapeutic molecules after intravitreal injection.

  8. A Brain-Derived Neurotrophic Factor-Based p75NTR Peptide Mimetic Ameliorates Experimental Autoimmune Neuritis Induced Axonal Pathology and Demyelination

    PubMed Central

    Gonsalvez, David G.; Tran, Giang; Hughes, Richard A.; Hodgkinson, Suzanne; Wood, Rhiannon J.; Yoo, Sang Won; De Silva, Mithraka; Agnes, Wong W.; McLean, Catriona; Kennedy, Paul

    2017-01-01

    Abstract Axonal damage and demyelination are major determinants of disability in patients with peripheral demyelinating neuropathies. The neurotrophin family of growth factors are essential for the normal development and myelination of the peripheral nervous system (PNS), and as such are potential therapeutic candidates for ameliorating axonal and myelin damage. In particular, BDNF promotes peripheral nerve myelination via p75 neurotrophin receptor (p75NTR) receptors. Here, we investigated the therapeutic efficacy of a small structural mimetic of the region of BDNF that binds to p75NTR (cyclo-dPAKKR) in experimental autoimmune neuritis (EAN), an established animal model of peripheral demyelinating neuropathy. Examination of rodents induced with EAN revealed that p75NTR is abundantly expressed in affected peripheral nerves. We found that systemic administration of cyclo-dPAKKR ameliorates EAN disease severity and accelerates recovery. Animals treated with cyclo-dPAKKR displayed significantly better motor performance compared to control animals. Histological assessment revealed that cyclo-dPAKKR administration limits the extent of inflammatory demyelination and axonal damage, and protects against the disruption of nodal architecture in affected peripheral nerves. In contrast, a structural control peptide of cyclo-dPAKKR exerted no influence. Moreover, all the beneficial effects of cyclo-dPAKKR in EAN are abrogated in p75NTR heterozygous mice, strongly suggesting a p75NTR-dependent effect. Taken together, our data demonstrate that cyclo-dPAKKR ameliorates functional and pathological defects of EAN in a p75NTR-dependant manner, suggesting that p75NTR is a therapeutic target to consider for future treatment of peripheral demyelinating diseases and targeting of p75NTR is a strategy worthy of further investigation. PMID:28680965

  9. CK2.1, a bone morphogenetic protein receptor type Ia mimetic peptide, repairs cartilage in mice with destabilized medial meniscus.

    PubMed

    Akkiraju, Hemanth; Srinivasan, Padma Pradeepa; Xu, Xian; Jia, Xinqiao; Safran, Catherine B Kirn; Nohe, Anja

    2017-04-18

    Osteoarthritis (OA) of the knee involves degeneration of articular cartilage of the diarthrodial joints. Current treatment options temporarily relieve the joint pain but do not restore the lost cartilage. We recently designed a novel bone morphogenetic protein receptor type I (BMPRI) mimetic peptide, CK2.1, that activates BMPRIa signaling in the absence of bone morphogenetic protein (BMP). Our previous research demonstrated that CK2.1 induced chondrogenesis in vitro and in vivo; however, it is unknown if CK2.1 restores damaged articular cartilage in vivo. In this study, we demonstrate that CK2.1 induced articular cartilage (AC) repair in an OA mouse model. We designed hyaluronic acid (HA)-based hydrogel particles (HGPs) that slowly release CK2.1. HGP-CK2.1 particles were tested for chondrogenic potency on pluripotent mesenchymal stem cells (C3H10T1/2 cells) and locally injected into the intra-articular capsule in mice with cartilage defects. C57BL/6J mice were operated on to destabilize the medial meniscus and these mice were kept for 6 weeks after surgery to sustain OA-like damage. Mice were then injected via the intra-articular capsule with HGP-CK2.1; 4 weeks after injection the mice were sacrificed and their femurs were analyzed for cartilage defects. Immunohistochemical analysis of the cartilage demonstrated complete repair of the AC compared to sham-operated mice. Immunofluorescence analysis revealed collagen type IX production along with collagen type II in the AC of mice injected with HGP-CK2.1. Mice injected with phosphate-buffered saline (PBS) and HGP alone had greater collagen type X and osteocalcin production, in sharp contrast to those injected with HGP-CK2.1, indicating increased chondrocyte hypertrophy. Our results demonstrate that the slow release HGP-CK2.1 drives cartilage repair without the induction of chondrocyte hypertrophy. The peptide CK2.1 could be a powerful tool in understanding the signaling pathways contributing to the repair process

  10. A Short Synthetic Peptide Mimetic of Apolipoprotein A1 Mediates Cholesterol and Globotriaosylceramide Efflux from Fabry Fibroblasts.

    PubMed

    Schueler, Ulrike; Kaneski, Christine; Remaley, Alan; Demosky, Stephen; Dwyer, Nancy; Blanchette-Mackie, Joan; Hanover, John; Brady, Roscoe

    2016-01-01

    Fabry disease is an X-linked sphingolipid storage disorder caused by a deficiency of the lysosomal enzyme α-galactosidase A (AGA, EC 3.2.1.22) resulting in the intracellular accumulation of globotriaosylceramide (Gb3). We found that Gb3 storage also correlates with accumulation of endosomal-lysosomal cholesterol in Fabry fibroblasts. This cholesterol accumulation may contribute to the phenotypic pathology of Fabry disease by slowing endosomal-lysosomal trafficking. We found that LDL receptor expression is not downregulated in Fabry fibroblasts resulting in accumulation of both cholesterol and Gb3. 5A-Palmitoyl oleoyl-phosphatidylcholine (5AP) is a phospholipid complex containing a short synthetic peptide that mimics apolipoprotein A1, the main protein component of high-density lipoprotein (HDL) that mediates the efflux of cholesterol from cells via the ATP-binding cassette transporter. We used 5AP and HDL to remove cholesterol from Fabry fibroblasts to examine the fate of accumulated cellular Gb3. Using immunostaining techniques, we found that 5AP is highly effective for depleting cholesterol and Gb3 in these cells. 5AP restores the ApoA-1-mediated cholesterol efflux leading to mobilization of cholesterol and reduction of Gb3 in Fabry fibroblasts.

  11. Binding of the fibronectin-mimetic peptide, PR_b, to α5β1 on pig islet cells increases fibronectin production and facilitates internalization of PR_b functionalized liposomes

    PubMed Central

    Atchison, Nicole A.; Fan, Wei; Papas, Klearchos K.; Hering, Bernhard J.; Tsapatsis, Michael; Kokkoli, Efrosini

    2010-01-01

    Islet transplantation is a promising treatment for type 1 diabetes. Recent studies have demonstrated that human islet allografts can restore insulin independence to patients with this disease. As islet isolation and immunotherapeutic techniques improve, the demand for this cell-based therapy will dictate the need for other sources of islets. Pig islets could provide an unlimited supply for xenotransplantation and have shown promise as an alternative to human islet allografts. However, stresses imposed during islet isolation and transplantation decrease islet viability, leading to loss of graft function. In this study, we investigated the ability of a fibronectin-mimetic peptide, PR_b, which specifically binds to the α5β1 integrin, to reestablish lost extracellular matrix (ECM) around isolated pig islets and increase internalization of liposomes. Confocal microscopy and western blotting were used to show the presence of the integrin α5β1 on the pig islets on day 0 (day of isolation), as well as different days of islet culture. Islets cultured in medium supplemented with free PR_b for 48 hours were found to have increased levels of ECM fibronectin secretion compared to islets in normal culture conditions. Using confocal microscopy and flow cytometry we found that PR_b peptide-amphiphile functionalized liposomes delivered to the pig islets internalized into the cells in a PR_b concentration dependent manner, and non-functionalized liposomes showed minimal internalization. These studies proved that the fibronectin-mimetic peptide, PR_b, is an appropriate peptide bullet for applications involving α5β1 expressing pig islet cells. Fibronectin production stimulated through α5β1 PR_b binding may decrease apoptosis and therefore increase islet viability in culture. In addition, PR_b peptide-amphiphile functionalized liposomes may be used for targeted delivery of different agents to pig islet cells. PMID:20704278

  12. Post-training intrahippocampal injection of synthetic poly-alpha-2,8-sialic acid-neural cell adhesion molecule mimetic peptide improves spatial long-term performance in mice.

    PubMed

    Florian, Cédrick; Foltz, Jane; Norreel, Jean-Chrétien; Rougon, Geneviève; Roullet, Pascal

    2006-01-01

    Several data have shown that the neural cell adhesion molecule (NCAM) is necessary for long-term memory formation and might play a role in the structural reorganization of synapses. The NCAM, encoded by a single gene, is represented by several isoforms that differ with regard to their content of alpha-2,8-linked sialic acid residues (PSA) on their extracellular domain. The carbohydrate PSA is known to promote plasticity, and PSA-NCAM isoforms remain expressed in the CA3 region of the adult hippocampus. In the present study, we investigated the effect on spatial memory consolidation of a PSA gain of function by injecting a PSA mimetic peptide (termed pr2) into the dorsal hippocampus. Mice were subjected to massed training in the spatial version of the water maze. Five hours after the last training session, experimental mice received an injection of pr2, whereas control mice received PBS or reverse peptide injections in the hippocampal CA3 region. Memory retention was tested at different time intervals: 24 h, 1 wk, and 4 wk. The results showed that the post-training infusion of pr2 peptide significantly increases spatial performance whenever it was assessed after the training phase. By contrast, administration of the control reverse peptide did not affect retention performance. These findings provide evidence that (1) PSA-NCAM is involved in memory consolidation processes in the CA3 hippocampal region, and (2) PSA mimetic peptides can facilitate the formation of long-term spatial memory when injected during the memory consolidation phase.

  13. Tolerability, safety and pharmacokinetics of the FGLL peptide, a novel mimetic of neural cell adhesion molecule, following intranasal administration in healthy volunteers.

    PubMed

    Anand, Ravi; Seiberling, Michael; Kamtchoua, Thierry; Pokorny, Rolf

    2007-01-01

    The FG loop peptide (FGL(L)), a novel mimetic of the neural cell adhesion molecule (NCAM), is in clinical development for neurodegenerative disorders such as Alzheimer's disease. Preclinical studies in rats, dogs and monkeys have demonstrated exposure in plasma and cerebrospinal fluid after parenteral or intranasal administration of FGL(L), with no systemic toxicity. This article reports on the results of the first administration of FGL(L) in humans. To determine the tolerability, safety and pharmacokinetics of ascending, single intranasal doses of FGL(L) 25, 100 and 200mg in healthy subjects. In an 8-day, open-label, phase I study, 24 healthy male volunteers (mean age 42 [range 24-55] years) received single intranasal doses of FGL(L) (25, 100 and 200mg) in accordance with an ascending dose, sequential-cohort design. All three intranasal doses of FGL(L) were well tolerated and there were no clinical notable abnormalities in ECG recordings, vital signs or laboratory tests. Three subjects (13%) reported five adverse events. A transient (<3 minutes) burning sensation in the nose was reported in two subjects at the 200mg dose level while runny eyes (<2 minutes) were experienced in one subject at 25mg. These events had an onset immediately following intranasal administration, and a relationship to FGL(L) was suspected. One of the latter subjects who had experienced a burning sensation in the nose also experienced dizziness, vomiting and headache with onset >2 days after single-dose administration of FGL(L); no relationship to the study drug was suspected. Quantifiable plasma concentrations of FGL(L) were observed up to 1 hour after intranasal administration of the 100mg dose and up to 4 hours after the 200mg dose (plasma FGL(L) concentrations were undetectable at all timepoints for the 25mg dose). Increasing doses of FGL(L) were associated with higher systemic exposures: mean C(max) 0.52 ng/mL and 1.38 ng/mL (100mg and 200mg, respectively); mean AUC(24) 1.27 ng x h

  14. The effect of an apolipoprotein A-I-containing high-density lipoprotein-mimetic particle (CER-001) on carotid artery wall thickness in patients with homozygous familial hypercholesterolemia: The Modifying Orphan Disease Evaluation (MODE) study.

    PubMed

    Hovingh, G Kees; Smits, Loek P; Stefanutti, Claudia; Soran, Handrean; Kwok, See; de Graaf, Jacqueline; Gaudet, Daniel; Keyserling, Constance H; Klepp, Heather; Frick, Jennifer; Paolini, John F; Dasseux, Jean-Louis; Kastelein, John J P; Stroes, Erik S

    2015-05-01

    Patients with homozygous familial hypercholesterolemia (HoFH) are at extremely elevated risk for early cardiovascular disease because of exposure to elevated low-density lipoprotein cholesterol (LDL-C) plasma levels from birth. Lowering LDL-C by statin therapy is the cornerstone for cardiovascular disease prevention, but the residual risk in HoFH remains high, emphasizing the need for additional therapies. In the present study, we evaluated the effect of serial infusions with CER-001, a recombinant human apolipoprotein A-I (apoA-I)-containing high-density lipoprotein-mimetic particle, on carotid artery wall dimensions in patients with HoFH. Twenty-three patients (mean age 39.4 ± 13.5 years, mean LDL-C 214.2 ± 81.5 mg/dL) with genetically confirmed homozygosity or compound heterozygosity for LDLR, APOB, PCSK9, or LDLRAP1 mutations received 12 biweekly infusions with CER-001 (8 mg/kg). Before and 1 hour after the first infusion, lipid values were measured. Magnetic resonance imaging (3-T magnetic resonance imaging) scans of the carotid arteries were acquired at baseline and after 24 weeks to assess changes in artery wall dimensions. After CER-001 infusion, apoA-I increased from 114.8 ± 20.7 mg/dL to 129.3 ± 23.0 mg/dL. After 24 weeks, mean vessel wall area (primary end point) decreased from 17.23 to 16.75 mm(2) (P = .008). A trend toward reduction of mean vessel wall thickness was observed (0.75 mm at baseline and 0.74 mm at follow-up, P = .0835). In HoFH, 12 biweekly infusions with an apoA-I-containing high-density lipoprotein-mimetic particle resulted in a significant reduction in carotid mean vessel wall area, implying that CER-001 may reverse atherogenic changes in the arterial wall on top of maximal low-density lipoprotein-lowering therapy. This finding supports further clinical evaluation of apoA-I-containing particles in patients with HoFH. Copyright © 2015 Mosby, Inc. All rights reserved.

  15. 4F Peptide reduces nascent atherosclerosis and induces natural antibody production in apolipoprotein E-null mice

    PubMed Central

    Wool, Geoffrey D.; Cabana, Veneracion G.; Lukens, John; Shaw, Peter X.; Binder, Christoph J.; Witztum, Joseph L.; Reardon, Catherine A.; Getz, Godfrey S.

    2011-01-01

    Our objective was to contrast the effect of apolipoprotein (apo) A-I mimetic peptides, such as 4F and 4F-Pro-4F (Pro), on nascent and mature atherosclerotic lesions and on levels of antibodies against oxidation-specific epitopes. Chow-fed apoE−/− mice were injected intraperitoneally with either the 4F peptide or a tandem helix apoA-I mimetic peptide (Pro) every other day. Mice treated with 4F, but not Pro, for 4 wk starting at 10 wk of age showed a dramatic decrease in atherosclerosis at 2 arterial sites. However, neither peptide was effective in mice treated for 8 wk starting at 20 wk of age; lesions were larger and more mature at this time point. Peptide treatment caused increased production of antibodies against oxidation-specific epitopes, including a disproportionate induction of the IgM natural antibody (NAb) E06/T15 to oxidized phospholipids. In summary, 4F, but not the tandem peptide Pro, effectively inhibited early atherogenesis but was ineffective against more mature lesions. Two different apoA-I mimetic peptides increased titers of natural antibodies against oxidation-specific epitopes.—Wool, G. D., Cabana, V. G., Lukens, J., Shaw, P. X., Binder, C. J., Witztum, J. L., Reardon, C. A., Getz, G. S. 4F Peptide reduces nascent atherosclerosis and induces natural antibody production in apolipoprotein E-null mice. PMID:20876212

  16. Mapping the pro-peptide of the Schistosoma mansoni cathepsin B1 drug target: modulation of inhibition by heparin and design of mimetic inhibitors.

    PubMed

    Horn, Martin; Jílková, Adéla; Vondrásek, Jírí; Maresová, Lucie; Caffrey, Conor R; Mares, Michael

    2011-06-17

    Blood flukes of the genus Schistosoma cause the disease schistosomiasis that infects over 200 million people worldwide. Treatment relies on just one drug, and new therapies are needed should drug resistance emerge. Schistosoma mansoni cathepsin B1 (SmCB1) is a gut-associated protease that digests host blood proteins as source of nutrients. It is under evaluation as a therapeutic target. Enzymatic activity of the SmCB1 zymogen is prevented by the pro-peptide that sterically blocks the active site until activation of the zymogen to the mature enzyme. We investigated the structure-inhibition relationships of how the SmCB1 pro-peptide interacts with the enzyme core using a SmCB1 zymogen model and pro-peptide-derived synthetic fragments. Two regions were identified within the pro-peptide that govern its inhibitory interaction with the enzyme core: an "active site region" and a unique "heparin-binding region" that requires heparin. The latter region is apparently only found in the pro-peptides of cathepsins B associated with the gut of trematode parasites. Finally, using the active site region as a template and a docking model of SmCB1, we designed a series of inhibitors mimicking the pro-peptide structure, the best of which yielded low micromolar inhibition constants. Overall, we identify a novel glycosaminoglycan-mediated mechanism of inhibition by the pro-peptide that potentially regulates zymogen activation and describe a promising design strategy to develop antischistosomal drugs.

  17. [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, small molecule synthetic peptide leptin mimetics, improve glycemic control in diet-induced obese (DIO) mice.

    PubMed

    Wang, Anke; Anderson, Brian M; Novakovic, Zachary M; Grasso, Patricia

    2018-03-01

    We have previously shown that following oral delivery in dodecyl maltoside (DDM), [D-Leu-4]-OB3 and its myristic acid conjugate, MA-[D-Leu-4]-OB3, improved energy balance and glucose homeostasis in genetically obese/diabetic mouse models. More recently, we have provided immunohistochemical evidence indicating that these synthetic peptide leptin mimetics cross the blood-brain barrier and concentrate in the area of the arcuate nucleus of the hypothalamus in normal C57BL/6J and Swiss Webster mice, in genetically obese ob/ob mice, and in diet-induced obese (DIO) mice. In the present study, we describe the effects of oral delivery of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 on glycemic control in diet-induced (DIO) mice, a non-genetic rodent model of obesity and its associated insulin resistance, which more closely recapitulates common obesity and diabetes in humans. Male C57BL/6J and DIO mice, 17, 20, and 28 weeks of age, were maintained on a low-fat or high-fat diet and given vehicle (DDM) alone or [D-Leu-4]-OB3 or MA-[D-Leu-4]-OB3 in DDM by oral gavage for 12 or 14 days. Body weight gain, food and water intake, fasting blood glucose, oral glucose tolerance, and serum insulin levels were measured. Our data indicate that (1) [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 restore glucose tolerance in male DIO mice maintained on a high-fat diet to levels comparable to those of non-obese C57BL/6J wild-type mice of the same age and sex maintained on a low-fat diet; and (2) the influence of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 on glycemic control appears to be independent of their effects on energy balance. These results suggest that [D-Leu-4]-OB3 and/or MA-[D-Leu-4]-OB3 may have application to the management of the majority of cases of common obesity in humans, a state characterized at least in part, by leptin resistance resulting from a defect in leptin transport across the blood-brain barrier. They further suggest that these small molecule synthetic peptide leptin mimetics, through their

  18. Molecules that Mimic Apolipoprotein A-I: Potential Agents for Treating Atherosclerosis

    PubMed Central

    Leman, Luke J.; Maryanoff, Bruce E.; Ghadiri, M. Reza

    2013-01-01

    Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL. PMID:24168751

  19. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders

    PubMed Central

    Tennoune, N; Chan, P; Breton, J; Legrand, R; Chabane, Y N; Akkermann, K; Järv, A; Ouelaa, W; Takagi, K; Ghouzali, I; Francois, M; Lucas, N; Bole-Feysot, C; Pestel-Caron, M; do Rego, J-C; Vaudry, D; Harro, J; Dé, E; Déchelotte, P; Fetissov, S O

    2014-01-01

    The molecular mechanisms at the origin of eating disorders (EDs), including anorexia nervosa (AN), bulimia and binge-eating disorder (BED), are currently unknown. Previous data indicated that immunoglobulins (Igs) or autoantibodies (auto-Abs) reactive with α-melanocyte-stimulating hormone (α-MSH) are involved in regulation of feeding and emotion; however, the origin of such auto-Abs is unknown. Here, using proteomics, we identified ClpB heat-shock disaggregation chaperone protein of commensal gut bacteria Escherichia coli as a conformational antigen mimetic of α-MSH. We show that ClpB-immunized mice produce anti-ClpB IgG crossreactive with α-MSH, influencing food intake, body weight, anxiety and melanocortin receptor 4 signaling. Furthermore, chronic intragastric delivery of E. coli in mice decreased food intake and stimulated formation of ClpB- and α-MSH-reactive antibodies, while ClpB-deficient E. coli did not affect food intake or antibody levels. Finally, we show that plasma levels of anti-ClpB IgG crossreactive with α-MSH are increased in patients with AN, bulimia and BED, and that the ED Inventory-2 scores in ED patients correlate with anti-ClpB IgG and IgM, which is similar to our previous findings for α-MSH auto-Abs. In conclusion, this work shows that the bacterial ClpB protein, which is present in several commensal and pathogenic microorganisms, can be responsible for the production of auto-Abs crossreactive with α-MSH, associated with altered feeding and emotion in humans with ED. Our data suggest that ClpB-expressing gut microorganisms might be involved in the etiology of EDs. PMID:25290265

  20. [Incretin mimetic drugs: therapeutic positioning].

    PubMed

    López Simarro, F

    2014-07-01

    Type 2 diabetes is a chronic and complex disease, due to the differences among affected individuals, which affect choice of treatment. The number of drug families has increased in the last few years, and these families have widely differing mechanisms of action, which contributes greatly to the individualization of treatment according to the patient's characteristics and comorbidities. The present article discusses incretin mimetic drugs. Their development has been based on knowledge of the effects of natural incretin hormones: GLP-1 (glucagon-like peptide 1), GIP (glucose-dependent insulinotropic peptide) and dipeptidyl peptidase enzyme 4 (DPP4), which rapidly degrade them in the systemic circulation. This group is composed of 2 different types of molecules: GLP-1 analogs and DPP4 enzyme inhibitors. The benefits of these molecules include a reduction in plasma glucose without the risk of hypoglycemias or weight gain. There are a series of questions that require new studies to establish a possible association between the use of these drugs and notification of cases of pancreatitis, as well as their relationship with pancreatic and thyroid cancer. Also awaited is the publication of several studies that will provide information on the relationship between these drugs and cardiovascular risk in people with diabetes. All these questions will probably be progressively elucidated with greater experience in the use of these drugs. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Medicina Rural y Generalista (SEMERGEN). All rights reserved.

  1. Investigation of the binding of a carbohydrate-mimetic peptide to its complementary anticarbohydrate antibody by STD-NMR spectroscopy and molecular-dynamics simulations.

    PubMed

    Szczepina, Monica G; Bleile, Dustin W; Pinto, B Mario

    2011-10-04

    Saturation transfer difference (STD)-NMR spectroscopy was used to probe experimentally the bioactive solution conformation of the carbohydrate mimic MDWNMHAA 1 of the O-polysaccharide of Shigella flexneri Y when bound to its complementary antibody, mAb SYA/J6. Molecular dynamics simulations using the ZymeCAD™ Molecular Dynamics platform were also undertaken to give a more accurate picture of the conformational flexibility and the possibilities for bound ligand conformations. The ligand topology, or the dynamic epitope, was mapped with the CORCEMA-ST (COmplete Relaxation and Conformational Exchange Matrix Analysis of Saturation Transfer) program that calculates a total matrix analysis of relaxation and exchange effects to generate predicted STD-NMR intensities from simulation. The comparison of these predicted STD enhancements with experimental data was used to select a representative binding mode. A protocol that employed theoretical STD effects calculated at snapshots during the entire course of a molecular dynamics (MD) trajectory of the peptide bound to the Fv portion of the antibody, and not the averaged atomic positions of receptor-ligand complexes, was also examined. In addition, the R factor was calculated on the basis of STD (fit) to avoid T1 bias, and an effective R factor, R(eff), was defined such that if the calculated STD (fit) for proton k was within error of the experimental STD (fit) for proton k, then that calculated STD (fit) for proton k was not included in the calculation of the R factor. This protocol was effective in deriving the antibody-bound solution conformation of the peptide which also differed from the bound conformation determined by X-ray crystallography; however, several discrepancies between experimental and calculated STD (fit) values were observed. The bound conformation was therefore further refined with a simulated annealing refinement protocol known as STD-NMR intensity-restrained CORCEMA optimization (SICO) to give a more

  2. Aβ-oligomer uptake and the resulting inflammatory response in adult human astrocytes are precluded by an anti-Aβ single chain variable fragment in combination with an apoE mimetic peptide.

    PubMed

    Montoliu-Gaya, Laia; Mulder, Sandra D; Herrebout, Maaike A C; Baayen, Johannes C; Villegas, Sandra; Veerhuis, Robert

    2018-04-03

    An imbalance between production and clearance of soluble amyloid-β (Aβ) initiates the pathological process in sporadic Alzheimer's disease (AD). Aβ-specific antibodies seemed promising as therapeutic option in AD mouse models. In patients, however, vascular side-effects and Aβ-antibody complex-induced microglial and/or perivascular macrophage inflammatory responses were encountered. To prevent inflammatory reactions, we designed a single chain variable fragment (scFv-h3D6), based on monoclonal antibody bapineuzumab (mAb-h3D6), but lacking the Fc region. ScFv-h3D6 reduced Aβ-oligomer burden and prevented AD-associated behavioral and cellular changes in 3xTg-AD mice. As scFv-h3D6 lacks the Fc-tail, it cannot enhance Fc-receptor mediated Aβ clearance by microglia and probably exerts its beneficial effects in 3xTg-AD mice through other mechanisms. ScFv-h3D6 restored the increased apoE and apoJ levels in 3xTg-AD brains back to normal. ApoE and apoJ influence cholesterol transport, Aβ aggregation and clearance, and their genetic variants are risk factors for sporadic AD. Astrocytes are constitutive scavengers of soluble Aβ from the CNS. We previously found apoE and apoJ to inhibit Aβ uptake by adult human astrocytes, in vitro, and thus to potentially protect astrocytes from Aβ cytotoxicity. In the present study, scFv-h3D6 and mAb-h3D6 inhibited Aβ-oligomer uptake by adult human astrocytes. ApoE- and apoJ- mimetic peptides (MP) affected Aβ uptake as well as Aβ-induced cytokine release similar to intact apoE and apoJ, without interfering with the strong inhibitory effects of scFv-h3D6 on Aβ-oligomer uptake. These results suggest that combining Aβ-specific scFv and apoE-MP, that inhibits Aβ oligomer-induced cytokine release by astrocytes, could offer advantages over currently used therapeutics. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. High throughput quantification of apolipoproteins A-I and B-100 by isotope dilution MS targeting fast trypsin releasable peptides without reduction and alkylation.

    PubMed

    Parks, Bryan A; Schieltz, David M; Andrews, Michael L; Gardner, Michael S; Rees, Jon C; Toth, Christopher A; Jones, Jeffrey I; McWilliams, Lisa G; Kuklenyik, Zsuzsanna; Pirkle, James L; Barr, John R

    2017-07-01

    Apolipoprotein A-I (ApoA-I) and apolipoprotein B-100 (ApoB-100) are amphipathic proteins that are strong predictors of cardiovascular disease risk. The traceable calibration of apolipoprotein assays is a persistent challenge, especially for ApoB-100, which cannot be solubilized in purified form. A simultaneous quantitation method for ApoA-I and ApoB-100 was developed using tryptic digestion without predigestion reduction and alkylation, followed by LC separation coupled with isotope dilution MS analysis. The accuracy of the method was assured by selecting structurally exposed signature peptides, optimal choice of detergent, protein:enzyme ratio, and incubation time. Peptide calibrators were value assigned by isobaric tagging isotope dilution MS amino acid analysis. The method reproducibility was validated in technical repeats of three serum samples, giving 2-3% intraday CVs (N = 5) and <7% interday CVs (N = 21). The repeated analysis of interlaboratory harmonization standards showed -1% difference for ApoA-I and -12% for ApoB-100 relative to the assigned value. The applicability of the method was demonstrated by repeated analysis of 24 patient samples with a wide range of total cholesterol and triglyceride levels. The method is applicable for simultaneous analysis of ApoA-I and ApoB-100 in patient samples, and for characterization of serum pool calibrators for other analytical platforms. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  4. Instabilities in mimetic matter perturbations

    SciTech Connect

    Firouzjahi, Hassan; Gorji, Mohammad Ali; Mansoori, Seyed Ali Hosseini, E-mail: firouz@ipm.ir, E-mail: gorji@ipm.ir, E-mail: shosseini@shahroodut.ac.ir, E-mail: shossein@ipm.ir

    2017-07-01

    We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in both comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilitiesmore » such as the Ostrogradsky ghost.« less

  5. Smac mimetics as IAP antagonists.

    PubMed

    Fulda, Simone

    2015-03-01

    As the Inhibitor of Apoptosis (IAP) proteins are expressed at high levels in human cancers, they represent promising targets for therapeutic intervention. Small-molecule inhibitors of IAP proteins mimicking the endogenous IAP antagonist Smac, called Smac mimetics, neutralize IAP proteins and thereby promote the induction of cell death. Smac mimetics have been shown in preclinical models of human cancer to directly trigger cancer cell death or to sensitize for cancer cell death induced by a variety of cytotoxic stimuli. Smac mimetics are currently undergoing clinical evaluation in phase I/II trials, demonstrating that therapeutic targeting of IAP proteins has reached the clinical stage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Cardioprotection by Conditioning Mimetic Drugs.

    PubMed

    Santillo, Elpidio; Migale, Monica; Postacchini, Demetrio; Balestrini, Fabrizio; Incalzi, Raffaele Antonelli

    2016-01-01

    At present, ischemic heart disease (IHD) is one of the main causes of morbidity and mortality world-wide. An important insight into both IHD pathophysiology and cardioprotection was achieved in 1986 when Murry et al. described for the first time the ischemic preconditioning (IP). IP can be defined as an innate phenomenon by which brief episodes of ischemia confer protection to a tissue from a subsequent more protracted ischemic insult. Suggested mechanisms explaining IP comprise the action of circulating substances (e.g. adenosine, bradykinin, nitric oxide). These mediators are released after a prolonged ischemic stress, causing activation of molecular pathways that induce favorable posttranslational changes of proteins and adaptive modifications in genetic expression. Briefly review evidences from clinical studies on drugs that exert their effects by mimicking IP, discussing their therapeutic properties and the potential clinical employment in order to obtain cardioprotection. Literature regarding IP mimicking pharmacological agents was searched in Medline and Google Scholar. Authors reviewed relevant researches in English language including both clinical studies and reviews of clinical studies published from 1986 to 2016. Several pharmacological agents reproducing IP protective actions have been evaluated in many clinical trials. Examined molecules include adenosine, nicorandil and atrial natriuretic peptide. Interestingly IP mimicking effects of drugs have been also analyzed perioperatively in the context of ischaemia-reperfusion heart injury. Moreover evidences suggest that also some anaesthetic drugs (especially volatile agents) are able to provide myocardial protection by inducing IP. Drugs capable of mimicking IP exhibit a high therapeutic potential because of their properties of eliciting an effective cardioprotective signaling. Future studies should clarify the optimal doses and timing of administration of IP mimetic agents in order to favor the advent of

  7. Mimetics of Hormetic Agents: Stress-Resistance Triggers

    PubMed Central

    Sonneborn, Joan Smith

    2010-01-01

    Mimetics of hormetic agents offer a novel approach to adjust dose to minimize the risk of toxic response, and maximize the benefit of induction of at least partial physiological conditioning. Nature selected and preserved those organisms and triggers that promote tolerance to stress. The induced tolerance can serve to resist that challenge and can repair previous age, disease, and trauma damage as well to provide a more youthful response to other stresses. The associated physiological conditioning may include youthful restoration of DNA repair, resistance to oxidizing pollutants, protein structure and function repair, improved immunity, tissue remodeling, adjustments in central and peripheral nervous systems, and altered metabolism. By elucidating common pathways activated by hormetic agent’s mimetics, new strategies for intervention in aging, disease, and trauma emerge. Intervention potential in cancer, diabetes, age-related diseases, infectious diseases, cardiovascular diseases, and Alzheimer’s disease are possible. Some hormetic mimetics exist in pathways in primitive organisms and are active or latent in humans. Peptides, oligonucleotides, and hormones are among the mimetics that activate latent resistance to radiation, physical endurance, strength, and immunity to physiological condition tolerance to stress. Co-activators may be required for expression of the desired physiological conditioning health and rejuvenation benefits. PMID:20221297

  8. Neural ECM mimetics.

    PubMed

    Estrada, Veronica; Tekinay, Ayse; Müller, Hans Werner

    2014-01-01

    The consequence of numerous neurological disorders is the significant loss of neural cells, which further results in multilevel dysfunction or severe functional deficits. The extracellular matrix (ECM) is of tremendous importance for neural regeneration mediating ambivalent functions: ECM serves as a growth-promoting substrate for neurons but, on the other hand, is a major constituent of the inhibitory scar, which results from traumatic injuries of the central nervous system. Therefore, cell and tissue replacement strategies on the basis of ECM mimetics are very promising therapeutic interventions. Numerous synthetic and natural materials have proven effective both in vitro and in vivo. The closer a material's physicochemical and molecular properties are to the original extracellular matrix, the more promising its effectiveness may be. Relevant factors that need to be taken into account when designing such materials for neural repair relate to receptor-mediated cell-matrix interactions, which are dependent on chemical and mechanical sensing. This chapter outlines important characteristics of natural and synthetic ECM materials (scaffolds) and provides an overview of recent advances in design and application of ECM materials for neural regeneration, both in therapeutic applications and in basic biological research.

  9. High-density Lipoproteins and Apolipoprotein A-I: Potential New Players in the Prevention and Treatment of Lung Disease.

    PubMed

    Gordon, Elizabeth M; Figueroa, Debbie M; Barochia, Amisha V; Yao, Xianglan; Levine, Stewart J

    2016-01-01

    Apolipoprotein A-I (apoA-I) and high-density lipoproteins (HDL) mediate reverse cholesterol transport out of cells. Furthermore, HDL has additional protective functions, which include anti-oxidative, anti-inflammatory, anti-apoptotic, and vasoprotective effects. In contrast, HDL can become dysfunctional with a reduction in both cholesterol efflux and anti-inflammatory properties in the setting of disease or the acute phase response. These paradigms are increasingly being recognized to be active in the pulmonary system, where apoA-I and HDL have protective effects in normal lung health, as well as in a variety of disease states, including acute lung injury (ALI), asthma, chronic obstructive pulmonary disease, lung cancer, pulmonary arterial hypertension, pulmonary fibrosis, and viral pneumonia. Similar to observations in cardiovascular disease, however, HDL may become dysfunctional and contribute to disease pathogenesis in respiratory disorders. Furthermore, synthetic apoA-I mimetic peptides have been shown to have protective effects in animal models of ALI, asthma, pulmonary hypertension, and influenza pneumonia. These findings provide evidence to support the concept that apoA-I mimetic peptides might be developed into a new treatment that can either prevent or attenuate the manifestations of lung diseases, such as asthma. Thus, the lung is positioned to take a page from the cardiovascular disease playbook and utilize the protective properties of HDL and apoA-I as a novel therapeutic approach.

  10. Amphipathic Polyproline Peptides Stimulate Cholesterol Efflux by the ABCA1 Transporter

    PubMed Central

    Sviridov, D.O.; Drake, S.K.; Freeman, L.A.; Remaley, A.T.

    2016-01-01

    ApoA-I mimetics are short synthetic peptides that contain an amphipathic αα-helix and stimulate cholesterol efflux by the ABCA1 transporter in a detergent-like extraction mechanism. We investigated the use of amphipathic peptides with a polypro helix for stimulating cholesterol efflux by ABCA1. Polypro peptides were synthesized with modified prolines, containing either a hydrophobic phenol group (Prop) or a polar N-acetylgalactosamine (Prog) attached to the pyrrolidine ring and were designated as either PP-2, 3, 4, or 5, depending on the number of 3 amino acid repeat units (Prop - Prog - Prop). Based on molecular modeling, these peptides were predicted to be relatively rigid and to bind to a phospholipid bilayer. By CD spectroscopy, PP peptides formed a Type-II polypro helix in an aqueous solution. PP-2 was inactive in promoting cholesterol efflux, but peptides with more than 2 repeat units were active. PP-4 showed a similar Vmax as a much longer amphipathic α-αhelical peptide, containing 37 amino acids, but had a Km that was approximately 20-fold lower. PP peptides were specific in that they did not stimulate cholesterol efflux from cells not expressing ABCA1 and were also non-cytotoxic. Addition of PP-3, 4 and 5 to serum promoted the formation of smaller size HDL species (7 nM) and increased its capacity for ABCA1-dependent cholesterol efflux by approximately 20-35% (p<0.05). Because of their relatively small size and increased potency, amphipathic peptides with a polypro helix may represent an alternative structural motif for the development of apoA-I mimetic peptides. PMID:26879139

  11. Cosmological dynamics of mimetic gravity

    NASA Astrophysics Data System (ADS)

    Dutta, Jibitesh; Khyllep, Wompherdeiki; Saridakis, Emmanuel N.; Tamanini, Nicola; Vagnozzi, Sunny

    2018-02-01

    We present a detailed investigation of the dynamical behavior of mimetic gravity with a general potential for the mimetic scalar field. Performing a phase-space and stability analysis, we show that the scenario at hand can successfully describe the thermal history of the universe, namely the successive sequence of radiation, matter, and dark-energy eras. Additionally, at late times the universe can either approach a de Sitter solution, or a scaling accelerated attractor where the dark-matter and dark-energy density parameters are of the same order, thus offering an alleviation of the cosmic coincidence problem. Applying our general analysis to various specific potential choices, including the power-law and the exponential ones, we show that mimetic gravity can be brought into good agreement with the observed behavior of the universe. Moreover, with an inverse square potential we find that mimetic gravity offers an appealing unified cosmological scenario where both dark energy and dark matter are characterized by a single scalar field, and where the cosmic coincidence problem is alleviated.

  12. Bio-mimetic Flow Control

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  13. Extracellular matrix-mimetic adhesive biomaterials for bone repair.

    PubMed

    Shekaran, Asha; García, Andrés J

    2011-01-01

    Limited osseointegration of current orthopedic biomaterials contributes to the failure of implants such as arthroplasties, bone screws, and bone grafts, which present a large socioeconomic cost within the United States. These implant failures underscore the need for biomimetic approaches that modulate host cell-implant material responses to enhance implant osseointegration and bone formation. Bioinspired strategies have included functionalizing implants with extracellular matrix (ECM) proteins or ECM-derived peptides or protein fragments, which engage integrins and direct osteoblast adhesion and differentiation. This review discusses (1) bone ECM composition and key integrins implicated in osteogenic differentiation, (2) the use of implants functionalized with ECM-mimetic peptides/protein fragments, and (3) growth factor-derived peptides to promote the mechanical fixation of implants to bone and to enhance bone healing within large defects. Copyright © 2010 Wiley Periodicals, Inc.

  14. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration.

    PubMed

    Uzunalli, G; Soran, Z; Erkal, T S; Dagdas, Y S; Dinc, E; Hondur, A M; Bilgihan, K; Aydin, B; Guler, M O; Tekinay, A B

    2014-03-01

    Defects in the corneal stroma caused by trauma or diseases such as macular corneal dystrophy and keratoconus can be detrimental for vision. Development of therapeutic methods to enhance corneal regeneration is essential for treatment of these defects. This paper describes a bioactive peptide nanofiber scaffold system for corneal tissue regeneration. These nanofibers are formed by self-assembling peptide amphiphile molecules containing laminin and fibronectin inspired sequences. Human corneal keratocyte cells cultured on laminin-mimetic peptide nanofibers retained their characteristic morphology, and their proliferation was enhanced compared with cells cultured on fibronectin-mimetic nanofibers. When these nanofibers were used for damaged rabbit corneas, laminin-mimetic peptide nanofibers increased keratocyte migration and supported stroma regeneration. These results suggest that laminin-mimetic peptide nanofibers provide a promising injectable, synthetic scaffold system for cornea stroma regeneration. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Effect of mimetic CDK9 inhibitors on HIV-1 activated transcription

    PubMed Central

    Van Duyne, Rachel; Guendel, Irene; Jaworski, Elizabeth; Sampey, Gavin; Klase, Zachary; Chen, Hao; Zeng, Chen; Kovalskyy, Dmytro; el Kouni, Mahmoud H.; Lepene, Benjamin; Patanarut, Alexis; Nekhai, Sergei; Price, David H.; Kashanchi, Fatah

    2013-01-01

    Potent antiretroviral therapy (ART) has transformed HIV-1 infection into a chronic manageable disease; however drug resistance remains a common problem that limits the effectiveness and clinical benefits of this type of treatment. The discovery of viral reservoirs in the body, in which HIV-1 may persist, has helped to explain why therapeutic eradication of HIV-1 has proved so difficult. In the current study we utilized a combination of structure based analysis of Cyclin/CDK complexes with our previously published Tat peptide derivatives. We modeled the Tat peptide inhibitors with CDKs and found a particular pocket which showed the most stable binding site (Cavity 1) using in silico analysis. Furthermore, we were able to find peptide mimetics that bound to similar regions using in silico searches of a chemical library, followed by cell based biological assays. Using these methods we obtained the first generation mimetic drugs and tested these compounds on HIV-1 LTR activated transcription. Using biological assays followed by similar in silico analysis to find a 2nd generation drugs resembling the original mimetic, we found the new targets of Cavity 1 and Cavity 2 regions on CDK9. We examined the 2nd generation mimetic against various viral isolates, and observed a generalized suppression of most HIV-1 isolates. Finally, the drug inhibited viral replication in humanized mouse models of Rag2-/-γc-/- with no toxicity to the animals at tested concentrations. Our results suggest that it may be possible to model peptide inhibitors into available crystal structures and further find drug mimetics using in silico analysis. PMID:23247501

  16. The positional specificity of EXXK motifs within an amphipathic α-helix dictates preferential lysine modification by acrolein: implications for the design of high-density lipoprotein mimetic peptides.

    PubMed

    Zheng, Ying; Kim, Sea H; Patel, Arti B; Narayanaswami, Vasanthy; Iavarone, Anthony T; Hura, Gregory L; Bielicki, John K

    2012-08-14

    Despite the ability of acrolein to damage proteins, factors governing its reactivity with the ε-amino group of lysine are poorly understood. We used a small 26-mer α-helical peptide (ATI-5261) to evaluate the influence of acidic glutamate (E) residues on site-specific lysine modification by acrolein and if this targeting played a major role in inhibiting the cholesterol efflux activity of the peptide. Exposure of ATI-5261 to acrolein resulted in N-(3-formyl-3,4-dehydropiperidino) (FDP)-lysine adducts at positions 5 and 25 and led to a concentration-dependent reduction in cholesterol efflux activity (55 ± 7 and 83 ± 3% decrease with 5:1 and 20:1 acrolein:peptide molar ratios, respectively). Amino acid substitution (K → R) experiments and mass spectrometry revealed neither K5 nor K25 was preferentially modified by acrolein, despite the location of K5 within a putative EXXK motif. Moreover, both lysine residues remained equally reactive when the lipidated peptide was exposed to acrolein. In contrast, placement of EXXK in the center of ATI-5261 resulted in site-specific modification of lysine. The latter was dependent on glutamate, thus establishing that acidic residues facilitate lysine modification and form the molecular basis of the EXXK motif. Preferential targeting of lysine, however, failed to augment the inhibitory effect of the aldehyde. Overall, the inhibitory effects of acrolein on cholesterol efflux activity were largely dependent on the number of lysine residue modifications and cross-linking of α-helical strands that restricted dissociation of the peptide to active forms.

  17. Max Bergmann lecture Protein epitope mimetics in the age of structural vaccinology‡

    PubMed Central

    Robinson, John A

    2013-01-01

    This review highlights the growing importance of protein epitope mimetics in the discovery of new biologically active molecules and their potential applications in drug and vaccine research. The focus is on folded β-hairpin mimetics, which are designed to mimic β-hairpin motifs in biologically important peptides and proteins. An ever-growing number of protein crystal structures reveal how β-hairpin motifs often play key roles in protein–protein and protein–nucleic acid interactions. This review illustrates how using protein structures as a starting point for small-molecule mimetic design can provide novel ligands as protein–protein interaction inhibitors, as protease inhibitors, and as ligands for chemokine receptors and folded RNA targets, as well as novel antibiotics to combat the growing health threat posed by the emergence of antibiotic-resistant bacteria. The β-hairpin antibiotics are shown to target a β-barrel outer membrane protein (LptD) in Pseudomonas sp., which is essential for the biogenesis of the outer cell membrane. Another exciting prospect is that protein epitope mimetics will be of increasing importance in synthetic vaccine design, in the emerging field of structural vaccinology. Crystal structures of protective antibodies bound to their pathogen-derived epitopes provide an ideal starting point for the design of synthetic epitope mimetics. The mimetics can be delivered to the immune system in a highly immunogenic format on the surface of synthetic virus-like particles. The scientific challenges in molecular design remain great, but the potential significance of success in this area is even greater. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd. PMID:23349031

  18. Emerging Roles of Apolipoprotein E and Apolipoprotein A-I in the Pathogenesis and Treatment of Lung Disease.

    PubMed

    Yao, Xianglan; Gordon, Elizabeth M; Figueroa, Debbie M; Barochia, Amisha V; Levine, Stewart J

    2016-08-01

    Emerging roles are being recognized increasingly for apolipoproteins in the pathogenesis and treatment of lung diseases on the basis of their ability to suppress inflammation, oxidative stress, and tissue remodeling, and to promote adaptive immunity and host defense. Apolipoproteins, such as apolipoprotein E (apoE) and apolipoprotein A-I (apoA-I), are important components of lipoprotein particles that facilitate the transport of cholesterol, triglycerides, and phospholipids between plasma and cells. ApoE-containing lipoprotein particles are internalized into cells by low-density lipoprotein receptors (LDLRs), whereas apoA-I can interact with the ATP-binding cassette subfamily A member 1 (ABCA1) transporter to efflux cholesterol and phospholipids out of cells. ApoE and apoA-I also mediate receptor-independent effects, such as binding to and neutralizing LPS. Both apoE and apoA-I are expressed by lung cells, which allows apoE/LDLR- and apoA-I/ABCA1-dependent pathways to modulate normal lung health and the pathogenesis of respiratory diseases, including asthma, acute lung injury, cancer, emphysema, pulmonary fibrosis, and pulmonary hypertension. Data from human studies and research using experimental murine model systems have shown that both apoE and apoA-I pathways play primarily protective roles in lung biology and respiratory disease. Furthermore, apolipoprotein mimetic peptides, corresponding to the LDLR-binding domain of apoE or the class A amphipathic α-helical structure of apoA-I, have antiinflammatory and antioxidant effects that attenuate the severity of lung disease in murine models. Thus, the development of inhaled apolipoprotein mimetic peptides as a novel treatment paradigm could represent a significant advance for patients with respiratory disease who do not respond to current therapies.

  19. Heparin mimetics with anticoagulant activity.

    PubMed

    Nahain, Abdullah Al; Ignjatovic, Vera; Monagle, Paul; Tsanaktsidis, John; Ferro, Vito

    2018-02-15

    Heparin, a sulfated polysaccharide belonging to the glycosaminoglycan family, has been widely used as an anticoagulant drug for decades and remains the most commonly used parenteral anticoagulant in adults and children. However, heparin has important clinical limitations and is derived from animal sources which pose significant safety and supply problems. The ever growing shortage of the raw material for heparin manufacturing may become a very significant issue in the future. These global limitations have prompted much research, especially following the recent well-publicized contamination scandal, into the development of alternative anticoagulants derived from non-animal and/or totally synthetic sources that mimic the structural features and properties of heparin. Such compounds, termed heparin mimetics, are also needed as anticoagulant materials for use in biomedical applications (e.g., stents, grafts, implants etc.). This review encompasses the development of heparin mimetics of various structural classes, including synthetic polymers and non-carbohydrate small molecules as well as sulfated oligo- and polysaccharides, and fondaparinux derivatives and conjugates, with a focus on developments in the past 10 years. © 2018 Wiley Periodicals, Inc.

  20. Bicontinuous microemulsions as a biomembrane mimetic system for melittin

    DOE PAGES

    Hayes, Douglas G.; Ye, Ran; Dunlap, Rachel N.; ...

    2017-11-12

    Antimicrobial peptides effectively kill antibiotic-resistant bacteria by forming pores in prokaryotes' biomembranes via penetration into the biomembranes' interior. Bicontinuous microemulsions, consisting of interdispersed oil and water nanodomains separated by flexible surfactant monolayers, are potentially valuable for hosting membrane-associated peptides and proteins due to their thermodynamic stability, optical transparency, low viscosity, and high interfacial area. Here, we show that bicontinuous microemulsions formed by negatively-charged surfactants are a robust biomembrane mimetic system for the antimicrobial peptide melittin. When encapsulated in bicontinuous microemulsions formed using three-phase (Winsor-III) systems, melittin's helicity increases greatly due to penetration into the surfactant monolayers, mimicking its behavior inmore » biomembranes. But, the threshold melittin concentration required to achieve these trends is lower for the microemulsions. The extent of penetration was decreased when the interfacial fluidity of the microemulsions was increased. In conclusion, these results suggest the utility of bicontinuous microemulsions for isolation, purification, delivery, and host systems for antimicrobial peptides.« less

  1. Unimodular mimetic F(R) inflation

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-07-01

    We propose the unimodular-mimetic F(R) gravity theory, to resolve cosmological constant problem and dark matter problem in a unified geometric manner. We demonstrate that such a theory naturally admits accelerating universe evolution. Furthermore, we construct unimodular-mimetic F(R) inflationary cosmological scenarios compatible with the Planck and BICEP2/Keck-Array observational data. We also address the graceful exit issue, which is guaranteed by the existence of unstable de Sitter vacua.

  2. Arginine mimetic structures in biologically active antagonists and inhibitors.

    PubMed

    Masic, Lucija Peterlin

    2006-01-01

    Peptidomimetics have found wide application as bioavailable, biostable, and potent mimetics of naturally occurring biologically active peptides. L-Arginine is a guanidino group-containing basic amino acid, which is positively charged at neutral pH and is involved in many important physiological and pathophysiological processes. Many enzymes display a preference for the arginine residue that is found in many natural substrates and in synthetic inhibitors of many trypsin-like serine proteases, e.g. thrombin, factor Xa, factor VIIa, trypsin, and in integrin receptor antagonists, used to treat many blood-coagulation disorders. Nitric oxide (NO), which is produced by oxidation of L-arginine in an NADPH- and O(2)-dependent process catalyzed by isoforms of nitric oxide synthase (NOS), exhibits diverse roles in both normal and pathological physiologies and has been postulated to be a contributor to the etiology of various diseases. Development of NOS inhibitors as well as analogs and mimetics of the natural substrate L-arginine, is desirable for potential therapeutic use and for a better understanding of their conformation when bound in the arginine binding site. The guanidino residue of arginine in many substrates, inhibitors, and antagonists forms strong ionic interactions with the carboxylate of an aspartic acid moiety, which provides specificity for the basic amino acid residue in the active side. However, a highly basic guanidino moiety incorporated in enzyme inhibitors or receptor antagonists is often associated with low selectivity and poor bioavailability after peroral application. Thus, significant effort is focused on the design and preparation of arginine mimetics that can confer selective inhibition for specific trypsin-like serine proteases and NOS inhibitors as well as integrin receptor antagonists and possess reduced basicity for enhanced oral bioavailability. This review will describe the survey of arginine mimetics designed to mimic the function of the

  3. Amyloid-Beta Induced CA1 Pyramidal Cell Loss in Young Adult Rats Is Alleviated by Systemic Treatment with FGL, a Neural Cell Adhesion Molecule-Derived Mimetic Peptide

    PubMed Central

    Corbett, Nicola J.; Gabbott, Paul L.; Klementiev, Boris; Davies, Heather A.; Colyer, Frances M.; Novikova, Tatiana; Stewart, Michael G.

    2013-01-01

    Increased levels of neurotoxic amyloid-beta in the brain are a prominent feature of Alzheimer’s disease. FG-Loop (FGL), a neural cell adhesion molecule-derived peptide that corresponds to its second fibronectin type III module, has been shown to provide neuroprotection against a range of cellular insults. In the present study impairments in social recognition memory were seen 24 days after a 5 mg/15 µl amyloid-beta(25–35) injection into the right lateral ventricle of the young adult rat brain. This impairment was prevented if the animal was given a systemic treatment of FGL. Unbiased stereology was used to investigate the ability of FGL to alleviate the deleterious effects on CA1 pyramidal cells of the amyloid-beta(25–35) injection. NeuN, a neuronal marker (for nuclear staining) was used to identify pyramidal cells, and immunocytochemistry was also used to identify inactive glycogen synthase kinase 3beta (GSK3β) and to determine the effects of amyloid-beta(25–35) and FGL on the activation state of GSK3β, since active GSK3β has been shown to cause a range of AD pathologies. The cognitive deficits were not due to hippocampal atrophy as volume estimations of the entire hippocampus and its regions showed no significant loss, but amyloid-beta caused a 40% loss of pyramidal cells in the dorsal CA1 which was alleviated partially by FGL. However, FGL treatment without amyloid-beta was also found to cause a 40% decrease in CA1 pyramidal cells. The action of FGL may be due to inactivation of GSK3β, as an increased proportion of CA1 pyramidal neurons contained inactive GSK3β after FGL treatment. These data suggest that FGL, although potentially disruptive in non-pathological conditions, can be neuroprotective in disease-like conditions. PMID:23951173

  4. Synthesis and screening of small-molecule α-helix mimetic libraries targeting protein-protein interactions.

    PubMed

    Moon, Heejo; Lim, Hyun-Suk

    2015-02-01

    α-Helices are the most common protein secondary structure and play a key role in mediating many protein-protein interactions (PPIs) by serving as recognition motifs. Given that aberrant α-helix-mediated PPIs are linked to various disease states, targeting such interactions with small-molecules represents an attractive strategy to develop therapeutic candidates for the related diseases. Over the last decade, significant efforts have been directed toward developing α-helix mimetic small-molecules that can modulate α-helix-mediated PPIs. In this review, we will highlight recent advances in the development of non-peptidic, small-molecule α-helix mimetics with a focus on library synthesis and screening methods to efficiently discover small-molecule α-helix mimetics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Potent Bivalent Smac Mimetics: Effect of the Linker on Binding to Inhibitor of Apoptosis Proteins (IAPs) and Anticancer Activity

    PubMed Central

    Sun, Haiying; Liu, Liu; Lu, Jianfeng; Bai, Longchuan; Li, Xiaoqin; Nikolovska-Coleska, Zaneta; McEachern, Donna; Yang, Chao-Yie; Qiu, Su; Yi, Han; Sun, Duxin; Wang, Shaomeng

    2011-01-01

    We have synthesized and evaluated a series of non-peptidic, bivalent Smac mimetics as antagonists of the inhibitor of apoptosis proteins and new anticancer agents. All these bivalent Smac mimetics bind to full-length XIAP with low nanomolar affinities and function as ultra-potent antagonists of XIAP. While these Smac mimetics bind to cIAP1/2 with similar low nanomolar affinities, their potencies to induce degradation of cIAP1/2 proteins in cells differ by more than 100-fold. The most potent bivalent Smac mimetics inhibit cell growth with IC50 values from 1–3 nM in the MDA-MB-231 breast cancer cell line and are 100-times more potent than the least potent compounds. Determination of intracellular concentrations for several representative compounds showed that the linkers in these bivalent Smac mimetics significantly affect their intracellular concentrations, hence the overall cellular activity. Compound 27 completely inhibits tumor growth in the MDA-MB-231 xenografts, while causing no signs of toxicity in the animals. PMID:21462933

  6. Cosmological perturbations in mimetic Horndeski gravity

    SciTech Connect

    Arroja, Frederico; Bartolo, Nicola; Karmakar, Purnendu

    2016-04-01

    We study linear scalar perturbations around a flat FLRW background in mimetic Horndeski gravity. In the absence of matter, we show that the Newtonian potential satisfies a second-order differential equation with no spatial derivatives. This implies that the sound speed for scalar perturbations is exactly zero on this background. We also show that in mimetic G {sup 3} theories the sound speed is equally zero. We obtain the equation of motion for the comoving curvature perturbation (first order differential equation) and solve it to find that the comoving curvature perturbation is constant on all scales in mimetic Horndeski gravity. Wemore » find solutions for the Newtonian potential evolution equation in two simple models. Finally we show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom.« less

  7. Thrombopoietin mimetics for patients with myelodysplastic syndromes.

    PubMed

    Dodillet, Helga; Kreuzer, Karl-Anton; Monsef, Ina; Skoetz, Nicole

    2017-09-30

    Myelodysplastic syndrome (MDS) is one of the most frequent haematologic malignancies of the elderly population and characterised by progenitor cell dysplasia with ineffective haematopoiesis and a high rate of transformation to acute myeloid leukaemia (AML). Thrombocytopenia represents a common problem for patients with MDS. ranging from mild to serious bleeding events and death. To manage thrombocytopenia, the current standard treatment includes platelet transfusion, unfortunately leading to a range of side effects. Thrombopoietin (TPO) mimetics represent an alternative treatment option for MDS patients with thrombocytopenia. However, it remains unclear, whether TPO mimetics influence the increase of blast cells and therefore to premature progression to AML. To evaluate the efficacy and safety of thrombopoietin (TPO) mimetics for patients with MDS. We searched for randomised controlled trials in the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (January 2000 to August 2017), trials registries (ISRCTN, EU clinical trials register and clinicaltrials.gov) and conference proceedings. We did not apply any language restrictions. Two review authors independently screened search results, disagreements were solved by discussion. We included randomised controlled trials comparing TPO mimetics with placebo, no further treatment or another TPO mimetic in patients with MDS of all risk groups, without gender, age or ethnicity restrictions. Additional chemotherapeutic treatment had to be equal in both arms. Two review authors independently extracted data and assessed the quality of trials, disagreements were resolved by discussion. Risk ratio (RR) was used to analyse mortality during study, transformation to AML, incidence of bleeding events, transfusion requirement, all adverse events, adverse events >= grade 3, serious adverse events and platelet response. Overall survival (OS) and progression-free survival (PFS) have been extracted as hazard ratios, but

  8. Apolipoprotein A-I: A Molecule of Diverse Function.

    PubMed

    Mangaraj, Manaswini; Nanda, Rachita; Panda, Suchismita

    2016-07-01

    Apolipoprotein A-I (apo A-I) an indispensable component and a major structural protein of high-density lipoprotein (HDL), plays a vital role in reverse cholesterol transport and cellular cholesterol homeostasis since its identification. Its multifunctional role in immunity, inflammation, apoptosis, viral, bacterial infection etc. has crossed its boundary of its potential of protecting cardiovascular system and lowering cardiovascular disease risk, attributing HDL to be known as a protective fat removal particle. Its structural homology with prostacyclin stabilization factor has contributed to its anti-clotting and anti-aggregatory effect on platelet which has potentiated its cardio-protective role as well as its therapeutic efficacy against Alzheimer's disease. The binding affinity and neutralising action against endotoxin lipopolysaccharide, reduces the toxic manifestations of septic shock. As a negative acute phase protein, it blocks T-cell signalling of macrophages. However the recently identified anti-tumor activity of apo A-I has been highlighted in various models of melanoma, lung cancer, ovarian cancer, lymphoblastic leukaemia, gastric as well as pancreatic cancers. These cancer fighting effects are directed towards regression of tumor size and distant metastasis by its immuno modulatory activity as well as its clearing effect on serum lysophospholipids. This lowering effect on lysophospholipid concentration is utilized by apo A-I mimetic peptides to be used in retarding tumor cell proliferation and as a potential cancer therapeutic agent. Not only that, it inhibits the tumor associated neo-angiogenesis as well as brings down the matrix degrading enzymes associated with tumor metastasis. However this efficient therapeutic potential of apo A-I as an anti tumor agent awaits further future experimental studies in humans.

  9. Antibody mimetics: promising complementary agents to animal-sourced antibodies.

    PubMed

    Baloch, Abdul Rasheed; Baloch, Abdul Wahid; Sutton, Brian J; Zhang, Xiaoying

    2016-01-01

    Despite their wide use as therapeutic, diagnostic and detection agents, the limitations of polyclonal and monoclonal antibodies have inspired scientists to design the next generation biomedical agents, so-called antibody mimetics that offer many advantages over conventional antibodies. Antibody mimetics can be constructed by protein-directed evolution or fusion of complementarity-determining regions through intervening framework regions. Substantial progress in exploiting human, butterfly (Pieris brassicae) and bacterial systems to design and select mimetics using display technologies has been made in the past 10 years, and one of these mimetics [Kalbitor® (Dyax)] has made its way to market. Many challenges lie ahead to develop mimetics for various biomedical applications, especially those for which conventional antibodies are ineffective, and this review describes the current characteristics, construction and applications of antibody mimetics compared to animal-sourced antibodies. The possible limitations of mimetics and future perspectives are also discussed.

  10. Wood mimetic hydrogel beads for enzyme immobilization.

    PubMed

    Park, Saerom; Kim, Sung Hee; Won, Keehoon; Choi, Joon Weon; Kim, Yong Hwan; Kim, Hyung Joo; Yang, Yung-Hun; Lee, Sang Hyun

    2015-01-22

    Wood component-based composite hydrogels have potential applications in biomedical fields owing to their low cost, biodegradability, and biocompatibility. The controllable properties of wood mimetic composites containing three major wood components are useful for enzyme immobilization. Here, lipase from Candida rugosa was entrapped in wood mimetic beads containing cellulose, xylan, and lignin by dissolving wood components with lipase in [Emim][Ac], followed by reconstitution. Lipase entrapped in cellulose/xylan/lignin beads in a 5:3:2 ratio showed the highest activity; this ratio is very similar to that in natural wood. The lipase entrapped in various wood mimetic beads showed increased thermal and pH stability. The half-life times of lipase entrapped in cellulose/alkali lignin hydrogel were 31- and 82-times higher than those of free lipase during incubation under denaturing conditions of high temperature and low pH, respectively. Owing to their biocompatibility, biodegradability, and controllable properties, wood mimetic hydrogel beads can be used to immobilize various enzymes for applications in the biomedical, bioelectronic, and biocatalytic fields. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Structures of Potent Selective Peptide Mimetics Bound to Carboxypeptidase B

    SciTech Connect

    Adler, M.; Buckman, B.; Bryant, J.

    2009-05-11

    This article reports the crystal structures of inhibitors of the functional form of thrombin-activatable fibrinolysis inhibitor (TAFIa). In vivo experiments indicate that selective inhibitors of TAFIa would be useful in the treatment of heart attacks. Since TAFIa rapidly degrades in solution, the homologous protein porcine pancreatic carboxypeptidase B (pp-CpB) was used in these crystallography studies. Both TAFIa and pp-CpB are zinc-based exopeptidases that are specific for basic residues. The final development candidate, BX 528, is a potent inhibitor of TAFIa (2 nM) and has almost no measurable effect on the major selectivity target, carboxypeptidase N. BX 528 was designed tomore » mimic the tripeptide Phe-Val-Lys. A sulfonamide replaces the Phe-Val amide bond and a phosphinate connects the Val and Lys groups. The phosphinate also chelates the active-site zinc. The electrostatic interactions with the protein mimic those of the natural substrate. The primary amine in BX 528 forms a salt bridge to Asp255 at the base of the S1 pocket. The carboxylic acid interacts with Arg145 and the sulfonamide is hydrogen bonded to Arg71. Isopropyl and phenyl groups replace the side chains of Val and Phe, respectively. A series of structures are presented here that illustrate the evolution of BX 528 from thiol-based inhibitors that mimic a free C-terminal arginine. The first step in development was the replacement of the thiol with a phosphinate. This caused a precipitous drop in binding affinity. Potency was reclaimed by extending the inhibitors into the downstream binding sites for the natural substrate.« less

  12. Synthesis, molecular docking and biological evaluation as HDAC inhibitors of cyclopeptide mimetics by a tandem three-component reaction and intramolecular [3+2] cycloaddition.

    PubMed

    Pirali, Tracey; Faccio, Valeria; Mossetti, Riccardo; Grolla, Ambra A; Di Micco, Simone; Bifulco, Giuseppe; Genazzani, Armando A; Tron, Gian Cesare

    2010-02-01

    Novel macrocyclic peptide mimetics have been synthesized by exploiting a three-component reaction and an azide-alkyne [3 + 2] cycloaddition. The prepared compounds were screened as HDAC inhibitors allowing us to identify a new compound with promising biological activity. In order to rationalize the biological results, computational studies have also been performed.

  13. A highly efficient type I β-turn mimetic simulating an Asx-Pro-turn-like structure.

    PubMed

    Pinsker, Andrea; Einsiedel, Jürgen; Härterich, Steffen; Waibel, Reiner; Gmeiner, Peter

    2011-07-01

    Asx-Pro-turns have been identified with high frequency in protein structures nucleating type I β-turns. By bridging the amino acid side chain in position i with a nitrogen substituent in position i+2 by ring-closing olefin metathesis (RCM), peptide mimetics of type 1 could be developed. NMR based conformational investigations indicated a stable intramolecular H-bond constraining a U-turn conformation that was predicted to simulate a type I β-turn.

  14. NEC violation in mimetic cosmology revisited

    SciTech Connect

    Ijjas, Anna; Ripley, Justin; Steinhardt, Paul J.

    2016-06-28

    In the context of Einstein gravity, if the null energy condition (NEC) is satisfied, the energy density in expanding space–times always decreases while in contracting space–times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this letter, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show thatmore » mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples). Most interestingly, the source of the instability is always the Einstein–Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. Finally, we also show that mimetic cosmology can be understood as a singular limit of known, well-behaved theories involving higher-derivative kinetic terms and discuss ways of removing the instability.« less

  15. Progress of Mimetic Enzymes and Their Applications in Chemical Sensors.

    PubMed

    Yang, Bin; Li, Jianping; Deng, Huan; Zhang, Lianming

    2016-11-01

    The need to develop innovative and reformative approaches to synthesize chemical sensors has increased in recent years because of demands for selectivity, stability, and reproducibility. Mimetic enzymes provide an efficient and convenient method for chemical sensors. This review summarizes the application of mimetic enzymes in chemical sensors. Mimetic enzymes can be classified into five categories: hydrolases, oxidoreductases, transferases, isomerases, and induced enzymes. Potential and recent applications of mimetic enzymes in chemical sensors are reviewed in detail, and the outlook of profound development has been illustrated.

  16. Direct couplings of mimetic dark matter and their cosmological effects

    NASA Astrophysics Data System (ADS)

    Shen, Liuyuan; Mou, Yicen; Zheng, Yunlong; Li, Mingzhe

    2018-01-01

    The original mimetic model was proposed to take the role of dark matter. In this paper we consider possible direct interactions of mimetic dark matter with other matter in the universe, especially standard model particles such as baryons and photons. By imposing shift symmetry, the mimetic dark matter field can only have derivative couplings. We discuss the possibilities of generating baryon number asymmetry and cosmic birefringence in the universe based on the derivative couplings of mimetic dark matter to baryons and photons. Supported by NSFC (11422543, 11653002)

  17. Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering.

    PubMed

    Shekaran, Asha; Garcia, Andres J

    2011-03-01

    The goal of tissue engineering is to restore tissue function using biomimetic scaffolds which direct desired cell fates such as attachment, proliferation and differentiation. Cell behavior in vivo is determined by a complex interaction of cells with extracellular biosignals, many of which exist on a nanoscale. Therefore, recent efforts in tissue engineering biomaterial development have focused on incorporating extracellular matrix- (ECM) derived peptides or proteins into biomaterials in order to mimic natural ECM. Concurrent advances in nanotechnology have also made it possible to manipulate protein and peptide presentation on surfaces on a nanoscale level. This review discusses protein and peptide nanopatterning techniques and examples of how nanoscale engineering of bioadhesive materials may enhance outcomes for regenerative medicine. Synergy between ECM-mimetic tissue engineering and nanotechnology fields can be found in three major strategies: (1) Mimicking nanoscale orientation of ECM peptide domains to maintain native bioactivity, (2) Presenting adhesive peptides at unnaturally high densities, and (3) Engineering multivalent ECM-derived peptide constructs. Combining bioadhesion and nanopatterning technologies to allow nanoscale control of adhesive motifs on the cell-material interface may result in exciting advances in tissue engineering. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine. 2010 Elsevier B.V. All rights reserved.

  18. Designing ECM-mimetic materials using protein engineering.

    PubMed

    Cai, Lei; Heilshorn, Sarah C

    2014-04-01

    The natural extracellular matrix (ECM), with its multitude of evolved cell-instructive and cell-responsive properties, provides inspiration and guidelines for the design of engineered biomaterials. One strategy to create ECM-mimetic materials is the modular design of protein-based engineered ECM (eECM) scaffolds. This modular design strategy involves combining multiple protein domains with different functionalities into a single, modular polymer sequence, resulting in a multifunctional matrix with independent tunability of the individual domain functions. These eECMs often enable decoupled control over multiple material properties for fundamental studies of cell-matrix interactions. In addition, since the eECMs are frequently composed entirely of bioresorbable amino acids, these matrices have immense clinical potential for a variety of regenerative medicine applications. This brief review demonstrates how fundamental knowledge gained from structure-function studies of native proteins can be exploited in the design of novel protein-engineered biomaterials. While the field of protein-engineered biomaterials has existed for over 20years, the community is only now beginning to fully explore the diversity of functional peptide modules that can be incorporated into these materials. We have chosen to highlight recent examples that either (i) demonstrate exemplary use as matrices with cell-instructive and cell-responsive properties or (ii) demonstrate outstanding creativity in terms of novel molecular-level design and macro-level functionality. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Bound to the Mimetic or the Transformative?: Considering Other Possibilities

    ERIC Educational Resources Information Center

    Frank, Jeff

    2017-01-01

    Philip Jackson's "The Mimetic and the Transformative: Alternative Outlooks on Teaching" is widely read both inside and outside of philosophy of education circles and courses, and is best known for sketching out the long-standing difference between the mimetic and transformative traditions in teaching. In this paper, I argue that we need…

  20. Black hole solutions in mimetic Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin

    2018-01-01

    The vacuum, static, and spherically symmetric solutions in the mimetic Born-Infeld gravity are studied. The mimetic Born-Infeld gravity is a reformulation of the Eddington-inspired-Born-Infeld (EiBI) model under the mimetic approach. Due to the mimetic field, the theory contains non-trivial vacuum solutions different from those in Einstein gravity. We find that with the existence of the mimetic field, the spacelike singularity inside a Schwarzschild black hole could be altered to a lightlike singularity, even though the curvature invariants still diverge at the singularity. Furthermore, in this case, the maximal proper time for a timelike radially-infalling observer to reach the singularity is found to be infinite.

  1. Black hole solutions in mimetic Born-Infeld gravity

    SciTech Connect

    Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin

    2018-01-23

    The vacuum, static, and spherically symmetric solutions in the mimetic Born-Infeld gravity are studied. The mimetic Born-Infeld gravity is a reformulation of the Eddington-inspired-Born-Infeld (EiBI) model under the mimetic approach. Due to the mimetic field, the theory contains non-trivial vacuum solutions different from those in Einstein gravity. Here, we find that with the existence of the mimetic field, the spacelike singularity inside a Schwarzschild black hole could be altered to a lightlike singularity, even though the curvature invariants still diverge at the singularity. Furthermore, in this case, the maximal proper time for a timelike radially-infalling observer to reach the singularitymore » is found to be infinite.« less

  2. Black hole solutions in mimetic Born-Infeld gravity.

    PubMed

    Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin

    2018-01-01

    The vacuum, static, and spherically symmetric solutions in the mimetic Born-Infeld gravity are studied. The mimetic Born-Infeld gravity is a reformulation of the Eddington-inspired-Born-Infeld (EiBI) model under the mimetic approach. Due to the mimetic field, the theory contains non-trivial vacuum solutions different from those in Einstein gravity. We find that with the existence of the mimetic field, the spacelike singularity inside a Schwarzschild black hole could be altered to a lightlike singularity, even though the curvature invariants still diverge at the singularity. Furthermore, in this case, the maximal proper time for a timelike radially-infalling observer to reach the singularity is found to be infinite.

  3. Exercise Mimetics: Impact on Health and Performance.

    PubMed

    Fan, Weiwei; Evans, Ronald M

    2017-02-07

    The global epidemic of obesity and its associated chronic diseases is largely attributed to an imbalance between caloric intake and energy expenditure. While physical exercise remains the best solution, the development of muscle-targeted "exercise mimetics" may soon provide a pharmaceutical alternative to battle an increasingly sedentary lifestyle. At the same time, these advances are fueling a raging debate on their escalating use as performance-enhancing drugs in high-profile competitions such as the Olympics. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Tunable elastin-mimetic multiblock hybrid copolymers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Grieshaber, Sarah Elizabeth

    Elastin-mimetic hybrid polymers (EMHPs) have been developed to capture the multiblock molecular architecture of tropoelastin, allowing tunability in chemical, structural, biological, and mechanical properties. Multiblock EMHPs containing flexible synthetic segments were first synthesized via step growth polymerization of diazido-poly(ethylene glycol) (PEG) and alkyne-terminated AKA3KA (K = lysine, A = alanine) (AK2) peptide employing copper (I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC, or orthogonal click chemistry). Covalent crosslinking of the EMHPs with hexamethylene diisocyanate (HMDI) through the lysine residues in the peptide domain afforded an elastomeric hydrogel (xEMHP) with a compressive modulus of 0.12 +/- 0.018 MPa when hydrated. xEMHPs exhibited minimal cytotoxicity to primary porcine vocal fold fibroblasts. The modular nature of the synthesis allowed facile adjustment of the peptide sequence to modulate the structural and the biological properties of EMHPs. Thus, EMHPs containing integrin-binding peptides were constructed using di-azido-PEG and an alkyne-terminated AK2 peptide with a terminal, integrin-binding GRGDSP domain via the step growth click coupling reaction. Hydrogels formed by covalent crosslinking of the RGD-containing EMHPs had a compressive modulus of 1.06 +/- 0.1MPa when hydrated. Neonatal human dermal fibroblasts (NHDFs) were able to adhere to the hydrogels within 1 h, and to spread and develop F-actin filaments 24 h post seeding. NHDF proliferation was only observed on hydrogels containing RGD domains, demonstrating the importance of integrin engagement for cell growth and the potential use of these EMHPs as tissue engineering scaffolds. The tunability of the EMHP system was further investigated by development of self-assembling, pH-responsive multiblock polymers composed of alternating domains of poly(acrylic acid) (PAA) and a peptide derived from the hydrophobic domains of elastin with the sequence (VPGVG)2 (VG2). The

  5. Cholesterol depletion blocks redistribution of lipid raft components and insulin-mimetic signaling by glimepiride and phosphoinositolglycans in rat adipocytes.

    PubMed Central

    Müller, Gunter; Hanekop, Nils; Wied, Susanne; Frick, Wendelin

    2002-01-01

    Glycosylphosphatidylinositol-anchored plasma membrane (GPI) proteins, such as Gce1, the dually acylated nonreceptor tyrosine kinases (NRTKs), such as pp59(Lyn), and the membrane protein, caveolin, together with cholesterol are typical components of detergent/carbonate-insoluble glycolipid-enriched raft domains (DIGs) in the plasma membrane of most eucaryotes. Previous studies demonstrated the dissociation from caveolin and concomitant redistribution from DIGs of Gce1 and pp59(Lyn) in rat adipocytes in response to four different insulin-mimetic stimuli, glimepiride, phosphoinositolglycans, caveolin-binding domain peptide, and trypsin/NaCl-treatment. We now characterized the structural basis for this dynamic of DIG components. MATERIALS AND METHODS: Carbonate extracts from purified plasma membranes of basal and stimulated adipocytes were analyzed by high-resolution sucrose gradient centrifugation. RESULTS: This process revealed the existence of two distinct species of detergent/carbonate-insoluble complexes floating at higher buoyant density and harboring lower amounts of cholesterol, caveolin, GPI proteins, and NRTKs (lcDIGs) compared to typical DIGs of high cholesterol content (hcDIGs). The four insulin-mimetic stimuli decreased by 40-70% and increased by 2.5- to 5-fold the amounts of GPI proteins and NRTKs at hcDIGs and lcDIGs, respectively. Cholesterol depletion of adipocytes per se by incubation with methyl-beta-cyclodextrin or cholesterol oxidase also caused translocation of GPI proteins and NRTKs from hcDIGs to lcDIGs and their release from caveolin in reversible fashion without concomitant induction of insulin-mimetic signaling. Cholesterol depletion, however, reduced by 50-60% the stimulus-induced translocation as well as dissociation from hcDIGs-associated caveolin of GPI proteins and NRTKs, activation of NRTKs as well as insulin-mimetic signaling and metabolic action. In contrast, insulin-mimetic signaling induced by vanadium compounds was not

  6. Cholesterol depletion blocks redistribution of lipid raft components and insulin-mimetic signaling by glimepiride and phosphoinositolglycans in rat adipocytes.

    PubMed

    Müller, Gunter; Hanekop, Nils; Wied, Susanne; Frick, Wendelin

    2002-03-01

    Glycosylphosphatidylinositol-anchored plasma membrane (GPI) proteins, such as Gce1, the dually acylated nonreceptor tyrosine kinases (NRTKs), such as pp59(Lyn), and the membrane protein, caveolin, together with cholesterol are typical components of detergent/carbonate-insoluble glycolipid-enriched raft domains (DIGs) in the plasma membrane of most eucaryotes. Previous studies demonstrated the dissociation from caveolin and concomitant redistribution from DIGs of Gce1 and pp59(Lyn) in rat adipocytes in response to four different insulin-mimetic stimuli, glimepiride, phosphoinositolglycans, caveolin-binding domain peptide, and trypsin/NaCl-treatment. We now characterized the structural basis for this dynamic of DIG components. Carbonate extracts from purified plasma membranes of basal and stimulated adipocytes were analyzed by high-resolution sucrose gradient centrifugation. This process revealed the existence of two distinct species of detergent/carbonate-insoluble complexes floating at higher buoyant density and harboring lower amounts of cholesterol, caveolin, GPI proteins, and NRTKs (lcDIGs) compared to typical DIGs of high cholesterol content (hcDIGs). The four insulin-mimetic stimuli decreased by 40-70% and increased by 2.5- to 5-fold the amounts of GPI proteins and NRTKs at hcDIGs and lcDIGs, respectively. Cholesterol depletion of adipocytes per se by incubation with methyl-beta-cyclodextrin or cholesterol oxidase also caused translocation of GPI proteins and NRTKs from hcDIGs to lcDIGs and their release from caveolin in reversible fashion without concomitant induction of insulin-mimetic signaling. Cholesterol depletion, however, reduced by 50-60% the stimulus-induced translocation as well as dissociation from hcDIGs-associated caveolin of GPI proteins and NRTKs, activation of NRTKs as well as insulin-mimetic signaling and metabolic action. In contrast, insulin-mimetic signaling induced by vanadium compounds was not significantly diminished by cholesterol

  7. Exercise, fasting, and mimetics: toward beneficial combinations?

    PubMed

    Jaspers, Richard T; Zillikens, M Carola; Friesema, Edith C H; delli Paoli, Giuseppe; Bloch, Wilhelm; Uitterlinden, André G; Goglia, Fernando; Lanni, Antonia; de Lange, Pieter

    2017-01-01

    Obesity and type 2 diabetes are associated disorders that involve a multiplicity of tissues. Both fasting and physical exercise are known to counteract dyslipidemia/hyperglycemia. Skeletal muscle plays a key role in the control of blood glucose levels, and the metabolic changes and related signaling pathways in skeletal muscle induced by fasting overlap with those induced by exercise. The reduction of fat disposal has been shown to extend to the liver and to white and brown adipose tissue and to involve an increase in their metabolic activities. In recent years signal transduction pathways related to exercise and fasting/food withdrawal in muscle have been intensively studied, both in animals and in humans. Combining fasting/food withdrawal with exercise in animals as well as in humans causes changes unlike those seen during fasting/food withdrawal or exercise alone, which favor repair of muscle over autophagy. In addition, compounds that mimic exercise have been studied in combination with exercise or fasting/food withdrawal. This review addresses our current knowledge of the mechanisms that underlie the individual and combined effects of fasting/food withdrawal, endurance or resistance exercise, and their mimetics, in muscle vs other organs in rodents and humans, and highlights which combinations may improve metabolic disorders.-Jaspers, R. T., Zillikens, M. C., Friesema, E. C. H., delli Paoli, G., Bloch, W., Uitterlinden, A. G., Goglia, F., Lanni, A., de Lange, P. Exercise, fasting, and mimetics: toward beneficial combinations. © FASEB.

  8. Apo A1 Mimetic Rescues the Diabetic Phenotype of HO-2 Knockout Mice via an Increase in HO-1 Adiponectin and LKBI Signaling Pathway

    PubMed Central

    Cao, Jian; Puri, Nitin; Sodhi, Komal; Bellner, Lars; Abraham, Nader G.; Kappas, Attallah

    2012-01-01

    Insulin resistance, with adipose tissue dysfunction, is one of the hallmarks of metabolic syndrome. We have reported a metabolic syndrome-like phenotype in heme oxygenase (HO)-2 knockout mice, which presented with concurrent HO-1 deficiency and were amenable to rescue by an EET analog. Apo A-I mimetic peptides, such as L-4F, have been shown to induce HO-1 expression and decrease oxidative stress and adiposity. In this study we aimed to characterize alleviatory effects of HO-1 induction (if any) on metabolic imbalance observed in HO-2 KO mice. In this regard, HO-2(−/−) mice were injected with 2 mg/kg/day L-4F, or vehicle, i.p., for 6 weeks. As before, compared to WT animals, the HO-2 null mice were obese, displayed insulin resistance, and had elevated blood pressure. These changes were accompanied by enhanced tissue (hepatic) oxidative stress along with attenuation of HO-1 expression and activity and reduced adiponectin, pAMPK, and LKB1 expression. Treatment with L-4F restored HO-1 expression and activity and increased adiponectin, LKB1, and pAMPK in the HO-2(−/−) mice. These alterations resulted in a decrease in blood pressure, insulin resistance, blood glucose, and adiposity. Taken together, our results show that a deficient HO-1 response, in a state with reduced HO-2 basal levels, is accompanied by disruption of metabolic homeostasis which is successfully restored by an HO-1 inducer. PMID:22577519

  9. ABCA1 agonist peptides for the treatment of disease

    DOE PAGES

    Bielicki, John K.

    2016-02-01

    Purpose of review The review summarizes information pertaining to the preclinical development of new apolipoprotein (apo) E mimetic peptides that stimulate cellular cholesterol efflux. Recent findings Small α-helical peptides based on the C-terminal domain of apoE have been developed for therapeutic applications. These peptides stimulate cellular cholesterol efflux via the ATP-binding cassette transporter A1 (ABCA1) with high potency, like native apolipoproteins on a molar basis. This potent activity has been related to the unique ability of these peptides to maintain α-helix structure upon dilution. Recent structure-activity studies improving the safety features of these mimetic peptides have greatly improved their potentialmore » for clinical use. Structural features of the class A α-helix motif that induce muscle toxicity and hypertriglyceridemia have been identified. These may have implications for the design of other HDL mimetic peptides. Summary ABCA1 is an integral membrane protein that plays a central role in biology. Its principal function is to mediate the efflux of cholesterol and phospholipid from cells to extracellular apo, preventing a build-up of excess cholesterol in membranes. This process generates HDL particles that perform a variety of functions to protect against disease. A number of these functions can be viewed as directly or indirectly supporting ABCA1 activity, thus constituting a positive feedback system to optimize cellular lipid efflux responses and disease prevention. Consequently, therapeutic approaches that mimic the activities of apos may prove highly effective to combat disease. One such approach involves the use of peptides. The broad biological relevance of ABCA1 suggests these apo mimetic peptides may be useful for the treatment of a number of diseases, such as atherosclerosis, diabetes, and Alzheimer's disease.« less

  10. A spectral mimetic least-squares method

    DOE PAGES

    Bochev, Pavel; Gerritsma, Marc

    2014-09-01

    We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are alsomore » satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.« less

  11. Nuclear receptors and AMPK: can exercise mimetics cure diabetes?

    PubMed

    Wall, Christopher E; Yu, Ruth T; Atkins, Anne R; Downes, Michael; Evans, Ronald M

    2016-07-01

    Endurance exercise can lead to systemic improvements in insulin sensitivity and metabolic homeostasis, and is an effective approach to combat metabolic diseases. Pharmacological compounds that recapitulate the beneficial effects of exercise, also known as 'exercise mimetics', have the potential to improve disease symptoms of metabolic syndrome. These drugs, which can increase energy expenditure, suppress hepatic gluconeogenesis, and induce insulin sensitization, have accordingly been highly scrutinized for their utility in treating metabolic diseases including diabetes. Nevertheless, the identity of an efficacious exercise mimetic still remains elusive. In this review, we highlight several nuclear receptors and cofactors that are putative molecular targets for exercise mimetics, and review recent studies that provide advancements in our mechanistic understanding of how exercise mimetics exert their beneficial effects. We also discuss evidence from clinical trials using these compounds in human subjects to evaluate their efficacy in treating diabetes. © 2016 Society for Endocrinology.

  12. Smac Mimetics to Therapeutically Target IAP Proteins in Cancer.

    PubMed

    Fulda, S

    2017-01-01

    Inhibitor of Apoptosis (IAP) proteins are overexpressed in a variety of human cancers. Therefore, they are considered as promising targets for the design of therapeutic strategies. Smac mimetics mimic the endogenous mitochondrial protein Smac that antagonizes IAP proteins upon its release into the cytosol. Multiple preclinical studies have documented the ability of Smac mimetics to either directly induce cell death of cancer cells or to prime them to agents that trigger cell death. At present, several Smac mimetics are being evaluated in early clinical trials. The current review provides an overview on the potential of Smac mimetics as cancer therapeutics to target IAP proteins for cancer therapy. © 2017 Elsevier Inc. All rights reserved.

  13. Promises and Challenges of Smac Mimetics as Cancer Therapeutics.

    PubMed

    Fulda, Simone

    2015-11-15

    Inhibitor of Apoptosis (IAP) proteins block programmed cell death and are expressed at high levels in various human cancers, thus making them attractive targets for cancer drug development. Second mitochondrial activator of caspases (Smac) mimetics are small-molecule inhibitors that mimic Smac, an endogenous antagonist of IAP proteins. Preclinical studies have shown that Smac mimetics can directly trigger cancer cell death or, even more importantly, sensitize tumor cells for various cytotoxic therapies, including conventional chemotherapy, radiotherapy, or novel agents. Currently, several Smac mimetics are under evaluation in early clinical trials as monotherapy or in rational combinations (i.e., GDC-0917/CUDC-427, LCL161, AT-406/Debio1143, HGS1029, and TL32711/birinapant). This review discusses the promise as well as some challenges at the translational interface of exploiting Smac mimetics as cancer therapeutics. ©2015 American Association for Cancer Research.

  14. Crossmodal Modulation of Spatial Localization by Mimetic Words

    PubMed Central

    Yamada, Yuki; Miura, Kayo

    2016-01-01

    The present study investigated whether aurally presented mimetic words affect the judgment of the final position of a moving object. In Experiment 1, horizontal apparent motion of a visual target was presented, and an auditory mimetic word of “byun” (representing rapid forward motion), “pitari” (representing stop of motion), or “nisahi” (nonsense syllable) was presented via headphones. Observers were asked to judge which of two test stimuli was horizontally aligned with the target. The results showed that forward displacement in the “pitari” condition was significantly smaller than in the “byun” and “nisahi” conditions. However, when non-mimetic but meaningful words were presented (Experiment 2), this effect did not occur. Our findings suggest that the mimetic words, especially that meaning stop of motion, affect spatial localization by means of mental imagery regarding “stop” established by the phonological information of the word. PMID:27994845

  15. A retractable lid in lecithin:cholesterol acyltransferase provides a structural mechanism for activation by apolipoprotein A-I.

    PubMed

    Manthei, Kelly A; Ahn, Joomi; Glukhova, Alisa; Yuan, Wenmin; Larkin, Christopher; Manett, Taylor D; Chang, Louise; Shayman, James A; Axley, Milton J; Schwendeman, Anna; Tesmer, John J G

    2017-12-08

    Lecithin:cholesterol acyltransferase (LCAT) plays a key role in reverse cholesterol transport by transferring an acyl group from phosphatidylcholine to cholesterol, promoting the maturation of high-density lipoproteins (HDL) from discoidal to spherical particles. LCAT is activated through an unknown mechanism by apolipoprotein A-I (apoA-I) and other mimetic peptides that form a belt around HDL. Here, we report the crystal structure of LCAT with an extended lid that blocks access to the active site, consistent with an inactive conformation. Residues Thr-123 and Phe-382 in the catalytic domain form a latch-like interaction with hydrophobic residues in the lid. Because these residues are mutated in genetic disease, lid displacement was hypothesized to be an important feature of apoA-I activation. Functional studies of site-directed mutants revealed that loss of latch interactions or the entire lid enhanced activity against soluble ester substrates, and hydrogen-deuterium exchange (HDX) mass spectrometry revealed that the LCAT lid is extremely dynamic in solution. Upon addition of a covalent inhibitor that mimics one of the reaction intermediates, there is an overall decrease in HDX in the lid and adjacent regions of the protein, consistent with ordering. These data suggest a model wherein the active site of LCAT is shielded from soluble substrates by a dynamic lid until it interacts with HDL to allow transesterification to proceed. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Characterization of Potent SMAC Mimetics that Sensitize Cancer Cells to TNF Family-Induced Apoptosis

    PubMed Central

    Welsh, Kate; Milutinovic, Snezana; Ardecky, Robert J.; Gonzalez-Lopez, Marcos; Ganji, Santhi Reddy; Finlay, Darren; Riedl, Stefan; Matsuzawa, Shu-ichi; Pinilla, Clemencia; Houghten, Richard; Vuori, Kristiina; Reed, John C.; Cosford, Nicholas D. P.

    2016-01-01

    Members of the Inhibitor of APoptosis (IAP) protein family suppress apoptosis within tumor cells, particularly in the context of immune cell-mediated killing by the tumor necrosis factor (TNF) superfamily cytokines. Most IAPs are opposed endogenously by the second mitochondrial activator of caspases (SMAC), which binds to selected baculovirus IAP repeat (BIR) domains of IAPs to displace interacting proteins. The development of SMAC mimetics as novel anticancer drugs has gained impetus, with several agents now in human clinical trials. To further understand the cellular mechanisms of SMAC mimetics, we focused on IAP family members cIAP1 and cIAP2, which are recruited to TNF receptor complexes where they support cell survival through NF-κB activation while suppressing apoptosis by preventing caspase activation. We established fluorescence polarization (FP) assays for the BIR2 and BIR3 domains of human cIAP1 and cIAP2 using fluorochrome-conjugated SMAC peptides as ligands. A library of SMAC mimetics was profiled using the FP assays to provide a unique structure activity relationship (SAR) analysis compared to previous assessments of binding to XIAP. Potent compounds displayed mean inhibitory binding constants (Ki) of 9 to 27 nM against the BIR3 domains of cIAP1 and cIAP2, respectively. Selected compounds were then characterized using cytotoxicity assays in which a cytokine-resistant human tumor cell line was sensitized to either TNF or lymphotoxin-α (LT-α). Cytotoxicity correlated closely with cIAP1 and cIAP2 BIR3 binding activity with the most potent compounds able to reduce cell viability by 50%. Further testing demonstrated that active compounds also inhibit RIP1 binding to BIR3 of cIAP1 and cIAP2 in vitro and reduce steady-state cIAP1 protein levels in cells. Altogether, these data inform the SAR for our SMAC mimetics with respect to cIAP1 and cIAP2, suggesting that these IAP family members play an important role in tumor cell resistance to cytotoxicity

  17. Characterization of Potent SMAC Mimetics that Sensitize Cancer Cells to TNF Family-Induced Apoptosis.

    PubMed

    Welsh, Kate; Milutinovic, Snezana; Ardecky, Robert J; Gonzalez-Lopez, Marcos; Ganji, Santhi Reddy; Teriete, Peter; Finlay, Darren; Riedl, Stefan; Matsuzawa, Shu-Ichi; Pinilla, Clemencia; Houghten, Richard; Vuori, Kristiina; Reed, John C; Cosford, Nicholas D P

    2016-01-01

    Members of the Inhibitor of APoptosis (IAP) protein family suppress apoptosis within tumor cells, particularly in the context of immune cell-mediated killing by the tumor necrosis factor (TNF) superfamily cytokines. Most IAPs are opposed endogenously by the second mitochondrial activator of caspases (SMAC), which binds to selected baculovirus IAP repeat (BIR) domains of IAPs to displace interacting proteins. The development of SMAC mimetics as novel anticancer drugs has gained impetus, with several agents now in human clinical trials. To further understand the cellular mechanisms of SMAC mimetics, we focused on IAP family members cIAP1 and cIAP2, which are recruited to TNF receptor complexes where they support cell survival through NF-κB activation while suppressing apoptosis by preventing caspase activation. We established fluorescence polarization (FP) assays for the BIR2 and BIR3 domains of human cIAP1 and cIAP2 using fluorochrome-conjugated SMAC peptides as ligands. A library of SMAC mimetics was profiled using the FP assays to provide a unique structure activity relationship (SAR) analysis compared to previous assessments of binding to XIAP. Potent compounds displayed mean inhibitory binding constants (Ki) of 9 to 27 nM against the BIR3 domains of cIAP1 and cIAP2, respectively. Selected compounds were then characterized using cytotoxicity assays in which a cytokine-resistant human tumor cell line was sensitized to either TNF or lymphotoxin-α (LT-α). Cytotoxicity correlated closely with cIAP1 and cIAP2 BIR3 binding activity with the most potent compounds able to reduce cell viability by 50%. Further testing demonstrated that active compounds also inhibit RIP1 binding to BIR3 of cIAP1 and cIAP2 in vitro and reduce steady-state cIAP1 protein levels in cells. Altogether, these data inform the SAR for our SMAC mimetics with respect to cIAP1 and cIAP2, suggesting that these IAP family members play an important role in tumor cell resistance to cytotoxicity

  18. β-cell-mimetic designer cells provide closed-loop glycemic control.

    PubMed

    Xie, Mingqi; Ye, Haifeng; Wang, Hui; Charpin-El Hamri, Ghislaine; Lormeau, Claude; Saxena, Pratik; Stelling, Jörg; Fussenegger, Martin

    2016-12-09

    Chronically deregulated blood-glucose concentrations in diabetes mellitus result from a loss of pancreatic insulin-producing β cells (type 1 diabetes, T1D) or from impaired insulin sensitivity of body cells and glucose-stimulated insulin release (type 2 diabetes, T2D). Here, we show that therapeutically applicable β-cell-mimetic designer cells can be established by minimal engineering of human cells. We achieved glucose responsiveness by a synthetic circuit that couples glycolysis-mediated calcium entry to an excitation-transcription system controlling therapeutic transgene expression. Implanted circuit-carrying cells corrected insulin deficiency and self-sufficiently abolished persistent hyperglycemia in T1D mice. Similarly, glucose-inducible glucagon-like peptide 1 transcription improved endogenous glucose-stimulated insulin release and glucose tolerance in T2D mice. These systems may enable a combination of diagnosis and treatment for diabetes mellitus therapy. Copyright © 2016, American Association for the Advancement of Science.

  19. Towards natural mimetics of metformin and rapamycin.

    PubMed

    Aliper, Alexander; Jellen, Leslie; Cortese, Franco; Artemov, Artem; Karpinsky-Semper, Darla; Moskalev, Alexey; Swick, Andrew G; Zhavoronkov, Alex

    2017-11-15

    Aging is now at the forefront of major challenges faced globally, creating an immediate need for safe, widescale interventions to reduce the burden of chronic disease and extend human healthspan. Metformin and rapamycin are two FDA-approved mTOR inhibitors proposed for this purpose, exhibiting significant anti-cancer and anti-aging properties beyond their current clinical applications. However, each faces issues with approval for off-label, prophylactic use due to adverse effects. Here, we initiate an effort to identify nutraceuticals-safer, naturally-occurring compounds-that mimic the anti-aging effects of metformin and rapamycin without adverse effects. We applied several bioinformatic approaches and deep learning methods to the Library of Integrated Network-based Cellular Signatures (LINCS) dataset to map the gene- and pathway-level signatures of metformin and rapamycin and screen for matches among over 800 natural compounds. We then predicted the safety of each compound with an ensemble of deep neural network classifiers. The analysis revealed many novel candidate metformin and rapamycin mimetics, including allantoin and ginsenoside (metformin), epigallocatechin gallate and isoliquiritigenin (rapamycin), and withaferin A (both). Four relatively unexplored compounds also scored well with rapamycin. This work revealed promising candidates for future experimental validation while demonstrating the applications of powerful screening methods for this and similar endeavors.

  20. [Insulin-mimetic property of vanadium compounds].

    PubMed

    Korbecki, Jan; Baranowska-Bosiacka, Irena; Gutowska, Izabela; Chlubek, Dariusz

    Vanadium is a transition metal which creates a number of inorganic and organic derivatives with various organic substances. Some of these compounds have pharmaceutical significance, e.g. vanadyl cation, vanadate and bis(maltolato) oxovanadium(IV). Vanadium compounds are competence inhibitors of protein tyrosine phosphatases (PTP). They have anti-tumor properties, capable of inhibiting cell proliferation at the concentrations of several micromoles. They also display insulin-mimetic and hypoglycemic properties. As they can increase the activity of the insulin-like growth factor I receptor, they stimulate glycogen synthesis, increase the number of GLUT-4 transporters in the cell membrane and impair gluconeogenesis. In addition to their effects on sugar metabolism, vanadium compounds increase the synthesis of fatty acids, reducing the concentration of glucose in the blood. Thanks to their mitotic properties, low concentrations of vanadium compounds are also able to induce β cell regeneration. Clinical tests have shown that vanadium compounds may be used as antidiabetic drugs with low toxicity. However, the range of therapeutic concentrations is very narrow; at concentrations as low a several micromoles vanadium compounds inhibit cell proliferation and cause apoptosis, necrosis and inflammation.

  1. Towards natural mimetics of metformin and rapamycin

    PubMed Central

    Aliper, Alexander; Jellen, Leslie; Cortese, Franco; Artemov, Artem; Karpinsky-Semper, Darla; Moskalev, Alexey; Swick, Andrew G.; Zhavoronkov, Alex

    2017-01-01

    Aging is now at the forefront of major challenges faced globally, creating an immediate need for safe, widescale interventions to reduce the burden of chronic disease and extend human healthspan. Metformin and rapamycin are two FDA-approved mTOR inhibitors proposed for this purpose, exhibiting significant anti-cancer and anti-aging properties beyond their current clinical applications. However, each faces issues with approval for off-label, prophylactic use due to adverse effects. Here, we initiate an effort to identify nutraceuticals—safer, naturally-occurring compounds—that mimic the anti-aging effects of metformin and rapamycin without adverse effects. We applied several bioinformatic approaches and deep learning methods to the Library of Integrated Network-based Cellular Signatures (LINCS) dataset to map the gene- and pathway-level signatures of metformin and rapamycin and screen for matches among over 800 natural compounds. We then predicted the safety of each compound with an ensemble of deep neural network classifiers. The analysis revealed many novel candidate metformin and rapamycin mimetics, including allantoin and ginsenoside (metformin), epigallocatechin gallate and isoliquiritigenin (rapamycin), and withaferin A (both). Four relatively unexplored compounds also scored well with rapamycin. This work revealed promising candidates for future experimental validation while demonstrating the applications of powerful screening methods for this and similar endeavors. PMID:29165314

  2. Energy restriction and potential energy restriction mimetics.

    PubMed

    Nikolai, Sibylle; Pallauf, Kathrin; Huebbe, Patricia; Rimbach, Gerald

    2015-12-01

    Energy restriction (ER; also known as caloric restriction) is the only nutritional intervention that has repeatedly been shown to increase lifespan in model organisms and may delay ageing in humans. In the present review we discuss current scientific literature on ER and its molecular, metabolic and hormonal effects. Moreover, criteria for the classification of substances that might induce positive ER-like changes without having to reduce energy intake are summarised. Additionally, the putative ER mimetics (ERM) 2-deoxy-d-glucose, metformin, rapamycin, resveratrol, spermidine and lipoic acid and their suggested molecular targets are discussed. While there are reports on these ERM candidates that describe lifespan extension in model organisms, data on longevity-inducing effects in higher organisms such as mice remain controversial or are missing. Furthermore, some of these candidates produce detrimental side effects such as immunosuppression or lactic acidosis, or have not been tested for safety in long-term studies. Up to now, there are no known ERM that could be recommended without limitations for use in humans.

  3. Peptide-Decorated Dendrimers and Their Bioapplications.

    PubMed

    Wan, Jingjing; Alewood, Paul F

    2016-04-18

    Peptide-decorated dendrimers (PDDs) are a class of spherical, regular, branched polymers that are modified by peptides covalently attached to their surface. PDDs have been used as protein mimetics, novel biomaterials, and in a wide range of biomedical applications. Since their design and development in the late eighties, poly-l-lysine has been a preferred core structure for PDDs. However, numerous recent innovations in polymer synthesis and ligation chemistry have re-energized the field and led to the emergence of well-defined peptide dendrimers with more diverse core structures and functions. This Minireview highlights the development of PDDs driven by significantly improved ligation chemistry incorporating structurally well-defined peptides and the emerging use of PDDs in imaging and drug development. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dispersal of mimetic seeds of three species of Ormosia (Leguminosae)

    USGS Publications Warehouse

    Foster, M.S.; DeLay, L.S.

    1998-01-01

    Seeds with 'imitation arils' appear wholly or partially covered by pulp or aril but actually carry no fleshy material. The mimetic seed hypothesis to explain this phenomenon proposes a parasitic relationship in which birds are deceived into dispersing seeds that resemble bird-dispersed fruits, without receiving a nutrient reward. The hard-seed for grit hypothesis proposes a mutualistic relationship in which large, terrestrial birds swallow the exceptionally hard 'mimetic' seeds as grit for grinding the softer seeds on which they feed. They defecate, dispersing the seeds, and abrade the seed surface, enhancing germination. Any fruit mimicry is incidental. Fruiting trees of Ormosia spp. (Leguminosae: Papilionoideae) were observed to ascertain mechanisms of seed dispersal and the role of seemingly mimetic characteristics of the seeds in that dispersal. Seed predation and seed germination were also examined. Ormosia isthamensis and O. macrocalyx (but not O. bopiensis) deceived arboreally-foraging frugivorous birds into taking their mimetic seeds, although rates of seed dispersal were low. These results are consistent with the mimetic seed hypothesis. On the other hand, the rates of disappearance of seeds from the ground under the Ormosia trees, hardness of the seeds, and enhancement of germination with the abrasion of the seed coat are all consistent with the hard-seed for grit hypothesis.

  5. Tunicate-mimetic nanofibrous hydrogel adhesive with improved wet adhesion.

    PubMed

    Oh, Dongyeop X; Kim, Sangsik; Lee, Dohoon; Hwang, Dong Soo

    2015-07-01

    The main impediment to medical application of biomaterial-based adhesives is their poor wet adhesion strength due to hydration-induced softening and dissolution. To solve this problem, we mimicked the wound healing process found in tunicates, which use a nanofiber structure and pyrogallol group to heal any damage on its tunic under sea water. We fabricated a tunicate-mimetic hydrogel adhesive based on a chitin nanofiber/gallic acid (a pyrogallol acid) composite. The pyrogallol group-mediated cross-linking and the nanofibrous structures improved the dissolution resistance and cohesion strength of the hydrogel compared to the amorphous polymeric hydrogels in wet condition. The tunicate-mimetic adhesives showed higher adhesion strength between fully hydrated skin tissues than did fibrin glue and mussel-mimetic adhesives. The tunicate mimetic hydrogels were produced at low cost from recyclable and abundant raw materials. This tunicate-mimetic adhesive system is an example of how natural materials can be engineered for biomedical applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Extended mimetic gravity: Hamiltonian analysis and gradient instabilities

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazufumi; Kobayashi, Tsutomu

    2017-11-01

    We propose a novel class of degenerate higher-order scalar-tensor theories as an extension of mimetic gravity. By performing a noninvertible conformal transformation on "seed" scalar-tensor theories which may be nondegenerate, we can generate a large class of theories with at most three physical degrees of freedom. We identify a general seed theory for which this is possible. Cosmological perturbations in these extended mimetic theories are also studied. It is shown that either of tensor or scalar perturbations is plagued with gradient instabilities, except for a special case where the scalar perturbations are presumably strongly coupled, or otherwise there appear ghost instabilities.

  7. Energy conditions in mimetic-f(R) gravity

    NASA Astrophysics Data System (ADS)

    Haghani, Zahra; Shiravand, Maryam; Shahidi, Shahab

    The energy conditions of mimetic-f(R) gravity theory is analyzed. We will obtain the parameter space of the theory in some special forms of f(R) in which the self-acceleration is allowed. In this sense, the parameter space is obtained in a way that it violates the strong energy condition while satisfying the weak, null and dominant energy conditions. We will also consider the condition that the Dolgov-Kawasaki instability is avoided. This condition will be further imposed in the parameter space of the theory. We will show that the parameter space of the mimetic-f(R) gravity is larger than f(R) gravity theory.

  8. Simple mimetics of a nuclear localization signal (NLS).

    PubMed

    Park, Seung Bum; Ho, Thai H; Reedy, Brian M; Connolly, Michael D; Standaert, Robert F

    2003-07-10

    [reaction: see text] Molecular modeling was used to design mimetics of the HIV-1 matrix protein nuclear localization signal (NLS) in which a scaffold of two resorcinol units joined by a diamide linker presents 3-aminopropyl ethers in place of lysine side chains. Prospective mimetics with linkers of 6, 8, 10, or 12 atoms were synthesized and compared in a competition assay for binding to the nuclear import receptor subunit karyopherin alpha, showing the 10-atom linker to be best and shorter ones ineffective.

  9. Carboxyl-Terminal Cleavage of Apolipoprotein A-I by Human Mast Cell Chymase Impairs Its Anti-Inflammatory Properties.

    PubMed

    Nguyen, Su Duy; Maaninka, Katariina; Lappalainen, Jani; Nurmi, Katariina; Metso, Jari; Öörni, Katariina; Navab, Mohamad; Fogelman, Alan M; Jauhiainen, Matti; Lee-Rueckert, Miriam; Kovanen, Petri T

    2016-02-01

    Apolipoprotein A-I (apoA-I) has been shown to possess several atheroprotective functions, including inhibition of inflammation. Protease-secreting activated mast cells reside in human atherosclerotic lesions. Here we investigated the effects of the neutral proteases released by activated mast cells on the anti-inflammatory properties of apoA-I. Activation of human mast cells triggered the release of granule-associated proteases chymase, tryptase, cathepsin G, carboxypeptidase A, and granzyme B. Among them, chymase cleaved apoA-I with the greatest efficiency and generated C-terminally truncated apoA-I, which failed to bind with high affinity to human coronary artery endothelial cells. In tumor necrosis factor-α-activated human coronary artery endothelial cells, the chymase-cleaved apoA-I was unable to suppress nuclear factor-κB-dependent upregulation of vascular cell adhesion molecule-1 (VCAM-1) and to block THP-1 cells from adhering to and transmigrating across the human coronary artery endothelial cells. Chymase-cleaved apoA-I also had an impaired ability to downregulate the expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, and interleukin-8 in lipopolysaccharide-activated GM-CSF (granulocyte-macrophage colony-stimulating factor)- and M-CSF (macrophage colony-stimulating factor)-differentiated human macrophage foam cells and to inhibit reactive oxygen species formation in PMA (phorbol 12-myristate 13-acetate)-activated human neutrophils. Importantly, chymase-cleaved apoA-I showed reduced ability to inhibit lipopolysaccharide-induced inflammation in vivo in mice. Treatment with chymase blocked the ability of the apoA-I mimetic peptide L-4F, but not of the protease-resistant D-4F, to inhibit proinflammatory gene expression in activated human coronary artery endothelial cells and macrophage foam cells and to prevent reactive oxygen species formation in activated neutrophils. The findings identify C-terminal cleavage of apoA-I by human mast

  10. Carboxyl-Terminal Cleavage of Apolipoprotein A-I by Human Mast Cell Chymase Impairs Its Anti-Inflammatory Properties

    PubMed Central

    Nguyen, Su Duy; Maaninka, Katariina; Lappalainen, Jani; Nurmi, Katariina; Metso, Jari; Öörni, Katariina; Navab, Mohamad; Fogelman, Alan M.; Jauhiainen, Matti; Lee-Rueckert, Miriam

    2016-01-01

    Objective— Apolipoprotein A-I (apoA-I) has been shown to possess several atheroprotective functions, including inhibition of inflammation. Protease-secreting activated mast cells reside in human atherosclerotic lesions. Here we investigated the effects of the neutral proteases released by activated mast cells on the anti-inflammatory properties of apoA-I. Approach and Results— Activation of human mast cells triggered the release of granule-associated proteases chymase, tryptase, cathepsin G, carboxypeptidase A, and granzyme B. Among them, chymase cleaved apoA-I with the greatest efficiency and generated C-terminally truncated apoA-I, which failed to bind with high affinity to human coronary artery endothelial cells. In tumor necrosis factor-α–activated human coronary artery endothelial cells, the chymase-cleaved apoA-I was unable to suppress nuclear factor-κB–dependent upregulation of vascular cell adhesion molecule-1 (VCAM-1) and to block THP-1 cells from adhering to and transmigrating across the human coronary artery endothelial cells. Chymase-cleaved apoA-I also had an impaired ability to downregulate the expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, and interleukin-8 in lipopolysaccharide-activated GM-CSF (granulocyte-macrophage colony-stimulating factor)– and M-CSF (macrophage colony-stimulating factor)–differentiated human macrophage foam cells and to inhibit reactive oxygen species formation in PMA (phorbol 12-myristate 13-acetate)–activated human neutrophils. Importantly, chymase-cleaved apoA-I showed reduced ability to inhibit lipopolysaccharide-induced inflammation in vivo in mice. Treatment with chymase blocked the ability of the apoA-I mimetic peptide L-4F, but not of the protease-resistant D-4F, to inhibit proinflammatory gene expression in activated human coronary artery endothelial cells and macrophage foam cells and to prevent reactive oxygen species formation in activated neutrophils. Conclusions— The

  11. The IAP Protein Family, SMAC Mimetics and Cancer Treatment.

    PubMed

    Philchenkov, Alex; Miura, Koh

    2016-01-01

    Since the acquired resistance of cells to apoptosis is one of the major hallmarks of cancer, the endogenous inhibitors of apoptosis can be regarded as promising targets in the design of anticancer therapeutics. In addition to their antiapoptotic activity, inhibitor of apoptosis proteins (IAPs) are able to regulate numerous other cell functions, including proliferation, differentiation, and migration, as well as proinflammatory and immune responses. Study of the IAP family as target molecules in targeted therapies has recently focused on SMAC mimetics as synthetic IAP antagonists that have been under development as promising therapeutics. To overview the background of IAP proteins and to focus on the development of SMAC mimetics, the present review first looks at the mechanisms of IAP proteins' antiapoptotic activities and those for controlling those activities; then the SMAC mimetics, including birinapant, LCL161, and DEBIO1143/AT-406, and their clinical trials are introduced. To further clarify the processes to exert the efficacies of SMAC mimetics, it is necessary to determine therapeutic biomarkers that predict and assess them, which may include caspases and factors in the TNFα pathway.

  12. Cell outer membrane mimetic chitosan nanoparticles: preparation, characterization and cytotoxicity.

    PubMed

    Zhao, Jing; Liang, Fei; Kong, Lingheng; Zheng, Lina; Fan, Tao

    2015-01-01

    A negatively charged copolymer poly (MPC-co-AMPS) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-acrylamide-2-methyl propane sulfonic acid (AMPS) was designed and synthesized. Chitosan nanoparticles with cell outer membrane mimetic structure were prepared by electrostatic interaction between the sulfonic acid groups of poly (MPC-co-AMPS) and the protonated amino groups of chitosan. Effects of factors on influencing the particle size, distribution, and stability were investigated. The experimental results showed that cell membrane mimetic chitosan nanoparticles with controllable and homogeneous size ranged from 100 to 300 nm were prepared at the concentration of 0.1-2.0 mg/mL and the charge ratio of 0.5-1.1. Chitosan nanoparticles prepared can exist stably for more than 45 days when placed at 4 °C and pH < 7.5. The cytotoxicity of the chitosan nanoparticles reduced significantly after surface modification with cell membrane mimetic structure, meeting the basic requirements of biomedical materials. The results suggest cell membrane mimetic chitosan nanoparticles prepared with polyanion and polycation obtain good biological compatibility and immune stealth ability, which has important academic significance and great application prospects.

  13. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    PubMed Central

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  14. Regulation of Breast Carcinoma Growth and Neovascularization by Novel Peptide Sequences in Thromospondin

    DTIC Science & Technology

    1997-10-01

    specific mutagenesis, recombinant fragments, and peptide mimetics based on TSP. Peptides from the type I repeats of TSP reproduced the growth inhibitory...to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of...Appendix 30 Tables 30 Figure legends 33 Figures 37 4 INTRODUCTION Growth of many solid tumors is strongly dependent on recruitment of neovascularization

  15. Selection of peptides for serological detection of equine infectious anemia.

    PubMed

    Santos, E M; Cardoso, R; Souza, G R L; Goulart, L R; Heinemann, M B; Leite, R C; Reis, J K P

    2012-08-13

    Equine infectious anemia caused by equine infectious anemia virus is an important disease due to its high severity and incidence in animals. We used a phage display library to isolate peptides that can be considered potential markers for equine infectious anemia diagnosis. We selected peptides using IgG purified from a pool comprised of 20 sera from animals naturally infected with equine infectious anemia virus. The diagnostic potential of these peptides was investigated by ELISA, Western blot and dot blot with purified IgG and serum samples. Based on the results, we chose a peptide mimetic for glycoprotein gp45 epitopes of equine infectious anemia virus, with potential for use as an antigen in indirect diagnostic assays. Synthesis of this peptide has possible applications for the development of new diagnostic tools for this disease.

  16. Design and screening of syringic acid analogues as BAX activators-An in silico approach to discover "BH3 mimetics".

    PubMed

    Cheemanapalli, Srinivasulu; C M, Anuradha; Pakala, Suresh Babu; Chitta, Suresh Kumar

    2018-03-09

    Although BAX, which is a molecular hit squad that incentive apoptosis was found to be an attractive emerging target for anticancer agents. The molecular mechanism of small molecules/peptides involved in the BAX activation was remain unknown. The present focus of the study is to identification and development of novel molecules which are precisely activates BAX mediated apoptosis. In this process we identified some syringic acid analogues associated with the BAX hydrophobic groove by a virtual-screen approach. Results from the docking studies revealed that, SA1, SA9, SA10, SA14 and SA21 analogues have shown good interaction with BAX trigger site, of which SA10 and SA14 bound specifically with Lys21 at α1 helix of BAX, a critical residue involved in BAX activation. All docking calculations of SA analogues were compared with clinically tested BH3 mimetics. In this entire in silico study, SA analogous have performed an ideal binding interactions with BAX compared to BH3 mimetics. Further, in silico point mutation of BAX-Lys21 to Glu21 resulted in structural change in BAX and showed reduced binding energy and hydrogen bond interactions of the selected ligands. Based on these findings, we propose that virtual screening and mutation analysis of BAX is found to be the critical advance method towards the discovery of novel anticancer therapeutics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Minimalist Antibodies and Mimetics: An Update and Recent Applications.

    PubMed

    Bruce, Virginia J; Ta, Angeline N; McNaughton, Brian R

    2016-10-17

    The immune system utilizes antibodies to recognize foreign or disease-relevant receptors, initiating an immune response to destroy unwelcomed guests. Because researchers can evolve antibodies to bind virtually any target, it is perhaps unsurprising that these reagents, and their small-molecule conjugates, are used extensively in clinical and basic research environments. However, virtues of antibodies are countered by significant challenges. Foremost among these is the need for expression in mammalian cells (largely due to often necessary post-translational modifications). In response to these challenges, researchers have developed an array of minimalist antibodies and mimetics, which are smaller, more stable, simpler to express in Escherichia coli, and amendable to laboratory evolution and protein engineering. Here we describe these scaffolds and discuss recent applications of minimalist antibodies and mimetics. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Molecular pathways: targeting death receptors and smac mimetics.

    PubMed

    Fulda, Simone

    2014-08-01

    Inhibitor of apoptosis (IAP) proteins are overexpressed in multiple human malignancies, an event that is associated with poor prognosis and treatment resistance. Therefore, IAP proteins represent relevant targets for therapeutic intervention. Second mitochondrial activator of caspases (Smac) is a mitochondrial protein that is released into the cytosol upon the induction of programmed cell death and promotes apoptosis by neutralizing IAP proteins. On the basis of this property, a variety of small-molecule inhibitors have been developed that mimic the binding domain of the native Smac protein to IAP proteins. Evaluation of these Smac mimetics in preclinical studies revealed that they particularly synergize together with agents that trigger the death receptor pathway of apoptosis. Such combinations might therefore be of special interest for being included in the ongoing evaluation of Smac mimetics in early clinical trials. ©2014 American Association for Cancer Research.

  19. Salicylamide and salicylglycine oxidovanadium complexes with insulin-mimetic properties.

    PubMed

    Nilsson, Jessica; Shteinman, Albert A; Degerman, Eva; Enyedy, Eva A; Kiss, Tamás; Behrens, Ulrich; Rehder, Dieter; Nordlander, Ebbe

    2011-12-01

    Reaction of N-(2-hydroxybenzyl)-N-(2-picolyl) glycine (H(2)papy) with VOSO(4) in water gives the oxidovanadium(V) oxido-bridged dimer [{(papy)(VO)}(2) μ-O)] (1). Similarly, reaction of N-(2-hydroxybenzyl) glycine (H(2)glysal) with VOSO(4) gives [(glysal)VO(H(2)O)] (2) and reaction of salicylamide (Hsalam) with VOSO(4) in methanol gives [(salam)(2)VO] (3). The crystal structure of the oxido-bridged complex 1 is reported. The insulin-mimetic activity of all three complexes was evaluated with respect to their ability to phosphorylate protein kinase B (PKB). The speciations of complexes 1 and 2 were studied over the pH range 2-10. Complex 1 shows greater stability over the whole pH range but only 2 and 3 exhibit an insulin-mimetic effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Imperfect Batesian mimicry and the conspicuousness costs of mimetic resemblance.

    PubMed

    Speed, Michael P; Ruxton, Graeme D

    2010-07-01

    We apply signal detection methodology to make predictions about the evolution of Batesian mimicry. Our approach is novel in three ways. First, we applied a deterministic evolutionary modeling system that allows a large number of alternative mimetic morphs to coexist and compete. Second, we considered that there may be natural boundaries to phenotypic expression. Finally, we allowed increasing conspicuousness to impose an increasing detection cost on mimics. In some instances, the model predicts widespread variation in mimetic forms at evolutionary stability. In other situations, rather than a polymorphism the model predicts dimorphisms in which some prey were maximally cryptic and had minimal resemblance to the model, whereas many others were more conspicuous than the model. The biological implications of these results, particularly for our understanding of imperfect mimicry, are discussed.

  1. Fabrication of hierarchical feather-mimetic polymer nanofibres

    NASA Astrophysics Data System (ADS)

    Ouyang, Shenshen; Wang, Tao; Zhong, Longgang; Peng, Meiling; Yao, Juming; Wang, Sheng

    2018-01-01

    In this study, hierarchically feather-mimetic structures formed of poly(m-phenylene isophthalamide) (PMIA) nanofibres were prepared by electrospinning and subsequent crystallisation for superwettability applications. X-ray diffraction measurementsand scanning electron microscopy show that a feather-mimetic structure of crystallised nanoflakes was formed following a hydrothermal treatment process. The nanoflakes formed a nanosized fine texture on top of a coarser-textured membrane, which greatly improved the membrane roughness and yielded a hierarchical topography. After fluorination, the membrane exhibited superamphiphobicity, with surface contact angles of 151° and 136° for water and hexadecane, respectively. The method provides new insight for the design and development of functional bionic membranes based on PMIA.

  2. Primordial cosmology in mimetic born-infeld gravity

    SciTech Connect

    Bouhmadi-Lopez, Mariam; Chen, Che -Yu; Chen, Pisin

    2017-11-29

    Here, the Eddington-inspired-Born-Infeld (EiBI) model is reformulated within the mimetic approach. In the presence of a mimetic field, the model contains non-trivial vacuum solutions which could be free of spacetime singularity because of the Born-Infeld nature of the theory. We study a realistic primordial vacuum universe and prove the existence of regular solutions, such as primordial inflationary solutions of de Sitter type or bouncing solutions. Besides, the linear instabilities present in the EiBI model are found to be avoidable for some interesting bouncing solutions in which the physical metric as well as the auxiliary metric are regular at the backgroundmore » level.« less

  3. Beyond dRGT as mimetic massive gravity

    NASA Astrophysics Data System (ADS)

    Golovnev, Alexey

    2018-04-01

    An interesting proposal has recently been made to extend massive gravity models beyond dRGT by a disformal transformation of the metric. In this Letter we want to note that it can be viewed as a mimetic extension of dRGT gravity which enormously simplifies the Hamiltonian analysis. In particular, pure gravity sector is equivalent to the usual dRGT gravity coupled to a constrained scalar field. And we also give some comments about possible matter couplings.

  4. On (in)stabilities of perturbations in mimetic models with higher derivatives

    SciTech Connect

    Zheng, Yunlong; Shen, Liuyuan; Mou, Yicen

    2017-08-01

    Usually when applying the mimetic model to the early universe, higher derivative terms are needed to promote the mimetic field to be dynamical. However such models suffer from the ghost and/or the gradient instabilities and simple extensions cannot cure this pathology. We point out in this paper that it is possible to overcome this difficulty by considering the direct couplings of the higher derivatives of the mimetic field to the curvature of the spacetime.

  5. The thermodynamics of simple biomembrane mimetic systems

    PubMed Central

    Raudino, Antonio; Sarpietro, Maria Grazia; Pannuzzo, Martina

    2011-01-01

    Insight into the forces governing a system is essential for understanding its behavior and function. Thermodynamic investigations provide a wealth of information that is not, or is hardly, available from other methods. This article reviews thermodynamic approaches and assays to measure collective properties such as heat adsorption / emission and volume variations. These methods can be successfully applied to the study of lipid vesicles (liposomes) and biological membranes. With respect to instrumentation, differential scanning calorimetry, pressure perturbation calorimetry, isothermal titration calorimetry, dilatometry, and acoustic techniques aimed at measuring the isothermal and adiabatic processes, two- and three-dimensional compressibilities are considered. Applications of these techniques to lipid systems include the measurement of different thermodynamic parameters and a detailed characterization of thermotropic, barotropic, and lyotropic phase behavior. The membrane binding and / or partitioning of solutes (proteins, peptides, drugs, surfactants, ions, etc.) can also be quantified and modeled. Many thermodynamic assays are available for studying the effect of proteins and other additives on membranes, characterizing non-ideal mixing, domain formation, bilayer stability, curvature strain, permeability, solubilization, and fusion. Studies of membrane proteins in lipid environments elucidate lipid–protein interactions in membranes. Finally, a plethora of relaxation phenomena toward equilibrium thermodynamic structures can be also investigated. The systems are described in terms of enthalpic and entropic forces, equilibrium constants, heat capacities, partial volume changes, volume and area compressibility, and so on, also shedding light on the stability of the structures and the molecular origin and mechanism of the structural changes. PMID:21430953

  6. Recovering a MOND-like acceleration law in mimetic gravity

    NASA Astrophysics Data System (ADS)

    Vagnozzi, Sunny

    2017-09-01

    We reconsider the recently proposed mimetic gravity, focusing in particular on whether the theory is able to reproduce the inferred flat rotation curves of galaxies. We extend the theory by adding a non-minimal coupling between matter and mimetic field. Such coupling leads to the appearance of an extra force which renders the motion of test particles non-geodesic. By studying the weak field limit of the resulting equations of motion, we demonstrate that in the Newtonian limit the acceleration law induced by the non-minimal coupling reduces to a modified Newtonian dynamics (MOND)-like one. In this way, it is possible to reproduce the successes of MOND, namely the explanation for the flat galactic rotation curves and the Tully-Fisher relation, within the framework of mimetic gravity, without the need for particle dark matter. The scale-dependence of the recovered acceleration scale opens up the possibility of addressing the missing mass problem not only on galactic but also on cluster scales: we defer a full study of this issue, together with a complete analysis of fits to spiral galaxy rotation curves, to an upcoming companion paper.

  7. Dynamical behavior in mimetic F(R) gravity

    SciTech Connect

    Leon, Genly; Saridakis, Emmanuel N., E-mail: genly.leon@ucv.cl, E-mail: Emmanuel_Saridakis@baylor.edu

    2015-04-01

    We investigate the cosmological behavior of mimetic F(R) gravity. This scenario is the F(R) extension of usual mimetic gravity classes, which are based on re-parametrizations of the metric using new, but not propagating, degrees of freedom, that can lead to a wider family of solutions. Performing a detailed dynamical analysis for exponential, power-law, and arbitrary F(R) forms, we extracted the corresponding critical points. Interestingly enough, we found that although the new features of mimetic F(R) gravity can affect the universe evolution at early and intermediate times, at late times they will not have any effect, and the universe will resultmore » at stable states that coincide with those of usual F(R) gravity. However, this feature holds for the late-time background evolution only. On the contrary, the behavior of the perturbations is expected to be different since the new term contributes to the perturbations even if it does not contribute at the background level.« less

  8. Exosome mimetics: a novel class of drug delivery systems

    PubMed Central

    Kooijmans, Sander AA; Vader, Pieter; van Dommelen, Susan M; van Solinge, Wouter W; Schiffelers, Raymond M

    2012-01-01

    The identification of extracellular phospholipid vesicles as conveyors of cellular information has created excitement in the field of drug delivery. Biological therapeutics, including short interfering RNA and recombinant proteins, are prone to degradation, have limited ability to cross biological membranes, and may elicit immune responses. Therefore, delivery systems for such drugs are under intensive investigation. Exploiting extracellular vesicles as carriers for biological therapeutics is a promising strategy to overcome these issues and to achieve efficient delivery to the cytosol of target cells. Exosomes are a well studied class of extracellular vesicles known to carry proteins and nucleic acids, making them especially suitable for such strategies. However, the considerable complexity and the related high chance of off-target effects of these carriers are major barriers for translation to the clinic. Given that it is well possible that not all components of exosomes are required for their proper functioning, an alternative strategy would be to mimic these vesicles synthetically. By assembly of liposomes harboring only crucial components of natural exosomes, functional exosome mimetics may be created. The low complexity and use of well characterized components strongly increase the pharmaceutical acceptability of such systems. However, exosomal components that would be required for the assembly of functional exosome mimetics remain to be identified. This review provides insights into the composition and functional properties of exosomes, and focuses on components which could be used to enhance the drug delivery properties of exosome mimetics. PMID:22619510

  9. Exosome mimetics: a novel class of drug delivery systems.

    PubMed

    Kooijmans, Sander A A; Vader, Pieter; van Dommelen, Susan M; van Solinge, Wouter W; Schiffelers, Raymond M

    2012-01-01

    The identification of extracellular phospholipid vesicles as conveyors of cellular information has created excitement in the field of drug delivery. Biological therapeutics, including short interfering RNA and recombinant proteins, are prone to degradation, have limited ability to cross biological membranes, and may elicit immune responses. Therefore, delivery systems for such drugs are under intensive investigation. Exploiting extracellular vesicles as carriers for biological therapeutics is a promising strategy to overcome these issues and to achieve efficient delivery to the cytosol of target cells. Exosomes are a well studied class of extracellular vesicles known to carry proteins and nucleic acids, making them especially suitable for such strategies. However, the considerable complexity and the related high chance of off-target effects of these carriers are major barriers for translation to the clinic. Given that it is well possible that not all components of exosomes are required for their proper functioning, an alternative strategy would be to mimic these vesicles synthetically. By assembly of liposomes harboring only crucial components of natural exosomes, functional exosome mimetics may be created. The low complexity and use of well characterized components strongly increase the pharmaceutical acceptability of such systems. However, exosomal components that would be required for the assembly of functional exosome mimetics remain to be identified. This review provides insights into the composition and functional properties of exosomes, and focuses on components which could be used to enhance the drug delivery properties of exosome mimetics.

  10. A recombinant mimetics of the HIV-1 gp41 prehairpin fusion intermediate fused with human IgG Fc fragment elicits neutralizing antibody response in the vaccinated mice

    SciTech Connect

    Qi, Zhi; Pan, Chungen; Lu, Hong

    2010-07-30

    Research highlights: {yields} One recombinant mimetics of gp41 prehairpin fusion intermediate (PFI) consisting of gp41 N46 sequence, foldon and IgG Fc, designated N46FdFc, was expressed. {yields} N46FdFc-induced antibodies in mice that neutralized HIV-1 infection, inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. {yields} These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines. -- Abstract: HIV-1 gp41 prehairpin fusion intermediate (PFI) composed of three N-terminal heptad repeats (NHR) plays a crucial role in viral fusion and entry and represents an attractive target for anti-HIV therapeutics (e.g., enfuvirtide) andmore » vaccines. In present study, we constructed and expressed two recombinant gp41 PFI mimetics, designated N46Fd and N46FdFc. N46Fd consists of N46 (residues 536-581) in gp41 NHR and foldon (Fd), a trimerization motif. N46FdFc is composed of N46Fd fused with human IgG Fc fragment as an immunoenhancer. We immunized mice with N46 peptide, N46Fd and N46FdFc, respectively, and found that only N46FdFc elicited neutralizing antibody response in mice against infection by HIV-1 strains IIIB (clade B, X4), 92US657 (clade B, R5), and 94UG103 (clade A, X4R5). Anti-N46FdFc antibodies inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines.« less

  11. IAP Proteins Antagonist: An Introduction and Chemistry of Smac Mimetics under Clinical Development.

    PubMed

    Ali, Rafat; Singh, Shalini; Haq, Wahajul

    2018-03-12

    Smac mimetics (also known as IAP antagonist) are a new class of targeted drugs having a goal to suppress the IAPs, reestablishing the apoptotic pathways and inducing cancer cell death. Therefore, development of Smac mimetics was consideredan attractive strategy for the development of new anticancer drugs. Lots of review has been come in yesteryears which mainly discussed about biology of IAPs and their role in cancer development. But none of these reviews focused on the chemical synthesis of Smac mimetics. Literature study was done by using standard bibliographic search engines like scifinder, pubmed etc. The characteristic features of screened articles were described in the review. The review gives an introduction of IAP proteins and Smac mimetics. Readers will gain an overview of the development of Smac mimetics with representative examples of both monovalent and bivalent Smac mimetics as anticancer agents and an understanding of their structure activity relationships. Chemical synthesis of biologically important Smac mimetics was discussed briefly in this review. Small molecules that mimic Smac are continuously progressing towards clinical development. Smac mimetics are generally well tolerated and have demonstrated rapid suppression of their target (the IAPs), activation of apoptosis and anti-tumor activity. Continuous research has been done to generate even more insight into the function of IAP proteins to significantly enhance the therapeutical potential of Smac mimetics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Potent and selective small-molecule inhibitors of cIAP1/2 proteins reveal that the binding of Smac mimetics to XIAP BIR3 is not required for their effective induction of cell death in tumor cells.

    PubMed

    Sun, Haiying; Lu, Jianfeng; Liu, Liu; Yang, Chao-Yie; Wang, Shaomeng

    2014-04-18

    Cellular inhibitor of apoptosis protein 1 and 2 (cIAP1/2) and X-linked inhibitor of apoptosis protein (XIAP) are key apoptosis regulators and promising new cancer therapeutic targets. This study describes a set of non-peptide, small-molecule Smac (second mitochondria-derived activator of caspases) mimetics that are selective inhibitors of cIAP1/2 over XIAP. The most potent and most selective compounds bind to cIAP1/2 with affinities in the low nanomolar range and show >1,000-fold selectivity for cIAP1 over XIAP. These selective cIAP inhibitors effectively induce degradation of the cIAP1 protein in cancer cells at low nanomolar concentrations and do not antagonize XIAP in a cell-free functional assay. They potently inhibit cell growth and effectively induce apoptosis at low nanomolar concentrations in cancer cells with a mechanism of action similar to that of other known Smac mimetics. Our study shows that binding of Smac mimetics to XIAP BIR3 is not required for effective induction of apoptosis in tumor cells by Smac mimetics. These potent and highly selective cIAP1/2 inhibitors are powerful tools in the investigation of the role of these IAP proteins in the regulation of apoptosis and other cellular processes.

  13. The Neural Cell Adhesion Molecule-Derived Peptide FGL Facilitates Long-Term Plasticity in the Dentate Gyrus in Vivo

    ERIC Educational Resources Information Center

    Dallerac, Glenn; Zerwas, Meike; Novikova, Tatiana; Callu, Delphine; Leblanc-Veyrac, Pascale; Bock, Elisabeth; Berezin, Vladimir; Rampon, Claire; Doyere, Valerie

    2011-01-01

    The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have a beneficial impact on normal memory functioning, as…

  14. Self-Assembly of a Modular Polypeptide Based on Blocks of Silk-Mimetic and Elastin-Mimetic Sequences

    DTIC Science & Technology

    2002-04-01

    blocks within the protein allowed the copolymer to spontaneously self - assemble upon heating above the phase transition of the elastin-mimetic block ... assembly of the polypeptide into a macroscopic membrane . Later we reported the synthesis and self - assembly of a copolymer incorporating this cross...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014397 TITLE: Self - Assembly of a Modular Polypeptide Based on Blocks

  15. Role of host-defence peptides in eye diseases.

    PubMed

    Kolar, Satya S; McDermott, Alison M

    2011-07-01

    The eye and its associated tissues including the lacrimal system and lids have evolved several defence mechanisms to prevent microbial invasion. Included among this armory are several host-defence peptides. These multifunctional molecules are being studied not only for their endogenous antimicrobial properties but also for their potential therapeutic effects. Here the current knowledge of host-defence peptide expression in the eye will be summarised. The role of these peptides in eye disease will be discussed with the primary focus being on infectious keratitis, inflammatory conditions including dry eye and wound healing. Finally the potential of using host-defence peptides and their mimetics/derivatives for the treatment and prevention of eye diseases is addressed.

  16. Inhibition of human amylin fibril formation by insulin-mimetic vanadium complexes.

    PubMed

    He, Lei; Wang, Xuesong; Zhao, Cong; Zhu, Dengsen; Du, Weihong

    2014-05-01

    The toxicity of amyloid-forming proteins can be linked to many degenerative and systemic diseases. Human islet amyloid polypeptide (hIAPP, amylin) has been associated with type II diabetes. Methods for efficient inhibition of amyloid fibril formation are highly clinically important. This study demonstrated the significant inhibitory effects of six vanadium complexes on hIAPP aggregation. Vanadium complexes, such as bis(maltolato)-oxovanadium (BMOV), have been used as insulin-mimetic agents for the treatment of diabetes for many years. Different biophysical methods were applied to investigate the interaction between V complexes and hIAPP. The results indicated that the selected compounds affected the peptide aggregation by different action modes and protected the cells from the cytotoxicity induced by hIAPP. Both the high binding affinity and the ligand spatial effect on inhibiting hIAPP aggregation are significant. Although some of these compounds undergo biotransformation under the conditions of the experiments, and the active species are not identified, it is understood that the effect results from a particular compound and its conversion products. Importantly, our work provided information on the effects of the selected V complexes on hIAPP and demonstrated multiple levels of effects of V complexes against amyloid-related diseases.

  17. Synthetic peptides mimicking the binding site of human acetylcholinesterase for its inhibitor fasciculin 2.

    PubMed

    Kafurke, Uwe; Erijman, Ariel; Aizner, Yonatan; Shifman, Julia M; Eichler, Jutta

    2015-09-01

    Molecules capable of mimicking protein binding and/or functional sites present useful tools for a range of biomedical applications, including the inhibition of protein-ligand interactions. Such mimics of protein binding sites can currently be generated through structure-based design and chemical synthesis. Computational protein design could be further used to optimize protein binding site mimetics through rationally designed mutations that improve intermolecular interactions or peptide stability. Here, as a model for the study, we chose an interaction between human acetylcholinesterase (hAChE) and its inhibitor fasciculin-2 (Fas) because the structure and function of this complex is well understood. Structure-based design of mimics of the hAChE binding site for Fas yielded a peptide that binds to Fas at micromolar concentrations. Replacement of hAChE residues known to be essential for its interaction with Fas with alanine, in this peptide, resulted in almost complete loss of binding to Fas. Computational optimization of the hAChE mimetic peptide yielded a variant with slightly improved affinity to Fas, indicating that more rounds of computational optimization will be required to obtain peptide variants with greatly improved affinity for Fas. CD spectra in the absence and presence of Fas point to conformational changes in the peptide upon binding to Fas. Furthermore, binding of the optimized hAChE mimetic peptide to Fas could be inhibited by hAChE, providing evidence for a hAChE-specific peptide-Fas interaction. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  18. Stable Incretin Mimetics Counter Rapid Deterioration of Bone Quality in Type 1 Diabetes Mellitus.

    PubMed

    Mansur, Sity Aishah; Mieczkowska, Aleksandra; Bouvard, Béatrice; Flatt, Peter R; Chappard, Daniel; Irwin, Nigel; Mabilleau, Guillaume

    2015-12-01

    Type 1 diabetes mellitus is associated with a high risk for bone fractures. Although bone mass is reduced, bone quality is also dramatically altered in this disorder. However, recent evidences suggest a beneficial effect of the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) pathways on bone quality. The aims of the present study were to conduct a comprehensive investigation of bone strength at the organ and tissue level; and to ascertain whether enzyme resistant GIP or GLP-1 mimetic could be beneficial in preventing bone fragility in type 1 diabetes mellitus. Streptozotocin-treated mice were used as a model of type 1 diabetes mellitus. Control and streptozotocin-diabetic animals were treated for 21 days with an enzymatic-resistant GIP peptide ([D-Ala(2) ]GIP) or with liraglutide (each at 25 nmol/kg bw, ip). Bone quality was assessed at the organ and tissue level by microCT, qXRI, 3-point bending, qBEI, nanoindentation, and Fourier-transform infrared microspectroscopy. [D-Ala2]GIP and liraglutide treatment did prevent loss of whole bone strength and cortical microstructure in the STZ-injected mice. However, tissue material properties were significantly improved in STZ-injected animals following treatment with [D-Ala2]GIP or liraglutide. Treatment of STZ-diabetic mice with [D-Ala(2) ]GIP or liraglutide was capable of significantly preventing deterioration of the quality of the bone matrix. Further studies are required to further elucidate the molecular mechanisms involved and to validate whether these findings can be translated to human patients. © 2015 Wiley Periodicals, Inc.

  19. Potent human glutaminyl cyclase inhibitors as potential anti-Alzheimer's agents: Structure-activity relationship study of Arg-mimetic region.

    PubMed

    Ngo, Van T H; Hoang, Van-Hai; Tran, Phuong-Thao; Ann, Jihyae; Cui, Minghua; Park, Gyungseo; Choi, Sun; Lee, Jiyoun; Kim, Hee; Ha, Hee-Jin; Choi, Kwanghyun; Kim, Young-Ho; Lee, Jeewoo

    2018-03-01

    Pyroglutamate-modified amyloid β peptides (pGlu-Aβ) are highly neurotoxic and promote the formation of amyloid plaques. The pGlu-Aβ peptides are generated by glutaminyl cyclase (QC), and recent clinical studies indicate that QC represents an alternative therapeutic target to treat Alzheimer's disease (AD). We have previously developed a series of QC inhibitors with an extended pharmacophoric scaffold, termed the Arg-mimetic D-region. In the present study, we focused on the structure activity relationship (SAR) of analogues with modifications in the D-region and evaluated their biological activity. Most compounds in this series exhibited potent activity in vitro, and our SAR analysis and the molecular docking studies identified compound 202 as a potential candidate because it forms an additional hydrophobic interaction in the hQC active site. Overall, our study provides valuable insights into the Arg-mimetic pharmacophore that will guide the design of novel QC inhibitors as potential treatments for AD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Mimetic desire and professional closure: toward a theory of intra/ inter-professional aggression.

    PubMed

    St-Pierre, Isabelle; Holmes, Dave

    2010-01-01

    The purpose of this article is to present a renewed way to theorize intra/inter-professional aggression in nursing. To this end, René Girard's mimetic mechanism and Max Weber's conception of professional closure will be explored. More specifically mimetic mechanism, summarized as a sequence of four distinct but interdependent phases including mimetic desire, mimetic rivalry, mimetic (sacrificial) crisis, and scapegoat, will serve to broaden the understanding ofintra-professional aggression. For its part, professional closure, a strategy designed to limit and control the number of individuals admitted to a specific profession, will provide a fresh perspective to critically examine the issue of inter-professional aggression by drawing attention to hidden practices of dominance and control.

  1. Late time cosmological dynamics with a nonminimal extension of the mimetic matter scenario

    NASA Astrophysics Data System (ADS)

    Hosseinkhan, N.; Nozari, K.

    2018-02-01

    We investigate an extension of mimetic gravity in which mimetic matter is nonminimally coupled to the Ricci scalar. We derive the background field equations and show that, as the minimal case, the nonminimal mimetic matter can behave as dark matter or dark energy. By adopting some well-known potentials, we study the dynamics of the scale factor and the equation of state parameter in detail. As the effective mimetic dark energy, this model explains the late time cosmic acceleration and its equation of state parameter crosses the phantom divide. We extend our analysis to the dynamical system approach and the phase space trajectories of the model. We obtain an attractor line which corresponds to the late time cosmic acceleration. By comparing this nonminimal mimetic matter scenario with observational data for the LCDM, we show that the confidence levels of this model overlap with those of Planck 2015 TT, TE, EE + Low P + Lensing + BAO data in the LCDM model.

  2. Antifreeze Protein Mimetic Metallohelices with Potent Ice Recrystallization Inhibition Activity.

    PubMed

    Mitchell, Daniel E; Clarkson, Guy; Fox, David J; Vipond, Rebecca A; Scott, Peter; Gibson, Matthew I

    2017-07-26

    Antifreeze proteins are produced by extremophile species to control ice formation and growth, and they have potential applications in many fields. There are few examples of synthetic materials which can reproduce their potent ice recrystallization inhibition property. We report that self-assembled enantiomerically pure, amphipathic metallohelicies inhibited ice growth at just 20 μM. Structure-property relationships and calculations support the hypothesis that amphipathicity is the key motif for activity. This opens up a new field of metallo-organic antifreeze protein mimetics and provides insight into the origins of ice-growth inhibition.

  3. Modular protein switches derived from antibody mimetic proteins.

    PubMed

    Nicholes, N; Date, A; Beaujean, P; Hauk, P; Kanwar, M; Ostermeier, M

    2016-02-01

    Protein switches have potential applications as biosensors and selective protein therapeutics. Protein switches built by fusion of proteins with the prerequisite input and output functions are currently developed using an ad hoc process. A modular switch platform in which existing switches could be readily adapted to respond to any ligand would be advantageous. We investigated the feasibility of a modular protein switch platform based on fusions of the enzyme TEM-1 β-lactamase (BLA) with two different antibody mimetic proteins: designed ankyrin repeat proteins (DARPins) and monobodies. We created libraries of random insertions of the gene encoding BLA into genes encoding a DARPin or a monobody designed to bind maltose-binding protein (MBP). From these libraries, we used a genetic selection system for β-lactamase activity to identify genes that conferred MBP-dependent ampicillin resistance to Escherichia coli. Some of these selected genes encoded switch proteins whose enzymatic activity increased up to 14-fold in the presence of MBP. We next introduced mutations into the antibody mimetic domain of these switches that were known to cause binding to different ligands. To different degrees, introduction of the mutations resulted in switches with the desired specificity, illustrating the potential modularity of these platforms. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. The mimetic repertoire of the spotted bowerbird Ptilonorhynchus maculatus

    NASA Astrophysics Data System (ADS)

    Kelley, Laura A.; Healy, Susan D.

    2011-06-01

    Although vocal mimicry in songbirds is well documented, little is known about the function of such mimicry. One possibility is that the mimic produces the vocalisations of predatory or aggressive species to deter potential predators or competitors. Alternatively, these sounds may be learned in error as a result of their acoustic properties such as structural simplicity. We determined the mimetic repertoires of a population of male spotted bowerbirds Ptilonorhynchus maculatus, a species that mimics predatory and aggressive species. Although male mimetic repertoires contained an overabundance of vocalisations produced by species that were generally aggressive, there was also a marked prevalence of mimicry of sounds that are associated with alarm such as predator calls, alarm calls and mobbing calls, irrespective of whether the species being mimicked was aggressive or not. We propose that it may be the alarming context in which these sounds are first heard that may lead both to their acquisition and to their later reproduction. We suggest that enhanced learning capability during acute stress may explain vocal mimicry in many species that mimic sounds associated with alarm.

  5. Small-molecule SMAC mimetics as new cancer therapeutics.

    PubMed

    Bai, Longchuan; Smith, David C; Wang, Shaomeng

    2014-10-01

    Apoptosis is a tightly regulated cellular process and faulty regulation of apoptosis is a hallmark of human cancers. Targeting key apoptosis regulators with the goal to restore apoptosis in tumor cells has been pursued as a new cancer therapeutic strategy. XIAP, cIAP1, and cIAP2, members of inhibitor of apoptosis (IAP) proteins, are critical regulators of cell death and survival and are attractive targets for new cancer therapy. The SMAC/DIABLO protein is an endogenous antagonist of XIAP, cIAP1, and cIAP2. In the last decade, intense research efforts have resulted in the design and development of several small-molecule SMAC mimetics now in clinical trials for cancer treatment. In this review, we will discuss the roles of XIAP, cIAP1, and cIAP2 in regulation of cell death and survival, and the design and development of small-molecule SMAC mimetics as novel cancer treatments. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Small-Molecule SMAC Mimetics as New Cancer Therapeutics

    PubMed Central

    Bai, Longchuan; Smith, David C.; Wang, Shaomeng

    2014-01-01

    Apoptosis is a tightly regulated cellular process and faulty regulation of apoptosis is a hallmark of human cancers. Targeting key apoptosis regulators with the goal to restore apoptosis in tumor cells has been pursued as a new cancer therapeutic strategy. XIAP, cIAP1, and cIAP2, members of inhibitor of apoptosis (IAP) proteins, are critical regulators of cell death and survival and are attractive targets for new cancer therapy. The SMAC/DIABLO protein is an endogenous antagonist of XIAP, cIAP1, and cIAP2. In the last decade, intense research efforts have resulted in the design and development of several small-molecule SMAC mimetics now in clinical trials for cancer treatment. In this review, we will discuss the roles of XIAP, cIAP1, and cIAP2 in regulation of cell death and survival, and the design and development of small-molecule SMAC mimetics as novel cancer treatments. PMID:24841289

  7. Towards echinomycin mimetics by grafting quinoxaline residues on glycophane scaffolds.

    PubMed

    Jarikote, Dilip V; Li, Wei; Jiang, Tao; Eriksson, Leif A; Murphy, Paul V

    2011-01-15

    Echinomycin is a natural depsipeptide, which is a bisintercalator, inserting quinoxaline units preferentially adjacent to CG base pairs of DNA. Herein the design and synthesis of echinomycin mimetics based on grafting of two quinoxaline residues onto a macrocyclic scaffold (glycophane) is addressed. Binding of the compounds to calf-thymus DNA was studied using UV-vis and steady state fluorescence spectroscopy, as well as thermal denaturation. An interesting observation was enhancement of fluorescence emission for the peptidomimetics on binding to DNA, which contrasted with observations for echinomycin. Molecular dynamics simulations were exploited to explore in more detail if bis-intercalation to DNA was possible for one of the glycophanes. Bis-intercalating echinomycin complexes with DNA were found to be stable during 20ns simulations at 298K. However, the MD simulations of a glycophane complexed with a DNA octamer displayed very different behaviour to echinomycin and its quinoxaline units were found to rapidly migrate out from the intercalation site. Release of bis-intercalation strain occurred with only one of the quinoxaline chromophores remaining intercalated throughout the simulation. The distance between the quinoxaline residues in the glycophane at the end of the MD simulation was 7.3-7.5Å, whereas in echinomycin, the distance between the residues was ∼11Å, suggesting that longer glycophane scaffolds would be required to generate bis-intercalating echinomycin mimetics. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Road to Exercise Mimetics: Targeting Nuclear Receptors in Skeletal Muscle

    PubMed Central

    Fan, Weiwei; Atkins, Annette R; Yu, Ruth T.; Downes, Michael; Evans, Ronald M.

    2014-01-01

    Skeletal muscle comprises the largest organ in the human body and is the major site for energy expenditure. It exhibits remarkable plasticity in response to physiological stimuli such as exercise. Physical exercise remodels skeletal muscle and enhances its capability to burn calories, which has been shown to be beneficial for many clinical conditions including metabolic syndrome and cancer. Nuclear receptors (NRs) comprise a class of transcription factors found only in metazoans that regulate major biological processes such as reproduction, development, and metabolism. Recent studies have demonstrated crucial roles for NRs and their co-regulators in regulating skeletal muscle energy metabolism and exercise-induced muscle remodeling. While nothing can fully replace exercise, development of exercise mimetics that enhance or even substitute for the beneficial effects of physical exercise would be of great benefit. The unique property of NRs that allows modulation by endogenous or synthetic ligands makes them bona fide therapeutic targets. In this review, we present an overview of the current understanding of NRs and their co-regulators in skeletal muscle oxidative metabolism and summarize recent progress in the development of exercise mimetics that target NRs and their co-regulators. PMID:24280961

  9. Synthesis of rigid p-terphenyl-linked carbohydrate mimetics

    PubMed Central

    Kandziora, Maja

    2014-01-01

    Summary An approach to β-D-2-aminotalose- and β-D-2-aminoidose-configured carbohydrate mimetics bearing a phenyl substituent is described. Unnatural divalent rigid p-terphenyl-linked C-aryl glycosides with 2.0 nm dimension are available using Suzuki cross-couplings. The key compound, a p-bromophenyl-substituted 1,2-oxazine, was prepared by a stereoselective [3 + 3]-cyclization of a D-isoascorbic acid-derived (Z)-nitrone and lithiated TMSE-allene. The Lewis acid-induced rearrangement of this heterocycle provided the corresponding bicyclic 1,2-oxazine derivative that may be regarded as internally protected amino sugar analogue. After subsequent reduction of the carbonyl group, the resulting bicyclic compound was used for Suzuki cross-couplings to form biphenyl aminopyran or p-terphenyl-linked dimers. Hydrogenolysis afforded new unnatural aminosugar mimetics. Zinc in the presence of acid or samarium diiodide were examined for the N–O bond cleavage in order to obtain the rigid p-terphenyl-linked C-glycosyl dimers. PMID:25161733

  10. Chronic Wound Dressings Based on Collagen-Mimetic Proteins.

    PubMed

    Cereceres, Stacy; Touchet, Tyler; Browning, Mary Beth; Smith, Clayton; Rivera, Jose; Höök, Magnus; Whitfield-Cargile, Canaan; Russell, Brooke; Cosgriff-Hernandez, Elizabeth

    2015-08-01

    Objective: Chronic wounds are projected to reach epidemic proportions due to the aging population and the increasing incidence of diabetes. There is a strong clinical need for an improved wound dressing that can balance wound moisture, promote cell migration and proliferation, and degrade at an appropriate rate to minimize the need for dressing changes. Approach: To this end, we have developed a bioactive, hydrogel microsphere wound dressing that incorporates a collagen-mimetic protein, Scl2 GFPGER , to promote active wound healing. A redesigned Scl2 GFPGER , engineered collagen (eCol GFPGER ), was created to reduce steric hindrance of integrin-binding motifs and increase overall stability of the triple helical backbone, thereby resulting in increased cell adhesion to substrates. Results: This study demonstrates the successful modification of the Scl2 GFPGER protein to eCol GFPGER , which displayed enhanced stability and integrin interactions. Fabrication of hydrogel microspheres provided a matrix with adaptive moisture technology, and degradation rates have potential for use in human wounds. Innovation: This collagen-mimetic wound dressing was designed to permit controlled modulation of cellular interactions and degradation rate without impact on other physical properties. Its fabrication into uniform hydrogel microspheres provides a bioactive dressing that can readily conform to irregular wounds. Conclusion: Overall, this new eCol GFPGER shows strong promise in the generation of bioactive hydrogels for wound healing as well as a variety of tissue scaffolds.

  11. Bioactive Peptides

    PubMed Central

    Daliri, Eric Banan-Mwine; Oh, Deog H.; Lee, Byong H.

    2017-01-01

    The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development. PMID:28445415

  12. Synthesis and Characterization of Elastin-Mimetic Hybrid Polymers with Multiblock, Alternating Molecular Architecture and Elastomeric Properties

    PubMed Central

    Grieshaber, Sarah E.; Farran, Alexandra J. E.; Lin-Gibson, Sheng; Kiick, Kristi L.; Jia, Xinqiao

    2009-01-01

    We are interested in developing elastin–mimetic hybrid polymers (EMHPs) that capture the multiblock molecular architecture of tropoelastin as well as the remarkable elasticity of mature elastin. In this study, multiblock EMHPs containing flexible synthetic segments based on poly(ethylene glycol) (PEG) alternating with alanine-rich, lysine-containing peptides were synthesized by step-growth polymerization using α,ω-azido-PEG and alkyne-terminated AKA3KA (K = lysine, A = alanine) peptide, employing orthogonal click chemistry. The resulting EMHPs contain an estimated three to five repeats of PEG and AKA3KA and have an average molecular weight of 34 kDa. While the peptide alone exhibited α-helical structures at high pH, the fractional helicity for EMHPs was reduced. Covalent cross-linking of EMHPs with hexamethylene diisocyanate (HMDI) through the lysine residue in the peptide domain afforded an elastomeric hydrogel (xEMHP) with a compressive modulus of 0.12 MPa when hydrated. The mechanical properties of xEMHP are comparable to a commercial polyurethane elastomer (Tecoflex SG80A) under the same conditions. In vitro toxicity studies showed that while the soluble EMHPs inhibited the growth of primary porcine vocal fold fibroblasts (PVFFs) at concentrations ≥0.2 mg/mL, the cross-linked hybrid elastomers did not leach out any toxic reagents and allowed PVFFs to grow and proliferate normally. The hybrid and modular approach provides a new strategy for developing elastomeric scaffolds for tissue engineering. PMID:19763157

  13. Effect of tempol on redox homeostasis and stress tolerance in mimetically aged Drosophila.

    PubMed

    Aksu, Ugur; Yanar, Karolin; Terzioglu, Duygu; Erkol, Tugçe; Ece, Evrim; Aydin, Seval; Uslu, Ezel; Çakatay, Ufuk

    2014-09-01

    We aimed to test our hypothesis that scavenging reactive oxygen species (ROS) with tempol, a membrane permeable antioxidant, affects the type and magnitude of oxidative damage and stress tolerance through mimetic aging process in Drosophila. Drosophila colonies were randomly divided into three groups: (1) no D-galactose, no tempol; (2) D-galactose without tempol; (3) D-galactose, but with tempol. Mimetic aging was induced by d-galactose administration. The tempol-administered flies received tempol at the concentration of 0.2% in addition to d-galactose. Thiobarbituric acid reacting substance (TBARS) concentrations, advanced oxidation protein products (AOPPs), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), sialic acid (SA) were determined. Additionally, stress tolerances were tested. Mimetically aged group without tempol led to a significant decrease in tolerance to heat, cold, and starvation (P < 0.05), but tempol was used for these parameters. The Cu,Zn-SOD activity and SA concentrations were lower in both mimetically aged and tempol-administered Drosophila groups compared to control (P < 0.05), whereas there were no significantly difference between mimetically aged and tempol-administered groups. Mimetically aged group without tempol led to a significant increase in tissue TBARS and AOPPs concentrations (P < 0.05). Coadministration of tempol could prevent these alterations. Scavenging ROS using tempol also restores redox homeostasis in mimetically aged group. Tempol partly restores age-related oxidative injury and increases stress tolerance. © 2014 Wiley Periodicals, Inc.

  14. Does male preference play a role in maintaining female limited polymorphism in a Batesian mimetic butterfly?

    PubMed

    Westerman, E L; Letchinger, R; Tenger-Trolander, A; Massardo, D; Palmer, D; Kronforst, M R

    2018-05-01

    Female-limited polymorphism occurs in multiple butterfly species with Batesian mimicry. While frequency-dependent selection is often argued as the driving force behind polymorphism in Batesian mimicry systems, male preference and alternative female mating strategies may also influence the maintenance of multiple female forms. Through a series of behavioural assays with the female-limited Batesian mimetic butterfly Papilio polytes, we show that males prefer stationary mimetic females over stationary non-mimetic females, but weigh female activity levels more heavily than female wing pattern when choosing between active mimetic and active non-mimetic females. Male preference for mimetic vs. non-mimetic females is independent of male genotype at the locus responsible for the female wing pattern, the autosomal gene doublesex. However male genotype does influence their response to active females. Male emphasis on female behaviour instead of appearance may reduce sexual selection pressures on female morphology, thereby facilitating frequency-dependent natural selection due to predation risk and toxic model abundance. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Universal surface-initiated polymerization of antifouling zwitterionic brushes using a mussel-mimetic peptide initiator.

    PubMed

    Kuang, Jinghao; Messersmith, Phillip B

    2012-05-08

    We report a universal method for the surface-initated polymerization (SIP) of an antifouling polymer brush on various classes of surfaces, including noble metals, metal oxides, and inert polymers. Inspired by the versatility of mussel adhesive proteins, we synthesized a novel bifunctional tripeptide bromide (BrYKY) that combines atom-transfer radical polymerization (ATRP) initiating alkyl bromide with l-3,4-dihydroxyphenylalanine (DOPA) and lysine. The simple dip-coating of substrates with variable wetting properties and compositions, including Teflon, in a BrYKY solution at pH 8.5 led to the formation of a thin film of cross-linked BrYKY. Subsequently, we showed that the BrYKY layer initiated the ATRP of a zwitterionic monomer, sulfobetaine methacrylate (SBMA), on all substrates, resulting in high-density antifouling pSBMA brushes. Both BrYKY deposition and pSBMA grafting were unambiguously confirmed by ellipsometry, X-ray photoelectron spectroscopy, and goniometry. All substrates that were coated with BrYKY/pSBMA dramatically reduced bacterial adhesion for 24 h and also resisted mammalian cell adhesion for at least 4 months, demonstrating the long-term stability of the BrYKY anchoring and antifouling properties of pSBMA. The use of BrYKY as a primer and polymerization initiator has the potential to be widely employed in surface-grafted polymer brush modifications for biomedical and other applications.

  16. Efficacy and safety of canagliflozin when used in conjunction with incretin-mimetic therapy in patients with type 2 diabetes.

    PubMed

    Fulcher, G; Matthews, D R; Perkovic, V; de Zeeuw, D; Mahaffey, K W; Mathieu, C; Woo, V; Wysham, C; Capuano, G; Desai, M; Shaw, W; Vercruysse, F; Meininger, G; Neal, B

    2016-01-01

    To assess the efficacy and safety of canagliflozin, a sodium glucose co-transporter 2 (SGLT2) inhibitor, in patients with type 2 diabetes enrolled in the CANagliflozin cardioVascular Assessment Study (CANVAS) who were on an incretin mimetic [dipeptidyl peptidase-4 (DPP-4) inhibitor or glucagon-like peptide-1 (GLP-1) receptor agonist]. CANVAS is a double-blind, placebo-controlled study that randomized participants to canagliflozin 100 or 300 mg or placebo added to routine therapy. The present post hoc analysis assessed the efficacy and safety of canagliflozin 100 and 300 mg compared with placebo in subsets of patients from CANVAS who were taking background DPP-4 inhibitors or GLP-1 receptor agonists with or without other antihyperglycaemic agents at week 18. Of the 4330 patients in CANVAS, 316 were taking DPP-4 inhibitors and 95 were taking GLP-1 receptor agonists. At 18 weeks, canagliflozin 100 and 300 mg provided larger placebo-subtracted reductions in glycated haemoglobin (HbA1c) in patients taking DPP-4 inhibitors [-0.56% (95% confidence interval [CI]: -0.77, -0.35), and -0.75% (95% CI: -0.95, -0.54), respectively] and GLP-1 receptor agonists [-1.00% (95% CI: -1.35, -0.65), and -1.06% (95% CI: -1.43, -0.69), respectively]. Body weight and blood pressure (BP) reductions were seen with canagliflozin versus placebo in both subsets. Higher incidences of genital mycotic infections and osmotic diuresis-related adverse events (AEs) were seen with canagliflozin compared with placebo. The incidence of hypoglycaemia was numerically higher with canagliflozin versus placebo; nearly all events occurred in patients on background insulin or insulin secretagogues. In patients on background incretin mimetics, canagliflozin improved HbA1c, body weight and BP, with an increased incidence of AEs related to SGLT2 inhibition. © 2015 John Wiley & Sons Ltd.

  17. Dual stimuli-sensitive dendrimers: Photothermogenic gold nanoparticle-loaded thermo-responsive elastin-mimetic dendrimers.

    PubMed

    Fukushima, Daichi; Sk, Ugir Hossain; Sakamoto, Yasuhiro; Nakase, Ikuhiko; Kojima, Chie

    2015-08-01

    Dendrimers are synthetic macromolecules with unique structures that can work as nanoplatforms for both photothermogenic gold nanoparticles (AuNPs) and thermosensitive elastin-like peptides (ELPs) with valine-proline-glycine-valine-glycine (VPGVG) repeats. In this study, photothermogenic AuNPs were loaded into thermo-responsive elastin-mimetic dendrimers (dendrimers conjugating ELPs at their periphery) to produce dual stimuli-sensitive nanoparticles. Polyamidoamine G4 dendrimers were modified with acetylated VPGVG and (VPGVG)2, and the resulting materials were named ELP1-den and ELP2-den, respectively. The AuNPs were prepared by the reduction of Au ions using a dendrimer-nanotemplated method. The AuNP-loaded elastin-mimetic dendrimers exhibited photothermal properties. ELP1-den and ELP2-den showed similar temperature-dependent changes in their conformations. Phase transitions were observed at around 55°C and 35°C for the AuNP-loaded ELP1-den and AuNP-loaded ELP2-den, respectively, but not for the corresponding PEGylated dendrimer. In contrast to the AuNP-loaded PEGylated dendrimer, AuNP-loaded ELP2-den readily associated with cells and induced efficient photocytotoxicity at 37°C. The cell association and the photocytotoxicity properties of AuNP-loaded ELP2-den could be controlled by temperature. These results therefore suggest that dual stimuli-sensitive dendrimer nanoparticles of this type could be used for photothermal therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A direct spectrophotometric assay for peptide deformylase.

    PubMed

    Guo, X C; Ravi Rajagopalan, P T; Pei, D

    1999-09-10

    A direct UV-VIS spectrophotometric assay has been developed for peptide deformylase. This assay employs a novel class of peptide mimetics as deformylase substrates which, upon enzymatic removal of the N-terminal formyl group, rapidly release free thiols. The released thiols are quantitated using Ellman's reagent. A variety of peptide analogues that contain beta-thiaphenylalanine or beta-thiamethionine as the N-terminal residue were synthesized and found to be excellent substrates of the peptide deformylase from Escherichia coli (k(cat)/K(M) = 6.9 x 10(5) M(-1) s(-1) for the most reactive substrate). The deformylase reaction is conveniently monitored on a UV-VIS spectrophotometer in a continuous fashion. The versatility of the assay has been demonstrated by its application to kinetic characterization of the deformylase, pH profile studies, and enzyme inhibition assays. The assay can also be performed in an end-point fashion. The results demonstrate that this assay is a simple, highly sensitive, and rapid method to study kinetic properties of deformylases without the use of any coupling enzymes. Copyright 1999 Academic Press.

  19. Ionic supramolecular bonds preserve mechanical properties and enable synergetic performance at high humidity in water-borne, self-assembled nacre-mimetics

    NASA Astrophysics Data System (ADS)

    Das, Paramita; Walther, Andreas

    2013-09-01

    Although tremendous effort has been focused on enhancing the mechanical properties of nacre-mimetic materials, conservation of high stiffness and strength against hydration-induced decay of mechanical properties at high humidity remains a fundamental challenge in such water-borne high-performance materials. Herein, we demonstrate that ionic supramolecular bonds, introduced by infiltration of divalent Cu2+ ions, allow efficient stabilization of the mechanical properties of self-assembled water-borne nacre-mimetics based on sustainable sodium carboxymethylcellulose (Na+CMC) and natural sodium montmorillonite nanoclay (Na+MTM) against high humidity (95% RH). The mechanical properties in the highly hydrated state (Young's modulus up to 13.5 GPa and tensile strength up to 125 MPa) are in fact comparable to a range of non-crosslinked nacre-mimetic materials in the dry state. Moreover, the Cu2+-treated nacre-inspired materials display synergetic mechanical properties as found in a simultaneous improvement of stiffness, strength and toughness, as compared to the pristine material. Significant inelastic deformation takes place considering the highly reinforced state. This contrasts the typical behaviour of tight, covalent crosslinks and is suggested to originate from a sacrificial, dynamic breakage and rebinding of transient supramolecular ionic bonds. Considering easy access to a large range of ionic interactions and alteration of counter-ion charge via external stimuli, we foresee responsive and adaptive mechanical properties in highly reinforced and stiff bio-inspired bulk nanocomposites and in other bio-inspired materials, e.g. nanocellulose papers and peptide-based materials.Although tremendous effort has been focused on enhancing the mechanical properties of nacre-mimetic materials, conservation of high stiffness and strength against hydration-induced decay of mechanical properties at high humidity remains a fundamental challenge in such water-borne high

  20. Peptide identification

    DOEpatents

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  1. Peptide-Based Bioinspired Approach to Regrowing Multilayered Aprismatic Enamel

    PubMed Central

    2018-01-01

    The gradual discovery of functional domains in native enamel matrix proteins has enabled the design of smart bioinspired peptides for tooth enamel mimetics and repair. In this study, we expanded upon the concept of biomineralization to design smaller amelogenin-inspired peptides with conserved functional domains for clinical translation. The synthetic peptides displayed a characteristic nanostructured scaffold reminiscent of ‘nanospheres’ seen in the enamel matrix and effectively controlled apatite nucleation in vitro resulting in the formation of smaller crystallites. Following application of the peptides to sectioned human molar teeth, a robust, oriented, synthetic aprismatic enamel was observed after 7 days of incubation in situ. There was a two-fold increase in the hardness and modulus of the regrown enamel-like apatite layers and an increase in the attachment of the tooth-regrown layer interface compared to control samples. Repeated peptide applications generated multiple enamel-like hydroxyapatite (HAP) layers of limited thickness produced by epitaxial growth in which c-axis oriented nanorods evolved on the surface of native enamel. We conclude that peptide analogues with active domains can effectively regulate the orientation of regenerated HAP layers to influence functional response. Moreover, this enamel biofabrication approach demonstrates the peptide-mediated growth of multiple microscale HAP arrays of organized microarchitecture with potential for enamel repair. PMID:29623301

  2. Improved Oxidase Mimetic Activity by Praseodymium Incorporation into Ceria Nanocubes.

    PubMed

    Jiang, Lei; Fernandez-Garcia, Susana; Tinoco, Miguel; Yan, Zhaoxia; Xue, Qi; Blanco, Ginesa; Calvino, Jose J; Hungria, Ana B; Chen, Xiaowei

    2017-06-07

    Ceria nanocubes (NC) modified with increasing concentrations of praseodymium (5, 10, 15, and 20 mol %) have been successfully synthesized by a hydrothermal method. The as-synthesized Pr-modified ceria nanocubes exhibit an enhanced oxidase-like activity on the organic dye TMB within a wide range of concentrations and durations. The oxidase activity increases with increasing Pr amounts in Pr-modified ceria nanocubes within the investigated concentration range. Meanwhile, these Pr-modified ceria nanocubes also show higher reducibility than pure ceria nanocubes. The kinetics of their oxidase mimetic activity is fitted with the Michaelis-Menten equation. A mechanism has been proposed on how the Pr incorporation could affect the energy level of the bands in ceria and hence facilitate the TMB oxidation reaction. The presence of Pr 3+ species on the surface also contributes to the increasing activity of the Pr-modified ceria nanocubes present higher oxidase activity than pure ceria nanocubes.

  3. New diketone based vanadium complexes as insulin mimetics.

    PubMed

    Sheela, A; Roopan, S Mohana; Vijayaraghavan, R

    2008-10-01

    Since 1985, when Heyliger et al. first reported the in vivo insulin mimetic activity of oral vanadate, extensive studies exploring vanadium chemistry, including the synthesis of novel complexes and their biological effects both in vitro and in vivo have been pursued. Such complexes have emerged as possible potential agents for diabetes therapy. Among the several existing compounds, diketone based vanadium complexes have been chosen for the current study. Two new complexes namely bisdimethylmalonatooxovanadium(IV) and bisdiethylmalonatooxovanadium(IV) have been synthesized and characterized by UV-visible, FTIR and mass spectral studies. The antidiabetic activity of the complexes was proved by animal study. The results show that the above complexes have comparable antidiabetic potential with respect to the standard drug as well as with bisacetylacetonatooxovanadium(IV) which has been studied earlier by Reul et al.

  4. Towards protein-based viral mimetics for cancer therapies.

    PubMed

    Unzueta, Ugutz; Céspedes, María Virtudes; Vázquez, Esther; Ferrer-Miralles, Neus; Mangues, Ramón; Villaverde, Antonio

    2015-05-01

    High resistance and recurrence rates, together with elevated drug clearance, compel the use of maximum-tolerated drug doses in cancer therapy, resulting in high-grade toxicities and limited clinical applicability. Promoting active drug accumulation in tumor tissues would minimize such issues and improve therapeutic outcomes. A new class of therapeutic drugs suitable for the task has emerged based on the concept of virus-mimetic nanocarriers, or 'artificial viruses'. Among the spectrum of materials under exploration in nanocarrier research, proteins offer unparalleled structural and functional versatility for designing virus-like molecular vehicles. By exhibiting 'smart' functions and biomimetic traits, protein-based nanocarriers will be a step ahead of the conventional drug-protein conjugates already in the clinic in ensuring efficient delivery of passenger antitumor drugs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Type I Collagen and Collagen Mimetics as Angiogenesis Promoting Superpolymers

    SciTech Connect

    Twardowski, T.; Fertala, A.; Orgel, J.P.R.O.

    2008-07-18

    Angiogenesis, the development of blood vessels from the pre-existing vasculature, is a key component of embryogenesis and tissue regeneration. Angiogenesis also drives pathologies such as tumor growth and metastasis, and hemangioma development in newborns. On the other hand, promotion of angiogenesis is needed in tissues with vascular insufficiencies, and in bioengineering, to endow tissue substitutes with appropriate microvasculatures. Therefore, much research has focused on defining mechanisms of angiogenesis, and identifying pro- and anti-angiogenic molecules. Type I collagen, the most abundant protein in humans, potently stimulates angiogenesis in vitro and in vivo. Crucial to its angiogenic activity appears to be ligationmore » and possibly clustering of endothelial cell (EC) surface {alpha}1{beta}1/{alpha}2{beta}1 integrin receptors by the GFPGER502-507 sequence of the collagen fibril. However, additional aspects of collagen structure and function that may modulate its angiogenic properties are discussed. Moreover, type I collagen and fibrin, another angiogenic polymer, share several structural features. These observations suggest strategies for creating 'angiogenic superpolymers', including: modifying type I collagen to influence its biological half-life, immunogenicity, and integrin binding capacity; genetically engineering fibrillar collagens to include additional integrin binding sites or angiogenic determinants, and remove unnecessary or deleterious sequences without compromising fibril integrity; and exploring the suitability of poly(ortho ester), PEG-lysine copolymer, tubulin, and cholesteric cuticle as collagen mimetics, and suggesting means of modifying them to display ideal angiogenic properties. The collagenous and collagen mimetic angiogenic superpolymers described here may someday prove useful for many applications in tissue engineering and human medicine.« less

  6. Production and characterization Te-peptide by induced autolysis of Saccharomyces cerevisiae.

    PubMed

    Morya, V K; Dong, Shin Jae; Kim, Eun-ki

    2014-04-01

    Recently, the interest in mimicking functions of chalcogen-based catalytic antioxidants like selenoenzymes, has been increased. Various attempts had been done with selenium, but very few attempts were carried out with tellurium. Bio-complex formation and characterization of tellurium was not tried earlier by using any organism. The present study was focused on tellurium peptide production, characterization, and bioactivity assessment especially Mimetic to glutathione peroxidase (GPx). The production was achieved by the autolysis of total proteins obtained from Saccharomyces cerevisiae ATCC 7752 grown with inorganic tellurium. The GPx-like activity of the hydrolyzed tellurium peptide was increased when prepared by autolysis, but decreased when prepared by acid hydrolysis. Tellurium peptide produced by autolysis of the yeast cell showed increased GPx-like activity as well as tellurium content. Tellurium peptide showed little toxicity, compared to highly toxic inorganic tellurium. The results showed the potential of tellurium peptide as an antioxidant that can be produced by simple autolysis of yeast cells.

  7. A mucosa-mimetic material for the mucoadhesion testing of thermogelling semi-solids.

    PubMed

    da Silva, Jéssica Bassi; Khutoryanskiy, Vitaliy V; Bruschi, Marcos L; Cook, Michael T

    2017-08-07

    Mucosa-mimetic materials are synthetic substrates which aim to replace animal tissue in mucoadhesion experiments. One potential mucosa-mimetic material is a hydrogel comprised of N-acryloyl-d-glucosamine and 2-hydroxyethylmethacrylate, which has been investigated as a surrogate for animal mucosae in the mucoadhesion testing of tablets and solution formulations. This study aims to investigate the efficacy of this mucosa-mimetic material in the testing of thermogelling semi-solid formulations, which transition from solution to gel upon warming. Two methods for assessing mucoadhesion have been used; tensile testing and a flow-through system, which allow for investigation under dramatically different conditions. It was found that the mucosa-mimetic material was a good surrogate for buccal mucosa using both testing methods. This material may be used to replace animal tissue in these experiments, potentially reducing the number of laboratory animals used in studies of this type. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A non-linear constrained optimization technique for the mimetic finite difference method

    SciTech Connect

    Manzini, Gianmarco; Svyatskiy, Daniil; Bertolazzi, Enrico

    2014-09-30

    This is a strategy for the construction of monotone schemes in the framework of the mimetic finite difference method for the approximation of diffusion problems on unstructured polygonal and polyhedral meshes.

  9. Plant-mimetic Heat Pipes for Operation with Large Inertial and Gravitational Stresses

    DTIC Science & Technology

    2015-08-07

    SUBTITLE Plant -mimetic heat pipes for operation with large inertial and gravitational stresses 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-12-1-0227 5c... plants to propose plant -inspired designs of loop heat pipes for operation with large stresses . Toward the realization of these Superheated Loop Heat ...Title: PLANT -MIMETIC HEAT PIPES FOR OPERATION WITH LARGE INERTIAL AND GRAVITATIONAL STRESSES P.I.: Abraham Stroock, Chemical and Biomolecular

  10. Smac mimetics and oncolytic viruses synergize in driving anticancer T-cell responses through complementary mechanisms.

    PubMed

    Kim, Dae-Sun; Dastidar, Himika; Zhang, Chunfen; Zemp, Franz J; Lau, Keith; Ernst, Matthias; Rakic, Andrea; Sikdar, Saif; Rajwani, Jahanara; Naumenko, Victor; Balce, Dale R; Ewanchuk, Ben W; Taylor, Pankaj; Yates, Robin M; Jenne, Craig; Gafuik, Chris; Mahoney, Douglas J

    2017-08-24

    Second mitochondrial activator of caspase (Smac)-mimetic compounds and oncolytic viruses were developed to kill cancer cells directly. However, Smac-mimetic compound and oncolytic virus therapies also modulate host immune responses in ways we hypothesized would complement one another in promoting anticancer T-cell immunity. We show that Smac-mimetic compound and oncolytic virus therapies synergize in driving CD8 + T-cell responses toward tumors through distinct activities. Smac-mimetic compound treatment with LCL161 reinvigorates exhausted CD8 + T cells within immunosuppressed tumors by targeting tumor-associated macrophages for M1-like polarization. Oncolytic virus treatment with vesicular stomatitis virus (VSV ΔM51 ) promotes CD8 + T-cell accumulation within tumors and CD8 + T-cell activation within the tumor-draining lymph node. When combined, LCL161 and VSV ΔM51 therapy engenders CD8 + T-cell-mediated tumor control in several aggressive mouse models of cancer. Smac-mimetic compound and oncolytic virus therapies are both in clinical development and their combination therapy represents a promising approach for promoting anticancer T-cell immunity.Oncolytic viruses (OV) and second mitochondrial activator of caspase (Smac)-mimetic compounds (SMC) synergistically kill cancer cells directly. Here, the authors show that SMC and OV therapies combination also synergize in vivo by promoting anticancer immunity through an increase in CD8 + T-cell response.

  11. Mimetic Divergence and the Speciation Continuum in the Mimic Poison Frog Ranitomeya imitator.

    PubMed

    Twomey, Evan; Vestergaard, Jacob S; Venegas, Pablo J; Summers, Kyle

    2016-02-01

    While divergent ecological adaptation can drive speciation, understanding the factors that facilitate or constrain this process remains a major goal in speciation research. Here, we study two mimetic transition zones in the poison frog Ranitomeya imitator, a species that has undergone a Müllerian mimetic radiation to establish four morphs in Peru. We find that mimetic morphs are strongly phenotypically differentiated, producing geographic clines with varying widths. However, distinct morphs show little neutral genetic divergence, and landscape genetic analyses implicate isolation by distance as the primary determinant of among-population genetic differentiation. Mate choice experiments suggest random mating at the transition zones, although certain allopatric populations show a preference for their own morph. We present evidence that this preference may be mediated by color pattern specifically. These results contrast with an earlier study of a third transition zone, in which a mimetic shift was associated with reproductive isolation. Overall, our results suggest that the three known mimetic transition zones in R. imitator reflect a speciation continuum, which we have characterized at the geographic, phenotypic, behavioral, and genetic levels. We discuss possible explanations for variable progress toward speciation, suggesting that multifarious selection on both mimetic color pattern and body size may be responsible for generating reproductive isolation.

  12. How sound symbolism is processed in the brain: a study on Japanese mimetic words.

    PubMed

    Kanero, Junko; Imai, Mutsumi; Okuda, Jiro; Okada, Hiroyuki; Matsuda, Tetsuya

    2014-01-01

    Sound symbolism is the systematic and non-arbitrary link between word and meaning. Although a number of behavioral studies demonstrate that both children and adults are universally sensitive to sound symbolism in mimetic words, the neural mechanisms underlying this phenomenon have not yet been extensively investigated. The present study used functional magnetic resonance imaging to investigate how Japanese mimetic words are processed in the brain. In Experiment 1, we compared processing for motion mimetic words with that for non-sound symbolic motion verbs and adverbs. Mimetic words uniquely activated the right posterior superior temporal sulcus (STS). In Experiment 2, we further examined the generalizability of the findings from Experiment 1 by testing another domain: shape mimetics. Our results show that the right posterior STS was active when subjects processed both motion and shape mimetic words, thus suggesting that this area may be the primary structure for processing sound symbolism. Increased activity in the right posterior STS may also reflect how sound symbolic words function as both linguistic and non-linguistic iconic symbols.

  13. How Sound Symbolism Is Processed in the Brain: A Study on Japanese Mimetic Words

    PubMed Central

    Okuda, Jiro; Okada, Hiroyuki; Matsuda, Tetsuya

    2014-01-01

    Sound symbolism is the systematic and non-arbitrary link between word and meaning. Although a number of behavioral studies demonstrate that both children and adults are universally sensitive to sound symbolism in mimetic words, the neural mechanisms underlying this phenomenon have not yet been extensively investigated. The present study used functional magnetic resonance imaging to investigate how Japanese mimetic words are processed in the brain. In Experiment 1, we compared processing for motion mimetic words with that for non-sound symbolic motion verbs and adverbs. Mimetic words uniquely activated the right posterior superior temporal sulcus (STS). In Experiment 2, we further examined the generalizability of the findings from Experiment 1 by testing another domain: shape mimetics. Our results show that the right posterior STS was active when subjects processed both motion and shape mimetic words, thus suggesting that this area may be the primary structure for processing sound symbolism. Increased activity in the right posterior STS may also reflect how sound symbolic words function as both linguistic and non-linguistic iconic symbols. PMID:24840874

  14. Glucagon-like peptide 1 and appetite

    PubMed Central

    Dailey, Megan J.; Moran, Timothy H.

    2013-01-01

    Glucagon-like peptide 1 (GLP-1) and GLP-1 analogs have received much recent attention due to the success of GLP-1 mimetics in treating type II diabetes mellitus (T2DM), but these compounds may also have the potential to treat obesity. The satiety effect of GLP-1 may involve both meal entero-enteric reflexes and across meal central signaling mechanisms to mediate changes in appetite and promote satiety. Here, we review the data supporting the role of both peripheral and central GLP-1signaling in the control of gastrointestinal motility and food intake. Understanding the mechanisms underlying the appetite suppressive effects of GLP-1 may help in developing targeted treatments for obesity. PMID:23332584

  15. Angiogenic peptide nanofibers repair cardiac tissue defect after myocardial infarction.

    PubMed

    Rufaihah, Abdul Jalil; Yasa, I Ceren; Ramanujam, Vaibavi Srirangam; Arularasu, Suganya Cheyyatraivendran; Kofidis, Theo; Guler, Mustafa O; Tekinay, Ayse B

    2017-08-01

    Myocardial infarction remains one of the top leading causes of death in the world and the damage sustained in the heart eventually develops into heart failure. Limited conventional treatment options due to the inability of the myocardium to regenerate after injury and shortage of organ donors require the development of alternative therapies to repair the damaged myocardium. Current efforts in repairing damage after myocardial infarction concentrates on using biologically derived molecules such as growth factors or stem cells, which carry risks of serious side effects including the formation of teratomas. Here, we demonstrate that synthetic glycosaminoglycan (GAG) mimetic peptide nanofiber scaffolds induce neovascularization in cardiovascular tissue after myocardial infarction, without the addition of any biologically derived factors or stem cells. When the GAG mimetic nanofiber gels were injected in the infarct site of rodent myocardial infarct model, increased VEGF-A expression and recruitment of vascular cells was observed. This was accompanied with significant degree of neovascularization and better cardiac performance when compared to the control saline group. The results demonstrate the potential of future clinical applications of these bioactive peptide nanofibers as a promising strategy for cardiovascular repair. We present a synthetic bioactive peptide nanofiber system can enhance cardiac function and enhance cardiovascular regeneration after myocardial infarction (MI) without the addition of growth factors, stem cells or other biologically derived molecules. Current state of the art in cardiac repair after MI utilize at least one of the above mentioned biologically derived molecules, thus our approach is ground-breaking for cardiovascular therapy after MI. In this work, we showed that synthetic glycosaminoglycan (GAG) mimetic peptide nanofiber scaffolds induce neovascularization and cardiomyocyte differentiation for the regeneration of cardiovascular

  16. Cysteine-containing peptides having antioxidant properties

    DOEpatents

    Bielicki, John K [Castro Valley, CA

    2009-10-13

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  17. Cysteine-containing peptides having antioxidant properties

    DOEpatents

    Bielicki, John K [Castro Valley, CA

    2008-10-21

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  18. Recognition of GPCRs by peptide ligands and membrane compartments theory: structural studies of endogenous peptide hormones in membrane environment.

    PubMed

    Sankararamakrishnan, Ramasubbu

    2006-04-01

    One of the largest family of cell surface proteins, G-protein coupled receptors (GPCRs) regulate virtually all known physiological processes in mammals. With seven transmembrane segments, they respond to diverse range of extracellular stimuli and represent a major class of drug targets. Peptidergic GPCRs use endogenous peptides as ligands. To understand the mechanism of GPCR activation and rational drug design, knowledge of three-dimensional structure of receptor-ligand complex is important. The endogenous peptide hormones are often short, flexible and completely disordered in aqueous solution. According to "Membrane Compartments Theory", the flexible peptide binds to the membrane in the first step before it recognizes its receptor and the membrane-induced conformation is postulated to bind to the receptor in the second step. Structures of several peptide hormones have been determined in membrane-mimetic medium. In these studies, micelles, reverse micelles and bicelles have been used to mimic the cell membrane environment. Recently, conformations of two peptide hormones have also been studied in receptor-bound form. Membrane environment induces stable secondary structures in flexible peptide ligands and membrane-induced peptide structures have been correlated with their bioactivity. Results of site-directed mutagenesis, spectroscopy and other experimental studies along with the conformations determined in membrane medium have been used to interpret the role of individual residues in the peptide ligand. Structural differences of membrane-bound peptides that belong to the same family but differ in selectivity are likely to explain the mechanism of receptor selectivity and specificity of the ligands. Knowledge of peptide 3D structures in membrane environment has potential applications in rational drug design.

  19. Structural and Functional Studies of Peptide-Carbohydrate Mimicry

    NASA Astrophysics Data System (ADS)

    Johnson, Margaret A.; Pinto, B. Mario

    Certain peptides act as molecular mimics of carbohydrates in that they are specifically recognized by carbohydrate-binding proteins. Peptides that bind to anti-carbohydrate antibodies, carbohydrate-processing enzymes, and lectins have been identified. These peptides are potentially useful as vaccines and therapeutics; for example, immunologically functional peptide molecular mimics (mimotopes) can strengthen or modify immune responses induced by carbohydrate antigens. However, peptides that bind specifically to carbohydrate-binding proteins may not necessarily show the corresponding biological activity, and further selection based on biochemical studies is always required. The degree of structural mimicry required to generate the desired biological activity is therefore an interesting question. This review will discuss recent structural studies of peptide-carbohydrate mimicry employing NMR spectroscopy, X-ray crystallography, and molecular modeling, as well as relevant biochemical data. These studies provide insights into the basis of mimicry at the molecular level. Comparisons with other carbohydrate-mimetic compounds, namely proteins and glycopeptides, will be drawn. Finally, implications for the design of new therapeutic compounds will also be presented.

  20. Promotion of hair growth by newly synthesized ceramide mimetic compound.

    PubMed

    Park, Bu-Mahn; Bak, Soon-Sun; Shin, Kyung-Oh; Kim, Minhee; Kim, Daehwan; Jung, Sang-Hun; Jeong, Sekyoo; Sung, Young Kwan; Kim, Hyun Jung

    2017-09-09

    Based on the crucial roles of ceramides in skin barrier function, use of ceramides or their structural mimetic compounds, pseudoceramides, as cosmetic ingredients are getting more popular. While currently used pseudoceramides are intended to substitute the structural roles of ceramides in stratum corneum, development of bioactive pseudoceramides has been repeatedly reported. In this study, based on the potential involvement of sphingolipids in hair cycle regulation, we investigated the effects of newly synthesized pseudoceramide, bis-oleamido isopropyl alcohol (BOI), on hair growth using cultured human hair follicles and animal models. BOI treatment promoted hair growth in cultured human hair follicles ex vivo and induced earlier conversion of telogen into anagen. Although we did not find a significant enhancement of growth factor expression and follicular cell proliferation, BOI treatment resulted in an increased sphinganine and sphingosine contents as well as increased ceramides contents in cultured dermal papilla (DP) cells. Taken together, our data strongly suggest that biologically active pseudoceramide promotes hair growth by stimulating do novo synthesis of sphingolipids in DP cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Membrane mimetic surface functionalization of nanoparticles: Methods and applications

    PubMed Central

    Weingart, Jacob; Vabbilisetty, Pratima; Sun, Xue-Long

    2013-01-01

    Nanoparticles (NPs), due to their size-dependent physical and chemical properties, have shown remarkable potential for a wide range of applications over the past decades. Particularly, the biological compatibilities and functions of NPs have been extensively studied for expanding their potential in areas of biomedical application such as bioimaging, biosensing, and drug delivery. In doing so, surface functionalization of NPs by introducing synthetic ligands and/or natural biomolecules has become a critical component in regards to the overall performance of the NP system for its intended use. Among known examples of surface functionalization, the construction of an artificial cell membrane structure, based on phospholipids, has proven effective in enhancing biocompatibility and has become a viable alternative to more traditional modifications, such as direct polymer conjugation. Furthermore, certain bioactive molecules can be immobilized onto the surface of phospholipid platforms to generate displays more reminiscent of cellular surface components. Thus, NPs with membrane-mimetic displays have found use in a range of bioimaging, biosensing, and drug delivery applications. This review herein describes recent advances in the preparations and characterization of integrated functional NPs covered by artificial cell membrane structures and their use in various biomedical applications. PMID:23688632

  2. Determination of superoxide dismutase mimetic activity in common culinary herbs.

    PubMed

    Chohan, Magali; Naughton, Declan P; Opara, Elizabeth I

    2014-01-01

    Under conditions of oxidative stress, the removal of superoxide, a free radical associated with chronic inflammation, is catalysed by superoxide dismutase (SOD). Thus in addition to acting as an antioxidant, SOD may also be utilized as an anti-inflammatory agent. Some plant derived foods have been shown to have SOD mimetic (SODm) activity however it is not known if this activity is possessed by culinary herbs which have previously been shown to possess both antioxidant and anti-inflammatory properties. The aim of the study was to ascertain if the culinary herbs rosemary, sage and thyme possess SODm activity, and to investigate the influence of cooking and digestion on this activity. Transition metal ion content was also determined to establish if it could likely contribute to any SODm activity detected. All extracts of uncooked (U), cooked (C) and cooked and digested (C&D) herbs were shown to possess SODm activity, which was significantly correlated with previously determined antioxidant and anti-inflammatory activities of these herbs. SODm activity was significantly increased following (C) and (C&D) for rosemary and sage only. The impact of (C) and (C&D) on the SODm for thyme may have been influenced by its transition metal ion content. SODm activity may contribute to the herbs' antioxidant and anti-inflammatory activities however the source and significance of this activity need to be established.

  3. A manganese porphyrin superoxide dismutase mimetic enhances tumor radioresponsiveness

    SciTech Connect

    Moeller, Benjamin J.; Batinic-Haberle, Ines; Spasojevic, Ivan

    2005-10-01

    Purpose: To determine the effect of the superoxide dismutase mimetic Mn(III) tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP{sup 5+}) on tumor radioresponsiveness. Methods and Materials: Various rodent tumor (4T1, R3230, B16) and endothelial (SVEC) cell lines were exposed to MnTE-2-PyP{sup 5+} and assayed for viability and radiosensitivity in vitro. Next, tumors were treated with radiation and MnTE-2-PyP{sup 5+} in vivo, and the effects on tumor growth and vascularity were monitored. Results: In vitro, MnTE-2-PyP{sup 5+} was not significantly cytotoxic. However, at concentrations as low as 2 {mu}mol/L it caused 100% inhibition of secretion by tumor cells of cytokines protective of irradiated endothelial cells. In vivo,more » combined treatment with radiation and MnTE-2-PyP{sup 5+} achieved synergistic tumor devascularization, reducing vascular density by 78.7% within 72 h of radiotherapy (p < 0.05 vs. radiation or drug alone). Co-treatment of tumors also resulted in synergistic antitumor effects, extending tumor growth delay by 9 days (p < 0.01). Conclusions: These studies support the conclusion that MnTE-2-PyP{sup 5+}, which has been shown to protect normal tissues from radiation injury, can also improve tumor control through augmenting radiation-induced damage to the tumor vasculature.« less

  4. The therapeutic potential of insulin-mimetic vanadium complexes.

    PubMed

    Sakurai, Hiromu; Yasui, Hiroyuki; Adachi, Yusuke

    2003-07-01

    Throughout the world, the number of patients suffering from diabetes mellitus (DM) is increasing on a daily basis, probably due to change in lifestyle. DM is mainly classified as either insulin-dependent Type 1 or non-insulin-dependent Type 2, according to the definition of WHO. To treat DM, which has many severe complications, several types of insulin preparations and synthetic drugs for Type 1 and Type 2 DM, respectively, have been developed and are in clinical use. However, there are several problems concerning the insulin preparations and synthetic drugs, such as physical and mental pain due to daily insulin injections and defects involving side effects, respectively. Consequently, a new class of therapeutic agents is anticipated. For this purpose, vanadium-containing complexes are expected to treat or improve both types of DM by using unique characteristics of the transition metal. In this article, the current state of research on insulin-mimetic vanadium complexes are reviewed, with special focus on the paramagnetic vanadyl (+4 oxidation state of vanadium) complexes with different coordination modes. To analyse the blood glucose-lowering effects of the vanadyl complexes, new results on the organ distribution and pharmacokinetic analysis of the vanadyl state in the blood of rats are also described.

  5. Oral insulin-mimetic compounds that act independently of insulin.

    PubMed

    García-Vicente, Silvia; Yraola, Francesc; Marti, Luc; González-Muñoz, Elena; García-Barrado, María José; Cantó, Carles; Abella, Anna; Bour, Sandy; Artuch, Rafael; Sierra, Cristina; Brandi, Nuria; Carpéné, Christian; Moratinos, Julio; Camps, Marta; Palacín, Manuel; Testar, Xavier; Gumà, Anna; Albericio, Fernando; Royo, Miriam; Mian, Alec; Zorzano, Antonio

    2007-02-01

    The hallmarks of insulin action are the stimulation and suppression of anabolic and catabolic responses, respectively. These responses are orchestrated by the insulin pathway and are initiated by the binding of insulin to the insulin receptor, which leads to activation of the receptor's intrinsic tyrosine kinase. Severe defects in the insulin pathway, such as in types A and B and advanced type 1 and 2 diabetes lead to severe insulin resistance, resulting in a partial or complete absence of response to exogenous insulin and other known classes of antidiabetes therapies. We have characterized a novel class of arylalkylamine vanadium salts that exert potent insulin-mimetic effects downstream of the insulin receptor in adipocytes. These compounds trigger insulin signaling, which is characterized by rapid activation of insulin receptor substrate-1, Akt, and glycogen synthase kinase-3 independent of insulin receptor phosphorylation. Administration of these compounds to animal models of diabetes lowered glycemia and normalized the plasma lipid profile. Arylalkylamine vanadium compounds also showed antidiabetic effects in severely diabetic rats with undetectable circulating insulin. These results demonstrate the feasibility of insulin-like regulation in the complete absence of insulin and downstream of the insulin receptor. This represents a novel therapeutic approach for diabetic patients with severe insulin resistance.

  6. Virus-mimetic polyplex particles for systemic and inflammation-specific targeted delivery of large genetic contents.

    PubMed

    Kang, S; Lu, K; Leelawattanachai, J; Hu, X; Park, S; Park, T; Min, I M; Jin, M M

    2013-11-01

    Systemic and target-specific delivery of large genetic contents has been difficult to achieve. Although viruses effortlessly deliver kilobase-long genome into cells, its clinical use has been hindered by serious safety concerns and the mismatch between native tropisms and desired targets. Nonviral vectors, in contrast, are limited by low gene transfer efficiency and inherent cytotoxicity. Here we devised virus-mimetic polyplex particles (VMPs) based on electrostatic self-assembly among polyanionic peptide (PAP), cationic polymer polyethyleneimine (PEI) and nucleic acids. We fused PAP to the engineered ligand-binding domain of integrin αLβ2 to target intercellular adhesion molecule-1 (ICAM-1), an inducible marker of inflammation. Fully assembled VMPs packaged large genetic contents, bound specifically to target molecules, elicited receptor-mediated endocytosis and escaped endosomal pathway, resembling intracellular delivery processes of viruses. Unlike conventional PEI-mediated transfection, molecular interaction-dependent gene delivery of VMPs was unaffected by the presence of serum and achieved higher efficiency without toxicity. By targeting overexpressed ICAM-1, VMPs delivered genes specifically to inflamed endothelial cells and macrophages both in vitro and in vivo. Simplicity and versatility of the platform and inflammation-specific delivery may open up opportunities for multifaceted gene therapy that can be translated into the clinic and treat a broad range of debilitating immune and inflammatory diseases.

  7. Furoxans (1,2,5-Oxadiazole-N-Oxides) as Novel NO Mimetic Neuroprotective and Procognitive Agents

    SciTech Connect

    Schiefer, Isaac T.; VandeVrede, Lawren; Fa

    2012-08-31

    Furoxans (1,2,5-oxadiazole-N-oxides) are thiol-bioactivated NO-mimetics that have not hitherto been studied in the CNS. Incorporation of varied substituents adjacent to the furoxan ring system led to modulation of reactivity toward bioactivation, studied by HPLC-MS/MS analysis of reaction products. Attenuated reactivity unmasked the cytoprotective actions of NO in contrast to the cytotoxic actions of higher NO fluxes reported previously for furoxans. Neuroprotection was observed in primary neuronal cell cultures following oxygen glucose deprivation (OGD). Neuroprotective activity was observed to correlate with thiol-dependent bioactivation to produce NO{sub 2}{sup -}, but not with depletion of free thiol itself. Neuroprotection was abrogated upon cotreatmentmore » with a sGC inhibitor, ODQ, thus supporting activation of the NO/sGC/CREB signaling cascade by furoxans. Long-term potentiation (LTP), essential for learning and memory, has been shown to be potentiated by NO signaling, therefore, a peptidomimetic furoxan was tested in hippocampal slices treated with oligomeric amyloid-{beta} peptide (A{beta}) and was shown to restore synaptic function. The novel observation of furoxan activity of potential therapeutic use in the CNS warrants further studies.« less

  8. PKC activation sensitizes basal-like breast cancer cell lines to Smac mimetics.

    PubMed

    Cornmark, L; Holmgren, C; Masoumi, K; Larsson, C

    2016-01-01

    There is a need for novel strategies to initiate cancer cell death. One approach is the use of Smac mimetics, which antagonize inhibitor of apoptosis proteins (IAPs). Recent studies have shown that combinations of Smac mimetics such as LBW242 or LCL161 in combination with chemotherapeutic agents increase cancer cell death. Here we show that the protein kinase C (PKC) activator TPA together with the Smac mimetic LBW242 induces cell death in two basal breast cancer cell lines (MDA-MB-468 and BT-549) that are resistant to Smac mimetic as single agent. Ten other LBW242-insensitive cancer cell lines were not influenced by the TPA+LBW242 combination. The TPA+LBW242 effect was suppressed by the PKC inhibitor GF109203X, indicating dependence on PKC enzymatic activity. The PKC effect was mediated via increased synthesis and release of TNFα, which can induce death in the presence of Smac mimetics. The cell death, coinciding with caspase-3 cleavage, was suppressed by caspase inhibition and preceded by the association of RIP1 with caspase-8, as seen in complex II formation. Smac mimetics, but not TPA, induced the non-canonical NF-κB pathway in both MDA-MB-231 and MDA-MB-468 cells. Blocking the canonical NF-κB pathway suppressed TPA induction of TNFα in MDA-MB-468 cells whereas isolated downregulation of either the canonical or non-canonical pathways did not abolish the Smac mimetic induction of the NF-κB driven genes TNFα and BIRC3 in MDA-MB-231 cells although the absolute levels were suppressed. A combined downregulation of the canonical and non-canonical pathways further suppressed TNFα levels and inhibited Smac mimetic-mediated cell death. Our data suggest that in certain basal breast cancer cell lines co-treatment of TPA with a Smac mimetic induces cell death highlighting the potential of using these pathways as molecular targets for basal-like breast cancers.

  9. Reactive oxygen species contribute toward Smac mimetic/temozolomide-induced cell death in glioblastoma cells.

    PubMed

    Seyfrid, Mathieu; Marschall, Viola; Fulda, Simone

    2016-11-01

    Small-molecule inhibitors of Inhibitor of Apoptosis proteins such as Smac mimetics have been reported to provide a promising tool to sensitize glioblastoma (GBM) cells to cytotoxic therapies including chemotherapeutic drugs. However, the underlying molecular mechanisms of action have not yet been fully unraveled. In the present study, we therefore investigated the role of reactive oxygen species (ROS) in the regulation of Smac mimetic/temozolomide (TMZ)-induced cell death in GBM cells. Here, we show that the Smac mimetic BV6 and TMZ act in concert to stimulate the production of both cytosolic and mitochondrial ROS. This accumulation of ROS contributes toward the activation of the proapoptotic factor BAX upon BV6/TMZ cotreatment as several ROS scavengers (i.e. N-acetyl-L-cysteine, MnTBAP, or α-tocopherol) protect GBM cells against BV6/TMZ-mediated BAX activation. In addition, ROS scavengers significantly rescue GBM cells from BV6/TMZ-triggered cell death, indicating that ROS generation is required for the induction of cell death. By showing that ROS play an important role in the regulation of Smac mimetic/TMZ-induced cell death, our work sheds light on the crucial role of the oxidative system in the cooperative antitumor activity of Smac mimetic/TMZ combination therapy against GBM cells.

  10. Elementary dispersion analysis of some mimetic discretizations on triangular C-grids

    SciTech Connect

    Korn, P., E-mail: peter.korn@mpimet.mpg.de; Danilov, S.; A.M. Obukhov Institute of Atmospheric Physics, Moscow

    2017-02-01

    Spurious modes supported by triangular C-grids limit their application for modeling large-scale atmospheric and oceanic flows. Their behavior can be modified within a mimetic approach that generalizes the scalar product underlying the triangular C-grid discretization. The mimetic approach provides a discrete continuity equation which operates on an averaged combination of normal edge velocities instead of normal edge velocities proper. An elementary analysis of the wave dispersion of the new discretization for Poincaré, Rossby and Kelvin waves shows that, although spurious Poincaré modes are preserved, their frequency tends to zero in the limit of small wavenumbers, which removes the divergence noisemore » in this limit. However, the frequencies of spurious and physical modes become close on shorter scales indicating that spurious modes can be excited unless high-frequency short-scale motions are effectively filtered in numerical codes. We argue that filtering by viscous dissipation is more efficient in the mimetic approach than in the standard C-grid discretization. Lumping of mass matrices appearing with the velocity time derivative in the mimetic discretization only slightly reduces the accuracy of the wave dispersion and can be used in practice. Thus, the mimetic approach cures some difficulties of the traditional triangular C-grid discretization but may still need appropriately tuned viscosity to filter small scales and high frequencies in solutions of full primitive equations when these are excited by nonlinear dynamics.« less

  11. Beyond Antibodies as Binding Partners: The Role of Antibody Mimetics in Bioanalysis.

    PubMed

    Yu, Xiaowen; Yang, Yu-Ping; Dikici, Emre; Deo, Sapna K; Daunert, Sylvia

    2017-06-12

    The emergence of novel binding proteins or antibody mimetics capable of binding to ligand analytes in a manner analogous to that of the antigen-antibody interaction has spurred increased interest in the biotechnology and bioanalytical communities. The goal is to produce antibody mimetics designed to outperform antibodies with regard to binding affinities, cellular and tumor penetration, large-scale production, and temperature and pH stability. The generation of antibody mimetics with tailored characteristics involves the identification of a naturally occurring protein scaffold as a template that binds to a desired ligand. This scaffold is then engineered to create a superior binder by first creating a library that is then subjected to a series of selection steps. Antibody mimetics have been successfully used in the development of binding assays for the detection of analytes in biological samples, as well as in separation methods, cancer therapy, targeted drug delivery, and in vivo imaging. This review describes recent advances in the field of antibody mimetics and their applications in bioanalytical chemistry, specifically in diagnostics and other analytical methods.

  12. Mitsunobu mischief: Neighbor-directed histidine N(π)–alkylation provides access to peptides containing selectively functionalized imidazolium heterocycles

    PubMed Central

    Qian, Wen-Jian

    2015-01-01

    There are few methodologies that yield peptides containing His residues with selective N(π), N(π)-bis-alkylated imidazole rings. We have found that, under certain conditions, on-resin Mitsunobu coupling of alcohols with peptides having a N(π)-alkylated His residue results in selective and high-yield alkylation of the imidazole N(π) nitrogen. The reaction requires the presence of a proximal phosphoric, carboxylic or sulfonic acid, and proceeds through an apparent intramolecular mechanism involving Mitsunobu intermediates. These transformations have particular application to phosphopeptides, where “charge masking” of one phosphoryl anionic charge by the cationic histidine imidazolium ion is now possible. This chemistry opens selective access to peptides containing differentially functionalized imidazolium heterocycles, which provide access to new classes of peptides and peptide mimetics. PMID:25739367

  13. Prey from the eyes of predators: Color discriminability of aposematic and mimetic butterflies from an avian visual perspective.

    PubMed

    Su, Shiyu; Lim, Matthew; Kunte, Krushnamegh

    2015-11-01

    Predation exerts strong selection on mimetic butterfly wing color patterns, which also serve other functions such as sexual selection. Therefore, specific selection pressures may affect the sexes and signal components differentially. We tested three predictions about the evolution of mimetic resemblance by comparing wing coloration of aposematic butterflies and their Batesian mimics: (a) females gain greater mimetic advantage than males and therefore are better mimics, (b) due to intersexual genetic correlations, sexually monomorphic mimics are better mimics than female-limited mimics, and (c) mimetic resemblance is better on the dorsal wing surface that is visible to predators in flight. Using a physiological model of avian color vision, we quantified mimetic resemblance from predators' perspective, which showed that female butterflies were better mimics than males. Mimetic resemblance in female-limited mimics was comparable to that in sexually monomorphic mimics, suggesting that intersexual genetic correlations did not constrain adaptive response to selection for female-limited mimicry. Mimetic resemblance on the ventral wing surface was better than that on the dorsal wing surface, implying stronger natural and sexual selection on ventral and dorsal surfaces, respectively. These results suggest that mimetic resemblance in butterfly mimicry rings has evolved under various selective pressures acting in a sex- and wing surface-specific manner. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  14. René Girard and the Mimetic Nature of Eating Disorders.

    PubMed

    Strand, Mattias

    2018-03-07

    French historian and literary critic René Girard (1923-2015), most widely known for the concepts of mimetic desire and scapegoating, also engaged in the discussion of the surge of eating disorders in his 1996 essay Eating Disorders and Mimetic Desire. This article explores Girard's ideas on the mimetic nature and origin of eating disorders from a clinical psychiatric perspective and contextualizes them within the field of eating disorders research as well as in relation to broader psychological, sociological and anthropological models of social comparison and non-consumption. Three main themes in Girard's thinking on the topic of eating disorders are identified and explored: the 'end of prohibitions' as a driving force in the emergence of eating disorders, eating disorders as a phenomenon specific to modernity, and the significance of 'conspicuous non-consumption' in the emergence of eating disorders.

  15. The arbitrary order mixed mimetic finite difference method for the diffusion equation

    DOE PAGES

    Gyrya, Vitaliy; Lipnikov, Konstantin; Manzini, Gianmarco

    2016-05-01

    Here, we propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. As usual in the mimetic numerical technology, the method satisfies local consistency and stability conditions, which determines the accuracy and the well-posedness of the resulting approximation. The method also requires the definition of a high-order discrete divergence operator that is the discrete analog of the divergence operator and is acting on the degrees of freedom. The new family of mimetic methods is proved theoretically to be convergent and optimal error estimates for flux andmore » scalar variable are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy of the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that the approximation of the scalar variable presents a superconvergence effect.« less

  16. Dual action Smac mimetics-zinc chelators as pro-apoptotic antitumoral agents.

    PubMed

    Manzoni, Leonardo; Gornati, Davide; Manzotti, Mattia; Cairati, Silvia; Bossi, Alberto; Arosio, Daniela; Lecis, Daniele; Seneci, Pierfausto

    2016-10-01

    Dual action compounds (DACs) based on 4-substituted aza-bicyclo[5.3.0]decane Smac mimetic scaffolds (ABDs) linked to a Zn(2+)-chelating moiety (DPA, o-hydroxy, m-allyl, N-acyl (E)-phenylhydrazone) through their 10 position are reported and characterized. Their synthesis, their target affinity (XIAP BIR3, Zn(2+)) in cell-free assays, their pro-apoptotic effects and cytotoxicity in tumor cells with varying sensitivity to Smac mimetics are described. The results are interpreted to evaluate the influence of Zn(2+) chelators on cell-free potency and on cellular permeability of DACs, and to propose novel avenues towards more potent antitumoral DACs based on Smac mimetics and Zn(2+) chelation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Establishment of the mimetic aging effect in mice caused by D-galactose.

    PubMed

    Ho, Shih-Ching; Liu, Jue-Hao; Wu, ReY-Yih

    2003-01-01

    We successfully established an oxidant damage of mimetic aging model using mice induced by D-galactose, and the mimetic aging model is relative to free radical and the accumulation of waste substances in metabolism. The animals were divided into 3 groups: (1) phosphate-buffered saline (PBS); (2) 1% D-galactose; (3) 5% D-galactose by subcutaneous injection every day. After 45 days, mice treated with D-galactose showed a significant increase in the malondialdehyde (MDA), total antioxidant status (TAS) and a decrease in superoxide dismutase (SOD) in the blood compared with the PBS group. In the brain, the D-galactose treated mice exhibited a higher level MDA and a lower level SOD activity. In the liver, only the 5% D-galactose group indicated a significant increase in MDA. By reference to the oxidative biomarkers in blood, brain and liver, we have confirmed the reliability of the mimetic aging model.

  18. Healthy imperfect dark matter from effective theory of mimetic cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Hirano, Shin'ichi; Nishi, Sakine; Kobayashi, Tsutomu

    2017-07-01

    We study the stability of a recently proposed model of scalar-field matter called mimetic dark matter or imperfect dark matter. It has been known that mimetic matter with higher derivative terms suffers from gradient instabilities in scalar perturbations. To seek for an instability-free extension of imperfect dark matter, we develop an effective theory of cosmological perturbations subject to the constraint on the scalar field's kinetic term. This is done by using the unifying framework of general scalar-tensor theories based on the ADM formalism. We demonstrate that it is indeed possible to construct a model of imperfect dark matter which is free from ghost and gradient instabilities. As a side remark, we also show that mimetic F(Script R) theory is plagued with the Ostrogradsky instability.

  19. A review of underwater bio-mimetic propulsion: cruise and fast-start

    NASA Astrophysics Data System (ADS)

    Chao, Li-Ming; Cao, Yong-Hui; Pan, Guang

    2017-08-01

    This paper reviews recent developments in the understanding of underwater bio-mimetic propulsion. Two impressive models of underwater propulsion are considered: cruise and fast-start. First, we introduce the progression of bio-mimetic propulsion, especially underwater propulsion, where some primary conceptions are touched upon. Second, the understanding of flapping foils, considered as one of the most efficient cruise styles of aquatic animals, is introduced, where the effect of kinematics and the shape and flexibility of foils on generating thrust are elucidated respectively. Fast-start propulsion is always exhibited when predator behaviour occurs, and we provide an explicit introduction of corresponding zoological experiments and numerical simulations. We also provide some predictions about underwater bio-mimetic propulsion.

  20. Erythropoietin and thrombopoietin mimetics: Natural alternatives to erythrocyte and platelet disorders.

    PubMed

    Gutti, Usha; Pasupuleti, Satya Ratan; Sahu, Itishri; Kotipalli, Aneesh; Undi, Ram Babu; Kandi, Ravinder; Venakata Saladi, Raja Gopal; Gutti, Ravi Kumar

    2016-12-01

    Erythropoietin (EPO) and thrombopoietin (TPO) plays a major role in the regulation of hematopoietic development. Though, blood transfusion was the most widely used method to treat low blood count, over the years with advancements in recombinant technology and drug designing, the EPO and TPO mimetics are dominating the therapeutics industry. On the other hand, the recombinant human EPO and TPO are associated either with reduced half-life or immune reactions. The restoration of alternate medicine in recent years has the hope to overcome limitations associated with recombinant technology, to treat various disorder including blood diseases, with low to no side effects. The work in recent years on plant derived mimetics suggests a paradigm shift in the way diseases are treated. Here, we are providing a comprehensive review on the EPO and TPO recombinant counterparts and synthetic mimetics studied till date with a focus on the need for more natural alternatives. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Glycosaminoglycans (GAGs) and GAG mimetics regulate the behavior of stem cell differentiation.

    PubMed

    Wang, Mengmeng; Liu, Xiaoli; Lyu, Zhonglin; Gu, Hao; Li, Dan; Chen, Hong

    2017-02-01

    Glycosaminoglycans (GAGs) are linear sulfated polysaccharides that exist in most mammalian cells. By undergoing conjugation with various proteins, GAGs play important roles in a variety of bioactivities, including promoting stem cell differentiation. However, they have their own intrinsic disadvantages that limit their further applications for cell therapy and tissue engineering. Therefore, more and more GAG-mimetic materials have been studied as natural GAG analogs for emerging applications. This review explains the mechanism of how GAGs regulate stem cell differentiation and elaborates on the current progress of the applications of GAG-based materials on regulating stem cell differentiation. The types and applications of GAG-mimetic materials on regulating stem cell differentiation are introduced as well. Finally, the challenges and perspectives for GAGs and their mimetics in regulating stem cell differentiation are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Healthy imperfect dark matter from effective theory of mimetic cosmological perturbations

    SciTech Connect

    Hirano, Shin'ichi; Nishi, Sakine; Kobayashi, Tsutomu, E-mail: s.hirano@rikkyo.ac.jp, E-mail: sakine@rikkyo.ac.jp, E-mail: tsutomu@rikkyo.ac.jp

    2017-07-01

    We study the stability of a recently proposed model of scalar-field matter called mimetic dark matter or imperfect dark matter. It has been known that mimetic matter with higher derivative terms suffers from gradient instabilities in scalar perturbations. To seek for an instability-free extension of imperfect dark matter, we develop an effective theory of cosmological perturbations subject to the constraint on the scalar field's kinetic term. This is done by using the unifying framework of general scalar-tensor theories based on the ADM formalism. We demonstrate that it is indeed possible to construct a model of imperfect dark matter which ismore » free from ghost and gradient instabilities. As a side remark, we also show that mimetic F (R) theory is plagued with the Ostrogradsky instability.« less

  3. Mussel-mimetic, bioadhesive polymers from plant-derived materials.

    PubMed

    Hiraishi, Noriko; Kaneko, Daisaku; Taira, Shu; Wang, Siqian; Otsuki, Masayuki; Tagami, Junji

    2015-02-01

    Mussel-mimetic, bioadhesive polymers are synthesized from plant-derived sources. The strong adhesive action is caused by interactions between the catechol groups at the end of the polymer terminal chains and the substrate surface. Here, we present a preliminary study of the adhesion properties and a discussion of the adhesion mechanism. Two bioadhesive polymers were synthesized from natural plant-derived monomers by the transesterification of: (a) caffeic acid (3,4-dihydroxycinnamic acid; DHCA) and p-coumaric acid (4-hydroxycinnamic acid; 4HCA) to produce poly(DHCA-co-4HCA); and (b) 4-dihydroxyhydrocinnamic acid (DHHCA) and 3-(3-hydroxyphenyl) propionic acid (3HPPA) to produce poly(DHHCA-co-3HPPA). Thermoplastic poly(DHCA-co-4HCA) or poly(DHHCA-co-3HPPA) was placed between glass, carbon, steel, or bovine dentin substrates, and a lap shear adhesion test was conducted to compare them using conventional cyanoacrylate glue and epoxy resin. The greatest adhesion for all tested substrates was exhibited by poly(DHHCA-co-3HPPA), followed by epoxy resin adhesive, poly(DHCA-co-4HCA), and cyanoacrylate adhesive. The adhesive strength of poly(DHHCA-co-3HPPA) was greater than 25.6 MPa for glass, 29.6 MPa for carbon, 15.7 MPa for steel, and 16.3 MPA for bovine dentin. The adhesion of poly(DHHCA-co-3HPPA) might be the strongest reported for a mussel-mimic adhesive system, and could be a feasible alternative to petroleum adhesives. © 2013 Wiley Publishing Asia Pty Ltd.

  4. An overview on antidiabetic medicinal plants having insulin mimetic property

    PubMed Central

    Patel, DK; Prasad, SK; Kumar, R; Hemalatha, S

    2012-01-01

    Diabetes mellitus is one of the common metabolic disorders acquiring around 2.8% of the world's population and is anticipated to cross 5.4% by the year 2025. Since long back herbal medicines have been the highly esteemed source of medicine therefore, they have become a growing part of modern, high-tech medicine. In view of the above aspects the present review provides profiles of plants (65 species) with hypoglycaemic properties, available through literature source from various database with proper categorization according to the parts used, mode of reduction in blood glucose (insulinomimetic or insulin secretagogues activity) and active phytoconstituents having insulin mimetics activity. From the review it was suggested that, plant showing hypoglycemic potential mainly belongs to the family Leguminoseae, Lamiaceae, Liliaceae, Cucurbitaceae, Asteraceae, Moraceae, Rosaceae and Araliaceae. The most active plants are Allium sativum, Gymnema sylvestre, Citrullus colocynthis, Trigonella foenum greacum, Momordica charantia and Ficus bengalensis. The review describes some new bioactive drugs and isolated compounds from plants such as roseoside, epigallocatechin gallate, beta-pyrazol-1-ylalanine, cinchonain Ib, leucocyandin 3-O-beta-d-galactosyl cellobioside, leucopelargonidin-3- O-alpha-L rhamnoside, glycyrrhetinic acid, dehydrotrametenolic acid, strictinin, isostrictinin, pedunculagin, epicatechin and christinin-A showing significant insulinomimetic and antidiabetic activity with more efficacy than conventional hypoglycaemic agents. Thus, from the review majorly, the antidiabetic activity of medicinal plants is attributed to the presence of polyphenols, flavonoids, terpenoids, coumarins and other constituents which show reduction in blood glucose levels. The review also discusses the management aspect of diabetes mellitus using these plants and their active principles. PMID:23569923

  5. Novel SMAC-mimetics synergistically stimulate melanoma cell death in combination with TRAIL and Bortezomib.

    PubMed

    Lecis, D; Drago, C; Manzoni, L; Seneci, P; Scolastico, C; Mastrangelo, E; Bolognesi, M; Anichini, A; Kashkar, H; Walczak, H; Delia, D

    2010-06-08

    XIAP (X-linked inhibitor of apoptosis protein) is an anti-apoptotic protein exerting its activity by binding and suppressing caspases. As XIAP is overexpressed in several tumours, in which it apparently contributes to chemoresistance, and because its activity in vivo is antagonised by second mitochondria-derived activator of caspase (SMAC)/direct inhibitor of apoptosis-binding protein with low pI, small molecules mimicking SMAC (so called SMAC-mimetics) can potentially overcome tumour resistance by promoting apoptosis. Three homodimeric compounds were synthesised tethering a monomeric SMAC-mimetic with different linkers and their affinity binding for the baculoviral inhibitor repeats domains of XIAP measured by fluorescent polarisation assay. The apoptotic activity of these molecules, alone or in combination with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and/or Bortezomib, was tested in melanoma cell lines by MTT viability assays and western blot analysis of activated caspases. We show that in melanoma cell lines, which are typically resistant to chemotherapeutic agents, XIAP knock-down sensitises cells to TRAIL treatment in vitro, also favouring the accumulation of cleaved caspase-8. We also describe a new series of 4-substituted azabicyclo[5.3.0]alkane monomeric and dimeric SMAC-mimetics that target various members of the IAP family and powerfully synergise at submicromolar concentrations with TRAIL in inducing cell death. Finally, we show that the simultaneous administration of newly developed SMAC-mimetics with Bortezomib potently triggers apoptosis in a melanoma cell line resistant to the combined effect of SMAC-mimetics and TRAIL. Hence, the newly developed SMAC-mimetics effectively synergise with TRAIL and Bortezomib in inducing cell death. These findings warrant further preclinical studies in vivo to verify the anticancer effectiveness of the combination of these agents.

  6. Dormancy as exaptation to protect mimetic seeds against deterioration before dispersal.

    PubMed

    Brancalion, Pedro H S; Novembre, Ana D L C; Rodrigues, Ricardo R; Marcos Filho, Júlio

    2010-06-01

    Mimetic seeds simulate the appearance of fleshy fruits and arilled seeds without producing nutritive tissues as a reward for seed dispersers. In this strategy of seed dispersal, seeds may remain attached to the mother plant for long periods after maturity, increasing their availability to naïve seed dispersers. The hypothesis that seed coat impermeability in many tropical Fabaceae with mimetic seeds serves as an exaptation to protect the seeds from deterioration and rotting while awaiting dispersal was investigated. Seed coat impermeability was evaluated in five mimetic-seeded species of tropical Fabaceae in south-eastern Brazil (Abarema langsdorffii, Abrus precatorius, Adenanthera pavonina, Erythrina velutina and Ormosia arborea) and in Erythrina speciosa, a 'basal' species in its genus, which has monochromatic brown seeds and no mimetic displays. Seed hardness was evaluated as a defence against accelerated ageing (humid chamber at 41 degrees C for 144 h). Seed development and physiological potential of O. arborea was evaluated and the effect of holding mature seeds in pods on the mother plant in the field for a period of 1 year under humid tropical conditions was compared with seeds stored under controlled conditions (15 degrees C and 40 % relative air humidity). All five mimetic-seeded species, and E. speciosa, showed strong coat impermeability, which protected the seeds against deterioration in accelerated ageing. Most O. arborea seeds only became dormant 2 months after pod dehiscence. Germination of seeds after 1 year on the plant in a humid tropical climate was 56 %, compared with 80 % for seeds stored in controlled conditions (15 degrees C, 45 % relative humidity). Seedling shoot length after 1 year did not differ between seed sources. Dormancy acts in mimetic-seeded species as an exaptation to reduce seed deterioration, allowing an increase in their effective dispersal period and mitigating the losses incurred by low removal rates by naïve avian

  7. Conformational analysis of a synthetic fish kisspeptin 1 peptide in membrane mimicking environments.

    PubMed

    Thakuria, Dimpal; Shahi, Neetu; Singh, Atul Kumar; Khangembam, Victoria Chanu; Singh, Arvind Kumar; Kumar, Satish

    2017-01-01

    Kisspeptin 1 is a neuropeptide hormone of the RFamide family, which act as an upstream regulator of brain-pituitary-gonad (BPG) axis in most vertebrates including teleosts. In the present study, a 16 amino acid long putative mature bioactive peptide (kiss 1) from preprokisspeptin 1 of golden mahseer, Tor putitora (Hamilton, 1822), was synthesized and characterized using an integrated (experimental and in silico) approach. The far-UV circular dichroism (CD) spectrum of this peptide was evaluated both in aqueous and membrane mimicking solvents (TFE, HFIP and Dioxane). The results indicate that kiss 1 peptide adopted helical, turn and β conformations in membrane like environments. The near-UV CD spectroscopy was also carried out to examine the tertiary packing around aromatic residues of kiss 1 peptide and the peptide-membrane complex. The kiss 1 peptide exhibited little signal in water, but a prominent negative band was observed at around 275 nm when membrane mimetic solution was added. The observed ordered conformations of kiss 1 peptide in the different solvents indicated its potential biological activity which could enhance the secretion of gonadotropin-releasing hormone (GnRH) at BPG axis. The conformational information generated from the present study reinforces the application prospects of bioactive synthetic peptide analogs of kisspeptin 1 in improving the reproductive performances of important cultivable fish species.

  8. Multifunctional hybrid networks based on self assembling peptide sequences

    NASA Astrophysics Data System (ADS)

    Sathaye, Sameer

    The overall aim of this dissertation is to achieve a comprehensive correlation between the molecular level changes in primary amino acid sequences of amphiphilic beta-hairpin peptides and their consequent solution-assembly properties and bulk network hydrogel behavior. This has been accomplished using two broad approaches. In the first approach, amino acid substitutions were made to peptide sequence MAX1 such that the hydrophobic surfaces of the folded beta-hairpins from the peptides demonstrate shape specificity in hydrophobic interactions with other beta-hairpins during the assembly process, thereby causing changes to the peptide nanostructure and bulk rheological properties of hydrogels formed from the peptides. Steric lock and key complementary hydrophobic interactions were designed to occur between two beta-hairpin molecules of a single molecule, LNK1 during beta-sheet fibrillar assembly of LNK1. Experimental results from circular dichroism, transmission electron microscopy and oscillatory rheology collectively indicate that the molecular design of the LNK1 peptide can be assigned the cause of the drastically different behavior of the networks relative to MAX1. The results indicate elimination or significant reduction of fibrillar branching due to steric complementarity in LNK1 that does not exist in MAX1, thus supporting the original hypothesis. As an extension of the designed steric lock and key complementarity between two beta-hairpin molecules of the same peptide molecule. LNK1, three new pairs of peptide molecules LP1-KP1, LP2-KP2 and LP3-KP3 that resemble complementary 'wedge' and 'trough' shapes when folded into beta-hairpins were designed and studied. All six peptides individually and when blended with their corresponding shape complement formed fibrillar nanostructures with non-uniform thickness values. Loose packing in the assembled structures was observed in all the new peptides as compared to the uniform tight packing in MAX1 by SANS analysis. This

  9. LRIG1 modulates cancer cell sensitivity to Smac mimetics by regulating TNFα expression and receptor tyrosine kinase signaling.

    PubMed

    Bai, Longchuan; McEachern, Donna; Yang, Chao-Yie; Lu, Jianfeng; Sun, Haiying; Wang, Shaomeng

    2012-03-01

    Smac mimetics block inhibitor of apoptosis proteins to trigger TNFα-dependent apoptosis in cancer cells. However, only a small subset of cancer cells seem to be sensitive to Smac mimetics and even sensitive cells can develop resistance. Herein, we elucidated mechanisms underlying the intrinsic and acquired resistance of cancer cells to Smac mimetics. In vitro and in vivo investigations revealed that the expression of the cell surface protein LRIG1, a negative regulator of receptor tyrosine kinases (RTK), is downregulated in resistant derivatives of breast cancer cells sensitive to Smac mimetics. RNA interference-mediated downregulation of LRIG1 markedly attenuated the growth inhibitory activity of the Smac mimetic SM-164 in drug-sensitive breast and ovarian cancer cells. Furthermore, LRIG1 downregulation attenuated TNFα gene expression induced by Smac mimetics and increased the activity of multiple RTKs, including c-Met and Ron. The multitargeted tyrosine kinase inhibitors Crizotinib and GSK1363089 greatly enhanced the anticancer activity of SM-164 in all resistant cell derivatives, with the combination of SM-164 and GSK1363089 also completely inhibiting the outgrowth of resistant tumors in vivo. Together, our findings show that both upregulation of RTK signaling and attenuated TNFα expression caused by LRIG1 downregulation confers resistance to Smac mimetics, with implications for a rational combination strategy.

  10. The Representation of Reality in Teaching: A "Mimetic Didactic" Perspective on Examples in Plenary Talk

    ERIC Educational Resources Information Center

    Willbergh, Ilmi

    2017-01-01

    Using an observation study in Norwegian lower-secondary school classrooms this paper explores how subject matter and students' real-world experiences are linked within the use of examples in teaching. The theory of "mimetic didactics" claims that giving students the possibility to interpret examples as both subject matter and something…

  11. A Smac mimetic augments the response of urothelial cancer cells to gemcitabine and cisplatin

    PubMed Central

    Lee, Eugene K; Jinesh G, Goodwin; Laing, Naomi M; Choi, Woonyoung; McConkey, David J; Kamat, Ashish M

    2013-01-01

    Cisplatin-based chemotherapy is considered the gold standard for patients with advanced bladder cancer. However, despite initial response, many patients will relapse; therefore, novel salvage treatment strategies are desperately needed. Herein, we studied a mechanism based treatment combination using a Smac mimetic with standard chemotherapy. Using a panel of 10 urothelial cancer cell lines, we exposed them to a combination of gemcitabine, cisplatin, and a Smac mimetic. Sensitivity was determined using a DNA fragmentation assay. We determined that three cell lines (UMUC-3, UMUC-13, and RT4v6) were considered sensitive to the combination of gemcitabine and cisplatin and an additional three cell lines were sensitized to gemcitabine and cisplatin with the addition of the Smac mimetic (UMUC-6, UMUC-12, and UMUC-18). We next explored the constitutive expression of selected members of the IAP family (XIAP, cIAP-1, cIAP-2, and Survivin), the BCL family (BCL-2, BCLXL, and BAX) and Smac using gene expression profiling and western blotting. We determined that RNA and protein expression of SMAC, selected members of the IAP family and members of the BCL family did not correlate to drug sensitivity. Lastly, using an in vivo mouse model, we determined that treatment with the Smac mimetic in combination with gemcitabine and cisplatin resulted in increased apoptosis, decreased microvessel density and decreased cellular proliferation. This novel treatment strategy may be effective in patients with advanced urothelial carcinoma and warrants further investigation. PMID:23792592

  12. A Smac mimetic augments the response of urothelial cancer cells to gemcitabine and cisplatin.

    PubMed

    Lee, Eugene K; Jinesh G, Goodwin; Laing, Naomi M; Choi, Woonyoung; McConkey, David J; Kamat, Ashish M

    2013-09-01

    Cisplatin-based chemotherapy is considered the gold standard for patients with advanced bladder cancer. However, despite initial response, many patients will relapse; therefore, novel salvage treatment strategies are desperately needed. Herein, we studied a mechanism based treatment combination using a Smac mimetic with standard chemotherapy. Using a panel of 10 urothelial cancer cell lines, we exposed them to a combination of gemcitabine, cisplatin, and a Smac mimetic. Sensitivity was determined using a DNA fragmentation assay. We determined that three cell lines (UMUC-3, UMUC-13, and RT4v6) were considered sensitive to the combination of gemcitabine and cisplatin and an additional three cell lines were sensitized to gemcitabine and cisplatin with the addition of the Smac mimetic (UMUC-6, UMUC-12, and UMUC-18). We next explored the constitutive expression of selected members of the IAP family (XIAP, cIAP-1, cIAP-2, and Survivin), the BCL family (BCL-2, BCLXL, and BAX) and Smac using gene expression profiling and western blotting. We determined that RNA and protein expression of SMAC, selected members of the IAP family and members of the BCL family did not correlate to drug sensitivity. Lastly, using an in vivo mouse model, we determined that treatment with the Smac mimetic in combination with gemcitabine and cisplatin resulted in increased apoptosis, decreased microvessel density and decreased cellular proliferation. This novel treatment strategy may be effective in patients with advanced urothelial carcinoma and warrants further investigation.

  13. The two faces of mimetic Horndeski gravity: disformal transformations and Lagrange multiplier

    SciTech Connect

    Arroja, Frederico; Bartolo, Nicola; Karmakar, Purnendu

    2015-09-01

    We show that very general scalar-tensor theories of gravity (including, e.g., Horndeski models) are generically invariant under disformal transformations. However there is a special subset, when the transformation is not invertible, that yields new equations of motion which are a generalization of the so-called 'mimetic' dark matter theory recently introduced by Chamsedinne and Mukhanov. These conclusions hold true irrespective of whether the scalar field in the action of the assumed scalar-tensor theory of gravity is the same or different than the scalar field involved in the transformation. The new equations of motion for our general mimetic theory can also bemore » derived from an action containing an additional Lagrange multiplier field. The general mimetic scalar-tensor theory has the same number of derivatives in the equations of motion as the original scalar-tensor theory. As an application we show that the simplest mimetic scalar-tensor model is able to mimic the cosmological background of a flat FLRW model with a barotropic perfect fluid with any constant equation of state.« less

  14. The relationship between mimetic imperfection and phenotypic variation in insect colour patterns.

    PubMed Central

    Holloway, Graham; Gilbert, Francis; Brandt, Amoret

    2002-01-01

    Many hoverflies (Syrphidae) mimic wasps or bees through colour or behavioural adaptations. The relationship between phenotypic variation in colour pattern and mimetic perfection (as determined by pigeons) was investigated in three species of Müllerian mimics (Vespula spp.) and 10 Batesian hoverfly mimics, plus two non-mimetic species of flies. Four predictions were tested: (i) Batesian mimics might be imperfect because they are in the process of evolving towards perfection, hence there should be a positive relationship between variation and imperfection; (ii) some Batesian mimics are imperfect because they do not have the appropriate genetic variation to improve and have evolved to be as good as possible, hence there should be no differences between species, all displaying a low level of variation; (iii) very common hoverflies should show the highest levels of variation because they outnumber their models, resulting in high predation and a breakdown in the mimetic relationship; and (iv) social wasps (Vespula) have such a powerful defence that anything resembling a wasp, both Müllerian and perfect Batesian mimics, would be avoided, resulting in relaxed selection and high variance. Poor mimics may still evolve to resemble wasps as well as possible and display lower levels of variation. The data only provided support for the fourth prediction. The Müllerian mimics, one of the most perfect Batesian mimics, and the non-mimetic flies displayed much higher levels of variation than the other species of Batesian mimics. PMID:11886630

  15. Novel Apo E-Derived ABCA1 Agonist Peptide (CS-6253) Promotes Reverse Cholesterol Transport and Induces Formation of preβ-1 HDL In Vitro

    PubMed Central

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; Genest, Jacques

    2015-01-01

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are

  16. Novel apo E-derived ABCA1 agonist peptide (CS-6253) promotes reverse cholesterol transport and induces formation of preβ-1 HDL in vitro

    DOE PAGES

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; ...

    2015-07-24

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from themore » carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are

  17. Water-Floating Giant Nanosheets from Helical Peptide Pentamers.

    PubMed

    Lee, Jaehun; Choe, Ik Rang; Kim, Nak-Kyoon; Kim, Won-Je; Jang, Hyung-Seok; Lee, Yoon-Sik; Nam, Ki Tae

    2016-09-27

    One of the important challenges in the development of protein-mimetic materials is understanding the sequence-specific assembly behavior and dynamic folding change. Conventional strategies for constructing two-dimensional (2D) nanostructures from peptides have been limited to using β-sheet forming sequences as building blocks due to their natural tendency to form sheet-like aggregations. We have identified a peptide sequence (YFCFY) that can form dimers via a disulfide bridge, fold into a helix, and assemble into macroscopic flat sheets at the air/water interface. Due to the large driving force for 2D assembly and high elastic modulus of the resulting sheet, the peptide assembly induces flattening of the initially round water droplet. Additionally, we found that stabilization of the helix by dimerization is a key determinant for maintaining macroscopic flatness over a few tens of centimeters even with a uniform thickness of <10 nm. Furthermore, the ability to transfer the sheets from a water droplet to another substrate allows for multiple stacking of 2D peptide nanostructures, suggesting possible applications in biomimetic catalysis, biosensors, and 2D related electronic devices.

  18. Water-Floating Giant Nanosheets from Helical Peptide Pentamers

    NASA Astrophysics Data System (ADS)

    Lee, Jaehun; Nam, Ki Tae

    One of the important challenges in the development of protein-mimetic materials is to understand the sequence specific assembly behavior and the dynamic folding change. Conventional strategies to construct two dimensional nanostructures from the peptides have been limited to beta-sheet forming sequences in use of basic building blocks because of their natural tendency to form sheet like aggregations. Here we identified a new peptide sequence, YFCFY that can form dimers by the disulfide bridge, fold into helix and assemble into macroscopic flat sheet at the air/water interface. Because of large driving force for two dimensional assembly and high elastic modulus of the resulting sheet, the peptide assembly induces the flattening of initially round water droplet. Additionally, we found that stabilization of helix by the dimerization is a key determinant for maintaining macroscopic flatness over a few tens centimeter even with a uniform thickness below 10 nm. Furthermore, the capability to transfer 2D film from water droplet to other substrates allows for the multiple stacking of 2D peptide nanostructure, suggesting possible applications in the biomimetic catalysts, biosensor and 2D related electronic devices. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1401-01.

  19. Smac mimetics in combination with TRAIL selectively target cancer stem cells in nasopharyngeal carcinoma.

    PubMed

    Wu, Man-Si; Wang, Guang-Feng; Zhao, Zhi-Qiang; Liang, Yi; Wang, Heng-Bang; Wu, Miao-Yi; Min, Ping; Chen, Li-zhen; Feng, Qi-Sheng; Bei, Jin-Xin; Zeng, Yi-Xin; Yang, Dajun

    2013-09-01

    Nasopharyngeal carcinoma is a common malignancy in Southern China. After radiotherapy and chemotherapy, a considerable proportion of patients with nasopharyngeal carcinoma suffered tumor relapse and metastasis. Cancer stem cells (CSC) have been shown with resistance against therapies and thus considered as the initiator of recurrence and metastasis in tumors, where the antiapoptotic property of CSCs play an important role. Smac/DIABLO is an inverse regulator for the inhibitors of apoptosis protein family (IAP), which have been involved in apoptosis. Here, the effects of Smac mimetics on the CSCs of nasopharyngeal carcinoma were studied both in vitro and in vivo, using two clones of nasopharyngeal carcinoma cell line CNE2 as models. We found that one of the clones, S18, had CSC-like properties and IAPs were overexpressed. The combination of Smac mimetics and TNF-related apoptosis-inducing ligand (TRAIL) can reduce the percentage of SP cells and inhibit the colony- and sphere-forming abilities of S18 cells, indicating their ability to attenuate the CSCs. Moreover, in a nasopharyngeal carcinoma xenograft model, the administration of Smac mimetics in combination with TRAIL also led to the elimination of nasopharyngeal carcinoma stem cells. Furthermore, the Smac mimetics in combination with TRAIL induced the degradation of cIAP1 and XIAP and thus induced apoptosis in vitro and in vivo. Taken together, our data show that Smac mimetics exerted an antitumor effect on nasopharyngeal carcinoma cancer stem cells, and this combination treatment should be considered as a promising strategy for the treatment of nasopharyngeal carcinoma.

  20. Smac-mimetic-induced epithelial cell death reduces the growth of renal cysts.

    PubMed

    Fan, Lucy X; Zhou, Xia; Sweeney, William E; Wallace, Darren P; Avner, Ellis D; Grantham, Jared J; Li, Xiaogang

    2013-12-01

    Past efforts to pharmacologically disrupt the development and growth of renal cystic lesions focused primarily on normalizing the activity of a specific signaling molecule, but the effects of stimulating apoptosis in the proliferating epithelial cells have not been well studied. Although benign, ADPKD renal cysts created by the sustained proliferation of epithelial cells resemble tumors, and malignant cell death can be achieved by cotreatment with TNF-α and a mimetic of second mitochondria-derived activator of caspase (Smac). Notably, TNF-α accumulates to high levels in ADPKD cyst fluid. Here, we report that an Smac-mimetic selectively induces TNF-α-dependent cystic renal epithelial cell death, leading to the removal of cystic epithelial cells from renal tissues and delaying cyst formation. In vitro, a Smac-mimetic (GT13072) induced the degradation of cIAP1 that is required but not sufficient for cell death. Cotreatment with TNF-α augmented the formation and activation of the RIPK1-dependent death complex and the degradation and cleavage of FLIP, an inhibitor of caspase-8, in renal cystic epithelial cells. This approach produced death specifically in Pkd1 mutant epithelial cells, with no effect on normal renal epithelial cells. Moreover, treatment with the Smac-mimetic slowed cyst and kidney enlargement and preserved renal function in two genetic strains of mice with Pkd1 mutations. Thus, our mechanistic data characterize an apoptotic pathway, activated by the selective synergy of an Smac-mimetic and TNF-α in renal cyst fluid, that attenuates cyst development, providing an innovative translational platform for the rational development of novel therapeutics for ADPKD.

  1. A Platelet-Mimetic Paradigm for Metastasis-Targeted Nanomedicine Platforms

    PubMed Central

    Modery-Pawlowski, Christa L.; Master, Alyssa M.; Pan, Victor; Howard, Gregory; Gupta, Anirban Sen

    2013-01-01

    There is compelling evidence that beyond their traditional role in hemostasis and thrombosis, platelets play a significant role in mediating hematologic mechanisms of tumor metastasis by directly and indirectly interacting with pro-metastatic cancer cells. With this rationale, we hypothesized that platelets can be an effective paradigm to develop nanomedicine platforms that utilize platelet-mimetic interaction mechanisms for targeted diagnosis and therapy of metastatic cancer cells. Here we report on our investigation of the development of nanoconstructs that interact with metastatic cancer cells via platelet-mimetic heteromultivalent ligand-receptor pathways. For our studies, pro-metastatic human breast cancer cell line MDA-MB-231 was studied for its surface expression of platelet-interactive receptors, in comparison to another low-metastatic human breast cancer cell line, MCF-7. Certain platelet-interactive receptors were found to be significantly over-expressed on the MDA-MB-231 cells and these cells showed significantly enhanced binding interactions with active platelets compared to MCF-7 cells. Based upon these observations, two specific receptor interactions were selected and corresponding ligands were engineered onto the surface of liposomes as model nanoconstructs, to enable platelet-mimetic binding to the cancer cells. Our model platelet-mimetic liposomal constructs showed enhanced targeting and attachment of MDA-MB-231 cells compared to the MCF-7 cells. These results demonstrate the promise of utilizing platelet-mimetic constructs in modifying nanovehicle constructs for metastasis-targeted drug as well as modifying surfaces for ex-vivo cell enrichment diagnostic technologies. PMID:23360320

  2. Social variables exert selective pressures in the evolution and form of primate mimetic musculature.

    PubMed

    Burrows, Anne M; Li, Ly; Waller, Bridget M; Micheletta, Jerome

    2016-04-01

    Mammals use their faces in social interactions more so than any other vertebrates. Primates are an extreme among most mammals in their complex, direct, lifelong social interactions and their frequent use of facial displays is a means of proximate visual communication with conspecifics. The available repertoire of facial displays is primarily controlled by mimetic musculature, the muscles that move the face. The form of these muscles is, in turn, limited by and influenced by phylogenetic inertia but here we use examples, both morphological and physiological, to illustrate the influence that social variables may exert on the evolution and form of mimetic musculature among primates. Ecomorphology is concerned with the adaptive responses of morphology to various ecological variables such as diet, foliage density, predation pressures, and time of day activity. We present evidence that social variables also exert selective pressures on morphology, specifically using mimetic muscles among primates as an example. Social variables include group size, dominance 'style', and mating systems. We present two case studies to illustrate the potential influence of social behavior on adaptive morphology of mimetic musculature in primates: (1) gross morphology of the mimetic muscles around the external ear in closely related species of macaque (Macaca mulatta and Macaca nigra) characterized by varying dominance styles and (2) comparative physiology of the orbicularis oris muscle among select ape species. This muscle is used in both facial displays/expressions and in vocalizations/human speech. We present qualitative observations of myosin fiber-type distribution in this muscle of siamang (Symphalangus syndactylus), chimpanzee (Pan troglodytes), and human to demonstrate the potential influence of visual and auditory communication on muscle physiology. In sum, ecomorphologists should be aware of social selective pressures as well as ecological ones, and that observed morphology might

  3. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  4. An anti-PDGFRβ aptamer for selective delivery of small therapeutic peptide to cardiac cells.

    PubMed

    Romanelli, Alessandra; Affinito, Alessandra; Avitabile, Concetta; Catuogno, Silvia; Ceriotti, Paola; Iaboni, Margherita; Modica, Jessica; Condorelli, Geroloma; Catalucci, Daniele

    2018-01-01

    Small therapeutic peptides represent a promising field for the treatment of pathologies such as cardiac diseases. However, the lack of proper target-selective carriers hampers their translation towards a potential clinical application. Aptamers are cell-specific carriers that bind with high affinity to their specific target. However, some limitations on their conjugation to small peptides and the functionality of the resulting aptamer-peptide chimera exist. Here, we generated a novel aptamer-peptide chimera through conjugation of the PDGFRβ-targeting Gint4.T aptamer to MP, a small mimetic peptide that via targeting of the Cavβ2 subunit of the L-type calcium channel (LTCC) can recover myocardial function in pathological heart conditions associated with defective LTCC function. The conjugation reaction was performed by click chemistry in the presence of N,N,N',N',N"-pentamethyldiethylenetriamine as a Cu (I) stabilizing agent in a DMSO-free aqueous buffer. When administered to cardiac cells, the Gint4.T-MP aptamer-peptide chimera was successfully internalized in cells, allowing the functional targeting of MP to LTCC. This approach represents the first example of the use of an internalizing aptamer for selective delivery of a small therapeutic peptide to cardiac cells.

  5. Complementary dynamic BH3 profiles predict co-operativity between the multi-kinase inhibitor TG02 and the BH3 mimetic ABT-199 in acute myeloid leukaemia cells.

    PubMed

    Pallis, Monica; Burrows, Francis; Ryan, Jeremy; Grundy, Martin; Seedhouse, Claire; Abdul-Aziz, Amina; Montero, Joan; Letai, Anthony; Russell, Nigel

    2017-03-07

    Direct co-operation between sensitiser molecules BAD and NOXA in mediating apoptosis suggests that therapeutic agents which sensitise to BAD may complement agents which sensitise to NOXA. Dynamic BH3 profiling is a novel methodology that we have applied to the measurement of complementarity between sensitiser BH3 peptide mimetics and therapeutic agents. Using dynamic BH3 profiling, we show that the agent TG02, which downregulates MCL-1, sensitises to the BCL-2-inhibitory BAD-BH3 peptide, whereas the BCL-2 antagonist ABT-199 sensitises to MCL-1 inhibitory NOXA-BH3 peptide in acute myeloid leukaemia (AML) cells. At the concentrations used, the peptides did not trigger mitochondrial outer membrane permeabilisation in their own right, but primed cells to release Cytochrome C in the presence of an appropriate trigger of a complementary pathway. In KG-1a cells TG02 and ABT-199 synergised to induce apoptosis. In heterogeneous AML patient samples we noted a range of sensitivities to the two agents. Although some individual samples markedly favoured one agent or the other, in the group as a whole the combination of TG02 + ABT-199 was significantly more cytotoxic than either agent individually. We conclude that dynamic NOXA and BAD BH3 profiling is a sensitive methodology for investigating molecular pathways of drug action and complementary mechanisms of chemoresponsiveness.

  6. What kind of signals do mimetic tiger moths send? A phylogenetic test of wasp mimicry systems (Lepidoptera: Arctiidae: Euchromiini).

    PubMed

    Simmons, Rebecca B; Weller, Susan J

    2002-05-22

    Mimicry has been examined in field and laboratory studies of butterflies and its evolutionary dynamics have been explored in computer simulations. Phylogenetic studies examining the evolution of mimicry, however, are rare. Here, the phylogeny of wasp-mimicking tiger moths, the Sphecosoma group, was used to test evolutionary predictions of computer simulations of conventional Müllerian mimicry and quasi-Batesian mimicry dynamics. We examined whether mimetic traits evolved individually, or as suites of characters, using concentrated change tests. The phylogeny of these moth mimics revealed that individual mimetic characters were conserved, as are the three mimetic wasp forms: yellow Polybia, black Polybia and Parachartergus mimetic types. This finding was consistent with a 'supergene' control of linked loci and the Nicholson two-step model of mimicry evolution. We also used a modified permutation-tail probability approach to examine the rate of mimetic-type evolution. The observed topology, hypothetical Müllerian and Batesian scenarios, and 1000 random trees were compared using Kishino-Hasegawa tests. The observed phylogeny was more consistent with the predicted Müllerian distribution of mimetic traits than with that of a quasi-Batesian scenario. We suggest that the range of discriminatory abilities of the predator community plays a key role in shaping mimicry dynamics.

  7. [Glucagon like peptide-1 and the cardiovascular system: pathophysiological mechanisms].

    PubMed

    Avogaro, Angelo

    2010-12-01

    The glucagon-like peptide-1 (GLP-1) is an incretin hormone of 31 amino acids synthesized by L cells of ileum and colon in response to the meal. Once secreted, it is rapidly inactivated by enzymes called dipeptidyl dipeptidase 4. The main actions are: 1) the stimulation of insulin secretion; 2) the inhibition of glucagon secretion; 3) the delay of the gastric emptying time; 4) the stimulation of neogenesis of insulin-secreting cells. Patients with type 2 diabetes have a low concentration of GLP-1 in response to the meal and for this reason treatment with incretin mimetic drugs is specifically indicated in these patients. In addition to these important effects on intermediary metabolism, GLP-1 has important actions at the level of other organ systems, such as the cardiovascular system. GLP-1 receptor agonists are able to reduce blood pressure, improve endothelial function, increase myocardial contractility. These effects will be discussed in detail in this article.

  8. Vacancy-Engineered Nanoceria: Enzyme Mimetic Hotspots for the Degradation of Nerve Agents.

    PubMed

    Vernekar, Amit A; Das, Tandrila; Mugesh, Govindasamy

    2016-01-22

    Organophosphorus-based nerve agents, such as paraoxon, parathion, and malathion, inhibit acetylcholinesterase, which results in paralysis, respiratory failure, and death. Bacteria are known to use the enzyme phosphotriesterase (PTE) to break down these compounds. In this work, we designed vacancy-engineered nanoceria (VE CeO2 NPs) as PTE mimetic hotspots for the rapid degradation of nerve agents. We observed that the hydrolytic effect of the nanomaterial is due to the synergistic activity between both Ce(3+) and Ce(4+) ions located in the active site-like hotspots. Furthermore, the catalysis by nanoceria overcomes the product inhibition generally observed for PTE and small molecule-based PTE mimetics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The controlled release of insulin-mimetic metal ions by the multifunction of chitosan.

    PubMed

    Kofuji, Kyoko; Qian, Chun-Jun; Murata, Yoshifumi; Kawashima, Susumu

    2005-06-01

    Vanadium, which is an insulin-mimetic metal ion, was efficiently adsorbed on chitosan (CS). The adsorption of vanadium on CS was affected by the vanadium/CS ratio and the initial concentration of vanadium in preparative medium under constant pH condition. The vanadium-CS complex was able to control vanadium release. Moreover, a consistent control of vanadium release was achieved by incorporation of the vanadium-CS complex into a CS gel. After implantation of the CS gel retaining the vanadium-CS complex into diabetic mice, insulin-mimetic efficacy was confirmed by observation of a steady reduction in blood glucose levels. The sustained vanadium release also contributed to minimization of the side-effects. Thus, CS gel retaining the vanadium-CS complex appears promising as a vehicle for vanadium with long-term action and a low toxicity leading to its clinical use.

  10. Mimetic Theory for Cell-Centered Lagrangian Finite Volume Formulation on General Unstructured Grids

    SciTech Connect

    Sambasivan, Shiv Kumar; Shashkov, Mikhail J.; Burton, Donald E.

    2012-07-19

    A finite volume cell-centered Lagrangian scheme for solving large deformation problems is constructed based on the hypo-elastic model and using the mimetic theory. Rigorous analysis in the context of gas and solid dynamics, and arbitrary polygonal meshes, is presented to demonstrate the ability of cell-centered schemes in mimicking the continuum properties and principles at the discrete level. A new mimetic formulation based gradient evaluation technique and physics-based, frame independent and symmetry preserving slope limiters are proposed. Furthermore, a physically consistent dissipation model is employed which is both robust and inexpensive to implement. The cell-centered scheme along with these additional newmore » features are applied to solve solids undergoing elasto-plastic deformation.« less

  11. Smac mimetics and type II interferon synergistically induce necroptosis in various cancer cell lines.

    PubMed

    Cekay, Michael John; Roesler, Stefanie; Frank, Tanja; Knuth, Anne-Kathrin; Eckhardt, Ines; Fulda, Simone

    2017-12-01

    Since cancer cells often evade apoptosis, induction of necroptosis as another mode of programmed cell death is considered a promising therapeutic alternative. Here, we identify a novel synergistic interaction of Smac mimetics that antagonize x-linked Inhibitor of Apoptosis (XIAP), cellular Inhibitor of Apoptosis (cIAP) 1 and 2 with interferon (IFN)γ to induce necroptosis in apoptosis-resistant cancer cells in which caspase activation is blocked. This synergism is confirmed by calculation of combination indices (CIs) and found in both solid and hematological cancer cell lines as well as for different Smac mimetics (i.e. BV6, Birinapant), pointing to a broader relevance. Importantly, individual genetic knockdown of key components of necroptosis signaling, i.e. receptor-interacting protein (RIP) 1, RIP3 or mixed lineage kinase domain-like pseudokinase (MLKL), significantly protects from BV6/IFNγ-induced cell death. Similarly, pharmacological inhibitors of RIP1 (necrostatin-1(Nec-1)), RIP3 (GSK'872) or MLKL (necrosulfonamide (NSA)) significantly reduce BV6/IFNγ-stimulated cell death. Of note, IFN-regulatory factor (IRF)1 is required for BV6/IFNγ-mediated necroptosis, as IRF1 silencing provides protection from cell death. By comparison, antibodies blocking tumor necrosis factor (TNF)α, TNF-related apoptosis-inducing ligand (TRAIL) or CD95 ligand fail to inhibit BV6/IFNγ-induced cell death, pointing to a mechanism independently of death receptor ligands. This is the first report showing that Smac mimetics synergize with IFNγ to trigger necroptosis in apoptosis-resistant cancer cells with important implications for Smac mimetic-based strategies for the treatment of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Late-time cosmological approach in mimetic f( R, T) gravity

    NASA Astrophysics Data System (ADS)

    Baffou, E. H.; Houndjo, M. J. S.; Hamani-Daouda, M.; Alvarenga, F. G.

    2017-10-01

    In this paper, we investigate the late-time cosmic acceleration in mimetic f( R, T) gravity with the Lagrange multiplier and potential in a Universe containing, besides radiation and dark energy, a self-interacting (collisional) matter. We obtain through the modified Friedmann equations the main equation that can describe the cosmological evolution. Then, with several models from Q(z) and the well-known particular model f( R, T), we perform an analysis of the late-time evolution. We examine the behavior of the Hubble parameter, the dark energy equation of state and the total effective equation of state and in each case we compare the resulting picture with the non-collisional matter (assumed as dust) and also with the collisional matter in mimetic f( R, T) gravity. The results obtained are in good agreement with the observational data and show that in the presence of the collisional matter the dark energy oscillations in mimetic f( R, T) gravity can be damped.

  13. On the selectivity of superoxide dismutase mimetics and its importance in pharmacological studies

    PubMed Central

    Muscoli, Carolina; Cuzzocrea, Salvatore; Riley, Dennis P; Zweier, Jay L; Thiemermann, Christoph; Wang, Zhi-Qiang; Salvemini, Daniela

    2003-01-01

    The list of pathophysiological conditions associated with the overproduction of superoxide expands every day. Much of the knowledge compiled on the role of this radical in disease has been gathered using the native superoxide dismutase enzyme and, more recently, by the use of superoxide dismutase knockout models or transgenic models that overexpress the various isoforms of the enzyme. Although the native enzyme has shown promising anti-inflammatory properties in both preclinical and clinical studies, there were drawbacks and issues associated with its use as a therapeutic agent and pharmacological tool. Based on the concept that removal of superoxide modulates the course of inflammation, synthetic, low-molecular-weight mimetics of the superoxide dismutase enzymes that could overcome some of the limitations associated with the use of the native enzyme have been designed. In this review, we will discuss the advances made using various superoxide dismutase mimetics that led to the proposal that superoxide (and/or the product of its interaction with nitric oxide, peroxynitrite) is an important mediator of inflammation, and to the conclusion that superoxide dismutase mimetics can be utilized as therapeutic agents in diseases of various etiologies. The importance of the selectivity of such compounds in pharmacological studies will be discussed. PMID:14522841

  14. The reconstruction of f(ϕ)R and mimetic gravity from viable slow-roll inflation

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2018-04-01

    In this work, we extend the bottom-up reconstruction framework of F (R) gravity to other modified gravities, and in particular for f (ϕ) R and mimetic F (R) gravities. We investigate which are the important conditions in order for the method to work, and we study several viable cosmological evolutions, focusing on the inflationary era. Particularly, for the f (ϕ) R theory case, we specify the functional form of the Hubble rate and of the scalar-to-tensor ratio as a function of the e-foldings number and accordingly, the rest of the physical quantities and also the slow-roll and the corresponding observational indices can be calculated. The same method is applied in the mimetic F (R) gravity case, and in both cases we thoroughly analyze the resulting free parameter space, in order to show that the viability of the models presented is guaranteed and secondly that there is a wide range of values of the free parameters for which the viability of the models occurs. In addition, the reconstruction method is also studied in the context of mimetic F (R) = R gravity. As we demonstrate, the resulting theory is viable, and also in this case, only the scalar-to-tensor ratio needs to be specified, since the rest follow from this condition. Finally, we discuss in brief how the reconstruction method could function for other modified gravities.

  15. Lipid A Mimetics are Potent Adjuvants for an Intranasal Pneumonic Plague Vaccine

    PubMed Central

    Airhart, Christina L.; Rohde, Harold N.; Hovde, Carolyn J.; Bohach, Gregory A.; Deobald, Claudia F.; Lee, Stephen S.; Minnich, Scott A.

    2008-01-01

    An effective intranasal (i.n.) vaccine against pneumonic plague was developed. The formulation employed two synthetic lipid A mimetics as adjuvant combined with Yersinia pestis-derived V- and F1- protective antigens. The two nontoxic lipid A mimetics, classed as amino-alkyl glucosaminide 4-phosphates (AGPs) are potent ligands for the Toll-like receptor (TLR) 4. Using a murine (BALB/c) pneumonic plague model, we showed a single i.n. application of the vaccine provided 63% protection within 21 days against a Y. pestis CO92 100LD50 challenge. Protection reached 100% by 150 days. Using a homologous i.n. 1°/2° dose regimen, with the boost administered at varying times, 63% protection was achieved within 7 days and 100% protection was achieved by 21 days after the first immunization. Little or no protection was observed in animals that received antigens alone, and no protection was observed when the vaccine was administered to BALB/c TLR4 mutant mice. Vaccine-induced serum IgG titers to F1 and V-antigen were reflected in high titers for IgG1 and IgG2a, the latter reflecting a bias for a cell-mediated (TH1) immune response. This intranasal vaccine showed 90% protection in Sprague-Dawley rats challenged with 1000LD50. We conclude that lipid A mimetics are highly effective adjuvants for an i.n. plague vaccine. PMID:18722493

  16. Synergistic interaction of Smac mimetic and IFNα to trigger apoptosis in acute myeloid leukemia cells.

    PubMed

    Bake, Vanessa; Roesler, Stefanie; Eckhardt, Ines; Belz, Katharina; Fulda, Simone

    2014-12-28

    Therapeutic targeting of inhibitor of apoptosis (IAP) proteins by small-molecule inhibitors such as Smac mimetic is considered as a promising anticancer strategy to elicit apoptosis. Recent advances have renewed the interest in exploiting the antileukemic activity of interferon (IFN)α for the treatment of acute myeloid leukemia (AML). Here, we identify a novel synergistic interaction of the Smac mimetic BV6 and IFNα to trigger cell death in AML cells. Calculation of combination index (CI) confirms the synergism of BV6 and IFNα. In contrast to AML cells, no synergistic toxicity of BV6 and IFNα at equimolar concentrations is found against normal peripheral blood lymphocytes. BV6 and IFNα act in concert to stimulate expression of tumor necrosis factor (TNF)α and its secretion into the supernatant, thereby initiating an autocrine/paracrine TNFα/TNF receptor 1 (TNFR1) loop that drives cell death by BV6 and IFNα. Consistently, pharmacological inhibition of TNFα by the TNFα-blocking antibody Enbrel or genetic silencing of TNFR1 significantly reduces BV6/IFNα-induced cell death. In addition, BV6/IFNα-induced cell death depends on interferon regulatory factor (IRF)1, since RNA interference-imposed knockdown of IRF1 significantly rescues cell death. In conclusion, the identification of a novel synergistic antileukemic combination of Smac mimetic and IFNα has important implications for the development of innovative treatment strategies in AML. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Synergistic Effects of a Smac Mimetic with Doxorubicin Against Human Osteosarcoma.

    PubMed

    Kamata, Etsuko; Kawamoto, Teruya; Ueha, Takeshi; Hara, Hitomi; Fukase, Naomasa; Minoda, Masaya; Morishita, Masayuki; Takemori, Toshiyuki; Fujiwara, Shuichi; Nishida, Kotaro; Kuroda, Ryosuke; Kurosaka, Masahiro; Akisue, Toshihiro

    2017-11-01

    Second mitochondria-derived activator of caspase (Smac) is a proapoptogenic mitochondrial protein that antagonizes inhibitors of apoptosis proteins (IAPs), resulting in induction of apoptosis. In the present study we investigated the effects of a Smac mimetic in combination with doxorubicin against osteosarcoma. In vitro effects of the combination of a Smac mimetic AT-406 and doxorubicin on cell proliferation and apoptosis in osteosarcoma cell lines were examined using cell proliferation assays, flow cytometry, and immunoblot analyses. For in vivo experiments, human osteosarcoma xenografts were treated with combination of the two substances, and tumor volume and apoptotic activity in treated tumors were assessed. In vitro studies revealed that combination of the two substances significantly inhibited osteosarcoma proliferation with decreased cIAP1 expression and induced apoptosis in osteosarcoma cells. Combination of the two substances significantly suppressed osteosarcoma growth in vivo. Moreover, decreased cIAP1 expression and increased apoptotic activity were observed in tumors treated by their combination of the substances. The Smac mimetic AT-406 showed an apoptotic effect and a synergistic antitumor effect with doxorubicin on osteosarcoma. The combination of AT-406 and doxorubicin may serve as a novel therapeutic strategy for osteosarcoma treatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. A Potent Bivalent Smac Mimetic (SM-1200) Achieving Rapid, Complete and Durable Tumor Regression in Mice

    PubMed Central

    Sheng, Rong; Sun, Haiying; Liu, Liu; Lu, Jianfeng; McEachern, Donna; Wang, Guanfeng; Wen, Jianfeng; Min, Ping; Du, Zhenyun; Lu, Huirong; Kang, Sanmao; Guo, Ming; Yang, Dajun; Wang, Shaomeng

    2013-01-01

    We have designed, synthesized and evaluated a series of new compounds based upon our previously reported bivalent Smac mimetics. This led to the identification of compound 12 (SM-1200), which binds to XIAP, cIAP1 and cIAP2 with Ki values of 0.5 nM, 3.7 nM and 5.4 nM, respectively, inhibits cell growth in the MDA-MB-231 breast cancer and SK-OV-3 ovarian cancer cell lines with IC50 values of 11.0 nM and 28.2 nM, respectively. Compound 12 has a much improved pharmacokinetic profile over our previously reported bivalent Smac mimetics and is highly effective in induction of rapid and durable tumor regression in the MDA-MB-231 xenograft model. These data indicate that compound 12 is a promising Smac mimetic and warrants extensive evaluation as a potential candidate for clinical development. PMID:23651223

  19. Vincristine resistance in relapsed neuroblastoma can be efficiently overcome by Smac mimetic LCL161 treatment.

    PubMed

    Frommann, Kristin; Appl, Birgit; Hundsdoerfer, Patrick; Reinshagen, Konrad; Eschenburg, Georg

    2018-01-31

    In spite of good initial therapy response neuroblastomas often spread to distant organs or relapse after periods of remission. Dysregulation of apoptosis, a hallmark of cancer, is often effected by elevated levels of antiapoptotic signals leading to resistance against chemotherapeutic drugs. Inhibitors of apoptosis proteins (IAPs) are crucial cellular apoptosis regulators. Targeting IAPs with Smac mimetics has been demonstrated as a promising strategy for treatment of neuroblastoma and other tumors. In paired neuroblastoma cell lines, obtained from the same patient at time of diagnosis (CHLA-15) and postchemotherapy during progressive disease (CHLA-20), expression of crucial IAPs was determined. Furthermore, effects of vincristine on viability, cytotoxicity, apoptosis induction and caspase-3/7 activation were determined. Cellular IAP-1 (cIAP-1) and X-linked IAP (XIAP) expression was increased in cell line CHLA-20. Moreover, biological effects of vincristine were significantly lower in these cells. Treatment of cells with Smac mimetic LCL161 increased the effects of vincristine in CHLA-15 cells and more importantly was able to overcome vincristine resistance in CHLA-20 cells. These findings demonstrate the potential of Smac mimetics for the development of novel therapeutic approaches for the treatment of relapsed/resistant neuroblastoma. Copyright © 2018. Published by Elsevier Inc.

  20. Inhibiting NANOG Enhances Efficacy of BH3 Mimetics | Center for Cancer Research

    Cancer.gov

    BCL-2 family proteins regulate cell fate. Some members promote cell survival while others induce programmed cell death. A third group, the BH3-only members, modulates the activities of the rest of the family. Some cancers, including those of the colon and rectum, express elevated levels of pro-survival BCL-2 members, which may protect cancer cells from chemotherapy. BH3 mimetics are novel therapies that target and inhibit these pro-survival family members. Two in particular, ABT-737 and ABT-199, have activity against multiple cancer types, though neither targets the protein MCL-1, which is related to the BCL-2 family and causes resistance to the BH3 mimetics. Recent studies have revealed that the embryonic regulator NANOG and the related gene NANOGP8 can indirectly regulate MCL-1 via the kinase AKT. Abid Mattoo, Ph.D., J. Milburn Jessup, M.D., and colleagues of CCR’s Laboratory of Experimental Carcinogenesis, hypothesized that combining NANOG or NANOGP8 inhibition with a BH3 mimetic would enhance the latter’s anticancer activity.

  1. Insulin mimetic effects of macrocyclic binuclear oxovanadium complexes on streptozotocin-induced experimental diabetes in rats.

    PubMed

    Ramachandran, B; Kandaswamy, M; Narayanan, V; Subramanian, S

    2003-11-01

    The vanadium complexes so far tested for their insulin mimetic effects are either mono- or binuclear and contain only acyclic ligands. The leaching or hydrolysis of vanadyl ions from these complexes is much easier, and hence they elicit side effects. In the present study, a new binuclear macrocyclic oxovanadium complex was synthesized, and its efficacy was studied on streptozotocin (STZ)-induced diabetic rats over a period of 30 days. The insulin mimetic effect of the complex was tested on the blood sugar level in the STZ-diabetic rats and on the activities of the carbohydrate-metabolizing enzymes present in the liver. Administration of vanadium complex to STZ-induced diabetic rats decreased blood glucose levels from hyperglycaemic to normoglycaemic when compared to diabetic rats. The activity of carbohydrate-metabolizing enzymes such as hexokinase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen content were increased to near normal in vanadium complex-administered diabetic rats. The biochemical studies such as assay of blood urea and glutamate oxaloacetate transaminases revealed that the complex is not toxic to the system. The nontoxic nature of this complex may be due to the presence of the vanadyl ions in an intact macrocyclic form. Further, the vanadyl ions present in the macrocyclic binuclear oxovanadium complex are very close to each other, and this may enhance the insulin mimetic activity by synergic effect.

  2. Superstretchable Nacre-Mimetic Graphene/Poly(vinyl alcohol) Composite Film Based on Interfacial Architectural Engineering.

    PubMed

    Zhao, Nifang; Yang, Miao; Zhao, Qian; Gao, Weiwei; Xie, Tao; Bai, Hao

    2017-05-23

    Through designing hierarchical structures, particularly optimizing the chemical and architectural interactions at its inorganic/organic interface, nacre has achieved an excellent combination of contradictory mechanical properties such as strength and toughness, which is highly demanded yet difficult to achieve by most synthetic materials. Most techniques applied to develop nacre-mimetic composites have been focused on mimicking the "brick-and-mortar" structure, but the interfacial architectural features, especially the asperities and mineral bridges of "bricks", have been rarely concerned, which are of equal importance for enhancing mechanical properties of nacre. Here, we used a modified bidirectional freezing method followed by uniaxial pressing and chemical reduction to assemble a nacre-mimetic graphene/poly(vinyl alcohol) composite film, with both asperities and bridges introduced in addition to the lamellar layers to mimic the interfacial architectural interactions found in nacre. As such, we have developed a composite film that is not only strong (up to ∼150.9 MPa), but also tough (up to ∼8.50 MJ/m 3 ), and highly stretchable (up to ∼10.44%), difficult to obtain by other methods. This was all achieved by only interfacial architectural engineering within the traditional "brick-and-mortar" structure, without introducing a third component or employing chemical cross-linker as in some other nacre-mimetic systems. More importantly, we believe that the design principles and processing strategies reported here can also be applied to other material systems to develop strong and stretchable materials.

  3. Geographic variation in mimetic precision among different species of coral snake mimics.

    PubMed

    Akcali, C K; Pfennig, D W

    2017-07-01

    Batesian mimicry is widespread, but whether and why different species of mimics vary geographically in resemblance to their model is unclear. We characterized geographic variation in mimetic precision among four Batesian mimics of coral snakes. Each mimic occurs where its model is abundant (i.e. in 'deep sympatry'), rare (i.e. at the sympatry/allopatry boundary or 'edge sympatry') and absent (i.e. in allopatry). Geographic variation in mimetic precision was qualitatively different among these mimics. In one mimic, the most precise individuals occurred in edge sympatry; in another, they occurred in deep sympatry; in the third, they occurred in allopatry; and in the fourth, precise mimics were not concentrated anywhere throughout their range. Mimicry was less precise in allopatry than in sympatry in only two mimics. We present several nonmutually exclusive hypotheses for these patterns. Generally, examining geographic variation in mimetic precision - within and among different mimics - offers novel insights into the causes and consequences of mimicry. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  4. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles.

    PubMed

    Singh, Ragini; Singh, Sanjay

    2015-08-01

    Cerium oxide nanoparticles (CeNPs) have been recently shown to scavenge reactive oxygen and nitrogen species (ROS and RNS) in different experimental model systems. CeNPs (3+) and CeNPs (4+) have been shown to exhibit superoxide dismutase (SOD) and catalase mimetic activity, respectively. Due to their nanoscale dimension, CeNPs are expected to interact with the components of biologically relevant buffers and medium, which could alter their catalytic properties. We have demonstrated earlier that CeNPs (3+) interact with phosphate and lose the SOD activity. However, very little is known about the interaction of CeNPs (4+) with the phosphate and other anions, predominantly present in biological buffers and their effects on the catalase mimetic-activity of these nanoparticles. In this study, we report that catalase mimetic-activity of CeNPs (4+) is resistant to the phosphate anions, pH changes and composition of cell culture media. Given the abundance of phosphate anions in the biological system, it is likely that internalized CeNPs would be influenced by cytoplasmic and nucleoplasmic concentration of phosphate. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Design, synthesis, and evaluation of an alpha-helix mimetic library targeting protein-protein interactions.

    PubMed

    Shaginian, Alex; Whitby, Landon R; Hong, Sukwon; Hwang, Inkyu; Farooqi, Bilal; Searcey, Mark; Chen, Jiandong; Vogt, Peter K; Boger, Dale L

    2009-04-22

    The design and solution-phase synthesis of an alpha-helix mimetic library as an integral component of a small-molecule library targeting protein-protein interactions are described. The iterative design, synthesis, and evaluation of the candidate alpha-helix mimetic was initiated from a precedented triaryl template and refined by screening the designs for inhibition of MDM2/p53 binding. Upon identifying a chemically and biologically satisfactory design and consistent with the screening capabilities of academic collaborators, the corresponding complete library was assembled as 400 mixtures of 20 compounds (20 x 20 x 20-mix), where the added subunits are designed to mimic all possible permutations of the naturally occurring i, i + 4, i + 7 amino acid side chains of an alpha-helix. The library (8000 compounds) was prepared using a solution-phase synthetic protocol enlisting acid/base liquid-liquid extractions for purification on a scale that insures its long-term availability for screening campaigns. Screening of the library for inhibition of MDM2/p53 binding not only identified the lead alpha-helix mimetic upon which the library was based, but also suggests that a digestion of the initial screening results that accompany the use of such a comprehensive library can provide insights into the nature of the interaction (e.g., an alpha-helix mediated protein-protein interaction) and define the key residues and their characteristics responsible for recognition.

  6. GLP-1, exendin-4 and C-peptide regulate pancreatic islet microcirculation, insulin secretion and glucose tolerance in rats.

    PubMed

    Wu, Lin; Olverling, Anna; Huang, Zhen; Jansson, Leif; Chao, Hongfen; Gao, Xin; Sjöholm, Åke

    2012-04-01

    GLP-1 (glucagon-like peptide 1) and its mimetic exendin-4 are used against Type 2 diabetes. C-peptide has also proven promising to enhance insulin action. Since insulin secretion in vivo can be rapidly tuned by changes in islet microcirculation, we evaluated the influence of GLP-1, exendin-4 and C-peptide on pancreatic IBF (islet blood flow), and dynamic changes in insulin secretion and glycaemia in the rat. Adult male Wistar rats were divided into four groups given intravenous saline, GLP-1, exendin-4 or C-peptide respectively and administered either saline or 30% glucose. Furthermore, we investigated the effect of intravenous infusion of different doses of exendin-4 into either the femoral vein or the portal vein on islet microcirculation. A non-radioactive microsphere technique was adopted to measure the regional blood flow. Both GLP-1 and exendin-4 prevented the glucose-induced PBF (pancreatic blood flow) redistribution into the islets. Infusion of exendin-4 into the portal vein did not alter pancreatic islet microcirculation, while infusion of exendin-4 into femoral vein significantly decreased basal IBF. C-peptide increased basal IBF and the proportion of IBF out of total PBF, but did not affect the islet microcirculation after glucose administration. GLP-1, exendin-4 and C-peptide stimulated insulin secretion and significantly decreased glycaemia. Blocking NO formation did not prevent the decreased IBF and post-load glycaemia evoked by exendin-4, but further decreased IBF and KBF (kidney blood flow) and increased basal glycaemia. Blocking the vagus nerve enhanced pancreatic IBF and further decreased post-load glycaemia and KBF and increased basal glycaemia. The vascular modulatory effect on pancreatic islet microcirculation described herein, with subsequent effects on in vivo insulin secretion and glycaemia, might be one of the mechanisms underlying the anti-diabetic actions of GLP-1 and its long acting mimetic exendin-4, as well as that of C-peptide.

  7. Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold

    PubMed Central

    Checco, James W.; Kreitler, Dale F.; Thomas, Nicole C.; Belair, David G.; Rettko, Nicholas J.; Murphy, William L.; Forest, Katrina T.; Gellman, Samuel H.

    2015-01-01

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α- and β-amino acid residues (“α/β-peptides”) that mimic several peptides derived from the three-helix bundle “Z-domain” scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF165-induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain–mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications. PMID:25825775

  8. Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold

    DOE PAGES

    Checco, James W.; Kreitler, Dale F.; Thomas, Nicole C.; ...

    2015-03-30

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. In this paper, we describe a strategy for designing oligomers containing both α- and β-amino acid residues (“α/β-peptides”) that mimic several peptides derived from the three-helix bundle “Z-domain” scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF 165-induced proliferation of human umbilical vein endothelialmore » cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain–mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Finally, such reagents would be useful for diagnostic and therapeutic applications.« less

  9. Investigation of interfacial peptide-lipid interactions by optical second harmonic generation from tryptophan

    NASA Astrophysics Data System (ADS)

    Smiley, Beth L.; Vogel, Viola

    1995-09-01

    The adsorption of pentapeptides to lipid monolayers spread at the air-water interface is investigated by optical second harmonic generation (SHG) in the reflection geometry. The nonlinear optical response of the tryptophan side chain present in each of the synthetic peptide sequences chosen was insufficient to allow determination of its molecular orientation within the surface layer at the surface densities obtain by adsorption from the subphase. A difference in the character of peptide adsorption to lipid monolayers of various compositions was observed which depends on the nature of the monolayer interface accessible to the peptides. Results from crude and purified synthetic peptides are compared to point out the impact of potential hydrophobic impurities on the surface properties of the monolayer and on the measured second harmonic signal intensity. SHG studies of peptides and proteins adsorbed to membrane-mimetic lipid and phospholipid monolayers may suggest differences in the chemical nature of the monolayers which impact the ability of peptides and proteins to penetrate and interact with the membrane surface.

  10. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  11. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  12. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel

    USDA-ARS?s Scientific Manuscript database

    Replicating the multi-hierarchical self-assembly of collagen has long-attracted scientists, from both the perspective of the fundamental science of supramolecular chemistry and that of potential biomedical applications in tissue engineering. Many approaches to drive the self-assembly of synthetic s...

  13. Active diuretic peptidomimetic insect kinin analogs that contain Beta-turn mimetic motif 4-aminopyroglutamate and lack native peptide bonds

    USDA-ARS?s Scientific Manuscript database

    The multifunctional arthropod 'insect kinins' share the evolutionarily conserved C-terminal pentapeptide core sequence Phe-X1-X2-Trp-Gly-NH2, where X1 = His, Asn, Ser, or Tyr and X2 = Ser, Pro, or Ala. Insect kinins regulate diuresis in many species of insects, including the cricket. Insect kinins...

  14. In situ chondrogenic differentiation of bone marrow stromal cells in bioactive self-assembled peptide gels.

    PubMed

    Kim, Ji Eun; Kim, Soo Hyun; Jung, Youngmee

    2015-07-01

    Articular cartilage is a specific tissue that lacks nerves and blood vessels and has limited self-repair abilities. Accordingly, it is necessary to develop new technology for the regeneration of cartilage to overcome therapeutic limitations. Recently, there have been several studies investigating the use of peptide hydrogel scaffolds, which are biocompatible and have low immunogenicity, for cartilage tissue engineering. In this study, we used self-assembled peptide hydrogels with repeating peptide sequences and bioactive motifs at the end of repeating sequences, which are collagen mimetic peptides (CMPs). CMPs that have a unique collagen-like triple helical conformation have been shown to associate with collagen molecules and fibers via a strand invasion process. In order to confirm the biological activities of the modified bioactive peptide hydrogels, the role of functional motifs in in situ chondrogenic differentiation of rabbit bone marrow stromal cells (rBMSCs) was examined. To compensate for the weaker mechanical properties of peptide hydrogels, we used poly (L-lactide-co-caprolactone) (PLCL) scaffolds, which were loaded with the self-assembled peptides into which the bioactive motifs had been incorporated. Then, we performed in vitro and in vivo analyses with the rBMSC/PLCL-peptide hydrogel complexes. The results indicated that the secretion of a cartilage-specific extracellular matrix and gene expression concerned with chondrogenic differentiation were increased by CMP motifs. In conclusion, it was confirmed that CMP-modified self-assembled peptide hydrogels could effectively enhance chondrogenic differentiation in situ, and, consequently, they could be a good biomaterial for cartilage tissue engineering. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. HER2-positive breast cancer targeting and treatment by a peptide-conjugated mini nanodrug.

    PubMed

    Ding, Hui; Gangalum, Pallavi R; Galstyan, Anna; Fox, Irving; Patil, Rameshwar; Hubbard, Paul; Murali, Ramachandran; Ljubimova, Julia Y; Holler, Eggehard

    2017-02-01

    HER2+ breast cancer is one of the most aggressive forms of breast cancer. The new polymalic acid-based mini nanodrug copolymers are synthesized and specifically characterized to inhibit growth of HER2+ breast cancer. These mini nanodrugs are highly effective and in the clinic may substitute for trastuzumab (the marketed therapeutic antibody) and antibody-targeted nanobioconjugates. Novel mini nanodrugs are designed to have slender shape and small size. HER2+ cells were recognized by the polymer-attached trastuzumab-mimetic 12-mer peptide. Synthesis of the nascent cell-transmembrane HER2/neu receptors by HER2+ cells was inhibited by antisense oligonucleotides that prevented cancer cell proliferation and significantly reduced tumor size by more than 15 times vs. untreated control or PBS-treated group. We emphasize that the shape and size of mini nanodrugs can enhance penetration of multiple bio-barriers to facilitate highly effective treatment. Replacement of trastuzumab by the mimetic peptide favors reduced production costs and technical efforts, and a negligible immune response. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Second mitochondria-derived activator of caspase (SMAC) mimetic potentiates tumor susceptibility toward natural killer cell-mediated killing.

    PubMed

    Brinkmann, Kerstin; Hombach, Andreas; Seeger, Jens Michael; Wagner-Stippich, Diana; Klubertz, Daniela; Krönke, Martin; Abken, Hinrich; Kashkar, Hamid

    2014-03-01

    Resistance to apoptosis is a hallmark of cancer, and represents an important mechanism of how tumor cells resist immune cell destruction. Mitochondria are the central regulators of the apoptotic machinery by releasing pro-apoptotic factors including cytochrome c and second mitochondria-derived activator of caspase (SMAC) upon mitochondrial outer membrane permeabilization (MOMP). Small molecules activating MOMP such as BH3 mimetics or antagonizers of the inhibitor of apoptosis proteins (IAPs) such as SMAC mimetics have recently engendered new optimism for a more individualized and effective cancer therapy. Here we show that a SMAC mimetic potentiates cancer cell killing by natural killer (NK) cells through reactivation of tumor cell apoptosis. Specifically, the SMAC mimetic enhances the susceptibility of tumor cells toward NK cell-mediated effector mechanisms involving death receptors and cytolytic granules containing perforin and granzymes by relieving caspase activity. Our data highlight for the first time the specific use of SMAC mimetics for boosting immune cell-mediated immunotherapy, representing a novel and promising approach in the treatment of cancer.

  17. Temporal dynamics of the mimetic allele frequency at the doublesex locus, which controls polymorphic Batesian mimicry in Papilio memnon butterflies.

    PubMed

    Komata, Shinya; Lin, Chung-Ping; Sota, Teiji

    2017-10-10

    Tracking allele frequencies is essential for understanding how polymorphisms of adaptive traits are maintained. In Papilio memnon butterflies, which exhibit a female-limited Batesian mimicry polymorphism (wing-pattern polymorphism), two alleles at the doublesex (dsx) locus correspond to mimetic and non-mimetic forms in females; males carry both dsx alleles but display only the non-mimetic form. This polymorphism is thought to be maintained by a negative frequency-dependent selection. By tracking dsx allele frequencies in both sexes at a Taiwanese site over four years, we found that the mimetic allele persists at intermediate frequencies even when the unpalatable model papilionid butterflies (Pachliopta and Atrophaneura species) were very rare or absent. The rates of male mate choice did not differ between the two female forms; neither did insemination number nor age composition, suggesting equivalent reproductive performance of the two forms over time. Our results characterised the temporal dynamics of the mimetic allele frequency in the field for the first time and give insights into underlying processes involved in the persistence of the female-limited Batesian mimicry polymorphism.

  18. Development of Novel p16INK4a Mimetics as Anticancer Therapy

    DTIC Science & Technology

    2015-10-01

    technical difficulties making peptides. This was not anticipated, as one of the lead chemists at the company has extensive experience in the origins...dynamics studies, we have discovered that stapling peptides is context- dependent . As opposed to the literature available on stapled peptide dynamics...targeted therapy with the potential for fewer side effects and higher efficacy. 2. Key words peptide mesothelioma cell cycle cyclin- dependent

  19. Cell Penetrating Peptides and Cationic Antibacterial Peptides

    PubMed Central

    Rodriguez Plaza, Jonathan G.; Morales-Nava, Rosmarbel; Diener, Christian; Schreiber, Gabriele; Gonzalez, Zyanya D.; Lara Ortiz, Maria Teresa; Ortega Blake, Ivan; Pantoja, Omar; Volkmer, Rudolf; Klipp, Edda; Herrmann, Andreas; Del Rio, Gabriel

    2014-01-01

    Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells. We also show that IP-1 makes pores in the presence of high electrical potential at the membrane, such as those found in bacteria and mitochondria. These results provide the basis to understand the functional redundancy of CPPs and CAPs. PMID:24706763

  20. [Plant signaling peptides. Cysteine-rich peptides].

    PubMed

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation.

  1. Conformationally Constrained Peptides from CD2 to Modulate Protein-Protein Interactions between CD2 and CD58

    PubMed Central

    Gokhale, Ameya; Weldeghiorghis, Thomas K.; Taneja, Veena; Satyanarayanajois, Seetharama D.

    2011-01-01

    Cell adhesion molecule CD2 and its ligand CD58 provide good examples of protein-protein interactions in cells that participate in the immune response. To modulate the cell adhesion interaction, peptides were designed from the discontinuous epitopes of the β-strand region of CD2 protein. The two strands were linked by a peptide bond. β-strands in the peptides were nucleated by inserting a beta-sheet-inducing (D)-Pro-Pro sequence or a dibenzofuran (DBF)-turn mimetic with key amino acid sequences from CD2 protein that binds to CD58. The solution structures of the peptides (5–10) were studied by NMR and molecular dynamics simulations. The ability of these peptides to inhibit cell adhesion interaction was studied by E-rosetting and lymphocyte epithelial assays. Peptides 6 and 7 inhibit the cell adhesion activity with an IC50 value of 7 nM and 11 nM respectively, in lymphocyte-epithelial adhesion assay. NMR and molecular modeling results indicated that peptides 6 and 7 exhibited β-hairpin structure in solution. PMID:21755948

  2. Peptides and Drug Delivery.

    PubMed

    Ulapane, Kavisha R; Kopec, Brian M; Moral, Mario E G; Siahaan, Teruna J

    2017-01-01

    Peptides have been used as drugs to treat various health conditions, and they are also being developed as diagnostic agents. Due to their receptor selectivity, peptides have recently been utilized for drug delivery to target drug molecules to specific types of cells (i.e. cancer cells, immune cells) to lower the side effects of the drugs. In this case, the drug is conjugated to the carrier peptide for directing the drug to the target cells (e.g. cancer cells) with higher expression of a specific receptor that recognizes the carrier peptide. As a result, the drug is directed to the target diseased cells without affecting the normal cells. Peptides are also being developed for improving drug delivery through the intestinal mucosa barrier (IMB) and the blood-brain barrier (BBB). These peptides were derived from intercellular junction proteins such as occludins, claudins, and cadherins and improve drug delivery through the IMB and BBB via the paracellular pathways. It is hypothesized that the peptides modulate protein-protein interactions in the intercellular junctions of the IMB and BBB to increase the porosity of paracellular pathways of the barriers. These modulator peptides have been shown to enhance brain delivery of small molecules and medium-sized peptides as well as a large protein such as 65 kDa albumin. In the future, this method has the potential to improve oral and brain delivery of therapeutic and diagnostic peptides and proteins.

  3. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions. © 2015 Authors; published by Portland Press Limited.

  4. Mimetic Relation as Matching-to-Sample Observing Response and the Emergence of Speaker Relations in Children with and without Hearing Impairments

    ERIC Educational Resources Information Center

    Elias, Nassim Chamel; Goyos, Celso

    2013-01-01

    This study investigated the effect of matching-to-sample and mimetic-relations teaching on the emergence of signed tact and textual repertoire through a multiple-baseline design, across three groups of three words in children with and without hearing impairments and with no reading repertoire. Following mimetic-relations teaching and the…

  5. Differential role of RIP1 in Smac mimetic-mediated chemosensitization of neuroblastoma cells.

    PubMed

    Czaplinski, Sebastian; Abhari, Behnaz Ahangarian; Torkov, Alica; Seggewiß, Dominik; Hugle, Manuela; Fulda, Simone

    2015-12-08

    We explored the potential of Smac mimetics, which antagonize Inhibitor of Apoptosis (IAP) proteins, for chemosensitization of neuroblastoma (NB). Here, we report that Smac mimetics, e.g. BV6, prime NB cells for chemotherapeutics including the topoisomerase II inhibitor doxorubicin (DOX) and vinca alkaloids such as Vincristine (VCR), Vinblastine (VBL) and Vinorelbine (VNR). Additionally, BV6 acts in concert with DOX or VCR to suppress long-term clonogenic growth. While BV6 causes rapid downregulation of cellular IAP (cIAP)1 protein and nuclear factor-kappaB (NF-κB) activation, DOX/BV6- or VCR/BV6-induced apoptosis occurs independently of NF-κB or TNFα signaling, since overexpression of dominant-negative IκBα superrepressor or the Tumor Necrosis Factor (TNF)α-blocking antibody Enbrel fail to block cell death. Mechanistic studies reveal that Receptor-interacting protein (RIP)1 is required for DOX/BV6-, but not for VCR/BV6-induced apoptosis, since transient or stable knockdown of RIP1 or the pharmacological RIP1 inhibitor necrostatin-1 significantly reduce apoptosis. By comparison, VCR/BV6-mediated apoptosis critically depends on the mitochondrial pathway. VCR/BV6 cotreatment causes phosphorylation of BCL-2 during mitotic arrest, enhanced activation of BAX and BAK and loss of mitochondrial membrane potential (MMP). Additionally, overexpression of BCL-2 profoundly suppresses VCR/BV6-induced apoptosis. Thus, BV6 sensitizes NB cells to chemotherapy-induced apoptosis via distinct initial signaling mechanisms depending on the chemotherapeutic drug. These findings provide novel mechanistic insights into Smac mimetic-mediated chemosensitization of NB.

  6. Mimetic Theory and the evolutionary paradox of schizophrenia: The archetypal scapegoat hypothesis.

    PubMed

    Riordan, Daniel Vincent

    2017-10-01

    Schizophrenia poses an evolutionary paradox, being genetically mediated yet associated with reduced fecundity. Numerous hypotheses have attempted to address this, but few describe how the schizophrenic phenotype itself might constitute an evolutionary adaptation. This paper draws on René Girard's theory on human origins, which claims that humans evolved a tendency to mimic both the desires and the behaviours of each other (mimetic theory). This would have promoted social cohesion and co-operation, but at the cost of intra-group rivalry and conflict. The mimetic dynamic would have escalated such conflicts into reciprocal internecine violence, threatening the survival of the entire group. Girard theorised that the "scapegoat mechanism" emerged, by which means such violence was curtailed by the unanimity of "all against one", thus allowing the mimetic impulse to safely evolve further, making language and complex social behaviours possible. Whereas scapegoating may have emerged in the entire population, and any member of a community could be scapegoated if necessary, this paper proposes that the scapegoat mechanism would have worked better in groups containing members who exhibited traits, recognised by all others, which singled them out as victims. Schizophrenia may be a functional adaptation, similar in evolutionary terms to altruism, in that it may have increased inclusive fitness, by providing scapegoat victims, the choice of whom was likely to be agreed upon unanimously, even during internecine conflict, thus restoring order and protecting the group from self-destruction. This evolutionary hypothesis, uses Girardian anthropology to combine the concept of the schizophrenic as religious shaman with that of the schizophrenic as scapegoat. It may help to reconcile divergent philosophical concepts of mental illness, and also help us to better understand, and thus counter, social exclusion and stigmatisation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Structural and biological mimicry of protein surface recognition by [alpha/beta]-peptide foldamers

    SciTech Connect

    Horne, W. Seth; Johnson, Lisa M.; Ketas, Thomas J.

    2009-10-05

    Unnatural oligomers that can mimic protein surfaces offer a potentially useful strategy for blocking biomedically important protein-protein interactions. Here we evaluate an approach based on combining {alpha}- and {beta}-amino acid residues in the context of a polypeptide sequence from the HIV protein gp41, which represents an excellent testbed because of the wealth of available structural and biological information. We show that {alpha}/{beta}-peptides can mimic structural and functional properties of a critical gp41 subunit. Physical studies in solution, crystallographic data, and results from cell-fusion and virus-infectivity assays collectively indicate that the gp41-mimetic {alpha}/{beta}-peptides effectively block HIV-cell fusion via a mechanism comparablemore » to that of gp41-derived {alpha}-peptides. An optimized {alpha}/{beta}-peptide is far less susceptible to proteolytic degradation than is an analogous {alpha}-peptide. Our findings show how a two-stage design approach, in which sequence-based {alpha} {yields} {beta} replacements are followed by site-specific backbone rigidification, can lead to physical and biological mimicry of a natural biorecognition process.« less

  8. Original nerve growth factor mimetic dipeptide GK-2 limits the manifestations of hemorrhagic stroke in rats.

    PubMed

    Kraineva, V A; Gudasheva, T A; Kotelnikova, S O; Antipova, T A; Seredenin, S B

    2013-03-01

    The protective effects of a new low-molecular-weight mimetic of nerve growth factor hexamethylene diamide bis-(N-monosuccinyl-L-glutamine-L-lysine; GK-2) were studied on the experimental model of hemorrhagic stroke (intracerebral posttraumatic hematoma) in rats. Intraperitoneal injections of GK-2 in a dose of 1 mg/kg 4 and 24 h after surgery and 24 h before testing the CNS function on days 3, 7, and 14 prevent death of experimental animals, reduce the neurological deficit, and normalized behavior.

  9. The Mimetic Finite Element Method and the Virtual Element Method for elliptic problems with arbitrary regularity.

    SciTech Connect

    Manzini, Gianmarco

    2012-07-13

    We develop and analyze a new family of virtual element methods on unstructured polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular discrete spaces V{sub h} {contained_in} C{sup {alpha}} {element_of} N. The degrees of freedom are (a) solution and derivative values of various degree at suitable nodes and (b) solution moments inside polygons. The convergence of the method is proven theoretically and an optimal error estimate is derived. The connection with the Mimetic Finite Difference method is also discussed. Numerical experiments confirm the convergence rate that is expected from the theory.

  10. Mimetic discretization of the Abelian Chern-Simons theory and link invariants

    SciTech Connect

    Di Bartolo, Cayetano; Grau, Javier; Leal, Lorenzo

    2013-12-15

    A mimetic discretization of the Abelian Chern-Simons theory is presented. The study relies on the formulation of a theory of differential forms in the lattice, including a consistent definition of the Hodge duality operation. Explicit expressions for the Gauss Linking Number in the lattice, which correspond to their continuum counterparts are given. A discussion of the discretization of metric structures in the space of transverse vector densities is presented. The study of these metrics could serve to obtain explicit formulae for knot an link invariants in the lattice.

  11. Arbitrary Order Mixed Mimetic Finite Differences Method with Nodal Degrees of Freedom

    SciTech Connect

    Iaroshenko, Oleksandr; Gyrya, Vitaliy; Manzini, Gianmarco

    2016-09-01

    In this work we consider a modification to an arbitrary order mixed mimetic finite difference method (MFD) for a diffusion equation on general polygonal meshes [1]. The modification is based on moving some degrees of freedom (DoF) for a flux variable from edges to vertices. We showed that for a non-degenerate element this transformation is locally equivalent, i.e. there is a one-to-one map between the new and the old DoF. Globally, on the other hand, this transformation leads to a reduction of the total number of degrees of freedom (by up to 40%) and additional continuity of the discrete flux.

  12. Antimicrobial Peptides in Reptiles

    PubMed Central

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  13. Supramolecular Peptide Nanofiber Morphology Affects Mechanotransduction of Stem Cells.

    PubMed

    Arslan, Elif; Hatip Koc, Meryem; Uysal, Ozge; Dikecoglu, Begum; Topal, Ahmet E; Garifullin, Ruslan; Ozkan, Alper D; Dana, Aykutlu; Hermida-Merino, Daniel; Castelletto, Valeria; Edwards-Gayle, Charlotte; Baday, Sefer; Hamley, Ian; Tekinay, Ayse B; Guler, Mustafa O

    2017-10-09

    Chirality and morphology are essential factors for protein function and interactions with other biomacromolecules. Extracellular matrix (ECM) proteins are also similar to other proteins in this sense; however, the complexity of the natural ECM makes it difficult to study these factors at the cellular level. The synthetic peptide nanomaterials harbor great promise in mimicking specific ECM molecules as model systems. In this work, we demonstrate that mechanosensory responses of stem cells are directly regulated by the chirality and morphology of ECM-mimetic peptide nanofibers with strictly controlled characteristics. Structural signals presented on l-amino acid containing cylindrical nanofibers (l-VV) favored the formation of integrin β1-based focal adhesion complexes, which increased the osteogenic potential of stem cells through the activation of nuclear YAP. On the other hand, twisted ribbon-like nanofibers (l-FF and d-FF) guided the cells into round shapes and decreased the formation of focal adhesion complexes, which resulted in the confinement of YAP proteins in the cytosol and a corresponding decrease in osteogenic potential. Interestingly, the d-form of twisted-ribbon like nanofibers (d-FF) increased the chondrogenic potential of stem cells more than their l-form (l-FF). Our results provide new insights into the importance and relevance of morphology and chirality of nanomaterials in their interactions with cells and reveal that precise control over the chemical and physical properties of nanostructures can affect stem cell fate even without the incorporation of specific epitopes.

  14. Release of Dengue Virus Genome Induced by a Peptide Inhibitor

    PubMed Central

    Hrobowski, Yancey M.; Hoffmann, Andrew R.; Rowe, Dawne K.; Kukkaro, Petra; Holdaway, Heather; Chipman, Paul; Fontaine, Krystal A.; Holbrook, Michael R.; Garry, Robert F.; Kostyuchenko, Victor; Wimley, William C.; Isern, Sharon; Rossmann, Michael G.; Michael, Scott F.

    2012-01-01

    Dengue virus infects approximately 100 million people annually, but there is no available therapeutic treatment. The mimetic peptide, DN59, consists of residues corresponding to the membrane interacting, amphipathic stem region of the dengue virus envelope (E) glycoprotein. This peptide is inhibitory to all four serotypes of dengue virus, as well as other flaviviruses. Cryo-electron microscopy image reconstruction of dengue virus particles incubated with DN59 showed that the virus particles were largely empty, concurrent with the formation of holes at the five-fold vertices. The release of RNA from the viral particle following incubation with DN59 was confirmed by increased sensitivity of the RNA genome to exogenous RNase and separation of the genome from the E protein in a tartrate density gradient. DN59 interacted strongly with synthetic lipid vesicles and caused membrane disruptions, but was found to be non-toxic to mammalian and insect cells. Thus DN59 inhibits flavivirus infectivity by interacting directly with virus particles resulting in release of the genomic RNA. PMID:23226444

  15. A conformational mimetic approach for the synthesis of carbocyclic nucleosides as anti-HCV leads.

    PubMed

    Kasula, Mohan; Balaraju, Tuniki; Toyama, Massaki; Thiyagarajan, Anandarajan; Bal, Chandralata; Baba, Masanori; Sharon, Ashoke

    2013-10-01

    Computer-aided approaches coupled with medicinal chemistry were used to explore novel carbocyclic nucleosides as potential anti-hepatitis C virus (HCV) agents. Conformational analyses were carried out on 6-amino-1H-pyrazolo[3,4-d]pyrimidine (6-APP)-based carbocyclic nucleoside analogues, which were considered as nucleoside mimetics to act as HCV RNA-dependent RNA polymerase (RdRp) inhibitors. Structural insight gained from the modeling studies revealed the molecular basis behind these nucleoside mimetics. The rationally chosen 6-APP analogues were prepared and evaluated for anti-HCV activity. RdRp SiteMap analysis revealed the presence of a hydrophobic cavity near C7 of the nucleosides; introduction of bulkier substituents at this position enhanced their activity. Herein we report the identification of an iodinated compound with an EC50 value of 6.6 μM as a preliminary anti-HCV lead. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Stick-slip friction of gecko-mimetic flaps on smooth and rough surfaces.

    PubMed

    Das, Saurabh; Cadirov, Nicholas; Chary, Sathya; Kaufman, Yair; Hogan, Jack; Turner, Kimberly L; Israelachvili, Jacob N

    2015-03-06

    The discovery and understanding of gecko 'frictional-adhesion' adhering and climbing mechanism has allowed researchers to mimic and create gecko-inspired adhesives. A few experimental and theoretical approaches have been taken to understand the effect of surface roughness on synthetic adhesive performance, and the implications of stick-slip friction during shearing. This work extends previous studies by using a modified surface forces apparatus to quantitatively measure and model frictional forces between arrays of polydimethylsiloxane gecko footpad-mimetic tilted microflaps against smooth and rough glass surfaces. Constant attachments and detachments occur between the surfaces during shearing, as described by an avalanche model. These detachments ultimately result in failure of the adhesion interface and have been characterized in this study. Stick-slip friction disappears with increasing velocity when the flaps are sheared against a smooth silica surface; however, stick-slip was always present at all velocities and loads tested when shearing the flaps against rough glass surfaces. These results demonstrate the significance of pre-load, shearing velocity, shearing distances, commensurability and shearing direction of gecko-mimetic adhesives and provide us a simple model for analysing and/or designing such systems. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Stick–slip friction of gecko-mimetic flaps on smooth and rough surfaces

    PubMed Central

    Das, Saurabh; Cadirov, Nicholas; Chary, Sathya; Kaufman, Yair; Hogan, Jack; Turner, Kimberly L.; Israelachvili, Jacob N.

    2015-01-01

    The discovery and understanding of gecko ‘frictional-adhesion’ adhering and climbing mechanism has allowed researchers to mimic and create gecko-inspired adhesives. A few experimental and theoretical approaches have been taken to understand the effect of surface roughness on synthetic adhesive performance, and the implications of stick–slip friction during shearing. This work extends previous studies by using a modified surface forces apparatus to quantitatively measure and model frictional forces between arrays of polydimethylsiloxane gecko footpad-mimetic tilted microflaps against smooth and rough glass surfaces. Constant attachments and detachments occur between the surfaces during shearing, as described by an avalanche model. These detachments ultimately result in failure of the adhesion interface and have been characterized in this study. Stick–slip friction disappears with increasing velocity when the flaps are sheared against a smooth silica surface; however, stick–slip was always present at all velocities and loads tested when shearing the flaps against rough glass surfaces. These results demonstrate the significance of pre-load, shearing velocity, shearing distances, commensurability and shearing direction of gecko-mimetic adhesives and provide us a simple model for analysing and/or designing such systems. PMID:25589569

  18. Glycosides from Stevia rebaudiana Bertoni Possess Insulin-Mimetic and Antioxidant Activities in Rat Cardiac Fibroblasts

    PubMed Central

    Prata, Cecilia; Zambonin, Laura; Rizzo, Benedetta; Vieceli Dalla Sega, Francesco

    2017-01-01

    Stevia rebaudiana Bertoni is a shrub having a high content of sweet diterpenoid glycosides in its leaves, mainly stevioside and rebaudioside A, which are used as noncaloric, natural sweeteners. The aim of this study was to deepen the knowledge about the insulin-mimetic effect exerted by four different mixtures of steviol glycosides, rich in stevioside and rebaudioside A, in neonatal rat cardiac fibroblasts. The potential antioxidant activity of these steviol glycosides was also assessed, as oxidative stress is associated with diabetes. Likewise the insulin effect, steviol glycosides caused an increase in glucose uptake into rat fibroblasts by activating the PI3K/Akt pathway, thus inducing Glut4 translocation to the plasma membrane. The presence of S961, an insulin antagonist, completely abolished these effects, allowing to hypothesize that steviol glycosides could act as ligands of the same receptor engaged by insulin. Moreover, steviol glycosides counteracted oxidative stress by increasing reduced glutathione intracellular levels and upregulating expression and activity of the two antioxidant enzymes superoxide dismutase and catalase. The present work unravels the insulin-mimetic effect and the antioxidant property exerted by steviol glycosides, suggesting their potential beneficial role in the cotreatment of diabetes and in health maintenance. PMID:28947927

  19. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors.

    PubMed

    Jang, Su Chul; Kim, Oh Youn; Yoon, Chang Min; Choi, Dong-Sic; Roh, Tae-Young; Park, Jaesung; Nilsson, Jonas; Lötvall, Jan; Kim, Yoon-Keun; Gho, Yong Song

    2013-09-24

    Exosomes, the endogenous nanocarriers that can deliver biological information between cells, were recently introduced as new kind of drug delivery system. However, mammalian cells release relatively low quantities of exosomes, and purification of exosomes is difficult. Here, we developed bioinspired exosome-mimetic nanovesicles that deliver chemotherapeutics to the tumor tissue after systemic administration. The chemotherapeutics-loaded nanovesicles were produced by the breakdown of monocytes or macrophages using a serial extrusion through filters with diminishing pore sizes (10, 5, and 1 μm). These cell-derived nanovesicles have similar characteristics with the exosomes but have 100-fold higher production yield. Furthermore, the nanovesicles have natural targeting ability of cells by maintaining the topology of plasma membrane proteins. In vitro, chemotherapeutic drug-loaded nanovesicles induced TNF-α-stimulated endothelial cell death in a dose-dependent manner. In vivo, experiments in mice showed that the chemotherapeutic drug-loaded nanovesicles traffic to tumor tissue and reduce tumor growth without the adverse effects observed with equipotent free drug. Furthermore, compared with doxorubicin-loaded exosomes, doxorubicin-loaded nanovesicles showed similar in vivo antitumor activity. However, doxorubicin-loaded liposomes that did not carry targeting proteins were inefficient in reducing tumor growth. Importantly, removal of the plasma membrane proteins by trypsinization eliminated the therapeutic effects of the nanovesicles both in vitro and in vivo. Taken together, these studies suggest that the bioengineered nanovesicles can serve as novel exosome-mimetics to effectively deliver chemotherapeutics to treat malignant tumors.

  20. RNAi delivery by exosome-mimetic nanovesicles - Implications for targeting c-Myc in cancer.

    PubMed

    Lunavat, Taral R; Jang, Su Chul; Nilsson, Lisa; Park, Hyun Taek; Repiska, Gabriela; Lässer, Cecilia; Nilsson, Jonas A; Gho, Yong Song; Lötvall, Jan

    2016-09-01

    To develop RNA-based therapeutics, it is crucial to create delivery vectors that transport the RNA molecule into the cell cytoplasm. Naturally released exosomes vesicles (also called "Extracellular Vesicles") have been proposed as possible RNAi carriers, but their yield is relatively small in any cell culture system. We have previously generated exosome-mimetic nanovesicles (NV) by serial extrusions of cells through nano-sized filters, which results in 100-times higher yield of extracellular vesicles. We here test 1) whether NV can be loaded with siRNA exogenously and endogenously, 2) whether the siRNA-loaded NV are taken up by recipient cells, and 3) whether the siRNA can induce functional knock-down responses in recipient cells. A siRNA against GFP was first loaded into NV by electroporation, or a c-Myc shRNA was expressed inside of the cells. The NV were efficiently loaded with siRNA with both techniques, were taken up by recipient cells, which resulted in attenuation of target gene expression. In conclusion, our study suggests that exosome-mimetic nanovesicles can be a platform for RNAi delivery to cell cytoplasm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Evidence for a Müllerian mimetic radiation in Asian pitvipers

    PubMed Central

    Sanders, K.L; Malhotra, A; Thorpe, R.S

    2006-01-01

    Müllerian mimicry, in which toxic species gain mutual protection from shared warning signals, is poorly understood in vertebrates, reflecting a paucity of examples. Indirect evidence for mimicry is found if monophyletic species or clades show parallel geographic variation in warning patterns. Here, we evaluate a hypothesis of Müllerian mimicry for the pitvipers in Southeast Asia using a phylogeny derived from DNA sequences from four combined mitochondrial regions. Mantel matrix correlation tests show that conspicuous red colour pattern elements are significantly associated with sympatric and parapatric populations in four genera. To our knowledge, this represents the first evidence of a Müllerian mimetic radiation in vipers. The putative mimetic patterns are rarely found in females. This appears paradoxical in light of the Müllerian prediction of monomorphism, but may be explained by divergent selection pressures on the sexes, which have different behaviours. We suggest that biased predation on active males causes selection for protective warning coloration, whereas crypsis is favoured in relatively sedentary females. PMID:16600892

  2. Evidence for a Müllerian mimetic radiation in Asian pitvipers.

    PubMed

    Sanders, K L; Malhotra, A; Thorpe, R S

    2006-05-07

    Müllerian mimicry, in which toxic species gain mutual protection from shared warning signals, is poorly understood in vertebrates, reflecting a paucity of examples. Indirect evidence for mimicry is found if monophyletic species or clades show parallel geographic variation in warning patterns. Here, we evaluate a hypothesis of Müllerian mimicry for the pitvipers in Southeast Asia using a phylogeny derived from DNA sequences from four combined mitochondrial regions. Mantel matrix correlation tests show that conspicuous red colour pattern elements are significantly associated with sympatric and parapatric populations in four genera. To our knowledge, this represents the first evidence of a Müllerian mimetic radiation in vipers. The putative mimetic patterns are rarely found in females. This appears paradoxical in light of the Müllerian prediction of monomorphism, but may be explained by divergent selection pressures on the sexes, which have different behaviours. We suggest that biased predation on active males causes selection for protective warning coloration, whereas crypsis is favoured in relatively sedentary females.

  3. Definition of human apolipoprotein A-I epitopes recognized by autoantibodies present in patients with cardiovascular diseases.

    PubMed

    Teixeira, Priscila Camillo; Ducret, Axel; Ferber, Philippe; Gaertner, Hubert; Hartley, Oliver; Pagano, Sabrina; Butterfield, Michelle; Langen, Hanno; Vuilleumier, Nicolas; Cutler, Paul

    2014-10-10

    Autoantibodies to apolipoprotein A-I (anti-apoA-I IgG) have been shown to be both markers and mediators of cardiovascular disease, promoting atherogenesis and unstable atherosclerotic plaque. Previous studies have shown that high levels of anti-apoA-I IgGs are independently associated with major adverse cardiovascular events in patients with myocardial infarction. Autoantibody responses to apoA-I can be polyclonal and it is likely that more than one epitope may exist. To identify the specific immunoreactive peptides in apoA-I, we have developed a set of methodologies and procedures to isolate, purify, and identify novel apoA-I endogenous epitopes. First, we generated high purity apoA-I from human plasma, using thiophilic interaction chromatography followed by enzymatic digestion specifically at lysine or arginine residues. Immunoreactivity to the different peptides generated was tested by ELISA using serum obtained from patients with acute myocardial infarction and high titers of autoantibodies to native apoA-I. The immunoreactive peptides were further sequenced by mass spectrometry. Our approach successfully identified two novel immunoreactive peptides, recognized by autoantibodies from patients suffering from myocardial infarction, who contain a high titer of anti-apoA-I IgG. The discovery of these epitopes may open innovative prognostic and therapeutic opportunities potentially suitable to improve current cardiovascular risk stratification. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Intrinsic and chemo-sensitizing activity of SMAC-mimetics on high-risk childhood acute lymphoblastic leukemia.

    PubMed

    Schirmer, M; Trentin, L; Queudeville, M; Seyfried, F; Demir, S; Tausch, E; Stilgenbauer, S; Eckhoff, S M; Meyer, L H; Debatin, K-M

    2016-01-14

    SMAC-mimetics represent a targeted therapy approach to overcome apoptosis resistance in many tumors. Here, we investigated the efficacy of the SMAC-mimetic BV6 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In ALL cell lines, intrinsic apoptosis sensitivity was associated with rapid cIAP degradation, NF-κB activation, TNF-α secretion and induction of an autocrine TNF-α-dependent cell death loop. This pattern of responsiveness was also observed upon ex vivo analysis of 40 primograft BCP-ALL samples. Treatment with BV6 induced cell death in the majority of ALL primografts including leukemias with high-risk and poor-prognosis features. Inhibition of cell death by the TNF receptor fusion protein etanercept demonstrated that BV6 activity is dependent on TNF-α. In a preclinical NOD/SCID/huALL model of high-risk ALL, marked anti-leukemia effectivity and significantly prolonged survival were observed upon BV6 treatment. Interestingly, also in vivo, intrinsic SMAC-mimetic activity was mediated by TNF-α. Importantly, BV6 increased the effectivity of conventional induction therapy including vincristine, dexamethasone and asparaginase leading to prolonged remission induction. These data suggest SMAC-mimetics as an important addendum to efficient therapy of pediatric BCP-ALL.

  5. The spread of adenoviral vectors to central nervous system through pathway of cochlea in mimetic aging and young rats.

    PubMed

    Chen, X; Zhao, X; Hu, Y; Lan, F; Sun, H; Fan, G; Sun, Y; Wu, J; Kong, W; Kong, W

    2015-11-01

    There is no definitive conclusion concerning the spread of viral vectors to the brain after a cochlear inoculation. In addition, some studies have reported different distribution profiles of viral vectors in the central auditory system after a cochlear inoculation. Thus, rats were grouped into either a mimetic aging group or a young group and transfected with adenoviral vectors (AdVs) by round window membrane injection. The distribution of AdV in central nervous system (CNS) was demonstrated in the two groups with transmission electron microscopy and immunofluorescence. We found that the AdV could disseminate into the CNS and that the neuronal damage and stress-induced GRP78 expression were reduced after transfection with PGC-1α, as compared with the control vectors, especially in the mimetic aging group. We also found that the host immune response was degraded in CNS in the mimetic aging group after transduction through the cochlea, as compared with the young group. These results demonstrate that viral vectors can disseminate into the CNS through the cochlea. Moreover, mimetic aging induced by D-galactose could facilitate the spread of viral vectors into the CNS from the cochlea. These findings may indicate a new potential approach for gene therapy against age-related diseases in the CNS.

  6. L-Eye to Me: The Combined Role of Need for Cognition and Facial Trustworthiness in Mimetic Desires

    ERIC Educational Resources Information Center

    Treinen, Evelyne; Corneille, Olivier; Luypaert, Gaylord

    2012-01-01

    Recent studies showed that stimuli are evaluated more favourably when they are perceived to capture others' attention, an effect coined "mimetic desire". The aim of the present research was to examine the combined role of Need for Cognition and target's facial trustworthiness in this effect. Participants saw movie excerpts of trustworthy and…

  7. Plaque-hyaluronidase-responsive high-density-lipoprotein-mimetic nanoparticles for multistage intimal-macrophage-targeted drug delivery and enhanced anti-atherosclerotic therapy

    PubMed Central

    Zhang, Mengyuan; He, Jianhua; Jiang, Cuiping; Zhang, Wenli; Yang, Yun; Wang, Zhiyu; Liu, Jianping

    2017-01-01

    Increasing evidence has highlighted the pivotal role that intimal macrophage (iMΦ) plays in the pathophysiology of atherosclerotic plaques, which represents an attractive target for atherosclerosis treatment. In this work, to address the insufficient specificity of conventional reconstituted high-density lipoprotein (rHDL) for iMΦ and its limited cholesterol efflux ability, we designed a hyaluronan (HA)-anchored core–shell rHDL. This nanoparticle achieved efficient iMΦ-targeted drug delivery via a multistage-targeting approach, and excellent cellular cholesterol removal. It contained a biodegradable poly (lactic-co-glycolic acid) (PLGA) core within a lipid bilayer, and apolipoprotein A-I (apoA-I) absorbing on the lipid bilayer was covalently decorated with HA. The covalent HA coating with superior stability and greater shielding was favorable for not only minimizing the liver uptake but also facilitating the accumulation of nanoparticles at leaky endothelium overexpressing CD44 receptors in atherosclerotic plaques. The ultimate iMΦ homing was achieved via apoA-I after HA coating degraded by hyaluronidase (HAase) (abundant in atherosclerotic plaque). The multistage-targeting mechanism was revealed on the established injured endothelium–macrophage co-culture dynamic system. Upon treatment with HAase in vitro, the nanoparticle HA-(C)-PLGA-rHDL exhibited a greater cholesterol efflux capacity compared with conventional rHDL (2.43-fold). Better targeting efficiency toward iMΦ and attenuated liver accumulation were further proved by results from ex vivo imaging and iMΦ-specific fluorescence localization. Ultimately, HA-(C)-PLGA-rHDL loaded with simvastatin realized the most potent anti-atherogenic efficacies in model animals over other preparations. Thus, the HAase-responsive HDL-mimetic nanoparticle was shown in this study to be a promising nanocarrier for anti-atherogenic therapy, in the light of efficient iMΦ-targeted drug delivery and excellent function of

  8. Antibody Elicited Against the gp41 N-Heptad Repeat (NHR) Coiled-Coil Can Neutralize HIV-1 with Modest Potency but Non-neutralizing Antibodies Also Bind to NHR Mimetics

    PubMed Central

    Nelson, Josh D.; Kinkead, Heather; Brunel, Florence M.; Leaman, Dan; Jensen, Richard; Louis, John M.; Maruyama, Toshiaki; Bewley, Carole A.; Bowdish, Katherine; Clore, G. Marius; Dawson, Philip E.; Frederickson, Shana; Mage, Rose G.; Richman, Douglas D.; Burton, Dennis R.; Zwick, Michael B.

    2008-01-01

    Following CD4 receptor binding to the HIV-1 envelope spike (Env), the conserved N-heptad repeat (NHR) region of gp41 forms a coiled-coil that is a precursor to the fusion reaction. Although it has been a target of drug and vaccine design, there are few monoclonal antibody (mAb) tools with which to probe the antigenicity and immunogenicity specifically of the NHR coiled-coil. Here, we have rescued HIV-1-neutralizing anti-NHR mAbs from immune phage display libraries that were prepared (i) from b9 rabbits immunized with a previously described mimetic of the NHR coiled-coil, N35CCG-N13, and (ii) from an HIV-1 infected individual. We describe a rabbit single-chain Fv fragment (scFv), 8K8, and a human Fab, DN9, which specifically recognize NHR coiled-coils that are unoccupied by peptide corresponding to the C-heptad repeat or CHR region of gp41 (e.g. C34). The epitopes of 8K8 and DN9 were found to partially overlap with that of a previously described anti-NHR mAb, IgG D5; however, 8K8 and DN9 were much more specific than D5 for unoccupied NHR trimers. The mAbs, including a whole IgG 8K8 molecule, neutralized primary HIV-1 of clades B and C in a pseudotyped virus assay with comparable, albeit relatively modest potency. Finally, a human Fab T3 and a rabbit serum (both non-neutralizing) were able to block binding of D5 and 8K8 to a gp41 NHR mimetic, respectively, but not the neutralizing activity of these mAbs. We conclude from these results that NHR coiled-coil analogs of HIV-1 gp41 elicit many Abs during natural infection and through immunization, but that due to limited accessibility to the corresponding region on fusogenic gp41 few can neutralize. Caution is therefore required in targeting the NHR for vaccine design. Nevertheless, the mAb panel may be useful as tools for elucidating access restrictions to the NHR of gp41 and in designing potential improvements to mimetics of receptor-activated Env. PMID:18499210

  9. Antibody elicited against the gp41 N-heptad repeat (NHR) coiled-coil can neutralize HIV-1 with modest potency but non-neutralizing antibodies also bind to NHR mimetics.

    PubMed

    Nelson, Josh D; Kinkead, Heather; Brunel, Florence M; Leaman, Dan; Jensen, Richard; Louis, John M; Maruyama, Toshiaki; Bewley, Carole A; Bowdish, Katherine; Clore, G Marius; Dawson, Philip E; Frederickson, Shana; Mage, Rose G; Richman, Douglas D; Burton, Dennis R; Zwick, Michael B

    2008-07-20

    Following CD4 receptor binding to the HIV-1 envelope spike (Env), the conserved N-heptad repeat (NHR) region of gp41 forms a coiled-coil that is a precursor to the fusion reaction. Although it has been a target of drug and vaccine design, there are few monoclonal antibody (mAb) tools with which to probe the antigenicity and immunogenicity specifically of the NHR coiled-coil. Here, we have rescued HIV-1-neutralizing anti-NHR mAbs from immune phage display libraries that were prepared (i) from b9 rabbits immunized with a previously described mimetic of the NHR coiled-coil, N35(CCG)-N13, and (ii) from an HIV-1 infected individual. We describe a rabbit single-chain Fv fragment (scFv), 8K8, and a human Fab, DN9, which specifically recognize NHR coiled-coils that are unoccupied by peptide corresponding to the C-heptad repeat or CHR region of gp41 (e.g. C34). The epitopes of 8K8 and DN9 were found to partially overlap with that of a previously described anti-NHR mAb, IgG D5; however, 8K8 and DN9 were much more specific than D5 for unoccupied NHR trimers. The mAbs, including a whole IgG 8K8 molecule, neutralized primary HIV-1 of clades B and C in a pseudotyped virus assay with comparable, albeit relatively modest potency. Finally, a human Fab T3 and a rabbit serum (both non-neutralizing) were able to block binding of D5 and 8K8 to a gp41 NHR mimetic, respectively, but not the neutralizing activity of these mAbs. We conclude from these results that NHR coiled-coil analogs of HIV-1 gp41 elicit many Abs during natural infection and through immunization, but that due to limited accessibility to the corresponding region on fusogenic gp41 few can neutralize. Caution is therefore required in targeting the NHR for vaccine design. Nevertheless, the mAb panel may be useful as tools for elucidating access restrictions to the NHR of gp41 and in designing potential improvements to mimetics of receptor-activated Env.

  10. NMR structures in different membrane environments of three ocellatin peptides isolated from Leptodactylus labyrinthicus.

    PubMed

    Gomes, Karla A G G; Dos Santos, Daniel M; Santos, Virgílio M; Piló-Veloso, Dorila; Mundim, Higor M; Rodrigues, Leticia V; Lião, Luciano M; Verly, Rodrigo M; de Lima, Maria Elena; Resende, Jarbas M

    2018-05-01

    The peptides ocellatin-LB1, -LB2 and -F1 have previously been isolated from anurans of the Leptodactylus genus and the sequences are identical from residue 1-22, which correspond to ocellatin-LB1 sequence (GVVDILKGAAKDIAGHLASKVM-NH 2 ), whereas ocellatin-LB2 carries an extra N and ocellatin-F1 extra NKL residues at their C-termini. These peptides showed different spectra of activities and biophysical investigations indicated a direct correlation between membrane-disruptive properties and antimicrobial activities, i.e. ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. To better characterize their membrane interactions, we report here the detailed three-dimensional NMR structures of these peptides in TFE-d 2 :H 2 O (60:40) and in the presence of zwitterionic DPC-d 38 and anionic SDS-d 25 micellar solutions. Although the three peptides showed significant helical contents in the three mimetic environments, structural differences were noticed. When the structures of the three peptides in the presence of DPC-d 38 micelles are compared to each other, a more pronounced curvature is observed for ocellatin-F1 and the bent helix, with the concave face composed mostly of hydrophobic residues, is consistent with the micellar curvature and the amphipathic nature of the molecule. Interestingly, an almost linear helical segment was observed for ocellatin-F1 in the presence of SDS-d 25 micelles and the conformational differences in the two micellar environments are possibly related to the presence of the extra Lys residue near the peptide C-terminus, which increases the affinity of ocellatin-F1 to anionic membranes in comparison with ocellatin-LB1 and -LB2, as proved by isothermal titration calorimetry. To our knowledge, this work reports for the first time the three-dimensional structures of ocellatin peptides. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Crafting of functional biomaterials by directed molecular self-assembly of triple helical peptide building blocks.

    PubMed

    Banerjee, Jayati; Azevedo, Helena S

    2017-12-06

    Collagen is the most abundant extracellular matrix protein in the body and has widespread use in biomedical research, as well as in clinics. In addition to difficulties in the production of recombinant collagen due to its high non-natural imino acid content, animal-derived collagen imposes several major drawbacks-variability in composition, immunogenicity, pathogenicity and difficulty in sequence modification-that may limit its use in the practical scenario. However, in recent years, scientists have shifted their attention towards developing synthetic collagen-like materials from simple collagen model triple helical peptides to eliminate the potential drawbacks. For this purpose, it is highly desirable to develop programmable self-assembling strategies that will initiate the hierarchical self-assembly of short peptides into large-scale macromolecular assemblies with recommendable bioactivity. Herein, we tried to elaborate our understanding related to the strategies that have been adopted by few research groups to trigger self-assembly in the triple helical peptide system producing fascinating supramolecular structures. We have also touched upon the major epitopes within collagen that can be incorporated into collagen mimetic peptides for promoting bioactivity.

  12. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals?

    PubMed Central

    Brogden, Nicole K.; Brogden, Kim A.

    2011-01-01

    The concept of antimicrobial peptides (AMPs) as potent pharmaceuticals is firmly established in the literature, and most research articles on this topic conclude by stating that AMPs represent promising therapeutic agents against bacterial and fungal agents. Indeed, early research in this field showed that AMPs were diverse in nature, had high activities with low minimal inhibitory concentrations, had broad spectrums of activity against bacterial, fungal and viral pathogens, and could easily be manipulated to alter their specificities, reduce their cytotoxicities and increase their antimicrobial activities. Unfortunately, commercial development of these peptides, for even the simplest of applications, has been very limited. With some peptides there are obstacles with their manufacture, in vivo efficacy and in vivo retention. More recently, the focus has shifted. Contemporary research now uses a more sophisticated approach to develop AMPs that surmount many of these prior obstacles. AMP mimetics, hybrid AMPs, AMP congeners, cyclotides and stabilised AMPs, AMP conjugates and immobilised AMPs have all emerged with selective or ‘targeted’ antimicrobial activities, improved retention, or unique abilities that allow them to bind to medical or industrial surfaces. These groups of new peptides have creative medical and industrial application potentials to treat antibiotic-resistant bacterial infections and septic shock, to preserve food or to sanitise surfaces both in vitro and in vivo. PMID:21733662

  13. RSL3 and Erastin differentially regulate redox signaling to promote Smac mimetic-induced cell death.

    PubMed

    Dächert, Jasmin; Schoeneberger, Hannah; Rohde, Katharina; Fulda, Simone

    2016-09-27

    Redox mechanisms play an important role in the control of various signaling pathways. Here, we report that Second mitochondrial activator of caspases (Smac) mimetic-induced cell death is regulated by redox signaling. We show that RSL3, a glutathione (GSH) peroxidase (GPX) 4 inhibitor, or Erastin, an inhibitor of the cystine/glutamate antiporter, cooperate with the Smac mimetic BV6 to induce reactive oxygen species (ROS)-dependent cell death in acute lymphoblastic leukemia (ALL) cells. Addition of the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to rescue ROS-induced cell death, demonstrating that RSL3/BV6- or Erastin/BV6-induced cell death occurs in a caspase-independent manner. Interestingly, the iron chelator Deferoxamine (DFO) significantly inhibits RSL3/BV6-induced cell death, whereas it is unable to rescue cell death by Erastin/BV6, showing that RSL3/BV6-, but not Erastin/BV6-mediated cell death depends on iron. ROS production is required for both RSL3/BV6- and Erastin/BV6-induced cell death, since the ROS scavenger α-tocopherol (α-Toc) rescues RSL3/BV6- and Erastin/BV6-induced cell death. By comparison, genetic or pharmacological inhibition of lipid peroxidation by GPX4 overexpression or ferrostatin (Fer)-1 significantly decreases RSL3/BV6-, but not Erastin/BV6-induced cell death, despite inhibition of lipid peroxidation upon exposure to RSL3/BV6 or Erastin/BV6. Of note, inhibition of lipid peroxidation by Fer-1 protects from RSL3/BV6-, but not from Erastin/BV6-stimulated ROS production, indicating that other forms of ROS besides lipophilic ROS occur during Erastin/BV6-induced cell death. Taken together, RSL3/BV6 and Erastin/BV6 differentially regulate redox signaling and cell death in ALL cells. While RSL3/BV6 cotreatment induces ferroptotic cell death, Erastin/BV6 stimulates oxidative cell death independently of iron. These findings have important implications for the therapeutic targeting of redox signaling to

  14. Activation and Inactivation of Primary Human Immunodeficiency Virus Envelope Glycoprotein Trimers by CD4-Mimetic Compounds

    PubMed Central

    Madani, Navid; Princiotto, Amy M.; Zhao, Connie; Jahanbakhshsefidi, Fatemeh; Mertens, Max; Herschhorn, Alon; Melillo, Bruno; Smith, Amos B.

    2016-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) entry into cells is mediated by the viral envelope glycoproteins (Env), a trimer of three gp120 exterior glycoproteins, and three gp41 transmembrane glycoproteins. The metastable Env is triggered to undergo entry-related conformational changes when gp120 binds sequentially to the receptors, CD4 and CCR5, on the target cell. Small-molecule CD4-mimetic compounds (CD4mc) bind gp120 and act as competitive inhibitors of gp120-CD4 engagement. Some CD4mc have been shown to trigger Env prematurely, initially activating Env function, followed by rapid and irreversible inactivation. Here, we study CD4mc with a wide range of anti-HIV-1 potencies and demonstrate that all tested CD4mc are capable of activating as well as inactivating Env function. Biphasic dose-response curves indicated that the occupancy of the protomers in the Env trimer governs viral activation versus inactivation. One CD4mc bound per Env trimer activated HIV-1 infection. Envs with two CD4mc bound were activated for infection of CD4-negative, CCR5-positive cells, but the infection of CD4-positive, CCR5-positive cells was inhibited. Virus was inactivated when all three Env protomers were occupied by the CD4mc, and gp120 shedding from the Env trimer was increased in the presence of some CD4mc. Env reactivity and the on rates of CD4mc binding to the Env trimer were found to be important determinants of the potency of activation and entry inhibition. Cross-sensitization of Env protomers that do not bind the CD4mc to neutralization by an anti-V3 antibody was not evident. These insights into the mechanism of antiviral activity of CD4mc should assist efforts to optimize their potency and utility. IMPORTANCE The trimeric envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) mediate virus entry into host cells. Binding to the host cell receptors, CD4 and CCR5, triggers changes in the conformation of the HIV-1 envelope glycoprotein trimer important

  15. A comparative investigation of mussel-mimetic sealants for fetal membrane repair.

    PubMed

    Perrini, Michela; Barrett, Devin; Ochsenbein-Koelble, Nicole; Zimmermann, Roland; Messersmith, Phillip; Ehrbar, Martin

    2016-05-01

    Towards the prevention of iatrogenic preterm premature rupture of the fetal membrane, two mussel-mimetic tissue adhesives (cT and cPEG) have been compared and qualified as possible sealants for membrane repair. Monotonic and cyclic inflation tests of repaired fetal membranes were carried out in order to investigate the performance of the glues under quasi-static, fast, and repeated loading. Finite element simulations of repaired and inflated synthetic membranes allowed to compare cT and cPEG under large deformations. Both adhesives seal the membrane well, resisting pressures higher than the intra-uterine baseline. Only under repeated mechanical load, as well as under fast and acute deformation of the membrane, the sealing performance has deteriorated. Even though cT loses adhesion to the deformed membrane, it is able to withstand high deformations and pressures without rupturing, while cPEG breaks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The mimetic finite difference method for the Landau–Lifshitz equation

    DOE PAGES

    Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich

    2017-01-01

    The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less

  17. Design and synthesis of type-III mimetics of ω-conotoxin GVIA

    NASA Astrophysics Data System (ADS)

    Baell, Jonathan B.; Forsyth, Stewart A.; Gable, Robert W.; Norton, Raymond S.; Mulder, Roger J.

    2001-12-01

    Our interest lies in the rational design and synthesis of type-III mimetics of protein and polypeptide structure and function. Our approach involves interactive design of conformationally defined molecular scaffolds that project certain functional groups in a way that mimics the projection of important binding residues as determined in the parent structure. These design principles are discussed and applied to the structurally defined polypeptide, ω-conotoxin GVIA, which blocks voltage-gated, neuronal N-type calcium channels. These ion channels represent therapeutic targets for the development of new analgesics that can treat chronic pain. It is shown how a discontinuous, 3-residue pharmacophore of GVIA can be mimicked by different molecular scaffolds. It is illustrated how such 1st generation leads must necessarily be weak and that optimisability must therefore be built-in during the design process.

  18. Synthesis of a polymerizable, bivalent glycan mimetic of the HIV envelope spike gp120.

    PubMed

    Sletten, Eric T; Svec, Riley L; Nguyen, Hien M

    2015-06-03

    A synthetic study on the creation of a bivalent, ROMP capable monomer has the ability to be polymerized into the corresponding neo-glycopolymer mimetic of the surface glycans on gp120 envelope spike of the HIV virus. In our approach, we have developed a new strategy for orthogonally attaching both the terminal Manα1-2Man disaccharide unit of the D1 arm of Man9GlcNAc2 of HIV gp120 and the terminal Manα1-2 unit of its D2 arm to a bivalent scaffold to produce the corresponding polymerizable monomer. The Manα1-2 saccharide moieties were assembled using a nickel catalyst, Ni(4-F-PhCN) 4 (OTf) 2 , to activate trihaloacetimidate donors under mild and operationally simple procedure.

  19. Synthesis of a polymerizable, bivalent glycan mimetic of the HIV envelope spike gp120

    PubMed Central

    Sletten, Eric T.; Svec, Riley L.; Nguyen, Hien M.

    2015-01-01

    A synthetic study on the creation of a bivalent, ROMP capable monomer has the ability to be polymerized into the corresponding neo-glycopolymer mimetic of the surface glycans on gp120 envelope spike of the HIV virus. In our approach, we have developed a new strategy for orthogonally attaching both the terminal Manα1-2Man disaccharide unit of the D1 arm of Man9GlcNAc2 of HIV gp120 and the terminal Manα1-2 unit of its D2 arm to a bivalent scaffold to produce the corresponding polymerizable monomer. The Manα1-2 saccharide moieties were assembled using a nickel catalyst, Ni(4-F-PhCN)4(OTf)2, to activate trihaloacetimidate donors under mild and operationally simple procedure. PMID:26019370

  20. Exploring the Existing Drug Space for Novel pTyr Mimetic and SHP2 Inhibitors.

    PubMed

    He, Rongjun; Yu, Zhi-Hong; Zhang, Ruo-Yu; Wu, Li; Gunawan, Andrea M; Lane, Brandon S; Shim, Joong S; Zeng, Li-Fan; He, Yantao; Chen, Lan; Wells, Clark D; Liu, Jun O; Zhang, Zhong-Yin

    2015-07-09

    Protein tyrosine phosphatases (PTPs) are potential therapeutic targets for many diseases. Unfortunately, despite considerable drug discovery efforts devoted to PTPs, obtaining selective and cell permeable PTP inhibitors remains highly challenging. We describe a strategy to explore the existing drug space for previously unknown PTP inhibitory activities. This led to the discovery of cefsulodin as an inhibitor of SHP2, an oncogenic phosphatase in the PTP family. Crystal structure analysis of SHP2 interaction with cefsulodin identified sulfophenyl acetic amide (SPAA) as a novel phosphotyrosine (pTyr) mimetic. A structure-guided and SPAA fragment-based focused library approach produced several potent and selective SHP2 inhibitors. Notably, these inhibitors blocked SHP2-mediated signaling events and proliferation in several cancer cell lines. Thus, SPAA may serve as a new platform for developing chemical probes for other PTPs.

  1. Anti-antimicrobial Peptides

    PubMed Central

    Ryan, Lloyd; Lamarre, Baptiste; Diu, Ting; Ravi, Jascindra; Judge, Peter J.; Temple, Adam; Carr, Matthew; Cerasoli, Eleonora; Su, Bo; Jenkinson, Howard F.; Martyna, Glenn; Crain, Jason; Watts, Anthony; Ryadnov, Maxim G.

    2013-01-01

    Antimicrobial or host defense peptides are innate immune regulators found in all multicellular organisms. Many of them fold into membrane-bound α-helices and function by causing cell wall disruption in microorganisms. Herein we probe the possibility and functional implications of antimicrobial antagonism mediated by complementary coiled-coil interactions between antimicrobial peptides and de novo designed antagonists: anti-antimicrobial peptides. Using sequences from native helical families such as cathelicidins, cecropins, and magainins we demonstrate that designed antagonists can co-fold with antimicrobial peptides into functionally inert helical oligomers. The properties and function of the resulting assemblies were studied in solution, membrane environments, and in bacterial culture by a combination of chiroptical and solid-state NMR spectroscopies, microscopy, bioassays, and molecular dynamics simulations. The findings offer a molecular rationale for anti-antimicrobial responses with potential implications for antimicrobial resistance. PMID:23737519

  2. Mechanisms of antileukemic activity of the novel BH3 mimetic GX15-070 (obatoclax)

    PubMed Central

    Konopleva, Marina; Watt, Julie; Contractor, Rooha; Tsao, Twee; Harris, David; Estrov, Zeev; Bornmann, William; Kantarjian, Hagop; Viallet, Jean; Samudio, Ismael; Andreeff, Michael

    2013-01-01

    In this study, we investigated the mechanism of apoptosis induction of obatoclax (GX15-070), a novel BH3 mimetic, in acute myeloid leukemia (AML) cell lines and primary AML samples. Obatoclax inhibited cell growth of HL-60, U937, OCI-AML3 and KG-1 cell lines. Apoptosis induction contributed to the observed antiproliferative effects at concentrations of this agent that mirror its affinity for antiapoptotic Bcl-2 proteins. We demonstrate that obatoclax can promote the release of cytochrome C from isolated leukemia cell mitochondria, and that apoptosis induced by this agent is preceded by the release of Bak from Mcl-1, liberation of Bim from both Bcl-2 and Mcl-1, and the formation of an active Bak/Bax complex. Notably, apoptosis was diminished, but not fully prevented, in the absence of Bak/Bax or Bim suggesting that obatoclax has additional targets that contribute to its cytotoxicity. At growth-inhibitory doses that did not induce apoptosis or decreased viability, obatoclax induced an S/G2 cell cycle block. Obatoclax induced apoptosis in AML CD34+ progenitor cells with an average IC50 of 3.59 +/− 1.23μM although clonogenicity was inhibited at concentrations of 75-100 nM. Obatoclax synergized with the novel BH3 mimetic ABT-737 to induce apoptosis in OCI-AML3 cells, and synergistically induced apoptosis in combination with AraC in leukemic cell lines and in primary AML samples. In conclusion, we show that obatoclax potently induces apoptosis and decreases leukemia cell proliferation and may be used in a novel therapeutic strategy for AML alone and in combination with other targeted agents and chemotherapeutics. PMID:18451169

  3. Cytotoxic effects of SMAC-mimetic compound LCL161 in head and neck cancer cell lines.

    PubMed

    Brands, Roman C; Herbst, Franziska; Hartmann, Stefan; Seher, Axel; Linz, Christian; Kübler, Alexander C; Müller-Richter, Urs D A

    2016-12-01

    Head and neck squamous cell carcinoma (HNSCC) is one of the most common tumor entities worldwide. Unfortunately, recent drug developments in other fields of oncology have yielded no efficacy in the treatment of oral squamous cell carcinoma. As a new starting point, we investigated the impact of Fas ligand (FasL) and the SMAC-mimetic compound LCL161 in mono- and combination treatment in HNSCC cell lines. Five different cell lines of HNSCC were treated with FasL and LCL161 in mono- and combination treatment. Cytotoxicity was measured via a crystal violet assay. The cell lines were characterized for CD95 (FasL receptor) expression via flow cytometry. The degradation of cellular inhibitor of apoptosis protein 1 (cIAP1) was detected via Western blot. Incubation with FasL led to a significant decrease in three out of five cell lines. Combination treatment with LCL161 enhanced cytotoxicity significantly. Two cell lines were FasL resistant, but one of them could be resensitized with LCL161. In all cell lines, Western blot analysis showed degradation of cIAP1 after LCL161 application. However, one cell line showed only minor vulnerability to the FasL and LCL161 combination. This is the first study investigating combination treatment of FasL and LCL161 in head and neck cancer cell lines. Pro-apoptotic effects of the combination were detected in the majority of the cell lines. Interestingly, one of two FasL-resistant cell lines was sensitive to the combination therapy with FasL and LCL161. SMAC-mimetic compounds show promising results in the treatment of other tumor entities in vitro and might be useful drugs to improve HNSCC therapy.

  4. Pharmacology of smac mimetics; chemotype differentiation based on physical association with caspase regulators and cellular transport.

    PubMed

    Talbott, Randy L; Borzilleri, Robert M; Chaudhry, Charu; Fargnoli, Joseph; Shen, Henry; Fairchild, Craig; Barnhart, Bryan; Ortega, Marie; McDonagh, Thomas E; Vuppugalla, Ragini; Vite, Gregory D; Hunt, John T; Gottardis, Marco; Naglich, Joseph G

    2015-11-01

    Cellular levels of inhibitor of apoptosis (IAP) proteins are elevated in multiple human cancers and their activities often play a part in promoting cancer cell survival by blocking apoptotic pathways, controlling signal transduction pathways and contributing to resistance. These proteins function through interactions of their BIR (baculoviral IAP repeat) protein domains with pathway components and these interactions are endogenously antagonized by Smac/Diablo (second mitochondrial activator of caspases/direct IAP binding protein with low isoelectric point). This report describes development of synthetic smac mimetics (SM) and compares their binding, antiproliferative and anti-tumor activities. All dimeric antagonists inhibit in vitro smac tetrapeptide binding to recombinant IAP proteins, rescue IAP-bound caspase-3 activity and show anti-proliferative activity against human A875 melanoma cells. One heterodimeric SM, SM3, binds tightly to IAP proteins in vitro and slowly dissociates (greater than two hours) from these protein complexes compared to the other antagonists. In addition, in vitro SM anti-proliferation potency is influenced by ABCB1 transporter (ATP-binding cassette, sub-family B; MDR1, P-gp) activities and one antagonist, SM5, does not appear to be an ABCB1 efflux pump substrate. All dimeric smac mimetics inhibit the growth of human melanoma A875 tumors implanted in athymic mice at well-tolerated doses. One antagonist, SM4, shows broad spectrum in vivo anti-tumor activity and modulates known pharmacodynamic markers of IAP antagonism. These data taken together demonstrate the range of diverse dimeric IAP antagonist activities and supports their potential as anticancer agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Smac mimetic triggers necroptosis in pancreatic carcinoma cells when caspase activation is blocked.

    PubMed

    Hannes, Sabine; Abhari, Behnaz Ahangarian; Fulda, Simone

    2016-09-28

    Evasion of apoptosis represents a key mechanism of treatment resistance of pancreatic cancer (PC) and contributes to the poor prognosis of this cancer type. Here, we report that induction of necroptosis is an alternative strategy to trigger programmed cell death in apoptosis-resistant PC cells. We show that the second mitochondrial activator of caspases (Smac) mimetic BV6 that antagonizes inhibitor of apoptosis (IAP) proteins induces necroptosis in PC cells in which apoptosis is blocked by the caspase inhibitor zVAD.fmk. Intriguingly, BV6 switches autocrine/paracrine production of tumor necrosis factor (TNF)α by PC cells into a death signal and also acts in concert with exogenously supplied TNFα to trigger necroptosis, when caspase activation is simultaneously blocked. BV6 stimulates TNFα production and formation of the receptor-interacting protein (RIP)1/RIP3-containing necrosome complex in PC cells. Knockdown of TNF receptor 1 (TNFR1) protects PC cells from BV6- or BV6/TNFα-mediated cell death, demonstrating that TNFα autocrine/paracrine signaling by PC cells contributes to BV6-induced necroptosis. Importantly, genetic silencing of receptor interacting protein kinase 3 (RIPK3) or mixed lineage kinase domain-like protein (MLKL) significantly rescues PC cells from BV6- or BV6/TNFα-induced cell death. Similarly, pharmacological inhibition of RIP1, RIP3 or MLKL significantly reduces BV6- or BV6/TNFα-stimulated cell death. By demonstrating that Smac mimetics can bypass resistance to apoptosis by triggering necroptosis as an alternative form of programmed cell death, our findings have important implications for the design of new treatment concepts for PC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Bis(maltolato)vanadium(III)-polypyridyl complexes: synthesis, characterization, DNA cleavage, and insulin mimetic activity.

    PubMed

    Islam, Md Nazrul; Kumbhar, Anupa A; Kumbhar, Avinash S; Zeller, Matthias; Butcher, Raymond J; Dusane, Menakshi Bhat; Joshi, Bimba N

    2010-09-20

    Four vanadium(III) complexes of the general formula [V(maltol)(2)(N-N)]ClO(4), where N-N is 2,2'-bipyridine (bpy) (1); 1,10-phenanthroline (phen) (2); dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz) (4), have been synthesized and characterized by IR, UV-visible, NMR spectroscopies, and electrospray ionization mass spectra (ESI-MS). The complexes exhibit the typical (1)H NMR spectra for paramagnetic V(III) species. The structures of complexes 1, 2, and 3 were characterized by single crystal X-ray diffraction. All complexes are monomeric and cationic containing V(III) species ligated to one neutral polypyridyl ligand and two monoanionic bidentate maltolate ligands with a distorted octahedral geometry. The complexes show an irreversible redox peak around +0.80 V versus Ag/AgCl corresponding to one-electron oxidation of V(III) to V(IV). The time-resolved UV-visible spectral changes for the complexes during the electrolysis in acetonitrile solution at +1.0 V are consistent with one-electron oxidation of the complexes to yield the stable V(IV) species. All complexes cleave plasmid pBR322 DNA without the addition of any external agents. In vitro insulin mimetic activity against insulin responsive RIN 5f cells indicates that complex 1 has similar activity to insulin while the others have moderate insulin mimetic activity.

  7. Structural origins of the insulin-mimetic activity of bis(acetylacetonato)oxovanadium(IV).

    PubMed

    Makinen, Marvin W; Brady, Matthew J

    2002-04-05

    We have investigated the interaction of bis(acetylacetonato)oxovanadium(IV) (VO(acac)(2)) with bovine serum albumin (BSA) by EPR and angle-selected electron nuclear double resonance, correlating results with assays of glucose uptake by 3T3-L1 adipocytes. EPR spectra of VO(acac)(2) showed no broadening in the presence of BSA; however, electron nuclear double resonance titrations of VO(acac)(2) in the presence of BSA were indicative of adduct formation of VO(acac)(2) with albumin of 1:1 stoichiometry. The influence of VO(acac)(2) on uptake of 2-deoxy-d-[1-(14)C]glucose by serum-starved 3T3-L1 adipocytes was measured in the presence and absence of BSA. Glucose uptake was stimulated 9-fold in the presence of 0.5 mm VO(acac)(2), 17-fold in the presence of 0.5 mm VO(acac)(2) plus 1 mm BSA, and 22-fold in the presence of 100 nm insulin. BSA had no influence on glucose uptake, on the action of insulin, or on glucose uptake in the presence of VOSO(4). The maximum insulin-mimetic effect of VO(acac)(2) was observed at VO(acac)(2):BSA ratios less than or equal to 1.0. Similar results were obtained also with bis(maltolato)oxovanadium(IV). These results suggest that the enhanced insulin-mimetic action of organic chelates of VO(2+) may be dependent on adduct formation with BSA and possibly other serum transport proteins.

  8. Synthesis, characterisation and insulin-mimetic activity of oxovanadium(IV) complexes with amidrazone derivatives.

    PubMed

    Cocco, Maria Teresa; Onnis, Valentina; Ponticelli, Gustavo; Meier, Beate; Rehder, Dieter; Garribba, Eugenio; Micera, Giovanni

    2007-01-01

    The complexation of VO(2+) ion by ten acetamidrazone and 2-phenylacetamidrazone derivatives (L) was studied. Sixteen novel VO(2+) complexes were synthesised and characterised through the combined application of analytical and spectroscopic (EPR (electron paramagnetic resonance), FT-IR and diffuse reflectance electronic absorption) techniques. Eight are 1:2 species of composition [VOL(2)]SO(4) x xH(2)O and eight are 1:1 species with formula [VOL(SO(4))](n) x xH(2)O. The experimental data suggest a bidentate coordination mode for L with the donor set formed by the imine nitrogen and the carbonyl oxygen. EPR spectra indicate a square-pyramidal geometry for the 1:1 complexes and a penta-coordinated geometry intermediate between the square-pyramid and the trigonal-bipyramid for the 1:2 species. The hyperfine coupling constant along z axis, A(z), of the 1:2 complexes exhibits a marked reduction with respect to the predicted value (approximately 148x10(-4)cm(-1) vs. approximately 170x10(-4)cm(-1)). IR spectroscopic evidence supports the presence of sulphate as a counter-ion in the 1:2, and as a bridging bidentate ligand in the 1:1 complexes. Insulin-mimetic tests on modified fibroblasts, based on a modified MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazoliumbromide) assay, performed on three of the bis-chelated and eight of the mono-chelated derivatives, indicate that they are biologically active. The similar hydro/lipophilicity and the lack of ligand substituents recognizable by cell membrane receptors prevent substantial differentiation in the insulin-mimetic action.

  9. Solution NMR of SNAREs, complexin and α-synuclein in association with membrane-mimetics.

    PubMed

    Liang, Binyong; Tamm, Lukas K

    2018-04-01

    SNARE-mediated membrane fusion is a ubiquitous process responsible for intracellular vesicle trafficking, including membrane fusion in exocytosis that leads to hormone and neurotransmitter release. The proteins that facilitate this process are highly dynamic and adopt multiple conformations when they interact with other proteins and lipids as they form highly regulated molecular machines that operate on membranes. Solution NMR is an ideal method to capture high-resolution glimpses of the molecular transformations that take place when these proteins come together and work on membranes. Since solution NMR has limitations on the size of proteins and complexes that can be studied, lipid bilayer model membranes cannot be used in these approaches, so the relevant interactions are typically studied in various types of membrane-mimetics that are tractable by solution NMR methods. In this review we therefore first summarize different membrane-mimetic systems that are commonly used or that show promise for solution NMR studies of membrane-interacting proteins. We then summarize recent NMR studies on two SNARE proteins, syntaxin and synaptobrevin, and two related regulatory proteins, complexin and α-synuclein, and their interactions with membrane lipids. These studies provide a structural and dynamical framework for how these proteins might carry out their functions in the vicinity of lipid membranes. The common theme throughout these studies is that membrane interactions have major influences on the structural dynamics of these proteins that cannot be ignored when attempting to explain their functions in contemporary models of SNARE-mediated membrane fusion. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice

    PubMed Central

    Aslam, Mohamad F.; Frazer, David M.; Faria, Nuno; Bruggraber, Sylvaine F. A.; Wilkins, Sarah J.; Mirciov, Cornel; Powell, Jonathan J.; Anderson, Greg J.; Pereira, Dora I. A.

    2014-01-01

    The ferritin core is composed of fine nanoparticulate Fe3+ oxohydroxide, and we have developed a synthetic mimetic, nanoparticulate Fe3+ polyoxohydroxide (nanoFe3+). The aim of this study was to determine how dietary iron derived in this fashion is absorbed in the duodenum. Following a 4 wk run-in on an Fe-deficient diet, mice with intestinal-specific disruption of the Fpn-1 gene (Fpn-KO), or littermate wild-type (WT) controls, were supplemented with Fe2+ sulfate (FeSO4), nanoFe3+, or no added Fe for a further 4 wk. A control group was Fe sufficient throughout. Direct intestinal absorption of nanoFe3+ was investigated using isolated duodenal loops. Our data show that FeSO4 and nanoFe3+ are equally bioavailable in WT mice, and at wk 8 the mean ± sem hemoglobin increase was 18 ± 7 g/L in the FeSO4 group and 30 ± 5 g/L in the nanoFe3+ group. Oral iron failed to be utilized by Fpn-KO mice and was retained in enterocytes, irrespective of the iron source. In summary, although nanoFe3+ is taken up directly by the duodenum its homeostasis is under the normal regulatory control of dietary iron absorption, namely via ferroportin-dependent efflux from enterocytes, and thus offers potential as a novel oral iron supplement.—Aslam, M. F., Frazer, D. M., Faria, N., Bruggraber, S. F. A., Wilkins, S. J., Mirciov, C., Powell, J. J., Anderson, G. J., Pereira, D. I. A. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice. PMID:24776745

  11. A Novel Bioavailable BH3 Mimetic Efficiently Inhibits Colon Cancer via Cascade Effects of Mitochondria.

    PubMed

    Wang, Xuefeng; Zhang, Chen; Yan, Xiangming; Lan, Bin; Wang, Jianyong; Wei, Chongyang; Cao, Xingxin; Wang, Renxiao; Yao, Jianhua; Zhou, Tao; Zhou, Mi; Liu, Qiaoling; Jiang, Biao; Jiang, Pengfei; Kesari, Santosh; Lin, Xinjian; Guo, Fang

    2016-03-15

    Gossypol and its analogs, through their ability to bind to and inactivate BH3 domain-containing antiapoptotic proteins, have been shown to inhibit the growth of various human cancer cells in culture and xenograft models. Here, we evaluated the antitumor efficacy of a novel gossypol derivative and BH3 mimetic ch282-5 (2-aminoethanesulfonic acid sodium-gossypolone) in colon cancer models. Several innovative combination strategies were also explored and elaborated. Ch282-5 was synthesized by modifying the active aldehyde groups and R groups of gossypol according to a computer-aided drug design program. The stability of ch282-5 was examined by high-performance liquid chromatography, and cytotoxic effects of ch282-5 on colon cancer cells were assessed by MTS assay. Activation of mitochondrial apoptotic pathway by ch282-5 was evidenced with a series of molecular biology techniques. In vivo antitumor activity of ch282-5 and its combination with chloroquine, rapamycin, oxaliplatin, and ABT-263 was also evaluated in colon cancer xenograft models and experimental liver metastasis models. Ch282-5 showed antiproliferative and pro-cell death activity against colon cancer cells both in vitro and in vivo, and the response to the drug correlated with inhibition of antiapoptotic Bcl-2 proteins, induction of mitochondria-dependent apoptotic pathway, and disruption of mitophagy and mTOR pathway. Ch282-5 also suppressed liver metastasis produced by intrasplenic injection of colon cancer cells. Furthermore, ch282-5 could potentiate the effectiveness of oxaliplatin and rescue ABT-263 efficacy by downregulation of Mcl-1 and elevation of platelet number. These findings provide a rational basis for clinical investigation of this highly promising BH3 mimetic in colon cancer. ©2015 American Association for Cancer Research.

  12. Peptide aldehyde inhibitors of bacterial peptide deformylases.

    PubMed

    Durand, D J; Gordon Green, B; O'Connell, J F; Grant, S K

    1999-07-15

    Bacterial peptide deformylases (PDF, EC 3.5.1.27) are metalloenzymes that cleave the N-formyl groups from N-blocked methionine polypeptides. Peptide aldehydes containing a methional or norleucinal inhibited recombinant peptide deformylase from gram-negative Escherichia coli and gram-positive Bacillus subtilis. The most potent inhibitor was calpeptin, N-CBZ-Leu-norleucinal, which was a competitive inhibitor of the zinc-containing metalloenzymes, E. coli and B. subtilis PDF with Ki values of 26.0 and 55.6 microM, respectively. Cobalt-substituted E. coli and B. subtilis deformylases were also inhibited by these aldehydes with Ki values for calpeptin of 9.5 and 12.4 microM, respectively. Distinct spectral changes were observed upon binding of calpeptin to the Co(II)-deformylases, consistent with the noncovalent binding of the inhibitor rather than the formation of a covalent complex. In contrast, the chelator 1,10-phenanthroline caused the time-dependent inhibition of B. subtilis Co(II)-PDF activity with the loss of the active site metal. The fact that calpeptin was nearly equipotent against deformylases from both gram-negative and gram-positive bacterial sources lends further support to the idea that a single deformylase inhibitor might have broad-spectrum antibacterial activity. Copyright 1999 Academic Press.

  13. Cooperative TRAIL production mediates IFNα/Smac mimetic-induced cell death in TNFα-resistant solid cancer cells.

    PubMed

    Roesler, Stefanie; Eckhardt, Ines; Wolf, Sebastian; Fulda, Simone

    2016-01-26

    Smac mimetics antagonize IAP proteins, which are highly expressed in several cancers. Recent reports indicate that Smac mimetics trigger a broad cytokine response and synergize with immune modulators to induce cell death. Here, we identify a differential requirement of TRAIL or TNFα as mediators of IFNα/Smac mimetic-induced cell death depending on the cellular context. Subtoxic concentrations of Smac mimetics cooperate with IFNα to induce cell death in various solid tumor cell lines in a highly synergistic manner as determined by combination index. Mechanistic studies show that IFNα/BV6 cotreatment promotes the formation of a caspase-8-activating complex together with the adaptor protein FADD and RIP1. Assembly of this RIP1/FADD/caspase-8 complex represents a critical event, since RIP1 silencing inhibits IFNα/BV6-induced cell death. Strikingly, pharmacological inhibition of paracrine/autocrine TNFα signaling by the TNFα scavenger Enbrel rescues HT-29 colon carcinoma cells, but not A172 glioblastoma cells from IFNα/BV6-induced cell death. By comparison, A172 cells are significantly protected against IFNα/BV6 treatment by blockage of TRAIL signaling through genetic silencing of TRAIL or its cognate receptor TRAIL receptor 2 (DR5). Despite this differential requirement of TNFα and TRAIL signaling, mRNA and protein expression is increased by IFNα/BV6 cotreatment in both cell lines. Interestingly, A172 cells turn out to be resistant to exogenously added recombinant TNFα even in the presence of BV6, whereas they display a high sensitivity towards TRAIL/BV6. In contrast, BV6 efficiently sensitizes HT-29 cells to TNFα while TRAIL only had limited efficacy. This demonstrates that a differential sensitivity towards TRAIL or TNFα determines the dependency on either death receptor ligand for IFNα/Smac mimetic-induced cell death. Thus, by concomitant stimulation of both death receptor systems IFNα/Smac mimetic combination treatment is an effective strategy to

  14. Smac Mimetic Bypasses Apoptosis Resistance in FADD- or Caspase-8-Deficient Cells by Priming for Tumor Necrosis Factor α-Induced Necroptosis12

    PubMed Central

    Laukens, Bram; Jennewein, Claudia; Schenk, Barbara; Vanlangenakker, Nele; Schier, Alexander; Cristofanon, Silvia; Zobel, Kerry; Deshayes, Kurt; Vucic, Domagoj; Jeremias, Irmela; Bertrand, Mathieu JM; Vandenabeele, Peter; Fulda, Simone

    2011-01-01

    Searching for new strategies to bypass apoptosis resistance, we investigated the potential of the Smac mimetic BV6 in Jurkat leukemia cells deficient in key molecules of the death receptor pathway. Here, we demonstrate for the first time that Smac mimetic primes apoptosis-resistant, FADD- or caspase-8-deficient leukemia cells for TNFα-induced necroptosis in a synergistic manner. In contrast to TNFα, Smac mimetic significantly enhances CD95-induced apoptosis in wild-type but not in FADD-deficient cells. Interestingly, Smac mimetic- and TNFα-mediated cell death occurs without characteristic features of apoptosis (i.e., caspase activation, DNA fragmentation) in FADD-deficient cells. By comparison, Smac mimetic and TNFα trigger activation of caspase-8, -9, and -3 and DNA fragmentation in wild-type cells. Consistently, the caspase inhibitor zVAD.fmk fails to block Smac mimetic- and TNFα-triggered cell death in FADD- or caspase-8-deficient cells, while it confers protection in wild-type cells. By comparison, necrostatin-1, an RIP1 kinase inhibitor, abolishes Smac mimetic- and TNFα-induced cell death in FADD- or caspase-8-deficient. Thus, Smac mimetic enhances TNFα-induced cell death in leukemia cells via two distinct pathways in a context-dependent manner: it primes apoptosis-resistant cells lacking FADD or caspase-8 to TNFα-induced, RIP1-dependent and caspase-independent necroptosis, whereas it sensitizes apoptosis-proficient cells to TNFα-mediated, caspase-dependent apoptosis. These findings have important implications for the therapeutic exploitation of necroptosis as an alternative cell death program to overcome apoptosis resistance. PMID:22028622

  15. Smac mimetic bypasses apoptosis resistance in FADD- or caspase-8-deficient cells by priming for tumor necrosis factor α-induced necroptosis.

    PubMed

    Laukens, Bram; Jennewein, Claudia; Schenk, Barbara; Vanlangenakker, Nele; Schier, Alexander; Cristofanon, Silvia; Zobel, Kerry; Deshayes, Kurt; Vucic, Domagoj; Jeremias, Irmela; Bertrand, Mathieu J M; Vandenabeele, Peter; Fulda, Simone

    2011-10-01

    Searching for new strategies to bypass apoptosis resistance, we investigated the potential of the Smac mimetic BV6 in Jurkat leukemia cells deficient in key molecules of the death receptor pathway. Here, we demonstrate for the first time that Smac mimetic primes apoptosis-resistant, FADD- or caspase-8-deficient leukemia cells for TNFα-induced necroptosis in a synergistic manner. In contrast to TNFα, Smac mimetic significantly enhances CD95-induced apoptosis in wild-type but not in FADD-deficient cells. Interestingly, Smac mimetic- and TNFα-mediated cell death occurs without characteristic features of apoptosis (i.e., caspase activation, DNA fragmentation) in FADD-deficient cells. By comparison, Smac mimetic and TNFα trigger activation of caspase-8, -9, and -3 and DNA fragmentation in wild-type cells. Consistently, the caspase inhibitor zVAD.fmk fails to block Smac mimetic- and TNFα-triggered cell death in FADD- or caspase-8-deficient cells, while it confers protection in wild-type cells. By comparison, necrostatin-1, an RIP1 kinase inhibitor, abolishes Smac mimetic- and TNFα-induced cell death in FADD- or caspase-8-deficient. Thus, Smac mimetic enhances TNFα-induced cell death in leukemia cells via two distinct pathways in a context-dependent manner: it primes apoptosis-resistant cells lacking FADD or caspase-8 to TNFα-induced, RIP1-dependent and caspase-independent necroptosis, whereas it sensitizes apoptosis-proficient cells to TNFα-mediated, caspase-dependent apoptosis. These findings have important implications for the therapeutic exploitation of necroptosis as an alternative cell death program to overcome apoptosis resistance.

  16. Novel use of fluorescent glucose analogues to identify a new class of triazine-based insulin mimetics possessing useful secondary effects.

    PubMed

    Jung, Da-Woon; Ha, Hyung-Ho; Zheng, Xuexiu; Chang, Young-Tae; Williams, Darren R

    2011-02-01

    There is an urgent need to discover new compounds that effectively treat diabetes by mimicking the action of insulin (insulin mimetics). Traditional approaches to studying anti-diabetic agents in cells are inconvenient for screening chemical libraries to identify insulin mimetics. 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) and 6-NBDG are fluorescent analogues of glucose that could be employed in screening. However, there are no published data about the use of these analogues to identify new insulin mimetics. We have developed a screening system based on 6-NBDG using 3T3-L1 adipocytes in a 96-well culture plate format. 6-NBDG was found to produce a larger signal than 2-NBDG in this screening system. 6-NBDG uptake in 3T3-L1 adipocytes was sensitive to insulin, known insulin mimetics, inhibitors of glucose transport and insulin-sensitizing compounds. To validate our screening system, a chemical library of 576 tagged, triazine-based small molecules was screened. The screening results were identical to that obtained from a commercial enzyme-based glucose assay. Two inducers of glucose uptake were shown to be non-cytotoxic and confirmed as insulin mimetic compounds by their inhibition of epinephrine-stimulated free fatty acid release from adipocytes. These novel insulin mimetics functioned at a markedly lower concentration than two widely studied insulin mimetics, zinc(ii) complexes and vanadium compounds, and also showed novel, beneficial effects on endothelial cell function (a key determinant of secondary complications in diabetes). The discovery of new insulin mimetics using 6-NBDG validates the use of this probe in the development of large-scale, cell-based screening systems based on the uptake of fluorescent-tagged glucose analogues. This research should aid the development of novel strategies to discover new drugs and drug targets for combating the increasing prevalence of diabetes.

  17. CER-001, a HDL-mimetic, stimulates the reverse lipid transport and atherosclerosis regression in high cholesterol diet-fed LDL-receptor deficient mice.

    PubMed

    Tardy, Claudine; Goffinet, Marine; Boubekeur, Nadia; Ackermann, Rose; Sy, Gavin; Bluteau, Alice; Cholez, Guy; Keyserling, Constance; Lalwani, Narendra; Paolini, John F; Dasseux, Jean-Louis; Barbaras, Ronald; Baron, Rudi

    2014-01-01

    CER-001 is a novel engineered HDL-mimetic comprised of recombinant human apoA-I and phospholipids that was designed to mimic the beneficial properties of nascent pre-β HDL. In this study, we have evaluated the capacity of CER-001 to perform reverse lipid transport in single dose studies as well as to regress atherosclerosis in LDLr(-/-) mice after short-term multiple-dose infusions. CER-001 induced cholesterol efflux from macrophages and exhibited anti-inflammatory response similar to natural HDL. Studies with HUVEC demonstrated CER-001 at a concentration of 500 μg/mL completely suppressed the secretion of cytokines IL-6, IL-8, GM-CSF and MCP-1. Following infusion of CER-001 (10mg/kg) in C57Bl/6J mice, we observed a transient increase in the mobilization of unesterified cholesterol in HDL particles containing recombinant human apoA-I. Finally we show that cholesterol elimination was stimulated in CER-001 treated animals as demonstrated by the increased cholesterol concentration in liver and feces. In a familial hypercholesterolemia mouse model (LDL-receptor deficient mice), the infusion of CER-001 caused 17% and 32% reductions in plaque size, 17% and 23% reductions in lipid content after 5 and 10 doses given every 2 days, respectively. Also, there was an 80% reduction in macrophage content in the plaque following 5 doses, and decreased VCAM-1 expression by 16% and 22% in the plaque following 5 and 10 intravenous doses of CER-001, respectively. These data demonstrate that CER-001 rapidly enhances reverse lipid transport in the mouse, reducing vascular inflammation and promoting regression of diet-induced atherosclerosis in LDLr(-/-) mice upon a short-term multiple dose treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering.

    PubMed

    Luo, Zuyuan; Deng, Yi; Zhang, Ranran; Wang, Mengke; Bai, Yanjie; Zhao, Qiang; Lyu, Yalin; Wei, Jie; Wei, Shicheng

    2015-07-01

    Combination of mesoporous silica materials and bioactive factors is a promising niche-mimetic solution as a hybrid bone substitution for bone tissue engineering. In this work, we have synthesized biocompatible silica-based nanoparticles with abundant mesoporous structure, and incorporated bone-forming peptide (BFP) derived from bone morphogenetic protein-7 (BMP-7) into the mesoporous silica nanoparticles (MSNs) to obtain a slow-release system for osteogenic factor delivery. The chemical characterization demonstrates that the small osteogenic peptide is encapsulated in the mesoporous successfully, and the nitrogen adsorption-desorption isotherms suggest that the peptide encapsulation has no influence on mesoporous structure of MSNs. In the cell experiment, the peptide-laden MSNs (p-MSNs) show higher MG-63 cell proliferation, spreading and alkaline phosphatase (ALP) activity than the bare MSNs, indicating good in vitro cytocompatibility. Simultaneously, the osteogenesis-related proteins expression and calcium mineral deposition disclose enhanced osteo-differentiation of human mesenchymal stem cells (hMSCs) under the stimulation of the p-MSNs, confirming that BFP released from MSNs could significantly promote the osteogenic differentiation of hMSCs, especially at 500μg/mL of p-MSNs concentration. The peptide-modified MSNs with better bioactivity and osteogenic differentiation make it a potential candidate as bioactive material for bone repairing, bone regeneration, and bio-implant coating applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Detecting Alzheimer's disease biomarkers: From antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms - A critical review.

    PubMed

    Scarano, Simona; Lisi, Samuele; Ravelet, Corinne; Peyrin, Eric; Minunni, Maria

    2016-10-12

    The failure of therapeutic treatment of Alzheimer's disease (AD) patients can be related to the late onset of symptoms and, consequently, to a delayed pharmacological aid to counteract neurodegenerative progression. This is coupled to the fact that the diagnosis based on clinical criteria alone introduces high misdiagnosis rate. The availability of assessed biomarkers is therefore of crucial importance not only to counteract late diagnosis, but also to manage patients at high risk of AD development eligible for novel therapies. At the present time, amyloid-β peptides (Aβ1-40 and Aβ1-42 isoforms), alone or in combination with Tau protein (total and phosphorylated forms (p-tau)) constitute reliable AD biomarkers and result highly predictive of progression to AD dementia in patients with mild cognitive impairment (MCI), the earliest clinical presentation of AD. Improvement of existing diagnostic tools must take advantage of innovative bioanalytical approaches. In this review, starting from commercially available diagnostic platforms based on antibodies as recognition elements, we intended to provide a double point of view on the issue: 1) progresses achieved on innovative bioanalytical platforms (mainly sensors and biosensors) by using antibodies as consolidated receptors; 2) advance on promising bio-mimetic receptors alternative to antibodies in AD research, and their applications on conventional or innovative analytical platforms. In particular, we first focused on optical- (Propagating and Localized Surface Plasmon Resonance, named here SPR and LSPR) and electrochemical (voltammetric and impedimetric) transduction principles. Together with bioanalytical assays for AD biomarkers quantification, works aimed to investigate and understand their behavior, characteristics, and roles will also be considered in the discussion. An increasing interest in new emerging biomimetic receptors for AD diagnosis, as a promising alternative to antibodies is noticed, thus the

  20. Peptide Optical waveguides.

    PubMed

    Handelman, Amir; Apter, Boris; Shostak, Tamar; Rosenman, Gil

    2017-02-01

    Small-scale optical devices, designed and fabricated onto one dielectric substrate, create integrated optical chip like their microelectronic analogues. These photonic circuits, based on diverse physical phenomena such as light-matter interaction, propagation of electromagnetic waves in a thin dielectric material, nonlinear and electro-optical effects, allow transmission, distribution, modulation, and processing of optical signals in optical communication systems, chemical and biological sensors, and more. The key component of these optical circuits providing both optical processing and photonic interconnections is light waveguides. Optical confinement and transmitting of the optical waves inside the waveguide material are possible due to the higher refractive index of the waveguides in comparison with their surroundings. In this work, we propose a novel field of bionanophotonics based on a new concept of optical waveguiding in synthetic elongated peptide nanostructures composed of ordered peptide dipole biomolecules. New technology of controllable deposition of peptide optical waveguiding structures by nanofountain pen technique is developed. Experimental studies of refractive index, optical transparency, and linear and nonlinear waveguiding in out-of-plane and in-plane diphenylalanine peptide nanotubes have been conducted. Optical waveguiding phenomena in peptide structures are simulated by the finite difference time domain method. The advantages of this new class of bio-optical waveguides are high refractive index contrast, wide spectral range of optical transparency, large optical nonlinearity, and electro-optical effect, making them promising for new applications in integrated multifunctional photonic circuits. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  1. Linear Peptides in Intracellular Applications.

    PubMed

    Zuconelli, Cristiane R; Brock, Roland; Adjobo-Hermans, Merel J W

    2017-01-01

    To this point, efforts to develop therapeutic peptides for intracellular applications were guided by the perception that unmodified linear peptides are highly unstable and therefore structural modifications are required to reduce proteolytic breakdown. Largely, this concept is a consequence of the fact that most research on intracellular peptides hitherto has focused on peptide degradation in the context of antigen processing, rather than on peptide stability. Interestingly, inside cells, endogenous peptides lacking any chemical modifications to enhance stability escape degradation to the point that they may even modulate intracellular signaling pathways. In addition, many unmodified synthetic peptides designed to interfere with intracellular signaling, following introduction into cells, have the expected activity demonstrating that biologically relevant concentrations can be reached. This review provides an overview of results and techniques relating to the exploration and application of linear, unmodified peptides. After an introduction to intracellular peptide turnover, the review mentions examples for synthetic peptides as modulators of intracellular signaling, introduces endogenous peptides with bioactivity, techniques to measure peptide stability, and peptide delivery. Future experiments should elucidate the rules needed to predict promising peptide candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  3. Immunotherapy with peptides.

    PubMed

    Moldaver, D; Larché, Mark

    2011-06-01

    Specific allergen immunotherapy is clinically effective and disease modifying. It has a duration of effect that exceeds the treatment period and prevents both the progression of allergic rhinitis to asthma and the acquisition of new allergic sensitizations. However, immunotherapy is associated with a high frequency of adverse events related to the allergenicity of vaccines. Allergenicity is conferred by the presence of intact B-cell epitopes that crosslink allergen-specific IgE on effector cells. The use of linear peptide sequences representing fragments of the native allergen is one approach to reduce allergenicity. Preclinical models of peptide immunotherapy have demonstrated efficacy in both autoimmunity and allergy. Translation of this technology into the clinic has gained momentum in recent years based on encouraging results from early clinical trials. To date, efforts have focused on two major allergens, but vaccines to a broader range of molecules are currently in clinical development. Mechanistically, peptide immunotherapy appears to work through the induction of adaptive, allergen-specific regulatory T cells that secrete the immunoregulatory cytokine IL-10. There is also evidence that peptide immunotherapy targeting allergen-specific T cells can indirectly modulate allergen-specific B-cell responses. Peptide immunotherapy may provide a safe and efficacious alternative to conventional subcutaneous and/or sublingual approaches using native allergen preparations. © 2011 John Wiley & Sons A/S.

  4. Peptide Integrated Optics.

    PubMed

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 4-Connected azabicyclo[5.3.0]decane Smac mimetics-Zn2+ chelators as dual action antitumoral agents.

    PubMed

    Manzoni, Leonardo; Samela, Alessandro; Barbini, Stefano; Cairati, Silvia; Penconi, Marta; Arosio, Daniela; Lecis, Daniele; Seneci, Pierfausto

    2017-06-01

    Putative dual action compounds (DACs 3a-d) based on azabicyclo[5.3.0]decane (ABD) Smac mimetic scaffolds linked to Zn 2+ -chelating 2,2'-dipicolylamine (DPA) through their 4 position are reported and characterized. Their synthesis, their target affinity (cIAP1 BIR3, Zn 2+ ) in cell-free assays, their pro-apoptotic effects, and their cytotoxicity in tumor cells with varying sensitivity to Smac mimetics are described. A limited influence of Zn 2+ chelation on in vitro activity of DPA-substituted DACs 3a-d was sometimes perceivable, but did not lead to strong cellular synergistic effects. In particular, the linker connecting DPA with the ABD scaffold seems to influence cellular Zn 2+ -chelation, with longer lipophilic linkers/DAC 3c being the optimal choice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Scaling mimesis: Morphometric and ecomorphological similarities in three sympatric plant-mimetic fish of the family Carangidae (Teleostei)

    PubMed Central

    de Queiroz, Alexya Cunha; Vallinoto, Marcelo; Sakai, Yoichi; Giarrizzo, Tommaso

    2018-01-01

    The mimetic juveniles of a number of carangid fish species resemble plant parts floating near the water surface, such as leaves, seeds and other plant debris. The present study is the first to verify the morphological similarities and ecomorphological relationships between three carangids (Oligoplites saurus, Oligoplites palometa and Trachinotus falcatus) and their associated plant models. Behavioral observations were conducted in the estuary of Curuçá River, in northeastern Pará (Brazil) between August 2015 and July 2016. Individual fishes and associated floating objects (models) were sampled for comparative analysis using both geometric and morphometric approaches. While the mimetic fish and their models retain their own distinct, intrinsic morphological features, a high degree of morphological similarity was found between each fish species and its model. The morphometric analyses revealed a general tendency of isometric development in all three fish species, probably related to their pelagic habitats, during all ontogenetic stages. PMID:29558476

  7. Scaling mimesis: Morphometric and ecomorphological similarities in three sympatric plant-mimetic fish of the family Carangidae (Teleostei).

    PubMed

    Queiroz, Alexya Cunha de; Vallinoto, Marcelo; Sakai, Yoichi; Giarrizzo, Tommaso; Barros, Breno

    2018-01-01

    The mimetic juveniles of a number of carangid fish species resemble plant parts floating near the water surface, such as leaves, seeds and other plant debris. The present study is the first to verify the morphological similarities and ecomorphological relationships between three carangids (Oligoplites saurus, Oligoplites palometa and Trachinotus falcatus) and their associated plant models. Behavioral observations were conducted in the estuary of Curuçá River, in northeastern Pará (Brazil) between August 2015 and July 2016. Individual fishes and associated floating objects (models) were sampled for comparative analysis using both geometric and morphometric approaches. While the mimetic fish and their models retain their own distinct, intrinsic morphological features, a high degree of morphological similarity was found between each fish species and its model. The morphometric analyses revealed a general tendency of isometric development in all three fish species, probably related to their pelagic habitats, during all ontogenetic stages.

  8. The arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensor

    DOE PAGES

    Gyrya, V.; Lipnikov, K.

    2017-07-18

    Here, we present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We also present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, wemore » observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.« less

  9. The Targeted SMAC Mimetic SW IV-134 is a strong enhancer of standard chemotherapy in pancreatic cancer.

    PubMed

    Hashim, Yassar M; Vangveravong, Suwanna; Sankpal, Narendra V; Binder, Pratibha S; Liu, Jingxia; Goedegebuure, S Peter; Mach, Robert H; Spitzer, Dirk; Hawkins, William G

    2017-01-17

    Pancreatic cancer is a lethal malignancy that frequently acquires resistance to conventional chemotherapies often associated with overexpression of inhibitors of apoptosis proteins (IAPs). We have recently described a novel means to deliver second mitochondria-derived activator of caspases (SMAC) mimetics selectively to cancer cells employing the sigma-2 ligand/receptor interaction. The intrinsic death pathway agonist SMAC offers an excellent opportunity to counteract the anti-apoptotic activity of IAPs. SMAC mimetics have been used to sensitize several cancer types to chemotherapeutic agents but cancer-selective delivery and appropriate cellular localization have not yet been considered. In our current study, we tested the ability of the sigma-2/SMAC drug conjugate SW IV-134 to sensitize pancreatic cancer cells to gemcitabine. Using the targeted SMAC mimetic SW IV-134, inhibition of the X-linked inhibitor of apoptosis proteins (XIAP) was induced pharmacologically and its impact on cell viability was studied alone and in combination with gemcitabine. Pathway analyses were performed by assessing caspase activation, PARP cleavage and membrane blebbing (Annexin-V), key components of apoptotic cell death. Single-agent treatment regimens were compared with combination therapy in a preclinical mouse model of pancreatic cancer. The sensitizing effect of XIAP interference toward gemcitabine was confirmed via pharmacological intervention using our recently designed, targeted SMAC mimetic SW IV-134 across a wide range of commonly used pancreatic cancer cell lines at concentrations where the individual drugs showed only minimal activity. On a mechanistic level, we identified involvement of key components of the apoptosis machinery during cell death execution. Furthermore, combination therapy proved superior in decreasing the tumor burden and extending the lives of the animals in a preclinical mouse model of pancreatic cancer. We believe that the strong sensitizing capacity of

  10. Targeting of apoptotic pathways by SMAC or BH3 mimetics distinctly sensitizes paclitaxel-resistant triple negative breast cancer cells.

    PubMed

    Panayotopoulou, Effrosini G; Müller, Anna-Katharina; Börries, Melanie; Busch, Hauke; Hu, Guohong; Lev, Sima

    2017-07-11

    Standard chemotherapy is the only systemic treatment for triple-negative breast cancer (TNBC), and despite the good initial response, resistance remains a major therapeutic obstacle. Here, we employed a High-Throughput Screen to identify targeted therapies that overcome chemoresistance in TNBC. We applied short-term paclitaxel treatment and screened 320 small-molecule inhibitors of known targets to identify drugs that preferentially and efficiently target paclitaxel-treated TNBC cells. Among these compounds the SMAC mimetics (BV6, Birinapant) and BH3-mimetics (ABT-737/263) were recognized as potent targeted therapy for multiple paclitaxel-residual TNBC cell lines. However, acquired paclitaxel resistance through repeated paclitaxel pulses result in desensitization to BV6, but not to ABT-263, suggesting that short- and long-term paclitaxel resistance are mediated by distinct mechanisms. Gene expression profiling of paclitaxel-residual, -resistant and naïve MDA-MB-231 cells demonstrated that paclitaxel-residual, as opposed to -resistant cells, were characterized by an apoptotic signature, with downregulation of anti-apoptotic genes (BCL2, BIRC5), induction of apoptosis inducers (IL24, PDCD4), and enrichment of TNFα/NF-κB pathway, including upregulation of TNFSF15, coupled with cell-cycle arrest. BIRC5 and FOXM1 downregulation and IL24 induction was also evident in breast cancer patient datasets following taxane treatment. Exposure of naïve or paclitaxel-resistant cells to supernatants of paclitaxel-residual cells sensitized them to BV6, and treatment with TNFα enhanced BV6 potency, suggesting that sensitization to BV6 is mediated, at least partially, by secreted factor(s). Our results suggest that administration of SMAC or BH3 mimetics following short-term paclitaxel treatment could be an effective therapeutic strategy for TNBC, while only BH3-mimetics could effectively overcome long-term paclitaxel resistance.

  11. SOD mimetics: A Novel Class of Androgen Receptor Inhibitors that Suppresses Castration-Resistant Growth of Prostate Cancer

    PubMed Central

    Thomas, Rusha; Sharifi, Nima

    2011-01-01

    Advanced prostate cancer (PCa) is the second-leading cause of cancer-related deaths among American men. The androgen receptor (AR) is vital for PCa progression, even in the face of castrate levels of serum testosterone following androgen ablation therapy, a mainstay therapy for advanced PCa. Downregulation of superoxide dismutase 2 (SOD2), a major intracellular antioxidant enzyme, occurs progressively during PCa progression to advanced states, and is known to promote AR activity in PCa. Therefore, this study investigated the effects of SOD mimetics on AR expression and function in AR-dependent LNCaP, CWR22Rv1, and LAPC-4AD PCa cells. Treatment with Tempol, a SOD mimetic, not only lowered cellular superoxide levels, but also concomitantly attenuated AR transcriptional activity and AR target gene expression in a dose- and time-dependent manner, in the presence and absence of dihydrotestosterone, the major endogenous AR agonist. Tempol's inhibition of AR was mediated, in large part, by its ability to decrease AR protein via increased degradation, in the absence of any inhibitory effects on other nuclear receptors. Tempol's inhibitory effects on AR were also reproducible with other SOD mimetics, MnTBAP and MnTMPyP. Importantly, Tempol's effects on AR function were accompanied by significant in vitro and in vivo reduction in castration-resistant PCa survival and growth. Collectively, this study has demonstrated for the first time that SOD mimetics, by virtue of their ability to suppress AR function, may be beneficial in treating the currently incurable castration-resistant PCa in which SOD2 expression is highly suppressed. PMID:22172488

  12. Synthetic antibiofilm peptides.

    PubMed

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Superior peroxidase mimetic activity of tungsten disulfide nanosheets/silver nanoclusters composite: Colorimetric, fluorometric and electrochemical studies.

    PubMed

    Khataee, Alireza; Haddad Irani-Nezhad, Mahsa; Hassanzadeh, Javad; Woo Joo, Sang

    2018-04-01

    Developing a novel peroxidase nano-mimetic is a challenging research topic in biosensing field. Herein, WS 2 nanosheets (WS 2 NS) decorated with silver nanoclusters (AgNCs) was introduced as a new nanocomposite with improved peroxidase mimetic behavior. WS 2 NS/AgNCs nanocomposite was synthesized by simple chemical reduction of silver cations in the presence of WS 2 NS. The enhanced catalytic activity of nanocomposite in chemical and electrochemical reduction of H 2 O 2 was studied using colorimetry, fluorometry and electrochemical techniques. Attaching the AgNCs on the surface of WS 2 NS effectively improved the catalytic activity of these nanosheets, which may be connected to the difference of the Fermi energy levels of coupled nanomaterial. The unequal Fermi levels cause charge separation between two phases creating highly active sites on the interface of coupled nanomaterial. Moreover, the new mimetic nanocomposite was applied for the analysis of glucose in blood, based on its enzymatic oxidation using glucose oxidase and then, on the measurement of produced H 2 O 2 by sensitive fluorescence detection system. In optimum condition, a linear association was found between the generated fluorescence intensity and glucose logarithmic concentration in the range of 0.05-400 µM, and the limit of detection (3S/m) was 21 nM. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Systematic Computation of Nonlinear Cellular and Molecular Dynamics with Low-Power CytoMimetic Circuits: A Simulation Study

    PubMed Central

    Papadimitriou, Konstantinos I.; Stan, Guy-Bart V.; Drakakis, Emmanuel M.

    2013-01-01

    This paper presents a novel method for the systematic implementation of low-power microelectronic circuits aimed at computing nonlinear cellular and molecular dynamics. The method proposed is based on the Nonlinear Bernoulli Cell Formalism (NBCF), an advanced mathematical framework stemming from the Bernoulli Cell Formalism (BCF) originally exploited for the modular synthesis and analysis of linear, time-invariant, high dynamic range, logarithmic filters. Our approach identifies and exploits the striking similarities existing between the NBCF and coupled nonlinear ordinary differential equations (ODEs) typically appearing in models of naturally encountered biochemical systems. The resulting continuous-time, continuous-value, low-power CytoMimetic electronic circuits succeed in simulating fast and with good accuracy cellular and molecular dynamics. The application of the method is illustrated by synthesising for the first time microelectronic CytoMimetic topologies which simulate successfully: 1) a nonlinear intracellular calcium oscillations model for several Hill coefficient values and 2) a gene-protein regulatory system model. The dynamic behaviours generated by the proposed CytoMimetic circuits are compared and found to be in very good agreement with their biological counterparts. The circuits exploit the exponential law codifying the low-power subthreshold operation regime and have been simulated with realistic parameters from a commercially available CMOS process. They occupy an area of a fraction of a square-millimetre, while consuming between 1 and 12 microwatts of power. Simulations of fabrication-related variability results are also presented. PMID:23393550

  15. Nonhelical Leash and α-Helical Structures Determine the Potency of a Peptide Antagonist of Human T-Cell Leukemia Virus Entry▿

    PubMed Central

    Mirsaliotis, Antonis; Lamb, Daniel; Brighty, David W.

    2008-01-01

    Viral fusion proteins mediate the entry of enveloped viral particles into cells by inducing fusion of the viral and target cell membranes. Activated fusion proteins undergo a cascade of conformational transitions and ultimately resolve into a compact trimer of hairpins or six-helix bundle structure, which pulls the interacting membranes together to promote lipid mixing. Significantly, synthetic peptides based on a C-terminal region of the trimer of hairpins are potent inhibitors of membrane fusion and viral entry, and such peptides are typically extensively α-helical. In contrast, an atypical peptide inhibitor of human T-cell leukemia virus (HTLV) includes α-helical and nonhelical leash segments. We demonstrate that both the C helix and C-terminal leash are critical to the inhibitory activities of these peptides. Amino acid side chains in the leash and C helix extend into deep hydrophobic pockets at the membrane-proximal end of the HTLV type 1 (HTLV-1) coiled coil, and these contacts are necessary for potent antagonism of membrane fusion. In addition, a single amino acid substitution within the inhibitory peptide improves peptide interaction with the core coiled coil and yields a peptide with enhanced potency. We suggest that the deep pockets on the coiled coil are ideal targets for small-molecule inhibitors of HTLV-1 entry into cells. Moreover, the extended nature of the HTLV-1-inhibitory peptide suggests that such peptides may be intrinsically amenable to modifications designed to improve inhibitory activity. Finally, we propose that leash-like mimetic peptides may be of value as entry inhibitors for other clinically important viral infections. PMID:18305034

  16. Peptide Vaccine Against Paracoccidioidomycosis.

    PubMed

    Taborda, Carlos P; Travassos, Luiz R

    2017-01-01

    The chapter reviews methods utilized for the isolation and characterization of a promising immunogen candidate, aiming at a human vaccine against paracoccidioidomycosis. Peptide P10 carries a T-CD4+ epitope and was identified as an internal sequence of the major diagnostic antigen known as gp43 glycoprotein. It successfully treated massive intratracheal infections by virulent Paracoccidioides brasiliensis in combination with chemotherapy.An introduction about the systemic mycosis was found essential to understand the various options that were considered to design prophylactic and therapeutic vaccine protocols using peptide P10.

  17. Antihypertensive peptides from food proteins.

    PubMed

    Aluko, Rotimi E

    2015-01-01

    Bioactive peptides are encrypted within the primary structure of food proteins where they remain inactive until released by enzymatic hydrolysis. Once released from the parent protein, certain peptides have the ability to modulate the renin-angiotensin system (RAS) because they decrease activities of renin or angiotensin-converting enzyme (ACE), the two main enzymes that regulate mammalian blood pressure. These antihypertensive peptides can also enhance the endothelial nitric oxide synthase (eNOS) pathway to increase nitric oxide (NO) levels within vascular walls and promote vasodilation. The peptides can block the interactions between angiotensin II (vasoconstrictor) and angiotensin receptors, which can contribute to reduced blood pressure. This review focuses on the methods that are involved in antihypertensive peptide production from food sources, including fractionation protocols that are used to enrich bioactive peptide content and enhance peptide activity. It also discusses mechanisms that are believed to be involved in the antihypertensive activity of these peptides.

  18. Ribosomal synthesis of nonstandard peptides.

    PubMed

    Kang, Taek Jin; Suga, Hiroaki

    2008-04-01

    It is well known that standard peptides, which comprise proteinogenic amino acids, can act as specific chemical probes to target proteins with high affinity. Despite this fact, a number of peptide drug leads have been abandoned because of their poor cell permeability and protease instability. On the other hand, nonstandard peptides isolated as natural products often exhibit remarkable pharmaco-behavior and stability in vivo. Although it is likely that numerous nonstandard therapeutic peptides capable of recognizing various targets could have been synthesized, enzymes for nonribosomal peptide syntheses are complex; therefore, it is difficult to engineer such modular enzymes to build nonstandard peptide libraries. Here we describe an emerging technology for the synthesis of nonstandard peptides that employs an integrated system of reconstituted cell-free translation and flexizymes. We summarize the historical background of this technology and discuss its current and future applications to the synthesis of nonstandard peptides and drug discovery.

  19. Towards the Development of Synthetic Antibiotics: Designs Inspired by Natural Antimicrobial Peptides.

    PubMed

    Azmi, Fazren; Skwarczynski, Mariusz; Toth, Istvan

    2016-01-01

    Virtually every living organism produces gene-encoded antimicrobial peptides (AMPs) that provide an immediate defence against pathogen invasion. Many AMPs have been isolated and used as antibiotics that are effective against multidrug-resistant bacteria. Although encouraging, AMPs have such poor drug-like properties that their application for clinical use is restricted. In turn, this has diverted research to the development of synthetic molecules that retain the therapeutic efficacy of AMPs but are endowed with greater biological stability and safety profiles. Most of the synthetic molecules, either based on a peptidic or non-peptidic scaffold, have been designed to mimic the amphiphilic properties of native AMPs, which are widely believed to be the key determinant of their antibacterial activity. In this review, the structural, chemical and biophysical features that govern the biological activities of various synthetic designs are discussed extensively. Recent innovative approaches from the literature that exhibit novel concepts towards the development of new synthetic antibacterial agents, including the engineered delivery platform incorporated with AMP mimetics, are also emphasised.

  20. Calorimetry Methods to Study Membrane Interactions and Perturbations Induced by Antimicrobial Host Defense Peptides.

    PubMed

    Arias, Mauricio; Prenner, Elmar J; Vogel, Hans J

    2017-01-01

    Biological membranes play an important role in determining the activity and selectivity of antimicrobial host defense peptides (AMPs). Several biophysical methods have been developed to study the interactions of AMPs with biological membranes. Isothermal titration calorimetry and differential scanning calorimetry (ITC and DSC, respectively) are powerful techniques as they provide a unique label-free approach. ITC allows for a complete thermodynamic characterization of the interactions between AMPs and membranes. DSC allows one to study the effects of peptide binding on the packing of the phospholipids in the membrane. Used in combination with mimetic models of biological membranes, such as phospholipid vesicles, the role of different phospholipid headgroups and distinct acyl chains can be characterized. In these protocols the use of ITC and DSC methods for the study of peptide-membrane interactions will be presented, highlighting the importance of membrane model systems selected to represent bacterial and mammalian cells. These studies provide valuable insights into the mechanisms involved in the membrane binding and perturbation properties of AMPs.

  1. Casein hydrolytic peptides mediated green synthesis of antibacterial silver nanoparticles.

    PubMed

    Ghodake, Gajanan; Lim, Seong-Rin; Lee, Dae Sung

    2013-08-01

    A green route based on the casein hydrolytic peptides (CHPs) has been established for the synthesis of highly stable and smaller sized (10±5nm) silver nanoparticles (AgNPs), without producing any type of toxic byproducts. The formation of AgNPs was triggered by the addition of an aqueous NaOH solution due to the catalytic properties of OH(-) and/or hydration of the functional groups of CHPs. The 99% transformation of Ag ions (9mM) in 20mL reaction mixture into identical AgNPs using substantially low concentration of CHPs (0.3%, wt/v), indicates that the present system is suitable for the "low volume high concentration" nanosynthesis. The AgNPs obtained by CHPs showed the minimum inhibitory concentration at 24.5ppm against both gram positive and gram negative bacterial cultures with a 96-well titer plate assay. The AgNPs possibly interact with the cell wall structures of pathogenic bacteria, Escherichia coli, causing changes in the cell morphology and the formation of porous structures, as observed by scanning electron microscopy. This eco-friendly process for the bio-mimetic production of AgNPs is a nontoxic and a competitive alternative to existing physical and chemical methods for the production of nano-scale inorganic materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Peptide tessellation yields micrometre-scale collagen triple helices

    NASA Astrophysics Data System (ADS)

    Tanrikulu, I. Caglar; Forticaux, Audrey; Jin, Song; Raines, Ronald T.

    2016-11-01

    Sticky-ended DNA duplexes can associate spontaneously into long double helices; however, such self-assembly is much less developed with proteins. Collagen is the most prevalent component of the extracellular matrix and a common clinical biomaterial. As for natural DNA, the ~103-residue triple helices (~300 nm) of natural collagen are recalcitrant to chemical synthesis. Here we show how the self-assembly of short collagen-mimetic peptides (CMPs) can enable the fabrication of synthetic collagen triple helices that are nearly a micrometre in length. Inspired by the mathematics of tessellations, we derive rules for the design of single CMPs that self-assemble into long triple helices with perfect symmetry. Sticky ends thus created are uniform across the assembly and drive its growth. Enacting this design yields individual triple helices that, in length, match or exceed those in natural collagen and are remarkably thermostable, despite the absence of higher-order association. The symmetric assembly of CMPs provides an enabling platform for the development of advanced materials for medicine and nanotechnology.

  3. Proline Editing: A General and Practical Approach to the Synthesis of Functionally and Structurally Diverse Peptides. Analysis of Steric versus Stereoelectronic Effects of 4-Substituted Prolines on Conformation within Peptides

    PubMed Central

    Pandey, Anil K.; Naduthambi, Devan; Thomas, Krista M.; Zondlo, Neal J.

    2013-01-01

    Functionalized proline residues have diverse applications. Herein we describe a practical approach, proline editing, for the synthesis of peptides with stereospecifically modified proline residues. Peptides are synthesized by standard solid-phase-peptide-synthesis to incorporate Fmoc-Hydroxyproline (4R-Hyp). In an automated manner, the Hyp hydroxyl is protected and the remainder of the peptide synthesized. After peptide synthesis, the Hyp protecting group is orthogonally removed and Hyp selectively modified to generate substituted proline amino acids, with the peptide main chain functioning to “protect” the proline amino and carboxyl groups. In a model tetrapeptide (Ac-TYPN-NH2), 4R-Hyp was stereospecifically converted to 122 different 4-substituted prolyl amino acids, with 4R or 4S stereochemistry, via Mitsunobu, oxidation, reduction, acylation, and substitution reactions. 4-Substituted prolines synthesized via proline editing include incorporated structured amino acid mimetics (Cys, Asp/Glu, Phe, Lys, Arg, pSer/pThr), recognition motifs (biotin, RGD), electron-withdrawing groups to induce stereoelectronic effects (fluoro, nitrobenzoate), handles for heteronuclear NMR (19F:fluoro; pentafluorophenyl or perfluoro-tert-butyl ether; 4,4-difluoro; 77SePh) and other spectroscopies (fluorescence, IR: cyanophenyl ether), leaving groups (sulfonate, halide, NHS, bromoacetate), and other reactive handles (amine, thiol, thioester, ketone, hydroxylamine, maleimide, acrylate, azide, alkene, alkyne, aryl halide, tetrazine, 1,2-aminothiol). Proline editing provides access to these proline derivatives with no solution phase synthesis. All peptides were analyzed by NMR to identify stereoelectronic and steric effects on conformation. Proline derivatives were synthesized to permit bioorthogonal conjugation reactions, including azide-alkyne, tetrazinetrans-cyclooctene, oxime, reductive amination, native chemical ligation, Suzuki, Sonogashira, cross-metathesis, and Diels

  4. Antimicrobial Peptides: An Introduction.

    PubMed

    Haney, Evan F; Mansour, Sarah C; Hancock, Robert E W

    2017-01-01

    The "golden era" of antibiotic discovery has long passed, but the need for new antibiotics has never been greater due to the emerging threat of antibiotic resistance. This urgency to develop new antibiotics has motivated researchers to find new methods to combat pathogenic microorganisms resulting in a surge of research focused around antimicrobial peptides (AMPs; also termed host defense peptides) and their potential as therapeutics. During the past few decades, more than 2000 AMPs have been identified from a diverse range of organisms (animals, fungi, plants, and bacteria). While these AMPs share a number of common features and a limited number of structural motifs; their sequences, activities, and targets differ considerably. In addition to their antimicrobial effects, AMPs can also exhibit immunomodulatory, anti-biofilm, and anticancer activities. These diverse functions have spurred tremendous interest in research aimed at understanding the activity of AMPs, and various protocols have been described to assess different aspects of AMP function including screening and evaluating the activities of natural and synthetic AMPs, measuring interactions with membranes, optimizing peptide function, and scaling up peptide production. Here, we provide a general overview of AMPs and introduce some of the methodologies that have been used to advance AMP research.

  5. Brain Peptides and Psychopharmacology

    ERIC Educational Resources Information Center

    Arehart-Treichel, Joan

    1976-01-01

    Proteins isolated from the brain and used as drugs can improve and apparently even transfer mental states and behavior. Much of the pioneering work and recent research with humans and animals is reviewed and crucial questions that are being posed about the psychologically active peptides are related. (BT)

  6. Antagonistic peptide technology for functional dissection of CLE peptides revisited.

    PubMed

    Czyzewicz, Nathan; Wildhagen, Mari; Cattaneo, Pietro; Stahl, Yvonne; Pinto, Karine Gustavo; Aalen, Reidunn B; Butenko, Melinka A; Simon, Rüdiger; Hardtke, Christian S; De Smet, Ive

    2015-08-01

    In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Antagonistic peptide technology for functional dissection of CLE peptides revisited

    PubMed Central

    Czyzewicz, Nathan; Wildhagen, Mari; Cattaneo, Pietro; Stahl, Yvonne; Pinto, Karine Gustavo; Aalen, Reidunn B.; Butenko, Melinka A.; Simon, Rüdiger; Hardtke, Christian S.; De Smet, Ive

    2015-01-01

    In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants. PMID:26136270

  8. [Plant signaling peptides. Small post-translationally modified peptides].

    PubMed

    Gorzelańczyk, Aneta; Kowalczyk, Stanisław

    2014-01-01

    Recent genetic, bioinformatic and biochemical analyses have revealed that many secretory peptides are important components in intercellular signaling that coordinate and specify cellular functions in plants. The signaling peptides discovered in plants thus far can be considered to fall into two broad groups. Peptides from the first group are undergo post-translational modification, such as proline hydroxylation, hydroxyproline arabinosylation or tyrosine sulfation. Peptides from the second group are defined as cysteine-rich peptides (CRPs). The Cys-rich peptides are larger and they contain 4 to 16 cysteine residues. In parallel with the discovery of plant signal peptides, specific receptors for such peptide signals are identified. So far, the receptors for plant peptides that have been identified are members of the receptor-like kinases (RLKs) and the receptor-like proteins (RLPs) families, and most of them contain leucine-rich repeat (LRR) extracellular domain. The present review presents the recent progress in research on small post-translationally modified signal peptides. Recent findings indicate that these peptides are involved in various aspects of plant growth regulation including meristem organization, primary root development, lateral root initiation, vasculature development, organ abscission, and root nodulation.

  9. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    NASA Astrophysics Data System (ADS)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  10. Extreme Mechanical Behavior of Nacre-Mimetic Graphene-Oxide and Silk Nanocomposites.

    PubMed

    Xie, Wanting; Tadepalli, Sirimuvva; Park, Sang Hyun; Kazemi-Moridani, Amir; Jiang, Qisheng; Singamaneni, Srikanth; Lee, Jae-Hwang

    2018-02-14

    Biological materials have the ability to withstand extreme mechanical forces due to their unique multilevel hierarchical structure. Here, we fabricated a nacre-mimetic nanocomposite comprised of silk fibroin and graphene oxide that exhibits hybridized dynamic responses arising from alternating high-contrast mechanical properties of the components at the nanoscale. Dynamic mechanical behavior of these nanocomposites is assessed through a microscale ballistic characterization using a 7.6 μm diameter silica sphere moving at a speed of approximately 400 m/s. The volume fraction of graphene oxide in these composites is systematically varied from 0 to 32 vol % to quantify the dynamic effects correlating with the structural morphologies of the graphene oxide flakes. Specific penetration energy of the films rapidly increases as the distribution of graphene oxide flakes evolves from noninteracting, isolated sheets to a partially overlapping continuous sheet. The specific penetration energy of the nanocomposite at the highest graphene oxide content tested here is found to be significantly higher than that of Kevlar fabrics and close to that of pure multilayer graphene. This study evidently demonstrates that the morphologies of nanoscale constituents and their interactions are critical to realize scalable high-performance nanocomposites using typical nanomaterial constituents having finite dimensions.

  11. Interfacial cavity filling to optimize CD4-mimetic miniprotein interactions with the HIV-1 surface protein

    PubMed Central

    Morellato-Castillo, Laurence; Acharya, Priyamvada; Combes, Olivier; Michiels, Johan; Descours, Anne; Ramos, Oscar H. P.; Yang, Yongping; Vanham, Guido; Ariën, Kevin K.; Kwong, Peter D.; Martin, Loïc; Kessler, Pascal

    2013-01-01

    Ligand affinities can be optimized by interfacial cavity filling. A hollow (Phe43 cavity) between HIV-1 surface protein (gp120) and cluster of differentiation 4 (CD4) receptor, extends beyond residue phenylalanine 43 of CD4 and cannot be fully accessed by natural amino acids. To increase HIV-1 gp120 affinity for a family of CD4-mimetic miniproteins (miniCD4s), we targeted the gp120 Phe43 cavity with eleven non-natural phenylalanine derivatives, introduced into a miniCD4 named M48 (1). The best derivative named M48U12 (13) binds HIV-1 YU2 gp120 with 8 pM affinity, and shows potent HIV-1 neutralization. It contained a methylcyclohexyl derivative of 4-aminophenylalanine and its co-crystal structure with gp120 revealed the cyclohexane ring buried within the gp120 hydrophobic core but able to assume multiple orientations in the binding pocket, and an aniline nitrogen potentially providing a focus for further improvement. Altogether, the results provide a framework for filling the interfacial Phe43 cavity to enhance miniCD4 affinity. PMID:23710622

  12. Prenatal exposure to a viral mimetic alters behavioural flexibility in male, but not female, rats.

    PubMed

    Zhang, Ying; Cazakoff, Brittany N; Thai, Chester A; Howland, John G

    2012-03-01

    Current understanding of the etiology of neurodevelopmental disorders is limited; however, recent epidemiological studies demonstrate a strong correlation between prenatal infection during pregnancy and the development of schizophrenia in adult offspring. In particular, schizophrenia patients subjected to prenatal infection exhibit impairments in executive functions greater than schizophrenia patients not exposed to an infection while in utero. Acute prenatal treatment of rodents with the viral mimetic polyinosinic-polycytidylic acid (PolyI:C) induces behavioural and neuropathological alterations in the adult offspring similar to schizophrenia. However, impairments on tasks of executive function that involve the prefrontal cortex (PFC) have been rarely examined for the prenatal infection model. Hence, we investigated the effects of acute prenatal injection of PolyI:C (4.0 mg/kg, i.v., gestational day 15) on strategy set-shifting and reversal learning in an operant-based task. Our results show male, but not female, PolyI:C-treated adult offspring require more trials to reach criterion and perseverate during set-shifting. An opposite pattern was seen on the reversal day where the PolyI:C-treated male rats made fewer regressive errors. Females took more pre-training days and were slower to respond during the trials when compared to males regardless of prenatal treatment. The present findings validate the utility of the prenatal infection model for examining alterations of executive function, one of the most prominent cognitive symptoms of schizophrenia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs

    PubMed Central

    Céspedes, María Virtudes; Fernández, Yolanda; Unzueta, Ugutz; Mendoza, Rosa; Seras-Franzoso, Joaquin; Sánchez-Chardi, Alejando; Álamo, Patricia; Toledo-Rubio, Verónica; Ferrer-Miralles, Neus; Vázquez, Esther; Schwartz, Simó; Abasolo, Ibane; Corchero, José Luis; Mangues, Ramon; Villaverde, Antonio

    2016-01-01

    In the human endocrine system many protein hormones including urotensin, glucagon, obestatin, bombesin and secretin, among others, are supplied from amyloidal secretory granules. These granules form part of the so called functional amyloids, which within the whole aggregome appear to be more abundant than formerly believed. Bacterial inclusion bodies (IBs) are non-toxic, nanostructured functional amyloids whose biological fabrication can be tailored to render materials with defined biophysical properties. Since under physiological conditions they steadily release their building block protein in a soluble and functional form, IBs are considered as mimetics of endocrine secretory granules. We have explored here if the in vivo implantation of functional IBs in a given tissue would represent a stable local source of functional protein. Upon intratumoral injection of bacterial IBs formed by a potent protein ligand of CXCR4 we have observed high stability and prevalence of the material in absence of toxicity, accompanied by apoptosis of CXCR4+ cells and tumor ablation. Then, the local immobilization of bacterial amyloids formed by therapeutic proteins in tumors or other tissues might represent a promising strategy for a sustained local delivery of protein drugs by mimicking the functional amyloidal architecture of the mammals’ endocrine system. PMID:27775083

  14. Tempol, a Superoxide Dismutase-Mimetic Drug, Ameliorates Progression of Renal Disease in CKD Mice.

    PubMed

    Ding, Wei; Wang, Bin; Zhang, Minmin; Gu, Yong

    2015-01-01

    Oxidative stress has been implicated in the pathogenesis of chronic kidney disease (CKD) and antioxidants may ameliorate disease progression. We investigate the beneficial effect of Tempol, a superoxide dismutase-mimetic drug, on progression of disease in a mouse model of CKD. CKD was surgically induced in c57BL/6 mice by 5/6 nephrectomy. Mice were randomly divided into 3 groups: sham group, 5/6 nephrectomized group (Nx) and Nx+Tempol (2 mmol/l in drinking water). Mice were sacrificed at the end of 12 weeks. Renal function, structure as well as expression of key molecules involved in the pathogenesis of inflammation, fibrosis and progression in mice were measured. Reduced body weight and impaired renal function (elevation on serum creatinine, blood urea nitrogen, urine albumin, segmental sclerosis and tubulointerstitial damage) was demonstrated in Nx mice but was significantly improved by Tempol administration. Nx animals exhibited significantly elevated proinflammatory and profibrotic factors, activation of NF-κB, increased expression of NADPH oxidase related subunits (p47phox, p67phox, gp91phox), and elevated activation of TGF-β/Smad3, EGFR, MAPK signaling pathway. Tempol inhibited NF-κB mediated inflammation, TGF-β/Smad3-induced renal fibrosis as well as EGFR and MAPK signaling pathway activation. Tempol administration attenuated renal injury in CKD mice through NF-κB, TGF-β/Smad3, redox-senstive EGFR activation and c-Raf/MEK/ERK pathways. © 2015 S. Karger AG, Basel.

  15. Efficacy of the superoxide dismutase mimetic tempol in animal hypertension models: a meta-analysis.

    PubMed

    Dornas, Waleska C; Silva, Maísa; Tavares, Ricardo; de Lima, Wanderson G; dos Santos, Rinaldo C; Pedrosa, Maria L; Silva, Marcelo E

    2015-01-01

    Considering the growing body of evidence that indicates the contribution of superoxide anions (O2) and other reactive oxygen species (ROS) to the development of hypertension, we assessed whether animal models of hypertension have a benefic effect with tempol, a superoxide dismutase mimetic, to help augment the design of future studies. Studies published between July 1998 and December 2012 on blood pressure (BP) in different hypertensive models were obtained after an electronic and manual search of PubMed. In-depth analyses of the methodological quality of the studies and the mean arterial pressure (MAP) changes after treatment with tempol were performed, as well as the subgroup analyses on the route of tempol delivery. Out of the 144 identified studies, 28 were included after screening. The data showed that tempol reduced MAP by computing the standardized mean difference with the value of 4.622 (95% confidence interval 3.24-5.99). The quality of studies included in the meta-analysis was category II; however, omission of details in the trials might have biased the results. There was substantial heterogeneity in the results with an I of 94.45%, which persisted after stratifying for the route of tempol delivery. In conclusion, this analysis shows that antioxidant treatment with tempol can reduce BP, suggesting that ROS plays a role in the pathogenesis of increased BP in the hypertension models used in the current research practice.

  16. Tempol, a Superoxide Dismutase Mimetic Agent, Inhibits Superoxide Anion-Induced Inflammatory Pain in Mice.

    PubMed

    Bernardy, Catia C F; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Calixto-Campos, Cássia; Carvalho, Thacyana T; Fattori, Victor; Borghi, Sergio M; Casagrande, Rubia; Verri, Waldiceu A

    2017-01-01

    The present study evaluated the anti-inflammatory and analgesic effects of the superoxide dismutase mimetic agent tempol in superoxide anion-induced pain and inflammation. Mice were treated intraperitoneally with tempol (10-100 mg/kg) 40 min before the intraplantar injection of a superoxide anion donor, potassium superoxide (KO 2 , 30  μ g). Mechanical hyperalgesia and thermal hyperalgesia, paw edema, and mRNA expression of peripheral and spinal cord mediators involved in inflammatory pain, TNF α , IL-1 β , IL-10, COX-2, preproET-1, gp91 phox , Nrf2, GFAP, and Iba-1, were evaluated. Peripheral and spinal cord reductions of antioxidant defenses and superoxide anion were also assessed. Tempol reduced KO 2 -induced mechanical hyperalgesia and thermal hyperalgesia and paw edema. The increased mRNA expression of the evaluated mediators and oxidative stress in the paw skin and spinal cord and increased mRNA expression of glial markers in the spinal cord induced by KO 2 were successfully inhibited by tempol. KO 2 -induced reduction in Nrf2 mRNA expression in paw skin and spinal cord was also reverted by tempol. Corroborating the effect of tempol in the KO 2 model, tempol also inhibited carrageenan and CFA inflammatory hyperalgesia. The present study demonstrates that tempol inhibits superoxide anion-induced molecular and behavioral alterations, indicating that tempol deserves further preclinical studies as a promising analgesic and anti-inflammatory molecule for the treatment of inflammatory pain.

  17. The mimetic transition: a simulation study of the evolution of learning by imitation.

    PubMed

    Higgs, P G

    2000-07-07

    Culturally transmitted ideas or memes must have had a large effect on the survival and fecundity of early humans. Those with better techniques of obtaining food and making tools, clothing and shelters would have had a substantial advantage. It has been proposed that memes can explain why our species has an unusually large brain and high cognitive ability: the brain evolved because of selection for the ability to imitate. This article presents an evolutionary model of a population in which culturally transmitted memes can have both positive and negative effects on the fitness of individuals. It is found that genes for increased imitative ability are selectively favoured. The model predicts that imitative ability increases slowly until a mimetic transition occurs where memes become able to spread like an epidemic. At this point there is a dramatic increase in the imitative ability, the number of memes known per individual and the mean fitness of the population. Selection for increased imitative ability is able to overcome substantial selection against increased brain size in some cases.

  18. The mimetic transition: a simulation study of the evolution of learning by imitation.

    PubMed Central

    Higgs, P G

    2000-01-01

    Culturally transmitted ideas or memes must have had a large effect on the survival and fecundity of early humans. Those with better techniques of obtaining food and making tools, clothing and shelters would have had a substantial advantage. It has been proposed that memes can explain why our species has an unusually large brain and high cognitive ability: the brain evolved because of selection for the ability to imitate. This article presents an evolutionary model of a population in which culturally transmitted memes can have both positive and negative effects on the fitness of individuals. It is found that genes for increased imitative ability are selectively favoured. The model predicts that imitative ability increases slowly until a mimetic transition occurs where memes become able to spread like an epidemic. At this point there is a dramatic increase in the imitative ability, the number of memes known per individual and the mean fitness of the population. Selection for increased imitative ability is able to overcome substantial selection against increased brain size in some cases. PMID:10972132

  19. History Matching for Fractured Reservoirs using Mimetic Finite Differences and Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Min, B.; Ping, J.; Al-Hinai, O.; Srinivasan, S.; Wheeler, M.

    2016-12-01

    Optimal management of subsurface processes requires the characterization of the uncertainty in reservoir description and reservoir performance prediction. For fractured reservoirs, the location and orientation of fractures is crucial for predicting production characteristics. With the help of accurate and comprehensive knowledge of fracture distributions, early water / CO2 breakthrough can be prevented and sweep efficiency can be improved. However, since the rock property fields are highly non-Gaussian in this case, it is a challenge to estimate fracture distributions by conventional history matching approaches. In this work, a method that combines vector-based level-set parameterization technique and ensemble Kalman filter (EnKF) for estimating fracture distributions is presented. On the other hand, modeling fluid flow through fracture networks is challenging due to the geometric characteristics of fractures. In addition, the context of uncertainty quantification adds further challenges. Correctly sampling random realizations requires a fast and robust mesh representation and forward modeling. Our approach has been to circumvent traditional mesh generation by using methods that allow for general polyhedral elements. A discrete fracture model based on the Mimetic Finite Difference (MFD) method is utilized as forward modeling. In this research, we integrate mesh generation, MFD forward modeling, EnKF with parameterization in an automatic workflow. By applying this workflow on two-dimensional two-phase fractured reservoirs examples, it demonstrates that our proposed workflow provides an effective solution to address the challenges in the history matching problem of highly non-Gaussian fractured reservoirs.

  20. The Sea as a Rich Source of Structurally Unique Glycosaminoglycans and Mimetics

    PubMed Central

    Vasconcelos, Ariana A.; Pomin, Vitor H.

    2017-01-01

    Glycosaminoglycans (GAGs) are sulfated glycans capable of regulating various biological and medical functions. Heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, keratan sulfate and hyaluronan are the principal classes of GAGs found in animals. Although GAGs are all composed of disaccharide repeating building blocks, the sulfation patterns and the composing alternating monosaccharides vary among classes. Interestingly, GAGs from marine organisms can present structures clearly distinct from terrestrial animals even considering the same class of GAG. The holothurian fucosylated chondroitin sulfate, the dermatan sulfates with distinct sulfation patterns extracted from ascidian species, the sulfated glucuronic acid-containing heparan sulfate isolated from the gastropode Nodipecten nodosum, and the hybrid heparin/heparan sulfate molecule obtained from the shrimp Litopenaeus vannamei are some typical examples. Besides being a rich source of structurally unique GAGs, the sea is also a wealthy environment of GAG-resembling sulfated glycans. Examples of these mimetics are the sulfated fucans and sulfated galactans found in brown, red and green algae, sea urchins and sea cucumbers. For adequate visualization, representations of all discussed molecules are given in both Haworth projections and 3D models. PMID:28846656

  1. Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling

    PubMed Central

    Kushal, Swati; Lao, Brooke Bullock; Henchey, Laura K.; Dubey, Ramin; Mesallati, Hanah; Traaseth, Nathaniel J.; Olenyuk, Bogdan Z.; Arora, Paramjit S.

    2013-01-01

    Selective blockade of gene expression by designed small molecules is a fundamental challenge at the interface of chemistry, biology, and medicine. Transcription factors have been among the most elusive targets in genetics and drug discovery, but the fields of chemical biology and genetics have evolved to a point where this task can be addressed. Herein we report the design, synthesis, and in vivo efficacy evaluation of a protein domain mimetic targeting the interaction of the p300/CBP coactivator with the transcription factor hypoxia-inducible factor-1α. Our results indicate that disrupting this interaction results in a rapid down-regulation of hypoxia-inducible genes critical for cancer progression. The observed effects were compound-specific and dose-dependent. Gene expression profiling with oligonucleotide microarrays revealed effective inhibition of hypoxia-inducible genes with relatively minimal perturbation of nontargeted signaling pathways. We observed remarkable efficacy of the compound HBS 1 in suppressing tumor growth in the fully established murine xenograft models of renal cell carcinoma of the clear cell type. Our results suggest that rationally designed synthetic mimics of protein subdomains that target the transcription factor–coactivator interfaces represent a unique approach for in vivo modulation of oncogenic signaling and arresting tumor growth. PMID:24019500

  2. Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling.

    PubMed

    Kushal, Swati; Lao, Brooke Bullock; Henchey, Laura K; Dubey, Ramin; Mesallati, Hanah; Traaseth, Nathaniel J; Olenyuk, Bogdan Z; Arora, Paramjit S

    2013-09-24

    Selective blockade of gene expression by designed small molecules is a fundamental challenge at the interface of chemistry, biology, and medicine. Transcription factors have been among the most elusive targets in genetics and drug discovery, but the fields of chemical biology and genetics have evolved to a point where this task can be addressed. Herein we report the design, synthesis, and in vivo efficacy evaluation of a protein domain mimetic targeting the interaction of the p300/CBP coactivator with the transcription factor hypoxia-inducible factor-1α. Our results indicate that disrupting this interaction results in a rapid down-regulation of hypoxia-inducible genes critical for cancer progression. The observed effects were compound-specific and dose-dependent. Gene expression profiling with oligonucleotide microarrays revealed effective inhibition of hypoxia-inducible genes with relatively minimal perturbation of nontargeted signaling pathways. We observed remarkable efficacy of the compound HBS 1 in suppressing tumor growth in the fully established murine xenograft models of renal cell carcinoma of the clear cell type. Our results suggest that rationally designed synthetic mimics of protein subdomains that target the transcription factor-coactivator interfaces represent a unique approach for in vivo modulation of oncogenic signaling and arresting tumor growth.

  3. Mussel-mimetic tissue adhesive for fetal membrane repair: an ex vivo evaluation.

    PubMed

    Haller, C M; Buerzle, W; Kivelio, A; Perrini, M; Brubaker, C E; Gubeli, R J; Mallik, A S; Weber, W; Messersmith, P B; Mazza, E; Ochsenbein-Koelble, N; Zimmermann, R; Ehrbar, M

    2012-12-01

    Iatrogenic preterm prelabor rupture of membranes (iPPROM) remains the main complication after invasive interventions into the intrauterine cavity. Here, the proteolytic stability of mussel-mimetic tissue adhesive (mussel glue) and its sealing behavior on punctured fetal membranes are evaluated. The proteolytic degradation of mussel glue and fibrin glue were compared in vitro. Critical pressures of punctured and sealed fetal membranes were determined under close to physiological conditions using a custom-made inflation device. An inverse finite element procedure was applied to estimate mechanical parameters of mussel glue. Mussel glue was insensitive whereas fibrin glue was sensitive towards proteolytic degradation. Mussel glue sealed 3.7mm fetal membrane defect up to 60mbar (45mmHg) when applied under wet conditions, whereas fibrin glue needed dry membrane surfaces for reliable sealing. The mussel glue can be represented by a neo-Hookean material model with elastic coefficient C(1)=9.63kPa. Ex-vivo-tested mussel glue sealed fetal membranes and resisted pressures achieved during uterine contractions. Together with good stability in proteolytic environments, this makes mussel glue a promising sealing material for future applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato

    PubMed Central

    Ruiz, Mayté; Salazar, Patricio; Counterman, Brian; Medina, Jose Alejandro; Ortiz-Zuazaga, Humberto; Morrison, Anna; Papa, Riccardo

    2014-01-01

    Hybrid zones can be valuable tools for studying evolution and identifying genomic regions responsible for adaptive divergence and underlying phenotypic variation. Hybrid zones between subspecies of Heliconius butterflies can be very narrow and are maintained by strong selection acting on color pattern. The comimetic species, H. erato and H. melpomene, have parallel hybrid zones in which both species undergo a change from one color pattern form to another. We use restriction-associated DNA sequencing to obtain several thousand genome-wide sequence markers and use these to analyze patterns of population divergence across two pairs of parallel hybrid zones in Peru and Ecuador. We compare two approaches for analysis of this type of data—alignment to a reference genome and de novo assembly—and find that alignment gives the best results for species both closely (H. melpomene) and distantly (H. erato, ∼15% divergent) related to the reference sequence. Our results confirm that the color pattern controlling loci account for the majority of divergent regions across the genome, but we also detect other divergent regions apparently unlinked to color pattern differences. We also use association mapping to identify previously unmapped color pattern loci, in particular the Ro locus. Finally, we identify a new cryptic population of H. timareta in Ecuador, which occurs at relatively low altitude and is mimetic with H. melpomene malleti. PMID:24823669

  5. Defensive Chemistry of Lycid Beetles and of Mimetic Cerambycid Beetles that Feed on Them

    PubMed Central

    Eisner, Thomas; Schroeder, Frank C.; Snyder, Noel; Grant, Jacqualine B.; Aneshansley, Daniel J.; Utterback, David; Meinwald, Jerrold; Eisner, Maria

    2008-01-01

    Summary Beetles of the family Lycidae have long been known to be chemically protected. We present evidence that North American species of the lycid genera Calopteron and Lycus are rejected by thrushes, wolf spiders, and orb-weaving spiders, and that they contain a systemic compound that could account, at least in part, for this unacceptability. This compound, a novel acetylenic acid that we named lycidic acid, proved actively deterrent in feeding tests with wolf spiders and coccinellid beetles. Species of Lycus commonly figure as models of mimetic associations. Among their mimics are species of the cerambycid beetle genus Elytroleptus, remarkable because they prey upon the model lycids. We postulated that by doing so Elytroleptus might incorporate the lycidic acid from their prey for their own defense. However, judging from analytical data, the beetles practice no such sequestration, explaining why they remain relatively palatable (in tests with wolf spiders) even after having fed on lycids. Chemical analyses also showed the lycids to contain pyrazines, such as were already known from other Lycidae, potent odorants that could serve in an aposematic capacity to forestall predatory attacks. PMID:18698369

  6. Design and facile synthesis of neoglycolipids as lactosylceramide mimetics and their transformation into glycoliposomes.

    PubMed

    Harada, Yoichiro; Murata, Takeomi; Totani, Kazuhide; Kajimoto, Tetsuya; Masum, Shah Md; Tamba, Yukihiro; Yamazaki, Masahito; Usui, Taichi

    2005-01-01

    Neoglycolipids composed of disaccharide glycoside and phospholipid were designed and prepared as mimetics of lactosylceramide. The lactosyl- and N-acetyllactosaminyl-phospholipids (Lac-DPPA and LacNAc-DPPA) were enzymatically synthesized from lactose and LacNAc respectively by cellulase-mediated condensation with 1,6-hexanediol, followed by conjugation of the resulting glycosides and dipalmitoylphosphatidyl choline (DPPC) mediated by Streptomyces phospholipase D. Alternatively, allyl beta-lactoside was ozonolyzed to give an aldehyde, which was condensed with dipalmytoyl phosphatidyl ethanolamine to afford a second type of glycolipid (Lac-DPPE). NMR spectroscopy indicated that the neoglycolipids behave differently in different solvent systems. X-ray diffraction clearly showed that multilamellar vesicles (MLVs) of Lac-DPPE and Lac-DPPA-MLV are in the bilayer gel phase at 20 degrees C, whereas those of Lac-DPPE-MLV were in the lamellar liquid-crystalline phase at 50 degrees C. Differential scanning calorimetry showed that Lac-DPPE-MLV had complex thermotropic behavior depending on the incubation conditions. After a long incubation at 10 degrees C, endothermic transitions are observed at 39.6, 42.3 degrees C, and 42.9 degrees C. These neoglycolipids have the ability to trap calcein, a chelating derivative of fluorescein, in MLVs and showed specific binding to lectin in plate assays using fluorescently labeled compounds.

  7. Triacylglycerol mimetics regulate membrane interactions of glycogen branching enzyme: implications for therapy.

    PubMed

    Alvarez, Rafael; Casas, Jesús; López, David J; Ibarguren, Maitane; Suari-Rivera, Ariadna; Terés, Silvia; Guardiola-Serrano, Francisca; Lossos, Alexander; Busquets, Xavier; Kakhlon, Or; Escribá, Pablo V

    2017-08-01

    Adult polyglucosan body disease (APBD) is a neurological disorder characterized by adult-onset neurogenic bladder, spasticity, weakness, and sensory loss. The disease is caused by aberrant glycogen branching enzyme (GBE) (GBE1Y329S) yielding less branched, globular, and soluble glycogen, which tends to aggregate. We explore here whether, despite being a soluble enzyme, GBE1 activity is regulated by protein-membrane interactions. Because soluble proteins can contact a wide variety of cell membranes, we investigated the interactions of purified WT and GBE1Y329S proteins with different types of model membranes (liposomes). Interestingly, both triheptanoin and some triacylglycerol mimetics (TGMs) we have designed (TGM0 and TGM5) markedly enhance GBE1Y329S activity, possibly enough for reversing APBD symptoms. We show that the GBE1Y329S mutation exposes a hydrophobic amino acid stretch, which can either stabilize and enhance or alternatively, reduce the enzyme activity via alteration of protein-membrane interactions. Additionally, we found that WT, but not Y329S, GBE1 activity is modulated by Ca 2+ and phosphatidylserine, probably associated with GBE1-mediated regulation of energy consumption and storage. The thermal stabilization and increase in GBE1Y329S activity induced by TGM5 and its omega-3 oil structure suggest that this molecule has a considerable therapeutic potential for treating APBD. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  8. Defensive Chemistry of Lycid Beetles and of Mimetic Cerambycid Beetles that Feed on Them.

    PubMed

    Eisner, Thomas; Schroeder, Frank C; Snyder, Noel; Grant, Jacqualine B; Aneshansley, Daniel J; Utterback, David; Meinwald, Jerrold; Eisner, Maria

    2008-01-01

    Beetles of the family Lycidae have long been known to be chemically protected. We present evidence that North American species of the lycid genera Calopteron and Lycus are rejected by thrushes, wolf spiders, and orb-weaving spiders, and that they contain a systemic compound that could account, at least in part, for this unacceptability. This compound, a novel acetylenic acid that we named lycidic acid, proved actively deterrent in feeding tests with wolf spiders and coccinellid beetles.Species of Lycus commonly figure as models of mimetic associations. Among their mimics are species of the cerambycid beetle genus Elytroleptus, remarkable because they prey upon the model lycids. We postulated that by doing so Elytroleptus might incorporate the lycidic acid from their prey for their own defense. However, judging from analytical data, the beetles practice no such sequestration, explaining why they remain relatively palatable (in tests with wolf spiders) even after having fed on lycids. Chemical analyses also showed the lycids to contain pyrazines, such as were already known from other Lycidae, potent odorants that could serve in an aposematic capacity to forestall predatory attacks.

  9. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    NASA Astrophysics Data System (ADS)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-03-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as higher moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence.

  10. Synthetic mimetics of the endogenous gastrointestinal nanomineral: Silent constructs that trap macromolecules for intracellular delivery.

    PubMed

    Pele, Laetitia C; Haas, Carolin T; Hewitt, Rachel E; Robertson, Jack; Skepper, Jeremy; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A; Faria, Nuno; Chappell, Helen; Powell, Jonathan J

    2017-02-01

    Amorphous magnesium-substituted calcium phosphate (AMCP) nanoparticles (75-150nm) form constitutively in large numbers in the mammalian gut. Collective evidence indicates that they trap and deliver luminal macromolecules to mucosal antigen presenting cells (APCs) and facilitate gut immune homeostasis. Here, we report on a synthetic mimetic of the endogenous AMCP and show that it has marked capacity to trap macromolecules during formation. Macromolecular capture into AMCP involved incorporation as shown by STEM tomography of the synthetic AMCP particle with 5nm ultra-fine iron (III) oxohydroxide. In vitro, organic cargo-loaded synthetic AMCP was taken up by APCs and tracked to lysosomal compartments. The AMCP itself did not regulate any gene, or modify any gene regulation by its cargo, based upon whole genome transcriptomic analyses. We conclude that synthetic AMCP can efficiently trap macromolecules and deliver them to APCs in a silent fashion, and may thus represent a new platform for antigen delivery. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Antimicrobial peptides: premises and promises.

    PubMed

    Reddy, K V R; Yedery, R D; Aranha, C

    2004-12-01

    Antimicrobial peptides (AMPs) are an important component of the natural defences of most living organisms against invading pathogens. These are relatively small (< 10kDa), cationic and amphipathic peptides of variable length, sequence and structure. During the past two decades several AMPs have been isolated from a wide variety of animals, both vertebrates and invertebrates, and plants as well as from bacteria and fungi. Most of these peptides are obtained from different sources like macrophages, neutrophils, epithelial cells, haemocytes, fat body, reproductive tract, etc. These peptides exhibit broad-spectrum activity against a wide range of microorganisms including Gram-positive and Gram-negative bacteria, protozoa, yeast, fungi and viruses. A few peptides have also been found to be cytotoxic to sperm and tumour cells. AMPs are classified based on the three dimensional structural studies carried out with the help of NMR. The peptides are broadly classified into five major groups namely (a) peptides that form alpha-helical structures, (b) peptides rich in cysteine residues, (c) peptides that form beta-sheet, (d) peptides rich in regular amino acids namely histatin, arginine and proline and (e) peptides composed of rare and modified amino acids. Most of these peptides are believed to act by disrupting the plasma membrane leading to the lysis of the cell. AMPs have been found to be excellent candidates for developing novel antimicrobial agents and a few of these peptides show antimicrobial activity against pathogens causing sexually transmitted infection (STI), including HIV/HSV. Peptides, namely magainin and nisin have been shown to demonstrate contraceptive properties in vitro and in vivo. A few peptides have already entered clinical trials for the treatment of impetigo, diabetic foot ulcers and gastric helicobacter infections. In this review, we discuss the source, structures and mode of action with special reference to therapeutic considerations of various AMPs.

  12. Apolipoprotein A-I attenuates LL-37-induced endothelial cell cytotoxicity.

    PubMed

    Svensson, Daniel; Lagerstedt, Jens O; Nilsson, Bengt-Olof; Del Giudice, Rita

    2017-11-04

    The human cathelicidin peptide LL-37 has antimicrobial and anti-biofilm functions, but LL-37 may also damage the host by triggering inflammation and exerting a cytotoxic effect, thereby reducing host cell viability. Human plasma mitigates LL-37-induced host cell cytotoxicity but the underlying mechanisms are not completely understood. Apolipoprotein A-I (ApoA-I) is a plasma protein endowed with atheroprotective effects. Here, we investigate the interaction between ApoA-I and LL-37 by biochemical techniques, and furthermore assess if ApoA-I protects against LL-37-evoked cytotoxicity in human umbilical vein endothelial cells (HUVEC). Our results demonstrated that ApoA-I effectively binds LL-37. The binding of ApoA-I to LL-37 resulted in a structural rearrangement of the protein, but this interaction did not cause lower ApoA-I stability. Recombinant ApoA-I protected against LL-37-induced cytotoxicity in HUVEC and endogenous ApoA-I knockdown in HepG2 cells made the cells more sensitive to LL-37-evoked cytotoxicity. We conclude that ApoA-I physically interacts with LL-37 and antagonizes LL-37-induced down-regulation of endothelial cell viability suggesting that this mechanism counteracts endothelial cell dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A Peptide Filtering Relation Quantifies MHC Class I Peptide Optimization

    PubMed Central

    Goldstein, Leonard D.; Howarth, Mark; Cardelli, Luca; Emmott, Stephen; Elliott, Tim; Werner, Joern M.

    2011-01-01

    Major Histocompatibility Complex (MHC) class I molecules enable cytotoxic T lymphocytes to destroy virus-infected or cancerous cells, thereby preventing disease progression. MHC class I molecules provide a snapshot of the contents of a cell by binding to protein fragments arising from intracellular protein turnover and presenting these fragments at the cell surface. Competing fragments (peptides) are selected for cell-surface presentation on the basis of their ability to form a stable complex with MHC class I, by a process known as peptide optimization. A better understanding of the optimization process is important for our understanding of immunodominance, the predominance of some T lymphocyte specificities over others, which can determine the efficacy of an immune response, the danger of immune evasion, and the success of vaccination strategies. In this paper we present a dynamical systems model of peptide optimization by MHC class I. We incorporate the chaperone molecule tapasin, which has been shown to enhance peptide optimization to different extents for different MHC class I alleles. Using a combination of published and novel experimental data to parameterize the model, we arrive at a relation of peptide filtering, which quantifies peptide optimization as a function of peptide supply and peptide unbinding rates. From this relation, we find that tapasin enhances peptide unbinding to improve peptide optimization without significantly delaying the transit of MHC to the cell surface, and differences in peptide optimization across MHC class I alleles can be explained by allele-specific differences in peptide binding. Importantly, our filtering relation may be used to dynamically predict the cell surface abundance of any number of competing peptides by MHC class I alleles, providing a quantitative basis to investigate viral infection or disease at the cellular level. We exemplify this by simulating optimization of the distribution of peptides derived from Human

  14. Cm-p5: an antifungal hydrophilic peptide derived from the coastal mollusk Cenchritis muricatus (Gastropoda: Littorinidae).

    PubMed

    López-Abarrategui, Carlos; McBeth, Christine; Mandal, Santi M; Sun, Zhenyu J; Heffron, Gregory; Alba-Menéndez, Annia; Migliolo, Ludovico; Reyes-Acosta, Osvaldo; García-Villarino, Mónica; Nolasco, Diego O; Falcão, Rosana; Cherobim, Mariana D; Dias, Simoni C; Brandt, Wolfgang; Wessjohann, Ludger; Starnbach, Michael; Franco, Octavio L; Otero-González, Anselmo J

    2015-08-01

    Antimicrobial peptides form part of the first line of defense against pathogens for many organisms. Current treatments for fungal infections are limited by drug toxicity and pathogen resistance. Cm-p5 (SRSELIVHQRLF), a peptide derived from the marine mollusk Cenchritis muricatus peptide Cm-p1, has a significantly increased fungistatic activity against pathogenic Candida albicans (minimal inhibitory concentration, 10 µg/ml; EC50, 1.146 µg/ml) while exhibiting low toxic effects against a cultured mammalian cell line. Cm-p5 as characterized by circular dichroism and nuclear magnetic resonance revealed an α-helical structure in membrane-mimetic conditions and a tendency to random coil folding in aqueous solutions. Additional studies modeling Cm-p5 binding to a phosphatidylserine bilayer in silico and isothermal titration calorimetry using lipid monophases demonstrated that Cm-p5 has a high affinity for the phospholipids of fungal membranes (phosphatidylserine and phosphatidylethanolamine), only moderate interactions with a mammalian membrane phospholipid, low interaction with ergosterol, and no interaction with chitin. Adhesion of Cm-p5 to living C. albicans cells was confirmed by fluorescence microscopy with FITC-labeled peptide. In a systemic candidiasis model in mice, intraperitoneal administration of Cm-p5 was unable to control the fungal kidney burden, although its low amphiphaticity could be modified to generate new derivatives with improved fungicidal activity and stability. © FASEB.

  15. Rationally designed dehydroalanine (DeltaAla)-containing peptides inhibit amyloid-beta (Abeta) peptide aggregation.

    PubMed

    Rangachari, Vijayaraghavan; Davey, Zachary S; Healy, Brent; Moore, Brenda D; Sonoda, Leilani K; Cusack, Bernadette; Maharvi, Ghulam M; Fauq, Abdul H; Rosenberry, Terrone L

    2009-06-01

    Among the pathological hallmarks of Alzheimer's disease (AD) is the deposition of amyloid-beta (Abeta) peptides, primarily Abeta (1-40) and Abeta (1-42), in the brain as senile plaques. A large body of evidence suggests that cognitive decline and dementia in AD patients arise from the formation of various aggregated forms of Abeta, including oligomers, protofibrils and fibrils. Hence, there is increasing interest in designing molecular agents that can impede the aggregation process and that can lead to the development of therapeutically viable compounds. Here, we demonstrate the ability of the specifically designed alpha,beta-dehydroalanine (DeltaAla)-containing peptides P1 (K-L-V-F-DeltaA-I-DeltaA) and P2 (K-F-DeltaA-DeltaA-DeltaA-F) to inhibit Abeta (1-42) aggregation. The mechanism of interaction of the two peptides with Abeta (1-42) seemed to be different and distinct. Overall, the data reveal a novel application of DeltaAla-containing peptides as tools to disrupt Abeta aggregation that may lead to the development of anti-amyloid therapies not only for AD but also for many other protein misfolding diseases. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 456-465, 2009.

  16. Antibody Production with Synthetic Peptides.

    PubMed

    Lee, Bao-Shiang; Huang, Jin-Sheng; Jayathilaka, Lasanthi P; Lee, Jenny; Gupta, Shalini

    2016-01-01

    Peptides (usually 10-20 amino acid residues in length) can be used as effectively as proteins in raising antibodies producing both polyclonal and monoclonal antibodies routinely with titers higher than 20,000. Peptide antigens do not function as immunogens unless they are conjugated to proteins. Production of high quality antipeptide antibodies is dependent upon peptide sequence selection, the success of peptide synthesis, peptide-carrier protein conjugation, the humoral immune response in the host animal, the adjuvant used, the peptide dose administered, the injection method, and the purification of the antibody. Peptide sequence selection is probably the most critical step in the production of antipeptide antibodies. Although the process for designing peptide antigens is not exact, several guidelines and computational B-cell epitope prediction methods can help maximize the likelihood of producing antipeptide antibodies that recognize the protein. Antibodies raised by peptides have become essential tools in life science research. Virtually all phospho-specific antibodies are now produced using phosphopeptides as antigens. Typically, 5-20 mg of peptide is enough for antipeptide antibody production. It takes 3 months to produce a polyclonal antipeptide antibody in rabbits that yields ~100 mL of serum which corresponds to ~8-10 mg of the specific antibody after affinity purification using a peptide column.

  17. Multidimensional Design of Anticancer Peptides.

    PubMed

    Lin, Yen-Chu; Lim, Yi Fan; Russo, Erica; Schneider, Petra; Bolliger, Lea; Edenharter, Adriana; Altmann, Karl-Heinz; Halin, Cornelia; Hiss, Jan A; Schneider, Gisbert

    2015-08-24

    The computer-assisted design and optimization of peptides with selective cancer cell killing activity was achieved through merging the features of anticancer peptides, cell-penetrating peptides, and tumor-homing peptides. Machine-learning classifiers identified candidate peptides that possess the predicted properties. Starting from a template amino acid sequence, peptide cytotoxicity against a range of cancer cell lines was systematically optimized while minimizing the effects on primary human endothelial cells. The computer-generated sequences featured improved cancer-cell penetration, induced cancer-cell apoptosis, and were enabled a decrease in the cytotoxic concentration of co-administered chemotherapeutic agents in vitro. This study demonstrates the potential of multidimensional machine-learning methods for rapidly obtaining peptides with the desired cellular activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Oral Apolipoprotein A‐I Mimetic D‐4F Lowers HDL‐Inflammatory Index in High‐Risk Patients: A First‐in‐Human Multiple‐Dose, Randomized Controlled Trial

    PubMed Central

    Movva, Rajesh; Bloedon, LeAnne T.; Duffy, Danielle; Norris, Robert B.; Navab, Mohamad; Fogelman, Alan M.; Rader, Daniel J.

    2017-01-01

    Abstract A single dose of the apolipoprotein (apo)A‐I mimetic peptide D‐4F rendered high‐density lipoprotein (HDL) less inflammatory, motivating the first multiple‐dose study. We aimed to assess safety/tolerability, pharmacokinetics, and pharmacodynamics of daily, orally administered D‐4F. High‐risk coronary heart disease (CHD) subjects added double‐blinded placebo or D‐4F to statin for 13 days, randomly assigned 1:3 to ascending cohorts of 100, 300, then 500 mg (n = 62; 46 men/16 women). D‐4F was safe and well‐tolerated. Mean ± SD plasma D‐4F area under the curve (AUC, 0–8h) was 6.9 ± 5.7 ng/mL*h (100 mg), 22.7 ± 19.6 ng/mL*h (300 mg), and 104.0 ± 60.9 ng/mL*h (500 mg) among men, higher among women. Whereas placebo dropped HDL inflammatory index (HII) 28% 8 h postdose (range, 1.25–0.86), 300–500 mg D‐4F effectively halved HII: 1.35–0.57 and 1.22–0.63, respectively (P < 0.03 vs. placebo). Oral D‐4F peptide dose predicted HII suppression, whereas plasma D‐4F exposure was dissociated, suggesting plasma penetration is unnecessary. In conclusion, oral D‐4F dosing rendered HDL less inflammatory, affirming oral D‐4F as a potential therapy to improve HDL function. PMID:28795506

  19. Concepts for Biologically Active Peptides

    PubMed Central

    Kastin, Abba J.; Pan, Weihong

    2012-01-01

    Here we review a unique aspect of CNS research on biologically active peptides that started against a background of prevalent dogmas but ended by exerting considerable influence on the field. During the course of refuting some doctrines, we introduced several concepts that were unconventional and paradigm-shifting at the time. We showed that (1) hypothalamic peptides can act ‘up’ on the brain as well as ‘down’ on the pituitary, (2) peripheral peptides can affect the brain, (3) peptides can cross the blood-brain barrier, (4) the actions of peptides can persist longer than their half-lives in blood, (5) perinatal administration of peptides can exert actions persisting into adulthood, (6) a single peptide can have more than one action, (7) dose-response relationships of peptides need not be linear, (8) the brain produces antiopiate as well as opiate peptides, (9) there is a selective high affinity endogenous peptide ligand for the mu-opiate receptor, (10) a peptide’s name does not restrict its effects, and (11) astrocytes assume an active role in response to metabolic disturbance and hyperleptinemia. The evolving questions in our laboratories reflect the diligent effort of the neuropeptide community to identify the roles of peptides in the CNS. The next decade is expected to see greater progress in the following areas: (a) interactions of peptides with other molecules in the CNS; (b) peptide involvement in cell-cell interactions; and (c) peptides in neuropsychiatric, autoimmune, and neurodegenerative diseases. The development of peptidomics and gene silencing approaches will expedite the formation of many new concepts in a new era. PMID:20726835

  20. Immunogenicity, Inflammation, and Lipid Accumulation in Cynomolgus Monkeys Infused with a Lipidated Tetranectin-ApoA-I Fusion Protein.

    PubMed

    Regenass-Lechner, Franziska; Staack, Roland F; Mary, Jean-Luc; Richter, Wolfgang F; Winter, Michael; Jordan, Gregor; Justies, Nicole; Langenkamp, Anja; Garrido, Rosario; Albassam, Mudher; Singer, Thomas; Atzpodien, Elke-Astrid

    2016-04-01

    High density lipoprotein (HDL)-targeted therapies, which promote cholesterol efflux from cells, are currently in development for reducing cardiovascular events in acute coronary syndrome. Human apolipoprotein A-I (apoA-I), the major HDL protein, was fused to the trimerization domain of tetranectin (TN) and complexed with phospholipids to generate a HDL mimetic (lipidated TN-ApoA-I) with reduced renal clearance and enhanced efficacy. Cynomolgus monkeys received 24-h intravenous infusions of control, 100 mg/kg or 400 mg/kg lipidated TN-ApoA-I every 4 days for 3 weeks, followed by a 6-week recovery period. After multiple infusions of lipidated TN-ApoA-I, clinical condition deteriorated and was accompanied by changes indicative of a progressive inflammatory response; increased levels of cytokines, C-reactive protein and vascular/perivascular infiltrates in multiple tissues. Rapid formation of antidrug antibodies occurred in all animals receiving lipidated TN-ApoA-I. Enhanced drug clearance corresponding to a relative lack of high molecular weight immune complexes in blood, suggestive of preferred removal/clearance, was observed in some animals. Expected dose-dependent increases in serum lipids were accompanied by vacuolated monocytes/macrophages in multiple organs, which in the glomeruli were shown to be CD68-positive, contain lipid and co-localized with granular IgG deposits. Lipid accumulation may have been a direct result of a high drug load, possibly enhanced by immune complex formation, inflammation, and altered lipid metabolism. Noteworthy was the inter- individual inconsistency in the severity of clinical and histopathologic findings, drug clearance and inflammatory markers. In conclusion, multiple infusions of lipidated TN-ApoA-I resulted in high immunogenicity, lipid accumulation and were not well tolerated in nonhuman primates. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For

  1. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures

    NASA Astrophysics Data System (ADS)

    Wei, Jingping; Chen, Xiaolan; Shi, Saige; Mo, Shiguang; Zheng, Nanfeng

    2015-11-01

    In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis.In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis. Electronic supplementary information (ESI) available: TEM images, EDX and dispersion stability of Pd-based nanomaterials

  2. Mussel mimetic tissue adhesive for fetal membrane repair: initial in vivo investigation in rabbits.

    PubMed

    Kivelio, A; Dekoninck, P; Perrini, M; Brubaker, C E; Messersmith, P B; Mazza, E; Deprest, J; Zimmermann, R; Ehrbar, M; Ochsenbein-Koelble, N

    2013-12-01

    Iatrogenic preterm prelabour rupture of fetal membranes (iPPROM) remains the main complication after invasive interventions into the intrauterine cavity. The aim of this study was to evaluate the sealing capability and tissue interaction of mussel-mimetic tissue adhesive (mussel glue) in comparison to fibrin glue on punctured fetal membranes in vivo. A mid-gestational rabbit model was used for testing the materials. The fetal sacs of pregnant rabbits at day 23 were randomly assigned into experimental groups: unoperated (negative control), unclosed puncture (positive control), commercially available fibrin glue (FG) with decellularized amnion scaffold (DAM), mussel glue (MG) with DAM, or mussel glue alone. Evaluation was done at term (30 days' gestation) assessing fetal survival, fetal membrane integrity and histology of the membranes. Fetal survival was not significantly lower in any of the treatment groups compared to the negative control. All plugging materials could be found at the end of the pregnancy and no adverse effects on the fetus or the pregnant does could be observed. Sac integrity was higher in all treatment groups compared to the positive control group but significant only in the FG+DAM group. Cellular infiltration could be seen in fibrin glue and DAM in contrast to mussel glue which was only tightly adhering to the surrounding tissue. These cells were mostly of mesenchymal phenotype staining positive for vimentin. CD68 positive macrophages were found clustered around all the plugging materials, but their numbers were only significantly increased for the mussel glue alone group compared to negative controls. Mussel glues performance in sealing fetal membranes in the rabbit model was comparable to that of fibrin glue. Taking into account its other favorable properties, it is a noteworthy candidate for a clinically applicable fetal membrane sealant. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Perylene Diimide as a Precise Graphene-like Superoxide Dismutase Mimetic

    SciTech Connect

    Jalilov, Almaz S.; Nilewski, Lizanne G.; Berka, Vladimir

    2017-01-31

    Here we show that the active portion of a graphitic nanoparticle can be mimicked by a perylene diimide (PDI) to explain the otherwise elusive biological and electrocatalytic activity of the nanoparticle construct. Development of molecular analogues that mimic the antioxidant properties of oxidized graphenes, in this case the poly(ethylene glycolated) hydrophilic carbon clusters (PEG–HCCs), will afford important insights into the highly efficient activity of PEG–HCCs and their graphitic analogues. PEGylated perylene diimides (PEGn–PDI) serve as well-defined molecular analogues of PEG–HCCs and oxidized graphenes in general, and their antioxidant and superoxide dismutase-like (SOD-like) properties were studied. PEGn–PDIs have two reversible reductionmore » peaks, which are more positive than the oxidation peak of superoxide (O2•–). This is similar to the reduction peak of the HCCs. Thus, as with PEG–HCCs, PEGn–PDIs are also strong single-electron oxidants of O2•–. Furthermore, reduced PEGn–PDI, PEGn–PDI•–, in the presence of protons, was shown to reduce O2•– to H2O2 to complete the catalytic cycle in this SOD analogue. The kinetics of the conversion of O2•– to O2 and H2O2 by PEG8–PDI was measured using freeze-trap EPR experiments to provide a turnover number of 133 s–1; the similarity in kinetics further supports that PEG8–PDI is a true SOD mimetic. Finally, PDIs can be used as catalysts in the electrochemical oxygen reduction reaction in water, which proceeds by a two-electron process with the production of H2O2, mimicking graphene oxide nanoparticles that are otherwise difficult to study spectroscopically.« less

  4. Dramatic nano-fluidic properties of carbon nanotube membranes as a platform for protein channel mimetics

    NASA Astrophysics Data System (ADS)

    Hinds, Bruce

    2013-03-01

    Carbon nanotubes have three key attributes that make them of great interest for novel membrane applications: 1) atomically flat graphite surface allows for ideal fluid slip boundary conditions and extremely fast flow rates 2) the cutting process to open CNTs inherently places functional chemistry at CNT core entrance for chemical selectivity and 3) CNT are electrically conductive allowing for electrochemical reactions and application of electric fields gradients at CNT tips. Pressure driven flux of a variety of solvents (H2O, hexane, decane ethanol, methanol) are 4-5 orders of magnitude higher than conventional Newtonian flow [Nature 2005, 438, 44] due to atomically flat graphite planes inducing nearly ideal slip conditions. However this is eliminated with selective chemical functionalization [ACS Nano 2011 5(5) 3867-3877] needed to give chemical selectivity. These unique properties allow us to explore the hypothesis of producing ``Gatekeeper'' membranes that mimic natural protein channels to actively pump through rapid nm-scale channels. With anionic tip functionality strong electroosmotic flow is induced by unimpeded cation flow with similar 10,000 fold enhancements [Nature Nano 2012 7(2) 133-39]. With enhanced power efficiency, carbon nanotube membranes were employed as the active element of a switchable transdermal drug delivery device that can facilitate more effective treatments of drug abuse and addiction. Recently methods to deposit Pt monolayers on CNT surface have been developed making for highly efficient catalytic platforms. Discussed are other applications of CNT protein channel mimetics, for large area robust engineering platforms, including water purification, flow battery energy storage, and biochemical/biomass separations. DOE EPSCoR (DE-FG02-07ER46375) and DARPA, W911NF-09-1-0267

  5. Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features.

    PubMed

    Neal, Rebekah A; Jean, Aurélie; Park, Hyoungshin; Wu, Patrick B; Hsiao, James; Engelmayr, George C; Langer, Robert; Freed, Lisa E

    2013-03-01

    Tissue-engineered constructs, at the interface of material science, biology, engineering, and medicine, have the capacity to improve outcomes for cardiac patients by providing living cells and degradable biomaterials that can regenerate the native myocardium. With an ultimate goal of both delivering cells and providing mechanical support to the healing heart, we designed three-dimensional (3D) elastomeric scaffolds with (1) stiffnesses and anisotropy mimicking explanted myocardial specimens as predicted by finite-element (FE) modeling, (2) systematically varied combinations of rectangular pore pattern, pore aspect ratio, and strut width, and (3) structural features approaching tissue scale. Based on predicted mechanical properties, three scaffold designs were selected from eight candidates for fabrication from poly(glycerol sebacate) by micromolding from silicon wafers. Large 20×20 mm scaffolds with high aspect ratio features (5:1 strut height:strut width) were reproducibly cast, cured, and demolded at a relatively high throughput. Empirically measured mechanical properties demonstrated that scaffolds were cardiac mimetic and validated FE model predictions. Two-layered scaffolds providing fully interconnected pore networks were fabricated by layer-by-layer assembly. C2C12 myoblasts cultured on one-layered scaffolds exhibited specific patterns of cell elongation and interconnectivity that appeared to be guided by the scaffold pore pattern. Neonatal rat heart cells cultured on two-layered scaffolds for 1 week were contractile, both spontaneously and in response to electrical stimulation, and expressed sarcomeric α-actinin, a cardiac biomarker. This work not only demonstrated several scaffold designs that promoted functional assembly of rat heart cells, but also provided the foundation for further computational and empirical investigations of 3D elastomeric scaffolds for cardiac tissue engineering.

  6. Smac mimetic sensitizes renal cell carcinoma cells to interferon-α-induced apoptosis.

    PubMed

    Reiter, Michael; Eckhardt, Ines; Haferkamp, Axel; Fulda, Simone

    2016-05-28

    The prognosis of metastatic or relapsed renal cell carcinoma (RCC) is still very poor, highlighting the need for new treatment strategies. Here, we identify a cooperative antitumor activity of interferon-α (IFNα) together with the Smac mimetic BV6 that antagonizes antiapoptotic IAP proteins. BV6 and IFNα act together to reduce cell viability and to induce apoptosis in various RCC cell lines. Molecular studies revealed that BV6/IFNα co-treatment triggers apoptosis independently of autocrine/paracrine Tumor Necrosis Factor (TNF)α signaling, since the TNFα-blocking antibody Enbrel fails to rescue cell death. Importantly, knockdown of Receptor-Interacting Protein (RIP)1 significantly decreases BV6/IFNα-mediated apoptosis, whereas the RIP1 kinase inhibitor necrostatin-1 (Nec-1) provides no protection. This demonstrates that RIP1 protein is critically required for BV6/IFNα-induced apoptosis, while RIP1 kinase activity is dispensable, pointing to a scaffold function of RIP1. Consistently, BV6 and IFNα cooperate to trigger the interaction of RIP1, Fas-Associated Death Domain protein (FADD) and caspase-8 to form a cytosolic cell death complex that drives caspase activation. Addition of the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) significantly protects RCC cells against BV6/IFNα-induced apoptosis, demonstrating that caspase activity is required for apoptosis. In conclusion, the combination approach of IFNα and BV6 represents a promising strategy for cooperative induction of apoptosis in RCC cells, which warrants further investigation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. A model for population dynamics of the mimetic butterfly Papilio polytes in the Sakishima Islands, Japan.

    PubMed

    Sekimura, Toshio; Fujihashi, Yuta; Takeuchi, Yasuhiro

    2014-11-21

    We present a mathematical model for population dynamics of the mimetic swallowtail butterfly Papilio polytes in the Sakishima Islands, Japan. The model includes four major variables, that is, population densities of three kinds of butterflies (two female forms f. cyrus, f. polytes and the unpalatable butterfly Pachliopta aristolochiae) and their predator. It is well-known that the non-mimic f. cyrus resembles and attracts the male most, and the mimic f. polytes mimics the model butterfly P. aristolochiae. Based on experimental evidence, we assume that two forms f. cyrus and f. polytes interact under intraspecific competition for resources including the male, and the growth rate of f. cyrus is higher than that of f. polytes. We further assume that both the benefit of mimicry for the mimic f. polytes and the cost for the model are dependent on their relative frequencies, i.e. the motality of the mimic by predation decreases with increase in frequency of the model, while the motality of the model increases as the frequency of the mimic increases. Taking the density-dependent effect through carrying capacity into account, we set up a model system consisting of three ordinary differential equations (ODEs), analyze it mathematically and provide computer simulations that confirm the analytical results. Our results reproduce field records on population dynamics of P. polytes in the Miyako-jima Island. They also explain the positive dependence of the relative abundance (RA) of the mimic on the advantage index (AI) of the mimicry in the Sakishima Islands defined in Section 2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent?

    PubMed

    Cam, M C; Brownsey, R W; McNeill, J H

    2000-10-01

    The demonstration that the trace element vanadium has insulin-like properties in isolated cells and tissues and in vivo has generated considerable enthusiasm for its potential therapeutic value in human diabetes. However, the mechanisms by which vanadium induces its metabolic effects in vivo remain poorly understood, and whether vanadium directly mimics or rather enhances insulin effects is considered in this review. It is clear that vanadium treatment results in the correction of several diabetes-related abnormalities in carbohydrate and lipid metabolism, and in gene expression. However, many of these in vivo insulin-like effects can be ascribed to the reversal of defects that are secondary to hyperglycemia. The observations that the glucose-lowering effect of vanadium depends on the presence of endogenous insulin whereas metabolic homeostasis in control animals appears not to be affected, suggest that vanadium does not act completely independently in vivo, but augments tissue sensitivity to low levels of plasma insulin. Another crucial consideration is one of dose-dependency in that insulin-like effects of vanadium in isolated cells are often demonstrated at high concentrations that are not normally achieved by chronic treatment in vivo and may induce toxic side effects. In addition, vanadium appears to be selective for specific actions of insulin in some tissues while failing to influence others. As the intracellular active forms of vanadium are not precisely defined, the site(s) of action of vanadium in metabolic and signal transduction pathways is still unknown. In this review, we therefore examine the evidence for and against the concept that vanadium is truly an insulin-mimetic agent at low concentrations in vivo. In considering the effects of vanadium on carbohydrate and lipid metabolism, we conclude that vanadium acts not globally, but selectively and by enhancing, rather than by mimicking the effects of insulin in vivo.

  9. Molecular weight effects upon the adhesive bonding of a mussel mimetic polymer.

    PubMed

    Jenkins, Courtney L; Meredith, Heather J; Wilker, Jonathan J

    2013-06-12

    Characterization of marine biological adhesives are teaching us how nature makes materials and providing new ideas for synthetic systems. One of the most widely studied adhering animals is the marine mussel. This mollusk bonds to wet rocks by producing an adhesive from cross-linked proteins. Several laboratories are now making synthetic mimics of mussel adhesive proteins, with 3,4-dihydroxyphenylalanine (DOPA) or similar molecules pendant from polymer chains. In select cases, appreciable bulk bonding results, with strengths as high as commercial glues. Polymer molecular weight is amongst several parameters that need to be examined in order to both understand biomimetic adhesion as well as to maximize performance. Experiments presented here explore how the bulk adhesion of a mussel mimetic polymer varies as a function of molecular weight. Systematic structure-function studies were carried out both with and without the presence of an oxidative cross-linker. Without cross-linking, higher molecular weights generally afforded higher adhesion. When a [N(C4H9)4](IO4) cross-linker was added, adhesion peaked at molecular weights of ~50,000-65,000 g/mol. These data help to illustrate how changes to the balance of cohesion versus adhesion influence bulk bonding. Mussel adhesive plaques achieve this balance by incorporating several proteins with molecular weights ranging from 6000 to 110,000 g/mol. To mimic these varied proteins we made a blend of polymers containing a range of molecular weights. Interestingly, this blend adhered more strongly than any of the individual polymers when cross-linked with [N(C4H9)4](IO4). These results are helping us to both understand the origins of biological materials as well as design high performance polymers.

  10. The daunorubicin interplay with mimetic model membranes of cancer cells: A biophysical interpretation.

    PubMed

    Alves, Ana Catarina; Ribeiro, Daniela; Horta, Miguel; Lima, José L F C; Nunes, Cláudia; Reis, Salette

    2017-05-01

    The present work aimed to study the interactions between the anticancer drug daunorubicin and lipid membrane mimetic models of cancer cells composed by their most representative classes of phospholipids, with different degrees of complexity. Regarding these anticancer drug-membrane interactions, several biophysical parameters were assessed using liposomes (LUVs) composed of different molar ratios of DMPC, DOPC, DPPS, DOPE and Chol. In this context, daunorubicin's membrane concentration was determined by calculating its partition coefficient (Kp) between liposomes and water using derivative UV/vis spectrophotometry at 37°C and pH6.3, a typical tumoral microenvironment. Characterization of the zeta potential of such model membranes, in both the absence and presence of the compound, was accomplished through Electrophoretic Light Scattering (ELS). Fluorescence quenching studies, which determine the location of the drug within the bilayer, were carried out using liposomes labelled with DPH and TMA-DPH, fluorescent probes with known membrane position. Temperature dependent steady-state anisotropy assays were also performed to measure the daunorubicin effect on the membranes' microviscosity. The overall results support that daunorubicin permeation depends on the phospholipid membrane composition and causes alterations in the biophysical properties of the bilayers, namely in the membrane fluidity. The interaction of daunorubicin with the studied phospholipids is mainly driven by electrostatic and hydrophobic interactions. These insights demonstrated that not only membranes can affect daunorubicin accumulation in cells but the compound can alter the properties of membranes. The changes produced by daunorubicin on the lipid structure may constitute an additional mechanism of action, which might lead to modifications in the location and, consequently, the activity of membrane signaling proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Bio-Mimetics of Disaster Anticipation-Learning Experience and Key-Challenges.

    PubMed

    Tributsch, Helmut

    2013-03-19

    Anomalies in animal behavior and meteorological phenomena before major earthquakes have been reported throughout history. Bio-mimetics or bionics aims at learning disaster anticipation from animals. Since modern science is reluctant to address this problem an effort has been made to track down the knowledge available to ancient natural philosophers. Starting with an archaeologically documented human sacrifice around 1700 B.C. during the Minoan civilization immediately before a large earthquake, which killed the participants, earthquake prediction knowledge throughout antiquity is evaluated. Major practical experience with this phenomenon has been gained from a Chinese earthquake prediction initiative nearly half a century ago. Some quakes, like that of Haicheng, were recognized in advance. However, the destructive Tangshan earthquake was not predicted, which was interpreted as an inherent failure of prediction based on animal phenomena. This is contradicted on the basis of reliable Chinese documentation provided by the responsible earthquake study commission. The Tangshan earthquake was preceded by more than 2,000 reported animal anomalies, some of which were of very dramatic nature. They are discussed here. Any physical phenomenon, which may cause animal unrest, must involve energy turnover before the main earthquake event. The final product, however, of any energy turnover is heat. Satellite based infrared measurements have indeed identified significant thermal anomalies before major earthquakes. One of these cases, occurring during the 2001 Bhuj earthquake in Gujarat, India, is analyzed together with parallel animal anomalies observed in the Gir national park. It is suggested that the time window is identical and that both phenomena have the same geophysical origin. It therefore remains to be demonstrated that energy can be released locally before major earthquake events. It is shown that by considering appropriate geophysical feedback processes, this is

  12. Reactivation of Smac-mediated apoptosis in chronic lymphocytic leukemia cells: mechanistic studies of Smac mimetic

    PubMed Central

    Balakrishnan, Kumudha; Fu, Min; Onida, Francesco; Wierda, William G.; Keating, Michael J.; Gandhi, Varsha

    2016-01-01

    Dysfunctional apoptotic machinery is a hallmark feature of chronic lymphocytic leukemia (CLL). Accordingly, targeting apoptosis regulators has been proven a rational approach for CLL treatment. We show that CLL lymphocytes express high levels of XIAP, cIAP1, and cIAP2 compared to normal lymphocytes. Smac mimetic, Smac066, designed to bind to BIR3-domain of IAPs, induce apoptosis in primary CLL cells (n=71; p<0.0001), irrespective of prognostic markers. Apoptosis was mediated by diminished levels of IAPs (XIAP-p=0.02; cIAP-p<0.0001) and increased activation of caspases-8, −9, −3. The caspase-cleavage was in direct association with the levels of apoptosis (r2=0.8 for caspases-8, −9, −3). Correlative analysis revealed a direct relationship between reduction in IAPs and degree of apoptosis (r2=0.6 (XIAP); 0.5 (cIAP2)). There was a strong association between apoptosis, IAP-degradation, and concurrent caspase-activation. Pan-caspase inhibitor Z-Vad-fmk reversed the degradation of Mcl-1, but not IAPs suggesting that smac066 is selective to IAPs, however, Mcl-1 degradation is through caspase-mediated cleavage. Immunoprecipitation experiments revealed physical interaction between caspase-3 and XIAP that was disrupted by smac066. Importantly, XIAP and cIAP2 were markedly induced in bone-marrow and lymph-node microenvironments, providing a basis for IAP antagonists as anti-tumor agents in CLL. Smac066 synergized with ABT-737, revealing a mechanistic rationale to jointly target BH3 and BIR3 domains. PMID:27223062

  13. Reactivation of Smac-mediated apoptosis in chronic lymphocytic leukemia cells: mechanistic studies of Smac mimetic.

    PubMed

    Balakrishnan, Kumudha; Fu, Min; Onida, Francesco; Wierda, William G; Keating, Michael J; Gandhi, Varsha

    2016-06-28

    Dysfunctional apoptotic machinery is a hallmark feature of chronic lymphocytic leukemia (CLL). Accordingly, targeting apoptosis regulators has been proven a rational approach for CLL treatment. We show that CLL lymphocytes express high levels of XIAP, cIAP1, and cIAP2 compared to normal lymphocytes. Smac mimetic, Smac066, designed to bind to BIR3-domain of IAPs, induce apoptosis in primary CLL cells (n=71; p<0.0001), irrespective of prognostic markers. Apoptosis was mediated by diminished levels of IAPs (XIAP-p=0.02; cIAP-p<0.0001) and increased activation of caspases-8,-9,-3. The caspase-cleavage was in direct association with the levels of apoptosis (r2=0.8 for caspases-8,-9,-3). Correlative analysis revealed a direct relationship between reduction in IAPs and degree of apoptosis (r2=0.6 (XIAP); 0.5 (cIAP2)). There was a strong association between apoptosis, IAP-degradation, and concurrent caspase-activation. Pan-caspase inhibitor Z-Vad-fmk reversed the degradation of Mcl-1, but not IAPs suggesting that smac066 is selective to IAPs, however, Mcl-1 degradation is through caspase-mediated cleavage. Immunoprecipitation experiments revealed physical interaction between caspase-3 and XIAP that was disrupted by smac066. Importantly, XIAP and cIAP2 were markedly induced in bone-marrow and lymph-node microenvironments, providing a basis for IAP antagonists as anti-tumor agents in CLL. Smac066 synergized with ABT-737, revealing a mechanistic rationale to jointly target BH3 and BIR3 domains.

  14. Novel Synthetic SOD/Catalase Mimetics Can Mitigate Capillary Endothelial Cell Apoptosis Caused by Ionizing Radiation

    PubMed Central

    Vorotnikova, Ekaterina; Rosenthal, Rosalind A.; Tries, Mark; Doctrow, Susan R.; Braunhut, Susan J.

    2015-01-01

    Numerous in vitro and in vivo studies have shown that the endothelial cells of the microvasculature of the lung and kidney are damaged by exposure to ionizing radiation, and this sustained endothelial cell injury is involved in the early and late radiation effects observed in these tissues. It is well accepted that ionizing radiation causes the generation of reactive oxygen species during exposure that results in damage to DNA and cellular organelles. It is more controversial, however, whether additional biochemical events or long-lived radicals occur and persist postirradiation that amplify and initiate new forms of cellular damage. Two families of Eukarion (EUK) compounds have been synthesized that possess superoxide dismutase (SOD), catalase and peroxidase activities. The Mn porphyrins are available orally whereas the salen Mn complexes are administered by injection. In the present study we have examined the ability of these SOD/catalase mimetics to prevent apoptosis of endothelial cells when administered 1 h postirradiation (mitigation). A range of salen Mn complex (EUK-189 and EUK-207) and Mn porphyrins (EUK-418, -423, -425, -450, -451, -452, -453) were used to treat endothelial cells 1 h after the cells received 2–20 Gy ionizing radiation in vitro. Two lead compounds, EUK-207 at a dose of 30 μM and EUK-451 at a dose of 10 μM, exhibited low toxicity and mitigated radiation-induced apoptosis. Future animal studies will test whether these compounds protect when administered after radiation exposure as would be done after a radiological accident or a terrorism event. PMID:20518654

  15. Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using (99m)Tc-HMPAO.

    PubMed

    Hwang, Do Won; Choi, Hongyoon; Jang, Su Chul; Yoo, Min Young; Park, Ji Yong; Choi, Na Eun; Oh, Hyun Jeong; Ha, Seunggyun; Lee, Yun-Sang; Jeong, Jae Min; Gho, Yong Song; Lee, Dong Soo

    2015-10-26

    Exosomes known as nano-sized extracellular vesicles attracted recent interests due to their potential usefulness in drug delivery. Amid remarkable advances in biomedical applications of exosomes, it is crucial to understand in vivo distribution and behavior of exosomes. Here, we developed a simple method for radiolabeling of macrophage-derived exosome-mimetic nanovesicles (ENVs) with (99m)Tc-HMPAO under physiologic conditions and monitored in vivo distribution of (99m)Tc-HMPAO-ENVs using SPECT/CT in living mice. ENVs were produced from the mouse RAW264.7 macrophage cell line and labeled with (99m)Tc-HMPAO for 1 hr incubation, followed by removal of free (99m)Tc-HMPAO. SPECT/CT images were serially acquired after intravenous injection to BALB/c mouse. When ENVs were labeled with (99m)Tc-HMPAO, the radiochemical purity of (99m)Tc-HMPAO-ENVs was higher than 90% and the expression of exosome specific protein (CD63) did not change in (99m)Tc-HMPAO-ENVs. (99m)Tc-HMPAO-ENVs showed high serum stability (90%) which was similar to that in phosphate buffered saline until 5 hr. SPECT/CT images of the mice injected with (99m)Tc-HMPAO-ENVs exhibited higher uptake in liver and no uptake in brain, whereas mice injected with (99m)Tc-HMPAO showed high brain uptake until 5 hr. Our noninvasive imaging of radiolabeled-ENVs promises better understanding of the in vivo behavior of exosomes for upcoming biomedical application.

  16. Strategy To Fabricate Naked-Eye Readout Ultrasensitive Plasmonic Nanosensor Based on Enzyme Mimetic Gold Nanoclusters.

    PubMed

    Zhao, Qian; Huang, Haowen; Zhang, Lingyang; Wang, Linqian; Zeng, Yunlong; Xia, Xiaodong; Liu, Fengping; Chen, Yi

    2016-01-19

    It is broadly interesting but remains a big challenge to explore nanomaterials-based methods to enable naked-eye observation and determination of ultratrace biomarkers and drugs. In this study, we developed a straightforward and extendable plasmonic nanosensor to enable visually quantitative determination of ultratrace target molecules through combining the use of enzyme-mimetic gold nanoclusters (AuNCs). Starting from sandwiched antibody-antigen (i.e., an analyte)-antibody structure, we conjugated AuNCs on the outer layer antibody to catalyze the decomposition of hydrogen peroxide used to reduce HAuCl4 into gold nanopartilces (AuNPs) for naked eye readout. This strategy is in theory applicable to all immunoreactions available and the protocol proposed to attach AuNCs onto an antibody is suitable to all proteins. The applicability of this type of nanosensor was validated by the determination of various ultratrace analytes such as protein avidin, breast cancer antigen, thyroid hormone, and even methamphetamine (MA), giving a naked-eye-readout limit of detection (LOD), down to 1.0 × 10(-20) M protein avidin, 7.52 × 10(-14) U/mL breast cancer antigen 15-3, 2.0 × 10(-15) mg/mL 3,5,3'-L-triiodothyronine and 2.3 × 10(-18) mg/mL MA. This strategy is thus considered an ultrasensitive way to fabricate plasmonic nanosensors, having wide and invaluable application potential in clinical, biological, and environmental studies, and in food quality control.

  17. Three-Dimensional Elastomeric Scaffolds Designed with Cardiac-Mimetic Structural and Mechanical Features

    PubMed Central

    Neal, Rebekah A.; Jean, Aurélie; Park, Hyoungshin; Wu, Patrick B.; Hsiao, James; Engelmayr, George C.; Langer, Robert

    2013-01-01

    Tissue-engineered constructs, at the interface of material science, biology, engineering, and medicine, have the capacity to improve outcomes for cardiac patients by providing living cells and degradable biomaterials that can regenerate the native myocardium. With an ultimate goal of both delivering cells and providing mechanical support to the healing heart, we designed three-dimensional (3D) elastomeric scaffolds with (1) stiffnesses and anisotropy mimicking explanted myocardial specimens as predicted by finite-element (FE) modeling, (2) systematically varied combinations of rectangular pore pattern, pore aspect ratio, and strut width, and (3) structural features approaching tissue scale. Based on predicted mechanical properties, three scaffold designs were selected from eight candidates for fabrication from poly(glycerol sebacate) by micromolding from silicon wafers. Large 20×20 mm scaffolds with high aspect ratio features (5:1 strut height:strut width) were reproducibly cast, cured, and demolded at a relatively high throughput. Empirically measured mechanical properties demonstrated that scaffolds were cardiac mimetic and validated FE model predictions. Two-layered scaffolds providing fully interconnected pore networks were fabricated by layer-by-layer assembly. C2C12 myoblasts cultured on one-layered scaffolds exhibited specific patterns of cell elongation and interconnectivity that appeared to be guided by the scaffold pore pattern. Neonatal rat heart cells cultured on two-layered scaffolds for 1 week were contractile, both spontaneously and in response to electrical stimulation, and expressed sarcomeric α-actinin, a cardiac biomarker. This work not only demonstrated several scaffold designs that promoted functional assembly of rat heart cells, but also provided the foundation for further computational and empirical investigations of 3D elastomeric scaffolds for cardiac tissue engineering. PMID:23190320

  18. Continuous volatile fatty acid production from lignocellulosic biomass by a novel rumen-mimetic bioprocess.

    PubMed

    Agematu, Hitosi; Takahashi, Takehiko; Hamano, Yoshio

    2017-11-01

    Lignocellulosic biomass is an attractive source of biofuels and biochemicals, being abundant in various plant sources. However, processing this type of biomass requires hydrolysis of cellulose. The proposed rumen-mimetic bioprocess consists of dry-pulverization of lignocellulosic biomass and pH-controlled continuous cultivation of ruminal bacteria using ammonium as a nitrogen source. In this study, ruminal bacteria were continuously cultivated for over 60 days and used to digest microcrystalline cellulose, rice straw, and Japanese cedar to produce volatile fatty acids (VFAs). The ruminal bacteria grew well in the chemically defined medium. The amounts of VFAs produced from 20 g of cellulose, rice straw, and Japanese cedar were 183 ± 29.7, 69.6 ± 12.2, and 21.8 ± 12.9 mmol, respectively. Each digestion completed within 24 h. The carbon yield was 60.6% when 180 mmol of VFAs was produced from 20 g of cellulose. During the cultivation, the bacteria were observed to form flocs that enfolded the feed particles. These flocs likely contain all of the bacterial species necessary to convert lignocellulosic biomass to VFAs and microbial protein symbiotically. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rDNA fragments revealed that the bacterial community was relatively stable after 1 week in cultivation, though it was different from the original community structure. Furthermore, sequence analysis of the DGGE bands indicates that the microbial community includes a cellulolytic bacterium, a bacterium acting synergistically with cellulolytic bacteria, and a propionate-producing bacterium, as well as other anaerobic bacteria. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. A novel drug delivery system for type 1 diabetes: insulin-mimetic vanadyl-poly(gamma-glutamic acid) complex.

    PubMed

    Karmaker, Subarna; Saha, Tapan K; Yoshikawa, Yutaka; Yasui, Hiroyuki; Sakurai, Hiromu

    2006-09-01

    Insulin-mimetic vanadyl-poly(gamma-glutamic acid) complex, VO-gamma-PGA, is proposed as a novel drug delivery system for treating type 1 diabetic animals. The structure of VO-gamma-PGA in solution as well as in solid state was analyzed by electronic absorption, infra-red, and electron spin resonance spectra, and proposed that the equatorial coordination mode of VO(2+) is in either carboxylate(O)-VO-(OH(2))(3) or 2 carboxylate(O(2))-VO-(OH(2))(2). In vitro insulin-mimetic activity, metallokinetic feature in the blood of healthy rats, and in vivo normoglycemic effect of the complex prepared in solution were evaluated in streptozotocin(STZ)-induced type 1 diabetic mice, and these effects were compared with those of a solution containing only VOSO(4) as a positive control. The in vitro insulin-mimetic activity of VO-gamma-PGA was examined by determining both inhibition of free fatty acid (FFA) release and glucose uptake in isolated rat adipocytes, in which the concentration of VO-gamma-PGA for 50% inhibition of FFA release was significantly lower than that of VOSO(4). Metallokinetic