Science.gov

Sample records for a-induced cell death

  1. Coibamide A Induces mTOR-Independent Autophagy and Cell Death in Human Glioblastoma Cells

    PubMed Central

    Hau, Andrew M.; Greenwood, Jeffrey A.; Löhr, Christiane V.; Serrill, Jeffrey D.; Proteau, Philip J.; Ganley, Ian G.; McPhail, Kerry L.; Ishmael, Jane E.

    2013-01-01

    Coibamide A is an N-methyl-stabilized depsipeptide that was isolated from a marine cyanobacterium as part of an International Cooperative Biodiversity Groups (ICBG) program based in Panama. Previous testing of coibamide A in the NCI in vitro 60 cancer cell line panel revealed a potent anti-proliferative response and “COMPARE-negative” profile indicative of a unique mechanism of action. We report that coibamide A is a more potent and efficacious cytotoxin than was previously appreciated, inducing concentration- and time-dependent cytotoxicity (EC50<100 nM) in human U87-MG and SF-295 glioblastoma cells and mouse embryonic fibroblasts (MEFs). This activity was lost upon linearization of the molecule, highlighting the importance of the cyclized structure for both anti-proliferative and cytotoxic responses. We show that coibamide A induces autophagosome accumulation in human glioblastoma cell types and MEFs via an mTOR-independent mechanism; no change was observed in the phosphorylation state of ULK1 (Ser-757), p70 S6K1 (Thr-389), S6 ribosomal protein (Ser-235/236) and 4EBP-1 (Thr-37/46). Coibamide A also induces morphologically and biochemically distinct forms of cell death according to cell type. SF-295 glioblastoma cells showed caspase-3 activation and evidence of apoptotic cell death in a pattern that was also seen in wild-type and autophagy-deficient (ATG5-null) MEFs. In contrast, cell death in U87-MG glioblastoma cells was characterized by extensive cytoplasmic vacuolization and lacked clear apoptotic features. Cell death was attenuated, but still triggered, in Apaf-1-null MEFs lacking a functional mitochondria-mediated apoptotic pathway. From the study of ATG5-null MEFs we conclude that a conventional autophagy response is not required for coibamide A-induced cell death, but likely occurs in dying cells in response to treatment. Coibamide A represents a natural product scaffold with potential for the study of mTOR-independent signaling and cell death

  2. Serum Amyloid A Induces Inflammation, Proliferation and Cell Death in Activated Hepatic Stellate Cells.

    PubMed

    Siegmund, Sören V; Schlosser, Monika; Schildberg, Frank A; Seki, Ekihiro; De Minicis, Samuele; Uchinami, Hiroshi; Kuntzen, Christian; Knolle, Percy A; Strassburg, Christian P; Schwabe, Robert F

    2016-01-01

    Serum amyloid A (SAA) is an evolutionary highly conserved acute phase protein that is predominantly secreted by hepatocytes. However, its role in liver injury and fibrogenesis has not been elucidated so far. In this study, we determined the effects of SAA on hepatic stellate cells (HSCs), the main fibrogenic cell type of the liver. Serum amyloid A potently activated IκB kinase, c-Jun N-terminal kinase (JNK), Erk and Akt and enhanced NF-κB-dependent luciferase activity in primary human and rat HSCs. Serum amyloid A induced the transcription of MCP-1, RANTES and MMP9 in an NF-κB- and JNK-dependent manner. Blockade of NF-κB revealed cytotoxic effects of SAA in primary HSCs with signs of apoptosis such as caspase 3 and PARP cleavage and Annexin V staining. Serum amyloid A induced HSC proliferation, which depended on JNK, Erk and Akt activity. In primary hepatocytes, SAA also activated MAP kinases, but did not induce relevant cell death after NF-κB inhibition. In two models of hepatic fibrogenesis, CCl4 treatment and bile duct ligation, hepatic mRNA levels of SAA1 and SAA3 were strongly increased. In conclusion, SAA may modulate fibrogenic responses in the liver in a positive and negative fashion by inducing inflammation, proliferation and cell death in HSCs.

  3. Serum Amyloid A Induces Inflammation, Proliferation and Cell Death in Activated Hepatic Stellate Cells

    PubMed Central

    Siegmund, Sören V.; Schlosser, Monika; Schildberg, Frank A.; Seki, Ekihiro; De Minicis, Samuele; Uchinami, Hiroshi; Kuntzen, Christian; Knolle, Percy A.; Strassburg, Christian P.; Schwabe, Robert F.

    2016-01-01

    Serum amyloid A (SAA) is an evolutionary highly conserved acute phase protein that is predominantly secreted by hepatocytes. However, its role in liver injury and fibrogenesis has not been elucidated so far. In this study, we determined the effects of SAA on hepatic stellate cells (HSCs), the main fibrogenic cell type of the liver. Serum amyloid A potently activated IκB kinase, c-Jun N-terminal kinase (JNK), Erk and Akt and enhanced NF-κB-dependent luciferase activity in primary human and rat HSCs. Serum amyloid A induced the transcription of MCP-1, RANTES and MMP9 in an NF-κB- and JNK-dependent manner. Blockade of NF-κB revealed cytotoxic effects of SAA in primary HSCs with signs of apoptosis such as caspase 3 and PARP cleavage and Annexin V staining. Serum amyloid A induced HSC proliferation, which depended on JNK, Erk and Akt activity. In primary hepatocytes, SAA also activated MAP kinases, but did not induce relevant cell death after NF-κB inhibition. In two models of hepatic fibrogenesis, CCl4 treatment and bile duct ligation, hepatic mRNA levels of SAA1 and SAA3 were strongly increased. In conclusion, SAA may modulate fibrogenic responses in the liver in a positive and negative fashion by inducing inflammation, proliferation and cell death in HSCs. PMID:26937641

  4. Unravelling the Mechanism of TrkA-Induced Cell Death by Macropinocytosis in Medulloblastoma Daoy Cells

    PubMed Central

    Li, Chunhui; MacDonald, James I. S.; Talebian, Asghar; Leuenberger, Jennifer; Seah, Claudia; Pasternak, Stephen H.; Michnick, Stephen W.

    2016-01-01

    Macropinocytosis is a normal cellular process by which cells internalize extracellular fluids and nutrients from their environment and is one strategy that Ras-transformed pancreatic cancer cells use to increase uptake of amino acids to meet the needs of rapid growth. Paradoxically, in non-Ras transformed medulloblastoma brain tumors, we have shown that expression and activation of the receptor tyrosine kinase TrkA overactivates macropinocytosis, resulting in the catastrophic disintegration of the cell membrane and in tumor cell death. The molecular basis of this uncontrolled form of macropinocytosis has not been previously understood. Here, we demonstrate that the overactivation of macropinocytosis is caused by the simultaneous activation of two TrkA-mediated pathways: (i) inhibition of RhoB via phosphorylation at Ser185 by casein kinase 1, which relieves actin stress fibers, and (ii) FRS2-scaffolded Src and H-Ras activation of RhoA, which stimulate actin reorganization and the formation of lamellipodia. Since catastrophic macropinocytosis results in brain tumor cell death, improved understanding of the mechanisms involved will facilitate future efforts to reprogram tumors, even those resistant to apoptosis, to die. PMID:27503856

  5. The antimicrobial peptide cecropin A induces caspase-independent cell death in human promyelocytic leukemia cells.

    PubMed

    Cerón, José María; Contreras-Moreno, Judit; Puertollano, Elena; de Cienfuegos, Gerardo Álvarez; Puertollano, María A; de Pablo, Manuel A

    2010-08-01

    Most antimicrobial peptides have been shown to have antitumoral activity. Cecropin A, a linear 37-residue antimicrobial polypeptide produced by the cecropia moth, has exhibited cytotoxicity in various human cancer cell lines and inhibitory effects on tumor growth. In this study, we investigated the apoptosis induced by cecropin A in the promyelocytic cell line HL-60. Treatment of cells with cecropin A was characterized by loss of viability in a dose-dependent manner, lactate dehydrogenase (LDH) leakage, and modest attenuation of lysosomal integrity measured by neutral red assay. An increase of reactive oxygen species (ROS) generation, DNA fragmentation, and phosphatidylserine externalization were quantified following cecropin A exposure at a concentration of 30 microM, whereas cecropin A-induced apoptosis was independent of caspase family members, because the activity of caspase-8 and -9 were irrelevant. Nevertheless, caspase-3 activity showed a significant increase at concentrations of 20-40 microM, but a considerable reduction at 50 microM. Flow cytometry analysis revealed a dissipation of the mitochondrial transmembrane potential (Deltapsi(m)), and the accumulation of cells at sub-G1 phase measured by FACS analysis of propidium iodide (PI) stained nuclei suggested induction of apoptosis. Morphological changes measured by Hoechst 33342 or acridine orange/ethidium bromide staining showed nuclear condensation, corroborating the apoptotic action of cecropin A. Overall, these data indicate that cecropin A is able to induce apoptosis in HL-60 cells through a signaling mechanism mediated by ROS, but independently of caspase activation.

  6. Tetrabromobisphenol-A induces apoptotic death of auditory cells and hearing loss.

    PubMed

    Park, Channy; Kim, Se-Jin; Lee, Won Kyo; Moon, Sung Kyun; Kwak, SeongAe; Choe, Seong-Kyu; Park, Raekil

    2016-09-30

    Phenolic tetrabromobisphenol-A (TBBPA) and its derivatives are commonly used flame-retardants, in spite of reported toxic effects including neurotoxicity, immunotoxicity, nephrotoxicity, and hepatotoxicity. However, the effects of TBBPA on ototoxicity have not yet been reported. In this study, we investigated the effect of TBBPA on hearing function in vivo and in vitro. Auditory Brainstem Response (ABR) threshold was markedly increased in mice after oral administration of TBBPA, indicating that TBBPA causes hearing loss. In addition, TBBPA induced the loss of both zebrafish neuromasts and hair cells in the rat cochlea in a dose-dependent manner. Mechanistically, hearing loss is largely attributed to apoptotic cell death, as TBBPA increased the expression of pro-apoptotic genes but decreased the expression of anti-apoptotic genes. We also found that TBBPA induced oxidative stress, and importantly, pretreatment with NAC, an anti-oxidant reagent, reduced TBBPA-induced reactive oxygen species (ROS) generation and partially prevented cell death. Our results show that TBBPA-mediated ROS generation induces ototoxicity and hearing loss. These findings implicate TBBPA as a potential environmental ototoxin by exerting its hazardous effects on the auditory system. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Crocetin protects ultraviolet A-induced oxidative stress and cell death in skin in vitro and in vivo.

    PubMed

    Ohba, Takuya; Ishisaka, Mitsue; Tsujii, Saori; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Kubo, Koya; Umigai, Naofumi; Iwawaki, Takao; Hara, Hideaki

    2016-10-15

    Crocetin, the aglycone of crocin, is a carotenoid found in fruits of gardenia (Gardeina jasminoides Ellis) and saffron (Crocus sativus L.). We investigated the protective effects of crocetin against ultraviolet-A (UV-A)-induced skin damage and explored the underlying mechanism. Human skin-derived fibroblasts cells (NB1-RGB) were damaged by exposure to UV-A irradiation (10J/cm(2)). Crocetin protected these cells against cell death and reduced the production of reactive oxygen species induced by UV-A irradiation. Crocetin treatment also suppressed induction of caspase-3 activation by UV-A irradiation. The effects of crocetin against oxidative stress were also examined by imaging of Keap1-dependent oxidative stress detector (OKD) mice. UV-A irradiation upregulated oxidative stress in the OKD mice skin, while crocetin administration (100mg/kg, p.o.) ameliorated this oxidative stress. Crocetin administration also decreased lipid peroxidation in the skin. These findings suggest that crocetin its observed protective effects against UV-A induced skin damage by reducing reactive oxygen species production and cell apoptosis.

  8. The impact of nitrite and antioxidants on ultraviolet-A-induced cell death of human skin fibroblasts.

    PubMed

    Opländer, Christian; Cortese, Miriam M; Korth, Hans-Gert; Kirsch, Michael; Mahotka, Csaba; Wetzel, Wiebke; Pallua, Norbert; Suschek, Christoph V

    2007-09-01

    Nitrite (NO(2)(-)) occurs ubiquitously in biological fluids such as blood and sweat. Ultraviolet A-induced nitric oxide formation via decomposition of cutaneous nitrite, accompanied by the production of reactive oxygen (ROS) or nitrogen species (RNS), represents an important source for NO in human skin physiology. Examining the impact of nitrite and the antioxidants glutathione (GSH), Trolox (TRL), and ascorbic acid (ASC) on UVA-induced toxicity of human skin fibroblasts (FB) we found that NO(2)(-) concentration-dependently enhances the susceptibility of FB to the toxic effects of UVA by a mechanism comprising enhanced induction of lipid peroxidation. While ASC completely protects FB cultures from UVA/NO(2)(-)-induced cell damage, GSH or TRL excessively enhances UVA/NO(2)(-)-induced cell death by a mechanism comprising nitrite concentration-dependent TRL radical formation or GSH-derived oxidative stress. Simultaneously, in the presence of GSH or TRL the mode of UVA/NO(2)(-)-induced cell death changes from apoptosis to necrosis. In summary, during photodecomposition of nitrite, ROS or RNS formation may act as strong toxic insults. Although inhibition of oxidative stress by NO and other antioxidants represents a successful strategy for protection from UVA/NO(2)(-)-induced injuries, GSH and TRL may nitrite-dependently aggravate the injurious impact by TRL or GSH radical formation, respectively.

  9. Amicoumacin A induces cancer cell death by targeting the eukaryotic ribosome

    PubMed Central

    Prokhorova, Irina V.; Akulich, Kseniya A.; Makeeva, Desislava S.; Osterman, Ilya A.; Skvortsov, Dmitry A.; Sergiev, Petr V.; Dontsova, Olga A.; Yusupova, Gulnara; Yusupov, Marat M.; Dmitriev, Sergey E.

    2016-01-01

    Amicoumacin A is an antibiotic that was recently shown to target bacterial ribosomes. It affects translocation and provides an additional contact interface between the ribosomal RNA and mRNA. The binding site of amicoumacin A is formed by universally conserved nucleotides of rRNA. In this work, we showed that amicoumacin A inhibits translation in yeast and mammalian systems by affecting translation elongation. We determined the structure of the amicoumacin A complex with yeast ribosomes at a resolution of 3.1  Å. Toxicity measurement demonstrated that human cancer cell lines are more susceptible to the inhibition by this compound as compared to non-cancerous ones. This might be used as a starting point to develop amicoumacin A derivatives with clinical value. PMID:27296282

  10. Concanavalin-A induces granulosa cell death and inhibits FSH-mediated follicular growth and ovarian maturation in female rats.

    PubMed

    Velasquez, Ethel V; Ríos, Mariana; Ortiz, María Elena; Lizama, Carlos; Nuñez, Elizabeth; Abramovich, Dalhia; Orge, Felipe; Oliva, Barbara; Orellana, Renán; Villalon, Manuel; Moreno, Ricardo D; Tesone, Marta; Rokka, Anne; Corthals, Garry; Croxatto, Horacio B; Parborell, Fernanda; Owen, Gareth I

    2013-05-01

    Reproductive success stems from a finely regulated balance between follicular maturation and atresia, in which the role of carbohydrate structure is poorly understood. Here, we describe for the first time a fraction of purified recombinant human FSH that is capable of bringing about the cell death of granulosa cells and preventing follicular maturation in a rat model. Further analysis by mass spectrometry revealed the presence of the lectin Concanavalin-A (Con-A) within this fraction of recombinant FSH. Using both the fractionated FSH and Con-A, the observed cell death was predominantly located to the granulosa cells. Ex vivo culture of rat follicles demonstrated that follicle degeneration occurred and resulted in the release of a denuded and deteriorated oocyte. Moreover, in vivo experiments confirmed an increase in atresia and a corresponding reduction confined to follicle in early antral stage. As a mechanism of action, Con-A reduces ovarian proliferation, Von Willebrand staining, and angiogenesis. Based on the observation that Con-A may induce granulosa cell death followed by follicle death, our results further demonstrate that follicular carbohydrate moiety is changing under the influence of FSH, which may allow a carbohydrate-binding lectin to increase granulosa cell death. The physiological consequences of circulating lectin-like molecules remain to be determined. However, our results suggest a potential exploitation of carbohydrate binding in fertility and ovarian cancer treatment. This work may shed light on a key role of carbohydrates in the still obscure physiological process of follicular selection and atresia.

  11. Proteomic analysis of novel targets associated with the enhancement of TrkA-induced SK-N-MC cancer cell death caused by NGF.

    PubMed

    Jung, Eun Joo; Chung, Ky Hyun; Bae, Dong-Won; Kim, Choong Won

    2016-05-27

    Nerve growth factor (NGF) is known to regulate both cancer cell survival and death signaling, depending on the cellular circumstances, in various cell types. In this study, we showed that NGF strongly upregulated the protein level of tropomyosin-related kinase A (TrkA) in TrkA-inducible SK-N-MC cancer cells, resulting in increases in various TrkA-dependent cellular processes, including the phosphorylation of c-Jun N-terminal kinase (JNK) and caspase-8 cleavage. In addition, NGF enhanced TrkA-induced morphological changes and cell death, and this effect was significantly suppressed by the JNK inhibitor SP600125, but not by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin. To investigate novel targets associated with the enhancement of TrkA-induced SK-N-MC cell death caused by NGF, we performed Coomassie Brilliant Blue staining and two-dimensional (2D) proteomic analysis in TrkA-inducible SK-N-MC cells. We identified 31 protein spots that were either greatly upregulated or downregulated by TrkA during NGF treatment using matrix-associated laser desorption/ionization time of flight/time of flight mass spectrometry, and we analyzed the effects of SP600125 and wortmannin on the spots. Interestingly, 11 protein spots, including heterogeneous nuclear ribonucleoprotein K (hnRNP K), lamin B1 and TAR DNA-binding protein (TDP43), were significantly influenced by SP600125, but not by wortmannin. Moreover, the NGF/TrkA-dependent inhibition of cell viability was significantly enhanced by knockdown of hnRNP K using small interfering RNA, demonstrating that hnRNP K is a novel target associated with the regulation of TrkA-dependent SK-N-MC cancer cell death enhanced by NGF.

  12. Trichostatin A induces apoptotic cell death of HeLa cells in a Bcl-2 and oxidative stress-dependent manner.

    PubMed

    You, Bo Ra; Park, Woo Hyun

    2013-01-01

    Trichostatin A (TSA) as a HDAC inhibitor can regulate many biological properties including apoptosis and cell proliferation in various cancer cells. Here, we evaluated the effect of TSA on the growth and death of HeLa cervical cancer cells in relation to reactive oxygen species (ROS) and glutathione (GSH) levels. Dose- and time-dependent growth inhibition was observed in HeLa cells with an IC50 of approximately 20 nM at 72 h. This agent also induced apoptotic cell death, as evidenced by annexin V-FITC staining cells, caspase-3 activation and the loss of mitochondrial membrane potential (MMP; ∆ψm). In addition, the administration of Bcl-2 siRNA intensified TSA-induced HeLa cell death. All of the tested caspase inhibitors significantly rescued some cells from TSA-induced HeLa cell death. TSA increased O2•- level and induced GSH depletion in HeLa cells. Caspase inhibitors significantly attenuated O2•- level and GSH depletion in TSA-treated HeLa cells. In addition, N-acetyl cysteine (NAC; a well known antioxidant) significantly prevented cell death and GSH depletion in TSA-treated HeLa cells via decreasing O2•- level. In conclusion, TSA inhibited the growth of HeLa cells via Bcl-2-mediated apoptosis, which was closely related to O2•- and GSH content levels.

  13. Dictyostelium cell death

    PubMed Central

    Levraud, Jean-Pierre; Adam, Myriam; Luciani, Marie-Françoise; de Chastellier, Chantal; Blanton, Richard L.; Golstein, Pierre

    2003-01-01

    Cell death in the stalk of Dictyostelium discoideum, a prototypic vacuolar cell death, can be studied in vitro using cells differentiating as a monolayer. To identify early events, we examined potentially dying cells at a time when the classical signs of Dictyostelium cell death, such as heavy vacuolization and membrane lesions, were not yet apparent. We observed that most cells proceeded through a stereotyped series of differentiation stages, including the emergence of “paddle” cells showing high motility and strikingly marked subcellular compartmentalization with actin segregation. Paddle cell emergence and subsequent demise with paddle-to-round cell transition may be critical to the cell death process, as they were contemporary with irreversibility assessed through time-lapse videos and clonogenicity tests. Paddle cell demise was not related to formation of the cellulose shell because cells where the cellulose-synthase gene had been inactivated underwent death indistinguishable from that of parental cells. A major subcellular alteration at the paddle-to-round cell transition was the disappearance of F-actin. The Dictyostelium vacuolar cell death pathway thus does not require cellulose synthesis and includes early actin rearrangements (F-actin segregation, then depolymerization), contemporary with irreversibility, corresponding to the emergence and demise of highly polarized paddle cells. PMID:12654899

  14. Programmed cell death

    SciTech Connect

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  15. Programmed cell death.

    PubMed

    Samuilov, V D; Oleskin, A V; Lagunova, E M

    2000-08-01

    This paper reviews data on programmed cell death (apoptosis) in animals and plants. Necrosis is a pathological scenario of cell death, which entails an inflammatory response in animal tissues. Apoptosis results in the disintegration of animal/plant cells into membrane vesicles enclosing the intracellular content, which are thereupon engulfed by adjacent or specialized cells (phagocytes) in animals. Plants lack such specialized cells, and plant cell walls prevent phagocytosis. The paper considers the main molecular mechanisms of apoptosis in animals and the pathways of activation of caspases, evolutionarily conserved cysteine proteases. A self-contained section concerns itself with the process of programmed cell death (PCD) in microorganisms including: 1) cell death in the myxomycete Dictyostelium discoideum and the parasitic flagellate Trypanosoma cruzi; 2) PCD in genetically manipulated yeast expressing the proapoptotic Bax and Bak proteins; 3) the death of a part of a prokaryotic cell population upon the depletion of nutrient resources or under stress; 4) the elimination of cells after a loss of a plasmid encoding a stable cytotoxic agent in combination with an unstable antidote; and 5) PCD in phage-infected bacterial cells.

  16. Classification of cell death

    PubMed Central

    Kroemer, G; Galluzzi, L; Vandenabeele, P; Abrams, J; Alnemri, ES; Baehrecke, EH; Blagosklonny, MV; El-Deiry, WS; Golstein, P; Green, DR; Hengartner, M; Knight, RA; Kumar, S; Lipton, SA; Malorni, W; Nuñez, G; Peter, ME; Tschopp, J; Yuan, J; Piacentini, M; Zhivotovsky, B; Melino, G

    2009-01-01

    Different types of cell death are often defined by morphological criteria, without a clear reference to precise biochemical mechanisms. The Nomenclature Committee on Cell Death (NCCD) proposes unified criteria for the definition of cell death and of its different morphologies, while formulating several caveats against the misuse of words and concepts that slow down progress in the area of cell death research. Authors, reviewers and editors of scientific periodicals are invited to abandon expressions like ‘percentage apoptosis’ and to replace them with more accurate descriptions of the biochemical and cellular parameters that are actually measured. Moreover, at the present stage, it should be accepted that caspase-independent mechanisms can cooperate with (or substitute for) caspases in the execution of lethal signaling pathways and that ‘autophagic cell death’ is a type of cell death occurring together with (but not necessarily by) autophagic vacuolization. This study details the 2009 recommendations of the NCCD on the use of cell death-related terminology including ‘entosis’, ‘mitotic catastrophe’, ‘necrosis’, ‘necroptosis’ and ‘pyroptosis’. PMID:18846107

  17. Ectopic expression of H2AX protein promotes TrkA-induced cell death via modulation of TrkA tyrosine-490 phosphorylation and JNK activity upon DNA damage

    SciTech Connect

    Jung, Eun Joo; Kim, Deok Ryong

    2011-01-21

    Research highlights: {yields} We established TrkA-inducible U2OS cells stably expressing GFP-H2AX proteins. {yields} GFP-H2AX was colocalized with TrkA in the cytoplasm. {yields} {gamma}H2AX production was significantly increased upon activation of TrkA and suppressed by TrkA inhibitor or JNK inhibitor. {yields} Ectopic expression of H2AX promoted TrkA-mediated cell death through the modulation of TrkA tyrosine-490 phosphorylation and JNK activity upon DNA damage. -- Abstract: We previously reported that TrkA overexpression causes accumulation of {gamma}H2AX proteins in the cytoplasm, subsequently leading to massive cell death in U2OS cells. To further investigate how cytoplasmic H2AX is associated with TrkA-induced cell death, we established TrkA-inducible cells stably expressing GFP-tagged H2AX. We found that TrkA co-localizes with ectopically expressed GFP-H2AX proteins in the cytoplasm, especially at the juxta-nuclear membranes, which supports our previous results about a functional connection between TrkA and {gamma}H2AX in TrkA-induced cell death. {gamma}H2AX production from GFP-H2AX proteins was significantly increased when TrkA was overexpressed. Moreover, ectopic expression of H2AX activated TrkA-mediated signal pathways via up-regulation of TrkA tyrosine-490 phosphorylation. In addition, suppression of TrkA tyrosine-490 phosphorylation under a certain condition was removed by ectopic expression of H2AX, indicating a functional role of H2AX in the maintenance of TrkA activity. Indeed, TrkA-induced cell death was highly elevated by ectopic H2AX expression, and it was further accelerated by DNA damage via JNK activation. These all results suggest that cytoplasmic H2AX could play an important role in TrkA-mediated cell death by modulating TrkA upon DNA damage.

  18. Cell death and tendinopathy.

    PubMed

    Yuan, Jun; Wang, Min-Xia; Murrell, George A C

    2003-10-01

    Apoptosis and necrosis are presently recognized as the two major types of physiological and pathological cell death. Apoptosis is a tightly regulated cell deletion process that differs morphologically and biochemically from necrotic cell death. Tendinopathy is defined as a tendon injury that originates from intrinsic and extrinsic etiological factors. Excessive apoptosis has recently been described in degenerative tendon. The increased number of apoptotic tendon cells in degenerative tendon tissue could affect the rate of collagen synthesis and repair. Impaired or dysfunctional protein synthesis may lead to weaker tendon tissue and eventually increase the risk for tendon rupture. Clearly, there are many details to insert into this pathway, but there is hope that if the fine details of the pathway can be fleshed out, then strategies may be able to be developed to break the cycle at one or more points and prevent or treat tendinopathy more effectively.

  19. Immunogenic cell death.

    PubMed

    Garg, Abhishek D; Dudek-Peric, Aleksandra M; Romano, Erminia; Agostinis, Patrizia

    2015-01-01

    Currently, it is widely acknowledged that a proactive anticancer immunosurveillance mechanism takes part in the rejection of neoplastic lesions before they progress towards a benign or malignant tumour. However in cases of very aggressive neoplastic lesions consisting of cells with high mutational diversity, cancer cell variants might be formed that are capable of evading host defence systems against uncontrolled proliferation and anticancer immunosurveillance. This is mainly accomplished through the exhibition of low immunogenicity, which is a particularly important stumbling block in the revival of long-lasting as well as stable anticancer immunity. Recently, it has emerged emphatically that inciting a cancer cell death routine, associated with the activation of danger signalling pathways evoking emission of damage-associated molecular patterns (DAMPs), markedly increases the immunogenicity of dying cancer cells. This cell death pathway has been termed "immunogenic cell death" (ICD). In the present review we introduce this concept and discuss its characteristics in detail. We also discuss in detail the various molecular, immunological and operational determinants of ICD.

  20. Programmed cell death: Superman meets Dr Death.

    PubMed

    Meier, Pascal; Silke, John

    2003-12-01

    This year's Cold Spring Harbor meeting on programmed cell death (September 17-21, 2003), organised by Craig Thompson and Junying Yuan, was proof that the 'golden age' of research in this field is far from over. There was a flurry of fascinating insights into the regulation of diverse apoptotic pathways and unexpected non-apoptotic roles for some of the key apoptotic regulators and effectors. In addition to their role in cell death, components of the apoptotic molecular machinery are now known to also function in a variety of essential cellular processes, such as regulating glucose homeostasis, lipid metabolism, cell proliferation and differentiation.

  1. Jerantinine A induces tumor-specific cell death through modulation of splicing factor 3b subunit 1 (SF3B1)

    PubMed Central

    Chung, Felicia Fei-Lei; Tan, Perry Faith Tze Ming; Raja, Vijay Joseph; Tan, Boon-Shing; Lim, Kuan-Hon; Kam, Toh-Seok; Hii, Ling-Wei; Tan, Si Hoey; See, Sze-Jia; Tan, Yuen-Fen; Wong, Li-Zhe; Yam, Wai Keat; Mai, Chun Wai; Bradshaw, Tracey D.; Leong, Chee-Onn

    2017-01-01

    Precursor mRNA (pre-mRNA) splicing is catalyzed by a large ribonucleoprotein complex known as the spliceosome. Numerous studies have indicated that aberrant splicing patterns or mutations in spliceosome components, including the splicing factor 3b subunit 1 (SF3B1), are associated with hallmark cancer phenotypes. This has led to the identification and development of small molecules with spliceosome-modulating activity as potential anticancer agents. Jerantinine A (JA) is a novel indole alkaloid which displays potent anti-proliferative activities against human cancer cell lines by inhibiting tubulin polymerization and inducing G2/M cell cycle arrest. Using a combined pooled-genome wide shRNA library screen and global proteomic profiling, we showed that JA targets the spliceosome by up-regulating SF3B1 and SF3B3 protein in breast cancer cells. Notably, JA induced significant tumor-specific cell death and a significant increase in unspliced pre-mRNAs. In contrast, depletion of endogenous SF3B1 abrogated the apoptotic effects, but not the G2/M cell cycle arrest induced by JA. Further analyses showed that JA stabilizes endogenous SF3B1 protein in breast cancer cells and induced dissociation of the protein from the nucleosome complex. Together, these results demonstrate that JA exerts its antitumor activity by targeting SF3B1 and SF3B3 in addition to its reported targeting of tubulin polymerization. PMID:28198434

  2. Role of NF-κB-p53 crosstalk in ultraviolet A-induced cell death and G1 arrest in human dermal fibroblasts.

    PubMed

    Lee, Yun Kyung; Cha, Hwa Jun; Hong, Misun; Yoon, Yeongmin; Lee, Hyunjin; An, Sungkwan

    2012-01-01

    Photoaging is the premature aging of the skin caused by repeated exposure to sunlight and is characterized by a depletion of the dermal extracellular matrix. This depletion is due to the loss of fibroblast cells and their multiple functions. UVA was revealed as a major inducer of photoaging in various clinical studies. As UVA photons have long wavelength spectra, UVA penetrates deeper into the dermis than UVB and UVC, leading to the induction of cell death, the destruction of the dermal extracellular matrix through the induction of matrix metalloproteinase expression, and the repression of collagen expression. However, the exact effects of UVA on the skin remain a matter of debate. Here, we assess cell cycle stage to demonstrate that NF-κB-p53 crosstalk induces apoptosis and growth arrest in UVA-irradiated human dermal fibroblasts. In addition, UVA irradiation led to an increase of NF-κB-HDAC1 complexes, which in turn repressed cyclin D1 expression in UVA-irradiated human dermal fibroblasts. We provide direct evidence that UVA irradiation induces changes in the p53-dependent NF-κB complex that lead to growth arrest and apoptosis through the repression of cyclin D1. These studies uncovered that NF-κB-p53 crosstalk is a key regulator of UVA-dependent growth arrest and apoptosis.

  3. Cell Proliferation, Cell Death, and Size Regulation

    DTIC Science & Technology

    1998-10-01

    Cell Death , and Size Regulation PRINCIPAL INVESTIGATOR: Nicholas E. Baker, Ph.D. CONTRACTING ORGANIZATION: Albert Einstein College of Medicine of Yeshiva...SUBTITLE 5. FUNDING NUMBERS Cell Proliferation, Cell Death , and Size Regulation DAMD17-97-1-7034 6. AUTHOR(S) Nicholas E. Baker, Ph.D. 7. PERFORMING...Contains unpublished data 5 CELL PROLIFERATION, CELL DEATH , AND SIZE REGULATION INTRODUCTION Cell proliferation and cell death come to attention through

  4. Dead Cert: Measuring Cell Death.

    PubMed

    Crowley, Lisa C; Marfell, Brooke J; Scott, Adrian P; Boughaba, Jeanne A; Chojnowski, Grace; Christensen, Melinda E; Waterhouse, Nigel J

    2016-12-01

    Many cells in the body die at specific times to facilitate healthy development or because they have become old, damaged, or infected. Defects in cells that result in their inappropriate survival or untimely death can negatively impact development or contribute to a variety of human pathologies, including cancer, AIDS, autoimmune disorders, and chronic infection. Cell death may also occur following exposure to environmental toxins or cytotoxic chemicals. Although this is often harmful, it can be beneficial in some cases, such as in the treatment of cancer. The ability to objectively measure cell death in a laboratory setting is therefore essential to understanding and investigating the causes and treatments of many human diseases and disorders. Often, it is sufficient to know the extent of cell death in a sample; however, the mechanism of death may also have implications for disease progression, treatment, and the outcomes of experimental investigations. There are a myriad of assays available for measuring the known forms of cell death, including apoptosis, necrosis, autophagy, necroptosis, anoikis, and pyroptosis. Here, we introduce a range of assays for measuring cell death in cultured cells, and we outline basic techniques for distinguishing healthy cells from apoptotic or necrotic cells-the two most common forms of cell death. We also provide personal insight into where these assays may be useful and how they may or may not be used to distinguish apoptotic cell death from other death modalities. © 2016 Cold Spring Harbor Laboratory Press.

  5. Glutathione Efflux and Cell Death

    PubMed Central

    2012-01-01

    Abstract Significance: Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). Recent Advances: There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. Critical Issues: In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. Future Directions: The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux. Antioxid. Redox Signal. 17, 1694–1713. PMID:22656858

  6. [Pathophysiologic programming of cell death].

    PubMed

    Dobryszycka, W

    1998-01-01

    In multicellular organisms homeostasis depends on a balance between cell proliferation and cell death. In this review principles of the physiology of programmed cell death (apoptosis), i.e. biochemical features, involved genes and proteolytic enzymes, are described. Alterations in apoptosis contribute to the pathogenesis of a number of human diseases, including cancer, viral infections, inflammation, hematopoietic and immunological system defects (e.g. AIDS), neurodegenerative disorders. Specific effect on regulation of apoptosis might lead to new possibilities for treatment. Methods of quantitative determinations of apoptosis are discussed.

  7. Pancreatic β Cell Mass Death

    PubMed Central

    Marrif, Husnia I.; Al-Sunousi, Salma I.

    2016-01-01

    Type two diabetes (T2D) is a challenging metabolic disorder for which a cure has not yet been found. Its etiology is associated with several phenomena, including significant loss of insulin-producing, beta cellcell) mass via progressive programmed cell death and disrupted cellular autophagy. In diabetes, the etiology of β cell death and the role of mitochondria are complex and involve several layers of mechanisms. Understanding the dynamics of those mechanisms could permit researchers to develop an intervention for the progressive loss of β cells. Currently, diabetes research has shifted toward rejuvenation and plasticity technology and away from the simplified approach of hormonal compensation. Diabetes research is currently challenged by questions such as how to enhance cell survival, decrease apoptosis and replenish β cell mass in diabetic patients. In this review, we discuss evidence that β cell development and mass formation are guided by specific signaling systems, particularly hormones, transcription factors, and growth factors, all of which could be manipulated to enhance mass growth. There is also strong evidence that β cells are dynamically active cells, which, under specific conditions such as obesity, can increase in size and subsequently increase insulin secretion. In certain cases of aggressive or advanced forms of T2D, β cells become markedly impaired, and the only alternatives for maintaining glucose homeostasis are through partial or complete cell grafting (the Edmonton protocol). In these cases, the harvesting of an enriched population of viable β cells is required for transplantation. This task necessitates a deep understanding of the pharmacological agents that affect β cell survival, mass, and function. The aim of this review is to initiate discussion about the important signals in pancreatic β cell development and mass formation and to highlight the process by which cell death occurs in diabetes. This review also examines the

  8. Alternative Cell Death Pathways and Cell Metabolism

    PubMed Central

    Fulda, Simone

    2013-01-01

    While necroptosis has for long been viewed as an accidental mode of cell death triggered by physical or chemical damage, it has become clear over the last years that necroptosis can also represent a programmed form of cell death in mammalian cells. Key discoveries in the field of cell death research, including the identification of critical components of the necroptotic machinery, led to a revised concept of cell death signaling programs. Several regulatory check and balances are in place in order to ensure that necroptosis is tightly controlled according to environmental cues and cellular needs. This network of regulatory mechanisms includes metabolic pathways, especially those linked to mitochondrial signaling events. A better understanding of these signal transduction mechanisms will likely contribute to open new avenues to exploit our knowledge on the regulation of necroptosis signaling for therapeutic application in the treatment of human diseases. PMID:23401689

  9. Cell Proliferation, Cell Death, and Size Regulation

    DTIC Science & Technology

    2000-10-01

    generated in part by apoptosis of excess cells during development. We identified a mutation named pineapple eye (pie ) that has too few cells in the...predicted to encode a novel 582 amino acid protein, perhaps interacting with molybdopterin. It is possible that the pie gene encodes a novel enzyme protecting against cell death during growth and development.

  10. Programmed Cell Death in Breast Cancer

    DTIC Science & Technology

    1998-10-01

    Programmed cell death , or apoptosis, is a genetically regulated process through which a cell is active in bringing about its own death for the sake...delays and inhibits the cell death response, so that the breast cancer cell lines are much less susceptible to thapsigargin-induced apoptosis than...lymphoid cell lines, an observation that parallels the differential susceptibility of breast cancer and lymphomas to chemotherapy-induced cell death in

  11. Lipid peroxidation in cell death.

    PubMed

    Gaschler, Michael M; Stockwell, Brent R

    2017-01-15

    Disruption of redox homeostasis is a key phenotype of many pathological conditions. Though multiple oxidizing compounds such as hydrogen peroxide are widely recognized as mediators and inducers of oxidative stress, increasingly, attention is focused on the role of lipid hydroperoxides as critical mediators of death and disease. As the main component of cellular membranes, lipids have an indispensible role in maintaining the structural integrity of cells. Excessive oxidation of lipids alters the physical properties of cellular membranes and can cause covalent modification of proteins and nucleic acids. This review discusses the synthesis, toxicity, degradation, and detection of lipid peroxides in biological systems. Additionally, the role of lipid peroxidation is highlighted in cell death and disease, and strategies to control the accumulation of lipid peroxides are discussed. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Programmed cell death in aging.

    PubMed

    Tower, John

    2015-09-01

    Programmed cell death (PCD) pathways, including apoptosis and regulated necrosis, are required for normal cell turnover and tissue homeostasis. Mis-regulation of PCD is increasingly implicated in aging and aging-related disease. During aging the cell turnover rate declines for several highly-mitotic tissues. Aging-associated disruptions in systemic and inter-cell signaling combined with cell-autonomous damage and mitochondrial malfunction result in increased PCD in some cell types, and decreased PCD in other cell types. Increased PCD during aging is implicated in immune system decline, skeletal muscle wasting (sarcopenia), loss of cells in the heart, and neurodegenerative disease. In contrast, cancer cells and senescent cells are resistant to PCD, enabling them to increase in abundance during aging. PCD pathways limit life span in fungi, but whether PCD pathways normally limit adult metazoan life span is not yet clear. PCD is regulated by a balance of negative and positive factors, including the mitochondria, which are particularly subject to aging-associated malfunction.

  13. Programmed cell death in Giardia.

    PubMed

    Bagchi, Susmita; Oniku, Abraham E; Topping, Kate; Mamhoud, Zahra N; Paget, Timothy A

    2012-06-01

    Programmed cell death (PCD) has been observed in many unicellular eukaryotes; however, in very few cases have the pathways been described. Recently the early divergent amitochondrial eukaryote Giardia has been included in this group. In this paper we investigate the processes of PCD in Giardia. We performed a bioinformatics survey of Giardia genomes to identify genes associated with PCD alongside traditional methods for studying apoptosis and autophagy. Analysis of Giardia genomes failed to highlight any genes involved in apoptotic-like PCD; however, we were able to induce apoptotic-like morphological changes in response to oxidative stress (H2O2) and drugs (metronidazole). In addition we did not detect caspase activity in induced cells. Interestingly, we did observe changes resembling autophagy when cells were starved (staining with MDC) and genome analysis revealed some key genes associated with autophagy such as TOR, ATG1 and ATG 16. In organisms such as Trichomonas vaginalis, Entamoeba histolytica and Blastocystis similar observations have been made but no genes have been identified. We propose that Giardia possess a pathway of autophagy and a form of apoptosis very different from the classical known mechanism; this may represent an early form of programmed cell death.

  14. Cell death in the nervous system

    PubMed Central

    Bredesen, Dale E.; Rao, Rammohan V.; Mehlen, Patrick

    2014-01-01

    Neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease trigger neuronal cell death through endogenous suicide pathways. Surprisingly, although the cell death itself may occur relatively late in the course of the degenerative process, the mediators of the underlying cell-death pathways have shown promise as potential therapeutic targets. PMID:17051206

  15. Cell death in the cardiovascular system

    PubMed Central

    Clarke, Murray; Bennett, Martin; Littlewood, Trevor

    2007-01-01

    Cell death is important for both development and tissue homeostasis in the adult. As such, it is tightly controlled and deregulation is associated with diverse pathologies; for example, regulated cell death is involved in vessel remodelling during development or following injury, but deregulated death is implicated in pathologies such as atherosclerosis, aneurysm formation, ischaemic and dilated cardiomyopathies and infarction. We describe the mechanisms of cell death and its role in the normal physiology and various pathologies of the cardiovascular system. PMID:16547202

  16. How cell death shapes cancer

    PubMed Central

    Labi, V; Erlacher, M

    2015-01-01

    Apoptosis has been established as a mechanism of anti-cancer defense. Members of the BCL-2 family are critical mediators of apoptotic cell death in health and disease, often found to be deregulated in cancer and believed to lead to the survival of malignant clones. However, over the years, a number of studies pointed out that a model in which cell death resistance unambiguously acts as a barrier against malignant disease might be too simple. This is based on paradoxical observations made in tumor patients as well as mouse models indicating that apoptosis can indeed drive tumor formation, at least under certain circumstances. One possible explanation for this phenomenon is that apoptosis can promote proliferation critically needed to compensate for cell loss, for example, upon therapy, and to restore tissue homeostasis. However, this, at the same time, can promote tumor development by allowing expansion of selected clones. Usually, tissue resident stem/progenitor cells are a major source for repopulation, some of them potentially carrying (age-, injury- or therapy-induced) genetic aberrations deleterious for the host. Thereby, apoptosis might drive genomic instability by facilitating the emergence of pathologic clones during phases of proliferation and subsequent replication stress-associated DNA damage. Tumorigenesis initiated by repeated cell attrition and repopulation, as confirmed in different genetic models, has parallels in human cancers, exemplified in therapy-induced secondary malignancies and myelodysplastic syndromes in patients with congenital bone marrow failure syndromes. Here, we aim to review evidence in support of the oncogenic role of stress-induced apoptosis. PMID:25741600

  17. Imaging cell death in vivo.

    PubMed

    Blankenberg, F; Mari, C; Strauss, H W

    2003-12-01

    A technique to image programmed cell death would be useful both in clinical care and in drug development. The most widely studied agent for the in vivo study of apoptosis is radiolabeled annexin V, an endogenous protein labeled with technectium-99m, now undergoing clinical trials in both Europe and the United States. While annexin V has been studied extensively in humans the precise mechanism(s) of uptake this agent in vivo is unclear and needs further study. Other agents are also under development, including radiolabeled forms of Z-VAD.fmk, a potent inhibitor of the enzymatic cascade intimately associated with apoptosis. In addition other technologies, such as diffusion weighted magnetic resonance imaging and magnetic resonance imaging with contrast agents, such as small paramagnetic iron oxide particles coated with peptides have also been advocated as methods to monitor apoptotic cell death. The potential applications of imaging apoptosis as a marker of early response to therapy in cancer, acute cerebral and myocardial ischemic injury and infarction, immune mediated inflammatory disease and transplant rejection are reviewed.

  18. Role of programmed cell death in development.

    PubMed

    Ranganath, R M; Nagashree, N R

    2001-01-01

    Programmed cell death (PCD) is an integral part of both animal and plant development. In animals, model systems such as Caenorhabditis elegans, Drosophila melanogaster, and mice have shown a general cell death profile of induction, caspase mediation, cell death, and phagocytosis. Tremendous strides have been made in cell death research in animals in the past decade. The ordering of the C. elegans genes Ced-3, 4 and 9, identification of caspase-activated DNase that degrades nuclear DNA during PCD, identification of signal transduction modules involving caspases as well as the caspase-independent pathway, and the involvement of mitochondria are some of the findings of immense value in understanding animal PCDs. Similarly, the caspase inactivation mechanisms of infecting viruses to stall host cell death give a new dimension to the viral infection process. However, plant cell death profiles provide an entirely different scenario. The presence of a cell wall that cannot be phagocytosed, absence of the hallmarks of animal PCDs such as DNA laddering, formation of apoptotic bodies, a cell-death-specific nuclease, a biochemical machinery of killer enzymes such as caspases all point to novel ways of cell elimination. Large gaps in our understanding of plant cell death have prompted speculative inferences and comparisons with animal cell death mechanisms. This paper deals with both animals and plants for a holistic view on cell death in eukaryotes.

  19. Cell death: a dynamic response concept.

    PubMed

    Loos, Benjamin; Engelbrecht, Anna-Mart

    2009-07-01

    Autophagy, apoptosis and necrosis have previously been described as distinct static processes that induce and execute cell death. Due to an increased use of novel techniques in mapping cellular death-techniques which allow for reporting of real-time data-the existence of "grey zones" between cell death modes and the existence of the "point of no return" within these have been revealed. This revelation demands the integration of new concepts in describing the cellular death process. Furthermore, since the contribution of autophagy in cell death or cell survival is still poorly understood, it is important to accurately describe its function within the dynamic framework of cell death. In this review cell death is viewed as a dynamic and integrative cellular response to ensure the highest likelihood of self-preservation. Suggestions are offered for conceptualizing cell death modes and their morphological features, both individually and in relation to one another. It addresses the need for distinguishing between dying cells and dead cells so as to better locate and control the onset of cell death. Most importantly, the fundamental role of autophagy, autophagic flux, and the effects of the intracellular metabolic environment on the kinetics of the cell death modes are stressed. It also contextualizes the kinetic dimension of cell death as a process and aims to contribute towards a better understanding of autophagy as a key mechanism within this process. Understanding the dynamic nature of the cell death process and autophagy's central role can reveal new insight for therapeutic intervention in preventing cell death.

  20. Metabolic Regulation of Ovarian Cancer Cell Death

    DTIC Science & Technology

    2012-07-01

    Following treatment with chemotherapeutic agents, responsive ovarian cancer cells undergo apoptotic cell death . Several groups have shown that the...apoptotic protease, caspase 2 (C2), is an essential activator of cell death in ovarian cancer cells treated with cisplatin and we have found, by knock

  1. Programmed Cell Death in Breast Cancer.

    DTIC Science & Technology

    1996-10-01

    TITLE: Programmed Cell Death in Breast Cancer PRINCIPAL INVESTIGATOR: Clark W. Distelhorst, M.D. CONTRACTING ORGANIZATION: Case Western Reserve...Programmed Cell Death in Breast Cancer DAMD17-94-J-4451 6. AUTHOR(S) Clark W. Distelhorst, M.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...cell death , apoptosis, in breast cancer cells has been developed. This model is based on induction of apoptosis by the selective endoplasmic reticulum

  2. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012

    PubMed Central

    Galluzzi, L; Vitale, I; Abrams, J M; Alnemri, E S; Baehrecke, E H; Blagosklonny, M V; Dawson, T M; Dawson, V L; El-Deiry, W S; Fulda, S; Gottlieb, E; Green, D R; Hengartner, M O; Kepp, O; Knight, R A; Kumar, S; Lipton, S A; Lu, X; Madeo, F; Malorni, W; Mehlen, P; Nuñez, G; Peter, M E; Piacentini, M; Rubinsztein, D C; Shi, Y; Simon, H-U; Vandenabeele, P; White, E; Yuan, J; Zhivotovsky, B; Melino, G; Kroemer, G

    2012-01-01

    In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including ‘apoptosis', ‘necrosis' and ‘mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features. PMID:21760595

  3. Cell biology. Metabolic control of cell death.

    PubMed

    Green, Douglas R; Galluzzi, Lorenzo; Kroemer, Guido

    2014-09-19

    Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.

  4. Analysis of mitochondrial dysfunction during cell death.

    PubMed

    Gogvadze, Vladimir; Orrenius, Sten; Zhivotovsky, Boris

    2015-01-01

    Mitochondria play a key role in various modes of cell death. Analysis of mitochondrial dysfunction and the release of proteins from the intermembrane space of mitochondria represent essential tools in cell death investigation. Here we describe how to evaluate release of intermembrane space proteins during apoptosis, alterations in the mitochondrial membrane potential, and oxygen consumption in apoptotic cells.

  5. Stellate Cells Orchestrate Concanavalin A-Induced Acute Liver Damage.

    PubMed

    Rani, Richa; Tandon, Ashish; Wang, Jiang; Kumar, Sudhir; Gandhi, Chandrashekhar R

    2017-09-01

    Concanavalin A (ConA) causes immune cell-mediated liver damage, but the contribution of resident nonparenchymal cells (NPCs) is also evident. Hepatic stellate cells (HSCs) induce hepatic inflammation and immunological reactions; we therefore investigated their role in ConA-induced liver injury. ConA was administered i.v. to control or HSC-depleted mice; hepatic histopathology and cytokines/chemokines were determined after 6 hours. In vitro, effects of ConA-conditioned HSC medium on hepatocytes were determined. ConA induced inflammation, sinusoidal congestion, and extensive midzonal hepatocyte death in control mice, which were strongly minimized in HSC-depleted mice. CD4 and natural killer T cells and neutrophils were markedly reduced in ConA-treated HSC-depleted mice compared with control mice. The increase in cytokines/chemokines of hepatic injury was much higher in ConA-treated control mice than in HSC-depleted mice. ConA-treated HSCs showed increased expression of interferon-β, tumor necrosis factor-α, and CXCL1, induced oxidative stress in hepatocytes, and caused hepatocyte apoptosis. ConA induced nuclear translocation of interferon-regulatory factor-1 (IRF1) in hepatocytes in vivo, and ConA/HSC induced a similar effect in cultured hepatocytes. IRF1-knockout mice were resistant to ConA-induced liver damage, and anti-interferon β antibody mitigated ConA/HSC-induced injury. In HSC-NPC co-culture, ConA-induced expression of inflammatory cytokines/chemokines was significantly augmented compared with NPCs alone. HSCs play an essential role in ConA-induced liver injury directly via the interferon-β/IRF1 axis, and by modulating properties of NPCs. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Nonthermal-plasma-mediated animal cell death

    NASA Astrophysics Data System (ADS)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Gyoo-Cheon; Kim, Kyong-Tai

    2011-01-01

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood.

  7. TAK1 control of cell death

    PubMed Central

    Mihaly, S R; Ninomiya-Tsuji, J; Morioka, S

    2014-01-01

    Programmed cell death, a physiologic process for removing cells, is critically important in normal development and for elimination of damaged cells. Conversely, unattended cell death contributes to a variety of human disease pathogenesis. Thus, precise understanding of molecular mechanisms underlying control of cell death is important and relevant to public health. Recent studies emphasize that transforming growth factor-β-activated kinase 1 (TAK1) is a central regulator of cell death and is activated through a diverse set of intra- and extracellular stimuli. The physiologic importance of TAK1 and TAK1-binding proteins in cell survival and death has been demonstrated using a number of genetically engineered mice. These studies uncover an indispensable role of TAK1 and its binding proteins for maintenance of cell viability and tissue homeostasis in a variety of organs. TAK1 is known to control cell viability and inflammation through activating downstream effectors such as NF-κB and mitogen-activated protein kinases (MAPKs). It is also emerging that TAK1 regulates cell survival not solely through NF-κB but also through NF-κB-independent pathways such as oxidative stress and receptor-interacting protein kinase 1 (RIPK1) kinase activity-dependent pathway. Moreover, recent studies have identified TAK1's seemingly paradoxical role to induce programmed necrosis, also referred to as necroptosis. This review summarizes the consequences of TAK1 deficiency in different cell and tissue types from the perspective of cell death and also focuses on the mechanism by which TAK1 complex inhibits or promotes programmed cell death. This review serves to synthesize our current understanding of TAK1 in cell survival and death to identify promising directions for future research and TAK1's potential relevance to human disease pathogenesis. PMID:25146924

  8. Programmed cell death 50 (and beyond)

    PubMed Central

    Lockshin, R A

    2016-01-01

    In the 50 years since we described cell death as ‘programmed,' we have come far, thanks to the efforts of many brilliant researchers, and we now understand the mechanics, the biochemistry, and the genetics of many of the ways in which cells can die. This knowledge gives us the resources to alter the fates of many cells. However, not all cells respond similarly to the same stimulus, in either sensitivity to the stimulus or timing of the response. Cells prevented from dying through one pathway may survive, survive in a crippled state, or die following a different pathway. To fully capitalize on our knowledge of cell death, we need to understand much more about how cells are targeted to die and what aspects of the history, metabolism, or resources available to individual cells determine how each cell reaches and crosses the threshold at which it commits to death. PMID:26564398

  9. Gangliosides induce autophagic cell death in astrocytes

    PubMed Central

    Hwang, Jaegyu; Lee, Shinrye; Lee, Jung Tae; Kwon, Taeg Kyu; Kim, Deok Ryong; Kim, Ho; Park, Hae-Chul; Suk, Kyoungho

    2010-01-01

    Background and purpose: Gangliosides, sialic acid-containing glycosphingolipids, abundant in brain, are involved in neuronal function and disease, but the precise molecular mechanisms underlying their physiological or pathological activities are poorly understood. In this study, the pathological role of gangliosides in the extracellular milieu with respect to glial cell death and lipid raft/membrane disruption was investigated. Experimental approach: We determined the effect of gangliosides on astrocyte death or survival using primary astrocyte cultures and astrocytoma/glioma cell lines as a model. Signalling pathways of ganglioside-induced autophagic cell death of astrocytes were examined using pharmacological inhibitors and biochemical and genetic assays. Key results: Gangliosides induced autophagic cell death in based on the following observations. Incubation of the cells with a mixture of gangliosides increased a punctate distribution of fluorescently labelled microtubule-associated protein 1 light chain 3 (GFP-LC3), the ratio of LC3-II/LC3-I and LC3 flux. Gangliosides also increased the formation of autophagic vacuoles as revealed by monodansylcadaverine staining. Ganglioside-induced cell death was inhibited by either a knockdown of beclin-1/Atg-6 or Atg-7 gene expression or by 3-methyladenine, an inhibitor of autophagy. Reactive oxygen species (ROS) were involved in ganglioside-induced autophagic cell death of astrocytes, because gangliosides induced ROS production and ROS scavengers decreased autophagic cell death. In addition, lipid rafts played an important role in ganglioside-induced astrocyte death. Conclusions and implications: Gangliosides released under pathological conditions may induce autophagic cell death of astrocytes, identifying a neuropathological role for gangliosides. PMID:20067473

  10. Cytoplasmic vacuolization in cell death and survival

    PubMed Central

    Komissarov, Alexey A.; Rafieva, Lola M.; Kostrov, Sergey V.

    2016-01-01

    Cytoplasmic vacuolization (also called cytoplasmic vacuolation) is a well-known morphological phenomenon observed in mammalian cells after exposure to bacterial or viral pathogens as well as to various natural and artificial low-molecular-weight compounds. Vacuolization often accompanies cell death; however, its role in cell death processes remains unclear. This can be attributed to studying vacuolization at the level of morphology for many years. At the same time, new data on the molecular mechanisms of the vacuole formation and structure have become available. In addition, numerous examples of the association between vacuolization and previously unknown cell death types have been reported. Here, we review these data to make a deeper insight into the role of cytoplasmic vacuolization in cell death and survival. PMID:27331412

  11. Programmed cell death in plant reproduction.

    PubMed

    Wu, H M; Cheun, A Y

    2000-10-01

    Reproductive development is a rich arena to showcase programmed cell death in plants. After floral induction, the first act of reproductive development in some plants is the selective killing of cells destined to differentiate into an unwanted sexual organ. Production of functional pollen grains relies significantly on deterioration and death of the anther tapetum, a tissue whose main function appears to nurture and decorate the pollen grains with critical surface molecules. Degeneration and death in a number of anther tissues result ultimately in anther rupture and dispersal of pollen grains. Female sporogenesis frequently begins with the death of all but one of the meiotic derivatives, with surrounding nucellar cells degenerating in concert with embryo sac expansion. Female tissues that interact with pollen undergo dramatic degeneration, including death, to ensure the encounter of compatible male and female gametes. Pollen and pistil interact to kill invading pollen from an incompatible source. Most observations on cell death in reproductive tissues have been on the histological and cytological levels. We discuss various cell death phenomena in reproductive development with a view towards understanding the biochemical and molecular mechanisms that underlie these processes.

  12. Cell Cycle Regulators and Cell Death in Immunity

    PubMed Central

    Zebell, Sophia G.; Dong, Xinnian

    2015-01-01

    Summary Various cell death mechanisms are integral to host defense in both plants and mammals. Plant defense against biotrophic pathogens is associated with programmed cell death (PCD) of the infected cell. This effector-triggered PCD is partly analogous to pyroptosis, an inflammatory host cell death process that plays a crucial role in defense against microbial infections in mammals. Plant effector-triggered PCD also shares with mammalian apoptosis the involvement of cell cycle regulators as signaling components. Here we explore the similarities between these different cell death programs as they relate to host defense and their relationship to the cell-cycle. PMID:26468745

  13. Cell-Cycle Regulators and Cell Death in Immunity.

    PubMed

    Zebell, Sophia G; Dong, Xinnian

    2015-10-14

    Various cell death mechanisms are integral to host defense in both plants and mammals. Plant defense against biotrophic pathogens is associated with programmed cell death (PCD) of the infected cell. This effector-triggered PCD is partly analogous to pyroptosis, an inflammatory host cell death process that plays a crucial role in defense against microbial infections in mammals. Plant effector-triggered PCD also shares with mammalian apoptosis the involvement of cell-cycle regulators as signaling components. Here we explore the similarities between these different cell death programs as they relate to host defense and their relationship to the cell cycle. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Immune activation: death, danger and dendritic cells.

    PubMed

    Pulendran, Bali

    2004-01-06

    Dendritic cells are critical for host immunity, and sense microbes with pathogen recognition receptors. New evidence indicates that these cells also sense uric acid crystals in dead cells, suggesting that the immune system is conscious not only of pathogens, but also of death and danger.

  15. Regulation of VDAC trafficking modulates cell death

    PubMed Central

    Dubey, Ashvini K; Godbole, Ashwini; Mathew, M K

    2016-01-01

    The voltage-dependent anion channel (VDAC) and mitochondria-associated hexokinase (HxK) have crucial roles in both cell survival and death. Both the individual abundances and their ratio seem to influence the balance of survival and death and are thus critical in scenarios, such as neurodegeneration and cancer. Elevated levels of both VDAC and HxK have been reported in cancerous cells. Physical interaction is surmised and specific residues or regions involved have been identified, but details of the interaction and the mechanism by which it modulates survival are yet to be elucidated. We and others have shown that heterologous expression of VDAC can induce cell death, which can be mitigated by concomitant overexpression of HxK. We have also observed that upon overexpression, fluorescently tagged VDAC is distributed between the cytosol and mitochondria. In this study, we show that cell death ensues only when the protein, which is synthesized on cytoplasmic ribosomes, migrates to the mitochondrion. Further, coexpression of rat HxK II (rHxKII) can delay the translocation of human VDAC1 (hVDAC1) protein to mitochondria and thereby inhibit VDAC-induced cell death. Variation in the level of HxK protein as seen endogenously in different cell lines, or as experimentally manipulated by silencing and overexpression, can lead to differential VDAC translocation kinetics and related cell death. The N-terminal region of HxK and the Glu73 residue of hVDAC1, which have previously been implicated in a physical interaction, are required for cytosolic retention of VDAC. Finally, we show that, in otherwise unperturbed cells in culture, there is a small but significant amount of soluble VDAC in the cytosol present in a complex with HxK. This complex could well determine how a cell is poised with respect to incoming thanatopic signals, thereby tilting the survival/death balance in pharmacologically interesting situations, such as neurodegeneration and cancer. PMID:28028442

  16. Epidermal cell death in frogs with chytridiomycosis

    PubMed Central

    Roberts, Alexandra A.; Skerratt, Lee F.; Berger, Lee

    2017-01-01

    Background Amphibians are declining at an alarming rate, and one of the major causes of decline is the infectious disease chytridiomycosis. Parasitic fungal sporangia occur within epidermal cells causing epidermal disruption, but these changes have not been well characterised. Apoptosis (planned cell death) can be a damaging response to the host but may alternatively be a mechanism of pathogen removal for some intracellular infections. Methods In this study we experimentally infected two endangered amphibian species Pseudophryne corroboree and Litoria verreauxii alpina with the causal agent of chytridiomycosis. We quantified cell death in the epidermis through two assays: terminal transferase-mediated dUTP nick end-labelling (TUNEL) and caspase 3/7. Results Cell death was positively associated with infection load and morbidity of clinically infected animals. In infected amphibians, TUNEL positive cells were concentrated in epidermal layers, correlating to the localisation of infection within the skin. Caspase activity was stable and low in early infection, where pathogen loads were light but increasing. In animals that recovered from infection, caspase activity gradually returned to normal as the infection cleared. Whereas, in amphibians that did not recover, caspase activity increased dramatically when infection loads peaked. Discussion Increased cell death may be a pathology of the fungal parasite, likely contributing to loss of skin homeostatic functions, but it is also possible that apoptosis suppression may be used initially by the pathogen to help establish infection. Further research should explore the specific mechanisms of cell death and more specifically apoptosis regulation during fungal infection. PMID:28168107

  17. Cell death and cell death responses in liver disease: mechanisms and clinical relevance.

    PubMed

    Luedde, Tom; Kaplowitz, Neil; Schwabe, Robert F

    2014-10-01

    Hepatocellular death is present in almost all types of human liver disease and is used as a sensitive parameter for the detection of acute and chronic liver disease of viral, toxic, metabolic, or autoimmune origin. Clinical data and animal models suggest that hepatocyte death is the key trigger of liver disease progression, manifested by the subsequent development of inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Modes of hepatocellular death differ substantially between liver diseases. Different modes of cell death such as apoptosis, necrosis, and necroptosis trigger specific cell death responses and promote progression of liver disease through distinct mechanisms. In this review, we first discuss molecular mechanisms by which different modes of cell death, damage-associated molecular patterns, and specific cell death responses contribute to the development of liver disease. We then review the clinical relevance of cell death, focusing on biomarkers; the contribution of cell death to drug-induced, viral, and fatty liver disease and liver cancer; and evidence for cell death pathways as therapeutic targets.

  18. Cell Death and Cell Death Responses in Liver Disease: Mechanisms and Clinical Relevance

    PubMed Central

    Luedde, Tom; Kaplowitz, Neil; Schwabe, Robert F.

    2015-01-01

    Summary Hepatocellular death is present in almost all types of human liver disease and is used as a sensitive parameter for the detection of acute and chronic liver disease of viral, toxic, metabolic, or autoimmune origin. Clinical data and animal models suggest that hepatocyte death is the key trigger of liver disease progression, manifested by the subsequent development of inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Modes of hepatocellular death differ substantially between liver diseases. Different modes of cell death such as apoptosis, necrosis, and necroptosis trigger specific cell death responses and promote progression of liver disease through distinct mechanisms. In this review, we first discuss molecular mechanisms by which different modes of cell death, damage-associated molecular patterns, and specific cell death responses contribute to the development of liver disease. We then review the clinical relevance of cell death, focusing on biomarkers; the contribution of cell death to drug-induced, viral, and fatty liver disease and liver cancer; and evidence for cell death pathways as therapeutic targets. PMID:25046161

  19. Calcium imaging in neuron cell death.

    PubMed

    Calvo, María; Villalobos, Carlos; Núñez, Lucía

    2015-01-01

    Intracellular Ca2+ is involved in control of a large variety of cell functions including apoptosis and neuron cell death. For example, intracellular Ca2+ overload is critical in neuron cell death induced by excitotoxicity. Thus, single cell monitoring of intracellular Ca2+ concentration ([Ca2+]cyt ) in neurons concurrently with apoptosis and neuron cell death is widely required. Procedures for culture and preparation of primary cultures of hippocampal rat neurons and fluorescence imaging of cytosolic Ca2+ concentration in Fura2/AM -loaded neurons are described. We also describe a method for apoptosis detection by immunofluorescence imaging. Finally, a simple method for concurrent measurements of [Ca2+]cyt and apoptosis in the same neurons is described.

  20. Cell death in Pseudomonas aeruginosa biofilm development.

    PubMed

    Webb, Jeremy S; Thompson, Lyndal S; James, Sally; Charlton, Tim; Tolker-Nielsen, Tim; Koch, Birgit; Givskov, Michael; Kjelleberg, Staffan

    2003-08-01

    Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids. However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development thereafter, a bacteriophage capable of superinfecting and lysing the P. aeruginosa parent strain was detected in the fluid effluent from the biofilm. The bacteriophage implicated in biofilm killing was closely related to the filamentous phage Pf1 and existed as a prophage within the genome of P. aeruginosa. We propose that prophage-mediated cell death is an important mechanism of differentiation inside microcolonies that facilitates dispersal of a subpopulation of surviving cells.

  1. Cell Death in Pseudomonas aeruginosa Biofilm Development

    PubMed Central

    Webb, Jeremy S.; Thompson, Lyndal S.; James, Sally; Charlton, Tim; Tolker-Nielsen, Tim; Koch, Birgit; Givskov, Michael; Kjelleberg, Staffan

    2003-01-01

    Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids. However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development thereafter, a bacteriophage capable of superinfecting and lysing the P. aeruginosa parent strain was detected in the fluid effluent from the biofilm. The bacteriophage implicated in biofilm killing was closely related to the filamentous phage Pf1 and existed as a prophage within the genome of P. aeruginosa. We propose that prophage-mediated cell death is an important mechanism of differentiation inside microcolonies that facilitates dispersal of a subpopulation of surviving cells. PMID:12867469

  2. MK2 balances inflammation and cell death.

    PubMed

    Oberst, Andrew

    2017-09-29

    The cytokine tumour necrosis factor (TNF) and the toll-like receptors (TLRs) coordinate immune responses by activating inflammatory transcriptional programs, but these signals can also trigger cell death. Recent studies identify the MAP kinase substrate MK2 as a key player in determining whether cells live or die in response to TNF and TLR signalling.

  3. Parvovirus infection-induced cell death and cell cycle arrest

    PubMed Central

    Chen, Aaron Yun; Qiu, Jianming

    2011-01-01

    The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest. PMID:21331319

  4. Cell death pathways of particulate matter toxicity.

    PubMed

    Peixoto, Milena Simões; de Oliveira Galvão, Marcos Felipe; Batistuzzo de Medeiros, Silvia Regina

    2017-08-22

    Humans are exposed to various complex mixtures of particulate matter (PM) from different sources. Long-term exposure to high levels of these particulates has been linked to a diverse range of respiratory and cardiovascular diseases that have resulted in hospital admission. The evaluation of the effects of PM exposure on the mechanisms related to cell death has been a challenge for many researchers. Therefore, in this review, we have discussed the effects of airborne PM exposure on mechanisms related to cell death. For this purpose, we have compiled literature data on PM sources, the effects of exposure, and the assays and models used for evaluation, in order to establish comparisons between various studies. The analysis of this collected data suggested divergent responses to PM exposure that resulted in different cell death types (apoptosis, autophagy, and necrosis). In addition, PM induced oxidative stress within cells, which appeared to be an important factor in the determination of cell fate. When the levels of reactive oxygen species were overpowering, the cellular fate was directed toward cell death. This may be the underlying mechanism of the development or exacerbation of respiratory diseases, such as emphysema and chronic obstructive pulmonary diseases. In addition, PM was shown to cause DNA damage and the resulting mutations increased the risk of cancer. Furthermore, several conditions should be considered in the assessment of cell death in PM-exposed models, including the cell culture line, PM composition, and the interaction of the different cells types in in vivo models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Viral subversion of immunogenic cell death.

    PubMed

    Kepp, Oliver; Senovilla, Laura; Galluzzi, Lorenzo; Panaretakis, Theocharis; Tesniere, Antoine; Schlemmer, Frederic; Madeo, Frank; Zitvogel, Laurence; Kroemer, Guido

    2009-03-15

    While physiological cell death is non-immunogenic, pathogen induced cell death can be immunogenic and hence stimulate an immune response against antigens that derive from dying cells and are presented by dendritic cells (DCs). The obligate immunogenic "eat-me" signal generated by dying cells consists in the exposure of calreticulin (CRT) at the cell surface. This particular "eat-me" signal, which facilitates engulfment by DCs, can only be found on cells that succumb to immunogenic apoptosis, while it is not present on cells dying in an immunologically silent fashion. CRT normally resides in the lumen of the endoplasmic reticulum (ER), yet can translocate to the plasma membrane surface through a complex pathway that involves elements of the ER stress response (e.g., the eIF2alpha-phosphorylating kinase PERK), the apoptotic machinery (e.g., caspase-8 and its substrate BAP31, Bax, Bak), the anterograde transport from the ER to the Golgi apparatus, and SNARE-dependent exocytosis. A large panoply of viruses encodes proteins that inhibit eIF2alpha kinases, catalyze the dephosphorylation of eIF2alpha, bind to caspase-8, Bap31, Bax or Bak, or perturb exocytosis. We therefore postulate that obligate intracellular pathogens have developed a variety of strategies to subvert CRT exposure, thereby avoiding immunogenic cell death.

  6. The deaths of a cell: how language and metaphor influence the science of cell death.

    PubMed

    Reynolds, Andrew S

    2014-12-01

    Multicellular development and tissue maintenance involve the regular elimination of damaged and healthy cells. The science of this genetically regulated cell death is particularly rich in metaphors: 'programmed cell death' or 'cell suicide' is considered an 'altruistic' act on the part of a cell for the benefit of the organism as a whole. It is also considered a form of 'social control' exerted by the body/organism over its component cells. This paper analyzes the various functions of these metaphors and critical discussion about them within the scientific community. Bodies such as the Nomenclature Committee on Cell Death (NCCD) have been charged with bringing order to the language of cell death to facilitate scientific progress. While the NCCD recommends adopting more objective biochemical terminology to describe the mechanisms of cell death, the metaphors in question retain an important function by highlighting the broader context within which cell death occurs. Scientific metaphors act as conceptual 'tools' which fulfill various roles, from highlighting a phenomenon as of particular interest, situating it in a particular context, or suggesting explanatory causal mechanisms.

  7. Cell death pathways associated with PDT

    NASA Astrophysics Data System (ADS)

    Kessel, David; Reiners, John J., Jr.

    2006-02-01

    Photodynamic therapy leads to both direct and indirect tumor cell death. The latter also involves the consequences of vascular shut-down and immunologic effects. While these factors are a major factor in tumor eradication, there is usually an element of direct cell killing that can reduce the cell population by as much as 2-3 logs. Necrosis was initially believed to represent the predominant PDT death mechanism. An apoptotic response to PDT was first reported by Oleinick in 1991, using a sensitizer that targets the anti-apoptotic protein Bcl-2. Apoptosis leads to fragmentation of DNA and of cells into apoptotic bodies that are removed by phagocytosis. Inflammatory effects are minimized, and the auto- catalytic elements of the process can amplify the death signal. In this study, we examined consequences of Bcl-2 photodamage by a porphycene sensitizer that targets the ER and causes photodamage to the anti-apoptotic protein Bcl-2. Death patterns after Bcl-2 inactivation by a small-molecular antagonist were also assessed. In addition to apoptosis, we also characterized a hitherto undescribed PDT effect, the initiation of autophagy. Autophagy was initially identified as a cell survival pathway, allowing the recycling of components as nutrients become scarce. We propose that autophagy can also represent both a potential survival pathway after PDT damage to cellular organelles, as well as a cell-death pathway. Recent literature reports indicate that autophagy, as well as apoptosis, can be evoked after down-regulation of Bcl-2, a result consistent with results reported here.

  8. Nanomaterials Toxicity and Cell Death Modalities

    PubMed Central

    De Stefano, Daniela; Carnuccio, Rosa; Maiuri, Maria Chiara

    2012-01-01

    In the last decade, the nanotechnology advancement has developed a plethora of novel and intriguing nanomaterial application in many sectors, including research and medicine. However, many risks have been highlighted in their use, particularly related to their unexpected toxicity in vitro and in vivo experimental models. This paper proposes an overview concerning the cell death modalities induced by the major nanomaterials. PMID:23304518

  9. Programmed cell death in seeds of angiosperms.

    PubMed

    López-Fernández, María Paula; Maldonado, Sara

    2015-12-01

    During the diversification of angiosperms, seeds have evolved structural, chemical, molecular and physiologically developing changes that specially affect the nucellus and endosperm. All through seed evolution, programmed cell death (PCD) has played a fundamental role. However, examples of PCD during seed development are limited. The present review examines PCD in integuments, nucellus, suspensor and endosperm in those representative examples of seeds studied to date.

  10. Lipids and cell death in yeast

    PubMed Central

    Eisenberg, Tobias; Büttner, Sabrina

    2014-01-01

    Understanding lipid-induced malfunction represents a major challenge of today's biomedical research. The connection of lipids to cellular and organ dysfunction, cell death, and disease (often referred to as lipotoxicity) is more complex than the sole lipotoxic effects of excess free fatty acids and requires genetically tractable model systems for mechanistic investigation. We herein summarize recent advances in the field of lipid-induced toxicity that employ the established model system for cell death and aging research of budding yeast Saccharomyces cerevisiae. Studies in yeast have shed light on various aspects of lipotoxicity, including free fatty acid toxicity, sphingolipid-modulated cell death as well as the involvement of cardiolipin and lipid peroxidation in the mitochondrial pathways of apoptosis. Regimens used range from exogenously applied lipids, genetic modulation of lipolysis and triacylglyceride synthesis, variations in sphingolipid/ceramide metabolism as well as changes in peroxisome function by either genetic or pharmacological means. In future, the yeast model of programmed cell death will further contribute to the clarification of crucial questions of lipid-associated malfunction. PMID:24119111

  11. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009.

    PubMed

    Kroemer, G; Galluzzi, L; Vandenabeele, P; Abrams, J; Alnemri, E S; Baehrecke, E H; Blagosklonny, M V; El-Deiry, W S; Golstein, P; Green, D R; Hengartner, M; Knight, R A; Kumar, S; Lipton, S A; Malorni, W; Nuñez, G; Peter, M E; Tschopp, J; Yuan, J; Piacentini, M; Zhivotovsky, B; Melino, G

    2009-01-01

    Different types of cell death are often defined by morphological criteria, without a clear reference to precise biochemical mechanisms. The Nomenclature Committee on Cell Death (NCCD) proposes unified criteria for the definition of cell death and of its different morphologies, while formulating several caveats against the misuse of words and concepts that slow down progress in the area of cell death research. Authors, reviewers and editors of scientific periodicals are invited to abandon expressions like 'percentage apoptosis' and to replace them with more accurate descriptions of the biochemical and cellular parameters that are actually measured. Moreover, at the present stage, it should be accepted that caspase-independent mechanisms can cooperate with (or substitute for) caspases in the execution of lethal signaling pathways and that 'autophagic cell death' is a type of cell death occurring together with (but not necessarily by) autophagic vacuolization. This study details the 2009 recommendations of the NCCD on the use of cell death-related terminology including 'entosis', 'mitotic catastrophe', 'necrosis', 'necroptosis' and 'pyroptosis'.

  12. Lysosomal cell death mechanisms in aging.

    PubMed

    Gómez-Sintes, Raquel; Ledesma, María Dolores; Boya, Patricia

    2016-12-01

    Lysosomes are degradative organelles essential for cell homeostasis that regulate a variety of processes, from calcium signaling and nutrient responses to autophagic degradation of intracellular components. Lysosomal cell death is mediated by the lethal effects of cathepsins, which are released into the cytoplasm following lysosomal damage. This process of lysosomal membrane permeabilization and cathepsin release is observed in several physiopathological conditions and plays a role in tissue remodeling, the immune response to intracellular pathogens and neurodegenerative diseases. Many evidences indicate that aging strongly influences lysosomal activity by altering the physical and chemical properties of these organelles, rendering them more sensitive to stress. In this review we focus on how aging alters lysosomal function and increases cell sensitivity to lysosomal membrane permeabilization and lysosomal cell death, both in physiological conditions and age-related pathologies.

  13. Hemoglobins, programmed cell death and somatic embryogenesis.

    PubMed

    Hill, Robert D; Huang, Shuanglong; Stasolla, Claudio

    2013-10-01

    Programmed cell death (PCD) is a universal process in all multicellular organisms. It is a critical component in a diverse number of processes ranging from growth and differentiation to response to stress. Somatic embryogenesis is one such process where PCD is significantly involved. Nitric oxide is increasingly being recognized as playing a significant role in regulating PCD in both mammalian and plant systems. Plant hemoglobins scavenge NO, and evidence is accumulating that events that modify NO levels in plants also affect hemoglobin expression. Here, we review the process of PCD, describing the involvement of NO and plant hemoglobins in the process. NO is an effector of cell death in both plants and vertebrates, triggering the cascade of events leading to targeted cell death that is a part of an organism's response to stress or to tissue differentiation and development. Expression of specific hemoglobins can alter this response in plants by scavenging the NO, thus, interrupting the death process. Somatic embryogenesis is used as a model system to demonstrate how cell-specific expression of different classes of hemoglobins can alter the embryogenic process, affecting hormone synthesis, cell metabolite levels and genes associated with PCD and embryogenic competence. We propose that plant hemoglobins influence somatic embryogenesis and PCD through cell-specific expression of a distinct plant hemoglobin. It is based on the premise that both embryogenic competence and PCD are strongly influenced by cellular NO levels. Increases in cellular NO levels result in elevated Zn(2+) and reactive-oxygen species associated with PCD, but they also result in decreased expression of MYC2, a transcription factor that is a negative effector of indoleacetic acid synthesis, a hormone that positively influences embryogenic competence. Cell-specific hemoglobin expression reduces NO levels as a result of NO scavenging, resulting in cell survival. Copyright © 2013 Elsevier Ireland Ltd

  14. DRONC coordinates cell death and compensatory proliferation.

    PubMed

    Kondo, Shu; Senoo-Matsuda, Nanami; Hiromi, Yasushi; Miura, Masayuki

    2006-10-01

    Accidental cell death often leads to compensatory proliferation. In Drosophila imaginal discs, for example, gamma-irradiation induces extensive cell death, which is rapidly compensated by elevated proliferation. Excessive compensatory proliferation can be artificially induced by "undead cells" that are kept alive by inhibition of effector caspases in the presence of apoptotic stimuli. This suggests that compensatory proliferation is induced by dying cells as part of the apoptosis program. Here, we provide genetic evidence that the Drosophila initiator caspase DRONC governs both apoptosis execution and subsequent compensatory proliferation. We examined mutants of five Drosophila caspases and identified the initiator caspase DRONC and the effector caspase DRICE as crucial executioners of apoptosis. Artificial compensatory proliferation induced by coexpression of Reaper and p35 was completely suppressed in dronc mutants. Moreover, compensatory proliferation after gamma-irradiation was enhanced in drice mutants, in which DRONC is activated but the cells remain alive. These results show that the apoptotic pathway bifurcates at DRONC and that DRONC coordinates the execution of cell death and compensatory proliferation.

  15. Ion Channels, Cell Volume, Cell Proliferation and Apoptotic Cell Death

    NASA Astrophysics Data System (ADS)

    Lang, Florian; Gulbins, Erich; Szabo, Ildiko; Vereninov, Alexey; Huber, Stephan M.

    At some stage cell proliferation requires an increase in cell volume and a typical hallmark of apoptotic cell death is cell shrinkage. The respective alterations of cell volume are accomplished by altered regulation of ion transport including ion channels. Thus, cell proliferation and apoptosis are both paralleled by altered activity of ion channels, which play an active part in these fundamental cellular mechanisms. Activation of anion channels allows exit of Cl?, osmolyte and HCO3 ? leading to cell shrinkage and acidification of the cytosol. K+ exit through K+ channels leads to cell shrinkage and a decrease in intracellular K+ concentration. K+ channel activity is further important for maintenance of the cell membrane potential - a critical determinant of Ca2+ entry through Ca2+ channels. Cytosolic Ca2+ may both activate mechanisms required for cell proliferation and stimulate enzymes executing apoptosis. The effect of enhanced cytosolic Ca2+ activity depends on the magnitude and temporal organisation of Ca2+ entry. Moreover, a given ion channel may support both cell proliferation and apoptosis, and specific ion channel blockers may abrogate both fundamental cellular mechanisms, depending on cell type, regulatory environment and condition of the cell. Clearly, further experimental effort is needed to clarify the role of ion channels in the regulation of cell proliferation and apoptosis.

  16. Calcineurin functions in Ca(2+)-activated cell death in mammalian cells

    PubMed Central

    1995-01-01

    Calcineurin is a calcium-dependent protein phosphatase that functions in T cell activation. We present evidence that calcineurin functions more generally in calcium-triggered apoptosis in mammalian cells deprived of growth factors. Specifically, expression of epitope-tagged calcineurin A induces rapid cell death upon calcium signaling in the absence of growth factors. We show that this apoptosis does not require new protein synthesis and therefore calcineurin must operate through existing substrates. Co-expression of the Bcl-2 protooncogene efficiently blocks calcineurin-induced cell death. Significantly, we demonstrate that a calcium-independent calcineurin mutant induces apoptosis in the absence of calcium, and that this apoptotic response is a direct consequence of calcineurin's phosphatase activity. These data suggest that calcineurin plays an important role in mediating the upstream events in calcium-activated cell death. PMID:7593193

  17. Paraptosis-like cell death in Wistar rat granulosa cells.

    PubMed

    Torres-Ramírez, Nayeli; Escobar, María L; Vázquez-Nin, Gerardo H; Ortiz, Rosario; Echeverría, Olga M

    2016-10-01

    Follicular atresia, a common process present in all mammals, involves apoptotic and autophagic cell death. However, the participation of paraptosis, a type of caspase-independent cell death, during follicular atresia is unknown. This study found swollen endoplasmic reticulum in the granulosa cells of adult Wistar rats. Calnexin was used as a marker of the endoplasmic reticulum at the ultrastructural and optical levels. The cells with swelling of the endoplasmic reticulum were negative to the TUNEL assay and active caspase-3 immunodetection, indicating that this swelling is not part of any apoptotic or autophagic process. Additionally, immunodetection of the CHOP protein was used as a marker of endoplasmic reticulum stress, and this confirmed the presence of the paraptosis process. These data suggest that paraptosis-like cell death is associated with the death of granulosa cells during follicular atresia in adult Wistar rats.

  18. ER stress-induced cell death mechanisms

    PubMed Central

    Sano, Renata; Reed, John C.

    2013-01-01

    The endoplasmic-reticulum (ER) stress response constitutes a cellular process that is triggered by a variety of conditions that disturb folding of proteins in the ER. Eukaryotic cells have developed an evolutionarily conserved adaptive mechanism, the unfolded protein response (UPR), which aims to clear unfolded proteins and restore ER homeostasis. In cases where ER stress cannot be reversed, cellular functions deteriorate, often leading to cell death. Accumulating evidence implicates ER stress-induced cellular dysfunction and cell death as major contributors to many diseases, making modulators of ER stress pathways potentially attractive targets for therapeutics discovery. Here, we summarize recent advances in understanding the diversity of molecular mechanisms that govern ER stress signaling in health and disease. PMID:23850759

  19. Cell Death and Autophagy in TB

    PubMed Central

    Moraco, Andrew H.; Kornfeld, Hardy

    2014-01-01

    Mycobacterium tuberculosis has succeeded in infecting one third of the human race though inhibition or evasion of innate and adaptive immunity. The pathogen is a facultative intracellular parasite that uses the niche provided by mononuclear phagocytes for its advantage. Complex interactions determine whether the bacillus will or will not be delivered to acidified lysosomes, whether the host phagocyte will survive infection or die, and whether the timing and mode of cell death works to the advantage of the host or the pathogen. Here we discuss cell death and autophagy in TB. These fundamental processes of cell biology feature in all aspects of TB pathogenesis and may be exploited to the treatment or prevention of TB disease. PMID:25453227

  20. DRONC Coordinates Cell Death and Compensatory Proliferation‡

    PubMed Central

    Kondo, Shu; Senoo-Matsuda, Nanami; Hiromi, Yasushi; Miura, Masayuki

    2006-01-01

    Accidental cell death often leads to compensatory proliferation. In Drosophila imaginal discs, for example, γ-irradiation induces extensive cell death, which is rapidly compensated by elevated proliferation. Excessive compensatory proliferation can be artificially induced by “undead cells” that are kept alive by inhibition of effector caspases in the presence of apoptotic stimuli. This suggests that compensatory proliferation is induced by dying cells as part of the apoptosis program. Here, we provide genetic evidence that the Drosophila initiator caspase DRONC governs both apoptosis execution and subsequent compensatory proliferation. We examined mutants of five Drosophila caspases and identified the initiator caspase DRONC and the effector caspase DRICE as crucial executioners of apoptosis. Artificial compensatory proliferation induced by coexpression of Reaper and p35 was completely suppressed in dronc mutants. Moreover, compensatory proliferation after γ-irradiation was enhanced in drice mutants, in which DRONC is activated but the cells remain alive. These results show that the apoptotic pathway bifurcates at DRONC and that DRONC coordinates the execution of cell death and compensatory proliferation. PMID:16980627

  1. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2.

    PubMed

    Siegmund, Daniela; Lang, Isabell; Wajant, Harald

    2017-04-01

    Since their identification more than 20 years ago, the death receptors CD95, TRAILR1, and TRAILR2 have been intensively studied with respect to their cell death-inducing activities. These receptors, however, can also trigger a variety of cell death-independent cellular responses reaching from the activation of proinflammatory gene transcription programs over the stimulation of proliferation and differentiation to induction of cell migration. The cell death-inducing signaling mechanisms of CD95 and the TRAIL death receptors are well understood. In contrast, despite the increasing recognition of the biological and pathophysiological relevance of the cell death-independent activities of CD95, TRAILR1, and TRAILR2, the corresponding signaling mechanisms are less understood and give no fully coherent picture. This review is focused on the cell death-independent activities of CD95 and the TRAIL death receptors and addresses mainly three questions: (a) how are these receptors linked to noncell death pathways at the molecular level, (b) which factors determine the balance of cell death and cell death-independent activities of CD95 and the TRAIL death receptors at the cellular level, and (c) what are the consequences of the cell death-independent functions of these receptors for their role in cancer and inflammatory diseases. © 2016 Federation of European Biochemical Societies.

  2. Tumor cell "dead or alive": caspase and survivin regulate cell death, cell cycle and cell survival.

    PubMed

    Suzuki, A; Shiraki, K

    2001-04-01

    Cell death and cell cycle progression are two sides of the same coin, and these two different phenomenons are regulated moderately to maintain the cellular homeostasis. Tumor is one of the disease states produced as a result of the disintegrated regulation and is characterized as cells showing an irreversible progression of cell cycle and a resistance to cell death signaling. Several investigations have been performed for the understanding of cell death or cell cycle, and cell death research has remarkably progressed in these 10 years. Caspase is a nomenclature referring to ICE/CED-3 cysteine proteinase family and plays a central role during cell death. Recently, several investigations raised some possible hypotheses that caspase is also involved in cell cycle regulation. In this issue, therefore, we review the molecular basis of cell death and cell cycle regulated by caspase in tumor, especially hepatocellular carcinoma cells.

  3. Programmed cell death in the plant immune system.

    PubMed

    Coll, N S; Epple, P; Dangl, J L

    2011-08-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.

  4. Influenza A induces dysfunctional immunity and death in MeCP2-overexpressing mice

    PubMed Central

    Cronk, James C.; Herz, Jasmin; Kim, Taeg S.; Louveau, Antoine; Moser, Emily K.; Smirnov, Igor; Tung, Kenneth S.; Braciale, Thomas J.

    2017-01-01

    Loss of function or overexpression of methyl-CpG-binding protein 2 (MeCP2) results in the severe neurodevelopmental disorders Rett syndrome and MeCP2 duplication syndrome, respectively. MeCP2 plays a critical role in neuronal function and the function of cells throughout the body. It has been previously demonstrated that MeCP2 regulates T cell function and macrophage response to multiple stimuli, and that immune-mediated rescue imparts significant benefit in Mecp2-null mice. Unlike Rett syndrome, MeCP2 duplication syndrome results in chronic, severe respiratory infections, which represent a significant cause of patient morbidity and mortality. Here, we demonstrate that MeCP2Tg3 mice, which overexpress MeCP2 at levels 3- to 5-fold higher than normal, are hypersensitive to influenza A/PR/8/34 infection. Prior to death, MeCP2Tg3 mice experienced a host of complications during infection, including neutrophilia, increased cytokine production, excessive corticosterone levels, defective adaptive immunity, and vascular pathology characterized by impaired perfusion and pulmonary hemorrhage. Importantly, we found that radioresistant cells are essential to infection-related death after bone marrow transplantation. In all, these results demonstrate that influenza A infection in MeCP2Tg3 mice results in pathology affecting both immune and nonhematopoietic cells, suggesting that failure to effectively respond and clear viral respiratory infection has a complex, multicompartment etiology in the context of MeCP2 overexpression. PMID:28138553

  5. Programmed cell death during quinoa perisperm development.

    PubMed

    López-Fernández, María Paula; Maldonado, Sara

    2013-08-01

    At seed maturity, quinoa (Chenopodium quinoa Willd.) perisperm consists of uniform, non-living, thin-walled cells full of starch grains. The objective of the present study was to study quinoa perisperm development and describe the programme of cell death that affects the entire tissue. A number of parameters typically measured during programmed cell death (PCD), such as cellular morphological changes in nuclei and cytoplasm, endoreduplication, DNA fragmentation, and the participation of nucleases and caspase-like proteases in nucleus dismantling, were evaluated; morphological changes in cytoplasm included subcellular aspects related to starch accumulation. This study proved that, following fertilization, the perisperm of quinoa simultaneously accumulates storage reserves and degenerates, both processes mediated by a programme of developmentally controlled cell death. The novel findings regarding perisperm development provide a starting point for further research in the Amaranthaceae genera, such as comparing seeds with and without perisperm, and specifying phylogeny and evolution within this taxon. Wherever possible and appropriate, differences between quinoa perisperm and grass starchy endosperm--a morphologically and functionally similar, although genetically different tissue--were highlighted and discussed.

  6. Programmed cell death during quinoa perisperm development

    PubMed Central

    Maldonado, Sara

    2013-01-01

    At seed maturity, quinoa (Chenopodium quinoa Willd.) perisperm consists of uniform, non-living, thin-walled cells full of starch grains. The objective of the present study was to study quinoa perisperm development and describe the programme of cell death that affects the entire tissue. A number of parameters typically measured during programmed cell death (PCD), such as cellular morphological changes in nuclei and cytoplasm, endoreduplication, DNA fragmentation, and the participation of nucleases and caspase-like proteases in nucleus dismantling, were evaluated; morphological changes in cytoplasm included subcellular aspects related to starch accumulation. This study proved that, following fertilization, the perisperm of quinoa simultaneously accumulates storage reserves and degenerates, both processes mediated by a programme of developmentally controlled cell death. The novel findings regarding perisperm development provide a starting point for further research in the Amaranthaceae genera, such as comparing seeds with and without perisperm, and specifying phylogeny and evolution within this taxon. Wherever possible and appropriate, differences between quinoa perisperm and grass starchy endosperm—a morphologically and functionally similar, although genetically different tissue—were highlighted and discussed. PMID:23833197

  7. Role of polyphenols in cell death control.

    PubMed

    Giovannini, Claudio; Masella, Roberta

    2012-05-01

    Dietary consumption of fruit, vegetables, fish, and olive oil has been demonstrated to exert beneficial effects on human health. This finding may be due to the high content of antioxidant compounds including polyphenols. Current evidence strongly supports a contribution of polyphenols to the prevention of several chronic degenerative diseases such as cancer, atherosclerosis and cardiovascular diseases, central nervous system disorders, as well as aging. Apoptosis is a genetically controlled and evolutionarily conserved form of cell death of critical importance for the maintenance of tissue homeostasis in the adult organism. The malfunction of the death machinery may play a primary role in various pathologic processes, leading to proliferative or degenerative diseases. Polyphenols can interact with specific steps and/or proteins regulating the apoptotic process in different ways depending on their concentration, the cell system, the type or stage of the pathological process. Because of their ability to modulate cell death, polyphenols have been proposed as chemopreventive and therapeutic agents. This paper reviews and discusses the last 3-year findings related to the principal molecular mechanisms involved in the control of the balance between apoptosis and cell proliferation exerted by polyphenols.

  8. UV-Induced Cell Death in Plants

    PubMed Central

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  9. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  10. Ferroptosis is an autophagic cell death process.

    PubMed

    Gao, Minghui; Monian, Prashant; Pan, Qiuhui; Zhang, Wei; Xiang, Jenny; Jiang, Xuejun

    2016-09-01

    Ferroptosis is an iron-dependent form of regulated necrosis. It is implicated in various human diseases, including ischemic organ damage and cancer. Here, we report the crucial role of autophagy, particularly autophagic degradation of cellular iron storage proteins (a process known as ferritinophagy), in ferroptosis. Using RNAi screening coupled with subsequent genetic analysis, we identified multiple autophagy-related genes as positive regulators of ferroptosis. Ferroptosis induction led to autophagy activation and consequent degradation of ferritin and ferritinophagy cargo receptor NCOA4. Consistently, inhibition of ferritinophagy by blockage of autophagy or knockdown of NCOA4 abrogated the accumulation of ferroptosis-associated cellular labile iron and reactive oxygen species, as well as eventual ferroptotic cell death. Therefore, ferroptosis is an autophagic cell death process, and NCOA4-mediated ferritinophagy supports ferroptosis by controlling cellular iron homeostasis.

  11. Metabolic Regulation of Ovarian Cancer Cell Death

    DTIC Science & Technology

    2013-07-01

    2013 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER Metabolic Regulation of Ovarian Cancer cell death 5b. GRANT NUMBER W81XWH-10-1...Introduction 3 2. Keywords 3 3. Overall Project Summary 3-6 4 . Key Research Accomplishments 6-7 5. Conclusion 7 6. Publications, Abstracts, and...synthase inhibitors Fig. 4 ). We were slightly delayed in submitting this work for publication as the first author had to finish his PhD thesis and

  12. Death by Protein Damage in Irradiated Cells

    DTIC Science & Technology

    2011-01-01

    Please cite this article in press as: M.J. Daly, Death by protein damage in irradiated cells, DNA Repair (2011), doi:10.1016/j.dnarep.2011.10.024...ARTICLE IN PRESSG ModelDNAREP-1629; No. of Pages 10 DNA Repair (2011) – Contents lists available at SciVerse ScienceDirect DNA Repair jo u...oxidation Carbonylation DNA double strand break (DSB) repair Manganese (II) antioxidant complexes Reactive oxygen species (ROS) Metabolite accumulation

  13. Programmed Cell Death of Dendritic Cells in Immune Regulation

    PubMed Central

    Chen, Min; Wang, Jin

    2010-01-01

    Summary Programmed cell death is essential for the maintenance of lymphocyte homeostasis and immune tolerance. Dendritic cells (DCs), the most efficient antigen presenting cells, represent a small cell population in the immune system. However, DCs play major roles in the regulation of both innate and adaptive immune responses. Programmed cell death in DCs is essential for regulating DC homeostasis and consequently, the scope of immune responses. Interestingly, different DC subsets show varied turnover rates in vivo. The conventional DCs are relatively short-lived in most lymphoid organs, while plasmacytoid DCs are long-lived cells. Mitochondrion-dependent programmed cell death plays an important role in regulating spontaneous DC turnover. Antigen-specific T cells are also capable of killing DCs, thereby providing a mechanism for negative feedback regulation of immune responses. It has been shown that a surplus of DCs due to defects in programmed cell death leads to overactivation of lymphocytes and the onset of autoimmunity. Studying programmed cell death in DCs will shed light on the roles for DC turnover in the regulation of the duration and magnitude of immune responses in vivo, and in the maintenance of immune tolerance. PMID:20636805

  14. Cell Death and Deubiquitinases: Perspectives in Cancer

    PubMed Central

    Bhattacharya, Seemana

    2014-01-01

    The process of cell death has important physiological implications. At the organism level it is mostly involved in maintenance of tissue homeostasis. At the cellular level, the strategies of cell death may be categorized as either suicide or sabotage. The mere fact that many of these processes are programmed and that these are often deregulated in pathological conditions is seed to thought. The various players that are involved in these pathways are highly regulated. One of the modes of regulation is via post-translational modifications such as ubiquitination and deubiquitination. In this review, we have first dealt with the different modes and pathways involved in cell death and then we have focused on the regulation of several proteins in these signaling cascades by the different deubiquitinating enzymes, in the perspective of cancer. The study of deubiquitinases is currently in a rather nascent stage with limited knowledge both in vitro and in vivo, but the emerging roles of the deubiquitinases in various processes and their specificity have implicated them as potential targets from the therapeutic point of view. This review throws light on another aspect of cancer therapeutics by targeting the deubiquitinating enzymes. PMID:25121098

  15. Neuronal cell death in hepatic encephalopathy.

    PubMed

    Butterworth, Roger F

    2007-12-01

    It is generally assumed that neuronal cell death is minimal in liver failure and is insufficient to account for the neuropsychiatric symptoms characteristic of hepatic encephalopathy. However, contrary to this assumption, neuronal cell damage and death are well documented in liver failure patients, taking the form of several distinct clinical entities namely acquired (non-Wilsonian) hepatocerebral degeneration, cirrhosis-related Parkinsonism, post-shunt myelopathy and cerebellar degeneration. In addition, there is evidence to suggest that liver failure contributes to the severity of neuronal loss in Wernicke's encephalopathy. The long-standing nature of the thalamic and cerebellar lesions, over 80% of which are missed by routine clinical evaluation, together with the probability that they are nutritional in origin, underscores the need for careful nutritional management (adequate dietary protein, Vitamin B(1)) in liver failure patients. Mechanisms identified with the potential to cause neuronal cell death in liver failure include NMDA receptor-mediated excitotoxicity, lactic acidosis, oxidative/nitrosative stress and the presence of pro-inflammatory cytokines. The extent of neuronal damage in liver failure may be attenuated by compensatory mechanisms that include down-regulation of NMDA receptors, hypothermia and the presence of neuroprotective steroids such as allopregnanolone. These findings suggest that some of the purported "sequelae" of liver transplantation (gait ataxia, memory loss, confusion) could reflect preexisting neuropathology.

  16. Winter wheat cells subjected to freezing temperature undergo death process with features of programmed cell death.

    PubMed

    Lyubushkina, Irina V; Grabelnych, Olga I; Pobezhimova, Tamara P; Stepanov, Aleksey V; Fedyaeva, Anna V; Fedoseeva, Irina V; Voinikov, Victor K

    2014-05-01

    Programmed cell death is a process defined as genetically regulated self-destruction or cell suicide. It can be activated by different internal and external factors, but few studies have investigated whether this process occurs under cold and freezing temperatures. In this study, a freezing treatment (-8 °C for 6 h) induced cell death with features of programmed cell death in suspension cultures of winter wheat (Triticum aestivum L.). This process occurred for 10 days after cold exposure. The death of cells in culture was slow and prolonged, and was accompanied by protoplast shrinkage, DNA fragmentation, and an increase in the level of reactive oxygen species. Other changes observed after the freezing treatment included an increase in the respiration rate, changes in mitochondrial transmembrane potential (∆Ψ m ), and the release of cytochrome c from mitochondria into the cytosol. These findings indicated that mitochondria are involved in the cell death process that occurs after a freezing treatment in cells of winter wheat.

  17. Molecular Theories of Cell Life and Death.

    DTIC Science & Technology

    1987-07-27

    AD-A195 524 MOLECULAR THEORIES OF CELL LIFE AND DETH(U) RUTGERS - / TH STATE UNIV PI CATAWAY NJ DEPT OF PHARMACOLOGY AND TOXICOLOGY S JI 27 JUL 87...6448 ELEMENT NO. NO. NO. ACCESSION NO0. 61102F 2312 A5 11. TITLE (Include Security Classification) M0=M2UAR THEORIES OF CM IFE= AND DEATH 12. PERSONAL...7/27I49 16. SUPPLEMENTARY NOTATION The lectures given in the symposium are being assembled into a book entitled, "Molecular Theories of Cell Life and

  18. Death by a thousand cuts: granzyme pathways of programmed cell death.

    PubMed

    Chowdhury, Dipanjan; Lieberman, Judy

    2008-01-01

    The granzymes are cell death-inducing enzymes, stored in the cytotoxic granules of cytotoxic T lymphocytes and natural killer cells, that are released during granule exocytosis when a specific virus-infected or transformed target cell is marked for elimination. Recent work suggests that this homologous family of serine esterases can activate at least three distinct pathways of cell death. This redundancy likely evolved to provide protection against pathogens and tumors with diverse strategies for evading cell death. This review discusses what is known about granzyme-mediated pathways of cell death as well as recent studies that implicate granzymes in immune regulation and extracellular proteolytic functions in inflammation.

  19. Cell Death Control by Matrix Metalloproteinases.

    PubMed

    Zimmermann, Dirk; Gomez-Barrera, Juan A; Pasule, Christian; Brack-Frick, Ursula B; Sieferer, Elke; Nicholson, Tim M; Pfannstiel, Jens; Stintzi, Annick; Schaller, Andreas

    2016-06-01

    In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Current and Emerging Biomarkers of Cell Death in Human Disease

    PubMed Central

    Li, Kongning; Wu, Deng; Chen, Xi; Zhang, Ting; Zhang, Lu; Yi, Ying; Miao, Zhengqiang; Jin, Nana; Bi, Xiaoman; Wang, Hongwei; Wang, Dong

    2014-01-01

    Cell death is a critical biological process, serving many important functions within multicellular organisms. Aberrations in cell death can contribute to the pathology of human diseases. Significant progress made in the research area enormously speeds up our understanding of the biochemical and molecular mechanisms of cell death. According to the distinct morphological and biochemical characteristics, cell death can be triggered by extrinsic or intrinsic apoptosis, regulated necrosis, autophagic cell death, and mitotic catastrophe. Nevertheless, the realization that all of these efforts seek to pursue an effective treatment and cure for the disease has spurred a significant interest in the development of promising biomarkers of cell death to early diagnose disease and accurately predict disease progression and outcome. In this review, we summarize recent knowledge about cell death, survey current and emerging biomarkers of cell death, and discuss the relationship with human diseases. PMID:24949464

  1. Cell Death in Chondrocytes, Osteoblasts, and Osteocytes

    PubMed Central

    Komori, Toshihisa

    2016-01-01

    Cell death in skeletal component cells, including chondrocytes, osteoblasts, and osteocytes, plays roles in skeletal development, maintenance, and repair as well as in the pathogenesis of osteoarthritis and osteoporosis. Chondrocyte proliferation, differentiation, and apoptosis are important steps for endochondral ossification. Although the inactivation of P53 and RB is involved in the pathogenesis of osteosarcomas, the deletion of p53 and inactivation of Rb are insufficient to enhance chondrocyte proliferation, indicating the presence of multiple inhibitory mechanisms against sarcomagenesis in chondrocytes. The inflammatory processes induced by mechanical injury and chondrocyte death through the release of danger-associated molecular patterns (DAMPs) are involved in the pathogenesis of posttraumatic osteoarthritis. The overexpression of BCLXL increases bone volume with a normal structure and maintains bone during aging by inhibiting osteoblast apoptosis. p53 inhibits osteoblast proliferation and enhances osteoblast apoptosis, thereby reducing bone formation, but also exerts positive effects on osteoblast differentiation through the Akt–FoxOs pathway. Apoptotic osteocytes release ATP, which induces the receptor activator of nuclear factor κ-B ligand (Rankl) expression and osteoclastogenesis, from pannexin 1 channels. Osteocyte death ultimately results in necrosis; DAMPs are released to the bone surface and promote the production of proinflammatory cytokines, which induce Rankl expression, and osteoclastogenesis is further enhanced. PMID:27929439

  2. Apoptotic cell death and efferocytosis in atherosclerosis.

    PubMed

    Van Vré, Emily A; Ait-Oufella, Hafid; Tedgui, Alain; Mallat, Ziad

    2012-04-01

    Apoptotic cell death is an important feature of atherosclerotic plaques, and it seems to exert both beneficial and detrimental effects depending on the cell type and plaque stage. Because late apoptotic cells can launch proatherogenic inflammatory responses, adequate engulfment of apoptotic cells (efferocytosis) by macrophages is important to withstand atherosclerosis progression. Several efferocytosis systems, composed of different phagocytic receptors, apoptotic ligands, and bridging molecules, can be distinguished. Because phagocytes in atherosclerotic plaques are very much solicited, a fully operative efferocytosis system seems to be an absolute requisite. Indeed, recent studies demonstrate that deletion of just 1 of the efferocytosis pathways aggravates atherosclerosis. This review discusses the role of apoptosis in atherosclerosis and general mechanisms of efferocytosis, to end with indirect and direct indications of the significance of effective efferocytosis in atherosclerosis.

  3. Cell death paradigms in the pathogenesis of Mycobacterium tuberculosis infection

    PubMed Central

    Parandhaman, Dinesh Kumar; Narayanan, Sujatha

    2014-01-01

    Cell death or senescence is a fundamental event that helps maintain cellular homeostasis, shapes the growth of organism, and provides protective immunity against invading pathogens. Decreased or increased cell death is detrimental both in infectious and non-infectious diseases. Cell death is executed both by regulated enzymic reactions and non-enzymic sudden collapse. In this brief review we have tried to summarize various cell death modalities and their impact on the pathogenesis of Mycobacterium tuberculosis. PMID:24634891

  4. Cell death paradigms in the pathogenesis of Mycobacterium tuberculosis infection.

    PubMed

    Parandhaman, Dinesh Kumar; Narayanan, Sujatha

    2014-01-01

    Cell death or senescence is a fundamental event that helps maintain cellular homeostasis, shapes the growth of organism, and provides protective immunity against invading pathogens. Decreased or increased cell death is detrimental both in infectious and non-infectious diseases. Cell death is executed both by regulated enzymic reactions and non-enzymic sudden collapse. In this brief review we have tried to summarize various cell death modalities and their impact on the pathogenesis of Mycobacterium tuberculosis.

  5. Cell death goes LIVE: technological advances in real-time tracking of cell death.

    PubMed

    Skommer, Joanna; Darzynkiewicz, Zbigniew; Wlodkowic, Donald

    2010-06-15

    Cell population can be viewed as a quantum system, which like Schrödinger's cat exists as a combination of survival- and death-allowing states. Tracking and understanding cell-to-cell variability in processes of high spatio-temporal complexity such as cell death is at the core of current systems biology approaches. As probabilistic modeling tools attempt to impute information inaccessible by current experimental approaches, advances in technologies for single-cell imaging and omics (proteomics, genomics, metabolomics) should go hand in hand with the computational efforts. Over the last few years we have made exciting technological advances that allow studies of cell death dynamically in real-time and with the unprecedented accuracy. These approaches are based on innovative fluorescent assays and recombinant proteins, bioelectrical properties of cells, and more recently also on state-of-the-art optical spectroscopy. Here, we review current status of the most innovative analytical technologies for dynamic tracking of cell death, and address the interdisciplinary promises and future challenges of these methods.

  6. Autophagic cell death: Loch Ness monster or endangered species?

    PubMed

    Shen, Han-Ming; Codogno, Patrice

    2011-05-01

    The concept of autophagic cell death was first established based on observations of increased autophagic markers in dying cells. The major limitation of such a morphology-based definition of autophagic cell death is that it fails to establish the functional role of autophagy in the cell death process, and thus contributes to the confusion in the literature regarding the role of autophagy in cell death and cell survival. Here we propose to define autophagic cell death as a modality of non-apoptotic or necrotic programmed cell death in which autophagy serves as a cell death mechanism, upon meeting the following set of criteria: (i) cell death occurs without the involvement of apoptosis; (ii) there is an increase of autophagic flux, and not just an increase of the autophagic markers, in the dying cells; and (iii) suppression of autophagy via both pharmacological inhibitors and genetic approaches is able to rescue or prevent cell death. In light of this new definition, we will discuss some of the common problems and difficulties in the study of autophagic cell death and also revisit some well-reported cases of autophagic cell death, aiming to achieve a better understanding of whether autophagy is a real killer, an accomplice or just an innocent bystander in the course of cell death. At present, the physiological relevance of autophagic cell death is mainly observed in lower eukaryotes and invertebrates such as Dictyostelium discoideum and Drosophila melanogaster. We believe that such a clear definition of autophagic cell death will help us study and understand the physiological or pathological relevance of autophagic cell death in mammals.

  7. Comparison of Types of Cell Death: Apoptosis and Necrosis.

    ERIC Educational Resources Information Center

    Manning, Francis; Zuzel, Katherine

    2003-01-01

    Cell death is an essential factor in many biological processes including development. Discusses two types of cell death: (1) necrosis (induced by sodium azide); and (2) apoptosis (induced by sodium chromate). Illustrates key features that differ between these two types of cells death including loss of membrane integrity and internucleosomal DNA…

  8. Mechanisms Involved in Virus-Induced Neural Cell Death

    DTIC Science & Technology

    2001-09-01

    We are using experimental infection with reoviruses as a model to study how viruses induce cell death (apoptosis) and cause dysregulation of the cell...and their ligand (TRAIL). Apoptosis involves both death-receptor (DR) and mitochondrial-associated cell death pathways, and leads to the early

  9. Comparison of Types of Cell Death: Apoptosis and Necrosis.

    ERIC Educational Resources Information Center

    Manning, Francis; Zuzel, Katherine

    2003-01-01

    Cell death is an essential factor in many biological processes including development. Discusses two types of cell death: (1) necrosis (induced by sodium azide); and (2) apoptosis (induced by sodium chromate). Illustrates key features that differ between these two types of cells death including loss of membrane integrity and internucleosomal DNA…

  10. Inhibition of caspases prevents ototoxic and ongoing hair cell death

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Ogilvie, Judith M.; Warchol, Mark E.

    2002-01-01

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  11. Inhibition of caspases prevents ototoxic and ongoing hair cell death

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Ogilvie, Judith M.; Warchol, Mark E.

    2002-01-01

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  12. Inhibition of caspases prevents ototoxic and ongoing hair cell death.

    PubMed

    Matsui, Jonathan I; Ogilvie, Judith M; Warchol, Mark E

    2002-02-15

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  13. Determinative Developmental Cell Lineages Are Robust to Cell Deaths

    PubMed Central

    Yang, Jian-Rong; Ruan, Shuxiang; Zhang, Jianzhi

    2014-01-01

    All forms of life are confronted with environmental and genetic perturbations, making phenotypic robustness an important characteristic of life. Although development has long been viewed as a key component of phenotypic robustness, the underlying mechanism is unclear. Here we report that the determinative developmental cell lineages of two protostomes and one deuterostome are structured such that the resulting cellular compositions of the organisms are only modestly affected by cell deaths. Several features of the cell lineages, including their shallowness, topology, early ontogenic appearances of rare cells, and non-clonality of most cell types, underlie the robustness. Simple simulations of cell lineage evolution demonstrate the possibility that the observed robustness arose as an adaptation in the face of random cell deaths in development. These results reveal general organizing principles of determinative developmental cell lineages and a conceptually new mechanism of phenotypic robustness, both of which have important implications for development and evolution. PMID:25058586

  14. Apoptosis, oncosis, and necrosis. An overview of cell death.

    PubMed Central

    Majno, G.; Joris, I.

    1995-01-01

    The historical development of the cell death concept is reviewed, with special attention to the origin of the terms necrosis, coagulation necrosis, autolysis, physiological cell death, programmed cell death, chromatolysis (the first name of apoptosis in 1914), karyorhexis, karyolysis, and cell suicide, of which there are three forms: by lysosomes, by free radicals, and by a genetic mechanism (apoptosis). Some of the typical features of apoptosis are discussed, such as budding (as opposed to blebbing and zeiosis) and the inflammatory response. For cell death not by apoptosis the most satisfactory term is accidental cell death. Necrosis is commonly used but it is not appropriate, because it does not indicate a form of cell death but refers to changes secondary to cell death by any mechanism, including apoptosis. Abundant data are available on one form of accidental cell death, namely ischemic cell death, which can be considered an entity of its own, caused by failure of the ionic pumps of the plasma membrane. Because ischemic cell death (in known models) is accompanied by swelling, the name oncosis is proposed for this condition. The term oncosis (derived from ónkos, meaning swelling) was proposed in 1910 by von Reckling-hausen precisely to mean cell death with swelling. Oncosis leads to necrosis with karyolysis and stands in contrast to apoptosis, which leads to necrosis with karyorhexis and cell shrinkage. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 PMID:7856735

  15. Programmed Cell Death in Unicellular Phytoplankton.

    PubMed

    Bidle, Kay D

    2016-07-11

    Unicellular, planktonic, prokaryotic and eukaryotic photoautotrophs (phytoplankton) have an ancient evolutionary history on Earth during which time they have played key roles in the regulation of marine food webs, biogeochemical cycles, and Earth's climate. Since they represent the basis of aquatic ecosystems, the manner in which phytoplankton die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining nutrient flow. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of abiotic (nutrient, light, osmotic) and biotic (virus infection, allelopathy) environmental stresses, have an integral grip on cell fate, and have shaped the ecological success and evolutionary trajectory of diverse phytoplankton lineages. A combination of physiological, biochemical, and genetic techniques in model algal systems has demonstrated a conserved molecular and mechanistic framework of stress surveillance, signaling, and death activation pathways, involving collective and coordinated participation of organelles, redox enzymes, metabolites, and caspase-like proteases. This mechanistic understanding has provided insight into the integration of sensing and transduction of stress signals into cellular responses, and the mechanistic interfaces between PCD, cell stress and virus infection pathways. It has also provided insight into the evolution of PCD in unicellular photoautotrophs, the impact of PCD on the fate of natural phytoplankton assemblages and its role in aquatic biogeochemical cycles.

  16. Antioxidant gene therapy against neuronal cell death

    PubMed Central

    Navarro-Yepes, Juliana; Zavala-Flores, Laura; Annadurai, Anandhan; Wang, Fang; Skotak, Maciej; Chandra, Namas; Li, Ming; Pappa, Aglaia; Martinez-Fong, Daniel; Razo, Luz Maria Del; Quintanilla-Vega, Betzabet; Franco, Rodrigo

    2014-01-01

    Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders. This work reviews the evidence demonstrating the ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat inherited and acquired disorders offer many unique advantages over conventional therapeutic approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene delivery techniques for antioxidant gene therapy. PMID:24333264

  17. Interdigital cell death function and regulation: new insights on an old programmed cell death model.

    PubMed

    Hernández-Martínez, Rocío; Covarrubias, Luis

    2011-02-01

    Interdigital cell death (ICD) is the oldest and best-studied model of programmed cell death (PCD) in vertebrates. The classical view of ICD function is the separation of digits by promotion of tissue regression. However, in addition, ICD can contribute to digit individualization by restricting interdigital tissue growth. Depending on the species, the relative contribution of either regression or growth-restricting functions of ICD to limb morphogenesis may differ. Under normal conditions, most cells appear to die by apoptosis during ICD. Accordingly, components of the apoptotic machinery are found in the interdigits, though their role in the initiation and execution of cell death is yet to be defined. Fgf8 has been identified as a survival factor for the distal mesenchymal cells of the limb such that ICD can initiate following specific downregulation of Fgf8 expression in the ectoderm overlying the interdigital tissue. On the other hand, Bmps may promote cell death directly by acting on the interdigital tissue, or indirectly by downregulating Fgf8 expression in the ectoderm. In addition, retinoic acid can activate ICD directly or through a Bmp-mediated mechanism. Interactions at different levels between these factors establish the spatiotemporal patterning of ICD activation. Defining the regulatory network behind ICD activation will greatly advance our understanding of the mechanisms controlling PCD in general.

  18. Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics.

    PubMed

    Dawson, Ted M; Dawson, Valina L

    2017-01-06

    Mitochondria lie at the crossroads of neuronal survival and cell death. They play important roles in cellular bioenergetics, control intracellular Ca(2+) homeostasis, and participate in key metabolic pathways. Mutations in genes involved in mitochondrial quality control cause a myriad of neurodegenerative diseases. Mitochondria have evolved strategies to kill cells when they are not able to continue their vital functions. This review provides an overview of the role of mitochondria in neurologic disease and the cell death pathways that are mediated through mitochondria, including their role in accidental cell death, the regulated cell death pathways of apoptosis and parthanatos, and programmed cell death. It details the current state of parthanatic cell death and discusses potential therapeutic strategies targeting initiators and effectors of mitochondrial-mediated cell death in neurologic disorders.

  19. Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies

    PubMed Central

    Krampe, Britta

    2010-01-01

    Cell death is a fundamentally important problem in cell lines used by the biopharmaceutical industry. Environmental stress, which can result from nutrient depletion, by-product accumulation and chemical agents, activates through signalling cascades regulators that promote death. The best known key regulators of death process are the Bcl-2 family proteins which constitute a critical intracellular checkpoint of apoptosis cell death within a common death pathway. Engineering of several members of the anti-apoptosis Bcl-2 family genes in several cell types has extended the knowledge of their molecular function and interaction with other proteins, and their regulation of cell death. In this review, we describe the various modes of cell death and their death pathways at molecular and organelle level and discuss the relevance of the growing knowledge of anti-apoptotic engineering strategies to inhibit cell death and increase productivity in mammalian cell culture. PMID:20502964

  20. Normal development, oncogenesis and programmed cell death.

    PubMed

    Liebermann, D A

    1998-09-10

    Meeting's Report -- June 2, 1998, Sugarload Estate Conference Center, Philadelphia, Pennsylvania, USA. A symposium on Normal Development, Oncogenesis and Programmed Cell Death, was held at the Sugarload Estate Conference Center, Philadelphia, Pennsylvania, USA sponsored by the Fels Cancer Institute, Temple University School of Medicine, with the support of the Alliance Pharmaceutical Corporation. The symposium was organized by Drs Dan A Liebermann and Barbara Hoffman at the Fels. Invited speakers included: Dr Andrei V Gudkov (University of Illinois) who started the symposium talking about 'New cellular factors modulating the tumor suppressor function of p53'; Dr Yuri Lazebnik (Cold Spring Harbor Laboratories) spoke about 'Caspases considered as enemies within'; Dr E Premkumar Reddy (Fels Institute, Temple University) talked about recent exciting findings in his laboratory regarding 'JAK-STATs dedicated signaling pathways'; Dr Michael Greenberg (Harvard University) spoke about 'Signal transduction pathways that regulate differentiation and survival in the developing nervous system'; Dr Richard Kolesnick's (Memorial Sloan-Kettering Cancer Center) talk has been focused at 'Stress signals for apoptosis, including Ceramide and c-Jun Kinase/Stress-activated Protein Kinase'; Dr Barbara Hoffman (Fels Institute, Temple University) described research, conducted in collaboration with Dr Dan A Liebermann, aimed at deciphering the roles of 'myc, myb, and E2F as negative regulators of terminal differentiation', using hematopoietic cells as model system. Dr Daniel G Tenen (Harvard Medical School), described studies aimed at understanding the 'Regulation of hematopoietic cell development by lineage specific transcription regulators'. Dr George C Prendergast (The Wistar Institute) talked about the 'Myc-Bin1 signaling pathway in cell death and differentiation. Dr Ruth J Muschel (University of Pennsylvania) spoke about work, conducted in collaboration with Dr WG McKenna, aimed at

  1. Cell death signaling and anticancer therapy.

    PubMed

    Galluzzi, Lorenzo; Vitale, Ilio; Vacchelli, Erika; Kroemer, Guido

    2011-01-01

    For a long time, it was commonly believed that efficient anticancer regimens would either trigger the apoptotic demise of tumor cells or induce a permanent arrest in the G(1) phase of the cell cycle, i.e., senescence. The recent discovery that necrosis can occur in a regulated fashion and the increasingly more precise characterization of the underlying molecular mechanisms have raised great interest, as non-apoptotic pathways might be instrumental to circumvent the resistance of cancer cells to conventional, pro-apoptotic therapeutic regimens. Moreover, it has been shown that some anticancer regimens engage lethal signaling cascades that can ignite multiple oncosuppressive mechanisms, including apoptosis, necrosis, and senescence. Among these signaling pathways is mitotic catastrophe, whose role as a bona fide cell death mechanism has recently been reconsidered. Thus, anticancer regimens get ever more sophisticated, and often distinct strategies are combined to maximize efficacy and minimize side effects. In this review, we will discuss the importance of apoptosis, necrosis, and mitotic catastrophe in the response of tumor cells to the most common clinically employed and experimental anticancer agents.

  2. Cell Death Signaling and Anticancer Therapy

    PubMed Central

    Galluzzi, Lorenzo; Vitale, Ilio; Vacchelli, Erika; Kroemer, Guido

    2011-01-01

    For a long time, it was commonly believed that efficient anticancer regimens would either trigger the apoptotic demise of tumor cells or induce a permanent arrest in the G1 phase of the cell cycle, i.e., senescence. The recent discovery that necrosis can occur in a regulated fashion and the increasingly more precise characterization of the underlying molecular mechanisms have raised great interest, as non-apoptotic pathways might be instrumental to circumvent the resistance of cancer cells to conventional, pro-apoptotic therapeutic regimens. Moreover, it has been shown that some anticancer regimens engage lethal signaling cascades that can ignite multiple oncosuppressive mechanisms, including apoptosis, necrosis, and senescence. Among these signaling pathways is mitotic catastrophe, whose role as a bona fide cell death mechanism has recently been reconsidered. Thus, anticancer regimens get ever more sophisticated, and often distinct strategies are combined to maximize efficacy and minimize side effects. In this review, we will discuss the importance of apoptosis, necrosis, and mitotic catastrophe in the response of tumor cells to the most common clinically employed and experimental anticancer agents. PMID:22655227

  3. Invariant NKT cells increase drug-induced osteosarcoma cell death

    PubMed Central

    Fallarini, S; Paoletti, T; Orsi Battaglini, N; Lombardi, G

    2012-01-01

    BACKGROUND AND PURPOSE In osteosarcoma (OS) patients, only a limited number of drugs are active and the regimens currently in use include a combination of at least two of these drugs: doxorubicin, cisplatin, methotrexate and ifosfamide. Today, 30–40% of patients still die of OS highlighting the urgent need for new treatments. Invariant NKT (iNKT) cells are a lymphocyte lineage with features of both T and NK cells, playing important roles in tumour suppression. Our aim was to test whether the cytoxicity induced by cisplatin, doxorubicin and methotrexate against OS cells can be enhanced by iNKT cell treatment. EXPERIMENTAL APPROACH iNKT cells were purified from human peripheral blood mononuclear cells by cell sorting (Vα24Vβ11+ cells) and used as effector cells against OS cells (U2-OS, HOS, MG-63). Cell death (calcein-AM method), perforin/granzyme B and Fas/FasL expressions were determined by flow cytometry. CD1d expression was analysed at both the gene and protein level. KEY RESULTS iNKT cells were cytotoxic against OS cells through a CD1d-dependent mechanism. This activity was specific for tumour cells, because human CD1d+ mesenchymal stem cells and CD1d- osteoblasts were not affected. iNKT cell treatment enhanced drug-induced OS cell death in a concentration-dependent manner and this effect was reduced in CD1d-silenced OS cells. CONCLUSION AND IMPLICATIONS iNKT cells kill malignant, but not non-malignant, cells. iNKT cell treatment enhances the cytotoxicity of anti-neoplastic drugs against OS cells in a CD1d-dependent manner. The present data encourage further studies on the use of iNKT cells in OS therapy. PMID:22817659

  4. Protection of hepatocytes against death due to mitochondrial failure: effect of di-Calciphor on antimycin A-induced toxicity.

    PubMed

    Park, Y; Devlin, T M; Jones, D P

    1994-05-01

    Di-Calciphor is a synthetic derivative of prostaglandin B1 that protects against cerebral and cardiac ischemia apparently by preserving mitochondrial function. To determine whether di-Calciphor specifically protects against mitochondrial failure, we studied its effects on mitochondrial functions in hepatocytes treated with the specific mitochondrial poison, antimycin A. The results show that 1 microM di-Calciphor protects against cell death at concentrations of antimycin A that inhibited mitochondrial respiration and caused cellular ATP depletion. Di-Calciphor did not protect against loss of ATP but did protect against the loss of mitochondrial delta psi and delta pH. In addition, di-Calciphor protected against antimycin A-induced loading of phosphate into mitochondria and an associated mitochondrial swelling. Thus, these results show that di-Calciphor protects against a specific mitochondrial poison and support the interpretation that di-Calciphor is a mitochondrial protective agent. In addition, the results suggest that the protection of the mitochondria involves preservation of mitochondrial ionic and osmotic stability and does not involve improved ATP supply.

  5. Redox regulation in plant programmed cell death.

    PubMed

    De Pinto, M C; Locato, V; De Gara, L

    2012-02-01

    Programmed cell death (PCD) is a genetically controlled process described both in eukaryotic and prokaryotic organisms. Even if it is clear that PCD occurs in plants, in response to various developmental and environmental stimuli, the signalling pathways involved in the triggering of this cell suicide remain to be characterized. In this review, the main similarities and differences in the players involved in plant and animal PCD are outlined. Particular attention is paid to the role of reactive oxygen species (ROS) as key inducers of PCD in plants. The involvement of different kinds of ROS, different sites of ROS production, as well as their interaction with other molecules, is crucial in activating PCD in response to specific stimuli. Moreover, the importance is stressed on the balance between ROS production and scavenging, in various cell compartments, for the activation of specific steps in the signalling pathways triggering this cell suicide process. The review focuses on the complexity of the interplay between ROS and antioxidant molecules and enzymes in determining the most suitable redox environment required for the occurrence of different forms of PCD. © 2011 Blackwell Publishing Ltd.

  6. Sulfur dioxide induced programmed cell death in Vicia guard cells.

    PubMed

    Yi, Huilan; Yin, Jingjing; Liu, Xin; Jing, Xiuqing; Fan, Sanhong; Zhang, Hufang

    2012-04-01

    Sulfur dioxide (SO(2)) induced nuclear condensation and nuclear fragmentation and rapid loss of guard cell viability in detached epidermis of Vicia leaves at concentrations of 1 mM and higher (3 h exposure). Caspase inhibitors Z-Asp-CH(2)-DCB (0.1 mM) and TLCK (0.1 mM) markedly suppressed SO(2)-induced cell death. The typical nuclear morphological changes and the inhibition effects of caspase inhibitors suggest the activation of a programmed cell death (PCD) pathway. SO(2)-induced cell death can be blocked by either antioxidants (0.1 mM AsA or 200 U/mL CAT) or Ca(2+) antagonists (0.1mM EGTA or LaCl(3)). AsA and CAT also blocked SO(2)-induced ROS production and [Ca(2+)](cyt) increase. However, EGTA and LaCl(3) can inhibit SO(2)-induced [Ca(2+)](cyt) increase, but cannot suppress SO(2)-induced ROS production. Our results indicate that high concentrations of SO(2) induce guard cell death via a PCD pathway through ROS mediating [Ca(2+)](cyt) elevation, which causes harmful effects to plants.

  7. Cell death pathways in directly irradiated cells and cells exposed to medium from irradiated cells.

    PubMed

    Jella, Kishore Kumar; Garcia, Amaya; McClean, Brendan; Byrne, Hugh J; Lyng, Fiona M

    2013-03-01

    The aim of this study was to compare levels of apoptosis, necrosis, mitotic cell death and senescence after treatment with both direct radiation and irradiated cell conditioned medium. Human keratinocytes (HaCaT cell line) were irradiated (0.005, 0.05 and 0.5 Gy) using a cobalt 60 teletherapy unit. For bystander experiments, the medium was harvested from donor HaCaT cells 1 hour after irradiation and transferred to recipient HaCaT cells. Clonogenic assay, apoptosis, necrosis, mitotic cell death, senescence and cell cycle analysis were measured in both directly irradiated cells and bystander cells A reduction in cell survival was observed for both directly irradiated cells and irradiated cell conditioned medium (ICCM)-treated cells. Early apoptosis and necrosis was observed predominantly after direct irradiation. An increase in the number of cells in G2/M phase was observed at 6 and 12 h which led to mitotic cell death after 72 h following direct irradiation and ICCM treatment. No senescence was observed in the HaCaT cell line following either direct irradiation or treatment with ICCM. This study has shown that directly irradiated cells undergo apoptosis, necrosis and mitotic cell death whereas ICCM-treated cells predominantly undergo mitotic cell death.

  8. Cracking open cell death in the Drosophila ovary

    PubMed Central

    Pritchett, Tracy L.; Tanner, Elizabeth A.; McCall, Kimberly

    2010-01-01

    The Drosophila melanogaster ovary is a powerful yet simple system with only a few cell types. Cell death in the ovary can be induced in response to multiple developmental and environmental signals. These cell deaths occur at distinct stages of oogenesis and involve unique mechanisms utilizing apoptotic, autophagic and perhaps necrotic processes. In this review, we summarize recent progress characterizing cell death mechanisms in the fly ovary. PMID:19533361

  9. Activating Cell Death Ligand Signaling Through Proteasome Inhibition

    DTIC Science & Technology

    2009-05-01

    Activating Cell Death Ligand Signaling Through Proteasome Inhibition PRINCIPAL INVESTIGATOR: Steven R Schwarze...SUBTITLE Activating Cell Death Ligand Signaling Through 5a. CONTRACT NUMBER Proteasome Inhibition 5b. GRANT NUMBER W81XWH-08-1-0392 5c...proteasome inhibition can act as an anti-neoplastic agent in vivo by sensitizing cancer cells to cell death ligands in the tumor microenvironment

  10. Can deaths in police cells be prevented? Experience from Norway and death rates in other countries.

    PubMed

    Aasebø, Willy; Orskaug, Gunnar; Erikssen, Jan

    2016-01-01

    To describe the changes in death rates and causes of deaths in Norwegian police cells during the last 2 decades. To review reports on death rates in police cells that have been published in medical journals and elsewhere, and discuss the difficulties of comparing death rates between countries. Data on deaths in Norwegian police cells were collected retrospectively in 2002 and 2012 for two time periods: 1993-2001 (period 1) and 2003-2012 (period 2). Several databases were searched to find reports on deaths in police cells from as many countries as possible. The death rates in Norwegian police cells reduced significantly from 0.83 deaths per year per million inhabitants (DYM) in period 1 to 0.22 DYM in period 2 (p < 0.05). The most common cause of death in period 1 was alcohol intoxication including intracranial bleeding in persons with high blood alcohol levels, and the number declined from 16 persons in period 1 to 1 person in period 2 (p = 0.032). The median death rate in the surveyed Western countries was 0.44 DYM (range: 0.14-1.46 DYM). The number of deaths in Norwegian police cells reduced by about 75% over a period of approximately 10 years. This is probably mainly due to individuals with severe alcohol intoxication no longer being placed in police cells. However, there remain large methodology difficulties in comparing deaths rates between countries. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  11. Xylem cell death: emerging understanding of regulation and function.

    PubMed

    Bollhöner, Benjamin; Prestele, Jakob; Tuominen, Hannele

    2012-02-01

    Evolutionary, as well as genetic, evidence suggests that vascular development evolved originally as a cell death programme that allowed enhanced movement of water in the extinct protracheophytes, and that secondary wall formation in the water-conducting cells evolved afterwards, providing mechanical support for effective long-distance transport of water. The extant vascular plants possess a common regulatory network to coordinate the different phases of xylem maturation, including secondary wall formation, cell death, and finally autolysis of the cell contents, by the action of recently identified NAC domain transcription factors. Consequently, xylem cell death is an inseparable part of the xylem maturation programme, making it difficult to uncouple cell death mechanistically from secondary wall formation, and thus identify the key factors specifically involved in regulation of cell death. Current knowledge suggests that the necessary components for xylem cell death are produced early during xylem differentiation, and cell death is prevented through the action of inhibitors and storage of hydrolytic enzymes in inactive forms in compartments such as the vacuole. Bursting of the central vacuole triggers autolytic hydrolysis of the cell contents, which ultimately leads to cell death. This cascade of events varies between the different xylem cell types. The water-transporting tracheary elements rely on a rapid cell death programme, with hydrolysis of cell contents taking place for the most part, if not entirely, after vacuolar bursting, while the xylem fibres disintegrate cellular contents at a slower pace, well before cell death. This review includes a detailed description of cell morphology, function of plant growth regulators, such as ethylene and thermospermine, and the action of hydrolytic nucleases and proteases during cell death of the different xylem cell types.

  12. Parasitic inhibition of cell death facilitates symbiosis.

    PubMed

    Pannebakker, Bart A; Loppin, Benjamin; Elemans, Coen P H; Humblot, Lionel; Vavre, Fabrice

    2007-01-02

    Symbiotic microorganisms have had a large impact on eukaryotic evolution, with effects ranging from parasitic to mutualistic. Mitochondria and chloroplasts are prime examples of symbiotic microorganisms that have become obligate for their hosts, allowing for a dramatic extension of suitable habitats for life. Out of the extraordinary diversity of bacterial endosymbionts in insects, most are facultative for their hosts, such as the ubiquitous Wolbachia, which manipulates host reproduction. Some endosymbionts, however, have become obligatory for host reproduction and/or survival. In the parasitoid wasp Asobara tabida the presence of Wolbachia is necessary for host oogenesis, but the mechanism involved is yet unknown. We show that Wolbachia influences programmed cell death processes (a host regulatory feature typically targeted by pathogens) in A. tabida, making its presence essential for the wasps' oocytes to mature. This suggests that parasite strategies, such as bacterial regulation of host apoptosis, can drive the evolution of host dependence, allowing for a swift transition from parasitism to mutualism.

  13. Methods for assessing autophagy and autophagic cell death.

    PubMed

    Tasdemir, Ezgi; Galluzzi, Lorenzo; Maiuri, M Chiara; Criollo, Alfredo; Vitale, Ilio; Hangen, Emilie; Modjtahedi, Nazanine; Kroemer, Guido

    2008-01-01

    Autophagic (or type 2) cell death is characterized by the massive accumulation of autophagic vacuoles (autophagosomes) in the cytoplasm of cells that lack signs of apoptosis (type 1 cell death). Here we detail and critically assess a series of methods to promote and inhibit autophagy via pharmacological and genetic manipulations. We also review the techniques currently available to detect autophagy, including transmission electron microscopy, half-life assessments of long-lived proteins, detection of LC3 maturation/aggregation, fluorescence microscopy, and colocalization of mitochondrion- or endoplasmic reticulum-specific markers with lysosomal proteins. Massive autophagic vacuolization may cause cellular stress and represent a frustrated attempt of adaptation. In this case, cell death occurs with (or in spite of) autophagy. When cell death occurs through autophagy, on the contrary, the inhibition of the autophagic process should prevent cellular demise. Accordingly, we describe a strategy for discriminating cell death with autophagy from cell death through autophagy.

  14. Myc inhibits JNK-mediated cell death in vivo.

    PubMed

    Huang, Jiuhong; Feng, Yu; Chen, Xinhong; Li, Wenzhe; Xue, Lei

    2017-04-01

    The proto-oncogene Myc is well known for its roles in promoting cell growth, proliferation and apoptosis. However, in this study, we found from a genetic screen that Myc inhibits, rather than promotes, cell death triggered by c-Jun N-terminal kinase (JNK) signaling in Drosophila. Firstly, expression of Drosophila Myc (dMyc) suppresses, whereas loss of dMyc enhances, ectopically activated JNK signaling-induced cell death. Secondly, dMyc impedes physiologically activated JNK pathway-mediated cell death. Thirdly, loss of dMyc triggers JNK pathway activation and JNK-dependent cell death. Finally, the mammalian cMyc gene, when expressed in Drosophila, impedes activated JNK signaling-induced cell death. Thus, besides its well-studied apoptosis promoting function, Myc also antagonizes JNK-mediated cell death in Drosophila, and this function is likely conserved from fly to human.

  15. Anticancer metal drugs and immunogenic cell death.

    PubMed

    Terenzi, Alessio; Pirker, Christine; Keppler, Bernhard K; Berger, Walter

    2016-12-01

    Conventional chemotherapeutics, but also innovative precision anticancer compounds, are commonly perceived to target primarily the cancer cell compartment. However, recently it was discovered that some of these compounds can also exert immunomodulatory activities which might be exploited to synergistically enhance their anticancer effects. One specific phenomenon of the interplay between chemotherapy and the anticancer immune response is the so-called "immunogenic cell death" (ICD). ICD was discovered based on a vaccination effect exerted by cancer cells dying from pretreatment with certain chemotherapeutics, termed ICD inducers, in syngeneic transplantation mouse models. Interestingly, only a minority of drugs is able to trigger ICD without a clear-cut relation to chemical structures or their primary modes-of-action. Nevertheless, generation of reactive oxygen species (ROS) and induction of endoplasmic reticulum (ER) stress are clearly linked to ICD. With regard to metal drugs, oxaliplatin but not cisplatin is considered a bona fide ICD inducer. Taken into account that several experimental metal compounds are efficient ROS and ER stress mediators, presence of potent ICD inducers within the plethora of novel metal complexes seems feasible and has occasionally been reported. In the light of recent successes in cancer immunotherapy, here we review existing literature regarding anticancer metal drugs and ICD induction. We recommend a more profound investigation of the immunogenic features of experimental anticancer metal drugs.

  16. Cell death by autophagy: facts and apparent artefacts.

    PubMed

    Denton, D; Nicolson, S; Kumar, S

    2012-01-01

    Autophagy (the process of self-digestion by a cell through the action of enzymes originating within the lysosome of the same cell) is a catabolic process that is generally used by the cell as a mechanism for quality control and survival under nutrient stress conditions. As autophagy is often induced under conditions of stress that could also lead to cell death, there has been a propagation of the idea that autophagy can act as a cell death mechanism. Although there is growing evidence of cell death by autophagy, this type of cell death, often called autophagic cell death, remains poorly defined and somewhat controversial. Merely the presence of autophagic markers in a cell undergoing death does not necessarily equate to autophagic cell death. Nevertheless, studies involving genetic manipulation of autophagy in physiological settings provide evidence for a direct role of autophagy in specific scenarios. This article endeavours to summarise these physiological studies where autophagy has a clear role in mediating the death process and discusses the potential significance of cell death by autophagy.

  17. Endosulfan induced cell death in Sertoli-germ cells of male Wistar rat follows intrinsic mode of cell death.

    PubMed

    Rastogi, Divya; Narayan, R; Saxena, D K; Chowdhuri, D Kar

    2014-01-01

    Health of germ cells may affect production of quality gametes either due to endogenous or exogenous factors. Pesticides are among the exogenous factors that can enter the organisms through various routes of exposure and also can affect the reproductive system of an organism. Endosulfan is an organochlorine cyclodiene pesticide used widely for controlling agricultural pests. It has been shown to induce reproductive dysfunctions such as sperm abnormalities, reduced intracellular spermatid count in exposed organisms. Germ cells being the progenitor cells for male gametes and Sertoli cells as their nourishing cells, we examined whether endosulfan induces cell death in Sertoli-germ cells of male rats. Sertoli-germ cells, isolated from 28 d old male Wistar rats, were exposed to endosulfan (2.0, 20.0 and 40.0 μg mL(-1)) for 24-72 h. Cytotoxicity, endosulfan concentration, reactive oxygen species (ROS) generation, oxidative stress parameters were measured in these cells in the absence or presence of endosulfan for the above mentioned exposure periods and subsequently, cell death endpoints were measured. We detected endosulfan in the exposed cells and demonstrated increased cell death in exposed Sertoli-germ cells as evidenced by a significant increase in annexin-V staining, depolarization of mitochondrial membrane, caspase-9 and -3 activities and BAD and PARP cleavage activities and DNA ladder formation along with non-significant increase in autophagic cell death. The study suggests that endosulfan can cause cell death in exposed Sertoli-germ cells due to higher oxidative damage with the activation of intrinsic cell death pathway which may eventually affect the production of quality gametes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cell lineage and cell death: Caenorhabditis elegans and cancer research.

    PubMed

    Potts, Malia B; Cameron, Scott

    2011-01-01

    Cancer is a complex disease in which cells have circumvented normal restraints on tissue growth and have acquired complex abnormalities in their genomes, posing a considerable challenge to identifying the pathways and mechanisms that drive fundamental aspects of the malignant phenotype. Genetic analyses of the normal development of the nematode Caenorhabditis elegans have revealed evolutionarily conserved mechanisms through which individual cells establish their fates, and how they make and execute the decision to survive or undergo programmed cell death. The pathways identified through these studies have mammalian counterparts that are co-opted by malignant cells. Effective cancer drugs now target some of these pathways, and more are likely to be discovered.

  19. Die Another Day: Inhibition of Cell Death Pathways by Cytomegalovirus.

    PubMed

    Brune, Wolfram; Andoniou, Christopher E

    2017-09-02

    Multicellular organisms have evolved multiple genetically programmed cell death pathways that are essential for homeostasis. The finding that many viruses encode cell death inhibitors suggested that cellular suicide also functions as a first line of defence against invading pathogens. This theory was confirmed by studying viral mutants that lack certain cell death inhibitors. Cytomegaloviruses, a family of species-specific viruses, have proved particularly useful in this respect. Cytomegaloviruses are known to encode multiple death inhibitors that are required for efficient viral replication. Here, we outline the mechanisms used by the host cell to detect cytomegalovirus infection and discuss the methods employed by the cytomegalovirus family to prevent death of the host cell. In addition to enhancing our understanding of cytomegalovirus pathogenesis we detail how this research has provided significant insights into the cross-talk that exists between the various cell death pathways.

  20. Cell block eleven, looking from the "Death Row" exercise yard, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cell block eleven, looking from the "Death Row" exercise yard, facing north (note cell block fifteen to the right and cell block fourteen in the distance_ - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  1. Understanding cell death in Parkinson's disease.

    PubMed

    Jenner, P; Olanow, C W

    1998-09-01

    Current concepts of the cause of Parkinson's disease (PD) suggest a role for both genetic and environmental influences. Common to a variety of potential causes of nigral cell degeneration in PD is the involvement of oxidative stress. Postmortem analysis shows increased levels of iron, decreased complex I activity, and a decrease in reduced glutathione (GSH) levels. The decrease in GSH levels may be a particularly important component of the cascade of events leading to cell death because it occurs in the presymptomatic stage of PD and may directly induce nigral cell degeneration or render neurons susceptible to the actions of toxins. There is evidence suggesting that oxidative stress might originate in glial cells rather than in neurons, and alterations in glial function may be an important contributor to the pathologic process that occurs in PD. Oxidative damage occurs in the brain in PD, as shown by increased lipid peroxidation and DNA damage in the substantia nigra. Increased protein oxidation is also apparent, but this occurs in many areas of the brain and raises the specter of a more widespread pathologic process occurring in PD to which the substantia nigra is particularly vulnerable. The inability of the substantia nigra to handle damaged or mutant (eg, alpha-synuclein) proteins may lead to their aggregation and deposition and to the formation of Lewy bodies. Indeed, Lewy bodies stain for both alpha-synuclein and nitrated proteins. Current evidence enables us to hypothesize that a failure to process structurally modified proteins in regions of the brain exhibiting oxidative stress is a cause of both familial and sporadic PD.

  2. Bacterial Programmed Cell Death as a Population Phenomenon

    DTIC Science & Technology

    2013-06-11

    Moving in for the kil:Activation of an endoribonuclease toxin by quorum sensing peptide, Molecular Cell, (03 2011): . doi: 06/11/2013 11.00...shown that E. coli mazEF-mediated cell death is a population phenomenon requiring the E. coli quorum sensing factor EDF (Extracellular Death Factor... quorum - sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318: 652-655. 7) Kolodkin-Gal I, Engelberg-Kulka, H (2008

  3. Mechanisms of Virus-Induced Neural Cell Death

    DTIC Science & Technology

    2003-09-01

    We are using experimental infection with reoviruses to study how viruses induce cell death . (apoptosis), and the significance of apoptosis in the...pathogenesis of viral infection. We have developed one of the best-characterized experimental models for investigating and manipulating viral cell death pathways...We have shown that apoptosis is a major mechanism of reovirus-induced cell death in murine models of key human viral infections including

  4. Arabidopsis ACCELERATED CELL DEATH2 Modulates Programmed Cell DeathW⃞

    PubMed Central

    Yao, Nan; Greenberg, Jean T.

    2006-01-01

    The Arabidopsis thaliana chloroplast protein ACCELERATED CELL DEATH2 (ACD2) modulates the amount of programmed cell death (PCD) triggered by Pseudomonas syringae and protoporphyrin IX (PPIX) treatment. In vitro, ACD2 can reduce red chlorophyll catabolite, a chlorophyll derivative. We find that ACD2 shields root protoplasts that lack chlorophyll from light- and PPIX-induced PCD. Thus, chlorophyll catabolism is not obligatory for ACD2 anti-PCD function. Upon P. syringae infection, ACD2 levels and localization change in cells undergoing PCD and in their close neighbors. Thus, ACD2 shifts from being largely in chloroplasts to partitioning to chloroplasts, mitochondria, and, to a small extent, cytosol. ACD2 protects cells from PCD that requires the early mitochondrial oxidative burst. Later, the chloroplasts of dying cells generate NO, which only slightly affects cell viability. Finally, the mitochondria in dying cells have dramatically altered movements and cellular distribution. Overproduction of both ACD2 (localized to mitochondria and chloroplasts) and ascorbate peroxidase (localized to chloroplasts) greatly reduces P. syringae–induced PCD, suggesting a pro-PCD role for mitochondrial and chloroplast events. During infection, ACD2 may bind to and/or reduce PCD-inducing porphyrin-related molecules in mitochondria and possibly chloroplasts that generate reactive oxygen species, cause altered organelle behavior, and activate a cascade of PCD-inducing events. PMID:16387834

  5. Light regulation of cadmium-induced cell death in Arabidopsis

    PubMed Central

    Smith, Sarah J; Wang, Yun; Slabas, Antoni R; Chivasa, Stephen

    2014-01-01

    Cadmium is an environmental pollutant with deleterious effects on both prokaryotic and eukaryotic organisms. In plants, the effects of cadmium toxicity are concentration dependent; lower doses destabilize many physiological processes and inhibit cell growth and multiplication, while higher doses evoke a more severe response that triggers activation of cell death. We recently investigated the effects of light on cadmium toxicity in Arabidopsis using a cell suspension culture system. Although not affecting the inhibitory effects on cell multiplication, we found that light is a powerful regulator of Cd-induced cell death. A very specific proteomic response, which was clearly controlled by light, preceded cell death. Here we discuss the implications of these findings and highlight similarities between the regulation of cell death triggered by Cd and fumonisin B1. We consider how both compounds could be useful tools in dissecting plant cell death signaling. PMID:24398567

  6. Predictive Efficacy Biomarkers of Programmed Cell Death 1/Programmed Cell Death 1 Ligand Blockade Therapy.

    PubMed

    Fang, Xiao-Na; Fu, Li-Wu

    2016-01-01

    Inhibitors of immune check-point molecule, programmed cell death 1 (PD-1) and its ligand, programmed cell death ligand 1 (PD-L1) have attracted much attention in cancer immunotherapy recently due to their durable antitumor effects in various malignances, especially the advanced ones. Unfortunately, only a fraction of patients with advanced tumors could benefit from anti-PD-1/PD-L1 therapy, while others still worsened. The key to this point is that there are no efficient biomarkers for screening anti-PD-1/PD-L1-sensitive patients. In this review, we aim at summarizing the latest advances of anti-PD-1/PDL1 immunotherapy and the potential predictive efficacy biomarkers to provide evidences for identifying anti-PD-1/PDL1- sensitive patients. The present article also includes the patent review coverage on this topic.

  7. Death of mitochondria during programmed cell death of leaf mesophyll cells.

    PubMed

    Selga, Tūrs; Selga, Maija; Pāvila, Vineta

    2005-12-01

    The role of plant mitochondria in the programmed cell death (PCD) is widely discussed. However, spectrum and sequence of mitochondrial structural changes during different types of PCD in leaves are poorly described. Pea, cucumber and rye plants were grown under controlled growing conditions. A part of them were sprinkled with ethylene releaser to accelerate cell death. During yellowing the palisade parenchyma mitochondria were attracted to nuclear envelope. Mitochondrial matrix became electron translucent. Mitochondria entered vacuole by invagination of tonoplast and formed multivesicular bodies. Ethephon treatment increased the frequency of sticking of mitochondria to the nuclear envelope or chloroplasts and peroxisomes. Mitochondria divided by different mechanisms and became enclosed in Golgi and ER derived authopagic vacuoles or in the central vacuole. Several fold increase of the diameter of cristae became typical. In all cases mitochondria were attached to nuclear envelope. It can be considered as structural mechanism of promoting of PCD.

  8. Bisphenol A-induced apoptosis of cultured rat Sertoli cells.

    PubMed

    Iida, Hiroshi; Maehara, Kazue; Doiguchi, Masamichi; Mōri, Takayuki; Yamada, Fumio

    2003-01-01

    Bisphenol A (BPA) was examined for its effects on cultured Sertoli cells established from 18-day-old rat testes. We demonstrated that exposure of cultured Sertoli cells to BPA decreased the cell viability in a dose- and a time-dependent manner and that exposure to BPA brought about morphologic changes of the cells, such as membrane blebs, cell rounding, cytoskeletal collapse, and chromatin condensation or fragmentation, all of which conform to the morphologic criteria for apoptosis. Immunocytochemistry showed that active caspase-3, a major execution caspase, was expressed in round Sertoli cells positively labeled by the TUNEL method. Co-localization of active caspase-3 and aggregated actin fragments was also observed in the round Sertoli cells. Theses results suggest that BPA induces cell death of Sertoli cells by promoting apoptosis. Apoptosis-inducing cell death was observed in cells exposed to 150-200 microM BPA, while BPA at <100 microM had only slight cytotoxic effects on the cells.

  9. Programmed cell death for defense against anomaly and tumor formation

    SciTech Connect

    Kondo, Sohei; Norimura, Toshiyuki; Nomura, Taisei

    1995-12-31

    Cell death after exposure to low-level radiation is often considered evidence that radiation is poisonous, however small the dose. Evidence has been accumulating to support the notion that cell death after low-level exposure to radiation results from activation of suicidal genes {open_quote}programmed cell death{close_quote} or {open_quote}apoptosis{close_quote} - for the health of the whole body. This paper gives experimental evidence that embryos of fruit flies and mouse fetuses have potent defense mechanisms against teratogenic or tumorigenic injury caused by radiation and carcinogens, which function through programmed cell death.

  10. Photoreceptor cell death and rescue in retinal detachment and degenerations

    PubMed Central

    Murakami, Yusuke; Notomi, Shoji; Hisatomi, Toshio; Nakazawa, Toru; Ishibashi, Tatsuro; Miller, Joan W.; Vavvas, Demetrios G.

    2013-01-01

    Photoreceptor cell death is the ultimate cause of vision loss in various retinal disorders, including retinal detachment (RD). Photoreceptor cell death has been thought to occur mainly through apoptosis, which is the most characterized form of programmed cell death. The caspase family of cysteine proteases plays a central role for inducing apoptosis, and in experimental models of RD, dying photoreceptor cells exhibit caspase activation; however, there is a paradox that caspase inhibition alone does not provide a sufficient protection against photoreceptor cell loss, suggesting that other mechanisms of cell death are involved. Recent accumulating evidence demonstrates that non-apoptotic forms of cell death, such as autophagy and necrosis, are also regulated by specific molecular machinery, such as those mediated by autophagy-related proteins and receptor-interacting protein kinases, respectively. Here we summarize the current knowledge of cell death signaling and its roles in photoreceptor cell death after RD and other retinal degenerative diseases. A body of studies indicate that not only apoptotic but also autophagic and necrotic signaling are involved in photoreceptor cell death, and that combined targeting of these pathways may be an effective neuroprotective strategy for retinal diseases associated with photoreceptor cell loss. PMID:23994436

  11. Cell death at the intestinal epithelial front line.

    PubMed

    Delgado, Maria Eugenia; Grabinger, Thomas; Brunner, Thomas

    2016-07-01

    The intestinal epithelium represents the largest epithelial surface in our body. This single-cell-layer epithelium mediates important functions in the absorption of nutrients and in the maintenance of barrier function, preventing luminal microorganisms from invading the body. Due to its constant regeneration the intestinal epithelium is a tissue not only with very high proliferation rates but also with very prominent physiological and pathophysiological cell death induction. The normal physiological differentiation and maturation of intestinal epithelial cells leads to their shedding and apoptotic cell death within a few days, without disturbing the epithelial barrier integrity. In contrast excessive intestinal epithelial cell death induced by irradiation, drugs and inflammation severely impairs the vital functions of this tissue. In this review we discuss cell death processes in the intestinal epithelium in health and disease, with special emphasis on cell death triggered by the tumour necrosis factor receptor family. © 2015 FEBS.

  12. Death-associated protein kinase-mediated cell death modulated by interaction with DANGER.

    PubMed

    Kang, Bingnan N; Ahmad, Abdullah S; Saleem, Sofiyan; Patterson, Randen L; Hester, Lynda; Doré, Sylvain; Snyder, Solomon H

    2010-01-06

    Death-associated protein kinase (DAPK) is a key player in multiple cell death signaling pathways. We report that DAPK is regulated by DANGER, a partial MAB-21 domain-containing protein. DANGER binds directly to DAPK and inhibits DAPK catalytic activity. DANGER-deficient mouse embryonic fibroblasts and neurons exhibit greater DAPK activity and increased sensitivity to cell death stimuli than do wild-type control cells. In addition, DANGER-deficient mice manifest more severe brain damage after acute excitotoxicity and transient cerebral ischemia than do control mice. Accordingly, DANGER may physiologically regulate the viability of neurons and represent a potential therapeutic target for stroke and neurodegenerative diseases.

  13. Cell-in-Cell Death Is Not Restricted by Caspase-3 Deficiency in MCF-7 Cells

    PubMed Central

    Wang, Shan; He, Meifang; Li, Linmei; Liang, Zhihua; Zou, Zehong

    2016-01-01

    Purpose Cell-in-cell structures are created by one living cell entering another homotypic or heterotypic living cell, which usually leads to the death of the internalized cell, specifically through caspase-dependent cell death (emperitosis) or lysosome-dependent cell death (entosis). Although entosis has attracted great attention, its occurrence is controversial, because one cell line used in its study (MCF-7) is deficient in caspase-3. Methods We investigated this issue using MCF-7 and A431 cell lines, which often display cell-in-cell invasion, and have different levels of caspase-3 expression. Cell-in-cell death morphology, microstructures, and signaling pathways were compared in the two cell lines. Results Our results confirmed that MCF-7 cells are caspase-3 deficient with a partial deletion in the CASP-3 gene. These cells underwent cell death that lacked typical apoptotic properties after staurosporine treatment, whereas caspase-3-sufficient A431 cells displayed typical apoptosis. The presence of caspase-3 was related neither to the lysosome-dependent nor to the caspase-dependent cell-in-cell death pathway. However, the existence of caspase-3 was associated with a switch from lysosome-dependent cell-in-cell death to the apoptotic cell-in-cell death pathway during entosis. Moreover, cellular hypoxia, mitochondrial swelling, release of cytochrome C, and autophagy were observed in internalized cells during entosis. Conclusion The occurrence of caspase-independent entosis is not a cell-specific process. In addition, entosis actually represents a cellular self-repair system, functioning through autophagy, to degrade damaged mitochondria resulting from cellular hypoxia in cell-in-cell structures. However, sustained autophagy-associated signal activation, without reduction in cellular hypoxia, eventually leads to lysosome-dependent intracellular cell death. PMID:27721872

  14. Patterns of cell death in the perinatal mouse forebrain.

    PubMed

    Mosley, Morgan; Shah, Charisma; Morse, Kiriana A; Miloro, Stephen A; Holmes, Melissa M; Ahern, Todd H; Forger, Nancy G

    2017-01-01

    The importance of cell death in brain development has long been appreciated, but many basic questions remain, such as what initiates or terminates the cell death period. One obstacle has been the lack of quantitative data defining exactly when cell death occurs. We recently created a "cell death atlas," using the detection of activated caspase-3 (AC3) to quantify apoptosis in the postnatal mouse ventral forebrain and hypothalamus, and found that the highest rates of cell death were seen at the earliest postnatal ages in most regions. Here we have extended these analyses to prenatal ages and additional brain regions. We quantified cell death in 16 forebrain regions across nine perinatal ages from embryonic day (E) 17 to postnatal day (P) 11 and found that cell death peaks just after birth in most regions. We found greater cell death in several regions in offspring delivered vaginally on the day of parturition compared with those of the same postconception age but still in utero at the time of collection. We also found massive cell death in the oriens layer of the hippocampus on P1 and in regions surrounding the anterior crossing of the corpus callosum on E18 as well as the persistence of large numbers of cells in those regions in adult mice lacking the pro-death Bax gene. Together these findings suggest that birth may be an important trigger of neuronal cell death and identify transient cell groups that may undergo wholesale elimination perinatally. J. Comp. Neurol. 525:47-64, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Cell death programs in Yersinia immunity and pathogenesis

    PubMed Central

    Philip, Naomi H.; Brodsky, Igor E.

    2012-01-01

    Cell death plays a central role in host-pathogen interactions, as it can eliminate the pathogen's replicative niche and provide pro-inflammatory signals necessary for an effective immune response; conversely, cell death can allow pathogens to eliminate immune cells and evade anti-microbial effector mechanisms. In response to developmental signals or cell-intrinsic stresses, the executioner caspases-3 and -7 mediate apoptotic cell death, which is generally viewed as immunologically silent or immunosuppressive. A proinflammatory form of cell death that requires caspase-1, termed pyroptosis, is activated in response to microbial products within the host cytosol or disruption of cellular membranes by microbial pathogens. Infection by the bacterial pathogen Yersinia has features of both apoptosis and pyroptosis. Cell death and caspase-1 processing in Yersinia-infected cells occur in response to inhibition of NF-κB and MAPK signaling by the Yersinia virulence factor YopJ. However, the molecular basis of YopJ-induced cell death, and the role of different death pathways in anti-Yersinia immune responses remain enigmatic. Here, we discuss the role that cell death may play in inducing specific pro-inflammatory signals that shape innate and adaptive immune responses against Yersinia infection. PMID:23226685

  16. Cell death programs in Yersinia immunity and pathogenesis.

    PubMed

    Philip, Naomi H; Brodsky, Igor E

    2012-01-01

    Cell death plays a central role in host-pathogen interactions, as it can eliminate the pathogen's replicative niche and provide pro-inflammatory signals necessary for an effective immune response; conversely, cell death can allow pathogens to eliminate immune cells and evade anti-microbial effector mechanisms. In response to developmental signals or cell-intrinsic stresses, the executioner caspases-3 and -7 mediate apoptotic cell death, which is generally viewed as immunologically silent or immunosuppressive. A proinflammatory form of cell death that requires caspase-1, termed pyroptosis, is activated in response to microbial products within the host cytosol or disruption of cellular membranes by microbial pathogens. Infection by the bacterial pathogen Yersinia has features of both apoptosis and pyroptosis. Cell death and caspase-1 processing in Yersinia-infected cells occur in response to inhibition of NF-κB and MAPK signaling by the Yersinia virulence factor YopJ. However, the molecular basis of YopJ-induced cell death, and the role of different death pathways in anti-Yersinia immune responses remain enigmatic. Here, we discuss the role that cell death may play in inducing specific pro-inflammatory signals that shape innate and adaptive immune responses against Yersinia infection.

  17. Interleukin-8 enhances the effect of colchicine on cell death.

    PubMed

    Yokoyama, Chikako; Yajima, Chika; Machida, Tetsuro; Kawahito, Yuji; Uchida, Marie; Hisatomi, Hisashi

    2017-03-25

    Pro-inflammatory cytokines are known to be generated in tumors and play important roles in angiogenesis, mitosis, and tumor progression. However, few studies have investigated the synergistic effects of pro-inflammatory cytokines and anticancer drugs on cell death. In the present study, we examined the combined effects of pro-inflammatory cytokines and colchicine on cell death of cancer cells. Colchicine induces G2/M arrest in the cell cycle by binding to tubulin, one of the main constituents of microtubules. SUIT-2 human pancreatic cancer cell line cells overexpressing pro-inflammatory cytokines, including interleukin (IL)-1β, IL-8, and tumor necrosis factor (TNF)-α, were treated with colchicine. The effect of colchicine on cell death was enhanced in cells overexpressing IL-8. Moreover, the effect of colchicine on cell death was enhanced in cells overexpressing two IL-8 up-regulators, NF-κB and IL-6, but not in cells overexpressing an IL-8 down-regulator, splicing factor proline/glutamine-rich (SFPQ). Synergistic effects of IL-8 and colchicine were also observed in cells overexpressing IL-8 isoforms lacking the signal peptide. Therefore, IL-8 appeared to function as an enhancer of cell death in cancer cells treated with colchicine. The present results suggest a new role for IL-8 related to cell death of cancer cells.

  18. Elucidation of a Novel Cell Death Mechanism in Prostate Epithelial Cells

    DTIC Science & Technology

    2002-12-01

    surface. Galectin-1 binds to saccharide ligands on susceptible LNCaP cells to trigger cell death . Susceptibility to galectin-1 appears to depend on the...induced LNCaP cell death . Resistance to galectin-1 induced death correlates with markedly decreased expression of a specific glycosyltransferase, the...galectin-1 induced death, indicating that a common glycosylation pathway may control cell death in epithelial and lymphoid cells. Identification of a

  19. Elucidation of a Novel Cell Death Mechanism in Prostate Epithelial Cells

    DTIC Science & Technology

    2003-12-01

    surface. Galectin-1 binds to saccharide ligands on suscepibel LNCaP cells to trigger cell death . Susceptibility to galectin-1 appears to depend on the...induced LNcaP cell death . Resistance to galectin-1 induced death correlates with markedly decreased expression of a specific glycosyltransferase, the...galectin-1 induced death, indicating that a common glycosylation pathway may control cell death in epithelial and lymphoid cells. Identification of a

  20. Actin as Deathly Switch? How Auxin Can Suppress Cell-Death Related Defence

    PubMed Central

    Chang, Xiaoli; Riemann, Michael; Liu, Qiong; Nick, Peter

    2015-01-01

    Plant innate immunity is composed of two layers – a basal immunity, and a specific effector-triggered immunity, which is often accompanied by hypersensitive cell death. Initiation of cell death depends on a complex network of signalling pathways. The phytohormone auxin as central regulator of plant growth and development represents an important component for the modulation of plant defence. In our previous work, we showed that cell death is heralded by detachment of actin from the membrane. Both, actin response and cell death, are triggered by the bacterial elicitor harpin in grapevine cells. In this study we investigated, whether harpin-triggered actin bundling is necessary for harpin-triggered cell death. Since actin organisation is dependent upon auxin, we used different auxins to suppress actin bundling. Extracellular alkalinisation and transcription of defence genes as the basal immunity were examined as well as cell death. Furthermore, organisation of actin was observed in response to pharmacological manipulation of reactive oxygen species and phospholipase D. We find that induction of defence genes is independent of auxin. However, auxin can suppress harpin-induced cell death and also counteract actin bundling. We integrate our findings into a model, where harpin interferes with an auxin dependent pathway that sustains dynamic cortical actin through the activity of phospholipase D. The antagonism between growth and defence is explained by mutual competition for signal molecules such as superoxide and phosphatidic acid. Perturbations of the auxin-actin pathway might be used to detect disturbed integrity of the plasma membrane and channel defence signalling towards programmed cell death. PMID:25933033

  1. Actin as deathly switch? How auxin can suppress cell-death related defence.

    PubMed

    Chang, Xiaoli; Riemann, Michael; Liu, Qiong; Nick, Peter

    2015-01-01

    Plant innate immunity is composed of two layers--a basal immunity, and a specific effector-triggered immunity, which is often accompanied by hypersensitive cell death. Initiation of cell death depends on a complex network of signalling pathways. The phytohormone auxin as central regulator of plant growth and development represents an important component for the modulation of plant defence. In our previous work, we showed that cell death is heralded by detachment of actin from the membrane. Both, actin response and cell death, are triggered by the bacterial elicitor harpin in grapevine cells. In this study we investigated, whether harpin-triggered actin bundling is necessary for harpin-triggered cell death. Since actin organisation is dependent upon auxin, we used different auxins to suppress actin bundling. Extracellular alkalinisation and transcription of defence genes as the basal immunity were examined as well as cell death. Furthermore, organisation of actin was observed in response to pharmacological manipulation of reactive oxygen species and phospholipase D. We find that induction of defence genes is independent of auxin. However, auxin can suppress harpin-induced cell death and also counteract actin bundling. We integrate our findings into a model, where harpin interferes with an auxin dependent pathway that sustains dynamic cortical actin through the activity of phospholipase D. The antagonism between growth and defence is explained by mutual competition for signal molecules such as superoxide and phosphatidic acid. Perturbations of the auxin-actin pathway might be used to detect disturbed integrity of the plasma membrane and channel defence signalling towards programmed cell death.

  2. Wallenda regulates JNK-mediated cell death in Drosophila

    PubMed Central

    Ma, X; Xu, W; Zhang, D; Yang, Y; Li, W; Xue, L

    2015-01-01

    The c-Jun N-terminal kinase (JNK) pathway plays essential roles in regulating a variety of cellular processes including proliferation, migration and survival. Previous genetic studies in Drosophila have identified numerous cell death regulating genes, providing new insights into the mechanisms for related diseases. Despite the known role of the small GTPase Rac1 in regulating cell death, the downstream components and underlying mechanism remain largely elusive. Here, we show that Rac1 promotes JNK-dependent cell death through Wallenda (Wnd). In addition, we find that Wnd triggers JNK activation and cell death via its kinase domain. Moreover, we show that both MKK4 and Hep are critical for Wnd-induced cell death. Furthermore, Wnd is essential for ectopic Egr- or Rho1-induced JNK activation and cell death. Finally, Wnd is physiologically required for loss of scribble-induced JNK-dependent cell death. Thus, our data suggest that wnd encodes a novel essential cell death regulator in Drosophila. PMID:25950467

  3. Programmed cell death as a defence against infection.

    PubMed

    Jorgensen, Ine; Rayamajhi, Manira; Miao, Edward A

    2017-03-01

    Eukaryotic cells can die from physical trauma, which results in necrosis. Alternatively, they can die through programmed cell death upon the stimulation of specific signalling pathways. In this Review, we discuss the role of different cell death pathways in innate immune defence against bacterial and viral infection: apoptosis, necroptosis, pyroptosis and NETosis. We describe the interactions that interweave different programmed cell death pathways, which create complex signalling networks that cross-guard each other in the evolutionary 'arms race' with pathogens. Finally, we describe how the resulting cell corpses - apoptotic bodies, pore-induced intracellular traps (PITs) and neutrophil extracellular traps (NETs) - promote the clearance of infection.

  4. Non-Canonical Cell Death Induced by p53

    PubMed Central

    Ranjan, Atul; Iwakuma, Tomoo

    2016-01-01

    Programmed cell death is a vital biological process for multicellular organisms to maintain cellular homeostasis, which is regulated in a complex manner. Over the past several years, apart from apoptosis, which is the principal mechanism of caspase-dependent cell death, research on non-apoptotic forms of programmed cell death has gained momentum. p53 is a well characterized tumor suppressor that controls cell proliferation and apoptosis and has also been linked to non-apoptotic, non-canonical cell death mechanisms. p53 impacts these non-canonical forms of cell death through transcriptional regulation of its downstream targets, as well as direct interactions with key players involved in these mechanisms, in a cell type- or tissue context-dependent manner. In this review article, we summarize and discuss the involvement of p53 in several non-canonical modes of cell death, including caspase-independent apoptosis (CIA), ferroptosis, necroptosis, autophagic cell death, mitotic catastrophe, paraptosis, and pyroptosis, as well as its role in efferocytosis which is the process of clearing dead or dying cells. PMID:27941671

  5. Non-Canonical Cell Death Induced by p53.

    PubMed

    Ranjan, Atul; Iwakuma, Tomoo

    2016-12-09

    Programmed cell death is a vital biological process for multicellular organisms to maintain cellular homeostasis, which is regulated in a complex manner. Over the past several years, apart from apoptosis, which is the principal mechanism of caspase-dependent cell death, research on non-apoptotic forms of programmed cell death has gained momentum. p53 is a well characterized tumor suppressor that controls cell proliferation and apoptosis and has also been linked to non-apoptotic, non-canonical cell death mechanisms. p53 impacts these non-canonical forms of cell death through transcriptional regulation of its downstream targets, as well as direct interactions with key players involved in these mechanisms, in a cell type- or tissue context-dependent manner. In this review article, we summarize and discuss the involvement of p53 in several non-canonical modes of cell death, including caspase-independent apoptosis (CIA), ferroptosis, necroptosis, autophagic cell death, mitotic catastrophe, paraptosis, and pyroptosis, as well as its role in efferocytosis which is the process of clearing dead or dying cells.

  6. Changing sensitivity to cell death during development of retinal photoreceptors.

    PubMed

    Chiarini, Luciana B; Leal-Ferreira, Mona Lisa; de Freitas, Fabíola G; Linden, Rafael

    2003-12-15

    Photoreceptor cell death occurs during both normal and pathological retinal development. We tested for selective induction and blockade of cell death in either retinal photoreceptors or their precursors. Organotypical retinal explants from rats at postnatal days 3-11 were treated in vitro for 24 hr with thapsigargin, okadaic acid, etoposide, anisomycin, or forskolin. Explant sections were examined for cell death, and identification of either photoreceptors or proliferating/immediate postmitotic cells followed imunohistochemistry for either rhodopsin or bromodeoxyuridine and proliferating cell nuclear antigen, respectively. Photoreceptor cell death was selectively induced by either thapsigargin or okadaic acid, whereas death of proliferating/immediate postmitotic cells was induced by etoposide. Prelabeling of proliferating precursors allowed direct demonstration of changing sensitivity of photoreceptors to various chemicals. Degeneration of both photoreceptors and proliferating/immediate postmitotic cells depended on protein synthesis. Increase of intracellular cyclic AMP blocked degeneration of postmitotic, but not of proliferating, photoreceptor precursors. The selective induction and blockade of cell death show that developing photoreceptors undergo progressive changes in mechanisms of programmed cell death associated with phenotypic differentiation.

  7. Heat stress induces ferroptosis-like cell death in plants.

    PubMed

    Distéfano, Ayelén Mariana; Martin, María Victoria; Córdoba, Juan Pablo; Bellido, Andrés Martín; D'Ippólito, Sebastián; Colman, Silvana Lorena; Soto, Débora; Roldán, Juan Alfredo; Bartoli, Carlos Guillermo; Zabaleta, Eduardo Julián; Fiol, Diego Fernando; Stockwell, Brent R; Dixon, Scott J; Pagnussat, Gabriela Carolina

    2017-02-01

    In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS). We investigated whether a similar process could be relevant to cell death in plants. Remarkably, heat shock (HS)-induced RCD, but not reproductive or vascular development, was found to involve a ferroptosis-like cell death process. In root cells, HS triggered an iron-dependent cell death pathway that was characterized by depletion of GSH and ascorbic acid and accumulation of cytosolic and lipid ROS. These results suggest a physiological role for this lethal pathway in response to heat stress in Arabidopsis thaliana The similarity of ferroptosis in animal cells and ferroptosis-like death in plants suggests that oxidative, iron-dependent cell death programs may be evolutionarily ancient. © 2017 Distéfano et al.

  8. Heat stress induces ferroptosis-like cell death in plants

    PubMed Central

    D’Ippólito, Sebastián; Colman, Silvana Lorena; Soto, Débora; Bartoli, Carlos Guillermo; Fiol, Diego Fernando

    2017-01-01

    In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS). We investigated whether a similar process could be relevant to cell death in plants. Remarkably, heat shock (HS)–induced RCD, but not reproductive or vascular development, was found to involve a ferroptosis-like cell death process. In root cells, HS triggered an iron-dependent cell death pathway that was characterized by depletion of GSH and ascorbic acid and accumulation of cytosolic and lipid ROS. These results suggest a physiological role for this lethal pathway in response to heat stress in Arabidopsis thaliana. The similarity of ferroptosis in animal cells and ferroptosis-like death in plants suggests that oxidative, iron-dependent cell death programs may be evolutionarily ancient. PMID:28100685

  9. Synchronized renal tubular cell death involves ferroptosis.

    PubMed

    Linkermann, Andreas; Skouta, Rachid; Himmerkus, Nina; Mulay, Shrikant R; Dewitz, Christin; De Zen, Federica; Prokai, Agnes; Zuchtriegel, Gabriele; Krombach, Fritz; Welz, Patrick-Simon; Weinlich, Ricardo; Vanden Berghe, Tom; Vandenabeele, Peter; Pasparakis, Manolis; Bleich, Markus; Weinberg, Joel M; Reichel, Christoph A; Bräsen, Jan Hinrich; Kunzendorf, Ulrich; Anders, Hans-Joachim; Stockwell, Brent R; Green, Douglas R; Krautwald, Stefan

    2014-11-25

    Receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is thought to be the pathophysiologically predominant pathway that leads to regulated necrosis of parenchymal cells in ischemia-reperfusion injury (IRI), and loss of either Fas-associated protein with death domain (FADD) or caspase-8 is known to sensitize tissues to undergo spontaneous necroptosis. Here, we demonstrate that renal tubules do not undergo sensitization to necroptosis upon genetic ablation of either FADD or caspase-8 and that the RIPK1 inhibitor necrostatin-1 (Nec-1) does not protect freshly isolated tubules from hypoxic injury. In contrast, iron-dependent ferroptosis directly causes synchronized necrosis of renal tubules, as demonstrated by intravital microscopy in models of IRI and oxalate crystal-induced acute kidney injury. To suppress ferroptosis in vivo, we generated a novel third-generation ferrostatin (termed 16-86), which we demonstrate to be more stable, to metabolism and plasma, and more potent, compared with the first-in-class compound ferrostatin-1 (Fer-1). Even in conditions with extraordinarily severe IRI, 16-86 exerts strong protection to an extent which has not previously allowed survival in any murine setting. In addition, 16-86 further potentiates the strong protective effect on IRI mediated by combination therapy with necrostatins and compounds that inhibit mitochondrial permeability transition. Renal tubules thus represent a tissue that is not sensitized to necroptosis by loss of FADD or caspase-8. Finally, ferroptosis mediates postischemic and toxic renal necrosis, which may be therapeutically targeted by ferrostatins and by combination therapy.

  10. Colourful death: six-parameter classification of cell death by flow cytometry--dead cells tell tales.

    PubMed

    Munoz, Luis E; Maueröder, Christian; Chaurio, Ricardo; Berens, Christian; Herrmann, Martin; Janko, Christina

    2013-08-01

    The response of the immune system against dying and dead cells strongly depends on the cell death phenotype. Beside other forms of cell death, two clearly distinct populations, early apoptotic and secondary necrotic cells, have been shown to induce anti-inflammation/tolerance and inflammation/immune priming, respectively. Cytofluorometry is a powerful technique to detect morphological and phenotypical changes occurring during cell death. Here, we describe a new technique using AnnexinA5, propidiumiodide, DiIC1(5) and Hoechst 33342 to sub-classify populations of apoptotic and/or necrotic cells. The method allows the fast and reliable identification of several different phases and pathways of cell death by analysing the following cell death associated changes in a single tube: cellular granularity and shrinkage, phosphatidylserine exposure, ion selectivity of the plasma membrane, mitochondrial membrane potential, and DNA content. The clear characterisation of cell death is of major importance for instance in immunization studies, in experimental therapeutic settings, and in the exploration of cell-death associated diseases. It also enables the analysis of immunological properties of distinct populations of dying cells and the pathways involved in this process.

  11. BID links ferroptosis to mitochondrial cell death pathways.

    PubMed

    Neitemeier, Sandra; Jelinek, Anja; Laino, Vincenzo; Hoffmann, Lena; Eisenbach, Ina; Eying, Roman; Ganjam, Goutham K; Dolga, Amalia M; Oppermann, Sina; Culmsee, Carsten

    2017-03-09

    Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the Xc(-) system or inhibition of glutathione peroxidase 4 (Gpx4) to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation. In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by Xc(-) inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death.

  12. PMA and Ionomycin Induce Glioblastoma Cell Death: Activation-Induced Cell-Death-Like Phenomena Occur in Glioma Cells

    PubMed Central

    Han, Sheng; Tie, Xinxin; Meng, Lingxuan; Wang, Yunjie; Wu, Anhua

    2013-01-01

    Phorbol myristate acetate (PMA) and ionomycin (Io) can induce T cell activation and proliferation. Furthermore, they stimulate activation-induced cell death (AICD) in mature lymphocytes via Fas/Fas ligand (FasL) up-regulation. In this study, we explored the influence of PMA/Io treatment on glioblastoma cells, and found that AICD-like phenomena may also occur in glioma. Using the MTT assay and cell counting, we demonstrated that treatment of PMA/Io significantly inhibited the proliferation of glioma cell lines, U87 and U251. TUNEL assays and transmission electron microscopy revealed that PMA/Io markedly induced U87 and U251 cell apoptosis. Propidium iodide staining and flow cytometry showed that treatment with PMA/Io resulted in an arrestment of cell cycle and an increase in cell death. Using real-time PCR and western blot, we found that PMA/Io up-regulated the expression of Fas and FasL at both mRNA and protein level, which confirmed that PMA/Io induced glioma cell death. Specific knockdown of NFAT1 expression by small hairpin RNA greatly reduced the PMA/Io induced cell death and apoptosis by inhibition of FasL expression. Microarray analysis showed that the expression of NFAT1 significantly correlated with the expression of Fas. The coexistence of Fas with NFAT1 in vivo provides the background for AICD-like phenomena to occur in glioma. These findings demonstrate that PMA/Io can induce glioblastoma cell death through the NFAT1-Fas/FasL pathway. Glioma-related AICD-like phenomena may provide a novel avenue for glioma treatment. PMID:24130787

  13. Ferroptosis: an iron-dependent form of nonapoptotic cell death.

    PubMed

    Dixon, Scott J; Lemberg, Kathryn M; Lamprecht, Michael R; Skouta, Rachid; Zaitsev, Eleina M; Gleason, Caroline E; Patel, Darpan N; Bauer, Andras J; Cantley, Alexandra M; Yang, Wan Seok; Morrison, Barclay; Stockwell, Brent R

    2012-05-25

    Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration.

  14. Independent controls for neocortical neuron production and histogenetic cell death

    NASA Technical Reports Server (NTRS)

    Verney, C.; Takahashi, T.; Bhide, P. G.; Nowakowski, R. S.; Caviness, V. S. Jr

    2000-01-01

    We estimated the proportion of cells eliminated by histogenetic cell death during the first 2 postnatal weeks in areas 1, 3 and 40 of the mouse parietal neocortex. For each layer and for the subcortical white matter in each neocortical area, the number of dying cells per mm(2) was calculated and the proportionate cell death for each day of the 2-week interval was estimated. The data show that cell death proceeds essentially uniformly across the neocortical areas and layers and that it does not follow either the spatiotemporal gradient of cell cycle progression in the pseudostratified ventricular epithelium of the cerebral wall, the source of neocortical neurons, or the 'inside-out' neocortical neuronogenetic sequence. Therefore, we infer that the control mechanisms of neocortical histogenetic cell death are independent of mechanisms controlling neuronogenesis or neuronal migration but may be associated with the ingrowth, expansion and a system-wide matching of neuronal connectivity. Copyright 2000 S. Karger AG, Basel.

  15. Independent controls for neocortical neuron production and histogenetic cell death

    NASA Technical Reports Server (NTRS)

    Verney, C.; Takahashi, T.; Bhide, P. G.; Nowakowski, R. S.; Caviness, V. S. Jr

    2000-01-01

    We estimated the proportion of cells eliminated by histogenetic cell death during the first 2 postnatal weeks in areas 1, 3 and 40 of the mouse parietal neocortex. For each layer and for the subcortical white matter in each neocortical area, the number of dying cells per mm(2) was calculated and the proportionate cell death for each day of the 2-week interval was estimated. The data show that cell death proceeds essentially uniformly across the neocortical areas and layers and that it does not follow either the spatiotemporal gradient of cell cycle progression in the pseudostratified ventricular epithelium of the cerebral wall, the source of neocortical neurons, or the 'inside-out' neocortical neuronogenetic sequence. Therefore, we infer that the control mechanisms of neocortical histogenetic cell death are independent of mechanisms controlling neuronogenesis or neuronal migration but may be associated with the ingrowth, expansion and a system-wide matching of neuronal connectivity. Copyright 2000 S. Karger AG, Basel.

  16. Subamolide a induces mitotic catastrophe accompanied by apoptosis in human lung cancer cells.

    PubMed

    Hung, Jen-Yu; Wen, Ching-Wen; Hsu, Ya-Ling; Lin, En-Shyh; Huang, Ming-Shyan; Chen, Chung-Yi; Kuo, Po-Lin

    2013-01-01

    This study investigated the anticancer effects of subamolide A (Sub-A), isolated from Cinnamomum subavenium, on human nonsmall cell lung cancer cell lines A549 and NCI-H460. Treatment of cancer cells with Sub-A resulted in decreased cell viability of both lung cancer cell lines. Sub-A induced lung cancer cell death by triggering mitotic catastrophe with apoptosis. It triggered oxidant stress, indicated by increased cellular reactive oxygen species (ROS) production and decreased glutathione level. The elevated ROS triggered the activation of ataxia-telangiectasia mutation (ATM), which further enhanced the ATF3 upregulation and subsequently enhanced p53 function by phosphorylation at Serine 15 and Serine 392. The antioxidant, EUK8, significantly decreased mitotic catastrophe by inhibiting ATM activation, ATF3 expression, and p53 phosphorylation. The reduction of ATM and ATF3 expression by shRNA decreased Sub-A-mediated p53 phosphorylation and mitotic catastrophe. Sub-A also caused a dramatic 70% reduction in tumor size in an animal model. Taken together, cell death of lung cancer cells in response to Sub-A is dependent on ROS generation, which triggers mitotic catastrophe followed by apoptosis. Therefore, Sub-A may be a novel anticancer agent for the treatment of nonsmall cell lung cancer.

  17. Programmed Cell Death and Complexity in Microbial Systems.

    PubMed

    Durand, Pierre M; Sym, Stuart; Michod, Richard E

    2016-07-11

    Programmed cell death (PCD) is central to organism development and for a long time was considered a hallmark of multicellularity. Its discovery, therefore, in unicellular organisms presents compelling questions. Why did PCD evolve? What is its ecological effect on communities? To answer these questions, one is compelled to consider the impacts of PCD beyond the cell, for death obviously lowers the fitness of the cell. Here, we examine the ecological effects of PCD in different microbial scenarios and conclude that PCD can increase biological complexity. In mixed microbial communities, the mode of death affects the microenvironment, impacting the interactions between taxa. Where the population comprises groups of relatives, death has a more explicit effect. Death by lysis or other means can be harmful, while PCD can evolve by providing advantages to relatives. The synchronization of death between individuals suggests a group level property is being maintained and the mode of death also appears to have had an impact during the origin of multicellularity. PCD can result in the export of fitness from the cell to the group level via re-usable resources and PCD may also provide a mechanism for how groups beget new groups comprising kin. Furthermore, PCD is a means for solving a central problem of group living - the toxic effects of death - by making resources in dying cells beneficial to others. What emerges from the data reviewed here is that while PCD carries an obvious cost to the cell, it can be a driver of complexity in microbial communities.

  18. Stem cell death and survival in heart regeneration and repair

    PubMed Central

    Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-01-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function. PMID:26687129

  19. Imaging plant cell death: GFP-Nit1 aggregation marks an early step of wound and herbicide induced cell death

    PubMed Central

    Cutler, Sean R; Somerville, Chris R

    2005-01-01

    Background A great deal is known about the morphological endpoints of plant cell death, but relatively little is known about its sequence of events and / or its execution at the biochemical level. Live cell imaging using GFP-tagged markers is a powerful way to provide dynamic portraits of a cellular process that can in turn provide a descriptive foundation valuable for future biochemical and genetic investigations. Results While characterizing a collection of random GFP-protein fusion markers we discovered that mechanical wounding induces rapid aggregation of a GFP-Nitrilase 1 fusion protein in Arabidopsis cells directly abutting wound sites. Time-lapse imaging of this response shows that the aggregation occurs in cells that subsequently die 30 – 60 minutes post-wounding, indicating that GFP-Nit1 aggregation is an early marker of cell death at wound sites. Time-lapse confocal imaging was used to characterize wound-induced cell death using GFP-Nit1 and markers of the nucleus and endoplasmic reticulum. These analyses provide dynamic portraits of well-known death-associated responses such as nuclear contraction and cellular collapse and reveal novel features such as nuclear envelope separation, ER vesiculation and loss of nuclear-lumen contents. As a parallel system for imaging cell death, we developed a chemical method for rapidly triggering cell death using the herbicides bromoxynil or chloroxynil which cause rapid GFP-Nit1 aggregation, loss of nuclear contents and cellular collapse, but not nuclear contraction, separating this response from others during plant cell death. Conclusion Our observations place aggregation of Nitrilase 1 as one of the earliest events associated with wound and herbicide-induced cell death and highlight several novel cellular events that occur as plant cells die. Our data create a detailed descriptive framework for future investigations of plant cell death and provide new tools for both its cellular and biochemical analysis. PMID

  20. Fas Protects Breast Cancer Stem Cells from Death

    DTIC Science & Technology

    2015-10-01

    sensitive to Fas-mediated apoptosis , while the BCSCs part is more sensitive to the death induced by the elimination of CD95 (a phenomenon we have recently...simultaneously inducing apoptosis and DICE in breast cancer cells, with many potential therapeutic applications. I could also demonstrate the involvement...published in conferences and scientific journals. 15. SUBJECT TERMS Fas, FasL, Cancer, Cancer Stem cells, Apoptosis , miRNA, EMT, cell death. 16. SECURITY

  1. ENERGY REQUIREMENT FOR THYMINELESS DEATH IN CELLS OF ESCHERICHIA COLI.

    PubMed

    FREIFELDER, D; MAALOE, O

    1964-10-01

    Freifelder, David (University of California, Berkeley), and Ole Maaløe. Energy requirement for thymineless death in cells of Escherichia coli. J. Bacteriol. 88:987-990. 1964.-Thymineless death in thymine-requiring Escherichia coli is arrested immediately and reversibly by nitrogenation if the bacterial population is growing in a medium containing a carbon source that can only be metabolized aerobically. The mechanism of death, therefore, involves a metabolic process.

  2. ENERGY REQUIREMENT FOR THYMINELESS DEATH IN CELLS OF ESCHERICHIA COLI

    PubMed Central

    Freifelder, David; Maaløe, Ole

    1964-01-01

    Freifelder, David (University of California, Berkeley), and Ole Maaløe. Energy requirement for thymineless death in cells of Escherichia coli. J. Bacteriol. 88:987–990. 1964.—Thymineless death in thymine-requiring Escherichia coli is arrested immediately and reversibly by nitrogenation if the bacterial population is growing in a medium containing a carbon source that can only be metabolized aerobically. The mechanism of death, therefore, involves a metabolic process. PMID:14219063

  3. Molecular Mechanisms of Sulfur Mustard Vesicant-Induced Cell Death: Early and Late Cell Responses

    DTIC Science & Technology

    2005-10-01

    Mechanisms of Sulfur Mustard Vesicant-Induced Cell Death : Early and late cell responses 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...It possess mutagenic, carcinogenic, cytotoxic, vesicating effects, and results in cell death . However, the biomedical mechanism of cell death induced... cell death via apoptosis: • In early stage, It induces JNK activity and then triggers apoptosis pathway. • In late stage, sulphur mustard attacks the

  4. Ferroptosis is Involved in Acetaminophen Induced Cell Death.

    PubMed

    Lőrincz, Tamás; Jemnitz, Katalin; Kardon, Tamás; Mandl, József; Szarka, András

    2015-09-01

    The recently described form of programmed cell death, ferroptosis can be induced by agents causing GSH depletion or the inhibition of GPX4. Ferroptosis clearly shows distinct morphologic, biochemical and genetic features from apoptosis, necrosis and autophagy. Since NAPQI the highly reactive metabolite of the widely applied analgesic and antipyretic, acetaminophen induces a cell death which can be characterized by GSH depletion, GPX inhibition and caspase independency the involvement of ferroptosis in acetaminophen induced cell death has been investigated. The specific ferroptosis inhibitor ferrostatin-1 failed to elevate the viability of acetaminophen treated HepG2 cells. It should be noticed that these cells do not form NAPQI due to the lack of phase I enzyme expression therefore GSH depletion cannot be observed. However in the case of acetaminophen treated primary mouse hepatocytes the significant elevation of cell viability could be observed upon ferrostatin-1 treatment. Similar to ferrostatin-1 treatment, the addition of the RIP1 kinase inhibitor necrostatin-1 could also elevate the viability of acetaminophen treated primary hepatocytes. Ferrostatin-1 has no influence on the expression of CYP2E1 or on the cellular GSH level which suggest that the protective effect of ferrostatin-1 in APAP induced cell death is not based on the reduced metabolism of APAP to NAPQI or on altered NAPQI conjugation by cellular GSH. Our results suggest that beyond necroptosis and apoptosis a third programmed cell death, ferroptosis is also involved in acetaminophen induced cell death in primary hepatocytes.

  5. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    PubMed Central

    Riad, Sandra; Bougherara, Habiba

    2015-01-01

    Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death). PMID:25685789

  6. Ceramide mediates caspase-independent programmed cell death.

    PubMed

    Thon, Lutz; Möhlig, Heike; Mathieu, Sabine; Lange, Arne; Bulanova, Elena; Winoto-Morbach, Supandi; Schütze, Stefan; Bulfone-Paus, Silvia; Adam, Dieter

    2005-12-01

    Although numerous studies have implicated the sphingolipid ceramide in the induction of cell death, a causative function of ceramide in caspase-dependent apoptosis remains a highly debated issue. Here, we show that ceramide is a key mediator of a distinct route to programmed cell death (PCD), i.e., caspase-independent PCD. Under conditions where apoptosis is either not initiated or actively inhibited, TNF induces caspase-independent PCD in L929 fibrosarcoma cells, NIH3T3 fibroblasts, human leukemic Jurkat T cells, and lung fibroblasts by increasing intracellular ceramide levels prior to the onset of cell death. Survival is significantly enhanced when ceramide accumulation is prevented, as demonstrated in fibroblasts genetically deficient for acid sphingomyelinase, in L929 cells overexpressing acid ceramidase, by pharmacological intervention, or by RNA interference. Jurkat cells deficient for receptor-interacting protein 1 (RIP1) do not accumulate ceramide and therefore are fully resistant to caspase-independent PCD whereas Jurkat cells overexpressing the mitochondrial protein Bcl-2 are partially protected, implicating RIP1 and mitochondria as components of the ceramide death pathway. Our data point to a role of caspases (but not cathepsins) in suppressing the ceramide death pathway under physiological conditions. Moreover, clonogenic survival of tumor cells is clearly reduced by induction of the ceramide death pathway, promising additional options for the development of novel tumor therapies.

  7. Sickle cell trait and sudden death--bringing it home.

    PubMed Central

    Mitchell, Bruce L.

    2007-01-01

    Sickle cell trait continues to be the leading cause of sudden death for young African Americans in military basic training and civilian organized sports. The syndrome may have caused the death of up to 10 college football players since 1974 and, as recently as 2000, was suspected as the cause of death of three U.S. Army recruits. The penal military-style boot camps in the United States and the recent death of two teenagers with sickle cell trait merits renewed vigor in the education of athletic instructors, the military and the public about conditions associated with sudden death in individuals with sickle cell trait. Images Figure 1 Figure 2 PMID:17393956

  8. Reliable Method for Detection of Programmed Cell Death in Yeast

    PubMed Central

    Teng, Xinchen; Hardwick, J. Marie

    2011-01-01

    Summary Accumulating evidence suggests that yeasts are capable of undergoing programmed cell death (PCD) to benefit long-term survival of the species, and that yeast and mammals may share at least partially conserved PCD pathways. In our experience, mammalian apoptosis assays have not been readily applicable to yeast. Therefore, to take advantage of yeast as a genetic tool to study PCD, we developed a yeast cell death assay that can reliably reveal viability differences between wild-type strains and strains lacking the mitochondrial fission genes DNM1/Drp1 and FIS1, orthologs of mammalian cell death regulators. Cell viability following treatment with acetic acid is quantified by colony formation and vital dye (FUN1) staining to reproducibly detect dose-dependent, genetically programmed yeast cell death. PMID:19609767

  9. Modelling radiation-induced cell death and tumour re-oxygenation: local versus global and instant versus delayed cell death

    NASA Astrophysics Data System (ADS)

    Gago-Arias, Araceli; Aguiar, Pablo; Espinoza, Ignacio; Sánchez-Nieto, Beatriz; Pardo-Montero, Juan

    2016-02-01

    The resistance of hypoxic cells to radiation, due to the oxygen dependence of radiosensitivity, is well known and must be taken into account to accurately calculate the radiation induced cell death. A proper modelling of the response of tumours to radiation requires deriving the distribution of oxygen at a microscopic scale. This usually involves solving the reaction-diffusion equation in tumour voxels using a vascularization distribution model. Moreover, re-oxygenation arises during the course of radiotherapy, one reason being the increase of available oxygen caused by cell killing, which can turn hypoxic tumours into oxic. In this work we study the effect of cell death kinetics in tumour oxygenation modelling, analysing how it affects the timing of re-oxygenation, surviving fraction and tumour control. Two models of cell death are compared, an instantaneous cell killing, mimicking early apoptosis, and a delayed cell death scenario in which cells can die shortly after being damaged, as well as long after irradiation. For each of these scenarios, the decrease in oxygen consumption due to cell death can be computed globally (macroscopic voxel average) or locally (microscopic). A re-oxygenation model already used in the literature, the so called full re-oxygenation, is also considered. The impact of cell death kinetics and re-oxygenation on tumour responses is illustrated for two radiotherapy fractionation schemes: a conventional schedule, and a hypofractionated treatment. The results show large differences in the doses needed to achieve 50% tumour control for the investigated cell death models. Moreover, the models affect the tumour responses differently depending on the treatment schedule. This corroborates the complex nature of re-oxygenation, showing the need to take into account the kinetics of cell death in radiation response models.

  10. Modelling radiation-induced cell death and tumour re-oxygenation: local versus global and instant versus delayed cell death.

    PubMed

    Gago-Arias, Araceli; Aguiar, Pablo; Espinoza, Ignacio; Sánchez-Nieto, Beatriz; Pardo-Montero, Juan

    2016-02-07

    The resistance of hypoxic cells to radiation, due to the oxygen dependence of radiosensitivity, is well known and must be taken into account to accurately calculate the radiation induced cell death. A proper modelling of the response of tumours to radiation requires deriving the distribution of oxygen at a microscopic scale. This usually involves solving the reaction-diffusion equation in tumour voxels using a vascularization distribution model. Moreover, re-oxygenation arises during the course of radiotherapy, one reason being the increase of available oxygen caused by cell killing, which can turn hypoxic tumours into oxic. In this work we study the effect of cell death kinetics in tumour oxygenation modelling, analysing how it affects the timing of re-oxygenation, surviving fraction and tumour control. Two models of cell death are compared, an instantaneous cell killing, mimicking early apoptosis, and a delayed cell death scenario in which cells can die shortly after being damaged, as well as long after irradiation. For each of these scenarios, the decrease in oxygen consumption due to cell death can be computed globally (macroscopic voxel average) or locally (microscopic). A re-oxygenation model already used in the literature, the so called full re-oxygenation, is also considered. The impact of cell death kinetics and re-oxygenation on tumour responses is illustrated for two radiotherapy fractionation schemes: a conventional schedule, and a hypofractionated treatment. The results show large differences in the doses needed to achieve 50% tumour control for the investigated cell death models. Moreover, the models affect the tumour responses differently depending on the treatment schedule. This corroborates the complex nature of re-oxygenation, showing the need to take into account the kinetics of cell death in radiation response models.

  11. Polyoma small T antigen triggers cell death via mitotic catastrophe

    PubMed Central

    Fernando, Arun T Pores; Andrabi, Shaida; Cizmecioglu, Onur; Zhu, Cailei; Livingston, David M.; Higgins, Jonathan M.G; Schaffhausen, Brian S; Roberts, Thomas M

    2014-01-01

    Polyoma small T antigen (PyST), an early gene product of the polyoma virus, has been shown to cause cell death in a number of mammalian cells in a protein phosphatase 2A (PP2A)-dependent manner. In the current study, using a cell line featuring regulated expression of PyST, we found that PyST arrests cells in mitosis. Live-cell and immunofluorescence studies showed that the majority of the PyST-expressing cells were arrested in prometaphase with almost no cells progressing beyond metaphase. These cells exhibited defects in chromosomal congression, sister chromatid cohesion and spindle positioning, resulting in the activation of the Spindle Assembly Checkpoint (SAC). Prolonged mitotic arrest then led to cell death via mitotic catastrophe. Cell cycle inhibitors that block cells in G1/S prevented PyST-induced death. PyST-induced cell death that occurs during M is not dependent on p53 status. These data suggested, and our results confirmed that, PP2A inhibition could be used to preferentially kill cancer cells with p53 mutations that proliferate normally in the presence of cell cycle inhibitors. PMID:24998850

  12. HSPA5 Regulates Ferroptotic Cell Death in Cancer Cells.

    PubMed

    Zhu, Shan; Zhang, Qiuhong; Sun, Xiaofan; Zeh, Herbert J; Lotze, Michael T; Kang, Rui; Tang, Daolin

    2017-01-27

    Ferroptosis is a form of regulated cell death driven by oxidative injury promoting lipid peroxidation, although detailed molecular regulators are largely unknown. Here, we show that heatshock 70-kDa protein 5 (HSPA5) negatively regulates ferroptosis in human pancreatic ductal adenocarcinoma (PDAC) cells. Mechanistically, activating transcription factor 4 (ATF4) resulted in the induction of HSPA5, which in turn bound glutathione peroxidase 4 (GPX4) and protected against GPX4 protein degradation and subsequent lipid peroxidation. Importantly, the HSPA5-GPX4 pathway mediated ferroptosis resistance, limiting the anticancer activity of gemcitabine. Genetic or pharmacologic inhibition of the HSPA5-GPX4 pathway enhanced gemcitabine sensitivity by disinhibiting ferroptosis in vitro and in both subcutaneous and orthotopic animal models of PDAC. Collectively, these findings identify a novel role of HSPA5 in ferroptosis and suggest a potential therapeutic strategy for overcoming gemcitabine resistance. Cancer Res; 77(8); 1-14. ©2017 AACR.

  13. Octylphenol induces vitellogenin production and cell death in fish hepatocytes

    SciTech Connect

    Toomey, B.H.; Monteverdi, G.H.; Di Giulio, R.T.

    1999-04-01

    The effects of octylphenol (OP) on vitellogenin production and cell death in hepatocytes from brown bullhead catfish (Americurus nebulosus) were studied. Production of vitellogenin was induced in hepatocytes exposed to 10 to 50 {micro}M OP, whereas a higher concentration of OP (100 {micro}M) induced apoptotic cell death. By 3 h after the addition of 100 {micro}M OP, dying cells showed chromatin condensation and DNA fragmentation as determined by fluorescence microscopy and gel electrophoresis. Later stages of cell death (nuclear membrane breakdown and cell fragmentation into apoptotic bodies) were identified in cells exposed to OP for at least 6 h. Hepatocytes exposed to 100 {micro}M OP also produced less vitellogenin than cells exposed to 50 {micro}M OP. An estrogen receptor antagonist, tamoxifen, greatly decreased vitellogenin production in OP-exposed hepatocytes from male fish but did not decrease cell death in these cells. Thus, although the ability of OP to induce vitellogenin production is likely mediated through interactions with the estrogen receptor, the induction of apoptotic cell death by OP does not appear to be dependent on its estrogenic activity but may be a more general toxic effect.

  14. Detecting cell death with optical coherence tomography and envelope statistics

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.

    2011-02-01

    Currently no standard clinical or preclinical noninvasive method exists to monitor cell death based on morphological changes at the cellular level. In our past work we have demonstrated that quantitative high frequency ultrasound imaging can detect cell death in vitro and in vivo. In this study we apply quantitative methods previously used with high frequency ultrasound to optical coherence tomography (OCT) to detect cell death. The ultimate goal of this work is to use these methods for optically-based clinical and preclinical cancer treatment monitoring. Optical coherence tomography data were acquired from acute myeloid leukemia cells undergoing three modes of cell death. Significant increases in integrated backscatter were observed for cells undergoing apoptosis and mitotic arrest, while necrotic cells induced a decrease. These changes appear to be linked to structural changes observed in histology obtained from the cell samples. Signal envelope statistics were analyzed from fittings of the generalized gamma distribution to histograms of envelope intensities. The parameters from this distribution demonstrated sensitivities to morphological changes in the cell samples. These results indicate that OCT integrated backscatter and first order envelope statistics can be used to detect and potentially differentiate between modes of cell death in vitro.

  15. Analysis of Cell Death Induction in Intestinal Organoids In Vitro.

    PubMed

    Grabinger, Thomas; Delgado, Eugenia; Brunner, Thomas

    2016-01-01

    The intestinal epithelium has an important function in the absorption of nutrients contained in the food. Furthermore, it also has an important barrier function, preventing luminal pathogens from entering the bloodstream. This single cell layer epithelium is quite sensitive to various cell death-promoting triggers, including drugs, irradiation, and TNF family members, leading to loss of barrier integrity, epithelial erosion, inflammation, malabsorption, and diarrhea. In order to assess the intestinal epithelium-damaging potential of treatments and substances specific test systems are required. As intestinal tumor cell lines are a poor substitute for primary intestinal epithelial cells, and in vivo experiments in mice are costly and often unethical, the use of intestinal organoids cultured from intestinal crypts provide an ideal tool to study cell death induction and mechanisms in primary intestinal epithelial cells. This protocol describes the isolation and culture of intestinal organoids from murine small intestinal crypts, and the quantitative assessment of cell death induction in these organoids.

  16. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death.

    PubMed

    Kwon, Min-Young; Park, Eunhee; Lee, Seon-Jin; Chung, Su Wol

    2015-09-15

    The oncogenic RAS-selective lethal small molecule Erastin triggers a unique iron-dependent form of nonapoptotic cell death termed ferroptosis. Ferroptosis is dependent upon the production of intracellular iron-dependent reactive oxygen species (ROS), but not other metals. However, key regulators remain unknown. The heme oxygenase (HO) is a major intracellular source of iron. In this study, the role of heme oxygenase in Erastin-triggered ferroptotic cancer cell death has been investigated. Zinc protoporphyrin IX (ZnPP), a HO-1 inhibitor, prevented Erastin-triggered ferroptotic cancer cell death. Furthermore, Erastin induced the protein and mRNA levels of HO-1 in HT-1080 fibrosarcoma cells. HO-1+/+ and HO-1-/- fibroblast, HO-1 overexpression, and chycloheximide-treated experiments revealed that the expression of HO-1 has a decisive effects in Erastin-triggered cell death. Hemin and CO-releasing molecules (CORM) promote Erastin-induced ferroptotic cell death, not by biliverdin and bilirubin. In addition, hemin and CORM accelerate the HO-1 expression in the presence of Erastin and increase membranous lipid peroxidation. Thus, HO-1 is an essential enzyme for iron-dependent lipid peroxidation during ferroptotic cell death.

  17. Biochemical evidence for programmed cell death in rabbit uterine epithelium.

    PubMed Central

    Rotello, R. J.; Hocker, M. B.; Gerschenson, L. E.

    1989-01-01

    Uterine epithelial cell proliferation, differentiation, and death are known to be regulated by estrogen and progesterone. The authors investigated a specific pattern of cell death called apoptosis, or programmed cell death, which is biochemically characterized by a specific pattern of DNA degradation. DNA isolated from endometrium of ovariectomized pseudopregnant rabbits showed a pattern of DNA cleavage at internucleosomal locations. In comparison, DNA from the endometrium of non-ovariectomized animals, as well as several other organs, did not exhibit that pattern. This biochemical evidence supports previous and present morphologic data and correlates with it. Under the experimental conditions used, only the uterine epithelial compartment of the endometrium shows apoptotic cell death, which is absent in the stromal compartment. Images Figure 1 Figure 2 PMID:2923180

  18. Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures.

    PubMed

    García-Heredia, José M; Hervás, Manuel; De la Rosa, Miguel A; Navarro, José A

    2008-06-01

    Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.

  19. Statins, Bcl-2, and apoptosis: cell death or cell protection?

    PubMed

    Wood, W Gibson; Igbavboa, Urule; Muller, Walter E; Eckert, Gunter P

    2013-10-01

    Statins have proven their effectiveness in the treatment of cardiovascular disease. This class of drugs has also attracted attention as a potential treatment for dissimilar diseases such as certain types of cancers and neurodegenerative diseases. What appears to be a contradiction is that, in the case of cancer, it has been suggested that statins increase apoptosis and alter levels of Bcl-2 family members (e.g., reduce Bcl-2 and increase Bax), whereas studies mainly using noncancerous cells report opposite effects. This review examined studies reporting on the effects of statins on Bcl-2 family members, apoptosis, cell death, and cell protection. Much, but not all, of the evidence supporting the pro-apoptotic effects of statins is based on data in cancer cell lines and the use of relatively high drug concentrations. Studies indicating an anti-apoptotic effect of statins are fewer in number and generally used much lower drug concentrations and normal cells. Those conclusions are not definitive, and certainly, there is a need for additional research to determine if statin repositioning is justified for noncardiovascular diseases.

  20. Apoptotic Cell Death of Human Interstitial Cells of Cajal

    PubMed Central

    De Giorgio, Roberto; Faussone Pellegrini, Maria Simonetta; Garrity-Park, Megan M.; Miller, Steven M.; Schmalz, Philip F.; Young-Fadok, Tonia M.; Larson, David W.; Dozois, Eric J.; Camilleri, Michael; Stanghellini, Vincenzo; Szurszewski, Joseph H.; Farrugia, Gianrico

    2008-01-01

    Interstitial cells of Cajal (ICC) are specialized mesenchyme-derived cells that regulate contractility and excitability of many smooth muscles with loss of ICC seen in a variety of gut motility disorders. Maintenance of ICC numbers is tightly regulated, with several factors known to regulate proliferation. In contrast, the fate of ICC is not established. The aim of this study was to investigate whether apoptosis plays a role in the regulation of ICC numbers in the normal colon. ICC were identified by immunolabeling for the c-Kit receptor tyrosine kinase and by electron microscopy. Apoptosis was detected in colon tissue by immunolabeling for activated caspase-3, terminal dUTP nucleotide end labeling, and ultrastructural changes in the cells. Apoptotic ICC were identified and counted in double labeled tissue sections. Apoptotic ICC were identified in all layers of the colonic muscle. In the muscularis propria 1.5 ± 0.2% of ICC were positive for activated caspase-3 and in the circular muscle layer 2.1 ± 0.9% of ICC were positive for TUNEL. Apoptotic ICC were identified by electron microscopy. Apoptotic cell death is ongoing in ICC. The level of apoptosis in ICC in healthy colon indicates that these cells must be continually regenerated to maintain intact networks. PMID:18798796

  1. Epigenetic regulation of motor neuron cell death through DNA methylation.

    PubMed

    Chestnut, Barry A; Chang, Qing; Price, Ann; Lesuisse, Catherine; Wong, Margaret; Martin, Lee J

    2011-11-16

    DNA methylation is an epigenetic mechanism for gene silencing engaged by DNA methyltransferase (Dnmt)-catalyzed methyl group transfer to cytosine residues in gene-regulatory regions. It is unknown whether aberrant DNA methylation can cause neurodegeneration. We tested the hypothesis that Dnmts can mediate neuronal cell death. Enforced expression of Dnmt3a induced degeneration of cultured NSC34 cells. During apoptosis of NSC34 cells induced by camptothecin, levels of Dnmt1 and Dnmt3a increased fivefold and twofold, respectively, and 5-methylcytosine accumulated in nuclei. Truncation mutation of the Dnmt3a catalytic domain and Dnmt3a RNAi blocked apoptosis of cultured neurons. Inhibition of Dnmt catalytic activity with RG108 and procainamide protected cultured neurons from excessive DNA methylation and apoptosis. In vivo, Dnmt1 and Dnmt3a are expressed differentially during mouse brain and spinal cord maturation and in adulthood when Dnmt3a is abundant in synapses and mitochondria. Dnmt1 and Dnmt3a are expressed in motor neurons of adult mouse spinal cord, and, during their apoptosis induced by sciatic nerve avulsion, nuclear and cytoplasmic 5-methylcytosine immunoreactivity, Dnmt3a protein levels and Dnmt enzyme activity increased preapoptotically. Inhibition of Dnmts with RG108 blocked completely the increase in 5-methycytosine and the apoptosis of motor neurons in mice. In human amyotrophic lateral sclerosis (ALS), motor neurons showed changes in Dnmt1, Dnmt3a, and 5-methylcytosine similar to experimental models. Thus, motor neurons can engage epigenetic mechanisms to drive apoptosis, involving Dnmt upregulation and increased DNA methylation. These cellular mechanisms could be relevant to human ALS pathobiology and disease treatment.

  2. Nitric oxide: promoter or suppressor of programmed cell death?

    PubMed

    Wang, Yiqin; Chen, Chen; Loake, Gary J; Chu, Chengcai

    2010-02-01

    Nitric oxide (NO) is a short-lived gaseous free radical that predominantly functions as a messenger and effector molecule. It affects a variety of physiological processes, including programmed cell death (PCD) through cyclic guanosine monophosphate (cGMP)-dependent and - independent pathways. In this field, dominant discoveries are the diverse apoptosis networks in mammalian cells, which involve signals primarily via death receptors (extrinsic pathway) or the mitochondria (intrinsic pathway) that recruit caspases as effector molecules. In plants, PCD shares some similarities with animal cells, but NO is involved in PCD induction via interacting with pathways of phytohormones. NO has both promoting and suppressing effects on cell death, depending on a variety of factors, such as cell type, cellular redox status, and the flux and dose of local NO. In this article, we focus on how NO regulates the apoptotic signal cascade through protein S-nitrosylation and review the recent progress on mechanisms of PCD in both mammalian and plant cells.

  3. Surviving apoptosis: life-death signaling in single cells

    PubMed Central

    Flusberg, Deborah A.; Sorger, Peter K.

    2015-01-01

    Tissue development and homeostasis are regulated by opposing pro-survival and pro-death signals. An interesting feature of the Tumor Necrosis Factor (TNF) family of ligands is that they simultaneously activate opposing signals within a single cell via the same ligand-receptor complex. The magnitude of pro-death events such as caspase activation and pro-survival events such as NF-κB activation vary not only from one cell type to the next but also among individual cells of the same type due to intrinsic and extrinsic noise. The molecules involved in these pro-survival/pro-death pathways, and the different phenotypes that result from their activities, have been recently reviewed. Here we focus on the impact of cell-to-cell variability in the strength of these opposing signals on shaping cell fate decisions. PMID:25920803

  4. Centrality of host cell death in plant-microbe interactions.

    PubMed

    Dickman, Martin B; Fluhr, Robert

    2013-01-01

    Programmed cell death (PCD) is essential for proper growth, development, and cellular homeostasis in all eukaryotes. The regulation of PCD is of central importance in plant-microbe interactions; notably, PCD and features associated with PCD are observed in many host resistance responses. Conversely, pathogen induction of inappropriate cell death in the host results in a susceptible phenotype and disease. Thus, the party in control of PCD has a distinct advantage in these battles. PCD processes appear to be of ancient origin, as indicated by the fact that many features of cell death strategy are conserved between animals and plants; however, some of the details of death execution differ. Mammalian core PCD genes, such as caspases, are not present in plant genomes. Similarly, pro- and antiapoptotic mammalian regulatory elements are absent in plants, but, remarkably, when expressed in plants, successfully impact plant PCD. Thus, subtle structural similarities independent of sequence homology appear to sustain operational equivalence. The vacuole is emerging as a key organelle in the modulation of plant PCD. Under different signals for cell death, the vacuole either fuses with the plasmalemma membrane or disintegrates. Moreover, the vacuole appears to play a key role in autophagy; evidence suggests a prosurvival function for autophagy, but other studies propose a prodeath phenotype. Here, we describe and discuss what we know and what we do not know about various PCD pathways and how the host integrates signals to activate salicylic acid and reactive oxygen pathways that orchestrate cell death. We suggest that it is not cell death as such but rather the processes leading to cell death that contribute to the outcome of a given plant-pathogen interaction.

  5. Targeting Cell Survival Proteins for Cancer Cell Death

    PubMed Central

    Pandey, Manoj K.; Prasad, Sahdeo; Tyagi, Amit Kumar; Deb, Lokesh; Huang, Jiamin; Karelia, Deepkamal N.; Amin, Shantu G.; Aggarwal, Bharat B.

    2016-01-01

    Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise. PMID:26927133

  6. Understanding Cone Photoreceptor Cell Death in Achromatopsia.

    PubMed

    Carvalho, Livia S; Vandenberghe, Luk H

    2016-01-01

    Colour vision is only achieved in the presence of healthy and functional cone photoreceptors found in the retina. It is an essential component of human vision and usually the first complaint patients undergoing vision degeneration have is the loss of daylight colour vision. Therefore, an understanding of the biology and basic mechanisms behind cone death under the degenerative state of retinal dystrophies and how the activation of the apoptotic pathway is triggered will provide valuable knowledge. It will also have broader applications for a spectrum of visual disorders and will be critical for future advances in translational research.

  7. Mechanisms of Growth Factor Attenuation of Cell Death in Chemotherapy Treated Breast Cancer Cells

    DTIC Science & Technology

    2003-08-01

    cells treated with chemotherapy or radiation. To this end, we have focused on the survival kinase, Akt and also the kinase which conveys cell death messages...these cells are resistant to the cell death pathway that is typically activated with chemotherapy and radiation treatment. Therefore, we are currently...studying new mechanisms for Akt mediated cell survival. Our work to identify how JNK conveys cell death signals in response to UV or chemotherapy

  8. Role of ceramide in suramin-induced cancer cell death.

    PubMed

    Gill, J S; Windebank, A J

    1997-11-11

    Suramin is an experimental antineoplastic agent which is currently being tested in clinical trials for its utility in treating breast and prostate cancer. Recent in vitro studies from our laboratory report a disruption in glycolipid metabolism and cell death in suramin-treated neurons. Evidence presented in this study proposes to consolidate the neurotoxic and cytotoxic effects of suramin. Electron microscopic studies, bis-benzimide staining and DNA gel electrophoresis of suramin and C2-ceramide treatment revealed apoptotic cells in human breast, prostate and rat neuron like cell lines. Apoptotic cell death was preceded by an elevation in intracellular ceramide.

  9. Morphological and cytochemical determination of cell death by apoptosis

    PubMed Central

    Sobel, Burton E.; Budd, Ralph C.

    2007-01-01

    Several modes of cell death are now recognized, including necrosis, apoptosis, and autophagy. Oftentimes the distinctions between these various modes may not be apparent, although the precise mode may be physiologically important. Accordingly, it is often desirable to be able to classify the mode of cell death. Apoptosis was originally defined by structural alterations in cells observable by transmitted light and electron microscopy. Today, a wide variety of imaging and cytochemical techniques are available for the investigation of apoptosis. This review will highlight many of these methods, and provide a critique on the advantages and disadvantages associated with them for the specific identification of apoptotic cells in culture and tissues. PMID:18000678

  10. Tamoxifen Toxicity in Cultured Retinal Pigment Epithelial Cells Is Mediated by Concurrent Regulated Cell Death Mechanisms

    PubMed Central

    Kim, Leo A.; Amarnani, Dhanesh; Gnanaguru, Gopalan; Tseng, Wen Allen; Vavvas, Demetrios G.; D'Amore, Patricia A.

    2014-01-01

    Purpose. To evaluate the mechanism of tamoxifen-induced cell death in human cultured RPE cells, and to investigate concurrent cell death mechanisms including pyroptosis, apoptosis, and necroptosis. Methods. Human RPE cells were cultured until confluence and treated with tamoxifen; cell death was measured by detecting LDH release. Tamoxifen-induced cell death was further confirmed by 7-aminoactinomycin D (7-AAD) and annexin V staining. Lysosomal destabilization was assessed using lysosomal-associated membrane protein-1 (LAMP-1) and acridine orange staining. The roles of lysosomal enzymes cathepsin B and L were examined by blocking their activity. Caspase activity was evaluated by caspase-1, -3, -8, and -9 specific inhibition. Cells were primed with IL-1α and treated with tamoxifen; mature IL-1β production was quantified via ELISA. Caspase activity was verified with the fluorochrome-labeled inhibitor of caspases (FLICA) probe specific for each caspase. Regulated cell necrosis or necroptosis was examined with 7-AAD and inhibition of receptor-interacting protein 1 (RIP1) kinase using necrostatin-1 (Nec-1). Results. Cell death occurred within 2 hours of tamoxifen treatment of confluent RPE cells and was accompanied by lysosomal membrane permeabilization. Blockade of cathepsin B and L activity led to a significant decrease in cell death, indicating that lysosomal destabilization and cathepsin release occur prior to regulated cell death. Tamoxifen-induced toxicity was shown to occur through both caspase-dependent and caspase-independent cell death pathways. Treatment of RPE cells with caspase inhibitors and Nec-1 resulted in a near complete rescue from cell death. Conclusions. Tamoxifen-induced cell death occurs through concurrent regulated cell death mechanisms. Simultaneous inhibition of caspase-dependent and caspase-independent cell death pathways is required to protect cells from tamoxifen. Inhibition of upstream activators, such as the cathepsins, may represent a

  11. Calcium signaling and cell cycle: Progression or death.

    PubMed

    Humeau, Juliette; Bravo-San Pedro, José Manuel; Vitale, Ilio; Nuñez, Lucia; Villalobos, Carlos; Kroemer, Guido; Senovilla, Laura

    2017-07-25

    Cytosolic Ca(2+) concentration levels fluctuate in an ordered manner along the cell cycle, in line with the fact that Ca(2+) is involved in the regulation of cell proliferation. Cell proliferation should be an error-free process, yet is endangered by mistakes. In fact, a complex network of proteins ensures that cell cycle does not progress until the previous phase has been successfully completed. Occasionally, errors occur during the cell cycle leading to cell cycle arrest. If the error is severe, and the cell cycle checkpoints work perfectly, this results into cellular demise by activation of apoptotic or non-apoptotic cell death programs. Cancer is characterized by deregulated proliferation and resistance against cell death. Ca(2+) is a central key to these phenomena as it modulates signaling pathways that control oncogenesis and cancer progression. Here, we discuss how Ca(2+) participates in the exogenous and endogenous signals controlling cell proliferation, as well as in the mechanisms by which cells die if irreparable cell cycle damage occurs. Moreover, we summarize how Ca(2+) homeostasis remodeling observed in cancer cells contributes to deregulated cell proliferation and resistance to cell death. Finally, we discuss the possibility to target specific components of Ca(2+) signal pathways to obtain cytostatic or cytotoxic effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Transcriptomics and Functional Genomics of ROS-Induced Cell Death Regulation by RADICAL-INDUCED CELL DEATH1

    PubMed Central

    Salojärvi, Jarkko; Cui, Fuqiang; Sipari, Nina; Leppälä, Johanna; Lamminmäki, Airi; Tomai, Gloria; Narayanasamy, Shaman; Reddy, Ramesha A.; Keinänen, Markku; Overmyer, Kirk; Kangasjärvi, Jaakko

    2014-01-01

    Plant responses to changes in environmental conditions are mediated by a network of signaling events leading to downstream responses, including changes in gene expression and activation of cell death programs. Arabidopsis thaliana RADICAL-INDUCED CELL DEATH1 (RCD1) has been proposed to regulate plant stress responses by protein-protein interactions with transcription factors. Furthermore, the rcd1 mutant has defective control of cell death in response to apoplastic reactive oxygen species (ROS). Combining transcriptomic and functional genomics approaches we first used microarray analysis in a time series to study changes in gene expression after apoplastic ROS treatment in rcd1. To identify a core set of cell death regulated genes, RCD1-regulated genes were clustered together with other array experiments from plants undergoing cell death or treated with various pathogens, plant hormones or other chemicals. Subsequently, selected rcd1 double mutants were constructed to further define the genetic requirements for the execution of apoplastic ROS induced cell death. Through the genetic analysis we identified WRKY70 and SGT1b as cell death regulators functioning downstream of RCD1 and show that quantitative rather than qualitative differences in gene expression related to cell death appeared to better explain the outcome. Allocation of plant energy to defenses diverts resources from growth. Recently, a plant response termed stress-induced morphogenic response (SIMR) was proposed to regulate the balance between defense and growth. Using a rcd1 double mutant collection we show that SIMR is mostly independent of the classical plant defense signaling pathways and that the redox balance is involved in development of SIMR. PMID:24550736

  13. Acetaminophen Induces Human Neuroblastoma Cell Death through NFKB Activation

    PubMed Central

    Posadas, Inmaculada; Santos, Pablo; Ceña, Valentín

    2012-01-01

    Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-xL did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β. PMID:23166834

  14. Acetaminophen induces human neuroblastoma cell death through NFKB activation.

    PubMed

    Posadas, Inmaculada; Santos, Pablo; Ceña, Valentín

    2012-01-01

    Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-x(L) did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β.

  15. Apoptotic-like programmed cell death in plants.

    PubMed

    Reape, Theresa J; McCabe, Paul F

    2008-01-01

    Programmed cell death (PCD) is now accepted as a fundamental cellular process in plants. It is involved in defence, development and response to stress, and our understanding of these processes would be greatly improved through a greater knowledge of the regulation of plant PCD. However, there may be several types of PCD that operate in plants, and PCD research findings can be confusing if they are not assigned to a specific type of PCD. The various cell-death mechanisms need therefore to be carefully described and defined. This review describes one of these plant cell death processes, namely the apoptotic-like PCD (AL-PCD). We begin by examining the hallmark 'apoptotic-like' features (protoplast condensation, DNA degradation) of the cell's destruction that are characteristic of AL-PCD, and include examples of AL-PCD during the plant life cycle. The review explores the possible cellular 'executioners' (caspase-like molecules; mitochondria; de novo protein synthesis) that are responsible for the hallmark features of the cellular destruction. Finally, senescence is used as a case study to show that a rigorous definition of cell-death processes in plant cells can help to resolve arguments that occur in the scientific literature regarding the timing and control of plant cell death.

  16. Role of mesenchymal cell death in lung remodeling after injury.

    PubMed Central

    Polunovsky, V A; Chen, B; Henke, C; Snover, D; Wendt, C; Ingbar, D H; Bitterman, P B

    1993-01-01

    Repair after acute lung injury requires elimination of granulation tissue from the alveolar airspace. We hypothesized that during lung repair, signals capable of inducing the death of the two principal cellular elements of granulation tissue, fibroblasts and endothelial cells, would be present at the air-lung interface. Bronchoalveolar lavage fluid obtained from patients during lung repair induced both fibroblast and endothelial cell death, while fluid obtained at the time of injury or from patient controls did not. The mode of cell death for endothelial cells was apoptosis. Fibroblast death, while morphologically distinct from necrosis, also differed from typical apoptosis. Only proliferating cells were susceptible to the bioactivities in lavage fluid, which were trypsin sensitive and lipid insoluble. Histological examination of lung tissue from patients after lung injury revealed evidence of apoptotic cells within airspace granulation tissue. Our results suggest that cell death induced by peptide(s) present at the air-lung interface may participate in the remodeling process that accompanies tissue repair after injury. Images PMID:8326006

  17. Accelerated Tumor Cell Death by Anglogenic Modifiers

    DTIC Science & Technology

    2005-08-01

    interesting phenotype of prostate cancer cells, in subsequently increased bone resorption . The enhanced which they behave like osteoblasts. Prostate cancer...cells resorptive process by osteoblasts and osteoclasts leads express both soluble and membrane-bound RANK to "bone pitting" and subsequent colonization...bone resorption , have been shown to reduce can- isoforms and their related receptors which act as para- cer cell colonization in experimental models of

  18. Understanding cell cycle and cell death regulation provides novel weapons against human diseases.

    PubMed

    Wiman, K G; Zhivotovsky, B

    2017-05-01

    Cell division, cell differentiation and cell death are the three principal physiological processes that regulate tissue homoeostasis in multicellular organisms. The growth and survival of cells as well as the integrity of the genome are regulated by a complex network of pathways, in which cell cycle checkpoints, DNA repair and programmed cell death have critical roles. Disruption of genomic integrity and impaired regulation of cell death may both lead to uncontrolled cell growth. Compromised cell death can also favour genomic instability. It is becoming increasingly clear that dysregulation of cell cycle and cell death processes plays an important role in the development of major disorders such as cancer, cardiovascular disease, infection, inflammation and neurodegenerative diseases. Research achievements in these fields have led to the development of novel approaches for treatment of various conditions associated with abnormalities in the regulation of cell cycle progression or cell death. A better understanding of how cellular life-and-death processes are regulated is essential for this development. To highlight these important advances, the Third Nobel Conference entitled 'The Cell Cycle and Cell Death in Disease' was organized at Karolinska Institutet in 2016. In this review we will summarize current understanding of cell cycle progression and cell death and discuss some of the recent advances in therapeutic applications in pathological conditions such as cancer, neurological disorders and inflammation. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  19. Regulation of cell death receptor S-nitrosylation and apoptotic signaling by Sorafenib in hepatoblastoma cells.

    PubMed

    Rodríguez-Hernández, A; Navarro-Villarán, E; González, R; Pereira, S; Soriano-De Castro, L B; Sarrias-Giménez, A; Barrera-Pulido, L; Álamo-Martínez, J M; Serrablo-Requejo, A; Blanco-Fernández, G; Nogales-Muñoz, A; Gila-Bohórquez, A; Pacheco, D; Torres-Nieto, M A; Serrano-Díaz-Canedo, J; Suárez-Artacho, G; Bernal-Bellido, C; Marín-Gómez, L M; Barcena, J A; Gómez-Bravo, M A; Padilla, C A; Padillo, F J; Muntané, J

    2015-12-01

    Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10 µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Protease signaling in animal and plant-regulated cell death.

    PubMed

    Salvesen, Guy S; Hempel, Anne; Coll, Nuria S

    2016-07-01

    This review aims to highlight the proteases required for regulated cell death mechanisms in animals and plants. The aim is to be incisive, and not inclusive of all the animal proteases that have been implicated in various publications. The review also aims to focus on instances when several publications from disparate groups have demonstrated the involvement of an animal protease, and also when there is substantial biochemical, mechanistic and genetic evidence. In doing so, the literature can be culled to a handful of proteases, covering most of the known regulated cell death mechanisms: apoptosis, regulated necrosis, necroptosis, pyroptosis and NETosis in animals. In plants, the literature is younger and not as extensive as for mammals, although the molecular drivers of vacuolar death, necrosis and the hypersensitive response in plants are becoming clearer. Each of these death mechanisms has at least one proteolytic component that plays a major role in controlling the pathway, and sometimes they combine in networks to regulate cell death/survival decision nodes. Some similarities are found among animal and plant cell death proteases but, overall, the pathways that they govern are kingdom-specific with very little overlap. © 2015 FEBS.

  1. Early Cell Death Detection with Digital Holographic Microscopy

    PubMed Central

    Pavillon, Nicolas; Kühn, Jonas; Moratal, Corinne; Jourdain, Pascal; Depeursinge, Christian

    2012-01-01

    Background Digital holography provides a non-invasive measurement of the quantitative phase shifts induced by cells in culture, which can be related to cell volume changes. It has been shown previously that regulation of cell volume, in particular as it relates to ionic homeostasis, is crucially involved in the activation/inactivation of the cell death processes. We thus present here an application of digital holographic microscopy (DHM) dedicated to early and label-free detection of cell death. Methods and Findings We provide quantitative measurements of phase signal obtained on mouse cortical neurons, and caused by early neuronal cell volume regulation triggered by excitotoxic concentrations of L-glutamate. We show that the efficiency of this early regulation of cell volume detected by DHM, is correlated with the occurrence of subsequent neuronal death assessed with the widely accepted trypan blue method for detection of cell viability. Conclusions The determination of the phase signal by DHM provides a simple and rapid optical method for the early detection of cell death. PMID:22303471

  2. Cysteine aggravates palmitate-induced cell death in hepatocytes

    PubMed Central

    Dou, Xiaobing; Wang, Zhigang; Yao, Tong; Song, Zhenyuan

    2011-01-01

    Aims Lipotoxicity, defined as cell death induced by excessive fatty acids, especially saturated fatty acids, is critically involved in the development of non-alcoholic steatohepatitis (NASH). Recent studies report that plasma cysteine concentrations is elevated in the subjects with either alcoholic steatohepatitis (ASH) or NASH than normal subjects. The present study was conducted to determine if elevation of cysteine could be a deleterious factor in palmitate-induced hepatocyte cell death. Main methods HepG2 and Hep3B cells were treated with palmitate with/without the inclusion of cysteine in the media for 24 hours. The effects of cysteine inclusion on palmitate induced cell death were determined by lactate dehydrogenase (LDH) release and MTT assay. Oxidative stress was evaluated by intracellular glutathione (GSH) level, malondialdehyde (MDA) formation, and DCFH-DA assay. Western blotting was performed to detect the changes of endoplasmic reticulum(ER) stress markers: C/EBP homologous transcription factor (CHOP), GRP-78, and phosphorylated c-jun N-terminal kinase (p-JNK). Key findings Elevated intracellular cysteine aggravates hepatocytes to palmitate-induced cell death. Enhancement of ER stress, specifically increased activation of JNK pathway, contributed to this cell death process. Significance Increase of plasma cysteine levels, as observed in both ASH and NASH patients, may play a pathological role in the development of the liver diseases. Manipulation of dietary amino acids supplementation could be a therapeutic choice. PMID:22008477

  3. Listeria monocytogenes-Induced Cell Death Inhibits the Generation of Cell-Mediated Immunity

    PubMed Central

    Theisen, Erin

    2016-01-01

    ABSTRACT The influence of cell death on adaptive immunity has been studied for decades. Despite these efforts, the intricacies of how various cell death pathways shape immune responses in the context of infection remain unclear, particularly with regard to more recently discovered pathways such as pyroptosis. The emergence of Listeria monocytogenes as a promising immunotherapeutic platform demands a thorough understanding of how cell death induced in the context of infection influences the generation of CD8+ T-cell-mediated immune responses. To begin to address this question, we designed strains of L. monocytogenes that robustly activate necrosis, apoptosis, or pyroptosis. We hypothesized that proinflammatory cell death such as necrosis would be proimmunogenic while apoptosis would be detrimental, as has previously been reported in the context of sterile cell death. Surprisingly, we found that the activation of any host cell death in the context of L. monocytogenes infection inhibited the generation of protective immunity and specifically the activation of antigen-specific CD8+ T cells. Importantly, the mechanism of attenuation was unique for each type of cell death, ranging from deficits in costimulation in the context of necrosis to a suboptimal inflammatory milieu in the case of pyroptosis. Our results suggest that cell death in the context of infection is different from sterile-environment-induced cell death and that inhibition of cell death or its downstream consequences is necessary for developing effective cell-mediated immune responses using L. monocytogenes-based immunotherapeutic platforms. PMID:27821585

  4. Zika virus directly infects peripheral neurons and induces cell death.

    PubMed

    Oh, Yohan; Zhang, Feiran; Wang, Yaqing; Lee, Emily M; Choi, In Young; Lim, Hotae; Mirakhori, Fahimeh; Li, Ronghua; Huang, Luoxiu; Xu, Tianlei; Wu, Hao; Li, Cui; Qin, Cheng-Feng; Wen, Zhexing; Wu, Qing-Feng; Tang, Hengli; Xu, Zhiheng; Jin, Peng; Song, Hongjun; Ming, Guo-Li; Lee, Gabsang

    2017-09-01

    Zika virus (ZIKV) infection is associated with neurological disorders of both the CNS and peripheral nervous systems (PNS), yet few studies have directly examined PNS infection. Here we show that intraperitoneally or intraventricularly injected ZIKV in the mouse can infect and impact peripheral neurons in vivo. Moreover, ZIKV productively infects stem-cell-derived human neural crest cells and peripheral neurons in vitro, leading to increased cell death, transcriptional dysregulation and cell-type-specific molecular pathology.

  5. Stapled peptide induces cancer cell death.

    PubMed

    Whelan, Jo

    2004-11-01

    Hydrocarbon stapling could enable peptides from the key domains of natural proteins to be used therapeutically. Using the technique on a peptide involved in apoptosis, researchers have succeeded in destroying cancer cells in a mouse model of leukaemia.

  6. Entamoeba histolytica induces cell death of HT29 colonic epithelial cells via NOX1-derived ROS.

    PubMed

    Kim, Kyeong Ah; Kim, Ju Young; Lee, Young Ah; Min, Arim; Bahk, Young Yil; Shin, Myeong Heon

    2013-02-01

    Entamoeba histolytica, which causes amoebic colitis and occasionally liver abscess in humans, is able to induce host cell death. However, signaling mechanisms of colon cell death induced by E. histolytica are not fully elucidated. In this study, we investigated the signaling role of NOX in cell death of HT29 colonic epithelial cells induced by E. histolytica. Incubation of HT29 cells with amoebic trophozoites resulted in DNA fragmentation that is a hallmark of apoptotic cell death. In addition, E. histolytica generate intracellular reactive oxygen species (ROS) in a contact-dependent manner. Inhibition of intracellular ROS level with treatment with DPI, an inhibitor of NADPH oxidases (NOXs), decreased Entamoeba-induced ROS generation and cell death in HT29 cells. However, pan-caspase inhibitor did not affect E. histolytica-induced HT29 cell death. In HT29 cells, catalytic subunit NOX1 and regulatory subunit Rac1 for NOX1 activation were highly expressed. We next investigated whether NADPH oxidase 1 (NOX1)-derived ROS is closely associated with HT29 cell death induced by E. histolytica. Suppression of Rac1 by siRNA significantly inhibited Entamoeba-induced cell death. Moreover, knockdown of NOX1 by siRNA, effectively inhibited E. histolytica-triggered DNA fragmentation in HT29 cells. These results suggest that NOX1-derived ROS is required for apoptotic cell death in HT29 colon epithelial cells induced by E. histolytica.

  7. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    SciTech Connect

    Walia, Rupali; Dardari, Rkia Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  8. Detection of Apoptotic Versus Autophagic Cell Death by Flow Cytometry.

    PubMed

    Sica, Valentina; Maiuri, M Chiara; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    Different modes of regulated cell death (RCD) can be initiated by distinct molecular machineries and their morphological manifestations can be difficult to discriminate. Moreover, cells responding to stress often activate an adaptive response centered around autophagy, and whether such a response is cytoprotective or cytotoxic cannot be predicted based on morphological parameters only. Molecular definitions are therefore important to understand various RCD subroutines from a mechanistic perspective. In vitro, various forms of RCD including apoptosis and autophagic cell death can be easily discriminated from each other with assays that involve chemical or pharmacological interventions targeting key components of either pathway. Here, we detail a straightforward method to discriminate apoptosis from autophagic cell death by flow cytometry, based on the broad-spectrum caspase inhibitor Z-VAD-fmk and the genetic inhibition of ATG5.

  9. Mechanisms of programmed cell death during oogenesis in Drosophila virilis.

    PubMed

    Velentzas, Athanassios D; Nezis, Ioannis P; Stravopodis, Dimitrios J; Papassideri, Issidora S; Margaritis, Lukas H

    2007-02-01

    We describe the features of programmed cell death occurring in the egg chambers of Drosophila virilis during mid-oogenesis and late oogenesis. During mid-oogenesis, the spontaneously degenerating egg chambers exhibit typical characteristics of apoptotic cell death. As revealed by propidium iodide, rhodamine-conjugated phalloidin staining, and the TUNEL assay, respectively, the nurse cells contain condensed chromatin, altered actin cytoskeleton, and fragmented DNA. In vitro caspase activity assays and immunostaining procedures demonstrate that the atretic egg chambers possess high levels of caspase activity. Features of autophagic cell death are also observed during D. virilis mid-oogenesis, as shown by monodansylcadaverine staining, together with an ultrastructural examination by transmission electron microscopy. During the late stages of oogenesis in D. virilis, once again, the two mechanisms, viz., nurse cell cluster apoptosis and autophagy, operate together, manifesting features of cell death similar to those detailed above. Moreover, an altered form of cytochrome c seems to be released from the mitochondria in the nurse cells proximal to the oocyte. We propose that apoptosis and autophagy function synergistically during oogenesis in D. virilis in order to achieve a more efficient elimination of the degenerated nurse cells and abnormal egg chambers.

  10. Mitochondrial regulation of cell death: a phylogenetically conserved control

    PubMed Central

    Galluzzi, Lorenzo; Kepp, Oliver; Kroemer, Guido

    2016-01-01

    Mitochondria are fundamental for eukaryotic cells as they participate in critical catabolic and anabolic pathways. Moreover, mitochondria play a key role in the signal transduction cascades that precipitate many (but not all) regulated variants of cellular demise. In this short review, we discuss the differential implication of mitochondria in the major forms of regulated cell death. PMID:28357340

  11. Technological advances in real-time tracking of cell death

    PubMed Central

    Skommer, Joanna; Darzynkiewicz, Zbigniew; Wlodkowic, Donald

    2010-01-01

    Cell population can be viewed as a quantum system, which like Schrödinger’s cat exists as a combination of survival- and death-allowing states. Tracking and understanding cell-to-cell variability in processes of high spatio-temporal complexity such as cell death is at the core of current systems biology approaches. As probabilistic modeling tools attempt to impute information inaccessible by current experimental approaches, advances in technologies for single-cell imaging and omics (proteomics, genomics, metabolomics) should go hand in hand with the computational efforts. Over the last few years we have made exciting technological advances that allow studies of cell death dynamically in real-time and with the unprecedented accuracy. These approaches are based on innovative fluorescent assays and recombinant proteins, bioelectrical properties of cells, and more recently also on state-of-the-art optical spectroscopy. Here, we review current status of the most innovative analytical technologies for dynamic tracking of cell death, and address the interdisciplinary promises and future challenges of these methods. PMID:20519963

  12. Orexin A induces autophagy in HCT-116 human colon cancer cells through the ERK signaling pathway.

    PubMed

    Wen, Jing; Zhao, Yuyan; Guo, Lei

    2016-01-01

    Orexins are a class of peptides which have a potent influence on a broad variety of cancer cells. Autophagy is closely associated with tumors; however, its function is not yet completely understood. In this study, we aimed to determine whether orexin A induces autophagy in HCT‑116 human colon cancer cells and to elucidate the molecular mechanisms involved. For this purpose, HCT‑116 cells were treated with orexin A, and cell viability was then measured by MTT assay, and apoptosis was determined by flow cytometry. The expression levels of autophagy‑related proteins were measured by western blot analysis. Quantitative analysis of autophagy following acridine orange (AO) staining was performed using fluorescence microscopy, and cellular morphology was observed under a transmission electron microscope. In addition, the HCT‑116 cells were treated with the extracellular signal‑regulated kinase (ERK) inhibitor, U0126, or the autophagy inhibitor, chloroquine, in combination with orexin A in order to examine the activation of ERK. We found that orexin A significantly inhibited the viability of the HCT‑116 cells. Both autophagy and apoptosis were activated during the orexin A‑induced death of HCT‑116 cells. When the HCT‑116 cells were treated with orexin A for 24 h, an accumulation of punctate microtubule-associated protein-1 light chain 3 (LC3) and an increase in LC3‑Ⅱ protein levels were also detected, indicating the activation of autophagy. Moreover, orexin A upregulated ERK phosphorylation; however, U0126 or chloroquine abrogated ERK phosphorylation and decreased autophagy, compared to treatment with orexin A alone. Therefore, our findings demonstratedm that orexin A induced autophagy through the ERK pathway in HCT‑116 human colon cancer cells. The inhibition of autophagy may thus prove to be an effective strategy for enhancing the antitumor potential of orexin A as a treatment for colon cancer.

  13. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    PubMed

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  14. Ethylene insensitivity modulates ozone-induced cell death in birch.

    PubMed

    Vahala, Jorma; Ruonala, Raili; Keinänen, Markku; Tuominen, Hannele; Kangasjärvi, Jaakko

    2003-05-01

    We have used genotypic variation in birch (Betula pendula Roth) to investigate the roles of ozone (O(3))-induced ethylene (ET), jasmonic acid, and salicylic acid in the regulation of tissue tolerance to O(3). Of these hormones, ET evolution correlated best with O(3)-induced cell death. Disruption of ET perception by transformation of birch with the dominant negative mutant allele etr1-1 of the Arabidopsis ET receptor gene ETR1 or blocking of ET perception with 1-methylcyclopropene reduced but did not completely prevent the O(3)-induced cell death, when inhibition of ET biosynthesis with aminooxyacetic acid completely abolished O(3) lesion formation. This suggests the presence of an ET-signaling-independent but ET biosynthesis-dependent component in the ET-mediated stimulation of cell death in O(3)-exposed birch. Functional ET signaling was required for the O(3) induction of the gene encoding beta-cyanoalanine synthase, which catalyzes detoxification of the cyanide formed during ET biosynthesis. The results suggest that functional ET signaling is required to protect birch from the O(3)-induced cell death and that a decrease in ET sensitivity together with a simultaneous, high ET biosynthesis can potentially cause cell death through a deficient detoxification of cyanide.

  15. X-ray-induced cell death: Apoptosis and necrosis

    SciTech Connect

    Nakano, Hisako; Shinohara, Kunio

    1994-10-01

    X-ray-induced cell death in MOLT-4N1, a subclone of MOLT-4 cells, and M10 cells was studied with respect to their modes of cell death, apoptosis and necrosis. MOLT-4N1 cells showed radiosensitivity similar to that of M10 cells, a radiosensitive mutant of L5178Y, as determined by the colony formation assay. Analysis of cell size demonstrated that MOLT-4N1 cells increased in size at an early stage after irradiation and then decreased to a size smaller than that of control cells, whereas the size of irradiated M10 cells increased continuously. Apoptosis detected by morphological changes and DNA ladder formation (the cleavage of DNA into oligonucleosomal fragments) occurred in X-irradiated MOLT-4N1 cells but not in M10 cells. Pulsed-field gel electrophoresis showed that the ladder formation involved an intermediate-sized DNA (about 20 kbp). Most of the DNA was detected at the origin in both methods of electrophoresis in the case of M10 cells, though a trace amount of ladder formation was observed. Heat treatment of M10 cells induced apoptosis within 30 min after treatment, in contrast to MOLT-4N1 cells. The results suggest that apoptosis and necrosis are induced by X rays in a manner which is dependent on the cell line irrespective of the capability of the cells to develop apoptosis. DNA fragmentation was the earliest change observed in the development of apoptosis. 27 refs., 8 figs., 1 tab.

  16. Ganglion cell death in glaucoma: from mice to men.

    PubMed

    Nickells, Robert W

    2007-01-01

    Glaucoma results from the degeneration of retinal ganglion cells and their axons. Over the last 20 years several important advancements have been made in our understanding of the molecular pathology of this disease, particularly through the development of rat models of experimental glaucoma and the characterization of a spontaneous secondary form of glaucoma in DBA/2 substrains of inbred mice. One of these advances is the observation that ganglion cells die by apoptosis, an intrinsic molecular pathway of programmed cell death. An important aspect of this cell death process is the concept that these cells actually undergo compartmentalized self-destruction. Importantly, genetic evidence now suggests that axons die independently of the apoptotic program that executes the cell body or soma. This review briefly summarizes some of the most significant developments in glaucoma research, with respect to the process of ganglion cell degeneration.

  17. Programmed Cell Death-1/Programmed Death-ligand 1 Pathway: A New Target for Sepsis.

    PubMed

    Liu, Qiang; Li, Chun-Sheng

    2017-04-20

    Sepsis remains a leading cause of death in many Intensive Care Units worldwide. Immunosuppression has been a primary focus of sepsis research as a key pathophysiological mechanism. Given the important role of the negative costimulatory molecules programmed cell death-1 (PD-1) and programmed death-ligand 1 (PD-L1) in the occurrence of immunosuppression during sepsis, we reviewed literatures related to the PD-1/PD-L1 pathway to examine its potential as a new target for sepsis treatment. Studies of the association between PD-1/PD-L1 and sepsis published up to January 31, 2017, were obtained by searching the PubMed database. English language studies, including those based on animal models, clinical research, and reviews, with data related to PD-1/PD-L1 and sepsis, were evaluated. Immunomodulatory therapeutics could reverse the deactivation of immune cells caused by sepsis and restore immune cell activation and function. Blockade of the PD-1/PD-L1 pathway could reduce the exhaustion of T-cells and enhance the proliferation and activation of T-cells. The anti-PD-1/PD-L1 pathway shows promise as a new target for sepsis treatment. This review provides a basis for clinical trials and future studies aimed at revaluating the efficacy and safety of this targeted approach.

  18. Mechanisms of developmentally controlled cell death in plants.

    PubMed

    Van Durme, Matthias; Nowack, Moritz K

    2016-02-01

    During plant development various forms of programmed cell death (PCD) are implemented by a number of cell types as inherent part of their differentiation programmes. Differentiation-induced developmental PCD is gradually prepared in concert with the other cell differentiation processes. As precocious or delayed PCD can have detrimental consequences for plant development, the actual execution of PCD has to be tightly controlled. Once triggered, PCD is irrevocably and rapidly executed accompanied by the breakdown of cellular compartments. In most developmental PCD forms, cell death is followed by cell corpse clearance. Devoid of phagocytic mechanisms, dying plant cells have to prepare their own demise in a cell-autonomous fashion before their deaths, ensuring the completion of cell clearance post mortem. Depending on the cell type, cell clearance can be complete or rather selective, and persistent corpses of particular cells accomplish vital functions in the plant body. The present review attempts to give an update on the molecular mechanisms that coordinate differentiation-induced PCD as vital part of plant development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Signal transduction events in aluminum-induced cell death in tomato suspension cells.

    PubMed

    Yakimova, Elena T; Kapchina-Toteva, Veneta M; Woltering, Ernst J

    2007-06-01

    In this study, some of the signal transduction events involved in AlCl(3)-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 microM AlCl(3) showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation. Cell death was effectively inhibited by protease and human caspase inhibitors indicating a cell death execution mechanism with similarities to animal apoptosis. Cell death was suppressed by application of antoxidants and by inhibitors of phospholipase C (PLC), phospholipase D (PLD) and ethylene signalling pathways. The results suggest that low concentrations of heavy metal ions stimulate both PLC and PLD signalling pathways leading to the production of reactive oxygen species (ROS) and subsequent cell death executed by caspase-like proteases.

  20. Killing Prostate Cancer Cells and Endothelial Cells with a VEGF-Triggered Cell Death Receptor

    DTIC Science & Technology

    2005-06-01

    AD_________________ Award Number: DAMD17-02- 1 -0029 TITLE: Killing Prostate Cancer Cells and...CONTRACT NUMBER Killing Prostate Cancer Cells and Endothelial Cells with a VEGF-Triggered Cell Death Receptor 5b. GRANT NUMBER DAMD17-02- 1 -0029...as a means to kill prostate cancer cells and vascular endothelial cells in vitro. The scope of this project involved: ( 1 ) creating adenoviral

  1. Modeling cell-death patterning during biofilm formation

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Ben-Jacob, Eshel; Levine, Herbert

    2013-12-01

    Self-organization by bacterial cells often leads to the formation of a highly complex spatially-structured biofilm. In such a bacterial biofilm, cells adhere to each other and are embedded in a self-produced extracellular matrix (ECM). Bacillus substilis bacteria utilize localized cell-death patterns which focuses mechanical forces to form wrinkled sheet-like structures in three dimensions. A most intriguing feature underlying this biofilm formation is that vertical buckling and ridge location is biased to occur in region of high cell-death. Here we present a spatially extended model to investigate the role of the bacterial secreted ECM during the biofilm formation and the self-organization of cell-death. Using this reaction-diffusion model we show that the interaction between the cell's motion and the ECM concentration gives rise to a self-trapping instability, leading to variety of cell-death patterns. The resultant spot patterns generated by our model are shown to be in semi-quantitative agreement with recent experimental observation.

  2. Accelerated Tumor Cell Death by Angiogenic Modifiers

    DTIC Science & Technology

    2004-08-01

    neuroendocrine factors. They can guide cancer cell perineural invasion and dissemination through the release of soluble and solid matrix factors (see review (32...Ooshima, A. Targeted disruption of TGF-betal/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral

  3. Programmed Cell Death During Female Gametophyte Development

    SciTech Connect

    Drews, Gary, N.

    2004-09-15

    Endosperm is a storage tissue in the angiosperm seed that is important both biologically and agriculturally. Endosperm is biologically important because it provides nutrients to the embryo during seed development and agriculturally important because it is a significant source of food, feed, and industrial raw materials. Approximately two-thirds of human calories are derived from endosperm, either directly or indirectly through animal feed. Furthermore, endosperm is used as a raw material for numerous industrial products including ethanol. A major event in endosperm development is the transition between the syncytial phase, during which the endosperm nuclei undergo many rounds of mitosis without cytokinesis, and the cellularized phase, during which cell walls form around the endosperm nuclei. Understanding how the syncytial-cellular transition is regulated is agriculturally important because it influences seed size, seed sink strength, and grain weight. However, the molecular processes controlling this transition are not understood. This project led to the identification of the AGL62 gene that regulates the syncytial-cellular transition during endosperm development. AGL62 is expressed during the syncytial phase and suppresses endosperm cellularization during this period. AGL62 most likely does so by suppressing the expression of genes required for cellularization. At the end of the syncytial phase, the FIS PcG complex suppresses AGL62 expression, which allows expression of the cellularization genes and triggers the initiation of the cellularized phase. Endosperm arises following fertilization of the central cell within the female gametophyte. This project also led to the identification of the AGL80 gene that is required for development of the central cell into the endosperm. Within the ovule and seed, AGL80 is expressed exclusively in the central cell and uncellularized endosperm. AGL80 is required for expression of several central cell-expressed genes, including

  4. Glycobiology of cell death: when glycans and lectins govern cell fate

    PubMed Central

    Lichtenstein, R G; Rabinovich, G A

    2013-01-01

    Although one typically thinks of carbohydrates as associated with cell growth and viability, glycosylation also has an integral role in many processes leading to cell death. Glycans, either alone or complexed with glycan-binding proteins, can deliver intracellular signals or control extracellular processes that promote initiation, execution and resolution of cell death programs. Herein, we review the role of glycans and glycan-binding proteins as essential components of the cell death machinery during physiologic and pathologic settings. PMID:23703323

  5. How does metabolism affect cell death in cancer?

    PubMed

    Villa, Elodie; Ricci, Jean-Ehrland

    2016-07-01

    In cancer research, identifying a specificity of tumor cells compared with 'normal' proliferating cells for targeted therapy is often considered the Holy Grail for researchers and clinicians. Although diverse in origin, most cancer cells share characteristics including the ability to escape cell death mechanisms and the utilization of different methods of energy production. In the current paradigm, aerobic glycolysis is considered the central metabolic characteristic of cancer cells (Warburg effect). However, recent data indicate that cancer cells also show significant changes in other metabolic pathways. Indeed, it was recently suggested that Kreb's cycle, pentose phosphate pathway intermediates, and essential and nonessential amino acids have key roles. Renewed interest in the fact that cancer cells have to reprogram their metabolism in order to proliferate or resist treatment must take into consideration the ability of tumor cells to adapt their metabolism to the local microenvironment (low oxygen, low nutrients). This variety of metabolic sources might be either a strength, resulting in infinite possibilities for adaptation and increased ability to resist chemotherapy-induced death, or a weakness that could be targeted to kill cancer cells. Here, we discuss recent insights showing how energetic metabolism may regulate cell death and how this might be relevant for cancer treatment. © 2015 FEBS.

  6. Oxidative Stress and Programmed Cell Death in Yeast

    PubMed Central

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed. PMID:22737670

  7. Accelerated Tumor Cell Death by Angiogenic Modifiers

    DTIC Science & Technology

    2003-08-01

    form an active autocrine loop. fibrosis . Luminal epithelial cells of PIA lesions have elev- A recent study indicated the increase of both IL-6 and...its receptor dothelin-3 (ET-3), and endothelin-4 (ET-4) (Cun- ( CXCR4 ), may play a role as prostate cancer bone meta- ningham et al., 1997). All...members of the endothelin stasis homing signals. The level of CXCR4 increased family contain two essential disulfide bridges and six with the malignancy of

  8. DAMPs from Cell Death to New Life

    PubMed Central

    Vénéreau, Emilie; Ceriotti, Chiara; Bianchi, Marco Emilio

    2015-01-01

    Our body handles tissue damage by activating the immune system in response to intracellular molecules released by injured tissues [damage-associated molecular patterns (DAMPs)], in a similar way as it detects molecular motifs conserved in pathogens (pathogen-associated molecular patterns). DAMPs are molecules that have a physiological role inside the cell, but acquire additional functions when they are exposed to the extracellular environment: they alert the body about danger, stimulate an inflammatory response, and finally promote the regeneration process. Beside their passive release by dead cells, some DAMPs can be secreted or exposed by living cells undergoing a life-threatening stress. DAMPs have been linked to inflammation and related disorders: hence, inhibition of DAMP-mediated inflammatory responses is a promising strategy to improve the clinical management of infection- and injury-elicited inflammatory diseases. However, it is important to consider that DAMPs are not only danger signals but also central players in tissue repair. Indeed, some DAMPs have been studied for their role in tissue healing after sterile or infection-associated inflammation. This review is focused on two exemplary DAMPs, HMGB1 and adenosine triphosphate, and their contribution to both inflammation and tissue repair. PMID:26347745

  9. Danger signalling during cancer cell death: origins, plasticity and regulation.

    PubMed

    Garg, A D; Martin, S; Golab, J; Agostinis, P

    2014-01-01

    Accumulating data indicates that following anti-cancer treatments, cancer cell death can be perceived as immunogenic or tolerogenic by the immune system. The former is made possible due to the ability of certain anti-cancer modalities to induce immunogenic cell death (ICD) that is associated with the emission of damage-associated molecular patterns (DAMPs), which assist in unlocking a sequence of events leading to the development of anti-tumour immunity. In response to ICD inducers, activation of endoplasmic reticulum (ER) stress has been identified to be indispensable to confer the immunogenic character of cancer cell death, due to its ability to coordinate the danger signalling pathways responsible for the trafficking of vital DAMPs and subsequent anti-cancer immune responses. However, in recent times, certain processes apart from ER stress have emerged (e.g., autophagy and possibly viral response-like signature), which have the ability to influence danger signalling. In this review, we discuss the molecular nature, emerging plasticity in the danger signalling mechanisms and immunological impact of known DAMPs in the context of immunogenic cancer cell death. We also discuss key effector mechanisms modulating the interface between dying cancer cells and the immune cells, which we believe are crucial for the therapeutic relevance of ICD in the context of human cancers, and also discuss the influence of experimental conditions and animal models on these.

  10. Necroptosis: an alternative cell death program defending against cancer

    PubMed Central

    Chen, Dongshi; Yu, Jian; Zhang, Lin

    2016-01-01

    One of the hallmarks of cancer is resistance to programmed cell death, which maintains the survival of cells en route to oncogenic transformation and underlies therapeutic resistance. Recent studies demonstrate that programmed cell death is not confined to caspase-dependent apoptosis, but includes necroptosis, a form of necrotic death governed by Receptor-Interacting Protein 1 (RIP1), RIP3, and Mixed Lineage Kinase Domain-Like (MLKL). Necroptosis serves as a critical cell-killing mechanism in response to severe stress and blocked apoptosis, and can be induced by inflammatory cytokines or chemotherapeutic drugs. Genetic or epigenetic alterations of necroptosis regulators such as RIP3 and cylindromatosis (CYLD), are frequently found in human tumors. Unlike apoptosis, necroptosis elicits a more robust immune response that may function as a defensive mechanism by eliminating tumor-causing mutations and viruses. Furthermore, several classes of anticancer agents currently under clinical development, such as SMAC and BH3 mimetics, can promote necroptosis in addition to apoptosis. A more complete understanding of the interplay among necroptosis, apoptosis, and other cell death modalities is critical for developing new therapeutic strategies to enhance killing of tumor cells. PMID:26968619

  11. The role of mitochondria in metabolism and cell death.

    PubMed

    Vakifahmetoglu-Norberg, Helin; Ouchida, Amanda Tomie; Norberg, Erik

    2017-01-15

    Mitochondria are complex organelles that play a central role in energy metabolism, control of stress responses and are a hub for biosynthetic processes. Beyond its well-established role in cellular energetics, mitochondria are critical mediators of signals to propagate various cellular outcomes. In addition mitochondria are the primary source of intracellular reactive oxygen species (ROS) generation and are involved in cellular Ca(2+) homeostasis, they contain a self-destructive arsenal of apoptogenic factors that can be unleashed to promote cell death, thus displaying a shared platform for metabolism and apoptosis. In the present review, we will give a brief account on the integration of mitochondrial metabolism and apoptotic cell death.

  12. Sensory hair cell death and regeneration in fishes

    PubMed Central

    Monroe, Jerry D.; Rajadinakaran, Gopinath; Smith, Michael E.

    2015-01-01

    Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation vs. direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies. PMID:25954154

  13. Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death.

    PubMed

    Probst, Lukas; Dächert, Jasmin; Schenk, Barbara; Fulda, Simone

    2017-09-15

    Ferroptosis has recently been identified as a mode of programmed cell death. However, little is yet known about the signaling mechanism. Here, we report that lipoxygenases (LOX) contribute to the regulation of RSL3-induced ferroptosis in acute lymphoblastic leukemia (ALL) cells. We show that the glutathione (GSH) peroxidase 4 (GPX4) inhibitor RSL3 triggers lipid peroxidation, production of reactive oxygen species (ROS) and cell death in ALL cells. All these events are impeded in the presence of Ferrostatin-1 (Fer-1), a small-molecule inhibitor of lipid peroxidation. Also, lipid peroxidation and ROS production precede the induction of cell death, underscoring their contribution to cell death upon exposure to RSL3. Importantly, LOX inhibitors, including the selective 12/15-LOX inhibitor Baicalein and the pan-LOX inhibitor nordihydroguaiaretic acid (NDGA), protect ALL cells from RSL3-stimulated lipid peroxidation, ROS generation and cell death, indicating that LOX contribute to ferroptosis. RSL3 triggers lipid peroxidation and cell death also in FAS-associated Death Domain (FADD)-deficient cells which are resistant to death receptor-induced apoptosis indicating that the induction of ferroptosis may bypass apoptosis resistance. By providing new insights into the molecular regulation of ferroptosis, our study contributes to the development of novel treatment strategies to reactivate programmed cell death in ALL. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Novel Quorum-Sensing Peptides Mediating Interspecies Bacterial Cell Death

    PubMed Central

    Kumar, Sathish; Kolodkin-Gal, Ilana; Engelberg-Kulka, Hanna

    2013-01-01

    ABSTRACT Escherichia coli mazEF is a toxin-antitoxin stress-induced module mediating cell death. It requires the quorum-sensing signal (QS) “extracellular death factor” (EDF), the penta-peptide NNWNN (EcEDF), enhancing the endoribonucleolytic activity of E. coli toxin MazF. Here we discovered that E. coli mazEF-mediated cell death could be triggered by QS peptides from the supernatants (SN) of the Gram-positive bacterium Bacillus subtilis and the Gram-negative bacterium Pseudomonas aeruginosa. In the SN of B. subtilis, we found one EDF, the hexapeptide RGQQNE, called BsEDF. In the SN of P. aeruginosa, we found three EDFs: the nonapeptide INEQTVVTK, called PaEDF-1, and two hexadecapeptides, VEVSDDGSGGNTSLSQ, called PaEDF-2, and APKLSDGAAAGYVTKA, called PaEDF-3. When added to a diluted E. coli cultures, each of these peptides acted as an interspecies EDF that triggered mazEF-mediated death. Furthermore, though their sequences are very different, each of these EDFs amplified the endoribonucleolytic activity of E. coli MazF, probably by interacting with different sites on E. coli MazF. Finally, we suggest that EDFs may become the basis for a new class of antibiotics that trigger death from outside the bacterial cells. PMID:23736285

  15. The Arabidopsis peptide kiss of death is an inducer of programmed cell death

    PubMed Central

    Blanvillain, Robert; Young, Bennett; Cai, Yao-min; Hecht, Valérie; Varoquaux, Fabrice; Delorme, Valérie; Lancelin, Jean-Marc; Delseny, Michel; Gallois, Patrick

    2011-01-01

    Programmed cell death (PCD) has a key role in defence and development of all multicellular organisms. In plants, there is a large gap in our knowledge of the molecular machinery involved at the various stages of PCD, especially the early steps. Here, we identify kiss of death (KOD) encoding a 25-amino-acid peptide that activates a PCD pathway in Arabidopsis thaliana. Two mutant alleles of KOD exhibited a reduced PCD of the suspensor, a single file of cells that support embryo development, and a reduced PCD of root hairs after a 55°C heat shock. KOD expression was found to be inducible by biotic and abiotic stresses. Furthermore, KOD expression was sufficient to cause death in leaves or seedlings and to activate caspase-like activities. In addition, KOD-induced PCD required light in leaves and was repressed by the PCD-suppressor genes AtBax inhibitor 1 and p35. KOD expression resulted in depolarization of the mitochondrial membrane, placing KOD above mitochondria dysfunction, an early step in plant PCD. A KOD∷GFP fusion, however, localized in the cytosol of cells and not mitochondria. PMID:21326210

  16. Regulation of ferroptotic cancer cell death by GPX4.

    PubMed

    Yang, Wan Seok; SriRamaratnam, Rohitha; Welsch, Matthew E; Shimada, Kenichi; Skouta, Rachid; Viswanathan, Vasanthi S; Cheah, Jaime H; Clemons, Paul A; Shamji, Alykhan F; Clish, Clary B; Brown, Lewis M; Girotti, Albert W; Cornish, Virginia W; Schreiber, Stuart L; Stockwell, Brent R

    2014-01-16

    Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death.

  17. Real-time monitoring of cisplatin-induced cell death.

    PubMed

    Alborzinia, Hamed; Can, Suzan; Holenya, Pavlo; Scholl, Catharina; Lederer, Elke; Kitanovic, Igor; Wölfl, Stefan

    2011-01-01

    Since the discovery of cisplatin more than 40 years ago and its clinical introduction in the 1970s an enormous amount of research has gone into elucidating the mechanism of action of cisplatin on tumor cells. With a novel cell biosensor chip system allowing continuous monitoring of respiration, glycolysis, and impedance we followed cisplatin treatment of different cancer cell lines in real-time. Our measurements reveal a first effect on respiration, in all cisplatin treated cell lines, followed with a significant delay by interference with glycolysis in HT-29, HCT-116, HepG2, and MCF-7 cells but not in the cisplatin-resistant cell line MDA-MB-231. Most strikingly, cell death started in all cisplatin-sensitive cell lines within 8 to 11 h of treatment, indicating a clear time frame from exposure, first response to cisplatin lesions, to cell fate decision. The time points of most significant changes were selected for more detailed analysis of cisplatin response in the breast cancer cell line MCF-7. Phosphorylation of selected signal transduction mediators connected with cellular proliferation, as well as changes in gene expression, were analyzed in samples obtained directly from sensor chips at the time points when changes in glycolysis and impedance occurred. Our online cell biosensor measurements reveal for the first time the time scale of metabolic response until onset of cell death under cisplatin treatment, which is in good agreement with models of p53-mediated cell fate decision.

  18. The role of vacuole in plant cell death.

    PubMed

    Hara-Nishimura, I; Hatsugai, N

    2011-08-01

    Almost all plant cells have large vacuoles that contain both hydrolytic enzymes and a variety of defense proteins. Plants use vacuoles and vacuolar contents for programmed cell death (PCD) in two different ways: for a destructive way and for a non-destructive way. Destruction is caused by vacuolar membrane collapse, followed by the release of vacuolar hydrolytic enzymes into the cytosol, resulting in rapid and direct cell death. The destructive way is effective in the digestion of viruses proliferating in the cytosol, in susceptible cell death induced by fungal toxins, and in developmental cell death to generate integuments (seed coats) and tracheary elements. On the other hand, the non-destructive way involves fusion of the vacuolar and the plasma membrane, which allows vacuolar defense proteins to be discharged into the extracellular space where the bacteria proliferate. Membrane fusion, which is normally suppressed, was triggered in a proteasome-dependent manner. Intriguingly, both ways use enzymes with caspase-like activity; the membrane-fusion system uses proteasome subunit PBA1 with caspase-3-like activity, and the vacuolar-collapse system uses vacuolar processing enzyme (VPE) with caspase-1-like activity. This review summarizes two different ways of vacuole-mediated PCD and discusses how plants use them to attack pathogens that invade unexpectedly.

  19. Herceptin Conjugates Linked by EDC Boost Direct Tumor Cell Death via Programmed Tumor Cell Necrosis

    PubMed Central

    Hughes, Dennis; Esteva, Francisco J.; Liu, Bolin; Chandra, Joya; Li, Shulin

    2011-01-01

    Tumor-targeted antibody therapy is one of the safest biological therapeutics for cancer patients, but it is often ineffective at inducing direct tumor cell death and is ineffective against resistant tumor cells. Currently, the antitumor efficacy of antibody therapy is primarily achieved by inducing indirect tumor cell death, such as antibody-dependent cell cytotoxicity. Our study reveals that Herceptin conjugates, if generated via the crosslinker EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride), are capable of engendering human epidermal growth factor receptor 2 (Her2) positive tumor cells death. Using a high-performance liquid chromatography (HPLC) system, three peaks with estimated molecular weights of antibody monomer, dimer, and trimer were isolated. Both Herceptin trimer and dimer separated by HPLC induced significant levels of necrotic tumor cell death, although the trimer was more effective than the dimer. Notably, the Herceptin trimer also induced Herceptin-resistant tumor cell death. Surprisingly different from the known cell death mechanism that often results from antibody treatment, the Herceptin trimer elicited effective and direct tumor cell death via a novel mechanism: programmed cell necrosis. In Her2-positive cells, inhibition of necrosis pathways significantly reversed Herceptin trimer-induced cell death. In summary, the Herceptin trimer reported herein harbors great potential for overcoming tumor cell resistance to Herceptin treatment. PMID:21853100

  20. Lipid raft involvement in yeast cell growth and death

    PubMed Central

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases. PMID:23087902

  1. Autophagonizer, a novel synthetic small molecule, induces autophagic cell death

    SciTech Connect

    Choi, In-Kwon; Cho, Yoon Sun; Jung, Hye Jin; Kwon, Ho Jeong

    2010-03-19

    Autophagy is an apoptosis-independent mechanism of cell death that protects the cell from environmental imbalances and infection by pathogens. We identified a novel small molecule, 2-(3-Benzyl-4-oxo-3,4,5,6,7,8-hexahydro-benzo[4,5]thieno[2,3-d] pyrimidin-2-ylsulfanylmethyl)-oxazole-4-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide (referred as autophagonizer), using high-content cell-based screening and the autophagosome marker EGFP-LC3. Autophagonizer inhibited growth and induced cell death in the human tumor cell lines MCF7, HeLa, HCT116, A549, AGS, and HT1080 via a caspase-independent pathway. Conversion of cytosolic LC3-I to autophagosome-associated LC3-II was greatly enhanced by autophagonizer treatment. Transmission electron microscopy and acridine orange staining revealed increased autophagy in the cytoplasm of autophagonizer-treated cells. In conclusion, autophagonizer is a novel autophagy inducer with unique structure, which induces autophagic cell death in the human tumor cell lines.

  2. Ceramide triggers metacaspase-independent mitochondrial cell death in yeast.

    PubMed

    Carmona-Gutierrez, Didac; Reisenbichler, Angela; Heimbucher, Petra; Bauer, Maria A; Braun, Ralf J; Ruckenstuhl, Christoph; Büttner, Sabrina; Eisenberg, Tobias; Rockenfeller, Patrick; Fröhlich, Kai-Uwe; Kroemer, Guido; Madeo, Frank

    2011-11-15

    The activation of ceramide-generating enzymes, the blockade of ceramide degradation, or the addition of ceramide analogues can trigger apoptosis or necrosis in human cancer cells. Moreover, endogenous ceramide plays a decisive role in the killing of neoplastic cells by conventional anticancer chemotherapeutics. Here, we explored the possibility that membrane-permeable C2-ceramide might kill budding yeast (Saccharomyces cerevisiae) cells under fermentative conditions, where they exhibit rapid proliferation and a Warburg-like metabolism that is reminiscent of cancer cells. C2-ceramide efficiently induced the generation of reactive oxygen species (ROS), as well as apoptotic and necrotic cell death, and this effect was not influenced by deletion of the sole yeast metacaspase. However, C2-ceramide largely failed to cause ROS hypergeneration and cell death upon deletion of the mitochondrial genome. Thus, mitochondrial function is strictly required for C2-ceramide-induced yeast lethality. Accordingly, mitochondria from C2-ceramide-treated yeast cells exhibited major morphological alterations including organelle fragmentation and aggregation. Altogether, our results point to a pivotal role of mitochondria in ceramide-induced yeast cell death.

  3. Ferroptosis and cell death mechanisms in Parkinson's disease.

    PubMed

    Guiney, Stephanie J; Adlard, Paul A; Bush, Ashley I; Finkelstein, David I; Ayton, Scott

    2017-03-01

    Symptoms of Parkinson's disease arise due to neuronal loss in multiple brain regions, especially dopaminergic neurons in the substantia nigra pars compacta. Current therapies aim to restore dopamine levels in the brain, but while these provide symptomatic benefit, they do not prevent ongoing neurodegeneration. Preventing neuronal death is a major strategy for disease-modifying therapies; however, while many pathogenic factors have been identified, it is currently unknown how neurons die in the disease. Ferroptosis, a recently identified iron-dependent cell death pathway, involves several molecular events that have previously been implicated in PD. This review will discuss ferroptosis and other cell death pathways implicated in PD neurodegeneration, with a focus on the potential to therapeutically target these pathways to slow the progression of this disease.

  4. Death's toolbox: examining the molecular components of bacterial programmed cell death.

    PubMed

    Rice, Kelly C; Bayles, Kenneth W

    2003-11-01

    Programmed cell death (PCD) is a genetically determined process of cellular suicide that is activated in response to cellular stress or damage, as well as in response to the developmental signals in multicellular organisms. Although historically studied in eukaryotes, it has been proposed that PCD also functions in prokaryotes, either during the developmental life cycle of certain bacteria or to remove damaged cells from a population in response to a wide variety of stresses. This review will examine several putative examples of bacterial PCD and summarize what is known about the molecular components of these systems.

  5. Genetic variation in radiation-induced cell death.

    PubMed

    Smirnov, Denis A; Brady, Lauren; Halasa, Krzysztof; Morley, Michael; Solomon, Sonia; Cheung, Vivian G

    2012-02-01

    Radiation exposure through environmental, medical, and occupational settings is increasingly common. While radiation has harmful effects, it has utility in many applications such as radiotherapy for cancer. To increase the efficacy of radiation treatment and minimize its risks, a better understanding of the individual differences in radiosensitivity and the molecular basis of radiation response is needed. Here, we integrated human genetic and functional genomic approaches to study the response of human cells to radiation. We measured radiation-induced changes in gene expression and cell death in B cells from normal individuals. We found extensive individual variation in gene expression and cellular responses. To understand the genetic basis of this variation, we mapped the DNA sequence variants that influence expression response to radiation. We also identified radiation-responsive genes that regulate cell death; silencing of these genes by small interfering RNA led to an increase in radiation-induced cell death in human B cells, colorectal and prostate cancer cells. Together these results uncovered DNA variants that contribute to radiosensitivity and identified genes that can be targeted to increase the sensitivity of tumors to radiation.

  6. Cell death monitoring using quantitative optical coherence tomography methods

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Yang, Victor X. D.; Kolios, Michael C.; Czarnota, Gregory J.

    2011-03-01

    Cell death is characterized by a series of predictable morphological changes, which modify the light scattering properties of cells. We present a multi-parametric approach to detecting changes in subcellular morphology related to cell death using optical coherence tomography (OCT). Optical coherence tomography data were acquired from acute myeloid leukemia (AML) cells undergoing apoptosis over a period of 48 hours. Integrated backscatter (IB) and spectral slope (SS) were computed from OCT backscatter spectra and statistical parameters were extracted from a generalized gamma (GG) distribution fit to OCT signal intensity histograms. The IB increased by 2-fold over 48 hours with significant increases observed as early as 4 hours. The SS increased in steepness by 2.5-fold with significant changes at 12 hours, while the GG parameters were sensitive to apoptotic changes at 24 to 48 hours. Histology slides indicated nuclear condensation and fragmentation at 24 hours, suggesting the late scattering changes could be related to nuclear structure. A second series of measurements from AML cells treated with cisplatin, colchicine or ionizing radiation suggested that the GG parameters could potentially differentiate between modes of cell death. Distinct cellular morphology was observed in histology slides obtained from cells treated under each condition.

  7. PROGRAMMED CELL DEATH IN EXTRAOCULAR MUSCLE TENDON/SCLERA PRECURSORS

    EPA Science Inventory

    Abstract

    Purpose: This study was designed to examine the occurrence of natural cell death in the periocular mesenchyme of mouse embryos.

    Methods: Vital staining with LysoTracker Red and Nile blue sulphate as well as terminal nick end labeling (TUNEL) were utiliz...

  8. PROGRAMMED CELL DEATH IN EXTRAOCULAR MUSCLE TENDON/SCLERA PRECURSORS

    EPA Science Inventory

    Abstract

    Purpose: This study was designed to examine the occurrence of natural cell death in the periocular mesenchyme of mouse embryos.

    Methods: Vital staining with LysoTracker Red and Nile blue sulphate as well as terminal nick end labeling (TUNEL) were utiliz...

  9. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    PubMed Central

    Martin, Lee J.

    2010-01-01

    Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy. PMID:21258649

  10. Bortezomib induces autophagic death in proliferating human endothelial cells

    SciTech Connect

    Belloni, Daniela; Veschini, Lorenzo; Foglieni, Chiara; Dell'Antonio, Giacomo; Caligaris-Cappio, Federico; Ferrarini, Marina; Ferrero, Elisabetta

    2010-04-01

    The proteasome inhibitor Bortezomib has been approved for the treatment of relapsed/refractory multiple myeloma (MM), thanks to its ability to induce MM cell apoptosis. Moreover, Bortezomib has antiangiogenic properties. We report that endothelial cells (EC) exposed to Bortezomib undergo death to an extent that depends strictly on their activation state. Indeed, while quiescent EC are resistant to Bortezomib, the drug results maximally toxic in EC switched toward angiogenesis with FGF, and exerts a moderate effect on subconfluent HUVEC. Moreover, EC activation state deeply influences the death pathway elicited by Bortezomib: after treatment, angiogenesis-triggered EC display typical features of apoptosis. Conversely, death of subconfluent EC is preceded by ROS generation and signs typical of autophagy, including intense cytoplasmic vacuolization with evidence of autophagosomes at electron microscopy, and conversion of the cytosolic MAP LC3 I form toward the autophagosome-associated LC3 II form. Treatment with the specific autophagy inhibitor 3-MA prevents both LC3 I/LC3 II conversion and HUVEC cell death. Finally, early removal of Bortezomib is accompanied by the recovery of cell shape and viability. These findings strongly suggest that Bortezomib induces either apoptosis or autophagy in EC; interfering with the autophagic response may potentiate the antiangiogenic effect of the drug.

  11. Metal-accelerated oxidation in plant cell death

    SciTech Connect

    Czuba, M. )

    1993-05-01

    Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death are Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.

  12. Mitochondria and cell death: outer membrane permeabilization and beyond.

    PubMed

    Tait, Stephen W G; Green, Douglas R

    2010-09-01

    Mitochondrial outer membrane permeabilization (MOMP) is often required for activation of the caspase proteases that cause apoptotic cell death. Various intermembrane space (IMS) proteins, such as cytochrome c, promote caspase activation following their mitochondrial release. As a consequence, mitochondrial outer membrane integrity is highly controlled, primarily through interactions between pro- and anti-apoptotic members of the B cell lymphoma 2 (BCL-2) protein family. Following MOMP by pro-apoptotic BCL-2-associated X protein (BAX) or BCL-2 antagonist or killer (BAK), additional regulatory mechanisms govern the mitochondrial release of IMS proteins and caspase activity. MOMP typically leads to cell death irrespective of caspase activity by causing a progressive decline in mitochondrial function, although cells can survive this under certain circumstances, which may have pathophysiological consequences.

  13. Apoptotic hair cell death after transient cochlear ischemia in gerbils.

    PubMed

    Taniguchi, Masafumi; Hakuba, Nobuhiro; Koga, Kenichiro; Watanabe, Futoshi; Hyodo, Jun; Gyo, Kiyofumi

    2002-12-20

    The mechanisms of cochlear hair cell death following exposure to transient inner ear ischemia were investigated in gerbils histologically. The animals were subjected to ischemic insult by occluding both vertebral arteries for 15 min. Hoechst 33342 nuclear staining showed that inner hair cells (IHCs) underwent sporadic degeneration via nuclear condensation, which peaked 12 hours after the ischemia. Furthermore, nuclear DNA fragmentation was noted by the terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-biotin nick end labeling method. Transmission electron microscopy revealed morphological changes in the IHCs characteristic of apoptosis, including karyopyknosis, chromatin condensation. These findings suggest that apoptotic cell death is the major process in hair cell degeneration in this animal model.

  14. Estrogen as Jekyll and Hyde: regulation of cell death.

    PubMed

    Zhou, Wen; Zhu, Xiaoxia

    2014-01-01

    Sustained estrogenic exposure increases the risk and/or the progression of various cancers, including those of the breast, endometrium and ovary. Unexpectedly, physiological level of estrogen together with a novel IKKα inhibitor BAY11-7082 could effectively induce cell apoptosis in ER-positive breast cancer cells, suggesting combining estrogen with IKKα inhibition may be beneficial for breast cancer patients. This opinion article touches upon the dual role estrogen played in inducing cancer cell death and asks whether use of estrogen in combination with IKKα-targeted therapy would be possible reconsider the newly identified crosstalk between ER and NFκB pathway which can be utilized to switch the effects of estrogen on cell death.

  15. Programmed Cell Death of Embryonic Motoneurons Triggered through the FAS Death Receptor

    PubMed Central

    Raoul, Cédric; Henderson, Christopher E.; Pettmann, Brigitte

    1999-01-01

    About 50% of spinal motoneurons undergo programmed cell death (PCD) after target contact, but little is known about how this process is initiated. Embryonic motoneurons coexpress the death receptor Fas and its ligand FasL at the stage at which PCD is about to begin. In the absence of trophic factors, many motoneurons die in culture within 2 d. Most (75%) of these were saved by Fas-Fc receptor body, which blocks interactions between Fas and FasL, or by the caspase-8 inhibitor tetrapeptide IETD. Therefore, activation of Fas by endogenous FasL underlies cell death induced by trophic deprivation. In the presence of neurotrophic factors, exogenous Fas activators such as soluble FasL or anti-Fas antibodies triggered PCD of 40–50% of purified motoneurons over the following 3–5 d; this treatment led to activation of caspase-3, and was blocked by IETD. Sensitivity to Fas activation is regulated: motoneurons cultured for 3 d with neurotrophic factors became completely resistant. Levels of Fas expressed by motoneurons varied little, but FasL was upregulated in the absence of neurotrophic factors. Motoneurons resistant to Fas activation expressed high levels of FLICE-inhibitory protein (FLIP), an endogenous inhibitor of caspase-8 activation. Our results suggest that Fas can act as a driving force for motoneuron PCD, and raise the possibility that active triggering of PCD may contribute to motoneuron loss during normal development and/or in pathological situations. PMID:10579724

  16. Die another way – non-apoptotic mechanisms of cell death

    PubMed Central

    Tait, Stephen W. G.; Ichim, Gabriel; Green, Douglas R.

    2014-01-01

    ABSTRACT Regulated, programmed cell death is crucial for all multicellular organisms. Cell death is essential in many processes, including tissue sculpting during embryogenesis, development of the immune system and destruction of damaged cells. The best-studied form of programmed cell death is apoptosis, a process that requires activation of caspase proteases. Recently it has been appreciated that various non-apoptotic forms of cell death also exist, such as necroptosis and pyroptosis. These non-apoptotic cell death modalities can be either triggered independently of apoptosis or are engaged should apoptosis fail to execute. In this Commentary, we discuss several regulated non-apoptotic forms of cell death including necroptosis, autophagic cell death, pyroptosis and caspase-independent cell death. We outline what we know about their mechanism, potential roles in vivo and define outstanding questions. Finally, we review data arguing that the means by which a cell dies actually matters, focusing our discussion on inflammatory aspects of cell death. PMID:24833670

  17. Melatonin ameliorates oxidative stress, modulates death receptor pathway proteins, and protects the rat cerebrum against bisphenol-A-induced apoptosis.

    PubMed

    El-Missiry, Mohamed A; Othman, Azza I; Al-Abdan, Monera A; El-Sayed, Aml A

    2014-12-15

    Epidemiological reports have indicated a correlation between the increasing of bisphenol-A (BPA) levels in the environment and the incidence of neurodegenerative diseases. In the present study, the protective effect of melatonin on oxidative stress and the death receptor apoptotic proteins in the cerebrum of the bisphenol-A-treated rats were examined. Adult male rats were orally administered melatonin (10mg/kg bw) concurrently with BPA (50mg/kg bw) 3 days a week for 6 weeks. BPA exposure resulted in significant elevations of oxidative stress, as evidenced by the increased malondialdehyde level and the decreased glutathione level and superoxide dismutase activity in the cerebrum. BPA caused an upregulation of p53 and CD95-Fas and activation of capsases-3 and 8, resulting in cerebral cell apoptosis. Melatonin significantly attenuated the BPA-evoked brain oxidative stress, modulated apoptotic-regulating proteins and protected against apoptosis. These data suggest that melatonin modulated important steps in the death receptor apoptotic pathway which likely related to its redox control properties. Melatonin is a promising pharmacological agent for preventing the potential neurotoxicity of BPA following occupational or environmental exposures.

  18. High-frequency ultrasound detection of cell death: Spectral differentiation of different forms of cell death in vitro

    PubMed Central

    Pasternak, Maurice M.; Sadeghi-Naini, Ali; Ranieri, Shawn M.; Giles, Anoja; Oelze, Michael L.; Kolios, Michael C.; Czarnota, Gregory J.

    2016-01-01

    High frequency quantitative ultrasound techniques were investigated to characterize different forms of cell death in vitro. Suspension-grown acute myeloid leukemia cells were treated to cause apoptosis, oncosis, mitotic arrest, and heat-induced death. Samples were scanned with 20 and 40 MHz ultrasound and assessed histologically in terms of cellular structure. Frequency-domain analysis of 20 MHz ultrasound data demonstrated midband fit changes of 6.0 ± 0.7 dBr, 6.2 ± 1.8 dBr, 4.0 ± 1.0 dBr and −4.6 ± 1.7 dBr after 48-hour cisplatinum-induced apoptosis, 48-hour oncotic decay, 36-hour colchicine-induced mitotic arrest, and heat treatment compared to control, respectively. Trends from 40 MHz ultrasound were similar. Spectral slope changes obtained from 40 MHz ultrasound data were reflective of alterations in cell and nucleus size. Chromatin pyknosis or lysis trends suggested that the density of nuclear material may be responsible for observed changes in ultrasound backscatter. Flow cytometry analysis confirmed the modes of cell death and supported midband fit trends in ultrasound data. Scatterer-size and concentration estimates obtained from a fluid-filled sphere form factor model further corresponded with spectral analysis and histology. Results indicate quantitative ultrasound spectral analysis may be used for probing anti-cancer response and distinguishing various modes of cell death in vitro. PMID:28050578

  19. Cytosolic Ku70 regulates Bax-mediated cell death.

    PubMed

    Hada, Manila; Subramanian, Chitra; Andrews, Phillip C; Kwok, Roland P S

    2016-10-01

    The first known function of Ku70 is as a DNA repair factor in the nucleus. Using neuronal neuroblastoma cells as a model, we have established that cytosolic Ku70 binds to the pro-apoptotic protein Bax in the cytosol and blocks Bax's cell death activity. Ku70-Bax binding is regulated by Ku70 acetylation in that when Ku70 is acetylated Bax dissociates from Ku70, triggering cell death. We propose that Ku70 may act as a survival factor in these cells such that Ku70 depletion triggers Bax-dependent cell death. Here, we addressed two fundamental questions about this model: (1) Does all Bax, which is a cytosolic protein, bind to all cytosolic Ku70? and (2) Is Ku70 a survival factor in cells types other than neuronal neuroblastoma cells? We show here that, in neuronal neuroblastoma cells, only a small fraction of Ku70 binds to a small fraction of Bax; most Bax is monomeric. Interestingly, there is no free or monomeric Ku70 in the cytosol; most cytosolic Ku70 is in complex with other factors forming several high molecular weight complexes. A fraction of cytosolic Ku70 also binds to cytosolic Ku80, Ku70's binding partner in the nucleus. Ku70 may not be a survival factor in some cell types (Ku70-depletion less sensitive) because Ku70 depletion does not affect survival of these cells. These results indicate that, in addition to Ku70 acetylation, other factors may be involved in regulating Ku70-Bax binding in the Ku70-depletion less sensitive cells because Ku70 acetylation in these cells is not sufficient to dissociate Bax from Ku70 or to activate Bax.

  20. Characterization of the effector cells in Con A-induced cytotoxicity against HEp 2 tumour targets.

    PubMed

    Pócsik, E; González-Cabello, R; Benedek, K; Perl, A; Láng, I; Gergely, P

    1983-01-01

    Con A-induced cytotoxic activity of human lymphocyte subpopulations obtained by cell fractionation procedures was studied in a test system using human epipharynx carcinoma cells (HEp 2) as targets. Only T lymphocytes were cytotoxic, non-T cells exerted no cytotoxic activity, but enhanced the adherence of the tumour cells. Tnon-G lymphocytes (Fc-receptor negative T cells) were more active than TG cells (Fc-receptor-positive T cells) in mediating the Con A-induced cytotoxic reaction.

  1. Ceramide Synthase-dependent Ceramide Generation and Programmed Cell Death

    PubMed Central

    Mullen, Thomas D.; Jenkins, Russell W.; Clarke, Christopher J.; Bielawski, Jacek; Hannun, Yusuf A.; Obeid, Lina M.

    2011-01-01

    The sphingolipid ceramide has been widely implicated in the regulation of programmed cell death or apoptosis. The accumulation of ceramide has been demonstrated in a wide variety of experimental models of apoptosis and in response to a myriad of stimuli and cellular stresses. However, the detailed mechanisms of its generation and regulatory role during apoptosis are poorly understood. We sought to determine the regulation and roles of ceramide production in a model of ultraviolet light-C (UV-C)-induced programmed cell death. We found that UV-C irradiation induces the accumulation of multiple sphingolipid species including ceramide, dihydroceramide, sphingomyelin, and hexosylceramide. Late ceramide generation was also found to be regulated by Bcl-xL, Bak, and caspases. Surprisingly, inhibition of de novo synthesis using myriocin or fumonisin B1 resulted in decreased overall cellular ceramide levels basally and in response to UV-C, but only fumonisin B1 inhibited cell death, suggesting the presence of a ceramide synthase (CerS)-dependent, sphingosine-derived pool of ceramide in regulating programmed cell death. We found that this pool did not regulate the mitochondrial pathway, but it did partially regulate activation of caspase-7 and, more importantly, was necessary for late plasma membrane permeabilization. Attempting to identify the CerS responsible for this effect, we found that combined knockdown of CerS5 and CerS6 was able to decrease long-chain ceramide accumulation and plasma membrane permeabilization. These data identify a novel role for CerS and the sphingosine salvage pathway in regulating membrane permeability in the execution phase of programmed cell death. PMID:21388949

  2. The DNA damage-induced cell death response: a roadmap to kill cancer cells.

    PubMed

    Matt, Sonja; Hofmann, Thomas G

    2016-08-01

    Upon massive DNA damage cells fail to undergo productive DNA repair and trigger the cell death response. Resistance to cell death is linked to cellular transformation and carcinogenesis as well as radio- and chemoresistance, making the underlying signaling pathways a promising target for therapeutic intervention. Diverse DNA damage-induced cell death pathways are operative in mammalian cells and finally culminate in the induction of programmed cell death via activation of apoptosis or necroptosis. These signaling routes affect nuclear, mitochondria- and plasma membrane-associated key molecules to activate the apoptotic or necroptotic response. In this review, we highlight the main signaling pathways, molecular players and mechanisms guiding the DNA damage-induced cell death response.

  3. Multiple roles of cadmium in cell death and survival.

    PubMed

    Templeton, Douglas M; Liu, Ying

    2010-11-05

    Cadmium is a toxic metal with no known biological function. It is increasingly important as an environmental hazard to both humans and wildlife, and it exemplifies the double edged nature of many toxic substances. Thus, on the one hand cadmium can act as a mitogen, stimulate cell proliferation, inhibit apoptosis, inhibit DNA repair, and promote cancer in a number of tissues. On the other hand, it causes tissue damage, notably in the kidney, by inducing cell death. At low and moderate concentrations in cell culture systems (e.g., 0.1-10μM) cadmium primarily causes apoptosis, and at higher concentrations (>50μM) necrosis becomes evident. This generalization appears to hold in vivo. There is also evidence of cadmium-induced autophagy, although whether this is a direct cause of cell death remains uncertain. After discussing these generalities, this review considers the details of apoptotic death, and its inhibition, in renal mesangial cells. We also present evidence for the effect of environmental exposure to cadmium in affecting renal function, and in particular review the evidence for the role of the mesangial cell in cadmium nephrotoxicity. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Imipramine protects mouse hippocampus against tunicamycin-induced cell death.

    PubMed

    Ono, Yoko; Shimazawa, Masamitsu; Ishisaka, Mitsue; Oyagi, Atsushi; Tsuruma, Kazuhiro; Hara, Hideaki

    2012-12-05

    Endoplasmic reticulum (ER) stress is implicated in various diseases. Recently, some reports have suggested that the sigma-1 receptor may play a role in ER stress, and many antidepressants have a high affinity for the sigma-1 receptor. In the present study, we focused on imipramine, a widely used antidepressant, and investigated whether it might protect against the neuronal cell death induced by tunicamycin, an ER stress inducer. In mouse cultured hippocampal HT22 cells, imipramine inhibited cell death and caspase-3 activation induced by tunicamycin, although it did not alter the elevated expressions of 78 kDa glucose-regulated protein (GRP78) and C/EBP-homologous protein (CHOP). Interestingly, in such cells application of imipramine normalized the expression of the sigma-1 receptor, which was decreased by treatment with tunicamycin alone. Additionally, NE-100, a selective sigma-1 receptor antagonist, abolished the protective effect of imipramine against such tunicamycin-induced cell death. Imipramine inhibited the reduction of mitochondrial membrane potential induced by tunicamycin, and NE-100 blocked this modulating effect of imipramine. Furthermore, in anesthetized mice intracerebroventricular administration of tunicamycin decreased the number of neuronal cells in the hippocampus, particularly in the CA1 and dentate gyrus (DG) areas, and 7 days' imipramine treatment (10mg/kg/day; i.p.) significantly suppressed these reductions in CA1 and DG. These findings suggest that imipramine protects against ER stress-induced hippocampal neuronal cell death both in vitro and in vivo. Such protection may be partly due to the sigma-1 receptor.

  5. Neural stem cell progeny regulate stem cell death in a Notch and Hox dependent manner

    PubMed Central

    Arya, R; Sarkissian, T; Tan, Y; White, K

    2015-01-01

    Cell death is a prevalent, well-controlled and fundamental aspect of development, particularly in the nervous system. In Drosophila, specific neural stem cells are eliminated by apoptosis during embryogenesis. In the absence of apoptosis, these stem cells continue to divide, resulting in a dramatically hyperplastic central nervous system and adult lethality. Although core cell death pathways have been well described, the spatial, temporal and cell identity cues that activate the cell death machinery in specific cells are largely unknown. We identified a cis-regulatory region that controls the transcription of the cell death activators reaper, grim and sickle exclusively in neural stem cells. Using a reporter generated from this regulatory region, we found that Notch activity is required for neural stem cell death. Notch regulates the expression of the abdominalA homeobox protein, which provides important spatial cues for death. Importantly, we show that pro-apoptotic Notch signaling is activated by the Delta ligand expressed on the neighboring progeny of the stem cell. Thus we identify a previously undescribed role for progeny in regulating the proper developmental death of their parental stem cells. PMID:25633198

  6. Cell death by mitotic catastrophe: a molecular definition.

    PubMed

    Castedo, Maria; Perfettini, Jean-Luc; Roumier, Thomas; Andreau, Karine; Medema, Rene; Kroemer, Guido

    2004-04-12

    The current literature is devoid of a clearcut definition of mitotic catastrophe, a type of cell death that occurs during mitosis. Here, we propose that mitotic catastrophe results from a combination of deficient cell-cycle checkpoints (in particular the DNA structure checkpoints and the spindle assembly checkpoint) and cellular damage. Failure to arrest the cell cycle before or at mitosis triggers an attempt of aberrant chromosome segregation, which culminates in the activation of the apoptotic default pathway and cellular demise. Cell death occurring during the metaphase/anaphase transition is characterized by the activation of caspase-2 (which can be activated in response to DNA damage) and/or mitochondrial membrane permeabilization with the release of cell death effectors such as apoptosis-inducing factor and the caspase-9 and-3 activator cytochrome c. Although the morphological aspect of apoptosis may be incomplete, these alterations constitute the biochemical hallmarks of apoptosis. Cells that fail to execute an apoptotic program in response to mitotic failure are likely to divide asymmetrically in the next round of cell division, with the consequent generation of aneuploid cells. This implies that disabling of the apoptotic program may actually favor chromosomal instability, through the suppression of mitotic catastrophe. Mitotic catastrophe thus may be conceived as a molecular device that prevents aneuploidization, which may participate in oncogenesis. Mitotic catastrophe is controlled by numerous molecular players, in particular, cell-cycle-specific kinases (such as the cyclin B1-dependent kinase Cdk1, polo-like kinases and Aurora kinases), cell-cycle checkpoint proteins, survivin, p53, caspases and members of the Bcl-2 family.

  7. Blockade of maitotoxin-induced oncotic cell death reveals zeiosis

    PubMed Central

    Estacion, Mark; Schilling, William P

    2002-01-01

    Background Maitotoxin (MTX) initiates cell death by sequentially activating 1) Ca2+ influx via non-selective cation channels, 2) uptake of vital dyes via formation of large pores, and 3) release of lactate dehydrogenase, an indication of cell lysis. MTX also causes formation of membrane blebs, which dramatically dilate during the cytolysis phase. To determine the role of phospholipase C (PLC) in the cell death cascade, U73122, a specific inhibitor of PLC, and U73343, an inactive analog, were examined on MTX-induced responses in bovine aortic endothelial cells. Results Addition of either U73122 or U73343, prior to MTX, produced a concentration-dependent inhibition of the cell death cascade (IC50 ≈ 1.9 and 0.66 μM, respectively) suggesting that the effect of these agents was independent of PLC. Addition of U73343 shortly after MTX, prevented or attenuated the effects of the toxin, but addition at later times had little or no effect. Time-lapse videomicroscopy showed that U73343 dramatically altered the blebbing profile of MTX-treated cells. Specifically, U73343 blocked bleb dilation and converted the initial blebbing event into "zeiosis", a type of membrane blebbing commonly associated with apoptosis. Cells challenged with MTX and rescued by subsequent addition of U73343, showed enhanced caspase-3 activity 48 hr after the initial insult, consistent with activation of the apoptotic program. Conclusions Within minutes of MTX addition, endothelial cells die by oncosis. Rescue by addition of U73343 shortly after MTX showed that a small percentage of cells are destined to die by oncosis, but that a larger percentage survive; cells that survive the initial insult exhibit zeiosis and may ultimately die by apoptotic mechanisms. PMID:11825342

  8. Some new approaches to the detection of programmed cell death

    NASA Astrophysics Data System (ADS)

    Bilyy, Rostyslav O.; Bilyi, Alexander I.; Getman, Vasyl B.; Kit, Yuriy Ya.; Mayor, Christina Ya.; Antonyuk, Volodmyr O.; Stoika, Rostyslav S.

    2006-08-01

    Apoptosis, or programmed cell death, is a form of cell death occurring during normal physiological processes and is used by the multicellular organism for elimination of "old" and impaired cells. Apoptosis is characterized by specific morphological changes such as plasma membrane blebbing, nucleus condensation, and cell wrinkling with further destruction into apoptotic bodies. Apoptosis detection is in focus of instrumental methods used in modern biomedical sciences. The available methods for such purpose are either very expensive, or require time-consuming operations. Their specificity and sensitivity are frequently not sufficient for biomedical diagnostics. We propose to use light scattering analysis for evaluation of apoptosis in cell population, especially for the detection of physical changes of cells, such as cell condensation and degradation into apoptotic bodies. The method proved to be very effective, providing quantitative estimation and high precision, simplicity and low costs of analysis (UA Patent No.64090). Another approach for the detection of apoptosis is based on the recently discovered fact (Bilyy, Stoika 2003; Bilyy et al, 2004; 2005) that apoptotic cells are characterized by increased expression levels of specific glycoproteins in the plasma membrane, which were proved to be selective and specific markers of apoptotic cells. Specific carbohydrate-binding proteins - lectins - were used for identification of mentioned glycoproteins; fluorescent conjugates of lectins were proved to be another novel tool for apoptosis identification using approaches of biophotonics.

  9. Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death

    PubMed Central

    Garg, Abhishek D.; Galluzzi, Lorenzo; Apetoh, Lionel; Baert, Thais; Birge, Raymond B.; Bravo-San Pedro, José Manuel; Breckpot, Karine; Brough, David; Chaurio, Ricardo; Cirone, Mara; Coosemans, An; Coulie, Pierre G.; De Ruysscher, Dirk; Dini, Luciana; de Witte, Peter; Dudek-Peric, Aleksandra M.; Faggioni, Alberto; Fucikova, Jitka; Gaipl, Udo S.; Golab, Jakub; Gougeon, Marie-Lise; Hamblin, Michael R.; Hemminki, Akseli; Herrmann, Martin; Hodge, James W.; Kepp, Oliver; Kroemer, Guido; Krysko, Dmitri V.; Land, Walter G.; Madeo, Frank; Manfredi, Angelo A.; Mattarollo, Stephen R.; Maueroder, Christian; Merendino, Nicolò; Multhoff, Gabriele; Pabst, Thomas; Ricci, Jean-Ehrland; Riganti, Chiara; Romano, Erminia; Rufo, Nicole; Smyth, Mark J.; Sonnemann, Jürgen; Spisek, Radek; Stagg, John; Vacchelli, Erika; Vandenabeele, Peter; Vandenberk, Lien; Van den Eynde, Benoit J.; Van Gool, Stefaan; Velotti, Francesca; Zitvogel, Laurence; Agostinis, Patrizia

    2015-01-01

    The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called “damage-associated molecular patterns” (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation. PMID:26635802

  10. Novel quorum-sensing peptides mediating interspecies bacterial cell death.

    PubMed

    Kumar, Sathish; Kolodkin-Gal, Ilana; Engelberg-Kulka, Hanna

    2013-06-04

    ABSTRACT Escherichia coli mazEF is a toxin-antitoxin stress-induced module mediating cell death. It requires the quorum-sensing signal (QS) "extracellular death factor" (EDF), the penta-peptide NNWNN (EcEDF), enhancing the endoribonucleolytic activity of E. coli toxin MazF. Here we discovered that E. coli mazEF-mediated cell death could be triggered by QS peptides from the supernatants (SN) of the Gram-positive bacterium Bacillus subtilis and the Gram-negative bacterium Pseudomonas aeruginosa. In the SN of B. subtilis, we found one EDF, the hexapeptide RGQQNE, called BsEDF. In the SN of P. aeruginosa, we found three EDFs: the nonapeptide INEQTVVTK, called PaEDF-1, and two hexadecapeptides, VEVSDDGSGGNTSLSQ, called PaEDF-2, and APKLSDGAAAGYVTKA, called PaEDF-3. When added to a diluted E. coli cultures, each of these peptides acted as an interspecies EDF that triggered mazEF-mediated death. Furthermore, though their sequences are very different, each of these EDFs amplified the endoribonucleolytic activity of E. coli MazF, probably by interacting with different sites on E. coli MazF. Finally, we suggest that EDFs may become the basis for a new class of antibiotics that trigger death from outside the bacterial cells. IMPORTANCE Bacteria communicate with one another via quorum-sensing signal (QS) molecules. QS provides a mechanism for bacteria to monitor each other's presence and to modulate gene expression in response to population density. Previously, we added E. coli EDF (EcEDF), the peptide NNWNN, to this list of QS molecules. Here we extended the group of QS peptides to several additional different peptides. The new EDFs are produced by two other bacteria, Bacillus subtilis and Pseudomonas aeruginosa. Thus, in this study we established a "new family of EDFs." This family provides the first example of quorum-sensing molecules participating in interspecies bacterial cell death. Furthermore, each of these peptides provides the basis of a new class of

  11. Multiple cell death programs: Charon's lifts to Hades.

    PubMed

    Bursch, Wilfried

    2004-11-01

    Cells use different pathways for active self-destruction as reflected by different morphology: while in apoptosis (or "type I") nuclear fragmentation associated with cytoplasmic condensation but preservation of organelles is predominant, autophagic degradation of cytoplasmic structures preceding nuclear collapse is a characteristic of a second type of programmed cell death (PCD). The diverse morphologies can be attributed--at least to some extent--to distinct biochemical and molecular events (e.g. caspase-dependent and -independent death programs; DAP-kinase activity, Ras-expression). However, apoptosis and autophagic PCD are not mutually exclusive phenomena. Rather, diverse PCD programs emerged during evolution, the conservation of which apparently allows cells a flexible response to environmental changes, either physiological or pathological.

  12. Glycosphingolipids and cell death: One aim, many ways

    PubMed Central

    Garcia-Ruiz, Carmen; Morales, Albert; Fernández-Checa, José C.

    2015-01-01

    Glycosphingolipids (GSLs) are a family of bioactive lipids that in addition to their role in the regulation of structural properties of membrane bilayers have emerged as crucial players in many biological processes and signal transduction pathways. Rather than being uniformly distributed within membrane bilayers, GSLs are localized in selective domains called lipid rafts where many signaling platforms operate. One of the most important functions of GSLs, particularly ceramide, is their ability to regulate cell death pathways and hence cell fate. This complex role is accomplished by the ability of GSLs to act in distinct subcellular strategic centers, such as mitochondria, endoplasmic reticulum (ER) or lysosomes to mediate apoptosis, ER stress, autophagy, lysosomal membrane permeabilization and necroptosis. Hence better understanding the role of GSLs in cell death may be of relevance for a number of pathological processes and diseases, including neurodegeneration, metabolic liver diseases and cancer. PMID:25637183

  13. Restimulation-induced cell death: new medical and research perspectives.

    PubMed

    Zheng, Lixin; Li, Jian; Lenardo, Michael

    2017-05-01

    In the periphery, homeostasis of the immune system depends on the equilibrium of expanding and contracting T lymphocytes during immune response. An important mechanism of lymphocyte contraction is clonal depletion of activated T cells by cytokine withdrawal induced death (CWID) and TCR restimulation induced cell death (RICD). Deficiencies in signaling components for CWID and RICD leads to autoimmunune lymphoproliferative disorders in mouse and human. The most important feature of CWID and RICD is clonal specificity, which lends great appeal as a strategy for targeted tolerance induction and treatment of autoimmune diseases, allergic disorders, and graft rejection by depleting undesired disease-causing T cells while keeping the overall host immunity intact. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  14. Focally regulated endothelial proliferation and cell death in human synovium.

    PubMed Central

    Walsh, D. A.; Wade, M.; Mapp, P. I.; Blake, D. R.

    1998-01-01

    Angiogenesis and vascular insufficiency each may support the chronic synovial inflammation of rheumatoid arthritis. We have shown by quantitative immunohistochemistry and terminal uridyl deoxynucleotide nick end labeling that endothelial proliferation and cell death indices were each increased in synovia from patients with rheumatoid arthritis compared with osteoarthritic and noninflamed controls, whereas endothelial fractional areas did not differ significantly among disease groups. Markers of proliferation were associated with foci immunoreactive for vascular endothelial growth factor and integrin alpha(v)beta3, whereas cell death was observed in foci in which immunoreactivities for these factors were weak or absent. No association was found with thrombospondin immunoreactivity. The balance between angiogenesis and vascular regression in rheumatoid synovitis may be determined by the focal expression of angiogenic and endothelial survival factors. Increased endothelial cell turnover may contribute to microvascular dysfunction and thereby facilitate persistent synovitis. Images Figure 1 Figure 3 Figure 4 PMID:9502411

  15. The cellular energy crisis: mitochondria and cell death.

    PubMed

    Waterhouse, Nigel J

    2003-01-01

    Exploding nuclear reactors, environmental destruction, and global warming; the danger of energy production is clear. It is quite remarkable that in this modern age, where power usage is at a premium, we find that even on a cellular level, generation of large quantities of power comes at a cost. Mitochondria, which produce the majority of cellular energy in the form of ATP, have recently been shown to play an essential role in the death of a cell by a process known as apoptosis. During apoptosis, the integrity of mitochondria is compromised and various pro-apoptotic proteins are released into the cytoplasm. This results in activation of caspases, proteases that orchestrate the death of the cell. Cells in which apoptosis is inhibited upstream of mitochondria generally maintain the potential to proliferate, whereas inhibition of caspases downstream of mitochondria generally only delays cell death. Although breaches of the mitochondrial outer membrane result in the release of proteins that are important for respiration, mitochondria appear capable of maintaining at least some of their functions, including ATP production, even after this event. This has important implications both for the mechanism of outer-membrane permeabilization and the mechanism by which the cells eventually die in the absence of caspase activity. The events surrounding the breach of the mitochondrial outer membrane during apoptosis have therefore received much interest over the past few years.

  16. Aquatic viruses induce host cell death pathways and its application.

    PubMed

    Reshi, Latif; Wu, Jen-Leih; Wang, Hao-Ven; Hong, Jiann-Ruey

    2016-01-04

    Virus infections of mammalian and animal cells consist of a series of events. As intracellular parasites, viruses rely on the use of host cellular machinery. Through the use of cell culture and molecular approaches over the past decade, our knowledge of the biology of aquatic viruses has grown exponentially. The increase in aquaculture operations worldwide has provided new approaches for the transmission of aquatic viruses that include RNA and DNA viruses. Therefore, the struggle between the virus and the host for control of the cell's death machinery is crucial for survival. Viruses are obligatory intracellular parasites and, as such, must modulate apoptotic pathways to control the lifespan of their host to complete their replication cycle. This paper updates the discussion on the detailed mechanisms of action that various aquatic viruses use to induce cell death pathways in the host, such as Bad-mediated, mitochondria-mediated, ROS-mediated and Fas-mediated cell death circuits. Understanding how viruses exploit the apoptotic pathways of their hosts may provide great opportunities for the development of future potential therapeutic strategies and pathogenic insights into different aquatic viral diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Unraveling the mechanism of cell death induced by chemical fibrils

    PubMed Central

    Julien, Olivier; Kampmann, Martin; Bassik, Michael C.; Zorn, Julie A.; Venditto, Vincent J.; Shimbo, Kazutaka; Agard, Nicholas J.; Shimada, Kenichi; Rheingold, Arnold L.; Stockwell, Brent R.; Weissman, Jonathan S.

    2014-01-01

    We previously discovered a small-molecule inducer of cell death, named 1541, that non-covalently self-assembles into chemical fibrils (“chemi-fibrils”) and activates procaspase-3 in vitro. We report here that 1541-induced cell death is caused by the fibrillar, rather than the soluble form of the drug. An shRNA screen reveals that knockdown of genes involved in endocytosis, vesicle trafficking, and lysosomal acidification causes partial 1541 resistance. We confirm the role of these pathways using pharmacological inhibitors. Microscopy shows that the fluorescent chemi-fibrils accumulate in punctae inside cells that partially co-localize with lysosomes. Notably, the chemi-fibrils bind and induce liposome leakage in vitro, suggesting they may do the same in cells. The chemi-fibrils induce extensive proteolysis including caspase substrates, yet modulatory profiling reveals that chemi-fibrils form a distinct class from existing inducers of cell death. The chemi-fibrils share similarities to proteinaceous fibrils and may provide insight into their mechanism of cellular toxicity. PMID:25262416

  18. Cell death and survival signalling in the cardiovascular system.

    PubMed

    Tucka, Joanna; Bennett, Martin; Littlewood, Trevor

    2012-01-01

    The loss of cells is an important factor in many diseases, including those of the cardiovascular system. Whereas apoptosis is an essential process in development and tissue homeostasis, its occurrence is often associated with various pathologies. Apoptosis of neurons that fail to make appropriate connections is essential for the selection of correct neural signalling in the developing embryo, but its appearance in adults is often associated with neurodegenerative disease. Similarly, in the cardiovascular system, remodeling of the mammalian outflow tract during the transition from a single to dual series circulation with four chambers is accompanied by a precise pattern of cell death, but apoptosis of cardiomyocytes contributes to ischemia-reperfusion injury in the heart. In many cases, it is unclear whether apoptosis represents a causative association or merely a consequence of the disease itself. There are many excellent reviews on cell death in the cardiovascular system (1-5); in this review we outline the critical signalling pathways that promote the survival of cardiovascular cells, and their relevance to both physiological cell death and disease.

  19. Megasporogenesis and programmed cell death in Tillandsia (Bromeliaceae).

    PubMed

    Papini, Alessio; Mosti, Stefano; Milocani, Eva; Tani, Gabriele; Di Falco, Pietro; Brighigna, Luigi

    2011-10-01

    The degeneration of three of four meiotic products is a very common process in the female gender of oogamous eukaryotes. In Tillandsia (and many other angiosperms), the surviving megaspore has a callose-free wall in chalazal position while the other three megaspores are completely embedded in callose. Therefore, nutrients and signals can reach more easily the functional megaspore from the nucellus through the chalazal pole with respect to the other megaspores. The abortion of three of four megaspores was already recognized as the result of a programmed cell death (PCD) process. We investigated the process to understand the modality of this specific type of PCD and its relationship to the asymmetric callose deposition around the tetrad. The decision on which of the four megaspores will be the supernumerary megaspores in angiosperms, and hence destined to undergo programmed cell death, appears to be linked to the callose layer deposition around the tetrad. During supernumerary megaspores degeneration, events leading to the deletion of the cells do not appear to belong to a single type of cell death. The first morphological signs are typical of autophagy, including the formation of autophagosomes. The TUNEL positivity and a change in morphology of mitochondria and chloroplasts indicate the passage to an apoptotic-like PCD phase, while the cellular remnants undergo a final process resembling at least partially (ER swelling) necrotic morphological syndromes, eventually leading to a mainly lipidic cell corpse still separated from the functional megaspore by a callose layer.

  20. Methylglyoxal Induces Mitochondrial Dysfunction and Cell Death in Liver

    PubMed Central

    Seo, Kyuhwa; Ki, Sung Hwan

    2014-01-01

    Degradation of glucose is aberrantly increased in hyperglycemia, which causes various harmful effects on the liver. Methylglyoxal is produced during glucose degradation and the levels of methylglyoxal are increased in diabetes patients. In this study we investigated whether methylglyoxal induces mitochondrial impairment and apoptosis in HepG2 cells and induces liver toxicity in vivo. Methylglyoxal caused apoptotic cell death in HepG2 cells. Moreover, methylglyoxal significantly promoted the production of reactive oxygen species (ROS) and depleted glutathione (GSH) content. Pretreatment with antioxidants caused a marked decrease in methylglyoxal-induced apoptosis, indicating that oxidant species are involved in the apoptotic process. Methylglyoxal treatment induced mitochondrial permeability transition, which represents mitochondrial impairment. However, pretreatment with cyclosporin A, an inhibitor of the formation of the permeability transition pore, partially inhibited methylglyoxal-induced cell death. Furthermore, acute treatment of mice with methylglyoxal increased the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver toxicity. Collectively, our results showed that methylglyoxal increases cell death and induces liver toxicity, which results from ROS-mediated mitochondrial dysfunction and oxidative stress. PMID:25343013

  1. Insights into the apoptotic death of immune cells in sepsis.

    PubMed

    Luan, Ying-yi; Yao, Yong-ming; Xiao, Xian-zhong; Sheng, Zhi-yong

    2015-01-01

    Sepsis with subsequent multiple-organ dysfunction is a distinct systemic inflammatory response to concealed or obvious infection, and it is a leading cause of death in intensive care units. Thus, one of the key goals in critical care medicine is to develop novel therapeutic strategies that will affect favorably on outcome of septic patients. In addition to systemic response to infection, apoptosis is implicated to be an important mechanism of the death of immune cells, including neutrophils, macrophages, T lymphocytes, and dendritic cells, and it is usually followed by the development of multiple-organ failure in sepsis. The implication of apoptosis of immune cells is now highlighted by multiple studies that demonstrate that prevention of cell apoptosis can improve survival in relevant animal models of severe sepsis. In this review, we focus on major apoptotic death pathways and molecular mechanisms that regulate apoptosis of different immune cells, and advances in these areas that may be translated into more promising therapies for the prevention and treatment of severe sepsis.

  2. DNA methylation and differential gene regulation in photoreceptor cell death.

    PubMed

    Farinelli, P; Perera, A; Arango-Gonzalez, B; Trifunovic, D; Wagner, M; Carell, T; Biel, M; Zrenner, E; Michalakis, S; Paquet-Durand, F; Ekström, P A R

    2014-12-04

    Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP.

  3. Sensitization of acute lymphoblastic leukemia cells for LCL161-induced cell death by targeting redox homeostasis.

    PubMed

    Haß, Christina; Belz, Katharina; Schoeneberger, Hannah; Fulda, Simone

    2016-04-01

    Disturbed redox homeostasis with both elevated reactive oxygen species (ROS) levels and antioxidant defense mechanisms has been reported in acute lymphoblastic leukemia (ALL). We therefore hypothesized that inhibition of pathways responsible for ROS detoxification renders ALL cells more susceptible for cell death. Here, we report that pharmacological inhibitors of key pathways for the elimination of ROS, i.e. Erastin, buthionine sulfoximine (BSO) and Auranofin, sensitize ALL cells for cell death upon treatment with the Smac mimetic LCL161 that antagonizes Inhibitor of Apoptosis (IAP) proteins. Erastin, BSO or Auranofin significantly increase LCL161-induced cell death and also act in concert with LCL161 to profoundly suppress long-term clonogenic survival in several ALL cell lines. Erastin or BSO cooperates with LCL161 to stimulate ROS production and lipid peroxidation prior to cell death. ROS production and lipid peroxidation are required for this cotreatment-induced cell death, since ROS scavengers or pharmacological inhibition of lipid peroxidation provides significant protection against cell death. These results emphasize that inhibition of antioxidant defense mechanisms can serve as a potent approach to prime ALL cells for LCL161-induced cell death.

  4. Induction of necrotic cell death by oxidative stress in retinal pigment epithelial cells.

    PubMed

    Hanus, J; Zhang, H; Wang, Z; Liu, Q; Zhou, Q; Wang, S

    2013-12-12

    Age-related macular degeneration (AMD) is a degenerative disease of the retina and the leading cause of blindness in the elderly. Retinal pigment epithelial (RPE) cell death and the resultant photoreceptor apoptosis are characteristic of late-stage dry AMD, especially geographic atrophy (GA). Although oxidative stress and inflammation have been associated with GA, the nature and underlying mechanism for RPE cell death remains controversial, which hinders the development of targeted therapy for dry AMD. The purpose of this study is to systematically dissect the mechanism of RPE cell death induced by oxidative stress. Our results show that characteristic features of apoptosis, including DNA fragmentation, caspase 3 activation, chromatin condensation and apoptotic body formation, were not observed during RPE cell death induced by either hydrogen peroxide or tert-Butyl hydroperoxide. Instead, this kind of cell death can be prevented by RIP kinase inhibitors necrostatins but not caspase inhibitor z-VAD, suggesting necrotic feature of RPE cell death. Moreover, ATP depletion, receptor interacting protein kinase 3 (RIPK3) aggregation, nuclear and plasma membrane leakage and breakdown, which are the cardinal features of necrosis, were observed in RPE cells upon oxidative stress. Silencing of RIPK3, a key protein in necrosis, largely prevented oxidative stress-induced RPE death. The necrotic nature of RPE death is consistent with the release of nuclear protein high mobility group protein B1 into the cytoplasm and cell medium, which induces the expression of inflammatory gene TNFα in healthy RPE and THP-1 cells. Interestingly, features of pyroptosis or autophagy were not observed in oxidative stress-treated RPE cells. Our results unequivocally show that necrosis, but not apoptosis, is a major type of cell death in RPE cells in response to oxidative stress. This suggests that preventing oxidative stress-induced necrotic RPE death may be a viable approach for late-stage dry

  5. Intracellular Delivery of Synthetic dsRNA to Leukemic Cells Induces Apoptotic and Necrotic Cell Death.

    PubMed

    Mahmud, S M; Mek, K J; Idris, A

    2016-01-01

    The type of tumour cell death dictates the type of adaptive immune response mounted against the tumours. In haematological malignancies such as acute myeloid leukaemia (AML), immune evasion due to the poor immunogenicity of leukemic cells is a major hurdle in generating an effective immune response. Transfection of synthetic dsRNA, poly I:C, into leukemic cells to trigger tumour cell death and enhance immunogenicity of the tumour is a promising immunotherapeutic approach. However, the temporal cell death kinetics of poly I:C-electroporated AML cells has not been thoroughly investigated. Electroporation of U937 cells, a human AML cell line, with a high dose of poly I:C resulted in cytotoxicity as early as 1 h post-transfection. Flow cytometric analysis revealed the temporal switch from early apoptosis to late apoptosis/secondary necrosis in poly I:C-electroporated cells in which the nuclear morphology at later time points was consistent with necrotic cell death. Our brief findings demonstrated the temporal cell death kinetics of dsRNA-transfected leukemic cells. This finding is an important development in the field of dsRNA immunotherapy for leukaemia as understanding the type of cell death elicited by transfected dsRNA will dictate the type of immune response to be directed against leukemic cells.

  6. Contribution of apoptotic cell death to renal injury.

    PubMed

    Ortiz, A; Lorz, C; Justo, P; Catalán, M P; Egido, J

    2001-01-01

    Cell number abnormalities are frequent in renal diseases, and range from the hypercellularity of postinfectious glomerulonephritis to the cell depletion of chronic renal atrophy. Recent research has shown that apoptosis and its regulatory mechanisms contribute to cell number regulation in the kidney. The role of apoptosis ranges from induction to repair and progression of renal injury. Death ligands and receptors, such as TNF and FasL, proapoptotic and antiapoptotic Bcl-2 family members and caspases have all been shown to participate in apoptosis regulation in the course of renal injury. These proteins represent potential therapeutic targets, which should be further explored.

  7. Fas Protects Breast Cancer Stem Cells from Death

    DTIC Science & Technology

    2014-10-01

    apoptosis and DICE in breast cancer cells, with many potential therapeutical applications. I could also demonstrate the involvement of miRNA in the...process. Moreover, I have developed a novel plasmid-based tool to isolate BCSCS by the activity of miRNAs , and I am going to optimize and test the...relevance of its use in the next reporting period. 15. SUBJECT TERMS Fas, FasL, Cancer, Cancer Stem cells, Apoptosis, miRNA , EMT, cell death. 16

  8. The mechanism of cone cell death in Retinitis Pigmentosa.

    PubMed

    Campochiaro, Peter A; Mir, Tahreem A

    2017-09-27

    Retinitis Pigmentosa (RP) is a group of diseases in which one of a large number of mutations causes death of rod photoreceptors. After rods die, cone photoreceptors slowly degenerate in a characteristic pattern. The mechanism of rod cell death varies depending upon the gene that is mutated and the rate that rods degenerate is an important prognostic feature, because cones do not begin to degenerate until almost all rods have been eliminated. Rod cell death causes night blindness, but visual disability and blindness result from cone degeneration and therefore it is critical to determine the mechanisms by which it occurs. The death of rods reduces oxygen consumption resulting in high tissue levels of oxygen in the outer retina. The excess oxygen stimulates superoxide radical production by mismatches in the electron transport chain in mitochondria and by stimulation of NADPH oxidase activity in cytoplasm. The high levels of superoxide radicals overwhelm the antioxidant defense system and generate more reactive species including peroxynitrite which is extremely damaging and difficult to detoxify. This results in progressive oxidative damage in cones which contributes to cone cell death and loss of function because drugs or gene transfer that reduce oxidative stress promote cone survival and maintenance of function. Compared with aqueous humor samples from control patients, those from patients with RP show significant elevation of carbonyl content on proteins indicating oxidative damage and a reduction in the ratio of reduced to oxidized glutathione indicating depletion of a major component of the antioxidant defense system from ongoing oxidative stress. The first step in clinical trials will be to identify doses of therapeutic agents that reverse these biomarkers of disease to assist in design of much longer trials with functional and anatomic endpoints. Copyright © 2017. Published by Elsevier Ltd.

  9. Mechanism of cell death resulting from DNA interstrand cross-linking in mammalian cells

    PubMed Central

    Osawa, T; Davies, D; Hartley, J A

    2011-01-01

    DNA interstrand cross-links (ICLs) are critical cytotoxic lesions produced by cancer chemotherapeutic agents such as the nitrogen mustards and platinum drugs; however, the exact mechanism of ICL-induced cell death is unclear. Here, we show a novel mechanism of p53-independent apoptotic cell death involving prolonged cell-cycle (G2) arrest, ICL repair involving HR, transient mitosis, incomplete cytokinesis, and gross chromosomal abnormalities resulting from ICLs in mammalian cells. This characteristic ‘giant' cell death, observed by using time-lapse video microscopy, was reduced in ICL repair ERCC1- and XRCC3-deficient cells. Collectively, the results illustrate the coordination of ICL-induced cellular responses, including cell-cycle arrest, DNA damage repair, and cell death. PMID:21814285

  10. Cell death and lung cell histology in meconium aspirated newborn rabbit lung.

    PubMed

    Zagariya, A; Bhat, R; Uhal, B; Navale, S; Freidine, M; Vidyasagar, D

    2000-11-01

    Meconium aspiration syndrome (MAS) is a major cause of newborn mortality and morbidity. In this study we investigated the inflammatory responses and morphological changes in the newborn lung to debris-free meconium instillation. We developed a model for studies of MAS using 2-week-old rabbit pups. Cell death was assessed by DNA staining and detection of DNA fragmentation by in situ end labeling. Cell death was seen in association with an increase of inflammatory cytokines levels, studied by ELISA. Necrotic cells were detected by staining of lavage cells with ethidium bromide and 4',6'-diamino-2'-phenylidon. Meconium instillation resulted selectively in loss of airway and alveolar epithelial cells followed by cell death, which increased with time. Necrotic cells looked smaller and damaged with maximal counts at 24 h after instillation. Meconium instillation into lungs caused massive cell death, possibly by apoptosis, and necrosis that may have been activated by the inflammatory cytokine production.

  11. UTX coordinates steroid hormone-mediated autophagy and cell death

    PubMed Central

    Denton, Donna; Aung-Htut, May T.; Lorensuhewa, Nirmal; Nicolson, Shannon; Zhu, Wenying; Mills, Kathryn; Cakouros, Dimitrios; Bergmann, Andreas; Kumar, Sharad

    2014-01-01

    Correct spatial and temporal induction of numerous cell type-specific genes during development requires regulated removal of the repressive histone H3 lysine 27 trimethylation (H3K27me3) modification. Here we show that the H3K27me3 demethylase dUTX is required for hormone-mediated transcriptional regulation of apoptosis and autophagy genes during ecdysone-regulated programmed cell death of Drosophila salivary glands. We demonstrate that dUTX binds to the nuclear hormone receptor complex Ecdysone Receptor/Ultraspiracle, and is recruited to the promoters of key apoptosis and autophagy genes. Salivary gland cell death is delayed in dUTX mutants, with reduced caspase activity and autophagy that coincides with decreased apoptosis and autophagy gene transcripts. We further show that salivary gland degradation requires dUTX catalytic activity. Our findings provide evidence for an unanticipated role for UTX demethylase activity in regulating hormone-dependent cell death and demonstrate how a single transcriptional regulator can modulate a specific complex functional outcome during animal development. PMID:24336022

  12. Different types of cell death induced by enterotoxins.

    PubMed

    Lin, Chiou-Feng; Chen, Chia-Ling; Huang, Wei-Ching; Cheng, Yi-Lin; Hsieh, Chia-Yuan; Wang, Chi-Yun; Hong, Ming-Yuan

    2010-08-01

    The infection of bacterial organisms generally causes cell death to facilitate microbial invasion and immune escape, both of which are involved in the pathogenesis of infectious diseases. In addition to the intercellular infectious processes, pathogen-produced/secreted enterotoxins (mostly exotoxins) are the major weapons that kill host cells and cause diseases by inducing different types of cell death, particularly apoptosis and necrosis. Blocking these enterotoxins with synthetic drugs and vaccines is important for treating patients with infectious diseases. Studies of enterotoxin-induced apoptotic and necrotic mechanisms have helped us to create efficient strategies to use against these well-characterized cytopathic toxins. In this article, we review the induction of the different types of cell death from various bacterial enterotoxins, such as staphylococcal enterotoxin B, staphylococcal alpha-toxin, Panton-Valentine leukocidin, alpha-hemolysin of Escherichia coli, Shiga toxins, cytotoxic necrotizing factor 1, heat-labile enterotoxins, and the cholera toxin, Vibrio cholerae. In addition, necrosis caused by pore-forming toxins, apoptotic signaling through cross-talk pathways involving mitochondrial damage, endoplasmic reticulum stress, and lysosomal injury is discussed.

  13. Glucose Levels in Culture Medium Determine Cell Death Mode in MPP(+)-treated Dopaminergic Neuronal Cells.

    PubMed

    Yoon, So-Young; Oh, Young J

    2015-09-01

    We previously demonstrated that 1-methyl-4-phenylpyridinium (MPP(+)) causes caspase-independent, non-apoptotic death of dopaminergic (DA) neuronal cells. Here, we specifically examined whether change of glucose concentration in culture medium may play a role for determining cell death modes of DA neurons following MPP(+) treatment. By incubating MN9D cells in medium containing varying concentrations of glucose (5~35 mM), we found that cells underwent a distinct cell death as determined by morphological and biochemical criteria. At 5~10 mM glucose concentration (low glucose levels), MPP(+) induced typical of the apoptotic dell death accompanied with caspase activation and DNA fragmentation as well as cell shrinkage. In contrast, MN9D cells cultivated in medium containing more than 17.5 mM (high glucose levels) did not demonstrate any of these changes. Subsequently, we observed that MPP(+) at low glucose levels but not high glucose levels led to ROS generation and subsequent JNK activation. Therefore, MPP(+)-induced cell death only at low glucose levels was significantly ameliorated following co-treatment with ROS scavenger, caspase inhibitor or JNK inhibitor. We basically confirmed the quite similar pattern of cell death in primary cultures of DA neurons. Taken together, our results suggest that a biochemically distinct cell death mode is recruited by MPP(+) depending on extracellular glucose levels.

  14. Chromatin Remodeling, Cell Proliferation and Cell Death in Valproic Acid-Treated HeLa Cells

    PubMed Central

    Felisbino, Marina Barreto; Tamashiro, Wirla M. S. C.; Mello, Maria Luiza S.

    2011-01-01

    Background Valproic acid (VPA) is a potent anticonvulsant that inhibits histone deacetylases. Because of this inhibitory action, we investigated whether VPA would affect chromatin supraorganization, mitotic indices and the frequency of chromosome abnormalities and cell death in HeLa cells. Methodology/Principal Findings Image analysis was performed by scanning microspectrophotometry for cells cultivated for 24 h, treated with 0.05, 0.5 or 1.0 mM VPA for 1–24 h, and subjected to the Feulgen reaction. TSA-treated cells were used as a predictable positive control. DNA fragmentation was investigated with the TUNEL assay. Chromatin decondensation was demonstrated under TSA and all VPA treatments, but no changes in chromosome abnormalities, mitotic indices or morphologically identified cell death were found with the VPA treatment conditions mentioned above, although decreased mitotic indices were detected under higher VPA concentration and longer exposure time. The frequency of DNA fragmentation identified with the TUNEL assay in HeLa cells increased after a 24-h VPA treatment, although this fragmentation occurred much earlier after treatment with TSA. Conclusions/Significance The inhibition of histone deacetylases by VPA induces chromatin remodeling in HeLa cells, which suggests an association to altered gene expression. Under VPA doses close to the therapeutic antiepileptic plasma range no changes in cell proliferation or chromosome abnormalities are elicited. The DNA fragmentation results indicate that a longer exposure to VPA or a higher VPA concentration is required for the induction of cell death. PMID:22206001

  15. Sodium azide induces necrotic cell death in rat squamous cell carcinoma SCC131.

    PubMed

    Sato, Eiju; Suzuki, Toshimitsu; Hoshi, Nobuo; Sugino, Takashi; Hasegawa, Hiroshi

    2008-12-01

    Sodium azide (NaN(3)) is widely used in industry and agriculture, and also in laboratories as a potent preservative. NaN(3) induces cell death when applied to cultured cells. However, whether the mode of cell death is apoptosis or necrosis remains a subject of debate. There have been no previous reports on NaN(3)-induced cell death in squamous cell carcinoma (SCC), and so we studied the mode of cell death induced by NaN(3) using the rat SCC cell line, SCC131. In this experiment, SCC131 cells died 48-72 h after NaN(3) treatment with concentrations greater than 5 mM. The NaN(3) treatment reduced the mitochondrial membrane potential and ATP content. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and DNA ladder detection assay indicated that no DNA fragmentation occurred. In addition, phosphatidyl serine did not appear on the cell surface, according to the findings of dye-uptake bioassay and flow cytometric analysis of Annexin V labeling. Electron microscopic analysis revealed that the NaN(3)-treated cells showed mitochondrial swelling and rupture of the cell membrane. In conclusion, NaN(3) induces necrotic cell death in SCC131. This experimental model may be used in the study of necrotic cell death.

  16. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells.

    PubMed

    Jung, So Young; Lee, Kang-Woo; Choi, Sun-Mi; Yang, Eun Jin

    2015-09-21

    Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV) extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A₂. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death.

  17. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells

    PubMed Central

    Jung, So Young; Lee, Kang-Woo; Choi, Sun-Mi; Yang, Eun Jin

    2015-01-01

    Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV) extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A2. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death. PMID:26402700

  18. Coenzyme Q10 Ameliorates Ultraviolet B Irradiation Induced Cell Death Through Inhibition of Mitochondrial Intrinsic Cell Death Pathway

    PubMed Central

    Jing, Li; Kumari, Santosh; Mendelev, Natalia; Li, P. Andy

    2011-01-01

    Ultraviolet B (UVB) induces cell death by increasing free radical production, activating apoptotic cell death pathways and depolarizing mitochondrial membrane potential. Coenzyme Q10 (CoQ10), an essential cofactor in the mitochondrial electron transport chain, serves as a potent antioxidant in the mitochondria. The aim of the present study is to establish whether CoQ10 is capable of protecting neuronal cells against UVB-induced damage. Murine hippocampal HT22 cells were treated with 0.01, 0.1 or 1 μM of CoQ10 3 or 24 h prior to the cells being exposed to UVB irradiation. The CoQ10 concentrations were maintained during irradiation and 24 h post-UVB. Cell viability was assessed by counting viable cells and MTT conversion assay. Superoxide production and mitochondrial membrane potential were measured using fluorescent probes. Levels of cleaved caspase-9, caspase-3, and apoptosis-inducing factor (AIF) were detected using immunocytochemistry and Western blotting. The results showed that UVB irradiation decreased cell viability and such damaging effect was associated with increased superoxide production, mitochondrial depolarization, and activation of caspase-9 and caspase-3. Treatment with CoQ10 at three different concentrations started 24 h before UVB exposure significantly increased the cell viability. The protective effect of CoQ10 was associated with reduction in superoxide production, normalization of mitochondrial membrane potential and inhibition of caspase-9 and caspase-3 activation. It is concluded that the neuroprotective effect of CoQ10 results from inhibiting oxidative stress and blocking caspase-3 dependent cell death pathway. PMID:22174665

  19. Triggering cell death by nanographene oxide mediated hyperthermia

    NASA Astrophysics Data System (ADS)

    Vila, M.; Matesanz, M. C.; Gonçalves, G.; Feito, M. J.; Linares, J.; Marques, P. A. A. P.; Portolés, M. T.; Vallet-Regi, M.

    2014-01-01

    Graphene oxide (GO) has been proposed as an hyperthermia agent for anticancer therapies due to its near-infrared (NIR) optical absorption ability which, with its small two-dimensional size, could have a unique performance when compared to that of any other nanoparticle. Nevertheless, attention should be given to the hyperthermia route and the kind of GO-cell interactions induced in the process. The hyperthermia laser irradiation parameters, such as exposure time and laser power, were investigated to control the temperature rise and consequent damage in the GOs containing cell culture medium. The type of cell damage produced was evaluated as a function of these parameters. The results showed that cell culture temperature (after irradiating cells with internalized GO) increases preferentially with laser power rather than with exposure time. Moreover, when laser power is increased, necrosis is the preferential cell death leading to an increase of cytokine release to the medium.

  20. Cell death of spinal cord ED1+ cells in a rat model of multiple sclerosis

    PubMed Central

    Djedović, Neda; Lavrnja, Irena; Wendrich, Katrin Sophie; Paquet-Durand, François; Miljković, Djordje

    2015-01-01

    Infiltration of macrophages into the central nervous system and activation of microglia are hallmarks of multiple sclerosis and its animal model—experimental autoimmune encephalomyelitis (EAE). Cell death in EAE has been demonstrated as an essential mechanism in the local regulation of the inflammatory reaction, but also as one of the major factors contributing to the destruction of the nervous tissue. The focus of this study was on detection of cell death among ED1+ cells (macrophages/activated microglia) in the spinal cord of Dark Agouti rats at the peak of EAE. Cell death was assessed using the TUNEL assay and immunostaining for cleaved caspase 3, as markers for cell death in general and “classical” apoptosis, respectively. Major infiltrates of immune cells were detected both in white matter and gray matter of spinal cords in rats at the disease peak. ED1, TUNEL, and caspase 3 positive cells were detected within, but also outside the infiltrates. There were more dying ED1+ cells in white matter than in gray matter, both in the general population and in infiltrated regions. The observed discrepancy in the proportion of dying ED1+ cells in spinal cord gray and white matter indicated that in EAE rat macrophages/microglia within gray matter are less prone to cell death induction. This is of special interest in the context of the increasingly appreciated contribution of spinal cord gray matter inflammation to multiple sclerosis pathogenesis. Our findings suggest that activated macrophages/microglia of gray matter are less susceptible to cell death induction. Alternatively, it can be assumed that intrinsic cell death-inductive mechanisms of nervous tissue differ in white and gray matter. Thus, further research on the gray matter macrophages/microglia cell death during EAE is warranted. They should be aimed at identification of the reasons for the observed differences and finding suitable ways to stimulate gray matter activated macrophages/microglia death. PMID

  1. Mitochondrial DNA damage by bleomycin induces AML cell death.

    PubMed

    Yeung, ManTek; Hurren, Rose; Nemr, Carine; Wang, Xiaoming; Hershenfeld, Samantha; Gronda, Marcela; Liyanage, Sanduni; Wu, Yan; Augustine, Jeevan; Lee, Eric A; Spagnuolo, Paul A; Southall, Noel; Chen, Catherine; Zheng, Wei; Jeyaraju, Danny V; Minden, Mark D; Laposa, Rebecca; Schimmer, Aaron D

    2015-06-01

    Mitochondria contain multiple copies of their own 16.6 kb circular genome. To explore the impact of mitochondrial DNA (mtDNA) damage on mitochondrial (mt) function and viability of AML cells, we screened a panel of DNA damaging chemotherapeutic agents to identify drugs that could damage mtDNA. We identified bleomycin as an agent that damaged mtDNA in AML cells at concentrations that induced cell death. Bleomycin also induced mtDNA damage in primary AML samples. Consistent with the observed mtDNA damage, bleomycin reduced mt mass and basal oxygen consumption in AML cells. We also demonstrated that the observed mtDNA damage was functionally important for bleomycin-induced cell death. Finally, bleomycin delayed tumor growth in xenograft mouse models of AML and anti-leukemic concentrations of the drug induced mtDNA damage in AML cells preferentially over normal lung tissue. Taken together, mtDNA-targeted therapy may be an effective strategy to target AML cells and bleomycin could be useful in the treatment of this disease.

  2. Accurate Assessment of Cell Death by Imaging Flow Cytometry.

    PubMed

    Rieger, Aja M; Barreda, Daniel R

    2016-01-01

    The number of investigators using cell death analysis applications has greatly expanded since the introduction of flow cytometry. The Annexin V/propidium iodide (PI) method is among the most commonly used procedures and allows users to determine if cells are viable, apoptotic, or necrotic, based on changes in membrane lipid composition, integrity, and permeability. Unfortunately, PI can intercalate into RNA, in addition to DNA, which contributes to a large number of events showing PI staining within the cytoplasmic compartment. We show that this occurs across a broad range of animal primary cells and commonly used cell lines, and is most prevalent in large cells (nuclear:cytoplasmic ratio <0.5). Any cellular system where RNA levels change throughout an experiment will be particularly affected, such as those that utilize virally infected cells. As two examples, we highlight our recent work on cells infected with vesicular stomatitis virus (VSV), an RNA virus, and herpes simplex virus-1 (HSV-1), a DNA virus. Similarly, these issues are relevant to experimental systems where cells have increased RNA content such as during genotoxic stress, following exposure to cell cycle arrest drugs such as thymidine or hydroxyurea, or where developmental progression promotes discrete changes in cellular RNA synthesis. This chapter outlines a modified Annexin V/PI method that addresses cytoplasmic RNA staining issues to allow for accurate assessment of cell death. This protocol takes advantage of an additional cellular permeability caused by fixation to promote RNase A entry into the cell. Based on our observations, cell morphological parameters are well maintained and less than 5 % of total cellular events exhibit cytoplasmic PI staining under this protocol.

  3. Neuronal cell death during metamorphosis of Hydractina echinata (Cnidaria, Hydrozoa).

    PubMed

    Seipp, Stefanie; Schmich, Jürgen; Will, Britta; Schetter, Eva; Plickert, Günter; Leitz, Thomas

    2010-12-01

    In planula larvae of the invertebrate Hydractinia echinata (Cnidaria, Hydrozoa), peptides of the GLWamide and the RFamide families are expressed in distinct subpopulations of neurons, distributed in a typical spatial pattern through the larval body. However, in the adult polyp GLWamide or RFamide-expressing cells are located at body parts that do not correspond to the prior larval regions. Since we had shown previously that during metamorphosis a large number of cells are removed by programmed cell death (PCD), we aimed to analyze whether cells of the neuropeptide-expressing larval nerve net are among those sacrificed. By immunohistochemical staining and in situ hybridization, we labeled GLWamide- and RFamide-expressing cells. Double staining of neuropeptides and degraded DNA (TUNEL analysis) identified some neurosensory cells as being apoptotic. Derangement of the cytoplasm and rapid destruction of neuropeptide precursor RNA indicated complete death of these particular sensory cells in the course of metamorphosis. Additionally, a small group of RFamide-positive sensory cells in the developing mouth region of the primary polyp could be shown to emerge by proliferation. Our results support the idea that during metamorphosis, specific parts of the larval neuronal network are subject to neurodegeneration and therefore not used for construction of the adult nerve net. Most neuronal cells of the primary polyp arise by de novo differentiation of stem cells commited to neural differentiation in embryogenesis. At least some nerve cells derive from proliferation of progenitor cells. Clarification of how the nerve net of these basal eumetazoans degenerates may add information to the understanding of neurodegeneration by apoptosis as a whole in the animal kingdom.

  4. Neuronal cell death in the Sudden Infant Death Syndrome brainstem and associations with risk factors.

    PubMed

    Machaalani, Rita; Waters, Karen A

    2008-01-01

    Immunoreactive expression of three cell death markers was quantitatively analysed in the human infant brainstem medulla. We assessed active caspase-3, TUNEL and single-stranded DNA (ssDNA) in a cohort of 92 infants, and analysed for: (i) variations in the immunoreactive expression with development; (ii) comparison of infants diagnosed with the Sudden Infant Death Syndrome (SIDS, n = 67) to infants who died suddenly with another diagnosis (non-SIDS, n = 25); and (iii) correlations with known clinical risk factors for SIDS. Five nuclei from the brainstem medulla (caudal and rostral levels) were studied, including the hypoglossal (XII), dorsal motor nucleus of the vagus (DMNV), the dorsal column nuclei (gracile and cuneate) and the arcuate nucleus. Our main hypothesis was that neuronal cell death would be increased in SIDS compared to non-SIDS infants, and the increase would correlate with risk factors such as prone sleeping and cigarette smoke exposure. Comparing SIDS to non-SIDS, there was an increase in caspase-3 in the rostral DMNV (P = 0.01), and a trend to increased TUNEL in the arcuate nucleus (P = 0.1), which was statistically significant when comparing the male SIDS to male non-SIDS cohort (P = 0.04). No major changes for ssDNA immunoreactivity were found. Moreover, TUNEL expression was affected by post-conceptional age, by sleep-related risk factors (predominantly affecting the dorsal column nuclei), and by cigarette smoke exposure in the rostral DMNV and arcuate nucleus. Active caspase-3 was affected by post-conceptional age but only in the XII, while gender-related differences were seen in the arcuate nucleus. This study provides further evidence of increased apoptosis in the brainstem of SIDS infants, but shows for the first time that these changes are also affected by age and gender, and by clinical risk factors such as the sleep position and cigarette smoke exposure.

  5. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    PubMed

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin(+)) and leukemia stem cell population (CD34(+)CD38(-)Lin(-/low)). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G0/G1 (7μM) and G2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy

    PubMed Central

    Adkins, Irena; Fucikova, Jitka; Garg, Abhishek D; Agostinis, Patrizia; Špíšek, Radek

    2015-01-01

    The concept of immunogenic cancer cell death (ICD), as originally observed during the treatment with several chemotherapeutics or ionizing irradiation, has revolutionized the view on the development of new anticancer therapies. ICD is defined by endoplasmic reticulum (ER) stress response, reactive oxygen species (ROS) generation, emission of danger-associated molecular patterns and induction of antitumor immunity. Here we describe known and emerging cancer cell death-inducing physical modalities, such as ionizing irradiation, ultraviolet C light, Photodynamic Therapy (PDT) with Hypericin, high hydrostatic pressure (HHP) and hyperthermia (HT), which have been shown to elicit effective antitumor immunity. We discuss the evidence of ICD induced by these modalities in cancer patients together with their applicability in immunotherapeutic protocols and anticancer vaccine development. PMID:25964865

  7. Cytofluorometric Quantification of Cell Death Elicited by NLR Proteins.

    PubMed

    Sica, Valentina; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2016-01-01

    Nucleotide-binding domain and leucine-rich repeat containing (NLR) proteins, also known as NOD-like receptors, are critical components of the molecular machinery that senses intracellular danger signals to initiate an innate immune response against invading pathogens or endogenous sources of hazard. The best characterized effect of NLR signaling is the secretion of various cytokines with immunostimulatory effects, including interleukin (IL)-1β and IL-18. Moreover, at least under specific circumstances, NLRs can promote regulated variants of cell death. Here, we detail two protocols for the cytofluorometric quantification of cell death-associated parameters that can be conveniently employed to assess the lethal activity of specific NLRs or their ligands.

  8. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    SciTech Connect

    Marrero, Maria Teresa; Estevez, Sara; Negrin, Gledy; Quintana, Jose; Leon, Francisco; Estevez, Francisco

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Ayanin diacetate as apoptotic inducer in leukemia cells. Black-Right-Pointing-Pointer Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x{sub L}. Black-Right-Pointing-Pointer The intrinsic and the extrinsic pathways are involved in the mechanism of action. Black-Right-Pointing-Pointer Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G{sub 2}-M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x{sub L}. Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.

  9. Mechanisms of Virus-Induced Neural Cell Death

    DTIC Science & Technology

    2002-09-01

    RESEARCH ACCOMPLISHMENTS: SOW 1 *Apoptosis is an important feature of CNS injury in human CNS viral infections including herpes simplex virus and...with reovirus grammed cell death ( 1 , 19, 31, 68). Many other viruses , such as 8B develop myocarditis, and passive transfer of reovirus-spe- human ...and B. Roizman. 1999. Herpes simplex virus 1 and cognitive deficits following experimental brain injury in the rat. Proc. blocks caspase-3-independent

  10. Chitosan-induced programmed cell death in plants.

    PubMed

    Vasil'ev, L A; Dzyubinskaya, E V; Zinovkin, R A; Kiselevsky, D B; Lobysheva, N V; Samuilov, V D

    2009-09-01

    Chitosan, CN(-), or H(2)O(2) caused the death of epidermal cells (EC) in the epidermis of pea leaves that was detected by monitoring the destruction of cell nuclei; chitosan induced chromatin condensation and marginalization followed by the destruction of EC nuclei and subsequent internucleosomal DNA fragmentation. Chitosan did not affect stoma guard cells (GC). Anaerobic conditions prevented the chitosan-induced destruction of EC nuclei. The antioxidants nitroblue tetrazolium or mannitol suppressed the effects of chitosan, H(2)O(2), or chitosan + H(2)O(2) on EC. H(2)O(2) formation in EC and GC mitochondria that was determined from 2',7'-dichlorofluorescein fluorescence was inhibited by CN(-) and the protonophoric uncoupler carbonyl cyanide m-chlorophenylhydrazone but was stimulated by these agents in GC chloroplasts. The alternative oxidase inhibitors propyl gallate and salicylhydroxamate prevented chitosan- but not CN(-)-induced destruction of EC nuclei; the plasma membrane NADPH oxidase inhibitors diphenylene iodonium and quinacrine abolished chitosan- but not CN(-)-induced destruction of EC nuclei. The mitochondrial protein synthesis inhibitor lincomycin removed the destructive effect of chitosan or H(2)O(2) on EC nuclei. The effect of cycloheximide, an inhibitor of protein synthesis in the cytoplasm, was insignificant; however, it was enhanced if cycloheximide was added in combination with lincomycin. The autophagy inhibitor 3-methyladenine removed the chitosan effect but exerted no influence on the effect of H(2)O(2) as an inducer of EC death. The internucleosome DNA fragmentation in conjunction with the data on the 3-methyladenine effect provides evidence that chitosan induces programmed cell death that follows a combined scenario including apoptosis and autophagy. Based on the results of an inhibitor assay, chitosan-induced EC death involves reactive oxygen species generated by the NADPH oxidase of the plasma membrane.

  11. Nerve growth factor protects against aluminum-mediated cell death.

    PubMed

    Ohyashiki, Takao; Satoh, Eiko; Okada, Morihiro; Takadera, Tsuneo; Sahara, Masako

    2002-07-15

    In the present study, we examined the effect of two salts of aluminum (Al), aluminum maltolate (Almal) and aluminum chloride (AlCl(3)), on the cell viability of PC12 cells in the absence and presence of nerve growth factor (NGF). A 72-h exposure of PC12 cells to Almal (300 microM) resulted in a marked increase of lactic dehydrogenase (LDH) release from the cells and a decrease of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) activity. These results indicate that Almal induces a decrease in the cell viability. Under the same conditions, Almal also caused DNA ladder formation and chromatin condensation. In contrast, AlCl(3) did not showed an increased LDH release and a decreased MTT activity in the concentration range of the salt tested (0.1-1 mM). The extent of LDH release and MTT activity decrease induced by Almal treatment closely depended on the amount of Almal incorporated into the cells. An increase in the fluorescence intensity of 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate, di(acetoxymethyl ester) (C-DCDHF-DA) which was loaded into the cell by Almal treatment and its prevention by pyrrolodine dithiocarbamate, a potent antioxidant, suggested that Almal-induced cell death partly proceeds via reactive oxygen species (ROS) production. NGF effectively inhibited the increase of LDH release and the decrease of MTT activity, as well as DNA fragmentation and chromatin condensation. However, NGF did not inhibit the increase of C-DCDHF-DA fluorescence in the cells induced by Almal treatment. From these results, it is suggested that ROS production associated with accumulation of Al is one possible important factor in the onset of Al neurotoxicity via apoptotic cell death and that NGF protects against cell degeneration associated with Al accumulation, but independently of ROS production.

  12. Role of ion transport in control of apoptotic cell death.

    PubMed

    Lang, Florian; Hoffmann, Else K

    2012-07-01

    Cell shrinkage is a hallmark and contributes to signaling of apoptosis. Apoptotic cell shrinkage requires ion transport across the cell membrane involving K(+) channels, Cl(-) or anion channels, Na(+)/H(+) exchange, Na(+),K(+),Cl(-) cotransport, and Na(+)/K(+)ATPase. Activation of K(+) channels fosters K(+) exit with decrease of cytosolic K(+) concentration, activation of anion channels triggers exit of Cl(-), organic osmolytes, and HCO3(-). Cellular loss of K(+) and organic osmolytes as well as cytosolic acidification favor apoptosis. Ca(2+) entry through Ca(2+)-permeable cation channels may result in apoptosis by affecting mitochondrial integrity, stimulating proteinases, inducing cell shrinkage due to activation of Ca(2+)-sensitive K(+) channels, and triggering cell-membrane scrambling. Signaling involved in the modification of cell-volume regulatory ion transport during apoptosis include mitogen-activated kinases p38, JNK, ERK1/2, MEKK1, MKK4, the small G proteins Cdc42, and/or Rac and the transcription factor p53. Osmosensing involves integrin receptors, focal adhesion kinases, and tyrosine kinase receptors. Hyperosmotic shock leads to vesicular acidification followed by activation of acid sphingomyelinase, ceramide formation, release of reactive oxygen species, activation of the tyrosine kinase Yes with subsequent stimulation of CD95 trafficking to the cell membrane. Apoptosis is counteracted by mechanisms involved in regulatory volume increase (RVI), by organic osmolytes, by focal adhesion kinase, and by heat-shock proteins. Clearly, our knowledge on the interplay between cell-volume regulatory mechanisms and suicidal cell death is still far from complete and substantial additional experimental effort is needed to elucidate the role of cell-volume regulatory mechanisms in suicidal cell death. 2012 American Physiological Society. Compr Physiol 2:2037-2061, 2012.

  13. Cell birth, cell death, cell diversity and DNA breaks: how do they all fit together?

    NASA Technical Reports Server (NTRS)

    Gilmore, E. C.; Nowakowski, R. S.; Caviness, V. S. Jr; Herrup, K.

    2000-01-01

    Substantial death of migrating and differentiating neurons occurs within the developing CNS of mice that are deficient in genes required for repair of double-stranded DNA breaks. These findings suggest that large-scale, yet previously unrecognized, double-stranded DNA breaks occur normally in early postmitotic and differentiating neurons. Moreover, they imply that cell death occurs if the breaks are not repaired. The cause and natural function of such breaks remains a mystery; however, their occurrence has significant implications. They might be detected by histological methods that are sensitive to DNA fragmentation and mistakenly interpreted to indicate cell death when no relationship exists. In a broader context, there is now renewed speculation that DNA recombination might be occurring during neuronal development, similar to DNA recombination in developing lymphocytes. If this is true, the target gene(s) of recombination and their significance remain to be determined.

  14. Cell birth, cell death, cell diversity and DNA breaks: how do they all fit together?

    NASA Technical Reports Server (NTRS)

    Gilmore, E. C.; Nowakowski, R. S.; Caviness, V. S. Jr; Herrup, K.

    2000-01-01

    Substantial death of migrating and differentiating neurons occurs within the developing CNS of mice that are deficient in genes required for repair of double-stranded DNA breaks. These findings suggest that large-scale, yet previously unrecognized, double-stranded DNA breaks occur normally in early postmitotic and differentiating neurons. Moreover, they imply that cell death occurs if the breaks are not repaired. The cause and natural function of such breaks remains a mystery; however, their occurrence has significant implications. They might be detected by histological methods that are sensitive to DNA fragmentation and mistakenly interpreted to indicate cell death when no relationship exists. In a broader context, there is now renewed speculation that DNA recombination might be occurring during neuronal development, similar to DNA recombination in developing lymphocytes. If this is true, the target gene(s) of recombination and their significance remain to be determined.

  15. Vacuolar processing enzyme in plant programmed cell death

    PubMed Central

    Hatsugai, Noriyuki; Yamada, Kenji; Goto-Yamada, Shino; Hara-Nishimura, Ikuko

    2015-01-01

    Vacuolar processing enzyme (VPE) is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an ortholog of animal asparaginyl endopeptidase (AEP/VPE/legumain). VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD) pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1. PMID:25914711

  16. Osteoblast cell death on methacrylate polymers involves apoptosis.

    PubMed

    Gough, J E; Downes, S

    2001-12-15

    The success of an implant depends on the implant-tissue interface. There are many causes of implant failure, one of which is tissue necrosis. The aim of this in vitro study was to determine whether cell death of primary human osteoblasts (implant site specific cells) occurred by apoptosis (a form of programmed cell death) on two methacrylate polymers. Cells were cultured on poly(ethyl methacrylate)/tetrahydrofurfuryl methacrylate and poly(methyl methacrylate in the form of 13-mm discs, in conditioned medium containing leachable monomer and in the presence of various concentrations of monomer itself in the culture medium. It was found that monomer and leached monomer caused apoptosis of human osteoblast cells in this system. Tetrahydrofurfuryl methacrylate monomer was found to be more toxic than currently used monomer methylmethacrylate. Preincubation of polymers in serum containing medium was found to increase the biocompatibility of the polymers. High levels of apoptosis occurred on polymer used directly after polymerization. Apoptosis levels were decreased after polymer was incubated at 60 degrees C overnight or for 3 days. Apoptosis therefore may occur in cells at the implant site in vivo.

  17. Programmed Cell Death in Animal Development and Disease

    PubMed Central

    Fuchs, Yaron; Steller, Hermann

    2015-01-01

    Programmed Cell Death (PCD) plays a fundamental role in animal development and tissue homeostasis. Abnormal regulation of this process is associated with a wide variety of human diseases, including immunological and developmental disorders, neuro-degeneration, and cancer. Here, we provide a brief historical overview of the field and reflect on myriad functions carried out by PCD during development and explore how PCD is regulated. We also focus on the function and regulation of apoptotic proteins, including caspases, the key executioners of apoptosis, highlighting the non-lethal functions of these proteins in diverse developmental processes including cell differentiation and tissue remodeling. Finally, we explore a growing body of work about the connections between apoptosis, stem cells and cancer, focusing on how apoptotic cells release a variety of signals to communicate with their cellular environment, including factors that promote cell division, tissue regeneration, and wound healing. PMID:22078876

  18. Omi/HtrA2 protease mediates cisplatin-induced cell death in renal cells.

    PubMed

    Cilenti, Lucia; Kyriazis, George A; Soundarapandian, Mangala M; Stratico, Valerie; Yerkes, Adam; Park, Kwon Moo; Sheridan, Alice M; Alnemri, Emad S; Bonventre, Joseph V; Zervos, Antonis S

    2005-02-01

    Omi/HtrA2 is a mitochondrial proapoptotic serine protease that is able to induce both caspase-dependent and caspase-independent cell death. After apoptotic stimuli, Omi is released to the cytoplasm where it binds and cleaves inhibitor of apoptosis proteins. In this report, we investigated the role of Omi in renal cell death following cisplatin treatment. Using primary mouse proximal tubule cells, as well as established renal cell lines, we show that the level of Omi protein is upregulated after treatment with cisplatin. This upregulation is followed by the release of Omi from mitochondria to the cytoplasm and degradation of XIAP. Reducing the endogenous level of Omi protein using RNA interference renders renal cells resistant to cisplatin-induced cell death. Furthermore, we show that the proteolytic activity of Omi is necessary and essential for cisplatin-induced cell death in this system. When renal cells are treated with Omi's specific inhibitor, ucf-101, they become significantly resistant to cisplatin-induced cell death. Ucf-101 was also able to minimize cisplatin-induced nephrotoxic injury in animals. Our results demonstrate that Omi is a major mediator of cisplatin-induced cell death in renal cells and suggest a way to limit renal injury by specifically inhibiting its proteolytic activity.

  19. Zanthoxylum fruit extract from Japanese pepper promotes autophagic cell death in cancer cells

    PubMed Central

    Nozaki, Reo; Kono, Toru; Bochimoto, Hiroki; Watanabe, Tsuyoshi; Oketani, Kaori; Sakamaki, Yuichi; Okubo, Naoto; Nakagawa, Koji; Takeda, Hiroshi

    2016-01-01

    Zanthoxylum fruit, obtained from the Japanese pepper plant (Zanthoxylum piperitum De Candolle), and its extract (Zanthoxylum fruit extract, ZFE) have multiple physiological activities (e.g., antiviral activity). However, the potential anticancer activity of ZFE has not been fully examined. In this study, we investigated the ability of ZFE to induce autophagic cell death (ACD). ZFE caused remarkable autophagy-like cytoplasmic vacuolization, inhibited cell proliferation, and ultimately induced cell death in the human cancer cell lines DLD-1, HepG2, and Caco-2, but not in A549, MCF-7, or WiDr cells. ZFE increased the level of LC3-II protein, a marker of autophagy. Knockdown of ATG5 using siRNA inhibited ZFE-induced cytoplasmic vacuolization and cell death. Moreover, in cancer cells that could be induced to undergo cell death by ZFE, the extract increased the phosphorylation of c-Jun N-terminal kinase (JNK), and the JNK inhibitor SP600125 attenuated both vacuolization and cell death. Based on morphology and expression of marker proteins, ZFE-induced cell death was neither apoptosis nor necrosis. Normal intestinal cells were not affected by ZFE. Taken together, our findings show that ZFE induces JNK-dependent ACD, which appears to be the main mechanism underlying its anticancer activity, suggesting a promising starting point for anticancer drug development. PMID:27626481

  20. Thymoquinone causes multiple effects, including cell death, on dividing plant cells.

    PubMed

    Hassanien, Sameh E; Ramadan, Ahmed M; Azeiz, Ahmed Z Abdel; Mohammed, Rasha A; Hassan, Sabah M; Shokry, Ahmed M; Atef, Ahmed; Kamal, Khalid B H; Rabah, Samar; Sabir, Jamal S M; Abuzinadah, Osama A; El-Domyati, Fotouh M; Martin, Gregory B; Bahieldin, Ahmed

    2013-01-01

    Thymoquinone (TQ) is a major constituent of Nigella sativa oil with reported anti-oxidative activity and anti-inflammatory activity in animal cells. It also inhibits proliferation and induces programmed cell death (apoptosis) in human skin cancer cells. The present study sought to detect the influence of TQ on dividing cells of three plant systems and on expression of Bcl2-associated athanogene-like (BAG-like) genes that might be involved during the process of cell death. BAG genes are known for the regulation of diverse physiological processes in animals, including apoptosis, tumorigenesis, stress responses, and cell division. Synthetic TQ at 0.1mg/mL greatly reduced wheat seed germination rate, whereas 0.2mg/mL completely inhibited germination. An Evans blue assay revealed moderate cell death in the meristematic zone of Glycine max roots after 1h of TQ treatment (0.2mg/mL), with severe cell death occurring in this zone after 2h of treatment. Light microscopy of TQ-treated (0.2mg/mL) onion hairy root tips for 1h revealed anti-mitotic activity and also cell death-associated changes, including nuclear membrane disruption and nuclear fragmentation. Transmission electron microscopy of TQ-treated cells (0.2mg/mL) for 1h revealed shrinkage of the plasma membrane, leakage of cell lysate, degradation of cell walls, enlargement of vacuoles and condensation of nuclei. Expression of one BAG-like gene, previously associated with cell death, was induced 20 min after TQ treatment in Glycine max root tip cells. Thus, TQ has multiple effects, including cell death, on dividing plant cells and plants may serve as a useful system to further investigate the mechanisms underlying the response of eukaryotic cells to TQ.

  1. The variability of autophagy and cell death susceptibility

    PubMed Central

    Loos, Ben; Engelbrecht, Anna-Mart; Lockshin, Richard A.; Klionsky, Daniel J; Zakeri, Zahra

    2013-01-01

    Impaired autophagic machinery is implicated in a number of diseases such as heart disease, neurodegeneration and cancer. A common denominator in these pathologies is a dysregulation of autophagy that has been linked to a change in susceptibility to cell death. Although we have progressed in understanding the molecular machinery and regulation of the autophagic pathway, many unanswered questions remain. How does the metabolic contribution of autophagy connect with the cell’s history and how does its current autophagic flux affect metabolic status and susceptibility to undergo cell death? How does autophagic flux operate to switch metabolic direction and what are the underlying mechanisms in metabolite and energetic sensing, metabolite substrate provision and metabolic integration during the cellular stress response? In this article we focus on unresolved questions that address issues around the role of autophagy in sensing the energetic environment and its role in actively generating metabolite substrates. We attempt to provide answers by explaining how and when a change in autophagic pathway activity such as primary stress response is able to affect cell viability and when not. By addressing the dynamic metabolic relationship between autophagy, apoptosis and necrosis we provide a new perspective on the parameters that connect autophagic activity, severity of injury and cellular history in a logical manner. Last, by evaluating the cell’s condition and autophagic activity in a clear context of regulatory parameters in the intra- and extracellular environment, this review provides new concepts that set autophagy into an energetic feedback loop, that may assist in our understanding of autophagy in maintaining healthy cells or when it controls the threshold between cell death and cell survival. PMID:23846383

  2. The molecular basis of retinal ganglion cell death in glaucoma.

    PubMed

    Almasieh, Mohammadali; Wilson, Ariel M; Morquette, Barbara; Cueva Vargas, Jorge Luis; Di Polo, Adriana

    2012-03-01

    Glaucoma is a group of diseases characterized by progressive optic nerve degeneration that results in visual field loss and irreversible blindness. A crucial element in the pathophysiology of all forms of glaucoma is the death of retinal ganglion cells (RGCs), a population of CNS neurons with their soma in the inner retina and axons in the optic nerve. Strategies that delay or halt RGC loss have been recognized as potentially beneficial to preserve vision in glaucoma; however, the success of these approaches depends on an in-depth understanding of the mechanisms that lead to RGC dysfunction and death. In recent years, there has been an exponential increase in valuable information regarding the molecular basis of RGC death stemming from animal models of acute and chronic optic nerve injury as well as experimental glaucoma. The emerging landscape is complex and points at a variety of molecular signals - acting alone or in cooperation - to promote RGC death. These include: axonal transport failure, neurotrophic factor deprivation, toxic pro-neurotrophins, activation of intrinsic and extrinsic apoptotic signals, mitochondrial dysfunction, excitotoxic damage, oxidative stress, misbehaving reactive glia and loss of synaptic connectivity. Collectively, this body of work has considerably updated and expanded our view of how RGCs might die in glaucoma and has revealed novel, potential targets for neuroprotection. Copyright © 2011. Published by Elsevier Ltd.

  3. Low zinc environment induces stress signaling, senescence and mixed cell death modalities in colon cancer cells.

    PubMed

    Rudolf, Emil; Rudolf, Kamil

    2015-12-01

    Currently it is not clear what type of the final cellular response (i.e. cell death modality or senescence) is induced upon chronic intracellular zinc depletion in colon cancer cells. To address this question, isogenic colon cancer lines SW480 and SW620 exposed to low zinc environment were studied over the period of 6 weeks. Low zinc environment reduced total as well as free intracellular zinc content in both cell lines. Decreased intracellular zinc content resulted in changes in cellular proliferation, cell cycle distribution and activation of stress signaling. In addition, colonocytes with low zinc content displayed increased levels of oxidative stress, changes in mitochondrial activity but in the absence of significant DNA damage. Towards the end of treatment (4th-6th week), exposed cells started to change morphologically, and typical markers of senescence as well as cell death appeared. Of two examined colon cancer cell lines, SW480 cells proved to activate predominantly senescent phenotype, with frequent form of demise being necrosis and mixed cell death modality but not apoptosis. Conversely, SW620 cells activated mostly cell death, with relatively equal distribution of apoptosis and mixed types, while senescent phenotypes and necrosis were present only in a small fraction of cell populations. Addition of zinc at the beginning of 4th week of treatment significantly suppressed cell death phenotypes in both cell lines but had no significant effect on senescence. In conclusion, presented results demonstrate variability of responses to chronic zinc depletion in colon cancer as modeled in vitro.

  4. Embryonic death and the creation of human embryonic stem cells.

    PubMed

    Landry, Donald W; Zucker, Howard A

    2004-11-01

    The creation of human embryonic stem cells through the destruction of a human embryo pits the value of a potential therapeutic tool against that of an early human life. This contest of values has resulted in a polarized debate that neglects areas of common interest and perspective. We suggest that a common ground for pursuing research on human embryonic stem cells can be found by reconsidering the death of the human embryo and by applying to this research the ethical norms of essential organ donation.

  5. Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells.

    PubMed

    Yakimova, E T; Kapchina-Toteva, V M; Laarhoven, L-J; Harren, F M; Woltering, E J

    2006-10-01

    Cadmium-induced cell death was studied in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells (line MsK8) treated with CdSO(4). Within 24 h, cadmium treatment induced cell death in a concentration-dependent manner. Cell cultures showed recovery after 2-3 days which indicates the existence of an adaptation mechanism. Cadmium-induced cell death was alleviated by the addition of sub muM concentrations of peptide inhibitors specific to human caspases indicating that cell death proceeds through a mechanism with similarities to animal programmed cell death (PCD, apoptosis). Cadmium-induced cell death was accompanied by an increased production of hydrogen peroxide (H(2)O(2)) and simultaneous addition of antioxidants greatly reduced cell death. Inhibitors of phospholipase C (PLC) and phospholipase D (PLD) signalling pathway intermediates reduced cadmium-induced cell death. Treatment with the G-protein activator mastoparan and a cell permeable analogue of the lipid signal second messenger phosphatidic acid (PA) induced cell death. Ethylene, while not inducing cell death when applied alone, stimulated cadmium-induced cell death. Application of the ethylene biosynthesis inhibitor aminoethoxy vinylglycine (AVG) reduced cadmium-induced cell death, and this effect was alleviated by simultaneous treatment with ethylene. Together the results show that cadmium induces PCD exhibiting apoptotic-like features. The cell death process requires increased H(2)O(2) production and activation of PLC, PLD and ethylene signalling pathways.

  6. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy

    PubMed Central

    Brauchle, Eva; Thude, Sibylle; Brucker, Sara Y.; Schenke-Layland, Katja

    2014-01-01

    Although apoptosis and necrosis have distinct features, the identification and discrimination of apoptotic and necrotic cell death in vitro is challenging. Immunocytological and biochemical assays represent the current gold standard for monitoring cell death pathways; however, these standard assays are invasive, render large numbers of cells and impede continuous monitoring experiments. In this study, both room temperature (RT)-induced apoptosis and heat-triggered necrosis were analyzed in individual Saos-2 and SW-1353 cells by utilizing Raman microspectroscopy. A targeted analysis of defined cell death modalities, including early and late apoptosis as well as necrosis, was facilitated based on the combination of Raman spectroscopy with fluorescence microscopy. Spectral shifts were identified in the two cell lines that reflect biochemical changes specific for either RT-induced apoptosis or heat-mediated necrosis. A supervised classification model specified apoptotic and necrotic cell death based on single cell Raman spectra. To conclude, Raman spectroscopy allows a non-invasive, continuous monitoring of cell death, which may help shedding new light on complex pathophysiological or drug-induced cell death processes. PMID:24732136

  7. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Brauchle, Eva; Thude, Sibylle; Brucker, Sara Y.; Schenke-Layland, Katja

    2014-04-01

    Although apoptosis and necrosis have distinct features, the identification and discrimination of apoptotic and necrotic cell death in vitro is challenging. Immunocytological and biochemical assays represent the current gold standard for monitoring cell death pathways; however, these standard assays are invasive, render large numbers of cells and impede continuous monitoring experiments. In this study, both room temperature (RT)-induced apoptosis and heat-triggered necrosis were analyzed in individual Saos-2 and SW-1353 cells by utilizing Raman microspectroscopy. A targeted analysis of defined cell death modalities, including early and late apoptosis as well as necrosis, was facilitated based on the combination of Raman spectroscopy with fluorescence microscopy. Spectral shifts were identified in the two cell lines that reflect biochemical changes specific for either RT-induced apoptosis or heat-mediated necrosis. A supervised classification model specified apoptotic and necrotic cell death based on single cell Raman spectra. To conclude, Raman spectroscopy allows a non-invasive, continuous monitoring of cell death, which may help shedding new light on complex pathophysiological or drug-induced cell death processes.

  8. Apoptotic cell death by the novel natural compound, cinobufotalin.

    PubMed

    Emam, Heba; Zhao, Qing-Li; Furusawa, Yukihiro; Refaat, Alaa; Ahmed, Kanwal; Kadowaki, Makoto; Kondo, Takashi

    2012-09-30

    Cinobufotalin (CB), one of the bufadienolides prepared from toad venom, was investigated for its cytotoxicity, and the underneath mechanism involved. We primarily utilized DNA fragmentation assay and microscopic observation to assess the effect of various doses of CB in human lymphoma U937 cells. Following that, we investigated other parameters involved in cell death mechanism such as reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and apoptotic proteins activation. HeLa cells were concomitantly used to generalize the data observed. Our results show that CB caused significant DNA fragmentation, decrease of MMP, and an increase in the intracellular Ca(2+) ion and ROS production. In addition, CB induced upregulation of Fas protein, proteolytic activation of cytochrome c, caspase-2, -3, -8 and -9 together with the activation of Bid and Bax. Our findings were further validated using either Fas/FasL antagonist or pan-caspase inhibitor to significantly inhibit CB-induced DNA fragmentation. In our study, we suggest that CB induces caspase dependent cell death in U937 cells, and that Fas plays a role in CB-induced apoptosis. Altogether, our data provides novel insights of the mechanism of action of CB and its potential as a future chemotherapeutic agent. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Programmed Cell Death Initiation and Execution in Budding Yeast

    PubMed Central

    Strich, Randy

    2015-01-01

    Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals. PMID:26272996

  10. Lysosomal photodamage induces cell death via mitochondrial apoptotic pathway

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wang, Xian-wang; Li, Hui

    2009-11-01

    Lysosomal photosensitizers have been used in photodynamic therapy (PDT). Combination of such photosensitizers and light causes lysosomal photodamage, inducing cell death. The lysosomal disruption can lead to apoptosis but its signaling pathways remain to be elucidated. In this study, we selected N-aspartyl chlorin e6 (NPe6), an effective photosensitizer which preferentially accumulates in lysosomes, to study the mechanism of apoptosis caused by lysosomal photodamage. Apoptosis in living human lung adenocarcinoma cells treated by NPe6-PDT was studied using real-time single-cell analysis. In this study, the fluorescence probes Cyto c-GFP and DsRed-Mit were used to detect the spatial and temporal changes of cytochrome c in real-time in sub-cell level; the Rhodamine 123 dyes were used to monitor the changes of mitochondrial membrane potential. The results showed that, after PDT treatment,the mitochondrial membrane potential decreased, and cytochrome c released from mitochondria; The caspase-3 was activated obviously. These results suggested that lysosomal photodamage activates mitochondrial apoptotic pathway to induce cell death.

  11. Molecular mechanisms of Ebola virus pathogenesis: focus on cell death

    PubMed Central

    Falasca, L; Agrati, C; Petrosillo, N; Di Caro, A; Capobianchi, M R; Ippolito, G; Piacentini, M

    2015-01-01

    Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30–50% of cases hemorrhagic symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative diseases. PMID:26024394

  12. The essential role of evasion from cell death in cancer

    PubMed Central

    Kelly, Gemma; Strasser, Andreas

    2011-01-01

    The link between evasion of apoptosis and the development of cellular hyperplasia and ultimately cancer is implicitly clear if one considers how many cells are produced each day and, hence, how many cells must die to make room for the new ones (reviewed in (Raff, 1996)). Furthermore, cells are frequently experiencing noxious stimuli that can cause lesions in their DNA and faults in DNA replication can occur during cellular proliferation. Such DNA damage needs to be repaired efficiently or cells with irreparable damage must be killed to prevent subsequent division of aberrant cells that may fuel tumorigenesis (reviewed in (Weinberg, 2007)). The detection of genetic lesions in human cancers that activate pro-survival genes or disable pro-apoptotic genes have provided the first evidence that defects in programmed cell death can cause cancer (Tagawa et al., 2005; Tsujimoto et al., 1984; Vaux et al., 1988) and this concept was proven by studies with genetically modified mice (Egle et al., 2004b; Strasser et al., 1990a). It is therefore now widely accepted that evasion of apoptosis is a requirement for both neoplastic transformation and sustained growth of cancer cells (reviewed in (Cory and Adams, 2002; Hanahan and Weinberg, 2000; Weinberg, 2007)). Importantly, apoptosis is also a major contributor to anti-cancer therapy induced killing of tumor cells (reviewed in (Cory and Adams, 2002; Cragg et al., 2009)). Consequently, a detailed understanding of apoptotic cell death will help to better comprehend the complexities of tumorigenesis and should assist with the development of improved targeted therapies for cancer based on the direct activation of the apoptotic machinery (reviewed in (Lessene et al., 2008)). PMID:21704830

  13. Cell cycle inhibition and retinoblastoma protein overexpression prevent Purkinje cell death in organotypic slice cultures.

    PubMed

    Padmanabhan, Jaya; Brown, Kristy; Shelanski, Michael L

    2007-05-01

    Purkinje cells are vulnerable to a number of physical, chemical, and genetic insults during development and maturity. Normal development of these cells depends on the cell-cell interactions between granule and astroglial cell populations. Apoptotic death in Purkinje neurons had been shown to be associated with cell cycle activation, and new DNA synthesis is associated with Purkinje cell death in staggerer and lurcher mutant mice. Here using an in vitro organotypic slice culture model from 9 (P9) and 4 days (P4) old postnatal rats we show that the cyclin dependent kinase (cdk) inhibitors (roscovitine, olomoucine, and flavopiridol) protect the Purkinje cells from cell death. The results are more pronounced in the cerebellar sections from P4 rats. Analysis of Purkinje neurons in sections from P4 rats after 1 week of culturing showed that while there were very limited calbindin positive neurons in the untreated sections the cdk inhibitor treated sections had a notably higher number. Although treatment with cdk inhibitors inhibited Purkinje cell loss significantly, the morphology of these neurons was abnormal, with stunted dendrites and axons. Since the retinoblastoma protein (Rb) is the major pocket protein involved in determining the differentiated state of neurons we examined the effect of over-expressing Rb in the organotypic cultures. Rb overexpression significantly inhibited the Purkinje cell death and these neurons maintained their normal morphology. Thus our studies show that the cell death in Purkinje neurons observed in organotypic cultures is cell cycle dependent and the optimal survival requires Rb.

  14. Acute Hypoglycemia Induces Retinal Cell Death in Mouse

    PubMed Central

    Emery, Martine; Schorderet, Daniel F.; Roduit, Raphaël

    2011-01-01

    Background Glucose is the most important metabolic substrate of the retina and maintenance of normoglycemia is an essential challenge for diabetic patients. Glycemic excursions could lead to cardiovascular disease, nephropathy, neuropathy and retinopathy. A vast body of literature exists on hyperglycemia namely in the field of diabetic retinopathy, but very little is known about the deleterious effect of hypoglycemia. Therefore, we decided to study the role of acute hypoglycemia in mouse retina. Methodology/Principal Findings To test effects of hypoglycemia, we performed a 5-hour hyperinsulinemic/hypoglycemic clamp; to exclude an effect of insulin, we made a hyperinsulinemic/euglycemic clamp as control. We then isolated retinas from each group at different time-points after the clamp to analyze cells apoptosis and genes regulation. In parallel, we used 661W photoreceptor cells to confirm in vivo results. We showed herein that hypoglycemia induced retinal cell death in mouse via caspase 3 activation. We then tested the mRNA expression of glutathione transferase omega 1 (Gsto1) and glutathione peroxidase 3 (Gpx3), two genes involved in glutathione (GSH) homeostasis. The expression of both genes was up-regulated by low glucose, leading to a decrease of reduced glutathione (GSH). In vitro experiments confirmed the low-glucose induction of 661W cell death via superoxide production and activation of caspase 3, which was concomitant with a decrease of GSH content. Moreover, decrease of GSH content by inhibition with buthionine sulphoximine (BSO) at high glucose induced apoptosis, while complementation with extracellular glutathione ethyl ester (GSHee) at low glucose restored GSH level and reduced apoptosis. Conclusions/Significance We showed, for the first time, that acute insulin-induced hypoglycemia leads to caspase 3-dependant retinal cell death with a predominant role of GSH content. PMID:21738719

  15. Cell Death Control by Matrix Metalloproteinases1[OPEN

    PubMed Central

    Zimmermann, Dirk; Sieferer, Elke; Pfannstiel, Jens

    2016-01-01

    In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato. PMID:27208293

  16. Autophagy Protects Against Aminochrome-Induced Cell Death in Substantia Nigra-Derived Cell Line

    PubMed Central

    Paris, Irmgard; Muñoz, Patricia; Huenchuguala, Sandro; Couve, Eduardo; Sanders, Laurie H.; Greenamyre, John Timothy; Caviedes, Pablo; Segura-Aguilar, Juan

    2011-01-01

    Aminochrome, the precursor of neuromelanin, has been proposed to be involved in the neurodegeneration neuromelanin-containing dopaminergic neurons in Parkinson’s disease. We aimed to study the mechanism of aminochrome-dependent cell death in a cell line derived from rat substantia nigra. We found that aminochrome (50μM), in the presence of NAD(P)H-quinone oxidoreductase, EC 1.6.99.2 (DT)-diaphorase inhibitor dicoumarol (DIC) (100μM), induces significant cell death (62 ± 3%; p < 0.01), increase in caspase-3 activation (p < 0.001), release of cytochrome C, disruption of mitochondrial membrane potential (p < 0.01), damage of mitochondrial DNA, damage of mitochondria determined with transmission electron microscopy, a dramatic morphological change characterized as cell shrinkage, and significant increase in number of autophagic vacuoles. To determine the role of autophagy on aminochrome-induced cell death, we incubated the cells in the presence of vinblastine and rapamycin. Interestingly, 10μM vinblastine induces a 5.9-fold (p < 0.001) and twofold (p < 0.01) significant increase in cell death when the cells were incubated with 30μM aminochrome in the absence and presence of DIC, respectively, whereas 10μM rapamycin preincubated 24 h before addition of 50μM aminochrome in the absence and the presence of 100μM DIC induces a significant decrease (p < 0.001) in cell death. In conclusion, autophagy seems to be an important protective mechanism against two different aminochrome-induced cell deaths that initially showed apoptotic features. The cell death induced by aminochrome when DT-diaphorase is inhibited requires activation of mitochondrial pathway, whereas the cell death induced by aminochrome alone requires inhibition of autophagy-dependent degrading of damaged organelles and recycling through lysosomes. PMID:21427056

  17. Elucidation of a Novel Cell Death Mechanism in Prostate Epithelial Cells

    DTIC Science & Technology

    2004-12-01

    abundant in prostate stroma. In contrast, androgen independent LNCaP, DU145 and PC-3 cells are resistant to galectin-1 induced death and express ...LNCaP cells correlates with decreased expression of a specific glycosyltransferase, C2GnT, that creates 0-glycan ligands recognized by galectin-1...Blocking Oglycan elongation by expressing a competing glycosyltransferase, ST3Gal I, renders LNCaP cells resistant to galectin-1 death. Galectin-1

  18. EFFECTS OF ETHANOL AND HYDROGEN PEROXIDE ON MOUSE LIMB BUD MESENCHYME DIFFERENTIATION AND CELL DEATH

    EPA Science Inventory

    Many of the morphological defects associated with embryonic alcohol exposure are a result of cell death. During limb development, ethanol administration produces cell death in the limb and digital defects, including postaxial ectrodactyly. Because an accumulation of reactive oxyg...

  19. EFFECTS OF ETHANOL AND HYDROGEN PEROXIDE ON MOUSE LIMB BUD MESENCHYME DIFFERENTIATION AND CELL DEATH

    EPA Science Inventory

    Many of the morphological defects associated with embryonic alcohol exposure are a result of cell death. During limb development, ethanol administration produces cell death in the limb and digital defects, including postaxial ectrodactyly. Because an accumulation of reactive oxyg...

  20. The importance of being dead: cell death mechanisms assessment in anti-sarcoma therapy.

    PubMed

    Rello-Varona, Santiago; Herrero-Martín, David; Lagares-Tena, Laura; López-Alemany, Roser; Mulet-Margalef, Núria; Huertas-Martínez, Juan; Garcia-Monclús, Silvia; García Del Muro, Xavier; Muñoz-Pinedo, Cristina; Tirado, Oscar Martínez

    2015-01-01

    Cell death can occur through different mechanisms, defined by their nature and physiological implications. Correct assessment of cell death is crucial for cancer therapy success. Sarcomas are a large and diverse group of neoplasias from mesenchymal origin. Among cell death types, apoptosis is by far the most studied in sarcomas. Albeit very promising in other fields, regulated necrosis and other cell death circumstances (as so-called "autophagic cell death" or "mitotic catastrophe") have not been yet properly addressed in sarcomas. Cell death is usually quantified in sarcomas by unspecific assays and in most cases the precise sequence of events remains poorly characterized. In this review, our main objective is to put into context the most recent sarcoma cell death findings in the more general landscape of different cell death modalities.

  1. The complexity of apoptotic cell death in mollusks: An update.

    PubMed

    Romero, A; Novoa, B; Figueras, A

    2015-09-01

    Apoptosis is a type of programmed cell death that produces changes in cell morphology and in biochemical intracellular processes without inflammatory reactions. The components of the apoptotic pathways are conserved throughout evolution. Caspases are key molecules involved in the transduction of the death signal and are responsible for many of the biochemical and morphological changes associated with apoptosis. Nowadays, It is known that caspases are activated through two major apoptotic pathways (the extrinsic or death receptor pathway and the intrinsic or mitochondrial pathway), but there are also evidences of at least other alternative pathway (the perforin/granzyme pathway). Apoptosis in mollusks seems to be similar in complexity to apoptosis in vertebrates but also has unique features maybe related to their recurrent exposure to environmental changes, pollutants, pathogens and also related to the sedentary nature of some stages in the life cycle of mollusks bivalves and gastropods. As in other animals, apoptotic process is involved in the maintenance of tissue homeostasis and also constitutes an important immune response that can be triggered by a variety of stimuli, including cytokines, hormones, toxic insults, viruses, and protozoan parasites. The main goal of this work is to present the current knowledge of the molecular mechanisms of apoptosis in mollusks and to highlight those steps that need further study.

  2. The oncolytic peptide LTX-315 triggers necrotic cell death

    PubMed Central

    Forveille, Sabrina; Zhou, Heng; Sauvat, Allan; Bezu, Lucillia; Müller, Kevin; Liu, Peng; Zitvogel, Laurence; Pierron, Gérard; Rekdal, Øystein; Kepp, Oliver; Kroemer, Guido

    2015-01-01

    The oncolytic peptide LTX-315 has been designed for killing human cancer cells and turned out to stimulate anti-cancer immune responses when locally injected into tumors established in immunocompetent mice. Here, we investigated the question whether LTX-315 induces apoptosis or necrosis. Transmission electron microscopy or morphometric analysis of chromatin-stained tumor cells revealed that LTX-315 failed to induce apoptotic nuclear condensation and rather induced a necrotic phenotype. Accordingly, LTX-315 failed to stimulate the activation of caspase-3, and inhibition of caspases by means of Z-VAD-fmk was unable to reduce cell killing by LTX-315. In addition, 2 prominent inhibitors of regulated necrosis (necroptosis), namely, necrostatin-1 and cycosporin A, failed to reduce LTX-315-induced cell death. In conclusion, it appears that LTX-315 triggers unregulated necrosis, which may contribute to its pro-inflammatory and pro-immune effects. PMID:26566869

  3. Differentiation of conductive cells: a matter of life and death.

    PubMed

    Heo, Jung-Ok; Blob, Bernhard; Helariutta, Ykä

    2017-02-01

    Two major conducting tissues in plants, phloem and xylem, are composed of highly specialized cell types adapted to long distance transport. Sieve elements (SEs) in the phloem display a thick cell wall, callose-rich sieve plates and low cytoplasmic density. SE differentiation is driven by selective autolysis combined with enucleation, after which the plasma membrane and some organelles are retained. By contrast, differentiation of xylem tracheary elements (TEs) involves complete clearance of the cellular components by programmed cell death followed by autolysis of the protoplast; this is accompanied by extensive deposition of lignin and cellulose in the cell wall. Emerging molecular data on TE and SE differentiation indicate a central role for NAC and MYB type transcription factors in both processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Attacking the supply wagons to starve cancer cells to death

    PubMed Central

    Selwan, Elizabeth; Finicle, Brendan T.; Kim, Seong M.; Edinger, Aimee L.

    2016-01-01

    The constitutive anabolism of cancer cells supports proliferation but also addicts tumor cells to a steady influx of exogenous nutrients. Limiting access to metabolic substrates could be an effective and selective means to block cancer growth. In this review, we define the pathways by which cancer cells acquire the raw materials for anabolism, highlight the actionable proteins in each pathway, and discuss the status of therapeutic interventions that disrupt nutrient acquisition. Critical open questions to be answered before apical metabolic inhibitors can be successfully and safely deployed in the clinic are also outlined. In summary, recent studies provide strong support that substrate limitation is a powerful therapeutic strategy to effectively, and safely, starve cancer cells to death. PMID:26938658

  5. Cell death in leukemia: passenger protein regulation by topoisomerase inhibitors.

    PubMed

    Jahnke, Ulrike; Higginbottom, Karen; Newland, Adrian C; Cotter, Finbarr E; Allen, Paul D

    2007-10-05

    Etoposide is a potent inducer of mitotic catastrophe; a type of cell death resulting from aberrant mitosis. It is important in p53 negative cells where p53 dependent apoptosis and events at the G1 and G2 cell cycle checkpoints are compromised. Passenger proteins regulate many aspects of mitosis and siRNA interference or direct inhibition of Aurora B kinase results in mitotic catastrophe. However, there is little available data of clinical relevance in leukaemia models. Here, in p53 negative K562 myeloid leukemia cells, etoposide-induced mitotic catastrophe is shown to be time and/or concentration dependent. Survivin and Aurora remained bound to chromosomes. Survivin and Aurora were also associated with Cdk1 and were shown to form complexes, which in pull down experiments, included INCENP. There was no evidence of Aurora B kinase suppression. These data suggests etoposide will complement Aurora B kinase inhibitors currently in clinical trials for cancer.

  6. Live-cell visualization of gasdermin D-driven pyroptotic cell death.

    PubMed

    Rathkey, Joseph K; Benson, Bryan L; Chirieleison, Steven M; Yang, Jie; Xiao, Tsan S; Dubyak, George R; Huang, Alex Y; Abbott, Derek W

    2017-09-01

    Pyroptosis is a form of cell death important in defenses against pathogens that can also result in a potent and sometimes pathological inflammatory response. During pyroptosis, GSDMD (gasdermin D), the pore-forming effector protein, is cleaved, forms oligomers, and inserts into the membranes of the cell, resulting in rapid cell death. However, the potent cell death induction caused by GSDMD has complicated our ability to understand the biology of this protein. Studies aimed at visualizing GSDMD have relied on expression of GSDMD fragments in epithelial cell lines that naturally lack GSDMD expression and also lack the proteases necessary to cleave GSDMD. In this work, we performed mutagenesis and molecular modeling to strategically place tags and fluorescent proteins within GSDMD that support native pyroptosis and facilitate live-cell imaging of pyroptotic cell death. Here, we demonstrate that these fusion proteins are cleaved by caspases-1 and -11 at Asp-276. Mutations that disrupted the predicted p30-p20 autoinhibitory interface resulted in GSDMD aggregation, supporting the oligomerizing activity of these mutations. Furthermore, we show that these novel GSDMD fusions execute inflammasome-dependent pyroptotic cell death in response to multiple stimuli and allow for visualization of the morphological changes associated with pyroptotic cell death in real time. This work therefore provides new tools that not only expand the molecular understanding of pyroptosis but also enable its direct visualization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. The Life and Death of a Plant Cell.

    PubMed

    Kabbage, Mehdi; Kessens, Ryan; Bartholomay, Lyric C; Williams, Brett

    2017-04-28

    Like all eukaryotic organisms, plants possess an innate program for controlled cellular demise termed programmed cell death (PCD). Despite the functional conservation of PCD across broad evolutionary distances, an understanding of the molecular machinery underpinning this fundamental program in plants remains largely elusive. As in mammalian PCD, the regulation of plant PCD is critical to development, homeostasis, and proper responses to stress. Evidence is emerging that autophagy is key to the regulation of PCD in plants and that it can dictate the outcomes of PCD execution under various scenarios. Here, we provide a broad and comparative overview of PCD processes in plants, with an emphasis on stress-induced PCD. We also discuss the implications of the paradox that is functional conservation of apoptotic hallmarks in plants in the absence of core mammalian apoptosis regulators, what that means, and whether an equivalent form of death occurs in plants.

  8. Involvement of chloroplasts in the programmed death of plant cells.

    PubMed

    Samuilov, V D; Lagunova, E M; Dzyubinskaya, E V; Izyumov, D S; Kiselevsky, D B; Makarova, Ya V

    2002-06-01

    The effect of cyanide, an apoptosis inducer, on pea leaf epidermal peels was investigated. Illumination stimulated the CN--induced destruction of guard cells (containing chloroplasts and mitochondria) but not of epidermal cells (containing mitochondria only). The process was prevented by antioxidants (alpha-tocopherol, 2,5-di-tret-butyl-4-hydroxytoluene, and mannitol), by anaerobiosis, by the protein kinase C inhibitor staurosporine, and by cysteine and serine protease inhibitors. Electron acceptors (menadione, p-benzoquinone, diaminodurene, TMPD, DCPIP, and methyl viologen) suppressed CN--induced apoptosis of guard cells, but not epidermal cells. Methyl viologen had no influence on the removal of CN--induced nucleus destruction in guard cells under anaerobic conditions. The light activation of CN--induced apoptosis of guard cells was suppressed by DCMU (an inhibitor of the electron transfer in Photosystem II) and by DNP-INT (an antagonist of plastoquinol at the Qo site of the chloroplast cytochrome b6f complex). It is concluded that apoptosis initiation in guard cells depends on the simultaneous availability of two factors, ROS and reduced quinones of the electron transfer chain. The conditions for manifestation of programmed cell death in guard and epidermal cells of the pea leaf were significantly different.

  9. Mitochondrial control of cell death induced by hyperosmotic stress.

    PubMed

    Criollo, Alfredo; Galluzzi, Lorenzo; Maiuri, M Chiara; Tasdemir, Ezgi; Lavandero, Sergio; Kroemer, Guido

    2007-01-01

    HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-X(L) sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control.

  10. Topological defects in epithelia govern cell death and extrusion

    NASA Astrophysics Data System (ADS)

    Saw, Thuan Beng; Doostmohammadi, Amin; Nier, Vincent; Kocgozlu, Leyla; Thampi, Sumesh; Toyama, Yusuke; Marcq, Philippe; Lim, Chwee Teck; Yeomans, Julia M.; Ladoux, Benoit

    2017-04-01

    Epithelial tissues (epithelia) remove excess cells through extrusion, preventing the accumulation of unnecessary or pathological cells. The extrusion process can be triggered by apoptotic signalling, oncogenic transformation and overcrowding of cells. Despite the important linkage of cell extrusion to developmental, homeostatic and pathological processes such as cancer metastasis, its underlying mechanism and connections to the intrinsic mechanics of the epithelium are largely unexplored. We approach this problem by modelling the epithelium as an active nematic liquid crystal (that has a long range directional order), and comparing numerical simulations to strain rate and stress measurements within monolayers of MDCK (Madin Darby canine kidney) cells. Here we show that apoptotic cell extrusion is provoked by singularities in cell alignments in the form of comet-shaped topological defects. We find a universal correlation between extrusion sites and positions of nematic defects in the cell orientation field in different epithelium types. The results confirm the active nematic nature of epithelia, and demonstrate that defect-induced isotropic stresses are the primary precursors of mechanotransductive responses in cells, including YAP (Yes-associated protein) transcription factor activity, caspase-3-mediated cell death, and extrusions. Importantly, the defect-driven extrusion mechanism depends on intercellular junctions, because the weakening of cell-cell interactions in an α-catenin knockdown monolayer reduces the defect size and increases both the number of defects and extrusion rates, as is also predicted by our model. We further demonstrate the ability to control extrusion hotspots by geometrically inducing defects through microcontact printing of patterned monolayers. On the basis of these results, we propose a mechanism for apoptotic cell extrusion: spontaneously formed topological defects in epithelia govern cell fate. This will be important in predicting

  11. From DNA radiation damage to cell death: theoretical approaches.

    PubMed

    Ballarini, Francesca

    2010-10-05

    Some representative models of radiation-induced cell death, which is a crucial endpoint in radiobiology, were reviewed. The basic assumptions were identified, their consequences on predicted cell survival were analyzed, and the advantages and drawbacks of each approach were outlined. In addition to "historical" approaches such as the Target Theory, the Linear-Quadratic model, the Theory of Dual Radiation Action and Katz' model, the more recent Local Effect Model was discussed, focusing on its application in Carbon-ion hadrontherapy. Furthermore, a mechanistic model developed at the University of Pavia and based on the relationship between cell inactivation and chromosome aberrations was presented, together with recent results; the good agreement between model predictions and literature experimental data on different radiation types (photons, protons, alpha particles, and Carbon ions) supported the idea that asymmetric chromosome aberrations like dicentrics and rings play a fundamental role for cell death. Basing on these results, a reinterpretation of the TDRA was also proposed, identifying the TDRA "sublesions" and "lesions" as clustered DNA double-strand breaks and (lethal) chromosome aberrations, respectively.

  12. From DNA Radiation Damage to Cell Death: Theoretical Approaches

    PubMed Central

    Ballarini, Francesca

    2010-01-01

    Some representative models of radiation-induced cell death, which is a crucial endpoint in radiobiology, were reviewed. The basic assumptions were identified, their consequences on predicted cell survival were analyzed, and the advantages and drawbacks of each approach were outlined. In addition to “historical” approaches such as the Target Theory, the Linear-Quadratic model, the Theory of Dual Radiation Action and Katz' model, the more recent Local Effect Model was discussed, focusing on its application in Carbon-ion hadrontherapy. Furthermore, a mechanistic model developed at the University of Pavia and based on the relationship between cell inactivation and chromosome aberrations was presented, together with recent results; the good agreement between model predictions and literature experimental data on different radiation types (photons, protons, alpha particles, and Carbon ions) supported the idea that asymmetric chromosome aberrations like dicentrics and rings play a fundamental role for cell death. Basing on these results, a reinterpretation of the TDRA was also proposed, identifying the TDRA “sublesions” and “lesions” as clustered DNA double-strand breaks and (lethal) chromosome aberrations, respectively. PMID:20976308

  13. Statins and Voriconazole Induce Programmed Cell Death in Acanthamoeba castellanii

    PubMed Central

    López-Arencibia, Atteneri; Sifaoui, Ines; Reyes-Batlle, María; Valladares, Basilio; Martínez-Carretero, Enrique; Piñero, José E.; Maciver, Sutherland K.; Lorenzo-Morales, Jacob

    2015-01-01

    Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a life-threatening encephalitis. In order to treat those infections properly, it is necessary to target the treatment not only to the trophozoite but also to the cyst. Furthermore, it may be advantageous to avoid parasite killing by necrosis, which may induce local inflammation. We must also avoid toxicity of host tissue. Many drugs which target eukaryotes are known to induce programmed cell death (PCD), but this process is poorly characterized in Acanthamoeba. Here, we study the processes of programmed cell death in Acanthamoeba, induced by several drugs, such as statins and voriconazole. We tested atorvastatin, fluvastatin, simvastatin, and voriconazole at the 50% inhibitory concentrations (IC50s) and IC90s that we have previously established. In order to evaluate this phenomenon, we investigated the DNA fragmentation, one of the main characteristics of PCD, with quantitative and qualitative techniques. Also, the changes related to phosphatidylserine exposure on the external cell membrane and cell permeability were studied. Finally, because caspases are key to PCD pathways, caspase activity was evaluated in Acanthamoeba. All the drugs assayed in this study induced PCD in Acanthamoeba. To the best of our knowledge, this is the first study where PCD induced by drugs is described quantitatively and qualitatively in Acanthamoeba. PMID:25733513

  14. Diverse functions of ceramide in cancer cell death and proliferation.

    PubMed

    Saddoughi, Sahar A; Ogretmen, Besim

    2013-01-01

    Ceramide, a bioactive sphingolipid, is now at the forefront of cancer research. Classically, ceramide is thought to induce death, growth inhibition, and senescence in cancer cells. However, it is now clear that this simple picture of ceramide no longer holds true. Recent studies suggest that there are diverse functions of endogenously generated ceramides, which seem to be context dependent, regulated by subcellular/membrane localization and presence/absence of direct targets of these lipid molecules. For example, different fatty-acid chain lengths of ceramide, such as C(16)-ceramide that can be generated by ceramide synthase 6 (CerS6), have been implicated in cancer cell proliferation, whereas CerS1-generated C(18)-ceramide mediates cell death. The dichotomy of ceramides' function in cancer cells makes some of the metabolic enzymes of ceramide synthesis potential drug targets (such as Cers6) to prevent cancer growth in breast and head and neck cancers. Conversely, activation of CerS1 could be a new therapeutic option for the development of novel strategies against lung and head and neck cancers. This chapter focuses on recent discoveries about the mechanistic details of mainly de novo-generated ceramides and their signaling functions in cancer pathogenesis, and about how these mechanistic information can be translated into clinically relevant therapeutic options for the treatment of cancer.

  15. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells.

    PubMed

    Mahamed, Deeqa; Boulle, Mikael; Ganga, Yashica; Mc Arthur, Chanelle; Skroch, Steven; Oom, Lance; Catinas, Oana; Pillay, Kelly; Naicker, Myshnee; Rampersad, Sanisha; Mathonsi, Colisile; Hunter, Jessica; Wong, Emily B; Suleman, Moosa; Sreejit, Gopalkrishna; Pym, Alexander S; Lustig, Gila; Sigal, Alex

    2017-01-28

    A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states.

  16. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    SciTech Connect

    Sun, Hengwen; Yang, Shana; Li, Jianhua; Zhang, Yajie; Gao, Dongsheng; Zhao, Shenting

    2016-03-25

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  17. Programmed cell death in C. elegans, mammals and plants.

    PubMed

    Lord, Christina E N; Gunawardena, Arunika H L A N

    2012-08-01

    Programmed cell death (PCD) is the regulated removal of cells within an organism and plays a fundamental role in growth and development in nearly all eukaryotes. In animals, the model organism Caenorhabditis elegans (C. elegans) has aided in elucidating many of the pathways involved in the cell death process. Various analogous PCD processes can also be found within mammalian PCD systems, including vertebrate limb development. Plants and animals also appear to share hallmarks of PCD, both on the cellular and molecular level. Cellular events visualized during plant PCD resemble those seen in animals including: nuclear condensation, DNA fragmentation, cytoplasmic condensation, and plasma membrane shrinkage. Recently the molecular mechanisms involved in plant PCD have begun to be elucidated. Although few regulatory proteins have been identified as conserved across all eukaryotes, molecular features such as the participation of caspase-like proteases, Bcl-2-like family members and mitochondrial proteins appear to be conserved between plant and animal systems. Transgenic expression of mammalian and C. elegans pro- and anti-apoptotic genes in plants has been observed to dramatically influence the regulatory pathways of plant PCD. Although these genes often show little to no sequence similarity they can frequently act as functional substitutes for one another, thus suggesting that action may be more important than sequence resemblance. Here we present a summary of these findings, focusing on the similarities, between mammals, C. elegans, and plants. An emphasis will be placed on the mitochondria and its role in the cell death pathway within each organism. Through the comparison of these systems on both a cellular and molecular level we can begin to better understand PCD in plant systems, and perhaps shed light on the pathways, which are controlling the process. This manuscript adds to the field of PCD in plant systems by profiling apoptotic factors, to scale on a protein

  18. Programmed cell death of retinal cone bipolar cells is independent of afferent or target control.

    PubMed

    Keeley, Patrick W; Madsen, Nils R; St John, Ace J; Reese, Benjamin E

    2014-10-15

    Programmed cell death contributes to the histogenesis of the nervous system, and is believed to be modulated through the sustaining effects of afferents and targets during the period of synaptogenesis. Cone bipolar cells undergo programmed cell death during development, and we confirm that the numbers of three different types are increased when the pro-apoptotic Bax gene is knocked out. When their cone afferents are selectively eliminated, or when the population of retinal ganglion cells is increased, however, cone bipolar cell number remains unchanged. Programmed cell death of the cone bipolar cell populations, therefore, may be modulated cell-intrinsically rather than via interactions with these synaptic partners. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Reduction of Cardiac Cell Death after Helium Postconditioning in Rats: Transcriptional Analysis of Cell Death and Survival Pathways

    PubMed Central

    Oei, Gezina TML; Heger, Michal; van Golen, Rowan F; Alles, Lindy K; Flick, Moritz; van der Wal, Allard C; van Gulik, Thomas M; Hollmann, Markus W; Preckel, Benedikt; Weber, Nina C

    2014-01-01

    Helium, a noble gas, has been used safely in humans. In animal models of regional myocardial ischemia/reperfusion (I/R) it was shown that helium conditioning reduces infarct size. Currently, it is not known how helium exerts its cytoprotective effects and which cell death/survival pathways are affected. The objective of this study, therefore, was to investigate the cell protective effects of helium postconditioning by PCR array analysis of genes involved in necrosis, apoptosis and autophagy. Male rats were subjected to 25 min of ischemia and 5, 15 or 30 min of reperfusion. Semiquantitative histological analysis revealed that 15 min of helium postconditioning reduced the extent of I/R-induced cell damage. This effect was not observed after 5 and 30 min of helium postconditioning. Analysis of the differential expression of genes showed that 15 min of helium postconditioning mainly caused upregulation of genes involved in autophagy and inhibition of apoptosis versus I/R alone. The results suggest that the cytoprotective effects of helium inhalation may be caused by a switch from pro-cell-death signaling to activation of cell survival mechanisms, which appears to affect a wide range of pathways. PMID:25171109

  20. Reduction of cardiac cell death after helium postconditioning in rats: transcriptional analysis of cell death and survival pathways.

    PubMed

    Oei, Gezina T M L; Heger, Michal; van Golen, Rowan F; Alles, Lindy K; Flick, Moritz; van der Wal, Allard C; van Gulik, Thomas M; Hollmann, Markus W; Preckel, Benedikt; Weber, Nina C

    2015-01-20

    Helium, a noble gas, has been used safely in humans. In animal models of regional myocardial ischemia/reperfusion (I/R) it was shown that helium conditioning reduces infarct size. Currently, it is not known how helium exerts its cytoprotective effects and which cell death/survival pathways are affected. The objective of this study, therefore, was to investigate the cell protective effects of helium postconditioning by PCR array analysis of genes involved in necrosis, apoptosis and autophagy. Male rats were subjected to 25 min of ischemia and 5, 15 or 30 min of reperfusion. Semiquantitative histological analysis revealed that 15 min of helium postconditioning reduced the extent of I/R-induced cell damage. This effect was not observed after 5 and 30 min of helium postconditioning. Analysis of the differential expression of genes showed that 15 min of helium postconditioning mainly caused upregulation of genes involved in autophagy and inhibition of apoptosis versus I/R alone. The results suggest that the cytoprotective effects of helium inhalation may be caused by a switch from pro-cell-death signaling to activation of cell survival mechanisms, which appears to affect a wide range of pathways.

  1. Fenretinide induces autophagic cell death in caspase-defective breast cancer cells.

    PubMed

    Fazi, Barbara; Bursch, Wilfried; Fimia, Gian Maria; Nardacci, Roberta; Piacentini, Mauro; Di Sano, Federica; Piredda, Lucia

    2008-05-01

    The elimination of tumor cells by apoptosis is the main mechanism of action of chemotherapeutic drugs. More recently, autophagic cell death has been shown to trigger a nonapoptotic cell death program in cancer cells displaying functional defects of caspases. Fenretinide (FenR), a synthetic derivative of retinoic acid, promotes growth inhibition and induces apoptosis in a wide range of tumor cell types. The present study was designed to evaluate the ability of fenretinide to induce caspase-independent cell death and to this aim we used the human mammary carcinoma cell line MCF-7, lacking functional caspase-3 activity. We demonstrated that in these cells fenretinide is able to trigger an autophagic cell death pathway. In particular we found that fenretinide treatment resulted in the increase in Beclin 1 expression, the conversion of the soluble form of LC3 to the autophagic vesicle-associated form LC3-II and its shift from diffuse to punctate staining and finally the increase in lysosomes/autophagosomes. By contrast, caspase-3 reconstituted MCF-7 cell line showed apoptotic cell death features in response to fenretinide treatment. These data strongly suggest that fenretinide does not invariably elicit an apoptotic response but it is able to induce autophagy when apoptotic pathway is deregulated. The understanding of the molecular mechanisms involved in fenretinide action is important for the future design of therapies employing this retinoid in breast cancer treatment.

  2. p-Cresol mediates autophagic cell death in renal proximal tubular cells.

    PubMed

    Lin, Hsin-Hung; Huang, Chiu-Ching; Lin, Tze-Yi; Lin, Ching-Yuang

    2015-04-02

    Higher serum level of p-cresol (PC) in chronic kidney disease (CKD) patients has been linked with CKD progression. The toxic effect of PC on diverse cells has been reported by prior studies, except for renal tubular cells. Both autophagy and apoptosis contribute to renal tubular cell death, yet evidence of its response to PC is limited and their crosstalk is still unclear. Autophagy is an important cellular process involved in toxin-induced cell death. Renal tubular cell death in tubular injury is thought to be one of the key events causing the progression of CKD. Thus, we treated rat (NRK-52E) and human (HRPTEC) renal proximal tubular cells (RPTC) with PC and found the cell proliferation was significantly decreased. Cell apoptosis was significantly increased and accompanied with the activation of autophagy as evidenced by increases in LC3-II, beclin 1 and Atg 4. We also found an increase of p62 by c-Jun activation. p62 accumulation could mediate the activation of caspase 8-dependent cell apoptosis. Conversely, knockdown of p62 by siRNA of p62 had the opposite effect by arresting LC3-II accumulation and promoting increasing cell viability. We conclude that PC triggered autophagic RPTC death via JNK-mediated p62 accumulation and then activated caspase 8-dependent cell death pathway. PC can be considered as one of the key events causing progression of CKD, which might affect drug disposition in CKD cases.

  3. Consensus guidelines for the detection of immunogenic cell death.

    PubMed

    Kepp, Oliver; Senovilla, Laura; Vitale, Ilio; Vacchelli, Erika; Adjemian, Sandy; Agostinis, Patrizia; Apetoh, Lionel; Aranda, Fernando; Barnaba, Vincenzo; Bloy, Norma; Bracci, Laura; Breckpot, Karine; Brough, David; Buqué, Aitziber; Castro, Maria G; Cirone, Mara; Colombo, Maria I; Cremer, Isabelle; Demaria, Sandra; Dini, Luciana; Eliopoulos, Aristides G; Faggioni, Alberto; Formenti, Silvia C; Fučíková, Jitka; Gabriele, Lucia; Gaipl, Udo S; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giese, Nathalia A; Guo, Zong Sheng; Hemminki, Akseli; Herrmann, Martin; Hodge, James W; Holdenrieder, Stefan; Honeychurch, Jamie; Hu, Hong-Min; Huang, Xing; Illidge, Tim M; Kono, Koji; Korbelik, Mladen; Krysko, Dmitri V; Loi, Sherene; Lowenstein, Pedro R; Lugli, Enrico; Ma, Yuting; Madeo, Frank; Manfredi, Angelo A; Martins, Isabelle; Mavilio, Domenico; Menger, Laurie; Merendino, Nicolò; Michaud, Michael; Mignot, Gregoire; Mossman, Karen L; Multhoff, Gabriele; Oehler, Rudolf; Palombo, Fabio; Panaretakis, Theocharis; Pol, Jonathan; Proietti, Enrico; Ricci, Jean-Ehrland; Riganti, Chiara; Rovere-Querini, Patrizia; Rubartelli, Anna; Sistigu, Antonella; Smyth, Mark J; Sonnemann, Juergen; Spisek, Radek; Stagg, John; Sukkurwala, Abdul Qader; Tartour, Eric; Thorburn, Andrew; Thorne, Stephen H; Vandenabeele, Peter; Velotti, Francesca; Workenhe, Samuel T; Yang, Haining; Zong, Wei-Xing; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-10-01

    Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named "immunogenic cell death" (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.

  4. Bifurcate effects of glucose on caspase-independent cell death during hypoxia

    SciTech Connect

    Aki, Toshihiko; Nara, Akina; Funakoshi, Takeshi; Uemura, Koichi

    2010-06-04

    We investigated the effect of glucose on hypoxic death of rat cardiomyocyte-derived H9c2 cells and found that there is an optimal glucose concentration for protection against hypoxic cell death. Hypoxic cell death in the absence of glucose is accompanied by rapid ATP depletion, release of apoptosis-inducing factor from mitochondria, and nuclear chromatin condensation, all of which are inhibited by glucose in a dose-dependent manner. In contrast, excessive glucose also induces hypoxic cell death that is not accompanied by these events, suggesting a change in the mode of cell death between hypoxic cells with and without glucose supplementation.

  5. Inhibition of Telomerase Recruitment and Cancer Cell Death*

    PubMed Central

    Nakashima, Mai; Nandakumar, Jayakrishnan; Sullivan, Kelly D.; Espinosa, Joaquín M.; Cech, Thomas R.

    2013-01-01

    Continued proliferation of human cells requires maintenance of telomere length, usually accomplished by telomerase. Telomerase is recruited to chromosome ends by interaction with a patch of amino acids (the TEL patch, for TPP1 glutamate (E) and leucine (L)-rich patch) on the surface of telomere protein TPP1. In previous studies, interruption of this interaction by mutation prevented telomere extension in HeLa cells, but the cell culture continued to grow. We now show that the telomerase inhibitor BIBR1532 acts together with TEL patch mutations to inhibit the growth of HeLa cell lines and that apoptosis is a prominent mechanism of death of these cells. Survivor cells take over the population beginning around 40 days in culture. These cells no longer express the TEL patch mutant TPP1, apparently because of silencing of the expression cassette, a survival mechanism that would not be available to cancer cells. These results provide hope that inhibiting the binding of telomerase to the TEL patch of TPP1, perhaps together with a modest inhibition of the telomerase enzyme, could comprise an effective anticancer therapy for the ∼90% of human tumors that are telomerase-positive. PMID:24097987

  6. [Mechanisms of gamma-inducible death of Jurkat cells line].

    PubMed

    Gamkrelidze, M M; Bezhitashvili, N D; Pavliashvili, A T; Mchedlishvili, T V; Sanikidze, T V

    2008-06-01

    Mechanisms of radio-inducible death of Jurkat cells were investigated. Human lymphoblastoid T-cell line Jurkat is widely established model for studying apoptosis mechanisms. The cell was radiated by "Teragam" (Czech Republic) by dose 2 g during 1 minute. After radiation cells were incubated at standard conditions during 24 hours. After gamma radiation in cell population amount of cells in gaplois (apoptotic G 0) stage was increased 8,2 folds, in diplois (G 0/G1) stage - by 17%, in synthetic (S) stage decreased by 35% and tetraploid (G2/M) stage by 73% in comparison to control group. It was revealed intensive production of free radicals of oxygen and nitric oxide and decreasing activity of antioxidant enzymes (superoxidismutasa, catalasa and glutathione peroxidase). Revealed dependence between intensification of apoptosis and radiation-induced arrest of cell cycle G2/M phase may be determined by excess amount of free oxygen and nitrogen radicals generated in Jurkat cells as a result of nondirect effects of low doses of gamma radiation.

  7. DNA damage, neuronal and glial cell death and neurodegeneration.

    PubMed

    Barzilai, Ari

    2010-11-01

    The DNA damage response (DDR) is a key factor in the maintenance of genome stability. As such, it is a central axis in sustaining cellular homeostasis in a variety of contexts: development, growth, differentiation, and maintenance of the normal life cycle of the cell. It is now clear that diverse mechanisms encompassing cell cycle regulation, repair pathways, many aspects of cellular metabolism, and cell death are inter-linked and act in concert in response to DNA damage. Defects in the DDR in proliferating cells can lead to cancer, while DDR defects in neurons may result in neurodegeneration. Mature neurons are highly differentiated, post-mitotic cells that cannot be replenished after disease or trauma. Their high metabolic activity generates large amounts of reactive oxygen species with DNA damaging capacity. Moreover, their intense transcriptional activity increases the potential for genomic DNA damage. Respectively, neurons have elaborate mechanisms to defend the integrity of their genome, thus ensuring their longevity and functionality in the face of these threats. Over the course of the past two decades, there has been a substantial increase in our understanding of the role of glial cells in supporting the neuronal cell DDR and longevity. This review article focuses on the potential role of the DDR in the etiology and pathogenesis of neurodegenerative diseases, and in addition, it describes various aspects of glial cell functionality in two genomic instability disorders: ataxia telangiectasia (A-T) and Nijmegen breakage syndrome.

  8. Life and death in the genesis of the tumour cell.

    PubMed

    Harrison, D J

    1998-12-28

    Most tumours arise because of an aberrant response of cells following exposure to chemicals deliberately ingested, for example cigarette smoke, or present as an environmental pollutant, for example dietary aflatoxin. Recent evidence has highlighted the importance of tumour suppressor genes and oncogenes in determining the response of a cell to potentially mutagenic or growth disrupting events. Many toxicants in vivo can cause apoptosis in a dose dependent manner. At low dose apoptosis is engaged, but with high exposure cells may undergo necrosis as cellular metabolism is catastrophically overwhelmed preventing the ordered set of events that constitute apoptosis from occurring. Mutations in genes that control deletion of potentially damaged cells result in overriding of death signals and may result in survival of a cell that otherwise should have been deleted. This gave rise to the concept of the 'undead' cell--the aberrant cell that has escaped normal growth controls taking the first step towards cancer. However, not all cell lineages respond to injury in the same ways, and even the same gene may have quite varied effects depending on the cellular and tissue environment.

  9. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis.

    PubMed

    Hornik, Tamara C; Vilalta, Anna; Brown, Guy C

    2016-01-01

    Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis.

  10. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis

    PubMed Central

    Hornik, Tamara C.; Vilalta, Anna; Brown, Guy C.

    2016-01-01

    ABSTRACT Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis. PMID:26567213

  11. Only in dying, life: programmed cell death during plant development.

    PubMed

    Van Hautegem, Tom; Waters, Andrew J; Goodrich, Justin; Nowack, Moritz K

    2015-02-01

    Programmed cell death (PCD) is a fundamental process of life. During the evolution of multicellular organisms, the actively controlled demise of cells has been recruited to fulfil a multitude of functions in development, differentiation, tissue homeostasis, and immune systems. In this review we discuss some of the multiple cases of PCD that occur as integral parts of plant development in a remarkable variety of cell types, tissues, and organs. Although research in the last decade has discovered a number of PCD regulators, mediators, and executers, we are still only beginning to understand the mechanistic complexity that tightly controls preparation, initiation, and execution of PCD as a process that is indispensable for successful vegetative and reproductive development of plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Optical coherence tomography speckle decorrelation for detecting cell death

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Mariampillai, Adrian; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.

    2011-03-01

    We present a dynamic light scattering technique applied to optical coherence tomography (OCT) for detecting changes in intracellular motion caused by cellular reorganization during apoptosis. We have validated our method by measuring Brownian motion in microsphere suspensions and comparing the measured values to those derived based on particle diffusion calculated using the Einstein-Stokes equation. Autocorrelations of OCT signal intensities acquired from acute myeloid leukemia cells as a function of treatment time demonstrated a significant drop in the decorrelation time after 24 hours of cisplatin treatment. This corresponded with nuclear fragmentation and irregular cell shape observed in histological sections. A similar analysis conducted with multicellular tumor spheroids indicated a shorter decorrelation time in the spheroid core relative to its edges. The spheroid core corresponded to a region exhibiting signs of cell death in histological sections and increased backscatter intensity in OCT images.

  13. Programmed cell death in bacteria and implications for antibiotic therapy

    PubMed Central

    Tanouchi, Yu; Lee, Anna Jisu; Meredith, Hannah; You, Lingchong

    2013-01-01

    It is now well appreciated that programmed cell death (PCD) plays critical roles in the life cycle of diverse bacterial species. It is an apparently paradoxical behavior as it does not benefit the cells undergoing PCD. However, growing evidence suggests that PCD can be ‘altruistic’: the dead cells may directly or indirectly benefit survivors through generation of public goods. This property provides a potential explanation on how PCD can evolve as an extreme form of cooperation, though many questions remain to be addressed. From another perspective, as PCD plays a critical role in bacterial pathogenesis, it has been proposed as a potential target for new antibacterial therapy. To this end, understanding the population and evolutionary dynamics resulting from PCD and public-good production may be a key to the success of designing effective antibiotic treatment. PMID:23684151

  14. Cell Arrest and Cell Death in Mammalian Preimplantation Development: Lessons from the Bovine Model

    PubMed Central

    Leidenfrost, Sandra; Boelhauve, Marc; Reichenbach, Myriam; Güngör, Tuna; Reichenbach, Horst-Dieter; Sinowatz, Fred; Wolf, Eckhard; Habermann, Felix A.

    2011-01-01

    Background The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue. Methods and Findings To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances. Conclusions In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development. PMID

  15. Cell arrest and cell death in mammalian preimplantation development: lessons from the bovine model.

    PubMed

    Leidenfrost, Sandra; Boelhauve, Marc; Reichenbach, Myriam; Güngör, Tuna; Reichenbach, Horst-Dieter; Sinowatz, Fred; Wolf, Eckhard; Habermann, Felix A

    2011-01-01

    The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue. To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances. In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development.

  16. Alternative flow cytometry strategies to analyze stem cells and cell death in planarians

    PubMed Central

    Peiris, Tanuja Harshani; García‐Ojeda, Marcos E.

    2016-01-01

    Abstract Planarians possess remarkable stem cell populations that continuously support cellular turnover and are instrumental in the regeneration of tissues upon injury. Cellular turnover and tissue regeneration in planarians rely on the proper integration of local and systemic signals that regulate cell proliferation and cell death. Thus, understanding the signals controlling cellular proliferation and cell death in planarians could provide valuable insights for maintenance of adult body homeostasis and the biology of regeneration. Flow cytometry techniques have been utilized widely to identify, isolate, and characterize planarian stem cell populations. We developed alternative flow cytometry strategies that reduce the number of reagents and the time of sample preparation to analyze stem cells and cell death in planarians. The sensitivity of these methods is validated with functional studies using RNA interference and treatment with  γ irradiation or stressful conditions that are known to trigger cell death. Altogether, we provide a community resource intended to minimize adverse effects during ex vivo studies of stem cells and cell death in planarians. PMID:27307993

  17. Apoptotic cell death in rat epididymis following epichlorohydrin treatment.

    PubMed

    Lee, I-C; Kim, K-H; Kim, S-H; Baek, H-S; Moon, C; Kim, S-H; Yun, W-K; Nam, K-H; Kim, H-C; Kim, J-C

    2013-06-01

    Epichlorohydrin (ECH) is an antifertility agent that acts both as an epididymal toxicant and an agent capable of directly affecting sperm motility. This study identified the time course of apoptotic cell death in rat epididymides after ECH treatment. Rats were administrated with a single oral dose of ECH (50 mg/kg). ECH-induced apoptotic changes were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and its related mechanism was confirmed by Western blot analysis and colorimetric assay. The TUNEL assay showed that the number of apoptotic cells increased at 8 h, reached a maximum level at 12 h, and then decreased progressively. The Western blot analysis demonstrated no significant changes in proapoptotic Bcl-2-associated X (Bax) and anti-apoptotic Bcl-2 expression during the time course of the study. However, phospho-p38 mitogen-activated protein kinase (p-p38 MAPK) and phospho-c-Jun amino-terminal kinase (p-JNK) expression increased at 8-24 h. Caspase-3 and caspase-8 activities also increased at 8-48 h and 12-48 h, respectively, in the same manner as p-p38 MAPK and p-JNK expression. These results indicate that ECH induced apoptotic changes in rat epididymides and that the apoptotic cell death may be related more to the MAPK pathway than to the mitochondrial pathway.

  18. Mitochondrial Extrusion through the cytoplasmic vacuoles during cell death.

    PubMed

    Nakajima, Akihito; Kurihara, Hidetake; Yagita, Hideo; Okumura, Ko; Nakano, Hiroyasu

    2008-08-29

    Under various conditions, noxious stimuli damage mitochondria, resulting in mitochondrial fragmentation; however, the mechanisms by which fragmented mitochondria are eliminated from the cells remain largely unknown. Here we show that cytoplasmic vacuoles originating from the plasma membrane engulfed fragmented mitochondria and subsequently extruded them into the extracellular spaces in undergoing acute tumor necrosis factor alpha-induced cell death in a caspase-dependent fashion. Notably, upon fusion of the membrane encapsulating mitochondria to the plasma membrane, naked mitochondria were released into the extracellular spaces in an exocytotic manner. Mitochondrial extrusion was specific to tumor necrosis factor alpha-induced cell death, because a genotoxic stress-inducing agent such as cisplatin did not elicit mitochondrial extrusion. Moreover, intact actin and tubulin cytoskeletons were required for mitochondrial extrusion as well as membrane blebbing. Furthermore, fragmented mitochondria were engulfed by cytoplasmic vacuoles and extruded from hepatocytes of mice injected with anti-Fas antibody, suggesting that mitochondrial extrusion can be observed in vivo under pathological conditions. Mitochondria are eliminated during erythrocyte maturation under physiological conditions, and anti-mitochondrial antibody is detected in some autoimmune diseases. Thus, elucidating the mechanism underlying mitochondrial extrusion will open a novel avenue leading to better understanding of various diseases caused by mitochondrial malfunction as well as mitochondrial biology.

  19. Mitochondrial calcium and the permeability transition in cell death.

    PubMed

    Lemasters, John J; Theruvath, Tom P; Zhong, Zhi; Nieminen, Anna-Liisa

    2009-11-01

    Dysregulation of Ca(2+) has long been implicated to be important in cell injury. A Ca(2+)-linked process important in necrosis and apoptosis (or necrapoptosis) is the mitochondrial permeability transition (MPT). In the MPT, large conductance permeability transition (PT) pores open that make the mitochondrial inner membrane abruptly permeable to solutes up to 1500 Da. The importance of Ca(2+) in MPT induction varies with circumstance. Ca(2+) overload is sufficient to induce the MPT. By contrast after ischemia-reperfusion to cardiac myocytes, Ca(2+) overload is the consequence of bioenergetic failure after the MPT rather than its cause. In other models, such as cytotoxicity from Reye-related agents and storage-reperfusion injury to liver grafts, Ca(2+) appears to be permissive to MPT onset. Lastly in oxidative stress, increased mitochondrial Ca(2+) and ROS generation act synergistically to produce the MPT and cell death. Thus, the exact role of Ca(2+) for inducing the MPT and cell death depends on the particular biologic setting.

  20. Fenretinide-dependent upregulation of death receptors through ASK1 and p38α enhances death receptor ligand-induced cell death in Ewing's sarcoma family of tumours.

    PubMed

    White, D E; Burchill, S A

    2010-10-26

    Sustained p38(MAPK) phosphorylation upregulates p75 neurotrophin (p75(NTR)) and induces apoptosis in Ewing's sarcoma family of tumours (ESFT). As fenretinide induces ESFT death through sustained p38(MAPK) phosphorylation, we hypothesised that this may be effected through upregulation of death receptors (DRs) and that treatment of fenretinide plus DR ligands may enhance apoptosis. DR expression was determined by flow cytometry. Trypan blue exclusion assays, caspase-8 flow cytometry and immunoblotting for Bid were used to measure cell death. Fenretinide upregulated cell surface expression of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors, FAS and p75(NTR), in an ASK1- and p38α-dependent manner. Cotreatment with fenretinide and DR ligands resulted in synergistic death compared with either agent alone; caspase-8 and Bid were cleaved in a time-dependent manner. Fenretinide did not increase DR expression in non-malignant cells. Furthermore, fenretinide, TRAIL or a combination of both agents was non-cytotoxic to non-malignant cells. Etoposide and actinomycin D increased expression of all DRs examined, whereas vincristine increased FAS alone. Only actinomycin D and TRAIL, and etoposide with TRAIL or FasL, enhanced death compared with either agent alone. The synergistic death observed with fenretinide and DR ligands suggests that this combination may be an attractive strategy for the treatment of ESFT.

  1. Fenretinide-dependent upregulation of death receptors through ASK1 and p38α enhances death receptor ligand-induced cell death in Ewing's sarcoma family of tumours

    PubMed Central

    White, D E; Burchill, S A

    2010-01-01

    Background: Sustained p38MAPK phosphorylation upregulates p75 neurotrophin (p75NTR) and induces apoptosis in Ewing's sarcoma family of tumours (ESFT). As fenretinide induces ESFT death through sustained p38MAPK phosphorylation, we hypothesised that this may be effected through upregulation of death receptors (DRs) and that treatment of fenretinide plus DR ligands may enhance apoptosis. Methods: DR expression was determined by flow cytometry. Trypan blue exclusion assays, caspase-8 flow cytometry and immunoblotting for Bid were used to measure cell death. Results: Fenretinide upregulated cell surface expression of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors, FAS and p75NTR, in an ASK1- and p38α-dependent manner. Cotreatment with fenretinide and DR ligands resulted in synergistic death compared with either agent alone; caspase-8 and Bid were cleaved in a time-dependent manner. Fenretinide did not increase DR expression in non-malignant cells. Furthermore, fenretinide, TRAIL or a combination of both agents was non-cytotoxic to non-malignant cells. Etoposide and actinomycin D increased expression of all DRs examined, whereas vincristine increased FAS alone. Only actinomycin D and TRAIL, and etoposide with TRAIL or FasL, enhanced death compared with either agent alone. Conclusion: The synergistic death observed with fenretinide and DR ligands suggests that this combination may be an attractive strategy for the treatment of ESFT. PMID:20877355

  2. Cell death and tissue remodeling in planarian regeneration.

    PubMed

    Pellettieri, Jason; Fitzgerald, Patrick; Watanabe, Shigeki; Mancuso, Joel; Green, Douglas R; Sánchez Alvarado, Alejandro

    2010-02-01

    Many long-lived organisms, including humans, can regenerate some adult tissues lost to physical injury or disease. Much of the previous research on mechanisms of regeneration has focused on adult stem cells, which give rise to new tissue necessary for the replacement of missing body parts. Here we report that apoptosis of differentiated cells complements stem cell division during regeneration in the planarian Schmidtea mediterranea. Specifically, we developed a whole-mount TUNEL assay that allowed us to document two dramatic increases in the rate of apoptosis following amputation-an initial localized response near the wound site and a subsequent systemic response that varies in magnitude depending on the type of fragment examined. The latter cell death response can be induced in uninjured organs, occurs in the absence of planarian stem cells, and can also be triggered by prolonged starvation. Taken together, our results implicate apoptosis in the restoration of proper anatomical scale and proportion through remodeling of existing tissues. We also report results from initial mechanistic studies of apoptosis in planarians, which revealed that a S. mediterranea homolog of the antiapoptotic gene BCL2 is required for cell survival in adult animals. We propose that apoptosis is a central mechanism working in concert with stem cell division to restore anatomical form and function during metazoan regeneration.

  3. Cell Death and Tissue Remodeling in Planarian Regeneration

    PubMed Central

    Pellettieri, Jason; Fitzgerald, Patrick; Watanabe, Shigeki; Mancuso, Joel; Green, Douglas R.; Alvarado, Alejandro Sánchez

    2010-01-01

    Many long-lived organisms, including humans, can regenerate some adult tissues lost to physical injury or disease. Much of the previous research on mechanisms of regeneration has focused on adult stem cells, which give rise to new tissue necessary for the replacement of missing body parts. Here we report that apoptosis of differentiated cells complements stem cell division during regeneration in the planarian Schmidtea mediterranea. Specifically, we developed a whole-mount TUNEL assay that allowed us to document two dramatic increases in the rate of apoptosis following amputation – an intial localized response near the wound site and a subsequent systemic response that varies in magnitude depending on the type of fragment examined. The latter cell death response can be induced in uninjured organs, occurs in the absence of planarian stem cells, and can also be triggered by prolonged starvation. Taken together, our results implicate apoptosis in the restoration of proper anatomical scale and proportion through remodeling of existing tissues. We also report results from initial mechanistic studies of apoptosis in planarians, which revealed that a S. mediterranea homolog of the antiapoptotic gene BCL2 is required for cell survival in adult animals. We propose that apoptosis is a central mechanism working in concert with stem cell division to restore anatomical form and function during metazoan regeneration. PMID:19766622

  4. Novel Glycopyrrolidine Compounds Inhibit Human Cancer Cell Proliferation and Induce Apoptotic Mode of Cell Death.

    PubMed

    Bhoopalan, Hemadev; Tentu, Shilpa; R, Prasana; S, Purushothaman; Venu, Akkanapally; Raghunathan, Ragavachary; Pakala, Suresh Babu; Rayala, Suresh Kumar; Venkatraman, Ganesh

    2017-04-21

    Spirocyclic compounds, present in a number of bioactive natural alkaloids, are cyclic systems containing one carbon atom common to two rings. A highly regioselective glycopyrrolidine compound library was synthesized using 1,3-dipolar cycloaddition method, and its efficacy was tested on cell lines representing most commonly occurring cancers and the molecular mechanism of cell death deciphered. Results showed that among the 16 compounds screened, RPRR210 showed the most potent anticancer activity and induced cell cycle arrest, inhibited migration, caused cell death by inducing apoptosis through the intrinsic pathway, and were nontoxic to normal cells.

  5. High dose of ascorbic acid induces cell death in mesothelioma cells.

    PubMed

    Takemura, Yukitoshi; Satoh, Motohiko; Satoh, Kiyotoshi; Hamada, Hironobu; Sekido, Yoshitaka; Kubota, Shunichiro

    2010-04-02

    Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. Recently, high dose of ascorbate in cancer treatment has been reexamined. We studied whether high dose of ascorbic acid induced cell death of four human mesothelioma cell lines. High dose of ascorbic acid induced cell death of all mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism that ascorbic acid induced reactive oxygen species and impaired mitochondrial membrane potential. In vivo experiment, intravenous administration of ascorbic acid significantly decreased the growth rate of mesothelioma tumor inoculated in mice. These data suggest that ascorbic acid may have benefits for patients with mesothelioma.

  6. Peroxide-induced cell death and lipid peroxidation in C6 glioma cells.

    PubMed

    Linden, Arne; Gülden, Michael; Martin, Hans-Jörg; Maser, Edmund; Seibert, Hasso

    2008-08-01

    Peroxides are often used as models to induce oxidative damage in cells in vitro. The aim of the present study was to elucidate the role of lipid peroxidation in peroxide-induced cell death. To this end (i) the ability to induce lipid peroxidation in C6 rat astroglioma cells of hydrogen peroxide (H2O2), cumene hydroperoxide (CHP) and t-butyl hydroperoxide (t-BuOOH) (ii) the relation between peroxide-induced lipid peroxidation and cell death in terms of time and concentration dependency and (iii) the capability of the lipid peroxidation chain breaking alpha-tocopherol to prevent peroxide-induced lipid peroxidation and/or cell death were investigated. Lipid peroxidation was characterised by measuring thiobarbituric acid reactive substances (TBARS) and, by HPLC, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) and hexanal. Within 2 h CHP, t-BuOOH and H2O2 induced cell death with EC50 values of 59+/-9 microM, 290+/-30 microM and 12+/-1.1 mM, respectively. CHP and t-BuOOH, but not H2O2 induced lipid peroxidation in C6 cells with EC50 values of 15+/-14 microM and 130+/-33 microM, respectively. The TBARS measured almost exclusively consisted of MDA. 4-HNE was mostly not detectable. The concentration of hexanal slightly increased with increasing concentrations of organic peroxides. Regarding time and concentration dependency lipid peroxidation preceded cell death. Pretreatment with alpha-tocopherol (10 microM, 24 h) prevented both, peroxide-induced lipid peroxidation and cell death. The results strongly indicate a major role of lipid peroxidation in the killing of C6 cells by organic peroxides but also that lipid peroxidation is not involved in H2O2 induced cell death.

  7. Dissociation of NSC606985 induces atypical ER-stress and cell death in prostate cancer cells.

    PubMed

    Wang, Liping; Fu, Pengcheng; Zhao, Yuan; Wang, Guo; Yu, Richard; Wang, Xin; Tang, Zehai; Imperato-McGinley, Julianne; Zhu, Yuan-Shan

    2016-08-01

    Castration-resistant prostate cancer (CRPC) is a major cause of prostate cancer (Pca) death. Chemotherapy is able to improve the survival of CRPC patients. We previously found that NSC606985 (NSC), a highly water-soluble camptothecin analog, induced cell death in Pca cells via interaction with topoisomerase 1 and activation of the mitochondrial apoptotic pathway. To further elucidate the role of NSC, we studied the effect of NSC on ER-stress and its association with NSC-induced cell death in Pca cells. NSC produced a time- and dose-dependent induction of GRP78, CHOP and XBP1s mRNA, and CHOP protein expression in Pca cells including DU145, indicating an activation of ER-stress. However, unlike conventional ER-stress in which GRP78 protein is increased, NSC produced a time- and dose-dependent U-shape change in GRP78 protein in DU145 cells. The NSC-induced decrease in GRP78 protein was blocked by protease inhibitors, N-acetyl-L-leucyl-L-leucylnorleucinal (ALLN), a lysosomal protease inhibitor, and epoxomicin (EPO), a ubiquitin-protease inhibitor. ALLN, but not EPO, also partially inhibited NSC-induced cell death. However, both 4-PBA and TUDCA, two chemical chaperons that effectively reduced tunicamycin-induced ER-stress, failed to attenuate NSC-induced GRP78, CHOP and XBP1s mRNA expression and cell death. Moreover, knockdown of NSC induction of CHOP expression using a specific siRNA had no effect on NSC-induced cytochrome c release and NSC-induced cell death. These results suggest that NSC produced an atypical ER-stress that is dissociated from NSC-induced activation of the mitochondrial apoptotic pathway and NSC-induced cell death in DU145 prostate cancer cells.

  8. Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging

    NASA Astrophysics Data System (ADS)

    Flusberg, Deborah A.; Sorger, Peter K.

    2013-06-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) holds promise as an anti-cancer therapeutic but efficiently induces apoptosis in only a subset of tumor cell lines. Moreover, even in clonal populations of responsive lines, only a fraction of cells dies in response to TRAIL and individual cells exhibit cell-to-cell variability in the timing of cell death. Fractional killing in these cell populations appears to arise not from genetic differences among cells but rather from differences in gene expression states, fluctuations in protein levels and the extent to which TRAIL-induced death or survival pathways become activated. In this study, we ask how cell-to-cell variability manifests in cell types with different sensitivities to TRAIL, as well as how it changes when cells are exposed to combinations of drugs. We show that individual cells that survive treatment with TRAIL can regenerate the sensitivity and death-time distribution of the parental population, demonstrating that fractional killing is a stable property of cell populations. We also show that cell-to-cell variability in the timing and probability of apoptosis in response to treatment can be tuned using combinations of drugs that together increase apoptotic sensitivity compared to treatment with one drug alone. In the case of TRAIL, modulation of cell-to-cell variability by co-drugging appears to involve a reduction in the threshold for mitochondrial outer membrane permeabilization.

  9. Estrogen prevention of lacrimal gland cell death and lymphocytic infiltration.

    PubMed

    Azzarolo, Ana Maria; Eihausen, Heather; Schechter, Joel

    2003-09-01

    Previous studies have shown that ovariectomy causes necrosis of lacrimal acinar cells, apoptosis of plasma cells and gland lymphocytic infiltration. Both, lacrimal gland cell death and lymphocytic infiltration were prevented by androgen treatment. Since estrogens are removed by ovariectomy, and the synthetic estrogen diethylstilbestrol has been shown to affect some biochemical correlates of lacrimal secretion, the purpose of this study was to determine the effect of 17-beta-estradiol treatment on ovariectomy-induced cell death and lymphocytic infiltration. Sexually mature female New Zealand white rabbits (4-4.5 kg) were ovariectomized and divided into two groups. One group was treated with 0.5 mg kg(-1) per day 17-beta-estradiol, and the other group with vehicle alone. A third group of sham operated rabbits was used as controls and they also were treated with vehicle alone. Six days after surgery, the animals were euthanized, the lacrimal glands removed and processed for analysis of apoptosis as assessed by DNA fragmentation, and for morphological examination. DNA fragmentation was determined using the TUNEL assay and agarose gel electrophoresis. Sections were also stained for rabbit thymic lymphocyte antigen (RTLA), and rabbit CD18. Labelled nuclei and stained areas were quantified by automated densitometry. Ovariectomized rabbits showed a significant increase in the values for degraded DNA as a percent of total nuclear area (2.90+/-0.40%) compared to sham operated rabbits (0.73+/-0.22%). 17-beta-estradiol treatment in ovariectomized rabbits prevented the increase in DNA degradation. Examination of TUNEL assay at higher magnification (40x) confirmed previous studies showing that ovariectomy caused apoptosis of interstitial cells. Significant numbers of bulging cells of very pale appearance under light microscopy, also confirm previously identified necrotic cells in acinar regions. Treatment with 17-beta-estradiol prevented this necrosis. Increased numbers of RTLA

  10. Fourier Transform Infrared spectroscopy discloses different types of cell death in flow cytometrically sorted cells.

    PubMed

    Le Roux, K; Prinsloo, L C; Meyer, D

    2015-10-01

    Fourier Transform Infrared (FTIR) spectroscopy is a label free methodology showing promise in characterizing different types of cell death. Cervical adenocarcinoma (HeLa) and African monkey kidney (Vero) cells were treated with a necrosis inducer (methanol), novel apoptotic inducers (diphenylphosphino gold (I) complexes) and positive control, auranofin. Following treatment, cells stained with annexin-V and propidium iodide were sorted using a Fluorescence Activated Cell Sorter (FACS Aria) to obtain populations consisting of either viable, necrotic or apoptotic cells. Transmission Electron Microscopy confirmed successful sorting of all three populations. Four bands were identified which could discriminate between viable and necrotic cells namely 989 cm(-1), 2852 cm(-1), 2875 cm(-1) and 2923 cm(-1). In HeLa cells viable and induced apoptosis could be distinguished by 1294 cm(-1), while four bands were different in Vero cells namely; 1626 cm(-1), 1741 cm(-1), 2852 cm(-1) 2923 cm(-1). Principal Component Analysis showed separation between the different types of cell death and the loadings plots indicated an increase in an additional band at 1623 cm(-1) in dead cells. FTIR spectroscopy can be developed into an invaluable tool for the assessment of specific types of chemically induced cell death with notably different molecular signatures depending on whether the cells are cancerous and mechanism of cell death.

  11. The Importance of Being Dead: Cell Death Mechanisms Assessment in Anti-Sarcoma Therapy

    PubMed Central

    Rello-Varona, Santiago; Herrero-Martín, David; Lagares-Tena, Laura; López-Alemany, Roser; Mulet-Margalef, Núria; Huertas-Martínez, Juan; Garcia-Monclús, Silvia; García del Muro, Xavier; Muñoz-Pinedo, Cristina; Tirado, Oscar Martínez

    2015-01-01

    Cell death can occur through different mechanisms, defined by their nature and physiological implications. Correct assessment of cell death is crucial for cancer therapy success. Sarcomas are a large and diverse group of neoplasias from mesenchymal origin. Among cell death types, apoptosis is by far the most studied in sarcomas. Albeit very promising in other fields, regulated necrosis and other cell death circumstances (as so-called “autophagic cell death” or “mitotic catastrophe”) have not been yet properly addressed in sarcomas. Cell death is usually quantified in sarcomas by unspecific assays and in most cases the precise sequence of events remains poorly characterized. In this review, our main objective is to put into context the most recent sarcoma cell death findings in the more general landscape of different cell death modalities. PMID:25905041

  12. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont.

    PubMed

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom.

  13. Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells

    PubMed Central

    Yang, Jianhong; Zhou, Yongzhao; Cheng, Xia; Fan, Yi; He, Shichao; Li, Shucai; Ye, Haoyu; Xie, Caifeng; Wu, Wenshuang; Li, Chunyan; Pei, Heying; Li, Luyuan; Wei, Zhe; Peng, Aihua; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2015-01-01

    To overcome drug resistance caused by apoptosis deficiency in patients with non-small cell lung carcinoma (NSCLC), there is a need to identify other means of triggering apoptosis-independent cancer cell death. We are the first to report that isogambogenic acid (iso-GNA) can induce apoptosis-independent autophagic cell death in human NSCLC cells. Several features of the iso-GNA-treated NSCLC cells indicated that iso-GNA induced autophagic cell death. First, there was no evidence of apoptosis or cleaved caspase 3 accumulation and activation. Second, iso-GNA treatment induced the formation of autophagic vacuoles, increased LC3 conversion, caused the appearance of autophagosomes and increased the expression of autophagy-related proteins. These findings provide evidence that iso-GNA induces autophagy in NSCLC cells. Third, iso-GNA-induced cell death was inhibited by autophagic inhibitors or by selective ablation of Atg7 and Beclin 1 genes. Furthermore, the mTOR inhibitor rapamycin increased iso-GNA-induced cell death by enhancing autophagy. Finally, a xenograft model provided additional evidence that iso-GNA exhibited anticancer effect through inducing autophagy-dependent cell death in NSCLC cells. Taken together, our results demonstrated that iso-GNA exhibited an anticancer effect by inducing autophagy-dependent cell death in NSCLC cells, which may be an effective chemotherapeutic agent that can be used against NSCLC in a clinical setting. PMID:25571970

  14. Cytolethal distending toxin induces caspase-dependent and -independent cell death in MOLT-4 cells.

    PubMed

    Ohara, Masaru; Hayashi, Tomonori; Kusunoki, Yoichiro; Nakachi, Kei; Fujiwara, Tamaki; Komatsuzawa, Hitoshi; Sugai, Motoyuki

    2008-10-01

    Cytolethal distending toxin (CDT) induces apoptosis using the caspase-dependent classical pathway in the majority of human leukemic T cells (MOLT-4). However, we found the process to cell death is only partially inhibited by pretreatment of the cells with a general caspase inhibitor, z-VAD-fmk. Flow cytometric analysis using annexin V and propidium iodide showed that a 48-h CDT treatment decreased the living cell population by 35% even in the presence of z-VAD-fmk. z-VAD-fmk completely inhibited caspase activity in 24 h CDT-intoxicated cells. Further, CDT with z-VAD-fmk treatment clearly increased the cell population that had a low level of intracellular reactive oxygen. This is a characteristic opposite to that of caspase-dependent apoptosis. Overexpression of bcl2 almost completely inhibited cell death using CDT treatment in the presence of z-VAD-fmk. The data suggest there are at least two different pathways used in CDT-induced cell death: conventional caspase-dependent (early) apoptotic cell death and caspase-independent (late) death. Both occur via the mitochondrial membrane disruption pathway.

  15. Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells.

    PubMed

    Zhang, Li; Cheng, Xian; Gao, Yanyan; Zheng, Jie; Xu, Qiang; Sun, Yang; Guan, Haixia; Yu, Huixin; Sun, Zhen

    2015-11-01

    Apigenin, abundantly present in fruits and vegetables, is recognized as a flavonoid with anti-inflammatory, antioxidant and anticancer properties. In this study, we first investigated the anti-neoplastic effects of apigenin on papillary thyroid carcinoma (PTC) cell line BCPAP cells. Our results show that apigenin inhibited the viability of BCPAP cells in a dose-dependent manner. A large body of evidence demonstrates that autophagy contributes to cell death in certain contexts. In the present study, autophagy was induced by apigenin treatment in BCPAP cells, as evidenced by Beclin-1 accumulation, conversion of LC3 protein, p62 degradation as well as the significantly increased formation of acidic vesicular organelles (AVOs) compared to the control group. 3-MA, an autophagy inhibitor, rescued the cells from apigenin-induced cell death. Notably, apigenin enhanced production of reactive oxygen species (ROS), and subsequent induction of significant DNA damage as monitored by the TUNEL assay. In addition, apigenin treatment caused a significant accumulation of cells in the G2/M phase via down-regulation of Cdc25C expression. Our findings reveal that apigenin inhibits papillary thyroid cancer cell viability by the stimulation of reactive oxygen species (ROS) production, induction of DNA damage, leading to G2/M cell cycle arrest followed by autophagic cell death. Thus, our results provide new insights into the molecular mechanisms underlying apigenin-mediated autophagic cell death and suggest apigenin as a potential chemotherapeutic agent which is able to fight against papillary thyroid cancer.

  16. Cell death mechanisms vary with photodynamic therapy dose and photosensitizer

    NASA Astrophysics Data System (ADS)

    He, Jin; Oleinick, Nancy L.

    1995-03-01

    Mouse lymphoma L5178Y-R cells respond to photodynamic therapy (PDT) by undergoing rapid apoptosis, which is induced by PDT-activated signal transduction initiating in the damaged cellular membranes. To relate the level of PDT damage and photosensitizer to the mechanism of cell death, apoptosis has been detected by agarose gel electrophoresis of fragmented DNA and quantified by flow cytometry of cells after staining with Hoechst33342 and propidium iodide, a technique which can distinguish between live, apoptotic, and necrotic cells. When the silicon phthalocyanine Pc 4 or Pc 12 served as photosensitizer, lethal doses (as defined by clonogenic assay) of PDT induced apoptosis in essentially all cells, whereas supralethal doses prevented the characteristic degradation of DNA into oligonucleosomal fragments. In contrast with aluminum phthalocyanine (AlPc) cells died by apoptosis after all doses studied. It appears that high PDT doses with Pc 4 or Pc 12 damage enzymes needed to carry out the program of apoptosis; the absence of this effect with AlPc suggests either a different intracellular location or different photocytotoxic mechanism for the two photosensitizers.

  17. The tricyclic antidepressant imipramine induces autophagic cell death in U-87MG glioma cells.

    PubMed

    Jeon, Seung-Hyun; Kim, Se Hyun; Kim, Yeni; Kim, Yong Sik; Lim, Yoongho; Lee, Young Han; Shin, Soon Young

    2011-09-23

    In this study, we investigated the antitumor effects of the tricyclic antidepressant 3-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)-N,N-dimethylpropan-1-amine (imipramine) on glioma cells. We found that exposure of U-87MG cells to imipramine resulted in the inhibition of PI3K/Akt/mTOR signaling, reduction of clonogenicity, and induction of cell death. Imipramine stimulated the formation of acidic vesicular organelles, the conversion of LC3-I to LC3-II, and the redistribution of LC3 to autophagosomes, suggesting that it stimulates the progression of autophagy. It did not, however, induce apoptosis. We further showed that knockdown of Beclin-1 using siRNA abrogated imipramine-induced cell death. These results suggest that imipramine exerts antitumor effects on PTEN-null U-87MG human glioma cells by inhibiting PI3K/Akt/mTOR signaling and by inducing autophagic cell death.

  18. Regulation of cell death receptor S-nitrosylation and apoptotic signaling by Sorafenib in hepatoblastoma cells☆

    PubMed Central

    Rodríguez-Hernández, A.; Navarro-Villarán, E.; González, R.; Pereira, S.; Soriano-De Castro, L.B.; Sarrias-Giménez, A.; Barrera-Pulido, L.; Álamo-Martínez, J.M.; Serrablo-Requejo, A.; Blanco-Fernández, G.; Nogales-Muñoz, A.; Gila-Bohórquez, A.; Pacheco, D.; Torres-Nieto, M.A.; Serrano-Díaz-Canedo, J.; Suárez-Artacho, G.; Bernal-Bellido, C.; Marín-Gómez, L.M.; Barcena, J.A.; Gómez-Bravo, M.A.; Padilla, C.A.; Padillo, F.J.; Muntané, J.

    2015-01-01

    Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10 nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10 µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells. PMID:26233703

  19. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures

    PubMed Central

    Newcomb, Christina J.; Sur, Shantanu; Ortony, Julia H.; Lee, One-Sun; Matson, John B.; Boekhoven, Job; Yu, Jeong Min; Schatz, George C.; Stupp, Samuel I.

    2014-01-01

    Many naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy, or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. While the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood. Here we report that varying the cohesive forces within nanofibres of supramolecular materials with nearly identical cationic and hydrophobic structure instruct cell death or cell survival. Weak intermolecular bonds promote cell death through disruption of lipid membranes, while materials reinforced by hydrogen bonds support cell viability. These findings provide new strategies to design biomaterials that interact with the cell membrane. PMID:24531236

  20. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures

    NASA Astrophysics Data System (ADS)

    Newcomb, Christina J.; Sur, Shantanu; Ortony, Julia H.; Lee, One-Sun; Matson, John B.; Boekhoven, Job; Yu, Jeong Min; Schatz, George C.; Stupp, Samuel I.

    2014-02-01

    Many naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. Although the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood. Here we report that varying the cohesive forces within nanofibres of supramolecular materials with nearly identical cationic and hydrophobic structure instruct cell death or cell survival. Weak intermolecular bonds promote cell death through disruption of lipid membranes, while materials reinforced by hydrogen bonds support cell viability. These findings provide new strategies to design biomaterials that interact with the cell membrane.

  1. Molecular and cellular control of cell death and defense signaling in pepper.

    PubMed

    Choi, Hyong Woo; Hwang, Byung Kook

    2015-01-01

    Pepper (Capsicum annuum L.) provides a good experimental system for studying the molecular and functional genomics underlying the ability of plants to defend themselves against microbial pathogens. Cell death is a genetically programmed response that requires specific host cellular factors. Hypersensitive response (HR) is defined as rapid cell death in response to a pathogen attack. Pepper plants respond to pathogen attacks by activating genetically controlled HR- or disease-associated cell death. HR cell death, specifically in incompatible interactions between pepper and Xanthomonas campestris pv. vesicatoria, is mediated by the molecular genetics and biochemical machinery that underlie pathogen-induced cell death in plants. Gene expression profiles during the HR-like cell death response, virus-induced gene silencing and transient and transgenic overexpression approaches are used to isolate and identify HR- or disease-associated cell death genes in pepper plants. Reactive oxygen species, nitric oxide, cytosolic calcium ion and defense-related hormones such as salicylic acid, jasmonic acid, ethylene and abscisic acid are involved in the execution of pathogen-induced cell death in plants. In this review, we summarize recent molecular and cellular studies of the pepper cell death-mediated defense response, highlighting the signaling events of cell death in disease-resistant pepper plants. Comprehensive knowledge and understanding of the cellular functions of pepper cell death response genes will aid the development of novel practical approaches to enhance disease resistance in pepper, thereby helping to secure the future supply of safe and nutritious pepper plants worldwide.

  2. The Role of Mislocalized Phototransduction in Photoreceptor Cell Death of Retinitis Pigmentosa

    PubMed Central

    Nakao, Takeshi; Tsujikawa, Motokazu; Notomi, Shoji; Ikeda, Yasuhiro; Nishida, Kohji

    2012-01-01

    Most of inherited retinal diseases such as retinitis pigmentosa (RP) cause photoreceptor cell death resulting in blindness. RP is a large family of diseases in which the photoreceptor cell death can be caused by a number of pathways. Among them, light exposure has been reported to induce photoreceptor cell death. However, the detailed mechanism by which photoreceptor cell death is caused by light exposure is unclear. In this study, we have shown that even a mild light exposure can induce ectopic phototransduction and result in the acceleration of rod photoreceptor cell death in some vertebrate models. In ovl, a zebrafish model of outer segment deficiency, photoreceptor cell death is associated with light exposure. The ovl larvae show ectopic accumulation of rhodopsin and knockdown of ectopic rhodopsin and transducin rescue rod photoreceptor cell death. However, knockdown of phosphodiesterase, the enzyme that mediates the next step of phototransduction, does not. So, ectopic phototransduction activated by light exposure, which leads to rod photoreceptor cell death, is through the action of transducin. Furthermore, we have demonstrated that forced activation of adenylyl cyclase in the inner segment leads to rod photoreceptor cell death. For further confirmation, we have also generated a transgenic fish which possesses a human rhodopsin mutation, Q344X. This fish and rd10 model mice show photoreceptor cell death caused by adenylyl cyclase. In short, our study indicates that in some RP, adenylyl cyclase is involved in photoreceptor cell death pathway; its inhibition is potentially a logical approach for a novel RP therapy. PMID:22485131

  3. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis

    PubMed Central

    Collins, Tony J.; Ylanko, Jarkko; Geng, Fei

    2015-01-01

    Abstract A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose–response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds. PMID:26422066

  4. Necrosis, and then stress induced necrosis-like cell death, but not apoptosis, should be the preferred cell death mode for chemotherapy: clearance of a few misconceptions

    PubMed Central

    Zhang, Ju; Lou, Xiaomin; Jin, Longyu; Zhou, Rongjia; Liu, Siqi; Xu, Ningzhi; Liao, D. Joshua

    2014-01-01

    Cell death overarches carcinogenesis and is a center of cancer researches, especially therapy studies. There have been many nomenclatures on cell death, but only three cell death modes are genuine, i.e. apoptosis, necrosis and stress-induced cell death (SICD). Like apoptosis, SICD is programmed. Like necrosis, SICD is a pathological event and may trigger regeneration and scar formation. Therefore, SICD has subtypes of stress-induced apoptosis-like cell death (SIaLCD) and stress-induced necrosis-like cell death (SInLCD). Whereas apoptosis removes redundant but healthy cells, SICD removes useful but ill or damaged cells. Many studies on cell death involve cancer tissues that resemble parasites in the host patients, which is a complicated system as it involves immune clearance of the alien cancer cells by the host. Cancer resembles an evolutionarily lower-level organism having a weaker apoptosis potential and poorer DNA repair mechanisms. Hence, targeting apoptosis for cancer therapy, i.e. killing via SIaLCD, will be less efficacious and more toxic. On the other hand, necrosis of cancer cells releases cellular debris and components to stimulate immune function, thus counteracting therapy-caused immune suppression and making necrosis better than SIaLCD for chemo drug development. PMID:25594039

  5. Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy

    PubMed Central

    Mfouo-Tynga, Ivan; Abrahamse, Heidi

    2015-01-01

    The mechanisms of cell death can be predetermined (programmed) or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS) are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT) uses non-toxic chemotherapeutic agents, photosensitizer (PS), to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs) are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events. PMID:25955645

  6. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death

    PubMed Central

    Bacellar, Isabel O. L.; Tsubone, Tayana M.; Pavani, Christiane; Baptista, Mauricio S.

    2015-01-01

    Photodynamic therapy (PDT) is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS), which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research. PMID:26334268

  7. Rotenone Inhibits Autophagic Flux Prior to Inducing Cell Death

    PubMed Central

    2012-01-01

    Rotenone, which selectively inhibits mitochondrial complex I, induces oxidative stress, α-synuclein accumulation, and dopaminergic neuron death, principal pathological features of Parkinson's disease. The autophagy–lysosome pathway degrades damaged proteins and organelles for the intracellular maintenance of nutrient and energy balance. While it is known that rotenone causes autophagic vacuole accumulation, the mechanism by which this effect occurs has not been thoroughly investigated. Treatment of differentiated SH-SY5Y cells with rotenone (10 μM) induced the accumulation of autophagic vacuoles at 6 h and 24 h as indicated by Western blot analysis for microtubule associated protein-light chain 3-II (MAP-LC3-II). Assessment of autophagic flux at these time points indicated that autophagic vacuole accumulation resulted from a decrease in their effective lysosomal degradation, which was substantiated by increased levels of autophagy substrates p62 and α-synuclein. Inhibition of lysosomal degradation may be explained by the observed decrease in cellular ATP levels, which in turn may have caused the observed concomitant increase in acidic vesicle pH. The early (6 h) effects of rotenone on cellular energetics and autophagy–lysosome pathway function preceded the induction of cell death and apoptosis. These findings indicate that the classical mitochondrial toxin rotenone has a pronounced effect on macroautophagy completion that may contribute to its neurotoxic potential. PMID:23259041

  8. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Bidle, Kay D.

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  9. Vacuolar functions determine the mode of cell death.

    PubMed

    Schauer, Alexandra; Knauer, Heide; Ruckenstuhl, Christoph; Fussi, Heike; Durchschlag, Michael; Potocnik, Ulrike; Fröhlich, Kai-Uwe

    2009-03-01

    The yeast vacuole plays a crucial role in cell homeostasis including pH regulation and degradation of proteins and organelles. Class C VPS genes code for proteins essential for vacuolar and endosomal vesicle fusion, their deletion results in the absence of a detectable vacuole. We found that single gene deletions of class C VPS genes result in a drastically enhanced sensitivity to treatment with acetic acid whereas sensitivity towards H2O2 remains largely unaffected. Interestingly acetic acid treatment known as an established inducer of yeast apoptosis leads to necrosis in class C VPS deletion strains. Their intracellular pH drops from 6.7 to 5.5 after acetic acid treatment, while in wild type the pH drops to just 6.3. When the intracellular pH in wild type is lowered below pH 5.5 using a higher concentration of acetic acid, the survival rate is similarly low as in the class C VPS mutants, however, the death phenotype is predominantly apoptotic. Hence, the vacuole not only prevents acetic acid induced cell death by buffering the cytosolic pH, but it also has a proapoptotic function.

  10. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death.

    PubMed

    Bacellar, Isabel O L; Tsubone, Tayana M; Pavani, Christiane; Baptista, Mauricio S

    2015-08-31

    Photodynamic therapy (PDT) is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS), which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research.

  11. Bacterial DNA persists for extended periods after cell death.

    PubMed

    Young, Geoffrey; Turner, Sally; Davies, John K; Sundqvist, Göran; Figdor, David

    2007-12-01

    The fate of DNA from bacteria that infect the root canal but cannot survive is currently unknown, yet such information is essential in establishing the validity of polymerase chain reaction (PCR)-based identification methods for root canal samples. This in vitro study tested the hypothesis that PCR-detectable DNA from dead bacteria might persist after cell death and investigated the efficiency of sodium hypochlorite (NaOCl) as a field decontamination agent. Using heat-killed Enterococcus faecalis, the persistence of DNA encoding the 16S rRNA gene was monitored by PCR. While most probable number analysis showed an approximate 1000-fold decay in amplifiable template, E. faecalis DNA was still PCR-detectable 1 year after cell death. NaOCl (1%) eliminated amplifiable DNA within 60 seconds of exposure. Our findings also disclosed a previously overlooked problem of concentration-dependent inhibition of the PCR reaction by thiosulfate-inactivated NaOCl. These results highlight the challenges of reliably identifying the authentic living root canal flora with PCR techniques.

  12. The molecular ecophysiology of programmed cell death in marine phytoplankton.

    PubMed

    Bidle, Kay D

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  13. Characterization of Breast Cancer Cell Death Induced by Interferons and Retinoids.

    DTIC Science & Technology

    1997-07-01

    responses in several human tumor cells. In particular this combination induces cell death similar to apoptosis in vitro, which could not be observed with...individual agents. Preliminary studies identified no changes in the levels of known regulators of cell death such as p53, cyclin D and Bc12. Thus it...products that mediate the growth inhibitory/ cell death inducing activities of the combination of IFN and RA in human tumor cells. To directly identify these

  14. Characterization of Breast Cancer Cell Death induced by interferons and Retinoids.

    DTIC Science & Technology

    1998-07-01

    earlier that IFNBeta/RA combination causes cell death of human breast carcinoma cells. Since we could not find a correlation between expression of known...regulators and cell death , we employed the antisense technical knock-out strategy to isolate genes that participate in IFN/RA induced pathways. We...episomal vector pTKO1. Following transfection of these libraries the breast tumor cells were selected for resistance to IFN/RA induced cell death . Using

  15. Mitochondrial DNA damage induced autophagy, cell death, and disease.

    PubMed

    Van Houten, Bennett; Hunter, Senyene E; Meyer, Joel N

    2016-01-01

    Mammalian mitochondria contain multiple small genomes. While these organelles have efficient base excision removal of oxidative DNA lesions and alkylation damage, many DNA repair systems that work on nuclear DNA damage are not active in mitochondria. What is the fate of DNA damage in the mitochondria that cannot be repaired or that overwhelms the repair system? Some forms of mitochondrial DNA damage can apparently trigger mitochondrial DNA destruction, either via direct degradation or through specific forms of autophagy, such as mitophagy. However, accumulation of certain types of mitochondrial damage, in the absence of DNA ligase III (Lig3) or exonuclease G (EXOG), can directly trigger cell death. This review examines the cellular effects of persistent damage to mitochondrial genomes and discusses the very different cell fates that occur in response to different kinds of damage.

  16. How Heme Oxygenase-1 Prevents Heme-Induced Cell Death.

    PubMed

    Lanceta, Lilibeth; Mattingly, Jacob M; Li, Chi; Eaton, John W

    2015-01-01

    Earlier observations indicate that free heme is selectively toxic to cells lacking heme oxygenase-1 (HO-1) but how this enzyme prevents heme toxicity remains unexplained. Here, using A549 (human lung cancer) and immortalized human bronchial epithelial cells incubated with exogenous heme, we find knock-down of HO-1 using siRNA does promote the accumulation of cell-associated heme and heme-induced cell death. However, it appears that the toxic effects of heme are exerted by "loose" (probably intralysosomal) iron because cytotoxic effects of heme are lessened by pre-incubation of HO-1 deficient cells with desferrioxamine (which localizes preferentially in the lysosomal compartment). Desferrioxamine also decreases lysosomal rupture promoted by intracellularly generated hydrogen peroxide. Supporting the importance of endogenous oxidant production, both chemical and siRNA inhibition of catalase activity predisposes HO-1 deficient cells to heme-mediated killing. Importantly, it appears that HO-1 deficiency somehow blocks the induction of ferritin; control cells exposed to heme show ~10-fold increases in ferritin heavy chain expression whereas in heme-exposed HO-1 deficient cells ferritin expression is unchanged. Finally, overexpression of ferritin H chain in HO-1 deficient cells completely prevents heme-induced cytotoxicity. Although two other products of HO-1 activity--CO and bilirubin--have been invoked to explain HO-1-mediated cytoprotection, we conclude that, at least in this experimental system, HO-1 activity triggers the induction of ferritin and the latter is actually responsible for the cytoprotective effects of HO-1 activity.

  17. Resveratrol induces cell death and inhibits human herpesvirus 8 replication in primary effusion lymphoma cells.

    PubMed

    Tang, Feng-Yi; Chen, Chang-Yu; Shyu, Huey-Wen; Hong, Shin; Chen, Hung-Ming; Chiou, Yee-Hsuan; Lin, Kuan-Hua; Chou, Miao-Chen; Wang, Lin-Yu; Wang, Yi-Fen

    2015-12-05

    Resveratrol (3,4',5-trihydroxy-trans-stilbene) has been reported to inhibit proliferation of various cancer cells. However, the effects of resveratrol on the human herpesvirus 8 (HHV8) harboring primary effusion lymphoma (PEL) cells remains unclear. The anti-proliferation effects and possible mechanisms of resveratrol in the HHV8 harboring PEL cells were examined in this study. Results showed that resveratrol induced caspase-3 activation and the formation of acidic vacuoles in the HHV8 harboring PEL cells, indicating resveratrol treatment could cause apoptosis and autophagy in PEL cells. In addition, resveratrol treatment increased ROS generation but did not lead to HHV8 reactivation. ROS scavenger (N-acetyl cysteine, NAC) could attenuate both the resveratrol induced caspase-3 activity and the formation of acidic vacuoles, but failed to attenuate resveratrol induced PEL cell death. Caspase inhibitor, autophagy inhibitors and necroptosis inhibitor could not block resveratrol induced PEL cell death. Moreover, resveratrol disrupted HHV8 latent infection, inhibited HHV8 lytic gene expression and decreased virus progeny production. Overexpression of HHV8-encoded viral FLICE inhibitory protein (vFLIP) could partially block resveratrol induced cell death in PEL cells. These data suggest that resveratrol-induced cell death in PEL cells may be mediated by disruption of HHV8 replication. Resveratrol may be a potential anti-HHV8 drug and an effective treatment for HHV8-related tumors.

  18. Anti-apoptotic effect of clusterin on cisplatin-induced cell death of retinoblastoma cells.

    PubMed

    Song, Hyun Beom; Jun, Hyoung-Oh; Kim, Jin Hyoung; Yu, Young Suk; Kim, Kyu-Won; Min, Bon Hong; Kim, Jeong Hun

    2013-12-01

    Clusterin is a cytoprotective chaperone protein that is known to protect various retinal cells. It was also reported to be overexpressed in several types of malignant tumors, whose chemoresistance correlates with the expression of clusterin. Herein, we investigated the effect of clusterin on cisplatin-induced cell death of retinoblastoma cells. Firstly, evaluation of clusterin expression demonstrated that it was highly expressed in human retinoblastoma tissues and cell lines (SNUOT-Rb1 and Y79) particularly in the area between viable cells around vessels and necrotic zones in the relatively avascular area in human retinoblastoma tissues. Furthermore, the effects of cisplatin on retinoblastoma cells were evaluated. Cisplatin (1 µg/ml) significantly affected cell viability of SNUOT-Rb1 cells by inducing caspase-3-dependent apoptosis. Notably, the cell death due to cisplatin was prevented by 5 µg/ml of clusterin administered 4 h prior to cisplatin treatment by inhibiting cisplatin-induced apoptosis. Furthermore, overexpression of clusterin exerted its anti-apoptotic effect on cisplatin-induced apoptosis, and effectively prevented cisplatin-induced cell death. These data suggest that clusterin, found to be expressed in human retinoblastoma, may exert anti-apoptotic effects on cisplatin-induced apoptosis and prevent cell death. Therefore, clusterin can contribute to cisplatin resistance of retinoblastoma.

  19. Humanin Derivatives Inhibit Necrotic Cell Death in Neurons

    PubMed Central

    Cohen, Aviv; Lerner-Yardeni, Jenny; Meridor, David; Kasher, Roni; Nathan, Ilana; Parola, Abraham H

    2015-01-01

    Humanin and its derivatives are peptides known for their protective antiapoptotic effects against Alzheimer’s disease. Herein, we identify a novel function of the humanin-derivative AGA(C8R)-HNG17 (namely, protection against cellular necrosis). Necrosis is one of the main modes of cell death, which was until recently considered an unmoderated process. However, recent findings suggest the opposite. We have found that AGA(C8R)-HNG17 confers protection against necrosis in the neuronal cell lines PC-12 and NSC-34, where necrosis is induced in a glucose-free medium by either chemohypoxia or by a shift from apoptosis to necrosis. Our studies in traumatic brain injury models in mice, where necrosis is the main mode of neuronal cell death, have shown that AGA(C8R)-HNG17 has a protective effect. This result is demonstrated by a decrease in a neuronal severity score and by a reduction in brain edema, as measured by magnetic resonance imaging (MRI). An insight into the peptide’s antinecrotic mechanism was attained through measurements of cellular ATP levels in PC-12 cells under necrotic conditions, showing that the peptide mitigates a necrosis-associated decrease in ATP levels. Further, we demonstrate the peptide’s direct enhancement of the activity of ATP synthase activity, isolated from rat-liver mitochondria, suggesting that AGA(C8R)-HNG17 targets the mitochondria and regulates cellular ATP levels. Thus, AGA(C8R)-HNG17 has potential use for the development of drug therapies for necrosis-related diseases, for example, traumatic brain injury, stroke, myocardial infarction, and other conditions for which no efficient drug-based treatment is currently available. Finally, this study provides new insight into the mechanisms underlying the antinecrotic mode of action of AGA(C8R)-HNG17. PMID:26062019

  20. Statins induce differentiation and cell death in neurons and astroglia.

    PubMed

    März, Pia; Otten, Uwe; Miserez, André R

    2007-01-01

    Statins are potent inhibitors of the hydroxy-methyl-glutaryl-coenzyme A reductase, the rate limiting enzyme for cholesterol biosynthesis. Experimental and clinical studies with statins suggest that they have beneficial effects on neurodegenerative disorders. Thus, it was of interest to characterize the direct effects of statins on CNS neurons and glial cells. We have treated defined cultures of neurons and astrocytes of newborn rats with two lipophilic statins, atorvastatin and simvastatin, and analyzed their effects on morphology and survival. Treatment of astrocytes with statins induced a time- and dose-dependent stellation, followed by apoptosis. Similarly, statins elicited programmed cell death of cerebellar granule neurons but with a higher sensitivity. Analysis of different signaling cascades revealed that statins fail to influence classical pathways such as Akt or MAP kinases, known to be activated in CNS cells. In addition, astrocyte stellation triggered by statins resembled dibutryl-cyclic AMP (db-cAMP) induced morphological differentiation. However, in contrast to db-cAMP, statins induced upregulation of low-density lipoprotein receptors, without affecting GFAP expression, indicating separate underlying mechanisms. Analysis of the cholesterol biosynthetic pathway revealed that lack of mevalonate and of its downstream metabolites, mainly geranylgeranyl-pyrophosphate (GGPP), is responsible for the statin-induced apoptosis of neurons and astrocytes. Moreover, astrocytic stellation triggered by statins was inhibited by mevalonate and GGPP. Interestingly, neuronal cell death was significantly reduced in astrocyte/neuron co-cultures treated with statins. We postulate that under these conditions signals provided by astrocytes, e.g., isoprenoids play a key role in neuronal survival.

  1. Calpain-3 Impairs Cell Proliferation and Stimulates Oxidative Stress-Mediated Cell Death in Melanoma Cells

    PubMed Central

    Moretti, Daniele; Del Bello, Barbara; Allavena, Giulia; Corti, Alessandro; Signorini, Cinzia; Maellaro, Emilia

    2015-01-01

    Calpain-3 is an intracellular cysteine protease, belonging to Calpain superfamily and predominantly expressed in skeletal muscle. In human melanoma cell lines and biopsies, we previously identified two novel splicing variants (hMp78 and hMp84) of Calpain-3 gene (CAPN3), which have a significant lower expression in vertical growth phase melanomas and, even lower, in metastases, compared to benign nevi. In the present study, in order to investigate the pathophysiological role played by the longer Calpain-3 variant, hMp84, in melanoma cells, we over-expressed it in A375 and HT-144 cells. In A375 cells, the enforced expression of hMp84 induces p53 stabilization, and modulates the expression of a few p53- and oxidative stress-related genes. Consistently, hMp84 increases the intracellular production of ROS (Reactive Oxygen Species), which lead to oxidative modification of phospholipids (formation of F2-isoprostanes) and DNA damage. Such events culminate in an adverse cell fate, as indicated by the decrease of cell proliferation and by cell death. To a different extent, either the antioxidant N-acetyl-cysteine or the p53 inhibitor, Pifithrin-α, recover cell viability and decrease ROS formation. Similarly to A375 cells, hMp84 over-expression causes inhibition of cell proliferation, cell death, and increase of both ROS levels and F2-isoprostanes also in HT-144 cells. However, in these cells no p53 accumulation occurs. In both cell lines, no significant change of cell proliferation and cell damage is observed in cells over-expressing the mutant hMp84C42S devoid of its enzymatic activity, suggesting that the catalytic activity of hMp84 is required for its detrimental effects. Since a more aggressive phenotype is expected to benefit from down-regulation of mechanisms impairing cell growth and survival, we envisage that Calpain-3 down-regulation can be regarded as a novel mechanism contributing to melanoma progression. PMID:25658320

  2. Killing Breast Cancer Cells With a VEGF-Triggered Cell Death Receptor

    DTIC Science & Technology

    2006-04-01

    patients. We are pursuing a totally different approach to targeting VEGF: rather than inhibit VEGF our goal is to convert VEGF to act as a cell death factor...cell lines in vitro. These studies suggest that a receptor such as R2Fas which converts VEGF to act as a cell death factor could yield a new and more aggressive approach to targeting overexpressed VEGF in breast cancer....Toward this aim we created a chimeric receptor (R2Fas) composed of domains from VEGF receptor 2 fused to the intracellular domain of the Fas cell

  3. Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells : ROS-mediated cell death by 3-BrPA.

    PubMed

    Kim, Ji Su; Ahn, Keun Jae; Kim, Jeong-Ah; Kim, Hye Mi; Lee, Jong Doo; Lee, Jae Myun; Kim, Se Jong; Park, Jeon Han

    2008-12-01

    Hexokinase type II (HK II) is the key enzyme for maintaining increased glycolysis in cancer cells where it is overexpressed. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, induces cell death in cancer cells. To elucidate the molecular mechanism of 3-BrPA-induced cell death, we used the hepatoma cell lines SNU449 (low expression of HKII) and Hep3B (high expression of HKII). 3-BrPA induced ATP depletion-dependent necrosis and apoptosis in both cell lines. 3-BrPA increased intracellular reactive oxygen species (ROS) leading to mitochondrial dysregulation. NAC (N-acetyl-L: -cysteine), an antioxidant, blocked 3-BrPA-induced ROS production, loss of mitochondrial membrane potential and cell death. 3-BrPA-mediated oxidative stress not only activated poly-ADP-ribose (PAR) but also translocated AIF from the mitochondria to the nucleus. Taken together, 3-BrPA induced ATP depletion-dependent necrosis and apoptosis and mitochondrial dysregulation due to ROS production are involved in 3-BrPA-induced cell death in hepatoma cells.

  4. Inhibition of programmed cell death by cyclosporin A; preferential blocking of cell death induced by signals via TCR/CD3 complex and its mode of action.

    PubMed Central

    Yasutomi, D; Odaka, C; Saito, S; Niizeki, H; Kizaki, H; Tadakuma, T

    1992-01-01

    Cyclosporin A (CsA) is reported to inhibit programmed cell death. We confirmed this by using T-cell hybridomas which are inducible to programmed cell death by activation with immobilized anti-CD3 antibody or with anti-Thy 1.2 antibody. Cell death and DNA fragmentation, characteristic features of programmed cell death, were almost completely blocked by CsA or FK506. To investigate whether CsA inhibits only the cell death through the signals via the TCR/CD3 complex or all of the programmed cell death induced by various reagents, we further established CD4+8+ thymic lymphomas which result in programmed cell death after activation with calcium ionophore, dexamethasone, cyclic AMP or anti-CD3 antibody. It was revealed that CsA could block only the cell death mediated by the TCR/CD3 complex. For the clarification of the site of action of CsA, Ca2+ influx and endocytosis of receptors after stimulation with anti-CD3 antibody were monitored in the presence of CsA, and no significant effects of CsA were observed. Furthermore, prevention of cell death was examined by adding CsA at various periods of time after initiation of culture. CsA was found to exert its effect even when added after 4 h of cultivation, and the kinetic pattern of suppression was similar to that of the suppressive effect on IL-2 production. These observations indicate that in the events of programmed cell death, the major site of action of CsA will not be the inhibition of the immediate membrane events after activation of the TCR/CD3 complex but rather the interference in the function of molecules that transmit signals between membrane events and the activation of genes in the nucleus. Images Figure 2 Figure 3 PMID:1383138

  5. Functional inactivation of Rb sensitizes cancer cells to TSC2 inactivation induced cell Death

    PubMed Central

    Danos, Arpad M.; Liao, Yang; Li, Xuan; Du, Wei

    2012-01-01

    We showed previously that inactivation of TSC2 induces death in cancer cells lacking the Retinoblastoma (Rb) tumor suppressor under stress conditions, suggesting that inactivation of TSC2 can potentially be used as an approach to specifically kill cancers that have lost WT Rb. As Rb is often inactivated in cancers by overexpression of cyclin D1, loss of p16ink4a cdk inhibitor, or expression of viral oncoproteins, it will be interesting to determine if such functional inactivation of Rb would similarly sensitize cancer cells to TSC2 inactivation induced cell death. In addition, many cancers lack functional Pten, resulting in increased PI3K/Akt signaling that has been shown to modulate E2F-induced cell death. Therefore it will be interesting to test whether loss of Pten will affect TSC2 inactivation induced killing of Rb mutant cancer cells. Here, we show that overexpression of Cyclin D1 or the viral oncogene E1a sensitizes cancer cells to TSC2 knockdown induced cell death and growth inhibition. On the other hand, knockdown of p16ink4a sensitizes cancer cells to TSC2 knockdown induced cell death in a manner that is likely dependant on serum induction of Cyclin D1 to inactivate the Rb function. Additionally, we demonstrate that loss of Pten does not interfere with TSC2 knockdown induced cell death in Rb mutant cancer cells. Together, these results suggest that TSC2 is potentially a useful target for a large spectrum of cancer types with an inactivated Rb pathway. PMID:23022476

  6. Functional inactivation of Rb sensitizes cancer cells to TSC2 inactivation induced cell death.

    PubMed

    Danos, Arpad M; Liao, Yang; Li, Xuan; Du, Wei

    2013-01-01

    We showed previously that inactivation of TSC2 induces death in cancer cells lacking the Retinoblastoma (Rb) tumor suppressor under stress conditions, suggesting that inactivation of TSC2 can potentially be used as an approach to specifically kill cancers that have lost WT Rb. As Rb is often inactivated in cancers by overexpression of cyclin D1, loss of p16(ink4a) cdk inhibitor, or expression of viral oncoproteins, it will be interesting to determine if such functional inactivation of Rb would similarly sensitize cancer cells to TSC2 inactivation induced cell death. In addition, many cancers lack functional Pten, resulting in increased PI3K/Akt signaling that has been shown to modulate E2F-induced cell death. Therefore it will be interesting to test whether loss of Pten will affect TSC2 inactivation induced killing of Rb mutant cancer cells. Here, we show that overexpression of Cyclin D1 or the viral oncogene E1a sensitizes cancer cells to TSC2 knockdown induced cell death and growth inhibition. On the other hand, knockdown of p16(ink4a) sensitizes cancer cells to TSC2 knockdown induced cell death in a manner that is likely dependant on serum induction of Cyclin D1 to inactivate the Rb function. Additionally, we demonstrate that loss of Pten does not interfere with TSC2 knockdown induced cell death in Rb mutant cancer cells. Together, these results suggest that TSC2 is potentially a useful target for a large spectrum of cancer types with an inactivated Rb pathway.

  7. Pyrvinium targets autophagy addiction to promote cancer cell death

    PubMed Central

    Deng, Longfei; Lei, Yunlong; Liu, Rui; Li, Jingyi; Yuan, Kefei; Li, Yi; Chen, Yi; Liu, Yi; Lu, You; Edwards III, Carl K; Huang, Canhua; Wei, Yuquan

    2013-01-01

    Autophagy is a cellular catabolic process by which long-lived proteins and damaged organelles are degradated by lysosomes. Activation of autophagy is an important survival mechanism that protects cancer cells from various stresses, including anticancer agents. Recent studies indicate that pyrvinium pamoate, an FDA-approved antihelminthic drug, exhibits wide-ranging anticancer activity. Here we demonstrate that pyrvinium inhibits autophagy both in vitro and in vivo. We further demonstrate that the inhibition of autophagy is mammalian target of rapamycin independent but depends on the transcriptional inhibition of autophagy genes. Moreover, the combination of pyrvinium with autophagy stimuli improves its toxicity against cancer cells, and pretreatment of cells with 3-MA or siBeclin1 partially protects cells from pyrvinium-induced cell death under glucose starvation, suggesting that targeted autophagy addiction is involved in pyrvinium-mediated cytotoxicity. Finally, in vivo studies show that the combination therapy of pyrvinium with the anticancer and autophagy stimulus agent, 2-deoxy-𝒟-glucose (2-DG), is significantly more effective in inhibiting tumor growth than pyrvinium or 2-DG alone. This study supports a novel cancer therapeutic strategy based on targeting autophagy addiction and implicates using pyrvinium as an autophagy inhibitor in combination with chemotherapeutic agents to improve their therapeutic efficacy. PMID:23640456

  8. Programmed cell death in plants: A chloroplastic connection

    PubMed Central

    Ambastha, Vivek; Tripathy, Baishnab C; Tiwari, Budhi Sagar

    2015-01-01

    Programmed cell death (PCD) is an integral cellular program by which targeted cells culminate to demise under certain developmental and pathological conditions. It is essential for controlling cell number, removing unwanted diseased or damaged cells and maintaining the cellular homeostasis. The details of PCD process has been very well elucidated and characterized in animals but similar understanding of the process in plants has not been achieved rather the field is still in its infancy that sees some sporadic reports every now and then. The plants have 2 energy generating sub-cellular organelles- mitochondria and chloroplasts unlike animals that just have mitochondria. The presence of chloroplast as an additional energy transducing and ROS generating compartment in a plant cell inclines to advocate the involvement of chloroplasts in PCD execution process. As chloroplasts are supposed to be progenies of unicellular photosynthetic organisms that evolved as a result of endosymbiosis, the possibility of retaining some of the components involved in bacterial PCD by chloroplasts cannot be ruled out. Despite several excellent reviews on PCD in plants, there is a void on an update of information at a place on the regulation of PCD by chloroplast. This review has been written to provide an update on the information supporting the involvement of chloroplast in PCD process and the possible future course of the field. PMID:25760871

  9. Pyrvinium targets autophagy addiction to promote cancer cell death.

    PubMed

    Deng, Longfei; Lei, Yunlong; Liu, Rui; Li, Jingyi; Yuan, Kefei; Li, Yi; Chen, Yi; Liu, Yi; Lu, You; Edwards, Carl K; Huang, Canhua; Wei, Yuquan

    2013-05-02

    Autophagy is a cellular catabolic process by which long-lived proteins and damaged organelles are degradated by lysosomes. Activation of autophagy is an important survival mechanism that protects cancer cells from various stresses, including anticancer agents. Recent studies indicate that pyrvinium pamoate, an FDA-approved antihelminthic drug, exhibits wide-ranging anticancer activity. Here we demonstrate that pyrvinium inhibits autophagy both in vitro and in vivo. We further demonstrate that the inhibition of autophagy is mammalian target of rapamycin independent but depends on the transcriptional inhibition of autophagy genes. Moreover, the combination of pyrvinium with autophagy stimuli improves its toxicity against cancer cells, and pretreatment of cells with 3-MA or siBeclin1 partially protects cells from pyrvinium-induced cell death under glucose starvation, suggesting that targeted autophagy addiction is involved in pyrvinium-mediated cytotoxicity. Finally, in vivo studies show that the combination therapy of pyrvinium with the anticancer and autophagy stimulus agent, 2-deoxy-D-glucose (2-DG), is significantly more effective in inhibiting tumor growth than pyrvinium or 2-DG alone. This study supports a novel cancer therapeutic strategy based on targeting autophagy addiction and implicates using pyrvinium as an autophagy inhibitor in combination with chemotherapeutic agents to improve their therapeutic efficacy.

  10. Energy requirement for caspase activation and neuronal cell death.

    PubMed

    Nicotera, P; Leist, M; Fava, E; Berliocchi, L; Volbracht, C

    2000-04-01

    Recent work has shown that execution of the apoptotic program involves a relatively limited number of pathways. According to a general view, these would converge to activate the caspase family of proteases. However, there is increasing evidence that apoptotic-like features can be found also when cells are treated with inhibitors of caspases as the cell permeable tripeptide, Z-Val-Ala-Asp-fluoro-methyl-ketone (Z-VAD-fmk), or analogous compounds. This has posed the question as to whether apoptosis may occur in a caspase independent way, and whether caspase inhibitors may then be used to treat diseases characterised by an excess apoptosis. It is also becoming clear, that ATP depletion during the early phases of apoptosis can preclude caspase activation, and consequently switch execution of cell death towards necrosis. In vivo, a block or partial inhibition of the typical apoptotic demise may have profound implications, as persistence of damaged but "undead" cells within the nervous system, followed by delayed lysis may favour neuroinflammatory reactions. In this review, we discuss some recent findings, which suggest that cells may use diverging execution pathways, with different implications in neuropathology and therapy.

  11. Gender specific aspects of cell death in the cardiovascular system.

    PubMed

    Pierdominici, Marina; Ortona, Elena; Franconi, Flavia; Caprio, Massimiliano; Straface, Elisabetta; Malorni, Walter

    2011-01-01

    It has become apparent over the past few decades that several factors can determine lethal or sublethal alterations of cardiovascular system cell function such as inflammatory reaction products, peptides and hormones. In turn, the loss of cellular components from the blood vessels wall and the heart tissue contributes to the development of cardiovascular diseases (CVD). Hence, in the recent years, the efforts of several research groups have specifically been devoted to deeply investigate the implication of the main forms of cell injury, necrosis, apoptosis and autophagy, in the development of cardiac and blood vessel alterations associated with human diseases. Furthermore, several lines of evidence demonstrate that CVD clearly display significant gender differences in terms of onset, progression and outcome. Cardiovascular cells contain functional estrogen and androgen receptors and are targets for sex hormone action, which can influence many physiological and pathological processes, including vascular and myocardial cell homeostasis. However, hormones are important but not unique actors in this issue, further genetic and epigenetic determinants being involved. This review focuses on recent studies on the effects of gender differences, including sex hormones, on cardiac and vascular cell injury and death and their influence in determining atherosclerosis, heart failure and other main human CVD.