Science.gov

Sample records for a-induced liver damage

  1. Kava Linked to Liver Damage

    MedlinePlus

    ... of these countries to remove kava from the market. Although liver damage appears to be rare, the ... are marketed to men, women, children, and the elderly. Advice to Consumers Safety is a concern for ...

  2. Acute liver damage and ecstasy ingestion.

    PubMed Central

    Ellis, A J; Wendon, J A; Portmann, B; Williams, R

    1996-01-01

    Eight cases of ecstasy related acute liver damage referred to a specialised liver unit are described. Two patients presented after collapse within six hours of ecstasy ingestion with hyperthermia, hypotension, fitting, and subsequently disseminated intravascular coagulation with rhabdomyolysis together with biochemical evidence of severe hepatic damage. One patient recovered and the other with evidence of hyperacute liver failure was transplanted but subsequently died, histological examination showing widespread microvesicular fatty change. Four patients presented with acute liver failure without hyperthermia. All four fulfilled criteria for transplantation, one died before a donor organ became available, and two died within one month post-transplantation of overwhelming sepsis. Histological examination showed submassive lobular collapse. Two patients presented with abdominal pain and jaundice and recovered over a period of three weeks; histological examination showed a lobular hepatitis with cholestasis. Patients developing jaundice or with evidence of hepatic failure particularly encephalopathy and prolongation of the international normalised ratio, or both, whether or not preceded by hyperthermia, should be referred to a specialised liver unit as liver transplantation probably provides the only chance of recovery. Images Figure 1 Figure 2 Figure 3 PMID:8675102

  3. Salidroside mediates apoptosis and autophagy inhibition in concanavalin A-induced liver injury

    PubMed Central

    Feng, Jiao; Niu, Peiqin; Chen, Kan; Wu, Liwei; Liu, Tong; Xu, Shizan; Li, Jingjing; Li, Sainan; Wang, Wenwen; Lu, Xiya; Yu, Qiang; Liu, Ning; Xu, Ling; Wang, Fan; Dai, Weiqi; Xia, Yujing; Fan, Xiaoming; Guo, Chuanyong

    2018-01-01

    Salidroside (Sal) is a glycoside extract from Rhodiola rosea L. with anti-inflammatory, antioxidant, anticancer and cardioprotective properties. The present study explored the protective effects and the possible mechanisms of Sal on concanavalin A (ConA)-induced liver injury in mice. Balb/C mice were divided into five groups: Normal control (injected with normal saline), ConA (25 mg/kg), Sal (10 mg/kg) +ConA, Sal (20 mg/kg) + ConA (Sal injected 2 h prior to ConA injection) and Sal (20 mg/kg) only. The serum levels of liver enzymes, pro-inflammatory cytokines, and apoptosis- and autophagy-associated marker proteins were determined at 2, 8 and 24 h after ConA injection. LY294002 was further used to verify whether the phosphoinositide 3-kinase (PI3K)/Akt pathway was activated. Primary hepatocytes were isolated to verify the effect of Sal in vitro. The results indicated that Sal was a safe agent to reduce pathological damage and serum liver enzymes in ConA-induced liver injury. Sal suppressed inflammatory reactions in serum and liver tissues, and activated the PI3K/Akt signaling pathway to inhibit apoptosis and autophagy in vivo and in vitro, which could be reversed by LY294002. In conclusion, Sal attenuated ConA-induced liver injury by modulating PI3K/Akt pathway-mediated apoptosis and autophagy in mice.

  4. MORPHOLOGICAL CHANGES IN MICE LIVER IN DYNAMICS OF CONCANAVALIN A - INDUCED HEPATITIS.

    PubMed

    Pavlovych, S I; Makogon, N V; Grushka, N G; Bryzgina, T M; Janchiy, R I

    The injure of the liver tissue and its infiltration by cells of the innate and adaptive immunity in dynamics of Con A-induced hepatitis in mice was studied. The semiquantitative method of damage rate of microcirculation channel and liver parenchyma was used, leukocyte liver infiltration and cellular composition of infiltrates were investigated also. Primary liver reaction to the Con-A was the inflammatory changes in the vascular bed, followed by disturbances in the parenchyma.The sufficient increasing of leukocyte migration to the liver was revealed. Besides, the neutrophile infiltration was increased first with a maximum at 6 hours of the experiment (63,9 ±4,6%, p<0,001 to the control level) ,and then the lymphocyte infiltration was increased with creation of manycellular lymphocytemacrophage infiltrates (62% at 48 hours comparing to 6 hours of experiment) and sufficient quantity of plasma cells population (4,9%, p<0,05 comparing to 6 hours of experiment). The obtained data gives the base to suggest that the elevated infiltration of liver tissue by leukocytes, particularly by lymphocytes and monocytes, together with necrotic death increasing creats the conditions for effective intracellular interaction and immune response to autoantigenes. This can be the essential pathogenic mechanism of development of autoimmune liver deseases.

  5. Careful: Acetaminophen in Pain Relief Medicines Can Cause Liver Damage

    MedlinePlus

    ... and Fever Reducers Careful: Acetaminophen in pain relief medicines can cause liver damage Share Tweet Linkedin Pin ... ingredient in many over-the-counter and prescription medicines that help relieve pain and reduce fever. More ...

  6. Hepatoprotective Effect of Wedelolactone against Concanavalin A-Induced Liver Injury in Mice.

    PubMed

    Luo, Qingqiong; Ding, Jieying; Zhu, Liping; Chen, Fuxiang; Xu, Lili

    2018-05-08

    Eclipta prostrata L. is a traditional Chinese herbal medicine that has been used in the treatment of liver diseases. However, its biological mechanisms remain elusive. The current study aimed to investigate the hepatoprotective effect of wedelolactone, a major coumarin ingredient of Eclipta prostrata L., on immune-mediated liver injury. Using the well-established animal model of Concanavalin A (ConA)-induced hepatitis (CIH), we found that pretreatment of mice with wedelolactone markedly reduced both the serum levels of transaminases and the severity of liver damage. We further investigated the mechanisms of the protective effect of wedelolactone. In mice treated with wedelolactone prior to the induction of CIH, increases of serum concentrations of tumor necrosis factor (TNF)-[Formula: see text], interferon (IFN)-[Formula: see text], and interleukin (IL)-6 were dramatically attenuated. Additionally, expressions of the interferon-inducible chemokine (C-X-C motif) ligand 10 gene CXCL10 and intercellular adhesion molecule 1 gene ICAM1 were lower in livers of the treated mice. Moreover, wedelolactone-treated CIH mice exhibited reduced leukocyte infiltration and T-cell activation in liver. Furthermore, wedelolactone suppressed the activity of nuclear factor-kappa B (NF-[Formula: see text]B), a critical transcriptional factor of the above-mentioned inflammatory cytokines by limiting the phosphorylation of I kappa B alpha (I[Formula: see text]B[Formula: see text] and p65. In conclusion, these findings demonstrate the inhibitory potential of wedelolactone in immune-mediated liver injury in vivo, and show that this protection is associated with modulation of the NF-[Formula: see text]B signaling pathway.

  7. [Causes and management of severe acute liver damage during pregnancy].

    PubMed

    Sepulveda-Martinez, Alvaro; Romero, Carlos; Juarez, Guido; Hasbun, Jorge; Parra-Cordero, Mauro

    2015-05-01

    Abnormalities in liver function tests appear in 3% of pregnancies. Severe acute liver damage can be an exclusive condition of pregnancy (dependent or independent of pre-eclampsia) or a concomitant disease. HELLP syndrome and acute fatty liver of pregnancy are the most severe liver diseases associated with pregnancy. Both appear during the third trimester and have a similar clinical presentation. Acute fatty liver may be associated with hypoglycemia and HELLP syndrome is closely linked with pre-eclampsia. Among concomitant conditions, fulminant acute hepatitis caused by medications or virus is the most severe disease. Its clinical presentation may be hyper-acute with neurological involvement and severe coagulation disorders. It has a high mortality and patients should be transplanted. Fulminant hepatic failure caused by acetaminophen overdose can be managed with n-acetyl cysteine. Because of the high fetal mortality rate, the gestational age at diagnosis is crucial.

  8. Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver.

    PubMed

    Dongiovanni, P; Stender, S; Pietrelli, A; Mancina, R M; Cespiati, A; Petta, S; Pelusi, S; Pingitore, P; Badiali, S; Maggioni, M; Mannisto, V; Grimaudo, S; Pipitone, R M; Pihlajamaki, J; Craxi, A; Taube, M; Carlsson, L M S; Fargion, S; Romeo, S; Kozlitina, J; Valenti, L

    2018-04-01

    Nonalcoholic fatty liver disease is epidemiologically associated with hepatic and metabolic disorders. The aim of this study was to examine whether hepatic fat accumulation has a causal role in determining liver damage and insulin resistance. We performed a Mendelian randomization analysis using risk alleles in PNPLA3, TM6SF2, GCKR and MBOAT7, and a polygenic risk score for hepatic fat, as instruments. We evaluated complementary cohorts of at-risk individuals and individuals from the general population: 1515 from the liver biopsy cohort (LBC), 3329 from the Swedish Obese Subjects Study (SOS) and 4570 from the population-based Dallas Heart Study (DHS). Hepatic fat was epidemiologically associated with liver damage, insulin resistance, dyslipidemia and hypertension. The impact of genetic variants on liver damage was proportional to their effect on hepatic fat accumulation. Genetically determined hepatic fat was associated with aminotransferases, and with inflammation, ballooning and fibrosis in the LBC. Furthermore, in the LBC, the causal association between hepatic fat and fibrosis was independent of disease activity, suggesting that a causal effect of long-term liver fat accumulation on liver disease is independent of inflammation. Genetically determined hepatic steatosis was associated with insulin resistance in the LBC and SOS. However, this association was dependent on liver damage severity. Genetically determined hepatic steatosis was associated with liver fibrosis/cirrhosis and with a small increase in risk of type 2 diabetes in publicly available databases. These data suggest that long-term hepatic fat accumulation plays a causal role in the development of chronic liver disease. © 2017 The Authors Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.

  9. Liver damage with the amoxicillin-clavulanate combination.

    PubMed

    2008-02-01

    Liver damage associated with the amoxicillin-clavulanate combination is more frequent in patients over the age of 50 and during long-term treatment. It is mainly due to the clavulanic acid component of the drug. It is better to reserve this combination for infections due to bacteria that are resistant to amoxicillin.

  10. TRPM2 channels mediate acetaminophen-induced liver damage

    PubMed Central

    Kheradpezhouh, Ehsan; Ma, Linlin; Morphett, Arthur; Barritt, Greg J.; Rychkov, Grigori Y.

    2014-01-01

    Acetaminophen (paracetamol) is the most frequently used analgesic and antipyretic drug available over the counter. At the same time, acetaminophen overdose is the most common cause of acute liver failure and the leading cause of chronic liver damage requiring liver transplantation in developed countries. Acetaminophen overdose causes a multitude of interrelated biochemical reactions in hepatocytes including the formation of reactive oxygen species, deregulation of Ca2+ homeostasis, covalent modification and oxidation of proteins, lipid peroxidation, and DNA fragmentation. Although an increase in intracellular Ca2+ concentration in hepatocytes is a known consequence of acetaminophen overdose, its importance in acetaminophen-induced liver toxicity is not well understood, primarily due to lack of knowledge about the source of the Ca2+ rise. Here we report that the channel responsible for Ca2+ entry in hepatocytes in acetaminophen overdose is the Transient Receptor Potential Melanostatine 2 (TRPM2) cation channel. We show by whole-cell patch clamping that treatment of hepatocytes with acetaminophen results in activation of a cation current similar to that activated by H2O2 or the intracellular application of ADP ribose. siRNA-mediated knockdown of TRPM2 in hepatocytes inhibits activation of the current by either acetaminophen or H2O2. In TRPM2 knockout mice, acetaminophen-induced liver damage, assessed by the blood concentration of liver enzymes and liver histology, is significantly diminished compared with wild-type mice. The presented data strongly suggest that TRPM2 channels are essential in the mechanism of acetaminophen-induced hepatocellular death. PMID:24569808

  11. Liver manipulation during liver surgery in humans is associated with hepatocellular damage and hepatic inflammation.

    PubMed

    van den Broek, Maartje A J; Shiri-Sverdlov, Ronit; Schreurs, Joris J W; Bloemen, Johanne G; Bieghs, Veerle; Rensen, Sander S; Dejong, Cornelis H C; Olde Damink, Steven W M

    2013-04-01

    Manipulation of the liver during liver surgery results in profound hepatocellular damage. Experimental data show that mobilization-induced hepatocellular damage is related to hepatic inflammation. To date, information on this link in humans is lacking. As it is possible to modulate inflammation, it is clinically relevant to unravel this relationship. This observational study aimed to establish the association between liver mobilization and hepatic inflammation in humans. Consecutive patients requiring mobilization of the right hemi-liver during liver surgery were studied. Plasma samples and liver biopsies were collected prior to and directly after mobilization and after transection of the liver. Hepatocellular damage was assayed by liver fatty acid-binding protein (L-FABP) and aminotransferase levels. Hepatic inflammation was determined by (a) immunohistochemical identification of myeloperoxidase (MPO) and CD68- positive cells and (b) hepatic gene expression of inflammatory and cell adhesion molecules (IL-1β, IL-6, IL-8, VCAM-1 and ICAM-1). A total of 25 patients were included. L-FABP levels increased significantly during mobilization (301 ± 94 ng/ml to 1599 ± 362 ng/ml, P = 0.008), as did ALAT levels (36 ± 5 IU/L to 167 ± 21 IU/L, P < 0.001). A significant increase in MPO (P = 0.001) and CD68 (P = 0.002) positive cells was noticed in the liver after mobilization. The number of MPO-positive cells correlated with the duration of mobilization (Pearson correlation=0.505, P = 0.033). Hepatic gene expression of pro-inflammatory cytokines IL-1β and IL-6, chemo-attractant IL-8 and adhesion molecule ICAM-1 increased significantly during liver manipulation. Liver mobilization is associated with hepatocellular damage and liver inflammation, as shown by infiltration of inflammatory cells and upregulation of genes involved in acute inflammation. © 2012 John Wiley & Sons A/S.

  12. SPARC (secreted protein acidic and rich in cysteine) knockdown protects mice from acute liver injury by reducing vascular endothelial cell damage

    PubMed Central

    Peixoto, E; Atorrasagasti, C; Aquino, JB; Militello, R; Bayo, J; Fiore, E; Piccioni, F; Salvatierra, E; Alaniz, L; García, MG; Bataller, R; Corrales, F; Gidekel, M; Podhajcer, O; Colombo, MI; Mazzolini, G

    2015-01-01

    Secreted protein, acidic and rich in cysteine (SPARC) is involved in many biological process including liver fibrogenesis, but its role in acute liver damage is unknown. To examine the role of SPARC in acute liver injury, we used SPARC knock-out (SPARC−/−) mice. Two models of acute liver damage were used: concanavalin A (Con A) and the agonistic anti-CD95 antibody Jo2. SPARC expression levels were analyzed in liver samples from patients with acute-on-chronic alcoholic hepatitis (AH). SPARC expression is increased on acute-on-chronic AH patients. Knockdown of SPARC decreased hepatic damage in the two models of liver injury. SPARC−/− mice showed a marked reduction in Con A-induced necroinflammation. Infiltration by CD4+ T cells, expression of tumor necrosis factor-α and interleukin-6 and apoptosis were attenuated in SPARC−/− mice. Sinusoidal endothelial cell monolayer was preserved and was less activated in Con A-treated SPARC−/− mice. SPARC knockdown reduced Con A-induced autophagy of cultured human microvascular endothelial cells (HMEC-1). Hepatic transcriptome analysis revealed several gene networks that may have a role in the attenuated liver damaged found in Con A-treated SPARC−/− mice. SPARC has a significant role in the development of Con A-induced severe liver injury. These results suggest that SPARC could represent a therapeutic target in acute liver injury. PMID:25410742

  13. Nesfatin-1 alleviates extrahepatic cholestatic damage of liver in rats

    PubMed Central

    Solmaz, Ali; Gülçiçek, Osman Bilgin; Erçetin, Candaş; Yiğitbaş, Hakan; Yavuz, Erkan; Arıcı, Sinan; Erzik, Can; Zengi, Oğuzhan; Demirtürk, Pelin; Çelik, Atilla; Çelebi, Fatih

    2016-01-01

    Obstructive jaundice (OJ) can be defined as cessation of bile flow into the small intestine due to benign or malignant changes. Nesfatin-1, recently discovered anorexigenic peptide derived from nucleobindin-2 in hypothalamic nuclei, was shown to have anti-inflammatory and antiapoptotic effects. This study is aimed to investigate the therapeutic effects of nesfatin-1 on OJ in rats. Twenty-four adult male Wistar-Hannover rats were randomly assigned to three groups: sham (n = 8), control (n = 8), and nesfatin (n = 8). After bile duct ligation, the study groups were treated with saline or nesfatin-1, for 10 days. Afterward, blood and liver tissue samples were obtained for biochemical analyses, measurement of cytokines, determination of the oxidative DNA damage, DNA fragmentation, and histopathologic analyses. Alanine aminotransferase and gamma-glutamyl transferase levels were decreased after the nesfatin treatment; however, these drops were statistically non-significant compared to control group (p = 0.345, p = 0.114). Malondialdehyde levels decreased significantly in nesfatin group compared to control group (p = 0.032). Decreases in interleukin-6 and tumor necrosis factor-α levels from the liver tissue samples were not statistically significant in nesfatin group compared to control group. The level of oxidative DNA damage was lower in nesfatin group, however this result was not statistically significant (p = 0.75). DNA fragmentation results of all groups were similar. Histopathological examination revealed that there was less neutrophil infiltration, edema, bile duct proliferation, hepatocyte necrosis, basement membrane damage, and parenchymal necrosis in nesfatin compared to control group. The nesfatin-1 treatment could alleviate cholestatic liver damage caused by OJ due to its anti-inflammatory and antioxidant effects. PMID:27524109

  14. Pretreatment with propylene glycol alginate sodium sulfate ameliorated concanavalin A-induced liver injury by regulating the PI3K/Akt pathway in mice.

    PubMed

    Xu, Shizan; Wu, Liwei; Zhang, Qinghui; Feng, Jiao; Li, Sainan; Li, Jingjing; Liu, Tong; Mo, Wenhui; Wang, Wenwen; Lu, Xiya; Yu, Qiang; Chen, Kan; Xia, Yujing; Lu, Jie; Xu, Ling; Zhou, Yingqun; Fan, Xiaoming; Guo, Chuanyong

    2017-09-15

    Propylene glycol alginate sodium sulfate (PSS), a sulfated polysaccharide possesses anti-inflammatory effects. Here, we investigated the effect of PSS on concanavalin A (Con A)-induced liver injury in mice and examined the underlying mechanisms. Balb/C mice were injected intravenously with Con A (25mg/kg) to generate a model of acute liver injury. PSS (25 or 50mg/kg) was injected intraperitoneally 1h before the Con A administration. The levels of serum liver enzymes, inflammatory cytokines, and other marker proteins were determined, and liver injury was assessed histopathologically 2, 8, and 24h after Con A injection. Pretreatment with PSS reduced the levels of serum liver enzymes, inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and attenuated histopathological damage in Con A-induced liver injury in mice. The effects of Con A were mediated by apoptosis and autophagy, as indicated by changes in protein and gene expression of related factors after Con A injection. PSS activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway and showed a protective function against apoptosis and autophagy. PSS ameliorated Con A-induced liver injury by downregulating inflammatory cytokines including TNF-α and IL-1β and regulating apoptosis and autophagy via the PI3K/Akt pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Radiation-Induced Liver Damage: Correlation of Histopathology with Hepatobiliary Magnetic Resonance Imaging, a Feasibility Study

    SciTech Connect

    Seidensticker, Max, E-mail: max.seidensticker@med.ovgu.de; Burak, Miroslaw; Kalinski, Thomas

    PurposeRadiotherapy of liver malignancies shows promising results (radioembolization, stereotactic irradiation, interstitial brachytherapy). Regardless of the route of application, a certain amount of nontumorous liver parenchyma will be collaterally damaged by radiation. The functional reserve may be significantly reduced with an impact on further treatment planning. Monitoring of radiation-induced liver damage by imaging is neither established nor validated. We performed an analysis to correlate the histopathological presence of radiation-induced liver damage with functional magnetic resonance imaging (MRI) utilizing hepatobiliary contrast media (Gd-BOPTA).MethodsPatients undergoing local high-dose-rate brachytherapy for whom a follow-up hepatobiliary MRI within 120 days after radiotherapy as well as an evaluablemore » liver biopsy from radiation-exposed liver tissue within 7 days before MRI were retrospectively identified. Planning computed tomography (CT)/dosimetry was merged to the CT-documentation of the liver biopsy and to the MRI. Presence/absence of radiation-induced liver damage (histopathology) and Gd-BOPTA uptake (MRI) as well as the dose applied during brachytherapy at the site of tissue sampling was determined.ResultsFourteen biopsies from eight patients were evaluated. In all cases with histopathological evidence of radiation-induced liver damage (n = 11), no uptake of Gd-BOPTA was seen. In the remaining three, cases no radiation-induced liver damage but Gd-BOPTA uptake was seen. Presence of radiation-induced liver damage and absence of Gd-BOPTA uptake was correlated with a former high-dose exposition.ConclusionsAbsence of hepatobiliary MRI contrast media uptake in radiation-exposed liver parenchyma may indicate radiation-induced liver damage. Confirmatory studies are warranted.« less

  16. Antifibrotic mechanism of deferoxamine in concanavalin A induced-liver fibrosis: Impact on interferon therapy.

    PubMed

    Darwish, Samar F; El-Bakly, Wesam M; El-Naga, Reem N; Awad, Azza S; El-Demerdash, Ebtehal

    2015-11-01

    Iron-overload is a well-known factor of hepatotoxicity and liver fibrosis, which found to be a common finding among hepatitis C virus patients and related to interferon resistance. We aimed to elucidate the potential antifibrotic effect of deferoxamine; the main iron chelator, and its additional usefulness to interferon-based therapy in concanavalin A-induced immunological model of liver fibrosis. Rats were treated with deferoxamine and/or pegylated interferon-α for 6 weeks. Hepatotoxicity indices, oxidative stress, inflammatory and liver fibrosis markers were assessed. Concanavalin A induced a significant increase in hepatotoxicity indices and lipid peroxidation accompanied with a significant depletion of total antioxidant capacity, glutathione level and superoxide dismutase activity. Besides, it increased CD4(+) T-cells content and the downstream inflammatory cascades, including NF-κB, TNF-α, iNOS, COX-2, IL-6 and IFN-γ. Furthermore, α-SMA, TGF-β1 and hydroxyproline were increased markedly, which confirmed by histopathology. Treatment with either deferoxamine or pegylated interferon-α alone reduced liver fibrosis markers significantly and improved liver histology. However, some of the hepatotoxicity indices and oxidative stress markers did not improve upon pegylated interferon-α treatment alone, besides the remarkable increase in IL-6. Combination therapy of deferoxamine with pegylated interferon-α further improved all previous markers, ameliorated IL-6 elevation, as well as increased hepcidin expression. In conclusion, our study provides evidences for the potent antifibrotic effects of deferoxamine and the underlying mechanisms that involved attenuating oxidative stress and subsequent inflammatory cascade, as well as the production of profibrogenic factors. Addition of deferoxamine to interferon regimen for HCV patients may offer a promising adjuvant modality to enhance therapeutic response. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Nadolol for lithium tremor in the presence of liver damage.

    PubMed

    Dave, M; Langbart, M M

    1994-03-01

    Lithium-induced tremor classically responds to treatment with propranolol. Since it is metabolized in the liver, propranolol may not be the drug of choice in those patients who have compromised liver function or who are recovering from prior liver diseases. Another nonselective beta-adrenergic blocker, nadolol, has no hepatic biotransformation. We present here the first case report of successful treatment of lithium-induced tremor with nadolol, which was selected because the patient had compromised liver function. The patient's liver function tests remained stable with the therapy.

  18. Coconut water vinegar ameliorates recovery of acetaminophen induced liver damage in mice.

    PubMed

    Mohamad, Nurul Elyani; Yeap, Swee Keong; Beh, Boon-Kee; Ky, Huynh; Lim, Kian Lam; Ho, Wan Yong; Sharifuddin, Shaiful Adzni; Long, Kamariah; Alitheen, Noorjahan Banu

    2018-06-25

    Coconut water has been commonly consumed as a beverage for its multiple health benefits while vinegar has been used as common seasoning and a traditional Chinese medicine. The present study investigates the potential of coconut water vinegar in promoting recovery on acetaminophen induced liver damage. Mice were injected with 250 mg/kg body weight acetaminophen for 7 days and were treated with distilled water (untreated), Silybin (positive control) and coconut water vinegar (0.08 mL/kg and 2 mL/kg body weight). Level of oxidation stress and inflammation among treated and untreated mice were compared. Untreated mice oral administrated with acetaminophen were observed with elevation of serum liver profiles, liver histological changes, high level of cytochrome P450 2E1, reduced level of liver antioxidant and increased level of inflammatory related markers indicating liver damage. On the other hand, acetaminophen challenged mice treated with 14 days of coconut water vinegar were recorded with reduction of serum liver profiles, improved liver histology, restored liver antioxidant, reduction of liver inflammation and decreased level of liver cytochrome P450 2E1 in dosage dependent level. Coconut water vinegar has helped to attenuate acetaminophen-induced liver damage by restoring antioxidant activity and suppression of inflammation.

  19. Circulating AIM as an Indicator of Liver Damage and Hepatocellular Carcinoma in Humans

    PubMed Central

    Yamazaki, Tomoko; Mori, Mayumi; Arai, Satoko; Tateishi, Ryosuke; Abe, Masanori; Ban, Mihoko; Nishijima, Akemi; Maeda, Maki; Asano, Takeharu; Kai, Toshihiro; Izumino, Kiyohiro; Takahashi, Jun; Aoyama, Kayo; Harada, Sei; Takebayashi, Toru; Gunji, Toshiaki; Ohnishi, Shin; Seto, Shinji; Yoshida, Yukio; Hiasa, Yoichi; Koike, Kazuhiko; Yamamura, Ken-ichi; Inoue, Ken-ichiro; Miyazaki, Toru

    2014-01-01

    Background Hepatocellular carcinoma (HCC), the fifth most common cancer type and the third highest cause of cancer death worldwide, develops in different types of liver injuries, and is mostly associated with cirrhosis. However, non-alcoholic fatty liver disease often causes HCC with less fibrosis, and the number of patients with this disease is rapidly increasing. The high mortality rate and the pathological complexity of liver diseases and HCC require blood biomarkers that accurately reflect the state of liver damage and presence of HCC. Methods and Findings Here we demonstrate that a circulating protein, apoptosis inhibitor of macrophage (AIM) may meet this requirement. A large-scale analysis of healthy individuals across a wide age range revealed a mean blood AIM of 4.99±1.8 µg/ml in men and 6.06±2.1 µg/ml in women. AIM levels were significantly augmented in the younger generation (20s–40s), particularly in women. Interestingly, AIM levels were markedly higher in patients with advanced liver damage, regardless of disease type, and correlated significantly with multiple parameters representing liver function. In mice, AIM levels increased in response to carbon tetrachloride, confirming that the high AIM observed in humans is the result of liver damage. In addition, carbon tetrachloride caused comparable states of liver damage in AIM-deficient and wild-type mice, indicating no influence of AIM levels on liver injury progression. Intriguingly, certain combinations of AIM indexes normalized to liver marker score significantly distinguished HCC patients from non-HCC patients and thus could be applicable for HCC diagnosis. Conclusion AIM potently reveals both liver damage and HCC. Thus, our results may provide the basis for novel diagnostic strategies for this widespread and fatal disease. PMID:25302503

  20. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    ABSTRACT

    Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  1. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.

    Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...

  2. Effects of Bauhinia forficata Tea on Oxidative Stress and Liver Damage in Diabetic Mice

    PubMed Central

    Salgueiro, Andréia Caroline Fernandes; da Silva, Marianne Pires; Mendez, Andreas Sebastian Loureiro; Zemolin, Ana Paula Pegoraro; Posser, Thaís; Puntel, Robson Luiz; Puntel, Gustavo Orione

    2016-01-01

    This study was designed to evaluate the effects of Bauhinia forficata Link subsp. pruinosa (BF) tea on oxidative stress and liver damage in streptozotocin (STZ)-induced diabetic mice. Diabetic male mice have remained 30 days without any treatment. BF treatment started on day 31 and continued for 21 days as a drinking-water substitute. We evaluated (1) BF chemical composition; (2) glucose levels; (3) liver/body weight ratio and liver transaminases; (4) reactive oxygen species (ROS), lipid peroxidation, and protein carbonylation in liver; (5) superoxide dismutase (SOD) and catalase (CAT) activities in liver; (6) δ-aminolevulinate dehydratase (δ-ALA-D) and nonprotein thiols (NPSH) in liver; (7) Nrf2, NQO-1, and HSP70 levels in liver and pancreas. Phytochemical analyses identified four phenols compounds. Diabetic mice present high levels of NQO-1 in pancreas, increased levels of ROS and lipid peroxidation in liver, and decrease in CAT activity. BF treatment normalized all these parameters. BF did not normalize hyperglycemia, liver/body weight ratio, aspartate aminotransferase, protein carbonyl, NPSH levels, and δ-ALA-D activity. The raised oxidative stress seems to be a potential mechanism involved in liver damage in hyperglycemic conditions. Our results indicated that BF protective effect could be attributed to its antioxidant capacity, more than a hypoglycemic potential. PMID:26839634

  3. Effects of Bauhinia forficata Tea on Oxidative Stress and Liver Damage in Diabetic Mice.

    PubMed

    Salgueiro, Andréia Caroline Fernandes; Folmer, Vanderlei; da Silva, Marianne Pires; Mendez, Andreas Sebastian Loureiro; Zemolin, Ana Paula Pegoraro; Posser, Thaís; Franco, Jeferson Luis; Puntel, Robson Luiz; Puntel, Gustavo Orione

    2016-01-01

    This study was designed to evaluate the effects of Bauhinia forficata Link subsp. pruinosa (BF) tea on oxidative stress and liver damage in streptozotocin (STZ)-induced diabetic mice. Diabetic male mice have remained 30 days without any treatment. BF treatment started on day 31 and continued for 21 days as a drinking-water substitute. We evaluated (1) BF chemical composition; (2) glucose levels; (3) liver/body weight ratio and liver transaminases; (4) reactive oxygen species (ROS), lipid peroxidation, and protein carbonylation in liver; (5) superoxide dismutase (SOD) and catalase (CAT) activities in liver; (6) δ-aminolevulinate dehydratase (δ-ALA-D) and nonprotein thiols (NPSH) in liver; (7) Nrf2, NQO-1, and HSP70 levels in liver and pancreas. Phytochemical analyses identified four phenols compounds. Diabetic mice present high levels of NQO-1 in pancreas, increased levels of ROS and lipid peroxidation in liver, and decrease in CAT activity. BF treatment normalized all these parameters. BF did not normalize hyperglycemia, liver/body weight ratio, aspartate aminotransferase, protein carbonyl, NPSH levels, and δ-ALA-D activity. The raised oxidative stress seems to be a potential mechanism involved in liver damage in hyperglycemic conditions. Our results indicated that BF protective effect could be attributed to its antioxidant capacity, more than a hypoglycemic potential.

  4. Oxidative damage in liver after perinatal intoxication with lead and/or cadmium.

    PubMed

    Massó, Elvira Luján; Corredor, Laura; Antonio, Maria Teresa

    2007-01-01

    Lead acetate (300 mg Pb/L) and/or cadmium acetate (10mg Cd/L) in blood and liver were administrated as drinking water to pregnant Wistar rats from day 1 of pregnancy to parturition (day 0) or until weaning (day 21), to investigate the toxic effects in blood and in the liver. Both metals produced mycrocitic anaemia in the pups as well as oxidative damage in the liver, as suggested by the significant increase in TBARS production and the high catalase activity. Moreover, intense alkaline and acid phosphatase activity, used as biomarkers of liver adaptation to damaging factors, was observed. In addition, the toxikinetics are different for Pb and Cd: while Cd is a hepatotoxic from day 0, Pb is not until day 21. Finally, simultaneous perinatal administration of both metals seems to protect, at least, in the liver TBARS production against the toxicity produced by Cd or Pb separately.

  5. Hepatoprotective effect of electrolyzed reduced water against carbon tetrachloride-induced liver damage in mice.

    PubMed

    Tsai, Chia-Fang; Hsu, Yu-Wen; Chen, Wen-Kang; Chang, Wen-Huei; Yen, Cheng-Chieh; Ho, Yung-Chyuan; Lu, Fung-Jou

    2009-08-01

    The study investigated the protective effect of electrolyzed reduced water (ERW) against carbon tetrachloride (CCl(4))-induced liver damage. Male ICR mice were randomly divided into control, CCl(4), CCl(4)+silymarin, and CCl(4)+ERW groups. CCl(4)-induced liver lesions include leukocytes infiltration, hepatocyte necrosis, ballooning degeneration, mitosis, calcification, fibrosis and an increase of serum alanine aminotransferase (ALT), and aminotransferase (AST) activity. In addition, CCl(4) also significantly decreased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). By contrast, ERW or silymarin supplement significantly ameliorated the CCl(4)-induced liver lesions, lowered the serum levels of hepatic enzyme markers (ALT and AST) and increased the activities of SOD, catalase, and GSH-Px in liver. Therefore, the results of this study show that ERW can be proposed to protect the liver against CCl(4)-induced oxidative damage in mice, and the hepatoprotective effect might be correlated with its antioxidant and free radical scavenging effect.

  6. Monitoring liver damage using hepatocyte-specific methylation markers in cell-free circulating DNA.

    PubMed

    Lehmann-Werman, Roni; Magenheim, Judith; Moss, Joshua; Neiman, Daniel; Abraham, Ofri; Piyanzin, Sheina; Zemmour, Hai; Fox, Ilana; Dor, Talya; Grompe, Markus; Landesberg, Giora; Loza, Bao-Li; Shaked, Abraham; Olthoff, Kim; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2018-06-21

    Liver damage is typically inferred from serum measurements of cytoplasmic liver enzymes. DNA molecules released from dying hepatocytes are an alternative biomarker, unexplored so far, potentially allowing for quantitative assessment of liver cell death. Here we describe a method for detecting acute hepatocyte death, based on quantification of circulating, cell-free DNA (cfDNA) fragments carrying hepatocyte-specific methylation patterns. We identified 3 genomic loci that are unmethylated specifically in hepatocytes, and used bisulfite conversion, PCR, and massively parallel sequencing to quantify the concentration of hepatocyte-derived DNA in mixed samples. Healthy donors had, on average, 30 hepatocyte genomes/ml plasma, reflective of basal cell turnover in the liver. We identified elevations of hepatocyte cfDNA in patients shortly after liver transplantation, during acute rejection of an established liver transplant, and also in healthy individuals after partial hepatectomy. Furthermore, patients with sepsis had high levels of hepatocyte cfDNA, which correlated with levels of liver enzymes aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Duchenne muscular dystrophy patients, in which elevated AST and ALT derive from damaged muscle rather than liver, did not have elevated hepatocyte cfDNA. We conclude that measurements of hepatocyte-derived cfDNA can provide specific and sensitive information on hepatocyte death, for monitoring human liver dynamics, disease, and toxicity.

  7. L-arginine reduces liver and biliary tract damage after liver transplantation from non-heart-beating donor pigs.

    PubMed

    Valero, R; García-Valdecasas, J C; Net, M; Beltran, J; Ordi, J; González, F X; López-Boado, M A; Almenara, R; Taurá, P; Elena, M; Capdevila, L; Manyalich, M; Visa, J

    2000-09-15

    To evaluate whether L-arginine reduces liver and biliary tract damage after transplantation from non heart-beating donor pigs. Twenty-five animals received an allograft from non-heart-beating donors. After 40 min of cardiac arrest, normothermic recirculation was run for 30 min. The animals were randomly treated with L-arginine (400 mg x kg(-1) during normothermic recirculation) or saline (control group). Then, the animals were cooled and their livers were transplanted after 6 hr of cold ischemia. The animals were killed on the 5th day, liver damage was assessed on wedged liver biopsies by a semiquantitative analysis and by morphometric analysis of the necrotic areas, and biliary tract damage by histological examination of the explanted liver. Seventeen animals survived the study period. The histological parameters assessed (sinusoidal congestion and dilatation, sinusoidal infiltration by polymorphonuclear cells and lymphocytes, endothelitis, dissociation of liver cell plates, and centrilobular necrosis) were significantly worse in the control group. The necrotic area affected 15.9 +/- 14.5% of the liver biopsies in the control group and 3.7 +/- 3.1% in the L-arginine group (P<0.05). Six of eight animal in the control group and only one of eight survivors in the L-arginine group developed ischemic cholangitis (P<0.01). L-Arginine administration was associated with higher portal blood flow (676.9 +/- 149.46 vs. 475.2 +/- 205.6 ml x min x m(-2); P<0.05), higher hepatic hialuronic acid extraction at normothermic recirculation (38.8 +/- 53.7% vs. -4.2 +/- 18.2%; P<0.05) and after reperfusion (28.6 +/- 55.5% vs. -10.9 +/- 15.5%; P<0.05) and lower levels of alpha-glutation-S-transferase at reperfusion (1325 +/- 1098% respect to baseline vs. 6488 +/- 5612%; P<0.02). L-Arginine administration during liver procurement from non heart beating donors prevents liver and biliary tract damage.

  8. Markers of activated inflammatory cells correlate with severity of liver damage in children with nonalcoholic fatty liver disease.

    PubMed

    De Vito, Rita; Alisi, Anna; Masotti, Andrea; Ceccarelli, Sara; Panera, Nadia; Citti, Arianna; Salata, Michele; Valenti, Luca; Feldstein, Ariel E; Nobili, Valerio

    2012-07-01

    Concomitantly to the obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has become the leading cause of liver disease in children. NAFLD encompasses a spectrum of histological damage ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), with possible progression to cirrhosis. There is growing evidence that the immune system plays a pivotal role in the initiation and progression to NASH but the cellular nature of the hepatic inflammation is still unknown. The present study includes 34 children with biopsy-proven NAFLD. Liver damage was evaluated by the NAFLD activity score (NAS), and the inflammatory infiltrate was characterized by immunohistochemistry for CD45, CD3 and CD163 which are markers of leukocytes, T cells and activated Kupffer cells/macrophages, respectively. Our results have shown that CD45+ (P<0.0001) and CD163+ (P<0.0001) cells were markedly increased in children with severe histological activity (NAS≥5) compared to children with lower activity (NAS<5), whereas CD3+ cells were significantly lower (P<0.01) in children with severe histological activity. There was a significant association between the numbers of CD45+, CD3+ and CD163+ cells, regarding both the portal tract and liver lobule, and the severity of steatosis, ballooning and fibrosis (P<0.01). These data suggest that the severity and composition of the inflammatory infiltrate correlate with steatosis and the severity of disease in children with NAFLD. Moreover, a decrease in CD3+ cells may be involved in the pathogenesis of liver damage. Future studies should evaluate whether it can predict the progression of liver disease independently of established histological scores.

  9. Overexpression of the cholesterol-binding protein MLN64 induces liver damage in the mouse

    PubMed Central

    Tichauer, Juan Enrique; Morales, María Gabriela; Amigo, Ludwig; Galdames, Leopoldo; Klein, Andrés; Quiñones, Verónica; Ferrada, Carla; R, Alejandra Alvarez; Rio, Marie-Christine; Miquel, Juan Francisco; Rigotti, Attilio; Zanlungo, Silvana

    2007-01-01

    AIM: To examine the in vivo phenotype associated with hepatic metastatic lymph node 64 (MLN64) over-expression. METHODS: Recombinant-adenovirus-mediated MLN64 gene transfer was used to overexpress MLN64 in the livers of C57BL/6 mice. We measured the effects of MLN64 overexpression on hepatic cholesterol content, bile flow, biliary lipid secretion and apoptosis markers. For in vitro studies cultured CHO cells with transient MLN64 overexpression were utilized and apoptosis by TUNEL assay was measured. RESULTS: Livers from Ad.MLN64-infected mice exhibited early onset of liver damage and apoptosis. This response correlated with increases in liver cholesterol content and biliary bile acid concentration, and impaired bile flow. We investigated whether liver MLN64 expression could be modulated in a murine model of hepatic injury. We found increased hepatic MLN64 mRNA and protein levels in mice with chenodeoxycholic acid-induced liver damage. In addition, cultured CHO cells with transient MLN64 overexpression showed increased apoptosis. CONCLUSION: In summary, hepatic MLN64 over-expression induced damage and apoptosis in murine livers and altered cholesterol metabolism. Further studies are required to elucidate the relevance of these findings under physiologic and disease conditions. PMID:17589922

  10. The alterations in the extracellular matrix composition guide the repair of damaged liver tissue

    PubMed Central

    Klaas, Mariliis; Kangur, Triin; Viil, Janeli; Mäemets-Allas, Kristina; Minajeva, Ave; Vadi, Krista; Antsov, Mikk; Lapidus, Natalia; Järvekülg, Martin; Jaks, Viljar

    2016-01-01

    While the cellular mechanisms of liver regeneration have been thoroughly studied, the role of extracellular matrix (ECM) in liver regeneration is still poorly understood. We utilized a proteomics-based approach to identify the shifts in ECM composition after CCl4 or DDC treatment and studied their effect on the proliferation of liver cells by combining biophysical and cell culture methods. We identified notable alterations in the ECM structural components (eg collagens I, IV, V, fibronectin, elastin) as well as in non-structural proteins (eg olfactomedin-4, thrombospondin-4, armadillo repeat-containing x-linked protein 2 (Armcx2)). Comparable alterations in ECM composition were seen in damaged human livers. The increase in collagen content and decrease in elastic fibers resulted in rearrangement and increased stiffness of damaged liver ECM. Interestingly, the alterations in ECM components were nonhomogenous and differed between periportal and pericentral areas and thus our experiments demonstrated the differential ability of selected ECM components to regulate the proliferation of hepatocytes and biliary cells. We define for the first time the alterations in the ECM composition of livers recovering from damage and present functional evidence for a coordinated ECM remodelling that ensures an efficient restoration of liver tissue. PMID:27264108

  11. Stereology shows that damaged liver recovers after protein refeeding.

    PubMed

    Gomes, Silvio Pires; da Silva, Andréa Almeida Pinto; Crisma, Amanda Rabello; Borelli, Primavera; Hernandez-Blazquez, Francisco Javier; de Melo, Mariana P; Bacci, Barbara; Loesch, Andrzej; Coppi, A Augusto

    2017-06-01

    The aim of the present study was to investigate the putative effects of a low-protein diet on the three-dimensional structure of hepatocytes and determine whether this scenario could be reversed by restoring the adequate levels of protein to the diet. Using design-based stereology, the total number and volume of hepatocytes were estimated in the liver of mice in healthy and altered (by protein malnutrition) conditions and after protein renutrition. This study demonstrated a 65% decrease in the liver volume (3302 mm 3 for the control for undernourished versus 1141 mm 3 for the undernourished group) accompanied by a 46% reduction in the hepatocyte volume (8223 μm 3 for the control for undernourished versus 4475 μm 3 for the undernourished group) and a 90% increase in the total number of binucleate hepatocytes (1 549 393 for the control for undernourished versus 2 941 353 for the undernourished group). Reinstating a normoproteinic diet (12% casein) proved to be effective in restoring the size of hepatocytes, leading to an 85% increase in the total number of uninucleate hepatocytes (15 988 560 for the undernourished versus 29 600 520 for the renourished group), and partially reversed the liver atrophy. Awareness of these data will add to a better morphologic understanding of malnutrition-induced hepatopathies and will help clinicians improve the diagnosis and treatment of this condition in humans and in veterinary practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Symbiotic formulation in experimentally induced liver fibrosis in rats: intestinal microbiota as a key point to treat liver damage?

    PubMed

    D'Argenio, Giuseppe; Cariello, Rita; Tuccillo, Concetta; Mazzone, Giovanna; Federico, Alessandro; Funaro, Annalisa; De Magistris, Laura; Grossi, Enzo; Callegari, Maria L; Chirico, Marilena; Caporaso, Nicola; Romano, Marco; Morelli, Lorenzo; Loguercio, Carmela

    2013-05-01

    Evidence indicates that intestinal microbiota may participate in both the induction and the progression of liver damage. The aim of our research was the detection and evaluation of the effects of chronic treatment with a symbiotic formulation on CCl4 -induced rat liver fibrosis. CCl4 significantly increased gastric permeability in respect to basal values, and the treatment with symbiotic significantly decreased it. CCl4 per se induced a decrease in intestinal permeability. This effect was also seen in fibrotic rats treated with symbiotic and was still evident when normal rats were treated with symbiotic alone (P < 0.001 in all cases). Circulating levels of pro-inflammatory cytokine TNF-α were significantly increased in rats with liver fibrosis as compared with normal rats, while symbiotic treatment normalized the plasma levels of TNF-α and significantly enhanced anti-inflammatory cytokine IL 10. TNF-α, TGF-β, TLR4, TLR2, iNOS and α-SMA mRNA expression in the liver were up-regulated in rats with CCl4 -induced liver fibrosis and down-regulated by symbiotic treatment. Moreover, IL-10 and eNOS mRNA levels were increased in the CCL4 (+) symbiotic group. Symbiotic treatment of fibrotic rats normalized serum ALT, AST and improved histology and liver collagen deposition. DGGE analysis of faecal samples revealed that CCl4 administration and symbiotic treatment either alone or in combination produced modifications in faecal profiles vs controls. Our results provide evidence that in CCl4 -induced liver fibrosis, significant changes in gastro-intestinal permeability and in faecal flora occur. Treatment with a specific symbiotic formulation significantly affects these changes, leading to improvement in both liver inflammation and fibrosis. © 2013 John Wiley & Sons A/S.

  13. Oncostatin M Gene Therapy Attenuates Liver Damage Induced by Dimethylnitrosamine in Rats

    PubMed Central

    Hamada, Tetsuhiro; Sato, Ayuko; Hirano, Tadamichi; Yamamoto, Takashi; Son, Gakuhei; Onodera, Masayuki; Torii, Ikuko; Nishigami, Takashi; Tanaka, Minoru; Miyajima, Atsushi; Nishiguchi, Shuhei; Fujimoto, Jiro; Tsujimura, Tohru

    2007-01-01

    To assess the usefulness of oncostatin M (osm) gene therapy in liver regeneration, we examined whether the introduction of OSM cDNA enhances the regeneration of livers damaged by dimethylnitrosamine (DMN) in rats. Repeated injection of OSM cDNA enclosed in hemagglutinating virus of Japan envelope into the spleen resulted in the exclusive expression of OSM protein in Kupffer cells of the liver, which was accompanied by increases in body weight, liver weight, and serum albumin levels and the reduction of serum liver injury parameters (bilirubin, aspartate aminotransferase, and alanine aminotransferase) and a serum fibrosis parameter (hyaluronic acid). Histological examination showed that osm gene therapy reduced centrilobular necrosis and inflammatory cell infiltration and augmented hepatocyte proliferation. The apoptosis of hepatocytes and fibrosis were suppressed by osm gene therapy. Time-course studies on osm gene therapy before or after DMN treatment showed that this therapy was effective not only in enhancing regeneration of hepatocytes damaged by DMN but in preventing hepatic cytotoxicity caused by subsequent treatment with DMN. These results indicate that OSM is a key mediator for proliferation and anti-apoptosis of hepatocytes and suggest that osm gene therapy is useful, as preventive and curative means, for the treatment of patients with liver damage. PMID:17640959

  14. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    PubMed

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J; Korangy, Firouzeh; Greten, Tim F

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  15. [Prediction of histological liver damage in asymptomatic alcoholic patients by means of clinical and laboratory data].

    PubMed

    Iturriaga, H; Hirsch, S; Bunout, D; Díaz, M; Kelly, M; Silva, G; de la Maza, M P; Petermann, M; Ugarte, G

    1993-04-01

    Looking for a noninvasive method to predict liver histologic alterations in alcoholic patients without clinical signs of liver failure, we studied 187 chronic alcoholics recently abstinent, divided in 2 series. In the model series (n = 94) several clinical variables and results of common laboratory tests were confronted to the findings of liver biopsies. These were classified in 3 groups: 1. Normal liver; 2. Moderate alterations; 3. Marked alterations, including alcoholic hepatitis and cirrhosis. Multivariate methods used were logistic regression analysis and a classification and regression tree (CART). Both methods entered gamma-glutamyltransferase (GGT), aspartate-aminotransferase (AST), weight and age as significant and independent variables. Univariate analysis with GGT and AST at different cutoffs were also performed. To predict the presence of any kind of damage (Groups 2 and 3), CART and AST > 30 IU showed the higher sensitivity, specificity and correct prediction, both in the model and validation series. For prediction of marked liver damage, a score based on logistic regression and GGT > 110 IU had the higher efficiencies. It is concluded that GGT and AST are good markers of alcoholic liver damage and that, using sample cutoffs, histologic diagnosis can be correctly predicted in 80% of recently abstinent asymptomatic alcoholics.

  16. Tumor Induced Hepatic Myeloid Derived Suppressor Cells Can Cause Moderate Liver Damage

    PubMed Central

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J.; Korangy, Firouzeh; Greten, Tim F.

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage. PMID:25401795

  17. Dandelion-enriched diet of mothers alleviates lead-induced damages in liver of newborn rats.

    PubMed

    Gargouri, M; Magné, C; Ben Amara, I; Ben Saad, H; El Feki, A

    2017-02-28

    Lead (Pb) is a highly toxic metal present in the environment. It causes disturbances of several functions, including hematologic, renal, reproductive and nervous ones. Preventive or curative use of medicinal plants against these disorders may be a promising and safe therapeutic strategy. This study evaluated the hepatic toxic effects of prenatal exposure to lead in rats and the possible protective effect of dandelion (Taraxacum officinale) added to the diet. Female rats were given a normal diet (control) or a diet enriched with dandelion (treated). In addition, lead acetate was administered to half of the rats through drinking water from the 5th day of gestation until the 14th day postpartum. Lead toxicity was evaluated in their offspring by measuring body and liver weights, plasma biochemical parameters, liver damage, as well as protein content and activities of antioxidant enzymes in the liver tissues. Lead poisoning of mothers caused lead deposition in blood and stomach of their pups as well as hepatic tissue damages. Moreover, significant decreases in liver weight and protein content were found. Lead treatment caused oxidative stress and marked changes in the activity of antioxidant enzymes. However, no damages or biochemical changes were observed in puppies from the rats co-treated with lead and dandelion. These results indicate that supplementation of pregnant and lactating rats with dandelion protects their offspring against lead poisoning, likely through reduction of oxidative stress and liver damages.

  18. [Studying the hepatoprotector effect of bemithyl on a model of chronic toxic liver damage].

    PubMed

    Oskovityĭ, S V; Bezborodkina, N N; Zarubina, I V; Mironova, O P; Kudrivtsev, B N; Shulenin, S N

    2006-01-01

    A prophylactic and therapeutic introduction of the synthetic adaptogen bemithyl (2-ethylthiobensimidasole hydrobromide) produces a hepatoprotector effect in rats with experimental cirrhosis. The drug exhibits an anticytolytic activity, restores liver participation in the pigment exchange, and normalizes the function of the microsomal oxidation system responsible for the metabolism of xenobiotics. The treatment with bemithyl also leads to a certain improvement of a histologic picture of the damaged liver and to a decrease in the degree of fibrosis. The drug is also capable of increasing the activity of the antioxidant system and inhibiting the process of lipid peroxidation of proteins and lipids in the liver.

  19. Fatal Liver Damage After Barium Enemas Containing Tannic Acid

    PubMed Central

    Lucke, Hans H.; Hodge, Kenneth E.; Patt, Norman L.

    1963-01-01

    Tannic acid contained in the barium enema was found to have been the sole known potential hepatotoxin in four of the five cases of fulminating fatal liver failure that occurred in a 213-bed hospital over a period of 27 months. In the other case halothane anesthesia had also been administered. Autopsies (performed on four of the cases) did not suggest viral hepatitis but showed substantially indentical hepatic changes, not unlike those reported in the past following tannic acid exposure. Proof is not claimed that tannic acid was the cause of these deaths, but further investigation regarding the safety of its administration in barium enemas is advocated. ImagesFig. 1 PMID:14079135

  20. Cajanus cajan Linn. (Leguminosae) prevents alcohol-induced rat liver damage and augments cytoprotective function.

    PubMed

    Kundu, Rakesh; Dasgupta, Suman; Biswas, Anindita; Bhattacharya, Anirban; Pal, Bikas C; Bandyopadhyay, Debashis; Bhattacharya, Shelley; Bhattacharya, Samir

    2008-08-13

    Cajanus cajan Linn. (Leguminosae) is a nontoxic edible herb, widely used in Indian folk medicine for the prevention of various liver disorders. In the present study we have demonstrated that methanol-aqueous fraction (MAF2) of Cajanus cajan leaf extract could prevent the chronically treated alcohol induced rat liver damage. Chronic doses of alcohol (3.7 g/ kg) orally administered to rats for 28 days and liver function marker enzymes such as GPT, GOT, ALP and anti-oxidant enzyme activities were determined. Effect of MAF2 at a dose of 50mg/kg body weight on alcohol treated rats was noted. Alcohol effected significant increase in liver marker enzyme activities and reduced the activities of anti-oxidant enzymes. Co-administration of MAF2 reversed the liver damage due to alcohol; it decreased the activities of liver marker enzymes and augmented antioxidant enzyme activities. We also demonstrate significant decrease of the phase II detoxifying enzyme, UDP-glucuronosyl transferase (UGT) activity along with a three- and two-fold decrease of UGT2B gene and protein expression respectively. MAF2 co-administration normalized UGT activity and revived the expression of UGT2B with a concomitant expression and nuclear translocation of Nrf2, a transcription factor that regulates the expression of many cytoprotective genes. Cajanus cajan extract therefore shows a promise in therapeutic use in alcohol induced liver dysfunction.

  1. Does liver damage explain the inverse association between vitamin D status and mortality?

    PubMed

    Skaaby, Tea; Husemoen, Lise Lotte N; Linneberg, Allan

    2013-12-01

    Several observational studies have linked vitamin D deficiency with an increased risk of all cause mortality. Vitamin D deficiency is common among patients with liver diseases. In a random sample of the general population, we investigated whether the inverse association between vitamin D status and all-cause mortality could be explained by liver damage as reflected by increased levels of liver enzymes. We included a total of 2649 persons examined in 1993e1994. Vitamin D status was assessed as serum 25-hydroxyvitamin D and liver enzyme levels were measured. Information on all-cause mortality was obtained from the Danish Central Personal Register until July 2011. Median follow-up time was 17.0 years, and there were 736 deaths. Multivariable Cox regression analyses with age as underlying time axis and delayed entry showed lower mortality risk with higher vitamin D levels and this was essentially unaffected by adjustment for liver enzyme levels with hazard ratio, 0.96 (95% confidence interval, 0.93e0.99) for a 10 nmol/L higher vitamin D level. The present study did not support our hypothesis that the well-known association between low vitamin D status and mortality is explained by liver damage as reflected by levels of liver enzymes. 2013 Elsevier Inc. All rights reserved.

  2. Glycyrrhizin ameliorates metabolic syndrome-induced liver damage in experimental rat model.

    PubMed

    Sil, Rajarshi; Ray, Doel; Chakraborti, Abhay Sankar

    2015-11-01

    Glycyrrhizin, a major constituent of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate insulin resistance, hyperglycemia, dyslipidemia, and obesity in rats with metabolic syndrome. Liver dysfunction is associated with this syndrome. The objective of this study is to investigate the effect of glycyrrhizin treatment on metabolic syndrome-induced liver damage. After induction of metabolic syndrome in rats by high fructose (60%) diet for 6 weeks, the rats were treated with glycyrrhizin (50 mg/kg body weight, single intra-peritoneal injection). After 2 weeks of treatment, rats were sacrificed to collect blood samples and liver tissues. Compared to normal, elevated activities of serum alanine transaminase, alkaline phosphatase and aspartate transaminase, increased levels of liver advanced glycation end products, reactive oxygen species, lipid peroxidation, protein carbonyl, protein kinase Cα, NADPH oxidase-2, and decreased glutathione cycle components established liver damage and oxidative stress in fructose-fed rats. Activation of nuclear factor κB, mitogen-activated protein kinase pathways as well as signals from mitochondria were found to be involved in liver cell apoptosis. Increased levels of cyclooxygenase-2, tumor necrosis factor, and interleukin-12 proteins suggested hepatic inflammation. Metabolic syndrome caused hepatic DNA damage and poly-ADP ribose polymerase cleavage. Fluorescence-activated cell sorting using annexin V/propidium iodide staining confirmed the apoptotic hepatic cell death. Histology of liver tissue also supported the experimental findings. Treatment with glycyrrhizin reduced oxidative stress, hepatic inflammation, and apoptotic cell death in fructose-fed rats. The results suggest that glycyrrhizin possesses therapeutic potential against hepatocellular damage in metabolic syndrome.

  3. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage.

    PubMed

    Venditti, P; Pamplona, R; Ayala, V; De Rosa, R; Caldarone, G; Di Meo, S

    2006-03-01

    Thyroid hormone-induced increase in metabolic rates is often associated with increased oxidative stress. The aim of the present study was to investigate the contribution of iodothyronines to liver oxidative stress in the functional hyperthyroidism elicited by cold, using as models cold-exposed and 3,5,3'-triiodothyronine (T3)- or thyroxine (T4)-treated rats. The hyperthyroid state was always associated with increases in both oxidative capacity and oxidative damage of the tissue. The most extensive damage to lipids and proteins was found in T3-treated and cold-exposed rats, respectively. Increase in oxygen reactive species released by mitochondria and microsomes was found to contribute to tissue oxidative damage, whereas the determination of single antioxidants did not provide information about the possible contribution of a reduced effectiveness of the antioxidant defence system. Indeed, liver oxidative damage in hyperthyroid rats was scarcely related to levels of the liposoluble antioxidants and activities of antioxidant enzymes. Conversely, other biochemical changes, such as the degree of fatty acid unsaturation and hemoprotein content, appeared to predispose hepatic tissue to oxidative damage associated with oxidative challenge elicited by hyperthyroid state. As a whole, our results confirm the idea that T3 plays a key role in metabolic changes and oxidative damage found in cold liver. However, only data concerning changes in glutathione peroxidase activity and mitochondrial protein content favour the idea that dissimilarities in effects of cold exposure and T3 treatment could depend on differences in serum levels of T4.

  4. Metabolically based liver damage pathophysiology in patients with urea cycle disorders - A new hypothesis.

    PubMed

    Ivanovski, Ivan; Ješić, Miloš; Ivanovski, Ana; Garavelli, Livia; Ivanovski, Petar

    2017-11-28

    The underlying pathophysiology of liver dysfunction in urea cycle disorders (UCDs) is still largely elusive. There is some evidence that the accumulation of urea cycle (UC) intermediates are toxic for hepatocyte mitochondria. It is possible that liver injury is directly caused by the toxicity of ammonia. The rarity of UCDs, the lack of checking of iron level in these patients, superficial knowledge of UC and an underestimation of the metabolic role of fumaric acid, are the main reasons that are responsible for the incomprehension of the mechanism of liver injury in patients suffering from UCDs. Owing to our routine clinical practice to screen for iron overload in severely ill neonates, with the focus on the newborns suffering from acute liver failure, we report a case of citrullinemia with neonatal liver failure and high blood parameters of iron overload. We hypothesize that the key is in the decreased-deficient fumaric acid production in the course of UC in UCDs that causes several sequentially intertwined metabolic disturbances with final result of liver iron overload. The presented hypothesis could be easily tested by examining the patients suffering from UCDs, for liver iron overload. This could be easily performed in countries with a high population and comprehensive national register for inborn errors of metabolism. Providing the hypothesis is correct, neonatal liver damage in patients having UCD can be prevented by the supplementation of pregnant women with fumaric or succinic acid, prepared in the form of iron supplementation pills. After birth, liver damage in patients having UCDs can be prevented by supplementation of these patients with zinc fumarate or zinc succinylate, as well.

  5. Chronic hepatitis C virus infection: Serum biomarkers in predicting liver damage

    PubMed Central

    Valva, Pamela; Ríos, Daniela A; De Matteo, Elena; Preciado, Maria V

    2016-01-01

    Currently, a major clinical challenge in the management of the increasing number of hepatitis C virus (HCV) infected patients is determining the best means for evaluating liver impairment. Prognosis and treatment of chronic hepatitis C (CHC) are partly dependent on the assessment of histological activity, namely cell necrosis and inflammation, and the degree of liver fibrosis. These parameters can be provided by liver biopsy; however, in addition to the risks related to an invasive procedure, liver biopsy has been associated with sampling error mostly due to suboptimal biopsy size. To avoid these pitfalls, several markers have been proposed as non-invasive alternatives for the diagnosis of liver damage. Distinct approaches among the currently available non-invasive methods are (1) the physical ones based on imaging techniques; and (2) the biological ones based on serum biomarkers. In this review, we discuss these approaches with special focus on currently available non-invasive serum markers. We will discuss: (1) class I serum biomarkers individually and as combined panels, particularly those that mirror the metabolism of liver extracellular matrix turnover and/or fibrogenic cell changes; (2) class II biomarkers that are indirect serum markers and are based on the evaluation of common functional alterations in the liver; and (3) biomarkers of liver cell death, since hepatocyte apoptosis plays a significant role in the pathogenesis of HCV infection. We highlight in this review the evidence behind the use of these markers and assess the diagnostic accuracy as well as advantages, limitations, and application in clinical practice of each test for predicting liver damage in CHC. PMID:26819506

  6. Hepatoprotective Effect of Low Doses of Caffeine on CCl4-Induced Liver Damage in Rats.

    PubMed

    Cachón, Andrés Uc; Quintal-Novelo, Carlos; Medina-Escobedo, Gilberto; Castro-Aguilar, Gaspar; Moo-Puc, Rosa E

    2017-03-04

    Several studies have shown the hepatoprotective effect of the consumption of coffee and tea, which is mainly attributed to caffeine. Many experimental studies have demonstrated this effect; however, these studies used high caffeine doses that are not related to human consumption. The aim of this study was to evaluate the hepatoprotective effect of low doses of caffeine on carbon tetrachloride (CCl 4 )-treated rats. Low doses of caffeine (CAFF) 5 and 10 mg/kg (CAFF5 and CAFF10) were evaluated in chronic liver damage induced by CCl 4 (0.75 mL/kg) in rats. CAFF treatment was administered once a day and CCl 4 administration was twice weekly for 10 weeks. Liver function tests (biochemical markers) and functional (sleeping time) and histological (hematoxylin-eosin and Masson trichrome stains) parameters were carried out at the end of damage treatment. Daily treatments of CAFF5 and CAFF10 exhibited a hepatoprotective effect supported by a decrease of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (AP) serum activities and bilirubin serum levels compared with control and also restored serum albumin levels and liver glutathione (GSH). Moreover, CAFF prevented CCl 4 -induced prolongation in pentobarbital sleeping time and a decrease of liver fibrosis and cell death. Our results demonstrated that low doses of CAFF exert a hepatoprotective effect against CCl 4 -induced liver damage in rats.

  7. The effect of phytosterol protects rats against 4-nitrophenol-induced liver damage.

    PubMed

    Chen, Jiaqin; Song, Meiyan; Li, Yansen; Zhang, Yonghui; Taya, Kazuyoshi; Li, ChunMei

    2016-01-01

    We investigated the effect of phytosterol (PS) in regard to liver damage induced by 4-nitrophenol (PNP). Twenty rats were randomly divided into four groups (Control, PS, PNP, and PNP+PS). The PS and PNP+PS groups were pretreated with PS for one week. The PNP and PNP+PS groups were injected subcutaneously with PNP for 28 days. The control group received a basal diet and was injected with vehicle alone. Treatment with PS prevented the elevation of the total bilirubin levels, as well as an increase in serum alkaline transaminase and aspartate transaminase, which are typically caused by PNP-induced liver damage. Histopathologically showed that liver damage was significantly mitigated by PS treatment. However, there was no significant change in antioxidant enzyme activities, and the Nrf2-antioxidant system was not activated after treatment with PS. These results suggest that PS could mitigate liver damage induced by PNP, but does not enhance antioxidant capacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Methimazole-induced hypothyroidism causes cellular damage in the spleen, heart, liver, lung and kidney.

    PubMed

    Cano-Europa, Edgar; Blas-Valdivia, Vanessa; Franco-Colin, Margarita; Gallardo-Casas, Carlos Angel; Ortiz-Butrón, Rocio

    2011-01-01

    It is known that a hypothyroidism-induced hypometabolic state protects against oxidative damage caused by toxins. However, some workers demonstrated that antithyroid drug-induced hypothyroidism can cause cellular damage. Our objective was to determine if methimazole (an antithyroid drug) or hypothyroidism causes cellular damage in the liver, kidney, lung, spleen and heart. Twenty-five male Wistar rats were divided into 5 groups: euthyroid, false thyroidectomy, thyroidectomy-induced hypothyroidism, methimazole-induced hypothyroidism (60 mg/kg), and treatment with methimazole (60 mg/kg) and a T₄ injection (20 μg/kg/d sc). At the end of the treatments (4 weeks for the pharmacological groups and 8 weeks for the surgical groups), the animals were anesthetized with sodium pentobarbital and they were transcardially perfused with 10% formaldehyde. The spleen, heart, liver, lung and kidney were removed and were processed for embedding in paraffin wax. Coronal sections were stained with hematoxylin-eosin. At the end of treatment, animals with both the methimazole- and thyroidectomy-induced hypothyroidism had a significant reduction of serum concentration of thyroid hormones. Only methimazole-induced hypothyroidism causes cellular damage in the kidney, lung, liver, heart, kidney and spleen. In addition, animals treated with methimazole and T₄ showed cellular damage in the lung, spleen and renal medulla with lesser damage in the liver, renal cortex and heart. The thyroidectomy only altered the lung structure. The alterations were prevented by T₄ completely in the heart and partially in the kidney cortex. These results indicate that tissue damage found in hypothyroidism is caused by methimazole. Copyright © 2009 Elsevier GmbH. All rights reserved.

  9. Effect of Pelargonium reniforme roots on alcohol-induced liver damage and oxidative stress.

    PubMed

    Adewusi, Emmanuel Adekanmi; Afolayan, Anthony Jide

    2010-09-01

    Ethnobotanical surveys conducted on Pelargonium reniforme Curtis (Geraniaceae) have shown that the aqueous root extracts are used to treat alcohol-induced liver damage. We evaluated the antioxidant properties of the extract and its effects on alcohol-induced hepatotoxicity using Wistar rats. Alcohol-induced hepatotoxicity studies were carried out by observing the effect of the aqueous root extract on some liver marker enzymes, bilirubin, and total protein after liver damage. The levels of some phenolic compounds were determined by standard methods. Also, the reducing power of the plant extract and its ability to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH*) and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS*+) radicals were determined to evaluate its antioxidant activity. The results obtained show that the plant extract possessed significant antioxidant activity. It had a significant level of phenolic compounds, scavenged DPPH* and ABTS*+ radicals effectively, and demonstrated good reducing power. This may indicate that the plant contained compounds which can remove toxic metabolites following alcohol abuse. Serum analysis of animals treated with only ethanol showed a significant increase in the levels of liver marker enzymes and total and unconjugated bilirubin, while a significant decrease was observed in the levels of conjugated bilirubin and total proteins. Administration of the plant extract restored the levels of these markers to normal levels, and this indicates the ability of the plant extract to restore normal functioning of a damaged liver. The study shows that P. reniforme is a potential source of antioxidants and compounds which are useful in treating alcoholic liver damage.

  10. Liver damage induced in rats by malathion impurities.

    PubMed

    Keadtisuke, S; Dheranetra, W; Nakatsugawa, T; Fukuto, T R

    1990-06-01

    Administration of a single oral dose of the malathion impurity, O,O,S-trimethyl phosphorothioate (OOS-Me) or O,S,S-trimethyl phosphorodithioate (OSS-Me), to the rat resulted in hemostatic disorders, e.g. prolongation of blood clotting, prothrombin and thrombin time. Deficiency of coagulation Factors II, V and VII was also observed. OOS-Me and OSS-Me also caused dose-dependent increases of beta-glucuronidase in the blood with a maximum of 15- and 31-fold observed following treatment with 60 mg/kg OOS-Me and 40 mg/kg OSS-Me, respectively. Analysis of serum beta-glucuronidase by isoelectrofocusing electrophoresis showed that the liver endoplasmic reticulum was the source of this enzyme released into the blood. Co-treatment of OOS-Me with 5% O,O,O-trimethyl phosphorothioate (OOO-Me), a potent antagonist of OOS-Me-induced delayed toxicity, prevented hemostatic disorders but had no effect in reducing beta-glucuronidase levels. However, pretreatment of rats with piperonyl butoxide reduced the amount of beta-glucuronidase released into the blood. Of other O,O,S-trialkyl phosphorothioates examined, the O,O-diethyl S-alkyl phosphorothioates showed the highest activity in increasing beta-glucuronidase levels.

  11. The role of damage associated molecular pattern molecules in acetaminophen-induced liver injury in mice.

    PubMed

    Martin-Murphy, Brittany V; Holt, Michael P; Ju, Cynthia

    2010-02-15

    The idiosyncratic nature, severity and poor diagnosis of drug-induced liver injury (DILI) make these reactions a major safety issue during drug development, as well as the most common cause for the withdrawal of drugs from the pharmaceutical market. Elucidation of the underlying mechanism(s) is necessary for identifying predisposing factors and developing strategies in the treatment and prevention of DILI. Acetaminophen (APAP) is a widely used over the counter therapeutic that is known to be effective and safe at therapeutic doses. However, in overdose situations fatal and non-fatal hepatic necrosis can result. Evidence suggests that the chemically reactive metabolite of the drug initiates hepatocyte damage and that inflammatory innate immune responses also occur within the liver, leading to the exacerbation and progression of tissue injury. Here we investigate whether following APAP-induced liver injury (AILI) damaged hepatocytes release "danger" signals or damage associated molecular pattern (DAMP) molecules, which induce pro-inflammatory activation of hepatic macrophages, further contributing to the progression of liver injury. Our study demonstrated a clear activation of Kupffer cells following early exposure to APAP (1h). Activation of a murine macrophage cell line, RAW cells, was also observed following treatment with liver perfusate from APAP-treated mice, or with culture supernatant of APAP-challenged hepatocytes. Moreover, in these media, the DAMP molecules, heat-shock protein-70 (HSP-70) and high mobility group box-1 (HMGB1) were detected. Overall, these findings reveal that DAMP molecules released from damaged and necrotic hepatocytes may serve as a crucial link between the initial hepatocyte damage and the activation of innate immune cells following APAP-exposure, and that DAMPs may represent a potential therapeutic target for AILI. Published by Elsevier Ireland Ltd.

  12. Liver biopsy in type 2 diabetes mellitus: Steatohepatitis represents the sole feature of liver damage.

    PubMed

    Masarone, Mario; Rosato, Valerio; Aglitti, Andrea; Bucci, Tommaso; Caruso, Rosa; Salvatore, Teresa; Sasso, Ferdinando Carlo; Tripodi, Marie Francoise; Persico, Marcello

    2017-01-01

    Recent studies report a prevalence of non-alcoholic fatty liver disease (NAFLD) of between 70% and 80% in patients with metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM). Nevertheless, it is not possible to differentiate between simple steatosis and non-alcoholic steatohepatitis (NASH) with non-invasive tests. The aim of this study was to differentiate between simple steatosis and NASH by liver biopsy in patients with hypertransaminasemia and MS or T2DM. Two hundred and fifteen patients with increased ALT levels and MS, and 136 patients at their first diagnosis of T2DM regardless of ALT values were consecutively admitted to a tertiary hepatology center between January 2004 and November 2014. Exclusion criteria were other causes of liver disease/ALT increase. Each patient underwent a clinical, laboratory and ultrasound evaluation, and a liver biopsy. Gender distribution, age, and body mass index were similar in the two groups of patients, whereas cholesterol levels, glycemia and blood pressure were significantly different between the two groups. The prevalence of NAFLD was 94.82% in MS patients and 100% in T2DM patients. NASH was present in 58.52% of MS patients and 96.82% of T2DM. Consequently, this study reveals that, by using liver biopsy, almost all patients with T2DM or MS have NAFLD, which in patients with T2DM means NASH. Importantly, it suggests that NASH may be one of the early complications of T2DM due to its pathophysiological correlation with insulin resistance.

  13. Gold nanoparticles induce DNA damage in the blood and liver of rats

    NASA Astrophysics Data System (ADS)

    Cardoso, Eria; Londero, Eduardo; Ferreira, Gabriela Kozuchovski; Rezin, Gislaine Tezza; Zanoni, Elton Torres; de Souza Notoya, Frederico; Leffa, Daniela Dimer; Damiani, Adriani Paganini; Daumann, Francine; Rohr, Paula; da Silva, Luciano; Andrade, Vanessa M.; da Silva Paula, Marcos Marques

    2014-11-01

    The potential of gold nanoparticles (GNPs) for use in different biological applications has led to a strong interest in the study of their possible deleterious effects in biological systems and how these effects may be mitigated. This study was undertaken to investigate the effects of the acute and chronic administration of GNPs with mean diameters of 10 and 30 nm on deoxyribonucleic acid (DNA) damage in the blood and liver of adult rats. For the acute administration, Wistar adult rats received a single intraperitoneal injection of either GNPs or a saline solution. For the chronic administration, Wistar adult rats received a daily single injection of the same GNPs or saline solution for 28 days. Twenty-four hours after either the single (acute) or final injection (chronic), the rats were euthanised by decapitation, and the blood and liver were isolated for the evaluation of DNA damage. In this study, we demonstrated that the acute and chronic administration of GNPs 10 and 30 nm in size increased the frequency of DNA damage and the damage index in the blood and liver of adult rats. These findings suggest that the DNA damage may be caused by oxidative stress, which occurred regardless of the type of administration and GNP size.

  14. Effect of intestinal microbiota alteration on hepatic damage in rats with acute rejection after liver transplantation.

    PubMed

    Xie, Yirui; Chen, Huazhong; Zhu, Biao; Qin, Nan; Chen, Yunbo; Li, Zhengfeng; Deng, Min; Jiang, Haiyin; Xu, Xiangfei; Yang, Jiezuan; Ruan, Bing; Li, Lanjuan

    2014-11-01

    The previous studies all focus on the effect of probiotics and antibiotics on infection after liver transplantation. Here, we focus on the effect of gut microbiota alteration caused by probiotics and antibiotics on hepatic damage after allograft liver transplantation. Brown-Norway rats received saline, probiotics, or antibiotics via daily gavage for 3 weeks. Orthotopic liver transplantation (OLT) was carried out after 1 week of gavage. Alteration of the intestinal microbiota, liver function and histopathology, serum and liver cytokines, and T cells in peripheral blood and Peyer's patch were evaluated. Distinct segregation of fecal bacterial diversity was observed in the probiotic group and antibiotic group when compared with the allograft group. As for diversity of intestinal mucosal microbiota and pathology of intestine at 2 weeks after OLT, antibiotics and probiotics had a significant effect on ileum and colon. The population of Lactobacillus and Bifidobacterium in the probiotic group was significantly greater than the antibiotic group and the allograft group. The liver injury was significantly reduced in the antibiotic group and the probiotic group compared with the allograft group. The CD4/CD8 and Treg cells in Peyer's patch were decreased in the antibiotic group. The intestinal Treg cell and serum and liver TGF-β were increased markedly while CD4/CD8 ratio was significantly decreased in the probiotic group. It suggested that probiotics mediate their beneficial effects through increase of Treg cells and TGF-β and deduction of CD4/CD8 in rats with acute rejection (AR) after OLT.

  15. Bile duct ligation in developing rats: temporal progression of liver, kidney, and brain damage.

    PubMed

    Sheen, Jiunn-Ming; Huang, Li-Tung; Hsieh, Chih-Sung; Chen, Chih-Cheng; Wang, Jia-Yi; Tain, You-Lin

    2010-08-01

    Cholestatic liver disease may result in progressive end-stage liver disease and other extrahepatic complications. We explored the temporal progression of bile duct ligation (BDL)-induced cholestasis in developing rats, focusing on brain cognition and liver and kidney pathology, to elucidate whether these findings were associated with asymmetric dimethylarginine and oxidative stress alterations. Three groups of young male Sprague-Dawley rats were studied: one group underwent laparotomy (sham), another group underwent laparotomy and BDL for 2 weeks (BDL2), and a third group underwent laparotomy and BDL for 4 weeks (BDL4). The effect of BDL on liver was represented by transforming growth factor beta1 levels and histology activity index scores, which were worse in the BDL4 rats than in the BDL2 rats. BDL4 rats also exhibited more severe spatial memory deficits than BDL2 rats. In addition, renal injury was more progressive in BDL4 rats than in BDL2 rats because BDL4 rats displayed higher Cr levels, elevated tubulointerstitial injury scores, neutrophil gelatinase-associated lipocalin, and symmetric dimethylarginine levels. Our findings highlight the fact that young BDL rats exhibit similar trends of progression of liver, kidney, and brain damage. Further studies are needed to better delineate the nature of progression of organ damage in young cholestatic rats. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Feasibility study of modeling liver thermal damage using minimally invasive optical method adequate for in situ measurement.

    PubMed

    Zhao, Jinzhe; Zhao, Qi; Jiang, Yingxu; Li, Weitao; Yang, Yamin; Qian, Zhiyu; Liu, Jia

    2018-06-01

    Liver thermal ablation techniques have been widely used for the treatment of liver cancer. Kinetic model of damage propagation play an important role for ablation prediction and real-time efficacy assessment. However, practical methods for modeling liver thermal damage are rare. A minimally invasive optical method especially adequate for in situ liver thermal damage modeling is introduced in this paper. Porcine liver tissue was heated by water bath under different temperatures. During thermal treatment, diffuse reflectance spectrum of liver was measured by optical fiber and used to deduce reduced scattering coefficient (μ ' s ). Arrhenius parameters were obtained through non-isothermal heating approach with damage marker of μ ' s . Activation energy (E a ) and frequency factor (A) was deduced from these experiments. A pair of averaged value is 1.200 × 10 5  J mol -1 and 4.016 × 10 17  s -1 . The results were verified for their reasonableness and practicality. Therefore, it is feasible to modeling liver thermal damage based on minimally invasive measurement of optical property and in situ kinetic analysis of damage progress with Arrhenius model. These parameters and this method are beneficial for preoperative planning and real-time efficacy assessment of liver ablation therapy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. [Interferon-alpha and liver fibrosis in patients with chronic damage due to hepatitis C virus].

    PubMed

    Gonzalez-Huezo, María Sarai; Gallegos-Orozco, Juan Fernando

    2003-01-01

    The present review focuses on the published information published regarding the effects of interferon alpha therapy on liver fibrosis in patients with chronic liver damage secondary to hepatitis C infection. Data reviewed included results of the in vitro effects of interferon on hepatic cell line cultures with regards to indirect markers of fibrosis, activation of hepatic stellate cells and oxidative stress response. In the clinical arena, there is current clear evidence of a favorable histological outcome in patients with sustained viral response to interferon therapy. For this reason, the current review focuses more on the histological outcomes regarding liver fibrosis in patients who have not attained viral response to therapy (non-responders) or who already have biopsy defined cirrhosis. Data in these patients were analyzed according to the results of objective testing of fibrosis through the assessment of liver biopsy and its change during time, specially because the morbidity and mortality of this disease is directly related to the complications of liver cirrhosis and not necessarily to the persistence of the hepatitis C virus. Lastly, it is concluded that the process of liver fibrosis/cirrhosis is a dynamic one and that there is some evidence to support the usefulness of interferon alpha therapy as a means to halt or retard the progression of hepatic fibrosis. The result of current clinical trials in which interferon therapy is being used to modify the progression of fibrosis in non-responders or cirrhotic patients is eagerly awaited.

  18. LIVER DAMAGE IN MICE TREATED WITH 4-(p-DIMETHYLAMINOSTYRYL) QUINOLINE, A RADIOMIMETIC AGENT

    SciTech Connect

    Davis, M.L.; Gude, W.D.; Asano, M.

    1963-10-01

    The effects of intravenous injections of the radiomimetic agent 4-(p- dimethylaminostyryl)quinoline on the liver were studied in mice of the RF/Up and (101 x C3H) F/sub 1/ strains. The effects were assessed by use of the Bromsulphalcin (BSP) liver function test and histologic examimation of liver sections. Liver cell lipoid vacuolation was noted within 1 hour after injection of 4 mg of the drug and was very severe before 24 hours had elapsed. BSP testing on succeeding days indicated progressive liver damage that reached a peak on the sixth day in the RF/Up mice and on the third day inmore » the (101 x C3H) F/sub 1/ mice. This was accompanied by extensive liver cell necrosis, especially in the central part of the lobule. Resolution of the lesions occurred gradually over the 17-day observation period, but residual cytologic changes were still present at the end of this time. (P.C.H.)« less

  19. [Dynamic change study of dermatitis medicamentosa-like of trichloroethylene patients with liver damage].

    PubMed

    Liu, Wei; Zhang, Yan-fang; Zhang, Zhi-min; Li, Pei-mao; Jiang, Xiao-dong; Zhou, Gui-feng; Liu, Jian-jun

    2011-10-01

    Observing the dynamic change characteristics of serum liver function indexes in occupational dermatitis medicamentosa-like of trichloroethylene patients with liver damage, we can underlie for guiding therapy, prognosis and mechanism of dermatitis medicamentosa-like of trichloroethylene patients with liver damage. We collected serum of 10 cases of occupational dermatitis medicamentosa-like of trichloro-ethylene patients with liver damage from different time points since they were hospitalized, using automatic biochemistry analyzer to detect total protein (TP), albumin (ALB), total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), alkaline phosphatase (ALP), albumin/globulin ratio etc 11 liver function biochemical indicators. We used Excel to establish database, professional drawing software gnuplot to draw dynamic variation diagram of each index. The variation range of 11 liver function indexes of 10 cases was TP 43.2-74.2 g/L, ALB 24.6-44.6 g/L, A/G 0.77-2.10, TBIL 3.7-268.2 umol/L, DBIL 1.0-166.0 umol/L, IBIL 2.4 -167.5 umol/L, ALT 11-5985 U/L, AST 14-5586 U/L, GGT 15-1500 U/L, ALP 35-309 U/L, S/L 0.07-1.94, respectively. TBIL, DBIL, ALT, AST, GGT, ALP concentration significantly increased, especially ALT, AST, GGT, ALT topped 5985 U/L, AST topped 5586 U/L, GGT topped 1500 U/L. But TP, ALB and S/L significantly decreased, TP lowest to 43.2 g/L, S/L lowest to 0.07. A/G basically remained unchanged, but IBIL didn't change regularly. The early liver damage in dermatitis medicamentosa-like of trichloroethylene patients was serious, and repeatedly attacked, so we should lead to enough attention to the clinical work and prevention. This also provided the basis for studying the mechanism of trichloroethylene poisoning.

  20. Disruption of the Smad7 gene enhances CCI4-dependent liver damage and fibrogenesis in mice

    PubMed Central

    Hamzavi, Jafar; Ehnert, Sabrina; Godoy, Patricio; Ciuclan, Loredana; Weng, Honglei; Mertens, Peter R; Heuchel, Rainer; Dooley, Steven

    2008-01-01

    Transforming growth factor-β (TGF-β) signalling is induced in liver as a consequence of damage and contributes to wound healing with transient activation, whereas it mediates fibrogenesis with long-term up-regulation in chronic disease. Smad-dependent TGF-β effects are blunted by antagonistic Smad7, which is transcriptionally activated as an immediate early response upon initiation of TGF-β signalling in most cell types, thereby providing negative feedback regulation. Smad7 can be induced by other cytokines, e.g. IFN-γ, leading to a crosstalk of these signalling pathways. Here we report on a novel mouse strain, denoted S7ΔE1, with a deletion of exon I from the endogenous smad7 gene. The mice were viable and exhibited normal adult liver architecture. To obtain insight into Smad7-depend-ent protective effects, chronic liver damage was induced in mice by carbon tetrachloride (CCI4) administration. Subsequent treatment, elevated serum liver enzymes indicated enhanced liver damage in mice lacking functional Smad7. CCI4-dependent Smad2 phosphoryla-tion was pronounced in S7ΔE1 mice and accompanied by increased numbers of α-smooth muscle actin positive ‘activated’ HSCs. There was evidence for matrix accumulation, with elevated collagen deposition as assessed morphometrically in Sirius red stained tissue and confirmed with higher levels of hydroxyproline in S7ΔE1 mice. In addition, the number of CD43 positive infiltrating lymphocytes as well as of apoptotic hepatocytes was increased. Studies with primary hepatocytes from S7ΔE1 and wild-type mice indicate that in the absence of functional Smad7 protein, hepatocytes are more sensitive for TGF-β effects resulting in enhanced cell death. Furthermore, S7ΔE1 hepatocytes display increased oxidative stress and cell damage in response to CCI4, as measured by reactive oxygen species production, glutathione depletion, lactate dehydrogenase release and lipid peroxidation. Using an ALK-5 inhibitor all investigated CCI4

  1. Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression.

    PubMed

    Gonsebatt, M E; Del Razo, L M; Cerbon, M A; Zúñiga, O; Sanchez-Peña, L C; Ramírez, P

    2007-09-01

    Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 microM of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function.

  2. Effects of acetyl salycilic acid and ibuprofen in chronic liver damage induced by CCl4.

    PubMed

    Chávez, Enrique; Castro-Sánchez, Luis; Shibayama, Mineko; Tsutsumi, Victor; Pérez Salazar, Eduardo; Moreno, Mario G; Muriel, Pablo

    2012-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are drugs used primarily to treat inflammation, pain and fever. Their main mechanism of action is cyclooxygenase (COX) inhibition, and this enzyme has been linked to hepatotoxicity. The association of COX and liver injury has been, in part, due to the presence of COX-2 isoform in damaged liver and the possible induction of this enzyme by profibrotic molecules like Transforming Growth Factor-β (TGF-β). The aim of this work was to evaluate the effects of two of the most used NSAIDs, acetyl salicylic acid (ASA) and ibuprofen (IBP), on experimental liver fibrosis. We formed experimental groups of rats including vehicle and drug controls, damage induced by chronic CCl4 (0.4 g kg(-1) , i.p., three times per week, for 8 weeks) administration, and CCl4 plus ASA (100 mg kg(-1) , p.o., daily) or IBP (30 mg kg(-1) , p.o., daily). Both drugs showed important antifibrotic properties. They inhibited COX-2 activity, prevented oxidative stress measured as lipid peroxidation and glutathione content, and ASA inhibited partially and IBP totally increased TGF-β expression and collagen content. ASA and IBP prevented translocation of NFκB to the nucleus and, interestingly, ASA induced MMP-2 and MMP-13 whereas IBP induced MMP-2, MMP-9 and MMP-13. As a whole, these effects explain the beneficial effects of ASA and IBP on experimental liver fibrosis. Copyright © 2011 John Wiley & Sons, Ltd.

  3. [Viral and drug-induced liver damage in children with tuberculosis: prevalence, clinical features].

    PubMed

    Borzakova, S N; Aksenova, V A; Reĭzis, A R

    2013-01-01

    THE AIM OF THE RESEARCH: Improving the effectiveness of diagnostics and treatment of viral and drug-induced lesions of the liver (DILL) at a tuberculosis in children by identifying the frequency of their distribution, peculiarities of diagnostics and clinics. We examined 242 children in the age from 2 months to 17 years, the patients with different forms of tuberculosis. The prevalence of hepatitis in children with tuberculosis: B - 1,2%, C-0.4%, G - 4,6%, TT - 8,7%. DILL was diagnosed in 67.5% of children - TB patients, in 48% of the children with DILL an asymptomatic course of the disease was noted, however, in 54.4% of the children with DILL cytolitic syndrome was expressed (ALT> standards). The prevalence of viral hepatitis B and C among children with TB is low. The infection with viruses of hepatitis G and TT is more often, but has no significant impact as on the course of tuberculosis, and on the severity of the liver damage. Drug-induced liver damage is a dominant view of pathology of the liver in children - TB patients and is mostly asymptomatic, but with a pronounced cytolitic syndrome.

  4. Ion Imbalance Is Involved in the Mechanisms of Liver Oxidative Damage in Rats Exposed to Glyphosate

    PubMed Central

    Tang, Juan; Hu, Ping; Li, Yansen; Win-Shwe, Tin-Tin; Li, Chunmei

    2017-01-01

    caused obvious damage to rats' liver and caused various mineral elements content imbalances in various organs of rats. Ion imbalance could weaken antioxidant capacity and involve in the mechanism of liver oxidative damage caused by GLP. PMID:29311996

  5. Agmatine protects rat liver from nicotine-induced hepatic damage via antioxidative, antiapoptotic, and antifibrotic pathways.

    PubMed

    El-Sherbeeny, Nagla A; Nader, Manar A; Attia, Ghalia M; Ateyya, Hayam

    2016-12-01

    Tobacco smoking with its various forms is a global problem with proved hazardous effects to human health. The present work was planned to study the defending role of agmatine (AGM) on hepatic oxidative stress and damage induced by nicotine in rats. Thirty-two rats divided into four groups were employed: control group, nicotine-only group, AGM group, and AGM-nicotine group. Measurements of serum hepatic biochemical markers, lipid profile, and vascular cell adhesion molecule-1 were done. In addition, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) activity, and nitrate/nitrite (NOx) levels were estimated in the liver homogenates. Immunohistochemistry for Bax and transforming growth factor beta (TGF-β1) and histopathology of the liver were also included. Data of the study demonstrated that nicotine administration exhibited marked liver deterioration, an increase in liver enzymes, changes in lipid profile, and an elevation in MDA with a decline in levels of SOD, GSH, and NOx (nitrate/nitrite). Also, levels of proapoptotic Bax and profibrotic TGF-β1 showed marked elevation in the liver. AGM treatment to rats in nicotine-only group ameliorated all the previous changes. These findings indicate that AGM could successfully overcome the nicotine-evoked hepatic oxidative stress and tissue injury, apoptosis, and fibrosis.

  6. [Histomorphology of the liver by damage with phenolisatine-containing laxatives (Recurrent chronic cholangiohepatitis)].

    PubMed

    Lüders, C J; Riske, W E; Henning, H; Vogel, H M

    1975-01-01

    In the case of 36 female patients who were anamnestically known to have taken laxatives, semiquantitative histological investigations with laparoscopically obtained liver needle biopsies were effected after the exposition with preparations containing phenolisatine. The time gap until exposition was 12 to 24 h (16 cases), 48 h (8 cases), 72 to 96 h (4 cases) and 7 to 14 days (4 cases). The histological result after the exposition is an acute cholangiolitis of the allergic-hyperergic type with edema and a dense eosinophile infiltration of the portal fields with destruction of the epithelium of preformed bile ducts and portally proliferated ductles. In addition, the parenchyma of the liver shows a pleomorphism of the cells in form and colour with a cellular edema and with disseminated acidophilic necroses and necrobioses of the individual cells as well as with little reactive proliferation of the Kupffer's cell. After a period of 8 days the acute process has more or less subsided. Also, in the majority of cases there are histological signs of an aggressive chronic hepatitis of type IIa, partially in the active stage with piece-meal necroses and partially stabilized or in the process of healing. A transition to the picture of hepatitic cirrhosis is possible. In serious cases the picture of a chronic non-purulent destructive cholangitis can be simulated by the hepatocellular and canalicular damage. Thirty-one bioptic pre-examinations from the same results, whereby the acute cholangiolitical exacerbation can be attributed to an exposition of the patients themselves. The clinical picture of the phenolisatine damage in its entirety is induced by medication and is described as a recurrent chronic cholangiohepatitis. Similarities exist between the liver damages caused by chlorpromazine and arsphenamine. When medication is discontinued, the morphologic substrate recedes leaving behind an inactive fibrosis or cirrhosis. The formal and known causal pathogenetic connections are

  7. Monitoring liver macrophages using nanobodies targeting Vsig4: concanavalin A induced acute hepatitis as paradigm.

    PubMed

    Zheng, Fang; Devoogdt, Nick; Sparkes, Amanda; Morias, Yannick; Abels, Chloé; Stijlemans, Benoit; Lahoutte, Tony; Muyldermans, Serge; De Baetselier, Patrick; Schoonooghe, Steve; Beschin, Alain; Raes, Geert

    2015-02-01

    Kupffer cells (KCs) are liver resident macrophages which are important for tissue homeostasis and have been implicated in immunogenic, tolerogenic and pathogenic immune reactions depending on the insult. These cells and the biomarkers they express thus represent interesting in vivo sensors for monitoring liver inflammation. In the current study, we explored whether KCs can be monitored non-invasively using single-photon-emission computed tomography (SPECT) with (99m)Tc labeled nanobodies (Nbs) targeting selected biomarkers. Nbs targeting V-set and immunoglobulin domain-containing 4 (Vsig4) or macrophage mannose receptor (MMR) accumulated in the liver of untreated mice. The liver targeting of anti-Vsig4 Nbs, but not anti-MMR Nbs, was blunted upon depletion of macrophages, highlighting specificity of anti-Vsig4 Nbs for liver macrophage imaging. Ex vivo flow cytometry and immunohistochemistry analysis confirmed that anti-Vsig4 Nbs specifically targeted KCs but no other cell types in the liver. Upon induction of acute hepatitis using concanavalin A (ConA), down-regulation of the in vivo imaging signal obtained using anti-Vsig4 Nbs reflected reduction in KC numbers and transient modulation of Vsig4 expression on KCs. Overall, these results indicate that Nbs targeting Vsig4 as molecular imaging biomarker enable non-invasive monitoring of KCs during hepatic inflammation. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Protective effects of Ziyang tea polysaccharides on CCl4-induced oxidative liver damage in mice.

    PubMed

    Wang, Dongying; Zhao, Yan; Sun, Yanfei; Yang, Xingbin

    2014-01-15

    This study was designed to investigate the hepatoprotective effects of the tea polysaccharides (ZTPs) extracted from a selenium-enriched Ziyang green tea (Camellia sinensis). ZTPs were identified as the heteropolysaccharides with glucose (31.4%), arabinose (23.5%) and galactose (21.8%) being the main constitutive monosaccharides. ZTPs displayed noteworthy scavenging effects against DPPH, OH and O2(-), and high antioxidant effects in vitro, and the effects were further verified by suppressing CCl4-induced oxidative liver damage in mice at 100, 200 and 400mg/kg BW. Administration of ZTPs in mice prior to CCl4 significantly prevented the CCl4-induced increases in serum alanine aminotransferase, aspartate aminotransferase and lactic dehydrogenase, as well as hepatic malondialdehyde level. Mice treated with ZTPs showed normal glutathione peroxidase and superoxide dismutase activities, relative to CCl4-treated group. ZTPs also prevented the CCl4-caused liver histological alteration, as indicated by histopathological evaluation. These findings demonstrate that ZTPs have protective effects against acute CCl4-induced oxidative liver damage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Protective effect of Anoectochilus roxburghii polysaccharide against CCl4-induced oxidative liver damage in mice.

    PubMed

    Yang, Zhenguo; Zhang, Xiaohui; Yang, Lawei; Pan, Qunwen; Li, Juan; Wu, Yongfu; Chen, Meizhen; Cui, Shichao; Yu, Jie

    2017-03-01

    This study investigated the isolation and characterization of Anoectochilus roxburghii polysaccharides (ARP), and further evaluated whether ARP possessed hepatoprotective activities against CCl 4 -induced oxidative liver damage in mice. ARP is comprised of glucose and galactose in a 1.9:1 molar ratio, and the molecular weight is 19.5kDa. ARP displayed significant scavenging effects against hydroxyl radical, superoxide anion radical, DPPH radical and a strong reducing power. In vivo experiment demonstrated ARP (150mg/kg) administrated to mice for 7days prior to carbon tetrachloride treatment, attenuated the elevated expression levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG) in serum and inhibited the formation of hepatic malondialdehyde (MDA). ARP pretreatment also increased antioxidant enzyme activities such as glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) in the liver of CCl 4 -induced mice. Furthermore, hepatic histopathological changes induced by CCl 4 were significantly normalized by ARP pretreatment. These findings demonstrated that ARP possessed hepatoprotective effect against acute CCl 4 -induced liver damage by reducing lipid oxidation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Prevention of CCl4-induced liver damage by ginger, garlic and vitamin E.

    PubMed

    Patrick-Iwuanyanwu, K C; Wegwu, M O; Ayalogu, E O

    2007-02-15

    The hepatoprotective effects of garlic (Allium sativum), ginger (Zingiber officinale) and vitamin E pre-treatment against carbon tetrachloride (CCl4)-induced liver damage in male wistar albino rats were investigated. Carbon tetrachloride (0.5 mL kg(-1) body weight) was administered after 28 days of feeding animals with diets containing ginger, garlic, vitamin E and various mixtures of ginger and garlic. Serum alanine amino transferase, aspartate amino transferase and alkaline phosphatase levels, 24 h after CCl4 administration, decreased significantly (p < or = 0.05) in rats pre-treated with garlic, ginger, vitamin E and various mixtures of garlic and ginger than in CCl4-treated rats only. Lipid peroxidation expressed by serum malondialdehyde (MDA) concentration was assayed to assess the extent of liver damage by CCl4; including the extent of hepatoprotection by garlic, ginger and vitamin E. MDA concentration was significantly decreased (p < or = 0.05) in rats pretreated with garlic, ginger, vitamin E and various mixtures of garlic and ginger than in rats administered CCl4-alone. Histological examination of the liver revealed severe infiltration of inflammatory cells in rats treated with CCl4 alone. However, the observed alteration in the normal architecture of the hepatic cells decreased remarkably in pre-treated rats.

  11. Melatonin attenuates oxidative stress, liver damage and hepatocyte apoptosis after bile-duct ligation in rats.

    PubMed

    Aktas, Cevat; Kanter, Mehmet; Erboga, Mustafa; Mete, Rafet; Oran, Mustafa

    2014-10-01

    The goal of this study was to evaluate the possible protective effects of melatonin against cholestatic oxidative stress, liver damage and hepatocyte apoptosis in the common rats with bile duct ligation (BDL). A total of 24 male Wistar albino rats were divided into three groups: control, BDL and BDL + received melatonin; each group contains eight animals. Melatonin-treated BDL rats received daily melatonin 100 mg/kg/day via intraperitoneal injection. The application of BDL clearly increased the malondialdehyde (MDA) levels and decreased the superoxide dismutase (SOD) and glutathione (GSH) activities. Melatonin treatment significantly decreased the elevated tissue MDA levels and increased the reduced SOD and GSH enzyme levels in the tissues. The changes demonstrate that the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, mononuclear cells and neutrophil infiltration into the widened portal areas as observed in the BDL group. The data indicate that melatonin attenuates BDL-induced cholestatic liver injury, bile duct proliferation and fibrosis. The α-smooth muscle actin (α-SMA) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the BDL were observed to be reduced with the melatonin treatment. These results suggest that administration of melatonin is a potentially beneficial agent to reduce liver damage in BDL by decreasing oxidative stress. © The Author(s) 2012.

  12. Hepatoprotective effects of Arctium lappa on carbon tetrachloride- and acetaminophen-induced liver damage.

    PubMed

    Lin, S C; Chung, T C; Lin, C C; Ueng, T H; Lin, Y H; Lin, S Y; Wang, L Y

    2000-01-01

    The root of Arctium lappa Linne (A. lappa) (Compositae), a perennial herb, has been cultivated for a long time as a popular vegetable. In order to investigate the hepatoprotective effects of A. lappa, male ICR mice were injected with carbon tetrachloride (CCl4, 32 microl/kg, i.p.) or acetaminophen (600 mg/kg, i.p.). A. lappa suppressed the SGOT and SGPT elevations induced by CCl4 or acetaminophen in a dose-dependent manner and alleviated the severity of liver damage based on histopathological observations. In an attempt to elucidate the possible mechanism(s) of this hepatoprotective effect, glutathione (GSH), cytochrome P-450 (P-450) and malondialdehyde (MDA) contents were studied. A. lappa reversed the decrease in GSH and P-450 induced by CCl4 and acetaminophen. It was also found that A. lappa decreased the malondialdehyde (MDA) content in CCl4 or acetaminophen-intoxicated mice. From these results, it was suggested that A. lappa could protect the liver cells from CCl4 or acetaminophen-induced liver damages, perhaps by its antioxidative effect on hepatocytes, hence eliminating the deleterious effects of toxic metabolites from CCl4 or acetaminophen.

  13. Non-steroidal anti-inflammatory drugs: What is the actual risk of liver damage?

    PubMed Central

    Bessone, Fernando

    2010-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) constitute a family of drugs, which taken as a group, represents one of the most frequently prescribed around the world. Thus, not surprisingly NSAIDs, along with anti-infectious agents, list on the top for causes of Drug-Induced Liver Injury (DILI). The incidence of liver disease induced by NSAIDs reported in clinical studies is fairly uniform ranging from 0.29/100 000 [95% confidence interval (CI): 0.17-051] to 9/100 000 (95% CI: 6-15). However, compared with these results, a higher risk of liver-related hospitalizations was reported (3-23 per 100 000 patients). NSAIDs exhibit a broad spectrum of liver damage ranging from asymptomatic, transient, hyper-transaminasemia to fulminant hepatic failure. However, under-reporting of asymptomatic, mild cases, as well as of those with transient liver-tests alteration, in conjunction with reports non-compliant with pharmacovigilance criteria to ascertain DILI and flawed epidemiological studies, jeopardize the chance to ascertain the actual risk of NSAIDs hepatotoxicity. Several NSAIDs, namely bromfenac, ibufenac and benoxaprofen, have been withdrawn from the market due to hepatotoxicity; others like nimesulide were never marketed in some countries and withdrawn in others. Indeed, the controversy concerning the actual risk of severe liver disease persists within NSAIDs research. The present work intends (1) to provide a critical analysis of the dissimilar results currently available in the literature concerning the epidemiology of NSAIDS hepatotoxicity; and (2) to review the risk of hepatotoxicity for each one of the most commonly employed compounds of the NSAIDs family, based on past and recently published data. PMID:21128314

  14. Murine liver damage caused by exposure to nano-titanium dioxide

    NASA Astrophysics Data System (ADS)

    Hong, Jie; Zhang, Yu-Qing

    2016-03-01

    Due to its unique physiochemical properties, nano-titanium dioxide (nano-TiO2) is widely used in all aspects of people’s daily lives, bringing it into increasing contact with humans. Thus, this material’s security issues for humans have become a heavily researched subject. Nano-TiO2 can enter the body through the mouth, skin, respiratory tract or in other ways, after which it enters the blood circulation and is deposited in the liver, changing biochemical indicators and causing liver inflammation. Meanwhile, the light sensitivity of these nanoparticles allows them to become media-generating reactive oxygen species (ROS), causing an imbalance between oxidation and anti-oxidation that leads to oxidative stress and liver damage. Nano-TiO2 can be transported into cells via phagocytosis, where the nanoparticles bind to the mitochondrial membrane, resulting in the disintegration of the membrane and the electron transport chain within the mitochondria. Thus, more ROS are produced. Nano-TiO2 can also enter the nucleus, where it can directly embed into or indirectly affect DNA, thereby causing DNA breakage or affecting gene expression. These effects include increased mRNA and protein expression levels of inflammation-related factors and decreased mRNA and protein expression levels of IκB and IL-2, resulting in inflammation. Long-term inflammation of the liver causes HSC cell activation, and extracellular matrix (ECM) deposition is promoted by multiple signalling pathways, resulting in liver fibrosis. In this paper, the latest progress on murine liver injury induced by environmental TiO2 is systematically described. The toxicity of nano-TiO2 also depends on size, exposure time, surface properties, dosage, administration route, and its surface modification. Therefore, its toxic effects in humans should be studied in greater depth. This paper also provides useful reference information regarding the safe use of nano-TiO2 in the future.

  15. Dietary Supplementation of Calendula officinalis Counteracts the Oxidative Stress and Liver Damage Resulted from Aflatoxin

    PubMed Central

    Hamzawy, Mohamed A.; El-Denshary, Ezzeldein S. M.; Hassan, Nabila S.; Mannaa, Fathia A.; Abdel-Wahhab, Mosaad A.

    2013-01-01

    This study was conducted to evaluate the total phenolic compounds, the antioxidant properties, and the hepatorenoprotective potential of Calendula officinalis extract against aflatoxins (AFs-) induced liver damage. Six groups of male Sprague-Dawley rats were treated for 6 weeks included the control; the group fed AFs-contaminated diet (2.5 mg/kg diet); the groups treated orally with Calendula extract at low (CA1) and high (CA2) doses (500 and 1000 mg/kg b.w); the groups treated orally with CA1 and CA2 one week before and during AFs treatment for other five weeks. The results showed that the ethanol extract contained higher phenolic compounds and posses higher 1,1-diphenyl 1-2-picryl hydrazyl (DPPH) radical scavenging activity than the aqueous extract. Animals fed AFs-contaminated diet showed significant disturbances in serum biochemical parameters, inflammatory cytokines, and the histological and histochemical pictures of the liver accompanied by a significant increase in malondialdehyde (MDA) and a significant decrease in superoxide dismutase (SOD) and glutathione peroxidase (GPx) in liver. Calendula extract succeeded to improve the biochemical parameters, inflammatory cytokines, decreased the oxidative stress, and improved the histological pictures in the liver of rats fed AFs-contaminated diet in a dose-dependent manner. It could be concluded that Calendula extract has potential hepatoprotective effects against AFs due to its antioxidant properties and radical scavenging activity. PMID:24959547

  16. Hepatoprotective effects of pecan nut shells on ethanol-induced liver damage.

    PubMed

    Müller, Liz Girardi; Pase, Camila Simonetti; Reckziegel, Patrícia; Barcelos, Raquel C S; Boufleur, Nardeli; Prado, Ana Cristina P; Fett, Roseane; Block, Jane Mara; Pavanato, Maria Amália; Bauermann, Liliane F; da Rocha, João Batista Teixeira; Burger, Marilise Escobar

    2013-01-01

    The hepatoprotective activity of the aqueous extract of the shells of pecan nut was investigated against ethanol-induced liver damage. This by-product of the food industry is popularly used to treat toxicological diseases. We evaluated the phytochemical properties of pecan shell aqueous extract (AE) and its in vitro and ex vivo antioxidant activity. The AE was found to have a high content of total polyphenols (192.4±1.9 mg GAE/g), condensed tannins (58.4±2.2 mg CE/g), and antioxidant capacity, and it inhibited Fe(2+)-induced lipid peroxidation (LP) in vitro. Rats chronically treated with ethanol (Et) had increased plasmatic transaminases (ALT, AST) and gamma glutamyl transpeptidase (GGT) levels (96%, 59.13% and 465.9%, respectively), which were effectively prevented (87; 41 and 383%) by the extract (1:40, w/v). In liver, ethanol consumption increased the LP (121%) and decreased such antioxidant defenses as glutathione (GSH) (33%) and superoxide dismutase (SOD) (47%) levels, causing genotoxicity in erythrocytes. Treatment with pecan shell AE prevented the development of LP (43%), GSH and SOD depletion (33% and 109%, respectively) and ethanol-induced erythrocyte genotoxicity. Catalase activity in the liver was unchanged by ethanol but was increased by the extract (47% and 73% in AE and AE+Et, respectively). Therefore, pecan shells may be an economic agent to treat liver diseases related to ethanol consumption. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Efficacy of vitamin C against liver and kidney damage induced by paraquat toxicity.

    PubMed

    Awadalla, Eatemad A

    2012-07-01

    Paraquat has been demonstrated to be a highly toxic compound for humans and animals and many cases of acute poisoning and death have been reported over the past few decades. The current experiment aimed to examine if vitamin C (ascorbic acid) alleviates the morphological changes induced by paraquat (PQ) administration in the liver and kidney of male albino rats. Male adult rats received paraquat (PQ) (1.5 mg/kg body weight) daily for three weeks. Vitamin C (VC) at a dose of 20 mg/kg body weight was given concomitantly with PQ to rats. Animals were divided into three groups in this experiment (control, PQ and PQ+VC). The morphopathological manifestations were investigated in tissues from liver and kidney. As expected, PQ administration induced marked changes in the morphological structure of the liver and kidney in PQ demonstrated animals. Importantly, vitamin C administration restored PQ-induced changes in the studied organs. Vitamin C administration attenuated the morphological damages induced by PQ in the liver and kidney of experimental animals. Our results suggest an antitoxic effect of vitamin C against paraquat. Copyright © 2010 Elsevier GmbH. All rights reserved.

  18. Ultrastructural and DNA damaging effects of lead nitrate in the liver.

    PubMed

    Narayana, K; Al-Bader, Maie

    2011-01-01

    A ubiquitous environmental toxicant - lead is known to affect several organ systems. This study was designed to investigate the effects of lead nitrate exposure on liver structure and DNA fragmentation. Adult male Wistar rats were treated orally with lead nitrate at the dose levels of 0%, 0.5% and 1% for 60 days and sacrificed on the next day. The liver was processed for thick sections and evaluated after toludine blue staining and by electron microscopy after staining with uranyl acetate and lead citrate. The DNA damage was assessed by DNA fragmentation assay. The liver weight was not significantly affected in the experimental groups. Hepatocyte nuclei were not shrunk, instead lead was mitogenic to hepatocytes as indicated by an increase in the number of binucleated hepatocytes (P<0.05). The number of mitochondria per hepatocyte decreased in a dose-dependent manner (P<0.05). Qualitatively, the necrotic changes such as small to large-sized cytoplasmic vacuoles often displacing the organelles, decrease in hepatocyte microvilli, degeneration of mitochondria, and vacuolar encroachment of nuclei and dilatation of sinusoids were observed. The qualitative changes were induced in a dose-dependent manner. Kupffer cells or Ito cells did not present any notable structural changes. Although the electrophoretic flow of DNA fragments was observed in lead-treated groups, these changes were not significantly different from that in control as evaluated by optical density. In conclusion, lead induces necrotic changes with simultaneous mitogenic activity; however, it does not induce significant DNA damage in the liver. Copyright © 2009 Elsevier GmbH. All rights reserved.

  19. Evaluation of radio-protective effect of melatonin on whole body irradiation induced liver tissue damage.

    PubMed

    Shirazi, Alireza; Mihandoost, Ehsan; Ghobadi, Ghazale; Mohseni, Mehran; Ghazi-Khansari, Mahmoud

    2013-01-01

    Ionizing radiation interacts with biological systems to induce excessive fluxes of free radicals that attack various cellular components. Melatonin has been shown to be a direct free radical scavenger and indirect antioxidant via its stimulatory actions on the antioxidant system.The aim of this study was to evaluate the antioxidant role of melatonin against radiation-induced oxidative injury to the rat liver after whole body irradiation. In this experimental study,thirty-two rats were divided into four groups. Group 1 was the control group, group 2 only received melatonin (30 mg/kg on the first day and 30 mg/kg on the following days), group 3 only received whole body gamma irradiation of 10 Gy, and group 4 received 30 mg/kg melatonin 30 minutes prior to radiation plus whole body irradiation of 10 Gy plus 30 mg/kg melatonin daily through intraperitoneal (IP) injection for three days after irradiation. Three days after irradiation, all rats were sacrificed and their livers were excised to measure the biochemical parameters malondialdehyde (MDA) and glutathione (GSH). Each data point represents mean ± standard error on the mean (SEM) of at least eight animals per group. A one-way analysis of variance (ANOVA) was performed to compare different groups, followed by Tukey's multiple comparison tests (p<0.05). The results demonstrated that whole body irradiation induced liver tissue damage by increasing MDA levels and decreasing GSH levels. Hepatic MDA levels in irradiated rats that were treated with melatonin (30 mg/kg) were significantly decreased, while GSH levels were significantly increased, when compared to either of the control groups or the melatonin only group. The data suggest that administration of melatonin before and after irradiation may reduce liver damage caused by gamma irradiation.

  20. Modulatory role of Pterocarpus santalinus against alcohol-induced liver oxidative/nitrosative damage in rats.

    PubMed

    Bulle, Saradamma; Reddy, Vaddi Damodara; Padmavathi, Pannuru; Maturu, Paramahamsa; N Ch, Varadacharyulu

    2016-10-01

    Pterocarpus santalinus, a traditional medicinal plant has shown protective mechanisms against various complications. The aim of the present study is to evaluate therapeutic efficacy of P. santalinus heartwood methanolic extract (PSE) against alcohol-induced oxidative/nitrosative stress leading to hepatotoxicity. In-vitro studies revealed that PSE possess strong DPPH (1,1-diphenyl-2-picryl hydrazyl) and nitric oxide radical scavenging activity. For in vivo studies male albino Wistar rats were treated with 20% alcohol (5g/kg b.wt/day) and PSE (250mg/kg b.wt/day) for 60days. Results showed that alcohol administration significantly altered plasma lipid profile with marked increase in the levels of plasma transaminases (ALT and AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and gamma glutamyl transferase (γGT). Moreover, lipid peroxides, nitric oxide (NOx) levels in plasma and liver were increased with increased iNOS protein expression in liver was noticed in alcohol administered rats and these levels were significantly brought back close to normal level by PSE administration except iNOS protein expression. Alcohol administration also decreased the content of reduced glutathione (GSH) and activities of glutathione peroxidase (GPx), glutathione-s transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) in liver, which were significantly enhanced by administration of PSE. The active compounds pterostilbene, lignan and lupeols present in PSE might have shown protection against alcohol-induced hepatic damage by possibly reducing the rate of lipid peroxidation, NOx levels and increasing the antioxidant defence mechanism in alcohol administered rats. Both biochemical and histopathological results in the alcohol-induced liver damage model emphasize beneficial action of PSE as a hepatoprotective agent. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Protective effect of artemisinin on chronic alcohol induced-liver damage in mice.

    PubMed

    Zhao, Xiaoyan; Wang, Liqing; Zhang, Hao; Zhang, Duoduo; Zhang, Zhihao; Zhang, Jie

    2017-06-01

    The liver disease related to chronic alcohol consumption is one of the leading causes of death for alcoholics. The efficient drug to ameliorate the alcoholic liver injury was needed urgently. The present study was performed to investigate whether artemisinin possessed the protective effect against chronic alcohol consumption. 50 male Kunming mice were divided into 5 groups: control group (C): 10ml/kg saline+10ml/kg saline, alcohol group (A): 10ml/kg 56%(v/v) alcohol+10ml/kg saline, low dose group of artemisinin (L): 10ml/kg 56%(v/v) alcohol+30mg/kg/day artemisinin, medium dose group of artemisinin (M): 10ml/kg 56%(v/v) alcohol+60mg/kg/day artemisinin, high dose group of artemisinin (H): 10ml/kg 56%(v/v) alcohol+120mg/kg/day artemisinin. Drugs were given orally every day. The general state of mice was observed and the levels of serum activities of AST and ALT were detected after treatment with drugs for 30days. Besides, the liver weight index was calculated and histopathological analysis was performed. We successfully demonstrated that treatment with high dose of artemisinin significantly decreased the elevated levels of AST (p<0.05) and ALT (p<0.01) in plasma, as well as the liver weight index (p<0.01). The loss of body weight, tissue injury, oedema and inflammatory cell infiltration in the hepatocytes were found in the A group. These symptoms were remarkably alleviated in animals treated with artemisinin. Artemisinin can inhibit the activation of NF-кB and the expression of inflammatory cytokines inducible nitric oxide synthase. Besides, it can also enhance the stability of liver cell membrane, and reduce the damage of liver cell membrane and liver cell. Artemisinin showed a protective effect against chronic alcohol poisoning and it has a great potential for the clinical application to treat the liver injury induced by alcohol. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Therapeutic effects of N-acetyl-L-cysteine on liver damage induced by long-term CCl4 administration.

    PubMed

    Otrubová, Oľga; Turecký, Ladislav; Uličná, Oľga; Janega, Pavol; Luha, Ján; Muchová, Jana

    2018-01-01

    N-acetyl-L-cysteine (NAC) is a drug routinely used in several health problems, e.g. liver damage. There is some information emerged on its negative effects in certain situations. The aim of our study was to examine its ability to influence liver damage induced by long-term burden. We induced liver damage by CCl4 (10 weeks) and monitored the impact of parallel NAC administration (daily 150 mg/kg of b.w.) on liver morphology and some biochemical parameters (triacylglycerols, cholesterol, alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, bile acids, proteins, albumins and cholinesterase). NAC significantly decreased levels of bile acids and bilirubin in plasma and triacylglycerols in liver, all of them elevated by impairment with CCl4. Reduction of cholesterol induced by CCl4 was completely recovered in the presence of NAC as indicated by its elevation to control levels. NAC administration did not improve the histological parameters. Together with protective effects of NAC, we found also its deleterious properties: parallel administration of CCl4 and NAC increased triacylglycerols, ALT and AST activity and significantly increased plasma cholinesterase activity. We have observed nonsignificantly increased percentage of liver tissue fibrosis. Our results have shown that NAC administered simultaneously with liver damaging agent CCl4, exhibits not only protective, but also deleterious effects as indicated by several biochemical parameters.

  3. Protective Effect of N-acetylcysteine on Liver Damage During Chronic Intrauterine Hypoxia in Fetal Guinea Pig

    PubMed Central

    Hashimoto, Kazumasa; Pinkas, Gerard; Evans, LaShauna; Liu, Hongshan; Al-Hasan, Yazan

    2012-01-01

    Chronic exposure to hypoxia during pregnancy generates a stressed intrauterine environment that may lead to fetal organ damage. The objectives of the study are (1) to quantify the effect of chronic hypoxia in the generation of oxidative stress in fetal guinea pig liver and (2) to test the protective effect of antioxidant treatment in hypoxic fetal liver injury. Pregnant guinea pigs were exposed to either normoxia (NMX) or 10.5% O2 (HPX, 14 days) prior to term (65 days) and orally administered N-acetylcysteine ([NAC] 10 days). Near-term anesthetized fetuses were excised and livers examined by histology and assayed for malondialdehyde (MDA) and DNA fragmentation. Chronic HPX increased erythroid precursors, MDA (NMX vs HPX; 1.26 ± 0.07 vs 1.78 ± 0.07 nmol/mg protein; P < .001, mean ± standard error of the mean [SEM]) and DNA fragmentation levels in fetal livers (0.069 ± 0.01 vs 0.11 ± 0.005 OD/mg protein; P < .01). N-acetylcysteine inhibited erythroid aggregation and reduced (P < .05) both MDA and DNA fragmentation of fetal HPX livers. Thus, chronic intrauterine hypoxia generates cell and nuclear damage in the fetal guinea pig liver. Maternal NAC inhibited the adverse effects of fetal liver damage suggestive of oxidative stress. The suppressive effect of maternal NAC may implicate the protective role of antioxidants in the prevention of liver injury in the hypoxic fetus. PMID:22534333

  4. Derangements of liver tissue bioenergetics in concanavalin A-induced hepatitis.

    PubMed

    Al-Shamsi, Mariam; Shahin, Allen; Mensah-Brown, Eric P K; Souid, Abdul-Kader

    2013-01-12

    A novel in vitro system was employed to investigate liver tissue respiration (mitochondrial O2 consumption) in mice treated with concanavalin A (Con A). This study aimed to investigate hepatocyte bioenergetics in this well-studied hepatitis model. C57Bl/6 and C57Bl/6 IFN-γ-/- mice were injected intravenously with 12 mg ConA/kg. Liver specimens were collected at various timepoints after injection and analyzed for cellular respiration and caspase activation. Serum was analyzed for interferon-gamma (IFN-γ) and aminotransferases. Fluorescence activated cell sorting analysis was used to determine the phenotype of infiltrating cells, and light and electron microscopy were used to monitor morphological changes. Phosphorescence analyzer that measured dissolved O2 as function of time was used to evaluate respiration. In sealed vials, O2 concentrations in solutions containing liver specimen and glucose declined linearly with time, confirming zero-order kinetics of hepatocyte respiration. O2 consumption was inhibited by cyanide, confirming the oxidation occurred in the respiratory chain. Enhanced liver respiration (by ≈68%, p<0.02) was noted 3 hr after ConA treatment, and occurred in conjunction with limited cellular infiltrations around the blood vessels. Diminished respiration (by ≈30%, p=0.005) was noted 12 hr after ConA treatment, and occurred in conjunction with deranged mitochondria, areas of necrosis, and prominent infiltrations with immune cells, most significantly, CD3+NKT+ cells. Increases in intracellular caspase activity and serum IFN-γ and aminotransferase levels were noted 3 hr after ConA treatment and progressed with time. The above-noted changes were less pronounced in C57Bl/6 IFN-γ-/- mice treated with ConA. Based on these results, liver tissue bioenergetics is increased 3 hr after ConA exposure. This effect is driven by the pathogenesis of the disease, in which IFN-γ and other cytokines contribute to. Subsequent declines in liver bioenergetics

  5. Caspase-3/7-mediated Cleavage of β2-spectrin is Required for Acetaminophen-induced Liver Damage

    PubMed Central

    Baek, Hye Jung; Lee, Yong Min; Kim, Tae Hyun; Kim, Joo-Young; Park, Eun Jung; Iwabuchi, Kuniyoshi; Mishra, Lopa; Kim, Sang Soo

    2016-01-01

    The ubiquitously expressed β2-spectrin (β2SP, SPTBN1) is the most common non-erythrocytic member of the β-spectrin gene family. Loss of β2-spectrin leads to defects in liver development, and its haploinsufficiency spontaneously leads to chronic liver disease and the eventual development of hepatocellular cancer. However, the specific role of β2-spectrin in liver homeostasis remains to be elucidated. Here, we reported that β2-spectrin was cleaved by caspase-3/7 upon treatment with acetaminophen which is the main cause of acute liver injury. Blockage of β2-spectrin cleavage robustly attenuated β2-spectrin-specific functions, including regulation of the cell cycle, apoptosis, and transcription. Cleaved fragments of β2-spectrin were physiologically active, and the N- and C-terminal fragments retained discrete interaction partners and activity in transcriptional regulation and apoptosis, respectively. Cleavage of β2-spectrin facilitated the redistribution of the resulting fragments under conditions of liver damage induced by acetaminophen. In contrast, downregulation of β2-spectrin led to resistance to acetaminophen-induced cytotoxicity, and its insufficiency in the liver promoted suppression of acetaminophen-induced liver damage and enhancement of liver regeneration. Conclusions: β2-Spectrin, a TGF-β mediator and signaling molecule, is cleaved and activated by caspase-3/7, consequently enhancing apoptosis and transcriptional control to determine cell fate upon liver damage. These findings have extended our knowledge on the spectrum of β2-spectrin functions from a scaffolding protein to a target and transmitter of TGF-β in liver damage. PMID:26884715

  6. Trans-Splenic Portal Vein Embolization: A Technique to Avoid Damage to the Future Liver Remnant

    SciTech Connect

    Sarwar, Ammar, E-mail: asarwar@bidmc.harvard.edu; Brook, Olga R.; Weinstein, Jeffrey L.

    2016-10-15

    Portal vein embolization (PVE) induces hypertrophy of the future liver remnant (FLR) in patients undergoing extensive hepatic resection. Portal vein access for PVE via the ipsilateral hepatic lobe (designated for resection) places veins targeted for embolization at acute angles to the access site requiring reverse curve catheters for access. This approach also involves access close to tumors in the ipsilateral lobe and requires care to avoid traversing tumor. Alternatively, a contralateral approach (through the FLR) risks damage to the FLR due to iatrogenic trauma or non-target embolization. Two patients successfully underwent PVE via trans-splenic portal vein access, allowing easy accessmore » to the ipsilateral portal veins and eliminating risk of damage to FLR. Technique and advantages of trans-splenic portal vein access to perform PVE are described.« less

  7. Hypervitaminosis A-induced liver fibrosis: stellate cell activation and daily dose consumption.

    PubMed

    Nollevaux, M-C; Guiot, Y; Horsmans, Y; Leclercq, I; Rahier, J; Geubel, A P; Sempoux, C

    2006-03-01

    Hypervitaminosis A-related liver toxicity may be severe and may even lead to cirrhosis. In the normal liver, vitamin A is stored in hepatic stellate cells (HSC), which are prone to becoming activated and acquiring a myofibroblast-like phenotype, producing large amounts of extracellular matrix. In order to assess the relationship between vitamin A intake, HSC activation and fibrosis, we studied nine liver biopsies from patients belonging to a well-characterized series of 41 patients with vitamin A hepatotoxicity. Fibrosis was underlined by Sirius-red staining, whereas activated HSC were immunohistochemically identified using an antibody against alpha smooth muscle actin. The volume density (Vv) of sinusoidal and total fibrosis and of sinusoidal and total activated HSC was quantified by the point-counting method. Morphology ranged from HSC hypertrophy and hyperplasia as the sole features to severe architectural distortion. There was a significant positive correlation between Vv of perisinusoidal fibrosis and the daily consumption of vitamin A (P=0.004). The close correlation between the severity of perisinusoidal fibrosis and the daily dose of the retinol intake suggests the existence of a dose-effect relationship.

  8. Hepatoprotective activity of Trichilia roka on carbon tetrachloride-induced liver damage in rats.

    PubMed

    Germanò, M P; D'Angelo, V; Sanogo, R; Morabito, A; Pergolizzi, S; De Pasquale, R

    2001-11-01

    Trichilia roka Chiov. (Meliaceae) is a tree widely distributed in tropical Africa. It has been used in Mali folk medicine for the treatment of various illnesses. A decoction of the roots is taken as a remedy for colds and pneumonia, and it is used as a diuretic and in hepatic disorders. We have evaluated the hepatoprotective effects of a decoction of Trichilia roka root on CCl4-induced acute liver damage in rats. Treatment with the decoction showed a significant protective action made evident by its effect on the levels of glutamate oxalacetate transaminase and glutamate pyruvate transaminase in the serum, on the protein content and lipid peroxidation levels in the liver homogenate. Histopathological changes produced by CCl4, such as necrosis, fatty change, ballooning degeneration and inflammatory infiltration of lymphocytes around the central veins, were clearly recovered by the treatment with Trichilia root decoction. On fractionating this extract into diethyl ether-soluble and water-soluble fractions, the activity was retained in the diethyl ether-soluble fraction. Moreover, the administration of decoction prevented a preferential deposition of collagen around the sinusoidal cell layer, which is responsible for the perisinusoidal fibrosis in the early stage of CCl4 damage. This study showed that treatment with Trichilia roka extracts or silymarin (as reference) appeared to enhance the recovery from CCl4-induced hepatotoxicity. The hepatoprotective properties of Trichilia roka may be correlated to polyphenol content of the decoction and its diethyl ether-soluble fraction.

  9. Sonodynamic action of pyropheophorbide-a methyl ester induces mitochondrial damage in liver cancer cells.

    PubMed

    Xu, Jing; Xia, Xinshu; Leung, Albert Wingnang; Xiang, Junyan; Jiang, Yuan; Yu, Heping; Bai, Dingqun; Li, Xiaohong; Xu, Chuanshan

    2011-05-01

    Sonodynamic therapy with pyropheophorbide-a methyl ester (MPPa) presents a promising aspect in treating liver cancer. The present study aims to investigate the mitochondrial damage of liver cancer cells induced by MPPa-mediated sonodynamic action. Mouse hepatoma cell line H(22) cells were incubated with MPPa (2 μM) for 20 h and then exposed to ultrasound with an intensity of 0.97 W/cm(2) for 8 s. Cytotoxicity was investigated 24h after sonodynamic action using MTT assay and light microscopy. Mitochondrial membrane potential (ΔΨm) was analyzed using flow cytometry with rhodamine 123 staining and ultrastructural changes were observed using transmission electron microscopy (TEM). The cytotoxicity of MPPa-mediated SDT on H(22) cell line was 73.00±3.42%, greater than ultrasound treatment alone (28.12±5.19%) significantly while MPPa treatment alone had no significant effect on H(22) cells. Moreover, after MPPa-mediated SDT cancer cells showed swollen mitochondria under TEM and a significant collapse of mitochondrial membrane potential. Our findings demonstrated that MPPa-mediated SDT could remarkably induce cell death of H(22) cells, and highlighted that mitochondrial damage might be an important cause of cell death induced by MPPa-mediated SDT. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Antioxidant and hepatoprotective activity of vitex honey against paracetamol induced liver damage in mice.

    PubMed

    Wang, Yuan; Li, Dan; Cheng, Ni; Gao, Hui; Xue, Xiaofeng; Cao, Wei; Sun, Liping

    2015-07-01

    Fourteen vitex honeys from China were investigated to evaluate its antioxidant and hepatoprotective activity against paracetamol-induced liver damage. All honey samples exhibited high total phenolic content (344-520 mg GAE per kg), total flavonoid content (19-31 mg Rutin per kg), and strong antioxidant activity in DPPH radical scavenging, ferric reducing antioxidant power and Ferrous ion-chelating ability. Nine phenolic acids were detected in vitex honey samples, in which caffeic acid was the main compound. Honey from Heibei Zanhuang (S2) ranked the highest antioxidant activity was orally administered to mice (5 g kg(-1), 20 g kg(-1)) for 70 days. In high-dose (20 g kg(-1)), vitex honey pretreatment resulting in significant increase in serum oxygen radical absorbance capacity (15.07%) and decrease in Cu(2+)-mediate lipoprotein oxidation (80.07%), and suppression in alanine aminotransferase (75.79%) and aspartate aminotransferase (74.52%), enhancement in the superoxide dismutase and glutathione peroxidase activities and reduction in malondialdehyde (36.15%) and 8-hydroxy-2'-deoxyguanosine (19.6%) formation compared with paracetamol-intoxicated group. The results demonstrated the hepatoprotection of vitex honey against paracetamol-induced liver damage might attribute to its antioxidant and/or perhaps pro-oxidative property.

  11. Protective effect of Urtica dioica on liver damage induced by biliary obstruction in rats.

    PubMed

    Oguz, Serhat; Kanter, Mehmet; Erboga, Mustafa; Ibis, Cem

    2013-10-01

    The aim of this study was to evaluate the possible protective effects of Urtica dioica (UD) against liver damage in the common bile duct-ligated rats. A total of 24 male Sprague Dawley rats were divided into three groups, namely, control, bile duct ligation (BDL) and BDL + received UD groups, containing eight animals in each group. The rats in UD-treated groups were given UD oils (2 ml/kg) once a day intraperitoneally for 2 weeks starting 3 days prior to BDL operation. The change demonstrating the bile duct proliferation and fibrosis in expanded portal tracts includes the extension of proliferated bile ducts into the lobules; inflammatory cell infiltration into the widened portal areas were observed in BDL group. Treatment of BDL with UD attenuated alterations in liver histology. The α-smooth muscle actin, cytokeratin-positive ductular proliferation and the activity of terminal deoxynucleotidyl transferase dUTP nick end labeling in the BDL were observed to be reduced with the UD treatment. The data indicate that UD attenuates BDL-induced cholestatic liver injury, bile duct proliferation and fibrosis.

  12. Protective Effects of Pinus halepensis L. Essential Oil on Aspirin-induced Acute Liver and Kidney Damage in Female Wistar Albino Rats.

    PubMed

    Bouzenna, Hafsia; Samout, Noura; Amani, Etaya; Mbarki, Sakhria; Tlili, Zied; Rjeibi, Ilhem; Elfeki, Abdelfattah; Talarmin, Hélène; Hfaiedh, Najla

    2016-08-01

    Aromatic and medicinal plants are sources of natural antioxidants thanks to their secondary metabolites. Administration of Pinus halepensis L. (Pinaceae family) in previous studies was found to alleviate deleterious effects of aspirin-induced damage on liver and kidney. The present study, carried out on female rats, evaluates the effects of P. halepensis L. essential oil (EOP) on aspirin (A)-induced damage to liver and kidney. The animals used in this study were rats (n=28) divided into 4 groups of 7 each: (1) a control group (C); (2) a group given NaCl for 56 days then treated with (A) (600 mg/kg) for 4 days (A); (3) a group fed with (EOP) for 56 days then (A) for 4 days; and a group fed with only (EOP) for 56 days and given NaCl for 4 days. Estimations of biochemical parameters in blood were determined using kit methods (Spinreact). Lipid peroxidation levels (TBARS), superoxide dismutase (SOD) and catalase (CAT), glutathione peroxidase (GPx) activities were determined. Histopathological study was done by immersing pieces of both organs in a fixative solution followed by paraffin embeddeding and hematoxylin-eosin staining. Under our experimental conditions, Aspirin at dose 600 mg/kg body weight induced an increase of serum biochemical parameters as well as an oxidative stress in both organs. An increase occurred in TBARS by 108% and 55%, a decrease in SOD by 78% and 53%, CAT by 53% and 78%, and GPx by 78% and 51% in liver and kidney, respectively, compared to control. Administration of EOP given to rats enabled correction in these parameters. It could be concluded that the treatment with P. halepensis L. essential oil inhibited aspirin-induced liver and kidney damage.

  13. Influence of alpha-lipoic acid on nicotine-induced lung and liver damage in experimental rats.

    PubMed

    Ateyya, Hayam; Nader, Manar A; Attia, Ghalia M; El-Sherbeeny, Nagla A

    2017-05-01

    Nicotine mediates some of the injurious effects caused by consuming tobacco products. This work aimed at investigating the defensive role of alpha-lipoic acid (ALA) with its known antioxidant and antiinflammatory effect in nicotine-induced lung and liver damage. Rats were arranged into 4 groups: control, nicotine, ALA, and ALA-nicotine groups. Oxidative stress and antioxidant status were determined by assessing thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), and glutathione (GSH) levels in lung and liver. Liver enzymes and lipid profiles were measured and pulmonary and hepatic damage were assessed by histopathological examination. Also, serum levels of transforming growth factor beta 1 (TGF-β1) and vascular cell adhesion molecule 1 (VCAM-1) were determined. The results revealed an increase in TBARS in tissues and a reduction in both SOD and GSH activity in the nicotine-treated rats. Nicotine induced high levels of liver enzymes, TGF-β1, VCAM-1, and dyslipidemia with histopathological changes in the lung and liver. ALA administration along with nicotine attenuated oxidative stress and normalized the SOD and GSH levels, ameliorated dyslipidemia, and improved TGF-β1 and VCAM-1 with better histopathology of the lung and liver. The study data revealed that ALA may be beneficial in alleviating nicotine-induced oxidative stress, dyslipidemia, and both lung and liver damage.

  14. An Oxygenated and Transportable Machine Perfusion System Fully Rescues Liver Grafts Exposed to Lethal Ischemic Damage in a Pig Model of DCD Liver Transplantation.

    PubMed

    Compagnon, Philippe; Levesque, Eric; Hentati, Hassen; Disabato, Mara; Calderaro, Julien; Feray, Cyrille; Corlu, Anne; Cohen, José Laurent; Ben Mosbah, Ismail; Azoulay, Daniel

    2017-07-01

    Control of warm ischemia (WI) lesions that occur with donation after circulatory death (DCD) would significantly increase the donor pool for liver transplantation. We aimed to determine whether a novel, oxygenated and hypothermic machine perfusion device (HMP Airdrive system) improves the quality of livers derived from DCDs using a large animal model. Cardiac arrest was induced in female large white pigs by intravenous injection of potassium chloride. After 60 minutes of WI, livers were flushed in situ with histidine-tryptophan-ketoglutarate and subsequently preserved either by simple cold storage (WI-SCS group) or HMP (WI-HMP group) using Belzer-MPS solution. Liver grafts procured from heart-beating donors and preserved by SCS served as controls. After 4 hours of preservation, all livers were transplanted. All recipients in WI-SCS group died within 6 hours after transplantation. In contrast, the HMP device fully protected the liver against lethal ischemia/reperfusion injury, allowing 100% survival rate. A postreperfusion syndrome was observed in all animals of the WI-SCS group but none of the control or WI-HMP groups. After reperfusion, HMP-preserved livers functioned better and showed less hepatocellular and endothelial cell injury, in agreement with better-preserved liver histology relative to WI-SCS group. In addition to improved energy metabolism, this protective effect was associated with an attenuation of inflammatory response, oxidative load, endoplasmic reticulum stress, mitochondrial damage, and apoptosis. This study demonstrates for the first time the efficacy of the HMP Airdrive system to protect liver grafts from lethal ischemic damage before transplantation in a clinically relevant DCD model.

  15. Protective effects of silymarin against bisphenol A-induced hepatotoxicity in mouse liver

    PubMed Central

    Zaulet, Mihaela; Kevorkian, Steliana Elvira Maria; Dinescu, Sorina; Cotoraci, Coralia; Suciu, Maria; Herman, Hildegard; Buburuzan, Laura; Badulescu, Liliana; Ardelean, Aurel; Hermenean, Anca

    2017-01-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical released into the environment, with severe consequences for human health, including metabolic syndrome and associated pathological conditions. Due to limited information on BPA-induced hepatotoxicity, the present study focused on investigating the association between BPA-induced toxicity and inflammatory markers in the liver, and how these injuries may be alleviated using the natural agent silymarin, a flavonoid with antioxidant properties obtained from Silybum marianum. Administration of BPA to male CD-1 mice for 10 days caused a significant increase in the number of cells immunopositive for interleukin 6 and tumor necrosis factor-α, pro-inflammatory cytokines that mediate the hepatic inflammatory response. Treatment with 200 mg/kg of silymarin concurrently with BPA for 10 days resulted in a diminished level of pro-inflammatory cytokines and in significantly reduced ultrastructural injuries. Additionally, silymarin was able to restore the significantly decreased glycogen deposits observed following BPA exposure to normal levels, thus favoring hepatic glycogenesis. This study represents the first report of silymarin ability to reduce hepatic lesions and to counteract inflammation caused by BPA in mice. A dose of 200 mg/kg silymarin was sufficient to induce a protective effect against structural and ultrastructural injuries induced by BPA and to lower the levels of pro-inflammatory cytokines observed in murine liver tissue following exposure to BPA. PMID:28450905

  16. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism.

    PubMed

    Li, Shuang; Wang, S U; Guo, Zhi-Gang; Huang, Ning; Zhao, Fan-Rong; Zhu, Mo-Li; Ma, Li-Juan; Liang, Jin-Ying; Zhang, Yu-Lin; Huang, Zhong-Lin; Wan, Guang-Rui

    2015-11-01

    The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism.

  17. Mitigation of autophagy ameliorates hepatocellular damage following ischemia-reperfusion injury in murine steatotic liver

    PubMed Central

    Kolachala, Vasantha L.; Jiang, Rong; Abramowsky, Carlos; Shenoi, Asha; Kosters, Astrid; Pavuluri, Haritha; Anania, Frank; Kirk, Allan D.

    2014-01-01

    Ischemia-reperfusion injury (IRI) is a common clinical consequence of hepatic surgery, cardiogenic shock, and liver transplantation. A steatotic liver is particularly vulnerable to IRI, responding with extensive hepatocellular injury. Autophagy, a lysosomal pathway balancing cell survival and cell death, is engaged in IRI, although its role in IRI of a steatotic liver is unclear. The role of autophagy was investigated in high-fat diet (HFD)-fed mice exposed to IRI in vivo and in steatotic hepatocytes exposed to hypoxic IRI (HIRI) in vitro. Two inhibitors of autophagy, 3-methyladenine and bafilomycin A1, protected the steatotic hepatocytes from HIRI. Exendin 4 (Ex4), a glucagon-like peptide 1 analog, also led to suppression of autophagy, as evidenced by decreased autophagy-associated proteins [microtubule-associated protein 1A/1B-light chain 3 (LC3) II, p62, high-mobility group protein B1, beclin-1, and autophagy-related protein 7], reduced hepatocellular damage, and improved mitochondrial structure and function in HFD-fed mice exposed to IRI. Decreased autophagy was further demonstrated by reversal of a punctate pattern of LC3 and decreased autophagic flux after IRI in HFD-fed mice. Under the same conditions, the effects of Ex4 were reversed by the competitive antagonist exendin 9-39. The present study suggests that, in IRI of hepatic steatosis, treatment of hepatocytes with Ex4 mitigates autophagy, ameliorates hepatocellular injury, and preserves mitochondrial integrity. These data suggest that therapies targeting autophagy, by Ex4 treatment in particular, may ameliorate the effects of IRI in highly prevalent steatotic liver. PMID:25258410

  18. Oxidative damage in gills and liver in Nile tilapia (Oreochromis niloticus) exposed to diazinon.

    PubMed

    Toledo-Ibarra, G A; Díaz Resendiz, K J G; Ventura-Ramón, G H; González-Jaime, F; Vega-López, A; Becerril-Villanueva, E; Pavón, L; Girón-Pérez, M I

    2016-10-01

    Agricultural activity demands the use of pesticides for plague control and extermination. In that matter, diazinon is one of the most widely used organophosphorus pesticides (OPs). Despite its benefits, the use of OPs in agricultural activities can also have negative effects since the excessive use of these substances can represent a major contamination problem for water bodies and organisms that inhabit them. The aim of this paper was to evaluate oxidative damage in lipids and proteins of Nile tilapia (Oreochromis niloticus) exposed acutely to diazinon (0.97, 1.95 and 3.95ppm) for 12 or 24h. The evaluation of oxidative damage was determined by quantifying lipid hydroperoxides (Fox method) and oxidized proteins (DNPH method). The data from this study suggest that diazinon induces a concentration-dependent oxidative damage in proteins, but not lipids, of the liver and gills of Nile tilapia. Furthermore, the treatment leads to a decrease in the concentration of total proteins, which can have serious consequences in cell physiology and fish development. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Buckwheat Honey Attenuates Carbon Tetrachloride-Induced Liver and DNA Damage in Mice

    PubMed Central

    Cheng, Ni; Wu, Liming; Zheng, Jianbin; Cao, Wei

    2015-01-01

    Buckwheat honey, which is widely consumed in China, has a characteristic dark color. The objective of this study was to investigate the protective effects of buckwheat honey on liver and DNA damage induced by carbon tetrachloride in mice. The results revealed that buckwheat honey had high total phenolic content, and rutin, hesperetin, and p-coumaric acid were the main phenolic compounds present. Buckwheat honey possesses super DPPH radical scavenging activity and strong ferric reducing antioxidant power. Administration of buckwheat honey for 10 weeks significantly inhibited serum lipoprotein oxidation and increased serum oxygen radical absorbance capacity. Moreover, buckwheat honey significantly inhibited aspartate aminotransferase and alanine aminotransferase activities, which are enhanced by carbon tetrachloride. Hepatic malondialdehyde decreased and hepatic antioxidant enzymes (superoxide dismutase and glutathione peroxidase) increased in the presence of buckwheat honey. In a comet assay, lymphocyte DNA damage induced by carbon tetrachloride was significantly inhibited by buckwheat honey. Therefore, buckwheat honey has a hepatoprotective effect and inhibits DNA damage, activities that are primarily attributable to its high antioxidant capacity. PMID:26508989

  20. Buckwheat Honey Attenuates Carbon Tetrachloride-Induced Liver and DNA Damage in Mice.

    PubMed

    Cheng, Ni; Wu, Liming; Zheng, Jianbin; Cao, Wei

    2015-01-01

    Buckwheat honey, which is widely consumed in China, has a characteristic dark color. The objective of this study was to investigate the protective effects of buckwheat honey on liver and DNA damage induced by carbon tetrachloride in mice. The results revealed that buckwheat honey had high total phenolic content, and rutin, hesperetin, and p-coumaric acid were the main phenolic compounds present. Buckwheat honey possesses super DPPH radical scavenging activity and strong ferric reducing antioxidant power. Administration of buckwheat honey for 10 weeks significantly inhibited serum lipoprotein oxidation and increased serum oxygen radical absorbance capacity. Moreover, buckwheat honey significantly inhibited aspartate aminotransferase and alanine aminotransferase activities, which are enhanced by carbon tetrachloride. Hepatic malondialdehyde decreased and hepatic antioxidant enzymes (superoxide dismutase and glutathione peroxidase) increased in the presence of buckwheat honey. In a comet assay, lymphocyte DNA damage induced by carbon tetrachloride was significantly inhibited by buckwheat honey. Therefore, buckwheat honey has a hepatoprotective effect and inhibits DNA damage, activities that are primarily attributable to its high antioxidant capacity.

  1. Atorvastatin does not protect against ischemia-reperfusion damage in cholestatic rat livers.

    PubMed

    Wiggers, Jimme K; van Golen, Rowan F; Verheij, Joanne; Dekker, Annemiek M; van Gulik, Thomas M; Heger, Michal

    2017-04-11

    Extrahepatic cholestasis sensitizes the liver to ischemia/reperfusion (I/R) injury during surgery for perihilar cholangiocarcinoma. It is associated with pre-existent sterile inflammation, microvascular perfusion defects, and impaired energy status. Statins have been shown to protect against I/R injury in normal and steatotic mouse livers. Therefore, the hepatoprotective properties of atorvastatin were evaluated in a rat model of cholestatic I/R injury. Male Wistar rats were subjected to 70% hepatic ischemia (during 30 min) at 7 days after bile duct ligation. Rats were randomized to atorvastatin treatment or vehicle-control in three test arms: (1) oral treatment with 5 mg/kg during 7 days after bile duct ligation; (2) intravenous treatment with 2.5, 5, or 7.5 mg/kg at 24 h before ischemia; and (3) intravenous treatment with 5 mg/kg at 30 min before ischemia. Hepatocellular damage was assessed by plasma alanine aminotransferase (ALT) and histological necrosis. I/R induced severe hepatocellular injury in the cholestatic rat livers (~10-fold increase in ALT at 6 h after I/R and ~30% necrotic areas at 24 h after I/R). Both oral and intravenous atorvastatin treatment decreased ALT levels before ischemia. Intravenous atorvastatin treatment at 5 mg/kg at 24 h before ischemia was the only regimen that reduced ALT levels at 6 h after reperfusion, but not at 24 h after reperfusion. None of the tested regimens were able to reduce histological necrosis at 24 h after reperfusion. Pre-treatment with atorvastatin did not protect cholestatic livers from hepatocellular damage after I/R. Clinical studies investigating the role of statins in the protection against hepatic I/R injury should not include cholestatic patients with perihilar cholangiocarcinoma. These patients require (pharmacological) interventions that specifically target the cholestasis-associated hepatopathology.

  2. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells.

    PubMed

    Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu

    2017-01-01

    Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N -acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.

  3. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells

    PubMed Central

    Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu

    2017-01-01

    Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells. PMID:28936177

  4. KEAP1-NRF2 COMPLEX IN ISCHEMIA-INDUCED HEPATOCELLULAR DAMAGE OF MOUSE LIVER TRANSPLANTS

    PubMed Central

    Ke, Bibo; Shen, Xiu-Da; Zhang, Yu; Ji, Haofeng; Gao, Feng; Yue, Shi; Kamo, Naoko; Zhai, Yuan; Yamamoto, Masayuki; Busuttil, Ronald W.; Kupiec-Weglinski, Jerzy W.

    2015-01-01

    Background The Keap1-Nrf2 signaling pathway regulates host cell defense responses against oxidative stress and maintains the cellular redox balance. Aims&Methods: We investigated the function/molecular mechanisms by which Keap1-Nrf2 complex may influence liver ischemia/reperfusion injury (IRI) in a mouse model of hepatic cold storage (20h at 4 C) followed by orthotopic liver transplantation (OLT). Results The Keap1 hepatocyte-specific knock-out (HKO) in the donor liver ameliorated post-transplant IRI, evidenced by improved hepatocellular function and OLT outcomes (Keap1HKO Keap1HKO; 100% survival), as compared with controls (WT WT; 50% survival; p<0.01). In contrast, donor liver Nrf2 deficiency exacerbated IRI in transplant recipients (Nrf2KO Nrf2KO; 40% survival). Ablation of Keap1 signaling reduced macrophage/neutrophil trafficking, pro-inflammatory cytokine programs, and hepatocellular necrosis/apoptosis, while simultaneously promoting anti-apoptotic functions in OLTs. At the molecular level, Keap1HKO increased Nrf2 levels, stimulated Akt phosphorylation, and enhanced expression of anti-oxidant Trx1, HIF-1 , and HO-1. Pretreatment of liver donors with PI3K inhibitor (LY294002) disrupted Akt/HIF-1 signaling and recreated hepatocellular damage in otherwise IR-resistant Keap1HKO transplants. In parallel in vitro studies, hydrogen peroxide-stressed Keap1-deficient hepatocytes were characterized by enhanced expression of Nrf2, Trx1, and Akt phosphorylation, in association with decreased release of lactate dehydrogenase (LDH) in cell culture supernatants. Conclusions Keap1-Nrf2 complex prevents oxidative injury in IR-stressed OLTs through Keap1 signaling, which negatively regulates Nrf2 pathway. Activation of Nrf2 induces Trx1 and promotes PI3K/Akt, crucial for HIF-1 activity. HIF-1 -mediated overexpression of HO-1/CyclinD1 facilitates cytoprotection by limiting hepatic inflammatory responses, and hepatocellular necrosis/apoptosis in PI3K-dependent manner. PMID

  5. [The protective effect of XD in ConA-induced liver injury].

    PubMed

    Liu, Xiao-Bin; Wang, Jing; Zhang, Qian-Qian; Liu, Tao; Dang, Tong-Mei; Cao, Yi-Ming

    2010-12-01

    To explore the protective effect and its mechanism of Modified Xiaochaihu decoction(MXD) in the liver injury of mice. METHORDS: Using Reitman methord to examine serum ALT and ATS; Using sandwich enzyme immunoassay ABC-ELISA to examine serum TNF-α and IFN-γ. Serum ALT and ATS of MXD large dose group and Xiaochaihu decoction (XD )group were lower than that of animal models group, there was significant difference among groups (P<0.05). There were not significant difference (P>0.05) between serum ALT and ATS of MXD small dose group and that of animal models group; MXD large dose group, XD group and Biphenyldimethylesterate (DDB) group are similar, no difference (P>0.05). Serum TNF-α and IFN-γ of MXD large dose group and XD group were significant lower than that of animal models group, there was significant difference among groups (P<0.05). Serum TNF-α and IFN-γ of XD group ware higher than that of MXD large dose group, there was significant difference among groups (P<0.05). MXD large dose group, XD group and DDB group were similar, no difference. Xiaocaihu decoction possesses the effect of pro2 tection of hepatic impairment and the protective mechanism might be associated with the inhibition of apoptosis and immunomodulation.

  6. Counteraction of oxidative damage in the rat liver by an ancient grain (Kamut brand khorasan wheat).

    PubMed

    Benedetti, Serena; Primiterra, Mariangela; Tagliamonte, Maria Chiara; Carnevali, Andrea; Gianotti, Andrea; Bordoni, Alessandra; Canestrari, Franco

    2012-04-01

    We previously demonstrated in rat plasma the antioxidant protective effect of whole-grain bread, particularly when made from Kamut brand khorasan wheat. In the present study, we investigated the effects of the same experimental breads in rat liver using two different bread-making procedures (baker's yeast and sourdough fermentation). Rats were examined in the basal condition and after the administration of doxorubicin, a pro-oxidative agent. The following parameters were measured in liver homogenates: glutathione peroxidase and thioredoxin reductase activities, as antioxidant enzymes containing selenium; glutathione, α-tocopherol and β-carotene, as major non-enzymatic cell antioxidants; malondialdehyde and advanced oxidation protein products, as markers of oxidative damage to lipids and proteins, respectively. A histologic evaluation of liver tissue was also conducted. In agreement with our previous work, we observed a lower oxidative status and a different activity of glutathione peroxidase and thioredoxin reductase in rats fed the whole-grain Kamut khorasan bread than in rats fed the modern whole-grain durum wheat bread. Histologic evaluation of the hepatic tissue showed the onset of inflammation in response to doxorubicin only in rats fed the modern durum wheat bread. Our data confirm that bread made from whole-grain Kamut khorasan protects rats from oxidative stress better than bread made from whole-grain durum wheat. This is consistent with their different antioxidant profiles. The type of wheat used for bread-making appeared to be the main determinant of the observed protective effect. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Effect of the aqueous extract of Psidium guajava on erythromycin-induced liver damage in rats.

    PubMed

    Sambo, N; Garba, S H; Timothy, H

    2009-12-01

    The effect of Psidium guajava extract on erythromycin-induced liver damage in albino rats was investigated using 30 normal rats grouped into six. Group I and II served as the normal and treatment controls that were administered with normal saline and 100 mg/kg body weight of erythromycin stearate daily for 14 days respectively. Rats in group III were administered 450 mg/kg body weight of Psidium guajava only for 7 days while rats in groups IV, V and VI were administered Psidium guajava extract for 7 days and 100mg/kg body weight of erythromycin for 14 days. Histopathological investigation of the liver tissues revealed striking oedema and mild periportal mononuclear cell infiltration of hepatic cords in the liver of rats administered 100 mg/kg of erythromycin stearate and 300/450 mg/kg of Psidium guajava extract. Pretreatment with 150 mg/kg of Psidium guajava extract showed a slight degree of protection against the induced hepatic injury caused by 100 mg/kg of erythromycin stearate. Biochemical analysis of the serum obtained revealed a significant increase in serum levels of hepatic enzymes measured in the groups administered with 100 mg/kg of erythromycin stearate and 300/450 mg/kg of Psidium guajava extract compared to the control groups and those pretreated with 150 mg/kg of Psidium guajava extract. This study has shown that the aqueous extract of psidium guajava leaf possesses hepatoprotective property at lower dose and a hepatotoxic property at higher dose but further studies with prolonged duration is recommended.

  8. Carvedilol suppresses circulating and hepatic IL-6 responsible for hepatocarcinogenesis of chronically damaged liver in rats

    SciTech Connect

    Balaha, Mohamed, E-mail: Mohamed.Balaha@Med.Tanta.

    Carvedilol is an anti-oxidant non-selective β-blocker used for reduction of portal blood pressure, prophylaxis of esophageal varices development and bleeding in chronic liver diseases. Recently, it exhibited potent anti-inflammatory, anti-fibrotic, anti-proliferative and anti-carcinogenic effects. In the present study, we evaluated the possible suppressive effect of carvedilol on circulating and hepatic IL-6 levels responsible for hepatocarcinogenesis in a rat model of hepatic cirrhosis. Besides, its effect on hepatic STAT-3 levels, function tests, oxidative stress markers, and hydroxyproline content, hepatic tissue histopathological changes and immunohistochemical expression of E & N-cadherin. Nine-week-old male Wistar rats injected intraperitoneal by 1 ml/kg 10% CCL{sub 4}more » in olive oil three times/week (every other day) for 12 weeks to induce hepatic cirrhosis. Carvedilol (10 mg/kg/day suspended in 0.5% CMC orally), silymarin (50 mg/kg/day suspended in 0.5% CMC orally) or combination of both used to treat hepatic cirrhosis from 15th to 84th day. Our data showed that carvedilol and silymarin co-treatment each alone or in combination efficiently reduced the elevated serum IL-6, ALT, AST, ALP and BIL, hepatic IL-6, STAT-3, MDA levels and hydroxyproline content. In addition, it elevated the reduced serum ALB level, hepatic CAT activity and GSH level. Meanwhile, it apparently restored the normal hepatic architecture, collagen distribution and immunohistochemical E & N-cadherin expression. Furthermore, carvedilol was superior to silymarin in improving MDA level. Moreover, the combination of carvedilol and silymarin showed an upper hand in amelioration of the CCL{sub 4} induced hepatotoxicity than each alone. Therefore, carvedilol could be promising in prevention of hepatocarcinogenesis in chronic hepatic injuries. - Highlights: • Chronic liver damage ends into hepatocellular carcinoma in 5% of patients. • Persistent elevation of IL-6 induces

  9. Salecan protected against concanavalin A-induced acute liver injury by modulating T cell immune responses and NMR-based metabolic profiles

    SciTech Connect

    Sun, Qi; Xu, Xi, E-mail: xuxi@njust.edu.cn; Yang,

    Salecan, a water-soluble extracellular β-glucan produced by Agrobacterium sp. ZX09, has been reported to exhibit a wide range of biological effects. The aims of the present study were to investigate the protective effect of salecan against Concanavalin A (ConA)-induced hepatitis, a well-established animal model of immune-mediated liver injury, and to search for possible mechanisms. C57BL/6 mice were pretreated with salecan followed by ConA injection. Salecan treatment significantly reduced ConA-induced acute liver injury, and suppressed the expression and secretion of inflammatory cytokines including interferon (IFN)-γ, interleukin (IL)-6 and IL-1β in ConA-induced liver injury model. The high expression levels of chemokines andmore » adhesion molecules such as MIP-1α, MIP-1β, ICAM-1, MCP-1 and RANTES in the liver induced by ConA were also down-regulated after salecan treatment. Salecan inhibited the infiltration and activation of inflammatory cells, especially T cells, in the liver induced by ConA. Moreover, salecan reversed the metabolic profiles of ConA-treated mice towards the control group by partly recovering the metabolic perturbations induced by ConA. Our results suggest the preventive and therapeutic potential of salecan in immune-mediated hepatitis. - Highlights: • Salecan treatment significantly reduced ConA-induced liver injury. • Salecan suppressed the expression and secretion of inflammatory cytokines. • Salecan decreased the expression of chemokines and adhesion molecules in liver. • Salecan inhibited the infiltration and activation of T cells induced by ConA. • Salecan partly recovered the metabolic perturbations induced by ConA.« less

  10. Concomitants of alcoholism: differential effects of thiamine deficiency, liver damage, and food deprivation on the rat brain in vivo.

    PubMed

    Zahr, Natalie M; Sullivan, Edith V; Rohlfing, Torsten; Mayer, Dirk; Collins, Amy M; Luong, Richard; Pfefferbaum, Adolf

    2016-07-01

    Serious neurological concomitants of alcoholism include Wernicke's encephalopathy (WE), Korsakoff's syndrome (KS), and hepatic encephalopathy (HE). This study was conducted in animal models to determine neuroradiological signatures associated with liver damage caused by carbon tetrachloride (CCl4), thiamine deficiency caused by pyrithiamine treatment, and nonspecific nutritional deficiency caused by food deprivation. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) were used to evaluate brains of wild-type Wistar rats at baseline and following treatment. Similar to observations in ethanol (EtOH) exposure models, thiamine deficiency caused enlargement of the lateral ventricles. Liver damage was not associated with effects on cerebrospinal fluid volumes, whereas food deprivation caused modest enlargement of the cisterns. In contrast to what has repeatedly been shown in EtOH exposure models, in which levels of choline-containing compounds (Cho) measured by MRS are elevated, Cho levels in treated animals in all three experiments (i.e., liver damage, thiamine deficiency, and food deprivation) were lower than those in baseline or controls. These results add to the growing body of literature suggesting that MRS-detectable Cho is labile and can depend on a number of variables that are not often considered in human experiments. These results also suggest that reductions in Cho observed in humans with alcohol use disorder (AUD) may well be due to mild manifestations of concomitants of AUD such as liver damage or nutritional deficiencies and not necessarily to alcohol consumption per se.

  11. Autoxidation and toxicant-induced oxidation of lipid and DNA in monkey liver: reduction of molecular damage by melatonin.

    PubMed

    Cabrer, J; Burkhardt, S; Tan, D X; Manchester, L C; Karbownik, M; Reiter, R J

    2001-11-01

    Melatonin, the main secretory product of the pineal gland, is a free radical scavenger and antioxidant which protects against oxidative damage due to a variety of toxicants. However, there is little information regarding melatonin's antioxidative capacity in tissues of primates. In this study we examined the protective effects of melatonin in monkey liver homogenates against lipid damage that occurred as a result of autoxidation or that induced by exogenous addition of H202 and ferrous iron (Fe2+). Additionally, we tested melatonin's protective effect against oxidative damage to DNA induced by chromium(III) (CrIII) plus H202. The levels of malondialdehyde and 4-hydroxyalkenals were assayed as an index of lipid peroxidation, and the concentrations of 8-hydroxydeoxyguanosine (8-OHdG) as an endpoint of oxidative DNA damage. The increases in malondialdehyde+4-hydroxyalkenals concentrations as a consequence of autoxidation or after the addition of H202 plus Fe2+ to the homogenates were time-dependent. The accumulation of these damaged products due to either auto-oxidative processes or induced by H202 and Fe2+ were significantly reduced by melatonin in a concentration-dependent-manner. The levels of 8-OHdG were elevated in purified monkey liver DNA incubated with a combination of CrCl3 plus H2O2. This rise in oxidatively damaged DNA was prevented by 10 microM concentration of melatonin. Also, melatonin reduced the damage to DNA that was caused by auto-oxidative processes. These findings in monkey liver tissue document the ability of melatonin to protect against oxidative damage to both lipid and DNA in primate tissue, as observed previously in rodent tissue. The findings provide support for the use of melatonin as suitable agent to reduce damage inflicted by free radical species in primates.

  12. Effect of Hibiscus sabdariffa extract on high fat diet-induced obesity and liver damage in hamsters.

    PubMed

    Huang, To-Wei; Chang, Chia-Ling; Kao, Erl-Shyh; Lin, Jenq-Horng

    2015-01-01

    Obesity is a chronic metabolic disorder associated with an increase in adipogenesis and often accompanied with fatty liver disease. In this study, we investigated the anti-obesity effects of Hibiscus sabdariffa water extract (HSE) in vivo. Eight-weeks-old male mice were divided into six groups (n=8 per group) and were fed either normal feed, a high fat diet (HFD), HFD supplemented with different concentrations of HSE, or HFD supplemented with anthocyanin. After 10 weeks of feeding, all the blood and livers were collected for further analysis. Mesocricetus auratus hamster fed with a high-fat diet developed symptoms of obesity, as determined from their body weight change and from their plasma lipid levels. Meanwhile, HSE treatment reduced fat accumulation in the livers of hamsters fed with HFD in a concentration-dependent manner. Administration of HSE reduced the levels of liver cholesterol and triglycerides, which were elevated by HFD. Analysis of the effect of HSE on paraoxonase 1, an antioxidant liver enzyme, revealed that HSE potentially regulates lipid peroxides and protects organs from oxidation-associated damage. The markers of liver damage such as serum alanine aminotransferase and aspartate aminotransferase levels that were elevated by HFD were also reduced on HSE treatment. The effects of HSE were as effective as treatment with anthocyanin; therefore the anthocyanins present in the HSE may play a crucial role in the protection established against HFD-induced obesity. In conclusion HSE administration constitutes an effective and viable treatment strategy against the development and consequences of obesity.

  13. Role of geraniol against lead acetate-mediated hepatic damage and their interaction with liver carboxylesterase activity in rats.

    PubMed

    Ozkaya, Ahmet; Sahin, Zafer; Kuzu, Muslum; Saglam, Yavuz Selim; Ozkaraca, Mustafa; Uckun, Mirac; Yologlu, Ertan; Comakli, Veysel; Demirdag, Ramazan; Yologlu, Semra

    2018-02-01

    In this study, the effect of geraniol (50 mg/kg for 30 d), a natural antioxidant and repellent/antifeedant monoterpene, in a rat model of lead acetate-induced (500 ppm for 30 d) liver damage was evaluated. Hepatic malondialdehyde increased in the lead acetate group. Reduced glutathione unchanged, but glutathione S-transferase, glutathione reductase, as well as carboxylesterase activities decreased in geraniol, lead acetate and geraniol + lead acetate groups. 8-OhDG immunoreactivity, mononuclear cell infiltrations and hepatic lead concentration were lower in the geraniol + lead acetate group than the lead acetate group. Serum aspartate aminotransferase and alanine aminotransferase activities increased in the Pb acetate group. In conclusion, lead acetate causes oxidative and toxic damage in the liver and this effect can reduce with geraniol treatment. However, we first observed that lead acetate, as well as geraniol, can affect liver carboxylesterase activity.

  14. Rat liver mitochondrial damage under acute or chronic carbon tetrachloride-induced intoxication: Protection by melatonin and cranberry flavonoids

    SciTech Connect

    Cheshchevik, V.T.; Department of Biochemistry, Yanka Kupala Grodno State University, Len. Kom. Blvd. - 50, 230017 Grodno; Lapshina, E.A.

    In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride – induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, pmore » < 0.05). Short-term melatonin treatment (10 mg/kg, three times) of rats did not reduce the degree of toxic mitochondrial dysfunction but decreased the enhanced NO production. After 30-day chronic intoxication, no significant change in the respiratory activity of liver mitochondria was observed, despite marked changes in the redox-balance of mitochondria. The activities of the mitochondrial enzymes, succinate dehydrogenase and glutathione peroxidase, as well as that of cytoplasmic catalase in liver cells were inhibited significantly. Mitochondria isolated from the livers of the rats chronically treated with CCl{sub 4} displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl{sub 4}, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage

  15. Experimental acute alcohol pancreatitis-related liver damage and endotoxemia: synbiotics but not metronidazole have a protective effect.

    PubMed

    Marotta, F; Barreto, R; Wu, C C; Naito, Y; Gelosa, F; Lorenzetti, A; Yoshioka, M; Fesce, E

    2005-01-01

    The aim of this study was to test the effect of gut manipulation by either novel synbiotics or by metronidazole on either endotoxemia or the severity of liver damage in the course of acute pancreatitis from alcohol ingestion. Sprague-Dawley rats were fed for 1 week through an intragastric tube a liquid diet with either: (i) 1 mL t.i.d. of a mixture of synbiotics (Lactobacillus acidophilus, Lactobacillus helveticus and Bifidobacterium in an enriched medium); (ii) 20 mg/kg t.i.d. metronidazole; or (iii) standard diet. Then, acute pancreatitis was induced by caerulein and when the disease was full-blown, rats were fed an alcohol-rich diet. Synbiotic and metronidazole treatment was given for a further 2 weeks. Transaminase and endotoxemia levels were measured before treatment, after 6 h, after 24 h and 2 weeks later, at the time the rats were killed. Liver samples were obtained for histological analysis. Synbiotics but not metronidazole improved the acute pancreatitis-induced increase in endotoxemia and transaminase levels. The addition of alcohol worsened these variables to a limited extent in the synbiotic-treated group, while metronidazole had a negative effect on liver damage. Gut flora pretreatment with synbiotics was able to effectively protect against endotoxin/bacterial translocation, as well as liver damage in the course of acute pancreatitis and concomitant heavy alcohol consumption. The beneficial effect of synbiotics on liver histology seems to be correlated with endotoxemia. Metronidazole did not produce such a beneficial effect; in fact, it further worsened liver damage when alcohol was added to the background of ongoing acute pancreatic inflammation.

  16. Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats.

    PubMed

    Karimi-Khouzani, Omid; Heidarian, Esfandiar; Amini, Sayed Asadollah

    2017-08-01

    Fluoxetine-induced liver damage is a cause of chronic liver disease. In the present study the hepatoprotective effects of gallic acid against fluoxetine-induced liver damage were examined. Forty-eight male rats were divided into six groups as follow: group 1, the control group; group 2, rats receiving fluoxetine (24mg/kg bw daily, po) without treatment; group 3, rats receiving 24mg/kg bw fluoxetine, treated with 50mg/kg bw silymarin and groups 4, 5, and 6 in which gallic acid (50, 100, and 200mg/kg bw, po, respectively) was prescribed after the consumption of fluoxetine. The histopathological changes of hepatic tissues were checked out. Fluoxetine caused a significant increase in the levels of serum glutamate oxaloacetate transaminase (GOT), serum glutamate pyruvate transaminase (GPT), lipid profiles, urea, fasting blood sugar (FBS), creatinine (Cr), protein carbonyl (PC) content, malondialdehyde (MDA), and liver TNF-α as an inflammatory element. Also, the obtained results of group 2 revealed a significant decline in ferric reducing ability of plasma (FRAP), liver catalase (CAT), superoxide dismutase (SOD), and vitamin C levels. The treatment with gallic acid showed significant ameliorations in abnormalities of fluoxetine-induced liver injury as represented by the improvement of hepatic CAT, SOD activities, vitamin C levels, serum biochemical parameters, and histopathological changes, in addition to the recovery of antioxidant defense system status. Gallic acid has inhibitory effects on fluoxetine-induced liver damage. The effect of gallic acid is derived from free radical scavenging properties and the anti-inflammatory effect related to TNF-α. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  17. Analysis of liver damage from radon, X-ray, or alcohol treatments in mice using a self-organizing map.

    PubMed

    Kanzaki, Norie; Kataoka, Takahiro; Etani, Reo; Sasaoka, Kaori; Kanagawa, Akihiro; Yamaoka, Kiyonori

    2017-01-01

    In our previous studies, we found that low-dose radiation inhibits oxidative stress-induced diseases due to increased antioxidants. Although these effects of low-dose radiation were demonstrated, further research was needed to clarify the effects. However, the analysis of oxidative stress is challenging, especially that of low levels of oxidative stress, because antioxidative substances are intricately involved. Thus, we proposed an approach for analysing oxidative liver damage via use of a self-organizing map (SOM)-a novel and comprehensive technique for evaluating hepatic and antioxidative function. Mice were treated with radon inhalation, irradiated with X-rays, or subjected to intraperitoneal injection of alcohol. We evaluated the oxidative damage levels in the liver from the SOM results for hepatic function and antioxidative substances. The results showed that the effects of low-dose irradiation (radon inhalation at a concentration of up to 2000 Bq/m 3 , or X-irradiation at a dose of up to 2.0 Gy) were comparable with the effect of alcohol administration at 0.5 g/kg bodyweight. Analysis using the SOM to discriminate small changes was made possible by its ability to 'learn' to adapt to unexpected changes. Moreover, when using a spherical SOM, the method comprehensively examined liver damage by radon, X-ray, and alcohol. We found that the types of liver damage caused by radon, X-rays, and alcohol have different characteristics. Therefore, our approaches would be useful as a method for evaluating oxidative liver damage caused by radon, X-rays and alcohol. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  18. Hepatoprotective effect of collagen peptides from cod skin against liver oxidative damage in vitro and in vivo.

    PubMed

    Han, Yantao; Xie, Jing; Gao, Hui; Xia, Yunqiu; Chen, Xuehong; Wang, Chunbo

    2015-03-01

    The objective of this study was to investigate the hepatoprotective effect of cod skin collagen peptides (CSCP), isolated from fishing industrial by-products, in vitro and in vivo. Effect of CSCP on cell proliferation of normal and H2O2-damaged Chang liver cells was determined by MTT assay in vitro. Two animal models, CCl4-induced and acetaminophenum-induced acute hepatotoxicity, were established to assess the hepatoprotective effect of CSCP. Liver weight index, serum ALT and AST, antioxidant enzymes, and lipid peroxidation product were used as the markers of liver toxicity. The cell viability in the H2O2-treated Chang liver cells was remarkably increased when pretreated with CSCP from 100 to 1,000 µg/ml in a dose-dependent manner. CSCP pretreatment also alleviated the CCL4-induced liver index loss, while no marked changes were found in acetaminophenum-treated mice. Furthermore, CSCP pulled down serum ALT and AST level, increased the activities of SOD and CAT, and decreased MDA in both murine models of acute liver toxicity. Pretreatment with CSCP protected liver tissue against oxidative injure in vivo and in vitro. The underlying mechanism might involve enhancement in the activities of antioxidant enzymes and reduction in the lipid peroxidation.

  19. Role of TRAIL and the pro-apoptotic Bcl-2 homolog Bim in acetaminophen-induced liver damage

    PubMed Central

    Badmann, A; Keough, A; Kaufmann, T; Bouillet, P; Brunner, T; Corazza, N

    2011-01-01

    Acetaminophen (N-acetyl-para-aminophenol (APAP), paracetamol) is a commonly used analgesic and antipyretic agent. Although considered safe at therapeutic doses, accidental or intentional overdose causes acute liver failure characterized by centrilobular hepatic necrosis with high morbidity and mortality. Although many molecular aspects of APAP-induced cell death have been described, no conclusive mechanism has been proposed. We recently identified TNF-related apoptosis-inducing ligand (TRAIL) and c-Jun kinase (JNK)-dependent activation of the pro-apoptotic Bcl-2 homolog Bim as an important apoptosis amplification pathway in hepatocytes. In this study, we, thus, investigated the role of TRAIL, c-JNK and Bim in APAP-induced liver damage. Our results demonstrate that TRAIL strongly synergizes with APAP in inducing cell death in hepatocyte-like cells lines and primary hepatocyte. Furthermore, we found that APAP strongly induces the expression of Bim in a c-JNK-dependent manner. Consequently, TRAIL- or Bim-deficient mice were substantially protected from APAP-induced liver damage. This study identifies the TRAIL-JNK-Bim axis as a novel target in the treatment of APAP-induced liver damage and substantiates its general role in hepatocyte death. PMID:21654829

  20. Differential Simultaneous Liver and Kidney Transplant Benefit Based on Severity of Liver Damage at the Time of Transplantation

    PubMed Central

    Habib, Shahid; Khan, Khalid; Hsu, Chiu-Hsieh; Meister, Edward; Rana, Abbas; Boyer, Thomas

    2017-01-01

    Background We evaluated the concept of whether liver failure patients with a superimposed kidney injury receiving a simultaneous liver and kidney transplant (SLKT) have similar outcomes compared to patients with liver failure without a kidney injury receiving a liver transplantation (LT) alone. Methods Using data from the United Network of Organ Sharing (UNOS) database, patients were divided into five groups based on pre-transplant model for end-stage liver disease (MELD) scores and categorized as not having (serum creatinine (sCr) ≤ 1.5 mg/dL) or having (sCr > 1.5 mg/dL) renal dysfunction. Of 30,958 patients undergoing LT, 14,679 (47.5%) had renal dysfunction, and of those, 5,084 (16.4%) had dialysis. Results Survival in those (liver failure with renal dysfunction) receiving SLKT was significantly worse (P < 0.001) as compared to those with sCr < 1.5 mg/dL (liver failure only). The highest mortality rate observed was 21% in the 36+ MELD group with renal dysfunction with or without SLKT. In high MELD recipients (MELD > 30) with renal dysfunction, presence of renal dysfunction affects the outcome and SLKT does not improve survival. In low MELD recipients (16 - 20), presence of renal dysfunction at the time of transplantation does affect post-transplant survival, but survival is improved with SLKT. Conclusions SLKT improved 1-year survival only in low MELD (16 - 20) recipients but not in other groups. Performance of SLKT should be limited to patients where a benefit in survival and post-transplant outcomes can be demonstrated. PMID:28496531

  1. Cranberry flavonoids prevent toxic rat liver mitochondrial damage in vivo and scavenge free radicals in vitro.

    PubMed

    Lapshina, Elena A; Zamaraeva, Maria; Cheshchevik, Vitali T; Olchowik-Grabarek, Ewa; Sekowski, Szymon; Zukowska, Izabela; Golovach, Nina G; Burd, Vasili N; Zavodnik, Ilya B

    2015-06-01

    The present study was undertaken for further elucidation of the mechanisms of flavonoid biological activity, focusing on the antioxidative and protective effects of cranberry flavonoids in free radical-generating systems and those on mitochondrial ultrastructure during carbon tetrachloride-induced rat intoxication. Treatment of rats with cranberry flavonoids (7 mg/kg) during chronic carbon tetrachloride-induced intoxication led to prevention of mitochondrial damage, including fragmentation, rupture and local loss of the outer mitochondrial membrane. In radical-generating systems, cranberry flavonoids effectively scavenged nitric oxide (IC50  = 4.4 ± 0.4 µg/ml), superoxide anion radicals (IC50  = 2.8 ± 0.3 µg/ml) and hydroxyl radicals (IC50  = 53 ± 4 µg/ml). The IC50 for reduction of 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH) was 2.2 ± 0.3 µg/ml. Flavonoids prevented to some extent lipid peroxidation in liposomal membranes and glutathione oxidation in erythrocytes treated with UV irradiation or organic hydroperoxides as well as decreased the rigidity of the outer leaflet of the liposomal membranes. The hepatoprotective potential of cranberry flavonoids could be due to specific prevention of rat liver mitochondrial damage. The mitochondria-addressed effects of flavonoids might be related both to radical-scavenging properties and modulation of various mitochondrial events. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Effects of seaweed-restructured pork diets enriched or not with cholesterol on rat cholesterolaemia and liver damage.

    PubMed

    Schultz Moreira, Adriana R; García-Fernández, Rosa A; Bocanegra, Aranzazu; Méndez, M Teresa; Bastida, Sara; Benedí, Juana; Sánchez-Reus, M Isabel; Sánchez-Muniz, Francisco J

    2013-06-01

    Seaweed enriched-restructured pork (RP) is a potential functional food. However, indications of adverse effects associated with herbal medications, which include among others liver failure, toxic hepatitis, and death have been reported. Cholesterol feeding produces hepatomegalia and fat liver infiltration. The effect of seaweed-RP diet, cholesterol-enriched or not, on plasma cholesterol, liver damage markers, structure, and cytochrome CYP4A-1 were evaluated after 5 wk. Eight rat groups were fed a mix of 85% AIN-93M rodent-diet plus 15% RP. The Cholesterol-control (CC), Cholesterol-Wakame (CW), Cholesterol-Nori (CN) and Cholesterol-Sea Spaghetti (CS) groups respectively consumed similar diets to control (C), Wakame (W), Nori (N), and Sea Spaghetti (S) but as part of hypercholesterolaemic diets. CN and CS significantly blocked the hypercholesterolaemic effect observed in CC group. After 5-wk, N and S diets increased the CYP4A-1 expression. However, seaweed-RPs were unable to reduce the histological liver alterations observed in CC group. Larger and more abundant hepatocellular alterations were found in CS and CN rats suggesting that the hypocholesterolaemic effects of these seaweed-RPs seem to be a two-edged sword as they increased liver damage. Future studies are needed to understand the involved mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Aldosterone induces fibrosis, oxidative stress and DNA damage in livers of male rats independent of blood pressure changes

    SciTech Connect

    Queisser, Nina; Happ, Kathrin; Link, Samuel

    Mineralocorticoid receptor blockers show antifibrotic potential in hepatic fibrosis. The mechanism of this protective effect is not known yet, although reactive oxygen species seem to play an important role. Here, we investigated the effects of elevated levels of aldosterone (Ald), the primary ligand of the mineralocorticoid receptor, on livers of rats in a hyperaldosteronism model: aldosterone-induced hypertension. Male Sprague–Dawley rats were treated for 4 weeks with aldosterone. To distinguish if damage caused in the liver depended on increased blood pressure or on increased Ald levels, the mineralocorticoid receptor antagonist spironolactone was given in a subtherapeutic dose, not normalizing blood pressure.more » To investigate the impact of oxidative stress, the antioxidant tempol was administered. Aldosterone induced fibrosis, detected histopathologically, and by expression analysis of the fibrosis marker, α-smooth muscle actin. Further, the mRNA amount of the profibrotic cytokine TGF-β was increased significantly. Fibrosis could be reduced by scavenging reactive oxygen species, and also by blocking the mineralocorticoid receptor. Furthermore, aldosterone treatment caused oxidative stress and DNA double strand breaks in livers, as well as the elevation of DNA repair activity. An increase of the transcription factor Nrf2, the main regulator of the antioxidative response could be observed, and of its target genes heme oxygenase-1 and γ-glutamylcysteine synthetase. All these effects of aldosterone were prevented by spironolactone and tempol. Already after 4 weeks of treatment, aldosteroneinfusion induced fibrosis in the liver. This effect was independent of elevated blood pressure. DNA damage caused by aldosterone might contribute to fibrosis progression when aldosterone is chronically increased. - Highlights: • Aldosterone has direct profibrotic effects on the liver independent of blood pressure. • Fibrosis is mediated by the mineralocorticoid

  4. Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver-bone axis.

    PubMed

    Nussler, Andreas K; Wildemann, Britt; Freude, Thomas; Litzka, Christian; Soldo, Petra; Friess, Helmut; Hammad, Seddik; Hengstler, Jan G; Braun, Karl F; Trak-Smayra, Viviane; Godoy, Patricio; Ehnert, Sabrina

    2014-04-01

    Patients with chronic liver diseases frequently exhibit decreased bone mineral densities (BMD), which is defined as hepatic osteodystrophy (HOD). HOD is a multifactorial disease whose regulatory mechanisms are barely understood. Thus, an early diagnosis and therapy is hardly possible. Therefore, the aim of our study consisted in characterizing a mouse model reflecting the human pathomechanism. Serum samples were collected from patients with chronic liver diseases and 12-week old C57Bl6/N mice after 6-week treatment with carbon tetrachloride (CCl4). Repetitive injections of CCl4 induced liver damage in mice, resembling liver fibrosis in patients, as assessed by serum analysis and histological staining. Although CCl4 did not affect primary osteoblast cultures, μCT analysis revealed significantly decreased BMD, bone volume, trabecular number and thickness in CCl4-treated mice. In both HOD patients and CCl4-treated mice, an altered vitamin D metabolism with decreased CYP27A1, CYP2R1, vitamin D-binding protein GC and increased 7-dehydrocholesterol reductase hepatic gene expression, results in decreased 25-OH vitamin D serum levels. Moreover, both groups exhibit excessively high active transforming growth factor-beta (TGF-β) serum levels, inhibiting osteoblast function in vitro. Summarizing, our mouse model presents possible mediators of HOD, e.g. altered vitamin D metabolism and increased active TGF-β. Liver damage and significant changes in bone structure and mineralization are already visible by μCT analysis after 6 weeks of CCl4 treatment. This fast response and easy transferability makes it an ideal model to investigate specific gene functions in HOD.

  5. Genoprotective and hepatoprotective effects of Guarana (Paullinia cupana Mart. var. sorbilis) on CCl4-induced liver damage in rats.

    PubMed

    Kober, Helena; Tatsch, Etiane; Torbitz, Vanessa Dorneles; Cargnin, Lara Peruzzolo; Sangoi, Manuela Borges; Bochi, Guilherme Vargas; da Silva, Andreia Regina Haas; Barbisan, Fernanda; Ribeiro, Euler Esteves; da Cruz, Ivana Beatrice Mânica; Moresco, Rafael Noal

    2016-01-01

    Several biological effects of Paullinia cupana (guarana) have been demonstrated, but little information is available on its effects on the liver. The current study was designed to evaluate the hepatoprotective and genoprotective effects of powder seeds from guarana on CCl4-induced liver injury in rats. Male Wistar rats were pretreated with guarana powder (100, 300 and 600 mg/kg) or silymarin 100 mg/kg daily for 14 days before treatment with a single dose of CCl4 (50% CCl4, 1 mL/kg, intraperitoneally). The treatment with CCl4 significantly increased the serum activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In addition, CCl4 increased the DNA damage index in hepatocytes. Guarana in all concentrations was effective in decreasing the ALT and AST activities when compared with the CCl4-treated group. The treatment with guarana decreased DNA damage index when compared with the CCl4-treated group. In addition, the DNA damage index showed a significant positive correlation with AST and ALT. These results indicate that the guarana has hepatoprotective activity and prevents the DNA strand breakage in the CCl4-induced liver damage in rats.

  6. The potential antifibrotic impact of apocynin and alpha-lipoic acid in concanavalin A-induced liver fibrosis in rats: Role of NADPH oxidases 1 and 4.

    PubMed

    Fayed, Mostafa R; El-Naga, Reem N; Akool, El-Sayed; El-Demerdash, Ebtehal

    2018-01-01

    Liver fibrosis results from chronic inflammation that precipitates excessive accumulation of extracellular matrix. Oxidative stress is involved in its pathogenesis. This study aimed to elucidate the potential antifibrotic effect of the NADPH oxidase (NOX) inhibitor, apocynin against concanavalin A (ConA)-induced immunological model of liver fibrosis, and to investigate the ability of the antioxidant, alpha-lipoic acid (α-LA) to potentiate this effect. Rats were treated with apocynin and/or α-LA for six weeks. Hepatotoxicity indices, oxidative stress, insulin, NOXs, inflammatory and liver fibrosis markers were assessed. Treatment of animals with apocynin and α-LA significantly ameliorated the changes in liver functions and histopathological architecture induced by ConA. Liver fibrosis induced by ConA was evident where alpha-smooth muscle actin and transforming growth factor- beta1 were elevated, which was further confirmed by Masson's trichrome stain and increased hydroxyproline. Co-treatment with apocynin and α-LA significantly reduced their expression. Besides, apocynin and α-LA significantly ameliorated oxidative stress injury evoked by ConA, as evidenced by enhancing reduced glutathione content, antioxidant enzymes activities and decreasing lipid peroxides. ConA induced a significant elevation in serum insulin level and inflammatory markers; tumor necrosis factor-alpha, interleukin-6 and nuclear factor kappa b. Furthermore, the mRNA tissue expression of NOXs 1 and 4 was found to be elevated in the ConA group. All these elevations were significantly reduced by apocynin and α-LA co-treatment. These findings indicate that using apocynin and α-LA in combination possess marked antifibrotic effects, and that NOX enzymes are partially involved in the pathogenesis of ConA-induced liver fibrosis.

  7. Hepatoprotective effect of manual acupuncture at acupoint GB34 against CCl4-induced chronic liver damage in rats

    PubMed Central

    Yim, Yun-Kyoung; Lee, Hyun; Hong, Kwon-Eui; Kim, Young-Il; Lee, Byung-Ryul; Kim, Tae-Han; Yi, Ji-Young

    2006-01-01

    AIM: To investigate the hepatoprotective effect of manual acupuncture at Yanglingquan (GB34) on CCl4-induced chronic liver damage in rats. METHODS: Rats were injected intraperitoneally with CCl4 (1 mL/kg) and treated with manual acupuncture using reinforcing manipulation techniques at left GB34 (Yanglingquan) 3 times a week for 10 wk. A non-acupoint in left gluteal area was selected as a sham point. To estimate the hepatoprotective effect of manual acupuncture at GB34, measurement of liver index, biochemical assays including serum ALT, AST, ALP and total cholesterol, histological analysis and blood cell counts were conducted. RESULTS: Manual acupuncture at GB34 reduced the liver index, serum ALT, AST, ALP and total cholesterol levels as compared with the control group and the sham acupuncture group. It also increased and normalized the populations of WBC and lymphocytes. CONCLUSION: Manual acupuncture with reinforcing manipulation techniques at left GB34 reduces liver toxicity, protects liver function and liver tissue, and normalizes immune activity in CCl4-intoxicated rats. PMID:16610030

  8. Turmeric extract and its active compound, curcumin, protect against chronic CCl4-induced liver damage by enhancing antioxidation.

    PubMed

    Lee, Hwa-Young; Kim, Seung-Wook; Lee, Geum-Hwa; Choi, Min-Kyung; Jung, Han-Wool; Kim, Young-Jun; Kwon, Ho-Jeong; Chae, Han-Jung

    2016-08-26

    Curcumin, a major active component of turmeric, has previously been reported to alleviate liver damage. Here, we investigated the mechanism by which turmeric and curcumin protect the liver against carbon tetrachloride (CCl4)-induced injury in rats. We hypothesized that turmeric extract and curcumin protect the liver from CCl4-induced liver injury by reducing oxidative stress, inhibiting lipid peroxidation, and increasing glutathione peroxidase activation. Chronic hepatic stress was induced by a single intraperitoneal injection of CCl4 (0.1 ml/kg body weight) into rats. Turmeric extracts and curcumin were administered once a day for 4 weeks at three dose levels (100, 200, and 300 mg/kg/day). We performed ALT and AST also measured of total lipid, triglyceride, cholesterol levels, and lipid peroxidation. We found that turmeric extract and curcumin significantly protect against liver injury by decreasing the activities of serum aspartate aminotransferase and alanine aminotransferase and by improving the hepatic glutathione content, leading to a reduced level of lipid peroxidase. Our data suggest that turmeric extract and curcumin protect the liver from chronic CCl4-induced injury in rats by suppressing hepatic oxidative stress. Therefore, turmeric extract and curcumin are potential therapeutic antioxidant agents for the treatment of hepatic disease.

  9. 10-Hydroxy-2-decenoic acid prevents ultraviolet A-induced damage and matrix metalloproteinases expression in human dermal fibroblasts.

    PubMed

    Zheng, Jinfen; Lai, Wei; Zhu, Guoxing; Wan, Miaojian; Chen, Jian; Tai, Yan; Lu, Chun

    2013-10-01

    10-Hydroxy-2-decenoic acid (10-HDA) is a major fatty acid component of royal jelly, which has been reported to have a variety of beneficial pharmacological characteristics. However, the effects of 10-HDA on skin photoageing and its potential mechanism of action are unclear. We investigated the protective effects of 10-HDA on ultraviolet (UV) A-induced damage in human dermal fibroblasts (HDFs). We then explored the inhibitory effects of 10-HDA on UVA-induced matrix metalloproteinases (MMPs) expression and elucidated the signalling pathways controlling MMPs inhibition. Primary human dermal fibroblasts were exposed to UVA. Cell proliferation, cellular senescent state and collagen content were analysed using CCK-8, senescence-associated β-galactosidase staining and Sircol collagen assay, respectively. Fluorometric assays were performed to detect the formation of reactive oxygen species (ROS) in the cells. The mRNA levels of MMP-1, MMP-3 and type I (α1) collagen were determined by quantitative real-time PCR. Western blot was applied to detect the expression of MMP-1, MMP-3, JNK and p38 MAPK. HDFs treated with 10-HDA were significantly protected from UVA-induced cytotoxicity, ROS, cellular senescence and stimulated collagen production. Moreover, 10-HDA suppressed the UVA-induced expression of MMP-1 and MMP-3 at both the transcriptional and protein levels. Treatment with 10-HDA also reduced the UVA-induced activation of the JNK and p38 MAPK pathways. The data obtained in this study provide evidence that 10-HDA could prevent UVA-induced damage and inhibit MMP-1 and MMP-3 expressions. Therefore, 10-HDA may be a potential agent for the prevention and treatment of skin photoageing. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  10. Liver damage, proliferation, and progenitor cell markers in experimental necrotizing enterocolitis.

    PubMed

    Miyake, Hiromu; Li, Bo; Lee, Carol; Koike, Yuhki; Chen, Yong; Seo, Shogo; Pierro, Agostino

    2018-05-01

    Necrotizing enterocolitis (NEC) is a disease known to cause injury to multiple organs including the liver. Liver regeneration is essential for the recovery after NEC-induced liver injury. Our aim was to investigate hepatic proliferation and progenitor cell marker expression in experimental NEC. Following ethical approval (#32238), NEC was induced in mice by hypoxia, gavage feeding of hyperosmolar formula, and lipopolysaccharide. Breastfed pups were used as control. We analyzed serum ALT level, liver inflammatory cytokines, liver proliferation markers, and progenitor cell marker expression. Comparison was made between NEC and controls. Serum ALT level was higher in NEC (p<0.05). The mRNA expression of inflammatory cytokines in the liver was also higher in NEC (IL6: p<0.05, TNF-α: p<0.01). Conversely, mRNA expression of proliferation markers in the liver was lower in NEC (Ki67; p<0.01, PCNA: p<0.01). LGR5 expression was also significantly decreased in NEC as demonstrated by mRNA (p<0.05) and protein (p<0.01) levels. Inflammatory injury was present in the liver during experimental NEC. Proliferation and LGR5 expression were impaired in the NEC liver. Modulation of progenitor cell expressing LGR5 may result in stimulation of liver regeneration in NEC-induced liver injury and improved clinical outcome. Level IV. Copyright © 2018. Published by Elsevier Inc.

  11. Effect of Hibiscus sabdariffa extract on high fat diet–induced obesity and liver damage in hamsters

    PubMed Central

    Huang, To-Wei; Chang, Chia-Ling; Kao, Erl-Shyh; Lin, Jenq-Horng

    2015-01-01

    Background Obesity is a chronic metabolic disorder associated with an increase in adipogenesis and often accompanied with fatty liver disease. Objective In this study, we investigated the anti-obesity effects of Hibiscus sabdariffa water extract (HSE) in vivo. Method Eight-weeks-old male mice were divided into six groups (n=8 per group) and were fed either normal feed, a high fat diet (HFD), HFD supplemented with different concentrations of HSE, or HFD supplemented with anthocyanin. After 10 weeks of feeding, all the blood and livers were collected for further analysis. Results Mesocricetus auratus hamster fed with a high-fat diet developed symptoms of obesity, as determined from their body weight change and from their plasma lipid levels. Meanwhile, HSE treatment reduced fat accumulation in the livers of hamsters fed with HFD in a concentration-dependent manner. Administration of HSE reduced the levels of liver cholesterol and triglycerides, which were elevated by HFD. Analysis of the effect of HSE on paraoxonase 1, an antioxidant liver enzyme, revealed that HSE potentially regulates lipid peroxides and protects organs from oxidation-associated damage. The markers of liver damage such as serum alanine aminotransferase and aspartate aminotransferase levels that were elevated by HFD were also reduced on HSE treatment. The effects of HSE were as effective as treatment with anthocyanin; therefore the anthocyanins present in the HSE may play a crucial role in the protection established against HFD-induced obesity. Conclusions In conclusion HSE administration constitutes an effective and viable treatment strategy against the development and consequences of obesity. PMID:26475512

  12. Possible role of Arthrospira platensis in reversing oxidative stress-mediated liver damage in rats exposed to lead.

    PubMed

    Khalil, Samah R; Elhady, Walaa M; Elewa, Yaser H A; Abd El-Hameed, Noura E; Ali, Sozan A

    2018-01-01

    Environmental pollutants, particularly metallic elements, mobilized and released into the environment, eventually accumulate in the food chain and thus pose a serious threat to human and animal health. In the present study, the role of Arthrospira (Spirulina platensis; SP) as a protector against oxidative stress-mediated liver damage induced by an exposure to lead acetate (LA; as a metallic pollutant) was assessed. To achieve this aim, rats were orally administered with 300 mg/kg bw SP for 15 days, before and concurrently with an intraperitoneal injection of 50 mg/kg bw LA (6 injections throughout 15 days). As a result, co-administration of SP with LA reduced the amount of lead that accumulated in both blood and liver tissue of the exposed rats and minimized the increased levels of lipid peroxidation, protein oxidation, DNA oxidative damage, and liver enzyme endpoints. In addition, because of SP administration, the levels of depleted biomarkers of antioxidant status and total antioxidant capacity in LA-exposed rats improved. Moreover, SP protected the liver tissue against the changes caused by LA exposure and also decreased the reactivity of HSP70 in the cytoplasm of hepatocytes. Collectively, our data suggest that SP has a potential use as a food supplement in the regions highly polluted with heavy metals such as lead. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Cranberry (Vaccinium macrocarpon) extract treatment improves triglyceridemia, liver cholesterol, liver steatosis, oxidative damage and corticosteronemia in rats rendered obese by high fat diet.

    PubMed

    Peixoto, Thamara C; Moura, Egberto G; de Oliveira, Elaine; Soares, Patrícia N; Guarda, Deysla S; Bernardino, Dayse N; Ai, Xu Xue; Rodrigues, Vanessa da S T; de Souza, Gabriela Rodrigues; da Silva, Antonio Jorge Ribeiro; Figueiredo, Mariana S; Manhães, Alex C; Lisboa, Patrícia C

    2017-05-13

    Obese individuals have higher production of reactive oxygen species, which leads to oxidative damage. We hypothesize that cranberry extract (CE) can improve this dysfunction in HFD-induced obesity in rats since it has an important antioxidant activity. Here, we evaluated the effects of CE in food intake, adiposity, biochemical and hormonal parameters, lipogenic and adipogenic factors, hepatic morphology and oxidative balance in a HFD model. At postnatal day 120 (PN120), male Wistar rats were assigned into two groups: (1) SD (n = 36) fed with a standard diet and (2) HFD (n = 36), fed with a diet containing 44.5% (35.2% from lard) energy from fat. At PN150, 12 animals from SD and HFD groups were killed while the others were subdivided into four groups (n = 12/group): animals that received 200 mg/kg cranberry extract (SD CE, HFD CE) gavage/daily/30 days or water (SD, HFD). At PN180, animals were killed. HFD group showed higher body mass and visceral fat, hypercorticosteronemia, higher liver glucocorticoid sensitivity, cholesterol and triglyceride contents and microsteatosis. Also, HFD group had higher lipid peroxidation (plasma and tissues) and higher protein carbonylation (liver and adipose tissue) compared to SD group. HFD CE group showed lower body mass gain, hypotrygliceridemia, hypocorticosteronemia, and lower hepatic cholesterol and fatty acid synthase contents. HFD CE group displayed lower lipid peroxidation, protein carbonylation (liver and adipose tissue) and accumulation of liver fat compared to HFD group. Although adiposity was not completely reversed, cranberry extract improved the metabolic profile and reduced oxidative damage and steatosis in HFD-fed rats, which suggests that it can help manage obesity-related disorders.

  14. ER stress-mediated cell damage contributes to the release of EDA+ fibronectin from hepatocytes in nonalcoholic fatty liver disease.

    PubMed

    He, Lei; Yuan, Fa-Hu; Chen, Ting; Huang, Qiang; Wang, Yu; Liu, Zhi-Guo

    2017-04-01

    Fibronectin containing extra domain A (EDA + FN), a functional glycoprotein participating in several cellular processes, correlates with chronic liver disease. Herein, we aim to investigate the expression and secretion of EDA + FN from hepatocytes in nonalcoholic fatty liver disease (NAFLD) and the underlying mechanisms. Circulating levels of EDA + FN were determined by ELISA in clinical samples. Western blotting and flow cytometry were performed on L02 and HepG2 cell lines to analyze whether the levels of EDA + FN were associated with endoplasmic reticulum (ER) stress-related cell death. Circulating levels of EDA + FN in NAFLD patients were significantly higher than those in control subjects, and positively related with severity of ultrasonographic steatosis score. In cultured hepatocytes, palmitate up-regulated the expression of EDA + FN in a dose-dependent manner. Conversely, when the cells were pretreated with 4-phenylbutyrate, a specific inhibitor of ER stress, up-regulation of EDA + FN could be abrogated. Moreover, silencing CHOP by shRNA enhanced the release of EDA + FN from hepatocytes following palmitate treatment, which was involved in ER stress-related cell damage. These findings suggest that the up-regulated level of EDA + FN is associated with liver damage in NAFLD, and ER stress-mediated cell damage contributes to the release of EDA + FN from hepatocytes.

  15. Anti-oxidative protection against iron overload-induced liver damage in mice by Cajanus cajan (L.) Millsp. leaf extract.

    PubMed

    Sarkar, Rhitajit; Hazra, Bibhabasu; Mandal, Nripendranath

    2013-02-01

    In view of the contribution of iron deposition in the oxidative pathologic process of liver disease, the potential of 70% methanolic extract of C. cajan leaf (CLME) towards antioxidative protection against iron-overload-induced liver damage in mice has been investigated. DPPH radical scavenging and protection of Fenton reaction induced DNA damage was conducted in vitro. Post oral administration of CLME to iron overloaded mice, the levels of antioxidant and serum enzymes, hepatic iron, serum ferritin, lipid peroxidation, and protein carbonyl and hydroxyproline contents were measured, in comparison to deferasirox treated mice. Oral treatment of the plant extract effectively lowered the elevated levels of liver iron, lipid peroxidation, protein carbonyl and hydroxyproline. There was notable increment in the dropped levels of hepatic antioxidants. The dosage of the plant extract not only made the levels of serum enzymes approach normal value, but also counteracted the overwhelmed serum ferritin level. The in vitro studies indicated potential antioxidant activity of CLME. The histopathological observations also substantiated the ameliorative function of the plant extract. Accordingly, it is suggested that Cajanus cajan leaf can be a useful herbal remedy to suppress oxidative damage caused by iron overload.

  16. Reduced 4-Aminobiphenyl-Induced Liver Tumorigenicity but not DNA Damage in Arylamine N-Acetyltransferase Null Mice

    PubMed Central

    Sugamori, Kim S.; Brenneman, Debbie; Sanchez, Otto; Doll, Mark A.; Hein, David W.; Pierce, William M.; Grant, Denis M.

    2012-01-01

    The aromatic amine 4-aminobiphenyl (ABP) is a liver procarcinogen in mice, requiring enzymatic bioactivation to exert its tumorigenic effect. To assess the role of arylamine N-acetyltransferase (NAT)-dependent acetylation capacity in the risk for ABP-induced liver tumors, we compared 1-year liver tumor incidence following the postnatal exposure of wild-type and NAT-deficient Nat1/2(−/−) mice to ABP. At an ABP exposure of 1200 nmoles, male Nat1/2(−/−) mice had a liver tumor incidence of 36% compared to 69% in wild-type males, and at 600 nmoles there was a complete absence of tumors compared to 60% in wild-type mice. Only one female wild-type mouse had a tumor using this exposure protocol. However, levels of N-deoxyguanosin-8-yl-ABP-DNA adducts did not correlate with either the strain or sex differences in tumor incidence. These results suggest that female sex and NAT deficiency reduce risk for ABP-induced liver tumors, but by mechanisms unrelated to differences in DNA-damaging events. PMID:22193722

  17. The inverse relationship between bladder and liver in 4-aminobiphenyl-induced DNA damage

    PubMed Central

    Stablewski, Aimee B.; Vouros, Paul; Zhang, Yuesheng

    2015-01-01

    Bladder cancer risk is significantly higher in men than in women. 4-Aminobiphenyl (ABP) is a major human bladder carcinogen from tobacco smoke and other sources. In mice, male bladder is more susceptible to ABP-induced carcinogenesis than female bladder, but ABP is more carcinogenic in the livers of female mice than of male mice. Here, we show that castration causes male mice to acquire female phenotype regarding susceptibility of bladder and liver to ABP. However, spaying has little impact on organ susceptibility to ABP. Liver UDP-glucuronosyltransferases (UGTs) are believed to protect liver against but sensitize bladder to ABP, as glucuronidation of ABP and its metabolites generally reduces their toxicity and promotes their elimination via urine, but the metabolites are labile in urine, delivering carcinogenic species to the bladder. Indeed, liver expression of ABP-metabolizing human UGT1A3 transgene in mice increases bladder susceptibility to ABP. However, ABP-specific liver UGT activity is significantly higher in wild-type female mice than in their male counterparts, and castration also significantly increases ABP-specific UGT activity in the liver. Taken together, our data suggest that androgen increases bladder susceptibility to ABP via liver, likely by modulating an ABP-metabolizing liver enzyme, but exclude UGT as an important mediator. PMID:25596734

  18. Improved clinicopathologic assessments of acute liver damage due to trauma in Indian ring-necked parakeets (Psittacula krameri manillensis).

    PubMed

    Williams, Susan M; Holthaus, Lisa; Barron, Heather Wilson; Divers, Stephen J; McBride, Michael; Almy, Frederic; Bush, Sharon; Latimer, Kenneth S

    2012-06-01

    Increased activities of certain biochemical enzymes (alanine aminotransferase [ALT], aspartate aminotransferase [AST], lactate dehydrogenase [LDH], alkaline phosphatase [ALP]) have been associated with blunt liver injury in many species. To evaluate changes in plasma hepatic biochemical parameters in acute avian liver disease caused by trauma and to compare biochemical changes with histologic lesions in hepatic parenchyma, 30 healthy fasted Indian ring-necked parakeets (Psittacula krameri manillensis) were divided into 2 groups, and traumatic liver injury was caused by endoscopic liver biopsy (group 1) or by liver biopsy and crushing injury to the hepatic parenchyma with endoscopic forceps (group 2) in anesthetized birds. Blood samples were collected at baseline and at 12, 24, 36, 48, 60, 72, 84, 96, 108, and 120 hours in alternate groups to compare analyte values after injury with those at baseline. Results showed consistently decreased plasma ALP activity (excluding 1 time point) throughout the study, which was thought to be associated with isoflurane administration. Plasma glutamate dehydrogenase activity initially increased but rapidly declined thereafter and was attributed to acute focal hepatocellular injury. In both groups, increases in plasma AST, ALT, and LDH activities was most likely caused by muscle injury because creatine kinase activity was concurrently increased. Compared with baseline values, bile acid concentration and y-glutamyl transferase activity were not affected by liver biopsy or crush injury. Plasma sorbitol dehydrogenase activity was the most specific indicator of liver injury in both groups. Histologic changes correlated poorly with biochemical results, possibly because the small area of hepatic parenchyma that was damaged did not affect enzyme values substantially.

  19. Genetic parameters for both a liver damage phenotype caused by and antibody response to phenotype in dairy and beef cattle.

    PubMed

    Twomey, A J; Sayers, R G; Carroll, R I; Byrne, N; Brien, E O'; Doherty, M L; McClure, J C; Graham, D A; Berry, D P

    2016-10-01

    is a helminth parasite of economic importance to the global cattle industry, with documented high international herd prevalence. The objective of the present study was to generate the first published genetic parameter estimates for liver damage caused by as well as antibody response to in cattle. Abattoir data on the presence of live , or -damaged livers, were available between the years 2012 and 2015, inclusive. A second data set was available on cows from 68 selected dairy herds with a blood ELISA test for antibody response to in autumn 2015. Animals were identified as exposed by using herd mate phenotype, and only exposed animals were retained for analysis. The abattoir data set consisted of 20,481 dairy cows and 75,041 young dairy and beef animals, whereas the study herd data set consisted of 6,912 dairy cows. (Co)variance components for phenotypes in both data sets were estimated using animal linear mixed models. Fixed effects included in the model for both data sets were contemporary group, heterosis coefficient, recombination loss coefficient, parity, age relative to parity/age group, and stage of lactation. An additional fixed effect of abattoir by date of slaughter was included in the model for the analysis of the abattoir data. Direct additive genetic effects and a residual effect were included as random effects for all analyses. After data edits, the prevalence of liver damage caused by in cows and young cattle was 47% and 20%, respectively. The prevalence of a positive antibody response to in cows from the study herd data was 36% after data edits. The heritability of as a binary trait for dairy cows in abattoir data and study herd data was 0.03 ± 0.01 and 0.09 ± 0.02, respectively; heritability in young cattle was 0.01 ± 0.005. The additive genetic SD of as a binary trait was 0.069 and 0.050 for cows and young cattle from the abattoir data, respectively, and 0.112 from the study herd cows. The genetic correlation between liver damage caused by in

  20. Obstructive Sleep Apnea Is Associated with Liver Damage and Atherosclerosis in Patients with Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Petta, Salvatore; Marrone, Oreste; Torres, Daniele; Buttacavoli, Maria; Cammà, Calogero; Di Marco, Vito; Licata, Anna; Lo Bue, Anna; Parrinello, Gaspare; Pinto, Antonio; Salvaggio, Adriana; Tuttolomondo, Antonino; Craxì, Antonio; Bonsignore, Maria Rosaria

    2015-01-01

    Background/Aims We assessed whether obstructive sleep apnea (OSA) and nocturnal hypoxemia are associated with severity of liver fibrosis and carotid atherosclerosis in patients with biopsy-proven NAFLD and low prevalence of morbid obesity. Secondary aim was to explore the association of OSA and hypoxemia with NASH and severity of liver pathological changes. Methods Consecutive patients (n = 126) with chronically elevated ALT and NAFLD underwent STOP-BANG questionnaire to estimate OSA risk and ultrasonographic carotid assessment. In patients accepting to perform cardiorespiratory polygraphy (PG, n = 50), OSA was defined as an apnea/hypopnea index ≥5. A carotid atherosclerotic plaque was defined as a focal thickening >1.3 mm. Results Prevalence of high OSA risk was similar in patients refusing or accepting PG (76% vs 68%, p = 0.17). Among those accepting PG, overall OSA prevalence was significantly higher in patients with F2-F4 fibrosis compared to those without (72% vs 44%; p = 0.04). Significant fibrosis was independently associated with mean nocturnal oxygen saturation (SaO2)<95% (OR 3.21, 95%C.I. 1.02–7.34; p = 0.04). Prevalence of OSA tended to be higher in patients with, than in those without, carotid plaques (64% vs 40%; p = 0.08). Carotid plaques were independently associated with %time at SaO2<90% >1 (OR 6.30, 95%C.I. 1.02–12.3; p = 0.01). Conclusions In NAFLD patients with chronically elevated ALT at low prevalence of morbid obesity, OSA was highly prevalent and indexes of SaO2 resulted independently associated with severity of liver fibrosis and carotid atherosclerosis. These data suggest to consider sleep disordered breathing as a potential additional therapeutic target in severe NAFLD patients. PMID:26672595

  1. 1H NMR-based metabolomics study of liver damage induced by ginkgolic acid (15:1) in mice.

    PubMed

    Jiang, Lei; Si, Zhi-Hong; Li, Ming-Hui; Zhao, He; Fu, Yong-Hong; Xing, Yue-Xiao; Hong, Wei; Ruan, Ling-Yu; Li, Pu-Min; Wang, Jun-Song

    2017-03-20

    Ginkgolic acid (15:1) is a major toxic component in extracts obtained from Ginkgo biloba (EGb) that has allergic and genotoxic effects. This study is the first to explore the hepatotoxicity of ginkgolic acid (15:1) using a NMR (nuclear magnetic resonance)-based metabolomics approach in combination with biochemistry assays. Mice were orally administered two doses of ginkgolic acid (15:1), and mouse livers and serum were then collected for NMR recordings and biochemical assays. The levels of activity of alanine aminotransferase (ALT) and glutamic aspartate transaminase (AST) observed in the ginkgolic acid (15:1)-treated mice suggested that it had induced severe liver damage. An orthogonal signal correction partial least-squares discriminant analysis (OSC-PLSDA) performed to determine the metabolomic profile of mouse liver tissues indicated that many metabolic disturbances, especially oxidative stress and purine metabolism, were induced by ginkgolic acid (15:1). A correlation network analysis combined with information related to structural similarities further confirmed that purine metabolism was disturbed by ginkgolic acid (15:1). This mechanism might represent the link between the antitumour activity and the liver injury-inducing effect of ginkgolic acid (15:1). A SUS (Shared and Unique Structure) plot suggested that a two-dose treatment of ginkgolic acid (15:1) had generally the same effect on metabolic variations but that its effects were dose-dependent, revealing some of the common features of ginkgolic acid (15:1) dosing. This integrated metabolomics approach helped us to characterise ginkgolic acid (15:1)-induced liver damage in mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Ameliorative effect of methanol extract of Rumex vesicarius on CCl4-induced liver damage in Wistar albino rats.

    PubMed

    Ganaie, Majid Ahmad; Khan, Tajdar Husain; Siddiqui, Nasir Ali; Ansari, Mohd Nazam

    2015-08-01

    Rumex vesicarius L. (Polygonaceae), an edible plant, is reported to have many bioactive phytochemicals, especially flavonoids and anthraquinones with antioxidant and detoxifying properties. This study evaluated the methanolic extract of R. vasicarius (MERV) for hepatoprotective activity in rats against CCl4-induced liver damage. The whole plant extract was prepared and investigated for its hepatoprotective activity. Rats were pretreated with MERV (100 and 200 mg/kg, p.o.) for 7 d prior to the induction of liver damage by CCl4. Animals were then sacrificed 24 h after CCl4 administration for the biochemical (AST, ALT, and ALP activity in serum; lipid peroxidation (LPO) and glutathione (GSH) levels in liver tissue) and histological analyses. CCl4-induced hepatotoxicity was confirmed by an increase (p < 0.05) in serum AST (4.55-fold), ALT (3.51-fold), and ALP (1.82-fold) activities. CCl4-induced hepatotoxicity was also manifested by an increase (p < 0.05) in LPO (3.88-fold) and depletion of reduced glutathione (3.14-fold) activity in liver tissue. The multiple dose MERV administration at 200 mg/kg showed promising hepatoprotective activity as evident from significant decrease levels of serum AST (230.01 ± 13.21), serum ALT (82.15 ± 5.01), serum ALP (504.75 ± 19.72), hepatic LPO (3.38 ± 0.33), and increased levels of hepatic glutathione (0.34 ± 0.04) towards near normal. Further, biochemical results were confirmed by histopathological changes as compared with CCl4-intoxicated rats. The results obtained from this study indicate hepatoprotective activity of Rumex plant against CCl4-induced liver toxicity; hence, it can be used as a hepatoprotective agent.

  3. [The curative effects of different drugs on liver cell damage of rats induced by acute nickel carbonyl poisoning].

    PubMed

    Liu, Jing; Wang, Qiu-ying; Wang, Bei; Xuan, Xiao-qiang; Chen, Qiong; Xu, Dong-wei; Cheng, Ning

    2011-02-01

    To assess the curative effects of different drugs on liver cell damage of rats induced by acute nickel carbonyl poisoning. In present study 220 SD rats were divided into control group (10 rats), carbonyl nickel group (10 rats), 20 mg/kg methylprednisolone group (40 rats), 100 mg/kg DDC group (40 rats), 10 µmol/kg sodium selenite group (40 rats), 0.25 ml shenfuhuiyangtang group (40 rats) and 20 mg/kg methylprednisolone with 100 mg/kg DDC group (40 rats). All rats except for control group inhaled passively 250 mg/m(3) carbonyl nickel for 30 minutes. At 4h and 30h after exposure, the drugs were given intraperitoneally to the rats. On the 3rd and 7th days after exposure, the liver samples were taken from 10 rats each group. The DNA damage of liver cells was detected using comet assay, the ultrastructure changes in liver cells were examined under an electronmicroscope. Compared to carbonyl nickel group, the tail lengths of liver cells in 5 groups administrated at 4 h or 30 h and tested on the 3rd or 7th day after exposure decreased significantly (P < 0.05). Compared to the control group, the tail lengths of liver cells in sodium selenite and shenfuhuiyangtang groups administrated at 4h after exposure or sodium selenite, shenfuhuiyangtang and methylprednisolone with DDC groups administrated at 30h after exposure increased significantly (P < 0.05 or P < 0.01), when tested on the 3rd day after exposure. Except from methylprednisolone sub-group administrated at 4h and tested on the 7th day after exposure, the tail lengths of liver cells in other groups administrated at 4 h or 30 h and tested on the 7th day after exposure increased significantly (P < 0.05). Compared to carbonyl nickel group, the Olive moment of liver cells in 5 groups administrated at 4 h or 30 h tested on the 3rd or 7th day after exposure decreased significantly (P < 0.05 or P < 0.01). Compared to the control group, the Olive moment of liver cells in following groups (selenite and shenfuhuiyangtang groups

  4. Alpha-lipoic acid treatment of acetaminophen-induced rat liver damage.

    PubMed

    Mahmoud, Y I; Mahmoud, A A; Nassar, G

    2015-01-01

    Acetaminophen (paracetamol) is a well-tolerated analgesic and antipyretic drug when used at therapeutic doses. Overdoses, however, cause oxidative stress, which leads to acute liver failure. Alpha lipoic acid is an antioxidant that has proven effective for ameliorating many pathological conditions caused by oxidative stress. We evaluated the effect of alpha lipoic acid on the histological and histochemical alterations of liver caused by an acute overdose of acetaminophen in rats. Livers of acetaminophen-intoxicated rats were congested and showed centrilobular necrosis, vacuolar degeneration and inflammatory cell infiltration. Necrotic hepatocytes lost most of their carbohydrates, lipids and structural proteins. Liver sections from rats pre-treated with lipoic acid showed fewer pathological changes; the hepatocytes appeared moderately vacuolated with moderate staining of carbohydrates and proteins. Nevertheless, alpha lipoic acid at the dose we used did not protect the liver fully from acetaminophen-induced acute toxicity.

  5. Dose-effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children.

    PubMed

    Xiong, Xianzhi; Liu, Junling; He, Weihong; Xia, Tao; He, Ping; Chen, Xuemin; Yang, Kedi; Wang, Aiguo

    2007-01-01

    Although a dose-effect relationship between water fluoride levels and damage to liver and kidney functions in animals has been reported, it was not demonstrated in humans. To evaluate the effects of drinking water fluoride levels on the liver and kidney functions in children with and without dental fluorosis, we identified 210 children who were divided into seven groups with 30 each based on different drinking water fluoride levels in the same residential area. We found that the fluoride levels in serum and urine of these children increased as the levels of drinking water fluoride increased. There were no significant differences in the levels of total protein (TP), albumin (ALB), aspartate transamine (AST), and alanine transamine (ALT) in serum among these groups. However, the activities of serum lactic dehydrogenase (LDH), urine N-acetyl-beta-glucosaminidase (NAG), and urine gamma-glutamyl transpeptidase (gamma-GT) in children with dental fluorosis and having water fluoride of 2.15-2.96 mg/L and in children having water fluoride of 3.15-5.69 mg/L regardless of dental fluorosis were significantly higher than children exposed to water fluoride of 0.61-0.87 mg/L in a dose-response manner. In contrast to children with dental fluorosis and having water fluoride of 2.15-2.96 and 3.10-5.69 mg/L, serum LDH activity of children without dental fluorosis but exposed to the same levels of water fluoride as those with dental fluorosis were also markedly lower, but the activities of NAG and gamma-GT in their urine were not. Therefore, our results suggest that drinking water fluoride levels over 2.0mg/L can cause damage to liver and kidney functions in children and that the dental fluorosis was independent of damage to the liver but not the kidney. Further studies on the mechanisms and significance underlying damage to the liver without dental fluorosis in the exposed children are warranted.

  6. Effects of isoquinoline alkaloid berberine on lipid peroxidation, antioxidant defense system, and liver damage induced by lead acetate in rats.

    PubMed

    Hasanein, Parisa; Ghafari-Vahed, Masumeh; Khodadadi, Iraj

    2017-01-01

    Liver is considered a target organ affected by lead toxicity. Oxidative stress is among the mechanisms involved in liver damage. Here we investigated the effects of the natural alkaloid berberine on oxidative stress and hepatotoxicity induced by lead in rats. Animals received an aqueous solution of lead acetate (500 mg Pb/l in the drinking water) and/or daily oral gavage of berberine (50 mg/kg) for 8 weeks. Rats were then weighed and used for the biochemical, molecular, and histological evaluations. Lead-induced oxidative stress, shown by increasing lipid peroxidation along with a concomitant decrease in hepatic levels of thiol groups, total antioxidant capacity, the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase, and reduced versus oxidized glutathione ratio. Berberine corrected all the disturbances in oxidative stress markers induced by lead administration. Berberine also prevented the elevated levels of enzymes (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase) and the decrease in body weight and albumin. The protective effects of berberine were comparable with silymarin. Furthermore, berberine attenuated liver damage, shown by decreased necrosis and inflammatory cell infiltration. Berberine represents a potential therapeutic option against lead-induced hepatotoxicity through inhibiting lipid peroxidation and enhancing antioxidant defenses. Berberine exerted protective effects on lead-induced oxidative stress and hepatotoxicity in rats.

  7. Expression of VDAC Regulated by Extracts of Limonium sinense Ktze root Against CCl4-induced Liver Damage

    PubMed Central

    Tang, Xinhui; Gao, Jing; Chen, Jin; Xu, Lizhi; Tang, Yahong; Dou, Huan; Yu, Wen; Zhao, Xiaoning

    2007-01-01

    The expression of mitochondrial voltage-dependent anion channels (VDAC) may underlie the protective effects of Limonium sinense (Girard) Ktze root extracts (LSE) against carbon tetrachloride-induced liver damage. Pretreatment of mice with 100 mg/kg, 200 mg/kg or 400 mg/kg LSE significantly blocked the carbon tetrachloride-induced increase in both serum aspartate aminotransferase (sAST) and serum alanine aminotransferase (sALT) levels. Ultrastructural observations by electron microscope confirmed hepatoprotection, showing decreased nuclear condensation, ameliorated mitochondrial fragmentation of the cristae and less lipid deposition. Pretreatment with LSE prevented the decrease of the disruption of mitochondrial membrane potential (15.3%) observed in the liver of the carbon tetrachloride-insulted mice, further demonstrating the mitochondrial protection. In addition, LSE treatment (100-400 mg/kg) significantly increased both transcription and translation of VDAC. The above data suggests that LSE mitigates the damage to liver mitochondria induced by carbon tetrachloride, possibly through regulation of mitochondrial VDAC, one of the most important proteins in the mitochondrial outer membrane.

  8. Coexistence of hyperlipidemia and acute cerebral ischemia/reperfusion induces severe liver damage in a rat model

    PubMed Central

    Gong, Wei-Hong; Zheng, Wen-Xia; Wang, Jun; Chen, Shi-Hui; Pang, Bo; Hu, Xia-Min; Cao, Xiao-Lu

    2012-01-01

    AIM: To investigate the correlation of hyperlipemia (HL) and acute cerebral ischemia/reperfusion (I/R) injury on liver damage and its mechanism. METHODS: Rats were divided into 4 groups: control, HL, I/R and HL+I/R. After the induction of HL via a high-fat diet for 18 wk, middle cerebral artery occlusion was followed by 24 h of reperfusion to capture I/R. Serum alanine transaminase (ALT) and aspartate aminotransferase (AST) were analyzed as part of liver function tests and liver damage was further assessed by histological examination. Hepatocyte apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. The expression of genes related to apoptosis (caspase-3, bcl-2) was assayed by immunohistochemistry and Western blotting. Serum tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1) and liver mitochondrial superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA) and Ca2+ levels were measured to determine inflammatory and oxidative/antioxidative status respectively. Microsomal hydroxylase activity of the cytochrome P450 2E1 (CYP2E1)-containing enzyme was measured with aniline as the substrate, and CYP2E1 expression in the liver tissue and microsome was determined by immunohistochemistry and Western blotting respectively. RESULTS: HL alone induced by high-fat diet for 18 wk resulted in liver damage, indicated by histopathological analysis, and a considerable increase in serum ALT (25.13 ± 16.90 vs 9.56 ± 1.99, P < 0.01) and AST levels (18.01 ± 10.00 vs 11.33 ± 4.17, P < 0.05) compared with control. Moreover, HL alone induced hepatocyte apoptosis, which was determined by increased TUNEL-positive cells (4.47 ± 0.45 vs 1.5 ± 0.22, P < 0.01), higher caspase-3 and lower bcl-2 expression. Interestingly, compared with those in control, HL or I/R groups, massive increases of serum ALT (93.62 ± 24.00 vs 9.56 ± 1.99, 25.13 ± 16.90 or 12.93 ± 6.14, P < 0.01) and AST (82.32 ± 26.92 vs 11.33 ± 4

  9. Sonographic assessment of petroleum-induced hepatotoxicity in Nigerians: does biochemical assessment underestimate liver damage?

    PubMed

    Anakwue, Angel-Mary; Anakwue, Raphael; Okeji, Mark; Idigo, Felicitas; Agwu, Kenneth; Nwogu, Uloma

    2017-03-01

    Exposure to petroleum products has been shown to have significant adverse effects on the liver which can manifest either as morphological or physiological changes. The aim of the study was to assess the effects of chronic exposure to some petroleum products on the liver of exposed workers using sonography and to determine whether biochemical assessments underestimated hepatotoxicity. Abdominal ultrasound was performed on 415 exposed workers in order to evaluate liver echogenicity and size. Also, biochemical assessment of the liver was done to evaluate its function. Statistically significant increase in the liver parenchymal echogenicity and the liver size was seen in the exposed workers compared with control (p ≤ 0.05). These increased as the exposure duration increased. It was also noted that out of 16.87% (N=70) exposed workers with abnormal liver echopattern, only 2.65% (N=11) had alanine aminotransferase above the reference range. The study revealed evidence of ultrasound detectable hepatotoxicity among the exposed subjects. Sonography appeared to detect petroleum products-induced hepatic toxicity more than biochemical assays suggesting that biochemical assessment may have underestimated toxicity.

  10. Cyproterone acetate induces a wide spectrum of acute liver damage including corticosteroid-responsive hepatitis: report of 22 cases.

    PubMed

    Bessone, Fernando; Lucena, M I; Roma, Marcelo G; Stephens, Camilla; Medina-Cáliz, Inmaculada; Frider, Bernardo; Tsariktsian, Guillermo; Hernández, Nelia; Bruguera, Miquel; Gualano, Gisela; Fassio, Eduardo; Montero, Joaquín; Reggiardo, María V; Ferretti, Sebastián; Colombato, Luis; Tanno, Federico; Ferrer, Jaime; Zeno, Lelio; Tanno, Hugo; Andrade, Raúl J

    2016-02-01

    Cyproterone acetate (CPA), an anti-androgenic drug for prostate cancer, has been associated with drug-induced liver injury (DILI). We aim to expand the knowledge on the spectrum of phenotypes and outcomes of CPA-induced DILI. Twenty-two males (70 ± 8 years; range 54-83) developing liver damage as a result of CPA therapy (dose: 150 ± 50 mg/day; range 50-200) were included. Severity index and causality by RUCAM were assessed. From 1993 to 2013, 22 patients were retrieved. Latency was 163 ± 97 days. Most patients were symptomatic, showing hepatocellular injury (91%) and jaundice. Liver tests at onset were: ALT 18 ± 13 × ULN, ALP 0.7 ± 0.7 × ULN and total serum bilirubin 14 ± 10 mg/dl. International normalized ratio values higher than 1.5 were observed in 14 (66%) patients. Severity was mild in 1 case (4%), moderate in 7 (32%), severe in 11 (50%) and fatal in 3 (14%). Five patients developed ascitis, and four encephalopathy. One patient had a liver injury that resembled autoimmune hepatitis. Eleven (50%) were hospitalized. Nineteen patients recovered after CPA withdrawal, although three required steroid therapy (two of them had high ANA titres). Liver biopsy was performed in seven patients (two hepatocellular collapse, one submassive necrosis, two cholestatic hepatitis, one cirrhosis with iron overload and one autoimmune hepatitis). RUCAM category was 'highly probable' in 19 (86%), 'probable' in 1 (4%), and 'possible' in 2 (9%). CPA-induced liver injury is severe and can be fatal, and may occasionally resemble autoimmune DILI. The benefit/risk ratio of this drug should be thoroughly assessed in each patient. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure.

    PubMed

    Mesnage, Robin; Arno, Matthew; Costanzo, Manuela; Malatesta, Manuela; Séralini, Gilles-Eric; Antoniou, Michael N

    2015-08-25

    Glyphosate-based herbicides (GBH) are the major pesticides used worldwide. Converging evidence suggests that GBH, such as Roundup, pose a particular health risk to liver and kidneys although low environmentally relevant doses have not been examined. To address this issue, a 2-year study in rats administering 0.1 ppb Roundup (50 ng/L glyphosate equivalent) via drinking water (giving a daily intake of 4 ng/kg bw/day of glyphosate) was conducted. A marked increased incidence of anatomorphological and blood/urine biochemical changes was indicative of liver and kidney structure and functional pathology. In order to confirm these findings we have conducted a transcriptome microarray analysis of the liver and kidneys from these same animals. The expression of 4224 and 4447 transcript clusters (a group of probes corresponding to a known or putative gene) were found to be altered respectively in liver and kidney (p < 0.01, q < 0.08). Changes in gene expression varied from -3.5 to 3.7 fold in liver and from -4.3 to 5.3 in kidneys. Among the 1319 transcript clusters whose expression was altered in both tissues, ontological enrichment in 3 functional categories among 868 genes were found. First, genes involved in mRNA splicing and small nucleolar RNA were mostly upregulated, suggesting disruption of normal spliceosome activity. Electron microscopic analysis of hepatocytes confirmed nucleolar structural disruption. Second, genes controlling chromatin structure (especially histone-lysine N-methyltransferases) were mostly upregulated. Third, genes related to respiratory chain complex I and the tricarboxylic acid cycle were mostly downregulated. Pathway analysis suggests a modulation of the mTOR and phosphatidylinositol signalling pathways. Gene disturbances associated with the chronic administration of ultra-low dose Roundup reflect a liver and kidney lipotoxic condition and increased cellular growth that may be linked with regeneration in response to toxic effects causing damage

  12. Proanthocyanidins Attenuation of Chronic Lead-Induced Liver Oxidative Damage in Kunming Mice via the Nrf2/ARE Pathway

    PubMed Central

    Long, Miao; Liu, Yi; Cao, Yu; Wang, Nan; Dang, Meng; He, Jianbin

    2016-01-01

    Lead is harmful for human health and animals. Proanthocyanidins (PCs), a natural antioxidant, possess a broad spectrum of pharmacological and medicinal properties. However, its protective effects against lead-induced liver damage have not been clarified. This study was aimed to evaluate the protective effect of PCs on the hepatotoxicity of male Kunming mice induced by chronic lead exposure. A total of 70 healthy male Kunming mice were averagely divided into four groups: control group, i.e., the group exposed to lead, the group treated with PCs, and the group co-treated with lead and PCs. The mice exposed to lead were given water containing 0.2% lead acetate. Mice treated in the PCs and PCs lead co-treated groups were given PC (100 mg/kg) in 0.9% saline by oral gavage. Lead exposure caused a significant elevation in the liver function parameters, lead level, lipid peroxidation, and inhibition of antioxidant enzyme activities. The induction of oxidative stress and histological alterations in the liver were minimized by co-treatment with PCs. Meanwhile, the number of Transferase-Mediated Deoxyuridine Triphosphate-Biotin Nick End Labeling (TUNEL)-positive cells was significantly reduced in the PCs/lead co-treated group compared to the lead group. In addition, the lead group showed an increase in the expression level of Bax, while the expression of Bcl-2 was decreased. Furthermore, the lead group showed an increase in the expression level of endoplasmic reticulum (ER) stress-related genes and protein (GRP78 and CHOP). Co-treated with PCs significantly reversed these expressions in the liver. PCs were, therefore, demonstrated to have protective, antioxidant, and anti-ER stress and anti-apoptotic activities in liver damage caused by chronic lead exposure in the Kunming mouse. This may be due to the ability of PCs to enhance the ability of liver tissue to protect against oxidative stress via the Nrf2/ARE signaling pathway, resulting in decreasing ER stress and apoptosis of

  13. Potential Effect of Bacopa monnieri on Nitrobenzene Induced Liver Damage in Rats.

    PubMed

    Menon, B Rajalakshmy; Rathi, M A; Thirumoorthi, L; Gopalakrishnan, V K

    2010-10-01

    The study was designed to evaluate the hepatoprotective activity of ethanolic extract of Bacopa monnieri in acute experimental liver injury induced by Nitrobenzene in rats. The extract at the dose of 200 mg/kg body weight was administered orally once every day for 10 days. The increased serum marker enzymes, Aspartate transaminase, Alanine transaminase and alkaline phosphatase were restored towards normalization significantly by the extract. Significant increase in SOD, CAT and GPx was observed in extract treated liver injured experimental rats. Histopathological examination of the liver tissues supported the hepatoprotection. It is concluded that the ethanolic extract of Bacopa monieri plant possess good hepatoprotective activity.

  14. Potential Effect of Bacopa monnieri on Nitrobenzene Induced Liver Damage in Rats

    PubMed Central

    Menon, B. Rajalakshmy; Rathi, M. A.; Thirumoorthi, L.

    2010-01-01

    The study was designed to evaluate the hepatoprotective activity of ethanolic extract of Bacopa monnieri in acute experimental liver injury induced by Nitrobenzene in rats. The extract at the dose of 200 mg/kg body weight was administered orally once every day for 10 days. The increased serum marker enzymes, Aspartate transaminase, Alanine transaminase and alkaline phosphatase were restored towards normalization significantly by the extract. Significant increase in SOD, CAT and GPx was observed in extract treated liver injured experimental rats. Histopathological examination of the liver tissues supported the hepatoprotection. It is concluded that the ethanolic extract of Bacopa monieri plant possess good hepatoprotective activity. PMID:21966114

  15. Liver and Cardiovascular Damage in Patients With Lean Nonalcoholic Fatty Liver Disease, and Association With Visceral Obesity.

    PubMed

    Fracanzani, Anna Ludovica; Petta, Salvatore; Lombardi, Rosa; Pisano, Giuseppina; Russello, Maurizio; Consonni, Dario; Di Marco, Vito; Cammà, Calogero; Mensi, Laura; Dongiovanni, Paola; Valenti, Luca; Craxì, Antonio; Fargion, Silvia

    2017-10-01

    Lean nonalcoholic fatty liver disease (NAFLD) is defined as NAFLD that develops in patients with a body mass index (BMI) less than 25 kg/m 2 . We investigated the differences between lean NAFLD and NAFLD in overweight and obese persons, factors associated with the severity of liver and cardiovascular disease, and the effects of visceral obesity. We performed a retrospective cohort study of 669 consecutive patients with biopsy-proven NAFLD seen at 3 liver centers in Italy. We collected anthropometric, clinical, and biochemical data, as well as information on carotid atherosclerosis (artery intima-media thickness and plaque), liver histology (nonalcoholic steatohepatitis [NASH] and fibrosis), insulin resistance, and diabetes. Overweight was defined as a BMI of 25 to 29.9 kg/m 2 , and obese was defined as a BMI of 30 kg/m 2 or greater. Patients were assigned to groups based on waist circumference, a marker of visceral obesity (low: men, <94 cm, women <80 cm; medium: men, 94-102 cm, women 80-88 cm; or high: men >102 cm, women >88 cm). DNA samples were analyzed for the rs738409 C>G (I148M in PNPLA3), the rs58542926 C>T (E167K in TM6SF2), and single-nucleotide polymorphisms. Variables in men and women were analyzed using chi-squared analysis and the Mann-Whitney or Kruskal-Wallis tests. Multiple linear or logistic regression analyses were adjusted for all the variables of clinical relevance or statistically significant at univariate analyses. The primary outcome was the difference in liver and cardiovascular disease between lean NAFLD and NAFLD in overweight and obese persons. Secondary outcomes were effects of visceral obesity, based on waist circumference, on hepatic, vascular, and metabolic features. Significantly lower proportions of patients with lean NAFLD (143 patients; 43 women; mean age, 46 ± 13 y) had hypertension (P = .001), diabetes (P = .0001), and metabolic syndrome (P = .0001) than overweight or obese patients with NAFLD (526 patients; 149 women; mean

  16. Effect of juice and fermented vinegar from Hovenia dulcis peduncles on chronically alcohol-induced liver damage in mice.

    PubMed

    Xiang, Jinle; Zhu, Wenxue; Li, Zhixi; Ling, Shengbao

    2012-06-01

    The protective effects of juice and fermented vinegar from Hovenia dulcis peduncles on chronically ethanol-induced biochemical changes in male mice were investigated. Administration of ethanol (50%, v/v, 10 mL kg⁻¹) to mice for 6 weeks induced liver damage with a significant increase (P < 0.01) of the liver index, aspartate transaminase (AST), alanine transaminase (ALT), gamma glutamyl transferase (γ-GT) in the serum and the hepatic lipid peroxidation (LPO) level. In contrast, administration of juice or fermented vinegar from Hovenia dulcis peduncles (10 mL kg⁻¹ bw) along with alcohol significantly (P < 0.05) decreased the activities of the enzymes (AST, ALT and γ-GT), liver index, concentrations of triglyceride (TG) and total cholesterol (TCH) in the serum and the hepatic TG and LPO levels. Mice treated with juice or fermented vinegar from Hovenia dulcis peduncles showed better profiles of the antioxidant systems with relatively higher glutathione (GSH) content, total superoxide dismutase (T-SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities. All these results were accompanied by histological observations in liver. The results demonstrate that both of the juice and fermented vinegar from Hovenia dulcis peduncles have beneficial effects in reducing the adverse effect of alcohol.

  17. Damage to enteric neurons occurs in mice that develop fatty liver disease but not diabetes in response to a high-fat diet.

    PubMed

    Rivera, L R; Leung, C; Pustovit, R V; Hunne, B L; Andrikopoulos, S; Herath, C; Testro, A; Angus, P W; Furness, J B

    2014-08-01

    Disorders of gastrointestinal functions that are controlled by enteric neurons commonly accompany fatty liver disease. Established fatty liver disease is associated with diabetes, which itself induces enteric neuron damage. Here, we investigate the relationship between fatty liver disease and enteric neuropathy, in animals fed a high-fat, high-cholesterol diet in the absence of diabetes. Mice were fed a high-fat, high-cholesterol diet (21% fat, 2% cholesterol) or normal chow for 33 weeks. Liver injury was assessed by hematoxylin and eosin, picrosirius red staining, and measurement of plasma alanine aminotransaminase (ALT). Quantitative immunohistochemistry was performed for different types of enteric neurons. The mice developed steatosis, steatohepatitis, fibrosis, and a 10-fold increase in plasma ALT, indicative of liver disease. Oral glucose tolerance was unchanged. Loss and damage to enteric neurons occurred in the myenteric plexus of ileum, cecum, and colon. Total numbers of neurons were reduced by 15-30% and neurons expressing nitric oxide synthase were reduced by 20-40%. The RNA regulating protein, Hu, became more concentrated in the nuclei of enteric neurons after high-fat feeding, which is an indication of stress on the enteric nervous system. There was also disruption of the neuronal cytoskeletal protein, neurofilament medium. Enteric neuron loss and damage occurs in animals with fatty liver disease in the absence of glucose intolerance. The enteric neuron damage may contribute to the gastrointestinal complications of fatty liver disease. © 2014 John Wiley & Sons Ltd.

  18. Methanol exposure does not produce oxidatively damaged DNA in lung, liver or kidney of adult mice, rabbits or primates

    SciTech Connect

    McCallum, Gordon P.; Siu, Michelle; Sweeting, J. Nicole

    2011-01-15

    In vitro and in vivo genotoxicity tests indicate methanol (MeOH) is not mutagenic, but carcinogenic potential has been claimed in one controversial long-term rodent cancer bioassay that has not been replicated. To determine whether MeOH could indirectly damage DNA via reactive oxygen species (ROS)-mediated mechanisms, we treated male CD-1 mice, New Zealand white rabbits and cynomolgus monkeys with MeOH (2.0 g/kg ip) and 6 h later assessed oxidative damage to DNA, measured as 8-oxo-2'-deoxyguanosine (8-oxodG) by HPLC with electrochemical detection. We found no MeOH-dependent increases in 8-oxodG in lung, liver or kidney of any species. Chronic treatment of CD-1 micemore » with MeOH (2.0 g/kg ip) daily for 15 days also did not increase 8-oxodG levels in these organs. These results were corroborated in DNA repair-deficient oxoguanine glycosylase 1 (Ogg1) knockout (KO) mice, which accumulated 8-oxodG in lung, kidney and liver with age, but exhibited no increase following MeOH, despite a 2-fold increase in renal 8-oxodG in Ogg1 KO mice following treatment with a ROS-initiating positive control, the renal carcinogen potassium bromate (KBrO{sub 3}; 100 mg/kg ip). These observations suggest that MeOH exposure does not promote the accumulation of oxidatively damaged DNA in lung, kidney or liver, and that environmental exposure to MeOH is unlikely to initiate carcinogenesis in these organs by DNA oxidation.« less

  19. Scavenging and antioxidant properties of different grape cultivars against ionizing radiation-induced liver damage ex vivo.

    PubMed

    Singha, Indrani; Das, Subir Kumar

    2016-04-01

    Ionizing radiation (IR) has become an integral part of the modern medicine--both for diagnosis as well as therapy. However, normal tissues or even distant cells also suffer IR-induced free radical insult. It may be more damaging in longer term than direct radiation exposure. Antioxidants provide protection against IR-induced damage. Grapes are the richest source of antioxidants. Here, we assessed the scavenging properties of four grape (Vitis vinifera) cultivars, namely Flame seedless (Black), Kishmish chorni (Black with reddish brown), Red globe (Red) and Thompson seedless mutant (Green), and also evaluated their protective action against γ-radiation-induced oxidative stress in liver tissue ex vivo. The scavenging abilities of grape seeds [2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC₅₀ = 0.008 ± 0.001 mg/mL), hydrogen peroxide (IC₅₀ = 0.49 to 0.8 mg/mL), hydroxyl radicals (IC₅₀ = 0.08 ± 0.008 mg/mL), and nitric oxide (IC₅₀ = 0.8 ± 0.08 mg/mL)] were higher than that of skin or pulp. Gamma (γ) radiation exposure to sliced liver tissues ex vivo from goat, @ 6 Gy significantly (P < 0.001) decreased reduced glutathione (GSH) content by 21.2% and also activities of catalase, glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione s-transferase (GST) by 49.5, 66.0, 70.3, 73.6%, respectively. However, it increased thiobarbituric acid reactive substances (TBARS) by 2.04-fold and nitric oxide level by 48.6% compared to untreated group. Further increase in doses (10 or 16 Gy) of γ-radiation correspondingly decreased GSH content and enzyme activities, and increased TBARS and nitric oxide levels. Grape extract treatment prior to ionizing radiation exposure ameliorated theses effects at varying extent. The seed extracts exhibited strong antioxidant potential compared to skin or pulp extracts of different grape cultivars against oxidative damage by ionizing radiation (6 Gy, 10 Gy and 16 Gy) in sliced liver tissues ex vivo. Grape extracts at

  20. Effectiveness of FDA's new over-the-counter acetaminophen warning label in improving consumer risk perception of liver damage.

    PubMed

    Goyal, R K; Rajan, S S; Essien, E J; Sansgiry, S S

    2012-12-01

    The Food and Drug Administration (FDA) issued new organ-specific warning label requirements for over-the-counter (OTC) analgesic products in order to make consumers aware of the risk of liver damage when using acetaminophen. However, awareness of a health risk alone cannot ensure consumers' engagement in safe and preventive behaviour. In this study, we attempted to: (i) measure consumer risk perception of liver damage due to the OTC acetaminophen products and (ii) analyse the effectiveness of the new organ-specific warning label in improving consumer risk perception of liver damage and intention to perform protective behaviours while using OTC acetaminophen products. This within-subject experimental study used a convenience sample of English-speaking adults visiting OTC segments of selected pharmacy stores in Houston. Participants were randomly exposed to the old and new warning labels and their respective risk perception (measured on a visual analogue scale, 0%, no risk, to 100%, extreme risk) and behavioural intention (measured on a 7-point Likert scale) were recorded using a validated, self-administered questionnaire. Descriptive statistics and non-parametric Wilcoxon signed-rank tests were performed using sas statistical software (v 9.2) at a priori significance level of 0.05. Majority of participants (74.4%) were not aware of the new warnings; however, majority (67.8%) had prior knowledge of the risk. The mean risk perception score for the new warning label was found to be significantly higher (72.2% vs. 65.9%, P < 0.0001) than the old warning label. Similarly, the average intention score for the new warning label was significantly higher (5.06 vs. 4.86, P < 0.0001) than the old warning label. The new warning label mandated by FDA is effective in improving consumer risk perception of potential liver damage and may encourage protective behaviour. However, future studies are essential to assess the impact of the new label on actual changes in consumer behaviour

  1. Oral Administration of CardioAid and Lunasin Alleviates Liver Damage in a High-Fat Diet Nonalcoholic Steatohepatitis Model.

    PubMed

    Drori, Ariel; Rotnemer-Golinkin, Dvorah; Zolotarov, Lidya; Ilan, Yaron

    2017-01-01

    Several of the drugs in development for treatment of nonalcoholic steatohepatitis (NASH) target liver fibrosis or have side effects that prohibit their long-term use in patients with mild to moderate disease. Lunasin is a soy-derived peptide with anti-inflammatory properties. ADM's CardioAid™ is a plant sterol extract that exerts cholesterol- and triacylglycerol-lowering effects. To determine the immunomodulatory effects of CardioAid and lunasin in a high-fat diet (HFD) animal model of NASH. C57BL/6 mice on an HFD were orally administered CardioAid or lunasin for 25 weeks. The effects on the immune system, liver function, insulin resistance and lipid profile were studied. Treatment with CardioAid and lunasin was associated with a significant decrease in the CD4/CD8 ratio and an increase in CD4+CD25+ lymphocytes. A decrease in interleukin 1-alpha serum levels and an increase in transforming growth factor beta serum levels were noted. These were associated with alleviation of liver damage as indicated by a significant decrease in liver enzymes and improvement in the histological nonalcoholic fatty liver disease activity score (NAS). Decreases in both serum triglyceride and serum glucose levels were observed in treated mice. A decrease in total body fat measured by EchoMRI was also observed in treated mice. CardioAid and lunasin exerted hepatoprotective and glucose-protective effects in an HFD NASH model. These data and the high-safety profiles of CardioAid and Lunasin support their use in patients in the early stages of NASH to prevent deterioration due to the disease. © 2017 S. Karger AG, Basel.

  2. In vivo antioxidant effect of aqueous root bark, stem bark and leaves extracts of Vitex doniana in CCl4 induced liver damage rats.

    PubMed

    Adetoro, Kadejo Olubukola; Bolanle, James Dorcas; Abdullahi, Sallau Balarebe; Ahmed, Ozigi Abdulrahaman

    2013-05-01

    The antioxidant effects of aqueous root bark, stem bark and leaves of Vitex doniana (V. doniana) were evaluated in carbon tetrachloride (CCl4) induced liver damage and non induced liver damage albino rats. A total of 60 albino rats (36 induced liver damage and 24 non induced liver damage) were assigned into liver damage and non liver damage groups of 6 rats in a group. The animals in the CCl4 induced liver damage groups, were induced by intraperitoneal injection with a single dose of CCl4 (148 mg·ml(-1)·kg(-1) body weight) as a 1:1 (v/v) solution in olive oil and were fasted for 36 h before the subsequent treatment with aqueous root bark, stem bark and leaves extracts of V. doniana and vitamin E as standard drug (100 mg/kg body weighy per day) for 21 d, while the animals in the non induced groups were only treated with the daily oral administration of these extracts at the same dose. The administration of CCl4 was done once a week for a period of three weeks. The liver of CCl4 induced not treated group showed that the induction with CCl4, significantly (P<0.05) increased thiobarbituric acid reactive substance (TBARS) and significantly (P<0.05) decreased superoxide dismutase (SOD) and catalase (CAT). However there was no significant (P>0.05) difference between TBARS, SOD and CAT in the liver of the induced treated groups and normal control group. In the kidney, TBARS showed no significant (P>0.05) difference between the normal and the induced groups, SOD was significantly (P<0.05) reduced in the CCl4 group compared to standard drug and normal control groups, CAT was significantly (P<0.05) increased in root and vitamin E groups when compared to induced not treated group. The studies also showed that when the extracts were administered to normal animals, there was no significant (P>0.05) change in the liver and kidney level of TBARS, SOD and CAT compared with the normal control except in the kidney of animals treated with stem extract where TBARS was significantly

  3. Myeloid Notch1 deficiency activates the RhoA/ROCK pathway and aggravates hepatocellular damage in mouse ischemic livers.

    PubMed

    Lu, Ling; Yue, Shi; Jiang, Longfeng; Li, Changyong; Zhu, Qiang; Ke, Michael; Lu, Hao; Wang, Xuehao; Busuttil, Ronald W; Ying, Qi-Long; Kupiec-Weglinski, Jerzy W; Ke, Bibo

    2018-03-01

    Notch signaling plays an emerging role in the regulation of immune cell development and function during inflammatory response. Activation of the ras homolog gene family member A/Rho-associated protein kinase (ROCK) pathway promotes leukocyte accumulation in tissue injury. However, it remains unknown whether Notch signaling regulates ras homolog gene family member A/ROCK-mediated immune responses in liver ischemia and reperfusion (IR) injury. This study investigated intracellular signaling pathways regulated by Notch receptors in the IR-stressed liver and in vitro. In a mouse model of IR-induced liver inflammatory injury, we found that mice with myeloid-specific Notch1 knockout showed aggravated hepatocellular damage, with increased serum alanine aminotransferase levels, hepatocellular apoptosis, macrophage/neutrophil trafficking, and proinflammatory mediators compared to Notch1-proficient controls. Unlike in the controls, myeloid Notch1 ablation diminished hairy and enhancer of split-1 (Hes1) and augmented c-Jun N-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1), JNK, ROCK1, and phosphatase and tensin homolog (PTEN) activation in ischemic livers. Disruption of JSAP1 in myeloid-specific Notch1 knockout livers improved hepatocellular function and reduced JNK, ROCK1, PTEN, and toll-like receptor 4 activation. Moreover, ROCK1 knockdown inhibited PTEN and promoted Akt, leading to depressed toll-like receptor 4. In parallel in vitro studies, transfection of lentivirus-expressing Notch1 intracellular domain promoted Hes1 and inhibited JSAP1 in lipopolysaccharide-stimulated bone marrow-derived macrophages. Hes1 deletion enhanced JSAP1/JNK activation, whereas clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9-mediated JSAP1 knockout diminished ROCK1/PTEN and toll-like receptor 4 signaling. Myeloid Notch1 deficiency activates the ras homolog gene family member A/ROCK pathway and exacerbates hepatocellular

  4. [Effect of hemosorption on the ultrastructure of hepatocytes in toxic liver damage].

    PubMed

    Kasymov, A Kh; Kasymov, Sh Z; Vorozheĭkin, V M; Kirichenko, I P

    1985-03-01

    Extracorporeal perfusion of toxic blood via carbonic sorbents is an effective method for correcting severe disturbances of hemostasis. Ultrastructural alterations in hepatic cells were studied in experimental toxic liver injury before and after hemosorption. It was established that after hemosorption the processes of intracellular regeneration were significantly activated in the liver parenchyma. The number of crysts in the mitochondria increased as did the electronic density of the matrix. At the same time the number of lysosomes rose as well. However, in persistent unresolved cholestasis, destructive alterations in the hepatic tissue progressed despite the performance of hemosorption.

  5. Heme oxygenase-1 upregulated by Ginkgo biloba extract: potential protection against ethanol-induced oxidative liver damage.

    PubMed

    Yao, Ping; Li, Ke; Song, Fangfang; Zhou, Shaoliang; Sun, Xiufa; Zhang, Xiping; Nüssler, Andreas K; Liu, Liegang

    2007-08-01

    Oxidative stress plays a pivotal role in the pathogenesis and progression of alcoholic liver disease (ALD) and HO-1 induction is suggested to protect hepatocytes from ethanol hepatotoxicity. Here, we present the data to explore the hepatoprotective effect and underlying mechanism(s) of Ginkgo biloba extract (EGB), a naturally occurring HO-1 inducer, against ethanol-induced oxidative damage. Ethanol-fed (2.4 g/kg) male rats were pretreated by EGB (48 or 96 mg/kg) for 90 days. Liver damage was evaluated by histopathology and serum aminotransferase assay. Hepatic redox parameters were measured by spectrophotometry. Heme oxygenase-1 (HO-1) expression was determined by RT-PCR and flow cytometry on mRNA and protein level, respectively. Our results showed that EGB, especially at high dose, ameliorated ethanol-induced macrovesicular steatosis and parenchymatous degeneration in hepatocytes, and decreased serum aminotransferases level. Furthermore, EGB reduced ethanol-derived glutathione depletion and lipid peroxidation, and inhibited the inactivation of superoxide dismutase, glutathione peroxidase and catalase, although EGB itself had no influence on such parameters. Importantly, EGB induced hepatic microsomal HO-1 on mRNA, protein expression and enzymatic activity, which is paralleled to the EGB-derived hepatoprotective effect. Hence, HO-1 upregulation by EGB may enhance the antioxidative capacity against the ethanol-induced oxidative stress and maintain the cellular redox balance.

  6. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    PubMed Central

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-01-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle. PMID:26898711

  7. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    NASA Astrophysics Data System (ADS)

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-02-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle.

  8. Hepatoprotective Effect of Opuntia robusta and Opuntia streptacantha Fruits against Acetaminophen-Induced Acute Liver Damage

    PubMed Central

    González-Ponce, Herson Antonio; Martínez-Saldaña, María Consolación; Rincón-Sánchez, Ana Rosa; Sumaya-Martínez, María Teresa; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han; Jaramillo-Juárez, Fernando

    2016-01-01

    Acetaminophen (APAP)-induced acute liver failure (ALF) is a serious health problem in developed countries. N-acetyl-l-cysteine (NAC), the current therapy for APAP-induced ALF, is not always effective, and liver transplantation is often needed. Opuntia spp. fruits are an important source of nutrients and contain high levels of bioactive compounds, including antioxidants. The aim of this study was to evaluate the hepatoprotective effect of Opuntia robusta and Opuntia streptacantha extracts against APAP-induced ALF. In addition, we analyzed the antioxidant activities of these extracts. Fruit extracts (800 mg/kg/day, orally) were given prophylactically to male Wistar rats before intoxication with APAP (500 mg/kg, intraperitoneally). Rat hepatocyte cultures were exposed to 20 mmol/L APAP, and necrosis was assessed by LDH leakage. Opuntia robusta had significantly higher levels of antioxidants than Opuntia streptacantha. Both extracts significantly attenuated APAP-induced injury markers AST, ALT and ALP and improved liver histology. The Opuntia extracts reversed APAP-induced depletion of liver GSH and glycogen stores. In cultured hepatocytes, Opuntia extracts significantly reduced leakage of LDH and cell necrosis, both prophylactically and therapeutically. Both extracts appeared to be superior to NAC when used therapeutically. We conclude that Opuntia extracts are hepatoprotective and can be used as a nutraceutical to prevent ALF. PMID:27782042

  9. Antioxidant and hepatoprotective effects of A. cerana honey against acute alcohol-induced liver damage in mice.

    PubMed

    Zhao, Haoan; Cheng, Ni; He, Liangliang; Peng, Guoxia; Xue, Xiaofeng; Wu, Liming; Cao, Wei

    2017-11-01

    A. cerana honey, gathered from Apis cerana Fabricius (A. cerana), has not been fully studied. Samples of honey originating from six geographical regions (mainly in the Qinling Mountains of China) were investigated to determine their antioxidant and hepatoprotective effects against acute alcohol-induced liver damage. The results showed that A. cerana honeys from the Qinling Mountains had high total phenolic contents (345.1-502.1mgGAkg -1 ), ascorbic acid contents (153.8-368.4mgkg -1 ), and strong antioxidant activities in DPPH radical scavenging activity assays (87.5-136.2IC50mgmL -1 ), ferric reducing antioxidant powers (191.8-317.4mgTroloxkg -1 ), and ferrous ion-chelating activities (27.5-35.5mgNa 2 EDTAkg -1 ). Pretreatment with A. cerana honey (Qinling Mountains) at 5, 10, or 20gkg -1 twice daily for 12weeks significantly inhibited serum lipoprotein oxidation and increased serum radical absorbance capacity (ORAC) (P<0.05). Moreover, A. cerana honey inhibited acute alcohol-induced increases in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum (P<0.05), reduced the production of hepatic malondialdehyde (MDA) (P<0.05), and promoted superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities (P<0.05). More importantly, it also remarkably inhibited the level of TGF-β1 in the serum and liver (P<0.05). The results of this study indicate that administration of A. cerana honey prevents acute alcohol-induced liver damage likely because of its antioxidant properties and ability to prevent oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Elevated Liver Enzymes

    MedlinePlus

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  11. Anti-hepatotoxic activities of Hibiscus sabdariffa L. in animal model of streptozotocin diabetes-induced liver damage.

    PubMed

    Adeyemi, David O; Ukwenya, Victor O; Obuotor, Efere M; Adewole, Stephen O

    2014-07-30

    Flavonoid-rich aqueous fraction of methanolic extract of Hibiscus sabdariffa calyx was evaluated for its anti-hepatotoxic activities in streptozotocin-induced diabetic Wistar rats. Diabetes Mellitus was induced in Wistar rats by a single i.p injection of 80 mg/kg b.w. streptozotocin (STZ) dissolved in 0.1 M citrate buffer (pH 6.3). The ameliorative effects of the extract on STZ-diabetes induced liver damage was evident from the histopathological analysis and the biochemical parameters evaluated in the serum and liver homogenates. Reduced levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (3.76 ± 0.38 μM, 0.42 ± 0.04 U/L, 41.08 ± 3.04 U/ml, 0.82 ± 0.04 U/L respectively) in the liver of diabetic rats were restored to a near normal level in the Hibiscus sabdariffa-treated rats (6.87 ± 0.51 μM, 0.72 ± 0.06 U/L, 87.92 ± 5.26 U/ml, 1.37 ± 0.06 U/L respectively). Elevated levels of aspartate amino transferase (AST), alanine amino transferase (ALT) and alkaline phosphatase (ALP) in the serum of diabetic rats were also restored in Hibiscus sabdariffa -treated rats. Examination of stained liver sections revealed hepatic fibrosis and excessive glycogen deposition in the diabetic rats. These pathological changes were ameliorated in the extract-treated rats. The anti-hepatotoxic activity of Hibiscus sabdariffa extract in STZ diabetic rats could be partly related to its antioxidant activity and the presence of flavonnoids.

  12. Antioxidant potential of different grape cultivars against Fenton-like reagent-induced liver damage ex-vivo.

    PubMed

    Singha, Indrani; Das, Subir Kumar

    2014-10-01

    The phytochemicals present in the grapes are responsible for nutraceutical and health benfits due to their antioxidant properties. These phytochemicals, however, vary greatly among different cultivars. In this study, we evaluated the antioxidant potential and protective role of four different Indian grape (Vitis vinifera) cultivars extracts, namely Flame seedless (Black grapes), Kishmish chorni (Black with reddish brown), Red globe (Red) and Thompson seedless mutant (Sonaka, Green) against the Fenton-like reagent (200 μmole H2O2, 2 mmole ascorbate, 25 μmole FeSO4)-induced liver damage. Non-enzymatic antioxidants, such as glutathione (GSH) levels and activities of antioxidant enzymes, such as glutathione S-transferase (GST) and superoxide dismutase (SOD), as well as total antioxidant capacity (TAC) were highest in the grape seed, followed by skin and pulp. Among edible parts of different cultivars, skin of Flame seedless (Black) cultivar showed highest antioxidant potential, while the Thompson seedless the least potential. These antioxidants were found to be significantly (P < 0.01) correlated with the levels of total phenol, flavonoids and ascorbic acid. Fenton-like reagent treatment significantly (P < 0.001) decreased GSH content by 39.1% and activities of catalase (CAT) by 43.2% and glutathione reductase (GR) by 60%, while increasing thiobarbituric acid reactive substances (TBARS) and nitric oxide levels by 2.13-fold and 0.64-fold, respectively and GST activity by 0.81-fold. Pre-treatment with grape seed extracts showed the best hepatoprotective action against Fenton-like reagent-induced damage, followed by the extracts of skin and pulp of any cultivar. Thus, our study showed the significant amounts of antioxidants were in grape seed, followed by its skin and pulp, which varied among the cultivars and was associated with the protective action of grape extracts against Fenton-like reagent-induced liver damage ex-vivo.

  13. Pre- vs. post-treatment with melatonin in CCl4-induced liver damage: Oxidative stress inferred from biochemical and pathohistological studies.

    PubMed

    Ničković, Vanja P; Novaković, Tatjana; Lazarević, Slavica; Šulović, Ljiljana; Živković, Zorica; Živković, Jovan; Mladenović, Bojan; Stojanović, Nikola M; Petrović, Vladmir; Sokolović, Dušan T

    2018-06-01

    The present study was designed to compare the ameliorating potential of pre- and post-treatments with melatonin, a potent natural antioxidant, in the carbon tetrachloride-induced rat liver damage model by tracking changes in enzymatic and non-enzymatic liver tissue defense parameters, as well as in the occurring pathohistological changes. Rats from two experimental groups were treated with melatonin before and after CCl 4 administration, while the controls, negative and positive, received vehicle/melatonin and CCl 4 , respectively. Serum levels of transaminases, alkaline phosphates, γ-GT, bilirubin, and albumin, as well as a wide panel of oxidative stress-related parameters in liver tissue, were determined in all experimental animals. Liver tissue specimens were stained with hematoxylin and eosin and further evaluated for morphological changes. Both pre- and post-treatment with melatonin prevented a CCl 4 -induced increase in serum (ALT, AST, and γ-GT) and tissue (MDA and XO) liver damage markers and a decrease in the tissue total antioxidant capacity, in both enzymatic and non-enzymatic systems. The intensity of pathological changes, hepatocyte vacuolar degeneration, necrosis and inflammatory cell infiltration, was suppressed by the treatment with melatonin. In conclusion, melatonin, especially as a post-intoxication treatment, attenuated CCl 4 -induced liver oxidative damage, increased liver antioxidant capacities and improved liver microscopic appearance. The results are of interest due to the great protective potential of melatonin that was even demonstrated to be stronger if applied after the tissue damage. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. DNA damage in mouse and rat liver by caprolactam and benzoin, evaluated with three different methods.

    PubMed

    Parodi, S; Abelmoschi, M L; Balbi, C; De Angeli, M T; Pala, M; Russo, P; Taningher, M; Santi, L

    1989-11-01

    Benzoin and caprolactam were examined for their capability of inducing alkaline DNA fragmentation in mouse and rat liver DNA after treatment in vivo. Three different methods were used. With the alkaline elution technique we measured an effect presumably related to the conformation of the DNA coil. With a viscometric and a fluorometric unwinding method we measured an effect presumably related to the number of unwinding points in DNA. For both compounds only the alkaline elution technique was clearly positive. The results suggest that both caprolactam and benzoin can induce an important change in the conformation of the DNA coil without inducing true breaks in DNA.

  15. Mobile phone radiation-induced free radical damage in the liver is inhibited by the antioxidants N-acetyl cysteine and epigallocatechin-gallate.

    PubMed

    Ozgur, Elcin; Güler, Göknur; Seyhan, Nesrin

    2010-11-01

    To investigate oxidative damage and antioxidant enzyme status in the liver of guinea pigs exposed to mobile phone-like radiofrequency radiation (RFR) and the potential protective effects of N-acetyl cysteine (NAC) and epigallocatechin-gallate (EGCG) on the oxidative damage. Nine groups of guinea pigs were used to study the effects of exposure to an 1800-MHz Global System for Mobile Communications (GSM)-modulated signal (average whole body Specific Absorption Rate (SAR) of 0.38 W/kg, 10 or 20 min per day for seven days) and treatment with antioxidants. Significant increases in malondialdehyde (MDA) and total nitric oxide (NO(x)) levels and decreases in activities of superoxide dismutase (SOD), myeloperoxidase (MPO) and glutathione peroxidase (GSH-Px) were observed in the liver of guinea pigs after RFR exposure. Only NAC treatment induces increase in hepatic GSH-Px activities, whereas EGCG treatment alone attenuated MDA level. Extent of oxidative damage was found to be proportional to the duration of exposure (P < 0.05). Mobile phone-like radiation induces oxidative damage and changes the activities of antioxidant enzymes in the liver. The adverse effect of RFR may be related to the duration of mobile phone use. NAC and EGCG protect the liver tissue against the RFR-induced oxidative damage and enhance antioxidant enzyme activities.

  16. The APOC3 T-455C and C-482T promoter region polymorphisms are not associated with the severity of liver damage independently of PNPLA3 I148M genotype in patients with nonalcoholic fatty liver.

    PubMed

    Valenti, Luca; Nobili, Valerio; Al-Serri, Ahmad; Rametta, Raffaela; Leathart, Julian B S; Zappa, Marco A; Dongiovanni, Paola; Fracanzani, Anna L; Alterio, Arianna; Roviaro, Giancarlo; Daly, Ann K; Fargion, Silvia; Day, Christopher P

    2011-12-01

    The T-455C and C-482T APOC3 promoter region polymorphisms (SNPs) have recently been reported to predispose to dyslipidemia, insulin resistance, and nonalcoholic fatty liver disease (NAFLD) in Indian subjects, but the association with liver damage has not been evaluated so far. The aim was to assess the association between APOC3 SNPs and liver damage in Caucasian patients. We considered 437 Italian patients with histological diagnosis of NAFLD (including 137 children, 120 morbid obese) and 316 healthy controls, 71 Italian family trios, and 321 patients from the UK. APOC3 SNPs were determined by sequencing, allele-specific oligonucleotide probes and PCR-restriction fragment length polymorphism analysis, hepatic APOC3 mRNA levels by real-time PCR. APOC3 SNPs were not associated with NAFLD in Italian subjects, although a borderline significance for the transmission of the -455T allele was observed in the family study. Homozygosity for the APOC3 wild-type genotype (APOC3 WT) was associated with a more favorable lipid profile in control subjects, and consistently with lower hepatic APOC3 mRNA levels in obese patients without diabetes. However, APOC3 SNPs, alone or in combination, were not associated with insulin resistance, altered lipid levels, liver enzymes, and with liver damage (severity of steatosis, nonalcoholic steatohepatitis, and moderate/severe fibrosis) in Italian as well as in UK patients, and in the whole cohort. Stratification for the I148M PNPLA3 mutation, associated with the susceptibility to NASH, did not alter the results. APOC3 genotype is not associated with progressive liver damage in Caucasian patients with NAFLD. Copyright © 2011 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  17. DNA damage predicts prognosis and treatment response in colorectal liver metastases superior to immunogenic cell death and T cells

    PubMed Central

    Laengle, Johannes; Stift, Judith; Bilecz, Agnes; Wolf, Brigitte; Beer, Andrea; Hegedus, Balazs; Stremitzer, Stefan; Starlinger, Patrick; Tamandl, Dietmar; Pils, Dietmar; Bergmann, Michael

    2018-01-01

    Preclinical models indicate that DNA damage induces type I interferon (IFN), which is crucial for the induction of an anti-tumor immune response. In human cancers, however, the association between DNA damage and an immunogenic cell death (ICD), including the release and sensing of danger signals, the subsequent ER stress response and a functional IFN system, is less clear. Methods: Neoadjuvant-treated colorectal liver metastases (CLM) patients, undergoing liver resection in with a curative intent, were retrospectively enrolled in this study (n=33). DNA damage (γH2AX), RNA and DNA sensors (RIG-I, DDX41, cGAS, STING), ER stress response (p-PKR, p-eIF2α, CALR), type I and type II IFN- induced proteins (MxA, GBP1), mature dendritic cells (CD208), and cytotoxic and memory T cells (CD3, CD8, CD45RO) were investigated by an immunohistochemistry whole-slide tissue scanning approach and further correlated with recurrence-free survival (RFS), overall survival (OS), radiographic and pathologic therapy response. Results: γH2AX is a negative prognostic marker for RFS (HR 1.32, 95% CI 1.04-1.69, p=0.023) and OS (HR 1.61, 95% CI 1.23-2.11, p<0.001). A model comprising of DDX41, STING and p-PKR predicts radiographic therapy response (AUC=0.785, p=0.002). γH2AX predicts prognosis superior to the prognostic value of CD8. CALR positively correlates with GBP1, CD8 and cGAS. A model consisting of γH2AX, p-eIF2α, DDX41, cGAS, CD208 and CD45RO predicts pathological therapy response (AUC=0.944, p<0.001). Conclusion: In contrast to preclinical models, DNA damage inversely correlated with ICD and its associated T cell infiltrate and potentially serves as a therapeutic target in CLM. PMID:29930723

  18. The hepatoprotective role of Silymarin in isoniazid induced liver damage of rabbits.

    PubMed

    Jahan, Sarwat; Khan, Moosa; Imran, Sana; Sair, Mohammad

    2015-06-01

    To evaluate the hepatoprotective role of Silymarin against isonicotinylhydrazine-induced hepatotoxicity in rabbit model. The experimental animal study was held at Jinnah Postgraduate Medical Centre, Karachi, from April to September 2013 and comprised rabbits weighing 1-1.5kgof either gender. The animals were divided randomly into equal groups: group I underwent liver function test without any drug; in group II effects of Silymarin (50mg/kg/day orally) was observed; in group III isoniazid (50mg/kg/dayorally) was administered; and in group IV combined effects of isoniazid and silymarin were observed. Liver function tests were performed at day0 and after the treatment at day19. SPSS 16 was used for statistical analysis. The 28 rabbits in the study were divided in four groups of 7(25%) each. No mortality was recorded in any group. In group III, bilirubin level was increased and alanine transaminase was decreased significantly (p<0.05 each). In group IV, there was significant improvement in serum billirubin and serum alanine transaminase (p<0.05 each). Isonicotinylhydrazine-induced hepatotoxicity was well treated by concurrent administration of Silymarin.

  19. Protective effects of rosuvastatin and vitamin E against fipronil-mediated oxidative damage and apoptosis in rat liver and kidney.

    PubMed

    Abdel-Daim, Mohamed M; Abdeen, Ahmed

    2018-04-01

    Fipronil (FPN) is a phenylpyrazole insecticide that is extensively used in agriculture and veterinary applications. However, FPN is also a potent environmental toxicant to animals and humans. Therefore, the current study aimed to investigate the protective role of rosuvastatin (ROSU) and vitamin E (Vit E) against FPN-induced hepatorenal toxicity in albino rats. Seven groups with eight rats each were used for this purpose; these groups included the control vehicle group that received corn oil, the Vit E group (1000 mg/kg, orally), the ROSU group (10 mg/kg, orally), the FPN group (20 mg/kg, orally), the FPN-ROSU group, the FPN-Vit E group, and the FPN-Vit E-ROSU group. The results revealed that FPN significantly increased serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, cholesterol, urea, and creatinine. In addition, there were substantial increases in the liver and kidney contents of malondialdehyde and nitric oxide, along with significant decreases in glutathione, superoxide dismutase, catalase, and glutathione peroxidase. FPN also caused histological changes and increased the expression of caspase-3 in the liver and kidney tissues. However, administration of ROSU and Vit E alone or in combination ameliorated the FPN-induced oxidative damage and apoptosis, possibly through their antioxidant properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Acute carbon tetrachloride feeding induces damage of large but not small cholangiocytes from BDL rat liver.

    PubMed

    LeSage, G D; Glaser, S S; Marucci, L; Benedetti, A; Phinizy, J L; Rodgers, R; Caligiuri, A; Papa, E; Tretjak, Z; Jezequel, A M; Holcomb, L A; Alpini, G

    1999-05-01

    Bile duct damage and/or loss is limited to a range of duct sizes in cholangiopathies. We tested the hypothesis that CCl4 damages only large ducts. CCl4 or mineral oil was given to bile duct-ligated (BDL) rats, and 1, 2, and 7 days later small and large cholangiocytes were purified and evaluated for apoptosis, proliferation, and secretion. In situ, we measured apoptosis by morphometric and TUNEL analysis and the number of small and large ducts by morphometry. Two days after CCl4 administration, we found an increased number of small ducts and reduced number of large ducts. In vitro apoptosis was observed only in large cholangiocytes, and this was accompanied by loss of proliferation and secretion in large cholangiocytes and loss of choleretic effect of secretin. Small cholangiocytes de novo express the secretin receptor gene and secretin-induced cAMP response. Consistent with damage of large ducts, we detected cytochrome P-4502E1 (which CCl4 converts to its radicals) only in large cholangiocytes. CCl4 induces selective apoptosis of large ducts associated with loss of large cholangiocyte proliferation and secretion.

  1. Inflammation, oxidative stress and apoptosis cascade implications in bisphenol A-induced liver fibrosis in male rats.

    PubMed

    Elswefy, Sahar El-Sayed; Abdallah, Fatma Rizk; Atteia, Hebatallah Husseini; Wahba, Alaa Samir; Hasan, Rehab Abdallah

    2016-10-01

    Bisphenol A (BPA) is a key monomer in the production of plastics. It has been shown to be hepatotoxic. Inflammation and oxidative stress are closely linked with liver fibrosis, the major contributing factor to hepatic failure. Therefore, the aim of this study was to evaluate the impact of chronic exposure to BPA on the development of hepatic fibrosis in male rats and to determine the cross-talk between the hepatic cytokine network, oxidative stress and apoptosis. For this purpose, 30 male Wistar albino rats were divided into three equal groups as follows: the first group was given no treatment (normal control group); the second group was given corn oil once daily by oral gavage for 8 weeks (vehicle control group); and the third group received BPA (50 mg/kg body weight/day, p.o.) for 8 weeks. BPA administration induced liver fibrosis as reflected in an increase in serum hepatic enzymes activities, hepatic hydroxyproline content and histopathological changes particularly increased collagen fibre deposition around the portal tract. In addition, there was inflammation (as reflected in increase in interleukin-1beta 'IL-1β', decrease in interleukin-10 'IL-10' serum levels and increase in IL-1β/IL-10 ratio), oxidative stress (as reflected in increase in malondialdehyde (MDA) level, reduction in reduced glutathione (GSH) content and inhibition of catalase (CAT) activity) and apoptosis [as reflected in an increase in caspase-3 level and a decrease in numbers of B-cell lymphoma 2 (BCL2)-immunopositive hepatocytes]. Interestingly, BPA had an upregulating effect on an extracellular matrix turnover gene [as reflected in matrix metalloproteinase-9 (MMP-9)] and a downregulating effect on its inhibitor gene [as reflected in tissue inhibitor of matrix metalloproteinase-2 (TIMP-2)] expression. Thus, the mechanism by which BPA induced liver fibrosis seems to be related to stimulation of the inflammatory response, along with oxidative stress, the apoptotic pathway and activation

  2. Administration of high doses of copper to capuchin monkeys does not cause liver damage but induces transcriptional activation of hepatic proliferative responses.

    PubMed

    Araya, Magdalena; Núñez, Héctor; Pavez, Leonardo; Arredondo, Miguel; Méndez, Marco; Cisternas, Felipe; Pizarro, Fernando; Sierralta, Walter; Uauy, Ricardo; González, Mauricio

    2012-02-01

    Liver cells respond to copper loading upregulating protective mechanisms. However, to date, except for liver content, there are no good indicators that identify individuals with excess liver copper. We hypothesized that administering high doses of copper to young (5.5 mg Cu · kg⁻¹ . d⁻¹) and adult (7.5 mg Cu · kg⁻¹ . d⁻¹) capuchin monkeys would induce detectable liver damage. Study groups included adult monkeys (2 females, 2 males) 3-3.5 y old at enrollment treated with copper for 36 mo (ACu); age-matched controls (1 female, 3 males) that did not receive additional copper (AC); young monkeys (2 female, 2 males) treated from birth with copper for 36 mo (YCu); and young age-matched controls (2 female, 2 males) that did not receive additional copper (YC). We periodically assessed clinical, blood biochemical, and liver histological indicators and at 36 mo the hepatic mRNA abundance of MT2a, APP, DMT1, CTR1, HGF, TGFβ, and NFκΒ only in adult monkeys. After 36 mo, the liver copper concentration was 4-5 times greater in treated monkeys relative to controls. All monkeys remained healthy with normal routine serum biochemical indices and there was no evidence of liver tissue damage. Relative mRNA abundance of HGF, TGFβ and NFκB was significantly greater in ACu than in AC monkeys. In conclusion, capuchin monkeys exposed to copper at doses up to 50 times the current upper level enhanced expression of genes related to inflammation and injury without clinical, blood biochemical, or histological evidence of liver damage.

  3. Increased H-FABP concentrations in nonalcoholic fatty liver disease. Possible marker for subclinical myocardial damage and subclinical atherosclerosis.

    PubMed

    Başar, O; Akbal, E; Köklü, S; Tuna, Y; Koçak, E; Başar, N; Tok, D; Erbiş, H; Senes, M

    2013-06-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common liver disorder which is reported as the hepatic manifestation of metabolic syndrome with an increased risk of cardiovascular events. Patients with NAFLD are also at risk of future cardiac events independently of metabolic syndrome. The aim of this study was to examine serum concentrations of heart type fatty acid binding protein (H-FABP) in NAFLD and to investigate its correlations with metabolic parameters and subclinical atherosclerosis. A total of 34 patients with NAFLD and 35 healthy subjects were enrolled in the study. NAFLD patients had elevated liver enzymes and steatosis graded on ultrasonography. Healthy subjects had normal liver enzymes and no steatosis on ultrasonography. H-FABP levels were measured using an enzyme linked immunosorbent assay (ELISA) method and correlations with metabolic parameters and subclinical atherosclerosis were examined. Subclinical atherosclerosis was determined with carotid artery intima-media thickness (CIMT) which was measured by high resolution B mode ultrasonography. H-FABP levels were elevated in patients with NAFLD (16.3 ± 4.0 ng/ml) when compared with healthy controls (13.8 ± 2.1 ng/ml; p  < 0.001). NAFLD patients had significantly higher CIMT than the controls had (0.64 ± 0.17 mm vs. 0.43 ± 0.14 mm, p = 0.009). The H-FABP concentrations were significantly positively correlated with body mass index (r = 0.255, p = 0.042), fasting blood glucose level (r = 0.300, p = 0.013), CIMT (r = 0.335, p = 0.043), and homeostasis model assessment-estimated insulin resistance (HOMA-IR; r = 0.156, p = 0.306). In multiple linear regression analysis, H-FABP levels were only independently associated with CIMT (p = 0.04) Serum H-FABP concentrations increase in patients with NAFLD. Our results may not only suggest that H-FABP is a marker of subclinical myocardial damage in patients with NAFLD but also of

  4. Ellagic acid impedes carbontetrachloride-induced liver damage in rats through suppression of NF-kB, Bcl-2 and regulating Nrf-2 and caspase pathway.

    PubMed

    Aslan, Abdullah; Gok, Ozlem; Erman, Orhan; Kuloglu, Tuncay

    2018-06-11

    The use of natural antioxidants instead of conventional treatments is considered effective and safe alternative therapy for hepatotoxicity. Ellagic acid (EA) is a strong antioxidant matter having protecting effect particularly on the liver. Hepatotoxic compounds can cause very heavy damage. Among these chemical hepatotoxins, CCl 4 are responsible for the trichloromethyl radical resulting from biotransformation of the liver. The aim of this study was to examine whether EA plays a protective role against to liver damage induced with carbon tetrachloride (CCl 4 ) in rats. In this study, 36 male wistar albino (n = 36, 8 weeks old) rats were used. The rats were distributed into 4 groups, and 9 rats involved in each group. The groups were: (i) Control Group: Fed with standard diet; (ii) EA Group: Fed with standard diet + EA; (iii) CCl 4 Group: Fed with standard diet + CCl 4 ; (iv) CCl 4 + EA Group: Fed with standard diet + CCl 4 + EA. After 8 weeks, the rats were decapitated and the liver tissue were examined. As a result; EA application created a significant difference (p < 0.05) on caspase-3, bcl-2, NF-kB and Nrf-2 expression in the CCl 4 + EA group in comparison to CCl 4 group. Caspase-3 and Nrf-2 expression levels were increased in the CCl 4 + EA group in comparison to CCl 4 group, but bcl-2 and NF-kB expression levels were decreased. In TUNEL assay examinations, apoptotic index ratio was decreased in the CCl 4 + EA group in comparison to CCl 4 group. These results show that EA reduce liver damage ratio at wistar albino rats and also these results suggest that ellagic acid may be a potentially protective drug against to liver damage in future. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Grapefruit juice intake does not enhance but rather protects against aflatoxin B1-induced liver DNA damage through a reduction in hepatic CYP3A activity.

    PubMed

    Miyata, Masaaki; Takano, Hiroki; Guo, Lian Q; Nagata, Kiyoshi; Yamazoe, Yasushi

    2004-02-01

    Influence of grapefruit juice intake on aflatoxin B1 (AFB1)-induced liver DNA damage was examined using a Comet assay in F344 rats given 5 mg/kg AFB1 by gavage. Rats allowed free access to grapefruit juice for 5 days prior to AFB1 administration resulted in clearly reduced DNA damage in liver, to 65% of the level in rats that did not receive grapefruit juice. Furthermore, rats treated with grapefruit juice extract (100 mg/kg per os) for 5 days prior to AFB1 treatment also reduced the DNA damage to 74% of the level in rats that did not receive grapefruit juice. No significant differences in the portal blood and liver concentrations of AFB1 were observed between grapefruit juice intake rats and the controls. In an Ames assay with AFB1 using Salmonella typhimurium TA98, lower numbers of revertant colonies were detected with hepatic microsomes prepared from rats administered grapefruit juice, compared with those from control rats. Microsomal testosterone 6beta-hydroxylation was also lower with rats given grapefruit juice than with control rats. Immunoblot analyses showed a significant decrease in hepatic CYP3A content, but not CYP1A and CYP2C content, in microsomes of grapefruit juice-treated rats than in non-treated rats. No significant difference in hepatic glutathione S-transferase (GST) activity and glutathione content was observed in the two groups. GSTA5 protein was not detected in hepatic cytosol of the two groups. In microsomal systems, grapefruit juice extract inhibited AFB1-induced mutagenesis in the presence of a microsomal activation system from livers of humans as well as rats. These results suggest that grapefruit juice intake suppresses AFB1-induced liver DNA damage through inactivation of the metabolic activation potency for AFB1 in rat liver.

  6. Haloperidol-loaded lipid-core polymeric nanocapsules reduce DNA damage in blood and oxidative stress in liver and kidneys of rats

    NASA Astrophysics Data System (ADS)

    Roversi, Katiane; Benvegnú, Dalila M.; Roversi, Karine; Trevizol, Fabíola; Vey, Luciana T.; Elias, Fabiana; Fracasso, Rafael; Motta, Mariana H.; Ribeiro, Roseane F.; dos S. Hausen, Bruna; Moresco, Rafael N.; Garcia, Solange C.; da Silva, Cristiane B.; Burger, Marilise E.

    2015-04-01

    Haloperidol (HP) nanoencapsulation improves therapeutic efficacy, prolongs the drug action time, and reduces its motor side effects. However, in a view of HP toxicity in organs like liver and kidneys in addition to the lack of knowledge regarding the toxicity of polymeric nanocapsules, our aim was to verify the influence of HP-nanoformulation on toxicity and oxidative stress markers in the liver and kidneys of rats, also observing the damage caused in the blood. For such, 28 adult male Wistar rats were designated in four experimental groups ( n = 7) and treated with vehicle (C group), free haloperidol suspension (FH group), blank nanocapsules suspension (B-Nc group), and haloperidol-loaded lipid-core nanocapsules suspension (H-Nc group). The nanocapsules formulation presented the size of approximately 250 nm. All suspensions were administered to the animals (0.5 mg/kg/day-i.p.) for a period of 28 days. Our results showed that FH caused damage in the liver, evidenced by increased lipid peroxidation, plasma levels of aspartate aminotransferase, and alanine aminotransferase, as well as decreased cellular integrity and vitamin C levels. In kidneys, FH treatment caused damage to a lesser extent, observed by decreased activity of δ-aminolevulinate dehydratase (ALA-D) and levels of VIT C. In addition, FH treatment was also related to a higher DNA damage index in blood. On the other hand, animals treated with H-Nc and B-Nc did not show damage in liver, kidneys, and DNA. Our study indicates that the nanoencapsulation of haloperidol was able to prevent the sub-chronic toxicity commonly observed in liver, kidneys, and DNA, thus reflecting a pharmacological superiority in relation to free drug.

  7. Transcriptome signatures of p,p´-DDE-induced liver damage in Mus spretus mice.

    PubMed

    Morales-Prieto, Noelia; Ruiz-Laguna, Julia; Sheehan, David; Abril, Nieves

    2018-07-01

    The use of DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) in some countries, although regulated, is contributing to an increased worldwide risk of exposure to this organochlorine pesticide or its derivative p,p'-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene]. Many studies have associated p,p'-DDE exposure to type 2 diabetes, obesity and alterations of the reproductive system, but their molecular mechanisms of toxicity remain poorly understood. We have addressed this issue by using commercial microarrays based on probes for the entire Mus musculus genome to determine the hepatic transcriptional signatures of p,p'-DDE in the phylogenetically close mouse species Mus spretus. High-stringency hybridization conditions and analysis assured reliable results, which were also verified, in part, by qRT-PCR, immunoblotting and/or enzymatic activity. Our data linked 198 deregulated genes to mitochondrial dysfunction and perturbations of central signaling pathways (kinases, lipids, and retinoic acid) leading to enhanced lipogenesis and aerobic glycolysis, inflammation, cell proliferation and testosterone catabolism and excretion. Alterations of transcript levels of genes encoding enzymes involved in testosterone catabolism and excretion would explain the relationships established between p,p´-DDE exposure and reproductive disorders, obesity and diabetes. Further studies will help to fully understand the molecular basis of p,p´-DDE molecular toxicity in liver and reproductive organs, to identify effective exposure biomarkers and perhaps to design efficient p,p'-DDE exposure counteractive strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Sleep deprivation predisposes liver to oxidative stress and phospholipid damage: a quantitative molecular imaging study

    PubMed Central

    Chang, Hung-Ming; Mai, Fu-Der; Chen, Bo-Jung; Wu, Un-In; Huang, Yi-Lun; Lan, Chyn-Tair; Ling, Yong-Chien

    2008-01-01

    Sleep disorders are associated with an increased rate of various metabolic disturbances, which may be related to oxidative stress and consequent lipid peroxidation. Since hepatic phosphatidylcholine plays an important role in metabolic regulation, the aim of the present study was to determine phosphatidylcholine expression in the liver following total sleep deprivation. To determine the effects of total sleep deprivation, we used adult rats implanted for polygraphic recording. Phosphatidylcholine expression was examined molecularly by the use of time-of-flight secondary ion mass spectrometry, along with biochemical solid-phase extraction. The parameters of oxidative stress were investigated by evaluating the hepatic malondialdehyde levels as well as heat shock protein 25 immunoblotting and immunohistochemistry. In normal rats, the time-of-flight secondary ion mass spectrometry spectra revealed specific peaks (m/z 184 and 224) that could be identified as molecular ions for phosphatidylcholine. However, following total sleep deprivation, the signals for phosphatidylcholine were significantly reduced to nearly one-third of the normal values. The results of solid-phase extraction also revealed that the phosphatidylcholine concentration was noticeably decreased, from 15.7 µmol g–1 to 9.4 µmol g–1, after total sleep deprivation. By contrast, the biomarkers for oxidative stress were drastically up-regulated in the total sleep deprivation-treated rats as compared with the normal ones (4.03 vs. 1.58 nmol mg–1 for malondialdehyde levels, and 17.1 vs. 6.7 as well as 1.8 vs. 0.7 for heat shock protein 25 immunoblotting and immunoreactivity, respectively). Given that phosphatidylcholine is the most prominent component of all plasma lipoproteins, decreased expression of hepatic phosphatidylcholine following total sleep deprivation may be attributed to the enhanced oxidative stress and the subsequent lipid peroxidation, which would play an important role in the formation

  9. Protective effect of chromene isolated from Sargassum horneri against UV-A-induced damage in skin dermal fibroblasts.

    PubMed

    Kim, Jung-Ae; Ahn, Byul-Nim; Kong, Chang-Suk; Kim, Se-Kwon

    2012-08-01

    Skin homoeostasis is interrupted during UV-A irradiation. How the UV-A-altered skin components influences photoageing of skin should be investigated using human in vitro models that are important for understanding skin ageing. In this study, chromene compound, sargachromenol, was isolated from Sargassum horneri, and its potency on inhibition of photoageing was investigated in UV-A-irradiated dermal fibroblasts. Effects of sargachromenol on the prevention of photoageing were evaluated by measuring ROS production, membrane protein oxidation, lipid peroxidation and ageing-related gene expression in UV-A-irradiated human skin dermal fibroblasts. The results indicated that treatment with sargachromenol suppressed the collagenase matrix metalloproteinases (MMPs), MMP-1, MMP-2 and MMP-9 expression without any cytotoxicity and phototoxicity. It was further found that these inhibitions were because of increase in the expression of TIMP-1 and TIMP-2 genes. Furthermore, we confirmed that the UV-A-induced transcriptions of AP-1 signalling pathway were regulated by sargachromenol treatment in UV-A-irradiated dermal fibroblasts. © 2012 John Wiley & Sons A/S.

  10. Chondroitin Sulfate-Rich Extract of Skate Cartilage Attenuates Lipopolysaccharide-Induced Liver Damage in Mice.

    PubMed

    Song, Yeong Ok; Kim, Mijeong; Woo, Minji; Baek, Jang-Mi; Kang, Keon-Hee; Kim, Sang-Ho; Roh, Seong-Soo; Park, Chan Hum; Jeong, Kap-Seop; Noh, Jeong-Sook

    2017-06-15

    The protective effects of a chondroitin sulfate-rich extract (CSE) from skate cartilage against lipopolysaccharide (LPS)-induced hepatic damage were investigated, and its mechanism of action was compared with that of chondroitin sulfate (CS) from shark cartilage. ICR mice were orally administrated 200 mg/kg body weight (BW) of CS or 400 mg/kg BW of CSE for 3 consecutive days, followed by a one-time intraperitoneal injection of LPS (20 mg/kg BW). The experimental groups were vehicle treatment without LPS injection (NC group), vehicle treatment with LPS injection (LPS group), CS pretreatment with LPS injection (CS group), and CSE pretreatment with LPS injection (CSE group). Hepatic antioxidant enzyme expression levels in the CS and CSE groups were increased relative to those in the LPS group. In LPS-insulted hepatic tissue, inflammatory factors were augmented relative to those in the NC group, but were significantly suppressed by pretreatment with CS or CSE. Moreover, CS and CSE alleviated the LPS-induced apoptotic factors and mitogen-activated protein kinase (MAPK). In addition, CS and CSE effectively decreased the serum lipid concentrations and downregulated hepatic sterol regulatory element-binding proteins expression. In conclusion, the skate CSE could protect against LPS-induced hepatic dyslipidemia, oxidative stress, inflammation, and apoptosis, probably through the regulation of MAPK signaling.

  11. Chondroitin Sulfate-Rich Extract of Skate Cartilage Attenuates Lipopolysaccharide-Induced Liver Damage in Mice

    PubMed Central

    Song, Yeong Ok; Kim, Mijeong; Woo, Minji; Baek, Jang-Mi; Kang, Keon-Hee; Kim, Sang-Ho; Roh, Seong-Soo; Park, Chan Hum; Jeong, Kap-Seop; Noh, Jeong-Sook

    2017-01-01

    The protective effects of a chondroitin sulfate-rich extract (CSE) from skate cartilage against lipopolysaccharide (LPS)-induced hepatic damage were investigated, and its mechanism of action was compared with that of chondroitin sulfate (CS) from shark cartilage. ICR mice were orally administrated 200 mg/kg body weight (BW) of CS or 400 mg/kg BW of CSE for 3 consecutive days, followed by a one-time intraperitoneal injection of LPS (20 mg/kg BW). The experimental groups were vehicle treatment without LPS injection (NC group), vehicle treatment with LPS injection (LPS group), CS pretreatment with LPS injection (CS group), and CSE pretreatment with LPS injection (CSE group). Hepatic antioxidant enzyme expression levels in the CS and CSE groups were increased relative to those in the LPS group. In LPS-insulted hepatic tissue, inflammatory factors were augmented relative to those in the NC group, but were significantly suppressed by pretreatment with CS or CSE. Moreover, CS and CSE alleviated the LPS-induced apoptotic factors and mitogen-activated protein kinase (MAPK). In addition, CS and CSE effectively decreased the serum lipid concentrations and downregulated hepatic sterol regulatory element-binding proteins expression. In conclusion, the skate CSE could protect against LPS-induced hepatic dyslipidemia, oxidative stress, inflammation, and apoptosis, probably through the regulation of MAPK signaling. PMID:28617322

  12. Arctigenin protects against ultraviolet-A-induced damage to stemness through inhibition of the NF-κB/MAPK pathway.

    PubMed

    Park, See-Hyoung; Cho, Jae Youl; Oh, Sae Woong; Kang, Mingyeong; Lee, Seung Eun; Yoo, Ju Ah; Jung, Kwangseon; Lee, Jienny; Lee, Sang Yeol; Lee, Jongsung

    2018-02-25

    The stemness of stem cells is negatively affected by ultraviolet A (UVA) irradiation. This study was performed to examine the effects of arctigenin on UVA-irradiation-induced damage to the stemness of human mesenchymal stem cells (hMSCs) derived from adipose tissue. The mechanisms of action of arctigenin were also investigated. A BrdU-incorporation assay demonstrated that arctigenin attenuated the UVA-induced reduction of the cellular proliferative potential. Arctigenin also increased the UVA-induced reduction in stemness of hMSCs by upregulating stemness-related genes such as SOX2, OCT4, and NANOG. In addition, the UVA-induced reduction in the mRNA expression level of hypoxia-inducible factor (HIF)-1α was significantly recovered by arctigenin. The antagonizing effect of arctigenin on UVA irradiation was mediated by reduced PGE 2 production through the inhibition of MAPKs (p42/44 MAPK, p38 MAPK, and JNK) and NF-κB. Overall, these findings suggest that arctigenin can ameliorate the reduced stemness of hMSCs induced by UVA irradiation. The effects of arctigenin are mediated by PGE 2 -cAMP signaling-dependent upregulation of HIF-1α. Therefore, arctigenin could be used as an antagonist to attenuate the effects of UVA irradiation. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Diagnostic Dilemma for Low Viremia with Significant Fibrosis; Is HBV DNA Threshold Level a Good Indicator for Predicting Liver Damage?

    PubMed

    Yenilmez, Ercan; Çetinkaya, Rıza Aytaç; Tural, Ersin

    2018-05-04

    The most important difficulties about management of hepatitis B are still determining the liver damage and the right time to start antiviral therapy. To reveal the role of hepatitis B virus DNA threshold level for prediction of liver fibrosis and inflammation in young-aged hepatitis B e antigen negative chronic hepatitis B patients. Diagnostic accuracy study. A total of 273 hepatitis B e antigen negative young chronic hepatitis B patients with any hepatitis B virus DNA levels between 2008 and 2016, who had liver biopsy after at least 6 months follow up period, enrolled in this retrospective study. We created two groups as case and control, cases with hepatitis B virus DNA levels below 2.000 IU/mL and controls with hepatitis B virus DNA levels over 2.000 IU/mL. Having histological activity index ≥4 or/and fibrosis scores ≥2 were defined as significant histological abnormality. Then, we analyzed the relationship between these groups. We showed that significant fibrosis may occur in one third of young chronic hepatitis B patients with low viremia (30.2%, n=42/139 in cases, %55.2, n=74/134 in controls). Among the 42 cases with low viremia and significant fibrosis, 21.4% had alanine aminotransferase level between 40-59 U/L, 42.8% had alanine aminotransferase level between 60-79 U/L, and 35.7% had alanine aminotransferase level over 80 U/L. There was weak correlation between hepatitis B virus DNA threshold level and fibrosis score (p=0.000, rho=0.253). The optimum serum hepatitis B virus DNA threshold level in our study for predicting significant fibrosis was 1293 IU/mL (p=0.00, AUC: 0.657±0.034). The optimum alanine aminotransferase threshold level for predicting significant histological activity index and fibrosis was 64.5 and 59.5 U/L, respectively. The sensitivity and the specificity of 1293 vs 2000 IU/mL hepatitis B virus DNA threshold with 60 U/L alanine aminotransferase threshold level for predicting F≥2 fibrosis score were similar (sensitivity: 0.43 and 0

  14. Experimental approach to IGF-1 therapy in CCl4-induced acute liver damage in healthy controls and mice with partial IGF-1 deficiency.

    PubMed

    Morales-Garza, Luis A; Puche, Juan E; Aguirre, Gabriel A; Muñoz, Úrsula; García-Magariño, Mariano; De la Garza, Rocío G; Castilla-Cortazar, Inma

    2017-05-04

    Cell necrosis, oxidative damage, and fibrogenesis are involved in cirrhosis development, a condition in which insulin-like growth factor 1 (IGF-1) levels are diminished. This study evaluates whether the exogenous administration of low doses of IGF-1 can induce hepatoprotection in acute carbon tetrachloride (CCl 4 )-induced liver damage compared to healthy controls (Wt Igf +/+ ). Additionally, the impact of IGF-1 deficiency on a damaged liver was investigated in mice with a partial deficit of this hormone (Hz Igf1 +/- ). Three groups of 25 ± 5-week-old healthy male mice (Wt Igf +/+ ) were included in the protocol: untreated controls (Wt). Controls that received CCl 4 (Wt + CCl 4 ) and Wt + CCl 4 were treated subcutaneously with IGF-1 (2 µg/100 g body weight/day) for 10 days (Wt + CCl 4  + IGF1). In parallel, three IGF-1-deficient mice (Hz Igf1 +/- ) groups were studied: untreated Hz, Hz + CCl 4 , and Hz + CCl 4  + IGF-1. Microarray and real-time quantitative polymerase chain reaction (RT-qPCR) analyses, serum aminotransferases levels, liver histology, and malondialdehyde (MDA) levels were assessed at the end of the treatment in all groups. All data represent mean ± SEM. An altered gene coding expression pattern for proteins of the extracellular matrix, fibrosis, and cellular protection were found, as compared to healthy controls, in which IGF-1 therapy normalized in the series including healthy mice. Liver histology showed that Wt + CCl 4  + IGF1 mice had less oxidative damage, fibrosis, lymphocytic infiltrate, and cellular changes when compared to the Wt + CCl 4 . Moreover, there was a correlation between MDA levels and the histological damage score (Pearson's r = 0.858). In the IGF-1-deficient mice series, similar findings were identified, denoting a much more vulnerable hepatic parenchyma. IGF1 treatment improved the biochemistry, histology, and genetic expression of pro-regenerative and cytoprotective factors in both series

  15. [Magnesium isoglycyrrhizinate prevention of chemotherapy-induced liver damage during initial treatment of patients with gastrointestinal tumors].

    PubMed

    Yan, Yulan; Mo, Yongsen; Zhang, Dongmei

    2015-03-01

    To investigate the preventive effect of magnesium isoglycyrrhizinate against acute drug-induced liver damage from initial chemotherapy treatment in patients with gastrointestinal cancer. A total of 216 cases with early stage gastric cancer and indications for systemic chemotherapy that had been diagnosed with gastrointestinal malignant tumors by pathology in our hospital were enrolled for study during the period of January 2011 to June 2013.Using a prospective randomized controlled study design,differences were assessed between groups treated with glycyrrhizic acid magnesium (experimental group; n=114) or glutathione (control group; n=102) and the FOLFOX regimen (n=104) or the XELOX regimen (n=112).Patients in the FOLFOX group received intravenous infusion of L-OHP (85 mg/m²) at day 1,followed by a bolus injection of 5-FU (400 mg/m²) at days 1-2 and continuous intravenous infusion of 5-FU (600 mg/m²) for 22 h at days 1-2,with one cycle comprising 2 weeks. Patients in the XELOX group received intravenous infusion of L-OHP (130 mg/m²) at day 1, followed by capecitabine (1 000 mg/m²) oral twice a day at days 1-14,with one cycle comprising 3 weeks.In the first cycle of chemotherapy,serum was extracted from the patients at 1 day before chemotherapy and 1 week after chemotherapy.An automated biochemistry analyzer was used to measure alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBil) and alkaline phosphatase (ALP). Differences between groups were statistically analyzed by the t-test and x² test. Among the total 216 cases treated with chemotherapy,40 showed hepatic biochemical abnormalities (12 cases in the experimental group, 28 cases in the control group), and the effect of prevention was significantly different between the two groups (10.53% vs. 27.25%; x² =10.219, P less than 0.005).The acute and subacute hepatic toxicity reaction degrees for the experimental and the control groups were: 0:94.78% vs. 88.2%; 1:5.3% vs. 11

  16. Beta-carotene and lutein protect HepG2 human liver cells against oxidant-induced damage.

    PubMed

    Martin, K R; Failla, M L; Smith, J C

    1996-09-01

    Numerous epidemiological studies support a strong inverse relationship between consumption of carotenoid-rich fruits and vegetables and the incidence of some degenerative diseases. One proposed mechanism of protection by carotenoids centers on their putative antioxidant activity, although direct evidence in support of this contention is limited at the cellular level. The antioxidant potential of beta-carotene (BC) and lutein (LUT), carotenoids with or without provitamin A activity, respectively, was evaluated using the human liver cell line HepG2. Pilot studies showed that a 90-min exposure of confluent cultures to 500 mumol/L tert-butylhydroperoxide (TBHP) at 37 degrees C significantly (P < 0.05) increased lipid peroxidation and cellular leakage of lactate dehydrogenase (LDH), and decreased the uptake of 3H-alpha-aminoisobutyric acid and 3H-2-deoxyglucose. Protein synthesis, mitochondrial activity and glucose oxidation were not affected by TBHP treatment, suggesting that the plasma membrane was the primary site of TBHP-induced damage. Overnight incubation of cultures with > or = 1 mumol/L dl-alpha-tocopherol protected cells against oxidant-induced changes. In parallel studies, overnight incubation of HepG2 in medium containing micelles with either BC or LUT (final concentrations of 1.1 and 10.9 mumol/L, respectively), the cell content of the carotenoids increased from < 0.04 to 0.32 and 3.39 nmol/mg protein, respectively. Carotenoid-loaded cells were partially or completely protected against oxidant-induced changes in lipid peroxidation, LDH release and amino acid and deoxyglucose transport. These data demonstrate that BC and LUT or their metabolites protect HepG2 cells against oxidant-induced damage and that the protective effect is independent of provitamin A activity.

  17. Effects of curcumin on antioxidative activities and cytokine production in Jian carp (Cyprinus carpio var. Jian) with CCl4-induced liver damage.

    PubMed

    Cao, Liping; Ding, Weidong; Du, Jingliang; Jia, Rui; Liu, Yingjuan; Zhao, Caiyuan; Shen, Yujin; Yin, Guojun

    2015-03-01

    We investigated the protective effects of curcumin on liver-damaged Cyprinus carpio var. Jian (Jian carp). The carp were fed 0.1%, 0.5%, or 1.0% curcumin for 60 days, then injected intraperitoneally with 30% carbon tetrachloride solution. Liver and blood samples were collected to measure the liver index, serum- and liver-associated enzymes, liver histology, nuclear factor-κB (NF-κB)/c-Rel, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-12 mRNA expression, and the level of NF-κB/c-Rel protein in the liver, and for a comet assay. We found that 0.5% and 1.0% curcumin significantly reduced the CCl(4)-induced increase in the liver index. The comet assay showed that the tail moment, olive tail moment, tail length, and tail DNA% improved in fish pretreated with 0.5 or 1.0% curcumin. CCl(4)-induced histological changes, including extensive hepatocyte degeneration, indistinct cell borders, nuclear condensation, and karyolysis were clearly reduced after treatment with 0.5% and 1.0% curcumin. Moreover, 0.5% and 1.0% curcumin significantly inhibited the CCl(4)-induced increase in serum glutamic oxaloacetic transaminase and promoted the restoration of superoxide dismutase in the liver; 1.0% curcumin significantly reduced serum glutamic pyruvic transaminase and lactate dehydrogenase and hepatic malondialdehyde, but significantly increased the total antioxidant capacity and glutathione levels in the liver. The CCl(4)-induced upregulation of NF-κB/c-Rel, IL-1β, and TNF-α mRNAs and NF-κB/c-Rel protein levels was inhibited by 0.5% and 1.0% curcumin, and IL-12 mRNA was reduced by all three doses of curcumin. The effects of curcumin on the liver index, enzymes, histological changes, and cytokines were dose-dependent. Our results indicate that curcumin reduces CCl(4)-induced liver damage in Jian carp by upregulating antioxidative activities and inhibiting NF-κB, IL-1β, TNF-α, and IL-12 expression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. ERAD defects and the HFE-H63D variant are associated with increased risk of liver damages in Alpha 1-Antitrypsin Deficiency

    PubMed Central

    Di Martino, Julie; Ruiz, Mathias; Garin, Roman; Restier, Lioara; Belmalih, Abdelouahed; Marchal, Christelle; Cullin, Christophe; Arveiler, Benoit; Fergelot, Patricia; Gitler, Aaron D.; Lachaux, Alain; Couthouis, Julien

    2017-01-01

    Background The most common and severe disease causing allele of Alpha 1-Antitrypsin Deficiency (1ATD) is Z-1AT. This protein aggregates in the endoplasmic reticulum, which is the main cause of liver disease in childhood. Based on recent evidences and on the frequency of liver disease occurrence in Z-1AT patients, it seems that liver disease progression is linked to still unknown genetic factors. Methods We used an innovative approach combining yeast genetic screens with next generation exome sequencing to identify and functionally characterize the genes involved in 1ATD associated liver disease. Results Using yeast genetic screens, we identified HRD1, an Endoplasmic Reticulum Associated Degradation (ERAD) associated protein, as an inducer of Z-mediated toxicity. Whole exome sequencing of 1ATD patients resulted in the identification of two variants associated with liver damages in Z-1AT homozygous cases: HFE H63D and HERPUD1 R50H. Functional characterization in Z-1AT model cell lines demonstrated that impairment of the ERAD machinery combined with the HFE H63D variant expression decreased both cell proliferation and cell viability, while Unfolded Protein Response (UPR)-mediated cell death was hyperstimulated. Conclusion This powerful experimental pipeline allowed us to identify and functionally validate two genes involved in Z-1AT-mediated severe liver toxicity. This pilot study moves forward our understanding on genetic modifiers involved in 1ATD and highlights the UPR pathway as a target for the treatment of liver diseases associated with 1ATD. Finally, these findings support a larger scale screening for HERPUD1 R50H and HFE H63D variants in the sub-group of 1ATD patients developing significant chronic hepatic injuries (hepatomegaly, chronic cholestasis, elevated liver enzymes) and at risk developing liver cirrhosis. PMID:28617828

  19. Antioxidant and Hepatoprotective Effect of Aqueous Extract of Germinated and Fermented Mung Bean on Ethanol-Mediated Liver Damage

    PubMed Central

    Mohd Ali, Norlaily; Mohd Yusof, Hamidah; Long, Kamariah; Yeap, Swee Keong; Ho, Wan Yong; Beh, Boon Kee; Koh, Soo Peng; Abdullah, Mohd Puad; Alitheen, Noorjahan Banu

    2013-01-01

    Mung bean is a hepatoprotective agent in dietary supplements. Fermentation and germination processes are well recognized to enhance the nutritional values especially the concentration of active compounds such as amino acids and GABA of various foods. In this study, antioxidant and hepatoprotective effects of freeze-dried mung bean and amino-acid- and GABA-enriched germinated and fermented mung bean aqueous extracts were compared. Liver superoxide dismutase (SOD), malondialdehyde (MDA), ferric reducing antioxidant power (FRAP), nitric oxide (NO) levels, and serum biochemical profile such as aspartate transaminase (AST), alanine transaminase (ALT), triglycerides (TG), and cholesterol and histopathological changes were examined for the antioxidant and hepatoprotective effects of these treatments. Germinated and fermented mung bean have recorded an increase of 27.9 and 7.3 times of GABA and 8.7 and 13.2 times of amino acid improvement, respectively, as compared to normal mung bean. Besides, improvement of antioxidant levels, serum markers, and NO level associated with better histopathological evaluation indicated that these extracts could promote effective recovery from hepatocyte damage. These results suggested that freeze-dried, germinated, and fermented mung bean aqueous extracts enriched with amino acids and GABA possessed better hepatoprotective effect as compared to normal mung bean. PMID:23484140

  20. Metabolic profile of liver damage in non-cirrhotic virus C and autoimmune hepatitis: A proton decoupled 31P-MRS study.

    PubMed

    Hakkarainen, Antti; Puustinen, Lauri; Kivisaari, Reetta; Boyd, Sonja; Nieminen, Urpo; Arkkila, Perttu; Lundbom, Nina

    2017-05-01

    To study liver 31 P MRS, histology, transient elastography, and liver function tests in patients with virus C hepatitis (HCV) or autoimmune hepatitis (AIH) to test the hypothesis that 31 P MR metabolic profile of these diseases differ. 25 patients with HCV (n=12) or AIH (n=13) underwent proton decoupled 31 P MRS spectroscopy performed on a 3.0T MR imager. Intensities of phosphomonoesters (PME) of phosphoethanolamine (PE) and phosphocholine (PC), phosphodiesters (PDE) of glycerophosphoethanolamine (GPE) and glycerophosphocholine (GPC), and γ, α and β resonances of adenosine triphosphate (ATP), and nicotinamide adenine dinucleotide phosphate (NADPH) were determined. Liver stiffness was measured by transient elastography. Inflammation and fibrosis were staged according to METAVIR from biopsy samples. Activities of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALT) and thromboplastin time (TT) were determined from serum samples. PME had a stronger correlation with AST (z=1.73, p=0.04) and ALT (z=1.77, p=0.04) in HCV than in AIH patients. PME, PME/PDE, PE/GPE correlated positively and PDE negatively with inflammatory activity. PE, PC and PME correlated positively with liver function tests. 31 P-MRS suggests a more serious liver damage in HCV than in AIH with similar histopathological findings. 31 P-MRS is more sensitive in detecting inflammation than fibrosis in the liver. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A Dual Role of Caspase-8 in Triggering and Sensing Proliferation-Associated DNA Damage, a Key Determinant of Liver Cancer Development.

    PubMed

    Boege, Yannick; Malehmir, Mohsen; Healy, Marc E; Bettermann, Kira; Lorentzen, Anna; Vucur, Mihael; Ahuja, Akshay K; Böhm, Friederike; Mertens, Joachim C; Shimizu, Yutaka; Frick, Lukas; Remouchamps, Caroline; Mutreja, Karun; Kähne, Thilo; Sundaravinayagam, Devakumar; Wolf, Monika J; Rehrauer, Hubert; Koppe, Christiane; Speicher, Tobias; Padrissa-Altés, Susagna; Maire, Renaud; Schattenberg, Jörn M; Jeong, Ju-Seong; Liu, Lei; Zwirner, Stefan; Boger, Regina; Hüser, Norbert; Davis, Roger J; Müllhaupt, Beat; Moch, Holger; Schulze-Bergkamen, Henning; Clavien, Pierre-Alain; Werner, Sabine; Borsig, Lubor; Luther, Sanjiv A; Jost, Philipp J; Weinlich, Ricardo; Unger, Kristian; Behrens, Axel; Hillert, Laura; Dillon, Christopher; Di Virgilio, Michela; Wallach, David; Dejardin, Emmanuel; Zender, Lars; Naumann, Michael; Walczak, Henning; Green, Douglas R; Lopes, Massimo; Lavrik, Inna; Luedde, Tom; Heikenwalder, Mathias; Weber, Achim

    2017-09-11

    Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apoptotic function of caspase-8, but no caspase-3 or caspase-8 cleavage. It may represent a DNA damage-sensing mechanism in hepatocytes that can act via JNK and subsequent phosphorylation of the histone variant H2AX. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Walnut polyphenols prevent liver damage induced by carbon tetrachloride and d-galactosamine: hepatoprotective hydrolyzable tannins in the kernel pellicles of walnut.

    PubMed

    Shimoda, Hiroshi; Tanaka, Junji; Kikuchi, Mitsunori; Fukuda, Toshiyuji; Ito, Hideyuki; Hatano, Tsutomu; Yoshida, Takashi

    2008-06-25

    The polyphenol-rich fraction (WP, 45% polyphenol) prepared from the kernel pellicles of walnuts was assessed for its hepatoprotective effect in mice. A single oral administration of WP (200 mg/kg) significantly suppressed serum glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) elevation in liver injury induced by carbon tetrachloride (CCl 4), while it did not suppress d-galactosamine (GalN)-induced liver injury. In order to identify the active principles in WP, we examined individual constituents for the protective effect on cell damage induced by CCl 4 and d-GalN in primary cultured rat hepatocytes. WP was effective against both CCl 4- and d-GalN-induced hepatocyte damages. Among the constituents, only ellagitannins with a galloylated glucopyranose core, such as tellimagrandins I, II, and rugosin C, suppressed CCl 4-induced hepatocyte damage significantly. Most of the ellagitannins including tellimagrandin I and 2,3- O-hexahydroxydiphenoylglucose exhibited remarkable inhibitory effect against d-GalN-induced damage. Telliamgrandin I especially completely suppressed both CCl 4- and d-GalN-induced cell damage, and thus is likely the principal constituent for the hepatoprotective effect of WP.

  3. A Blend of Extracts from Houttuynia cordata, Nelumbo nucifera, and Camellia sinensis Protects Against Ethanol-Induced Liver Damage in C57BL/6 Mice.

    PubMed

    You, Yanghee; Lee, Hyunmi; Yoon, Ho-Geun; Park, Jeongjin; Kim, Ok-Kyung; Kim, Kyungmi; Lee, Min-Jae; Lee, Yoo-Hyun; Lee, Jeongmin; Jun, Woojin

    2018-02-01

    The protective activity of a mixture of aqueous and ethanolic extracts from Houttuynia cordata Thunb, Nelumbo nucifera G. leaves, and Camellia sinensis seed (HNC) was evaluated in C57BL/6 mice. Pretreatment with HNC prevented the elevation of serum aspartate aminotransferase and alanine aminotransferase caused by ethanol-induced hepatic damage. The HNC-treated mice showed significantly lower triglyceride levels, reduced CYP2E1 activity, and increased antioxidant enzyme activities and lipogenic mRNA levels. These results suggest that HNC might be a candidate agent for liver protection against ethanol-induced oxidative damage, through enhancement of antioxidant and antilipogenic activity.

  4. Evaluation of the 13C-octanoate breath test as a surrogate marker of liver damage in animal models.

    PubMed

    Shalev, Tamar; Aeed, Hussein; Sorin, Vladimir; Shahmurov, Mark; Didkovsky, Elena; Ilan, Yaron; Avni, Yona; Shirin, Haim

    2010-06-01

    Octanoate (also known as sodium octanoate), a medium-chain fatty acid metabolized in the liver, is a potential substrate for non-invasive breath testing of hepatic mitochondrial beta-oxidation. We evaluated the 13C-octanoate breath test (OBT) for assessing injury in acute hepatitis and two rat models of liver cirrhosis, first testing octanoate absorption (per os or intraperitoneally (i.p.)) in normal rats. We then induced acute hepatitis with thioacetamide (300 mg/kg/i.p., 24-h intervals). Liver injury end points were serum aminotransferase levels and 13C-OBT (24 and 48 h following initial injection). Thioacetamide (200 mg/kg/i.p., twice per week, 12 weeks) was used to induce liver cirrhosis. OBT and liver histological assessment were performed every 4 weeks. Bile duct ligation (BDL) was used to induce cholestatic liver injury. We completed breath tests with 13C-OBT and 13C-methacetin (MBID), liver biochemistry, and liver histology in BDL and sham-operated rats (baseline, 6, 14, 20 days post-BDL). Octanoate absorbs well by either route. Peak amplitudes and cumulative percentage dose recovered at 30 and 60 min (CPDR30/60), but not peak time, correlated with acute hepatitis. Fibrosis stage 3 at week 8 significantly correlated with each OBT parameter. Cholestatic liver injury (serum bilirubin, ALP, gamma-GT, liver histology) was associated with significant suppression of the maximal peak values and CPDR30/60, respectively (P<0.05),using MBID but not 13C-octanoate. OBT is sensitive for potentially evaluating liver function in rat models of acute hepatitis and thioacetamide-induced liver cirrhosis but not in cholestatic liver injury. The MBID test may be better for evaluation of cholestatic liver disease in this model.

  5. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    SciTech Connect

    Wei, Min; Yamada, Takanori; Yamano, Shotaro

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes inmore » the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.« less

  6. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe.

    PubMed

    Ajith, T A

    2010-01-01

    Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O(2) (-)) and hydroxyl radical (HO(·)) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton's reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H(2)O(2)-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (P<0.001) protected the lipid peroxidation in all the tissue homogenate/mitochondria. The extract at 2 and 0.5 mg/ml could protect 92 % of the lipid peroxidation in brain homogenate and liver mitochondria respectively. The percent inhibition of lipid peroxidation at 1mg/ml of Z. officinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.

  7. Polydatin attenuates d-galactose-induced liver and brain damage through its anti-oxidative, anti-inflammatory and anti-apoptotic effects in mice.

    PubMed

    Xu, Lie-Qiang; Xie, You-Liang; Gui, Shu-Hua; Zhang, Xie; Mo, Zhi-Zhun; Sun, Chao-Yue; Li, Cai-Lan; Luo, Dan-Dan; Zhang, Zhen-Biao; Su, Zi-Ren; Xie, Jian-Hui

    2016-11-09

    Accumulating evidence has shown that chronic injection of d-galactose (d-gal) can mimic natural aging, with accompanying liver and brain injury. Oxidative stress and apoptosis play a vital role in the aging process. In this study, the antioxidant ability of polydatin (PD) was investigated using four established in vitro systems. An in vivo study was also conducted to investigate the possible protective effect of PD on d-gal-induced liver and brain damage. The results showed that PD had remarkable in vitro free radical scavenging activity on 2,2-diphenyl-1-picryl-hydrazyl (DPPH˙), 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS + ˙) radical ions, and hydroxyl and superoxide anions. Results in vivo indicated that, in a group treated with d-gal plus PD, PD remarkably decreased the depression of body weight and organ indexes, reduced the levels of the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and alleviated alterations in liver and brain histopathology. PD also significantly decreased the level of MDA and elevated SOD, GSH-Px, CAT activity and T-AOC levels in the liver and brain. In addition, the levels of inflammatory mediators, such as TNF-α, IL-1β and IL-6 in serum were markedly reduced after PD treatment. Western blotting results revealed that PD treatment noticeably attenuated the d-gal-induced elevation of Bcl-2/Bax ratio and caspase-3 protein expression in liver and brain. Overall, our findings indicate that PD treatment could effectively attenuate d-gal-induced liver and brain damage, and the mechanism might be associated with decreasing the oxidative stress, inflammation and apoptosis caused by d-gal. PD holds good potential for further development into a promising pharmaceutical candidate for the treatment of age-associated diseases.

  8. Disruption of erythrocyte antioxidant defense system, hematological parameters, induction of pro-inflammatory cytokines and DNA damage in liver of co-exposed rats to aluminium and acrylamide.

    PubMed

    Ghorbel, Imen; Maktouf, Sameh; Kallel, Choumous; Ellouze Chaabouni, Semia; Boudawara, Tahia; Zeghal, Najiba

    2015-07-05

    The individual toxic effects of aluminium and acrylamide are well known but there are no data on their combined effects. The present study was undertaken to determine (i) hematological parameters during individual and combined chronic exposure to aluminium and acrylamide (ii) correlation of oxidative stress in erythrocytes with pro-inflammatory cytokines expression, DNA damage and histopathological changes in the liver. Rats were exposed to aluminium (50 mg/kg body weight) in drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination for 3 weeks. Exposure rats to AlCl3 or/and ACR provoked an increase in MDA, AOPP, H2O2 and a decrease in GSH and NPSH levels in erythrocytes. Activities of catalase, glutathione peroxidase and superoxide dismutase were decreased in all treated rats. Our results showed that all treatments induced an increase in WBC, erythrocyte osmotic fragility and a decrease in RBC, Hb and Ht. While MCV, MCH, MCHC remained unchanged. Hepatic pro-inflammatory cytokines expression including tumor necrosis factor-α, interleukin-6, interleukin-1β was increased suggesting leucocytes infiltration in the liver. A random DNA degradation was observed on agarose gel only in the liver of co-exposed rats to AlCl3 and ACR treatment. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in erythrocytes, pro-inflammatory cytokines and DNA damage in liver. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Antioxidant responses versus DNA damage and lipid peroxidation in golden grey mullet liver: a field study at Ria de Aveiro (Portugal).

    PubMed

    Oliveira, M; Ahmad, I; Maria, V L; Pacheco, M; Santos, M A

    2010-10-01

    The present work aimed to investigate golden grey mullet (Liza aurata) liver protection versus damage responses at a polluted coastal lagoon, Ria de Aveiro (Portugal), as a tool to evaluate the human impacts on environmental health at five critical sites in Ria de Aveiro (Portugal) in comparison to a reference site (Torreira; TOR). Protection was evaluated by measuring non-enzymatic [total glutathione (GSHt) and non-protein thiols (NPT)] and enzymatic [catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR)] antioxidant defenses. Damage was assessed as DNA integrity loss and lipid peroxidation (LPO). No significant differences were found between sites in terms of non-enzymatic defenses (GSHt and NPT). CAT did not display significant differences among sites. However, GPx at Barra (BAR, associated with naval traffic), Gafanha (GAF, harbor and dry-dock activities area), Laranjo (LAR, metal contaminated associated with chlor-alkali plant), and Vagos (VAG, contaminated by polycyclic aromatic hydrocarbons) was significantly lower than the reference site. GST was lower at GAF, Rio Novo do Príncipe (RIO, pulp mill effluent area), LAR, and VAG, whereas GR was lower at RIO. The loss of antioxidant defenses was paralleled by higher LPO levels only at GAF and VAG. However, no DNA integrity loss was found. Results highlight the importance of the adopted multibiomarkers as applied in the liver of L. aurata in coastal water pollution monitoring. The integration of liver antioxidant defense and damage responses can improve the aquatic contamination assessment.

  10. Surgical management and outcome of blunt major liver injuries: experience of damage control laparotomy with perihepatic packing in one trauma centre.

    PubMed

    Lin, Being-Chuan; Fang, Jen-Feng; Chen, Ray-Jade; Wong, Yon-Cheong; Hsu, Yu-Pao

    2014-01-01

    This retrospective study aimed to assess the clinical experience and outcome of damage control laparotomy with perihepatic packing in the management of blunt major liver injuries. From January 1998 to December 2006, 58 patients of blunt major liver injury, American Association for the Surgery of Trauma-Organ Injury Scale (AAST-OIS) equal or greater than III, were operated with perihepatic packing at our institute. Demographic data, intra-operative findings, operative procedures, adjunctive managements and outcome were reviewed. To determine whether there was statistical difference between the survivor and non-survivor groups, data were compared by using Mann-Whitney U test for continuous variables, either Pearson's chi-square test or with Yates continuity correction for contingency tables, and results were considered statistically significant if p<0.05. Of the 58 patients, 20 (35%) were classified as AAST-OIS grade III, 24 (41%) as grade IV, and 14 (24%) as grade V. At laparotomy, depending on the severity of injuries, all 58 patients underwent various liver-related procedures and perihepatic packing. The more frequent liver-related procedures included debridement hepatectomy (n=21), hepatorrhaphy (n=19), selective hepatic artery ligation (n=11) and 7 patients required post-laparotomy hepatic transarterial embolization. Of the 58 patients, 28 survived and 30 died with a 52% mortality rate. Of the 30 deaths, uncontrolled liver bleeding in 24-h caused 25 deaths and delayed sepsis caused residual 5 deaths. The mortality rate versus OIS was grade III: 30% (6/20), grade IV: 54% (13/24), and grade V: 79% (11/14), respectively. On univariate analysis, the significant predictors of mortality were OIS grade (p=0.019), prolonged initial prothrombin time (PT) (p=0.004), active partial thromboplastin time (APTT) (p<0.0001) and decreased platelet count (p=0.005). The mortality rate of surgical blunt major liver injuries remains high even with perihepatic packing. Since

  11. Hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl4 -induced liver damage in rats

    PubMed Central

    Kasote, D. M.; Badhe, Y. S.; Zanwar, A. A.; Hegde, M. V.; Deshmukh, K. K.

    2012-01-01

    Objective: to investigate the hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl4 -induced liver damage in rats. Materials and Methods: Hepatotoxicity was induced to Wistar rats by administration of 0.2% CCl4 in olive oil (8 mL/kg, i.p.) on the seventh day of treatment. Hepatoprotective potential of EPC-BF at doses, 250 and 500 mg/kg, p.o. was assessed through biochemical and histological parameters. Results: EPC-BF and silymarin pretreated animal groups showed significantly decreased activities of Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and level of total bilirubin, elevated by CCl4 intoxication. Hepatic lipid peroxidation elevated by CCl4 intoxication were also found to be alleviated at almost normal level in the EPC-BF and silymarin pretreated groups. Histological studies supported the biochemical findings and treatment of EPC-BF at doses 250 and 500 mg/kg, p.o. was found to be effective in restoring CCl4 -induced hepatic damage. However, EPC-BF did not show dose-dependent hepatoprotective potential. EPC-BF depicted maximum protection against CCl4 -induced hepatic damage at lower dose 250 mg/kg than higher dose (500 mg/ kg). Conclusion: EPC-BF possesses the significant hepatoprotective activity against CCl4 induced liver damage, which could be mediated through increase in antioxidant defenses. PMID:22923966

  12. Hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl(4) -induced liver damage in rats.

    PubMed

    Kasote, D M; Badhe, Y S; Zanwar, A A; Hegde, M V; Deshmukh, K K

    2012-07-01

    to investigate the hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl(4) -induced liver damage in rats. Hepatotoxicity was induced to Wistar rats by administration of 0.2% CCl(4) in olive oil (8 mL/kg, i.p.) on the seventh day of treatment. Hepatoprotective potential of EPC-BF at doses, 250 and 500 mg/kg, p.o. was assessed through biochemical and histological parameters. EPC-BF and silymarin pretreated animal groups showed significantly decreased activities of Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and level of total bilirubin, elevated by CCl(4) intoxication. Hepatic lipid peroxidation elevated by CCl(4) intoxication were also found to be alleviated at almost normal level in the EPC-BF and silymarin pretreated groups. Histological studies supported the biochemical findings and treatment of EPC-BF at doses 250 and 500 mg/kg, p.o. was found to be effective in restoring CCl(4) -induced hepatic damage. However, EPC-BF did not show dose-dependent hepatoprotective potential. EPC-BF depicted maximum protection against CCl(4) -induced hepatic damage at lower dose 250 mg/kg than higher dose (500 mg/ kg). EPC-BF possesses the significant hepatoprotective activity against CCl(4) induced liver damage, which could be mediated through increase in antioxidant defenses.

  13. Impact of the Di(2-Ethylhexyl) Phthalate Administration on Trace Element and Mineral Levels in Relation of Kidney and Liver Damage in Rats.

    PubMed

    Aydemir, Duygu; Karabulut, Gözde; Şimşek, Gülsu; Gok, Muslum; Barlas, Nurhayat; Ulusu, Nuriye Nuray

    2018-04-13

    Di(2-ethylhexyl) phthalate (DEHP) is a widely used synthetic polymer in the industry. DEHP may induce reproductive and developmental toxicity, obesity, carcinogenesis and cause abnormal endocrine function in both human and wildlife. The aim of this study was to investigate trace element and mineral levels in relation of kidney and liver damage in DEHP-administered rats. Therefore, prepubertal male rats were dosed with 0, 100, 200, and 400 mg/kg/day of DEHP. At the end of the experiment, trace element and mineral levels, glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR) and glutathione S-transferase (GST) enzyme activities were evaluated in the serum, liver, and kidney samples of rats. Furthermore, serum clinical biochemistry parameters, organ/body weight ratios and histological changes were investigated to evaluate impact of DEHP more detailed. Our data indicated that sodium (Na), calcium (Ca), potassium (K), lithium (Li), rubidium (Rb) and cesium (Cs) levels significantly decreased, however iron (Fe) and selenium (Se) concentrations significantly increased in DEHP-administered groups compared to the control in the serum samples. On the other hand, upon DEHP administration, selenium concentration, G6PD and GR activities were significantly elevated, however 6-PGD activity significantly decreased compared to the control group in the kidney samples. Decreased G6PD activity was the only significant change between anti-oxidant enzyme activities in the liver samples. Upon DEHP administration, aberrant serum biochemical parameters have arisen and abnormal histological changes were observed in the kidney and liver tissue. In conclusion, DEHP may induce liver and kidney damage, also result abnormalities in the trace element and mineral levels.

  14. Damage to Liver and Skeletal Muscles in Marathon Runners During a 100 km Run With Regard to Age and Running Speed

    PubMed Central

    Jastrzębski, Zbigniew; Żychowska, Małgorzata; Radzimiński, Łukasz; Konieczna, Anna; Kortas, Jakub

    2015-01-01

    The purpose of this study was to determine: (1) whether damage to liver and skeletal muscles occurs during a 100 km run; (2) whether the metabolic response to extreme exertion is related to the age or running speed of the participant; (3) whether it is possible to determine the optimal running speed and distance for long-distance runners’ health by examining biochemical parameters in venous blood. Fourteen experienced male amateur ultra-marathon runners, divided into two age groups, took part in a 100 km run. Blood samples for liver and skeletal muscle damage indexes were collected from the ulnar vein just before the run, after 25, 50, 75 and 100 km, and 24 hours after termination of the run. A considerable increase in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was observed with the distance covered (p < 0.05), which continued during recovery. An increase in the mean values of lactate dehydrogenase (LDH), creatine kinase (CK) and C-reactive protein (CRP) (p < 0.05) was observed with each sequential course. The biggest differences between the age groups were found for the activity of liver enzymes and LDH after completing 75 km as well as after 24 hours of recovery. It can be concluded that the response to extreme exertion deteriorates with age in terms of the active movement apparatus. PMID:25964813

  15. 6-Gingerol-Rich Fraction from Zingiber officinale Prevents Hematotoxicity and Oxidative Damage in Kidney and Liver of Rats Exposed to Carbendazim.

    PubMed

    Salihu, Mariama; Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O

    2016-01-01

    Ginger (Zingiber officinale) is a globally marketed flavoring agent and cooking spice with a long history of human health benefits. The fungicide carbendazim (CBZ) is often detected in fruits and vegetables for human nutrition and has been reported to elicit toxic effects in different experimental animal models. The present study investigated the protective effects of 6-Gingerol-rich fraction (6-GRF) from ginger on hematotoxicity and hepatorenal damage in rats exposed to CBZ. CBZ was administered at a dose of 50 mg/kg alone or simultaneously administered with 6-GRF at 50, 100, and 200 mg/kg, whereas control rats received corn oil alone at 2 mL/kg for 14 days. Hematological examination showed that CBZ-mediated toxicity to the total white blood cell (WBC), neutrophils, lymphocytes, and platelets counts were normalized to the control values in rats cotreated with 6-GRF. Moreover, administration of CBZ significantly decreased the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase as well as glutathione level in the livers and kidneys of rats compared with control. However, the levels of hydrogen peroxide (H2O2) and malondialdehyde were markedly elevated in kidneys and livers of CBZ-treated rats compared with control. The significant elevation in the plasma indices of renal and hepatic dysfunction in CBZ-treated rats was confirmed by light microscopy. Coadministration of 6-GRF exhibited chemoprotection against CBZ-mediated hematotoxicity, augmented antioxidant status, and prevented oxidative damage in the kidney and liver of rats.

  16. Milk thistle impedes the development of carbontetrachloride-induced liver damage in rats through suppression of bcl-2 and regulating caspase pathway.

    PubMed

    Aslan, Abdullah; Can, Muhammed İsmail

    2014-11-04

    The objective of this study was to examine whether MT plays a protective role against the damage in the liver by administering carbontetrachloride (CCl4) to rats. 28 male Wistar albino (n=28, 8weeks old) rats have been used in the study. The rats were distributed into 4 groups according to their live weights. The groups were: (i) negative control (NC): normal water consuming group to which no CCl4 and milk thistle (MT) is administered; (ii) positive control (PC): normal water consuming group to which no CCl4 is administered but MT is administered; (iii) CCl4 group: normal water consuming and group to which CCl4 is administered (2ml/kg live weight, ip); and (iv) CCl4+MT group: CCl4 and MT administered group (2ml/kg live weight, ip). Caspase-3, caspase-9, bax, and bcl-2 protein syntheses were examined via western blotting. MDA determination in liver tissue was made using spectrophotometer. MDA amount has decreased in the CCl4+MT group in comparison to CCl4 group whereas caspase-3 and caspase-9 has increased and bax and bcl-2 has decreased. These results show that MT protects the liver against oxidative damage. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Maize Purple Plant Pigment Protects Against Fluoride-Induced Oxidative Damage of Liver and Kidney in Rats

    PubMed Central

    Zhang, Zhuo; Zhou, Bo; Wang, Hiaohong; Wang, Fei; Song, Yingli; Liu, Shengnan; Xi, Shuhua

    2014-01-01

    Anthocyanins are polyphenols and well known for their biological antioxidative benefits. Maize purple plant pigment (MPPP) extracted and separated from maize purple plant is rich in anthocyanins. In the present study, MPPP was used to alleviate the adverse effects generated by fluoride on liver and kidney in rats. The results showed that the ultrastructure of the liver and kidney in fluoride treated rats displayed shrinkage of nuclear and cell volume, swollen mitochondria and endoplasmic reticulum and vacuols formation in the liver and kidney cells. MPPP significantly attenuated these fluoride-induced pathological changes. The MDA levels in serum and liver tissue of fluoride alone treated group were significantly higher than those of the control group (p < 0.05). The presence of 5 g/kg MPPP in the diet reduced the elevation of MDA levels in blood and liver, and increased the SOD and GSH-Px activities in kidney and GSH level in liver and kidney compared with the fluoride alone treated group (p < 0.05). In addition, MPPP alleviated the decrease of Bcl-2 protein expression and the increase of Bax protein expression induced by fluoride. This study demonstrated the protective role of MPPP against fluoride-induced oxidative stress in liver and kidney of rats. PMID:24419046

  18. Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet.

    PubMed

    Al Rajabi, Ala; Castro, Gabriela S F; da Silva, Robin P; Nelson, Randy C; Thiesen, Aducio; Vannucchi, Helio; Vine, Donna F; Proctor, Spencer D; Field, Catherine J; Curtis, Jonathan M; Jacobs, René L

    2014-03-01

    Dietary choline is required for proper structure and dynamics of cell membranes, lipoprotein synthesis, and methyl-group metabolism. In mammals, choline is synthesized via phosphatidylethanolamine N-methyltransferase (Pemt), which converts phosphatidylethanolamine to phosphatidylcholine. Pemt(-/-) mice have impaired VLDL secretion and developed fatty liver when fed a high-fat (HF) diet. Because of the reduction in plasma lipids, Pemt(-/-)/low-density lipoprotein receptor knockout (Ldlr(-/-)) mice are protected from atherosclerosis. The goal of this study was to investigate the importance of dietary choline in the metabolic phenotype of Pemt(-/-)/Ldlr(-/-) male mice. At 10-12 wk of age, Pemt(+/+)/Ldlr(-/-) (HF(+/+)) and half of the Pemt(-/-)/Ldlr(-/-) (HF(-/-)) mice were fed an HF diet with normal (1.3 g/kg) choline. The remaining Pemt(-/-)/Ldlr(-/-) mice were fed an HF diet supplemented (5 g/kg) with choline (HFCS(-/-) mice). The HF diet contained 60% of calories from fat and 1% cholesterol, and the mice were fed for 16 d. HF(-/-) mice lost weight and developed hepatomegaly, steatohepatitis, and liver damage. Hepatic concentrations of free cholesterol, cholesterol-esters, and triglyceride (TG) were elevated by 30%, 1.1-fold and 3.1-fold, respectively, in HF(-/-) compared with HF(+/+) mice. Choline supplementation normalized hepatic cholesterol, but not TG, and dramatically improved liver function. The expression of genes involved in cholesterol transport and esterification increased by 50% to 5.6-fold in HF(-/-) mice when compared with HF(+/+) mice. Markers of macrophages, oxidative stress, and fibrosis were elevated in the HF(-/-) mice. Choline supplementation normalized the expression of these genes. In conclusion, HF(-/-) mice develop liver failure associated with altered cholesterol metabolism when fed an HF/normal choline diet. Choline supplementation normalized cholesterol metabolism, which was sufficient to prevent nonalcoholic steatohepatitis development

  19. Protective activity of Panduratin A against Thioacetamide-induced oxidative damage: demonstration with in vitro experiments using WRL-68 liver cell line

    PubMed Central

    2013-01-01

    Background Chalcone Panduratin A (PA) has been known for its antioxidant property, but its merits against oxidative damage in liver cells has yet to be investigated. Hence, the paper aimed at accomplishing this task with normal embryonic cell line WRL-68. Methods PA was isolated from Boesenbergia rotunda rhizomes and its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and ferric reducing power (FRAP) activities were measured in comparison with that of the standard reference drug Silymarin (SI). Oxidative damage was induced by treating the cells with 0.04 g/ml of toxic thioacetamide for 60 minutes followed by treatment with 1, 10 and 100 μg/ml concentrations of either PA or SI. The severities of oxidative stress in the control and experimental groups of cells were measured by Malondialdehyde (MDA) levels, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. Results PA exhibited an acceptable DPPH scavenging and FRAP activities close to that of Silymarin. Treating the injured cells with PA significantly reduced the MDA level and increased the cell viability, comparable to SI. The activities of SOD, CAT and GPx were significantly elevated in the PA-treated cells in a dose dependent manner and again similar to SI. Conclusion Collectively, data suggested that PA has capacity to protect normal liver cells from oxidative damage, most likely via its antioxidant scavenging ability. PMID:24156366

  20. Hydrodynamic rupture of liver in combat patient: a case of successful application of "damage control" tactic in area of the hybrid war in East Ukraine.

    PubMed

    Khomenko, Igor; Shapovalov, Vitalii; Tsema, Ievgen; Makarov, Georgii; Palytsia, Roman; Zavodovskyi, Ievgen; Ishchenko, Ivan; Dinets, Andrii; Mishalov, Vladimir

    2017-08-15

    The hybrid war of Russia against Ukraine has been started in certain districts of Donetsk and Luhansk oblasts within the Donbas area in 2014. We report a clinical case of a combat patient who was injured after the multiple launcher rocket system "Grad" shelling, diagnosed with hydrodynamic liver rupture followed by medical management with application of damage control (DC) tactic in conditions of hybrid war. The patient underwent relaparatomy, liver resection, endoscopic papillosphincterotomy, endoscopic retrograde cholecystopancreatography, stenting of the common bile duct, and VAC-therapy. Applied treatment modalities were effective; the patient was discharged on the 49th day after injury. To our best knowledge, this is the first report describing a successful application of DC tactic in the hybrid war in East Ukraine. From this case, we suggest that application of DC tactic at all levels of combat medical care could save more lives.

  1. The parallel universe: microRNAs and their role in chronic hepatitis, liver tissue damage and hepatocarcinogenesis.

    PubMed

    Haybaeck, Johannes; Zeller, Nicolas; Heikenwalder, Mathias

    2011-10-24

    In recent years, enormous progress has been made in identifying microRNAs (miRNAs) as important regulators of gene expression and their association with or control of various liver diseases such as fibrosis, hepatitis and hepatocellular carcinoma (HCC). Indeed, many genes encoding miRNAs as well as their targets have been described and their direct or indirect link to the respective liver diseases has been investigated in various experimental systems as well as in human tissue. Here we discuss current knowledge of miRNAs and their involvement in liver diseases, elaborating in particular on the contribution of miRNAs to hepatitis, fibrosis and HCC formation. We also debate possible prognostic, predictive and therapeutic values of respective miRNAs in liver diseases. The discovery of liver disease related miRNAs has constituted a major breakthrough in liver research and will most likely be of high relevance for future therapeutic strategies, especially when dealing with hepatitis, fibrosis and HCC.

  2. Kupffer Cells Undergo Fundamental Changes during the Development of Experimental NASH and Are Critical in Initiating Liver Damage and Inflammation

    PubMed Central

    Reid, D. T.; Reyes, J. L.; McDonald, B. A.; Vo, T.; Reimer, R. A.; Eksteen, B.

    2016-01-01

    Non-alcoholic fatty liver disease has become the leading liver disease in North America and is associated with the progressive inflammatory liver disease non-alcoholic steatohepatitis (NASH). Considerable effort has been made to understand the role of resident and recruited macrophage populations in NASH however numerous questions remain. Our goal was to characterize the dynamic changes in liver macrophages during the initiation of NASH in a murine model. Using the methionine-choline deficient diet we found that liver-resident macrophages, Kupffer cells were lost early in disease onset followed by a robust infiltration of Ly-6C+ monocyte-derived macrophages that retained a dynamic phenotype. Genetic profiling revealed distinct patterns of inflammatory gene expression between macrophage subsets. Only early depletion of liver macrophages using liposomal clodronate prevented the development of NASH in mice suggesting that Kupffer cells are critical for the orchestration of inflammation during experimental NASH. Increased understanding of these dynamics may allow us to target potentially harmful populations whilst promoting anti-inflammatory or restorative populations to ultimately guide the development of effective treatment strategies. PMID:27454866

  3. Pregnane X receptor regulates the AhR/Cyp1A1 pathway and protects liver cells from benzo-[α]-pyrene-induced DNA damage.

    PubMed

    Cui, Hongmei; Gu, Xinsheng; Chen, Jingshu; Xie, Ying; Ke, Sui; Wu, Jing; Golovko, Andrei; Morpurgo, Benjamin; Yan, Chunhong; Phillips, Timothy D; Xie, Wen; Luo, Jianyuan; Zhou, Zhijun; Tian, Yanan

    2017-06-05

    Pregnane X receptor (PXR) plays an important role in protecting cells from mutagenic DNA damages induced by endogenous and exogenous toxicants. This protective function is often attributed to the PXR-regulated metabolic detoxification. Here we report a novel potential mechanism that PXR reduces benzo-[α]-pyrene(BaP)-induced DNA damage through inhibiting the transcriptional activity of aryl hydrocarbon receptor (AhR) which plays a pivotal role in the bioactivation of BaP. We have utilized three well-characterized cell lines, i.e. Hepa1c1c7, AhR +/+; Bpr lacks AhR obligatory partner ARNT; Tao, lacks AhR, to analyze pivotal role of AhR/ARNT complex in mediating the BaP-induced DNA damages using comet assay (single-cell gel electrophoresis). We found that PXR activation could significantly inhibit BaP-induced DNA damage in the HepG2 cells as well as mouse hepatocytes. Using PXR-null and wild type mouse hepatocytes we showed that PXR activation by pregnenolone 16α-carbonitrile (PCN) significantly inhibited BaP-induced DNA damage and this protective effect was abolished in PXR-null hepatocytes. Mechanistically, PXR activation inhibited expression of AhR-target genes for CYP1A1, CYP1B1 and CYP1A2 that are required for BaP biotransformation in cultured liver cells, or in the livers of C57BL/6J mice. Using an AhR-responsive reporter assay as well as chromatin immunoprecipitation assay we found that PXR activation transcriptionally represses AhR-regulated gene expression. Furthermore, we found that PXR directly bound AhR at its DNA-binding domain, and this association may play a role in preventing of the AhR from binding to its target genes as shown in the ChIP assay. Taken together, our study has revealed a novel mechanism by which PXR protects liver cells from BaP-induced DNA damage through inhibiting the BaP biotransformation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Hepatitis B Virus Induces IL-23 Production in Antigen Presenting Cells and Causes Liver Damage via the IL-23/IL-17 Axis

    PubMed Central

    Tian, Zhiqiang; Tang, Jun; Zheng, Yanhua; Huang, Zemin; Tian, Yi; Jia, Zhengcai; Tang, Yan; van Velkinburgh, Jennifer C.; Mao, Qing; Bian, Xiuwu; Ping, Yifang; Ni, Bing; Wu, Yuzhang

    2013-01-01

    IL-23 regulates myriad processes in the innate and adaptive immune systems, and is a critical mediator of the proinflammatory effects exerted by Th17 cells in many diseases. In this study, we investigated whether and how hepatitis B virus (HBV) causes liver damage directly through the IL-23 signaling pathway. In biopsied liver tissues from HBV-infected patients, expression of both IL-23 and IL-23R was remarkably elevated. In vivo observations also indicated that the main sources of IL-23 were myeloid dendritic cells (mDCs) and macrophages. Analysis of in vitro differentiated immature DCs and macrophages isolated from healthy donors revealed that the HBV surface antigen (HBsAg) efficiently induces IL-23 secretion in a mannose receptor (MR)-dependent manner. Culture with an endosomal acidification inhibitor and the dynamin inhibitor showed that, upon binding to the MR, the HBsAg is taken up by mDCs and macrophages through an endocytosis mechanism. In contrast, although the HBV core antigen (HBcAg) can also stimulate IL-23 secretion from mDCs, the process was MR- and endocytosis-independent. In addition, IL-23 was shown to be indispensible for HBsAg-stimulated differentiation of naïve CD4+ T cells into Th17 cells, which were determined to be the primary source of IL-17 in HBV-infected livers. The cognate receptor, IL-17R, was found to exist on the hepatic stellate cells and mDCs, both of which might represent the potential target cells of IL-17 in hepatitis B disease. These data provide novel insights into a yet unrecognized mechanism of HBV-induced hepatitis, by which increases in IL-23 expression, through an MR/endocytosis-dependent or -independent manner, produce liver damage through the IL-23/IL-17 axis. PMID:23825942

  5. Protective Effects of Crocus Sativus L. Extract and Crocin against Chronic-Stress Induced Oxidative Damage of Brain, Liver and Kidneys in Rats

    PubMed Central

    Bandegi, Ahmad Reza; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Ghadrdoost, Behshid

    2014-01-01

    Purpose: Chronic stress has been reported to induce oxidative damage of the brain. A few studies have shown that Crocus Sativus L., commonly known as saffron and its active constituent crocin may have a protective effect against oxidative stress. The present work was designed to study the protective effects of saffron extract and crocin on chronic – stress induced oxidative stress damage of the brain, liver and kidneys. Methods: Rats were injected with a daily dose of saffron extract (30 mg/kg, IP) or crocin (30 mg/kg, IP) during a period of 21 days following chronic restraint stress (6 h/day). In order to determine the changes of the oxidative stress parameters following chronic stress, the levels of the lipid peroxidation product, malondialdehyde (MDA), the total antioxidant reactivity (TAR), as well as antioxidant enzyme activities glutathione peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase (SOD) were measured in the brain, liver and kidneys tissues after the end of chronic stress. Results: In the stressed animals that receiving of saline, levels of MDA, and the activities of GPx, GR, and SOD were significantly higher (P<0.0001) and the TAR capacity were significantly lower than those of the non-stressed animals (P<0.0001). Both saffron extract and crocin were able to reverse these changes in the stressed animals as compared with the control groups (P<0.05). Conclusion: These observations indicate that saffron and its active constituent crocin can prevent chronic stress–induced oxidative stress damage of the brain, liver and kidneys and suggest that these substances may be useful against oxidative stress. PMID:25671180

  6. Protective effects of various ratios of DHA/EPA supplementation on high-fat diet-induced liver damage in mice.

    PubMed

    Shang, Tingting; Liu, Liang; Zhou, Jia; Zhang, Mingzhen; Hu, Qinling; Fang, Min; Wu, Yongning; Yao, Ping; Gong, Zhiyong

    2017-03-29

    A sedentary lifestyle and poor diet are risk factors for the progression of non-alcoholic fatty liver disease. However, the pathogenesis of hepatic lipid accumulation is not completely understood. Therefore, the present study explored the effects of dietary supplementation of various ratios of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on a high-fat diet-induced lipid metabolism disorder and the concurrent liver damage. Using high-fat diet-fed C57BL/6 J mice as the animal model, diets of various ratios of DHA/EPA (2:1, 1:1, and 1:2) with an n-6/n-3 ratio of 4:1 were prepared using fish and algae oils enriched in DHA and/or EPA and sunflower seed oils to a small extent instead of the high-fat diet. Significantly decreased hepatic lipid deposition, body weight, serum lipid profile, inflammatory reactions, lipid peroxidation, and expression of adipogenesis-related proteins and inflammatory factors were observed for mice that were on a diet supplemented with DHA/EPA compared to those in the high-fat control group. The DHA/EPA 1:2 group showed lower serum triglycerides (TG), total cholesterol (TC), and low-density lipoprotein-cholesterol levels, lower SREBP-1C, FAS, and ACC-1 relative mRNA expression, and higher Fra1 mRNA expression, with higher relative mRNA expression of enzymes such as AMPK, PPARα, and HSL observed in the DHA/EPA 1:1 group. Lower liver TC and TG levels and higher superoxide dismutase levels were found in the DHA/EPA 2:1 group. Nonetheless, no other notable effects were observed on the biomarkers mentioned above in the groups treated with DHA/EPA compared with the DHA group. The results showed that supplementation with a lower DHA/EPA ratio seems to be more effective at alleviating high-fat diet-induced liver damage in mice, and a DHA/EPA ratio of 1:2 mitigated inflammatory risk factors. These effects of n-3 polyunsaturated fatty acids (PUFA) on lipid metabolism may be linked to the upregulation of Fra1 and attenuated activity of c

  7. Primum Non Nocere: Organ Donation After Electrocution and Transplantation of Electricity-Damaged Livers: Report of 2 Cases.

    PubMed

    Giorgakis, E; Tedeschi, M; Bonaccorsi-Riani, E; Khorsandi, S E; Vilca-Melendez, H; Heaton, N

    2016-10-01

    Liver transplantation remains the treatment of choice for patients with end-stage liver disease. However, allograft availability continues to be a problem, and extending the criteria for organ acceptance is key. Deceased donors after electrical accidents, as well as electricity-traumatized allografts, are not common but should be considered suitable. This study describes 2 cases of heart-beating organ donors with electrical injury to the liver. In 1 case, the electric shock was the cause of death; in the second case, the injury was caused by defibrillation at organ procurement. Both allografts had sustained sizeable electrical injury, and both resulted in excellent early posttransplant outcomes. These cases demonstrate that electrocution is not a contraindication to donation and that electricity-traumatized allografts may remain transplantable after careful assessment. Education of all staff in the management of such donors can optimize utility of such allografts. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effects of dietary polyunsaturated fatty acids and nucleotides on tissue fatty acid profiles of rats with carbon tetrachloride-induced liver damage.

    PubMed

    Fontana, L; Moreira, E; Torres, M I; Periago, J L; Sánchez de Medina, F; Gil, A

    1999-04-01

    The deficiency of polyunsaturated fatty acids (PUFA) that occurs in plasma of patients with liver cirrhosis has been assessed in rats with severe steatosis and mild liver necrosis induced by repeated administration of low doses of carbon tetrachloride (CCl(4)). The contribution of both dietary (n-3) long-chain PUFA and nucleotides to the recovery of the altered fatty acid profiles of tissue lipids of these rats has also been studied. Two groups of rats were used. The first was intraperitoneally injected 0.15 ml of a 10% (v/v) CCl(4)solution in paraffin per 100 g of body weight, three times a week for 9 weeks; the second received paraffin alone. After the treatment, six rats of each group were killed. Afterwards, the remaining controls were fed a semipurified diet (SPD) for 3 weeks, and the remaining rats in the CCl(4)group were divided into three new groups: the first was fed the SP diet; the second was fed the SP diet supplemented with 1% (n-3) polyunsaturated fatty acids (PUFA diet); and the third was fed the SP diet supplemented with 250 mg nucleotides per 100 g diet (NT diet). Fatty acids of plasma, erythrocyte membranes and liver microsomes were analyzed. Decreases in linoleic and arachidonic acids in both total plasma lipids and liver microsomal phospholipids were the main findings due to CCl(4)treatment. The rats that received CCl(4)and the PUFA diet showed the lowest levels of (n-6) PUFA and the highest levels of (n-3) PUFA in liver microsomal phospholipids, as well as a significant increase of (n-3) PUFAs in total plasma lipids. The animals that received the NT diet showed no signs of fatty infiltration and exhibited the highest levels of (n-6) PUFAs in liver microsomal phospholipids. These results show that CCl(4)affects fatty acid metabolism which is accordingly reflected in altered tissue fatty acid profiles, and that balanced diets containing PUFA and nucleotides are important for the recovery of the damaged liver in rats. Copyright 1999 Harcourt

  9. Heat Damage Zones Created by Different Energy Sources Used in the Treatment of Benign Prostatic Hyperplasia in a Pig Liver Model.

    PubMed

    Kan, Chi Fai; Chan, Alexander Chak Lam; Pun, Chung Ting; Ho, Lap Yin; Chan, Steve Wai-Hee; Au, Wing Hang

    2015-06-01

    There are different types of transurethral prostatic surgeries and the complication profiles are different. This study aims to compare the heat damage zones (HDZ) created by five different technologies in a pig liver model. Monopolar resection, bipolar resection, electrovaporization, and Greenlight™ lasers of 120 and 180 W were used to remove fresh pig liver tissue in a simulated model. Each procedure was repeated in five specimens. Two blocks were selected from each specimen to measure the three deepest HDZ. The mean of HDZ was 295, 234, 192, 673, and 567 μm, respectively, for monopolar resection, bipolar resection, electrovaporization, Greenlight laser 120 W, and Greenlight laser 180 W, respectively. The Greenlight laser produced one to three times deeper HDZ than the other energy sources (p=0.000). Both 120 and 180 W Greenlight lasers produced deeper HDZ than the other energy sources. Urologists need to be aware of HDZ that cause tissue damage outside the operative field.

  10. The impact of urban environment on oxidative damage (TBARS) and antioxidant systems in lungs and liver of great tits, Parus major.

    PubMed

    Isaksson, C; Sturve, J; Almroth, B C; Andersson, S

    2009-01-01

    A direct negative link between human health and urban pollution levels generated by increased internal levels of oxyradicals is well established. The impact of urban environment on the physiology of wild birds is however, poorly investigated. Here we compare oxidative damage (i.e., lipid peroxidation, measured as TBARS) and different antioxidant enzymes (glutathione reductase (GR), glutathione-S-transferase (GST), and catalase (CAT)) in lungs of urban and rural great tits, Parus major. In addition, we investigated enzymatic (i.e., CAT) and non-enzymatic (i.e., carotenoids) antioxidant levels in liver tissue. There was no significant difference in lipid peroxidation in lungs between the environments. Among the antioxidant enzymes measured in lungs, only CAT showed a tendency towards increased activity in the urban environment. In contrast, CAT in livers was highly non-significant. However, there was a significantly higher concentration of dietary carotenoids (i.e., lutein (Lut) and zeaxanthin (Zx)) in urban males, along with a sex-specific difference in composition (Lut:Zx ratio) between the environments. Taken together, these results suggest that great tit lungs and livers do not seem to be negatively affected, regarding oxidative stress, by living in an urban environment.

  11. The Protective Effects of Polysaccharides from Agaricus blazei Murill Against Cadmium-Induced Oxidant Stress and Inflammatory Damage in Chicken Livers.

    PubMed

    Hu, Xuequan; Zhang, Ruili; Xie, Yingying; Wang, Hongmei; Ge, Ming

    2017-07-01

    This study aimed to assess the protective roles of polysaccharides from Agaricus blazei Murill (ABP) against cadmium (Cd)-induced damage in chicken livers. A total of 80 Hy-Line laying chickens (7 days old) were randomly divided into four groups (n = 20). Group I (control) was fed with a basic diet and 0.2 ml saline per day, group II (Cd-treated group) was fed with a basic diet containing 140 mg/kg cadmium chloride (CdCl 2 ) and 0.2 ml saline per day, group III (Cd + ABP-treated group) was fed with a basic diet containing 140 mg/kg CdCl 2 and 0.2-ml ABP solution (30 mg/ml) per day via oral gavage, and group IV (ABP-treated group) was fed with 0.2-ml ABP solution (30 mg/ml) per day via oral gavage. The contents of Cd and malondialdehyde (MDA), the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), the messenger RNA (mRNA) levels of inflammatory cytokines and heat shock proteins (HSPs), the protein levels of HSPs, and the histopathological changes of livers were evaluated on days 20, 40, and 60. The results showed that Cd exposure resulted in Cd accumulating in livers and inhibiting the activities of antioxidant enzymes (SOD and GSH-PX). Cd exposure caused histopathological damage and increased the MDA content, the mRNA levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) and HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90) and the protein levels of HSPs (HSP60, HSP70, and HSP90). ABP supplementation during dietary exposure to Cd reduced the histopathological damage and decreased the contents of Cd and MDA and the expression of inflammatory cytokines and HSPs and improved the activities of antioxidant enzymes. The results indicated that ABP could partly ameliorate the toxic effects of Cd on chicken livers.

  12. Halloysite nanotubes-induced Al accumulation and oxidative damage in liver of mice after 30-day repeated oral administration.

    PubMed

    Wang, Xue; Gong, Jiachun; Gui, Zongxiang; Hu, Tingting; Xu, Xiaolong

    2018-06-01

    Halloysite (Al 2 Si 2 O 5 (OH) 4 ·nH 2 O) nanotubes (HNTs) are natural clay materials and widely applied in many fields due to their natural hollow tubular structures. Many in vitro studies indicate that HNTs exhibit a high level of biocompatibility, however the in vivo toxicity of HNTs remains unclear. The objective of this study was to assess the hepatic toxicity of the purified HNTs in mice via oral route. The purified HNTs were orally administered to mice at 5, 50, and 300 mg/kg body weight (BW) every day for 30 days. Oral administration of HNTs stimulated the growth of the mice at the low dose (5 mg/kg BW) with no liver toxicity, but inhibited the growth of the mice at the middle (50 mg/kg BW) and high (300 mg/kg BW) doses. In addition, oral administration of HNTs at the high dose caused Al accumulation in the liver but had no marked effect on the Si content in the organ. The Al accumulation caused significant oxidative stress in the liver, which induced hepatic dysfunction and histopathologic changes. These findings demonstrated that Al accumulation-induced oxidative stress played an important role in the oral HNTs-caused liver injury. © 2018 Wiley Periodicals, Inc.

  13. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DNA damage in rats.

    PubMed

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. © 2013.

  14. The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age-associated inflammation and oxidative stress in healthy rats.

    PubMed

    Niu, Yucun; Na, Lixin; Feng, Rennan; Gong, Liya; Zhao, Yue; Li, Qiang; Li, Ying; Sun, Changhao

    2013-12-01

    It is known that phytochemicals have many potential health benefits in humans. The aim of this study was to investigate the effects of long-term consumption of the phytochemical, epigallocatechin gallate (EGCG), on body growth, disease protection, and lifespan in healthy rats. 68 male weaning Wistar rats were randomly divided into the control and EGCG groups. Variables influencing lifespan such as blood pressure, serum glucose and lipids, inflammation, and oxidative stress were dynamically determined from weaning to death. The median lifespan of controls was 92.5 weeks. EGCG increased median lifespan to 105.0 weeks and delayed death by approximately 8-12 weeks. Blood pressure and serum glucose and lipids significantly increased with age in both groups compared with the levels at 0 week. However, there were no differences in these variables between the two groups during the whole lifespan. Inflammation and oxidative stress significantly increased with age in both groups compared with 0 week and were significantly lower in serum and liver and kidney tissues in the EGCG group. Damage to liver and kidney function was significantly alleviated in the EGCG group. In addition, EGCG decreased the mRNA and protein expressions of transcription factor NF-κB and increased the upstream protein expressions of silent mating type information regulation two homolog one (SIRT1) and forkhead box class O 3a (FOXO3a). In conclusion, EGCG extends lifespan in healthy rats by reducing liver and kidney damage and improving age-associated inflammation and oxidative stress through the inhibition of NF-κB signaling by activating the longevity factors FoxO3a and SIRT1. © 2013 the Anatomical Society and John Wiley & Sons Ltd.

  15. Effects of grape seed polyphenols on oxidative damage in liver tissue of acutely and chronically exercised rats.

    PubMed

    Belviranlı, Muaz; Gökbel, Hakkı; Okudan, Nilsel; Büyükbaş, Sadık

    2013-05-01

    The objective of the present study was to investigate the effects of grape seed extract (GSE) supplementation on oxidative stress and antioxidant defense markers in liver tissue of acutely and chronically exercised rats. Rats were randomly assigned to six groups: Control (C), Control Chronic Exercise (CE), Control Acute Exercise (AE), GSE-supplemented Control (GC), GSE-supplemented Chronic Exercise(GCE) and GSE-supplemented Acute Exercise (GAE). Rats in the chronic exercise groups were subjected to a six-week treadmill running and in the acute exercise groups performed an exhaustive running. Rats in the GSE supplemented groups received GSE (100 mg.kg(-1) .day(-1) ) in drinking water for 6 weeks. Liver tissues of the rats were taken for the analysis of malondialdehyde (MDA), nitric oxide (NO) levels and total antioxidant activity (AOA) and xanthine oxidase (XO) activities. MDA levels decreased with GSE supplementation in control groups but increased in acute and chronic exercise groups compared to their non-supplemented control. NO levels increased with GSE supplementation. XO activities were higher in AE group compared to the CE group. AOA decreased with GSE supplementation. In conclusion, while acute exercise triggers oxidative stress, chronic exercise has protective role against oxidative stress. GSE has a limited antioxidant effect on exercise-induced oxidative stress in liver tissue.

  16. Protectin D1 reduces concanavalin A-induced liver injury by inhibiting NF-κB-mediated CX3CL1/CX3CR1 axis and NLR family, pyrin domain containing 3 inflammasome activation.

    PubMed

    Ren, Jun; Meng, Shanshan; Yan, Bingdi; Yu, Jinyan; Liu, Jing

    2016-04-01

    Protectin D1 (PD1) is a bioactive product generated from docosahexaenoic acid, which may exert anti-inflammatory effects in various inflammatory diseases. However, the underlying molecular mechanism of its anti‑inflammatory activity on concanavalin A (Con A)-induced hepatitis remains unknown. The aim of the present study was to investigate the protective effects of PD1 against Con A‑induced liver injury and the underlying mechanisms via intravenous injection of PD1 prior to Con A administration. C57BL/6 mice were randomly divided into four experimental groups as follows: Control group, Con A group (30 mg/kg), 20 µg/kg PD1 + Con A (30 mg/kg) group and 10 µg/kg PD1 + Con A (30 mg/kg) group. PD1 pretreatment was demonstrated to significantly inhibit elevated plasma aminotransferase levels, high mobility group box 1 and liver necrosis, which were observed in Con A‑induced hepatitis. Furthermore, compared with the Con A group, PD1 pretreatment prevented the production of pro‑inflammatory cytokines, including tumor necrosis factor‑α, interferon‑γ and interleukin‑2, ‑1β and ‑6. In addition, pretreatment with PD1 markedly downregulated cluster of differentiation (CD)4+, CD8+ and natural killer T (NKT) cell infiltration in the liver. PD1 pretreatment was observed to suppress the messenger RNA and protein expression levels of NLR family, pyrin domain containing 3 and Toll‑like receptor (TLR) 4 in liver tissue samples. Further data indicated that PD1 pretreatment inhibited the activation of the nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB) signaling pathway and chemokine (C‑X3‑C motif) ligand 1 (CX3CL1)/chemokine (C-X3-C motif) receptor 1 (CX3CR1) axis by preventing phosphorylation of nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor, α and NF‑κB in Con A‑induced liver injury. Therefore, these results suggest that PD1 administration protects mice against Con A‑induced liver injury via

  17. Association Between the Severity of Nocturnal Hypoxia in Obstructive Sleep Apnea and Non-Alcoholic Fatty Liver Damage

    PubMed Central

    Cakmak, Erol; Duksal, Faysal; Altinkaya, Engin; Acibucu, Fettah; Dogan, Omer Tamer; Yonem, Ozlem; Yilmaz, Abdulkerim

    2015-01-01

    Background: Obstructive sleep apnea (OSA) is a major disease that can cause significant mortality and morbidity. Chronic intermittent hypoxia is a potential causal factor in the progression from fatty liver to nonalcoholic steatohepatitis. Objectives: This study evaluated the association between the degree of liver steatosis and severity of nocturnal hypoxia. Patients and Methods: In this study, between December 2011 and December 2013, patients with ultrasound-diagnosed NAFLD evaluated by standart polysomnography were subsequentally recorded. Patients with alcohol use, viral hepatitis and other chronic liver diseases were excluded. We analyzed polysomnographic parameters, steatosis level and severity of obstructive sleep apnea (OSA) in consideration of body mass index (BMI), biochemical tests and ultrasonographic liver data of 137 subjects. Patients with sleep apnea and AHI scores of < 5, 5 - 14, 15 - 29 and ≥30 are categorized as control, mild, moderate and severe, respectively. Results: One hundred and thirty-seven patients (76 women, 61 men) with a mean age of 55.75 ± 10.13 years who underwent polysomnography were included in the study. Of 118 patients diagnosed with OSA, 19 (16.1%) had mild OSA, 39 (33.1%) moderate OSA and 60 (50.8%) severe OSA. Nineteen cases formed the control group. Apnea/hypopnea index and oxygen desaturation index (ODI) values were significantly higher in moderate and severe non-alcoholic fatty liver disease (NAFLD) compared to the non-NAFLD group. Mean nocturnal SpO2 values were significantly lower in mild NAFLD and severe NAFLD compared to the non-NAFLD group. Lowest O2 saturation (LaSO2) was found low in mild, moderate and severe NAFLD compared to the non-NAFLD group in a statistically significant manner. Conclusions: We assessed polysomnographic parameters of AHI, ODI, LaSO2 and mean nocturnal SpO2 levels, which are especially important in the association between NAFLD and OSAS. We think that it is necessary to be attentive

  18. New therapeutic aspect for carvedilol: Antifibrotic effects of carvedilol in chronic carbon tetrachloride-induced liver damage

    SciTech Connect

    Hamdy, Nadia; El-Demerdash, Ebtehal, E-mail: ebtehal_dm@yahoo.com

    2012-06-15

    Portal hypertension is a common complication of chronic liver diseases associated with liver fibrosis and cirrhosis. At present, beta-blockers such as carvedilol remain the medical treatment of choice for protection against variceal bleeding and other complications. Since carvedilol has powerful antioxidant properties we assessed the potential antifibrotic effects of carvedilol and the underlying mechanisms that may add further benefits for its clinical usefulness using a chronic model of carbon tetrachloride (CCl4)-induced hepatotoxicity. Two weeks after CCl4 induction of chronic hepatotoxicity, rats were co-treated with carvedilol (10 mg/kg, orally) daily for 6 weeks. It was found that treatment of animals withmore » carvedilol significantly counteracted the changes in liver function and histopathological lesions induced by CCl4. Also, carvedilol significantly counteracted lipid peroxidation, GSH depletion, and reduction in antioxidant enzyme activities; glutathione-S-transferase and catalase that was induced by CCl4. In addition, carvedilol ameliorated the inflammation induced by CCl4 as indicated by reducing the serum level of acute phase protein marker; alpha-2-macroglobulin and the liver expression of nuclear factor-kappa B (NF-κB). Finally, carvedilol significantly reduced liver fibrosis markers including hydroxyproline, collagen accumulation, and the expression of the hepatic stellate cell (HSC) activation marker; alpha smooth muscle actin. In conclusion, the present study provides evidences for the promising antifibrotic effects of carvedilol that can be explained by amelioration of oxidative stress through mainly, replenishment of GSH, restoration of antioxidant enzyme activities and reduction of lipid peroxides as well as amelioration of inflammation and fibrosis by decreasing collagen accumulation, acute phase protein level, NF-κB expression and finally HSC activation. -- Highlights: ► Carvedilol is a beta blocker with antioxidant and antifibrotic

  19. Short-term administration of GW501516 improves inflammatory state in white adipose tissue and liver damage in high-fructose-fed mice through modulation of the renin-angiotensin system.

    PubMed

    Magliano, D'Angelo C; Penna-de-Carvalho, Aline; Vazquez-Carrera, Manuel; Mandarim-de-Lacerda, Carlos A; Aguila, Marcia B

    2015-11-01

    High activation of the angiotensin-converting enzyme (ACE)/(angiotensin-II type 1 receptor) AT1r axis is closely linked to pro-inflammatory effects and liver damage. The aim of this study was to evaluate the effects of the short-term administration of GW501516 on pro-inflammatory markers in white adipose tissue (WAT) and hepatic stellate cells (HSCs), lipogenesis and insulin resistance in the liver upon high-fructose diet (HFru)-induced ACE/AT1r axis activation. Three-month-old male C57Bl/6 mice were fed a standard chow diet or a HFru for 8 weeks. Then, the animals were separated randomly into four groups and treated with GW501516 for 3 weeks. Morphological variables, systolic blood pressure, and plasma determinations were analyzed. In the WAT, the ACE/AT1r axis and pro-inflammatory cytokines were assessed, and in the liver, the ACE/AT1r axis, HSCs, fatty acid oxidation, insulin resistance, and AMPK activation were evaluated. The HFru group displayed a high activation of the ACE/AT1r axis in both the WAT and liver; consequently, we detected inflammation and liver damage. Although GW501516 abolished the increased activation of the ACE/AT1r axis in the WAT, no differences were found in the liver. GW501516 blunted the inflammatory state in the WAT and reduced HSC activation in the liver. In addition, GW501516 alleviates damage in the liver by increasing the expression of the genes that regulate beta-oxidation and decreasing the expression of the genes and proteins that are involved in lipogenesis and gluconeogenesis. We conclude that GW501516 may serve as a therapeutic option for the treatment of a highly activated ACE/AT1r axis in WAT and liver.

  20. Free Radical-Scavenging, Anti-Inflammatory/Anti-Fibrotic and Hepatoprotective Actions of Taurine and Silymarin against CCl4 Induced Rat Liver Damage

    PubMed Central

    Abdel-Moneim, Ashraf M.; Al-Kahtani, Mohammed A.; El-Kersh, Mohamed A.; Al-Omair, Mohammed A.

    2015-01-01

    The present study aims to investigate the hepatoprotective effect of taurine (TAU) alone or in combination with silymarin (SIL) on CCl4-induced liver damage. Twenty five male rats were randomized into 5 groups: normal control (vehicle treated), toxin control (CCl4 treated), CCl4+TAU, CCl4+SIL and CCl4+TAU+SIL. CCl4 provoked significant increases in the levels of hepatic TBARS, NO and NOS compared to control group, but the levels of endogenous antioxidants such as SOD, GPx, GR, GST and GSH were significantly decreased. Serum pro-inflammatory and fibrogenic cytokines including TNF-α, TGF-β1, IL-6, leptin and resistin were increased while the anti-inflammatory (adiponectin) cytokine was decreased in all treated rats. Our results also showed that CCl4 induced an increase in liver injury parameters like serum ALT, AST, ALP, GGT and bilirubin. In addition, a significant increase in liver tissue hydroxyproline (a major component of collagen) was detected in rats exposed to CCl4. Moreover, the concentrations of serum TG, TC, HDL-C, LDL-C, VLDL-C and FFA were significantly increased by CCl4. Both TAU and SIL (i.e., antioxidants) post-treatments were effectively able to relieve most of the above mentioned imbalances. However, the combination therapy was more effective than single applications in reducing TBARS levels, NO production, hydroxyproline content in fibrotic liver and the activity of serum GGT. Combined treatment (but not TAU- or SIL-alone) was also able to effectively prevent CCl4-induced decrease in adiponectin serum levels. Of note, the combined post-treatment with TAU+SIL (but not monotherapy) normalized serum FFA in CCl4-treated rats. The biochemical results were confirmed by histological and ultrastructural changes as compared to CCl4-poisoned rats. Therefore, on the basis of our work, TAU may be used in combination with SIL as an additional adjunct therapy to cure liver diseases such as fibrosis, cirrhosis and viral hepatitis. PMID:26659465

  1. Free Radical-Scavenging, Anti-Inflammatory/Anti-Fibrotic and Hepatoprotective Actions of Taurine and Silymarin against CCl4 Induced Rat Liver Damage.

    PubMed

    Abdel-Moneim, Ashraf M; Al-Kahtani, Mohammed A; El-Kersh, Mohamed A; Al-Omair, Mohammed A

    2015-01-01

    The present study aims to investigate the hepatoprotective effect of taurine (TAU) alone or in combination with silymarin (SIL) on CCl4-induced liver damage. Twenty five male rats were randomized into 5 groups: normal control (vehicle treated), toxin control (CCl4 treated), CCl4+TAU, CCl4+SIL and CCl4+TAU+SIL. CCl4 provoked significant increases in the levels of hepatic TBARS, NO and NOS compared to control group, but the levels of endogenous antioxidants such as SOD, GPx, GR, GST and GSH were significantly decreased. Serum pro-inflammatory and fibrogenic cytokines including TNF-α, TGF-β1, IL-6, leptin and resistin were increased while the anti-inflammatory (adiponectin) cytokine was decreased in all treated rats. Our results also showed that CCl4 induced an increase in liver injury parameters like serum ALT, AST, ALP, GGT and bilirubin. In addition, a significant increase in liver tissue hydroxyproline (a major component of collagen) was detected in rats exposed to CCl4. Moreover, the concentrations of serum TG, TC, HDL-C, LDL-C, VLDL-C and FFA were significantly increased by CCl4. Both TAU and SIL (i.e., antioxidants) post-treatments were effectively able to relieve most of the above mentioned imbalances. However, the combination therapy was more effective than single applications in reducing TBARS levels, NO production, hydroxyproline content in fibrotic liver and the activity of serum GGT. Combined treatment (but not TAU- or SIL-alone) was also able to effectively prevent CCl4-induced decrease in adiponectin serum levels. Of note, the combined post-treatment with TAU+SIL (but not monotherapy) normalized serum FFA in CCl4-treated rats. The biochemical results were confirmed by histological and ultrastructural changes as compared to CCl4-poisoned rats. Therefore, on the basis of our work, TAU may be used in combination with SIL as an additional adjunct therapy to cure liver diseases such as fibrosis, cirrhosis and viral hepatitis.

  2. Chronic aspartame intake causes changes in the trans-sulphuration pathway, glutathione depletion and liver damage in mice.

    PubMed

    Finamor, Isabela; Pérez, Salvador; Bressan, Caroline A; Brenner, Carlos E; Rius-Pérez, Sergio; Brittes, Patricia C; Cheiran, Gabriele; Rocha, Maria I; da Veiga, Marcelo; Sastre, Juan; Pavanato, Maria A

    2017-04-01

    No-caloric sweeteners, such as aspartame, are widely used in various food and beverages to prevent the increasing rates of obesity and diabetes mellitus, acting as tools in helping control caloric intake. Aspartame is metabolized to phenylalanine, aspartic acid, and methanol. Our aim was to study the effect of chronic administration of aspartame on glutathione redox status and on the trans-sulphuration pathway in mouse liver. Mice were divided into three groups: control; treated daily with aspartame for 90 days; and treated with aspartame plus N-acetylcysteine (NAC). Chronic administration of aspartame increased plasma alanine aminotransferase (ALT) and aspartate aminotransferase activities and caused liver injury as well as marked decreased hepatic levels of reduced glutathione (GSH), oxidized glutathione (GSSG), γ-glutamylcysteine ​​(γ-GC), and most metabolites of the trans-sulphuration pathway, such as cysteine, S-adenosylmethionine (SAM), and S-adenosylhomocysteine ​​(SAH). Aspartame also triggered a decrease in mRNA and protein levels of the catalytic subunit of glutamate cysteine ligase (GCLc) and cystathionine γ-lyase, and in protein levels of methionine adenosyltransferase 1A and 2A. N-acetylcysteine prevented the aspartame-induced liver injury and the increase in plasma ALT activity as well as the decrease in GSH, γ-GC, cysteine, SAM and SAH levels and GCLc protein levels. In conclusion, chronic administration of aspartame caused marked hepatic GSH depletion, which should be ascribed to GCLc down-regulation and decreased cysteine levels. Aspartame triggered blockade of the trans-sulphuration pathway at two steps, cystathionine γ-lyase and methionine adenosyltransferases. NAC restored glutathione levels as well as the impairment of the trans-sulphuration pathway. Copyright © 2017. Published by Elsevier B.V.

  3. Extract of Bauhinia vahlii Shows Antihyperglycemic Activity, Reverses Oxidative Stress, and Protects against Liver Damage in Streptozotocin-induced Diabetic Rats

    PubMed Central

    Elbanna, Ahmed H.; Nooh, Mohammed M.; Mahrous, Engy A.; Khaleel, Amal E.; Elalfy, Taha S.

    2017-01-01

    Background: Several studies have affirmed the effectiveness of some Bauhinia plants as antihyperglycemic agents. Objective: We investigated the possible effect of Bauhinia vahlii leaves extract in reducing hyperglycemia and reversing signs of organ damage associated with diabetes in streptozotocin (STZ) rat model. Materials and Methods: Both polar fraction of the B. vahlii leaves (defatted ethanolic extract [DEE]) and nonpolar fraction (n-hexane extract) were evaluated in vitro for α-glucosidase inhibition and 2,2-diphenyl-1-picrylhydrazyl radical scavenging potential. DEE was selected for further in vivo studies and was administered at two doses, i.e., 150 or 300 mg/kg to STZ-diabetic rats for 4 weeks. Results: Only DEE exhibited in vitro antioxidant and antihyperglycemic activities and its oral administration at both dose levels resulted in significant reduction in fasting blood glucose and glycated hemoglobin. Furthermore, signs of oxidative stress as indicated by hepatic reduced glutathione, nitric oxide, and malondialdehyde levels were completely reversed. In addition, histopathological examination and measurement of serum aspartate transaminase and alanine transaminase levels showed that DEE protected the liver from signs of liver pathogenesis when compared to diabetic untreated animals and those treated with metformin. Phytochemical analysis of DEE showed high flavonoids content with quercitrin as the major constituent along with other quercetin glycosides. Conclusion: This study strongly highlights the possible beneficial effect of B. vahlii leaves extract in relieving hyperglycemia and liver damage in STZ-diabetic rats and recommends further investigation of the value of quercetin derivatives in controlling diabetes and ameliorating liver damage associated with it. SUMMARY The polar fraction of the Bauhinia vahlii leaves (defatted ethanolic extract [DEE]) exhibited both in vitro antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl scavenging assay and

  4. [Isoflavone genistein-8-c-glycoside prevents the oxidative damages in structure and function of rat liver microsomal membranes].

    PubMed

    Zavodnik, L B

    2003-01-01

    Bioflavonoids (polyhydroxyphenols) are ubiquitous components of plants, fruits and vegetables; these compounds are efficient scavengers of free oxygen radicals and peroxides. The aim of this study was to investigate the antioxidant and radioprotective effects of genistein-8-C-glicoside (G8CG), an isoflavone, isolated from the flowers of Lipinus luteusl L. G8CG prevents dose-dependently the destruction of the cytochrome P-450 and its conversion to an inactive form cytochrome P-420, inhibits membrane lipid peroxidation and membrane SH-group oxidation in isolated rat liver microsomal membranes under tert-butylhydroperoxide-induced oxidative stress. Single whole-body gamma-irradiation (1 Gy) of rats results in blood plasma and liver microsomal membrane lipid peroxidation, impairments of microsomal membrane structure and function. Rat treatment with G8CG (75 mg/kg) developed the clear protective effect, stabilized membrane structure and improved the parameters of the monooxygenase function. We can conclude that G8CG can be used as antioxidant and radioprotective agent.

  5. Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations.

    PubMed

    Cariello, Marica; Piccinin, Elena; Garcia-Irigoyen, Oihane; Sabbà, Carlo; Moschetta, Antonio

    2018-04-01

    The nuclear receptor farnesoid X receptor (FXR) is the master regulator of bile acids (BAs) homeostasis since it transcriptionally drives modulation of BA synthesis, influx, efflux, and detoxification along the enterohepatic axis. Due to its crucial role, FXR alterations are involved in the progression of a plethora of BAs associated inflammatory disorders in the liver and in the gut. The involvement of the FXR pathway in cholestasis development and management has been elucidated so far with a direct role of FXR activating therapy in this condition. However, the recent identification of a new type of genetic progressive familial intrahepatic cholestasis (PFIC) linked to FXR mutations has strengthen also the bona fide beneficial effects of target therapies that by-pass FXR activation, directly promoting the action of its target, namely the enterokine FGF19, in the repression of hepatic BAs synthesis with reduction of total BA levels in the liver and serum, accomplishing one of the major goals in cholestasis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni and Peter Jansen. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The protective effect of hydroalcoholic extract of Ginger (Zingiber officinale Rosc.) against iron-induced functional and histological damages in rat liver and kidney

    PubMed Central

    Gholampour, Firouzeh; Behzadi Ghiasabadi, Fatemeh; Owji, Seyed Mohammad; Vatanparast, Jaafar

    2017-01-01

    Objective: Iron overload in the body is related with toxic effects and threatens the health. The aim of this study was to evaluate the protective role of hydroalcoholic extract of ginger (Zingiber officinale) against ferrous sulfate-induced hepatic and renal functional disorders and histological damages in rats. Materials and Methods: The rats were divided into four groups (n=7): Sham, Sham + G.E (ginger extract, 400 mg/kg/day for 14 days), FS (ferrous sulfate, 30 mg/kg/day for 14 days), FS+G.E (ferrous sulfate, 30 mg/kg/day for 14 days; ginger extract, 400 mg/kg/day for 11 days from the fourth day of ferrous sulfate injection). After 24 hr, blood, urine and tissue samples were collected. Results: Compared with Sham and Sham + G.E groups, administration of ferrous sulfate resulted in liver and kidney dysfunction as evidenced by significantly higher levels of serum hepatic markers and bilirubin, and lower levels of serum albumin, total protein, triglyceride, cholesterol and glucose, as well as lower creatinine clearance and higher fractional excretion of sodium (p<0.001). This was accompanied by increased malondialdehyde levels and histological damages (p<0.001). In the FS + G.E, ginger extract significantly (p<0.01) reversed the levels of serum hepatic markers, renal functional markers and lipid peroxidation marker. Furthermore, it restored the levels of serum total protein, albumin, glucose, triglycerides and cholesterol and decreased bilirubin concentration in the blood. All these changes were corroborated by histological observations of liver and kidney. Conclusion: In conclusion, ginger extract appears to exert protective effects against ferrous sulfate-induced hepatic and renal toxicity by reducing lipid peroxidation and chelating iron. PMID:29299437

  7. The protective effect of hydroalcoholic extract of Ginger (Zingiber officinale Rosc.) against iron-induced functional and histological damages in rat liver and kidney.

    PubMed

    Gholampour, Firouzeh; Behzadi Ghiasabadi, Fatemeh; Owji, Seyed Mohammad; Vatanparast, Jaafar

    2017-01-01

    Iron overload in the body is related with toxic effects and threatens the health. The aim of this study was to evaluate the protective role of hydroalcoholic extract of ginger ( Zingiber officinale ) against ferrous sulfate-induced hepatic and renal functional disorders and histological damages in rats. The rats were divided into four groups (n=7): Sham, Sham + G.E (ginger extract, 400 mg/kg/day for 14 days), FS (ferrous sulfate, 30 mg/kg/day for 14 days), FS+G.E (ferrous sulfate, 30 mg/kg/day for 14 days; ginger extract, 400 mg/kg/day for 11 days from the fourth day of ferrous sulfate injection). After 24 hr, blood, urine and tissue samples were collected. Compared with Sham and Sham + G.E groups, administration of ferrous sulfate resulted in liver and kidney dysfunction as evidenced by significantly higher levels of serum hepatic markers and bilirubin, and lower levels of serum albumin, total protein, triglyceride, cholesterol and glucose, as well as lower creatinine clearance and higher fractional excretion of sodium (p<0.001). This was accompanied by increased malondialdehyde levels and histological damages (p<0.001). In the FS + G.E, ginger extract significantly (p<0.01) reversed the levels of serum hepatic markers, renal functional markers and lipid peroxidation marker. Furthermore, it restored the levels of serum total protein, albumin, glucose, triglycerides and cholesterol and decreased bilirubin concentration in the blood. All these changes were corroborated by histological observations of liver and kidney. In conclusion, ginger extract appears to exert protective effects against ferrous sulfate-induced hepatic and renal toxicity by reducing lipid peroxidation and chelating iron.

  8. NF-κB activation and proinflammatory cytokines mediated protective effect of Indigofera caerulea Roxb. on CCl4 induced liver damage in rats.

    PubMed

    Ponmari, Guruvaiah; Annamalai, Arunachalam; Gopalakrishnan, Velliyur Kanniappan; Lakshmi, P T V; Guruvayoorappan, C

    2014-12-01

    Indigofera caerulea Roxb. is a well known shrub among native medical practitioners in folk medicine used for the treatment of jaundice, epilepsy, night blindness and snake bites. It is also reported to have antioxidant and antimicrobial properties. However its actual efficacy and hepatoprotective mechanism in particular is uncertain. Thus the present study investigates the hepatoprotective effect of the methanolic extract of I. caerulea Roxb. leaves (MIL) and elucidation of its mode of action against carbon tetrachloride (CCl4) induced liver injury in rats. HPLC analysis of MIL when carried out showed peaks close to standard ferulic acid and quercetin. Intragastric administration of MIL up to 2000 mg/kg bw, didn't show any toxicity and mortality in acute toxicity studies. During "in-vivo" study, hepatic injury was established by intraperitoneal administration of CCl4 3 ml/kg bw (30% CCl4 in olive oil; v/v) twice a week for 4 weeks in Sprague-Dawley rats. Further, hepatoprotective activity of MIL assessed using two different doses (100 and 200mg/kg bw) showed that intra-gastric administration of MIL (200mg/kg bw) significantly attenuates liver injury. Investigation of the underlying mechanism revealed that MIL treatment was capable of reducing inflammation by an antioxidant defense mechanism that blocks the activation of NF-κB as well as inhibits the release of proinflammatory cytokine TNF-α and IL-1β. The results suggest that MIL has a significant hepatoprotective activity which might be due to the presence of phytochemicals namely analogues of ferulic acid and other phytochemicals which together may suppress the inflammatory signaling pathways and promote hepatoprotective activity against CCl4 intoxicated liver damage. Copyright © 2014. Published by Elsevier B.V.

  9. Preparation of Kupffer cell enriched non-parenchymal liver cells with high yield and reduced damage of surface markers by a modified method for flow cytometry.

    PubMed

    Xu, Fan; Zhen, Peng; Zheng, Yu; LIjuan, Feng; Aiting, Yang; Min, Cong; Hong, You; Jidong, Jia

    2013-04-01

    The aim of this study was to optimise a collagenase perfusion protocol for the isolation of a liver non-parenchymal cell (NPC) suspension enriched for Kupffer cells that reduced damage to F4/80 antigen cell surface expression to allow analysis by flow cytometry. Kupffer cell-enriched liver NPCs were isolated from C57BL/6 mice using different protocols. Flow cytometry was used to examine the effect of collagenase digestion on F4/80 expression on Kupffer cells, and results were represented by the percentage of F4/80 positive cells and by the F4/80 mean fluorescence intensity (MFI). The perfusion temperature, concentration of collagenase solution and total dosage of collagenase for liver perfusion influenced the effect of collagenase perfusion on the expression of F4/80 antigen on Kupffer cells. Collagenase perfusion at 28°C resulted in an increased percentage of F4/80 positive cells (P = 0.001) and MFI (P = 0.005) compared with 37°C. Perfusion with a total dose of 1.0 g/kg BW collagenase (using a 0.75 mg/mL solution) resulted in the highest percentage of F4/80 positive cells (P = 0.001) compared with 0.8 g/kg BW and 1.2 g/kg BW collagenase. Isolation of cells using the modified protocol resulted in a higher percentage of Kupffer cells (P < 0.001) and a higher MFI of F4/80 antigen (P < 0.001) compared with the common protocol. © 2013 International Federation for Cell Biology.

  10. Carotid Catheterization and Automated Blood Sampling Induce Systemic IL-6 Secretion and Local Tissue Damage and Inflammation in the Heart, Kidneys, Liver and Salivary Glands in NMRI Mice.

    PubMed

    Teilmann, Anne Charlotte; Rozell, Björn; Kalliokoski, Otto; Hau, Jann; Abelson, Klas S P

    2016-01-01

    Automated blood sampling through a vascular catheter is a frequently utilized technique in laboratory mice. The potential immunological and physiological implications associated with this technique have, however, not been investigated in detail. The present study compared plasma levels of the cytokines IL-1β, IL-2, IL-6, IL-10, IL-17A, GM-CSF, IFN-γ and TNF-α in male NMRI mice that had been subjected to carotid artery catheterization and subsequent automated blood sampling with age-matched control mice. Body weight and histopathological changes in the surgical area, including the salivary glands, the heart, brain, spleen, liver, kidneys and lungs were compared. Catheterized mice had higher levels of IL-6 than did control mice, but other cytokine levels did not differ between the groups. No significant difference in body weight was found. The histology revealed inflammatory and regenerative (healing) changes at surgical sites of all catheterized mice, with mild inflammatory changes extending into the salivary glands. Several catheterized mice had multifocal degenerative to necrotic changes with inflammation in the heart, kidneys and livers, suggesting that thrombi had detached from the catheter tip and embolized to distant sites. Thus, catheterization and subsequent automated blood sampling may have physiological impact. Possible confounding effects of visceral damage should be assessed and considered, when using catheterized mouse models.

  11. Effects of anti-cocaine vaccine and viral gene transfer of cocaine hydrolase in mice on cocaine toxicity including motor strength and liver damage.

    PubMed

    Gao, Yang; Geng, Liyi; Orson, Frank; Kinsey, Berma; Kosten, Thomas R; Shen, Xiaoyun; Brimijoin, Stephen

    2013-03-25

    In developing an vivo drug-interception therapy to treat cocaine abuse and hinder relapse into drug seeking provoked by re-encounter with cocaine, two promising agents are: (1) a cocaine hydrolase enzyme (CocH) derived from human butyrylcholinesterase and delivered by gene transfer; (2) an anti-cocaine antibody elicited by vaccination. Recent behavioral experiments showed that antibody and enzyme work in a complementary fashion to reduce cocaine-stimulated locomotor activity in rats and mice. Our present goal was to test protection against liver damage and muscle weakness in mice challenged with massive doses of cocaine at or near the LD50 level (100-120 mg/kg, i.p.). We found that, when the interceptor proteins were combined at doses that were only modestly protective in isolation (enzyme, 1mg/kg; antibody, 8 mg/kg), they provided complete protection of liver tissue and motor function. When the enzyme levels were ~400-fold higher, after in vivo transduction by adeno-associated viral vector, similar protection was observed from CocH alone. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. [First experience of a polyurethane foam composition "Locus" use to stop intra-abdominal hemorrhage as a result of liver damage of V degree. (An experimental study)].

    PubMed

    Reva, V A; Litinskii, M A; Denisov, A V; Sokhranov, M V; Telitskii, S Yu; Samokhvalov, I M

    2015-04-01

    Today self-expanding polymers are considered as the most promising as means for intracavitary hemostasis in case of continuing bleeding after trauma. Testing of domestic open-cell polyurethane foam composition "Locus" was carried out on the developed experimental model simulating liver trauma of V degree. After damaging 6 experimental rabbits were injected intraperitoneally with 80 ml of the composition. 5 experimental rabbits were included into to control group (haemostatic agent was not given). Estimated blood loss was 111-124 ml. The two-hour survival rate didn't differ significantly: 3 animals survived in the experimental group; 2 animal survived in the control. Despite the 3-4-fold widening of the foam, due to open cells it absorbed 72.6 +/- 8.3 g of blood. Thus, open-cell polyurethane foam intraperitoneal administration of the composition didn't provide a temporary intra-abdominal hemostasis in liver. In order to enhance the hemostatic effect it requires changing the formulation of the polyurethane composition. For a more accurate assessment of the results it is neccessary to perform additional researches on larger animals.

  13. The control of iron-induced oxidative damage in isolated rat-liver mitochondria by respiration state and ascorbate.

    PubMed

    Burkitt, M J; Gilbert, B C

    1989-01-01

    The reaction of iron (II) with H2O2 is believed to generate highly reactive species (e.g. .OH) capable of initiating biological damage. This study investigates the possibility that the severity of oxidative damage induced by iron in hepatic mitochondria is determined by the level of mitochondrial-H2O2 generation, which is believed to be particularly prominent in state-4 respiration. Iron-induced damage is found to be greater in state-4 than in state-3 respiration. Experiments using uncoupling agents and Ca++ to mimic state-3 conditions indicate that this effect reflects differences in the steady-state oxidation-level of the electron carriers of the respiratory chain (and hence the level of H2O2-generation), rather than changes in redox potential or transportation of the metal-ion. Evidence is also presented for a mechanism in which Fe(II) and H2O2 react inside the mitochondrial matrix. Ascorbate (vitamin C) is shown to be pro-oxidant in this system, except when present at very high concentration when it becomes antioxidant in nature.

  14. Cytoprotective effect of polysaccharide isolated from different mushrooms against 7-ketocholesterol induced damage in mouse liver cell line (BNL CL. 2).

    PubMed

    Kim, Joo-Shin; Chung, Hau Yin; Na, Keun

    2007-01-01

    Cytoprotective ability of polysaccharides isolated from different edible mushrooms was investigated on the 7-ketocholesterol-induced damaged cell line. Polysaccharide extracts from six different edible mushrooms-Flammulina velutipes, Peurotus ostreatus, Lentinus edodes, Agrocybe aegerita, Agaricus blazei, and Cordyceps militaris- were prepared by hot water extraction and alcohol precipitation. Cytoprotective ability was evaluated by measuring the viable cells of the normal embryonic liver cell line (BNL CL. 2) in the presence of 7-ketocholesterol. At 80 microg/mL of 7-ketocholesterol, cytotoxicity was very high with a loss of 98% of viable cells after 20 h of incubation. With the addition of 200 microg/mL of each polysaccharide isolate to the cell line containing 80 microg/mL of 7-ketocholesterol, polysaccharide isolates from both Flammulina velutipes and Peurotus ostreatus could significantly inhibit the 7-ketochoelsterol-induced cytotoxicity in the cells. But other polysaccharide isolates were not effective in inhibiting cell damage caused by the oxLDL-induced cytotoxicity.

  15. Cytoprotective effect of polysaccharide isolated from different mushrooms against 7-ketocholesterol induced damage in mouse liver cell line (BNL CL. 2)

    PubMed Central

    Chung, Hau Yin; Na, Keun

    2007-01-01

    Cytoprotective ability of polysaccharides isolated from different edible mushrooms was investigated on the 7-ketocholesterol-induced damaged cell line. Polysaccharide extracts from six different edible mushrooms-Flammulina velutipes, Peurotus ostreatus, Lentinus edodes, Agrocybe aegerita, Agaricus blazei, and Cordyceps militaris- were prepared by hot water extraction and alcohol precipitation. Cytoprotective ability was evaluated by measuring the viable cells of the normal embryonic liver cell line (BNL CL. 2) in the presence of 7-ketocholesterol. At 80 µg/mL of 7-ketocholesterol, cytotoxicity was very high with a loss of 98% of viable cells after 20 h of incubation. With the addition of 200 µg/mL of each polysaccharide isolate to the cell line containing 80 µg/mL of 7-ketocholesterol, polysaccharide isolates from both Flammulina velutipes and Peurotus ostreatus could significantly inhibit the 7-ketochoelsterol-induced cytotoxicity in the cells. But other polysaccharide isolates were not effective in inhibiting cell damage caused by the oxLDL-induced cytotoxicity. PMID:20368935

  16. Moringa oleifera Lam. seed extract prevents fat diet induced oxidative stress in mice and protects liver cell-nuclei from hydroxyl radical mediated damage.

    PubMed

    Das, Nilanjan; Ganguli, Debdutta; Dey, Sanjit

    2015-12-01

    High fat diet (HFD) prompts metabolic pattern inducing reactive oxygen species (ROS) production in mitochondria thereby triggering multitude of chronic disorders in human. Antioxidants from plant sources may be an imperative remedy against this disorder. However, it requires scientific validation. In this study, we explored if (i) Moringa oleifera seed extract (MoSE) can neutralize ROS generated in HFD fed mice; (ii) protect cell-nuclei damage developed by Fenton reaction in vitro. Swiss mice were fed with HFD to develop oxidative stress model (HFD group). Other groups were control, seed extract alone treated, and MoSE simultaneously (HS) treated. Treatment period was of 15 days. Antioxidant enzymes with tissue nitrite content (TNC) and lipid peroxidation (LPO) were estimated from liver homogenate. HS group showed significantly higher (P < 0.05) superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) activity, and ferric reducing antioxidant power (FRAP) compared to only HFD fed group. Further, TNC and LPO decreased significantly (P < 0.05) in HS group compared to HFD fed group. MoSE also protected hepatocytes nuclei from the hydroxyl radicals generated by Fenton reaction. MoSE was found to be polyphenol rich with potent reducing power, free radicals and hydroxyl radicals scavenging activity. Thus, MoSE exhibited robust antioxidant prospective to neutralize ROS developed in HFD fed mice and also protected the nuclei damage from hydroxyl radicals. Hence, it can be used as herbal medication against HFD induced ROS mediated disorders.

  17. Subchronic treatment with acai frozen pulp prevents the brain oxidative damage in rats with acute liver failure.

    PubMed

    de Souza Machado, Fernanda; Kuo, Jonnsin; Wohlenberg, Mariane Farias; da Rocha Frusciante, Marina; Freitas, Márcia; Oliveira, Alice S; Andrade, Rodrigo B; Wannmacher, Clovis M D; Dani, Caroline; Funchal, Claudia

    2016-12-01

    Acai has been used by the population due to its high nutritional value and its benefits to health, such as its antioxidant properties. The aim of this study was to evaluate the protective effect of acai frozen pulp on oxidative stress parameters in cerebral cortex, hippocampus and cerebellum of Wistar rats treated with carbon tetrachloride (CCl 4 ). Thirty male Wistar rats (90-day-old) were orally treated with water or acai frozen pulp for 14 days (7 μL/g). On the 15th day, half of the animals received treatment with mineral oil and the other half with CCl 4 (3.0 mL/kg). The cerebral cortex, hippocampus and cerebellum were dissected and used for analysis of creatine kinase activity (CK), thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, and the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). Statistical analysis was performed by ANOVA followed by Tukey's post-test. CCl 4 was able to inhibit CK activity in all tissues tested and to provoke lipid damage in cerebral cortex and cerebellum, and protein damage in the three tissues tested. CCl 4 enhanced CAT activity in the cerebral cortex, and inhibited CAT activity in the hippocampus and cerebellum and reduced SOD activity in all tissues studied. Acai frozen pulp prevented the inhibition of CK, TBARS, carbonyl and CAT activity in all brain structures and only in hippocampus for SOD activity. Therefore, acai frozen pulp has antioxidant properties and maybe could be useful in the treatment of some diseases that affect the central nervous system that are associated with oxidative damage.

  18. Liver metastases

    MedlinePlus

    Metastases to the liver; Metastatic liver cancer; Liver cancer - metastatic; Colorectal cancer - liver metastases; Colon cancer - liver metastases; Esophageal cancer - liver metastases; Lung cancer - liver metastases; Melanoma - liver metastases

  19. Ectopic expression of H2AX protein promotes TrkA-induced cell death via modulation of TrkA tyrosine-490 phosphorylation and JNK activity upon DNA damage

    SciTech Connect

    Jung, Eun Joo; Kim, Deok Ryong, E-mail: drkim@gnu.ac.kr

    2011-01-21

    Research highlights: {yields} We established TrkA-inducible U2OS cells stably expressing GFP-H2AX proteins. {yields} GFP-H2AX was colocalized with TrkA in the cytoplasm. {yields} {gamma}H2AX production was significantly increased upon activation of TrkA and suppressed by TrkA inhibitor or JNK inhibitor. {yields} Ectopic expression of H2AX promoted TrkA-mediated cell death through the modulation of TrkA tyrosine-490 phosphorylation and JNK activity upon DNA damage. -- Abstract: We previously reported that TrkA overexpression causes accumulation of {gamma}H2AX proteins in the cytoplasm, subsequently leading to massive cell death in U2OS cells. To further investigate how cytoplasmic H2AX is associated with TrkA-induced cell death, we establishedmore » TrkA-inducible cells stably expressing GFP-tagged H2AX. We found that TrkA co-localizes with ectopically expressed GFP-H2AX proteins in the cytoplasm, especially at the juxta-nuclear membranes, which supports our previous results about a functional connection between TrkA and {gamma}H2AX in TrkA-induced cell death. {gamma}H2AX production from GFP-H2AX proteins was significantly increased when TrkA was overexpressed. Moreover, ectopic expression of H2AX activated TrkA-mediated signal pathways via up-regulation of TrkA tyrosine-490 phosphorylation. In addition, suppression of TrkA tyrosine-490 phosphorylation under a certain condition was removed by ectopic expression of H2AX, indicating a functional role of H2AX in the maintenance of TrkA activity. Indeed, TrkA-induced cell death was highly elevated by ectopic H2AX expression, and it was further accelerated by DNA damage via JNK activation. These all results suggest that cytoplasmic H2AX could play an important role in TrkA-mediated cell death by modulating TrkA upon DNA damage.« less

  20. Analysis of Arg-Gly-Asp mimetics and soluble receptor of tumour necrosis factor as therapeutic modalities for concanavalin A induced hepatitis in mice.

    PubMed Central

    Bruck, R; Shirin, H; Hershkoviz, R; Lider, O; Kenet, G; Aeed, H; Matas, Z; Zaidel, L; Halpern, Z

    1997-01-01

    BACKGROUND/AIMS: It has been shown that synthetic non-peptidic analogues of Arg-Gly-Asp, a major cell adhesive ligand of extracellular matrix, prevented an increase in serum aminotransferase activity, as a manifestation of concanavalin A induced liver damage in mice. This study examined the effects of an Arg-Gly-Asp mimetic on liver histology and cytokine release in response to concanavalin A administration, and the efficacy of soluble receptor of tumour necrosis factor (TNF) alpha in preventing hepatitis in this model of liver injury. METHODS: Mice were pretreated with either the Arg-Gly-Asp mimetic SF-6,5 or recombinant soluble receptor of TNF alpha before their inoculation with 10 mg/kg concanavalin A. Liver enzymes, histology, and the serum values of TNF alpha and interleukin (IL)6 were examined. RESULTS: The histopathological damage in the liver, and the concanavalin A induced release of TNF alpha and IL6 were significantly inhibited by the synthetic Arg-Gly-Asp mimetic (p < 0.001). Liver injury, manifested by the increase in serum aminotransferase and cytokines, as well as by histological manifestations of hepatic damage, was effectively prevented by pretreatment of the mice with the soluble TNF receptor (p < 0.001). CONCLUSIONS: This study confirms the efficacy of a synthetic Arg-Gly-Asp mimetic and soluble TNF receptor in the prevention of immune mediated liver damage in mice. Images PMID:9155591

  1. Dehydroepiandrosterone restores hepatocellular function and prevents liver damage in estrogen-deficient females following trauma and hemorrhage.

    PubMed

    Kuebler, J F; Jarrar, D; Wang, P; Bland, K I; Chaudry, I H

    2001-05-15

    Recent studies have shown that administration of the sex steroid dehydroepiandrosterone (DHEA) in males following trauma-hemorrhagic shock has salutary effects on the depressed cardiovascular and immunological functions under those conditions. Since the effects of sex steroids are gender specific, we examined whether administration of DHEA has any beneficial effects on hepatocellular function in female rats with low estrogen levels following trauma-hemorrhage. Ovariectomy was performed in female Sprague-Dawley rats 14 days prior to the experiments. The animals then underwent a 5-cm midline laparotomy and were subjected to hemorrhagic shock (40 mm Hg for 90 min). This was followed by fluid resuscitation (Ringer's lactate over 60 min) and administration of DHEA (30 mg/kg BW) or vehicle subcutaneously at the end of resuscitation. At 24 h after resuscitation hepatocellular function, i.e., clearance of indocyanine green (ICG), and hepatocyte damage (serum alanine aminotransferase) were measured. Plasma levels of DHEA and 17beta-estradiol were also assayed. Vehicle-treated rats had significantly reduced hepatocellular function, increased ALT activity, and decreased levels of 17beta-estradiol following trauma-hemorrhage compared to sham-operated animals (P < 0.05, ANOVA and Student-Newman-Keuls test). In animals receiving DHEA following trauma-hemorrhage, hepatocellular function and ALT activity were similar to those of shams. However, administration of DHEA did not influence the plasma levels of 17beta-estradiol. Administration of DHEA following trauma-hemorrhage restored hepatocellular function and reduced hepatic damage that was observed in ovariectomized female rats under such conditions. This salutary effect of DHEA did not appear to be due to elevated levels of plasma 17beta-estradiol. We therefore propose that DHEA should be considered a novel, safe, and useful adjunct in the treatment of trauma-induced hepatocellular dysfunction in ovariectomized and

  2. Virgin coconut oil protects against liver damage in albino rats challenged with the anti-folate combination, trimethoprim-sulfamethoxazole.

    PubMed

    Otuechere, Chiagoziem A; Madarikan, Gbemisola; Simisola, Tinuala; Bankole, Olubukola; Osho, Adeleke

    2014-05-01

    Trimethoprim-sulfamethoxazole (TMP-SMX) is a broad-spectrum antibiotic. However, its use is associated with toxic reactions. Virgin coconut oil (VCO), derived from coconut, has been widely used throughout history for its medicinal value. The aim of this study was to investigate the beneficial actions of VCO against TMP-SMX-induced alterations in serum biochemical end points. Twenty rats were divided into four groups. Group 1 (control) received no drug, whereas group 2 received TMP-SMX (8/40 mg/kg) twice daily for 7 days. Group 3 was administered coconut oil at a dose of 600 mg/kg body weight per day. The last group was treated with TMP-SMX (8/40 mg/kg) and coconut oil (600 mg/kg) simultaneously. Blood samples were collected from all groups on the 8th day of the experiment for measurement of serum biochemical parameters. Organ weights and coefficients were also evaluated. TMP-SMX caused a significant (p<0.05) increase in the levels of serum total bilirubin, lactate dehydrogenase, and alkaline phosphatase by 192%, 67%, and 41%, respectively, relative to controls. This was followed by a significant reduction in triglyceride and relative kidney weight by 40% and 7%, respectively. There were no significant differences (p>0.05) in the activities of serum aminotransferases, total acid phosphatase, γ-glutamyl transferase, uric acid, cholesterol, albumin, and urea levels. Supplementation of VCO ameliorated TMP-SMX-induced effects by restoring the levels of total bilirubin, alkaline phospahatase, and lactate dehydrogenase. The results of this study demonstrate that the active components of coconut oil had protective effects against the toxic effects induced by TMP-SMX administration, especially in the liver of rats.

  3. Protective effect of Ganoderma lucidum polysaccharide against carbon tetrachloride-induced hepatic damage in precision-cut carp liver slices.

    PubMed

    Liu, Yingjuan; Zhang, Chunyun; Du, Jinliang; Jia, Rui; Cao, Liping; Jeney, Galina; Teraoka, Hiroki; Xu, Pao; Yin, Guojun

    2017-10-01

    The aim of the present study was to investigate the protective effects of Ganoderma lucidum polysaccharide (GLPS) against carbon tetrachloride (CCl 4 )-induced hepatotoxicity in vitro in common carp. Precision-cut liver slices (PCLSs), which closely resemble the organ from which they are derived, were employed as an in vitro model system. GLPS (0.1, 0.3, and 0.6 mg/ml) was added to PCLS culture system before the exposure to 12 mM CCl 4 . The supernatants and slices were collected to detect molecular and biochemical responses to CCl 4 and PCLS treatments. The levels of CYP1A, CYP3A, and CYP2E1 were measured by ELISA; the mRNA expressions of TNF-α, IL-1β, IL-6, and iNOS were determined by RT-PCR; and the relative protein expressions of c-Rel and p65 were analyzed by western blotting. Results showed that GLPS inhibited the elevations of the marker enzymes (GOT, GPT, LDH) and MDA induced by CCl 4 ; it also enhanced the suppressed activity of antioxidant enzymes (SOD, CAT, GSH-Px, T-AOC). The treatment with GLPS resulted in significant downregulation of NF-κB and inflammatory cytokine mRNA levels and significant decreases in the hepatic protein levels of CYP1A, CYP3A, and CYP2E1. These results suggest that GLPS can protect CCl 4 -induced PCLS injury through inhibiting lipid peroxidation, elevating antioxidant enzyme activity, and suppressing immune inflammatory response.

  4. Protective Effects of Selenium, Vitamin E, and Purple Carrot Anthocyanins on D-Galactose-Induced Oxidative Damage in Blood, Liver, Heart and Kidney Rats.

    PubMed

    Li, Xia; Zhang, Yunlong; Yuan, Yuan; Sun, Yong; Qin, Yan; Deng, Zeyuan; Li, Hongyan

    2016-10-01

    The present study was performed to investigate the protective effects of selenium (Se), vitamin E (Vit E) and anthocyanins from purple carrots and their combination against the oxidative stress induced by D-galactose in rats. A total of 80 male rats were equally divided into 11 groups, one of which acted as control (I) just receiving intraperitoneal injections of physiological saline. The remaining ten groups (II-XI) were intraperitoneally injected with D-galactose at a dose of 400 mg kg(-1) body weight (BW) per day for 42 consecutive days. Rats in groups III-XI were treated with antioxidants via gavage per day as follows: group III: Se-methylselenocysteine (SeMSC), IV: Se as sodium selenite (Na2SeO3), V: Se-enriched yeast (SeY), VI: Vit E as α-tocopherol acetate, VII: anthocyanin from purple carrots (APC), VIII: APC + Vit E, IX: SeMSC + APC+ Vit E, X: Na2SeO3 + APC + Vit E, XI: SeY + Ant + Vit E. The results showed that the rats treated with antioxidants (III-XI) showed significant decreases in the levels of malondialdehyde (MDA) and carbonyl protein (PCO) compared with the D-galactose-treated group (II) in the heart, liver, kidneys, and blood. Moreover, there were significant increases in the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), glutathione (GSH) concentration, and total antioxidant capacity (T-AOC) in the heart, liver, kidneys, and blood of antioxidant-treated animals (III-XI) than those in control group (I). In addition, the combined treatments of two or three antioxidants showed greater antioxidant activities than those of individual treatments, suggesting the synergistic antioxidant effects of Se, Vit E, and APC. In conclusion, all the antioxidants exhibited protective effects against D-galactose-induced oxidative damage in rats, and these antioxidants showed a synergistic effect.

  5. Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity

    PubMed Central

    Seo, Ji Yeon; Lim, Soon Sung; Park, Jia; Lim, Ji-Sun; Kim, Hyo Jung; Kang, Hui Jung; Yoon Park, Jung Han

    2010-01-01

    Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by CCl4 treatment to the control level. Hepatic injury induced by CCl4 was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by CCl4. PMID:20461196

  6. Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity.

    PubMed

    Seo, Ji Yeon; Lim, Soon Sung; Park, Jia; Lim, Ji-Sun; Kim, Hyo Jung; Kang, Hui Jung; Yoon Park, Jung Han; Kim, Jong-Sang

    2010-04-01

    Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by CCl(4) treatment to the control level. Hepatic injury induced by CCl(4) was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by CCl(4).

  7. Antioxidant properties of jujube honey and its protective effects against chronic alcohol-induced liver damage in mice.

    PubMed

    Cheng, Ni; Du, Bing; Wang, Yuan; Gao, Hui; Cao, Wei; Zheng, Jianbin; Feng, Fan

    2014-05-01

    The antioxidant potential of jujube honey, one of the most widely consumed honeys in China, has never been determined fully. In this study, jujube honey from six geographical origins in China was analyzed for individual phenolic acid, total phenolic content, and the antioxidant effect in chronic alcohol-related hepatic disease in mice. The results showed that jujube honey from Linxian of Shanxi province contained higher phenol levels, exhibited DPPH antioxidant activity, ferric ion reducing antioxidant power (FRAP) and protective effects against DNA damage. Treatment with jujube honey (Shanxi Linxian) for 12 weeks significantly inhibited serum lipoprotein oxidation, reduced the impact of alcoholism on aspartate aminotransferase (AST) and alanine aminotransferase (ALT). It also inhibited the generation of 8-hydroxy-2-deoxyguanosine (8-OHdG), lowered the levels of malondialdehyde (MDA) and increased the activity of hepatic glutathione peroxidase (GSH-Px). The study indicates that jujube honey exerts potent antioxidant activity and significant protection in hepatic disorders associated with chronic alcoholism. The protective effect is attributed to its antioxidant mechanisms and inhibition of oxidative degradation of lipids.

  8. Patatin-like phospholipase domain containing-3 gene I148M polymorphism, steatosis, and liver damage in hereditary hemochromatosis

    PubMed Central

    Valenti, Luca; Maggioni, Paolo; Piperno, Alberto; Rametta, Raffaela; Pelucchi, Sara; Mariani, Raffaella; Dongiovanni, Paola; Fracanzani, Anna Ludovica; Fargion, Silvia

    2012-01-01

    AIM: To investigate whether the patatin-like phospholipase domain containing-3 gene (PNPLA3) I148M polymorphism is associated with steatosis, fibrosis stage, and cirrhosis in hereditary hemochromatosis (HH). METHODS: We studied 174 consecutive unrelated homozygous for the C282Y HFE mutation of HH (C282Y+/+ HH) patients from Northern Italy, for whom the presence of cirrhosis could be determined based on histological or clinical criteria, without excessive alcohol intake (< 30/20 g/d in males or females) or hepatitis B virus and hepatitis C virus viral hepatitis. Steatosis was evaluated in 123 patients by histology (n = 100) or ultrasound (n = 23). The PNPLA3 rs738409 single nucleotide polymorphism, encoding for the p.148M protein variant, was genotyped by a Taqman assay (assay on demand, Applied Biosystems). The association of the PNPLA3 I148M protein variant (p.I148M) with steatosis, fibrosis stage, and cirrhosis was evaluated by logistic regression analysis. RESULTS: PNPLA3 genotype was not associated with metabolic parameters, including body mass index (BMI), the presence of diabetes, and lipid levels, but the presence of the p.148M variant at risk was independently associated with steatosis [odds ratio (OR) 1.84 per p.148M allele, 95% confidence interval (CI): 1.05-3.31; P = 0.037], independently of BMI and alanine aminotransaminase (ALT) levels. The p.148M variant was also associated with higher aspartate aminotransferase (P = 0.0014) and ALT levels (P = 0.017) at diagnosis, independently of BMI and the severity of iron overload. In patients with liver biopsy, the 148M variant was independently associated with the severity (stage) of fibrosis (estimated coefficient 0.56 ± 0.27, P = 0.041). In the overall series of patients, the p.148M variant was associated with cirrhosis in lean (P = 0.049), but not in overweight patients (P = not significant). At logistic regression analysis, cirrhosis was associated with BMI ≥ 25 (OR 1.82, 95% CI: 1.02-3.55), ferritin

  9. Naja naja karachiensis Envenomation: Biochemical Parameters for Cardiac, Liver, and Renal Damage along with Their Neutralization by Medicinal Plants

    PubMed Central

    Asad, Muhammad Hassham Hassan Bin; Ubaid, Muhammad; Durr-e-Sabih; Sajjad, Ashif; Mehmood, Rubada; Mahmood, Qaisar; Ansari, Muhammad Muzzmil; Karim, Sabiha; Mehmood, Zahid; Hussain, Izhar

    2014-01-01

    Naja naja karachiensis envenomation was found to hit more drastically heart, liver, and kidneys. 400 μg/kg of venom-raised moderate serum levels of ALT (72 ± 4.70 U/L, 0.1 > P > 0.05), AST (157 ± 24.24 U/L, 0.1 > P > 0.05), urea (42 ± 3.08 mg/dL, 0.05 > P > 0.02), creatinine (1.74 ± 0.03 mg/dL, 0.01 > P > 0.001), CK-MB (21 ± 1.5 U/L, 0.05 > P > 0.02), and LDH (2064 ± 15.98 U/L, P < 0.001) were injected in experimental rabbits. However, lethality was enhanced with 800 μg/kg of venom in terms of significant release of ALT (86 ± 5.0 U/L, 0.05 > P > 0.02), AST (251 ± 18.2 U/L, 0.01 > P > 0.001), urea (57.6 ± 3.84 mg/dL, 0.02 > P > 0.01), creatinine (2.1 ± 0.10 mg/dL, 0.02 > P > 0.01), CK-MB (77 ± 11.22 U/L, 0.05 > P > 0.02), and LDH (2562 ± 25.14 U/L, P ≪ 0.001). Among twenty-eight tested medicinal plant extracts, only Stenolobium stans (L.) Seem was found the best antivenom (P > 0.5) compared to the efficacy of standard antidote (ALT = 52.5 ± 3.51 U/L, AST = 69.5 ± 18.55 U/L, urea = 31.5 ± 0.50 mg/dL, creatinine = 1.08 ± 0.02 mg/dL, CK-MB = 09 ± 0.85 U/L, and LDH = 763 ± 6.01 U/L). Other plant extracts were proved less beneficial and partly neutralized the toxicities posed by cobra venom. However, it is essential in future to isolate and characterize bioactive compound(s) from Stenolobium stans (L.) Seem extract to overcome the complications of snake bite. PMID:24877153

  10. Increased parenchymal damage and steatohepatitis in Caucasian non-alcoholic fatty liver disease patients with common IL1B and IL6 polymorphisms.

    PubMed

    Nelson, J E; Handa, P; Aouizerat, B; Wilson, L; Vemulakonda, L A; Yeh, M M; Kowdley, K V

    2016-12-01

    Non-alcoholic fatty liver disease (NAFLD) is a complex, multifactorial disease affected by diet, lifestyle and genetics. Proinflammatory cytokines like IL-1β and IL-6 have been shown to be elevated in non-alcoholic steatohepatitis (NASH). To investigate the relationship between IL1B and IL6 gene polymorphisms and histological features of NAFLD in the NASH CRN cohort. A total of 604 adult (≥18 years) non-Hispanic Caucasians with biopsy-proven NAFLD were genotyped for the following SNPs: IL1B, rs16944, rs1143634; IL6, rs1800795, rs10499563. Logistic regression was used to examine the relationship between genotype and a definitive diagnosis and advanced histological features of NASH after controlling for the following variables selected a priori: age, sex, diabetes, obesity and HOMA-IR level. The IL6 rs10499563 C allele was independently associated with the presence of definitive NASH, and increased ballooning and Mallory bodies. The IL1B rs1143634 TT genotype was associated with advanced fibrosis and increased Mallory bodies. The IL6 rs1800795 C allele was associated with not only increased risk for severe steatosis, >66% but also decreased risk for advanced fibrosis and lobular inflammation and Mallory body formation. These results suggest that common variants in the IL6 and IL1B genes may increase susceptibility for NASH and confer a higher risk of hepatic parenchymal damage including increased ballooning, increased Mallory bodies, and bridging fibrosis or cirrhosis. In contrast, the IL6 rs1800795 C allele may confer a higher risk for steatosis, but less parenchymal damage. Our findings support the development of therapeutics aimed at IL-1β and IL-6 suppression. © 2016 John Wiley & Sons Ltd.

  11. Increased Parenchymal Damage and Steatohepatitis in Caucasian Nonalcoholic Fatty Liver Disease Patients with Common IL1B and IL6 Polymorphisms

    PubMed Central

    Nelson, James E.; Handa, Priya; Aouizerat, Bradley; Wilson, Laura; Vemulakonda, L Akhila; Yeh, Matthew M.; Kowdley, Kris V.

    2016-01-01

    Background Nonalcoholic fatty liver disease (NAFLD) is a complex, multifactorial disease affected by diet, lifestyle and genetics. Proinflammatory cytokines like IL-1β and IL-6 have been shown to be elevated in nonalcoholic steatohepatitis (NASH). The goal of this study was to investigate the relationship between IL1B and IL6 gene polymorphisms and histologic features of NAFLD in the NASH CRN cohort. Methods 604 adult (≥18 yrs) non-Hispanic Caucasians with biopsy-proven NAFLD were genotyped for the following SNPs: IL1B, rs16944, rs1143634; IL6, rs1800795, rs10499563. Logistic regression was used to examine the relationship between genotype and a definitive diagnosis and advanced histological features of NASH after controlling for the following variables selected a priori: age, sex, diabetes, obesity and HOMA-IR level. Results The IL6 rs10499563 C allele was independently associated with the presence of definitive NASH, and increased ballooning and Mallory bodies. The IL1B rs1143634 TT genotype was associated with advanced fibrosis and increased Mallory bodies. The IL6 rs1800795 C allele was associated with increased risk for severe steatosis, >66% but also decreased risk for advanced fibrosis and lobular inflammation and Mallory body formation. Conclusions These results suggest that common variants in the IL6 and IL1B genes may increase susceptibility for NASH and confer a higher risk of hepatic parenchymal damage including increased ballooning, increased Mallory bodies, and bridging fibrosis or cirrhosis. In contrast, the IL6 rs1800795 C allele may confer a higher risk for steatosis, but less parenchymal damage. Our findings support the development of therapeutics aimed at IL-1β and IL-6 suppression. PMID:27730688

  12. Glucomannan or Glucomannan Plus Spirulina-Enriched Squid-Surimi Diets Reduce Histological Damage to Liver and Heart in Zucker fa/fa Rats Fed a Cholesterol-Enriched and Non-Cholesterol-Enriched Atherogenic Diet.

    PubMed

    Vázquez-Velasco, Miguel; González-Torres, Laura; García-Fernández, Rosa A; Méndez, María Teresa; Bastida, Sara; Benedí, Juana; González-Muñoz, María José; Sánchez-Muniz, Francisco J

    2017-06-01

    Glucomannan-enriched squid surimi improves cholesterolemia and liver antioxidant status. The effect of squid surimi enriched with glucomannan or glucomannan plus spirulina on liver and heart structures and cell damage markers was tested in fa/fa rats fed highly saturated-hyper-energetic diets. Animals were fed 70% AIN-93M rodent diet plus six versions of 30% squid surimi for 7 weeks: control (C), glucomannan (G), and glucomannan plus spirulina (GS). The cholesterol-control (HC), cholesterol-glucomannan (HG), and cholesterol-glucomannan plus spirulina (HGS) groups were given similar diets that were enriched with 2% cholesterol and 0.4% cholic acid. G and GS diets versus C diet significantly inhibited weight gain and lowered plasma alanine aminotransferase and aspartate aminotransferase, liver steatosis, lipogranulomas, and total inflammation and alteration scores. The hypercholesterolemic agent significantly increased the harmful effects of the C diet. Liver weight, the hepatosomatic index, all damage markers, and total histological scoring rose for HC versus C (at least P < .05). The addition of glucomannan (HG vs. HC) improved these biomarkers, and non-additional effects from spirulina were observed except for the total liver alteration score. In conclusion, glucomannan and glucomannan plus spirulina blocked the highly saturated-hyper-energetic diet negative effects both with and without added cholesterol. Results suggest the usefulness of including these functional ingredients in fish products.

  13. Liver transplant

    MedlinePlus

    ... fully working livers after a successful transplant. The donor liver is transported in a cooled salt-water (saline) ... Liver failure - liver transplant; Cirrhosis - liver transplant Images Donor liver attachment Liver transplant - series References Carrion AF, Martin ...

  14. Hepatoprotective effect of 2'-O-galloylhyperin against oxidative stress-induced liver damage through induction of Nrf2/ARE-mediated antioxidant pathway.

    PubMed

    Wang, Peng; Gao, Yi-Meng; Sun, Xing; Guo, Na; Li, Ji; Wang, Wei; Yao, Li-Ping; Fu, Yu-Jie

    2017-04-01

    2'-O-galloylhyperin (2'-O-GH), an active compound isolated from Pyrola calliantha, possesses remarkable antioxidant activity. The aims of this study were to investigate the hepatoprotective effect of 2'-O-GH against oxidative stress and elucidate the underlying mechanistic signaling pathways in HepG2 cells as well as in an animal model. Results showed that 2'-O-GH significantly inhibited hydrogen peroxide (H 2 O 2 )-induced HepG2 cell death in a dose dependent manner. The mitogen-activated protein kinase activation, ROS production, mitochondrial membrane potential, intracellular calcium level and subsequent apoptotic protein activation in H 2 O 2 -stimulated HepG2 cells were remarkably inhibited by 2'-O-GH. Furthermore, 2'-O-GH stimulation resulted in a fast and dramatic activation of Akt and nuclear translocation of the NF-E2-related factor 2 (Nrf2), along with the increased expression of heme oxygenase-1 (HO-1) and levels of glutathione (GSH). Meanwhile, histopathological evaluation of the liver also revealed that 2'-O-GH effectively ameliorated CCl 4 -induced the hepatic damage by reducing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Therefore, these results suggested the hepatoprotective effect of 2'-O-GH might be correlated with its antioxidant and free radical scavenger effect. Copyright © 2017. Published by Elsevier Ltd.

  15. Cynanchum wilfordii Radix attenuates liver fat accumulation and damage by suppressing hepatic cyclooxygenase-2 and mitogen-activated protein kinase in mice fed with a high-fat and high-fructose diet.

    PubMed

    Jang, Seon-A; Lee, SungRyul; Sohn, Eun-Hwa; Yang, Jaehyuk; Park, Dae Won; Jeong, Yong Joon; Kim, Inhye; Kwon, Jung Eun; Song, Hae Seong; Cho, Young Mi; Meng, Xue; Koo, Hyun Jung; Kang, Se Chan

    2016-09-01

    Excessive consumption of fat and fructose augments the pathological progression of nonalcoholic fatty liver disease through hepatic fibrosis, inflammation, and hepatic de novo lipogenesis. We hypothesized that supplementation with Cynanchum wilfordii extract (CWE) decreases fat accumulation in the liver by suppressing cyclooxygenase-2 (COX-2), the nuclear translocation of nuclear factor κB (NF-κB), and p38 mitogen-activated protein kinase (MAPK). The beneficial effect of CWE was evaluated in a murine model of nonalcoholic fatty liver disease. Mice were fed either a normal diet or an atherogenic diet with fructose (ATHFR) in the presence or absence of CWE (50, 100, or 200 mg/kg; n=6/group). Treatment with ATHFR induced a hepatosplenomegaly-like condition (increased liver and spleen weight); this pathological change was attenuated in the presence of CWE. The ATHFR group exhibited impaired liver function, as evidenced by increased blood levels of glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, fat accumulation in the liver, and lipid profiles. Supplementation of CWE (100 and 200 mg/kg, P<.05) ameliorated these impaired liver functions. Atherogenic diet with fructose increased the protein levels of COX-2 and p38 MAPK, as well as the nuclear translocation of NF-κB. These signaling pathways, which are associated with the inflammatory response, were markedly suppressed after CWE treatment (100 and 200 mg/kg). In summary, CWE supplementation reduced high-fat and high-fructose diet-induced fat accumulation and damage in the liver by suppressing COX-2, NF-κB, and p38 MAPK. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Oxidative stress and damage in liver, but not in brain, of Fischer 344 rats subjected to dietary iron supplementation with lipid-soluble [(3,5,5-trimethylhexanoyl)ferrocene].

    PubMed

    Lykkesfeldt, Jens; Morgan, Evan; Christen, Stephan; Skovgaard, Lene Theil; Moos, Torben

    2007-01-01

    Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month-old rats following supplementation with the lipophilic iron derivative [(3,5,5-trimethylhexanoyl)ferrocene] (TMHF), which is capable of crossing the blood-brain barrier. At both ages, iron concentration increased markedly in the liver but failed to increase in the brain. In the liver of TMHF-treated young rats, levels of alpha- and gamma-tocopherols and glutathione (GSH) were also higher. In contrast, the brain displayed unaltered levels of the tocopherols and GSH. Malondialdehyde (MDA) level was also higher in the cerebrospinal fluid (CSF) and the liver but not in the brain. In old rats, the absence of an increase in iron concentration in the brain was reflected by unaltered concentrations of GSH, tocopherols, and MDA as compared to that in untreated rats. In the aging liver, concentrations of GSH and MDA increased with TMHF treatment. Morphological studies revealed unaltered levels of iron, ferritin, heme oxygenase-1 (HO-1), nitrotyrosine (NT), or MDA in the brains of both young and old rats treated with TMHF. In contrast, TMHF treatment increased the level of HO-1 in Kupffer cells, NT in hepatic endothelial cells, and MDA and ferritin in hepatocytes. Although these results demonstrated an increase in the biochemical markers of oxidative stress and damage in response to increasing concentrations of iron in the liver, they also demonstrated that the brain is well protected against dietary iron overload by using iron in a lipid-soluble formulation.

  17. Different DNA damage response of cis and trans isomers of commonly used UV filter after the exposure on adult human liver stem cells and human lymphoblastoid cells.

    PubMed

    Sharma, Anežka; Bányiová, Katarína; Babica, Pavel; El Yamani, Naouale; Collins, Andrew Richard; Čupr, Pavel

    2017-09-01

    2-ethylhexyl 4-methoxycinnamate (EHMC), used in many categories of personal care products (PCPs), is one of the most discussed ultraviolet filters because of its endocrine-disrupting effects. EHMC is unstable in sunlight and can be transformed from trans-EHMC to emergent cis-EHMC. Toxicological studies are focusing only on trans-EHMC; thus the toxicological data for cis-EHMC are missing. In this study, the in vitro genotoxic effects of trans- and cis-EHMC on adult human liver stem cells HL1-hT1 and human-derived lymphoblastoid cells TK-6 using a high-throughput comet assay were studied. TK-6 cells treated with cis-EHMC showed a high level of DNA damage when compared to untreated cells in concentrations 1.56 to 25μgmL -1 . trans-EHMC showed genotoxicity after exposure to the two highest concentrations 12.5 and 25μgmL -1 . The increase in DNA damage on HL1-hT1 cells induced by cis-EHMC and trans-EHMC was detected at the concentration 25μgmL -1 . The No observed adverse effect level (NOAEL, mg kg -1 bwday -1 ) was determined using a Quantitative in vitro to in vivo extrapolation (QIVIVE) approach: NOAEL trans-EHMC =3.07, NOAEL cis-EHMC =0.30 for TK-6 and NOAEL trans-EHMC =26.46, NOAEL cis-EHMC =20.36 for HL1-hT1. The hazard index (HI) was evaluated by comparing the reference dose (RfD, mgkg -1 bwday -1 ) obtained from our experimental data with the chronic daily intake (CDI) of the female population. Using comet assay experimental data with the more sensitive TK-6 cells, HI cis-EHMC was 7 times higher than HI trans-EHMC . In terms of CDI, relative contributions were; dermal exposure route>oral>inhalation. According to our results we recommend the RfD trans-EHMC =0.20 and RfD cis-EHMC =0.02 for trans-EHMC and cis-EHMC, respectively, to use for human health risk assessment. The significant difference in trans-EHMC and cis-EHMC response points to the need for toxicological reevaluation and application reassessment of both isomers in PCPs. Copyright © 2017 Elsevier B

  18. 1,25-(OH){sub 2}-vitamin D{sub 3} prevents activation of hepatic stellate cells in vitro and ameliorates inflammatory liver damage but not fibrosis in the Abcb4{sup −/−} model

    SciTech Connect

    Reiter, Florian P., E-mail: florian.reiter@med.uni-muenchen.de; Hohenester, Simon; Nagel, Jutta M.

    Background/Purpose of the study: Vitamin D{sub 3}-deficiency is common in patients with chronic liver-disease and may promote disease progression. Vitamin D{sub 3}-administration has thus been proposed as a therapeutic approach. Vitamin D{sub 3} has immunomodulatory effects and may modulate autoimmune liver-disease such as primary sclerosing cholangitis. Although various mechanisms of action have been proposed, experimental evidence is limited. Here we test the hypothesis that active 1,25-(OH){sub 2}-vitamin D{sub 3} inhibits activation of hepatic stellate cells (HSC) in vitro and modulates liver-injury in vivo. Methods: Proliferation and activation of primary murine HSC were assessed by BrdU- and PicoGreen{sup ®}-assays, immunoblotting, immunofluorescence-microscopy, quantitative-PCR, andmore » zymography following calcitriol-treatment. Wild-type and ATP-binding cassette transporter b4{sup −/−} (Abcb4{sup −/−})-mice received calcitriol for 4 weeks. Liver-damage, inflammation, and fibrosis were assessed by serum liver-tests, Sirius-red staining, quantitative-PCR, immunoblotting, immunohistochemistry and hydroxyproline quantification. Results: In vitro, calcitriol inhibited activation and proliferation of murine HSC as shown by reduced α-smooth muscle actin and platelet-derived growth factor-receptor-β-protein-levels, BrdU and PicoGreen®-assays. Furthermore, mRNA-levels and activity of matrix metalloproteinase 13 were profoundly increased. In vivo, calcitriol ameliorated inflammatory liver-injury reflected by reduced levels of alanine aminotransferase in Abcb4{sup −/−}-mice. In accordance, their livers had lower mRNA-levels of F4/80, tumor necrosis factor-receptor 1 and a lower count of portal CD11b positive cells. In contrast, no effect on overall fibrosis was observed. Conclusion: Calcitriol inhibits activation and proliferation of HSCs in vitro. In Abcb4{sup −/−}-mice, administration of calcitriol ameliorates inflammatory liver-damage

  19. Anti-inflammatory and hepatoprotective effects of glycyrrhetinic acid on CCl4-induced damage in precision-cut liver slices from Jian carp (Cyprinus carpio var. jian) through inhibition of the nf-kƁ pathway.

    PubMed

    Cao, Liping; Ding, Weidong; Jia, Rui; Du, Jingliang; Wang, Tao; Zhang, Chunyun; Gu, Zhengyan; Yin, Guojun

    2017-05-01

    In order to evaluate the antioxidant and anti-inflammatory effects of glycyrrhetinic acid (GA) on carbon tetrachloride (CCl 4 )-induced damage in precision-cut liver slices (PCLS) from Jian carp (Cyprinus carpio. Jian), an acute liver damage model was established in this study. The viability of PCLS, levels of anti-oxidases in liver homogenates, expression of inflammation-related genes including nuclear factor-κB (nf-κB)/c-rel, inducible nitric oxide synthase (inos), interleukin-1β (il-1β), interleukin-6 (il-6) and interleukin-8 (il-8), and protein levels of (nf-κB)/c-rel in liver tissues were measured. The results showed that pretreatment of PCLS with GA at 5 and 10 μg/mL for 6 h significantly inhibited the cytotoxicity of CCl 4 . GA attenuated CCl 4 -induced oxidative stress in PCLS through promoting the recovery of superoxide dismutase (SOD) and glutathione (GSH) levels, and inhibiting malondialdehyde (MDA) synthesis. In inflammatory response, GA at both 5 and 10 μg/mL significantly inhibited the increase in mRNA levels of inflammatory cytokines including nf-kƁ/c-rel, inos, il-1β, il-6 and il-8, and the protein level of Nf-kƁ/C-rel induced by CCl 4 . Furthermore, treatment with pyrrolyl dithiocarbamate (PDTC, 4 μg/mL), an inhibitor of nuclear transcription factor nf-kB, significantly inhibited nf-kB levels, and transcription of downstream cytokines inos, il-1β, il-6 and il-8, also the viability of PCLS was significantly increased. These results indicated that GA suppressed inflammation and reduced cytotoxicity by inhibiting the nf-kƁ signaling pathway, and plays a role in liver protection. Copyright © 2017. Published by Elsevier Ltd.

  20. Protective effects of Mangifera indica L extract (Vimang), and its major component mangiferin, on iron-induced oxidative damage to rat serum and liver.

    PubMed

    Pardo-Andreu, Gilberto L; Barrios, Mariela Forrellat; Curti, Carlos; Hernández, Ivones; Merino, Nelson; Lemus, Yeny; Martínez, Ioanna; Riaño, Annia; Delgado, René

    2008-01-01

    In vivo preventive effects of a Mangifera indica L extract (Vimang) or its major component mangiferin on iron overload injury have been studied in rats given respectively, 50, 100, 250 mg kg(-1) body weight of Vimang, or 40 mg kg(-1) body weight of mangiferin, for 7 days prior to, and for 7 days following the administration of toxic amounts of iron-dextran. Both Vimang or mangiferin treatment prevented iron overload in serum as well as liver oxidative stress, decreased serum and liver lipid peroxidation, serum GPx activity, and increased serum and liver GSH, serum SOD and the animals overall antioxidant condition. Serum iron concentration was decreased although at higher doses, Vimang tended to increase it; percent tranferrin saturation, liver weight/body mass ratios, liver iron content was decreased. Treatment increased serum iron-binding capacity and decreased serum levels of aspartate-amine transferase (ASAT) and alanine-amine transferase (ALAT), as well as the number of abnormal Kupffer cells in iron-loaded livers. It is suggested that besides acting as antioxidants, Vimang extract or its mangiferin component decrease liver iron by increasing its excretion. Complementing earlier in vitro results from our group, it appears possible to support the hypothesis that Vimang and mangiferin present therapeutically useful effects in iron overload related diseases.

  1. The effects of sulforaphane on the liver and remote organ damage in hepatic ischemia-reperfusion model formed with pringle maneuver in rats.

    PubMed

    Oguz, Abdullah; Kapan, Murat; Kaplan, Ibrahim; Alabalik, Ulas; Ulger, Burak Veli; Uslukaya, Omer; Turkoglu, Ahmet; Polat, Yilmaz

    2015-06-01

    The purpose of this study was to investigate the effect of Sulforaphane on ischemia/ reperfusion (IR) injury of the liver and distant organs resulting from liver blood flow arrest. Fourty Wistar rats were assigned into four groups, each included 10 rats were used. Group I as only laparatomy, Group II laparatomy and Sulforaphane application, Group III hepatic IR; and Group IV as hepatic IR and Sulforaphane application group. Animals were subjected to liver ischemia for 30 min and then reperfusion is started. 5 mg/kg Sulforaphane was applied via oral lavage 15 minutes before initiating the experimental study. Blood samples were taken from the animals for biochemical analysis at 60th minutes of the experiment in the first and second groups; 30 minutes after beginning reperfusion in the third and forth groups. Simultaneously, liver, lung and kidney tissues were sampled for biochemical and histopathological examinations. The administration of sulforaphane significantly reduced the serum TOA and liver TOA levels, increased the serum TAC and liver TAC levels and also decreased The OSI and liver OSI levels. In the histopathologic examination, the injury was reduced by the administration of sulforaphane. Administration of sulforaphane did not lead to any significant changes in any parameter including histopathological parameters in both the kidney and the lung. Sulforaphane reduced the liver oxidative stress from I/R injury. A histological injury in liver was reduced by sulforaphane administration. However, there were no significant effects of sulforaphane on the remote organ injuries induced by IR. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  2. Liver Transplant

    MedlinePlus

    ... Liver Function Tests Clinical Trials Liver Transplant FAQs Medical Terminology Diseases of the Liver Alagille Syndrome Alcohol-Related ... the Liver The Progression of Liver Disease FAQs Medical Terminology HOW YOU CAN HELP Sponsorship Ways to Give ...

  3. FXR and liver carcinogenesis

    PubMed Central

    Huang, Xiong-fei; Zhao, Wei-yu; Huang, Wen-dong

    2015-01-01

    Farnesoid X receptor (FXR) is a member of the nuclear receptor family and a ligand-modulated transcription factor. In the liver, FXR has been considered a multi-functional cell protector and a tumor suppressor. FXR can suppress liver carcinogenesis via different mechanisms: 1) FXR maintains the normal liver metabolism of bile acids, glucose and lipids; 2) FXR promotes liver regeneration and repair after injury; 3) FXR protects liver cells from death and enhances cell survival; 4) FXR suppresses hepatic inflammation, thereby preventing inflammatory damage; and 5) FXR can directly increase the expression of some tumor-suppressor genes and repress the transcription of several oncogenes. However, inflammation and epigenetic silencing are known to decrease FXR expression during tumorigenesis. The reactivation of FXR function in the liver may be a potential therapeutic approach for patients with liver cancer. PMID:25500874

  4. Liver fibrosis markers in alcoholic liver disease.

    PubMed

    Chrostek, Lech; Panasiuk, Anatol

    2014-07-07

    Alcohol is one of the main factors of liver damage. The evaluation of the degree of liver fibrosis is of great value for therapeutic decision making in patients with alcoholic liver disease (ALD). Staging of liver fibrosis is essential to define prognosis and management of the disease. Liver biopsy is a gold standard as it has high sensitivity and specificity in fibrosis diagnostics. Taking into account the limitations of liver biopsy, there is an exigency to introduce non-invasive serum markers for fibrosis that would be able to replace liver biopsy. Ideal serum markers should be specific for the liver, easy to perform and independent to inflammation and fibrosis in other organs. Serum markers of hepatic fibrosis are divided into direct and indirect. Indirect markers reflect alterations in hepatic function, direct markers reflect extracellular matrix turnover. These markers should correlate with dynamic changes in fibrogenesis and fibrosis resolution. The assessment of the degree of liver fibrosis in alcoholic liver disease has diagnostic and prognostic implications, therefore noninvasive assessment of fibrosis remains important. There are only a few studies evaluating the diagnostic and prognostic values of noninvasive biomarkers of fibrosis in patients with ALD. Several noninvasive laboratory tests have been used to assess liver fibrosis in patients with alcoholic liver disease, including the hyaluronic acid, FibroTest, FibrometerA, Hepascore, Forns and APRI indexes, FIB4, an algorithm combining Prothrombin index (PI), α-2 macroglobulin and hyaluronic acid. Among these tests, Fibrotest, FibrometerA and Hepascore demonstrated excellent diagnostic accuracy in identifying advanced fibrosis and cirrhosis, and additionally, Fibrotest was independently associated with survival. Therefore, the use of biomarkers may reduce the need for liver biopsy and permit an earlier treatment of alcoholic patients.

  5. An in vivo analysis of Cr6+ induced biochemical, genotoxicological and transcriptional profiling of genes related to oxidative stress, DNA damage and apoptosis in liver of fish, Channa punctatus (Bloch, 1793).

    PubMed

    Awasthi, Yashika; Ratn, Arun; Prasad, Rajesh; Kumar, Manoj; Trivedi, Sunil P

    2018-07-01

    Present study was designed to assess the hexavalent chromium (Cr 6+ ) mediated oxidative stress that induces DNA damage and apoptosis in adult fish, Channa punctatus (35 ± 3.0 g; 14.5 ± 1.0 cm; Actinopterygii). Fishes were maintained in three groups for 15, 30 and 45 d of exposure periods. They were treated with 5% (Group T1) and 10% (Group T2) of 96 h-LC 50 of chromium trioxide (Cr 6+ ). Controls were run for the similar duration. A significant (p < 0.05) increment in the activities of antioxidant enzymes, SOD and CAT in liver tissues of the exposed fish evinces the persistence of oxidative stress. A significant (p < 0.05) increase in induction of micronuclei (MN) coupled with transcriptional responses of target genes related to antioxidant enzymes, DNA damage and apoptosis (sod, cat, gsr, nox-1, p53, bax, bcl-2, apaf-1 and casp3a) establishes the impact of oxidative stress due to in vivo, Cr 6+ accumulation in liver as compared to control (0 mg/L), in a dose and exposure-dependent manner. Initially, the increased level of reactive oxygen species (ROS) in liver coincided with that of enhanced mRNA expression of antioxidant enzymes, sod, cat, gsr and nox-1 but, later, the overproduction of ROS, after 45 d of exposure of Cr 6+ , resulted in a significant (p < 0.05) up-regulation of p53. Our findings also unveil that the up-regulation of bax, apaf-1 and casp3a and down-regulation of bcl-2 are associated with Cr 6+ -induced oxidative stress mediated-apoptosis in liver of test fish. Aforesaid molecular markers can, thus, be efficiently utilized for bio-monitoring of aquatic regimes and conservation of fish biodiversity. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Liver ultrastructural morphology and mitochondrial DNA levels in HIV/hepatitis C virus coinfection: no evidence of mitochondrial damage with highly active antiretroviral therapy.

    PubMed

    Matsukura, Motoi; Chu, Fanny F S; Au, May; Lu, Helen; Chen, Jennifer; Rietkerk, Sonja; Barrios, Rolando; Farley, John D; Montaner, Julio S; Montessori, Valentina C; Walker, David C; Côté, Hélène C F

    2008-06-19

    Liver mitochondrial toxicity is a concern, particularly in HIV/hepatitis C virus (HCV) coinfection. Liver biopsies from HIV/HCV co-infected patients, 14 ON-highly active antiretroviral therapy (HAART) and nine OFF-HAART, were assessed by electron microscopy quantitative morphometric analyses. Hepatocytes tended to be larger ON-HAART than OFF-HAART (P = 0.05), but mitochondrial volume, cristae density, lipid volume, mitochondrial DNA and RNA levels were similar. We found no evidence of increased mitochondrial toxicity in individuals currently on HAART, suggesting that concomitant HAART should not delay HCV therapy.

  7. In Vivo Alkaline Comet Assay and Enzyme-modified Alkaline Comet Assay for Measuring DNA Strand Breaks and Oxidative DNA Damage in Rat Liver.

    PubMed

    Ding, Wei; Bishop, Michelle E; Lyn-Cook, Lascelles E; Davis, Kelly J; Manjanatha, Mugimane G

    2016-05-04

    Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals.

  8. In Vivo Alkaline Comet Assay and Enzyme-modified Alkaline Comet Assay for Measuring DNA Strand Breaks and Oxidative DNA Damage in Rat Liver

    PubMed Central

    Ding, Wei; Bishop, Michelle E.; Lyn-Cook, Lascelles E.; Davis, Kelly J.; Manjanatha, Mugimane G.

    2016-01-01

    Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals. PMID:27166647

  9. Metabolites and JAK/STAT pathway were involved in the liver and spleen damage in male Wistar rats fed with mequindox.

    PubMed

    Wang, Xu; Huang, Xian-Ju; Ihsan, Awais; Liu, Zhao-Ying; Huang, Ling-Li; Zhang, Hua-Hai; Zhang, Hong-Fei; Zhou, Wen; Liu, Qin; Xue, Xi-Juan; Yuan, Zong-Hui

    2011-02-27

    Mequindox (MEQ) is a novel synthetic quinoxaline 1,4-dioxides antibacterial agent and growth promoter in animal husbandry. This study was to investigate whether reactive oxygen species (ROS), the Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway, suppressors of cytokine signaling (SOCS) and inflammatory cytokines were involved in toxicities of MEQ. Our data demonstrated that high dose of MEQ (275 mg/kg) apparently led to tissue impairment combined with imbalance of redox in liver. In liver and spleen samples, hydroxylation metabolites and desoxymequindox were detected, directly confirming the potential link of N→O group reduction metabolism with its organ toxicity. Moreover, up-regulation of JAK/STAT, SOCS family, tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) were also observed in the high-dose group. Meanwhile, significant changes of oxidative stress indices in liver were observed in the high-dose group. As for NADPH subunit, the mRNA levels of many subunits were significantly up-regulated at low doses but down-regulated in a dose-dependent manner in liver and spleen, suggesting an involvement of NADPH in MEQ metabolism and ROS generation. In conclusion, we reported the dose-dependent long-term toxicity as well as the discussion of the potential mechanism and pathways of MEQ, which raised further awareness of its toxicity following with the dose change. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Long-Term Selenium-Deficient Diet Induces Liver Damage by Altering Hepatocyte Ultrastructure and MMP1/3 and TIMP1/3 Expression in Growing Rats.

    PubMed

    Han, Jing; Liang, Hua; Yi, Jianhua; Tan, Wuhong; He, Shulan; Wang, Sen; Li, Feng; Wu, Xiaofang; Ma, Jing; Shi, Xiaowei; Guo, Xiong; Bai, Chuanyi

    2017-02-01

    The effects of selenium (Se)-deficient diet on the liver were evaluated by using growing rats which were fed with normal and Se-deficient diets, respectively, for 109 days. The results showed that rats fed with Se-deficient diet led to a decrease in Se concentration in the liver, particularly among male rats from the low-Se group. This causes alterations to the ultrastructure of hepatocytes with condensed chromatin and swelling mitochondria observed after low Se intake. Meanwhile, pathological changes and increased fibrosis in hepatic periportal were detected by hematoxylin and eosin and Masson's trichrome staining in low-Se group. Furthermore, through immunohistochemistry (IHC) staining, higher expressions of metalloproteinases (MMP1/3) and their tissue inhibitors of metalloproteinases (TIMP1/3) were observed in the hepatic periportal of rats from the low-Se group. However, higher expressions of MMP1/3 and lower expressions of TIMP1/3 were detected in hepatic central vein and hepatic sinusoid. In addition, upregulated expressions of MMP1/3 and downregulated expressions of TIMP1/3 at the messenger RNA (mRNA) and protein levels also appeared to be relevant to low Se intake. In conclusion, Se-deficient diet could cause low Se concentration in the liver, alterations of hepatocyte ultrastructure, differential expressions of MMP1/3 and TIMP1/3 as well as fibrosis in the liver hepatic periportal.

  11. Hypothalamic kappa opioid receptor mediates both diet-induced and melanin concentrating hormone-induced liver damage through inflammation and endoplasmic reticulum stress.

    PubMed

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Romero-Picó, Amparo; Kalló, Imre; Chee, Melissa J; Porteiro, Begoña; Al-Massadi, Omar; Contreras, Cristina; Fernø, Johan; Senra, Ana; Gallego, Rosalia; Folgueira, Cintia; Seoane, Luisa M; van Gestel, Margriet; Adan, Roger A; Liposits, Zsolt; Dieguez, Carlos; López, Miguel; Nogueiras, Ruben

    2016-10-01

    The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose-regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH-R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient, diet-induced and choline-deficient, high-fat diet-induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose-regulated protein 78 kDa in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. This study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086-1104). © 2016 The Authors. (Hepatology published by Wiley Periodicals, Inc., on

  12. A simple and economical route to generate functional hepatocyte-like cells from hESCs and their application in evaluating alcohol induced liver damage.

    PubMed

    Pal, Rajarshi; Mamidi, Murali Krishna; Das, Anjan Kumar; Gupta, Pawan Kumar; Bhonde, Ramesh

    2012-01-01

    The in vitro derived hepatocytes from human embryonic stem cells (hESC) is a promising tool to acquire improved knowledge of the cellular and molecular events underlying early human liver development under physiological and pathological conditions. Here we report a simple two-step protocol employing conditioned medium (CM) from human hepatocellular carcinoma cell line, HepG2 to generate functional hepatocyte-like cells from hESC. Immunocytochemistry, flow cytometry, quantitative RT-PCR, and biochemical analyses revealed that the endodermal progenitors appeared as pockets in culture, and the cascade of genes associated with the formation of definitive endoderm (HNF-3β, SOX-17, DLX-5, CXCR4) was consistent and in concurrence with the up-regulation of the markers for hepatic progenitors [alpha-feto protein (AFP), HNF-4α, CK-19, albumin, alpha-1-antitrypsin (AAT)], followed by maturation into functional hepatocytes [tyrosine transferase (TAT), tryptophan-2, 3-dioxygenase (TDO), glucose 6-phosphate (G6P), CYP3A4, CYP7A1]. We witnessed that the gene expression profile during this differentiation process recapitulated in vivo liver development demonstrating a gradual down-regulation of extra embryonic endodermal markers (SOX-7, HNF-1β, SNAIL-1, LAMININ-1, CDX2), and the generated hepatic cells performed multiple liver functions. Since prenatal alcohol exposure is known to provoke irreversible abnormalities in the fetal cells and developing tissues, we exposed in vitro generated hepatocytes to ethanol (EtOH) and found that EtOH treatment not only impairs the survival and proliferation, but also induces apoptosis and perturbs differentiation of progenitor cells into hepatocytes. This disruption was accompanied by alterations in the expression of genes and proteins involved in hepatogenesis. Our results provide new insights into the wider range of destruction caused by alcohol on the dynamic process of liver organogenesis. Copyright © 2011 Wiley Periodicals, Inc.

  13. Radio protective effect of black mulberry extract on radiation-induced damage in bone marrow cells and liver in the rat

    NASA Astrophysics Data System (ADS)

    Ghasemnezhad Targhi, Reza; Homayoun, Mansour; Mansouri, Somaieh; Soukhtanloo, Mohammad; Soleymanifard, Shokouhozaman; Seghatoleslam, Masoumeh

    2017-01-01

    Ionizing radiation by producing free radicals induces tissue oxidative stress and has clastogenic and cytotoxic effects. The radio protective effect of black mulberry extract (BME) has been investigated on liver tissue and bone marrow cells in the rat. Intraperitoneal (ip) administration of 200 mg/kg BME three days before and three days after 3 Gy and 6 Gy gamma irradiation significantly reduced the frequencies of micro nucleated polychromatic erythrocytes (MnPCEs) and micro nucleated norm chromatic erythrocyte (MnNCEs) and increased PCE/PCE+NCE ratio in rat bone marrow compared to the non-treated irradiated groups. Moreover, this concentration of BME extract decreased the level of malondialdehyde (MDA) and superoxide dismutase (SOD), as well as enhanced the total thiol content and catalase activity in rat's liver compared to the non-treated irradiated groups. It seems that BME extract with antioxidant activity reduced the genotoxicity and cytotoxicity induced by gamma irradiation in bone marrow cells and liver in the rat.

  14. Epigallocatechin-3-gallate (EGCG) attenuates concanavalin A-induced hepatic injury in mice.

    PubMed

    Liu, Dongmei; Zhang, Xiaoli; Jiang, Li; Guo, Yun; Zheng, Changqing

    2014-05-01

    (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenolic compound present in green tea and has been shown to possess anti-inflammatory and anti-oxidative properties. In this study, we investigated the protective effects of EGCG against concanavalin A (ConA)-induced liver injury and the underlying mechanisms. EGCG (5 mg/kg) was administered orally by gavage to mice twice daily for 10 days before an intravenous injection of ConA. We found that EGCG effectively rescued lethality, improved hepatic pathological damage, and decreased serum levels of alanine aminotransaminase (ALT) in ConA-challenged mice. Furthermore, EGCG also significantly prevented the release of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-4, and IL-6 in serum, reduced malondialdehyde (MDA) levels, and restored glutathione (GSH) content and superoxide dismutase (SOD) activity in liver tissues from ConA-challenged mice. Finally, nuclear factor (NF)-κB activation and expression levels of Toll-like receptor (TLR) 2, TLR4 and TLR9 protein in liver tissues were significantly inhibited by EGCG pretreatment. Taken together, our data suggest that EGCG possesses hepatoprotective properties against ConA-induced liver injury through its anti-inflammatory and anti-oxidant actions. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Short term feeding of a high fat diet exerts an additive effect on hepatocellular damage and steatosis in liver-specific PTEN knockout mice

    USDA-ARS?s Scientific Manuscript database

    Hepatospecific deletion of PTEN results in constitutive activation of Akt and increased lipogenesis. In mice, the addition of a high fat diet (HFD) downregulates lipogenesis. The aim of this study was to determine the effects of a HFD on hepatocellular damage induced by deletion of PTEN. Twelve-week...

  16. Farnesoid X Receptor Agonist Treatment Alters Bile Acid Metabolism but Exacerbates Liver Damage in a Piglet Model of Short-Bowel Syndrome.

    PubMed

    Pereira-Fantini, Prue M; Lapthorne, Susan; Gahan, Cormac G M; Joyce, Susan A; Charles, Jenny; Fuller, Peter J; Bines, Julie E

    2017-07-01

    Options for the prevention of short-bowel syndrome-associated liver disease (SBS-ALDs) are limited and often ineffective. The farnesoid X receptor (FXR) is a newly emerging pharmaceutical target and FXR agonists have been shown to ameliorate cholestasis and metabolic disorders. The aim of this study was to assess the efficacy of obeticholic acid (OCA) treatment in preventing SBS-ALDs. Piglets underwent 75% small-bowel resection (SBS) or sham surgery (sham) and were assigned to either a daily dose of OCA (2.4 mg/kg/day) or were untreated. Clinical measures included weight gain and stool studies. Histologic features were assessed. Ultraperformance liquid chromatography tandem mass spectrometry was used to determine bile acid composition in end point bile and portal serum samples. Gene expression of key FXR targets was assessed in intestinal and hepatic tissues via quantitative polymerase chain reaction. OCA-treated SBS piglets showed decreased stool fat and altered liver histology when compared with nontreated SBS piglets. OCA prevented SBS-associated taurine depletion, however, further analysis of bile and portal serum samples indicated that OCA did not prevent SBS-associated alterations in bile acid composition. The expression of FXR target genes involved in bile acid transport and synthesis increased within the liver of SBS piglets after OCA administration whereas, paradoxically, intestinal expression of FXR target genes were decreased by OCA administration. Administration of OCA in SBS reduced fat malabsorption and altered bile acid composition, but did not prevent the development of SBS-ALDs. We postulate that extensive small resection impacts the ability of the remnant intestine to respond to FXR activation.

  17. Liver Hemangioma

    MedlinePlus

    Liver hemangioma Overview A liver hemangioma (he-man-jee-O-muh) is a noncancerous (benign) mass in the liver. A liver hemangioma is made up of a tangle of blood vessels. Other terms for a liver hemangioma are hepatic hemangioma and cavernous hemangioma. Most ...

  18. Liver disease

    MedlinePlus

    ... Coccidioidomycosis Delta agent (hepatitis D) Drug-induced cholestasis Fatty liver disease Hemochromatosis Hepatitis A Hepatitis B Hepatitis C ... abscess Reye syndrome Sclerosing cholangitis Wilson disease Images Fatty liver, CT scan Liver with disproportional fattening, CT scan ...

  19. Odorous Compounds from Poultry Manure Induce DNA Damage, Nuclear Changes, and Decrease Cell Membrane Integrity in Chicken Liver Hepatocellular Carcinoma Cells

    PubMed Central

    Matusiak, Katarzyna; Gałęcki, Remigiusz; Borowski, Sebastian; Gutarowska, Beata

    2017-01-01

    Animal breeding and management of organic wastes pose a serious problem to the health of livestock and workers, as well as the nearby residents. The aim of the present study was to determine the mechanisms of toxicity of selected common odorous compounds from poultry manure, including ammonia, dimethylamine (DMA), trimethylamine (TMA), butyric acid, phenol, and indole. We measured their genotoxic and cytotoxic activity in the model chicken cell line (LMH), in vitro, by comet assay and lactate dehydrogenase assay, respectively. We also made microscopic observations of any morphological changes in these cells by DAPI staining. Four compounds, namely ammonia, DMA, TMA, and butyric acid increased DNA damage in a dose-dependent manner (p < 0.05), reaching genotoxicity as high as 73.2 ± 1.9%. Phenol and indole induced extensive DNA damage independent of the concentration used. Ammonia, DMA, and TMA caused a dose-dependent release of lactate dehydrogenase (p < 0.05). The IC50 values were 0.02%, 0.05%, and 0.1% for DMA, ammonia and TMA, respectively. These compounds also induced nuclear morphological changes, such as chromatin condensation, shrinkage, nuclear fragmentation (apoptotic bodies), and chromatin lysis. Our study exhibited the damaging effects of odorous compounds in chick LMH cell line. PMID:28820500

  20. Aqueous extract of Senecio candicans DC induce liver and kidney damage in a sub-chronic oral toxicity study in Wistar rats.

    PubMed

    Lakshmanan, Hariprasath; Raman, Jegadeesh; Pandian, Arjun; Kuppamuthu, Kumaresan; Nanjian, Raaman; Sabaratam, Vikineswary; Naidu, Murali

    2016-08-01

    Senecio candicans DC. (Asteraceae) is used as a remedy for gastric ulcer and stomach pain in the Nilgiris, district, Tamil Nadu. The present investigation was carried out to evaluate the sub-chronic toxicity of an aqueous extract of Senecio candicans (AESC) plant in Wistar albino rats. The study was conducted in consideration of the OECD 408 study design (Repeated Dose 90-Day Oral Toxicity Study in Rodents) and the extract was administered via gavage at doses of 250, 500 or 750 mg/kg body weight per day for 90-days. Hematological, biochemical parameters were determined on days 0, 30, 60 and 90 of administration. Animals were euthanized after 90 d treatment and its liver and kidney sections were taken for histological study. The results of sub-chronic study showed significant increase (P < 0.05) in serum uric acid, creatinine, aspartate transaminase (AST) and alanine transaminase (ALP) levels. Histological examination of liver showed mild mononuclear infiltration in the portal trait, enlarged nucleus around the central vein and mild loss of hepatocyte architecture in rats treated with 750 mg/kg of AESC. Histological examination of kidney showed focal interstitial fibrosis, crowding of glomeruli and mild hydropic change with hypercellular glomeruli in rats treated with 750 mg/kg of AESC. However, no remarkable histoarchitectural change in hepatocytes and glomeruli were observed in rats treated with lower concentrations (250 and 500 mg/kg b.w.) of AESC compared to control group animals. The no-observed adverse effect level (NOAEL) of AESC in the present study was 500 mg/kg b.w. Signs of toxic effects are evident from the current study. Although AESC contains low concentrations of PA, findings from this study suggest that regular consumers of herbal remedies derived from this plant may develop kidney and liver toxicity. Further studies on the isolation and characterization of PAs are necessary to determine the safe dose level of the extract for therapeutic use

  1. Development of an experimental model of cholestasis induced by hypoxic/ischemic damage to the bile duct and liver tissues in infantile rats.

    PubMed

    Toki, Fumiaki; Takahashi, Atsushi; Suzuki, Makoto; Ootake, Sayaka; Hirato, Junko; Kuwano, Hiroyuki

    2011-05-01

    We aimed to develop experimental models of hypoxia/ischemia-induced cholestasis using neonatal and infantile rats. Hypoxia/ischemia was induced in the bile duct (BD) by injecting prostaglandin (PG) at birth and/or by coagulation of the hepatic artery (CHA) at about 3 weeks after birth. The rats were divided into 6 groups: control; PG-injected; sham-operated with or without PG; CHA; and CHA + PG. CHA was also performed in adult rats. Liver specimens and blood samples were obtained at 5 weeks after birth, and immunohistochemical and biochemical examinations were performed. (1) BD proliferation with fibrosis (BDPF) was found in the intrahepatic portal tract in the CHA and CHA + PG groups. Low-grade BDPF was observed in the PG group. (2) Cyst formation in the extrahepatic BD (EBD) was observed in the porta hepatis of some rats in the CHA and CHA + PG groups. In these groups, the number of peribiliary vascular plexuses (PVPs) decreased. BD proliferation and infiltration of inflammatory cells were observed in the EBD wall in the CHA + PG group. (3) Ki-67 was expressed in BD and EBD cells in the CHA + PG group. (4) BDPF was not detected in adult rats with CHA. (5) Serum liver function tests indicated obstructive changes in the EBD in the CHA and CHA + PG groups. Reduced blood flow in the EBD during infancy induced BDPF and obstructive changes in the EBD, which may, along with immature PVP and inflammatory changes in the EBD, contribute to hypoxia/ischemia of the EBD.

  2. Chicken Fetal Liver DNA Damage and Adduct Formation by Activation-Dependent DNA-Reactive Carcinogens and Related Compounds of Several Structural Classes

    PubMed Central

    Williams, Gary M.; Duan, Jian-Dong; Brunnemann, Klaus D.; Iatropoulos, Michael J.; Vock, Esther; Deschl, Ulrich

    2014-01-01

    The chicken egg genotoxicity assay (CEGA), which utilizes the liver of an intact and aseptic embryo-fetal test organism, was evaluated using four activation-dependent DNA-reactive carcinogens and four structurally related less potent carcinogens or non-carcinogens. In the assay, three daily doses of test substances were administered to eggs containing 9–11-day-old fetuses and the fetal livers were assessed for two endpoints, DNA breaks using the alkaline single cell gel electrophoresis (comet) assay and DNA adducts using the 32P-nucleotide postlabeling (NPL) assay. The effects of four carcinogens of different structures requiring distinct pathways of bioactivation, i.e., 2-acetylaminofluorene (AAF), aflatoxin B1 (AFB1), benzo[a]pyrene (B[a]P), and diethylnitrosamine (DEN), were compared with structurally related non-carcinogens fluorene (FLU) and benzo[e]pyrene (B[e]P) or weak carcinogens, aflatoxin B2 (AFB2) and N-nitrosodiethanolamine (NDELA). The four carcinogens all produced DNA breaks at microgram or low milligram total doses, whereas less potent carcinogens and non-carcinogens yielded borderline or negative results, respectively, at higher doses. AAF and B[a]P produced DNA adducts, whereas none was found with the related comparators FLU or B[e]P, consistent with comet results. DEN and NDELA were also negative for adducts, as expected in the case of DEN for an alkylating agent in the standard NPL assay. Also, AFB1 and AFB2 were negative in NPL, as expected, due to the nature of ring opened aflatoxin adducts, which are resistant to enzymatic digestion. Thus, the CEGA, using comet and NPL, is capable of detection of the genotoxicity of diverse DNA-reactive carcinogens, while not yielding false positives for non-carcinogens. PMID:24973097

  3. Chicken fetal liver DNA damage and adduct formation by activation-dependent DNA-reactive carcinogens and related compounds of several structural classes.

    PubMed

    Williams, Gary M; Duan, Jian-Dong; Brunnemann, Klaus D; Iatropoulos, Michael J; Vock, Esther; Deschl, Ulrich

    2014-09-01

    The chicken egg genotoxicity assay (CEGA), which utilizes the liver of an intact and aseptic embryo-fetal test organism, was evaluated using four activation-dependent DNA-reactive carcinogens and four structurally related less potent carcinogens or non-carcinogens. In the assay, three daily doses of test substances were administered to eggs containing 9-11-day-old fetuses and the fetal livers were assessed for two endpoints, DNA breaks using the alkaline single cell gel electrophoresis (comet) assay and DNA adducts using the (32)P-nucleotide postlabeling (NPL) assay. The effects of four carcinogens of different structures requiring distinct pathways of bioactivation, i.e., 2-acetylaminofluorene (AAF), aflatoxin B1 (AFB1), benzo[a]pyrene (B[a]P), and diethylnitrosamine (DEN), were compared with structurally related non-carcinogens fluorene (FLU) and benzo[e]pyrene (B[e]P) or weak carcinogens, aflatoxin B2 (AFB2) and N-nitrosodiethanolamine (NDELA). The four carcinogens all produced DNA breaks at microgram or low milligram total doses, whereas less potent carcinogens and non-carcinogens yielded borderline or negative results, respectively, at higher doses. AAF and B[a]P produced DNA adducts, whereas none was found with the related comparators FLU or B[e]P, consistent with comet results. DEN and NDELA were also negative for adducts, as expected in the case of DEN for an alkylating agent in the standard NPL assay. Also, AFB1 and AFB2 were negative in NPL, as expected, due to the nature of ring opened aflatoxin adducts, which are resistant to enzymatic digestion. Thus, the CEGA, using comet and NPL, is capable of detection of the genotoxicity of diverse DNA-reactive carcinogens, while not yielding false positives for non-carcinogens. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Mangiferin, a Natural Xanthone, Protects Murine Liver in Pb(II) Induced Hepatic Damage and Cell Death via MAP Kinase, NF-κB and Mitochondria Dependent Pathways

    PubMed Central

    Pal, Pabitra Bikash; Sinha, Krishnendu; Sil, Parames C.

    2013-01-01

    One of the most well-known naturally occurring environmental heavy metals, lead (Pb) has been reported to cause liver injury and cellular apoptosis by disturbing the prooxidant-antioxidant balance via oxidative stress. Several studies, on the other hand, reported that mangiferin, a naturally occurring xanthone, has been used for a broad range of therapeutic purposes. In the present study, we, therefore, investigated the molecular mechanisms of the protective action of mangiferin against lead-induced hepatic pathophysiology. Lead [Pb(II)] in the form of Pb(NO3)2 (at a dose of 5 mg/kg body weight, 6 days, orally) induced oxidative stress, hepatic dysfunction and cell death in murine liver. Post treatment of mangiferin at a dose of 100 mg/kg body weight (6 days, orally), on the other hand, diminished the formation of reactive oxygen species (ROS) and reduced the levels of serum marker enzymes [alanine aminotranferase (ALT) and alkaline phosphatase (ALP)]. Mangiferin also reduced Pb(II) induced alterations in antioxidant machineries, restored the mitochondrial membrane potential as well as mutual regulation of Bcl-2/Bax. Furthermore, mangiferin inhibited Pb(II)-induced activation of mitogen-activated protein kinases (MAPKs) (phospho-ERK 1/2, phosphor-JNK phospho- p38), nuclear translocation of NF-κB and apoptotic cell death as was evidenced by DNA fragmentation, FACS analysis and histological assessment. In vitro studies using hepatocytes as the working model also showed the protective effect of mangiferin in Pb(II) induced cytotoxicity. All these beneficial effects of mangiferin contributes to the considerable reduction of apoptotic hepatic cell death induced by Pb(II). Overall results demonstrate that mangiferin exhibit both antioxidative and antiapoptotic properties and protects the organ in Pb(II) induced hepatic dysfunction. PMID:23451106

  5. Polyploidization of liver cells.

    PubMed

    Celton-Morizur, Séverine; Desdouets, Chantal

    2010-01-01

    Eukaryotic organisms usually contain a diploid complement of chromosomes. However, there are a number of exceptions. Organisms containing an increase in DNA content by whole number multiples of the entire set of chromosomes are defined as polyploid. Cells that contain more than two sets of chromosomes were first observed in plants about a century ago and it is now recognized that polyploidy cells form in many eukaryotes under a wide variety of circumstance. Although it is less common in mammals, some tissues, including the liver, show a high percentage of polyploid cells. Thus, during postnatal growth, the liver parenchyma undergoes dramatic changes characterized by gradual polyploidization during which hepatocytes of several ploidy classes emerge as a result of modified cell-division cycles. This process generates the successive appearance of tetraploid and octoploid cell classes with one or two nuclei (mononucleated or binucleated). Liver cells polyploidy is generally considered to indicate terminal differentiation and senescence and to lead both to the progressive loss of cell pluripotency and a markedly decreased replication capacity. In adults, liver polyploidization is differentially regulated upon loss of liver mass and liver damage. Interestingly, partial hepatectomy induces marked cell proliferation followed by an increase in liver ploidy. In contrast, during hepatocarcinoma (HCC), growth shifts to a nonpolyploidizing pattern and expansion of the diploid hepatocytes population is observed in neoplastic nodules. Here we review the current state of understanding about how polyploidization is regulated during normal and pathological liver growth and detail by which mechanisms hepatocytes become polyploid.

  6. Chronic free-choice drinking in crossed high alcohol preferring mice leads to sustained blood ethanol levels and metabolic tolerance without evidence of liver damage.

    PubMed

    Matson, Liana; Liangpunsakul, Suthat; Crabb, David; Buckingham, Amy; Ross, Ruth Ann; Halcomb, Meredith; Grahame, Nicholas

    2013-02-01

    Crossed high alcohol preferring (cHAP) mice were selectively bred from a cross of the HAP1 × HAP2 replicate lines, and we demonstrate blood ethanol concentrations (BECs) during free-choice drinking that are reminiscent of those observed in alcohol-dependent humans. Therefore, this line may provide an unprecedented opportunity to learn about the consequences of excessive voluntary ethanol (EtOH) consumption, including metabolic tolerance and liver pathology. Cytochrome p450 2E1 (CYP2E1) induction plays a prominent role in driving both metabolic tolerance and EtOH-induced liver injury. In this report, we sought to characterize cHAP drinking by assessing whether pharmacologically relevant BEC levels are sustained throughout the active portion of the light-dark cycle. Given that cHAP intakes and BECs are similar to those observed in mice given an EtOH liquid diet, we assessed whether free-choice exposure results in metabolic tolerance, hepatic enzyme induction, and hepatic steatosis. In experiment 1, blood samples were taken across the dark portion of a 12:12 light-dark cycle to examine the pattern of EtOH accumulation in these mice. In experiments 1 and 2, mice were injected with EtOH following 3 to 4 weeks of access to water or 10% EtOH and water, and blood samples were taken to assess metabolic tolerance. In experiment 3, 24 mice had 4 weeks of access to 10% EtOH and water or water alone, followed by necropsy and hepatological assessment. In experiment 1, cHAP mice mean BEC values exceeded 80 mg/dl at all sampling points and approached 200 mg/dl during the middle of the dark cycle. In experiments 1 and 2, EtOH-exposed mice metabolized EtOH faster than EtOH-naïve mice, demonstrating metabolic tolerance (p < 0.05). In experiment 3, EtOH-drinking mice showed greater expression of hepatic CYP2E1 than water controls, consistent with the development of metabolic tolerance (p < 0.05). EtOH access altered neither hepatic histology nor levels of alcohol

  7. Decreased Vδ2 γδ T cells associated with liver damage by regulation of Th17 response in patients with chronic hepatitis B.

    PubMed

    Wu, Xiaoli; Zhang, Ji-Yuan; Huang, Ang; Li, Yuan-Yuan; Zhang, Song; Wei, Jun; Xia, Siyuan; Wan, Yajuan; Chen, Weiwei; Zhang, Zheng; Li, Yangguang; Wen, Ti; Chen, Yan; Tanaka, Yoshimasa; Cao, Youjia; Wang, Puyue; Zhao, Liqing; Wu, Zhenzhou; Wang, Fu-Sheng; Yin, Zhinan

    2013-10-15

     γδ T cells comprise a small subset of T cells and play a protective role against cancer and viral infections; however, their precise role in patients with chronic hepatitis B remains unclear.  Flow cytometry and immunofunctional assays were performed to analyze the impact of Vδ2 γδ (Vδ2) T cells in 64 immune-activated patients, 22 immune-tolerant carriers, and 30 healthy controls.  The frequencies of peripheral and hepatic Vδ2 T cells decreased with disease progression from immune tolerant to immune activated. In the latter group of patients, the decreases in peripheral and intrahepatic frequencies of Vδ2 T cells reversely correlated with alanine aminotransferase levels and histological activity index. These activated terminally differentiated memory phenotypic Vδ2 T cells exhibited impaired abilities in proliferation and chemotaxis, while maintained a relative intact interferon (IFN) γ production. Importantly, Vδ2 T cells, in vitro, significantly suppressed the production of cytokines associated with interleukin 17-producing CD4+ T (Th17) cells through both cell contact-dependent and IFN-γ-dependent mechanisms.  Inflammatory microenvironment in IA patients result in decreased numbers of Vδ2 T cells, which play a novel role by regulating the pathogenic Th17 response to protect the liver in patients with chronic hepatitis B.

  8. l-Theanine prevents ETEC-induced liver damage by reducing intrinsic apoptotic response and inhibiting ERK1/2 and JNK1/2 signaling pathways.

    PubMed

    Gong, Zhihua; Liu, Qiuling; Lin, Ling; Deng, Yanli; Cai, Shuxian; Liu, Zunying; Zhang, Sheng; Xiao, Wenjun; Xiong, Shuo; Chen, Dong

    2018-01-05

    l-Theanine (LTA; γ-glutamylethylamide), a peculiar non-protein-derived amino acid isolated from tea, is widely used as a functional ingredient and dietary supplement. l-Theanine has been confirmed to have hepatoprotective effects, but the underlying mechanism remains unknown. This study investigated the protective effect of l-Theanine-in vivo, using an enterotoxigenic Escherichia coli (ETEC)-infected mouse model. l-Theanine significantly decreased the elevated serum activities of both aspartate aminotransferase (AST) and alanine aminotransferase (ALT), two biomarkers of hepatic impairment. This was consistent with histopathological images from the microscopic observation of liver tissue. In addition, l-theanine significantly increased the mRNA and protein expression of Bcl-2 and decreased the expression of Bax, anti- and pro-apoptotic molecules, respectively, compared with levels in the ETEC control group. The expression of cleaved caspase-3 protein in the group pre-treated with l-theanine was significantly lower than that in the ETEC group. Additionally, decreases in extracellular signal-regulated kinase (ERK1/2) and c-Jun NH 2 -terminal kinase(JNK1/2) MAPK phosphorylation were observed in the l-theanine pre-treated group. Our study demonstrates that l-theanine possesses anti-apoptotic activity, which can be attributed to suppression of the intrinsic mitochondria-mediated apoptosis and MAPK phosphorylation signaling pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Assessment of the hepatoprotective activity of the seeds of Hunteria umbellata (Hallier F.) on carbon tetrachloride (CCl4) induced liver damage in Wistar albino rats

    NASA Astrophysics Data System (ADS)

    Ogunlana, Olubanke Olujoke; Ogunlana, Oluseyi Ebenezer; Adelani, Isaacson Bababode; Adebayo, Angie Osariem Igbinoba; David, Opetoritse Laju; Adeleye, Oluwaseye Joseph; Udeogu, Stephanie Adaora; Adeyemi, Alaba Oladipupo; Akinyele, Julie Oluranti

    2018-04-01

    This study was designed to evaluate the hepatoprotective activity of the seeds of Hunteria umbellata (HU) on carbon tetrachloride (CCl4) induced rats. Rats of groups 1 (normal control), 3 and 5 were not treated with CCl4 while rats of groups 2 (negative control), 4 and 6 rats were treated with single dose of CCl4 (2 ml/kg) by intraperitoneal administration. Normal control group 1 rats were given distilled water, groups 3 and 4 rats were given 50 mg/kg of silymarin while groups 5 and 6 rats were given 500 mg/kg of HU. Treatment was administered orally for 28 days and sacrificed on the 29th day after an overnight fast. The weights of the rats were taken before and after the treatment. Blood samples were collected in heparinized tubes and biochemical analysis of liver functions and lipid profile tests were carried out on plasma. There was a significant change (p<0.05) in the levels of alanine aminotransferase, alkaline phosphatase, high density lipoprotein and triglycerides of the CCl4 induced group treated with HU compared to the CCl4 untreated group 2 animals. The results obtained showed that the ethanolic extract of HU has hepatoprotective property.

  10. DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China.

    PubMed

    Xie, Shao-Hua; Liu, Ai-Lin; Chen, Yan-Yan; Zhang, Li; Zhang, Hui-Juan; Jin, Bang-Xiong; Lu, Wen-Hong; Li, Xiao-Yan; Lu, Wen-Qing

    2010-04-01

    Because of the daily and life-long exposure to disinfection by-products formed during drinking water treatment, potential adverse human health risk of drinking water disinfection is of great concern. Toxicological studies have shown that drinking water treatment increases the genotoxicity of surface water. Drinking water treatment is comprised of different potabilization steps, which greatly influence the levels of genotoxic products in the surface water and thus may alter the toxicity and genotoxicity of surface water. The aim of the present study was to understand the influence of specific steps on toxicity and genotoxicity during the treatment of surface water in a water treatment plant using liquid chlorine as the disinfectant in China. An integrated approach of the comet and oxidative stress assays was used in the study, and the results showed that both the prechlorination and postchlorination steps increased DNA damage and oxidative stress caused by water extracts in human derived L-02 cells while the tube settling and filtration steps had the opposite effect. This research also highlighted the usefulness of an integrated approach of the comet and oxidative stress assays in evaluating the genotoxicity of surface water during drinking water treatment. Copyright 2009 Wiley-Liss, Inc.

  11. Gut microbiome composition in lean patients with NASH is associated with liver damage independent of caloric intake: A prospective pilot study.

    PubMed

    Duarte, S M B; Stefano, J T; Miele, L; Ponziani, F R; Souza-Basqueira, M; Okada, L S R R; de Barros Costa, F G; Toda, K; Mazo, D F C; Sabino, E C; Carrilho, F J; Gasbarrini, A; Oliveira, C P

    2018-04-01

    The aim of the study was to compare the gut microbiomes from obese and lean patients with or without NASH to outline phenotypic differences. We performed a cross-sectional pilot study comprising biopsy-proven NASH patients grouped according to BMI. Microbiome DNA was extracted from stool samples, and PCR amplification was performed using primers for the V4 region of the 16S rRNA gene. The amplicons were sequenced using the Ion PGM Torrent platform, and data were analyzed using QIIME software. Macronutrient consumption was analyzed by a 7-day food record. Liver fibrosis ≥ F2 was associated with increased abundance of Lactobacilli (p = 0.0007). NASH patients showed differences in Faecalibacterium, Ruminococcus, Lactobacillus and Bifidobacterium abundance compared with the control group. Lean NASH patients had a 3-fold lower abundance of Faecalibacterium and Ruminococcus (p = 0.004), obese NASH patients were enriched in Lactobacilli (p = 0.002), and overweight NASH patients had reduced Bifidobacterium (p = 0.018). Moreover, lean NASH patients showed a deficiency in Lactobacillus compared with overweight and obese NASH patients. This group also appeared similar to the control group with regard to gut microbiome alpha diversity. Although there were qualitative differences between lean NASH and overweight/obese NASH, they were not statistically significant (p = 0.618). The study limitations included a small sample size, a food questionnaire that collected only qualitative and semi-quantitative data, and variations in group gender composition that may influence differences in FXR signaling, bile acids metabolism and the composition of gut microbiota. Our preliminary finding of a different pathogenetic process in lean NASH patients needs to be confirmed by larger studies, including those with patient populations stratified by sex and dietary habits. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the

  12. Liver Immunology

    PubMed Central

    Bogdanos, Dimitrios P.; Gao, Bin; Gershwin, M. Eric

    2014-01-01

    The liver is the largest organ in the body and is generally regarded by non-immunologists as not having lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates a tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and is also instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena which if are not controlled by regulatory lymphoid populations may lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act as critical antigen-presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events which lead to immune-mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discus select, but not all, immune mediated liver disease and attempt to place these data in the context of human autoimmunity. PMID:23720323

  13. Liver Diseases

    MedlinePlus

    Your liver is the largest organ inside your body. It helps your body digest food, store energy, and remove poisons. There are many kinds of liver diseases: Diseases caused by viruses, such as hepatitis ...

  14. Autoimmune liver disease 2007.

    PubMed

    Muratori, Paolo; Granito, Alessandro; Pappas, Georgios; Muratori, Luigi; Lenzi, Marco; Bianchi, Francesco B

    2008-01-01

    Autoimmune liver disease (ALD) includes a spectrum of diseases which comprises both cholestatic and hepatitic forms: autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC) and the so called "overlap" syndromes where hepatitic and cholestatic damage coexists. All these diseases are characterized by an extremely high heterogeneity of presentation, varying from asymptomatic, acute (as in a subset of AIH) or chronic (with aspecific symptoms such as fatigue and myalgia in AIH or fatigue and pruritus in PBC and PSC). The detection and characterization of non organ specific autoantibodies plays a major role in the diagnostic approach of autoimmune liver disease; anti nuclear reactivities (ANA) and anti smooth muscle antibodies (SMA) mark type 1 AIH, liver kidney microsomal antibody type 1 (LKM1) and liver cytosol type 1 (LC1) are the serological markers of type 2 AIH; antimitochondrial antibodies (AMA) are associated with PBC, while no specific marker is found in PSC, since anticytoplasmic neutrophil antibodies with perinuclear pattern (atypical p-ANCA or p-ANNA) are also detected in a substantial proportion of type 1 AIH cases. Treatment options rely on immunosoppressive therapy (steroids and azathioprine) in AIH and on ursodeoxycholic acid in cholestatic conditions; in all these diseases liver transplantation remains the only therapeutical approach for the end stage of liver disease.

  15. Iron homeostasis in the liver

    PubMed Central

    Anderson, Erik R; Shah, Yatrik M

    2014-01-01

    Iron is an essential nutrient that is tightly regulated. A principal function of the liver is the regulation of iron homeostasis. The liver senses changes in systemic iron requirements and can regulate iron concentrations in a robust and rapid manner. The last 10 years have led to the discovery of several regulatory mechanisms in the liver which control the production of iron regulatory genes, storage capacity, and iron mobilization. Dysregulation of these functions leads to an imbalance of iron, which is the primary causes of iron-related disorders. Anemia and iron overload are two of the most prevalent disorders worldwide and affect over a billion people. Several mutations in liver-derived genes have been identified, demonstrating the central role of the liver in iron homeostasis. During conditions of excess iron, the liver increases iron storage and protects other tissues, namely the heart and pancreas from iron-induced cellular damage. However, a chronic increase in liver iron stores results in excess reactive oxygen species production and liver injury. Excess liver iron is one of the major mechanisms leading to increased steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. PMID:23720289

  16. Management of paediatric liver trauma.

    PubMed

    van As, A B; Millar, Alastair J W

    2017-04-01

    Of all the intra-abdominal solid organs, the liver is the most vulnerable to blunt abdominal trauma. The majority of liver ruptures present in combination with other abdominal or extra-abdominal injuries. Over the last three decades, the management of blunt liver trauma has evolved from obligatory operative to non-operative management in over 90% of cases. Penetrating liver injuries more often require operative intervention and are managed according to adult protocols. The greatest clinical challenge remains the timely identification of the severely damaged liver with immediate and aggressive resuscitation and expedition to laparotomy. The operative management can be taxing and should ideally be performed in a dedicated paediatric surgical centre with experience in dealing with such trauma. Complications can occur early or late and include haemobilia, intrahepatic duct rupture with persistent biliary fistula, bilaemia, intrahepatic haematoma, post-traumatic cysts, vascular outflow obstruction, and gallstones. The prognosis is generally excellent.

  17. Liver anatomy.

    PubMed

    Abdel-Misih, Sherif R Z; Bloomston, Mark

    2010-08-01

    Understanding the complexities of the liver has been a long-standing challenge to physicians and anatomists. Significant strides in the understanding of hepatic anatomy have facilitated major progress in liver-directed therapies--surgical interventions, such as transplantation, hepatic resection, hepatic artery infusion pumps, and hepatic ablation, and interventional radiologic procedures, such as transarterial chemoembolization, selective internal radiation therapy, and portal vein embolization. Without understanding hepatic anatomy, such progressive interventions would not be feasible. This article reviews the history, general anatomy, and the classification schemes of liver anatomy and their relevance to liver-directed therapies. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Protection against ultraviolet A-induced oxidative damage in normal human epidermal keratinocytes under post-menopausal conditions by an ultraviolet A-activated caged-iron chelator: a pilot study.

    PubMed

    Pelle, Edward; Jian, Jinlong; Declercq, Lieve; Dong, Kelly; Yang, Qing; Pourzand, Charareh; Maes, Daniel; Pernodet, Nadine; Yarosh, Daniel B; Huang, Xi

    2011-10-01

    Human skin is constantly exposed to ultraviolet A (UVA), which can generate reactive oxygen species and cause iron release from ferritin, leading to oxidative damage in biomolecules. This is particularly true in post-menopausal skin due to an increase in iron as a result of menopause. As iron is generally released through desquamation, the skin becomes a main portal for the release of excess iron in this age group. In the present study, we examined a strategy for controlling UVA- and iron-induced oxidative stress in skin using a keratinocyte post-menopausal cellular model system. Keratinocytes that had been cultured under normal or high-iron, low-estrogen conditions were treated with (2-nitrophenyl) ethyl pyridoxal isonicotinoyl hydrazone (2-PNE-PIH). 2-PNE-PIH is a caged-iron chelator that does not normally bind iron but can be activated by UVA radiation to bind iron. Following incubation with 2-PNE-PIH, the cells were exposed to 5 J/cm² UVA and then measured for changes in lipid peroxidation and ferritin levels. 2-PNE-PIH protected keratinocytes against UVA-induced lipid peroxidation and ferritin depletion. Further, 2-PNE-PIH was neither cytotoxic nor did it alter iron metabolism. 2-PNE-PIH may be a useful deterrent against UVA-induced oxidative stress in post-menopausal women. © 2011 John Wiley & Sons A/S.

  19. Liver spots

    MedlinePlus

    Sun-induced skin changes - liver spots; Senile or solar lentigines; Skin spots - aging; Age spots ... Liver spots are changes in skin color that occur in older skin. The coloring may be due to aging, exposure to the sun or other sources of ...

  20. Neurologic Manifestations of Chronic Liver Disease and Liver Cirrhosis.

    PubMed

    Sureka, Binit; Bansal, Kalpana; Patidar, Yashwant; Rajesh, S; Mukund, Amar; Arora, Ankur

    2015-01-01

    The normal functioning of brain is intimately as well as intricately interrelated with normal functioning of the liver. Liver plays a critical role of not only providing vital nutrients to the brain but also of detoxifying the splanchnic blood. Compromised liver function leads to insufficient detoxification thus allowing neurotoxins (such as ammonia, manganese, and other chemicals) to enter the cerebral circulation. In addition, portosystemic shunts, which are common accompaniments of advanced liver disease, facilitate free passage of neurotoxins into the cerebral circulation. The problem is compounded further by additional variables such as gastrointestinal tract bleeding, malnutrition, and concurrent renal failure, which are often associated with liver cirrhosis. Neurologic damage in chronic liver disease and liver cirrhosis seems to be multifactorial primarily attributable to the following: brain accumulation of ammonia, manganese, and lactate; altered permeability of the blood-brain barrier; recruitment of monocytes after microglial activation; and neuroinflammation, that is, direct effects of circulating systemic proinflammatory cytokines such as tumor necrosis factor, IL-1β, and IL-6. Radiologist should be aware of the conundrum of neurologic complications that can be encountered in liver disease, which include hepatic encephalopathy, hepatocerebral degeneration, hepatic myelopathy, cirrhosis-related parkinsonism, cerebral infections, hemorrhage, and osmotic demyelination. In addition, neurologic complications can be exclusive to certain disorders, for example, Wilson disease, alcoholism (Wernicke encephalopathy, alcoholic cerebellar degeneration, Marchiafava-Bignami disease, etc). Radiologist should be aware of their varied clinical presentation and radiological appearances as the diagnosis is not always straightforward. Copyright © 2015 Mosby, Inc. All rights reserved.

  1. Epigallocatechin-3-gallate attenuates apoptosis and autophagy in concanavalin A-induced hepatitis by inhibiting BNIP3

    PubMed Central

    Li, Sainan; Xia, Yujing; Chen, Kan; Li, Jingjing; Liu, Tong; Wang, Fan; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2016-01-01

    Background Epigallocatechin-3-gallate (EGCG) is the most effective compound in green tea, and possesses a wide range of beneficial effects, including anti-inflammatory, antioxidant, antiobesity, and anticancer effects. In this study, we investigated the protective effects of EGCG in concanavalin A (ConA)-induced hepatitis in mice and explored the possible mechanisms involved in these effects. Methods Balb/C mice were injected with ConA (25 mg/kg) to induce acute autoimmune hepatitis, and EGCG (10 or 30 mg/kg) was administered orally twice daily for 10 days before ConA injection. Serum liver enzymes, proinflammatory cytokines, and other marker proteins were determined 2, 8, and 24 hours after the ConA administration. Results BNIP3 mediated cell apoptosis and autophagy in ConA-induced hepatitis. EGCG decreased the immunoreaction and pathological damage by reducing inflammatory factors, such as TNF-α, IL-6, IFN-γ, and IL-1β. EGCG also exhibited an antiapoptotic and antiautophagic effect by inhibiting BNIP3 via the IL-6/JAKs/STAT3 pathway. Conclusion EGCG attenuated liver injury in ConA-induced hepatitis by downregulating IL-6/JAKs/STAT3/BNIP3-mediated apoptosis and autophagy. PMID:26929598

  2. Protective Effects of Astaxanthin on ConA-Induced Autoimmune Hepatitis by the JNK/p-JNK Pathway-Mediated Inhibition of Autophagy and Apoptosis

    PubMed Central

    Liu, Tong; Wang, Junshan; Dai, Weiqi; Wang, Fan; Zheng, Yuanyuan; Chen, Kan; Li, Sainan; Abudumijiti, Huerxidan; Zhou, Zheng; Wang, Jianrong; Lu, Wenxia; Zhu, Rong; Yang, Jing; Zhang, Huawei; Yin, Qin; Wang, Chengfen; Zhou, Yuqing; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2015-01-01

    Objective Astaxanthin, a potent antioxidant, exhibits a wide range of biological activities, including antioxidant, atherosclerosis and antitumor activities. However, its effect on concanavalin A (ConA)-induced autoimmune hepatitis remains unclear. The aim of this study was to investigate the protective effects of astaxanthin on ConA-induced hepatitis in mice, and to elucidate the mechanisms of regulation. Materials and Methods Autoimmune hepatitis was induced in in Balb/C mice using ConA (25 mg/kg), and astaxanthin was orally administered daily at two doses (20 mg/kg and 40 mg/kg) for 14 days before ConA injection. Levels of serum liver enzymes and the histopathology of inflammatory cytokines and other maker proteins were determined at three time points (2, 8 and 24 h). Primary hepatocytes were pretreated with astaxanthin (80 μM) in vitro 24 h before stimulation with TNF-α (10 ng/ml). The apoptosis rate and related protein expression were determined 24 h after the administration of TNF-α. Results Astaxanthin attenuated serum liver enzymes and pathological damage by reducing the release of inflammatory factors. It performed anti-apoptotic effects via the descending phosphorylation of Bcl-2 through the down-regulation of the JNK/p-JNK pathway. Conclusion This research firstly expounded that astaxanthin reduced immune liver injury in ConA-induced autoimmune hepatitis. The mode of action appears to be downregulation of JNK/p-JNK-mediated apoptosis and autophagy. PMID:25761053

  3. Liver (Hepatocellular) Cancer Prevention

    MedlinePlus

    ... Hepatitis C Hepatitis D Hepatitis E Hepatitis G Liver cancer is a disease in which malignant (cancer) cells ... Primary Liver Cancer Treatment Childhood Liver Cancer Treatment Liver cancer is not common in the United States. Liver ...

  4. Benign Liver Tumors

    MedlinePlus

    ... Liver Function Tests Clinical Trials Liver Transplant FAQs Medical Terminology Diseases of the Liver Alagille Syndrome Alcohol-Related ... the Liver The Progression of Liver Disease FAQs Medical Terminology HOW YOU CAN HELP Sponsorship Ways to Give ...

  5. Liver Function Tests

    MedlinePlus

    ... Liver Function Tests Clinical Trials Liver Transplant FAQs Medical Terminology Diseases of the Liver Alagille Syndrome Alcohol-Related ... the Liver The Progression of Liver Disease FAQs Medical Terminology HOW YOU CAN HELP Sponsorship Ways to Give ...

  6. Progression of Liver Disease

    MedlinePlus

    ... Liver Function Tests Clinical Trials Liver Transplant FAQs Medical Terminology Diseases of the Liver Alagille Syndrome Alcohol-Related ... the Liver The Progression of Liver Disease FAQs Medical Terminology HOW YOU CAN HELP Sponsorship Ways to Give ...

  7. Molecular mechanisms of liver preconditioning

    PubMed Central

    Alchera, Elisa; Dal Ponte, Caterina; Imarisio, Chiara; Albano, Emanuele; Carini, Rita

    2010-01-01

    Ischemia/reperfusion (I/R) injury still represents an important cause of morbidity following hepatic surgery and limits the use of marginal livers in hepatic transplantation. Transient blood flow interruption followed by reperfusion protects tissues against damage induced by subsequent I/R. This process known as ischemic preconditioning (IP) depends upon intrinsic cytoprotective systems whose activation can inhibit the progression of irreversible tissue damage. Compared to other organs, liver IP has additional features as it reduces inflammation and promotes hepatic regeneration. Our present understanding of the molecular mechanisms involved in liver IP is still largely incomplete. Experimental studies have shown that the protective effects of liver IP are triggered by the release of adenosine and nitric oxide and the subsequent activation of signal networks involving protein kinases such as phosphatidylinositol 3-kinase, protein kinase C δ/ε and p38 MAP kinase, and transcription factors such as signal transducer and activator of transcription 3, nuclear factor-κB and hypoxia-inducible factor 1. This article offers an overview of the molecular events underlying the preconditioning effects in the liver and points to the possibility of developing pharmacological approaches aimed at activating the intrinsic protective systems in patients undergoing liver surgery. PMID:21182220

  8. [Non-invasive assessment of fatty liver].

    PubMed

    Egresi, Anna; Lengyel, Gabriella; Hagymási, Krisztina

    2015-04-05

    As the result of various harmful effects (infectious agents, metabolic diseases, unhealthy diet, obesity, toxic agents, autoimmune processes) hepatic damage may develop, which can progress towards liver steatosis, and fibrosis as well. The most common etiological factors of liver damages are hepatitis B and C infection, alcohol consumption and non-alcoholic fatty liver disease. Liver biopsy is considered as the gold standard for the diagnosis of chronic liver diseases. Due to the dangers and complications of liver biopsy, studies are focused on non-invasive markers and radiological imaging for liver steatosis, progression of fatty liver, activity of the necroinflammation and the severity of the fibrosis. Authors review the possibilities of non-invasive assessment of liver steatosis. The statistical features of the probes (positive, negative predictive values, sensitivity, specificity) are reviewed. The role of radiological imaging is also discussed. Although the non-invasive methods discussed in this article are useful to assess liver steatosis, further studies are needed to validate to follow progression of the diseases and to control therapeutic response.

  9. Fatty Liver

    MedlinePlus

    ... Drug Information, Search Drug Names, Generic and Brand Natural Products, ... fat to accumulate in liver cells by causing the body to synthesize more fat or by processing (metabolizing) and excreting fat more slowly. As a ...

  10. Liver biopsy

    MedlinePlus

    ... Primary biliary cirrhosis Primary biliary cholangitis Pyogenic liver abscess Reye syndrome Sclerosing cholangitis Wilson disease Risks Risks may include: Collapsed lung Complications from the sedation Injury to the gallbladder ...

  11. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of nonalcoholic fatty liver disease

    USDA-ARS?s Scientific Manuscript database

    Obesity is often associated with a cluster of increased health risks collectively known as "Metabolic Syndrome" (MS). MS is often accompanied by development of fatty liver. Sometimes fatty liver results in damage leading to reduced liver function, and need for a transplant. This condition is known...

  12. Extracellular Matrix and Liver Disease

    PubMed Central

    Arriazu, Elena; Ruiz de Galarreta, Marina; Cubero, Francisco Javier; Varela-Rey, Marta; Pérez de Obanos, María Pilar; Leung, Tung Ming; Lopategi, Aritz; Benedicto, Aitor; Abraham-Enachescu, Ioana

    2014-01-01

    Abstract Significance: The extracellular matrix (ECM) is a dynamic microenvironment that undergoes continuous remodeling, particularly during injury and wound healing. Chronic liver injury of many different etiologies such as viral hepatitis, alcohol abuse, drug-induced liver injury, obesity and insulin resistance, metabolic disorders, and autoimmune disease is characterized by excessive deposition of ECM proteins in response to persistent liver damage. Critical Issues: This review describes the main collagenous and noncollagenous components from the ECM that play a significant role in pathological matrix deposition during liver disease. We define how increased myofibroblasts (MF) from different origins are at the forefront of liver fibrosis and how liver cell-specific regulation of the complex scarring process occurs. Recent Advances: Particular attention is paid to the role of cytokines, growth factors, reactive oxygen species, and newly identified matricellular proteins in the regulation of fibrillar type I collagen, a field to which our laboratory has significantly contributed over the years. We compile data from recent literature on the potential mechanisms driving fibrosis resolution such as MF’ apoptosis, senescence, and reversal to quiescence. Future Directions: We conclude with a brief description of how epigenetics, an evolving field, can regulate the behavior of MF and of how new “omics” tools may advance our understanding of the mechanisms by which the fibrogenic response to liver injury occurs. Antioxid. Redox Signal. 21, 1078–1097. PMID:24219114

  13. Size mismatch in liver transplantation.

    PubMed

    Fukazawa, Kyota; Nishida, Seigo

    2016-08-01

    Size mismatch is an unique and inevitable but critical issue in live donor liver transplantation. Unmatched metabolic demand of recipient as well as physiologic mismatch aggravates the damage to liver graft, inevitably leading to graft failure on recipient. Also, an excessive resection of liver graft for better recipient outcome in live donor liver transplant may jeopardize the healthy donor well-being and even put donor life in danger. There is a fine balance between resected graft volume required to meet the recipient's metabolic demand and residual graft volume required for donor safety. The obvious clinical necessity of finding that balance has prompted a clinical need and promoted the improvement of knowledge and development of management strategies for size-mismatched transplants. The development of the size-matching methodology has significantly improved graft outcome and recipient survival in live donor liver transplants. On the other hand, the effect of size mismatch in cadaveric transplants has never been observed as being so pronounced. The importance of matching of the donor recipient size has been unrecognized in cadaveric liver transplant. In this review, we attempt to summarize the current most updated knowledge on the subject, particularly addressing the definition and complications of size-mismatched cadaveric liver transplant, as well as management strategies. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  14. Failure to obtain an autoimmune response following cryosurgery to the normal rat liver.

    PubMed Central

    Townell, N H; Tsantoulas, D; Holborow, E J; Hobbs, K E

    1980-01-01

    Smooth muscle antibody (SMA) and anti-liver-specific lipoprotein (anti-LSP) responses were investigated following five different freeze thaw regimes to the normal rat liver. The livers were examined histologically for evidence of autoimmune liver disease. No SMA or anti-LSP was found in any animal and on histological examination the unfrozen part of all livers was normal. It is concluded that cryosurgical damage to the liver is unlikely to provoke an autoimmune response. PMID:7460392

  15. Suppressive role of hepatic dendritic cells in concanavalin A-induced hepatitis

    PubMed Central

    Tomiyama, C; Watanabe, H; Izutsu, Y; Watanabe, M; Abo, T

    2011-01-01

    Concanavalin A (Con A)-induced hepatitis is a mouse model of acute autoimmune hepatitis. The aim of this study was to investigate the role of hepatic dendritic cells (DC) in the immune modulation of tissue damage. Almost all hepatic DC were plasmacytoid DC (CD11c+ I-Alow B220+); however, conventional DC were CD11c+ I-Ahigh B220–. At an early stage (3–6 h) after Con A administration, the number of DC in both the liver and spleen decreased, increasing thereafter (12–24 h) in parallel with hepatic failure. The hepatic CD11c+ DC population contained many CD11b- cells, while the majority of splenic CD11c+ DC were CD11b+. After Con A administration, the proportion of I-A+ and CD11b+ cells within the CD11c+ DC population tended to increase in the liver, but not in the spleen. Similarly, expression of the activation markers CD80, CD86 and CD40 by CD11c+ DC increased in the liver, but not in the spleen. Next, adoptive transfer of DC isolated from the liver and spleen was performed 3 h after Con A administration to examine the immunomodulatory function of DC. Only hepatic DC had the ability to suppress hepatic failure. Analysis of cytokine production and subsequent identification of the effector cells showed that hepatic DC achieved this by suppressing the production of interleukin (IL)-12 and IL-2, rather than modulating effector cell function. PMID:21985372

  16. Logging damage

    Treesearch

    Ralph D. Nyland

    1989-01-01

    The best commercial logging will damage at least some residual trees during all forms of partial cutting, no matter how carefully done. Yet recommendations at the end of this Note show there is much that you can do to limit damage by proper road and trail layout, proper training and supervision of crews, appropriate equipment, and diligence.

  17. Platelets: No longer bystanders in liver disease

    PubMed Central

    Adams, David H.; Watson, Steve P.; Lalor, Patricia F.

    2016-01-01

    Growing lines of evidence recognize that platelets play a central role in liver homeostasis and pathobiology. Platelets have important roles at every stage during the continuum of liver injury and healing. These cells contribute to the initiation of liver inflammation by promoting leukocyte recruitment through sinusoidal endothelium. They can activate effector cells, thus amplifying liver damage, and by modifying the hepatic cellular and cytokine milieu drive both hepatoprotective and hepatotoxic processes. Conclusion: In this review we summarize how platelets drive such pleiotropic actions and attempt to reconcile the paradox of platelets being both deleterious and beneficial to liver function; with increasingly novel methods of manipulating platelet function at our disposal, we highlight avenues for future therapeutic intervention in liver disease. (Hepatology 2016;64:1774‐1784) PMID:26934463

  18. Hepatic (Liver) Function Panel

    MedlinePlus

    ... Educators Search English Español Blood Test: Hepatic (Liver) Function Panel KidsHealth / For Parents / Blood Test: Hepatic (Liver) ... kidneys ) is working. What Is a Hepatic (Liver) Function Panel? A liver function panel is a blood ...

  19. Liver disease - resources

    MedlinePlus

    Resources - liver disease ... The following organizations are good resources for information on liver disease : American Liver Foundation -- www.liverfoundation.org Children's Liver Association for Support Services (C.L.A.S.S.) -- www. ...

  20. Hypervitaminosis A-induced hepatic fibrosis in a cat.

    PubMed

    Guerra, Juliana M; Daniel, Alexandre G T; Aloia, Thiago P A; de Siqueira, Adriana; Fukushima, André R; Simões, Denise M N; Reche-Júior, Archivaldo; Cogliati, Bruno

    2014-03-01

    The excessive intake of vitamin A in the form of vitamin concentrate, supplement or vitamin-rich liver can result in hypervitaminosis A in man and animals. Although osteopathologies resulting from chronic vitamin A intoxication in cats are well characterized, no information is available concerning feline hypervitaminosis A-induced liver disease. We report the first case of hepatic stellate cell lipidosis and hepatic fibrosis in a domestic cat that had been fed a diet based on raw beef liver. Radiographic examination revealed exostoses and ankylosis between vertebrae C1 and T7, compatible with deforming cervical spondylosis. Necropsy showed a slightly enlarged and light yellow to bronze liver. Microscopic and ultrastructural analyses of liver tissues revealed diffuse and severe liver fibrosis associated with hepatic stellate cell hyperplasia and hypertrophy. These cells showed immunopositive staining for α-smooth muscle actin and desmin markers. The necropsy findings of chronic liver disease coupled with osteopathology supported the diagnosis of hypervitaminosis A. As in human hepatology, if there is dietary evidence to support increased intake of vitamin A, then hypervitaminosis A should be considered in the differential diagnosis of chronic liver disease in cats.

  1. [Correlation between red blood cell count and liver function status].

    PubMed

    Xie, Xiaomeng; Wang, Leijie; Yao, Mingjie; Wen, Xiajie; Chen, Xiangmei; You, Hong; Jia, Jidong; Zhao, Jingmin; Lu, Fengmin

    2016-02-01

    To investigate the changes in red blood cell count in patients with different liver diseases and the correlation between red blood cell count and degree of liver damage. The clinical data of 1427 patients with primary liver cancer, 172 patients with liver cirrhosis, and 185 patients with hepatitis were collected, and the Child-Pugh class was determined for all patients. The differences in red blood cell count between patients with different liver diseases were retrospectively analyzed, and the correlation between red blood cell count and liver function status was investigated. The Mann-Whitney U test, Kruskal-Wallis H test, rank sum test, Spearman rank sum correlation test, and chi-square test were performed for different types of data. Red blood cell count showed significant differences between patients with chronic hepatitis, liver cancer, and liver cirrhosis and was highest in patients with chronic hepatitis and lowest in patients with liver cirrhosis (P < 0.05). In the patients with liver cirrhosis, red blood cell count tended to decrease in patients with a higher Child-Pugh class (P < 0.05). For patients with liver cirrhosis, red blood cell count can reflect the degree of liver damage, which may contribute to an improved liver function prediction model for these patients.

  2. Hepatic protoporphyrin metabolism in patients with advanced protoporphyric liver disease.

    PubMed Central

    Bloomer, J. R.

    1997-01-01

    Protoporphyria is a genetic disorder in which liver damage is caused by the toxic effect of protoporphyrin accumulation in the liver. In this study protoporphyrin was measured in the resected livers of 7 patients who had liver transplantation and an additional patient from whom liver tissue was obtained post mortem. Comparison of liver, erythrocyte and serum protoporphyrin levels demonstrated a marked gradient between these compartments: erythrocyte, 5781 +/- 655 micrograms/dl; serum, 384 +/- 102 micrograms/dl; liver 377,238 +/- 55,568 micrograms/100 gm wet weight, (mean +/- SE). Protoporphyrin levels in bile of 3 patients were 55,559, and 1,153 micrograms/dl, indicating a gradient between liver and bile as well. Examination of the livers by polarization microscopy and electron microscopy demonstrated protoporphyrin pigment crystals. In one patient who had recurrent liver disease after transplantation, the protoporphyrin concentration in the graft at the time of death was similar to that in the resected liver. These data indicate that liver protoporphyrin levels in patients with advanced protoporphyric liver disease are much higher than levels in blood and bile, in part because protoporphyrin forms crystalline deposits in liver tissue. Thus, progressive hepatic accumulation of protoporphyrin occurs in the face of impaired biliary excretion. An intrinsic defect in hepatic excretion of protoporphyrin is probably not necessary for this condition to develop because liver disease can occur in the graft following transplantation. PMID:9626752

  3. Cytokines and STATs in Liver Fibrosis.

    PubMed

    Kong, Xiaoni; Horiguchi, Norio; Mori, Masatomo; Gao, Bin

    2012-01-01

    Liver fibrosis, or cirrhosis, is a common end-stage condition of many chronic liver diseases after incomplete recovery from hepatocyte damage. During fibrosis progression, hepatocellular damage and inflammation trigger complex cellular events that result in collagen deposition and the disruption of the normal liver architecture. Hepatic stellate cell activation and transdifferentiation into myofibroblasts are key events in liver fibrogenesis. Research findings from cell culture and animal models have revealed that the Janus kinase-signal transducer and activator of transcription (Jak-STAT) signaling pathway, which can be activated by many cytokines, growth factors, and hormones, plays a critical role in hepatic fibrogenesis. This review summarizes the biological significance of diverse cytokines and their downstream signaling protein STATs in hepatic fibrogenesis.

  4. Cytokines and STATs in Liver Fibrosis

    PubMed Central

    Kong, Xiaoni; Horiguchi, Norio; Mori, Masatomo; Gao, Bin

    2012-01-01

    Liver fibrosis, or cirrhosis, is a common end-stage condition of many chronic liver diseases after incomplete recovery from hepatocyte damage. During fibrosis progression, hepatocellular damage and inflammation trigger complex cellular events that result in collagen deposition and the disruption of the normal liver architecture. Hepatic stellate cell activation and transdifferentiation into myofibroblasts are key events in liver fibrogenesis. Research findings from cell culture and animal models have revealed that the Janus kinase-signal transducer and activator of transcription (Jak-STAT) signaling pathway, which can be activated by many cytokines, growth factors, and hormones, plays a critical role in hepatic fibrogenesis. This review summarizes the biological significance of diverse cytokines and their downstream signaling protein STATs in hepatic fibrogenesis. PMID:22493582

  5. Effects of lactulose and silymarin on liver enzymes in cirrhotic rats.

    PubMed

    Ghobadi Pour, Mozhgan; Mirazi, Naser; Alaei, Hojjatollah; Moradkhani, Shirin; Rajaei, Ziba; Monsef Esfahani, Alireza

    2017-05-01

    Silymarin, a mixture of antihepatotoxic flavonolignans used in the treatment of liver diseases, and lactulose, a nonabsorbable synthetic disaccharide, were investigated to analyze their probable synergic and healing effects in a hepatic cirrhotic rat model. Liver damage was induced by the administration and subsequent withdrawal of thioacetamide. The significant decrease in liver enzymes and malondialdehyde levels confirmed the curative effects of silymarin and lactulose. In the silymarin + lactulose group, liver enzyme and malondialdehyde levels were significantly reduced compared with those in the thioacetamide group. All treatments led to liver regeneration and triggered enhanced regeneration. Silymarin and lactulose alone or in combination have potent curative effects and reduce thioacetamide-induced liver damage.

  6. Liver regenerative medicine: advances and challenges.

    PubMed

    Chistiakov, Dimitry A

    2012-01-01

    Liver transplantation is the standard care for many end-stage liver diseases. However, donor organs are scarce and some people succumb to liver failure before a donor is found. Liver regenerative medicine is a special interdisciplinary field of medicine focused on the development of new therapies incorporating stem cells, gene therapy and engineered tissues in order to repair or replace the damaged organ. In this review we consider the emerging progress achieved in the hepatic regenerative medicine within the last decade. The review starts with the characterization of liver organogenesis, fetal and adult stem/progenitor cells. Then, applications of primary hepatocytes, embryonic and adult (mesenchymal, hematopoietic and induced pluripotent) stem cells in cell therapy of liver diseases are considered. Current advances and challenges in producing mature hepatocytes from stem/progenitor cells are discussed. A section about hepatic tissue engineering includes consideration of synthetic and natural biomaterials in engineering scaffolds, strategies and achievements in the development of 3D bioactive matrices and 3D hepatocyte cultures, liver microengineering, generating bioartificial liver and prospects for fabrication of the bioengineered liver. Copyright © 2012 S. Karger AG, Basel.

  7. Apoptosis and necrosis in the liver.

    PubMed

    Guicciardi, Maria Eugenia; Malhi, Harmeet; Mott, Justin L; Gores, Gregory J

    2013-04-01

    Because of its unique function and anatomical location, the liver is exposed to a multitude of toxins and xenobiotics, including medications and alcohol, as well as to infection by hepatotropic viruses, and therefore, is highly susceptible to tissue injury. Cell death in the liver occurs mainly by apoptosis or necrosis, with apoptosis also being the physiologic route to eliminate damaged or infected cells and to maintain tissue homeostasis. Liver cells, especially hepatocytes and cholangiocytes, are particularly susceptible to death receptor-mediated apoptosis, given the ubiquitous expression of the death receptors in the organ. In a quite unique way, death receptor-induced apoptosis in these cells is mediated by both mitochondrial and lysosomal permeabilization. Signaling between the endoplasmic reticulum and the mitochondria promotes hepatocyte apoptosis in response to excessive free fatty acid generation during the metabolic syndrome. These cell death pathways are partially regulated by microRNAs. Necrosis in the liver is generally associated with acute injury (i.e., ischemia/reperfusion injury) and has been long considered an unregulated process. Recently, a new form of "programmed" necrosis (named necroptosis) has been described: the role of necroptosis in the liver has yet to be explored. However, the minimal expression of a key player in this process in the liver suggests this form of cell death may be uncommon in liver diseases. Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise. An updated overview of these concepts is given in this article.

  8. Fatal methanol poisoning: features of liver histopathology.

    PubMed

    Akhgari, Maryam; Panahianpour, Mohammad Hadi; Bazmi, Elham; Etemadi-Aleagha, Afshar; Mahdavi, Amirhosein; Nazari, Saeed Hashemi

    2013-03-01

    Methanol poisoning has become a considerable problem in Iran. Liver can show some features of poisoning after methanol ingestion. Therefore, our concern was to examine liver tissue histopathology in fatal methanol poisoning cases in Iranian population. In this study, 44 cases of fatal methanol poisoning were identified in a year. The histological changes of the liver were reviewed. The most striking features of liver damage by light microscopy were micro-vesicular steatosis, macro-vesicular steatosis, focal hepatocyte necrosis, mild intra-hepatocyte bile stasis, feathery degeneration and hydropic degeneration. Blood and vitreous humor methanol concentrations were examined to confirm the proposed history of methanol poisoning. The majority of cases were men (86.36%). In conclusion, methanol poisoning can cause histological changes in liver tissues. Most importantly in cases with mean blood and vitreous humor methanol levels greater than 127 ± 38.9 mg/dL more than one pathologic features were detected.

  9. Paracetamol, alcohol and the liver

    PubMed Central

    Prescott, Laurie F

    2000-01-01

    It is claimed that chronic alcoholics are at increased risk of paracetamol (acetaminophen) hepatotoxicity not only following overdosage but also with its therapeutic use. Increased susceptibility is supposed to be due to induction of liver microsomal enzymes by ethanol with increased formation of the toxic metabolite of paracetamol. However, the clinical evidence in support of these claims is anecdotal and the same liver damage after overdosage occurs in patients who are not chronic alcoholics. Many alcoholic patients reported to have liver damage after taking paracetamol with ‘therapeutic intent’ had clearly taken substantial overdoses. No proper clinical studies have been carried out to investigate the alleged paracetamol–alcohol interaction and acute liver damage has never been produced by therapeutic doses of paracetamol given as a challenge to a chronic alcoholic. The paracetamol–alcohol interaction is complex; acute and chronic ethanol have opposite effects. In animals, chronic ethanol causes induction of hepatic microsomal enzymes and increases paracetamol hepatotoxicity as expected (ethanol primarily induces CYP2E1 and this isoform is important in the oxidative metabolism of paracetamol). However, in man, chronic alcohol ingestion causes only modest (about twofold) and short-lived induction of CYP2E1, and there is no corresponding increase (as claimed) in the toxic metabolic activation of paracetamol. The paracetamol–ethanol interaction is not specific for any one isoform of cytochrome P450, and it seems that isoenzymes other than CYP2E1 are primarily responsible for the oxidative metabolism of paracetamol in man. Acute ethanol inhibits the microsomal oxidation of paracetamol both in animals and man. This protects against liver damage in animals and there is evidence that it also does so in man. The protective effect disappears when ethanol is eliminated and the relative timing of ethanol and paracetamol intake is critical. In many of the reports

  10. Genetics of nonalcoholic fatty liver disease.

    PubMed

    Dongiovanni, Paola; Valenti, Luca

    2016-08-01

    Epidemiological, familial, and twin studies indicate that non-alcoholic fatty liver disease, now the leading cause of liver damage in developed countries, has a strong heritability. The common I148M variant of PNPLA3 impairing hepatocellular lipid droplets remodeling is the major genetic determinant of hepatic fat content. The I148M variant has a strong impact on the full spectrum of liver damage related to fatty liver, encompassing non-alcoholic steatohepatitis, advanced fibrosis, and hepatocellular carcinoma, and influences the response to therapeutic approaches. Common variants in GCKR enhance de novo hepatic lipogenesis in response to glucose and liver inflammation. Furthermore, the low-frequency E167K variant of TM6SF2 and rare mutations in APOB, which impair very low-density lipoproteins secretion, predispose to progressive fatty liver. These and other recent findings reviewed here indicate that impaired lipid handling by hepatocytes has a major role in the pathogenesis of non-alcoholic fatty liver disease by triggering inflammation, fibrogenesis, and carcinogenesis. These discoveries have provided potential novel biomarkers for clinical use and have revealed intriguing therapeutic targets. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Liver transplant for cholestatic liver diseases.

    PubMed

    Carrion, Andres F; Bhamidimarri, Kalyan Ram

    2013-05-01

    Cholestatic liver diseases include a group of diverse disorders with different epidemiology, pathophysiology, clinical course, and prognosis. Despite significant advances in the clinical care of patients with cholestatic liver diseases, liver transplant (LT) remains the only definitive therapy for end-stage liver disease, regardless of the underlying cause. As per the United Network for Organ Sharing database, the rate of cadaveric LT for cholestatic liver disease was 18% in 1991, 10% in 2000, and 7.8% in 2008. This review summarizes the available evidence on various common and rare cholestatic liver diseases, disease-specific issues, and pertinent aspects of LT. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Role of ischaemic preconditioning in liver regeneration following major liver resection and transplantation

    PubMed Central

    Gomez, D; Homer-Vanniasinkam, S; Graham, AM; Prasad, KR

    2007-01-01

    Liver ischaemic preconditioning (IPC) is known to protect the liver from the detrimental effects of ischaemic-reperfusion injury (IRI), which contributes significantly to the morbidity and mortality following major liver surgery. Recent studies have focused on the role of IPC in liver regeneration, the precise mechanism of which are not completely understood. This review discusses the current understanding of the mechanism of liver regeneration and the role of IPC in this setting. Relevant articles were reviewed from the published literature using the Medline database. The search was performed using the keywords “liver”, “ischaemic reperfusion”, “ischaemic preconditioning”, “regeneration”, “hepatectomy” and “transplantation”. The underlying mechanism of liver regeneration is a complex process involving the interaction of cytokines, growth factors and the metabolic demand of the liver. IPC, through various mediators, promotes liver regeneration by up-regulating growth-promoting factors and suppresses growth-inhibiting factors as well as damaging stresses. The increased understanding of the cellular mechanisms involved in IPC will enable the development of alternative treatment modalities aimed at promoting liver regeneration following major liver resection and transplantation. PMID:17278187

  13. Increase of infiltrating monocytes in the livers of patients with chronic liver diseases.

    PubMed

    Huang, Rui; Wu, Hongyan; Liu, Yong; Yang, Chenchen; Pan, Zhiyun; Xia, Juan; Xiong, Yali; Wang, Guiyang; Sun, Zhenhua; Chen, Jun; Yan, Xiaomin; Zhang, Zhaoping; Wu, Chao

    2016-01-01

    Infiltrating monocytes have been demonstrated to contribute to tissue damage in experimental models of liver injury and fibrosis. However, less is known about monocyte infiltration in the livers of patients with chronic liver diseases (CLD). In the present study, we demonstrated that CD68+ hepatic macrophages and MAC387+ infiltrating monocytes were significantly increased in the livers of CLD patients with different etiologies as compared with normal liver tissue. In addition, CLD patients with higher inflammatory grading scores had more CD68+ macrophages and MAC387+ monocytes infiltration in their livers compared to those with lower scores. Significantly more MAC387+ infiltrating monocytes were found in the liver tissue of CLD patients with higher fibrotic staging scores compared to those with lower scores. Monocyte chemoattractant protein-1 (MCP-1) expression was significantly increased in the livers of CLD patients with different etiologies. MCP-1 staining scores were significantly positively associated with the numbers of MAC387+ infiltrating monocytes in CLD patients. Taken together, our results demonstrate that infiltrating monocytes may play a pathological role in exacerbating chronic liver inflammation and fibrosis in CLD. MCP-1 may be involved in the monocyte infiltration and progression of liver inflammation and fibrosis in CLD.

  14. Pyogenic liver abscess

    MedlinePlus

    Liver abscess; Bacterial liver abscess ... There are many possible causes of liver abscesses, including: Abdominal infection, such as appendicitis , diverticulitis , or a perforated bowel Infection in the blood Infection of the bile draining tubes ...

  15. Liver function tests

    MedlinePlus

    Liver function tests are common tests that are used to see how well the liver is working. Tests include: ... E, Bowne WB, Bluth MH. Evaluation of liver function. In: McPherson RA, Pincus MR, eds. Henry's Clinical ...

  16. Liver Function Tests

    MedlinePlus

    ... food, store energy, and remove poisons. Liver function tests are blood tests that check to see how well your liver ... hepatitis and cirrhosis. You may have liver function tests as part of a regular checkup. Or you ...

  17. Fatty Liver Disease

    MedlinePlus

    ... fatty liver disease that is not related to heavy alcohol use. There are two kinds: Simple fatty ... disease? Alcoholic fatty liver disease is due to heavy alcohol use. Your liver breaks down most of ...

  18. American Liver Foundation

    MedlinePlus

    ... Media Helpful Links Liver Cancer Information Available in Chinese Learn more about liver cancer HERE . Thanks to ... in Northern California, you can speak to a Chinese speaking agent with your liver cancer questions. Call ...

  19. Collateral Damage

    DTIC Science & Technology

    1978-10-01

    stated, they are, in reality , indexed to a single aspect of the weapon phenomena, e.g., damage levels for airblast-sensitive objects are indexed to...of Burst Propagation Related Airblast Representation Target Altitude Wheather (snow/rain) Terrain Temperature Air Pressure Around Structures 1. d) 3-38...with opaque material. Simply closing a shutter can be quite effective in virtually eliminating all possibility of interior fire starts from a single

  20. Trichloroethylene: Metabolism and Other Biological Determinants of Mouse Liver Tumors

    DTIC Science & Technology

    1994-09-01

    mineral oil, corn oil, and Tween-80 vehicle. The vehicle in which the chemical was administered affected the magnitude of liver injury in fasted rats...With mineral oil or corn oil, injury was massive, whereas with aqueous Tween-80 vehicle, injury was moderate. In contrast, liver injury in all fed...605. Comporti, M. 1985. Lipid peroxidation and cellular damage in toxic liver injury . Lab Invest. 53:599-623. Conway, J.G., K.E. Tomaszewski, K.E

  1. Nonalcoholic Fatty Liver Disease

    MedlinePlus

    ... fatty liver, alcoholic steatohepatitis, ascites, choline deficiency, cirrhosis, drug-induced fatty liver, edema, encephalopathy, glycogen storage disorder, gynecomastia, hepatic steatosis, hepatomegaly, hereditary fructose intolerance, homocystinuria, hyperlipidemia, ...

  2. Angiostatin inhibits experimental liver fibrosis in mice.

    PubMed

    Vogten, J Mathys; Drixler, Tamas A; te Velde, Elisabeth A; Schipper, Marguerite E; van Vroonhoven, Theo J M V; Voest, Emile E; Borel Rinkes, Inne H M

    2004-07-01

    Liver fibrosis is a response to chronic hepatic damage, which ultimately leads to liver failure and necessitates liver transplantation. A characteristic of fibrosis is pathological vessel growth. This type of angiogenesis may contribute to the disturbance of hepatocyte perfusion dynamics and lead to aggravation of disease. We hypothesized that angiostatin can inhibit pathological vessel growth and, consequently, the development of hepatic fibrosis. Hepatic fibrosis was induced by injection of carbon tetrachloride for 5 weeks. Angiostatin mice received carbon tetrachloride for 5 weeks and angiostatin during weeks 4 and 5. After 5 weeks, immunohistochemistry for endothelial cell marker von Willebrand factor and for cell proliferation was performed. Angiogenesis was quantified by counting the number of immunopositive microvessels. Also, the relative fibrotic surface was determined using Sirius Red histostaining and computer image analysis. Immunohistochemistry revealed increased expression for von Willebrand factor in fibrotic livers. Immunopositive microvessels were localized in fibrotic areas surrounding larger vessels and in emerging fibrotic septa. Angiostatin reduced the number of immunopositive microvessels by 69% (p<0.001). In addition, angiostatin reduced the relative fibrotic area in the liver by 63+/-0.1% (p<0.001). Finally, angiostatin treatment was not associated with differences in cell proliferation. Angiostatin inhibits the development of pathological angiogenesis and liver fibrosis in mice. These results warrant further evaluation of angiostatin as an antifibrotic agent, potentially contributing to the deferment of liver transplantation and reduced recurrence of fibrotic disease in the transplanted liver.

  3. Autophagy in alcohol-induced liver diseases

    PubMed Central

    Dolganiuc, Angela; Thomes, Paul G.; Ding, Wen-Xing; Lemasters, John J.; Donohue, Terrence M.

    2013-01-01

    Alcohol is the most abused substance worldwide and a significant source of liver injury; the mechanisms of alcohol-induced liver disease are not fully understood. Significant cellular toxicity and impairment of protein synthesis and degradation occur in alcohol-exposed liver cells, along with changes in energy balance and modified responses to pathogens. Autophagy is the process of cellular catabolism through the lysosomal-dependent machinery, which maintains a balance among protein synthesis, degradation, and recycling of self. Autophagy is part of normal homeostasis and it can be triggered by multiple factors that threaten cell integrity including starvation, toxins, or pathogens. Multiple factors regulate autophagy; survival and preservation of cellular integrity at the expense of inadequately-folded proteins and damaged high energy-generating intracellular organelles are prominent targets of autophagy in pathologic conditions. Coincidentally, inadequately-folded proteins accumulate and high energy-generating intracellular organelles, such as mitochondria, are damaged by alcohol abuse; these alcohol-induced pathological findings prompted investigation of the role of autophagy in the pathogenesis of alcohol-induced liver damage. Our review summarizes the current knowledge about the role and implications of autophagy in alcohol-induced liver disease. PMID:22551004

  4. Alcoholic Liver Disease and Liver Transplantation.

    PubMed

    Gallegos-Orozco, Juan F; Charlton, Michael R

    2016-08-01

    Excessive alcohol use is a common health care problem worldwide and is associated with significant morbidity and mortality. Alcoholic liver disease represents the second most frequent indication for liver transplantation in North America and Europe. The pretransplant evaluation of patients with alcoholic liver disease should aim at identifying those at high risk for posttransplant relapse of alcohol use disorder, as return to excessive drinking can be deleterious to graft and patient survival. Carefully selected patients with alcoholic liver disease, including those with severe alcoholic hepatitis, will have similar short-term and long-term outcomes when compared with other indications for liver transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Role of liver progenitors in liver regeneration

    PubMed Central

    Best, Jan; Manka, Paul; Syn, Wing-Kin; Dollé, Laurent; van Grunsven, Leo A.

    2015-01-01

    During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs. PMID:25713804

  6. Role of liver progenitors in liver regeneration.

    PubMed

    Best, Jan; Manka, Paul; Syn, Wing-Kin; Dollé, Laurent; van Grunsven, Leo A; Canbay, Ali

    2015-02-01

    During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs.

  7. Changes in Liver Metabolic Gene Expression after Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, Virginia E.

    2012-01-01

    The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments.

  8. Primer for Teachers: Quick and Easy Liver Wellness, Hepatitis B and Substance Abuse Prevention Messages.

    ERIC Educational Resources Information Center

    Thiel, Thelma King

    This guide provides information for teachers to use in teaching about liver wellness, hepatitis B, and substance abuse. The guide includes effective motivational techniques to help students understand how valuable their liver is to their health and well being. It also provides basic information to help students avoid liver damaging behaviors, such…

  9. Liver xenotransplantation.

    PubMed

    Marino, I R; Tzakis, A G; Fung, J J; Todo, S; Doyle, H R; Manez, R; Starzl, T E

    1993-10-01

    During the past 30 years orthotopic liver transplantation has become a highly successful form of surgical treatments. The significant advances achieved in this field have led to an increased demand for organs and created a wide gap between organ availability and organ supply. A wider availability of organs for transplantation would allow an expansions rather than a contraction of the indications for transplantation, and, at the same time a relaxation of the patient selection criteria. All these facts clearly justify the renewed interest observed in the last decade in xenotransplantation. The original concept of xenografting, meaning the transplantation of cells, tissues, or organs between different species, is so ancient that it is easily recognizable in Greek and Roman mythology. The centaur Chiron, the teacher of Esculapius, and the Chimera are legendary examples of discordant xenogeneic creatures. However, it is only during this century that scientists have been able to bring this idea into the clinical arena. The early efforts were prompted by the shortage of humans organs at a time when there were few alternatives for treating end-stage organ failure.

  10. Hepatoprotective effect against CCl4-induced acute liver damage in mice and High-performance liquid chromatography mass spectrometric method for analysis of the constituents of extract of Rubus crataegifolius.

    PubMed

    Sun, Yongjiao; Jia, Lingyun; Huang, Zhanbo; Wang, Jing; Lu, Jincai; Li, Jing

    2017-11-01

    This study is an attempt to evaluate the hepatoprotective activity of Rubus Crataegifolius against carbon tetrachloride-induced liver injury in mice. 70% ethanolic, ethyl acetate and n-BuOH extract of R. crataegifolius were administered daily for 14 days in experimental animals before they were treated with CCl 4 . The hepatoprotective activity of the extracts in this study was compared with the reference drug silymarin. A high-performance liquid chromatography mass spectrometric (HPLC-EIS-MS/MS) method was developed for the determination of the constituents of the extracts. According to the data of HPLC-EIS-MS/MS, the chemical structures of the largely 14 constituents of R. crataegifolius were identified online without time-consuming isolation. Ethyl acetate extracts of R. crataegifolius showed strong antioxidant activities and significant protective effect against acute hepatotoxicity induced by CCl 4 . According to the data of HPLC-EIS-MS/MS, Oleanic acid, Phlorizin dehydrate and Quercetin-3-rhamnoside are considered as the main hepatoprotective factor in ethyl acetate extract.

  11. Evolving therapies for liver fibrosis

    PubMed Central

    Schuppan, Detlef; Kim, Yong Ook

    2013-01-01

    Fibrosis is an intrinsic response to chronic injury, maintaining organ integrity when extensive necrosis or apoptosis occurs. With protracted damage, fibrosis can progress toward excessive scarring and organ failure, as in liver cirrhosis. To date, antifibrotic treatment of fibrosis represents an unconquered area for drug development, with enormous potential but also high risks. Preclinical research has yielded numerous targets for antifibrotic agents, some of which have entered early-phase clinical studies, but progress has been hampered due to the relative lack of sensitive and specific biomarkers to measure fibrosis progression or reversal. Here we focus on antifibrotic approaches for liver that address specific cell types and functional units that orchestrate fibrotic wound healing responses and have a sound preclinical database or antifibrotic activity in early clinical trials. We also touch upon relevant clinical study endpoints, optimal study design, and developments in fibrosis imaging and biomarkers. PMID:23635787

  12. Diffuse reflectance spectroscopy of liver tissue

    NASA Astrophysics Data System (ADS)

    Reistad, Nina; Nilsson, Jan; Vilhelmsson Timmermand, Oskar; Sturesson, Christian; Andersson-Engels, Stefan

    2015-06-01

    Diffuse reflectance spectroscopy (DRS) with a fiber-optic contact probe is a cost-effective, rapid, and non-invasive optical method used to extract diagnosis information of tissue. By combining commercially available VIS- and NIR-spectrometers with various fiber-optic contact-probes, we have access to the full wavelength range from around 400 to 1600 nm. Using this flexible and portable spectroscopy system, we have acquired ex-vivo DRS-spectra from murine, porcine, and human liver tissue. For extracting the tissue optical properties from the measured spectra, we have employed and compared predictions from two models for light propagation in tissue, diffusion theory model (DT) and Monte Carlo simulations (MC). The focus in this work is on the capacity of this DRS-technique in discriminating metastatic tumor tissue from normal liver tissue as well as in assessing and characterizing damage to non-malignant liver tissue induced by preoperative chemotherapy for colorectal liver metastases.

  13. Augmenter of Liver Regeneration (alr) Promotes Liver Outgrowth during Zebrafish Hepatogenesis

    PubMed Central

    Li, Yan; Farooq, Muhammad; Sheng, Donglai; Chandramouli, Chanchal; Lan, Tian; Mahajan, Nilesh K.; Kini, R. Manjunatha; Hong, Yunhan; Lisowsky, Thomas; Ge, Ruowen

    2012-01-01

    Augmenter of Liver Regeneration (ALR) is a sulfhydryl oxidase carrying out fundamental functions facilitating protein disulfide bond formation. In mammals, it also functions as a hepatotrophic growth factor that specifically stimulates hepatocyte proliferation and promotes liver regeneration after liver damage or partial hepatectomy. Whether ALR also plays a role during vertebrate hepatogenesis is unknown. In this work, we investigated the function of alr in liver organogenesis in zebrafish model. We showed that alr is expressed in liver throughout hepatogenesis. Knockdown of alr through morpholino antisense oligonucleotide (MO) leads to suppression of liver outgrowth while overexpression of alr promotes liver growth. The small-liver phenotype in alr morphants results from a reduction of hepatocyte proliferation without affecting apoptosis. When expressed in cultured cells, zebrafish Alr exists as dimer and is localized in mitochondria as well as cytosol but not in nucleus or secreted outside of the cell. Similar to mammalian ALR, zebrafish Alr is a flavin-linked sulfhydryl oxidase and mutation of the conserved cysteine in the CxxC motif abolishes its enzymatic activity. Interestingly, overexpression of either wild type Alr or enzyme-inactive AlrC131S mutant promoted liver growth and rescued the liver growth defect of alr morphants. Nevertheless, alr C131S is less efficacious in both functions. Meantime, high doses of alr MOs lead to widespread developmental defects and early embryonic death in an alr sequence-dependent manner. These results suggest that alr promotes zebrafish liver outgrowth using mechanisms that are dependent as well as independent of its sulfhydryl oxidase activity. This is the first demonstration of a developmental role of alr in vertebrate. It exemplifies that a low-level sulfhydryl oxidase activity of Alr is essential for embryonic development and cellular survival. The dose-dependent and partial suppression of alr expression through MO

  14. Acute liver failure and self-medication.

    PubMed

    de Oliveira, André Vitorio Câmara; Rocha, Frederico Theobaldo Ramos; Abreu, Sílvio Romero de Oliveira

    2014-01-01

    Not responsible self-medication refers to drug use in high doses without rational indication and often associated with alcohol abuse. It can lead to liver damage and drug interactions, and may cause liver failure. To warn about how the practice of self-medication can be responsible for acute liver failure. Were used the Medline via PubMed, Cochrane Library, SciELO and Lilacs, and additional information on institutional sites of interest crossing the headings acute liver failure [tiab] AND acetaminophen [tiab]; self-medication [tiab] AND acetaminophen [tiab]; acute liver failure [tiab] AND dietary supplements [tiab]; self-medication [tiab] AND liver failure [tiab] and self-medication [tiab] AND green tea [tiab]. In Lilacs and SciELO used the descriptor self medication in Portuguese and Spanish. From total surveyed were selected 27 articles and five sites specifically related to the purpose of this review. Legislation and supervision disabled and information inaccessible to people, favors the emergence of cases of liver failure drug in many countries. In the list of released drugs that deserve more attention and care, are some herbal medicines used for the purpose of weight loss, and acetaminophen. It is recommended that institutes of health intensify supervision and better orient their populations on drug seemingly harmless, limiting the sale of products or requiring a prescription for release them.

  15. Hyaluronic acid concentration in liver diseases.

    PubMed

    Gudowska, Monika; Gruszewska, Ewa; Panasiuk, Anatol; Cylwik, Bogdan; Flisiak, Robert; Świderska, Magdalena; Szmitkowski, Maciej; Chrostek, Lech

    2016-11-01

    The aim of this study was to evaluate the effect of liver diseases of different etiologies and clinical severity of liver cirrhosis on the serum level of hyaluronic acid. The results were compared with noninvasive markers of liver fibrosis: APRI, GAPRI, HAPRI, FIB-4 and Forn's index. Serum samples were obtained from 20 healthy volunteers and patients suffering from alcoholic cirrhosis (AC)-57 patients, non-alcoholic cirrhosis (NAC)-30 and toxic hepatitis (HT)-22. Cirrhotic patients were classified according to Child-Pugh score. Hyaluronic acid concentration was measured by the immunochemical method. Non-patented indicators were calculated using special formulas. The mean serum hyaluronic acid concentration was significantly higher in AC, NAC and HT group in comparison with the control group. There were significant differences in the serum hyaluronic acid levels between liver diseases, and in AC they were significantly higher than those in NAC and HT group. The serum hyaluronic acid level differs significantly due to the severity of cirrhosis and was the highest in Child-Pugh class C. The sensitivity, specificity, accuracy, positive and negative predictive values and the area under the ROC curve for hyaluronic acid and all non-patented algorithms were high and similar to each other. We conclude that the concentration of hyaluronic acid changes in liver diseases and is affected by the severity of liver cirrhosis. Serum hyaluronic acid should be considered as a good marker for noninvasive diagnosis of liver damage, but the combination of markers is more useful.

  16. Interaction between periodontitis and liver diseases

    PubMed Central

    Han, Pengyu; Sun, Dianxing; Yang, Jie

    2016-01-01

    Periodontitis is an oral disease that is highly prevalent worldwide, with a prevalence of 30–50% of the population in developed countries, but only ~10% present with severe forms. It is also estimated that periodontitis results in worldwide productivity losses amounting to ~54 billion USD yearly. In addition to the damage it causes to oral health, periodontitis also affects other types of disease. Numerous studies have confirmed the association between periodontitis and systemic diseases, such as diabetes, respiratory disease, osteoporosis and cardiovascular disease. Increasing evidence also indicated that periodontitis may participate in the progression of liver diseases, such as non-alcoholic fatty liver disease, cirrhosis and hepatocellular carcinoma, as well as affecting liver transplantation. However, to the best of our knowledge, there are currently no reviews elaborating upon the possible links between periodontitis and liver diseases. Therefore, the current review summarizes the human trials and animal experiments that have been conducted to investigate the correlation between periodontitis and liver diseases. Furthermore, in the present review, certain mechanisms that have been postulated to be responsible for the role of periodontitis in liver diseases (such as bacteria, pro-inflammatory mediators and oxidative stress) are considered. The aim of the review is to introduce the hypothesis that periodontitis may be important in the progression of liver disease, thus providing dentists and physicians with an improved understanding of this issue. PMID:27588170

  17. Anthocyanins Delay Ageing-Related Degenerative Changes in the Liver.

    PubMed

    Wei, Jie; Zhang, Guokun; Zhang, Xiao; Xu, Dexin; Gao, Jun; Fan, Jungang

    2017-12-01

    Liver ageing is a significant risk factor for chronic liver diseases. Anthocyanin is a food additive that has previously shown efficacy in increasing longevity. Here, we tested whether anthocyanins could protect young mice from accelerated ageing of the liver. Kunming mice were injected with D-galactose to accelerate ageing and were given 20 or 40 mg/kg anthocyanins as an intervention. After eight weeks, whole liver function and structure were evaluated, and the expression levels of genes involved in the DNA damage signalling pathway were assessed by Western blot analysis. Anthocyanins delayed the reduction of the liver index (p < 0.05), hepatic tissue injury and fibrosis. Anthocyanins also maintained the stability of the redox system (GSH-PX, T-SOD and MDA) in plasma and liver structures (p < 0.001) and reduced the levels of inflammatory factors (IL-1, IL-6 and TNF-α) in the liver (p < 0.05). Moreover, the expression levels of sensors (ATM and ATR), mediators (H2AX and γ-H2AX) and effectors (Chk1, Chk2, p53 and p-p53) in the DNA damage signalling pathway were all reduced. Anthocyanins could be widely used in the field of health products to slow ageing-related deterioration of liver function and structure by inhibiting DNA damage.

  18. Nutritional Considerations for Dogs and Cats with Liver Disease.

    PubMed

    Norton, Rebecca D; Lenox, Catherine E; Manino, Paul; Vulgamott, James C

    2016-01-01

    The goals of nutritional management of liver disease in the dog and cat are directed at treating the clinical manifestations as opposed to treating the underlying cause. Specifically, the clinician strives to avoid overwhelming the remaining metabolic capacities of the damaged liver while providing sufficient nutrients for regeneration. A brief overview of liver diseases and associated clinical signs encountered in the dog and cat and a review of specific nutrients are discussed as well as amounts and sources of nutrients recommended to meet nutritional goals in the diseased liver.

  19. From the liver to the heart: Cardiac dysfunction in obese children with non-alcoholic fatty liver disease

    PubMed Central

    Di Sessa, Anna; Umano, Giuseppina Rosaria; Miraglia del Giudice, Emanuele; Santoro, Nicola

    2017-01-01

    In the last decades the prevalence of non-alcoholic fatty liver disease (NAFLD) has increased as a consequence of the childhood obesity world epidemic. The liver damage occurring in NAFLD ranges from simple steatosis to steatohepatitis, fibrosis and cirrhosis. Recent findings reported that fatty liver disease is related to early atherosclerosis and cardiac dysfunction even in the pediatric population. Moreover, some authors have shown an association between liver steatosis and cardiac abnormalities, including rise in left ventricular mass, systolic and diastolic dysfunction and epicardial adipose tissue thickness. In this editorial, we provide a brief overview of the current knowledge concerning the association between NAFLD and cardiac dysfunction. PMID:28144387

  20. From the liver to the heart: Cardiac dysfunction in obese children with non-alcoholic fatty liver disease.

    PubMed

    Di Sessa, Anna; Umano, Giuseppina Rosaria; Miraglia Del Giudice, Emanuele; Santoro, Nicola

    2017-01-18

    In the last decades the prevalence of non-alcoholic fatty liver disease (NAFLD) has increased as a consequence of the childhood obesity world epidemic. The liver damage occurring in NAFLD ranges from simple steatosis to steatohepatitis, fibrosis and cirrhosis. Recent findings reported that fatty liver disease is related to early atherosclerosis and cardiac dysfunction even in the pediatric population. Moreover, some authors have shown an association between liver steatosis and cardiac abnormalities, including rise in left ventricular mass, systolic and diastolic dysfunction and epicardial adipose tissue thickness. In this editorial, we provide a brief overview of the current knowledge concerning the association between NAFLD and cardiac dysfunction.

  1. Pyruvate dehydrogenase complex and lactate dehydrogenase are targets for therapy of acute liver failure.

    PubMed

    Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2018-03-24

    Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate to the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-antibody, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by gene ontology enrichment analysis. Cell viability was evaluated in cell lines knocked-down for PDHA1 or LDH-A and in cells incubated with the LDH inhibitor galloflavin after treatment with CD95-antibody. We evaluated whether the histone acetyltransferase inhibitor garcinol or galloflavin could reduce liver damage in mice with acute liver failure. Levels and activities of PDHC and LDH were increased in nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-CoA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to damage response. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus, leading to increased nuclear concentrations of

  2. The Effects of Physical Exercise on Fatty Liver Disease

    PubMed Central

    van der Windt, Dirk J.; Sud, Vikas; Zhang, Hongji; Tsung, Allan; Huang, Hai

    2018-01-01

    The increasing prevalence of obesity has made nonalcoholic fatty liver disease (NAFLD) the most common chronic liver disease. As a consequence, NAFLD and especially its inflammatory form nonalcoholic steatohepatitis (NASH) are the fastest increasing etiology of end-stage liver disease and hepatocellular carcinoma. Physical inactivity is related to the severity of fatty liver disease irrespective of body weight, supporting the hypothesis that increasing physical activity through exercise can improve fatty liver disease. This review summarizes the evidence for the effects of physical exercise on NAFLD and NASH. Several clinical trials have shown that both aerobic and resistance exercise reduce the hepatic fat content. From clinical and basic scientific studies, it is evident that exercise affects fatty liver disease through various pathways. Improved peripheral insulin resistance reduces the excess delivery of free fatty acids and glucose for free fatty acid synthesis to the liver. In the liver, exercise increases fatty acid oxidation, decreases fatty acid synthesis, and prevents mitochondrial and hepatocellular damage through a reduction of the release of damage-associated molecular patterns. In conclusion, physical exercise is a proven therapeutic strategy to improve fatty liver disease. PMID:29212576

  3. Alcoholic liver disease.

    PubMed

    Penny, Steven M

    2013-01-01

    In the United States, approximately 100,000 deaths are attributed to alcohol abuse each year. In 2009, the World Health Organization listed alcohol use as one of the leading causes of the global burden of disease and injury. Alcoholic liver disease, a direct result of chronic alcohol abuse, insidiously destroys the normal functions of the liver. The end result of the disease, cirrhosis, culminates in a dysfunctional and diffusely scarred liver. This article discusses the clinical manifestations, imaging considerations, and treatment of alcoholic liver disease and cirrhosis. Normal liver function, liver hemodynamics, the disease of alcoholism, and the deleterious effects of alcohol also are reviewed.

  4. Biomarkers for liver fibrosis

    DOEpatents

    Jacobs, Jon M.; Burnum-Johnson, Kristin E.; Baker, Erin M.; Smith, Richard D.; Gritsenko, Marina A.; Orton, Daniel

    2017-05-16

    Methods and systems for diagnosing or prognosing liver fibrosis in a subject are provided. In some examples, such methods and systems can include detecting liver fibrosis-related molecules in a sample obtained from the subject, comparing expression of the molecules in the sample to controls representing expression values expected in a subject who does not have liver fibrosis or who has non-progressing fibrosis, and diagnosing or prognosing liver fibrosis in the subject when differential expression of the molecules between the sample and the controls is detected. Kits for the diagnosis or prognosis of liver fibrosis in a subject are also provided which include reagents for detecting liver fibrosis related molecules.

  5. Biomarkers for liver fibrosis

    DOEpatents

    Jacobs, Jon M.; Burnum-Johnson, Kristin E.; Baker, Erin M.; Smith, Richard D.; Gritsenko, Marina A.; Orton, Daniel

    2015-09-15

    Methods and systems for diagnosing or prognosing liver fibrosis in a subject are provided. In some examples, such methods and systems can include detecting liver fibrosis-related molecules in a sample obtained from the subject, comparing expression of the molecules in the sample to controls representing expression values expected in a subject who does not have liver fibrosis or who has non-progressing fibrosis, and diagnosing or prognosing liver fibrosis in the subject when differential expression of the molecules between the sample and the controls is detected. Kits for the diagnosis or prognosis of liver fibrosis in a subject are also provided which include reagents for detecting liver fibrosis related molecules.

  6. Ursodeoxycholic acid in chronic liver disease.

    PubMed Central

    de Caestecker, J S; Jazrawi, R P; Petroni, M L; Northfield, T C

    1991-01-01

    The hydrophilic bile acid ursodeoxycholic acid has recently been shown to reduce biochemical markers of both cholestasis and hepatocellular damage in patients with chronic liver diseases. The most compelling evidence available is for chronic cholestatic liver diseases, in particular primary biliary cirrhosis, primary sclerosing cholangitis, and cholestasis associated with cystic fibrosis. The effects may be less beneficial in patients with advanced liver disease from these conditions. Data from placebo controlled trials are now available in support of earlier uncontrolled observations, but it is not yet clear whether short term benefit results in an improvement in longterm prognosis. The mechanism of action of the compound seems to reside in its displacement of toxic hydrophobic bile acids from both the bile acid pool and hepatocellular membranes. There may be an independent effect on bile flow, which could be of particular importance in cystic fibrosis, and possibly an effect on the immune system. Ursodeoxycholic acid should now be regarded as occupying a central place in the medical management of chronic cholestatic liver diseases, in particular primary biliary cirrhosis, because it improves cholestasis and reduces hepatocellular damage and it is not toxic. Research should now be targeted on whether treatment with ursodeoxycholic acid, initiated early in cholestatic liver conditions, improves the long-term outcome. PMID:1916492

  7. Bioartificial liver: current status.

    PubMed

    Pless, G; Sauer, I M

    2005-11-01

    Liver failure remains a life-threatening syndrome. With the growing disparity between the number of suitable donor organs and the number of patients awaiting transplantation, efforts have been made to optimize the allocation of organs, to find alternatives to cadaveric liver transplantation, and to develop extracorporeal methods to support or replace the function of the failing organ. An extracorporeal liver support system has to provide the main functions of the liver: detoxification, synthesis, and regulation. The understanding that the critical issue of the clinical syndrome in liver failure is the accumulation of toxins not cleared by the failing liver led to the development of artificial filtration and adsorption devices (artificial liver support). Based on this hypothesis, the removal of lipophilic, albumin-bound substances, such as bilirubin, bile acids, metabolites of aromatic amino acids, medium-chain fatty acids, and cytokines, should be beneficial to the clinical course of a patient in liver failure. Artificial detoxification devices currently under clinical evaluation include the Molecular Adsorbent Recirculating System (MARS), Single-Pass Albumin Dialysis (SPAD), and the Prometheus system. The complex tasks of regulation and synthesis remain to be addressed by the use of liver cells (bioartificial liver support). The Extracorporeal Liver Assist Device (ELAD), HepatAssist, Modular Extracorporeal Liver Support system (MELS), and the Amsterdam Medical Center Bioartificial Liver (AMC-BAL) are bioartificial systems. This article gives a brief overview on these artificial and bioartificial devices and discusses remaining obstacles.

  8. Apoptosis and Necrosis in the Liver

    PubMed Central

    Guicciardi, Maria Eugenia; Malhi, Harmeet; Mott, Justin L.; Gores, Gregory J.

    2013-01-01

    Because of its unique function and anatomical location, the liver is exposed to a multitude of toxins and xenobiotics, including medications and alcohol, as well as to infection by hepatotropic viruses, and therefore, is highly susceptible to tissue injury. Cell death in the liver occurs mainly by apoptosis or necrosis, with apoptosis also being the physiologic route to eliminate damaged or infected cells and to maintain tissue homeostasis. Liver cells, especially hepatocytes and cholangiocytes, are particularly susceptible to death receptor-mediated apoptosis, given the ubiquitous expression of the death receptors in the organ. In a quite unique way, death receptor-induced apoptosis in these cells is mediated by both mitochondrial and lysosomal permeabilization. Signaling between the endoplasmic reticulum and the mitochondria promotes hepatocyte apoptosis in response to excessive free fatty acid generation during the metabolic syndrome. These cell death pathways are partially regulated by microRNAs. Necrosis in the liver is generally associated with acute injury (i.e., ischemia/reperfusion injury) and has been long considered an unregulated process. Recently, a new form of “programmed” necrosis (named necroptosis) has been described: the role of necroptosis in the liver has yet to be explored. However, the minimal expression of a key player in this process in the liver suggests this form of cell death may be uncommon in liver diseases. Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise. An updated overview of these concepts is given in this article. PMID:23720337

  9. Association of PNPLA3 I148M Variant With Chronic Viral Hepatitis, Autoimmune Liver Diseases and Outcomes of Liver Transplantation

    PubMed Central

    Geng, Ning; Xin, Yong-Ning; Xia, Harry Hua-Xiang; Jiang, Man; Wang, Jian; Liu, Yang; Chen, Li-Zhen; Xuan, Shi-Ying

    2015-01-01

    Context: The PNPLA3 I148M variant has been recognized as a genetic determinant of liver fat content and a genetic risk factor of liver damage progression associated with steatohepatitis. The I148M variant is associated with many chronic liver diseases. However, its potential association with inflammatory and autoimmune liver diseases has not been established. Evidence Acquisition: We systemically reviewed the potential associations of I148M variant with chronic viral hepatitis, autoimmune liver diseases and the outcome of liver transplantation, explored the underlying molecular mechanisms and tried to translate them into more individualized decision-making and personalized medicine. Results: There were associations between I148M variant and chronic viral hepatitis and autoimmune liver diseases and differential associations of I148M variant in donors and recipients with post-liver transplant outcomes. I148M variant may activate the development of steatosis caused by host metabolic disorders in chronic viral hepatitis, but few researches were found to illustrate the mechanisms in autoimmune liver diseases. The peripherally mediated mechanism (via extrahepatic adipose tissue) may play a principal role in triglyceride accumulation regardless of adiponutrin activity in the graft liver. Conclusions: Evidences have shown the associations between I148M variant and mentioned diseases. I148M variant induced steatosis may be involved in the mechanism of chronic viral hepatitis and genetic considered personalized therapies, especially for PSC male patients. It is also crucial to pay attention to this parameter in donor selection and prognosis estimation in liver transplantation. PMID:26034504

  10. NOD2: a potential target for regulating liver injury.

    PubMed

    Body-Malapel, Mathilde; Dharancy, Sébastien; Berrebi, Dominique; Louvet, Alexandre; Hugot, Jean-Pierre; Philpott, Dana J; Giovannini, Marco; Chareyre, Fabrice; Pages, Gilles; Gantier, Emilie; Girardin, Stephen E; Garcia, Irène; Hudault, Sylvie; Conti, Filoména; Sansonetti, Philippe J; Chamaillard, Mathias; Desreumaux, Pierre; Dubuquoy, Laurent; Mathurin, Philippe

    2008-03-01

    The recent discovery of bacterial receptors such as NOD2 that contribute to crosstalk between innate and adaptive immune systems in the digestive tract constitutes an important challenge in our understanding of liver injury mechanisms. The present study focuses on NOD2 functions during liver injury. NOD2, TNF-alpha and IFN-gamma mRNA were quantified using real-time PCR in liver samples from patients and mice with liver injury. We evaluated the susceptibility of concanavalin A (ConA) challenge in NOD2-deficient mice (Nod2-/-) compared to wild-type littermates. We tested the effect of muramyl dipeptide (MDP), the specific activator of NOD2, on ConA-induced liver injury in C57BL/6 mice. We studied the cellular distribution and the role of NOD2 in immune cells and hepatocytes. We demonstrated that NOD2, TNF-alpha and IFN-gamma were upregulated during liver injury in mice and humans. Nod2-/- mice were resistant to ConA-induced hepatitis compared to their wild-type littermates, through reduced IFN-gamma production by immune cells. Conversely, administration of MDP exacerbated ConA-induced liver injury. MDP was a strong inducer of IFN-gamma in freshly isolated human PBMC, splenocytes and hepatocytes. Our study supports the hypothesis that NOD2 contributes to liver injury via a regulatory mechanism affecting immune cells infiltrating the liver and hepatocytes. Taken together, our results indicate that NOD2 may represent a new therapeutic target in liver diseases.

  11. Liver transplantation for metastatic liver malignancies.

    PubMed

    Foss, Aksel; Lerut, Jan P

    2014-06-01

    Liver transplantation is a validated treatment of primary hepatobiliary tumours. Over the last decade, a renewed interest for liver transplantation as a curative treatment of colorectal liver metastasis (CR-LM) and neuro-endocrine metastasis (NET-LM) has developed. The ELTR and UNOS analyses showed that liver transplantation may offer excellent disease-free survival (ranging from 30 to 77%) in case of NET-LM, on the condition that stringent selection criteria are implemented. The interest for liver transplantation in the treatment of CR-LM has been fostered by the Norwegian SECA study. Five-year A 5-year survival rate of 60% could be reached. Despite the high recurrence rate (90%), one-third of patients were disease free following pulmonary surgery for metastases. Liver transplantation will take a more prominent place in the therapeutic algorithm of CR-LM and NET-LM. Larger experiences are necessary to improve knowledge about tumour biology and to refine selection criteria. A multimodal approach adding neo and adjuvant medical treatment to the transplant procedure will be key to bring this oncologic transplant project into the clinical arena. The preserved liver function in these patients will allow a more deliberate access to split liver and living donation for these indications.

  12. Oral delivery of Bacillus subtilis spores expressing cysteine protease of Clonorchis sinensis to grass carp (Ctenopharyngodon idellus): Induces immune responses and has no damage on liver and intestine function.

    PubMed

    Tang, Zeli; Sun, Hengchang; Chen, TingJin; Lin, Zhipeng; Jiang, Hongye; Zhou, Xinyi; Shi, Cunbin; Pan, Houjun; Chang, Ouqin; Ren, Pengli; Yu, Jinyun; Li, Xuerong; Xu, Jin; Huang, Yan; Yu, Xinbing

    2017-05-01

    Clonorchis sinensis (C. sinensis) is a fish-borne trematode. Human can be infected by ingestion of C. sinensis metacercariae parasitized in grass carp (Ctenopharyngodon idella). For induction of effective oral immune responses, spores of Bacillus subtilis (B. subtilis) WB600 were utilized as vehicle to delivery CsCP (cysteine protease of C. sinensis) cooperated with CotC (B.s-CotC-CP), one of coat proteins, to the gastrointestinal tract. After routine culture of 8-12 h in LB medium, B. subtilis containing CotC-CsCP was transferred into the sporulation culture medium. SDS-PAGE, western blotting and the growth curve indicated that the best sporulation time of recombinant WB600 was 24-30 h at 37 °C with continuous shaking (250 rpm). Grass carp were fed with three levels of B.s-CotC-CP (1 × 10 6 , 1 × 10 7 , and 1 × 10 8  CFU g -1 ) incorporated in the basal pellets diet. The commercial pellets or supplemented with spores just expressing CotC (1 × 10 7  CFU g -1 ) were served as control diet. Our results showed that grass carp orally immunized with the feed-based B.s-CotC-CP developed a strong specific immune response with significantly (P < 0.05) higher levels of IgM in samples of serum, bile, mucus of surface and intestinal compared to the control groups. Abundant colonization spores expressing CsCP were found in hindgut that is conducive to absorption and presentation of antigen. Moreover, B. subtilis spores appeared to show no sign of toxicity or damage in grass carp. Our cercariae challenge experiments suggested that oral administration of spores expressing CsCP could develop an effective protection against C. sinensis in fish body. Therefore, this study demonstrated that the feed-based recombinant spores could trigger high levels of mucosal and humoral immunity, and would be a promising candidate vaccine against C. sinensis metacercariae formation in freshwater fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Amebic liver abscess

    MedlinePlus

    ... abscess URL of this page: //medlineplus.gov/ency/article/000211.htm Amebic liver abscess To use the sharing features on this page, please enable JavaScript. Amebic liver abscess is a collection of pus ...

  14. Antioxidants in liver health

    PubMed Central

    Casas-Grajales, Sael; Muriel, Pablo

    2015-01-01

    Liver diseases are a worldwide medical problem because the liver is the principal detoxifying organ and maintains metabolic homeostasis. The liver metabolizes various compounds that produce free radicals (FR). However, antioxidants scavenge FR and maintain the oxidative/antioxidative balance in the liver. When the liver oxidative/antioxidative balance is disrupted, the state is termed oxidative stress. Oxidative stress leads to deleterious processes in the liver and produces liver diseases. Therefore, restoring antioxidants is essential to maintain homeostasis. One method of restoring antioxidants is to consume natural compounds with antioxidant capacity. The objective of this review is to provide information pertaining to various antioxidants found in food that have demonstrated utility in improving liver diseases. PMID:26261734

  15. Liver Transplant: Nutrition

    MedlinePlus

    ... transplant and liver disease patients. Pre-Transplant Protein Malnutrition -- Many patients with end stage liver disease do ... to lose weight sensibly and slowly, without causing malnutrition (especially protein malnutrition). Losing excess weight decreases the ...

  16. Microbiota and the liver.

    PubMed

    Shen, Ting-Chin David; Pyrsopoulos, Nikolaos; Rustgi, Vinod K

    2018-04-01

    The gut microbiome outnumbers the human genome by 150-fold and plays important roles in metabolism, immune system education, tolerance development, and prevention of pathogen colonization. Dysbiosis has been associated with nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), and alcoholic liver disease (ALD) as well as cirrhosis and complications. This article provides an overview of this relationship. Liver Transplantation 24 539-550 2018 AASLD. © 2018 by the American Association for the Study of Liver Diseases.

  17. Stages of Childhood Liver Cancer

    MedlinePlus

    ... Liver Cancer Prevention Liver Cancer Screening Research Childhood Liver Cancer Treatment (PDQ®)–Patient Version Treatment Option Overview Go ... different types of treatment for patients with childhood liver cancer. Different types of treatments are available for children ...

  18. Prophylactic effects of humic acid-glucan combination against experimental liver injury

    PubMed Central

    Vetvicka, Vaclav; Garcia-Mina, Jose Maria; Yvin, Jean-Claude

    2015-01-01

    Aim: Despite intensive research, liver diseases represent a significant health problem and current medicine does not offer a substance able to significantly inhibit the hepatotoxicity leading to various stages of liver disease. Based on our previously published studies showing the protective effects of a glucan-humic acid (HA) combination, we focused on the hypothesis that the combination of these two natural molecules can offer prophylactic protection against experimentally induced hepatotoxicity. Materials and Methods: Lipopolysaccharide, carbon tetrachloride, and ethanol were used to experimentally damage the liver. Levels of aspartate aminotransferase, alanine transaminase, alkaline phosphatase, glutathione, superoxide dismutase, and malondialdehyde, known to correspond to the liver damage, were assayed. Results: Using three different hepatotoxins, we found that in all cases, some samples of HA and most of all the glucan-HA combination, offer strong protection against liver damage. Conclusion: Glucan-HA combination is a promising agent for use in liver protection. PMID:26401416

  19. Protective effects of C-phycocyanin on alcohol-induced acute liver injury in mice

    NASA Astrophysics Data System (ADS)

    Xia, Dong; Liu, Bing; Luan, Xiying; Sun, Junyan; Liu, Nana; Qin, Song; Du, Zhenning

    2016-03-01

    Excessive alcohol consumption leads to liver disease. Extensive evidence suggests that C-phycocyanin (C-PC), a chromophore phycocyanobilin derived from Spirulina platensis, exerts protective effects against chemical-induced organ damage. In this study, we investigated whether C-PC could protect against ethanol-induced acute liver injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (CHOL), low-density lipoprotein (LDL), liver homogenate malondialdehyde (MDA), superoxide dismutase (SOD) content were measured, and pathological examination of liver sections were examined. C-PC showed obvious inhibitory effects on serum ALT, AST, TG, CHOL, LDL and MDA, and SOD content significantly increased in the liver. The structure of hepatic lobules was clear, liver sinus returned to normal, and liver cell cords were arranged in neat rows. Cloudiness, swelling, inflammatory cell infiltration and spotty necrosis of liver cells were significantly reduced. Therefore, C-PC can significantly protect against ethanol-induced acute liver injury.

  20. Systematic review of bariatric surgery liver biopsies clarifies the natural history of liver disease in patients with severe obesity.

    PubMed

    Bedossa, Pierre; Tordjman, Joan; Aron-Wisnewsky, Judith; Poitou, Christine; Oppert, Jean-Michel; Torcivia, Adriana; Bouillot, Jean-Luc; Paradis, Valerie; Ratziu, Vlad; Clément, Karine

    2017-09-01

    Non-alcoholic fatty liver disease (NAFLD) is a frequent complication of morbid obesity, but its severity varies greatly and thus there is a strong need to better define its natural history in these patients. Liver biopsies were systematically performed in 798 consecutive patients with severe obesity undergoing bariatric surgery. Histology was compared with clinical, biological, anthropometrical and body composition characteristics. Patients with presumably normal liver (n=179, 22%) were significantly younger at bariatric surgery than patients with NAFLD (37.0 vs 44.4 years, p<0.0001). However, both groups showed quite similar obesity duration, since patients with presumably normal liver reported the onset of obesity at a significantly younger age than those with NAFLD (14.8 vs 20.0 year, p<0.0001). The trunk/limb fat mass ratio increased according to liver disease severity (presumably normal liver: 1.00, steatosis: 1.21, non-alcoholic steatohepatitis (NASH): 1.34, p<0.0001), although the total body fat mass decreased (presumably normal liver: 50%, steatosis: 49.1%, NASH: 47.4%, p<0.0001). The volume of subcutaneous adipocytes increased according to severity of liver disease but only in female patients (presumably normal liver: 8543 picolitres, steatosis: 9156 picolitres, NASH: 9996 picolitres). These results suggest that young adults are more prone to store fat in subcutaneous tissue and reach the threshold of bariatric surgery indication before their liver is damaged. A shift of fat storage from subcutaneous to visceral adipose tissue compartment is associated with liver damages. Liver might also be targeted by subcutaneous hypertrophic adipocytes in females since hypertrophic adipocytes are more exposed to lipolysis and to the production of inflammatory mediators. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    PubMed Central

    Li, Sha; Tan, Hor-Yue; Wang, Ning; Zhang, Zhang-Jin; Lao, Lixing; Wong, Chi-Woon; Feng, Yibin

    2015-01-01

    A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed. PMID:26540040

  2. Vinpocetine protects liver against ischemia-reperfusion injury.

    PubMed

    Zaki, Hala Fahmy; Abdelsalam, Rania Mohsen

    2013-12-01

    Hepatic ischemia-reperfusion (IR) injury is a clinical problem that leads to cellular damage and organ dysfunction mediated mainly via production of reactive oxygen species and inflammatory cytokines. Vinpocetine has long been used in cerebrovascular disorders. This study aimed to explore the protective effect of vinpocetine in IR injury to the liver. Ischemia was induced in rats by clamping the common hepatic artery and portal vein for 30 min followed by 30 min of reperfusion. Serum transaminases and liver lactate dehydrogenase (LDH) activities, liver inflammatory cytokines, oxidative stress biomarkers, and liver histopathology were assessed. IR resulted in marked histopathology changes in liver tissues coupled with elevations in serum transaminases and liver LDH activities. IR also increased the production of liver lipid peroxides, nitric oxide, and inflammatory cytokines interleukin-1β and interleukin-6, in parallel with a reduction in reduced glutathione and interleukin-10 in the liver. Pretreatment with vinpocetine protected against liver IR-induced injury, in a dose-dependent manner, as evidenced by the attenuation of oxidative stress as well as inflammatory and liver injury biomarkers. The effects of vinpocetine were comparable with that of curcumin, a natural antioxidant, and could be attributed to its antioxidant and anti-inflammatory properties.

  3. Evaluation of liver enzyme levels and identification of asymptomatic liver disease patients in primary care.

    PubMed

    Cacciola, Irene; Scoglio, Riccardo; Alibrandi, Angela; Squadrito, Giovanni; Raimondo, Giovanni

    2017-03-01

    The evaluation of serum liver enzyme levels is the most used surrogate marker of liver injury in clinical practice. The prevalence and association of abnormal enzyme values with hepatitis B virus (HBV) and hepatitis C virus (HCV) infections, and with other major causes of liver damage (obesity, diabetes, dyslipidemia, and alcohol abuse) were evaluated in individuals attending the surgeries of 14 general practitioners (GPs) working in Messina. Alanine-amino-transferase, aspartate-amino-transferase, and gamma-glutamyl-transpeptidase measurements were measured in 7816 individuals consecutively attending the GP surgeries between January 1, 2011 and June 30, 2012. Five-thousand-eight-hundred-six subjects (74.3 %) had the tests performed, and 1189 of them (20.5 %) showed increased liver enzyme levels. Sixty-nine of these 1189 individuals (5.8 %) were HCV positive and 12 HBV positive (1 %), 755 (63.5 %) were overweight or obese, 288 (24.2 %) had diabetes, and 351 (29.5 %) had dyslipidemia; 262 (22 %) drank >2 alcoholic units/day. Overall, 57 % of individuals with abnormal liver enzymes had multiple possible causes of liver disease, 28 % one cause, and 15 % no apparent cause. In conclusion, this study shows that 1/5 of individuals attending GP surgeries have altered liver biochemistry and that overweight and metabolic disorders have become the major causes of liver damage even in South Italy, where HBV and HCV were endemic in the past century. Notably, many HCV and HBV patients are still unaware of their infected status, and GPs are essential for their timely identification.

  4. Coffee and Liver Disease.

    PubMed

    Wadhawan, Manav; Anand, Anil C

    2016-03-01

    Coffee is the most popular beverage in the world. Consumption of coffee has been shown to benefit health in general, and liver health in particular. This article reviews the effects of coffee intake on development and progression of liver disease due to various causes. We also describe the putative mechanisms by which coffee exerts the protective effect. The clinical evidence of benefit of coffee consumption in Hepatitis B and C, as well as nonalcoholic fatty liver disease and alcoholic liver disease, has also been presented. Coffee consumption is associated with improvement in liver enzymes (ALT, AST, and GGTP), especially in individuals with risk for liver disease. Coffee intake more than 2 cups per day in patients with preexisting liver disease has been shown to be associated with lower incidence of fibrosis and cirrhosis, lower hepatocellular carcinoma rates, as well as decreased mortality.

  5. PNPLA3 gene in liver diseases.

    PubMed

    Trépo, Eric; Romeo, Stefano; Zucman-Rossi, Jessica; Nahon, Pierre

    2016-08-01

    Genome-wide association studies (GWAS) in the field of liver diseases have revealed previously unknown pathogenic loci and generated new biological hypotheses. In 2008, a GWAS performed in a population-based sample study, where hepatic liver fat content was measured by magnetic spectroscopy, showed a strong association between a variant (rs738409 C>G p.I148M) in the patatin-like phospholipase domain containing 3 (PNPLA3) gene and nonalcoholic fatty liver disease. Further replication studies have shown robust associations between PNPLA3 and steatosis, fibrosis/cirrhosis, and hepatocellular carcinoma on a background of metabolic, alcoholic, and viral insults. The PNPLA3 protein has lipase activity towards triglycerides in hepatocytes and retinyl esters in hepatic stellate cells. The I148M substitution leads to a loss of function promoting triglyceride accumulation in hepatocytes. Although PNPLA3 function has been extensively studied, the molecular mechanisms leading to hepatic fibrosis and carcinogenesis remain unclear. This unsuspected association has highlighted the fact that liver fat metabolism may have a major impact on the pathophysiology of liver diseases. Conversely, alone, this locus may have limited predictive value with regard to liver disease outcomes in clinical practice. Additional studies at the genome-wide level will be required to identify new variants associated with liver damage and cancer to explain a greater proportion of the heritability of these phenotypes. Thus, incorporating PNPLA3 and other genetic variants in combination with clinical data will allow for the development of tailored predictive models. This attractive approach should be evaluated in prospective cohorts. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  6. Macrophage heterogeneity in liver injury and fibrosis.

    PubMed

    Tacke, Frank; Zimmermann, Henning W

    2014-05-01

    Hepatic macrophages are central in the pathogenesis of chronic liver injury and have been proposed as potential targets in combatting fibrosis. Recent experimental studies in animal models revealed that hepatic macrophages are a remarkably heterogeneous population of immune cells that fulfill diverse functions in homeostasis, disease progression, and regression from injury. These range from clearance of pathogens or cellular debris and maintenance of immunological tolerance in steady state conditions; central roles in initiating and perpetuating inflammation in response to injury; promoting liver fibrosis via activating hepatic stellate cells in chronic liver damage; and, finally, resolution of inflammation and fibrosis by degradation of extracellular matrix and release of anti-inflammatory cytokines. Cellular heterogeneity in the liver is partly explained by the origin of macrophages. Hepatic macrophages can either arise from circulating monocytes, which are recruited to the injured liver via chemokine signals, or from self-renewing embryo-derived local macrophages, termed Kupffer cells. Kupffer cells appear essential for sensing tissue injury and initiating inflammatory responses, while infiltrating Ly-6C(+) monocyte-derived macrophages are linked to chronic inflammation and fibrogenesis. In addition, proliferation of local or recruited macrophages may possibly further contribute to their accumulation in injured liver. During fibrosis regression, monocyte-derived cells differentiate into Ly-6C (Ly6C, Gr1) low expressing 'restorative' macrophages and promote resolution from injury. Understanding the mechanisms that regulate hepatic macrophage heterogeneity, either by monocyte subset recruitment, by promoting restorative macrophage polarization or by impacting distinctive macrophage effector functions, may help to develop novel macrophage subset-targeted therapies for liver injury and fibrosis. Copyright © 2014 European Association for the Study of the Liver

  7. Liver protective effects of Morinda citrifolia (Noni).

    PubMed

    Wang, Mian-Ying; Nowicki, Diane; Anderson, Gary; Jensen, Jarakae; West, Brett

    2008-06-01

    This study evaluated the protective effects of Noni fruit juice on acute liver injury induced by carbon tetrachloride (CCl(4)) in female Sprague-Dawley (SD) rats. Liver damage (micro-centrilobular necrosis) was observed in animals pretreated with 20% placebo (drinking water) + CCl(4). However, pretreatment with 20% Noni juice in drinking water + CCl(4) resulted in markedly decreased hepatotoxic lesions. Furthermore, serum alanine aminotransferase and aspartate aminotransferase levels were significantly lower in the Noni group than the placebo group. In a correlative time-dependent study, one dose of CCl(4) (0.25 mL/kg in corn oil, p.o.) in female SD rats, pretreated with 10% placebo for 12 days, caused sequential progressive hepatotoxic lesions over a 24 h period, while a protective effect from 10% Noni juice pretreatment was observed. These results suggest that Noni juice is effective in protecting the liver from extrinsic toxin exposure.

  8. Liver Protective Effects of Morinda citrifolia (Noni)

    PubMed Central

    Nowicki, Diane; Anderson, Gary; Jensen, Jarakae; West, Brett

    2008-01-01

    This study evaluated the protective effects of Noni fruit juice on acute liver injury induced by carbon tetrachloride (CCl4) in female Sprague-Dawley (SD) rats. Liver damage (micro-centrilobular necrosis) was observed in animals pretreated with 20% placebo (drinking water) + CCl4. However, pretreatment with 20% Noni juice in drinking water + CCl4 resulted in markedly decreased hepatotoxic lesions. Furthermore, serum alanine aminotransferase and aspartate aminotransferase levels were significantly lower in the Noni group than the placebo group. In a correlative time-dependent study, one dose of CCl4 (0.25 mL/kg in corn oil, p.o.) in female SD rats, pretreated with 10% placebo for 12 days, caused sequential progressive hepatotoxic lesions over a 24 h period, while a protective effect from 10% Noni juice pretreatment was observed. These results suggest that Noni juice is effective in protecting the liver from extrinsic toxin exposure. PMID:18317933

  9. Acute Liver Failure including Acetaminophen Overdose

    PubMed Central

    Fontana, Robert J.

    2008-01-01

    Synopsis Acute liver failure (ALF) is a dramatic and highly unpredictable clinical syndrome defined by the sudden onset of coagulopathy and encephalopathy. Although many disease processes can cause ALF, acetaminophen overdose is the leading cause in the United States, and has a 66% chance of recovery with early N-acetylcysteine treatment and supportive care. Cerebral edema and infectious complications are notoriously difficult to detect and treat in ALF patients and may lead to irreversible brain damage and multi-organ failure. Emergency liver transplantation is associated with a 70% 1-year patient survival but 20% of listed patients die, highlighting the importance of early referral of ALF patients with a poor prognosis to a liver transplant center. PMID:18570942

  10. High susceptibility to liver injury in IL-27 p28 conditional knockout mice involves intrinsic interferon-γ dysregulation of CD4+ T cells.

    PubMed

    Zhang, Song; Liang, Ruifang; Luo, Wei; Liu, Chang; Wu, Xiaoli; Gao, Yanan; Hao, Jianlei; Cao, Guangchao; Chen, Xi; Wei, Jun; Xia, Siyuan; Li, Zheng; Wen, Ti; Wu, Yunyun; Zhou, Xinglong; Wang, Puyue; Zhao, Liqing; Wu, Zhengzhou; Xiong, Sidong; Gao, Xiaoming; Gao, Xiang; Chen, Yongyan; Ge, Qing; Tian, Zhigang; Yin, Zhinan

    2013-04-01

    Interleukin (IL)-27, a newly discovered IL-12 family cytokine, is composed of p28 and EBI3. In this study, CD11c-p28(f/f) conditional knockout mice were generated to delete p28 specifically in dendritic cells (DCs). We demonstrated that in the absence of DC-derived p28, these mice were highly susceptible to both low and higher concentrations of concanavalin A (ConA) (5 mg/kg or 10 mg/kg), with extremely early and steady high levels of interferon-γ (IFN-γ) in sera. Neutralizing IFN-γ prevented ConA-induced liver damage in these mice, indicating a critical role of IFN-γ in this pathological process. Interestingly, the main source of the increased IFN-γ in CD11c-p28(f/f) mice was CD4+ T cells, but not natural killer T (NKT) cells. Depletion of CD4+ , but not NK1.1+ , cells completely abolished liver damage, whereas transferring CD4+ T cells from CD11c-p28(f/f) mice, but not from wild-type mice or CD11c-p28(f/f) -IFN-γ(-/-) double knockout mice to CD4(-/-) mice, restored the increased liver damage. Further studies defined higher levels of IFN-γ and T-bet messenger RNA in naïve CD4+ T cells from CD11c-p28(f/f) mice, and these CD4+ T cells were highly responsive to both low and higher concentrations of anti-CD3, indicating a programmed functional alternation of CD4+ T cells. We provide a unique model for studying the pathology of CD4+ T cell-mediated liver injury and reveal a novel function of DC-derived p28 on ConA-induced fulminant hepatitis through regulation of the intrinsic ability for IFN-γ production by CD4+ T cells. Copyright © 2012 American Association for the Study of Liver Diseases.

  11. Diffuse Reflectance Spectroscopy for Surface Measurement of Liver Pathology.

    PubMed

    Nilsson, Jan H; Reistad, Nina; Brange, Hannes; Öberg, Carl-Fredrik; Sturesson, Christian

    2017-01-01

    measurements through the liver capsule and that surface DRS measurements are representative of the whole liver. The results are consistent with data published earlier on the combination of liver chromophores. The results encourage us to proceed with in vivo measurements for further quantification of the liver's composition and assessment of parenchymal damage such as steatosis and fibrosis grade. © 2016 S. Karger AG, Basel.

  12. Alcoholic pancreatitis: Lessons from the liver

    PubMed Central

    Clemens, Dahn L; Mahan, Katrina J

    2010-01-01

    The association between alcohol consumption and pancreatitis has been recognized for over 100 years. Despite the fact that this association is well recognized, the mechanisms by which alcohol abuse leads to pancreatic tissue damage are not entirely clear. Alcohol abuse is the major factor associated with pancreatitis in the Western world. Interestingly, although most cases of chronic pancreatitis and many cases of acute pancreatitis are associated with alcohol abuse, only a small percentage of individuals who abuse alcohol develop this disease. This situation is reminiscent of the association between alcohol abuse and the incidence of alcoholic liver disease. The liver and the pancreas are developmentally very closely related. Even though these two organs are quite different, they exhibit a number of general structural and functional similarities. Furthermore, the diseases mediated by alcohol abuse in these organs exhibit some striking similarities. The diseases in both organs are characterized by parenchymal cell damage, activation of stellate cells, aberrant wound healing, and fibrosis. Because of the similarities between the liver and the pancreas, and the alcohol-associated diseases of these organs, we may be able to apply much of the knowledge that we have gained regarding the effects of alcohol on the liver to the pancreas. PMID:20238397

  13. Oligofructose protects against arsenic-induced liver injury in a model of environment/obesity interaction

    SciTech Connect

    Massey, Veronica L.; Stocke, Kendall S.; Schmidt, Robin H.

    Arsenic (As) tops the ATSDR list of hazardous environmental chemicals and is known to cause liver injury. Although the concentrations of As found in the US water supply are generally too low to directly damage the liver, subhepatotoxic doses of As sensitize the liver to experimental NAFLD. It is now suspected that GI microbiome dysbiosis plays an important role in development of NALFD. Importantly, arsenic has also been shown to alter the microbiome. The purpose of the current study was to test the hypothesis that the prebiotic oligofructose (OFC) protects against enhanced liver injury caused by As in experimental NAFLD.more » Male C57Bl6/J mice were fed low fat diet (LFD), high fat diet (HFD), or HFD containing oligofructose (OFC) during concomitant exposure to either tap water or As-containing water (4.9 ppm as sodium arsenite) for 10 weeks. HFD significantly increased body mass and caused fatty liver injury, as characterized by an increased liver weight-to-body weight ratio, histologic changes and transaminases. As observed previously, As enhanced HFD-induced liver damage, which was characterized by enhanced inflammation. OFC supplementation protected against the enhanced liver damage caused by As in the presence of HFD. Interestingly, arsenic, HFD and OFC all caused unique changes to the gut flora. These data support previous findings that low concentrations of As enhance liver damage caused by high fat diet. Furthermore, these results indicate that these effects of arsenic may be mediated, at least in part, by GI tract dysbiosis and that prebiotic supplementation may confer significant protective effects. - Highlights: • Arsenic (As) enhances liver damage caused by a high-fat (HFD) diet in mice. • Oligofructose protects against As-enhanced liver damage caused by HFD. • As causes dysbiosis in the GI tract and exacerbates the dysbiosis caused by HFD. • OFC prevents the dysbiosis caused by HFD and As, increasing commensal bacteria.« less

  14. Doxorubicin coupled to lactosaminated albumin: Effects on rats with liver fibrosis and cirrhosis.

    PubMed

    Di Stefano, G; Fiume, L; Domenicali, M; Busi, C; Chieco, P; Kratz, F; Lanza, M; Mattioli, A; Pariali, M; Bernardi, M

    2006-06-01

    The conjugate of doxorubicin with lactosaminated human albumin has the potential of increasing the doxorubicin efficacy in the treatment of hepatocellular carcinomas expressing the asialoglycoprotein receptor. However, coupled doxorubicin also accumulates in the liver, which might damage hepatocytes. To verify whether coupled doxorubicin impairs liver function in rats with liver fibrosis and cirrhosis. Coupled doxorubicin was administered using the same schedule which exerted an antineoplastic effect on rat hepatocellular carcinomas (4-weekly injections of doxorubicin at 1 microg/g). Liver fibrosis/cirrhosis was produced by carbon tetrachloride (CCl4) poisoning. Liver samples were studied histologically. Serum parameters of liver function and viability were determined. In normal rats, administration of coupled doxorubicin neither caused microscopic changes of hepatocytes nor modified serum liver parameters. In rats with fibrosis/cirrhosis, although a selective doxorubicin accumulation within the liver followed coupled doxorubicin administration, the drug did not have a detrimental effect on the histology of the liver and, among serum liver tests, only alanine aminotransferase and aspartate aminotransferase levels were moderately modified. Coupled doxorubicin can be administered to rats with liver fibrosis/cirrhosis without inducing a severe liver damage. If further studies will confirm the efficacy and safety of this compound, coupled doxorubicin therapy may open a new perspective in the treatment of hepatocellular carcinoma.

  15. LIVER TRANSPLANTATION AFTER SEVERE HEPATIC TRAUMA: CURRENT INDICATIONS AND RESULTS

    PubMed Central

    RIBEIRO-JR, Marcelo Augusto Fontenelle; MEDRADO, Melina Botelho; ROSA, Otto Mauro; SILVA, Ana Júlia de Deus; FONTANA, Mariana Prado; CRUVINEL-NETO, José; FONSECA, Alexandre Zanchenko

    2015-01-01

    Background : The liver is the most injured organ in abdominal trauma. Currently, the treatment in most cases is non-operative, but surgery may be necessary in severe abdominal trauma with blunt liver damage, especially those that cause uncontrollable bleeding. Despite the damage control approaches in order to achieve hemodynamic stability, many patients develop hypovolemic shock, acute liver failure, multiple organ failure and death. In this context, liver transplantation appears as the lifesaving last resource Aim : Analyze the use of liver transplantation as a treatment option for severe liver trauma. Methods : Were reviewed 14 articles in the PubMed, Medline and Lilacs databases, selected between 2008-2014 and 10 for this study. Results : Were identified 46 cases undergoing liver transplant after liver trauma; the main trauma mechanism was closed/blunt abdominal trauma in 83%, and severe trauma (>grade IV) in 81 %. The transplant can be done, in this context, performing one-stage procedure (damaged organ removed with immediate transplantation), used in 72% of cases. When the two-stage approach is performed, end-to-side temporary portacaval shunt is provided, until new organ becomes available to be transplanted. If two different periods are considered - from 1980 to 2000 and from 2000 to 2014 - the survival rate increased significantly, from 48% to 76%, while the mortality decreased from 52% to 24%. Conclusion : Despite with quite restricted indications, liver transplantation in hepatic injury is a therapeutic modality viable and feasible today, and can be used in cases when other therapeutic modalities in short and long term, do not provide the patient survival chances. PMID:26734803

  16. [Liver and sport].

    PubMed

    Watelet, J

    2008-11-01

    The liver is a vital organ and plays a central role in energy exchange, protein synthesis as well as the elimination of waste products from the body. Acute and chronic injury may disturb a variety of liver functions to different degrees. Over the last three decades, the effects of physical activity and competitive sport on the liver have been described by various investigators. These include viral hepatitis and drug-induced liver disorders. Herein, we review acute and chronic liver diseases potentially caused by sport. Team physicians, trainers and others, responsible for the health of athletes, should be familiar with the risk factors, clinical features, and consequences of liver diseases that occur in sports.

  17. Orchestrating liver development.

    PubMed

    Gordillo, Miriam; Evans, Todd; Gouon-Evans, Valerie

    2015-06-15

    The liver is a central regulator of metabolism, and liver failure thus constitutes a major health burden. Understanding how this complex organ develops during embryogenesis will yield insights into how liver regeneration can be promoted and how functional liver replacement tissue can be engineered. Recent studies of animal models have identified key signaling pathways and complex tissue interactions that progressively generate liver progenitor cells, differentiated lineages and functional tissues. In addition, progress in understanding how these cells interact, and how transcriptional and signaling programs precisely coordinate liver development, has begun to elucidate the molecular mechanisms underlying this complexity. Here, we review the lineage relationships, signaling pathways and transcriptional programs that orchestrate hepatogenesis. © 2015. Published by The Company of Biologists Ltd.

  18. Spontaneous and induced tolerance for liver transplant recipients.

    PubMed

    Feng, Sandy

    2016-02-01

    Transformative medical and surgical advances have remarkably improved short-term survival after liver transplantation. There is, however, pervasive concern that the cumulative toxicities of modern immunosuppression regimens severely compromise both quality and quantity of life for liver transplant recipients. The inherently tolerogenic nature of the liver offers the tantalizing opportunity to change the current paradigm of nonspecific and lifelong immunosuppression. Safe minimization or discontinuation of immunosuppression without damage to the liver allograft is an attractive strategy to improve long-term survival after liver transplantation. Recent prospective, multicenter clinical trials have demonstrated that immunosuppression can be safely withdrawn from selected liver transplant recipients with preservation of allograft histology. These successes have spurred multiple avenues of investigation to identify peripheral blood and/or tissue biomarkers and delineate mechanisms of tolerance. Concomitant advances in the ability to expand regulatory T cells in the laboratory have spawned clinical trials to facilitate immunosuppression minimization and/or discontinuation. This review will delineate the unique liver immunobiology that has driven the recent clinical trials to unmask spontaneous tolerance or induce tolerance for liver transplant recipients. The emerging results of these trials over the next 5 years hold promise to reduce the burden of lifelong immunosuppression and thereby optimize the long-term health of liver transplant recipients.

  19. Review of liver injury associated with dietary supplements.

    PubMed

    Stickel, Felix; Kessebohm, Kerstin; Weimann, Rosemarie; Seitz, Helmut K

    2011-05-01

    Dietary supplements (DS) are easily available and increasingly used, and adverse hepatic reactions have been reported following their intake. To critically review the literature on liver injury because of DSs, delineating patterns and mechanisms of injury and to increase the awareness towards this cause of acute and chronic liver damage. Studies and case reports on liver injury specifically because of DSs published between 1990 and 2010 were searched in the PubMed and EMBASE data bases using the terms 'dietary/nutritional supplements', 'adverse hepatic reactions', 'liver injury'; 'hepatitis', 'liver failure', 'vitamin A' and 'retinoids', and reviewed for yet unidentified publications. Significant liver injury was reported after intake of Herbalife and Hydroxycut products, tea extracts from Camellia sinensis, products containing usnic acid and high contents of vitamin A, anabolic steroids and others. No uniform pattern of hepatotoxicity has been identified and severity may range from asymptomatic elevations of serum liver enzymes to hepatic failure and death. Exact estimates on how frequent adverse hepatic reactions occur as a result of DSs cannot be provided. Liver injury from DSs mimicking other liver diseases is increasingly recognized. Measures to reduce risk include tighter regulation of their production and distribution and increased awareness of users and professionals of the potential risks. © 2011 John Wiley & Sons A/S.

  20. Acute liver failure.

    PubMed

    Slack, Andy; Wendon, Julia

    2011-06-01

    ALF is a multisystem disorder necessitating both predictive and reactive management strategies to support and protect organs from the initial and subsequent insults encountered. Early referral to a specialist liver centre with the option of liver transplantation is recommended. Furthermore, a good understanding of the poor prognostic variables is necessary to determine those most at risk of developing ALF in order to facilitate timely, safe transfer and listing for liver transplantation.

  1. Robotic liver surgery

    PubMed Central

    Leung, Universe

    2014-01-01

    Robotic surgery is an evolving technology that has been successfully applied to a number of surgical specialties, but its use in liver surgery has so far been limited. In this review article we discuss the challenges of minimally invasive liver surgery, the pros and cons of robotics, the evolution of medical robots, and the potentials in applying this technology to liver surgery. The current data in the literature are also presented. PMID:25392840

  2. [Various pathways leading to the progression of chronic liver diseases].

    PubMed

    Egresi, Anna; Lengyel, Gabriella; Somogyi, Anikó; Blázovics, Anna; Hagymási, Krisztina

    2016-02-21

    As the result of various effects (viruses, metabolic diseases, nutritional factors, toxic agents, autoimmune processes) abnormal liver function, liver steatosis and connective tissue remodeling may develop. Progression of this process is complex including various pathways and a number of factors. The authors summarize the factors involved in the progression of chronic liver disease. They describe the role of cells and the produced inflammatory mediators and cytokines, as well as the relationship between the disease and the intestinal flora. They emphasize the role of oxidative stress, mitochondrial dysfunction and cell death in disease progression. Insulin resistance and micro-elements (iron, copper) in relation to liver damage are also discussed, and genetic and epigenetic aspects underlying disease progression are summarized. Discovery of novel treatment options, assessment of the effectiveness of treatment, as well as the success and proper timing of liver transplantation may depend on a better understanding of the process of disease progression.

  3. Evolving Insights on Metabolism, Autophagy, and Epigenetics in Liver Myofibroblasts.

    PubMed

    Nwosu, Zeribe C; Alborzinia, Hamed; Wölfl, Stefan; Dooley, Steven; Liu, Yan

    2016-01-01

    Liver myofibroblasts (MFB) are crucial mediators of extracellular matrix (ECM) deposition in liver fibrosis. They arise mainly from hepatic stellate cells (HSCs) upon a process termed "activation." To a lesser extent, and depending on the cause of liver damage, portal fibroblasts, mesothelial cells, and fibrocytes may also contribute to the MFB population. Targeting MFB to reduce liver fibrosis is currently an area of intense research. Unfortunately, a clog in the wheel of antifibrotic therapies is the fact that although MFB are known to mediate scar formation, and participate in liver inflammatory response, many of their molecular portraits are currently unknown. In this review, we discuss recent understanding of MFB in health and diseases, focusing specifically on three evolving research fields: metabolism, autophagy, and epigenetics. We have emphasized on therapeutic prospects where applicable and mentioned techniques for use in MFB studies. Subsequently, we highlighted uncharted territories in MFB research to help direct future efforts aimed at bridging gaps in current knowledge.

  4. Spaceflight Activates Lipotoxic Pathways in Mouse Liver

    PubMed Central

    Jonscher, Karen R.; Alfonso-Garcia, Alba; Suhalim, Jeffrey L.; Orlicky, David J.; Potma, Eric O.; Ferguson, Virginia L.; Bouxsein, Mary L.; Bateman, Ted A.; Stodieck, Louis S.; Levi, Moshe; Friedman, Jacob E.; Gridley, Daila S.; Pecaut, Michael J.

    2016-01-01

    Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease. PMID:27097220

  5. Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Liu, Xin; Burczynski, Frank J.; Fletcher, Linda M.; Gobe, Glenda C.; Roberts, Michael S.

    2011-11-01

    Ischemia-reperfusion (I/R) injury is a common occurrence in liver surgery. In orthotopic transplantation, the donor liver is exposed to periods of ischemia and when oxygenated blood is reintroduced to the liver, oxidative stress may develop and lead to graft failure. The aim of this project was to investigate whether noninvasive multiphoton and fluorescence lifetime imaging microscopy, without external markers, were useful in detecting early liver damage caused by I/R injury. Localized hepatic ischemia was induced in rats for 1 h followed by 4 h reperfusion. Multiphoton and fluorescence lifetime imaging microscopy was conducted prior to ischemia and up to 4 h of reperfusion and compared to morphological and biochemical assessment of liver damage. Liver function was significantly impaired at 2 and 4 h of reperfusion. Multiphoton microscopy detected liver damage at 1 h of reperfusion, manifested by vacuolated cells and heterogeneous spread of damage over the liver. The damage was mainly localized in the midzonal region of the liver acinus. In addition, fluorescence lifetime imaging showed a decrease in cellular metabolic activity. Multiphoton and fluorescence lifetime imaging microscopy detected evidence of early I/R injury both structurally and functionally. This provides a simple noninvasive technique useful for following progressive liver injury without external markers.

  6. Autoimune liver disease panel

    MedlinePlus

    ... liver cirrhosis or chronic active hepatitis. Risks Slight risks from having blood drawn include: Excessive bleeding Fainting or feeling lightheaded Hematoma (blood accumulating under the skin) Infection ( ...

  7. Adipokines in Liver Cirrhosis.

    PubMed

    Buechler, Christa; Haberl, Elisabeth M; Rein-Fischboeck, Lisa; Aslanidis, Charalampos

    2017-06-29

    Liver fibrosis can progress to cirrhosis, which is considered a serious disease. The Child-Pugh score and the model of end-stage liver disease score have been established to assess residual liver function in patients with liver cirrhosis. The development of portal hypertension contributes to ascites, variceal bleeding and further complications in these patients. A transjugular intrahepatic portosystemic shunt (TIPS) is used to lower portal pressure, which represents a major improvement in the treatment of patients. Adipokines are proteins released from adipose tissue and modulate hepatic fibrogenesis. These proteins affect various biological processes that are involved in liver function, including angiogenesis, vasodilation, inflammation and deposition of extracellular matrix proteins. The best studied adipokines are adiponectin and leptin. Adiponectin protects against hepatic inflammation and fibrogenesis, and leptin functions as a profibrogenic factor. These and other adipokines are supposed to modulate disease severity in patients with liver cirrhosis. Consequently, circulating levels of these proteins have been analyzed to identify associations with parameters of hepatic function, portal hypertension and its associated complications in patients with liver cirrhosis. This review article briefly addresses the role of adipokines in hepatitis and liver fibrosis. Here, studies having analyzed these proteins in systemic blood in cirrhotic patients are listed to identify adipokines that are comparably changed in the different cohorts of patients with liver cirrhosis. Some studies measured these proteins in systemic, hepatic and portal vein blood or after TIPS to specify the tissues contributing to circulating levels of these proteins and the effect of portal hypertension, respectively.

  8. Adipokines in Liver Cirrhosis

    PubMed Central

    Haberl, Elisabeth M.; Rein-Fischboeck, Lisa; Aslanidis, Charalampos

    2017-01-01

    Liver fibrosis can progress to cirrhosis, which is considered a serious disease. The Child-Pugh score and the model of end-stage liver disease score have been established to assess residual liver function in patients with liver cirrhosis. The development of portal hypertension contributes to ascites, variceal bleeding and further complications in these patients. A transjugular intrahepatic portosystemic shunt (TIPS) is used to lower portal pressure, which represents a major improvement in the treatment of patients. Adipokines are proteins released from adipose tissue and modulate hepatic fibrogenesis. These proteins affect various biological processes that are involved in liver function, including angiogenesis, vasodilation, inflammation and deposition of extracellular matrix proteins. The best studied adipokines are adiponectin and leptin. Adiponectin protects against hepatic inflammation and fibrogenesis, and leptin functions as a profibrogenic factor. These and other adipokines are supposed to modulate disease severity in patients with liver cirrhosis. Consequently, circulating levels of these proteins have been analyzed to identify associations with parameters of hepatic function, portal hypertension and its associated complications in patients with liver cirrhosis. This review article briefly addresses the role of adipokines in hepatitis and liver fibrosis. Here, studies having analyzed these proteins in systemic blood in cirrhotic patients are listed to identify adipokines that are comparably changed in the different cohorts of patients with liver cirrhosis. Some studies measured these proteins in systemic, hepatic and portal vein blood or after TIPS to specify the tissues contributing to circulating levels of these proteins and the effect of portal hypertension, respectively. PMID:28661458

  9. Silybin and the liver: From basic research to clinical practice

    PubMed Central

    Loguercio, Carmela; Festi, Davide

    2011-01-01

    Herbal products are increasingly used, mainly in chronic liver disease. Extracts of milk thistle, Silymarin and silybin, are the most prescribed natural compounds, with different indications, but with no definitive results in terms of clinical efficacy. This review analyzes the available studies on the effects of the purified product silybin, both as a free and a conjugated molecule, on liver cells or on experimentally induced liver damage, and in patients with liver disease. We searched PUBMED for articles pertaining to the in vitro and in vivo effects of silybin, its antifibrotic, anti-inflammatory, and antioxidant properties, as well as its metabolic effects, combined with the authors’ own knowledge of the literature. Results indicate that the bioavailability of silybin phytosome is higher than that of silymarin and is less influenced by liver damage; silybin does not show significant interactions with other drugs and at doses < 10 g/d has no significant side effects. Experimental studies have clearly demonstrated the antifibrotic, antioxidant and metabolic effects of silybin; previous human studies were insufficient for confirming the clinical efficacy in chronic liver disease, while ongoing clinical trials are promising. On the basis of literature data, silybin seems a promising drug for chronic liver disease. PMID:21633595

  10. Nonalcoholic fatty liver disease, association with cardiovascular disease and treatment (II). The treatment of nonalcoholic fatty liver disease.

    PubMed

    Brea, Ángel; Pintó, Xavier; Ascaso, Juan F; Blasco, Mariano; Díaz, Ángel; González-Santos, Pedro; Hernández-Mijares, Antonio; Mantilla, Teresa; Millán, Jesús; Pedro-Botet, Juan

    Disease nonalcoholic fatty liver disease (NAFLD) comprises a series of histologically similar to those induced by alcohol consumption in people with very little or no liver damage same. The importance of NAFLD is its high prevalence in our Western societies, from the point of view liver in its progressive evolution from steatosis to steatohepatitis, cirrhosis and liver cancer. During the last decade it has been observed that NAFLD leads to an increased cardiovascular risk with accelerated atherosclerosis and cardiovascular events, the leading cause of morbidity and mortality. This updated January 2016 revision consists of two parts. In this second part, the treatment of NAFLD and its influence on cardiovascular disease and drugs used in the control of cardiovascular risk factors showing a beneficial effect on the liver disease will be reviewed. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Obstructive sleep apnea is associated with fatty liver and abnormal liver enzymes: a meta-analysis.

    PubMed

    Sookoian, Silvia; Pirola, Carlos J

    2013-11-01

    Obstructive sleep apnea (OSA) is associated with the cluster of clinical conditions that comprise the metabolic syndrome, including nonalcoholic fatty liver disease (NAFLD). Our primary purpose was to estimate the effect of OSA on serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Our secondary purpose was to investigate the potential influence of OSA on histological severity of NAFLD to explore whether chronic intermittent hypoxia is associated with inflammation and fibrosis. Our literature search identified 11 studies, from which we extracted information about numbers of control subjects and OSA patients, and ALT, AST, and NAFLD. From a total of 668 OSA patients and 404 controls, we found that the standardized difference in mean values of ALT and AST levels in patients with OSA was significantly different from that in the controls. Meta-regression showed that the association was independent of body mass index and type 2 diabetes. Fatty liver was associated with OSA in five studies with 400 subjects. OSA was significantly associated with liver fibrosis in 208 subjects, but not with lobular inflammation. Routine assessment of liver enzymes and liver damage should be implemented in OSA patients because they have an increase of 13.3% of ALT and 4.4% of AST levels, and a 2.6-fold higher risk of liver fibrosis when they have NAFLD, which is 2.6 times more frequent in OSA patients.

  12. [Liver involvement in coeliac disease].

    PubMed

    Riestra, S; Fernández, E; Rodrigo, L

    1999-12-01

    Coeliac disease is a gluten-sensitive enteropathy in which, genetic, immunologic and environmental factors are implied. Several extradigestive diseases have been described in association with coeliac disease, which share most of the times an immunologic mechanism. The liver is damaged in coeliac disease, and it has been considered by some authors as an extraintestinal manifestation of the disease. In the present revision we discuss the different hepatic diseases related with the coeliac disease, as well as the best approach to diagnosis and therapy of choice. At diagnosis, it is very frequent to find an asymptomatic hipertransaminasemia, which frequently disappears after gluten suppression; the morphological substratum found in this alteration is a non-specific reactive hepatitis in the majority of cases. Coeliac disease is a demonstrated cause of cryptogenic hipertransaminasemia. In a small percentage of patient with coeliac disease an association has been found with other immunological liver diseases, such as primary biliary cirrhosis, primary sclerosing cholangitis and autoimmune hepatitis. Few studies exist that include a large number of patient, and the results on occasions are discordant. Nevertheless, the strongest association is with autoimmune hepatitis and with primary biliary cirrhosis. Several communications of isolated cases of rare hepatic diseases, which probably, only reflect a fortuitous association, have been cited in the literature.

  13. Echinococcosis of the Liver

    DTIC Science & Technology

    2007-03-01

    and 1b. The lack of internal enhancement confirms the cystic nature of these lesions. Discussion Echinococcosis , also known as Hydatid disease... Echinococcosis of the Liver Radiology Corner Echinococcosis of the Liver Guarantor...abbreviated answer in the March 2007 issue. 1 Echinococcosis is a parasitic infection that poses a potential health threat to military members and

  14. Cod Liver Oil

    MedlinePlus

    Cod liver oil contains certain "fatty acids" that prevent the blood from clotting easily. These fatty acids also reduce pain and swelling. ... Morue, Huile de Poisson, Liver Oil, N-3 Fatty Acids, Omega 3, Oméga 3, Omega 3 Fatty Acids, ...

  15. Living Donor Liver Transplantation

    MedlinePlus

    ... What are Some Benefits of a Living-donor Liver Transplant? In the U.S., more than 17,500 patients ... 1,700 patients die each year while waiting. Liver transplants are given to patients on the basis of ...

  16. Decoding cell death signals in liver inflammation.

    PubMed

    Brenner, Catherine; Galluzzi, Lorenzo; Kepp, Oliver; Kroemer, Guido

    2013-09-01

    Inflammation can be either beneficial or detrimental to the liver, depending on multiple factors. Mild (i.e., limited in intensity and destined to resolve) inflammatory responses have indeed been shown to exert consistent hepatoprotective effects, contributing to tissue repair and promoting the re-establishment of homeostasis. Conversely, excessive (i.e., disproportionate in intensity and permanent) inflammation may induce a massive loss of hepatocytes and hence exacerbate the severity of various hepatic conditions, including ischemia-reperfusion injury, systemic metabolic alterations (e.g., obesity, diabetes, non-alcoholic fatty liver disorders), alcoholic hepatitis, intoxication by xenobiotics and infection, de facto being associated with irreversible liver damage, fibrosis, and carcinogenesis. Both liver-resident cells (e.g., Kupffer cells, hepatic stellate cells, sinusoidal endothelial cells) and cells that are recruited in response to injury (e.g., monocytes, macrophages, dendritic cells, natural killer cells) emit pro-inflammatory signals including - but not limited to - cytokines, chemokines, lipid messengers, and reactive oxygen species that contribute to the apoptotic or necrotic demise of hepatocytes. In turn, dying hepatocytes release damage-associated molecular patterns that-upon binding to evolutionary conserved pattern recognition receptors-activate cells of the innate immune system to further stimulate inflammatory responses, hence establishing a highly hepatotoxic feedforward cycle of inflammation and cell death. In this review, we discuss the cellular and molecular mechanisms that account for the most deleterious effect of hepatic inflammation at the cellular level, that is, the initiation of a massive cell death response among hepatocytes. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  17. Ultrastructural liver changes in the experimental thyrotoxicosis.

    PubMed

    Pasyechko, Nadiya Vasylivna; Kuleshko, Iryna Ihorivna; Kulchinska, Veronika Mykolaiivna; Naumova, Liudmyla Valeriivna; Smachylo, Iryna Volodymyrivna; Bob, Anzhela Olehivna; Radetska, Liudmyla Volodymyrivna; Havryliuk, Mykhailo Yevhenovych; Sopel, Olha Mykolaiivna; Mazur, Liudmyla Petrivna

    Aim of the study is to evaluate ultrastructural changes of rat liver in experimental thyrotoxicosis. For the study, 36 male rats have been utilized, weighing approximately 150-190 g, which were divided into three groups: the first, control group (12 animals) was composed of healthy rats that received intragastric sodium chloride 0.9% solution, the second group (12 animals) - animals with experimental thyrotoxicosis, which received intragastric solution of L-thyroxine at the rate of 200 μg/kg for 2 weeks, and the third group (12 animals) - rats with experimental thyrotoxicosis, which received intragastric solution of L-thyroxine at the rate of 200 μg/kg for 4 weeks. For electron-microscopic studies small pieces of liver tissue were taken at the end of the 2nd and 4th weeks of the experiment. The material was studied and documented in electron micrographs by using a TEM-125K electron microscope. In experiment in white male rats the electron-microscopic state of the liver in thyrotoxicosis has been studied. It has been established that thyrotoxicosis is accompanied by the significant changes of the hepatocytes ultrastructure, blood and bile capillaries. Experimental thyrotoxicosis causes significant damage of the liver plasma membranes and intracellular structural components of hepatocytes and endothelial cells. In experimental thyrotoxicosis, on the background of microcirculatory disorders, significant damage of plasmatic and intracellular organoid membranes of hepatocytes in the liver develops, which has an adverse effect on the functionality of the organ. The found ultrastructural changes are aggravated depending on the duration of thyrotoxicosis.

  18. Panhypopituitarism due to Absence of the Pituitary Stalk: A Rare Aetiology of Liver Cirrhosis.

    PubMed

    Gonzalez Rozas, Marta; Hernanz Roman, Lidia; Gonzalez, Diego Gonzalez; Pérez-Castrillón, José Luis

    2016-01-01

    Studies have established a relationship between hypothalamic-pituitary dysfunction and the onset of liver damage, which may occasionally progress to cirrhosis. Patients with hypopituitarism can develop a metabolic syndrome-like phenotype. Insulin resistance is the main pathophysiological axis of metabolic syndrome and is the causal factor in the development of nonalcoholic fatty liver disease (NAFLD). We present the case of a young patient with liver cirrhosis of unknown aetiology that was finally attributed to panhypopituitarism.

  19. Panhypopituitarism due to Absence of the Pituitary Stalk: A Rare Aetiology of Liver Cirrhosis

    PubMed Central

    Gonzalez Rozas, Marta; Hernanz Roman, Lidia; Gonzalez, Diego Gonzalez; Pérez-Castrillón, José Luis

    2016-01-01

    Studies have established a relationship between hypothalamic-pituitary dysfunction and the onset of liver damage, which may occasionally progress to cirrhosis. Patients with hypopituitarism can develop a metabolic syndrome-like phenotype. Insulin resistance is the main pathophysiological axis of metabolic syndrome and is the causal factor in the development of nonalcoholic fatty liver disease (NAFLD). We present the case of a young patient with liver cirrhosis of unknown aetiology that was finally attributed to panhypopituitarism. PMID:27213061

  20. Heparanase and macrophage interplay in the onset of liver fibrosis.

    PubMed

    Secchi, Maria Francesca; Crescenzi, Marika; Masola, Valentina; Russo, Francesco Paolo; Floreani, Annarosa; Onisto, Maurizio

    2017-11-02

    The heparan sulfate endoglycosidase heparanase (HPSE) is involved in tumor growth, chronic inflammation and fibrosis. Since a role for HPSE in chronic liver disease has not been demonstrated to date, the current study was aimed at investigating the involvement of HPSE in the pathogenesis of chronic liver injury. Herein, we revealed that HPSE expression increased in mouse livers after carbon tetrachloride (CCl 4 )-mediated chronic induction of fibrosis, but with a trend to decline during progression of the disease. In mouse fibrotic liver tissues HPSE immunostaining was restricted in necro-inflammatory areas, co-localizing with F4/80 macrophage marker and TNF-α. TNF-α treatment induced HPSE expression as well as HPSE secretion in U937 macrophages. Moreover, macrophage-secreted HPSE regulated the expression of α-SMA and fibronectin in hepatic stellate LX-2 cells. Finally, HPSE activity increased in the plasma of patients with liver fibrosis but it inversely correlated with liver stiffness. Our results suggest the involvement of HPSE in early phases of reaction to liver damage and inflammatory macrophages as an important source of HPSE. HPSE seems to play a key role in the macrophage-mediated activation of hepatic stellate cells (HSCs), thus suggesting that HPSE targeting could be a new therapeutic option in the treatment of liver fibrosis.

  1. Non-alcoholic Fatty Liver Disease (NAFLD)--A Review.

    PubMed

    Karim, M F; Al-Mahtab, M; Rahman, S; Debnath, C R

    2015-10-01

    Non-alcoholic fatty liver disease (NAFLD) is an emerging problem in Hepatology clinics. It is closely related to the increased frequency of overweight or obesity. It has recognised association with metabolic syndrome. Central obesity, diabetes mellitus, dyslipidemia are commonest risk factors. Association with hepatitis C genotype 3 is also recognised. NAFLD is an important cause of cyptogenic cirrhosis of liver. It affects all populations and all age groups. Most patients with NAFLD are asymptomatic or vague upper abdominal pain. Liver function tests are mostly normal or mild elevation of aminotranferases. Histological features almost identical to those of alcohol-induced liver damage and can range from mild steatosis to cirrhosis. Two hit hypothesis is prevailing theory for the development of NAFLD. Diagnosis is usually made by imaging tools like ultrasonogram which reveal a bright liver while liver biopsy is gold standard for diagnosis as well as differentiating simple fatty liver and non-alcoholic steatohepatitis (NASH). Prognosis is variable. Simple hepatic steatosis generally has a benign long-term prognosis. However, one to two third of NASH progress to fibrosis or cirrhosis and may have a similar prognosis as cirrhosis from other liver diseases. Treatment is mostly control of underlying disorders and dietary advice, exercise, insulin sensitizers, antioxidants, or cytoprotective agents. The prevalence of NAFLD is increasing. So it needs more research to address this problem.

  2. Alpha-1-antitrypsin phenotypes in adult liver disease patients

    PubMed Central

    Alempijevic, Tamara; Milutinovic, Aleksandra Sokic; Kovacevic, Nada

    2009-01-01

    Alpha-1-antitrypsin (AAT) is an important serine protease inhibitor in humans. Hereditary alpha-1-antitrypsin deficiency (AATD) affects lungs and liver. Liver disease caused by AATD in paediatric patients has been previously well documented. However, the association of liver disease with alpha-1-antitrypsin gene polymorphisms in adults is less clear. Therefore, we aimed to study AAT polymorphisms in adults with liver disease. We performed a case-control study. AAT polymorphisms were investigated by isoelectric focusing in 61 patients with liver cirrhosis and 9 patients with hepatocellular carcinoma. The control group consisted of 218 healthy blood donors. A significant deviation of observed and expected frequency of AAT phenotypes from Hardy-Weinberg equilibrium (chi-square = 34.77, df 11, P = 0.000) in the patient group was caused by a higher than expected frequency of Pi ZZ homozygotes (f = 0.0143 and f = 0.0005, respectively, P = 0.000). In addition, Pi M homozygotes were more frequent in patients than in controls (63% and 46%, respectively, P = 0.025). Our study results show that Pi ZZ homozygosity in adults could be associated with severe liver disease. Presence of Pi M homozygosity could be associated with liver disease via some mechanism different from Z allele-induced liver damage through accumulation of AAT polymers. PMID:19961268

  3. Moro orange juice prevents fatty liver in mice.