Science.gov

Sample records for a-induced liver damage

  1. Ochratoxin A induces oxidative DNA damage in liver and kidney after oral dosing to rats.

    PubMed

    Kamp, Hennicke G; Eisenbrand, Gerhard; Janzowski, Christine; Kiossev, Jetchko; Latendresse, John R; Schlatter, Josef; Turesky, Robert J

    2005-12-01

    The nephrotoxic/carcinogenic mycotoxin ochratoxin A (OTA) occurs as a contaminant in food and feed and may be linked to human endemic Balkan nephropathy. The mechanism of OTA-derived carcinogenicity is still under debate, since reactive metabolites of OTA and DNA adducts have not been unambiguously identified. Oxidative DNA damage, however, has been observed in vitro after incubation of mammalian cells with OTA. In this study, we investigated whether OTA induces oxidative DNA damage in vivo as well. Male F344 rats were dosed with 0, 0.03, 0.1, 0.3 mg/kg bw per day OTA for 4 wk (gavage, 7 days/wk, five animals per dose group). Subsequently, oxidative DNA damage was determined in liver and kidney by the comet assay (single cell gel electrophoresis) with/without use of the repair enzyme formamido-pyrimidine-DNA-glycosylase (FPG). The administration of OTA had no effect on basic DNA damage (determined without FPG); however, OTA-mediated oxidative damage was detected with FPG treatment in kidney and liver DNA of all dose groups. Since the doses were in a range that had caused kidney tumors in a 2-year carcinogenicity study with rats, the oxidative DNA damage induced by OTA may help to explain its mechanism of carcinogenicity. For the selective induction of tumors in the kidney, increased oxidative stress in connection with severe cytotoxicity and increased cell proliferation might represent driving factors. PMID:16302199

  2. Mechanisms of Diabetes-Induced Liver Damage

    PubMed Central

    Mohamed, Jamaludin; Nazratun Nafizah, A. H.; Zariyantey, A. H.; Budin, S. B.

    2016-01-01

    Diabetes mellitus is a non-communicable disease that occurs in both developed and developing countries. This metabolic disease affects all systems in the body, including the liver. Hyperglycaemia, mainly caused by insulin resistance, affects the metabolism of lipids, carbohydrates and proteins and can lead to non-alcoholic fatty liver disease, which can further progress to non-alcoholic steatohepatitis, cirrhosis and, finally, hepatocellular carcinomas. The underlying mechanism of diabetes that contributes to liver damage is the combination of increased oxidative stress and an aberrant inflammatory response; this activates the transcription of pro-apoptotic genes and damages hepatocytes. Significant involvement of pro-inflammatory cytokines—including interleukin (IL)-1β, IL-6 and tumour necrosis factor-α—exacerbates the accumulation of oxidative damage products in the liver, such as malondialdehyde, fluorescent pigments and conjugated dienes. This review summarises the biochemical, histological and macromolecular changes that contribute to oxidative liver damage among diabetic individuals. PMID:27226903

  3. Angelica sinensis polysaccharide attenuates concanavalin A-induced liver injury in mice.

    PubMed

    Wang, Kaiping; Song, Zhizhen; Wang, Hongjing; Li, Qiang; Cui, Zheng; Zhang, Yu

    2016-02-01

    Angelica sinensis polysaccharide (ASP), extracted from the roots of A. sinensis (Oliv.) Diels, is a β-D-pyranoid polysaccharide with an average molecular weight of 72,900 Da. In this study, we investigated the protective effects of ASP against concanavalin A-induced liver failure and the underlying mechanisms. Concentrations of ASP ranging from 5 to 125 μg/mL could inhibit concanavalin A (ConA)-induced lymphoproliferative response. The potential hepatoprotective activity of ASP was demonstrated by the significant decrease in serum transaminase (ALT and AST) levels and the attenuation of liver inflammation damage exhibited by H&E stain of the liver. Furthermore, ASP pretreatment significantly decreased proinflammatory cytokines (TNF-α, IFN-γ, IL-2 and IL-6) and alleviated oxidative stress by reducing MDA and ROS levels and by enhancing SOD activity after ConA administration in mice. Results of Western blot analysis indicated that ASP attenuated Caspase-3-dependent apoptosis by Caspase-8 and JNK-mediated pathway and inhibited the activation of IL-6/STAT3 and NF-κB signaling pathways in ConA-induced liver damage in mice. In conclusion, ASP pretreatment could attenuate concanavalin A-induced liver injury through its anti-inflammatory and anti-oxidant actions in mice. PMID:26741264

  4. Careful: Acetaminophen in Pain Relief Medicines Can Cause Liver Damage

    MedlinePlus

    ... Careful: Acetaminophen in pain relief medicines can cause liver damage Share Tweet Linkedin Pin it More sharing ... word or may have the abbreviation "APAP." Severe liver damage may occur and may lead to death ...

  5. Tonsil-derived mesenchymal stem cells alleviate concanavalin A-induced acute liver injury.

    PubMed

    Ryu, Kyung-Ha; Kim, So-Yeon; Kim, Ye-Ryung; Woo, So-Youn; Sung, Sun Hee; Kim, Han Su; Jung, Sung-Chul; Jo, Inho; Park, Joo-Won

    2014-08-01

    Acute liver failure, the fatal deterioration of liver function, is the most common indication for emergency liver transplantation, and drug-induced liver injury and viral hepatitis are frequent in young adults. Stem cell therapy has come into the limelight as a potential therapeutic approach for various diseases, including liver failure and cirrhosis. In this study, we investigated therapeutic effects of tonsil-derived mesenchymal stem cells (T-MSCs) in concanavalin A (ConA)- and acetaminophen-induced acute liver injury. ConA-induced hepatitis resembles viral and immune-mediated hepatic injury, and acetaminophen overdose is the most frequent cause of acute liver failure in the United States and Europe. Intravenous administration of T-MSCs significantly reduced ConA-induced hepatic toxicity, but not acetaminophen-induced liver injury, affirming the immunoregulatory capacity of T-MSCs. T-MSCs were successfully recruited to damaged liver and suppressed inflammatory cytokine secretion. T-MSCs expressed high levels of galectin-1 and -3, and galectin-1 knockdown which partially diminished interleukin-2 and tumor necrosis factor α secretion from cultured T-cells. Galectin-1 knockdown in T-MSCs also reversed the protective effect of T-MSCs on ConA-induced hepatitis. These results suggest that galectin-1 plays an important role in immunoregulation of T-MSCs, which contributes to their protective effect in immune-mediated hepatitis. Further, suppression of T-cell activation by frozen and thawed T-MSCs implies great potential of T-MSC banking for clinical utilization in immune-mediated disease. PMID:24954408

  6. Methamphetamine causes acute hyperthermia-dependent liver damage.

    PubMed

    Halpin, Laura E; Gunning, William T; Yamamoto, Bryan K

    2013-10-01

    Methamphetamine-induced neurotoxicity has been correlated with damage to the liver but this damage has not been extensively characterized. Moreover, the mechanism by which the drug contributes to liver damage is unknown. This study characterizes the hepatocellular toxicity of methamphetamine and examines if hyperthermia contributes to this liver damage. Livers from methamphetamine-treated rats were examined using electron microscopy and hematoxylin and eosin staining. Methamphetamine increased glycogen stores, mitochondrial aggregation, microvesicular lipid, and hydropic change. These changes were diffuse throughout the hepatic lobule, as evidenced by a lack of hematoxylin and eosin staining. To confirm if these changes were indicative of damage, serum aspartate and alanine aminotransferase were measured. The functional significance of methamphetamine-induced liver damage was also examined by measuring plasma ammonia. To examine the contribution of hyperthermia to this damage, methamphetamine-treated rats were cooled during and after drug treatment by cooling their external environment. Serum aspartate and alanine aminotransferase, as well as plasma ammonia were increased concurrently with these morphologic changes and were prevented when methamphetamine-induced hyperthermia was blocked. These findings support that methamphetamine produces changes in hepatocellular morphology and damage persisting for at least 24 h after drug exposure. At this same time point, methamphetamine treatment significantly increases plasma ammonia concentrations, consistent with impaired ammonia metabolism and functional liver damage. Methamphetamine-induced hyperthermia contributes significantly to the persistent liver damage and increases in peripheral ammonia produced by the drug. PMID:25505562

  7. Methamphetamine causes acute hyperthermia-dependent liver damage

    PubMed Central

    Halpin, Laura E; Gunning, William T; Yamamoto, Bryan K

    2013-01-01

    Methamphetamine-induced neurotoxicity has been correlated with damage to the liver but this damage has not been extensively characterized. Moreover, the mechanism by which the drug contributes to liver damage is unknown. This study characterizes the hepatocellular toxicity of methamphetamine and examines if hyperthermia contributes to this liver damage. Livers from methamphetamine-treated rats were examined using electron microscopy and hematoxylin and eosin staining. Methamphetamine increased glycogen stores, mitochondrial aggregation, microvesicular lipid, and hydropic change. These changes were diffuse throughout the hepatic lobule, as evidenced by a lack of hematoxylin and eosin staining. To confirm if these changes were indicative of damage, serum aspartate and alanine aminotransferase were measured. The functional significance of methamphetamine-induced liver damage was also examined by measuring plasma ammonia. To examine the contribution of hyperthermia to this damage, methamphetamine-treated rats were cooled during and after drug treatment by cooling their external environment. Serum aspartate and alanine aminotransferase, as well as plasma ammonia were increased concurrently with these morphologic changes and were prevented when methamphetamine-induced hyperthermia was blocked. These findings support that methamphetamine produces changes in hepatocellular morphology and damage persisting for at least 24 h after drug exposure. At this same time point, methamphetamine treatment significantly increases plasma ammonia concentrations, consistent with impaired ammonia metabolism and functional liver damage. Methamphetamine-induced hyperthermia contributes significantly to the persistent liver damage and increases in peripheral ammonia produced by the drug. PMID:25505562

  8. Oxidative Stress and Liver Morphology in Experimental Cyclosporine A-Induced Hepatotoxicity

    PubMed Central

    Czechowska, Grażyna; Irla-Miduch, Joanna

    2016-01-01

    Cyclosporine A is an immunosuppressive drug used after organ's transplantation. The adverse effects on such organs as kidney or liver may limit its use. Oxidative stress is proposed as one of the mechanisms of organs injury. The study was designed to elucidate CsA-induced changes in liver function, morphology, oxidative stress parameters, and mitochondria in rat's hepatocytes. Male Wistar rats were used: group A (control) receiving physiological saline, group B cyclosporine A in a dose of 15 mg/kg/day subcutaneously, and group C the CsA-vehicle (olive oil). On the 28th day rats were anesthetized. The following biochemical changes were observed in CsA-treated animals: increased levels of ALT, AST, and bilirubin in the serum, statistically significant changes in oxidative stress parameters, and lipid peroxidation products in the liver supernatants: MDA+4HAE, GSH, GSSG, caspase 3 activity, and ADP/ATP, NAD+/NADH, and NADP+/NADPH ratios. Microscopy of the liver revealed congestion, sinusoidal dilatation, and focal hepatocytes necrosis with mononuclear cell infiltration. Electron microscope revealed marked mitochondrial damage. Biochemical studies indicated that CsA treatment impairs liver function and triggers oxidative stress and redox imbalance in rats hepatocytes. Changes of oxidative stress markers parallel with mitochondrial damage suggest that these mechanisms play a crucial role in the course of CsA hepatotoxicity. PMID:27298826

  9. Human Ex-Vivo Liver Model for Acetaminophen-induced Liver Damage

    PubMed Central

    Schreiter, Thomas; Sowa, Jan-Peter; Schlattjan, Martin; Treckmann, Jürgen; Paul, Andreas; Strucksberg, Karl-Heinz; Baba, Hideo A.; Odenthal, Margarete; Gieseler, Robert K.; Gerken, Guido; Arteel, Gavin E.; Canbay, Ali

    2016-01-01

    Reliable test systems to identify hepatotoxicity are essential to predict unexpected drug-related liver injury. Here we present a human ex-vivo liver model to investigate acetaminophen-induced liver injury. Human liver tissue was perfused over a 30 hour period with hourly sampling from the perfusate for measurement of general metabolism and clinical parameters. Liver function was assessed by clearance of indocyanine green (ICG) at 4, 20 and 28 hours. Six pieces of untreated human liver specimen maintained stable liver function over the entire perfusion period. Three liver sections incubated with low-dose acetaminophen revealed strong damage, with ICG half-lives significantly higher than in non-treated livers. In addition, the release of microRNA-122 was significantly higher in acetaminophen-treated than in non-treated livers. Thus, this model allows for investigation of hepatotoxicity in human liver tissue upon applying drug concentrations relevant in patients. PMID:27550092

  10. Connexins and pannexins in liver damage.

    PubMed

    Crespo Yanguas, Sara; Willebrords, Joost; Maes, Michaël; da Silva, Tereza Cristina; Veloso Alves Pereira, Isabel; Cogliati, Bruno; Zaidan Dagli, Maria Lucia; Vinken, Mathieu

    2016-01-01

    Connexins and pannexins are key players in the control of cellular communication and thus in the maintenance of tissue homeostasis. Inherent to this function these proteins are frequently involved in pathological processes. The present paper reviews the role of connexins and pannexins in liver toxicity and disease. As they act both as sensors and effectors in these deleterious events connexins and pannexins could represent a set of novel clinical diagnostic biomarkers and drug targets. PMID:27065778

  11. Connexins and pannexins in liver damage

    PubMed Central

    Crespo Yanguas, Sara; Willebrords, Joost; Maes, Michaël; da Silva, Tereza Cristina; Veloso Alves Pereira, Isabel; Cogliati, Bruno; Zaidan Dagli, Maria Lucia; Vinken, Mathieu

    2016-01-01

    Connexins and pannexins are key players in the control of cellular communication and thus in the maintenance of tissue homeostasis. Inherent to this function these proteins are frequently involved in pathological processes. The present paper reviews the role of connexins and pannexins in liver toxicity and disease. As they act both as sensors and effectors in these deleterious events connexins and pannexins could represent a set of novel clinical diagnostic biomarkers and drug targets. PMID:27065778

  12. Using multiphoton fluorescence lifetime imaging to characterize liver damage and fluorescein disposition in liver in vivo

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Studier, Hauke; Crawford, Darrell; Roberts, Michael S.

    2016-03-01

    Liver disease is the fifth most common cause of death and unlike many other major causes of mortality, liver disease rates are increasing rather than decreasing. There is no ideal measurement of liver disease and although biopsies are the gold standard, this only allows for a spot examination and cannot follow dynamic processes of the liver. Intravital imaging has the potential to extract detailed information over a larger sampling area continuously. The aim of this project was to investigate whether multiphoton and fluorescence lifetime imaging microscopy could detect early liver damage and to assess whether it could detect changes in metabolism of fluorescein in normal and diseased livers. Four experimental groups were used in this study: 1) control; 2) ischemia reperfusion injury; 3) steatosis and 4) steatosis with ischemia reperfusion injury. Results showed that multiphoton microscopy could visualize morphological changes such as decreased fluorescence of endogenous fluorophores and the presence of lipid droplets, characteristic of steatosis. Fluorescence lifetime imaging microscopy showed increase in NADPH in steatosis with and without ischemia reperfusion injury and could detect changes in metabolism of fluorescein to fluorescein monoglurcuronide, which was impaired in steatosis with ischemia reperfusion injury. These results concluded that the combination of multiphoton microscopy and fluorescence lifetime imaging is a promising method of assessing early stage liver damage and that it can be used to study changes in drug metabolism in the liver as an indication of liver disease and has the potential to replace the traditional static liver biopsy currently used.

  13. Effects of flavonoids on sphingolipid turnover in the toxin-damaged liver and liver cells

    PubMed Central

    Babenko, Nataliya A; Shakhova, Elena G

    2008-01-01

    Background The ceramide generation is an early event in the apoptotic response to numerous stimuli including the oxidative stress and ceramide analogs mimic the stress effect and induce apoptosis. Flavonoids of German chamomile are reported to exhibit the hepatoprotective effect. Flavonoids affect sphingolipid metabolism and reduce the elevated ceramide level in the aged liver. In the present paper, the ceramide content and production in the CCl4- and ethanol-treated liver and hepatocytes as well as the correction of sphingolipid metabolism in the damaged liver using the mixture of German chamomile flavonoids (chamiloflan) or apigenin-7-glucoside (AP7Glu) have been investigated. Results The experiments were performed in either the rat liver or hepatocytes of normal, CCl4- and ethanol-treated or flavonoid- and toxin plus flavonoid-treated animals. [14C]palmitic acid and [methyl-14C-phosphorylcholine]sphingomyelin were used to investigate the sphingolipid turnover. Addition of the CCl4 or ethanol to isolated hepatocyte suspensions caused loss of cell viability and increased the lactate dehydrogenase release from the cells into supernatant and ceramide level in the cells. CCl4 administration to the rats enlarged ceramide mass as well as neutral sphingomyelinase (SMase) activity and reduced ceramide degradation by the neutral ceramidase. Pretreatment of isolated hepatocytes with flavonoids abrogated the CCl4 effects on the cell membrane integrity and normalized the ceramide content. Flavonoid administration to the rats normalized the elevated ceramide content in the damaged liver via neutral SMase inhibition and ceramidase activation. Conclusion The data obtained have demonstrated that flavonoids affect sphingolipid metabolism in the CCl4- and ethanol-damaged liver and liver cells. Flavonoids normalized activities of key enzymes of sphingolipid turnover (neutral SMase and ceramidase) and ceramide contents in the damaged liver and liver cells, and stabilized the

  14. TRPM2 channels mediate acetaminophen-induced liver damage.

    PubMed

    Kheradpezhouh, Ehsan; Ma, Linlin; Morphett, Arthur; Barritt, Greg J; Rychkov, Grigori Y

    2014-02-25

    Acetaminophen (paracetamol) is the most frequently used analgesic and antipyretic drug available over the counter. At the same time, acetaminophen overdose is the most common cause of acute liver failure and the leading cause of chronic liver damage requiring liver transplantation in developed countries. Acetaminophen overdose causes a multitude of interrelated biochemical reactions in hepatocytes including the formation of reactive oxygen species, deregulation of Ca(2+) homeostasis, covalent modification and oxidation of proteins, lipid peroxidation, and DNA fragmentation. Although an increase in intracellular Ca(2+) concentration in hepatocytes is a known consequence of acetaminophen overdose, its importance in acetaminophen-induced liver toxicity is not well understood, primarily due to lack of knowledge about the source of the Ca(2+) rise. Here we report that the channel responsible for Ca(2+) entry in hepatocytes in acetaminophen overdose is the Transient Receptor Potential Melanostatine 2 (TRPM2) cation channel. We show by whole-cell patch clamping that treatment of hepatocytes with acetaminophen results in activation of a cation current similar to that activated by H2O2 or the intracellular application of ADP ribose. siRNA-mediated knockdown of TRPM2 in hepatocytes inhibits activation of the current by either acetaminophen or H2O2. In TRPM2 knockout mice, acetaminophen-induced liver damage, assessed by the blood concentration of liver enzymes and liver histology, is significantly diminished compared with wild-type mice. The presented data strongly suggest that TRPM2 channels are essential in the mechanism of acetaminophen-induced hepatocellular death. PMID:24569808

  15. Augmenter of liver regeneration (ALR) restrains concanavalin A-induced hepatitis in mice.

    PubMed

    Mu, Mao; Zhang, Zhenwei; Cheng, Yi; Liu, Guangze; Chen, Xiusheng; Wu, Xin; Zhuang, Caifang; Liu, Bingying; Kong, Xiangping; You, Song

    2016-06-01

    Augmenter of liver regeneration (ALR), produced and released by hepatocytes, has cytoprotective and immunoregulatory effects on liver injury, and has been used in many experimental applications. However, little attention has been paid to the effects of ALR on concanavalin A (Con A)-induced hepatitis. The purpose of this paper is to explore the protective effect of ALR on Con A-induced hepatitis and elucidate potential mechanisms. We found that the ALR pretreatment evidently reduced the amount of ALT and AST in serum. In addition, pro-inflammatory cytokines, chemokines and iNOS were suppressed. ALR pretreatment also decreased CD4(+), CD8(+) T cell infiltration in liver. Besides, we observed that ALR pretreatment was capable of suppressing the activation of several signaling pathways in Con A-induced hepatitis. These findings suggest that ALR can obviously weaken Con A-induced hepatitis and ALR has some certain immune regulation function. PMID:27085679

  16. Anti-4-1BB monoclonal antibodies attenuate concanavalin A-induced immune-mediated liver injury in mice

    PubMed Central

    Xia, Guangtao; Wu, Sensen; Zhang, Yuanchao

    2016-01-01

    Effective therapies for the treatment of immune-mediated liver disease are currently lacking. As a member of the tumor necrosis factor receptor superfamily, 4-1BB has a key role in T-cell activation and has been implicated in the development of autoimmune disorders. The purpose of the present study was to evaluate the potential therapeutic or preventive function of an anti-4-1BB monoclonal antibody (mAb) in a mouse model of concanavalin (Con) A-induced immune-mediated liver injury. A mouse model of immune-mediated liver injury was established by tail vein injection of Con A (20 mg/kg). 4-1BB mAb (100 µg), with or without methylprednisolone (MEP; 3 mg/kg), was intraperitoneally injected into the tail vein 2 h prior to or 2 h following Con A injection. Con A induced marked hepatocyte necrosis, significantly reduced CD 4+/CD25+ T-cell levels, and increased the serum levels of aspartate transaminase (AST) and alanine transaminase (ALT), in addition to the percentage of 4-1BB+ T-cells, compared with the control (all P<0.05). The administration of 4-1BB mAb prior to or following Con A injection was able to attenuate Con A-induced liver tissue damage and significantly reduce serum AST and ALT levels (P<0.05). A combination of MEP and 4-1BB mAb further reduced serum AST and ALT levels, compared with either treatment alone. In addition, administration of 4-1BB mAb and MEP alone or in combination significantly increased CD4+/CD25+ T-cell levels, compared with the control (P<0.05). These results suggested that 4-1BB mAb was able to attenuate liver injury and preserve liver function in a mouse model of Con A-induced immune-mediated liver injury by promoting the expansion of CD4+/CD25+ T-cells. Furthermore, a combination of 4-1BB mAb with MEP was associated with greater beneficial effects than either treatment alone. The clinical significance of 4-1BB mAb in immune-mediated liver disease remains to be elucidated in future studies. PMID:27588047

  17. Adverse drug reactions and organ damage: The liver.

    PubMed

    Licata, Anna

    2016-03-01

    Drug-induced liver injury (DILI) is among the most challenging acute or chronic liver conditions to be handled by physicians. Despite its low incidence in the general population, DILI is a frequent cause of acute liver failure. As such, the possibility of DILI should be considered in all patients who present with acute liver damage, independent of any known pre-existing liver disease. DILI can be classified as intrinsic/dose-dependent (e.g., acetaminophen toxicity) or idiosyncratic/dose-independent, with the latter form being relatively uncommon. Amoxicillin-clavulanate is the antimicrobial that is most frequently associated with idiosyncratic DILI. Large, ongoing, prospective studies in western countries have reported other drugs associated with DILI, including nonsteroidal anti-inflammatory drugs, statins, and herbal and dietary supplements. An important safety issue, DILI is one of the most frequently cited reasons for cessation of drug development during or after preclinical studies and for withdrawal of a drug from the market. This review summarizes the epidemiology, risk factors, commonly implicated drugs, clinical features, and diagnosis of DILI, with the aim of aiding physicians in the management of this debated problem. Old and new biomarkers for DILI and pharmacogenetic studies are also described. PMID:26827101

  18. Impact of Propionic Acid on Liver Damage in Rats

    PubMed Central

    Al- Daihan, Sooad; Shafi Bhat, Ramesa

    2015-01-01

    Propionic acid (PA) is a short chain fatty acid, a common food preservative and metabolic end product of enteric bacteria in the gut. The present study was undertaken to investigate the effect of PA on liver injury in male rats. Male western albino rats were divided into two groups. The first group served as normal control, the second was treated with PA. The activities of serum hepatospecific markers such as aspartate transaminase, alanine transaminase, and alkaline phosphatase were estimated. Antioxidant status in liver tissues was estimated by determining the level of lipid peroxidation and activities of enzymatic and non-enzymatic antioxidants. Sodium and potassium levels were also measured in liver tissue. PA treatment caused significant changes in all hepatospecific markers. Biochemical analysis of liver homogenates from PA-treated rats showed an increase in oxidative stress markers like lipid peroxidation and lactate dehydrogenase, coupled with a decrease in glutathione, vitamin C and glutathione S- transferase. However, PA exposure caused no change in sodium and potassium levels in liver tissue. Our study demonstrated that PA persuade hepatic damage in rats. PMID:26629488

  19. Role of cysteinyl-leukotrienes for portal pressure regulation and liver damage in cholestatic rat livers.

    PubMed

    op den Winkel, Mark; Gmelin, Leonore; Schewe, Julia; Leistner, Natalie; Bilzer, Manfred; Göke, Burkhard; Gerbes, Alexander L; Steib, Christian J

    2013-12-01

    Kupffer cells (KCs) have a major role in liver injury, and cysteinyl-leukotrienes (Cys-LTs) are known to be involved as well. The KC-mediated pathways for the production and secretion of Cys-LT in cholestatic liver injury have not yet been elucidated. Here, we hypothesized that KC activation by Toll-like receptor ligands results in Cys-LT-mediated microcirculatory alterations and liver injury in acute cholestasis. We hypothesized further that this situation is associated with changes in the secretion and production of Cys-LT. One week after bile duct ligation (BDL), livers showed typical histological signs of cholestatic liver injury. Associated microcirculatory disturbances caused increased basal and maximal portal pressure following KC activation. These differences were determined in BDL livers compared with sham-operated livers in vivo (KC activation by LPS 4 mg/kg b.w.) and in isolated perfused organs (KC activation by Zymosan A, 150 μg/ml). Treatment with the 5-lipoxygenase inhibitor MK-886 alone did not alter portal perfusion pressure, lactate dehydrogenase (LDH) efflux, or bile duct proliferation in BDL animals. Following KC activation, portal perfusion pressure increased. The degree of cell injury was attenuated by MK-886 (3 μM) treatment as estimated by LDH efflux. In normal rats, a large amount of Cys-LT efflux was found in the bile. Only a minor amount was found in the effluent perfusate. In BDL livers, the KC-mediated Cys-LT efflux into the sinusoidal system increased, although the absolute Cys-LT level was still grossly lower than the biliary excretion in sham-operated livers. In conclusion, our results indicate that treatment with Cys-LT inhibitors might be a relevant target for attenuating cholestatic liver damage. PMID:24061287

  20. Carbonic Anhydrase Protects Fatty Liver Grafts against Ischemic Reperfusion Damage

    PubMed Central

    Bejaoui, Mohamed; Pantazi, Eirini; De Luca, Viviana; Panisello, Arnau; Folch-Puy, Emma; Hotter, Georgina; Capasso, Clemente; T. Supuran, Claudiu; Rosselló-Catafau, Joan

    2015-01-01

    Carbonic anhydrases (CAs) are ubiquitous metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate and a proton. CAs are involved in numerous physiological and pathological processes, including acid-base homeostasis, electrolyte balance, oxygen delivery to tissues and nitric oxide generation. Given that these processes are found to be dysregulated during ischemia reperfusion injury (IRI), and taking into account the high vulnerability of steatotic livers to preservation injury, we hypothesized a new role for CA as a pharmacological agent able to protect against ischemic damage. Two different aspects of the role of CA II in fatty liver grafts preservation were evaluated: 1) the effect of its addition to Institut Georges Lopez (IGL-1) storage solution after cold ischemia; 2) and after 24h of cold storage followed by two hours of normothermic ex-vivo perfusion. In all cases, liver injury, CA II protein concentration, CA II mRNA levels and CA II activity were determined. In case of the ex-vivo perfusion, we further assessed liver function (bile production, bromosulfophthalein clearance) and Western blot analysis of phosphorylated adenosine monophosphate activated protein kinase (AMPK), mitogen activated protein kinases family (MAPKs) and endoplasmic reticulum stress (ERS) parameters (GRP78, PERK, IRE, eIF2α and ATF6). We found that CA II was downregulated after cold ischemia. The addition of bovine CA II to IGL-1 preservation solution efficiently protected steatotic liver against cold IRI. In the case of reperfusion, CA II protection was associated with better function, AMPK activation and the prevention of ERS and MAPKs activation. Interestingly, CA II supplementation was not associated with enhanced CO2 hydration. The results suggest that CA II modulation may be a promising target for fatty liver graft preservation. PMID:26225852

  1. Dimethylformamide-induced liver damage among synthetic leather workers

    SciTech Connect

    Wang, J.D.; Lai, M.Y.; Chen, J.S.; Lin, J.M.; Chiang, J.R.; Shiau, S.J.; Chang, W.S. )

    1991-05-01

    Prevalence of liver injury associated with dimethylformamide (DMF) exposure was determined. Medical examinations, liver function tests, and creatine phosphokinase (CPK) determinations were performed on 183 of 204 (76%) employees of a synthetic leather factory. Air concentrations of solvents were measured with personal samplers and gas chromatography. The concentration of DMF in air to which each worker was exposed was categorized. High exposure concentrations of DMF (i.e., 25-60 ppm) were significantly associated with elevated alanine aminotransferase (ALT) levels (ALT greater than or equal to 35 IU/l), a result that did not change even after stratification by hepatitis B carrier status. Modeling by logistic regression demonstrated that exposure to high concentrations of DMF was associated with an elevated ALT (p = .01), whereas hepatitis B surface antigen (HBsAg) was slightly but independently associated with an elevated ALT (p = .07). In those workers who had normal ALT values, there occurred still significantly higher mean ALT and aspartate aminotransferase (AST) activities, especially among those who were not HBsAg carriers. A significant association existed between elevated CPK levels and exposure to DMF. However, an analysis of the CPK isoenzyme among 143 workers did not reveal any specific damage to muscles. This outbreak of liver injury among synthetic leather workers is ascribed to DMF. It is recommended that the occupational standard for DMF and its toxicity among HBsAg carriers be evaluated further.

  2. Impact of fluoxetine on liver damage in rats.

    PubMed

    Inkielewicz-Stępniak, Iwona

    2011-01-01

    Fluoxetine (Flux) is a fluorine-containing drug that selectively inhibits serotonin reuptake. It is widely prescribed as a treatment for depression disorders. Hepatic side effects have been reported during Flux therapy. These reports led us to investigate the involvement of oxidative stress mechanisms in liver injury caused by Flux. It has been shown that exposure to fluoride (F(-)) induces excessive production of free radicals and affects the antioxidant defense system. Based on this knowledge, we examined the F(-) concentration in serum and urine during administration of Flux. In our study, the effects of one month of Flux treatment on lipid and protein peroxidation, the concentration of uric acid in the liver and the activity of transaminases and transferases in the serum were investigated in rats. Eighteen adult male Wistar rats were divided into three equal groups of six animals each: (I) controls who drank tap water and received 1 ml of tap water intragastrically; (II) animals that received 8 mg Flux/kg bw/day intragastrically; and (III) animals that received 24 mg Flux/kg bw/day intragastrically. Flux treatment increased of the levels of carbonyl groups, thiobarbituric acid reactive species (TBARS) and the uric acid content in the liver. The activities of alanine transaminase (ALT), aspartate transaminase (AST) and glutathione-S transferase (GST) increased in the serum of the treated groups. The Flux levels in the plasma of the treated rats increased significantly in a dose-dependent manner. We observed no changes in the concentration of fluoride in either the serum or the urine of treated rats compared to the control group. In conclusion, our study indicates that Flux induces liver damage and mediates free radical reactions. Our data also indicate that Flux does not release F(-) during metabolism and does not affect physiological levels of F(-) in the serum or urine. PMID:21602599

  3. Amelioration of radiation-induced liver damage in partially hepatectomized rats by hepatocyte transplantation.

    PubMed

    Guha, C; Sharma, A; Gupta, S; Alfieri, A; Gorla, G R; Gagandeep, S; Sokhi, R; Roy-Chowdhury, N; Tanaka, K E; Vikram, B; Roy-Chowdhury, J

    1999-12-01

    Hepatic tumors often recur in the liver after surgical resection. Postoperative radiotherapy (RT) could improve survival, but curative RT may induce delayed life-threatening radiation-induced liver damage. Because RT inhibits liver regeneration, we hypothesized that unirradiated, transplanted hepatocytes would proliferate preferentially in a partially resected and irradiated liver, providing metabolic support. We subjected F344 rats to hepatic RT and partial hepatectomy with/without a single intrasplenic, syngeneic hepatocyte transplantation. Hepatocyte transplantation ameliorated radiation-induced liver damage and improved survival of rats receiving RT after partial hepatectomy. We further demonstrated that transplanted hepatocytes extensively repopulate and function in a heavily irradiated rat liver. PMID:10606225

  4. Liver-specific microRNAs as biomarkers of nanomaterial-induced liver damage

    NASA Astrophysics Data System (ADS)

    Nagano, Takashi; Higashisaka, Kazuma; Kunieda, Akiyoshi; Iwahara, Yuki; Tanaka, Kota; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-ichi; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2013-10-01

    Although nanomaterials are being used in various fields, their safety is not yet sufficiently understood. We have been attempting to establish a nanomaterials safety-assessment system by using biomarkers to predict nanomaterial-induced adverse biological effects. Here, we focused on microRNAs (miRNAs) because of their tissue-specific expression and high degree of stability in the blood. We previously showed that high intravenous doses of silica nanoparticles of 70 nm diameter (nSP70) induced liver damage in mice. In this study, we compared the effectiveness of serum levels of liver-specific or -enriched miRNAs (miR-122, miR-192, and miR-194) with that of conventional hepatic biomarkers (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)) as biomarkers for nSP70. After mice had been treated with nSP70, their serum miRNAs levels were measured by using quantitative RT-PCR. Serum levels of miR-122 in nSP70-treated mice were the highest among the three miRNAs. The sensitivity of miR-122 for liver damage was at least as good as those of ALT and AST. Like ALT and AST, miR-122 may be a useful biomarker of nSP70. We believe that these findings will help in the establishment of a nanomaterials safety-assessment system.

  5. Liver Damage Associated with Polygonum multiflorum Thunb.: A Systematic Review of Case Reports and Case Series.

    PubMed

    Lei, Xiang; Chen, Jing; Ren, Jingtian; Li, Yan; Zhai, Jingbo; Mu, Wei; Zhang, Li; Zheng, Wenke; Tian, Guihua; Shang, Hongcai

    2015-01-01

    Objective. To summarize the characteristics and analysis of relevant factors and to give references for prevention and further study of liver damage associated with Polygonum multiflorum Thunb. (HSW), we provide a systematic review of case reports and case series about liver damage associated with HSW. Methods. An extensive search of 6 medical databases was performed up to June 2014. Case reports and case series involving liver damage associated with HSW were included. Results. This review covers a total of 450 cases in 76 articles. HSW types included raw and processed HSW decoction pieces and many Chinese patent medicines that contain HSW. Symptoms of liver damage occur mostly a month or so after taking the medicine, mainly including jaundice, fatigue, anorexia, and yellow or tawny urine. Of the 450 patients, two cases who received liver transplantation and seven who died, the remaining 441 cases recovered or had liver function improvement after discontinuing HSW products and conservative care. Conclusion. HSW causes liver toxicity and may cause liver damage in different degrees and even lead to death; most of them are much related to long-term and overdose of drugs. Liver damage associated with HSW is reversible, and, after active treatment, the majority can be cured. People should be alert to liver damage when taking HSW preparations. PMID:25648693

  6. Liver Damage Associated with Polygonum multiflorum Thunb.: A Systematic Review of Case Reports and Case Series

    PubMed Central

    Lei, Xiang; Chen, Jing; Ren, Jingtian; Li, Yan; Zhai, Jingbo; Mu, Wei; Zhang, Li; Zheng, Wenke; Tian, Guihua; Shang, Hongcai

    2015-01-01

    Objective. To summarize the characteristics and analysis of relevant factors and to give references for prevention and further study of liver damage associated with Polygonum multiflorum Thunb. (HSW), we provide a systematic review of case reports and case series about liver damage associated with HSW. Methods. An extensive search of 6 medical databases was performed up to June 2014. Case reports and case series involving liver damage associated with HSW were included. Results. This review covers a total of 450 cases in 76 articles. HSW types included raw and processed HSW decoction pieces and many Chinese patent medicines that contain HSW. Symptoms of liver damage occur mostly a month or so after taking the medicine, mainly including jaundice, fatigue, anorexia, and yellow or tawny urine. Of the 450 patients, two cases who received liver transplantation and seven who died, the remaining 441 cases recovered or had liver function improvement after discontinuing HSW products and conservative care. Conclusion. HSW causes liver toxicity and may cause liver damage in different degrees and even lead to death; most of them are much related to long-term and overdose of drugs. Liver damage associated with HSW is reversible, and, after active treatment, the majority can be cured. People should be alert to liver damage when taking HSW preparations. PMID:25648693

  7. Bromosulphophthalein clearance rates in sheep with pyrrolizidine liver damage.

    PubMed

    Lanigan, G W; Peterson, J E

    1979-05-01

    Sheep fed a ration containing 50% of dried Heliotropium europaeum showed a marked decline in bromosulphophthalein (BSP) fractional clearance rate during the first 3 months feeding. Thereafter, the response of individual animals varied widely on a time basis, although 3 groups could be identified. In the terminal stages, mean clearance rates were below 20% of initial values, with some sheep showing a decline in excess of 90%. Loss of liver functional capacity was generally much greater than indicated by the degree of damage revealed by histopathology. Thus, a suitably modified test could have considerable prognostic value in the field. In this investigation, all sheep with clearance rates below 0.15 died when exposed to a further period of H. europaeum feeding. PMID:475677

  8. DNA damage response and sphingolipid signaling in liver diseases.

    PubMed

    Nagahashi, Masayuki; Matsuda, Yasunobu; Moro, Kazuki; Tsuchida, Junko; Soma, Daiki; Hirose, Yuki; Kobayashi, Takashi; Kosugi, Shin-Ichi; Takabe, Kazuaki; Komatsu, Masaaki; Wakai, Toshifumi

    2016-09-01

    Patients with unresectable hepatocellular carcinoma (HCC) cannot generally be cured by systemic chemotherapy or radiotherapy due to their poor response to conventional therapeutic agents. The development of novel and efficient targeted therapies to increase their treatment options depends on the elucidation of the molecular mechanisms that underlie the pathogenesis of HCC. The DNA damage response (DDR) is a network of cell-signaling events that are triggered by DNA damage. Its dysregulation is thought to be one of the key mechanisms underlying the generation of HCC. Sphingosine-1-phosphate (S1P), a lipid mediator, has emerged as an important signaling molecule that has been found to be involved in many cellular functions. In the liver, the alteration of S1P signaling potentially affects the DDR pathways. In this review, we explore the role of the DDR in hepatocarcinogenesis of various etiologies, including hepatitis B and C infection and non-alcoholic steatohepatitis. Furthermore, we discuss the metabolism and functions of S1P that may affect the hepatic DDR. The elucidation of the pathogenic role of S1P may create new avenues of research into therapeutic strategies for patients with HCC. PMID:26514817

  9. Radiation-Induced Liver Damage: Correlation of Histopathology with Hepatobiliary Magnetic Resonance Imaging, a Feasibility Study

    SciTech Connect

    Seidensticker, Max; Burak, Miroslaw; Kalinski, Thomas; Garlipp, Benjamin; Koelble, Konrad; Wust, Peter; Antweiler, Kai; Seidensticker, Ricarda; Mohnike, Konrad; Pech, Maciej; Ricke, Jens

    2015-02-15

    PurposeRadiotherapy of liver malignancies shows promising results (radioembolization, stereotactic irradiation, interstitial brachytherapy). Regardless of the route of application, a certain amount of nontumorous liver parenchyma will be collaterally damaged by radiation. The functional reserve may be significantly reduced with an impact on further treatment planning. Monitoring of radiation-induced liver damage by imaging is neither established nor validated. We performed an analysis to correlate the histopathological presence of radiation-induced liver damage with functional magnetic resonance imaging (MRI) utilizing hepatobiliary contrast media (Gd-BOPTA).MethodsPatients undergoing local high-dose-rate brachytherapy for whom a follow-up hepatobiliary MRI within 120 days after radiotherapy as well as an evaluable liver biopsy from radiation-exposed liver tissue within 7 days before MRI were retrospectively identified. Planning computed tomography (CT)/dosimetry was merged to the CT-documentation of the liver biopsy and to the MRI. Presence/absence of radiation-induced liver damage (histopathology) and Gd-BOPTA uptake (MRI) as well as the dose applied during brachytherapy at the site of tissue sampling was determined.ResultsFourteen biopsies from eight patients were evaluated. In all cases with histopathological evidence of radiation-induced liver damage (n = 11), no uptake of Gd-BOPTA was seen. In the remaining three, cases no radiation-induced liver damage but Gd-BOPTA uptake was seen. Presence of radiation-induced liver damage and absence of Gd-BOPTA uptake was correlated with a former high-dose exposition.ConclusionsAbsence of hepatobiliary MRI contrast media uptake in radiation-exposed liver parenchyma may indicate radiation-induced liver damage. Confirmatory studies are warranted.

  10. Molecular responses of radiation-induced liver damage in rats

    PubMed Central

    CHENG, WEI; XIAO, LEI; AINIWAER, AIMUDULA; WANG, YUNLIAN; WU, GE; MAO, RUI; YANG, YING; BAO, YONGXING

    2015-01-01

    The aim of the present study was to investigate the molecular responses involved in radiation-induced liver damage (RILD). Sprague-Dawley rats (6-weeks-old) were irradiated once at a dose of 20 Gy to the right upper quadrant of the abdomen. The rats were then sacrificed 3 days and 1, 2, 4, 8 and 12 weeks after irradiation and rats, which were not exposed to irradiation were used as controls. Weight measurements and blood was obtained from the rats and liver tissues were collected for histological and apoptotic analysis. Immunohistochemistry, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were performed to measure the expression levels of mRNAs and proteins, respectively. The serum levels of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase were increased significantly in the RILD rats. Histological investigation revealed the proliferation of collagen and the formation of fibrotic tissue 12 weeks after irradiation. Apoptotic cells were observed predominantly 2 and 4 weeks after irradiation. The immunohistochemistry, RT-qPCR and western blot analysis all revealed the same pattern of changes in the expression levels of the molecules assessed. The expression levels of transforming growth factor-β1 (TGF-β1), nuclear factor (NF)-κB65, mothers against decapentaplegic homolog 3 (Smad3) and Smad7 and connective tissue growth factor were increased during the recovery period following irradiation up to 12 weeks. The expression levels of tumor necrosis factor-α, Smad7 and Smad4 were only increased during the early phase (first 4 weeks) of recovery following irradiation. In the RILD rat model, the molecular responses indicated that the TGF-β1/Smads and NF-κB65 signaling pathways are involved in the mechanism of RILD recovery. PMID:25483171

  11. Antifibrotic mechanism of deferoxamine in concanavalin A induced-liver fibrosis: Impact on interferon therapy.

    PubMed

    Darwish, Samar F; El-Bakly, Wesam M; El-Naga, Reem N; Awad, Azza S; El-Demerdash, Ebtehal

    2015-11-01

    Iron-overload is a well-known factor of hepatotoxicity and liver fibrosis, which found to be a common finding among hepatitis C virus patients and related to interferon resistance. We aimed to elucidate the potential antifibrotic effect of deferoxamine; the main iron chelator, and its additional usefulness to interferon-based therapy in concanavalin A-induced immunological model of liver fibrosis. Rats were treated with deferoxamine and/or pegylated interferon-α for 6 weeks. Hepatotoxicity indices, oxidative stress, inflammatory and liver fibrosis markers were assessed. Concanavalin A induced a significant increase in hepatotoxicity indices and lipid peroxidation accompanied with a significant depletion of total antioxidant capacity, glutathione level and superoxide dismutase activity. Besides, it increased CD4(+) T-cells content and the downstream inflammatory cascades, including NF-κB, TNF-α, iNOS, COX-2, IL-6 and IFN-γ. Furthermore, α-SMA, TGF-β1 and hydroxyproline were increased markedly, which confirmed by histopathology. Treatment with either deferoxamine or pegylated interferon-α alone reduced liver fibrosis markers significantly and improved liver histology. However, some of the hepatotoxicity indices and oxidative stress markers did not improve upon pegylated interferon-α treatment alone, besides the remarkable increase in IL-6. Combination therapy of deferoxamine with pegylated interferon-α further improved all previous markers, ameliorated IL-6 elevation, as well as increased hepcidin expression. In conclusion, our study provides evidences for the potent antifibrotic effects of deferoxamine and the underlying mechanisms that involved attenuating oxidative stress and subsequent inflammatory cascade, as well as the production of profibrogenic factors. Addition of deferoxamine to interferon regimen for HCV patients may offer a promising adjuvant modality to enhance therapeutic response. PMID:26358138

  12. Mechanisms of Diabetes-Induced Liver Damage: The role of oxidative stress and inflammation.

    PubMed

    Mohamed, Jamaludin; Nazratun Nafizah, A H; Zariyantey, A H; Budin, S B

    2016-05-01

    Diabetes mellitus is a non-communicable disease that occurs in both developed and developing countries. This metabolic disease affects all systems in the body, including the liver. Hyperglycaemia, mainly caused by insulin resistance, affects the metabolism of lipids, carbohydrates and proteins and can lead to non-alcoholic fatty liver disease, which can further progress to non-alcoholic steatohepatitis, cirrhosis and, finally, hepatocellular carcinomas. The underlying mechanism of diabetes that contributes to liver damage is the combination of increased oxidative stress and an aberrant inflammatory response; this activates the transcription of pro-apoptotic genes and damages hepatocytes. Significant involvement of pro-inflammatory cytokines-including interleukin (IL)-1β, IL-6 and tumour necrosis factor-α-exacerbates the accumulation of oxidative damage products in the liver, such as malondialdehyde, fluorescent pigments and conjugated dienes. This review summarises the biochemical, histological and macromolecular changes that contribute to oxidative liver damage among diabetic individuals. PMID:27226903

  13. Fumigaclavine C improves concanavalin A-induced liver injury in mice mainly via inhibiting TNF-alpha production and lymphocyte adhesion to extracellular matrices.

    PubMed

    Zhao, Ying; Liu, Junyan; Wang, Jun; Wang, Lei; Yin, Hao; Tan, Renxiang; Xu, Qiang

    2004-06-01

    Fumigaclavine C, an alkaloidal metabolite, was produced by Aspergillus fumigatus (strain No. CY018). This study examined the effect of this compound on concanavalin A (Con A)-induced liver injury in mice, a T cell-dependent model of liver damage. Con A administration resulted in severe liver injury, T lymphocyte activation and a strong increment in spleen cell adhesion, as well as in tumour necrosis factor-alpha (TNF-alpha) production. Against this liver injury, the intraperitoneal administration of fumigaclavine C dose-dependently inhibited the elevation in transaminase activity, TNF-alpha production in serum and the histological changes, including inflammatory infiltration, hepatocyte necrosis and degeneration and Kupffer cell hyperplasia. In addition, this compound in-vitro also inhibited the proliferation of spleen cells induced by Con A, and reduced their IL-2 and TNF-alpha production. Moreover, the intraperitoneal administration of fumigaclavine C inhibited the potential of spleen cells isolated from the liver-injured mice to adhere to fibronectin, laminin and type IV collagen. These results suggest that the improvement of this T cell-mediated liver injury by fumigaclavine C may be related to the inhibition of lymphocyte activation, proliferation and adhesion to extracellular matrices as well as the reduction in TNF-alpha production. PMID:15231043

  14. The effect of phytosterol protects rats against 4-nitrophenol-induced liver damage.

    PubMed

    Chen, Jiaqin; Song, Meiyan; Li, Yansen; Zhang, Yonghui; Taya, Kazuyoshi; Li, ChunMei

    2016-01-01

    We investigated the effect of phytosterol (PS) in regard to liver damage induced by 4-nitrophenol (PNP). Twenty rats were randomly divided into four groups (Control, PS, PNP, and PNP+PS). The PS and PNP+PS groups were pretreated with PS for one week. The PNP and PNP+PS groups were injected subcutaneously with PNP for 28 days. The control group received a basal diet and was injected with vehicle alone. Treatment with PS prevented the elevation of the total bilirubin levels, as well as an increase in serum alkaline transaminase and aspartate transaminase, which are typically caused by PNP-induced liver damage. Histopathologically showed that liver damage was significantly mitigated by PS treatment. However, there was no significant change in antioxidant enzyme activities, and the Nrf2-antioxidant system was not activated after treatment with PS. These results suggest that PS could mitigate liver damage induced by PNP, but does not enhance antioxidant capacity. PMID:26748050

  15. Shikonin Attenuates Concanavalin A-Induced Acute Liver Injury in Mice via Inhibition of the JNK Pathway

    PubMed Central

    Liu, Tong; Xia, Yujing; Li, Jingjing; Li, Sainan; Feng, Jiao; Wu, Liwei; Zhang, Rong; Xu, Shizan; Cheng, Keran; Zhou, Yuqing; Zhou, Shunfeng; Dai, Weiqi; Chen, Kan; Wang, Fan; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2016-01-01

    Objective. Shikonin possesses anti-inflammatory effects. However, its function in concanavalin A-induced acute liver injury remains uncertain. The aim of the present study was to investigate the functions of shikonin and its mechanism of protection on ConA-induced acute liver injury. Materials and Methods. Balb/C mice were exposed to ConA (20 mg/kg) via tail vein injection to establish acute liver injury; shikonin (7.5 mg/kg and 12.5 mg/kg) was intraperitoneally administered 2 h before the ConA injection. The serum liver enzyme levels and the inflammatory cytokine levels were determined at 3, 6, and 24 h after ConA injection. Results. After the injection of ConA, inflammatory cytokines IL-1β, TNF-α, and IFN-γ were significantly increased. Shikonin significantly ameliorated liver injury and histopathological changes and suppressed the release of inflammatory cytokines. The expressions of Bcl-2 and Bax were markedly affected by shikonin pretreatment. LC3, Beclin-1, and p-JNK expression levels were decreased in the shikonin-pretreated groups compared with the ConA-treated groups. Shikonin attenuated ConA-induced liver injury by reducing apoptosis and autophagy through the inhibition of the JNK pathway. Conclusion. Our results indicated that shikonin pretreatment attenuates ConA-induced acute liver injury by inhibiting apoptosis and autophagy through the suppression of the JNK pathway. PMID:27293314

  16. Curcumin improves liver damage in male mice exposed to nicotine

    PubMed Central

    Salahshoor, Mohammadreza; Mohamadian, Sabah; Kakabaraei, Seyran; Roshankhah, Shiva; Jalili, Cyrus

    2015-01-01

    The color of turmeric (薑黃 jiāng huáng) is because of a substance called curcumin. It has different pharmacological effects, such as antioxidant and anti-inflammatory properties. Nicotine is a major pharmacologically active substance in cigarette smoke. It is mainly metabolized in the liver and causes devastating effects. This study was designed to evaluate the protective role of curcumin against nicotine on the liver in mice. Forty-eight mice were equally divided into eight groups; control (normal saline), nicotine (2.5 mg/kg), curcumin (10, 30, and 60 mg/kg) and curcumin plus nicotine-treated groups. Curcumin, nicotine, and curcumin plus nicotine (once a day) were intraperitoneally injected for 4 weeks. The liver weight and histology, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and serum nitric oxide levels have been studied. The results indicated that nicotine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein, liver enzymes level, and blood serum nitric oxide level compared with the saline group (p < 0.05). However, curcumin and curcumin plus nicotine administration substantially increased liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes, and nitric oxide levels in all groups compared with the nicotine group (p < 0.05). Curcumin demonstrated its protective effect against nicotine-induced liver toxicity. PMID:27114942

  17. Curcumin improves liver damage in male mice exposed to nicotine.

    PubMed

    Salahshoor, Mohammadreza; Mohamadian, Sabah; Kakabaraei, Seyran; Roshankhah, Shiva; Jalili, Cyrus

    2016-04-01

    The color of turmeric ( jiāng huáng) is because of a substance called curcumin. It has different pharmacological effects, such as antioxidant and anti-inflammatory properties. Nicotine is a major pharmacologically active substance in cigarette smoke. It is mainly metabolized in the liver and causes devastating effects. This study was designed to evaluate the protective role of curcumin against nicotine on the liver in mice. Forty-eight mice were equally divided into eight groups; control (normal saline), nicotine (2.5 mg/kg), curcumin (10, 30, and 60 mg/kg) and curcumin plus nicotine-treated groups. Curcumin, nicotine, and curcumin plus nicotine (once a day) were intraperitoneally injected for 4 weeks. The liver weight and histology, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and serum nitric oxide levels have been studied. The results indicated that nicotine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein, liver enzymes level, and blood serum nitric oxide level compared with the saline group (p < 0.05). However, curcumin and curcumin plus nicotine administration substantially increased liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes, and nitric oxide levels in all groups compared with the nicotine group (p < 0.05). Curcumin demonstrated its protective effect against nicotine-induced liver toxicity. PMID:27114942

  18. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    ABSTRACT

    Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  19. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.

    Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...

  20. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage.

    PubMed

    Mogler, Carolin; Wieland, Matthias; König, Courtney; Hu, Junhao; Runge, Anja; Korn, Claudia; Besemfelder, Eva; Breitkopf-Heinlein, Katja; Komljenovic, Dorde; Dooley, Steven; Schirmacher, Peter; Longerich, Thomas; Augustin, Hellmut G

    2015-03-01

    Liver fibrosis is a reversible wound-healing response to injury reflecting the critical balance between liver repair and scar formation. Chronic damage leads to progressive substitution of liver parenchyma by scar tissue and ultimately results in liver cirrhosis. Stromal cells (hepatic stellate cells [HSC] and endothelial cells) have been proposed to control the balance between liver fibrosis and regeneration. Here, we show that endosialin, a C-type lectin, expressed in the liver exclusively by HSC and portal fibroblasts, is upregulated in liver fibrosis in mouse and man. Chronic chemically induced liver damage resulted in reduced fibrosis and enhanced hepatocyte proliferation in endosialin-deficient (EN(KO)) mice. Correspondingly, acute-liver-damage-induced hepatocyte proliferation (partial hepatectomy) was increased in EN(KO) mice. A candidate-based screen of known regulators of hepatocyte proliferation identified insulin-like growth factor 2 (IGF2) as selectively endosialin-dependent hepatocyte mitogen. Collectively, the study establishes a critical role of HSC in the reciprocal regulation of fibrogenesis vs. hepatocyte proliferation and identifies endosialin as a therapeutic target in non-neoplastic settings. PMID:25680861

  1. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage

    PubMed Central

    Mogler, Carolin; Wieland, Matthias; König, Courtney; Hu, Junhao; Runge, Anja; Korn, Claudia; Besemfelder, Eva; Breitkopf-Heinlein, Katja; Komljenovic, Dorde; Dooley, Steven; Schirmacher, Peter; Longerich, Thomas; Augustin, Hellmut G

    2015-01-01

    Liver fibrosis is a reversible wound-healing response to injury reflecting the critical balance between liver repair and scar formation. Chronic damage leads to progressive substitution of liver parenchyma by scar tissue and ultimately results in liver cirrhosis. Stromal cells (hepatic stellate cells [HSC] and endothelial cells) have been proposed to control the balance between liver fibrosis and regeneration. Here, we show that endosialin, a C-type lectin, expressed in the liver exclusively by HSC and portal fibroblasts, is upregulated in liver fibrosis in mouse and man. Chronic chemically induced liver damage resulted in reduced fibrosis and enhanced hepatocyte proliferation in endosialin-deficient (ENKO) mice. Correspondingly, acute-liver-damage-induced hepatocyte proliferation (partial hepatectomy) was increased in ENKO mice. A candidate-based screen of known regulators of hepatocyte proliferation identified insulin-like growth factor 2 (IGF2) as selectively endosialin-dependent hepatocyte mitogen. Collectively, the study establishes a critical role of HSC in the reciprocal regulation of fibrogenesis vs. hepatocyte proliferation and identifies endosialin as a therapeutic target in non-neoplastic settings. PMID:25680861

  2. Pinacidil protects osteoblastic cells against antimycin A-induced oxidative damage.

    PubMed

    Choi, Eun Mi; Jung, Woon Won; Suh, Kwang Sik

    2015-01-01

    The present study aimed to investigate the protective effect of a non-selective mitochondrial adenosine triphosphate (ATP)-sensitive potassium channel (mito-KATP) opener, pinacidil, on antimycin A-induced oxidative damage in osteoblastic MC3T3-E1 cells. Antimycin A inhibits mitochondrial electron transport by binding to complex III. Osteoblastic MC3T3-E1 cells were treated with antimycin A in the presence or absence of pinacidil and markers of mitochondrial function and oxidative stress were subsequently examined. The effects of pinacidil on the activation of phosphoinositide 3-kinase (PI3K), Akt and cyclic adenosine monophosphate‑responsive element-binding protein (CREB) were also examined. In osteoblastic MC3T3-E1 cells exposed to antimycin A, pinacidil inhibited antimycin A-induced cell death. The protective effects of pinacidil on cell survival were prevented by the addition of LY294002 (a PI3K inhibitor), an Akt inhibitor or auranofin [a thioredoxin reductase (TrxR) inhibitor], but not by KATP channel inhibitor glibenclamide. Pinacidil inhibited antimycin A-induced inactivation of PI3K and Akt as well as phosphorylation of CREB and TrxR. Furthermore, pinacidil prevented antimycin A-induced mitochondrial superoxide release, mitochondrial membrane potential dissipation, reduced ATP synthesis and intracellular [Ca2+] elevation. In conclusion, these results suggested that pinacidil may rescue osteoblastic cells from antimycin A-induced cellular damage, potentially via antioxidant activity and restoration of mitochondrial function, which are mediated in part by the PI3K/Akt/CREB signaling pathway. PMID:25334089

  3. Exendin-4 attenuates brain death-induced liver damage in the rat.

    PubMed

    Carlessi, Rodrigo; Lemos, Natalia E; Dias, Ana L; Brondani, Leticia A; Oliveira, Jarbas R; Bauer, Andrea C; Leitão, Cristiane B; Crispim, Daisy

    2015-11-01

    The majority of liver grafts destined for transplantation originate from brain dead donors. However, significantly better posttransplantation outcomes are achieved when organs from living donors are used, suggesting that brain death (BD) causes irreversible damage to the liver tissue. Recently, glucagon-like peptide-1 (GLP1) analogues were shown to possess interesting hepatic protection effects in different liver disease models. We hypothesized that donor treatment with the GLP1 analogue exendin-4 (Ex-4) could alleviate BD-induced liver damage. A rat model of BD was employed in order to estimate BD-induced liver damage and Ex-4's potential protective effects. Liver damage was assessed by biochemical determination of circulating hepatic markers. Apoptosis in the hepatic tissue was assessed by immunoblot and immunohistochemistry using an antibody that only recognizes the active form of caspase-3. Gene expression changes in inflammation and stress response genes were monitored by quantitative real-time polymerase chain reaction. Here, we show that Ex-4 administration to the brain dead liver donors significantly reduces levels of circulating aspartate aminotransferase and lactate dehydrogenase. This was accompanied by a remarkable reduction in hepatocyte apoptosis. In this model, BD caused up-regulation of tumor necrosis factor and stress-related genes, confirming previous findings in clinical and animal studies. In conclusion, treatment of brain dead rats with Ex-4 reduced BD-induced liver damage. Further investigation is needed to determine the molecular basis of the observed liver protection. After testing in a randomized clinical trial, the inclusion of GLP1 analogues in organ donor management might help to improve organ quality, maximize organ donation, and possibly increase liver transplantation success rates. PMID:26334443

  4. Effects of Bauhinia forficata Tea on Oxidative Stress and Liver Damage in Diabetic Mice

    PubMed Central

    Salgueiro, Andréia Caroline Fernandes; da Silva, Marianne Pires; Mendez, Andreas Sebastian Loureiro; Zemolin, Ana Paula Pegoraro; Posser, Thaís; Puntel, Robson Luiz; Puntel, Gustavo Orione

    2016-01-01

    This study was designed to evaluate the effects of Bauhinia forficata Link subsp. pruinosa (BF) tea on oxidative stress and liver damage in streptozotocin (STZ)-induced diabetic mice. Diabetic male mice have remained 30 days without any treatment. BF treatment started on day 31 and continued for 21 days as a drinking-water substitute. We evaluated (1) BF chemical composition; (2) glucose levels; (3) liver/body weight ratio and liver transaminases; (4) reactive oxygen species (ROS), lipid peroxidation, and protein carbonylation in liver; (5) superoxide dismutase (SOD) and catalase (CAT) activities in liver; (6) δ-aminolevulinate dehydratase (δ-ALA-D) and nonprotein thiols (NPSH) in liver; (7) Nrf2, NQO-1, and HSP70 levels in liver and pancreas. Phytochemical analyses identified four phenols compounds. Diabetic mice present high levels of NQO-1 in pancreas, increased levels of ROS and lipid peroxidation in liver, and decrease in CAT activity. BF treatment normalized all these parameters. BF did not normalize hyperglycemia, liver/body weight ratio, aspartate aminotransferase, protein carbonyl, NPSH levels, and δ-ALA-D activity. The raised oxidative stress seems to be a potential mechanism involved in liver damage in hyperglycemic conditions. Our results indicated that BF protective effect could be attributed to its antioxidant capacity, more than a hypoglycemic potential. PMID:26839634

  5. Hepatoprotective Activity of Elephantopus scaber on Alcohol-Induced Liver Damage in Mice

    PubMed Central

    Ho, Wan Yong; Yeap, Swee Keong; Ho, Chai Ling; Abdul Rahim, Raha; Alitheen, Noorjahan Banu

    2012-01-01

    Elephantopus scaber has been traditionally used as liver tonic. However, the protective effect of E. scaber on ethanol-induced liver damage is still unclear. In this study, we have compared the in vivo hepatoprotective effect of E. scaber with Phyllanthus niruri on the ethanol-induced liver damage in mice. The total phenolic and total flavanoid content of E. scaber ethanol extract were determined in this study. Accelerating serum biochemical profiles (including AST, ALT, ALP, triglyceride, and total bilirubin) associated with fat drop and necrotic body in the liver section were observed in the mice treated with ethanol. Low concentration of E. scaber was able to reduce serum biochemical profiles and the fat accumulation in the liver. Furthermore, high concentration of E. scaber and positive control P. niruri were able to revert the liver damage, which is comparable to the normal control. Added to this, E. scaber did not possess any oral acute toxicity on mice. These results suggest the potential effect of this extract as a hepatoprotective agent towards-ethanol induced liver damage without any oral acute toxicity effect. These activities might be contributed, or at least in part, by its high total phenolic and flavonoid contents. PMID:22973401

  6. Determination of DNA damage in experimental liver intoxication and role of N-acetyl cysteine.

    PubMed

    Aksit, Hasan; Bildik, Aysegül

    2014-11-01

    The present study aimed at detecting DNA damage and fragmentation as well as histone acetylation depending on oxidative stress caused by CCl4 intoxication. Also, the protective role of N-acetyl cysteine, a precursor for GSH, in DNA damage is investigated. Sixty rats were used in this study. In order to induce liver toxicity, CCl4 in was dissolved in olive oil (1/1) and injected intraperitoneally as a single dose (2 ml/kg). N-acetyl cysteine application (intraperitoneal, 50 mg/kg/day) was started 3 days prior to CCl4 injection and continued during the experimental period. Control groups were given olive oil and N-acetyl cysteine. After 6 and 72 h of CCl4 injection, blood and liver tissue were taken under ether anesthesia. Nuclear extracts were prepared from liver. Changes in serum AST and ALT activities as well as MDA, TAS, and TOS levels showed that CCl4 caused lipid peroxidation and liver damage. However, lipid peroxidation and liver damage were reduced in the N-acetyl cysteine group. Increased levels in 8-hydroxy-2-deoxy guanosine and histone acetyltransferase activities, decreased histone deacetylase activities, and DNA breakage detected in nuclear extracts showed that CCl4 intoxication induces oxidative stress and apoptosis in rat liver. The results of the present study indicate that N-acetyl cysteine has a protective effect on CCl4-induced DNA damage. PMID:24819310

  7. Effect of Azadirachta indica (Neem) leaf aqueous extract on paracetamol-induced liver damage in rats.

    PubMed

    Bhanwra, S; Singh, J; Khosla, P

    2000-01-01

    The effect of aqueous leaf extract of Azadirachta indica (A. indica) was evaluated in paracetamol induced hepatotoxicity in rats. Liver necrosis was produced by administering single dose of paracetamol (2 g/kg, p.o.). The liver damage was evidenced by elevated levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyl transpeptidase (gamma-GT) and by histopathological observations of liver sections. Aqueous A. indica leaf extract (500 mg/kg, p.o.) significantly (P < 0.01) reduced these elevated levels of AST, ALT and gamma-GT. Paracetamol induced liver necrosis was also found to be reduced as observed macroscopically and histologically. PMID:10919097

  8. Biological effects of pyrroloquinoline quinone on liver damage in Bmi-1 knockout mice

    PubMed Central

    HUANG, YUANQING; CHEN, NING; MIAO, DENGSHUN

    2015-01-01

    Pyrroloquinoline quinone (PQQ) has been demonstrated to function as an antioxidant by scavenging free radicals and subsequently protecting the mitochondria from oxidative stress-induced damage. The aim of the present study was to investigate whether PQQ is able to rescue premature senescence in the liver, induced by the deletion of B cell-specific Moloney MLV insertion site-1 (Bmi-1), by inhibiting oxidative stress. In vivo, the mice were allocated into three groups that underwent the following treatment protocols. WT mice received a normal diet, while BKO mice also received a normal diet. An additional group of BKO mice were fed a PQQ-supplemented diet (BKO + PQQ; 4 mg PQQ/kg in the normal diet). The results indicated that PQQ partially rescued the liver damage induced by the deletion of Bmi-1. PQQ was demonstrated to exhibit these therapeutic effects on liver damage through multiple aspects, including the promotion of proliferation, antiapoptotic effects, the inhibition of senescence, the upregulation of antioxidant ability, the downregulation of cell cycle protein expression, the scavenging of reactive oxygen species and the reduction of DNA damage. The results of these experiments indicated that treatment of BKO mice with a moderate dose of PQQ significantly protected the liver from deleterious effects by inhibiting oxidative stress and participating in DNA damage repair. Therefore, PQQ has great potential as a therapeutic agent against oxidative stress during liver damage. PMID:26622336

  9. Adverse effects of the antimalaria drug, mefloquine: due to primary liver damage with secondary thyroid involvement?

    PubMed Central

    Croft, Ashley M; Herxheimer, Andrew

    2002-01-01

    Background Mefloquine is a clinically important antimalaria drug, which is often not well tolerated. We critically reviewed 516 published case reports of mefloquine adverse effects, to clarify the phenomenology of the harms associated with mefloquine, and to make recommendations for safer prescribing. Presentation We postulate that many of the adverse effects of mefloquine are a post-hepatic syndrome caused by primary liver damage. In some users we believe that symptomatic thyroid disturbance occurs, either independently or as a secondary consequence of the hepatocellular injury. The mefloquine syndrome presents in a variety of ways including headache, gastrointestinal disturbances, nervousness, fatigue, disorders of sleep, mood, memory and concentration, and occasionally frank psychosis. Previous liver or thyroid disease, and concurrent insults to the liver (such as from alcohol, dehydration, an oral contraceptive pill, recreational drugs, and other liver-damaging drugs) may be related to the development of severe or prolonged adverse reactions to mefloquine. Implications We believe that people with active liver or thyroid disease should not take mefloquine, whereas those with fully resolved neuropsychiatric illness may do so safely. Mefloquine users should avoid alcohol, recreational drugs, hormonal contraception and co-medications known to cause liver damage or thyroid damage. With these caveats, we believe that mefloquine may be safely prescribed in pregnancy, and also to occupational groups who carry out safety-critical tasks. Testing Mefloquine's adverse effects need to be investigated through a multicentre cohort study, with small controlled studies testing specific elements of the hypothesis. PMID:11914150

  10. The alterations in the extracellular matrix composition guide the repair of damaged liver tissue

    PubMed Central

    Klaas, Mariliis; Kangur, Triin; Viil, Janeli; Mäemets-Allas, Kristina; Minajeva, Ave; Vadi, Krista; Antsov, Mikk; Lapidus, Natalia; Järvekülg, Martin; Jaks, Viljar

    2016-01-01

    While the cellular mechanisms of liver regeneration have been thoroughly studied, the role of extracellular matrix (ECM) in liver regeneration is still poorly understood. We utilized a proteomics-based approach to identify the shifts in ECM composition after CCl4 or DDC treatment and studied their effect on the proliferation of liver cells by combining biophysical and cell culture methods. We identified notable alterations in the ECM structural components (eg collagens I, IV, V, fibronectin, elastin) as well as in non-structural proteins (eg olfactomedin-4, thrombospondin-4, armadillo repeat-containing x-linked protein 2 (Armcx2)). Comparable alterations in ECM composition were seen in damaged human livers. The increase in collagen content and decrease in elastic fibers resulted in rearrangement and increased stiffness of damaged liver ECM. Interestingly, the alterations in ECM components were nonhomogenous and differed between periportal and pericentral areas and thus our experiments demonstrated the differential ability of selected ECM components to regulate the proliferation of hepatocytes and biliary cells. We define for the first time the alterations in the ECM composition of livers recovering from damage and present functional evidence for a coordinated ECM remodelling that ensures an efficient restoration of liver tissue. PMID:27264108

  11. Data on expression of lipoxygenases-5 and -12 in the normal and acetaminophen-damaged liver.

    PubMed

    Suciu, Maria; Gruia, Alexandra T; Nica, Dragos V; Azghadi, Seyed M R; Mic, Ani A; Mic, Felix A

    2016-06-01

    Here we present additional data on the expression of lipoxygenases -5 and -12 in the normal and acetaminophen-damaged liver, which are associated with our manuscript recently published in Chemico-Biological Interactions on lipid metabolism and eicosanoid signaling pathways involved in acetaminophen-induced liver damage in a mouse model (http://dx.doi.org/10.1016/j.cbi.2015.10.019 [1]). It has been demonstrated that the expression of lipoxygenase-5 and leukotriene formation are increased in the livers of rats with carbon tetrachloride (CCl4)-induced cirrhosis (http://dx.doi.org/10.1053/gast.2000.17831 [2]). In addition, the lipoxygenase-12 is known to be expressed in the resident macrophage population of the liver (http://dx.doi.org/10.1016/S0014-5793(99)00396-8 [3]). Mice were injected with acetaminophen, and at 48 h their livers were processed for immunohistochemistry with anti-mouse lipoxygenase-5 and -12 antibodies. At the same time point, the RNA was also extracted from the liver to assess the expression of lipoxygenase-5 and -12 genes via qPCR analysis. Our results show that lipoxygenase-5 expression, but not that of lipoxygenase-12, changes significantly in the acetominophen-damaged liver. PMID:27408922

  12. [Modeling and characteristics of liver damage in herpes infection].

    PubMed

    Tereshko, A B; Kolomiets, A G; Grits, M A; Duboĭskaia, G P

    1999-01-01

    An experimental model of herpetic hepatitis is developed, levels and time course of changes in transaminases, the main indicators of lipid metabolism, are characterized, and morphologic features of hepatocyte injury by herpes simplex virus are shown. Liver involvement in herpetic infection is described in detail. PMID:10392435

  13. The Correlation Between Serum Adipokines and Liver Cell Damage in Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Jamali, Raika; Hatami, Neda; Kosari, Farid

    2016-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic hepatitis, which can lead to cirrhosis and hepatocellular carcinoma. Objectives The aim of the study was to evaluate the correlation between serum adipocytokines and the histologic findings of the liver in patients with non-alcoholic fatty liver disease (NAFLD). Patients and Methods This case-control study was performed on those with persistent elevated liver enzymes and with evidence of fatty liver in ultrasonography. After exclusion of patients with other etiologies causing abnormal liver function tests, the resulting patients underwent liver biopsies. NAFLD was diagnosed based on liver histology according to the Brunt scoring system. Results Waist circumferences and levels of blood glucose (after fasting), insulin, triglycerides, alanine aminotransferases (ALT), and aspartate aminotransferases (AST) were higher in patients with NAFLD than in those in the control group. ALT, AST, and gamma glutamine transferase (GGT) levels were lower in patients with liver steatosis of a grade of less than 33% than those with higher degrees of steatosis. Serum low-density lipoprotein (LDL), cholesterol, and hepcidin levels were significantly higher in those with lobular inflammation of grade 0 - 1 than in those with inflammation of grade 2 - 3 (Brunt score). Meanwhile, AST was significantly lower in those with lobular inflammation of grade 1 than in those with grade 2-3. Hepcidin and resistin levels were significantly higher in patients with moderate to severe fibrosis than in those with mild fibrosis. Conclusions It seems that surrogate liver function tests and adipocytokine levels were correlated with the histologic findings of the liver. PMID:27313636

  14. Acute liver damage induced by 2-nitropropane in rats: effect of diphenyl diselenide on antioxidant defenses.

    PubMed

    Borges, Lysandro P; Nogueira, Cristina Wayne; Panatieri, Rodrigo B; Rocha, João Batista Teixeira; Zeni, Gilson

    2006-03-25

    The effect of post-treatment with diphenyl diselenide on liver damage induced by 2-nitropropane (2-NP) was examined in male rats. Rats were pre-treated with a single dose of 2-NP (100 mg/kg body weight dissolved in canola oil). Afterward, the animals were post-treated with a dose of diphenyl diselenide (10, 50 or 100 micromol/kg). The parameters that indicate tissue damage such as liver histopathology, plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), urea and creatinine were determined. Since the liver damage induced by 2-NP is related to oxidative damage, lipid peroxidation, superoxide dismutase (SOD), catalase (CAT) and ascorbic acid level were also evaluated. Diphenyl diselenide (50 and 100 micromol/kg) effectively restored the increase of ALT and AST activities and urea level when compared to the 2-NP group. At the higher dose, diphenyl diselenide decreased GGT activity. Treatment with diphenyl diselenide, at all doses, effectively ameliorated the increase of hepatic and renal lipid peroxidation when compared to 2-NP group. 2-NP reduced CAT activity and neither alter SOD activity nor ascorbic acid level. This study points out the involvement of CAT activity in 2-NP-induced acute liver damage and suggests that the post-treatment with diphenyl diselenide was effective in restoring the hepatic damage induced by 2-NP. PMID:16445897

  15. Quantitative ultrasound assessment of thermal damage in excised liver

    NASA Astrophysics Data System (ADS)

    Kemmerer, Jeremy P.; Ghoshal, Goutam; Oelze, Michael L.

    2012-10-01

    Quantitative ultrasound (QUS) is a novel approach for characterizing tissue microstructure and changes in tissue microstructure due to therapy. In this report, we discuss changes in QUS parameters in liver tissues after being exposed to thermal insult. Effective scatterer diameter (ESD) and effective acoustic concentration (EAC) from the normalized backscattered power spectrum were examined in rat liver specimens heated in a degassed saline bath. Individual liver samples were bisected, with half of each sample heated to a therapeutic temperature of 60°C for 10 minutes and the other half held at 37°C. The ultrasonic backscatter and attenuation coefficient were then estimated at 37°C from both halves. ESD was observed to decrease by an average of 34% in exposed compared to unexposed sample sections, EAC increased by 18 dB, and the attenuation coefficient increased by 70%. Histological slides from these samples indicate cell size and/or concentration may be affected by heating. This work was supported by NIH R01-EB008992.

  16. Therapeutic Effects of Melatonin On Liver And Kidney Damages In Intensive Exercise Model of Rats.

    PubMed

    Gedikli, Semin; Gelen, Volkan; Sengul, Emin; Ozkanlar, Seckin; Gur, Cihan; Agırbas, Ozturk; Cakmak, Fatih; Kara, Adem

    2015-01-01

    Extensive exercise induces inflammatory reactions together with high production of free radicals and subsequent liver and kidney tissues damage. This study was designed to investigate for effects of melatonin on liver and kidney tissues in the extensive exercise exposed rats and non-exercised rats. In this research, 24-male Sprague-Dawley rats were divided into four groups. For exercise rat model, the rats were exposed to slow pace running with the velocity of 10 m/min for 5 minutes for five days just before the study. And for last ten days after adaptation period, the exercise was improved as 15 min with the speed of 20 m/min and intra-peritoneal melatonin injection has been performed to the melatonin treated groups with the dose of 10 mg/kg. Biochemical results revealed a decrease in the parameters of kidney and liver enzymes in exercise-group and an increase in the parameters of serum, liver and kidney enzymes in the group that melatonin-exercise-group. As for histological analysis, while it is observed that there are cellular degenerations in the liver and kidney tissues with exercise application, a decrease has been observed in these degenerations in the group that melatonin was applied. At the end of the research, it has been determined that exercise application causes some damages on liver and kidney, and these damages were ameliorated with melatonin treatment. PMID:26310355

  17. [Prediction of histological liver damage in asymptomatic alcoholic patients by means of clinical and laboratory data].

    PubMed

    Iturriaga, H; Hirsch, S; Bunout, D; Díaz, M; Kelly, M; Silva, G; de la Maza, M P; Petermann, M; Ugarte, G

    1993-04-01

    Looking for a noninvasive method to predict liver histologic alterations in alcoholic patients without clinical signs of liver failure, we studied 187 chronic alcoholics recently abstinent, divided in 2 series. In the model series (n = 94) several clinical variables and results of common laboratory tests were confronted to the findings of liver biopsies. These were classified in 3 groups: 1. Normal liver; 2. Moderate alterations; 3. Marked alterations, including alcoholic hepatitis and cirrhosis. Multivariate methods used were logistic regression analysis and a classification and regression tree (CART). Both methods entered gamma-glutamyltransferase (GGT), aspartate-aminotransferase (AST), weight and age as significant and independent variables. Univariate analysis with GGT and AST at different cutoffs were also performed. To predict the presence of any kind of damage (Groups 2 and 3), CART and AST > 30 IU showed the higher sensitivity, specificity and correct prediction, both in the model and validation series. For prediction of marked liver damage, a score based on logistic regression and GGT > 110 IU had the higher efficiencies. It is concluded that GGT and AST are good markers of alcoholic liver damage and that, using sample cutoffs, histologic diagnosis can be correctly predicted in 80% of recently abstinent asymptomatic alcoholics. PMID:7903815

  18. Hepatoprotective Activity of Heptoplus on Isoniazid and Rifampicin Induced Liver Damage in Rats

    PubMed Central

    Sankar, M.; Rajkumar, Johanna; Sridhar, Dorai

    2015-01-01

    The present study is designed to evaluate the efficacy of heptoplus a polyherbal formulation as an oral supplementary agent for isoniazid and rifampicin induced hepatotoxicity in rats. 50 and 100 mg/kg of heptoplus supplement were fed orally to the rats along with isoniazid and rifampicin and compared to rats treated with 100 mg/kg Liv 52 standard drug. Rats treated with isoniazid and rifampicin suffered from severe oxidative stress by the virtue of free radicals induced lipid per oxidation. As a result abnormal index of serum biochemical markers for liver function and increased liver lysosomal enzymes activity was observed. However rats nourished with 100 mg/kg of heptoplus and Liv 52 protected the liver from oxidative damage by maintaining normal antioxidant profile status and restored normal serum liver biochemical markers. Increased liver lysosomal enzymes activity is prevented in the rats supplemented with heptoplus and Liv 52. Histopathological analysis also revealed severe vascular changes and lobular necrosis in the treatment of isoniazid and rifampicin. Heptoplus (100 mg/kg) and Liv 52 supplemented rats liver apparently revealed normal architecture of liver. This study confirms that heptoplus has liver protective activity against Isoniazid and Rifampicin induced liver injury in rats, in par with Liv 52. PMID:26798170

  19. Biochemical and Histological Correlations of Regeneration After Experimental Liver Damage: Significance of Cirrhosis

    PubMed Central

    More, I. A. R.

    1973-01-01

    Chromatin was isolated from rat liver after the animal had been subjected to a variety of stimuli calculated to cause liver damage and regeneration. It was found that the regenerating nodule in the cirrhotic rat and the liver regenerating after partial hepatectomy showed similar changes. Both involved an increase in the content of active chromatin, an increased ability to make RNA and the derepression of a relatively small portion of the genome. ImagesFigs. 1-2Figs. 3-4Figs. 5-6 PMID:4726093

  20. Ginger-derived nanoparticles protect against alcohol-induced liver damage.

    PubMed

    Zhuang, Xiaoying; Deng, Zhong-Bin; Mu, Jingyao; Zhang, Lifeng; Yan, Jun; Miller, Donald; Feng, Wenke; McClain, Craig J; Zhang, Huang-Ge

    2015-01-01

    Daily exposure of humans to nanoparticles from edible plants is inevitable, but significant advances are required to determine whether edible plant nanoparticles are beneficial to our health. Additionally, strategies are needed to elucidate the molecular mechanisms underlying any beneficial effects. Here, as a proof of concept, we used a mouse model to show that orally given nanoparticles isolated from ginger extracts using a sucrose gradient centrifugation procedure resulted in protecting mice against alcohol-induced liver damage. The ginger-derived nanoparticle (GDN)-mediated activation of nuclear factor erythroid 2-related factor 2 (Nrf2) led to the expression of a group of liver detoxifying/antioxidant genes and inhibited the production of reactive oxygen species, which partially contributes to the liver protection. Using lipid knock-out and knock-in strategies, we further identified that shogaol in the GDN plays a role in the induction of Nrf2 in a TLR4/TRIF-dependent manner. Given the critical role of Nrf2 in modulating numerous cellular processes, including hepatocyte homeostasis, drug metabolism, antioxidant defenses, and cell-cycle progression of liver, this finding not only opens up a new avenue for investigating GDN as a means to protect against the development of liver-related diseases such as alcohol-induced liver damage but sheds light on studying the cellular and molecular mechanisms underlying interspecies communication in the liver via edible plant-derived nanoparticles. PMID:26610593

  1. Ginger-derived nanoparticles protect against alcohol-induced liver damage

    PubMed Central

    Zhuang, Xiaoying; Deng, Zhong-Bin; Mu, Jingyao; Zhang, Lifeng; Yan, Jun; Miller, Donald; Feng, Wenke; McClain, Craig J.; Zhang, Huang-Ge

    2015-01-01

    Daily exposure of humans to nanoparticles from edible plants is inevitable, but significant advances are required to determine whether edible plant nanoparticles are beneficial to our health. Additionally, strategies are needed to elucidate the molecular mechanisms underlying any beneficial effects. Here, as a proof of concept, we used a mouse model to show that orally given nanoparticles isolated from ginger extracts using a sucrose gradient centrifugation procedure resulted in protecting mice against alcohol-induced liver damage. The ginger-derived nanoparticle (GDN)–mediated activation of nuclear factor erythroid 2-related factor 2 (Nrf2) led to the expression of a group of liver detoxifying/antioxidant genes and inhibited the production of reactive oxygen species, which partially contributes to the liver protection. Using lipid knock-out and knock-in strategies, we further identified that shogaol in the GDN plays a role in the induction of Nrf2 in a TLR4/TRIF-dependent manner. Given the critical role of Nrf2 in modulating numerous cellular processes, including hepatocyte homeostasis, drug metabolism, antioxidant defenses, and cell-cycle progression of liver, this finding not only opens up a new avenue for investigating GDN as a means to protect against the development of liver-related diseases such as alcohol-induced liver damage but sheds light on studying the cellular and molecular mechanisms underlying interspecies communication in the liver via edible plant–derived nanoparticles. PMID:26610593

  2. Delta-Like Ligand 4 Modulates Liver Damage by Down-Regulating Chemokine Expression.

    PubMed

    Shen, Zhe; Liu, Yan; Dewidar, Bedair; Hu, Junhao; Park, Ogyi; Feng, Teng; Xu, Chengfu; Yu, Chaohui; Li, Qi; Meyer, Christoph; Ilkavets, Iryna; Müller, Alexandra; Stump-Guthier, Carolin; Munker, Stefan; Liebe, Roman; Zimmer, Vincent; Lammert, Frank; Mertens, Peter R; Li, Hai; Ten Dijke, Peter; Augustin, Hellmut G; Li, Jun; Gao, Bin; Ebert, Matthias P; Dooley, Steven; Li, Youming; Weng, Hong-Lei

    2016-07-01

    Disrupting Notch signaling ameliorates experimental liver fibrosis. However, the role of individual Notch ligands in liver damage is unknown. We investigated the effects of Delta-like ligand 4 (Dll4) in liver disease. DLL4 expression was measured in 31 human liver tissues by immunohistochemistry. Dll4 function was examined in carbon tetrachloride- and bile duct ligation-challenged mouse models in vivo and evaluated in hepatic stellate cells, hepatocytes, and Kupffer cells in vitro. DLL4 was expressed in patients' Kupffer and liver sinusoidal endothelial cells. Recombinant Dll4 protein (rDll4) ameliorated hepatocyte apoptosis, inflammation, and fibrosis in mice after carbon tetrachloride challenge. In vitro, rDll4 significantly decreased lipopolysaccharide-dependent chemokine expression in both Kupffer and hepatic stellate cells. In bile duct ligation mice, rDll4 induced massive hepatic necrosis, resulting in the death of all animals within 1 week. Inflammatory cell infiltration and chemokine ligand 2 (Ccl2) expression were significantly reduced in rDll4-receiving bile duct ligation mice. Recombinant Ccl2 rescued bile duct ligation mice from rDll4-mediated death. In patients with acute-on-chronic liver failure, DLL4 expression was inversely associated with CCL2 abundance. Mechanistically, Dll4 regulated Ccl2 expression via NF-κB. Taken together, Dll4 modulates liver inflammatory response by down-regulating chemokine expression. rDll4 application results in opposing outcomes in two models of liver damage. Loss of DLL4 may be associated with CCL2-mediated cytokine storm in patients with acute-on-chronic liver failure. PMID:27171900

  3. Chronic hepatitis C virus infection: Serum biomarkers in predicting liver damage

    PubMed Central

    Valva, Pamela; Ríos, Daniela A; De Matteo, Elena; Preciado, Maria V

    2016-01-01

    Currently, a major clinical challenge in the management of the increasing number of hepatitis C virus (HCV) infected patients is determining the best means for evaluating liver impairment. Prognosis and treatment of chronic hepatitis C (CHC) are partly dependent on the assessment of histological activity, namely cell necrosis and inflammation, and the degree of liver fibrosis. These parameters can be provided by liver biopsy; however, in addition to the risks related to an invasive procedure, liver biopsy has been associated with sampling error mostly due to suboptimal biopsy size. To avoid these pitfalls, several markers have been proposed as non-invasive alternatives for the diagnosis of liver damage. Distinct approaches among the currently available non-invasive methods are (1) the physical ones based on imaging techniques; and (2) the biological ones based on serum biomarkers. In this review, we discuss these approaches with special focus on currently available non-invasive serum markers. We will discuss: (1) class I serum biomarkers individually and as combined panels, particularly those that mirror the metabolism of liver extracellular matrix turnover and/or fibrogenic cell changes; (2) class II biomarkers that are indirect serum markers and are based on the evaluation of common functional alterations in the liver; and (3) biomarkers of liver cell death, since hepatocyte apoptosis plays a significant role in the pathogenesis of HCV infection. We highlight in this review the evidence behind the use of these markers and assess the diagnostic accuracy as well as advantages, limitations, and application in clinical practice of each test for predicting liver damage in CHC. PMID:26819506

  4. Hemopexin Prevents Endothelial Damage and Liver Congestion in a Mouse Model of Heme Overload

    PubMed Central

    Vinchi, Francesca; Gastaldi, Stefania; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2008-01-01

    Intravascular hemolysis results in the release of massive amounts of hemoglobin and heme into plasma, where they are rapidly bound by haptoglobin and hemopexin, respectively. Data from haptoglobin and hemopexin knockout mice have shown that both proteins protect from renal damage after phenylhydrazine-induced hemolysis, whereas double-mutant mice were especially prone to liver damage. However, the specific role of hemopexin remains elusive because of the difficulty in discriminating between hemoglobin and heme recovery. To study the specific role of hemopexin in intravascular hemolysis, we established a mouse model of heme overload. Under these conditions, both endothelial activation and vascular permeability were significantly higher in hemopexin-null mice compared with wild-type controls. Vascular permeability was particularly altered in the liver, where congestion in the centrolobular area was believed to be associated with oxidative stress and inflammation. Liver damage in hemopexin- null mice may be prevented by induction of heme oxygenase-1 before heme overload. Furthermore, heme-treated hemopexin-null mice exhibited hyperbilirubinemia, prolonged heme oxygenase-1 expression, excessive heme metabolism, and lack of H-ferritin induction in the liver compared with heme-treated wild-type controls. Moreover, these mutant mice metabolize an excess of heme in the kidney. These studies highlight the importance of hemopexin in heme detoxification, thus suggesting that drugs mimicking hemopexin activity might be useful to prevent endothelial damage in patients suffering from hemolytic disorders. PMID:18556779

  5. Hepatoprotective activity of Moringa oleifera on antitubercular drug-induced liver damage in rats.

    PubMed

    Pari, L; Kumar, N Ashok

    2002-01-01

    Moringa oleifera Lam (Moringaceae), commonly known as "Drumstick," is used in Indian folk medicine for the treatment of various illness. We have evaluated the hepatoprotective effect of an ethanolic extract of M. oleifera leaves on liver damage induced by antitubercular drugs such as isoniazid (INH), rifampicin (RMP), and pyrazinamide (PZA) in rats. Oral administration of the extract showed a significant protective action made evident by its effect on the levels of glutamic oxaloacetic transaminase (aspartate aminotransferase), glutamic pyruvic transaminase (alanine aminotransferase), alkaline phosphatase, and bilirubin in the serum; lipids, and lipid peroxidation levels in liver. This observation was supplemented by histopathological examination of liver sections. The results of this study showed that treatment with M. oleifera extracts or silymarin (as a reference) appears to enhance the recovery from hepatic damage induced by antitubercular drugs. PMID:12495589

  6. Action of streptokinase on parameters of hemostasis in rabbits with toxic liver damage due to carbon tetrachloride

    SciTech Connect

    Nikandrov, V.N.; Naumovich, S.A.; Votyakov, V.I.

    1987-07-01

    The authors study the specific nature of changes in the parameters of hemostasis in rabbits with experimental toxic liver damage. Streptokinase was injected intravenously. Toxic liver damage was induced by injections of carbon tetrachloride. The parameters studied included acceleration of lysis of the blood clot, increased fibrinolytic activity and thrombin time, lowered level of fibrinogen and antithrombin III.

  7. Experimental Protoporphyria: Effect of Bile Acids on Liver Damage Induced by Griseofulvin

    PubMed Central

    Martinez, María del Carmen; Ruspini, Silvina Fernanda; Afonso, Susana Graciela; Meiss, Roberto; Buzaleh, Ana Maria

    2015-01-01

    The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris) was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA), dehydrocholic (DHA), chenodeoxycholic, or ursodeoxycholic (URSO). The administration of Gris alone increased the activities of glutathione reductase (GRed), superoxide dismutase (SOD), alkaline phosphatase (AP), gamma glutamyl transpeptidase (GGT), and glutathione-S-transferase (GST), as well as total porphyrins, glutathione (GSH), and cytochrome P450 (CYP) levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris. PMID:25945334

  8. Aloe vera gel protects liver from oxidative stress-induced damage in experimental rat model.

    PubMed

    Nahar, Taslima; Uddin, Borhan; Hossain, Shahdat; Sikder, Abdul Mannan; Ahmed, Sohel

    2013-01-01

    Aloe vera is a semi-tropical plant of Liliaceae family which has a wide range of applications in traditional medicine. In the present study, we sought to investigate the heptaoprotective potential of Aloe vera gel as a diet supplement. To achieve this goal, we have designed in vitro and in vivo experimental models of chemical-induced liver damage using male Sprague-Dawley rat. In the in vitro model, its effect was evaluated on Fenton's reaction-induced liver lipid peroxidation. Co-incubation with gel significantly reduced the generation of liver lipid peroxide (LPO). Next, to see the similar effect in vivo, gel was orally administered to rats once daily for 21 successive days. Following 1 hour of the last administration of gel, rats were treated with intra-peritoneal injection of CCl4. Dietary gel showed significant hepatoprotection against CCl4-induced damage as evident by restoration of liver LPO, serum transaminases, alkaline phosphatase, and total bilirubin towards near normal. The beneficial effects were pronounced with the doses used (400 and 800 mg/kg body weight). Besides, we did not observe any significant drop in serum albumin, globulin as well as total protein levels of gel-administered rats. Histopathology of the liver tissue further supported the biochemical findings confirming the hepatoprotective potential of dietary gel. PMID:23652643

  9. Oxidative Stress and DNA Damage Induced by Chromium in Liver and Kidney of Goldfish, Carassius auratus

    PubMed Central

    Velma, Venkatramreddy; Tchounwou, Paul B.

    2013-01-01

    Chromium (Cr) is an abundant element in the Earth’s crust. It exhibits various oxidation states, from divalent to hexavalent forms. Cr has diverse applications in various industrial processes and inadequate treatment of the industrial effluents leads to the contamination of the surrounding water resources. Hexavalent chromium (Cr (VI)) is the most toxic form, and its toxicity has been associated with oxidative stress. The present study was designed to investigate the toxic potential of Cr (VI) in fish. In this research, we investigated the role of oxidative stress in chromium-induced genotoxicity in the liver and kidney cells of goldfish, Carassius auratus. Goldfish were acclimatized to the laboratory conditions and exposed them to 5% and 10% of 96 hr-LC50 (85.7 mg/L) of aqueous Cr (VI) in a continuous flow through system. Fish were sampled every 7 days for a period of 28 days to analyze the lipid hydroperoxides (LHP) levels and genotoxic potentials in the liver and kidney. LHP levels were analyzed by spectrophotometry while genotoxicity was assessed by single cell gel electrophoresis (comet) assay. LHP levels in the liver increased significantly at week 1, followed by a decrease. LHP levels in the kidney increased significantly at weeks 1, 2, and 3, and decreased at week 4 compared to the control. The percentage of DNA damage increased in both liver and kidney at both test concentrations. The results clearly indicate that Cr (VI) induces significant levels of DNA damage in liver and kidney cells of goldfish. The induced LHP levels in both organs were concentration-dependent and were directly correlated with the levels of DNA damage. The two tested Cr (VI) concentrations induced significant levels of oxidative stress in both organs, however the kidney appears to be more vulnerable and sensitive to Cr-induced toxicity than the liver. PMID:23700361

  10. [Interferon-alpha and liver fibrosis in patients with chronic damage due to hepatitis C virus].

    PubMed

    Gonzalez-Huezo, María Sarai; Gallegos-Orozco, Juan Fernando

    2003-01-01

    The present review focuses on the published information published regarding the effects of interferon alpha therapy on liver fibrosis in patients with chronic liver damage secondary to hepatitis C infection. Data reviewed included results of the in vitro effects of interferon on hepatic cell line cultures with regards to indirect markers of fibrosis, activation of hepatic stellate cells and oxidative stress response. In the clinical arena, there is current clear evidence of a favorable histological outcome in patients with sustained viral response to interferon therapy. For this reason, the current review focuses more on the histological outcomes regarding liver fibrosis in patients who have not attained viral response to therapy (non-responders) or who already have biopsy defined cirrhosis. Data in these patients were analyzed according to the results of objective testing of fibrosis through the assessment of liver biopsy and its change during time, specially because the morbidity and mortality of this disease is directly related to the complications of liver cirrhosis and not necessarily to the persistence of the hepatitis C virus. Lastly, it is concluded that the process of liver fibrosis/cirrhosis is a dynamic one and that there is some evidence to support the usefulness of interferon alpha therapy as a means to halt or retard the progression of hepatic fibrosis. The result of current clinical trials in which interferon therapy is being used to modify the progression of fibrosis in non-responders or cirrhotic patients is eagerly awaited. PMID:14702938

  11. Enhanced protective activity of nano formulated andrographolide against arsenic induced liver damage.

    PubMed

    Das, Sujata; Pradhan, Goutam Kumar; Das, Subhadip; Nath, Debjani; Das Saha, Krishna

    2015-12-01

    Chronic exposure to arsenic over a period of time induces toxicity, primarily in liver but gradually in all systems of the body. Andrographolide (AG), a major diterpene lactone of Andrographis paniculata, shows a wide array of physiological functions including hepatoprotection. Therapeutic applications of AG are however seriously constrained because of its insolubility, poor bioavailability, and short plasma half-life. Nanoparticulation of AG is a possible solution to these problems. In the present study we investigated the effectiveness of polylactide co-glycolide (PLGA) nanocapsulated andrographolide (NA) against arsenic induced liver damage in mice. NA of average diameter 65.8 nm and encapsulation efficiency of 64% were prepared. Sodium arsenite at a dose of 40 mg/L supplied via drinking water in mice significantly raised the serum level of liver function markers such as AST, ALT, and ALP, and caused arsenic deposition in liver and ROS generation, though it did not show any lethality up to 30 days of exposure. However, even liver toxicity was not observed when mice were given AG and NA orally at doses up to 100 mg/kg bwt and 20 mg/kg bwt respectively on alternate days for one month. Treatment of non-toxic doses of AG or NA on alternate days along with arsenic significantly decreased the arsenic induced elevation of the serum level of ALT, AST and ALP, and arsenic deposition in liver. AG and NA increased the level of hepatic antioxidant enzymes such as superoxide dismutase (SOD), and catalase (CAT), and the level of reduced glutathione (GSH). Also, the ROS level was lowered in mice exposed to arsenic but treated with AG or NA. Protective efficiency of NA is about five times more than that of AG. Administration of NA to arsenic-treated mice caused signs of improvement in liver tissue architecture. In conclusion, the results of this study suggest that NA could be beneficial against arsenic-induced liver toxicity. PMID:26485141

  12. Drinking habits as cofactors of risk for alcohol induced liver damage

    PubMed Central

    Bellentani, S; Saccoccio, G; Costa, G; Tiribelli, C; Manenti, F; Sodde, M; Croce', L; Sasso, F; Pozzato, G; Cristianini, G; a Brandi

    1997-01-01

    Background—The Dionysos Study is a cohort study of the prevalence of chronic liver disease in the general population of two northern Italian communities. It included 6917 subjects, aged 12-65 (69% of the total population). 
Aims—The aim of this part of the study was to examine the relationship of daily alcohol intake, type of alcoholic beverage consumed, and drinking patterns to the presence of alcohol induced liver damage in an open population. 
Patients and methods—6534 subjects, free of virus related chronic liver disease and participating in the first cross-sectional part of the study, were fully examined. Each subject underwent: (a) medical history and physical examination, (b) evaluation of alcohol intake using an illustrated dietary questionnaire, and (c) routine blood tests. More invasive diagnostic procedures were performed when indicated. 
Results—Multivariate analysis showed that the risk threshold for developing either cirrhosis or non-cirrhotic liver damage (NCLD) was ingestion of more than 30 g alcohol per day in both sexes. Using this definition, 1349 individuals (21% of the population studied) were at risk. Of these, only 74 (5.5% of the individuals at risk) showed signs of liver damage. The prevalence of "pure" alcoholic cirrhosis was 0.43% (30 of 6917), representing 2.2% of the individuals at risk, with a ratio of men to women of 9:1, while 44 (3.3% of the individuals at risk) showed persistent signs of NCLD. After 50 years of age, the cumulative risk of developing both NCLD and cirrhosis was significantly higher (p<0.0001) for those individuals who regularly drank alcohol both with and without food than for those who drank only at mealtimes. 
Conclusions—Our data show that in an open population the risk threshold for developing cirrhosis and NCLD is 30 g ethanol/day, and this risk increases with increasing daily intake. Drinking alcohol outside mealtimes and drinking multiple different alcoholic beverages both increase the risk

  13. Vascular Damage in Patients with Nonalcoholic Fatty Liver Disease: Possible Role of Iron and Ferritin

    PubMed Central

    Pisano, Giuseppina; Lombardi, Rosa; Fracanzani, Anna Ludovica

    2016-01-01

    Non Alcoholic Fatty Liver Disease (NAFLD) is the most common chronic liver disease in Western countries. Recent data indicated that NAFLD is a risk factor by itself contributing to the development of cardiovascular disease independently of classical known risk factors. Hyperferritinemia and mild increased iron stores are frequently observed in patients with NAFLD and several mechanisms have been proposed to explain the role of iron, through oxidative stress and interaction with insulin metabolism, in the development of vascular damage. Moreover, iron depletion has been shown to decrease atherogenesis in experimental models and in humans. This review presents the recent evidence on epidemiology, pathogenesis, and the possible explanation of the role of iron and ferritin in the development of cardiovascular damage in patients with NAFLD, and discusses the possible interplay between metabolic disorders associated with NAFLD and iron in the development of cardiovascular disease. PMID:27164079

  14. Antioxidant and hepatoprotective effects of punicalagin and punicalin on acetaminophen-induced liver damage in rats.

    PubMed

    Lin, C C; Hsu, Y F; Lin, T C; Hsu, H Y

    2001-05-01

    Punicalagin and punicalin were isolated from the leaves of Terminalia catappa L., a Combretaceous plant distributed throughout tropical and subtropical beaches, which is used for the treatment of dermatitis and hepatitis. Our previous studies showed that both of these compounds exert antioxidative activity. In this study, the antihepatotoxic activity of punicalagin and punicalin on acetaminophen-induced toxicity in the rat liver was evaluated. After evaluating the changes of several biochemical functions in serum, the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were increased by acetaminophen administration and reduced by punicalagin and punicalin. Histological changes around the hepatic central vein and oxidative damage induced by acetaminophen were also recovered by both compounds. The data show that both punicalagin and punicalin exert antihepatotoxic activity, but treatment with larger doses enhanced liver damage. These results suggest that even if punicalagin and punicalin have antioxidant activity at small doses, treatment with larger doses will possibly induce some cell toxicities. PMID:11351354

  15. [Pharmacological correction of toxic liver damage in patients with heavy forms of acute ethanol intoxication].

    PubMed

    Shikalova, I A; Shilov, V V; Vasil'ev, S A; Batotsyrenov, B V; Loladze, A T

    2012-01-01

    The efficiency of using remaxol and ademethionine in the therapy of patients with heavy acute alcohol intoxication on the background of toxic liver damage has been studied. The administration of remaxol led to improvement of the clinical treatment of alcohol intoxication, which is manifested by a decrease in the rate and duration of delirium tremens (from 33.9 to 10.8%), frequency of secondary lung disorders (from 18.5 to 3.1%), duration of stay in hospital (from 7.3 +/- 0.6 to 5.6 +/- 0.3 days), and total therapy duration (from 11.8 +/- 1.05 to 5.6 +/- 0.3 days). The results of biochemical investigations confirmed that remaxol and ademethionine provide effective treatment of the toxic liver damage. Remaxol decreases the degree of metabolic disorders to a greater extent than does ademethionine. PMID:22702109

  16. In vivo formation of unstable heterokaryons after liver damage and hematopoietic stem cell/progenitor transplantation.

    PubMed

    Kashofer, Karl; Siapati, Elena K; Bonnet, Dominique

    2006-04-01

    Following reports of lineage plasticity in human hematopoietic stem cells (HSCs), we investigated the potential of human cord blood HSC-enriched cells to create hepatocytes in hosts after inducing liver damage. Carbon tetrachloride induces severe liver damage and subsequent repair via mitosis of resident hepatocytes. It additionally leads to a threefold increase in homing of human mononuclear cells to bone marrow and liver and subsequently to a substantial enhancement of bone marrow engraftment. Eight weeks after liver damage and infusion of an enhanced green fluorescent protein (eGFP) lentivirus-transduced human HSC-enriched cell population, we observed eGFP-positive cells with clear hepatocyte morphology in the livers of animals. These eGFP-positive cells co-expressed human albumin, and reverse-transcription polymerase chain reaction (PCR) analysis demonstrated the presence of human albumin and alpha-anti-trypsin mRNA. However, two antibodies against human mitochondria and human nuclei failed to mark eGFP-positive hepatocyte-like cells but did give clear staining of donor-derived hematopoietic cells. Subsequent fluorescent in situ hybridization (FISH) analysis revealed the presence of mouse Y chromosome in eGFP-positive hepatocyte-like cells. To resolve this discrepancy, we performed single-cell PCR analysis of microdissected eGFP-positive hepatocyte-like cells and found that they contained mostly mouse and little human genomic material. FISH analysis highlighting the centromeres of all human chromosomes revealed only few human chromosomes in these cells. From these results, we conclude that similar to their murine counterparts, human hematopoietic cells have the potential to fuse with resident host hepatocytes. Because no selective pressure is applied to retain the human genomic material, it is gradually lost over time, leading to a variable phenotype of the chimeric cells and making their detection difficult. PMID:16282440

  17. [The efficacy of the polyphenol plant preparation piflamin in drug damage to the liver].

    PubMed

    Iakovleva, L V; Buniatian, N D; Gerasimova, O A; Chikitkina, V V; Kovaleva, A M

    1998-01-01

    The hepatoprotective properties of the flavonoid preparation piflamine of field-peas grass were studied on a model of experimental paracetamol liver damage. Piflamine was found to normalize the parameters of carbohydrate, protein, and lipid metabolism, increase the activity of the antioxidant system, and restore the processes of bile production and bile secretion. The drug is prospective due to its quite cheap and available source of raw materials. PMID:9929818

  18. Effective protection of Terminalia catappa L. leaves from damage induced by carbon tetrachloride in liver mitochondria.

    PubMed

    Tang, Xinhui; Gao, Jing; Wang, Yanping; Fan, Yi-Mei; Xu, Li-Zhi; Zhao, Xiao-Ning; Xu, Qiang; Qian, Zhong Ming

    2006-03-01

    The protective effects of chloroform extracts of Terminalia catappa L. leaves (TCCE) on carbon tetrachloride (CCl4)-induced liver damage and the possible mechanisms involved in the protection were investigated in mice. We found that increases in the activity of serum aspartate aminotransferase and alanine aminotransferase and the level of liver lipid peroxidation (2.0-fold, 5.7-fold and 2.8-fold) induced by CCl4 were significantly inhibited by oral pretreatment with 20, 50 or 100 mg/kg of TCCE. Morphological observation further confirmed the hepatoprotective effects of TCCE. In addition, the disruption of mitochondrial membrane potential (14.8%), intramitochondrial Ca2+ overload (2.1-fold) and suppression of mitochondrial Ca2+-ATPase activity (42.0%) in the liver of CCl4-insulted mice were effectively prevented by pretreatment with TCCE. It can be concluded that TCCE have protective activities against liver mitochondrial damage induced by CCl4, which suggests a new mechanism of the hepatoprotective effects of TCCE. PMID:16169207

  19. Risk factors for damaged liver function after chemotherapy in hepatitis B virus carriers with non-Hodgkin lymphoma.

    PubMed

    Li, X; Fan, X W; Liu, W; Guo, L; Li, Y; Hu, X; Liang, X; Ma, X P; Yang, S E

    2015-01-01

    The goal of this study was to investigate damaged liver function after chemotherapy in hepatitis B virus (HBV) carriers with non-Hodgkin lymphoma (NHL) and to evaluate risk factors associated with a high risk of damaged liver function. Clinical histories of 134 HBV carriers with NHL who were treated with chemotherapy were obtained and analyzed for the occurrence of damaged liver function and other related high-risk factors. Analysis showed that 76 patients (56.7%) had damaged liver function after chemotherapy: 6 patients (7.9%) had I degree, 17 patients (22.4%) had II degree, 20 patients (26.3%) had III degree, and 33 patients (43.4%) had IV degree damage. After treatment, 18 patients (23.7%) continued to receive chemotherapy according to their original schedule, 39 patients (51.3%) delayed chemotherapy, 16 patients (21.1%) stopped chemotherapy, and 3 patients (3.9%) died. Analysis of a binary multivariate logistic regression model showed that administration of steroids was a high-risk factor for damaged liver function after chemotherapy in NHL patients. The incidence of damaged liver function after chemotherapy is high among HBV carriers with NHL; therefore, administration of steroid chemotherapy is a high-risk factor. PMID:25867413

  20. MicroRNA-674-5p/5-LO axis involved in autoimmune reaction of Concanavalin A-induced acute mouse liver injury.

    PubMed

    Su, Kunkai; Wang, Qi; Qi, Luoyang; Hua, Dasong; Tao, Jingjing; Mangan, Connor J; Lou, Yijia; Li, Lanjuan

    2016-09-01

    Autoimmune hepatitis is characterized, in part, by the pathways involving cysteinyl-leukotriene metabolites of arachidonic acid, the dynamics of which remain unclear. Here, we explored post-transcriptional regulation in the 5-lipoxygenase (5-LO) pathway of arachidonic acid in a Concanavalin A (Con A) induced mouse model. We found that Con A administration lead to 5-LO overexpression and cysteinyl-leukotriene release in early hepatic injury, which was attenuated by cyclosporin A pretreatment. Subsequent microarray and qRT-PCR analysis further showed that microRNA-674-5p (miR-674-5p) displayed a significant decrease in expression in Con A-damaged liver. Noting that miR-674-5p harbors a potential binding region for 5-LO, we further transfected hepatic cell lines with overexpressing miR-674-5p mimic and discovered a negative regulating effect of miR-674-5p on 5-LO expression in the presence of IL-6 or TNF-α. These findings suggest that miR-674-5p might be a negative regulator in 5-LO mediated autoimmune liver injury, representing a compelling avenue towards future therapeutic interventions. PMID:27313091

  1. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    PubMed Central

    Skipper, Anthony; Sims, Jennifer N.; Yedjou, Clement G.; Tchounwou, Paul B.

    2016-01-01

    Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2) cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet) assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay). The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05) increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05) was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2) cells. PMID:26729151

  2. Usage of adenovirus expressing thymidine kinase mediated hepatocellular damage for enabling mouse liver repopulation with allogenic or xenogenic hepatocytes.

    PubMed

    Moreno, Daniel; Balasiddaiah, Anangi; Lamas, Oscar; Duret, Cedric; Neri, Leire; Guembe, Laura; Galarraga, Miguel; Larrea, Esther; Daujat-Chavanieu, Martine; Muntane, Jordi; Maurel, Patrick; Riezu, Jose Ignacio; Prieto, Jesus; Aldabe, Rafael

    2013-01-01

    It has been shown that the liver of immunodeficient mice can be efficiently repopulated with human hepatocytes when subjected to chronic hepatocellular damage. Mice with such chimeric livers represent useful reagents for medical and clinical studies. However all previously reported models of humanized livers are difficult to implement as they involve cross-breeding of immunodeficient mice with mice exhibiting genetic alterations causing sustained hepatic injury. In this paper we attempted to create chimeric livers by inducing persistent hepatocellular damage in immunodeficient Rag2(-/-) γc(-/-) mice using an adenovirus encoding herpes virus thymidine kinase (AdTk) and two consecutive doses of ganciclovir (GCV). We found that this treatment resulted in hepatocellular damage persisting for at least 10 weeks and enabled efficient engraftment and proliferation within the liver of either human or allogenic hepatocytes. Interestingly, while the nodules generated from the transplanted mouse hepatocytes were well vascularized, the human hepatocytes experienced progressive depolarization and exhibited reduced numbers of murine endothelial cells inside the nodules. In conclusion, AdTk/GCV-induced liver damage licenses the liver of immunodeficient mice for allogenic and xenogenic hepatocyte repopulation. This approach represents a simple alternative strategy for chimeric liver generation using immunodeficient mice without additional genetic manipulation of the germ line. PMID:24086405

  3. Effect of Dietary Vitamin E Supplementation on Liver Oxidative Damage in Rats with Water-Immersion Restraint Stress.

    PubMed

    Ohta, Yoshiji; Yashiro, Koji; Ohashi, Koji; Horikoshi, Yosuke; Kusumoto, Chiaki; Matsura, Tatsuya; Fukuzawa, Kenji

    2015-01-01

    We examined how dietary supplementation of vitamin E protects against liver oxidative damage in rats with water-immersion restraint stress (WIRS). Before WIRS exposure, rats received a normal diet (ND) or vitamin E-supplemented diet (VESD) (500 IU α-tocopherol/kg diet) at a mean dose of 15 g/animal/d for 4 wk. The two diet groups had serum transaminases and lactate dehydrogenase activities and adrenocorticotropic hormone, corticosterone, and glucose levels to a similar extent. VESD-fed rats had higher liver α-tocopherol concentrations and lower liver ascorbic acid, total coenzyme Q9 (CoQ9), reduced CoQ9, reduced CoQ10, and lipid peroxide (LPO) concentrations than ND-fed rats. When the two diet groups were exposed to 6 h of WIRS, the serum liver cell damage index enzyme activities increased more greatly in ND-fed rats than in VESD-fed rats but the serum stress marker levels increased to a similar extent. The WIRS exposure caused no change in liver LPO concentration with the further increase in liver α-tocopherol concentration in VESD-fed rats but increased liver LPO concentration without changing liver α-tocopherol concentration in ND-fed rats. Upon the WIRS exposure, liver reduced glutathione concentration decreased with the further decrease in liver ascorbic acid concentration in VESD-fed rats and those concentrations decreased in ND-fed rats. The WIRS exposure recovered the decreased liver total CoQ9 and reduced CoQ9 concentrations in VESD-fed rats but decreased liver total CoQ9, reduced CoQ9, and reduced CoQ10 concentrations in ND-fed rats. These results indicate that dietary vitamin E supplementation protects against liver oxidative damage without affecting the stress response in rats with WIRS. PMID:26052141

  4. Superoxide dismutase derivative prevents oxidative damage in liver and kidney of rats induced by exhausting exercise.

    PubMed

    Radák, Z; Asano, K; Inoue, M; Kizaki, T; Oh-Ishi, S; Suzuki, K; Taniguchi, N; Ohno, H

    1996-01-01

    To prevent oxidative tissue damage induced by strenuous exercise in the liver and kidney superoxide dismutase derivative (SM-SOD), which circulated bound to albumin with a half-life of 6 h, was injected intraperitoneally into rats. Exhausting treadmill running caused a significant increase in the activities of xanthine oxidase (XO), and glutathione peroxidase (GPX) in addition to concentrations of thiobarbituric acid-reactive substances (TBARS) in hepatic tissue immediately after running. There was a definite increase in the immunoreactive content of mitochondrial superoxide dismutase (Mn-SOD) 1 day after the running. Meanwhile, the TBARS concentration in the kidney was markedly elevated 3 days after running. The activities of GPX, and catalase in the kidney increased significantly immediately and on days 1 and 3 following the test. The immunoreactive content of Mn-SOD also increased 1 day after running. The exercise induced no significant changes in immunoreactive Cu, Zn-SOD content in either tissue. The administration of SM-SOD provided effective protection against lipid peroxidation, and significantly attenuated the alterations in XO and all the anti-oxidant enzymes, measured. In summary, the present data would suggest that exhausting exercise may induce XO-derived oxidative damage in the liver, while the increase in lipid peroxidation in the kidney might be the result of washout-dependent accumulation of peroxidised metabolites. We found that the administration of SM-SOD provided excellent protection against exercise-induced oxidative stress in both liver and kidney. PMID:8820884

  5. Mechanism of chronic dietary iron overload-induced liver damage in mice.

    PubMed

    Liu, Dan; He, Huan; Yin, Dong; Que, Ailing; Tang, Lei; Liao, Zhangping; Huang, Qiren; He, Ming

    2013-04-01

    Chronic iron overload may result in hepatic fibrosis and even neoplastic transformation due to a burst of reactive oxygen species (ROS). Mitochondria have been proposed to be important in the production of ROS. The purpose of this study was to investigate the role of the mitochondrial permeability transition pore (mPTP) in the burst of ROS, and to clarify the mechanism whereby ROS induced by iron overload results in hepatic damage. It has been demonstrated that when ferrocene-induced iron-overloaded mice were fed the cyclosporin A (CsA), a specific inhibitor of the mPTP, diet (10 mg/kg/day) for 50 days, liver-to-body weight ratio, serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), ROS production, mitochondrial swelling, loss of mitochondrial membrane potential (Δψ) and hepatocyte apoptosis decreased. However, the total antioxidant status, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase activities, increased. The protective effect of CsA on the liver of iron-overloaded mice may be due to inhibition of the ROS burst and a successive antioxidant effect. To the best of our knowledge, these data provide the first support for the theory that ROS-induced ROS release (RIRR) may be involved in the burst of ROS in the liver and greatly contribute to the hepatic damage initiated by iron overload. PMID:23404080

  6. Murine liver damage caused by exposure to nano-titanium dioxide

    NASA Astrophysics Data System (ADS)

    Hong, Jie; Zhang, Yu-Qing

    2016-03-01

    Due to its unique physiochemical properties, nano-titanium dioxide (nano-TiO2) is widely used in all aspects of people’s daily lives, bringing it into increasing contact with humans. Thus, this material’s security issues for humans have become a heavily researched subject. Nano-TiO2 can enter the body through the mouth, skin, respiratory tract or in other ways, after which it enters the blood circulation and is deposited in the liver, changing biochemical indicators and causing liver inflammation. Meanwhile, the light sensitivity of these nanoparticles allows them to become media-generating reactive oxygen species (ROS), causing an imbalance between oxidation and anti-oxidation that leads to oxidative stress and liver damage. Nano-TiO2 can be transported into cells via phagocytosis, where the nanoparticles bind to the mitochondrial membrane, resulting in the disintegration of the membrane and the electron transport chain within the mitochondria. Thus, more ROS are produced. Nano-TiO2 can also enter the nucleus, where it can directly embed into or indirectly affect DNA, thereby causing DNA breakage or affecting gene expression. These effects include increased mRNA and protein expression levels of inflammation-related factors and decreased mRNA and protein expression levels of IκB and IL-2, resulting in inflammation. Long-term inflammation of the liver causes HSC cell activation, and extracellular matrix (ECM) deposition is promoted by multiple signalling pathways, resulting in liver fibrosis. In this paper, the latest progress on murine liver injury induced by environmental TiO2 is systematically described. The toxicity of nano-TiO2 also depends on size, exposure time, surface properties, dosage, administration route, and its surface modification. Therefore, its toxic effects in humans should be studied in greater depth. This paper also provides useful reference information regarding the safe use of nano-TiO2 in the future.

  7. Murine liver damage caused by exposure to nano-titanium dioxide.

    PubMed

    Hong, Jie; Zhang, Yu-Qing

    2016-03-18

    Due to its unique physiochemical properties, nano-titanium dioxide (nano-TiO2) is widely used in all aspects of people's daily lives, bringing it into increasing contact with humans. Thus, this material's security issues for humans have become a heavily researched subject. Nano-TiO2 can enter the body through the mouth, skin, respiratory tract or in other ways, after which it enters the blood circulation and is deposited in the liver, changing biochemical indicators and causing liver inflammation. Meanwhile, the light sensitivity of these nanoparticles allows them to become media-generating reactive oxygen species (ROS), causing an imbalance between oxidation and anti-oxidation that leads to oxidative stress and liver damage. Nano-TiO2 can be transported into cells via phagocytosis, where the nanoparticles bind to the mitochondrial membrane, resulting in the disintegration of the membrane and the electron transport chain within the mitochondria. Thus, more ROS are produced. Nano-TiO2 can also enter the nucleus, where it can directly embed into or indirectly affect DNA, thereby causing DNA breakage or affecting gene expression. These effects include increased mRNA and protein expression levels of inflammation-related factors and decreased mRNA and protein expression levels of IκB and IL-2, resulting in inflammation. Long-term inflammation of the liver causes HSC cell activation, and extracellular matrix (ECM) deposition is promoted by multiple signalling pathways, resulting in liver fibrosis. In this paper, the latest progress on murine liver injury induced by environmental TiO2 is systematically described. The toxicity of nano-TiO2 also depends on size, exposure time, surface properties, dosage, administration route, and its surface modification. Therefore, its toxic effects in humans should be studied in greater depth. This paper also provides useful reference information regarding the safe use of nano-TiO2 in the future. PMID:26871200

  8. Dietary Supplementation of Calendula officinalis Counteracts the Oxidative Stress and Liver Damage Resulted from Aflatoxin

    PubMed Central

    Hamzawy, Mohamed A.; El-Denshary, Ezzeldein S. M.; Hassan, Nabila S.; Mannaa, Fathia A.; Abdel-Wahhab, Mosaad A.

    2013-01-01

    This study was conducted to evaluate the total phenolic compounds, the antioxidant properties, and the hepatorenoprotective potential of Calendula officinalis extract against aflatoxins (AFs-) induced liver damage. Six groups of male Sprague-Dawley rats were treated for 6 weeks included the control; the group fed AFs-contaminated diet (2.5 mg/kg diet); the groups treated orally with Calendula extract at low (CA1) and high (CA2) doses (500 and 1000 mg/kg b.w); the groups treated orally with CA1 and CA2 one week before and during AFs treatment for other five weeks. The results showed that the ethanol extract contained higher phenolic compounds and posses higher 1,1-diphenyl 1-2-picryl hydrazyl (DPPH) radical scavenging activity than the aqueous extract. Animals fed AFs-contaminated diet showed significant disturbances in serum biochemical parameters, inflammatory cytokines, and the histological and histochemical pictures of the liver accompanied by a significant increase in malondialdehyde (MDA) and a significant decrease in superoxide dismutase (SOD) and glutathione peroxidase (GPx) in liver. Calendula extract succeeded to improve the biochemical parameters, inflammatory cytokines, decreased the oxidative stress, and improved the histological pictures in the liver of rats fed AFs-contaminated diet in a dose-dependent manner. It could be concluded that Calendula extract has potential hepatoprotective effects against AFs due to its antioxidant properties and radical scavenging activity. PMID:24959547

  9. Dietary Supplementation of Calendula officinalis Counteracts the Oxidative Stress and Liver Damage Resulted from Aflatoxin.

    PubMed

    Hamzawy, Mohamed A; El-Denshary, Ezzeldein S M; Hassan, Nabila S; Mannaa, Fathia A; Abdel-Wahhab, Mosaad A

    2013-01-01

    This study was conducted to evaluate the total phenolic compounds, the antioxidant properties, and the hepatorenoprotective potential of Calendula officinalis extract against aflatoxins (AFs-) induced liver damage. Six groups of male Sprague-Dawley rats were treated for 6 weeks included the control; the group fed AFs-contaminated diet (2.5 mg/kg diet); the groups treated orally with Calendula extract at low (CA1) and high (CA2) doses (500 and 1000 mg/kg b.w); the groups treated orally with CA1 and CA2 one week before and during AFs treatment for other five weeks. The results showed that the ethanol extract contained higher phenolic compounds and posses higher 1,1-diphenyl 1-2-picryl hydrazyl (DPPH) radical scavenging activity than the aqueous extract. Animals fed AFs-contaminated diet showed significant disturbances in serum biochemical parameters, inflammatory cytokines, and the histological and histochemical pictures of the liver accompanied by a significant increase in malondialdehyde (MDA) and a significant decrease in superoxide dismutase (SOD) and glutathione peroxidase (GPx) in liver. Calendula extract succeeded to improve the biochemical parameters, inflammatory cytokines, decreased the oxidative stress, and improved the histological pictures in the liver of rats fed AFs-contaminated diet in a dose-dependent manner. It could be concluded that Calendula extract has potential hepatoprotective effects against AFs due to its antioxidant properties and radical scavenging activity. PMID:24959547

  10. Hepatoprotective effects of pecan nut shells on ethanol-induced liver damage.

    PubMed

    Müller, Liz Girardi; Pase, Camila Simonetti; Reckziegel, Patrícia; Barcelos, Raquel C S; Boufleur, Nardeli; Prado, Ana Cristina P; Fett, Roseane; Block, Jane Mara; Pavanato, Maria Amália; Bauermann, Liliane F; da Rocha, João Batista Teixeira; Burger, Marilise Escobar

    2013-01-01

    The hepatoprotective activity of the aqueous extract of the shells of pecan nut was investigated against ethanol-induced liver damage. This by-product of the food industry is popularly used to treat toxicological diseases. We evaluated the phytochemical properties of pecan shell aqueous extract (AE) and its in vitro and ex vivo antioxidant activity. The AE was found to have a high content of total polyphenols (192.4±1.9 mg GAE/g), condensed tannins (58.4±2.2 mg CE/g), and antioxidant capacity, and it inhibited Fe(2+)-induced lipid peroxidation (LP) in vitro. Rats chronically treated with ethanol (Et) had increased plasmatic transaminases (ALT, AST) and gamma glutamyl transpeptidase (GGT) levels (96%, 59.13% and 465.9%, respectively), which were effectively prevented (87; 41 and 383%) by the extract (1:40, w/v). In liver, ethanol consumption increased the LP (121%) and decreased such antioxidant defenses as glutathione (GSH) (33%) and superoxide dismutase (SOD) (47%) levels, causing genotoxicity in erythrocytes. Treatment with pecan shell AE prevented the development of LP (43%), GSH and SOD depletion (33% and 109%, respectively) and ethanol-induced erythrocyte genotoxicity. Catalase activity in the liver was unchanged by ethanol but was increased by the extract (47% and 73% in AE and AE+Et, respectively). Therefore, pecan shells may be an economic agent to treat liver diseases related to ethanol consumption. PMID:21924598

  11. Ligularia fischeri extract attenuates liver damage induced by chronic alcohol intake.

    PubMed

    Kim, Dongyeop; Kim, Gyeong-Woo; Lee, Seon-Ho; Han, Gi Dong

    2016-08-01

    Context Ligularia fischeri (Ledebour) Turcz. (Compositae) has been used as a leafy vegetable and in traditional medicine to treat hepatic disorder in East Asia. Objective The present study explores the antioxidant activity of LF aqueous extract on EtOH-induced oxidative stress accompanied by hepatotoxicity both in vitro and in vivo. Materials and methods In vitro study using the mouse liver NCTC-1469 cell line was conducted to estimate the cytotoxicity as well as the inhibitory effect of LF extract against alcohol-treated cell damage. In vivo study used an alcohol-fed Wister rat model orally administered EtOH (3.95 g/kg of body weight/d) with or without LF extract (100 or 200 mg/kg body weight) for 6 weeks. Serum and liver tissue were collected to evaluate hepatic injury and antioxidant-related enzyme activity. Results The EC50 value for the DPPH radical scavenging capacity of LF extract was 451.5 μg/mL, whereas the IC50 value of LF extract in terms of EtOH-induced reactive oxygen species (ROS) generation was 98.3 μg/mL without cell cytotoxicity. LF extract (200 mg/kg body weight) significantly reduced the triglyceride content of serum (33%) as well as hepatic lipid peroxidation (36%), whereas SOD activity was elevated three-fold. LF extract suppressed expression of CYP2E1 and TNF-α, and attenuated alcohol-induced abnormal morphological changes. Discussion and conclusion LF extract attenuated liver damage induced by alcoholic oxidative stress through inhibition of ROS generation, down-regulation of CYP2E1, and activation of hepatic antioxidative enzymes. Homeostasis of the antioxidative defence system in the liver by LF extract mitigated hepatic disorder following chronic alcohol intake. PMID:26799831

  12. Differences in Liver Injury and Trophoblastic Mitochondrial Damage in Different Preeclampsia-like Mouse Models

    PubMed Central

    Han, Yi-Wei; Yang, Zi; Ding, Xiao-Yan; Yu, Huan

    2015-01-01

    Background: Preeclampsia is a multifactorial disease during pregnancy. Dysregulated lipid metabolism may be related to some preeclampsia. We investigated the relationship between triglycerides (TGs) and liver injury in different preeclampsia-like mouse models and their potential common pathways. Methods: Preeclampsia-like models (Nw-nitro-L-arginine-methyl ester [L-NAME], lipopolysaccharide [LPS], apolipoprotein C-III [Apo] transgnic mice + L-NAME, β2 glycoprotein I [βGPI]) were used in four experimental groups: L-NAME (LN), LPS, Apo-LN and βGPI, respectively, and controls received saline (LN-C, LPS-C, Apo-C, βGPI-C). The first three models were established in preimplantation (PI), early-, mid- and late-gestation (EG, MG and LG). βGPI and controls were injected before implantation. Mean arterial pressure (MAP), 24-hour urine protein, placental and fetal weight, serum TGs, total cholesterol (TC) and pathologic liver and trophocyte changes were assessed. Results: MAP and proteinuria were significantly increased in the experimental groups. Placenta and fetal weight in PI, EP and MP subgroups were significantly lower than LP. Serum TGs significantly increased in most groups but controls. TC was not different between experimental and control groups. Spotty hepatic cell necrosis was observed in PI, EG, MG in LN, Apo-LN and βGPI, but no morphologic changes were observed in the LPS group. Similar trophoblastic mitochondrial damage was observed in every experimental group. Conclusions: Earlier preeclampsia onset causes a higher MAP and urine protein level, and more severe placental and fetal damage. Preeclampsia-like models generated by varied means lead to different changes in lipid metabolism and associated with liver injury. Trophoblastic mitochondrial damage may be the common terminal pathway in different preeclampsia-like models. PMID:26063365

  13. Evaluation of liver tissue damage and grasp stability using finite element analysis.

    PubMed

    Cheng, Lei; Hannaford, Blake

    2016-01-01

    Minimizing tissue damage and maintaining grasp stability are essential considerations in surgical grasper design. Most past and current research analyzing graspers used for tissue manipulation in minimally invasive surgery is based on in vitro experiments. Most previous work assessed tissue injury and grasp security by visual inspection; only a few studies have quantified it. The goal of the present work is to develop a methodology with which to compute tissue damage magnitude and grasp quality that is appropriate for a wide range of grasper-tissue interaction. Using finite element analysis (FEA), four graspers with varying radii of curvature and four graspers with different tooth sizes were analyzed while squeezing and pulling liver tissue. All graspers were treated as surgical steel with linear elastic material properties. Nonlinear material properties of tissue used in the FEA as well as damage evaluation were derived from previously reported in vivo experiments. Computed peak stress, integrated stress, and tissue damage were compared. Applied displacement is vertical and then horizontal to the tissue surface to represent grasp and retraction. A close examination of the contact status of each node within the grasper-tissue interaction surface was carried out to investigate grasp stability. The results indicate less tissue damage with increasing radius of curvature. A smooth wave pattern reduced tissue damage at the cost of inducing higher percentage of slipping area. This methodology may be useful for researchers to develop and test various designs of graspers. Also it could improve surgical simulator performance by reflecting more realistic tissue material properties and predicting tissue damage for the student. PMID:25408249

  14. [Hepatoprotective and immunomodulating effect of phylloquinone in toxic damage to the liver].

    PubMed

    Konoplia, E N; Prokopenko, L G; Uteshev, B S

    1997-01-01

    On entering the organism D-galactosamine (DGA) induces the development of biochemical syndromes of hepatocyte affection, increases the intensity of lipid peroxidation, and suppresses the development of the immune response to the T-dependent antigen. Oral administration of phylloquinone lessens the signs of hepatic damage and increases the immune response to the T-dependent antigen in DGA-induced toxic lesion of the liver. The effects of phylloquinone are mediated by erythrocytes and cytokine which are secreted under their influence by the cells of the spleen. PMID:9324408

  15. Caspase-3/7-mediated Cleavage of β2-spectrin is Required for Acetaminophen-induced Liver Damage

    PubMed Central

    Baek, Hye Jung; Lee, Yong Min; Kim, Tae Hyun; Kim, Joo-Young; Park, Eun Jung; Iwabuchi, Kuniyoshi; Mishra, Lopa; Kim, Sang Soo

    2016-01-01

    The ubiquitously expressed β2-spectrin (β2SP, SPTBN1) is the most common non-erythrocytic member of the β-spectrin gene family. Loss of β2-spectrin leads to defects in liver development, and its haploinsufficiency spontaneously leads to chronic liver disease and the eventual development of hepatocellular cancer. However, the specific role of β2-spectrin in liver homeostasis remains to be elucidated. Here, we reported that β2-spectrin was cleaved by caspase-3/7 upon treatment with acetaminophen which is the main cause of acute liver injury. Blockage of β2-spectrin cleavage robustly attenuated β2-spectrin-specific functions, including regulation of the cell cycle, apoptosis, and transcription. Cleaved fragments of β2-spectrin were physiologically active, and the N- and C-terminal fragments retained discrete interaction partners and activity in transcriptional regulation and apoptosis, respectively. Cleavage of β2-spectrin facilitated the redistribution of the resulting fragments under conditions of liver damage induced by acetaminophen. In contrast, downregulation of β2-spectrin led to resistance to acetaminophen-induced cytotoxicity, and its insufficiency in the liver promoted suppression of acetaminophen-induced liver damage and enhancement of liver regeneration. Conclusions: β2-Spectrin, a TGF-β mediator and signaling molecule, is cleaved and activated by caspase-3/7, consequently enhancing apoptosis and transcriptional control to determine cell fate upon liver damage. These findings have extended our knowledge on the spectrum of β2-spectrin functions from a scaffolding protein to a target and transmitter of TGF-β in liver damage. PMID:26884715

  16. SIV-induced Translocation of Bacterial Products in the Liver Mobilizes Myeloid Dendritic and Natural Killer Cells Associated With Liver Damage.

    PubMed

    Evans, Tristan I; Li, Haiying; Schafer, Jamie L; Klatt, Nichole R; Hao, Xing-Pei; Traslavina, Ryan P; Estes, Jacob D; Brenchley, Jason M; Reeves, R Keith

    2016-02-01

    Disruption of the mucosal epithelium during lentivirus infections permits translocation of microbial products into circulation, causing immune activation and driving disease. Although the liver directly filters blood from the intestine and is the first line of defense against gut-derived antigens, the effects of microbial products on the liver are unclear. In livers of normal macaques, minute levels of bacterial products were detectable, but increased 20-fold in simian immunodeficiency virus (SIV)-infected animals. Increased microbial products in the liver induced production of the chemoattractant CXCL16 by myeloid dendritic cells (mDCs), causing subsequent recruitment of hypercytotoxic natural killer (NK) cells expressing the CXCL16 receptor, CXCR6. Microbial accumulation, mDC activation, and cytotoxic NK cell frequencies were significantly correlated with markers of liver damage, and SIV-infected animals consistently had evidence of hepatitis and fibrosis. Collectively, these data indicate that SIV-associated accumulation of microbial products in the liver initiates a cascade of innate immune activation, resulting in liver damage. PMID:26238685

  17. Protective Effects of Pinus halepensis L. Essential Oil on Aspirin-induced Acute Liver and Kidney Damage in Female Wistar Albino Rats.

    PubMed

    Bouzenna, Hafsia; Samout, Noura; Amani, Etaya; Mbarki, Sakhria; Tlili, Zied; Rjeibi, Ilhem; Elfeki, Abdelfattah; Talarmin, Hélène; Hfaiedh, Najla

    2016-08-01

    Aromatic and medicinal plants are sources of natural antioxidants thanks to their secondary metabolites. Administration of Pinus halepensis L. (Pinaceae family) in previous studies was found to alleviate deleterious effects of aspirin-induced damage on liver and kidney. The present study, carried out on female rats, evaluates the effects of P. halepensis L. essential oil (EOP) on aspirin (A)-induced damage to liver and kidney. The animals used in this study were rats (n=28) divided into 4 groups of 7 each: (1) a control group (C); (2) a group given NaCl for 56 days then treated with (A) (600 mg/kg) for 4 days (A); (3) a group fed with (EOP) for 56 days then (A) for 4 days; and a group fed with only (EOP) for 56 days and given NaCl for 4 days. Estimations of biochemical parameters in blood were determined using kit methods (Spinreact). Lipid peroxidation levels (TBARS), superoxide dismutase (SOD) and catalase (CAT), glutathione peroxidase (GPx) activities were determined. Histopathological study was done by immersing pieces of both organs in a fixative solution followed by paraffin embeddeding and hematoxylin-eosin staining. Under our experimental conditions, Aspirin at dose 600 mg/kg body weight induced an increase of serum biochemical parameters as well as an oxidative stress in both organs. An increase occurred in TBARS by 108% and 55%, a decrease in SOD by 78% and 53%, CAT by 53% and 78%, and GPx by 78% and 51% in liver and kidney, respectively, compared to control. Administration of EOP given to rats enabled correction in these parameters. It could be concluded that the treatment with P. halepensis L. essential oil inhibited aspirin-induced liver and kidney damage. PMID:27430382

  18. Antioxidant and Hepatoprotective Properties of Tofu (Curdle Soymilk) against Acetaminophen-Induced Liver Damage in Rats

    PubMed Central

    Yakubu, Ndatsu; Oboh, Ganiyu; Olalekan, Amuzat Aliyu

    2013-01-01

    The antioxidant and hepatoprotective properties of tofu using acetaminophen to induce liver damage in albino rats were evaluated. Tofus were prepared using calcium chloride, alum, and steep water as coagulants. The polyphenols of tofu were extracted and their antioxidant properties were determined. The weight gain and feed intake of the rats were measured. The analysis of serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) activities and the concentrations of albumin, total protein, cholesterol, and bilirubin were analyzed. The result reveals that the antioxidant property of both soluble and bound polyphenolic extracts was significantly higher in all tofus, but the steep water coagulated tofu was recorded higher. Rats fed with various tofus and acetaminophen had their serum ALP, ALT, AST, and LDH activities; total cholesterol; and bilirubin levels significantly (P < 0.05) reduced, and total protein and albumin concentrations increased when compared with basal diet and acetaminophen administered group. Therefore, all tofus curdled with various coagulants could be used to prevent liver damage caused by oxidative stress. PMID:23533782

  19. Antioxidant and hepatoprotective activity of vitex honey against paracetamol induced liver damage in mice.

    PubMed

    Wang, Yuan; Li, Dan; Cheng, Ni; Gao, Hui; Xue, Xiaofeng; Cao, Wei; Sun, Liping

    2015-07-01

    Fourteen vitex honeys from China were investigated to evaluate its antioxidant and hepatoprotective activity against paracetamol-induced liver damage. All honey samples exhibited high total phenolic content (344-520 mg GAE per kg), total flavonoid content (19-31 mg Rutin per kg), and strong antioxidant activity in DPPH radical scavenging, ferric reducing antioxidant power and Ferrous ion-chelating ability. Nine phenolic acids were detected in vitex honey samples, in which caffeic acid was the main compound. Honey from Heibei Zanhuang (S2) ranked the highest antioxidant activity was orally administered to mice (5 g kg(-1), 20 g kg(-1)) for 70 days. In high-dose (20 g kg(-1)), vitex honey pretreatment resulting in significant increase in serum oxygen radical absorbance capacity (15.07%) and decrease in Cu(2+)-mediate lipoprotein oxidation (80.07%), and suppression in alanine aminotransferase (75.79%) and aspartate aminotransferase (74.52%), enhancement in the superoxide dismutase and glutathione peroxidase activities and reduction in malondialdehyde (36.15%) and 8-hydroxy-2'-deoxyguanosine (19.6%) formation compared with paracetamol-intoxicated group. The results demonstrated the hepatoprotection of vitex honey against paracetamol-induced liver damage might attribute to its antioxidant and/or perhaps pro-oxidative property. PMID:26084988

  20. Nrf2 protects against As(III)-induced damage in mouse liver and bladder

    PubMed Central

    Jiang, Tao; Huang, Zheping; Chan, Jefferson Y.; Zhang, Donna D.

    2009-01-01

    Arsenic compounds are classified as toxicants and human carcinogens. Environmental exposure to arsenic imposes a big health issue worldwide. Arsenic elicits its toxic efforts through many mechanisms, including generation of reactive oxygen species (ROS). Nrf2 is the primary transcription factor that controls expression of a main cellular antioxidant response, which is required for neutralizing ROS and thus defending cells from exogenous insults. Previously, we demonstrated a protective role of Nrf2 against arsenic-induced toxicity using a cell culture model. In this report, we present evidence that Nrf2 protects against liver and bladder injury in response to six-weeks of arsenic exposure in a mouse model. Nrf2−/− mice displayed more severe pathological changes in the liver and bladder, compared to Nrf2+/+ mice. Furthermore, Nrf2−/− mice were more sensitive to arsenic-induced DNA hypomethylation, oxidative DNA damage, and apoptotic cell death. These results indicate a protective role of Nrf2 against arsenic toxicity in vivo. Hence, this work demonstrates the feasibility of using dietary compounds that target activation of the Nrf2 signaling pathway to alleviate arsenic-induced damage. PMID:19538980

  1. Dysregulation of the DNA Damage Response and KMT2A Rearrangement in Fetal Liver Hematopoietic Cells

    PubMed Central

    Nanya, Mai; Sato, Masaki; Tanimoto, Kousuke; Tozuka, Minoru; Mizutani, Shuki; Takagi, Masatoshi

    2015-01-01

    Etoposide, a topoisomerase 2 (TOP2) inhibitor, is associated with the development of KMT2A (MLL)-rearranged infant leukemia. An epidemiological study suggested that in utero exposure to TOP2 inhibitors may be involved in generation of KMT2A (MLL) rearrangement. The present study examined the mechanism underlying the development of KMT2A (MLL)-rearranged infant leukemia in response to in utero exposure to etoposide in a mouse model. Fetal liver hematopoietic stem cells were more susceptible to etoposide than maternal bone marrow mononuclear cells. Etoposide-induced Kmt2a breakage was detected in fetal liver hematopoietic stem cells using a newly developed chromatin immunoprecipitation (ChIP) assay. Assessment of etoposide-induced chromosomal translocation by next-generation RNA sequencing (RNA-seq) identified several chimeric fusion messenger RNAs that were generated by etoposide treatment. However, Kmt2a (Mll)-rearranged fusion mRNA was detected in Atm-knockout mice, which are defective in the DNA damage response, but not in wild-type mice. The present findings suggest that in utero exposure to TOP2 inhibitors induces Kmt2a rearrangement when the DNA damage response is defective. PMID:26657054

  2. Bisphenol A Induces Fatty Liver by an Endocannabinoid-Mediated Positive Feedback Loop.

    PubMed

    Martella, Andrea; Silvestri, Cristoforo; Maradonna, Francesca; Gioacchini, Giorgia; Allarà, Marco; Radaelli, Giuseppe; Overby, Darryl R; Di Marzo, Vincenzo; Carnevali, Oliana

    2016-05-01

    The xenoestrogen bisphenol A (BPA) is a widespread plasticizer detectable within several ecosystems. BPA is considered a metabolic disruptor, affecting different organs; however, little is known about its mechanism of action in the liver, in which it triggers triglyceride accumulation. Adult zebrafish (Danio rerio) exposed to BPA developed hepatosteatosis, which was associated with an increase in the liver levels of the obesogenic endocannabinoids 2-arachidonoylglycerol and anandamide and a concomitant decrease in palmitoylethanolamide. These changes were associated with variations in the expression of key endocannabinoid catabolic and metabolic enzymes and an increase in the expression of the endocannabinoid receptor cnr1. Acute and chronic in vitro treatments with nano- and micromolar BPA doses showed increased anandamide levels in line with decreased activity of fatty acid amide hydrolase, the main anandamide hydrolytic enzyme, and induced triglyceride accumulation in HHL-5 cells in a CB1-dependent manner. We conclude that BPA is able to produce hepatosteatosis in zebrafish and human hepatocytes by up-regulating the endocannabinoid system. PMID:27014939

  3. Crepidiastrum denticulatum Extract Protects the Liver Against Chronic Alcohol-Induced Damage and Fat Accumulation in Rats

    PubMed Central

    Yoo, Ji-Hye; Kang, Kyungsu; Yun, Ji Ho; Kim, Mi Ae

    2014-01-01

    Abstract Alcohol is a severe hepatotoxicant that causes liver abnormalities such as steatosis, cirrhosis, and hepatocarcinoma. Crepidiastrum denticulatum (CD) is a well-known, traditionally consumed vegetable in Korea, which was recently reported to have bioactive compounds with detoxification and antioxidant properties. In this study, we report the hepatoprotective effect of CD extract against chronic alcohol-induced liver damage in vivo. The rats that were given CD extract exhibited decreased alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transpeptidase activities, which are liver damage markers that are typically elevated by alcohol consumption. The results were confirmed by histopathology with hematoxylin and eosin staining. Chronic alcohol consumption induced the formation of alcoholic fatty liver. However, treatment with CD extract dramatically decreased the hepatic lipid droplets. Treatment with CD extract also restored the antioxidative capacity and lipid peroxidation of the liver that had been changed by alcohol consumption. Furthermore, treatment with CD extract normalized the activities of the antioxidative enzymes superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase, which had been decreased by alcohol consumption. The results indicate that CD extract has protective effects against chronic alcohol hepatotoxicity in rats by increasing the liver's antioxidant capacity, and has potential as a dietary supplement intervention for patients with alcohol-induced liver damage. PMID:24650230

  4. Salvianolic acid A preconditioning confers protection against concanavalin A-induced liver injury through SIRT1-mediated repression of p66shc in mice

    SciTech Connect

    Xu, Xiaomei; Hu, Yan; Zhai, Xiaohan; Lin, Musen; Chen, Zhao; Tian, Xiaofeng; Zhang, Feng; Gao, Dongyan; Ma, Xiaochi; Lv, Li; Yao, Jihong

    2013-11-15

    Salvianolic acid A (SalA) is a phenolic carboxylic acid derivative extracted from Salvia miltiorrhiza. It has many biological and pharmaceutical activities. The purpose of this study was to investigate the effect of SalA on concanavalin A (ConA)-induced acute hepatic injury in Kunming mice and to explore the role of SIRT1 in such an effect. The results showed that in vivo pretreatment with SalA significantly reduced ConA-induced elevation in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and decreased levels of the hepatotoxic cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Moreover, the SalA pretreatment ameliorated the increases in NF-κB and in cleaved caspase-3 caused by ConA exposure. Whereas, the pretreatment completely reversed expression of the B-cell lymphoma-extra large (Bcl-xL). More importantly, the SalA pretreatment significantly increased the expression of SIRT1, a NAD{sup +}-dependent deacetylase, which was known to attenuate acute hypoxia damage and metabolic liver diseases. In our study, the increase in SIRT1 was closely associated with down-regulation of the p66 isoform (p66shc) of growth factor adapter Shc at both protein and mRNA levels. In HepG2 cell culture, SalA pretreatment increased SIRT1 expression in a time and dose-dependent manner and such an increase was abrogated by siRNA knockdown of SIRT1. Additionally, inhibition of SIRT1 significantly reversed the decreased expression of p66shc, and attenuated SalA-induced p66shc down-regulation. Collectively, the present study indicated that SalA may be a potent activator of SIRT and that SalA can alleviate ConA-induced hepatitis through SIRT1-mediated repression of the p66shc pathway. - Highlights: • We report for the first time that SalA protects against ConA-induced hepatitis. • We find that SalA is a potential activator of SIRT1. • SalA's protection against hepatitis involves SIRT1-mediated repression of p66shc.

  5. Protective Effect of Brazilian Propolis against Liver Damage with Cholestasis in Rats Treated with α-Naphthylisothiocyanate

    PubMed Central

    Nakamura, Tadashi; Ohta, Yoshiji; Ohashi, Koji; Ikeno, Kumiko; Watanabe, Rie; Tokunaga, Kenji; Harada, Nobuhiro

    2013-01-01

    We examined the protective effect of Brazilian propolis against liver damage with cholestasis in rats treated with α-naphthylisothiocyanate (ANIT) in comparison with that of vitamin E (VE). Rats orally received Brazilian propolis ethanol extract (BPEE) (25, 50, or 100 mg/kg), VE (250 mg/kg) or vehicle at 12 h after intraperitoneal injection of ANIT (75 mg/kg) and were killed 24 h after the injection. Vehicle-treated rats showed liver cell damage and cholestasis, judging from the levels of serum marker enzymes and components. The vehicle group had increased serum total cholesterol, triglyceride, phospholipid, and lipid peroxide levels, increased hepatic lipid peroxide, reduced glutathione, and ascorbic acid levels and myeloperoxidase activity, and decreased hepatic superoxide dismutase activity. BPEE (50 mg/kg) administered to ANIT-treated rats prevented liver cell damage and cholestasis and attenuated these serum and hepatic biochemical changes except hepatic ascorbic acid, although administered BPEE (25 or 100 mg/kg) was less effective. VE administered to ANIT-treated rats prevented liver cell damage, but not cholestasis, and attenuated increased serum lipid peroxide level, increased hepatic lipid peroxide level and myeloperoxidase activity, and decreased hepatic superoxide dismutase activity. These results indicate that BPEE protects against ANIT-induced liver damage with cholestasis in rats more effectively than VE. PMID:23710219

  6. Bumetanide increases manganese accumulation in the brain of rats with liver damage.

    PubMed

    Montes, Sergio; Castro-Chávez, Armando; Florian-Soto, Circe; Heras-Romero, Yessica; Ríos, Camilo; Rivera-Mancía, Susana

    2016-03-01

    Hepatic encephalopathy is a common complication in cases of liver damage; it results from several factors, including the accumulation of toxic substances in the brain, e.g. manganese, ammonia and glutamine. We have previously reported that manganese favors ammonia and glutamine accumulation in the brain of cirrhotic rats, and we suggested that such effect could be mediated by manganese-elicited activation of the NKCC1 (Na(+)/K(+)/2Cl(-) cotransporter 1). To test this hypothesis, we used bumetanide, an NKCC1 blocker prescribed to treat ascites in cirrhotic patients; we expected that if NKCC1 was responsible for manganese-mediated ammonia buildup and the subsequent glutamine accumulation, bumetanide could counteract such effect and improve motor coordination. In addition, we considered essential to test the effect of bumetanide on manganese brain levels. We used a model of liver damage in rats, consisting in bile-duct ligation. Animals were exposed to manganese in the drinking water (1 mg/ml) for two weeks and ammonia in the food (20% w/w of ammonia acetate) during the second week after surgery. Bumetanide was administered intraperitoneally in the course of the ammonia treatment. We measured glutamine and manganese in three brain regions: frontal cortex, striatum and cerebellum. Bumetanide produced no effect on glutamine accumulation; however, because of bumetanide treatment, manganese was increased in the brain, and also the activity of gamma-glutamyl transferase in plasma; thus, we consider that the influence of bumetanide and similar diuretics on liver function and manganese homeostasis should be further studied. PMID:26851372

  7. Dual role of chloroquine in liver ischemia reperfusion injury: reduction of liver damage in early phase, but aggravation in late phase.

    PubMed

    Fang, H; Liu, A; Dahmen, U; Dirsch, O

    2013-01-01

    The anti-malaria drug chloroquine is well known as autophagy inhibitor. Chloroquine has also been used as anti-inflammatory drugs to treat inflammatory diseases. We hypothesized that chloroquine could have a dual effect in liver ischemia/reperfusion (I/R) injury: chloroquine on the one hand could protect the liver against I/R injury via inhibition of inflammatory response, but on the other hand could aggravate liver I/R injury through inhibition of autophagy. Rats (n=6 per group) were pre-treated with chloroquine (60 mg/kg, i.p.) 1 h before warm ischemia, and they were continuously subjected to a daily chloroquine injection for up to 2 days. Rats were killed 0.5, 6, 24 and 48 h after reperfusion. At the early phase (i.e., 0-6 h after reperfusion), chloroquine treatment ameliorated liver I/R injury, as indicated by lower serum aminotransferase levels, lower hepatic inflammatory cytokines and fewer histopathologic changes. In contrast, chloroquine worsened liver injury at the late phase of reperfusion (i.e., 24-48 h after reperfusion). The mechanism of protective action of chloroquine appeared to involve its ability to modulate mitogen-activated protein kinase activation, reduce high-mobility group box 1 release and inflammatory cytokines production, whereas chloroquine worsened liver injury via inhibition of autophagy and induction of hepatic apoptosis at the late phase. In conclusion, chloroquine prevents ischemic liver damage at the early phase, but aggravates liver damage at the late phase in liver I/R injury. This dual role of chloroquine should be considered when using chloroquine as an inhibitor of inflammation or autophagy in I/R injury. PMID:23807223

  8. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism

    PubMed Central

    LI, SHUANG; WANG, SU; GUO, ZHI-GANG; HUANG, NING; ZHAO, FAN-RONG; ZHU, MO-LI; MA, LI-JUAN; LIANG, JIN-YING; ZHANG, YU-LIN; HUANG, ZHONG-LIN; WAN, GUANG-RUI

    2015-01-01

    The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism. PMID:26640531

  9. Protective Effect of SAHA against LPS-induced Liver Damage in Rodents

    PubMed Central

    Zhao, Yili; Zhou, Peter; Liu, Baoling; Bambakidis, Ted; Mazitschek, Ralph; Alam, Hasan B.; Li, Yongqing

    2014-01-01

    BACKGROUND Lipopolysaccharide (LPS) has a deleterious effect on several organs including the liver and eventually leads to endotoxic shock and death. LPS-induced hepatotoxicity is characterized by disturbed intracellular redox balance and excessive reactive oxygen species (ROS) accumulation, leading to liver injury. We have shown that treatment with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor (HDACI), improves survival in a murine model of LPS-induced shock, but the protective effect of SAHA against liver damage remains unknown. The goal of this study was to investigate the mechanism underlying SAHA action in murine livers. METHOD Male C57BL/6J mice (6-8 weeks) weighing 20-25 g were randomly divided into three groups: (A) a sham group was given isotonic sodium chloride solution (10 μL/g body weight, intraperitoneal, i.p.) with DMSO (1 μl/g body weight, i.p.); (B) a LPS group was challenged with LPS (20 mg/kg, i.p.) dissolved in isotonic sodium chloride solution with DMSO; (C) a LPS plus SAHA group was treated with SAHA (50 mg/kg, i.p.) dissolved in DMSO immediately after injection of LPS (20 mg/kg, i.p.). Mice were anesthetized, and their livers were harvested 6 or 24 hours after injection to analyze whether SAHA affected production of reactive oxygen species (ROS) and activation of apoptotic proteins in the liver cells of challenged mice. RESULTS SAHA counteracted LPS-induced production of ROS (thiobarbituric acid reactive substances (TBARS) and nitrite) and reversed an LPS-induced decrease in antioxidant enzyme, glutathione (GSH). SAHA also attenuated LPS-induced hepatic apoptosis. Moreover, SAHA inhibited activation of the redox-sensitive kinase, apoptosis signal-regulating kinase-1 (ASK1), and the mitogen-activated protein kinases (MAPKs) p38 and Jun N-terminal kinase (JNK). CONCLUSION Our data indicates, for the first time, that SAHA is capable of alleviating LPS-induced hepatotoxicity and suggests that a blockade of the upstream

  10. Hepatoprotective Effect of Otostegia persica Boiss. Shoot Extract on Carbon Tetrachloride-Induced Acute Liver Damage in Rats

    PubMed Central

    Nasiri Bezenjani, Sedighe; Pouraboli, Iran; Malekpour Afshar, Reza; Mohammadi, Gholamabbas

    2012-01-01

    In this study, the hepatoprotective effect of the methanol extract of aerial parts (shoot) from Otostegia persica Boiss (Golder) was investigated against the carbon tetrachloride (CCl4)-induced acute hepatotoxicity in male rats. Liver damage was induced through the oral administration of 50% CCl4 in liquid paraffin (2.5 mL/Kg bw, per os) 60 min after the administration of the methanol extract of O. persica shoot (in 200, 300, 400 mg/Kg bw doses) and assessed using biochemical parameters (plasma and liver tissue malondialdehyde (MDA), transaminase enzyme levels in plasma [aspartate transaminase (AST), alanine aminotransferase (ALT)] and liver glutathione (GSH) levels). Results show that the methanol extract of O. persica shoot is active at 300 mg/Kg (per os) and it possess remarkable antioxidant and hepatoprotective activities. Additionally, histopathological studies verified the effectiveness of this dose of extract in acute liver damage prevention. PMID:24250558

  11. Antioxidant and hepatoprotective activity of punicalagin and punicalin on carbon tetrachloride-induced liver damage in rats.

    PubMed

    Lin, C C; Hsu, Y F; Lin, T C; Hsu, F L; Hsu, H Y

    1998-07-01

    Punicalagin and punicalin, isolated from the leaves of Terminalia catappa L., are used to treat dermatitis and hepatitis. Both compounds have strong antioxidative activity. The antihepatotoxic activity of punicalagin and punicalin on carbon tetrachloride (CCl4)-induced toxicity in the rat liver was evaluated. Levels of serum glutamate-oxalate-transaminase and glutamate-pyruvate-trans-aminase were increased by administration of CCl4 and reduced by drug treatment. Histological changes around the liver central vein and oxidation damage induced by CCl4 also benefited from drug treatment. The results show that both punicalagin and punicalin have anti-hepatotoxic activity but that the larger dose of punicalin induced liver damage. Thus even if tannins have strong antioxidant activity at very small doses, treatment with a larger dose will induce cell damage. PMID:9720629

  12. Protective effect of curcumin on cyclosporin A-induced endothelial dysfunction, antioxidant capacity, and oxidative damage.

    PubMed

    Sagiroglu, Tamer; Kanter, Mehmet; Yagci, Mehmet Ali; Sezer, Atakan; Erboga, Mustafa

    2014-05-01

    Cyclosporin A (CsA) is the most widely used immunosuppressive drug for preventing graft rejection and autoimmune disease. However, the therapeutic treatment induces several side effects such as nephrotoxicity, cardiotoxicity, hypertension, and hepatotoxicity. Curcumin has been successfully used as a potent antioxidant against many pathophysiological states. This experimental study was performed to test, during CsA treatment, the alterations of curcumin antioxidant properties against CsA-induced endothelial dysfunction. Rats were divided into four groups: control, curcumin alone, CsA, and CsA + curcumin; each group containing eight animals. The animals in the CsA + curcumin group were treated with CsA (10 days, 25 mg/kg, orally) and curcumin (15 days, 200 mg/kg, orally, starting 5 days before CsA administration). At the end of the treatments, the animals were killed; serum and aorta tissue were treated for biochemical and morphological analyses. The results indicate that CsA-induced aortic endothelial dysfunction was characterized by morphological and ultrastructural alterations in tissue architecture, changes in malondialdehyde and ferric reducing/antioxidant power levels, and increase in endothelial nitric oxide synthase and terminal-deoxynucleotidyl-transferase mediated dUTP nick end labeling (TUNEL) expression. In conclusion, our data suggest that the imbalance between production of free oxygen radicals and antioxidant defence systems, due to CsA administration, is a mechanism responsible for oxidative stress. Moreover, we show that curcumin plays a protective action against CsA-induced endothelial dysfunction and oxidative stress, as supported by biochemical, ultrastructural, immunohistochemical, and TUNEL results. PMID:22903178

  13. Oxidative damage in gills and liver in Nile tilapia (Oreochromis niloticus) exposed to diazinon.

    PubMed

    Toledo-Ibarra, G A; Díaz Resendiz, K J G; Ventura-Ramón, G H; González-Jaime, F; Vega-López, A; Becerril-Villanueva, E; Pavón, L; Girón-Pérez, M I

    2016-10-01

    Agricultural activity demands the use of pesticides for plague control and extermination. In that matter, diazinon is one of the most widely used organophosphorus pesticides (OPs). Despite its benefits, the use of OPs in agricultural activities can also have negative effects since the excessive use of these substances can represent a major contamination problem for water bodies and organisms that inhabit them. The aim of this paper was to evaluate oxidative damage in lipids and proteins of Nile tilapia (Oreochromis niloticus) exposed acutely to diazinon (0.97, 1.95 and 3.95ppm) for 12 or 24h. The evaluation of oxidative damage was determined by quantifying lipid hydroperoxides (Fox method) and oxidized proteins (DNPH method). The data from this study suggest that diazinon induces a concentration-dependent oxidative damage in proteins, but not lipids, of the liver and gills of Nile tilapia. Furthermore, the treatment leads to a decrease in the concentration of total proteins, which can have serious consequences in cell physiology and fish development. PMID:27174646

  14. Buckwheat Honey Attenuates Carbon Tetrachloride-Induced Liver and DNA Damage in Mice.

    PubMed

    Cheng, Ni; Wu, Liming; Zheng, Jianbin; Cao, Wei

    2015-01-01

    Buckwheat honey, which is widely consumed in China, has a characteristic dark color. The objective of this study was to investigate the protective effects of buckwheat honey on liver and DNA damage induced by carbon tetrachloride in mice. The results revealed that buckwheat honey had high total phenolic content, and rutin, hesperetin, and p-coumaric acid were the main phenolic compounds present. Buckwheat honey possesses super DPPH radical scavenging activity and strong ferric reducing antioxidant power. Administration of buckwheat honey for 10 weeks significantly inhibited serum lipoprotein oxidation and increased serum oxygen radical absorbance capacity. Moreover, buckwheat honey significantly inhibited aspartate aminotransferase and alanine aminotransferase activities, which are enhanced by carbon tetrachloride. Hepatic malondialdehyde decreased and hepatic antioxidant enzymes (superoxide dismutase and glutathione peroxidase) increased in the presence of buckwheat honey. In a comet assay, lymphocyte DNA damage induced by carbon tetrachloride was significantly inhibited by buckwheat honey. Therefore, buckwheat honey has a hepatoprotective effect and inhibits DNA damage, activities that are primarily attributable to its high antioxidant capacity. PMID:26508989

  15. Buckwheat Honey Attenuates Carbon Tetrachloride-Induced Liver and DNA Damage in Mice

    PubMed Central

    Cheng, Ni; Wu, Liming; Zheng, Jianbin; Cao, Wei

    2015-01-01

    Buckwheat honey, which is widely consumed in China, has a characteristic dark color. The objective of this study was to investigate the protective effects of buckwheat honey on liver and DNA damage induced by carbon tetrachloride in mice. The results revealed that buckwheat honey had high total phenolic content, and rutin, hesperetin, and p-coumaric acid were the main phenolic compounds present. Buckwheat honey possesses super DPPH radical scavenging activity and strong ferric reducing antioxidant power. Administration of buckwheat honey for 10 weeks significantly inhibited serum lipoprotein oxidation and increased serum oxygen radical absorbance capacity. Moreover, buckwheat honey significantly inhibited aspartate aminotransferase and alanine aminotransferase activities, which are enhanced by carbon tetrachloride. Hepatic malondialdehyde decreased and hepatic antioxidant enzymes (superoxide dismutase and glutathione peroxidase) increased in the presence of buckwheat honey. In a comet assay, lymphocyte DNA damage induced by carbon tetrachloride was significantly inhibited by buckwheat honey. Therefore, buckwheat honey has a hepatoprotective effect and inhibits DNA damage, activities that are primarily attributable to its high antioxidant capacity. PMID:26508989

  16. Activation of the Mitochondrial Apoptotic Pathway Produces Reactive Oxygen Species and Oxidative Damage in Hepatocytes That Contribute to Liver Tumorigenesis.

    PubMed

    Hikita, Hayato; Kodama, Takahiro; Tanaka, Satoshi; Saito, Yoshinobu; Nozaki, Yasutoshi; Nakabori, Tasuku; Shimizu, Satoshi; Hayashi, Yoshito; Li, Wei; Shigekawa, Minoru; Sakamori, Ryotaro; Miyagi, Takuya; Hiramatsu, Naoki; Tatsumi, Tomohide; Takehara, Tetsuo

    2015-08-01

    Chronic hepatitis, including viral hepatitis and steatihepatitis, is a well-known high-risk condition for hepatocellular carcinoma. We previously reported that continuous hepatocyte apoptosis drives liver tumors in hepatocyte-specific Bcl-xL or Mcl-1 knockout mice. In this study, we further examine the underlying cellular mechanisms of generating tumors in apoptosis-prone liver. In cultured hepatocytes, the administration of ABT-737, a Bcl-xL/-2/-w inhibitor, led to production of reactive oxygen species (ROS) as well as activation of caspases. Mitochondria isolated from murine liver, upon administration of truncated-Bid, a proapoptotic Bcl-2 family protein, released cytochrome c and produced ROS, which was dependent on mitochondrial respiration. Hepatic apoptosis, regeneration, accumulation of oxidative damages, and tumorigenesis observed in hepatocyte-specific Mcl-1 knockout mice were substantially attenuated by further deficiency of Bax or Bid, suggesting that a balance of mitochondrial Bcl-2 family proteins governs generation of oxidative stress and other pathologies. Whole-exome sequencing clarified that C>A/G>T transversion, which is often caused by oxidative DNA damage in proliferating cells, was a frequently observed mutation pattern in liver tumors of Mcl-1 knockout mice. The administration of antioxidant L-N-acetylcysteine did not affect apoptosis, compensatory regeneration, or fibrotic responses but significantly reduced oxidative DNA damage and incidence and multiplicity of live tumors in Mcl-1 knockout mice. In conclusion, activation of the mitochondrial apoptotic pathway in hepatocytes accumulates intracellular oxidative damages, leading to liver tumorigenesis, independently of liver regeneration or fibrosis. This study supports a concept that antioxidant therapy may be useful for suppressing liver carcinogenesis in patients with chronic liver disease. PMID:26038117

  17. Resveratrol mitigate structural changes and hepatic stellate cell activation in N'-nitrosodimethylamine-induced liver fibrosis via restraining oxidative damage.

    PubMed

    Ahmad, Areeba; Ahmad, Riaz

    2014-09-25

    Resveratrol, a polyphenol, found in skin of red grapes, peanuts and berries possesses anti-inflammatory, anti-carcinogenic and lipid modulation properties. Here, we demonstrate in vivo antifibrotic activity of resveratrol in a mammalian model, wherein hepatic fibrosis was induced by N'-nitrosodimethylamine (NDMA) administration. Apart from being a potent hepatotoxin, NDMA is a known mutagen and carcinogen, as well. To induce hepatic fibrosis, rats were administered NDMA (i.p.) in 10mg/kgb.wt thrice/week for 21 days. Another group of animals received resveratrol supplement (10mg/kgb.wt) subsequent to NDMA administration and were sacrificed weekly. The changes in selected biomarkers were monitored to compare profibrotic effects of NDMA and antifibrotic activity of resveratrol. The selected biomarkers were: sera transaminases, ALP, bilirubin, liver glycogen, LPO, SOD, protein carbonyl content, ATPases (Ca(2+), Mg(2+), Na(+)/K(+)) and hydroxyproline/collagen content. Alterations in liver architecture were assessed by H&E, Masson's trichrome and reticulin staining of liver biopsies. Immuno-histochemistry and immunoblotting were employed to examine expression of α-SMA. Our results demonstrate that during NDMA-induced liver fibrosis transaminases, ALP, bilirubin, hydroxyproline and liver collagen increases, while liver glycogen is depleted. The decline in SOD (>65%) and ATPases, which were concomitant with the elevation in MDA and protein carbonyls, strongly indicate oxidative damage. Fibrotic transformation of liver in NDMA-treated rats was verified by histopathology, immuno-histochemistry and immunoblotting data, with the higher expressivity of α-SMA-positive HSCs being most established diagnostic immuno-histochemical marker of HSCs. Resveratrol-supplement refurbished liver architecture by significantly restoring levels of biomarkers of oxidative damage (MDA, SOD, protein carbonyls and membrane-bound ATPases). Therefore, we conclude that antifibrotic effect of

  18. Suppression of intralysosomal proteolysis aggravates structural damage and functional impairment of liver lysosomes in rats with toxic hepatitis

    SciTech Connect

    Korolenko, T.A.; Gavrilova, N.I.; Kurysheva, N.G.; Malygin, A.E.; Pupyshev, A.B.

    1986-01-01

    This paper estimates the effect of lowering protein catabolism in the lysosomes on structural and functional properties of the latter during liver damage. For comparison, polyvinylpyrrolidone (PVP), which is inert relative to intralysosomal proteolysis, and which also accumulates largely in lysosomes of the kupffer cells of the liver, was used. The uptake of labeled bovine serum albuman (C 14-BSA) by the liver is shown and the rate of intralysosomal proteolysis is given 24 hours after administration of suramin an CCl/sub 4/ to rats. It is suggested that it is risky to use drugs which inhibit intralysosomal proteolysis in the treatment of patients with acute hepatitis.

  19. [Liver damage in a patient treated with a vitamin K antagonist, a statin and an ACE inhibitor].

    PubMed

    Bruggisser, M; Terraciano, L; Rätz Bravo, A; Haschke, M

    2010-10-20

    We report the case of a 71-year-old male patient who presented at the emergency room with episodes of epistaxis and jaundice. The patient was on therapy with phenprocoumon, atorvastatin and perindopril. Findings on admission included prominent elevation of transaminases and bilirubin and a high INR due to impaired liver function and oral anticoagulation. After exclusion of other causes like viral or autoimmune hepatitis and after having obtained a liver biopsy, a diagnosis of drug induced liver damage (DILI) was made. Epidemiology, pathophysiology and clinical signs of DILI are discussed with a special focus on coumarines, statins and ACE-inhibitors. PMID:20960395

  20. [SUSTENTOCYTE NUMBERS IN THE NEONATAL PERIOD IN THE OFFSPRING OF FEMALE RATS WITH EXPERIMENTAL LIVER DAMAGE].

    PubMed

    Briukhin, G V; Sizonenko, M L

    2016-01-01

    On serial histological sections of the testes, stained with hematoxylin-eosin, using a morphometric device, the total numbers of spermatogenic cells and sustentocytes (Sertoli cells) were measured in the convoluted seminiferous tubules of neonatal rat pups. Experimental groups consisted of rats born from females with experimental liver damage of various origins--autoimmune (n = 33), toxic (n = 32), alcoholic (n = 12), and medicinal (n = 27). The control group included pups born from normal female rats (n = 14). In experimental rats both increase and decrease of the total number of sustentocytes was detected. In the animals of most of the experimental groups, sustentocyte cell index reflecting the ratio of the number of spermatogenic cells and sustentocytes, was decreased. PMID:27487667

  1. Protective effect of stress-induced liver damage by saponin fraction from Codonopsis lanceolata.

    PubMed

    Kim, Min Ho; Lee, Jaehwi; Yoo, Dae Sung; Lee, Yong Gyu; Byeon, Se Eun; Hong, Eock Kee; Cho, Jae Youl

    2009-10-01

    Saponins are valuable principles found in various herbal medicine with pharmaceutical, cosmetical and nutraceutical merits. In this study, we evaluated the protective role of saponin fraction (Cl-SF), prepared from Codonopsis lanceolata, an ethnopharmacologically famous plant in Korea, China and Japan, on water immersion stress-induced liver damage and radical generation. Cl-SF clearly decreased the up-regulated levels of serum glutamate-oxalacetate transaminase and glutamate-pyruvate-transaminase induced by water-immersed stress conditions. Furthermore, Cl-SF seemed to block the stress-induced radicals. Thus, Griess and DPPH assays revealed that Cl-SF significantly suppressed both radical generation in sodium nitroprusside-treated RAW264.7 cells and nitric oxide production in LPS-treated RAW264.7 cells. Therefore, these results suggest that Cl-SF may be considered as a promising stress-regulatory principle with radical scavenging actions. PMID:19898808

  2. Persistent and heritable structural damage induced in heterochromatic DNA from rat liver by N-nitrosodimethylamine

    SciTech Connect

    Ward, E.J.; Stewart, B.W.

    1987-03-24

    Analysis, by benzoylated DEAE-cellulose chromatography, has been made of structural change in eu- and heterochromatic DNA from rat liver following administration of the carcinogen N-nitrosodimethylamine. Either hepatic DNA was prelabeled with (/sup 3/H)thymidine administered 2-3 weeks before injection of the carcinogen or the labeled precursor was given during regenerative hyperplasia in rats treated earlier with N-nitrosodimethylamine. Following phenol extraction of either whole liver homogenate or nuclease-fractionated eu- and heterochromatin, carcinogen-modified DNA was examined by stepwise or caffeine gradient elution from benzoylated DEAE-cellulose. In whole DNA, nitrosamine-induced single-stranded character was maximal 4-24 h after treatment, declining rapidly thereafter; gradient elution of these DNA preparations also provided short-term evidence of structural change. Caffeine gradient chromatography suggested short-term nitrosamine-induced structural change in euchromatic DNA, while increased binding of heterochromatic DNA was evident for up to 3 months after carcinogen treatment. Preparations of newly synthesized heterochromatic DNA from animals subjected to hepatectomy up to 2 months after carcinogen treatment provided evidence of heritable structural damage. Carcinogen-induced binding of heterochromatic DNA to benzoylated DEAE-cellulose was indicative of specific structural lesions whose affinity equalled that of single-stranded DNA up to 1.0 kilobase in length. The data suggest that structural lesions in heterochromatin, which may be a consequence of incomplete repair, are preferentially degraded by endogenous nuclease(s).

  3. Oxidative damage in the progression of chronic liver disease to hepatocellular carcinoma: an intricate pathway.

    PubMed

    Cardin, Romilda; Piciocchi, Marika; Bortolami, Marina; Kotsafti, Andromachi; Barzon, Luisa; Lavezzo, Enrico; Sinigaglia, Alessandro; Rodriguez-Castro, Kryssia Isabel; Rugge, Massimo; Farinati, Fabio

    2014-03-28

    The histo-pathologic and molecular mechanisms leading to initiation and progression of hepatocellular carcinoma (HCC) are still ill-defined; however, there is increasing evidence that the gradual accumulation of mutations, genetic and epigenetic changes which occur in preneoplastic hepatocytes results in the development of dysplastic foci, nodules, and finally, overt HCC. As well as many other neoplasias, liver cancer is considered an "inflammatory cancer", arising from a context of inflammation, and characterized by inflammation-related mechanisms that favor tumor cell survival, proliferation, and invasion. Molecular mechanisms that link inflammation and neoplasia have been widely investigated, and it has been well established that inflammatory cells recruited at these sites with ongoing inflammatory activity release chemokines that enhance the production of reactive oxygen species. The latter, in turn, probably have a major pathogenic role in the continuum starting from hepatitis followed by chronic inflammation, and ultimately leading to cancer. The relationship amongst chronic liver injury, free radical production, and development of HCC is explored in the present review, particularly in the light of the complex network that involves oxidative DNA damage, cytokine synthesis, telomere dysfunction, and microRNA regulation. PMID:24696595

  4. Bioaccumulation of butyltins and liver damage in the demersal fish Cathorops spixii (Siluriformes, Ariidae).

    PubMed

    Dos Santos, Dayana Moscardi; Santos, Gustavo Souza; Cestari, Marta Margarete; de Oliveira Ribeiro, Ciro Alberto; de Assis, Helena Cristina Silva; Yamamoto, Flavia; Guiloski, Izonete Cristina; de Marchi, Mary Rosa Rodrigues; Montone, Rosalinda Carmela

    2014-02-01

    The toxicity of butyltin compounds (BTs), mainly tributyltin (TBT), has been reported in different organisms. However, such an analysis in fish after field exposure with reference to the related biomarkers has not been commonly observed in the literature. This study presents the uptake of BTs in the liver of a neotropical marine catfish Cathorops spixii in Paranagua Bay, an important estuarine system located in southern Brazil. Two different areas, close to and distant from the harbor, were used for chemical analysis evaluation of hepatotoxicity through genetic, enzymatic, and histopathological biomarkers. The presence of polycyclic aromatic hydrocarbons in bile was also considered as a biomarker. The results showed a significant relationship between TBT levels and the inhibition of biotransformation enzymes and high occurrence of melanomacrophages in fish collected close to the harbor site. These effects were linked to the absence of TBT metabolites in the liver. In the second site, the presence of DBT was associated with an increase in EROD and GST activity. The larger amount of DNA damage as well as the highest oxidative stress was noted in fish from the less TBT-polluted area, where DBT and bile PAHs occurred. These findings showed different impact levels due to or increased by the chronic exposure of biota to BTs. PMID:24217970

  5. Beneficial effects of nilotinib, tyrosine kinase inhibitor on cyclosporine-A induced renal damage in rats.

    PubMed

    Nader, Manar A; Attia, Ghalia M

    2016-04-01

    Nilotinib is a known tyrosine kinase inhibitor that has been approved for treatment of leukemia. The possible protective effect of nilotinib on cyclosporine A-induced nephropathy was investigated in this study and the possible underlying mechanism was explored. Nilotinib (25mg/kg, orally) and cyclosporine A (15 mg/kg/day, subcutaneous) were given to male SD rats for 28 days. Cyclosporine A alone was found to significantly increase serum creatinine, blood urea nitrogen, lactate dehydrogenase, urinary micrototal protein, renal thiobarbituric acid reactive substance, Bax, cytosol cytochrome c release and nuclear factor kappa B activation. Moreover, cyclosporine A significantly reduced serum albumin, creatinine clearance, urinary total antioxidant, superoxide dismutase, glutathione and Bcl2 protein levels. Pathological results showed that in the model group; there was an obvious shrinkage and congestion of the glomeruli and widening of urinary spaces of renal corpuscles, in addition to marked renal tubular injury and fibrosis, while in the group pretreated with nilotinib all measured serum, renal and pathological changes were significantly reduced. This protective effect of nilotinib is linked to the enhanced antioxidant status and reduced inflammation and apoptosis induced by cyclosporine A. PMID:26844915

  6. Cranberry flavonoids prevent toxic rat liver mitochondrial damage in vivo and scavenge free radicals in vitro.

    PubMed

    Lapshina, Elena A; Zamaraeva, Maria; Cheshchevik, Vitali T; Olchowik-Grabarek, Ewa; Sekowski, Szymon; Zukowska, Izabela; Golovach, Nina G; Burd, Vasili N; Zavodnik, Ilya B

    2015-06-01

    The present study was undertaken for further elucidation of the mechanisms of flavonoid biological activity, focusing on the antioxidative and protective effects of cranberry flavonoids in free radical-generating systems and those on mitochondrial ultrastructure during carbon tetrachloride-induced rat intoxication. Treatment of rats with cranberry flavonoids (7 mg/kg) during chronic carbon tetrachloride-induced intoxication led to prevention of mitochondrial damage, including fragmentation, rupture and local loss of the outer mitochondrial membrane. In radical-generating systems, cranberry flavonoids effectively scavenged nitric oxide (IC50  = 4.4 ± 0.4 µg/ml), superoxide anion radicals (IC50  = 2.8 ± 0.3 µg/ml) and hydroxyl radicals (IC50  = 53 ± 4 µg/ml). The IC50 for reduction of 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH) was 2.2 ± 0.3 µg/ml. Flavonoids prevented to some extent lipid peroxidation in liposomal membranes and glutathione oxidation in erythrocytes treated with UV irradiation or organic hydroperoxides as well as decreased the rigidity of the outer leaflet of the liposomal membranes. The hepatoprotective potential of cranberry flavonoids could be due to specific prevention of rat liver mitochondrial damage. The mitochondria-addressed effects of flavonoids might be related both to radical-scavenging properties and modulation of various mitochondrial events. PMID:25962994

  7. Differential expression and glycative damage affect specific mitochondrial proteins with aging in rat liver.

    PubMed

    Bakala, Hilaire; Ladouce, Romain; Baraibar, Martin A; Friguet, Bertrand

    2013-12-01

    Aging is accompanied by the gradual deterioration of cell functions. Particularly, mitochondrial dysfunction, associated with an accumulation of damaged proteins, is of key importance due to the central role of these organelles in cellular metabolism. However, the detailed molecular mechanisms involved in such impairment have not been completely elucidated. In the present study, proteomic analyses looking at both changes at the expression level as well as to glycative modifications of the mitochondrial proteome were performed. Two-dimensional difference gel electrophoresis analysis revealed 16 differentially expressed proteins with aging. Thirteen exhibited a decreased expression and are crucial enzymes related to OXPHOS chain complex I/V components, TCA cycle or fatty acid β-oxidation reaction. On the other hand, 2 enzymes involved in fatty acid β-oxidation cycle were increased in aged mitochondria. Immunodetection and further identification of glycated proteins disclosed a set of advanced glycation end product-modified proteins, including 6 enzymes involved in the fatty acid β-oxidation process, and 2 enzymes of the TCA/urea cycles. A crucial antioxidant enzyme, catalase, was among the most strongly glycated proteins. In addition, several AGE-damaged enzymes (aldehyde dehydrogenase 2, medium chain acyl-CoA dehydrogenase and 3-ketoacyl-CoA dehydrogenase) exhibited a decreased activity with age. Taken together, these data suggest that liver mitochondria in old rats suffer from a decline in their capacity for energy production, due to (i) decreased expression of OXPHOS complex I/V components and (ii) glycative damage to key fatty acid β-oxidation and TCA/urea cycle enzymes. PMID:23906978

  8. Rat liver mitochondrial damage under acute or chronic carbon tetrachloride-induced intoxication: Protection by melatonin and cranberry flavonoids

    SciTech Connect

    Cheshchevik, V.T.; Lapshina, E.A.; Dremza, I.K.; Zabrodskaya, S.V.; Reiter, R.J.; Prokopchik, N.I.; Zavodnik, I.B.

    2012-06-15

    In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride – induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, p < 0.05). Short-term melatonin treatment (10 mg/kg, three times) of rats did not reduce the degree of toxic mitochondrial dysfunction but decreased the enhanced NO production. After 30-day chronic intoxication, no significant change in the respiratory activity of liver mitochondria was observed, despite marked changes in the redox-balance of mitochondria. The activities of the mitochondrial enzymes, succinate dehydrogenase and glutathione peroxidase, as well as that of cytoplasmic catalase in liver cells were inhibited significantly. Mitochondria isolated from the livers of the rats chronically treated with CCl{sub 4} displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl{sub 4}, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage

  9. Liver biopsy

    MedlinePlus

    Biopsy - liver; Percutaneous biopsy ... the biopsy needle to be inserted into the liver. This is often done by using ultrasound. The ... the chance of damage to the lung or liver. The needle is removed quickly. Pressure will be ...

  10. Fortilin potentiates the peroxidase activity of Peroxiredoxin-1 and protects against alcohol-induced liver damage in mice

    PubMed Central

    Chattopadhyay, Abhijnan; Pinkaew, Decha; Doan, Hung Q.; Jacob, Reed B.; Verma, Sunil K.; Friedman, Hana; Peterson, Alan C.; Kuyumcu-Martinez, Muge N.; McDougal, Owen M.; Fujise, Ken

    2016-01-01

    Fortilin, a pro-survival molecule, inhibits p53-induced apoptosis by binding to the sequence-specific DNA-binding domain of the tumor suppressor protein and preventing it from transcriptionally activating Bax. Intriguingly, fortilin protects cells against ROS-induced cell death, independent of p53. The signaling pathway through which fortilin protects cells against ROS-induced cell death, however, is unknown. Here we report that fortilin physically interacts with the antioxidant enzyme peroxiredoxin-1 (PRX1), protects it from proteasome-mediated degradation, and keeps it enzymatically active by blocking its deactivating phosphorylation by Mst1, a serine/threonine kinase. At the whole animal level, the liver-specific overexpression of fortilin reduced PRX1 phosphorylation in the liver, enhanced PRX1 activity, and protected the transgenic animals against alcohol-induced, ROS-mediated, liver damage. These data suggest the presence of a novel oxidative-stress-handling pathway where the anti-p53 molecule fortilin augments the peroxidase PRX1 by protecting it against degradation and inactivation of the enzyme. Fortilin-PRX1 interaction in the liver could be clinically exploited further to prevent acute alcohol-induced liver damage in humans. PMID:26726832

  11. Effects of seaweed-restructured pork diets enriched or not with cholesterol on rat cholesterolaemia and liver damage.

    PubMed

    Schultz Moreira, Adriana R; García-Fernández, Rosa A; Bocanegra, Aranzazu; Méndez, M Teresa; Bastida, Sara; Benedí, Juana; Sánchez-Reus, M Isabel; Sánchez-Muniz, Francisco J

    2013-06-01

    Seaweed enriched-restructured pork (RP) is a potential functional food. However, indications of adverse effects associated with herbal medications, which include among others liver failure, toxic hepatitis, and death have been reported. Cholesterol feeding produces hepatomegalia and fat liver infiltration. The effect of seaweed-RP diet, cholesterol-enriched or not, on plasma cholesterol, liver damage markers, structure, and cytochrome CYP4A-1 were evaluated after 5 wk. Eight rat groups were fed a mix of 85% AIN-93M rodent-diet plus 15% RP. The Cholesterol-control (CC), Cholesterol-Wakame (CW), Cholesterol-Nori (CN) and Cholesterol-Sea Spaghetti (CS) groups respectively consumed similar diets to control (C), Wakame (W), Nori (N), and Sea Spaghetti (S) but as part of hypercholesterolaemic diets. CN and CS significantly blocked the hypercholesterolaemic effect observed in CC group. After 5-wk, N and S diets increased the CYP4A-1 expression. However, seaweed-RPs were unable to reduce the histological liver alterations observed in CC group. Larger and more abundant hepatocellular alterations were found in CS and CN rats suggesting that the hypocholesterolaemic effects of these seaweed-RPs seem to be a two-edged sword as they increased liver damage. Future studies are needed to understand the involved mechanisms. PMID:23462104

  12. Aldosterone induces fibrosis, oxidative stress and DNA damage in livers of male rats independent of blood pressure changes

    SciTech Connect

    Queisser, Nina; Happ, Kathrin; Link, Samuel; Jahn, Daniel; Zimnol, Anna; Geier, Andreas; Schupp, Nicole

    2014-11-01

    Mineralocorticoid receptor blockers show antifibrotic potential in hepatic fibrosis. The mechanism of this protective effect is not known yet, although reactive oxygen species seem to play an important role. Here, we investigated the effects of elevated levels of aldosterone (Ald), the primary ligand of the mineralocorticoid receptor, on livers of rats in a hyperaldosteronism model: aldosterone-induced hypertension. Male Sprague–Dawley rats were treated for 4 weeks with aldosterone. To distinguish if damage caused in the liver depended on increased blood pressure or on increased Ald levels, the mineralocorticoid receptor antagonist spironolactone was given in a subtherapeutic dose, not normalizing blood pressure. To investigate the impact of oxidative stress, the antioxidant tempol was administered. Aldosterone induced fibrosis, detected histopathologically, and by expression analysis of the fibrosis marker, α-smooth muscle actin. Further, the mRNA amount of the profibrotic cytokine TGF-β was increased significantly. Fibrosis could be reduced by scavenging reactive oxygen species, and also by blocking the mineralocorticoid receptor. Furthermore, aldosterone treatment caused oxidative stress and DNA double strand breaks in livers, as well as the elevation of DNA repair activity. An increase of the transcription factor Nrf2, the main regulator of the antioxidative response could be observed, and of its target genes heme oxygenase-1 and γ-glutamylcysteine synthetase. All these effects of aldosterone were prevented by spironolactone and tempol. Already after 4 weeks of treatment, aldosteroneinfusion induced fibrosis in the liver. This effect was independent of elevated blood pressure. DNA damage caused by aldosterone might contribute to fibrosis progression when aldosterone is chronically increased. - Highlights: • Aldosterone has direct profibrotic effects on the liver independent of blood pressure. • Fibrosis is mediated by the mineralocorticoid receptor and

  13. Protective Efficacy of Alpha-lipoic Acid against AflatoxinB1-induced Oxidative Damage in the Liver

    PubMed Central

    Li, Y.; Ma, Q. G.; Zhao, L. H.; Guo, Y. Q.; Duan, G. X.; Zhang, J. Y.; Ji, C.

    2014-01-01

    Alpha-lipoic acid (α-LA) is not only involved in energy metabolism, but is also a powerful antioxidant that can protect against hepatic oxidative stress induced by some drugs, toxins, or under various physiological and pathophysiological conditions. Here, we investigated the effect of α-LA against liver oxidative damage in broilers exposed to aflatoxin B1 (AFB1). Birds were randomly divided into four groups and assigned different diets: basal diet, 300 mg/kg α-LA supplementation in basal diet, diet containing 74 μg/kg AFB1, and 300 mg/kg α-LA supplementation in diet containing 74 μg/kg AFB1, for 3 weeks. The results revealed that the addition of 300 mg/kg α-LA protected against the liver function damage of broilers induced by chronic low dose of AFB1 as estimated by a significant (p<0.05) change in levels of plasma total protein, albumin, alkaline phosphatase and the activities of liver glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase. The histopathological analysis also showed that liver tissues were injured in the AFB1 diet, but this effect was alleviated by the addition of 300 mg/kg α-LA. Additionally, AFB1 induced a profound elevation of oxidative stress in birds, as indicated by an increase in malondialdehyde level, a decrease in glutathione peroxidase activity and a depletion of the glutathione content in the liver. All of these negative effects were inhibited by treatment with α-LA. Our results suggest that the inhibition of AFB1-induced excess production of lipid peroxides and the maintenance of intracellular antioxidant status may play important roles in the protective effects of α-LA against AFB1-induced oxidative damage in the liver. PMID:25050030

  14. Role of chemokines and their receptors in viral persistence and liver damage during chronic hepatitis C virus infection.

    PubMed

    Larrubia, Juan R; Benito-Martínez, Selma; Calvino, Miryam; Sanz-de-Villalobos, Eduardo; Parra-Cid, Trinidad

    2008-12-21

    Chemokines produced in the liver during hepatitis C virus (HCV) infection induce migration of activated T cells from the periphery to infected parenchyma. The milieu of chemokines secreted by infected hepatocytes is predominantly associated with the T-helper cell/Tc1 T cell (Th1/Tc1) response. These chemokines consist of CCL3 (macrophage inflammatory protein-1 alpha; MIP-1 alpha), CCL4 (MIP-1 beta), CCL5 (regulated on activation normal T cell expressed and secreted; RANTES), CXCL10 (interferon-gamma-inducible protein-10; IP-10), CXCL11 (interferon-inducible T-cell alpha chemoattractant; I-TAC), and CXCL9 (monokine induced by interferon gamma; Mig) and they recruit T cells expressing either CCR5 or CXCR3 chemokine receptors. Intrahepatic and peripheral blood levels of these chemokines are increased during chronic hepatitis C. The interaction between chemokines and their receptors is essential in recruiting HCV-specific T cells to control the infection. When the adaptive immune response fails in this task, non-specific T cells without the capacity to control the infection are also recruited to the liver, and these are ultimately responsible for the persistent hepatic damage. The modulation of chemokine receptor expression and chemokine secretion could be a viral escape mechanism to avoid specific T cell migration to the liver during the early phase of infection, and to maintain liver viability during the chronic phase, by impairing non-specific T cell migration. Some chemokines and their receptors correlate with liver damage, and CXCL10 (IP-10) and CXCR3 levels have shown a clinical utility as predictors of treatment response outcome. The regulation of chemokines and their receptors could be a future potential therapeutic target to decrease liver inflammation and to increase specific T cell migration to the infected liver. PMID:19084927

  15. Damage to the protein synthesizing apparatus in mouse liver in vivo by magnetocytolysis in the presence of hepatospecific magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Halbreich, Avraham; Groman, Ernest V.; Raison, Danielle; Bouchaud, Claude; Paturance, Sébastien

    2002-07-01

    In the previous work, we incubated THP1 cells and macrophages in vitro with unsubstituted ferrofluid (FF) and placed them in an alternating magnetic field. This resulted in the destruction of the cells (magnetocytolysis). Cell-specific magnetocytolysis in vitro was achieved in MCF7 human breast cancer cells incubated with tamoxifen-bound FF and treated in an alternating magnetic field. In this work, in a search of a model for magnetocytolysis in vivo, we injected mice intravenously with hepatospecific magnetic nanoparticles (HS-USPIO) and subjected the mice to magnetocytolysis in an alternating magnetic field (1 h at 200 A/m). This treatment resulted in a prolongation of blood coagulation time due to depletion of protein coagulation factors that are synthesized exclusively in the liver. The attendant derangement of liver protein synthesis was characterized in cell-free preparations by an inhibition of the endogenously coded protein synthesis coupled with an enhancement of phenylalanine polymerization directed by polyuridylic acid (Poly U). This indication of polyribosome dispersion was confirmed by electron microscopy. Magnetocytolysis did not cause liver necrosis and was neither accompanied by any increase in body or liver temperature, nor damage to any other tissue. The effects of magnetocytolysis were proportional to the amount of injected HS-USPIO, field strength and its application time. Magnetocytolysis did not occur when non-magnetic PolyGalactoseGold particles were substituted for HS-USPIO. PolyGalactoseGold particles were employed to measure asialoglycoprotein receptor (ASGP-R) activity in liver using neutron activation analysis. Injection of PolyGalactoseGold particles to mice, pre-treated by HS-USPIO driven magnetocytolysis, revealed a transient diminution of hepatic ASGP-R. Liver damage from magnetocytolysis was followed by liver regeneration, manifested by the appearance of thymidylate kinase activity, diminution of ASGP-R and return to normal blood

  16. Protective effect of Cichorium glandulosum seeds from ultraviolet B-induced damage in rat liver mitochondria.

    PubMed

    Huang, Bo; Chen, Yuxin; Ma, Bingxin; Zhou, Gao; Tong, Jing; He, Jingsheng; Wang, Youwei

    2014-05-01

    Cichorium glandulosum Boiss. et Huet, a common herb for treating hepatitis, is indigenous to Europe, Western Asia, and the Xinjiang Uygur Autonomous Region of China. This study aims at evaluating the protective activity of different extracts from C. glandulosum seeds against experimental oxidation- and ultraviolet B (UVB)-induced damage in rat liver mitochondria. The antioxidant property of different extracts from C. glandulosum seeds was investigated by employing various established in vitro systems, such as α,α-diphenyl-β-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzthiazoline-6-sulphonic acid), and reducing power assay. The protective effects of different C. glandulosum seed extracts against UVB-induced phototoxicity in a mitochondria model were also evaluated by measuring thiobarbituric acid reactive substances, glutathione, lipid hydroperoxide, conjugated diene, and 4-hydroxynonenal. The main compounds in C. glandulosum seeds were identified by HPLC-PDA-ESI-MS/MS. The results showed that C. glandulosum seed extracts have strong antioxidant activity, in which the ethyl acetate extract (EE) and n-butanol extract (BE) showed better activity than other extracts. In a UVB-induced mitochondria model, both EE and BE have better antioxidant activity and protective effects against phototoxicity than the petroleum ether extract, chloroform extract, and water extract. The differences in antioxidant activity and photoprotective capacity among these five extracts are associated with their phenolic compound content. Therefore, research on this function of C. glandulosum seeds may broaden their applications in the food and medical industry. PMID:24595542

  17. Role of berberine against arsenic induced oxidative damage in isolated rat liver mitochondria.

    PubMed

    Khodayar, Mohammad Javad; Javadipour, Mansoureh; Keshtzar, Elham; Rezaei, Mohsen

    2016-03-01

    The aim of the present study was to assess the protective role of berberine against toxicity induced by arsenic in mitochondria from liver of rat. The level of reactive oxygen species and mitochondrial membrane potential changes were evaluated spectrofluorometrically. 20, 40 and 100 μM arsenic concentration increased ROS level approximately by 13.5, 21.3 and 29 %. However, when pretreated mitochondria with berberine (10, 25, 50 μM) were exposed to arsenic (20, 40 and 100 μM), ROS production diminished. Also, for all arsenic concentration mitochondrial membrane damage was detected to be 2.5, 4.8 and 7.26 % respectively. Pretreatment with berberine even at highest concentration (50μM) was not able to retain membrane potential as compared to control. These results showed that mitochondria were significantly affected when exposed to arsenic, forcedly directed toward excess ROS production and mitochondrial membrane disruption. Pretreatment with berberine, reduced ROS generation but did not restore mitochondrial membrane integrity. PMID:27097449

  18. Loss of c-Met signaling sensitizes hepatocytes to lipotoxicity and induces cholestatic liver damage by aggravating oxidative stress.

    PubMed

    Gomez-Quiroz, Luis E; Seo, Daekwan; Lee, Yun-Han; Kitade, Mitsuteru; Gaiser, Timo; Gillen, Matthew; Lee, Seung-Bum; Gutierrez-Ruiz, Ma Concepcion; Conner, Elizabeth A; Factor, Valentina M; Thorgeirsson, Snorri S; Marquardt, Jens U

    2016-06-15

    Recent studies confirmed a critical importance of c-Met signaling for liver regeneration by modulating redox balance. Here we used liver-specific conditional knockout mice (MetKO) and a nutritional model of hepatic steatosis to address the role of c-Met in cholesterol-mediated liver toxicity. Liver injury was assessed by histopathology and plasma enzymes levels. Global transcriptomic changes were examined by gene expression microarray, and key molecules involved in liver damage and lipid homeostasis were evaluated by Western blotting. Loss of c-Met signaling amplified the extent of liver injury in MetKO mice fed with high-cholesterol diet for 30days as evidenced by upregulation of liver enzymes and increased synthesis of total bile acids, aggravated inflammatory response and enhanced intrahepatic lipid deposition. Global transcriptomic changes confirmed the enrichment of networks involved in steatosis and cholestasis. In addition, signaling pathways related to glutathione and lipid metabolism, oxidative stress and mitochondria dysfunction were significantly affected by the loss of c-Met function. Mechanistically, exacerbation of oxidative stress in MetKO livers was corroborated by increased lipid and protein oxidation. Western blot analysis further revealed suppression of Erk, NF-kB and Nrf2 survival pathways and downstream target genes (e.g. cyclin D1, SOD1, gamma-GCS), as well as up-regulation of proapoptotic signaling (e.g. p53, caspase 3). Consistent with the observed steatotic and cholestatic phenotype, nuclear receptors RAR, RXR showed increased activation while expression levels of CAR, FXR and PPAR-alpha were decreased in MetKO. Collectively, our data provide evidence for the critical involvement of c-Met signaling in cholesterol and bile acids toxicity. PMID:27394961

  19. The role of reactive oxygen species in the herbicide acetochlor-induced DNA damage on Bufo raddei tadpole liver.

    PubMed

    Liu, Yang; Zhang, Yingmei; Liu, Jianghai; Huang, Dejun

    2006-06-10

    After exposure of Bufo raddei tadpoles to acetochlor (ACETO) for 14 days, malondialdehyde (MDA) and DNA-single strand break (DNA-SSB) in livers were analyzed. An enhanced accumulation of MDA suggests that ACETO causes oxidative stress, and the significant increase in the level of DNA-SSB indicates that ACETO induces DNA damage in a dose-dependent manner as well. On the basis of the fact that oxidative stress is caused by excessive production of reactive oxygen species (ROS), and the present results, we speculate that ACETO-induced DNA damage may be a consequence of the generation of ROS. To evaluate this hypothesis, tadpoles were treated with ROS scavenger, N-acetyl-L-cysteine (NAC) or melatonin (MEL), prior to ACETO exposure. The decrease of DNA-SSB level and the increase of total antioxidant capability (TAC) show that ACETO-caused DNA damage can be attenuated by NAC and MEL. In addition, a negative correlation was observed between the extent of DNA damage and the level of TAC in tadpole liver. In conclusion, the results suggest that ACETO-induced DNA damage is mediated by ROS. PMID:16513190

  20. Hyaluronic acid uptake in the assessment of sinusoidal endothelial cell damage after cold storage and normothermic reperfusion of rat livers.

    PubMed

    Reinders, M E; van Wagensveld, B A; van Gulik, T M; Frederiks, W M; Chamuleau, R A; Endert, E; Klopper, P J

    1996-01-01

    The uptake of hyaluronic acid (HA) was used to assess preservation damage to sinusoidal endothelial cells (SEC) during cold storage and subsequent normothermic reperfusion of rat livers. After 8, 16, 24, and 48 h storage in University of Wisconsin (UW) solution, livers were gravity-flushed via the portal vein with a standard volume of cold UW solution containing 50 micrograms/l HA. The effluent was collected for analysis of HA, aspartate aminotransferase (AST), and lactate dehydrogenase (LDH). The mean uptake of HA at 0 h was 59.1% +/- 4.6% (mean +/- SEM). After 8 h of storage, HA uptake was similar (55.5% +/- 7.3%), whereas after 16 h of storage it was reduced to 34.7% +/- 5.8%. At 24 and 48 h of storage, no uptake of HA was found. In a second series of experiments, livers were stored in UW solution and subsequently reperfused for 90 min with a Krebs-Henseleit solution (37 degrees C) in a recirculating system containing 150 micrograms/l HA. Following 8 h of storage, 34.6% +/- 8.0% of the initial HA concentration was taken up from the perfusate. After 16 and 24 h of storage, no uptake of HA was found. The results of this study indicate that damage to SEC occurs progressively during storage, leading to zero uptake of HA by the rat livers at 24 h of cold ischemia time. Additional reperfusion injury to the SEC was demonstrated by the reduced ability of the SEC to take up HA following normothermic reperfusion. The uptake of exogenous HA in preserved livers, used as a tool to assess SEC injury, enables the detection of early preservation damage. PMID:8875786

  1. Evaluation of the Protective Effect of Silibinin Against Diazinon Induced Hepatotoxicity and Free-Radical Damage in Rat Liver

    PubMed Central

    Beydilli, Halil; Yilmaz, Nigar; Cetin, Esin Sakalli; Topal, Yasar; Celik, Ozgur Ilhan; Sahin, Cem; Topal, Hatice; Cigerci, Ibrahim Hakki; Sozen, Hamdi

    2015-01-01

    Background: Diazinon (0,0-Diethyl 0-(1-6-methyl-2-isoprophyl 4 pyrimidinyl) phosphorothioate) (DI) is a very effective organophosphate pesticide, used widely in agriculture. Consequently, data on poisoning cases secondary to DI exposure are important. The DI may affect a variety of tissues, including liver. Silibinin is a pharmacologically active constitute of Silybum marianum, with documented antioxidant activity. Objectives: The aim of our study was to evaluate both histopathologically and biochemically whether silibinin is protective in DI induced liver damage. Materials and Methods: Thirty two Wistar albino rats were divided into four groups, as follows: 1) control group - oral corn oil was given; 2) DI group - rats were administered orally 335 mg/kg in the corn oil solution; 3) Silibinin group - 100 mg/kg/day silibinin was given alone orally, every 24 hours for 7 days; 4) Silibinin + DI group - DI plus silibinin was given. All rats were sacrificed at the end of experiment. Superoxide dismutases (SOD), glutathione peroxidase (GPX), nitric oxide (NO) and myeloperoxidase (MPO) were investigated in serum and liver tissue. In addition, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) enzyme activities were evaluated. The liver tissue was evaluated histopathologically with Hematoxilin & Eosin dye. Results: Biochemically, ALT, AST, NO, MPO in serum and NO, MPO in liver tissue were found to be significantly higher in DI group, compared to control group (P < 0.001). In Group Silibinin + DI, serum AST, ALT, NO, MPO levels were significantly lower (P < 0.01), and both serum and tissue SOD activities were significantly higher, compared to DI group (P < 0.001). Diazinon induced histopathological changes in liver tissue were: severe sinusoidal dilatation, moderate disruption of the radial alignment of hepatocytes around the central vein, severe vacuolization in the hepatocyte cytoplasm, inflammation around central vein and portal region. In rats

  2. Effect of Hibiscus sabdariffa extract on high fat diet–induced obesity and liver damage in hamsters

    PubMed Central

    Huang, To-Wei; Chang, Chia-Ling; Kao, Erl-Shyh; Lin, Jenq-Horng

    2015-01-01

    Background Obesity is a chronic metabolic disorder associated with an increase in adipogenesis and often accompanied with fatty liver disease. Objective In this study, we investigated the anti-obesity effects of Hibiscus sabdariffa water extract (HSE) in vivo. Method Eight-weeks-old male mice were divided into six groups (n=8 per group) and were fed either normal feed, a high fat diet (HFD), HFD supplemented with different concentrations of HSE, or HFD supplemented with anthocyanin. After 10 weeks of feeding, all the blood and livers were collected for further analysis. Results Mesocricetus auratus hamster fed with a high-fat diet developed symptoms of obesity, as determined from their body weight change and from their plasma lipid levels. Meanwhile, HSE treatment reduced fat accumulation in the livers of hamsters fed with HFD in a concentration-dependent manner. Administration of HSE reduced the levels of liver cholesterol and triglycerides, which were elevated by HFD. Analysis of the effect of HSE on paraoxonase 1, an antioxidant liver enzyme, revealed that HSE potentially regulates lipid peroxides and protects organs from oxidation-associated damage. The markers of liver damage such as serum alanine aminotransferase and aspartate aminotransferase levels that were elevated by HFD were also reduced on HSE treatment. The effects of HSE were as effective as treatment with anthocyanin; therefore the anthocyanins present in the HSE may play a crucial role in the protection established against HFD-induced obesity. Conclusions In conclusion HSE administration constitutes an effective and viable treatment strategy against the development and consequences of obesity. PMID:26475512

  3. Puerarin protects the rat liver against oxidative stress-mediated DNA damage and apoptosis induced by lead.

    PubMed

    Liu, Chan-Min; Ma, Jie-Qiong; Sun, Yun-Zhi

    2012-09-01

    Puerarin (PU), a natural flavonoid, has been reported to have many benefits and medicinal properties. In this study, we valuated the protective effect of puerarin against lead-induced oxidative DNA damage and apoptosis in rat liver. A total of forty male Wistar rats (8-week-old) was divided into 4 groups: control group; lead-treated group (500 mg Pb/l as the only drinking fluid); lead+puerarin treated group (500 mg Pb/l as the only drinking fluid plus 400 mg PU/kg bwt intra-gastrically once daily); and puerarin-treated group (400 mg PU/kg bwt intra-gastrically once daily). The experimental period was lasted for 75 successive days. Our data showed that puerarin significantly effectively improved the lead-induced histology changes in rat liver and decreased the serum ALT and AST activities in lead-treated rats. Puerarin markedly restored Cu/Zn-SOD, CAT and GPx activities and the GSH/GSSG ratio in the liver of lead-treated rat. Furthermore, the increase of 8-hydroxydeoxyguanosine induced by lead was effectively suppressed by puerarin. The enhanced caspase-3 activity in the rat liver induced by lead was also inhibited by puerarin. TUNEL assay showed that lead-induced apoptosis in rat liver was significantly inhibited by puerarin, which might be attributed to its antioxidant property. In conclusion, these results suggested that puerarin could protect the rat liver against lead-induced injury by reducing ROS production, renewing the activities of antioxidant enzymes and decreasing DNA oxidative damage. PMID:21146379

  4. Genipin protects lipopolysaccharide-induced apoptotic liver damage in D-galactosamine-sensitized mice.

    PubMed

    Kim, Seok-Joo; Kim, Joon-Ki; Lee, Dong-Ung; Kwak, Jong-Hwan; Lee, Sun-Mee

    2010-06-10

    This study examined the effects of genipin, isolated from Gardenia jasminoides Ellis, on d-galactosamine (GalN) and lipopolysaccharide (LPS)-induced hepatic apoptosis and liver failure. Mice were given an intraperitoneal injection of genipin (25, 50, 100 and 200mg/kg) 1h before GalN (700mg/kg)/LPS (10microg/kg) administration. The survival rate of the genipin group was significantly higher than that of the control. Genipin markedly reduced the increases in serum aminotransferase activities and lipid peroxidation. The glutathione content decreased in GalN/LPS group, and this decrease was attenuated by genipin. Increases in serum tumor necrosis factor-alpha (TNF-alpha), which were observed in GalN/LPS-treated mice, were significantly reduced by genipin. Genipin attenuated the GalN/LPS-induced apoptosis of hepatocytes, as estimated by the caspase-3 and -8 activity assay, TNF-R1 associated death domain (TRADD) protein measurement and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) method. Moreover, increased cytosolic cytochrome c protein was reduced by genipin. After 3h of GalN/LPS injection, nuclear phosphorylated c-Jun (p-c-Jun) level was significantly increased, whereas it was attenuated by genipin. Also, the increased nuclear level of nuclear factor-kappaB and the decreased cytosolic level of IkappaB-alpha protein were significantly attenuated by genipin. Our results suggest that genipin offers marked hepatoprotection against damage induced by GalN/LPS related with its antioxidative, anti-apoptotic activities, and inhibition of NF-kappaB nuclear translocation and nuclear p-c-Jun expression. PMID:20303938

  5. Structure-Activity Relationships for DNA Damage by Alkenylbenzenes in Turkey Egg Fetal Liver.

    PubMed

    Kobets, Tetyana; Duan, Jian-Dong; Brunnemann, Klaus D; Etter, Sylvain; Smith, Benjamin; Williams, Gary M

    2016-04-01

    Certain alkenylbenzenes (AB), flavoring chemicals naturally occurring in spices and herbs, are established to be cytotoxic and hepatocarcinogenic in rodents. The purpose of the present study was to determine the DNA damaging potential of key representatives of this class using the Turkey Egg Genotoxicity Assay. Medium white turkey eggs with 22- to 24-day-old fetuses received three injections of nine AB with different carcinogenic potentials: safrole (1, 2 mg/egg), methyl eugenol (2, 4 mg/egg), estragole (20, 40 mg/egg), myristicin (25, 50 mg/egg), elemicin (20, 50 mg/egg), anethole (5, 10 mg/egg), methyl isoeugenol (40, 80 mg/egg), eugenol (1, 2.5 mg/egg), and isoeugenol (1, 4 mg/egg). Three hours after the last injection, fetal livers were harvested for measurement of DNA strand breaks, using the comet assay and DNA adducts formation, using the nucleotide(3) (2)P-postlabeling assay. Estragole, myristicin, and elemicin induced DNA stand breaks. These compounds as well as safrole, methyl eugenol and anethole, at the highest doses tested, induced DNA adduct formation. Methyl isoeugenol, eugenol, and isoeugenol did not induce genotoxicity. The genotoxic AB all had the structural features of either a double bond in the alkenyl side chain at the terminal 2',3'-position, favorable to formation of proximate carcinogenic 1'-hydroxymetabolite or terminal epoxide, or the absence of a free phenolic hydroxyl group crucial for formation of a nontoxic glucuronide conjugate. In contrast, methyl isoeugenol, eugenol and isoeugenol, which were nongenotoxic, possessed chemical features, unfavorable to activation. PMID:26719370

  6. Differential timing of oxidative DNA damage and telomere shortening in hepatitis C and B virus-related liver carcinogenesis.

    PubMed

    Piciocchi, Marika; Cardin, Romilda; Cillo, Umberto; Vitale, Alessandro; Cappon, Andrea; Mescoli, Claudia; Guido, Maria; Rugge, Massimo; Burra, Patrizia; Floreani, Annarosa; Farinati, Fabio

    2016-02-01

    In viral hepatitis, inflammation is correlated with chronic oxidative stress, one of the biological events leading to DNA damage and hepatocellular carcinoma (HCC) development. Aim of this study was to investigate the complex molecular network linking oxidative damage to telomere length and telomerase activity and regulation in hepatitis C and B virus-related liver carcinogenesis. We investigated 142 patients: 21 with HCC (in both tumor and peritumor tissues) and 121 with chronic viral hepatitis in different stages. We evaluated 8-hydroxydeoxyguanosine (8-OHdG), marker of oxidative DNA damage, OGG1 gene polymorphism, telomere length, telomerase activity, TERT promoter methylation, and mitochondrial TERT localization. In hepatitis C-related damage, 8-OHdG levels increased since the early disease stages, whereas hepatitis B-related liver disease was characterized by a later and sharper 8-OHdG accumulation (P = 0.005). In C virus-infected patients, telomeres were shorter (P = 0.03), whereas telomerase activity was higher in tumors than that in the less advanced stages of disease in both groups (P = 0.0001, P = 0.05), with an earlier increase in hepatitis C. Similarly, TERT promoter methylation was higher in tumor and peritumor tissues in both groups (P = 0.02, P = 0.0001). Finally, TERT was localized in mitochondria in tumor and peritumor samples, with 8-OHdG levels significantly lower in mitochondrial than those in genomic DNA (P = 0.0003). These data describe a pathway in which oxidative DNA damage accumulates in correspondence with telomere shortening, telomerase activation, and TERT promoter methylation with a different time course in hepatitis B and C virus-related liver carcinogenesis. Finally, TERT localizes in mitochondria in HCC, where it lacks a canonical function. PMID:26408804

  7. Attenuation of Endoplasmic Reticulum Stress-Mediated Liver Damage by Mulberry Leaf Diet in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Afrin, Rejina; Arumugam, Somasundaram; Wahed, Mir Imam Ibne; Pitchaimani, Vigneshwaran; Karuppagounder, Vengadeshprabhu; Sreedhar, Remya; Harima, Meilei; Suzuki, Hiroshi; Miyashita, Shizuka; Nakamura, Takashi; Suzuki, Kenji; Nakamura, Masahiko; Ueno, Kazuyuki; Watanabe, Kenichi

    2016-02-01

    Endoplasmic reticulum stress (ERS) plays a crucial role in the development of insulin resistance and diabetes mellitus. Although antidiabetic use of mulberry leaves (MLs) has been popular due to their many anti-oxidative flavonoid compounds and free radical scavenging effects, ML's effects on ERS in experimental diabetic hepatocyte injury remain unknown. To investigate how ML affect ERS in diabetic liver, Sprague-Dawley (SD) rats were assigned to induce diabetes by a single intraperitoneal injection of streptozocin (STZ; 55 mg/kg) and fed with either normal chow or a diet containing 25% mulberry leaf powder diet (MLD) and examined for 56 days. We observed that MLD improved the rats' morphological and histopathological changes. Levels of ERS markers such as phosphorylated double-stranded RNA-dependent protein kinase-like endoplasmic reticulum kinase (PERK) and X-box binding protein 1 (XBP1) and the protein expression of glucose regulated protein 78 (GRP78) were significantly higher in the diabetic liver compared to normal liver. MLD for 8 weeks significantly reduced all of these markers. MLD also significantly decreased hepatocyte apoptosis, hepatic macrophage recruitment, cellular infiltration, and CCAAT/enhancer-binding protein homologous protein (CHOP), tumor necrosis factor receptor associated factor 2 (TRAF2), interleukin 1[Formula: see text] (IL-1[Formula: see text]) and sterol regulatory element binding protein isoform 1c (SREBP 1c) levels in diabetic liver. These results may suggest that MLs can preserve hepatic function in experimental diabetes by modulating ERS mediated apoptosis and liver damage. PMID:26916916

  8. Hepatoprotective effect of the natural fruit juice from Aronia melanocarpa on carbon tetrachloride-induced acute liver damage in rats.

    PubMed

    Valcheva-Kuzmanova, S; Borisova, P; Galunska, B; Krasnaliev, I; Belcheva, A

    2004-12-01

    The fruits of Aronia melanocarpa are rich in anthocyanins--plant pigments with anti-inflammatory and antioxidant activity. We studied the effect of the natural fruit juice from A. melanocarpa (NFJAM) on carbon tetrachloride (CCl4)-induced acute liver damage in rats. Histopathological changes such as necrosis, fatty change, ballooning degeneration and inflammatory infiltration of lymphocytes around the central veins occurred in rats following acute exposure to CCl4 (0.2 ml kg(-1), 2 days). The administration of CCl4 increased plasma aspartate transaminase (AST) and alanine transaminase (ALT) activities, induced lipid peroxidation (as measured by malondialdehyde (MDA) content in rat liver and plasma) and caused a depletion of liver reduced glutathione (GSH). NFJAM (5, 10 and 20 ml kg(-1), 4 days) dose-dependently reduced the necrotic changes in rat liver and inhibited the increase of plasma AST and ALT activities, induced by CCl4 (0.2ml kg(-1), 3rd and 4th days). NFJAM also prevented the CCl4-induced elevation of MDA formation and depletion of GSH content in rat liver. PMID:15625789

  9. [Effect of hepatophyt on the choleretic function of the liver damaged by tetracycline].

    PubMed

    Nikolaev, S M; Sambueva, Z G; Chekhirova, G V; Tsyrenzhalov, A V

    2003-01-01

    In experimental injury of the liver in Wistar-line white rats induced by tetracycline the course therapeutic and prophylatic administration of the dry extract "Hepatophyt" in a dose of 0.1 g/kg inhibits the negative effect of tetracycline and promotes stimulation of choleretic and antitoxic functions of the liver. The dry extract was derived from the herbal mix of the same name, used in the practice of Tibetan medicine against liver diseases. PMID:13677134

  10. Improved clinicopathologic assessments of acute liver damage due to trauma in Indian ring-necked parakeets (Psittacula krameri manillensis).

    PubMed

    Williams, Susan M; Holthaus, Lisa; Barron, Heather Wilson; Divers, Stephen J; McBride, Michael; Almy, Frederic; Bush, Sharon; Latimer, Kenneth S

    2012-06-01

    Increased activities of certain biochemical enzymes (alanine aminotransferase [ALT], aspartate aminotransferase [AST], lactate dehydrogenase [LDH], alkaline phosphatase [ALP]) have been associated with blunt liver injury in many species. To evaluate changes in plasma hepatic biochemical parameters in acute avian liver disease caused by trauma and to compare biochemical changes with histologic lesions in hepatic parenchyma, 30 healthy fasted Indian ring-necked parakeets (Psittacula krameri manillensis) were divided into 2 groups, and traumatic liver injury was caused by endoscopic liver biopsy (group 1) or by liver biopsy and crushing injury to the hepatic parenchyma with endoscopic forceps (group 2) in anesthetized birds. Blood samples were collected at baseline and at 12, 24, 36, 48, 60, 72, 84, 96, 108, and 120 hours in alternate groups to compare analyte values after injury with those at baseline. Results showed consistently decreased plasma ALP activity (excluding 1 time point) throughout the study, which was thought to be associated with isoflurane administration. Plasma glutamate dehydrogenase activity initially increased but rapidly declined thereafter and was attributed to acute focal hepatocellular injury. In both groups, increases in plasma AST, ALT, and LDH activities was most likely caused by muscle injury because creatine kinase activity was concurrently increased. Compared with baseline values, bile acid concentration and y-glutamyl transferase activity were not affected by liver biopsy or crush injury. Plasma sorbitol dehydrogenase activity was the most specific indicator of liver injury in both groups. Histologic changes correlated poorly with biochemical results, possibly because the small area of hepatic parenchyma that was damaged did not affect enzyme values substantially. PMID:22872978

  11. Loss of vascular fibrinolytic activity following irradiation of the liver - an aspect of late radiation damage

    SciTech Connect

    Henderson, B.W.; Bicher, H.I.; Johnson, R.J.

    1983-09-01

    The vascular fibrinolytic activity, known to originate from the endothelium, was studied histochemically by fibrinolysis autography in liver samples from beagles exposed to radiation treatment. Eighteen to thirty months prior to sacrifice, six dogs received x irradiation (4600 rad in 5 weeks) and three dogs received x irradiation plus aspirin (1 g/kg). Two dogs served as untreated controls. Control livers showed extensive fibrinolytic activity related to large and small vascular structures. The vascular fibrinolytic activity had been lost from all vessels except the major portal branches in five irradiated livers and was severaly diminished in three. One irradiated liver appeared to possess normal fibrinolytic activity.

  12. The inverse relationship between bladder and liver in 4-aminobiphenyl-induced DNA damage.

    PubMed

    Bhattacharya, Arup; Klaene, Joshua J; Li, Yun; Paonessa, Joseph D; Stablewski, Aimee B; Vouros, Paul; Zhang, Yuesheng

    2015-01-20

    Bladder cancer risk is significantly higher in men than in women. 4-Aminobiphenyl (ABP) is a major human bladder carcinogen from tobacco smoke and other sources. In mice, male bladder is more susceptible to ABP-induced carcinogenesis than female bladder, but ABP is more carcinogenic in the livers of female mice than of male mice. Here, we show that castration causes male mice to acquire female phenotype regarding susceptibility of bladder and liver to ABP. However, spaying has little impact on organ susceptibility to ABP. Liver UDP-glucuronosyltransferases (UGTs) are believed to protect liver against but sensitize bladder to ABP, as glucuronidation of ABP and its metabolites generally reduces their toxicity and promotes their elimination via urine, but the metabolites are labile in urine, delivering carcinogenic species to the bladder. Indeed, liver expression of ABP-metabolizing human UGT1A3 transgene in mice increases bladder susceptibility to ABP. However, ABP-specific liver UGT activity is significantly higher in wild-type female mice than in their male counterparts, and castration also significantly increases ABP-specific UGT activity in the liver. Taken together, our data suggest that androgen increases bladder susceptibility to ABP via liver, likely by modulating an ABP-metabolizing liver enzyme, but exclude UGT as an important mediator. PMID:25596734

  13. The inverse relationship between bladder and liver in 4-aminobiphenyl-induced DNA damage

    PubMed Central

    Stablewski, Aimee B.; Vouros, Paul; Zhang, Yuesheng

    2015-01-01

    Bladder cancer risk is significantly higher in men than in women. 4-Aminobiphenyl (ABP) is a major human bladder carcinogen from tobacco smoke and other sources. In mice, male bladder is more susceptible to ABP-induced carcinogenesis than female bladder, but ABP is more carcinogenic in the livers of female mice than of male mice. Here, we show that castration causes male mice to acquire female phenotype regarding susceptibility of bladder and liver to ABP. However, spaying has little impact on organ susceptibility to ABP. Liver UDP-glucuronosyltransferases (UGTs) are believed to protect liver against but sensitize bladder to ABP, as glucuronidation of ABP and its metabolites generally reduces their toxicity and promotes their elimination via urine, but the metabolites are labile in urine, delivering carcinogenic species to the bladder. Indeed, liver expression of ABP-metabolizing human UGT1A3 transgene in mice increases bladder susceptibility to ABP. However, ABP-specific liver UGT activity is significantly higher in wild-type female mice than in their male counterparts, and castration also significantly increases ABP-specific UGT activity in the liver. Taken together, our data suggest that androgen increases bladder susceptibility to ABP via liver, likely by modulating an ABP-metabolizing liver enzyme, but exclude UGT as an important mediator. PMID:25596734

  14. Obstructive Sleep Apnea Is Associated with Liver Damage and Atherosclerosis in Patients with Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Petta, Salvatore; Marrone, Oreste; Torres, Daniele; Buttacavoli, Maria; Cammà, Calogero; Di Marco, Vito; Licata, Anna; Lo Bue, Anna; Parrinello, Gaspare; Pinto, Antonio; Salvaggio, Adriana; Tuttolomondo, Antonino; Craxì, Antonio; Bonsignore, Maria Rosaria

    2015-01-01

    Background/Aims We assessed whether obstructive sleep apnea (OSA) and nocturnal hypoxemia are associated with severity of liver fibrosis and carotid atherosclerosis in patients with biopsy-proven NAFLD and low prevalence of morbid obesity. Secondary aim was to explore the association of OSA and hypoxemia with NASH and severity of liver pathological changes. Methods Consecutive patients (n = 126) with chronically elevated ALT and NAFLD underwent STOP-BANG questionnaire to estimate OSA risk and ultrasonographic carotid assessment. In patients accepting to perform cardiorespiratory polygraphy (PG, n = 50), OSA was defined as an apnea/hypopnea index ≥5. A carotid atherosclerotic plaque was defined as a focal thickening >1.3 mm. Results Prevalence of high OSA risk was similar in patients refusing or accepting PG (76% vs 68%, p = 0.17). Among those accepting PG, overall OSA prevalence was significantly higher in patients with F2-F4 fibrosis compared to those without (72% vs 44%; p = 0.04). Significant fibrosis was independently associated with mean nocturnal oxygen saturation (SaO2)<95% (OR 3.21, 95%C.I. 1.02–7.34; p = 0.04). Prevalence of OSA tended to be higher in patients with, than in those without, carotid plaques (64% vs 40%; p = 0.08). Carotid plaques were independently associated with %time at SaO2<90% >1 (OR 6.30, 95%C.I. 1.02–12.3; p = 0.01). Conclusions In NAFLD patients with chronically elevated ALT at low prevalence of morbid obesity, OSA was highly prevalent and indexes of SaO2 resulted independently associated with severity of liver fibrosis and carotid atherosclerosis. These data suggest to consider sleep disordered breathing as a potential additional therapeutic target in severe NAFLD patients. PMID:26672595

  15. Sulfated polysaccharide isolated from Ulva lactuca attenuates d-galactosamine induced DNA fragmentation and necrosis during liver damage in rats.

    PubMed

    Sathivel, Arumugam; Balavinayagamani; Hanumantha Rao, Balaji Raghavendran; Devaki, Thiruvengadam

    2013-12-13

    Abstract Context: Ulva lactuca Linnaeus (Chlorophyceae), a commonly distributed seaweed, is rich in polysaccharide but has not been studied extensively. Objective: The present study investigated the effects of crude fraction of Ulva lactuca polysaccharide (ULP) on d-galactosamine (d-Gal)-induced DNA damage, hepatic oxidative stress, and necrosis in rats. Materials and methods: The rats were treated with ULP (100 mg/kg, orally) for 4 weeks before a single intraperitoneal injection of d-Gal (500 mg/kg). In addition to liver cell necrosis and DNA damage, antioxidant parameters, such as lipid peroxide (LPO), superoxide dismutase, and catalase, and histopathology of liver tissue were evaluated. Results: ULP pre-treatment significantly attenuated a d-Gal-induced decrease in DNA and RNA levels (3.67 ± 0.38) and (5.42 ± 0.46), respectively. Comet tail length and acridine staining confirmed the number of cells undergoing necrosis were relatively lower in ULP treated rats (30 µm and 8-10% of counted cells) compared to rats treated with d-Gal (60 µm and 16% of counted cells). Biochemical (LPO, SOD and CAT) and histological evaluation (p < 0.01) confirmed the anti-hepatotoxic and antioxidant property of crude polysaccharide against d-Gal-induced elevation of LPO and infiltration of inflammatory cells into liver tissue. Discussion and conclusion: Although our previous studies have reported on the protective role of ULP against liver toxicity, our present findings show that ULP improved the hepatic antioxidant defense system against d-Gal-induced DNA damage and necrosis in rats. PMID:24329421

  16. Dipeptidylpeptidase-IV Activity and Expression Reveal Decreased Damage to the Intrahepatic Biliary Tree in Fatty Livers Submitted to Subnormothermic Machine-Perfusion Respect to Conventional Cold Storage

    PubMed Central

    Tarantola, E.; Bertone, V.; Milanesi, G.; Gruppi, C.; Ferrigno, A.; Vairetti, M.; Barni, S.

    2014-01-01

    Graft steatosis is a risk factor for poor initial function after liver transplantation. Biliary complications are frequent even after normal liver transplantation. A subnormothermic machine perfusion (MP20) preservation procedure was developed by our group with high potential for reducing injury to hepatocytes and sinusoidal cells of lean and fatty livers respect to conventional cold storage (CS). We report the response of the biliary tree to CS or MP20, in lean and obese Zucker rat liver. Dipeptidylpeptidase-IV (DPP-IV), crucial for the inactivation of incretins and neuropeptides, was used as a marker. Liver morphology and canalicular network of lean livers were similar after CS/reperfusion or MP20/reperfusion. CS preservation of fatty livers induced serious damage to the parenchyma and to the canalicular activity/ expression of DPP-IV, whereas with MP20 the morphology and canalicular network were similar to those of untreated lean liver. CS and MP20 had similar effects on DPP-IV activity and expression in the upper segments of the intrahepatic biliary tree of fatty livers. DPP-IV expression was significantly increased after MP20 respect to CS or to the controls, both for lean and obese animals. Our data support the superiority of MP20 over CS for preserving fatty livers. Dipeptidylpeptidase-IV activity and expression reveal decreased damage to the intrahepatic biliary tree in fatty livers submitted to subnormothermic machine-perfusion respect to conventional cold storage. PMID:25308846

  17. The MAPK Pathway Signals Telomerase Modulation in Response to Isothiocyanate-Induced DNA Damage of Human Liver Cancer Cells

    PubMed Central

    Lamy, Evelyn; Herz, Corinna; Lutz-Bonengel, Sabine; Hertrampf, Anke; Márton, Melinda-Rita; Mersch-Sundermann, Volker

    2013-01-01

    4-methylthiobutyl isothiocyanate (MTBITC), an aliphatic, sulphuric compound from Brassica vegetables, possesses in vitro and in vivo antitumor activity. Recently we demonstrated the potent growth inhibitory potential of the DNA damaging agent MTBITC in human liver cancer cells. Here we now show that MTBITC down regulates telomerase which sensitizes cells to apoptosis induction. This is mediated by MAPK activation but independent from production of reactive oxygen species (ROS). Within one hour, MTBITC induced DNA damage in cancer cells correlating to a transient increase in hTERT mRNA expression which then turned into telomerase suppression, evident at mRNA as well as enzyme activity level. To clarify the role of MAPK for telomerase regulation, liver cancer cells were pre-treated with MAPK-specific inhibitors prior to MTBITC exposure. This clearly showed that transient elevation of hTERT mRNA expression was predominantly mediated by the MAPK family member JNK. In contrast, activated ERK1/2 and P38, but not JNK, signalled to telomerase abrogation and consequent apoptosis induction. DNA damage by MTBITC was also strongly abolished by MAPK inhibition. Oxidative stress, as analysed by DCF fluorescence assay, electron spin resonance spectroscopy and formation of 4-hydroxynonenal was found as not relevant for this process. Furthermore, N-acetylcysteine pre-treatment did not impact MTBITC-induced telomerase suppression or depolarization of the mitochondrial membrane potential as marker for apoptosis. Our data therefore imply that upon DNA damage by MTBITC, MAPK are essential for telomerase regulation and consequent growth impairment in liver tumor cells and this detail probably plays an important role in understanding the potential chemotherapeutic efficacy of ITC. PMID:23382840

  18. Development and characterization of sulfasalazine loaded fucosylated PPI dendrimer for the treatment of cytokine-induced liver damage.

    PubMed

    Gupta, Richa; Mehra, Neelesh Kumar; Jain, Narendra Kumar

    2014-04-01

    The present investigation was aimed at exploring the targeting potential of sulfasalazine (NF-κB inhibitor drug) loaded fucose tethered poly (propylene imine) (PPI) dendritic nanoarchitecture (SSZ-FUCO-PPID) to Kupffer cells for effective management of cytokine-induced liver damage. The SSZ-FUCO-PPID formulation was characterized for entrapment efficiency, in vitro release, stability, toxicological investigations, macrophage uptake, NF-κB inhibition, and in vivo studies. In cell uptake assay the uptake of SSZ-FUCO-PPID was found to be higher and preferentially by J774 macrophage cell line. Cytokine assay suggested that the SSZ-FUCO-PPID potentially inhibited the IL-12 p40 production in LPS activated macrophages. Western blot analysis clearly suggested that SSZ-FUCO-PPID inhibited the activation of NF-κB as indicated by the absence of p-IκB band. Pharmacokinetic study revealed improved bioavailability, half-life and mean residence time of SSZ upon fucosylation of dendrimers. The biodistribution pattern clearly established the higher amount of SSZ-FUCO-PPID in liver. Hematological data suggest that the fucosylated formulations are less immunogenic as compared to unconjugated formulations. The results suggest that the SSZ-FUCO-PPID formulation holds targeting potential to Kupffer cells for the treatment of cytokine-induced liver damage. PMID:24189499

  19. Prophylactic acetylsalicylic acid attenuates the inflammatory response but fails to protect exercise-induced liver damage in exercised rats.

    PubMed

    Huang, Kuo-Chin; Chiu, Yi-Han; Liao, Kuang-Wen; Ke, Chun-Yen; Lee, Chung-Jen; Chao, Yann-Fen C; Lee, Ru-Ping

    2016-09-01

    This study evaluated the effects of acetylsalicylic acid (ASA) on exercise-induced inflammatory response, muscle damage, and liver injury in rats. Wistar-Kyoto (WKY) rats were divided into six groups: control (C), exercise (E), C+20mg ASA, E+20mg ASA, C+100mg/kg ASA, and E+100mg ASA groups. ASA or a vehicle was orally administered through gavage 1h before a treadmill test. Upon trial completion, blood was drawn at 1, 12, and 24h for biochemical analysis, and livers were excised at 24h for a histological assessment. Our results revealed that 100mg/kg ASA significantly reduced interleukin (IL)-6 and tumor necrosis factor (TNF)-α levels in the E groups; however, the IL-10 level was considerably increased. Moreover, aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels and histological hepatic damage increased significantly in the E+100mg ASA group compared with the corresponding changes in the E group. These results suggest that the prophylactic administration of particularly high-dose ASA alleviates exercise-induced inflammatory response but exacerbates liver injury. PMID:27262381

  20. Liver.

    PubMed

    Kim, W R; Lake, J R; Smith, J M; Skeans, M A; Schladt, D P; Edwards, E B; Harper, A M; Wainright, J L; Snyder, J J; Israni, A K; Kasiske, B L

    2016-01-01

    The median waiting time for patients with MELD ≥ 35 decreased from 18 days in 2012 to 9 days in 2014, after implementation of the Share 35 policy in June 2013. Similarly, mortality among candidates listed with MELD ≥ 35 decreased from 366 per 100 waitlist years in 2012 to 315 in 2014. The number of new active candidates added to the pediatric liver transplant waiting list in 2014 was 655, down from a peak of 826 in 2005. The number of prevalent candidates (on the list on December 31 of the given year) continued to decline, 401 active and 173 inactive. The number of deceased donor pediatric liver transplants peaked at 542 in 2008 and was 478 in 2014. The number of living donor liver pediatric transplants was 52 in 2014; most were from donors closely related to the recipients. Graft survival continued to improve among pediatric recipients of deceased donor and living donor livers. PMID:26755264

  1. Pretreatment with Fucoidan from Fucus vesiculosus Protected against ConA-Induced Acute Liver Injury by Inhibiting Both Intrinsic and Extrinsic Apoptosis

    PubMed Central

    Li, Jingjing; Chen, Kan; Li, Sainan; Liu, Tong; Wang, Fan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2016-01-01

    This study aimed to explore the effects of fucoidan from Fucus vesiculosus on concanavalin A (ConA)-induced acute liver injury in mice. Pretreatment with fucoidan protected liver function indicated by ALT, AST and histopathological changes by suppressing inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). In addition, intrinsic and extrinsic apoptosis mediated by Bax, Bid, Bcl-2, Bcl-xL and Caspase 3, 8, and 9 were inhibited by fucoidan and the action was associated with the TRADD/TRAF2 and JAK2/STAT1 signal pathways. Our results demonstrated that fucoidan from Fucus vesiculosus alleviated ConA-induced acute liver injury via the inhibition of intrinsic and extrinsic apoptosis mediated by the TRADD/TRAF2 and JAK2/STAT1 pathways which were activated by TNF-α and IFN-γ. These findings could provide a potential powerful therapy for T cell-related hepatitis. PMID:27035150

  2. Transcriptome Analysis of the Effects of Gomisin A on the Recovery of Carbon Tetrachloride-Induced Damage in Rat Liver

    PubMed Central

    Choi, Young Mi; Choi, In Soo; Lee, Sang Mong; Hwang, Dae Youn; Choi, Young Whan

    2011-01-01

    Gomisin A possesses a hepatic function-facilitating property in liver-injured rats. Its preventive action on carbon tetrachloride-induced cholestasis is due to maintenance of the function of the bile acids-independent fraction. To investigate alterations in gene expression after gomisin A treatment on injured rat liver, DNA microarray analyses were performed on a Rat 44K 4-Plex Gene Expression platform with duplicated reactions after gomisin A treatment. We identified 255 up-regulated and 230 down-regulated genes due to the effects of gomisin A on recovery of carbon tetrachloride-induced rat liver damage. For functional characterization of these genes, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes biochemical pathways analyses were performed. Many up-regulated or down-regulated genes were related to cell cycle or focal adhesion and cell death genes, respectively. Our microarray experiment indicated that the liver repair mechanism induced by gomisin A was strongly associated with increased gene expressions related to cell cycle and suppression of the gene expression related in cell death. PMID:21826177

  3. Polμ deficiency increases resistance to oxidative damage and delays liver aging.

    PubMed

    Escudero, Beatriz; Lucas, Daniel; Albo, Carmen; Dhup, Suveera; Bacher, Jeff W; Sánchez-Muñoz, Aránzazu; Fernández, Margarita; Rivera-Torres, José; Carmona, Rosa M; Fuster, Encarnación; Carreiro, Candelas; Bernad, Raquel; González, Manuel A; Andrés, Vicente; Blanco, Luis; Roche, Enrique; Fabregat, Isabel; Samper, Enrique; Bernad, Antonio

    2014-01-01

    Polμ is an error-prone PolX polymerase that contributes to classical NHEJ DNA repair. Mice lacking Polμ (Polμ(-/-)) show altered hematopoiesis homeostasis and DSB repair and a more pronounced nucleolytic resection of some V(D)J junctions. We previously showed that Polμ(-/-) mice have increased learning capacity at old ages, suggesting delayed brain aging. Here we investigated the effect of Polμ(-/-) deficiency on liver aging. We found that old Polμ(-/-) mice (>20 month) have greater liver regenerative capacity compared with wt animals. Old Polμ(-/-) liver showed reduced genomic instability and increased apoptosis resistance. However, Polμ(-/-) mice did not show an extended life span and other organs (e.g., heart) aged normally. Our results suggest that Polμ deficiency activates transcriptional networks that reduce constitutive apoptosis, leading to enhanced liver repair at old age. PMID:24691161

  4. Loss of p21 permits carcinogenesis from chronically damaged liver and kidney epithelial cells despite unchecked apoptosis.

    PubMed

    Willenbring, Holger; Sharma, Amar Deep; Vogel, Arndt; Lee, Andrew Y; Rothfuss, Andreas; Wang, Zhongya; Finegold, Milton; Grompe, Markus

    2008-07-01

    Accumulation of toxic metabolites in hereditary tyrosinemia type I (HT1) patients leads to chronic DNA damage and the highest risk for hepatocellular carcinomas (HCCs) of any human disease. Here we show that hepatocytes of HT1 mice exhibit a profound cell-cycle arrest that, despite concomitant apoptosis resistance, causes mortality from impaired liver regeneration. However, additional loss of p21 in HT1 mice restores the proliferative capabilities of hepatocytes and renal proximal tubular cells. This growth response compensates cell loss due to uninhibited apoptosis and enables animal survival but rapidly leads to HCCs, renal cysts, and renal carcinomas. Thus, p21's antiproliferative function is indispensable for the suppression of carcinogenesis from chronically injured liver and renal epithelial cells and cannot be compensated by apoptosis. PMID:18598944

  5. Protective Role of Crocin Against Nicotine-induced Damages on Male Mice Liver

    PubMed Central

    Jalili, Cyrus; Tabatabaei, Hadis; Kakaberiei, Seyran; Roshankhah, Shiva; Salahshoor, Mohammad Reza

    2015-01-01

    Background: Nicotine is a major pharmacologically active substance in cigarette smoke. It is mainly metabolized in liver and causes devastating effects. Crocin is the chemical ingredient primarily responsible for the color of saffron. It has different pharmacological effects such as antioxidant and anticancer. This study was designed to evaluate the protective role of crocin against nicotine on the liver of mice. Methods: Forty-eight mice were equally divided into 8 groups; control (normal saline), nicotine (2.5 mg/kg), crocin (12.5, 25 and 50 mg/kg) and crocin plus nicotine treated groups. Saline, crocin, nicotine and crocin/nicotine (once a day) were intraperitoneally injected for 4 weeks. The liver weight and histology, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and serum nitric oxide levels have been studied. Results: The results indicated that nicotine administration significantly decreased liver weight (48.37%) and increased the mean diameter of hepatocyte (239%), central hepatic vein (28.45%), liver enzymes level (ALP 29.43%, AST 21.81%, ALT 21.55%), and blood serum nitric oxide level (57.18%) compared to saline group (P < 0.05). However, crocin and crocin plus nicotine administration significantly boosted liver weight (49.54%) and decreased the mean diameter of hepatocyte (40.48%), central hepatic vein (15.44%), liver enzymes (ALP 22.02%, AST 19.05%, ALT 23.11%), and nitric oxide levels (35.80%) in all groups compared to nicotine group (percentages represent the maximum dose) (P < 0.05). Conclusions: Crocin showed its partly protective effect against nicotine-induced liver toxicity. PMID:26442615

  6. Mechanism of Hepatoprotective Effect of Boesenbergia rotunda in Thioacetamide-Induced Liver Damage in Rats.

    PubMed

    Salama, Suzy M; Abdulla, Mahmood A; Alrashdi, Ahmed S; Hadi, A Hamid A

    2013-01-01

    Background. Researchers focused on developing traditional therapies as pharmacological medicines to treat liver cirrhosis. Objectives. Evaluating the hepatoprotective activity of Boesenbergia rotunda (BR) rhizome ethanolic extract on thioacetamide-induced liver cirrhosis in rats. Methods. Male Sprague-Dawley rats were intraperitoneally injected with 200 mg/kg TAA 3 times/week and daily oral administration of 250 mg/kg, 500 mg/kg of BR extract, and 50 mg/kg of the reference drug Silymarin for 8 weeks. At the end of the experiment, Masson's trichrome staining was used to measure the degree of liver fibrosis. Hepatic antioxidant enzymes (CAT and GPx), nitrotyrosine, cytochrome (P450 2E1), matrix metalloproteinase (MMP-2 and MMP-9), tissue inhibitor of metalloproteinase (TIMP-1), and urinary 8-hydroxyguanosine were measured. Serum levels of transforming growth factor TGF- β 1, nuclear transcription factor NF- κ B, proinflammatory cytokine IL-6, and caspase-3 were evaluated. Serum protein expression and immunohistochemistry of proapoptotic Bax and antiapoptotic Bcl-2 proteins were measured and confirmed by immunohistochemistry of Bax, Bcl-2, and proliferating cell nuclear antigen (PCNA). Results. BR treatment improved liver histopathology, immunohistochemistry, and biochemistry, triggered apoptosis, and inhibited cytokines, extracellular matrix proteins, and hepatocytes proliferation. Conclusion. Liver cirrhosis progression can be inhibited by the antioxidant and anti-inflammatory activities of BR ethanolic extract while preserving the normal liver status. PMID:23997791

  7. Mechanism of Hepatoprotective Effect of Boesenbergia rotunda in Thioacetamide-Induced Liver Damage in Rats

    PubMed Central

    Salama, Suzy M.; Abdulla, Mahmood A.; AlRashdi, Ahmed S.; Hadi, A. Hamid A.

    2013-01-01

    Background. Researchers focused on developing traditional therapies as pharmacological medicines to treat liver cirrhosis. Objectives. Evaluating the hepatoprotective activity of Boesenbergia rotunda (BR) rhizome ethanolic extract on thioacetamide-induced liver cirrhosis in rats. Methods. Male Sprague-Dawley rats were intraperitoneally injected with 200 mg/kg TAA 3 times/week and daily oral administration of 250 mg/kg, 500 mg/kg of BR extract, and 50 mg/kg of the reference drug Silymarin for 8 weeks. At the end of the experiment, Masson's trichrome staining was used to measure the degree of liver fibrosis. Hepatic antioxidant enzymes (CAT and GPx), nitrotyrosine, cytochrome (P450 2E1), matrix metalloproteinase (MMP-2 and MMP-9), tissue inhibitor of metalloproteinase (TIMP-1), and urinary 8-hydroxyguanosine were measured. Serum levels of transforming growth factor TGF-β1, nuclear transcription factor NF-κB, proinflammatory cytokine IL-6, and caspase-3 were evaluated. Serum protein expression and immunohistochemistry of proapoptotic Bax and antiapoptotic Bcl-2 proteins were measured and confirmed by immunohistochemistry of Bax, Bcl-2, and proliferating cell nuclear antigen (PCNA). Results. BR treatment improved liver histopathology, immunohistochemistry, and biochemistry, triggered apoptosis, and inhibited cytokines, extracellular matrix proteins, and hepatocytes proliferation. Conclusion. Liver cirrhosis progression can be inhibited by the antioxidant and anti-inflammatory activities of BR ethanolic extract while preserving the normal liver status. PMID:23997791

  8. Methanol exposure does not produce oxidatively damaged DNA in lung, liver or kidney of adult mice, rabbits or primates

    SciTech Connect

    McCallum, Gordon P.; Siu, Michelle; Sweeting, J. Nicole; Wells, Peter G.

    2011-01-15

    In vitro and in vivo genotoxicity tests indicate methanol (MeOH) is not mutagenic, but carcinogenic potential has been claimed in one controversial long-term rodent cancer bioassay that has not been replicated. To determine whether MeOH could indirectly damage DNA via reactive oxygen species (ROS)-mediated mechanisms, we treated male CD-1 mice, New Zealand white rabbits and cynomolgus monkeys with MeOH (2.0 g/kg ip) and 6 h later assessed oxidative damage to DNA, measured as 8-oxo-2'-deoxyguanosine (8-oxodG) by HPLC with electrochemical detection. We found no MeOH-dependent increases in 8-oxodG in lung, liver or kidney of any species. Chronic treatment of CD-1 mice with MeOH (2.0 g/kg ip) daily for 15 days also did not increase 8-oxodG levels in these organs. These results were corroborated in DNA repair-deficient oxoguanine glycosylase 1 (Ogg1) knockout (KO) mice, which accumulated 8-oxodG in lung, kidney and liver with age, but exhibited no increase following MeOH, despite a 2-fold increase in renal 8-oxodG in Ogg1 KO mice following treatment with a ROS-initiating positive control, the renal carcinogen potassium bromate (KBrO{sub 3}; 100 mg/kg ip). These observations suggest that MeOH exposure does not promote the accumulation of oxidatively damaged DNA in lung, kidney or liver, and that environmental exposure to MeOH is unlikely to initiate carcinogenesis in these organs by DNA oxidation.

  9. Effects of S-adenosyl-L-methionine and interferon-alpha2b on liver damage induced by bile duct ligation in rats.

    PubMed

    Muriel, P; Castro, V

    1998-01-01

    Interferon-alpha2b (IFN) is known to prevent and to reverse experimental liver fibrosis and damage. S-Adenosyl-L-methionine (SAM) is a well-known hepatoprotective substance. The aim of the present work was to determine the effect of the administration of both drugs simultaneously to bile duct-ligated rats. Administration of IFN (50000 IU s.c.) and/or SAM (10 mg kg[-1] i.m.) began 15 days after biliary obstruction and continued for a further 15 days. The liver was used for glycogen and collagen quantification. Bilirubins and enzyme activities were measured in serum. Either SAM or IFN ameliorated all markers of liver damage studied. However, when administered together their beneficial effects were markedly reduced. It is not possible to explain the antagonistic effect of these compounds on liver damage with the present data. More studies are needed to determine SAM-IFN interactions. PMID:9570697

  10. Scavenging and antioxidant properties of different grape cultivars against ionizing radiation-induced liver damage ex vivo.

    PubMed

    Singha, Indrani; Das, Subir Kumar

    2016-04-01

    Ionizing radiation (IR) has become an integral part of the modern medicine--both for diagnosis as well as therapy. However, normal tissues or even distant cells also suffer IR-induced free radical insult. It may be more damaging in longer term than direct radiation exposure. Antioxidants provide protection against IR-induced damage. Grapes are the richest source of antioxidants. Here, we assessed the scavenging properties of four grape (Vitis vinifera) cultivars, namely Flame seedless (Black), Kishmish chorni (Black with reddish brown), Red globe (Red) and Thompson seedless mutant (Green), and also evaluated their protective action against γ-radiation-induced oxidative stress in liver tissue ex vivo. The scavenging abilities of grape seeds [2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC₅₀ = 0.008 ± 0.001 mg/mL), hydrogen peroxide (IC₅₀ = 0.49 to 0.8 mg/mL), hydroxyl radicals (IC₅₀ = 0.08 ± 0.008 mg/mL), and nitric oxide (IC₅₀ = 0.8 ± 0.08 mg/mL)] were higher than that of skin or pulp. Gamma (γ) radiation exposure to sliced liver tissues ex vivo from goat, @ 6 Gy significantly (P < 0.001) decreased reduced glutathione (GSH) content by 21.2% and also activities of catalase, glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione s-transferase (GST) by 49.5, 66.0, 70.3, 73.6%, respectively. However, it increased thiobarbituric acid reactive substances (TBARS) by 2.04-fold and nitric oxide level by 48.6% compared to untreated group. Further increase in doses (10 or 16 Gy) of γ-radiation correspondingly decreased GSH content and enzyme activities, and increased TBARS and nitric oxide levels. Grape extract treatment prior to ionizing radiation exposure ameliorated theses effects at varying extent. The seed extracts exhibited strong antioxidant potential compared to skin or pulp extracts of different grape cultivars against oxidative damage by ionizing radiation (6 Gy, 10 Gy and 16 Gy) in sliced liver tissues ex vivo. Grape extracts at

  11. Investigation into the role of the cholinergic system in radiation-induced damage in the rat liver and ileum

    PubMed Central

    Özyurt, Hazan; Özden, A. Sevgi; Çevİk, Özge; Özgen, Zerrin; ÇadIrcI, Selin; Elmas, Merve Açıkel; Ercan, Feriha; Şener, Göksel; Gören, M.Z.

    2014-01-01

    It has been previously shown that acetylcholine (ACh) may affect pro-inflammatory and anti-inflammatory cytokines. The role of the cholinergic system in radiation-induced inflammatory responses and tissue damage remains unclear. Therefore, the present study was designed to determine the radio-protective properties of the cholinergic system in the ileum and the liver of rats. Rats were exposed to 8-Gy single-fraction whole-abdominal irradiation and were then decapitated at either 36 h or 10 d post-irradiation. The rats were treated either with intraperitoneal physiological saline (1 ml/kg), physostigmine (80 µg/kg) or atropine (50 μg/kg) twice daily for 36 h or 10 d. Cardiac blood samples and liver and ileal tissues were obtained in which TNF-α, IL-1β and IL-10 levels were assayed using ELISA. In the liver and ileal homogenates, caspase-3 immunoblots were performed and myeloperoxidase (MPO) activity was analyzed. Plasma levels of IL-1β and TNF-α increased significantly following radiation (P < 0.01 and P < 0.001, respectively) as compared with non-irradiated controls, and physostigmine treatment prevented the increase in the pro-inflammatory cytokines (P < 0.01 and P < 0.001, respectively). Plasma IL-10 levels were not found to be significantly changed following radiation, whereas physostigmine augmented IL-10 levels during the late phase (P < 0.01). In the liver and ileum homogenates, IL-1β and TNF-α levels were also elevated following radiation, and this effect was inhibited by physostigmine treatment but not by atropine. Similarly, physostigmine also reversed the changes in MPO activity and in the caspase-3 levels in the liver and ileum. Histological examination revealed related changes. Physostigmine experiments suggested that ACh has a radio-protective effect not involving the muscarinic receptors. PMID:24914105

  12. Effects of sulfasalazine on lipid peroxidation and histologic liver damage in a rat model of obstructive jaundice and obstructive jaundice with lipopolysaccharide-induced sepsis

    PubMed Central

    Dirlik, Musa; Karahan, Aydin; Canbaz, Hakan; Caglikulekci, Mehmet; Polat, Ayşe; Tamer, Lulufer; Aydin, Suha

    2009-01-01

    Background: Sulfasalazine, an inhibitor of cyclooxygenase, 5-lipoxygenase, and nuclear factor κB (NF-κB), has been found to alleviate oxidative damage, proinflammatory cytokine production, bile-duct proliferation, neutrophil infiltration, and fibrosis. Therefore, it may have a potential effect in attenuating lipid peroxidation and histologic liver damage in patients with biliary obstruction and biliary obstruction with sepsis. Objective: The aim of this study was to investigate the effect of sulfasalazine on lipid peroxidation and histologic liver damage due to obstructive jaundice (OJ) and to OJ with lipopolysaccharide (LPS)-induced sepsis in an experimental model. Methods: Male Wistar rats, weighing 150 to 220 g, were randomized into 6 groups: OJ; OJ + LPS; OJ + sulfasalazine; OJ + sulfasalazine + LPS (sulfasalazine administered before sepsis); OJ + LPS + sulfasalazine (sulfasalazine administered after sepsis); and sham. Liver malondialdehyde (MDA) and myeloperoxidase (MPO) activities were assessed to monitor lipid peroxidation and neutrophil infiltration in liver tissue. Histologic liver damage was evaluated with hematoxylin-eosin stained slides. Liver tissue NF-κB and caspase-3 expression were studied immunohistopathologically to evaluate lipid peroxidation, liver damage, and hepatocyte apoptosis. Results: Forty-eight rats were evenly randomized into 6 groups of 8. MDA (P = 0.001), MPO (P = 0.001), NF-κB (P = 0.003), caspase-3 expression (P = 0.002), and liver injury scores (P = 0.002) increased significantly in the OJ group compared with the sham group. Compared with the OJ group, MDA (P = 0.030) and MPO levels (P = 0.001), and liver injury scores (P = 0.033) were decreased significantly in the OJ + sulfasalazine group. In the OJ + sulfasalazine + LPS and OJ + LPS + sulfasalazine groups, MDA (P = 0.008 and P = 0.023, respectively) and MPO (both, P = 0.001) were significantly decreased; however, liver NF-κB, caspase-3 expression, and liver injury scores

  13. Biomarkers of oxidative stress and tissue damage released by muscle and liver after a single bout of swimming exercise.

    PubMed

    Ramos, Dionizio; Martins, Eduarda Gabrielle; Viana-Gomes, Diego; Casimiro-Lopes, Gustavo; Salerno, Verônica P

    2013-05-01

    Both acute exercise and excessive training can cause oxidative stress. The resulting increase in free radicals and the inadequate response from antioxidant systems can lead to a framework of cellular damage. An association between affected tissue and the biomarkers of oxidative stress that appear in plasma has not been clearly established. The aim of this study was to evaluate the source of oxidative stress biomarkers found in the plasma of untrained rats after a single bout of swimming exercise at 2 different intensities: low intensity (SBLIE) or high intensity (SBHIE). Immediately after the exercise, aspartate transaminase (AST), alanine transaminase (ALT), γ-glutamyltransferase (GGT), and lactate dehydrogenase (LDH) were measured in plasma to characterize cell damage. Oxidative stress was assessed using protein carbonylation (PC), total antioxidant capacity (TAC), and thiobarbituric acid reactive substances (TBARS) quantified by malondialdehyde concentration. SBHIE raised levels of plasma AST (93%) and ALT (17%), and both exercise regimens produced an increase in GGT (7%) and LDH (∼55%). Plasma levels of PC and TBARS were greater in the SBHIE group; there were no changes in TAC. SBLIE caused only a modest increase in TBARS. In muscle, there were no changes in TAC, PC, or TBARS, regardless of exercise intensity, In the liver, TAC and TBARS increased significantly in both the SBLIE and SBHIE groups. This indicates that the oxidative stress biomarkers measured in the plasma immediately after a single bout of swimming exercise were generated primarily in the liver, not in muscle. PMID:23668757

  14. Liver transplant - series (image)

    MedlinePlus

    The liver is in the right upper abdomen. The liver serves many functions, including the detoxification of substances delivered ... A liver transplant may be recommended for: liver damage due to alcoholism (Alcoholic cirrhosis) primary biliary cirrhosis long-term ( ...

  15. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    PubMed Central

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-01-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle. PMID:26898711

  16. Effect of selenium on methimazole-induced liver damage and oxidative stress in adult rats and their offspring.

    PubMed

    Sefi, Mediha; Ben Amara, Ibtissem; Troudi, Afef; Soudani, Nejla; Hakim, Ahmed; Zeghal, Khaled Mounir; Boudawara, Tahia; Zeghal, Najiba

    2014-08-01

    This study aimed to investigate the protective effect of selenium (Se) on methimazole (MMI; an antithyroid drug)-induced hepatotoxicity in adult rats and their progeny. Female Wistar rats were randomly divided into four groups of six rats in each group: group I served as controls that received standard diet; group II received MMI in drinking water as 250 mg L(-1) and standard diet; group III received both MMI (250 mg L(-1), orally) and Se (0.5 mg kg(-1) of diet); group IV received Se (0.5 mg kg(-1) of diet) as sodium selenite. Treatments were started from the 14th day of pregnancy until day 14 after delivery. Exposure of rats to MMI promoted oxidative stress with an increase in liver malondialdehyde levels, advanced oxidation protein products and protein carbonyl contents and a decrease in the levels of glutathione, nonprotein thiols and vitamin C. A decrease in the activities of liver glutathione peroxidase, superoxide dismutase, catalase and lactate dehydrogenase and in the levels of plasma total protein and albumin was also observed. Plasma transaminase activities and total, direct and indirect bilirubin levels increased. Coadministration of Se through diet improved all biochemical parameters. The histopathological changes confirmed the biochemical results. Therefore, our investigation revealed that Se, a trace element with antioxidant properties, was effective in preventing MMI-induced liver damage. PMID:23047615

  17. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    NASA Astrophysics Data System (ADS)

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-02-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle.

  18. Molecular changes associated with chronic liver damage and neoplastic lesions in a murine model of hereditary tyrosinemia type 1.

    PubMed

    Angileri, Francesca; Roy, Vincent; Morrow, Geneviève; Scoazec, Jean Yves; Gadot, Nicolas; Orejuela, Diana; Tanguay, Robert M

    2015-12-01

    Hereditary tyrosinemia type 1 (HT1) is the most severe inherited metabolic disease of the tyrosine catabolic pathway, with a progressive hepatic and renal injury and a fatal outcome if untreated. Toxic metabolites accumulating in HT1 have been shown to elicit endoplasmic reticulum (ER) stress response, and to induce chromosomal instability, cell cycle arrest and apoptosis perturbation. Although many studies have concentrated on elucidating these events, the molecular pathways responsible for development of hepatocellular carcinoma (HCC) still remain unclear. In this study the fah knockout murine model (fah(-/-)) was used to investigate the cellular signaling implicated in the pathogenesis of HT1. Fah(-/-) mice were subjected to drug therapy discontinuation (Nitisinone withdrawal), and livers were analyzed at different stages of the disease. Monitoring of mice revealed an increasing degeneration of the overall physiological conditions following drug withdrawal. Histological analysis unveiled diffuse hepatocellular damage, steatosis, oval-like cells proliferation and development of liver cell adenomas. Immunoblotting results revealed a progressive and chronic activation of stress pathways related to cell survival and proliferation, including several stress regulators such as Nrf2, eIF2α, CHOP, HO-1, and some members of the MAPK signaling cascade. Impairment of stress defensive mechanisms was also shown by microarray analysis in fah(-/-) mice following prolonged therapy interruption. These results suggest that a sustained activation of stress pathways in the chronic HT1 progression might play a central role in exacerbating liver degeneration. PMID:26360553

  19. Polμ Deficiency Increases Resistance to Oxidative Damage and Delays Liver Aging

    PubMed Central

    Escudero, Beatriz; Lucas, Daniel; Albo, Carmen; Dhup, Suveera; Bacher, Jeff W.; Sánchez-Muñoz, Aránzazu; Fernández, Margarita; Rivera-Torres, José; Carmona, Rosa M.; Fuster, Encarnación; Carreiro, Candelas; Bernad, Raquel; González, Manuel A.; Andrés, Vicente; Blanco, Luis; Roche, Enrique; Fabregat, Isabel; Samper, Enrique; Bernad, Antonio

    2014-01-01

    Polμ is an error-prone PolX polymerase that contributes to classical NHEJ DNA repair. Mice lacking Polμ (Polμ−/−) show altered hematopoiesis homeostasis and DSB repair and a more pronounced nucleolytic resection of some V(D)J junctions. We previously showed that Polμ−/− mice have increased learning capacity at old ages, suggesting delayed brain aging. Here we investigated the effect of Polμ−/− deficiency on liver aging. We found that old Polμ−/− mice (>20 month) have greater liver regenerative capacity compared with wt animals. Old Polμ−/− liver showed reduced genomic instability and increased apoptosis resistance. However, Polμ−/− mice did not show an extended life span and other organs (e.g., heart) aged normally. Our results suggest that Polμ deficiency activates transcriptional networks that reduce constitutive apoptosis, leading to enhanced liver repair at old age. PMID:24691161

  20. Toxicological comparison of diverse Cylindrospermopsis raciborskii strains: evidence of liver damage caused by a French C raciborskii strain.

    PubMed

    Bernard, C; Harvey, M; Briand, J F; Biré, R; Krys, S; Fontaine, J J

    2003-06-01

    The freshwater cyanobacterium Cylindrospermopsis raciborskii is known to produce toxic effects in several countries. Acute and chronic exposures to C. raciborskii in Australia have been linked to liver damage (hepatotoxicity) with concomitant effects on the kidneys, adrenal glands, small intestine, lungs, thymus, and heart. The alkaloid cylindrospermopsin, which produces these toxic effects, is thought to be a potent inhibitor of protein synthesis. C. raciborskii strains producing cylindrospermopsin or analogue alkaloids have also been reported in Florida, USA, and Thailand. Brazilian isolates of C. raciborskii are also toxic but act by a different mechanism, causing acute death in mice with neurotoxic symptoms similar to those induced by the saxitoxins. In this article we compare the toxicity in the mouse of a C. raciborskii French strain with C. raciborskii strains from various other sources (Australia, Brazil, Mexico, and Hungary). We tested the toxicity of cell extracts by a mouse bioassay. Acute, fatal neurotoxicity was produced by the Brazilian strain, which was confirmed by liquid chromatography with fluorescence detection of the cell extracts, which revealed the presence of saxitoxin, neosaxitoxin, and decarbamoylsaxitoxin, along with two unidentified compounds. Acute hepatotoxicity with severe liver, kidney, and thymus damage was observed with the Australian cylindrospermopsin-producing strain. The Mexican and Hungarian strains were not found to be toxic to mice in our experimental conditions. No animals died after exposure to the extracts of the French C. raciborskii strain. Histological examination of the liver revealed moderate, multifocal necrosis characterized by small areas of hepatocellular necrosis, combined with disorganization of the parenchyma and congestion of the inner sinusoid. These symptoms and lesions resembled those induced by cylindrospermopsin, but the chemical analysis performed by liquid chromatography coupled with either a diode

  1. Chronic Alcohol Consumption Results in Greater Damage to the Pancreas Than to the Liver in the Rats.

    PubMed

    Lee, Seong-Su; Hong, Oak-Kee; Ju, Anes; Kim, Myung-Jun; Kim, Bong-Jo; Kim, Sung-Rae; Kim, Won-Ho; Cho, Nam-Han; Kang, Moo-Il; Kang, Sung-Koo; Kim, Dai-Jin; Yoo, Soon-Jib

    2015-07-01

    Alcohol consumption increases the risk of type 2 diabetes. However, its effects on prediabetes or early diabetes have not been studied. We investigated endoplasmic reticulum (ER) stress in the pancreas and liver resulting from chronic alcohol consumption in the prediabetes and early stages of diabetes. We separated Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a type-2 diabetic animal model, into two groups based on diabetic stage: prediabetes and early diabetes were defined as occurrence between the ages of 11 to 16 weeks and 17 to 22 weeks, respectively. The experimental group received an ethanol-containing liquid diet for 6 weeks. An intraperitoneal glucose tolerance test was conducted after 16 and 22 weeks for the prediabetic and early diabetes groups, respectively. There were no significant differences in body weight between the control and ethanol groups. Fasting and 120-min glucose levels were lower and higher, respectively, in the ethanol group than in the control group. In prediabetes rats, alcohol induced significant expression of ER stress markers in the pancreas; however, alcohol did not affect the liver. In early diabetes rats, alcohol significantly increased most ER stress-marker levels in both the pancreas and liver. These results indicate that chronic alcohol consumption increased the risk of diabetes in prediabetic and early diabetic OLETF rats; the pancreas was more susceptible to damage than was the liver in the early diabetic stages, and the adaptive and proapoptotic pathway of ER stress may play key roles in the development and progression of diabetes affected by chronic alcohol ingestion. PMID:26170734

  2. Chronic Alcohol Consumption Results in Greater Damage to the Pancreas Than to the Liver in the Rats

    PubMed Central

    Lee, Seong-Su; Hong, Oak-Kee; Ju, Anes; Kim, Myung-Jun; Kim, Bong-Jo; Kim, Sung-Rae; Kim, Won-Ho; Cho, Nam-Han; Kang, Moo-Il; Kang, Sung-Koo

    2015-01-01

    Alcohol consumption increases the risk of type 2 diabetes. However, its effects on prediabetes or early diabetes have not been studied. We investigated endoplasmic reticulum (ER) stress in the pancreas and liver resulting from chronic alcohol consumption in the prediabetes and early stages of diabetes. We separated Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a type-2 diabetic animal model, into two groups based on diabetic stage: prediabetes and early diabetes were defined as occurrence between the ages of 11 to 16 weeks and 17 to 22 weeks, respectively. The experimental group received an ethanol-containing liquid diet for 6 weeks. An intraperitoneal glucose tolerance test was conducted after 16 and 22 weeks for the prediabetic and early diabetes groups, respectively. There were no significant differences in body weight between the control and ethanol groups. Fasting and 120-min glucose levels were lower and higher, respectively, in the ethanol group than in the control group. In prediabetes rats, alcohol induced significant expression of ER stress markers in the pancreas; however, alcohol did not affect the liver. In early diabetes rats, alcohol significantly increased most ER stress-marker levels in both the pancreas and liver. These results indicate that chronic alcohol consumption increased the risk of diabetes in prediabetic and early diabetic OLETF rats; the pancreas was more susceptible to damage than was the liver in the early diabetic stages, and the adaptive and proapoptotic pathway of ER stress may play key roles in the development and progression of diabetes affected by chronic alcohol ingestion. PMID:26170734

  3. Assessing the Effect of Leptin on Liver Damage in Case of Hepatic Injury Associated with Paracetamol Poisoning

    PubMed Central

    Polat, Murat; Cerrah, Serkan; Albayrak, Bulent; Ipek, Serkan; Yilmaz, Omer

    2015-01-01

    Background Aim. In case of high-dose acetaminophen intake, the active metabolite can not bind to the glutathione, thereby inducing cellular necrosis through binding to the cytosol proteins. This trial was performed to histologically and biochemically investigate whether leptin was protective against liver damage induced by paracetamol at toxic doses. Material and Method. In our trial, 30 female rats, divided into 5 groups, were used. IP leptin administration was performed after an hour in the group of rats, in which paracetamol poisoning was induced. The groups were as follows: Group 1: the control group, Group 2: 20 µg/kg leptin, Group 3: 2 g/kg paracetamol, Group 4: 2 g/kg paracetamol + 10 µg/kg leptin, and Group 5: 2 g/kg paracetamol + 20 µg/kg leptin. Results. The most significant increase was observed in the PARA 2 g/kg group, while the best improvement among the treatment groups occurred in the PARA 2 g/kg + LEP 10 µg/kg group (p < 0.05). While the most significant glutathione (GSH) reduction was observed in the PARA 2 g/kg group, the best improvement was in the PARA 2 g/kg + LEP 10 µg/kg group (p < 0.05). Conclusion. Liver damage occurring upon paracetamol poisoning manifests with hepatocyte breakdown occurring as a result of inflammation and oxidative stress. Leptin can prevent this damage thanks to its antioxidant and anti-inflammatory efficacy. PMID:26697061

  4. Assessing the Effect of Leptin on Liver Damage in Case of Hepatic Injury Associated with Paracetamol Poisoning.

    PubMed

    Polat, Murat; Cerrah, Serkan; Albayrak, Bulent; Ipek, Serkan; Arabul, Mahmut; Aslan, Fatih; Yilmaz, Omer

    2015-01-01

    Background Aim. In case of high-dose acetaminophen intake, the active metabolite can not bind to the glutathione, thereby inducing cellular necrosis through binding to the cytosol proteins. This trial was performed to histologically and biochemically investigate whether leptin was protective against liver damage induced by paracetamol at toxic doses. Material and Method. In our trial, 30 female rats, divided into 5 groups, were used. IP leptin administration was performed after an hour in the group of rats, in which paracetamol poisoning was induced. The groups were as follows: Group 1: the control group, Group 2: 20 µg/kg leptin, Group 3: 2 g/kg paracetamol, Group 4: 2 g/kg paracetamol + 10 µg/kg leptin, and Group 5: 2 g/kg paracetamol + 20 µg/kg leptin. Results. The most significant increase was observed in the PARA 2 g/kg group, while the best improvement among the treatment groups occurred in the PARA 2 g/kg + LEP 10 µg/kg group (p < 0.05). While the most significant glutathione (GSH) reduction was observed in the PARA 2 g/kg group, the best improvement was in the PARA 2 g/kg + LEP 10 µg/kg group (p < 0.05). Conclusion. Liver damage occurring upon paracetamol poisoning manifests with hepatocyte breakdown occurring as a result of inflammation and oxidative stress. Leptin can prevent this damage thanks to its antioxidant and anti-inflammatory efficacy. PMID:26697061

  5. [Evaluating new tests for liver damage: still a long way to go].

    PubMed

    Bossuyt, P M M

    2007-07-01

    Because of its limitations and risks, alternatives are being developed for liver biopsy as the first-line method for evaluating liver injury. Many markers and several imaging methods have been developed as non-invasive alternatives. Although these methods have been evaluated in studies published in peer-reviewed journals, the methodological rigor of the design, execution and analysis of these studies leaves much to be desired. In addition, some of the inventors of these methods, who have become shareholders of the companies that market these tests, can be found frequently in the list of authors. The way in which new medical tests are evaluated can be improved, as well as the level of independence from conflicting interests. PMID:17763807

  6. Bioactive 1,4-dihydroisonicotinic acid derivatives prevent oxidative damage of liver cells.

    PubMed

    Borovic, Suzana; Tirzitis, Gunars; Tirzite, Dace; Cipak, Ana; Khoschsorur, Gholam A; Waeg, Georg; Tatzber, Franz; Scukanec-Spoljar, Mira; Zarkovic, Neven

    2006-05-10

    1,4-Dihydroisonicotinic acid derivatives (1,4-DHINA) are compounds closely related to derivatives of 1,4-dihydropyridine, a well-known calcium channel antagonists. 1,4-DHINA we used were derived from a well-known antioxidant Diludin. Although some compounds have neuromodulatory or antimutagenic properties, their activity mechanisms are not well known. This study was performed to obtain data on antioxidant and bioprotective activities of: 2,6-dimethyl-3,5-diethoxycarbonyl-1,4-dihydroisonicotinic acid (Ia); sodium 2-(2,6-dimethyl-3,5-diethoxycarbonyl-1,4-dihydropyridine-4-carboxamido)glutamate (Ib) and sodium 2-(2,6-dimethyl-3,5-diethoxycarbonyl-1,4-dihydropyridine-4-carboxamido)ethane-sulphate (Ic). 1,4-DHINA's activities were studied in comparison to Trolox by: N,N-Diphenyl-N'-picrylhydrazyl (DPPH*), deoxyribose degradation, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical scavenging and antioxidative capacity assays; copper-induced lipid peroxidation of cultured rat liver cells (malondialdehyde determination by high performance liquid chromatography and 4-hydroxynonenal-protein conjugates by dot-blot); (3)H-thymidine incorporation and trypan blue assay for liver cells growth and viability. In all assays used Ia was the most potent antioxidant. Ia was also a potent antioxidant at non-toxic concentrations for liver cell cultures. It completely abolished, while Ic only slightly decreased copper-induced lipid peroxidation of liver cells. Thus, antioxidant capacities are important activity principle of Ia, which was even superior to Trolox in the cell cultures used, while activity principles of Ic and Ib remain yet to be determined. PMID:16600211

  7. Curative effect of crude exopolysaccharides of some macrofungi on alcohol-induced liver damage.

    PubMed

    Uyanoglu, Mustafa; Yamac, Mustafa; Canbek, Mediha; Senturk, Hakan; Kartkaya, Kazım; Oglakci, Aysegul; Turgak, Ozge; Kanbak, Gungor

    2013-05-01

    Abstract The authors investigate the curative effects of crude exopolysaccharides (EPS) produced by four Basidomycetes strains on the symptoms of alcoholic liver injury. EPSs were administered to experimental groups at levels of 100 mg per kg body weight per day for 7 days using an oral zonde needle after the onset of the disease. Serum levels of alanine transaminase (ALT), lactate dehydrogenase (LDH), DNA fragmentation, caspase-3 activities, and mitochondrial outer membrane integrity were determined following sacrifice of the rats. Light and transmission electron microscope (TEM) studies were performed on liver sections for histopathological and cytological evaluations. EPS that was obtained from Coprinus comatus OBCC 1014 decreased serum ALT level and increased outer membrane integrity, and allowed for the regaining of histologically and cytologically normal hepatocyte and tissue views. As a result, based on the obtained data, it can be argued that among all studied mushroom strains crude exopolysaccharides from Coprinus comatus OBCC 1014 strain have therapeutic potential for alcoholic liver injury according to control groups. PMID:23650994

  8. Fruiting body of Niuchangchih (Antrodia camphorata) protects livers against chronic alcohol consumption damage.

    PubMed

    Huang, Chia-Hsin; Chang, Yuan-Yen; Liu, Cheng-Wei; Kang, Wen-Yu; Lin, Yi-Ling; Chang, Hsien-Chang; Chen, Yi-Chen

    2010-03-24

    An alcoholic fatty liver disease was induced by drinking water containing 20% (w/w) alcohol. Therapeutic groups were orally administrated dosages of 0.25 g silymarin/kg body weight (BW) and a low dosage of Niuchangchih (Antrodia camphorata) (0.025 g/kg BW) and a high dosage of Niuchangchih (0.1 g/kg BW) per day. Niuchangchih, especially at the high dosage, not only showed a hypercholesterolemic effect (p < 0.05) but also reduced (p < 0.05) hepatic lipids in alcohol-fed rats. Those beneficial effects could be partially attributed to higher (p < 0.05) fecal cholesterol and bile acid outputs, as well as downregulations (p < 0.05) of 3-hydroxy-3-methylglutaryl-CoA reductase, sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase, fatty acid synthase, and malic enzyme gene expressions; meanwhile, there was an upregulation of low-density lipoprotein receptor and peroxisome proliferator-activated alpha gene expression. Besides, Niuchangchih also enhanced (p < 0.05) the liver glutathione, Trolox equivalent antioxidant capacity, and activities of superoxide dismutase, catalase, and glutathione peroxidase and decreased the liver malondialdehyde content, which also partially contributed to the lowered (p < 0.05) serum aspartate aminotransferase levels and no observed lesion in the histological examination of alcohol-fed rats. PMID:20192205

  9. Different mechanisms are involved in DNA damage, bacterial mutagenicity and cytotoxicity induced by 1,2-dibromo-3-chloropropane in suspensions of rat liver cells.

    PubMed

    Holme, J A; Søderlund, E J; Brunborg, G; Omichinski, J G; Bekkedal, K; Trygg, B; Nelson, S D; Dybing, E

    1989-01-01

    1,2-Dibromo-3-chloropropane (DBCP) induced DNA damage, measured by an automated alkaline elution method, in suspensions of rat liver parenchymal cells at low concentrations (1-10 microM). At much higher concentrations (0.5-2.5 mM), DBCP was metabolized to products that were mutagenic to Salmonella typhimurium TA100 co-incubated with the liver cells. At these higher concentrations a marked depletion of cellular glutathione was seen and at 2.5 mM DBCP was cytotoxic. Perdeuterated DBCP (D5-DBCP) caused less DNA damage in the liver cells than DBCP, most likely because of decrease in cytochrome P-450 dependent metabolism. A more pronounced decrease in mutagenicity occurred with D5-DBCP compared to DBCP, whereas the two compounds were equally cytotoxic. Preincubation of the liver cells with diethylmaleate or buthionine sulfoximine, to lower cellular levels of glutathione, decreased DBCP induced DNA damage. The decrease in DNA damage was proportional to the decrease in cellular glutathione levels. In contrast, diethylmaleate enhanced DBCP-induced bacterial mutagenicity and cellular cytotoxicity. The cytotoxic effect could be partly blocked by addition of ascorbate. From the data presented we suggest that: (i) cytochrome P-450 dependent oxidation as well as glutathione conjugation are involved in DBCP induced DNA damage, (ii) cytochrome P-450 dependent oxidation leads to formation of products mutagenic to bacteria and (iii) the cytotoxicity induced by DBCP in the liver cells in vitro is caused by oxidative damage following glutathione depletion and/or direct membrane damage. PMID:2642751

  10. Protective role of thymoquinone against liver damage induced by tamoxifen in female rats.

    PubMed

    Suddek, Ghada M

    2014-08-01

    One of the major reasons for terminating a clinical trial is the liver toxicity induced by chemotherapy. Tamoxifen (TAM) is an anti-estrogen used in the treatment and prevention of hormone-dependent breast cancer. Tamoxifen therapy may cause hepatic injury. The seeds of Nigella sativa, which contain the active ingredient thymoquinone (TQ), have been used in folk medicine for diverse ailments. TQ is reported to possess anticancer and hepatoprotective effects. In this study, the protective effects of TQ against TAM-induced hepatotoxicity in female rats were evaluated. Four groups of rats were used: control; TAM; TQ; TAM+TQ. TAM (45 mg·(kg body mass)(-1)·day(-1), by intraperitoneal injection (i.p.), for 10 consecutive days) resulted in elevated serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, total bilirubin, and gamma glutamyl transferase, as well as depletion of reduced glutathione in the liver and accumulation of lipid peroxides. Also, TAM treatment inhibited the hepatic activity of superoxide dismutase. Further, it raised the levels of tumor necrosis factor alpha in the liver and induced histopathological changes. Pretreatment with TQ (50 mg·(kg body mass)(-1)·day(-1); orally, for 20 consecutive days, starting 10 days before TAM injection) significantly prevented the elevation in serum activity of the assessed enzymes. TQ significantly inhibited TAM-induced hepatic GSH depletion and LPO accumulation. Consistently, TQ normalized the activity of SOD, inhibited the rise in TNF-α and ameliorated the histopathological changes. In conclusion, TQ protects against TAM-induced hepatotoxicity. PMID:24941454

  11. d-Phenothrin-induced oxidative DNA damage in rat liver and kidney determined by HPLC-ECD/DAD.

    PubMed

    Atmaca, Enes; Aksoy, Abdurrahman

    2015-05-01

    The objective of this study was to assess the risk of genotoxicity of d-phenothrin by measuring the oxidative stress it causes in rat liver and kidney. The level of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG)/10(6) 2'-deoxyguanosine (dG) was measured by using high performance liquid chromatography (HPLC) with a diode array (DAD) and an electrochemical detector (ECD). Sixty male Wistar albino rats were randomly divided into five experimental groups and one control group of 10 rats/group. d-phenothrin was administered intraperitoneally (IP) to the five experimental groups at 25 mg/kg (Group I), 50 mg/kg (Group II), 66.7 mg/kg (Group III), 100 mg/kg (Group IV), and 200 mg/kg (Group V) for 14 consecutive days, and the control group received only the vehicle, dimethyl sulfoxide (DMSO). DNA from samples frozen in liquid nitrogen was isolated with a DNA isolation kit. Following digestion with nuclease P1 and alkaline phosphatase (ALP), hydrolyzed DNA was subjected to HPLC. The dG and 8-oxodG levels were analyzed with a DAD and ECD, respectively. In the experimental groups, the mean 8-oxodG/10(6) dG levels were 48.15 ± 7.43, 68.92 ± 20.66, 82.07 ± 14.15, 85.08 ± 28.50, and 89.14 ± 21.73 in livers and 39.06 ± 7.63, 59.69 ± 14.22, 61.13 ± 17.46, 65.13 ± 23.40, and 72.66 ± 19.04 in kidneys of Groups I, II, III, IV, and V, respectively. The mean 8-oxodG/10(6) dG levels in the control groups were 44.96 ± 12.66 for the liver and 39.07 ± 4.80 for the kidney. A statistically significant (p < 0.05), dose-dependent increase in oxidative DNA damage was observed in both organs of animals exposed to d-phenothrin when compared to controls. Furthermore, the liver showed a significantly higher level of oxidative DNA damage than the kidney (p < 0.01). In conclusion, d-phenothrin administered to rats intraperitoneally for 14 consecutive days generated free radical species in a dose-dependent manner and caused oxidative

  12. Influence of cytokine and cytokine receptor gene polymorphisms on the degree of liver damage in patients with chronic hepatitis C

    PubMed Central

    Moreira, Sara Tatiana; Silva, Giovanni Faria; de Moraes, Camila Fernanda Verdichio; Grotto, Rejane Maria Tomasini; de Moura Campos Pardini, Maria Inês; Bicalho, Maria da Graça; Moliterno, Ricardo Alberto

    2016-01-01

    Hepatic fibrosis may be the result of repetitive injury to hepatocytes caused by HCV infection and the immune response to it. Cytokines regulate the inflammatory response to injury and modulate hepatic fibrogenesis. Single nucleotide polymorphisms (SNPs) located in cytokine genes may influence the cytokine expression and secretion that may contribute to hepatic fibrogenesis in HCV infection. The aim of this study was to determine the genotype of 22 SNPs found in the genes of 13 cytokines/cytokine receptors to assess the influence of polymorphic variants on the stage of liver damage in Brazilian patients chronically infected with HCV genotype 1 only. 141 unrelated patients were grouped according to their stage of fibrosis: absence of fibrosis or patients in the initial stages of fibrosis (F0-F2, n = 84), patients with advanced stages of fibrosis or cirrhosis (F3-F4, n = 57), without cirrhosis (F0-F3, n = 103), and with cirrhosis (F4, n = 38). The comparison of frequencies in each sub-sample was performed by 2 × 2 contingency tables using the chi-square or Fisher's exact test. Stepwise logistic regression was also used to assess independent associations between cirrhosis or fibrosis with polymorphic variants. The TNFA-308G:A genotype conferred increased risk of fibrosis and cirrhosis. The TNFA-238G:G genotype was associated with protection from cirrhosis. The IL10-819C:T genotype conferred protection from fibrosis and the IL1B-511C:T genotype conferred increased risk of cirrhosis. Some of these genotypes showed results on the borderline of statistical significance in the bivariate analysis. We conclude that gene variants of cytokines/receptors may influence liver damage in patients chronically infected by HCV genotype 1. PMID:27200267

  13. Influence of cytokine and cytokine receptor gene polymorphisms on the degree of liver damage in patients with chronic hepatitis C.

    PubMed

    Moreira, Sara Tatiana; Silva, Giovanni Faria; de Moraes, Camila Fernanda Verdichio; Grotto, Rejane Maria Tomasini; de Moura Campos Pardini, Maria Inês; Bicalho, Maria da Graça; Moliterno, Ricardo Alberto

    2016-09-01

    Hepatic fibrosis may be the result of repetitive injury to hepatocytes caused by HCV infection and the immune response to it. Cytokines regulate the inflammatory response to injury and modulate hepatic fibrogenesis. Single nucleotide polymorphisms (SNPs) located in cytokine genes may influence the cytokine expression and secretion that may contribute to hepatic fibrogenesis in HCV infection. The aim of this study was to determine the genotype of 22 SNPs found in the genes of 13 cytokines/cytokine receptors to assess the influence of polymorphic variants on the stage of liver damage in Brazilian patients chronically infected with HCV genotype 1 only. 141 unrelated patients were grouped according to their stage of fibrosis: absence of fibrosis or patients in the initial stages of fibrosis (F0-F2, n = 84), patients with advanced stages of fibrosis or cirrhosis (F3-F4, n = 57), without cirrhosis (F0-F3, n = 103), and with cirrhosis (F4, n = 38). The comparison of frequencies in each sub-sample was performed by 2 × 2 contingency tables using the chi-square or Fisher's exact test. Stepwise logistic regression was also used to assess independent associations between cirrhosis or fibrosis with polymorphic variants. The TNFA-308G:A genotype conferred increased risk of fibrosis and cirrhosis. The TNFA-238G:G genotype was associated with protection from cirrhosis. The IL10-819C:T genotype conferred protection from fibrosis and the IL1B-511C:T genotype conferred increased risk of cirrhosis. Some of these genotypes showed results on the borderline of statistical significance in the bivariate analysis. We conclude that gene variants of cytokines/receptors may influence liver damage in patients chronically infected by HCV genotype 1. PMID:27200267

  14. Protective effects of Pycnogenol on hyperglycemia-induced oxidative damage in the liver of type 2 diabetic rats.

    PubMed

    Parveen, Kehkashan; Khan, Mohd Rashid; Mujeeb, Mohd; Siddiqui, Waseem A

    2010-07-30

    Abnormal regulation of glucose and impaired carbohydrate utilization that result from a defective or deficient insulin are the key pathogenic events in type 2 diabetes mellitus (T2DM). Experimental and clinical studies have shown the antidiabetic effects of Pycnogenol (PYC). However, the protective effects of PYC on the liver, a major metabolic organ which primarily involves in glucose metabolism and maintains the normal blood glucose level in T2DM model have not been studied. The present study evaluated the beneficial effect of PYC, French maritime pine bark extract, on hyperglycemia and oxidative damage in normal and diabetic rats. Diabetes was induced by feeding rats with a high-fat diet (HFD; 40%) for 2 weeks followed by an intraperitoneal (IP) injection of streptozotocin (STZ; 40 mg/kg; body weight). An IP dose of 10mg/kg PYC was given continually for 4 weeks after diabetes induction. At the end of the 4-week period, blood was drawn and the rats were then sacrificed, and their livers dissected for biochemical and histopathological assays. In the HFD/STZ group, levels of glycosylated hemoglobin (HbA1c), significantly increased, while hepatic glycogen level decreased. PYC supplementation significantly reversed these parameters. Moreover, supplementation with PYC significantly ameliorated thiobarbituric reactive substances, malonaldehyde, protein carbonyl, glutathione and antioxidant enzymes [glutathione-S-transferase, catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase] in the liver of HFD/STZ rats. These results were supported with histopathological examinations. Although detailed studies are required for the evaluation of the exact protective mechanism of PYC against diabetic complications, these preliminary experimental findings demonstrate that PYC exhibits antidiabetic effects in a rat model of type 2 DM by potentiating the antioxidant defense system. These finding supports the efficacy of PYC for diabetes management. PMID

  15. Cytochrome P450 2E1 is responsible for the initiation of 1,2-dichloropropane-induced liver damage.

    PubMed

    Yanagiba, Yukie; Suzuki, Tetsuya; Suda, Megumi; Hojo, Rieko; Gonzalez, Frank J; Nakajima, Tamie; Wang, Rui-Sheng

    2016-09-01

    1,2-Dichloropropane (1,2-DCP), a solvent, which is the main component of the cleaner used in the offset printing companies in Japan, is suspected to be the causative agent of bile duct cancer, which has been recently reported at high incidence in those offset printing workplaces. While there are some reports about the acute toxicity of 1,2-DCP, no information about its metabolism related to toxicity in animals is available. As part of our efforts toward clarifying the role of 1,2-DCP in the development of cancer, we studied the metabolic pathways and the hepatotoxic effect of 1,2-DCP in mice with or without cytochrome P450 2E1 (CYP2E1) activity. In an in vitro reaction system containing liver homogenate, 1,2-DCP was only metabolized by liver tissue of wild-type mice but not by that of cyp2e1-null mice. Furthermore, the kinetics of the solvent in mice revealed a great difference between the two genotypes; 1,2-DCP administration resulted in dose-dependent hepatic damage, as shown biochemically and pathologically, but this effect was only observed in wild-type mice. The nuclear factor κB p52 pathway was involved in the liver response to 1,2-DCP. Our results clearly indicate that the oxidative metabolism of 1,2-DCP in mice is exclusively catalyzed by CYP2E1, and this step is indispensable for the manifestation of the hepatotoxic effect of the solvent. PMID:25681370

  16. Protective effect of melatonin against Opisthorchis viverrini-induced oxidative and nitrosative DNA damage and liver injury in hamsters.

    PubMed

    Laothong, Umawadee; Pinlaor, Porntip; Hiraku, Yusuke; Boonsiri, Patcharee; Prakobwong, Suksanti; Khoontawad, Jarinya; Pinlaor, Somchai

    2010-10-01

    The liver fluke, Opisthorchis viverrini, is the risk factor of cholangiocarcinoma, which is a major health problem in northeastern Thailand. Production of reactive oxygen and nitrogen species during the host's response leads to oxidative and nitrosative stress contributing to carcinogenesis. We investigated the protective effect of melatonin against O. viverrini-induced oxidative and nitrosative stress and liver injury. Hamsters were infected with O. viverrini followed by oral administration of various doses of melatonin (5, 10, and 20 mg/kg body weight) for 30 days. Uninfected hamsters served as controls. Compared to the levels in O. viverrini-infected hamsters without melatonin treatment, the indoleamine decreased the formation of oxidative and nitrosative DNA lesions, 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-nitroguanine, in the nucleus of bile duct epithelium and inflammatory cells, in parallel with a reduction in 3-nitrotyrosine. Melatonin also reduced the expression of heme oxygenase-1 and cytokeratin 19, nitrate/nitrite levels, and bile duct proliferation in the liver. Alanine transaminase activity and the levels of 8-isoprostane and vitamin E were also dose dependently decreased in the plasma of melatonin-treated hamsters. Melatonin reduced the mRNA expression of oxidant-generating genes [inducible nitric oxide synthase, nuclear factor-kappa B (NF-κB), and cyclooxygenase-2] and proinflammatory cytokines (TNF-α and IL-1β), accompanied by an increase in the expression of antioxidant genes [nuclear erythroid 2-related factor 2 (Nrf2) and manganese superoxide dismutase]. Thus, melatonin may be an effective chemopreventive agent against O. viverrini-induced cholangiocarcinoma by reducing oxidative and nitrosative DNA damage via induction of Nrf2 and inhibition of NF-κB-mediated pathways. PMID:20626588

  17. Duration-dependent hepatoprotective effects of propolis extract against carbon tetrachloride-induced acute liver damage in rats.

    PubMed

    Bhadauria, Monika; Nirala, Satendra Kumar; Shukla, Sangeeta

    2007-01-01

    Propolis is a natural product produced by bees that was discovered through the study of traditional cures and knowledge of indigenous people throughout the world. It is rich in vitamins A, B, C, and E, and in amino acids, copper, iron, manganese, and zinc. The investigators studied the duration-dependent hepatoprotective effects of propolis extract (200 mg/kg, orally) against carbon tetrachloride (CCl 4; 1.5 mL/kg, intraperitoneally)-induced liver damage in rats. Administration of CCl 4 caused a sharp elevation in the activity of serum transaminases and serum alkaline phosphatase. A significant depletion in hepatically reduced glutathione was observed with significantly enhanced hepatic lipid peroxidation. After CCl 4 administration, glycogen contents and activities of alkaline phosphatase, adenosine triphosphatase, and succinic dehydrogenase were significantly decreased, whereas total protein contents and activity of acid phosphatase were increased in the liver and kidney. Propolis extract reversed alterations in all parameters when administered within 6, 12, and 24 h of toxicant exposure. Propolis therapy produced duration-dependent protection, with maximal protection achieved at 24 h after CCl 4 exposure. It is believed that propolis in its natural form has general pharmacologic value and marked hepatoprotective potential because of its composition of minerals, flavonoids, and phenolic compounds. PMID:18029340

  18. BCL6B expression in hepatocellular carcinoma and its efficacy in the inhibition of liver damage and fibrogenesis

    PubMed Central

    Wu, Panyisha; Kong, Rong; Xu, Jiang; Zhang, Lufei; Yang, Qifan; Xie, Qingsong; Zhang, Linshi; Zhou, Xiaohu; Chen, Linghui; Xie, Haiyang; Zhou, Lin; Zheng, Shusen

    2015-01-01

    B cell CLL/lymphoma 6 member B (BCL6B) is expressed in many normal tissues but expressed at very low levels in cancer tissues. It was reported that BCL6B inhibits hepatocellular carcinoma (HCC) metastases, but the exact role of BCL6B in HCC remains to be investigated. BCL6B expression was significantly decreased in HCC tissues compared with paired non-cancer tissues. Low BCL6B expression in tumors was correlated with shorter overall survival in patients, and multivariate Cox regression analysis revealed that BCL6B expression was an independent prognostic factor for human HCC patients. Moreover, a positive correlation between BCL6B expression and hepatic cirrhosis was found in an analysis of HCC clinicopathological characteristics. BCL6B expression was increased in rat fibrotic liver samples in response to liver injury. BCL6B transgenic rats were less susceptible to hepatocellular damage, inflammation and fibrosis. In vitro studies demonstrated that BCL6B inhibited the activation of hepatic stellate cells though upregulation of hepatocyte growth factor. In addition, transcriptomic microarray analysis was performed to explore the mechanisms in which BCL6B confers protection from tumorigenesis. In conclusion, BCL6B plays a pivotal role as a prognostic biomarker for HCC, and the restoration of BCL6B may be a novel strategy as an anti-fibrogenic therapy for human HCC. PMID:25970780

  19. Molecular Mechanisms of Lipoic Acid Protection against Aflatoxin B1-Induced Liver Oxidative Damage and Inflammatory Responses in Broilers

    PubMed Central

    Ma, Qiugang; Li, Yan; Fan, Yu; Zhao, Lihong; Wei, Hua; Ji, Cheng; Zhang, Jianyun

    2015-01-01

    Alpha-lipoic acid (α-LA) was evaluated in this study for its molecular mechanisms against liver oxidative damage and inflammatory responses induced by aflatoxin B1 (AFB1). Birds were randomly allocated into four groups with different diets for three weeks: a basal diet, a 300 mg/kg α-LA supplementation in a basal diet, a diet containing 74 μg/kg AFB1, and 300 mg/kg α-LA supplementation in a diet containing 74 μg/kg AFB1. In the AFB1 group, the expression of GSH-PX mRNA was down-regulated (p < 0.05), and the levels of lipid peroxide and nitric oxide were increased (p < 0.05) in the chicken livers compared to those of the control group. Additionally, the mRNA level of the pro-inflammatory factor interleukin-6 was up-regulated significantly (p < 0.05), the protein expressions of both the nuclear factor kappa B (NF-κB) p65 and the inducible nitric oxide synthase were enhanced significantly (p < 0.05) in the AFB1 group. All of these negative effects were inhibited by α-LA. These results indicate that α-LA may be effective in preventing hepatic oxidative stress, down-regulating the expression of hepatic pro-inflammatory cytokines, as well as inhibiting NF-κB expression. PMID:26694462

  20. Molecular Mechanisms of Lipoic Acid Protection against Aflatoxin B₁-Induced Liver Oxidative Damage and Inflammatory Responses in Broilers.

    PubMed

    Ma, Qiugang; Li, Yan; Fan, Yu; Zhao, Lihong; Wei, Hua; Ji, Cheng; Zhang, Jianyun

    2015-12-01

    Alpha-lipoic acid (α-LA) was evaluated in this study for its molecular mechanisms against liver oxidative damage and inflammatory responses induced by aflatoxin B₁ (AFB₁). Birds were randomly allocated into four groups with different diets for three weeks: a basal diet, a 300 mg/kg α-LA supplementation in a basal diet, a diet containing 74 μg/kg AFB₁, and 300 mg/kg α-LA supplementation in a diet containing 74 μg/kg AFB₁. In the AFB₁ group, the expression of GSH-PX mRNA was down-regulated (p < 0.05), and the levels of lipid peroxide and nitric oxide were increased (p < 0.05) in the chicken livers compared to those of the control group. Additionally, the mRNA level of the pro-inflammatory factor interleukin-6 was up-regulated significantly (p < 0.05), the protein expressions of both the nuclear factor kappa B (NF-κB) p65 and the inducible nitric oxide synthase were enhanced significantly (p < 0.05) in the AFB₁ group. All of these negative effects were inhibited by α-LA. These results indicate that α-LA may be effective in preventing hepatic oxidative stress, down-regulating the expression of hepatic pro-inflammatory cytokines, as well as inhibiting NF-κB expression. PMID:26694462

  1. DNA-damage response gene GADD45A induces differentiation in hematopoietic stem cells without inhibiting cell cycle or survival.

    PubMed

    Wingert, Susanne; Thalheimer, Frederic B; Haetscher, Nadine; Rehage, Maike; Schroeder, Timm; Rieger, Michael A

    2016-03-01

    Hematopoietic stem cells (HSCs) maintain blood cell production life-long by their unique abilities of self-renewal and differentiation into all blood cell lineages. Growth arrest and DNA-damage-inducible 45 alpha (GADD45A) is induced by genotoxic stress in HSCs. GADD45A has been implicated in cell cycle control, cell death and senescence, as well as in DNA-damage repair. In general, GADD45A provides cellular stability by either arresting the cell cycle progression until DNA damage is repaired or, in cases of fatal damage, by inducing apoptosis. However, the function of GADD45A in hematopoiesis remains controversial. We revealed the changes in murine HSC fate control orchestrated by the expression of GADD45A at single cell resolution. In contrast to other cellular systems, GADD45A expression did not cause a cell cycle arrest or an alteration in the decision between cell survival and apoptosis in HSCs. Strikingly, GADD45A strongly induced and accelerated the differentiation program in HSCs. Continuous tracking of individual HSCs and their progeny via time-lapse microscopy elucidated that once GADD45A was expressed, HSCs differentiate into committed progenitors within 29 hours. GADD45A-expressing HSCs failed to long-term reconstitute the blood of recipients by inducing multilineage differentiation in vivo. Importantly, γ-irradiation of HSCs induced their differentiation by upregulating endogenous GADD45A. The differentiation induction by GADD45A was transmitted by activating p38 Mitogen-activated protein kinase (MAPK) signaling and allowed the generation of megakaryocytic-erythroid, myeloid, and lymphoid lineages. These data indicate that genotoxic stress-induced GADD45A expression in HSCs prevents their fatal transformation by directing them into differentiation and thereby clearing them from the system. Stem Cells 2016;34:699-710. PMID:26731607

  2. Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage.

    PubMed

    Tummala, Krishna S; Gomes, Ana L; Yilmaz, Mahmut; Graña, Osvaldo; Bakiri, Latifa; Ruppen, Isabel; Ximénez-Embún, Pilar; Sheshappanavar, Vinayata; Rodriguez-Justo, Manuel; Pisano, David G; Wagner, Erwin F; Djouder, Nabil

    2014-12-01

    Molecular mechanisms responsible for hepatocellular carcinoma (HCC) remain largely unknown. Using genetically engineered mouse models, we show that hepatocyte-specific expression of unconventional prefoldin RPB5 interactor (URI) leads to a multistep process of HCC development, whereas its genetic reduction in hepatocytes protects against diethylnitrosamine (DEN)-induced HCC. URI inhibits aryl hydrocarbon (AhR)- and estrogen receptor (ER)-mediated transcription of enzymes implicated in L-tryptophan/kynurenine/nicotinamide adenine dinucleotide (NAD(+)) metabolism, thereby causing DNA damage at early stages of tumorigenesis. Restoring NAD(+) pools with nicotinamide riboside (NR) prevents DNA damage and tumor formation. Consistently, URI expression in human HCC is associated with poor survival and correlates negatively with L-tryptophan catabolism pathway. Our results suggest that boosting NAD(+) can be prophylactic or therapeutic in HCC. PMID:25453901

  3. Protective effect of diphenyl diselenide on acute liver damage induced by 2-nitropropane in rats.

    PubMed

    Borges, Lysandro P; Borges, Vanessa Corralo; Moro, Angelica Venturini; Nogueira, Cristina Wayne; Rocha, Joao Batista Teixeira; Zeni, Gilson

    2005-05-15

    The effect of diphenyl diselenide, (PhSe)2, administration on 2-nitropropane (2-NP)-induced hepatic damage was examined in male rats. Rats were pre-treated with a single dose of diphenyl diselenide (10, 50 or 100 micromol/kg). Afterward, they received only one dose of 2-NP (100 mg/kg body weight dissolved in olive oil). The parameters that indicate tissue damage such as plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), alpha-fetoprotein (AFP), creatinine and urea were determined. Since toxicity induced by 2-NP is related to oxidative stress, lipid peroxidation was also evaluated. Diphenyl diselenide (100 micromol/kg) significantly reduced plasma ALT, gamma-GGT, AFP levels when compared to 2-NP group. Treatment with diphenyl diselenide, at all doses, effectively protects the increase of lipid peroxidation when compared to 2-NP group. Histological examination revealed that 2-NP treatment causes a moderate swelling and degenerative alterations on hepatocytes and diphenyl diselenide (100 micromol/kg) protects against these alterations. Diphenyl diselenide (50 and 100 micromol/kg) significantly decreased the urea level. This study evidences the protective effect of diphenyl diselenide by 2-NP-induced acute hepatic damage. PMID:15804453

  4. NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice

    PubMed Central

    Murray, Thomas V.A.; Dong, Xuebin; Sawyer, Greta J.; Caldwell, Anna; Halket, John; Sherwood, Roy; Quaglia, Alberto; Dew, Tracy; Anilkumar, Narayana; Burr, Simon; Mistry, Rajesh K.; Martin, Daniel; Schröder, Katrin; Brandes, Ralf P.; Hughes, Robin D.; Shah, Ajay M.; Brewer, Alison C.

    2015-01-01

    Glutathione is the major intracellular redox buffer in the liver and is critical for hepatic detoxification of xenobiotics and other environmental toxins. Hepatic glutathione is also a major systemic store for other organs and thus impacts on pathologies such as Alzheimer's disease, Sickle Cell Anaemia and chronic diseases associated with aging. Glutathione levels are determined in part by the availability of cysteine, generated from homocysteine through the transsulfuration pathway. The partitioning of homocysteine between remethylation and transsulfuration pathways is known to be subject to redox-dependent regulation, but the underlying mechanisms are not known. An association between plasma Hcy and a single nucleotide polymorphism within the NADPH oxidase 4 locus led us to investigate the involvement of this reactive oxygen species- generating enzyme in homocysteine metabolism. Here we demonstrate that NADPH oxidase 4 ablation in mice results in increased flux of homocysteine through the betaine-dependent remethylation pathway to methionine, catalysed by betaine-homocysteine-methyltransferase within the liver. As a consequence NADPH oxidase 4-null mice display significantly lowered plasma homocysteine and the flux of homocysteine through the transsulfuration pathway is reduced, resulting in lower hepatic cysteine and glutathione levels. Mice deficient in NADPH oxidase 4 had markedly increased susceptibility to acetaminophen-induced hepatic injury which could be corrected by administration of N-acetyl cysteine. We thus conclude that under physiological conditions, NADPH oxidase 4-derived reactive oxygen species is a regulator of the partitioning of the metabolic flux of homocysteine, which impacts upon hepatic cysteine and glutathione levels and thereby upon defence against environmental toxins. PMID:26472193

  5. Prophylactic effects of pomegranate (Punica granatum) juice on sodium fluoride induced oxidative damage in liver and erythrocytes of rats.

    PubMed

    Bouasla, Asma; Bouasla, Ihcène; Boumendjel, Amel; Abdennour, Cherif; El Feki, Abdelfattah; Messarah, Mahfoud

    2016-07-01

    The objective of this study was to investigate the protective effects of pomegranate (Punica granatum) juice (PGJ) on oxidative damages in liver tissue and erythrocytes of rats intoxicated by sodium fluoride (NaF). Rats were randomly divided into two groups: group I received standard diet and group II received orally 1 mL of PGJ. After 5 weeks of pretreatment, each group was divided again into two subgroups and treated for another 3 weeks as follows: group I was subdivided into a control group and a group that was treated with 100 ppm of NaF (in drinking water); group II was subdivided into one group that was treated daily with both 100 ppm NaF and PGJ (1 mL orally) and one that received daily 1 mL of pomegranate juice. Exposure to NaF decreased hematological parameters, changed the total protein, albumin, bilirubin levels, and increased the activities of hepatic marker enzymes. We also noted an increase in lipid peroxidation contents, accompanied by a decrease of reduced glutathione levels. Antioxidant enzyme activities in both tissues were modified in the NaF group compared with the control group. However, the administration of PGJ juice caused an amelioration of the previous parameters. Our results indicated the potential effects of NaF to induce oxidative damage in tissues and the ability of PGJ to attenuate NaF-induced oxidative injury. PMID:27124270

  6. Effect of acetaminophen exposure in Oncorhynchus mykiss gills and liver: detoxification mechanisms, oxidative defence system and peroxidative damage.

    PubMed

    Ramos, A S; Correia, A T; Antunes, S C; Gonçalves, F; Nunes, B

    2014-05-01

    The increasing presence of pharmaceutical drugs in nature is cause of concern due to the occurrence of oxidative stress in non-target species. Acetaminophen is widely used in human medicine as an analgesic and antipyretic drug, and it is one of the most sold non-prescription drugs. The present study aimed to assess the toxic effects of acetaminophen (APAP) in Oncorhynchus mykiss following acute and chronic exposures in realistic levels. In order to evaluate the APAP effects in the rainbow trout, gills and liver were analyzed with biochemical biomarkers, such as catalase (CAT), total and selenium-dependent glutathione peroxidase (GPx), glutathione reductase (GRed) and glutathione-S-transferases (GSTs) activity and also lipid peroxidation levels (TBARS). The results obtained in all tests indicate that a significant response of oxidative stress was established, along with the increase of APAP concentrations. The establishment of an oxidative stress scenario occurred with the involvement of all tested biomarkers, sustaining a generalized set of pro-oxidative effects elicited by APAP. Additionally, the occurrence of oxidative damage strongly suggests the impairment of the antioxidant defense mechanism of O. mykiss. It is important to note that the occurrence of oxidative deleterious effects and peroxidative damages occurred for concentrations similar to those already reported for several freshwater ecosystems. The importance of these assumptions is further discussed under the scope of ecological relevance of the assessment of effects caused by pharmaceuticals in non-target organisms. PMID:24816177

  7. Effect of dill tablet (Anethum graveolens L) on antioxidant status and biochemical factors on carbon tetrachloride-induced liver damage on rat

    PubMed Central

    Oshaghi, Ebrahim Abbasi; Khodadadi, Iraj; Tavilani, Heidar; Goodarzi, Mohammad Taghi

    2016-01-01

    Background: Liver damage induced by carbon tetrachloride (CCl4) has been presented as an experimental model for research in hepatoprotective effects of natural product. A commercial medicine prepared from Anethum graveolens L (dill) is being used as dill tablet (DT) as a hypolipidemic agent. This experiment aimed to investigate the protective effect of DT against hepatic damage. Materials and Methods: Male Wistar rats were randomly divided into four groups (n = 6) as following for a 10 days experiments. (1) Normal animals; (2) normal animals +CCl4 1 ml/kg (1:1 of CCl4 in olive oil, by gastric tube); (3) CCl4 treated animals +100 mg DT/kg; (4) CCl4 treated animals +300 mg DT/kg. After 10 days of treatment, biochemical factors were measured; also antioxidant tests such as thiol group, malondialdehyde (MDA), total antioxidant capacity (TAC), and catalase (CAT) activity in the liver samples were carried out. Results: In dill treated animals, a significant decrease in liver enzymes lactate dehydrogenase, alkaline phosphatase, aspartate transaminase, alanine transaminase, γ-glutamyl transferase, total bilirubin, direct bilirubin, as well as triglyceride, total cholesterol (P < 0.05) were observed. Total protein and albumin concentrations were significantly increased in dill treated groups (P < 0.05). Furthermore, treatment with dill declined liver cholesterol, triglyceride, MDA, and increased TAC and CAT activity compared with untreated group (P < 0.05). Conclusion: Dill displayed a potential hepatoprotective effect against CCl4-induced liver damage based on both biochemical markers and antioxidant status. PMID:27127740

  8. DNA‐damage response gene GADD45A induces differentiation in hematopoietic stem cells without inhibiting cell cycle or survival

    PubMed Central

    Wingert, Susanne; Thalheimer, Frederic B.; Haetscher, Nadine; Rehage, Maike; Schroeder, Timm

    2016-01-01

    Abstract Hematopoietic stem cells (HSCs) maintain blood cell production life‐long by their unique abilities of self‐renewal and differentiation into all blood cell lineages. Growth arrest and DNA‐damage‐inducible 45 alpha (GADD45A) is induced by genotoxic stress in HSCs. GADD45A has been implicated in cell cycle control, cell death and senescence, as well as in DNA‐damage repair. In general, GADD45A provides cellular stability by either arresting the cell cycle progression until DNA damage is repaired or, in cases of fatal damage, by inducing apoptosis. However, the function of GADD45A in hematopoiesis remains controversial. We revealed the changes in murine HSC fate control orchestrated by the expression of GADD45A at single cell resolution. In contrast to other cellular systems, GADD45A expression did not cause a cell cycle arrest or an alteration in the decision between cell survival and apoptosis in HSCs. Strikingly, GADD45A strongly induced and accelerated the differentiation program in HSCs. Continuous tracking of individual HSCs and their progeny via time‐lapse microscopy elucidated that once GADD45A was expressed, HSCs differentiate into committed progenitors within 29 hours. GADD45A‐expressing HSCs failed to long‐term reconstitute the blood of recipients by inducing multilineage differentiation in vivo. Importantly, γ‐irradiation of HSCs induced their differentiation by upregulating endogenous GADD45A. The differentiation induction by GADD45A was transmitted by activating p38 Mitogen‐activated protein kinase (MAPK) signaling and allowed the generation of megakaryocytic‐erythroid, myeloid, and lymphoid lineages. These data indicate that genotoxic stress‐induced GADD45A expression in HSCs prevents their fatal transformation by directing them into differentiation and thereby clearing them from the system. Stem Cells 2016;34:699–710 PMID:26731607

  9. Clostridium difficile toxin A induces intestinal epithelial cell apoptosis and damage: role of Gln and Ala-Gln in toxin A effects.

    PubMed

    Brito, Gerly A C; Carneiro-Filho, Benedito; Oriá, Reinaldo B; Destura, Raul V; Lima, Aldo A M; Guerrant, Richard L

    2005-07-01

    The aim of this study was to investigate the effect of Clostridium difficile toxin A (TxA) on intestinal epithelial cell migration, apoptosis, and transepithelial resistance and to evaluate the effect of glutamine (Gln) and its stable derivative, alanyl-glutamine (Ala-Gln), on TxA-induced damage. Migration was measured in rat intestinal epithelial cells (IEC-6) 6 and 24 hr after a razor scrape of the cell monolayer. Cell proliferation was indirectly measured utilizing the tetrazolium salt WST-1. The cells were incubated with TxA (1-100 ng/ml) in medium without Gln or medium containing Gln or Ala-Gln (1-30 mM). Apoptosis was quantified in IEC-6 cells using annexin V assay. Transepithelial resistance was measured using an epithelial voltohmmeter across T84 cells seeded on a transwell filter. TxA-induced a dose-dependent reduction of migration and also caused dose and time-dependent apoptosis in IEC-6 cells. Gln and Aln-Gln significantly enhanced IEC-6 cell migration and proliferation. Gln and Ala-Gln also prevented the inhibition of migration, apoptosis, and the initial drop in transepithelial resistance induced by TxA. In conclusion, both peptides reduced toxin-induced epithelial damage and thus might play an adjunctive role in C. difficile-induced colitis therapy. PMID:16047471

  10. Effect of betaine on the hepatic damage from orotic acid-induced fatty liver development in rats.

    PubMed

    Cha, Jae-Young; Kim, Hyeong-Soo; Moon, Hyung-In; Cho, Young-Su

    2011-12-13

    Betaine prevents hepatic damage caused by ethanol and carbone tetrachloride (CCl4) in rats. Present study was to investigate the effect of betaine on the hepatic microsomal triglyceride transfer protein (MTP) mRNA expression in orotic acid (OA)-induced fatty liver in rats. OA feeding was attributed to the significant increase in the hepatic levels of triglyceride and the serum levels of ALT and AST and resulted in typical histology of fatty liver contained numerous largely fat droplets. While concomitant supplementation of betaine to OA diet was slightly reduced the hepatic triglyceride concentrations and was significantly decreased ALT activity. Hepatic MTP mRNA expression by OA treatment increased by 14% despite triglyceride accumulation in the liver in OA treatment rats relative to rats fed a normal diet without OA supplemented, but MTP expression by simultaneous supplementation of OA and betaine was slightly decreased by 7.9% as compared to the OA-feeding rats. A significant elevation of TBARS contents in the liver homogenate, microsome, and mitochondrial fractions of the OA-feeding rats compared with the normal rats, however, these increases were significantly or slightly decreased by simultaneous addition of OA and betaine. The increases of hepatic OA and betaine levels in OA feeding rats was also found when compared to the normal rats, but these increases were significantly lowered in the concomitant supplementation OA and betaine. The content of Fe was significantly increased in the OA feeding rats, but this elevation showed significantly recovered as low as the normal level by concomitant with OA and betaine. Zinc content was also significantly decreased in the OA feeding rats compared with the normal rats, but this reduction was more significantly elevated by concomitant with OA and betaine. Hepatic glutathione content in the OA feeding rats was similar to that of the normal rats, but this content was slightly reduced without statistically significant

  11. Lipid Peroxidation-Antioxidant Defense System during Toxic Liver Damage and Its Correction with a Nanocomposite [corrected] Substance Containing Selenium and Arabinogalactan.

    PubMed

    Kolesnikova, L I; Karpova, E A; Vlasov, B Ya; Sukhov, B G; Mov, B A Trofi

    2015-06-01

    Experiments on rat model of toxic liver damage (CCl4, subcutaneously) have demonstrated that selenium nanopreparation on arabinogalactan matrix and partially arabinogalactan alone prevented the development of oxidative stress assessed by the balance of LPO and antioxidant defense processes. PMID:26087750

  12. Evaluation of the Effectiveness of Piper cubeba Extract in the Amelioration of CCl4-Induced Liver Injuries and Oxidative Damage in the Rodent Model

    PubMed Central

    AlSaid, Mansour; Mothana, Ramzi; Raish, Mohammad; Al-Sohaibani, Mohammed; Al-Yahya, Mohammed; Ahmad, Ajaz; Al-Dosari, Mohammed; Rafatullah, Syed

    2015-01-01

    Background. Liver diseases still represent a major health burden worldwide. Moreover, medicinal plants have gained popularity in the treatment of several diseases including liver. Thus, the present study was to evaluate the effectiveness of Piper cubeba fruits in the amelioration of CCl4-induced liver injuries and oxidative damage in the rodent model. Methods. Hepatoprotective activity was assessed using various biochemical parameters like SGOT, SGPT, γ-GGT, ALP, total bilirubin, LDH, and total protein. Meanwhile, in vivo antioxidant activities as LPO, NP-SH, and CAT were measured in rat liver as well as mRNA expression of cytokines such as TNFα, IL-6, and IL-10 and stress related genes iNOS and HO-1 were determined by RT-PCR. The extent of liver damage was also analyzed through histopathological observations. Results. Treatment with PCEE significantly and dose dependently prevented drug induced increase in serum levels of hepatic enzymes. Furthermore, PCEE significantly reduced the lipid peroxidation in the liver tissue and restored activities of defense antioxidant enzymes NP-SH and CAT towards normal levels. The administration of PCEE significantly downregulated the CCl4-induced proinflammatory cytokines TNFα and IL-6 mRNA expression in dose dependent manner, while it upregulated the IL-10 and induced hepatoprotective effect by downregulating mRNA expression of iNOS and HO-1 gene. PMID:25654097

  13. Hepatoprotective Efficacy of Cichorium intybus L. Extract Against Carbon Tetrachloride-induced Liver Damage in Rats.

    PubMed

    Elgengaihi, Souad; Mossa, Abdel-Tawab H; Refaie, Amel A; Aboubaker, Doha

    2016-01-01

    The purpose of the study was to assess the phytochemical and hepatoprotective activity of different extracts of dried herb of Cichorium intybus L. against carbon tetrachloride (CCl4) intoxicated male albino rats. The hepatoprotective activity of different extracts at 500 mg/kg body weight was compared with carbon tetrachloride-treated animals. The animals were divided into five groups with six animals in each group. The first group represents control, the second group received carbon tetrachloride, the third received C. intybus, and the fourth group received C. intybus plus carbon tetrachloride. The fifth group received silymarin as hepato-slandered drug. There were significant changes in serum biochemical parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), bilirubin, albumin, total protein, and γ-glutamyl transferase (GGT) in carbon tetrachloride intoxicated rats, which were restored towards normal values in C. intybus-treated animals. Histopathological examination of liver tissues further substantiated these findings. In conclusion, of this investigation, the results ascertain that the herb extracts of C. intybus possess significant hepatoprotective activity. PMID:26913368

  14. In vitro antioxidant and in vivo hepatoprotective effect on ethanol-mediated liver damage of spray dried Vernonia amygdalina water extract.

    PubMed

    Ho, Wan Yong; Yeap, SweeKeong; Liang, Woon San; Beh, Boon Kee; Mohamad, NurulElyani; Alitheen, Noorjahan Banu

    2015-01-01

    Vernonia amygdalina is a strong natural antioxidant that possessed various medicinal properties. In this study, the spray-dried water extract of V. amygdalina was evaluated for its in vitro antioxidant capacity and in vivo hepatoprotective effect against alcoholic-mediated liver damage. Total phenolic and flavonoid content of spray-dried V. amygdalina water extract were determined. Liver enzyme profiles, liver antioxidant level and nitric oxide level were evaluated in alcohol-induced liver injured mice or co-supplement with spray-dried V. amydalina. Water extract of spray-dried V. amygalina that contained phenolic content of 24.8±1.5 mg/g gallic acid equivalent and total flavonoid content of 25.7±1.3 mg/g catechin equivalent was able to inhibit 50% of xanthine and tyrosinase oxidation at 170 μg/ml and 2 mg/mL, respectively. On the other hand, extracts at both 10 and 50 mg/kg body weight were able to reduce the levels of Alanine transaminase (ALT), Alkaline phosphatase (ALP), Aspartate transaminase (AST), triglyceride and total bilirubin content inthe alcohol-mediated liver injury in mice. Furthermore, it also helped to increase levels of Superoxide dismutase (SOD), Ferric reducing ability of plasma (FRAP) and reduce the levels of Nitric oxide (NO) and Malondialdehyde (MDA) in the liver of the treated mice. These resultssuggestedthat water extract of spray-dried V. amygdalina exhibited liver protective effect, which could be contributed by its antioxidant properties. PMID:25553678

  15. Sleep deprivation predisposes liver to oxidative stress and phospholipid damage: a quantitative molecular imaging study

    PubMed Central

    Chang, Hung-Ming; Mai, Fu-Der; Chen, Bo-Jung; Wu, Un-In; Huang, Yi-Lun; Lan, Chyn-Tair; Ling, Yong-Chien

    2008-01-01

    Sleep disorders are associated with an increased rate of various metabolic disturbances, which may be related to oxidative stress and consequent lipid peroxidation. Since hepatic phosphatidylcholine plays an important role in metabolic regulation, the aim of the present study was to determine phosphatidylcholine expression in the liver following total sleep deprivation. To determine the effects of total sleep deprivation, we used adult rats implanted for polygraphic recording. Phosphatidylcholine expression was examined molecularly by the use of time-of-flight secondary ion mass spectrometry, along with biochemical solid-phase extraction. The parameters of oxidative stress were investigated by evaluating the hepatic malondialdehyde levels as well as heat shock protein 25 immunoblotting and immunohistochemistry. In normal rats, the time-of-flight secondary ion mass spectrometry spectra revealed specific peaks (m/z 184 and 224) that could be identified as molecular ions for phosphatidylcholine. However, following total sleep deprivation, the signals for phosphatidylcholine were significantly reduced to nearly one-third of the normal values. The results of solid-phase extraction also revealed that the phosphatidylcholine concentration was noticeably decreased, from 15.7 µmol g–1 to 9.4 µmol g–1, after total sleep deprivation. By contrast, the biomarkers for oxidative stress were drastically up-regulated in the total sleep deprivation-treated rats as compared with the normal ones (4.03 vs. 1.58 nmol mg–1 for malondialdehyde levels, and 17.1 vs. 6.7 as well as 1.8 vs. 0.7 for heat shock protein 25 immunoblotting and immunoreactivity, respectively). Given that phosphatidylcholine is the most prominent component of all plasma lipoproteins, decreased expression of hepatic phosphatidylcholine following total sleep deprivation may be attributed to the enhanced oxidative stress and the subsequent lipid peroxidation, which would play an important role in the formation

  16. Hepatoprotective effect of commercial herbal extracts on carbon tetrachloride-induced liver damage in Wistar rats

    PubMed Central

    Cordero-Pérez, Paula; Torres-González, Liliana; Aguirre-Garza, Marcelino; Camara-Lemarroy, Carlos; Guzmán-de la Garza, Francisco; Alarcón-Galván, Gabriela; Zapata-Chavira, Homero; de Jesús Sotelo-Gallegos, Ma.; Nadjedja Torres-Esquivel, Cipactli; Sánchez-Fresno, Ethel; Cantú-Sepúlveda, Daniel; González-Saldivar, Gerardo; Bernal-Ramirez, Judith; E. Muñoz-Espinosa, Linda

    2013-01-01

    Background: Various hepatoprotective herbal products from plants are available in Mexico, where up to 85% of patients with liver disease use some form of complementary and alternative medicine. However, only few studies have reported on the biological evaluation of these products. Objective: Using a model of carbon tetrachloride (CCl4)-induced hepatotoxicity in rats, we evaluated the effects of commercial herbal extracts used most commonly in the metropolitan area of Monterrey, Mexico. Materials and Methods: The commercial products were identified through surveys in public areas. The effect of these products given with or without CCl4 in rats was evaluated by measuring the serum concentrations of aspartate amino transferase (AST) and alanine amino transferase (ALT), and histopathological analysis. Legalon® was used as the standard drug. Results: The most commonly used herbal products were Hepatisan® capsules, Boldo capsules, Hepavida® capsules, Boldo infusion, and milk thistle herbal supplement (80% silymarin). None of the products tested was hepatotoxic according to transaminase and histological analyses. AST and ALT activities were significantly lower in the Hepavida+CCl4-treated group as compared with the CCl4-only group. AST and ALT activities in the silymarin, Hepatisan, and Boldo tea groups were similar to those in the CCl4 group. The CCl4 group displayed submassive confluent necrosis and mixed inflammatory infiltration. Both the Hepatisan+CCl4 and Boldo tea+CCl4 groups exhibited ballooning degeneration, inflammatory infiltration, and lytic necrosis. The silymarin+CCl4 group exhibited microvesicular steatosis. The Hepavida+CCl4- and Legalon+CCL4-treated groups had lower percentages of necrotic cells as compared with the CCl4-treated group; this treatment was hepatoprotective against necrosis. Conclusion: Only Hepavida had a hepatoprotective effect. PMID:23900881

  17. Mechanisms of hepatoprotection of Terminalia catappa L. extract on D-Galactosamine-induced liver damage.

    PubMed

    Tang, Xin-Hui; Gao, Ling; Gao, Jing; Fan, Yi-Mei; Xu, Li-Zhi; Zhao, Xiao-Ning; Xu, Qiang

    2004-01-01

    The hepatoprotective effects of the extract of Terminalia catappa L. leaves (TCE) against D-Galactosamine (D-GalN)-induced liver injury and the mechanisms underlying its protection were studied. In acute hepatic injury test, it was found that serum ALT activity was remarkably increased (3.35-fold) after injection of D-GalN in mice. But with oral pretreatment of TCE (20, 50 and 100 mg/kg/d) for 7days, change in serum ALT was notably reversed. In primary cultured hepatocytes from fetal mice, it was found that cell viability was decreased by 45.0% after addition of D-GalN, while incubation with TCE (0.1, 0.5 and 1.0 mg/ml) for 36 hours could prevent the decrease in a dose-dependent manner. Meanwhile, D-GalN-induced both the increase of AST level (1.9-fold) and the decrease of SOD activity (48.0%) in supernatant of primary cultured hepatocytes could also be inhibited by pretreatment with TCE. In order to study the possible mechanisms underlying its hepatoprotective effects, one effective component separated from TCE, 2alpha, 3beta, 23-trihydroxyursane-12-en-28-oic acid (DHUA), was used to determine anti-mitochondrial swelling activity and superoxide radicals scavenging activity in vitro. It was found that at the concentration range of 50-500 micromol/L DHUA, Ca2+ -induced mitochondrial swelling was dose-dependently inhibited, and superoxide radicals scavenging activity was also shown in a dose-dependent manner. It was concluded that TCE has hepatoprotective activity and the mechanisms underlying its protective effects may be related to the direct mitochondrion protection and strong scavenging activity on reactive oxygen species (ROS). PMID:15481641

  18. Cyclosporine A-induced apoptosis in renal tubular cells is related to oxidative damage and mitochondrial fission.

    PubMed

    de Arriba, Gabriel; Calvino, Miryam; Benito, Selma; Parra, Trinidad

    2013-03-27

    Cyclosporine A (CsA) nephrotoxicity has been linked to reactive oxygen species (ROS) production in renal cells. We have demonstrated that the antioxidant Vitamin E (Vit E) abolished renal toxicity in vivo and in vitro models. As one of the main sources of intracellular ROS are mitochondria, we studied the effects of CsA on several mitochondrial functions in LLC-PK1 cells. CsA induced ROS synthesis and decreased reduced glutathione (GSH). The drug decreased mitochondrial membrane potential (ΔΨm) and induced physiological modifications in both the inner (IMM) and the outer mitochondrial membranes (OMM). In the IMM, CsA provoked mitochondrial permeability transition pores (MPTP) and cytochrome c was liberated into the intermembrane space. CsA also induced pore formation in the OMM, allowing that intermembrane space contents can reach cytosol. Furthermore, CsA altered the mitochondrial dynamics, inducing an increase in mitochondrial fission; CsA increased the expression of dynamin related protein 1 (Drp1) that contributes to mitochondrial fission, and decreased the expression of mitofusin 2 (Mfn2) and optic atrophy protein 1 (Opa1), proteins involved in the fusion process. All these phenomena were related to apoptosis. These effects were inhibited when cells were treated with the antioxidant Vit E suggesting that they were mediated by the synthesis of ROS. PMID:23347876

  19. Hepatoprotective activity of aerial parts of Otostegia persica against carbon tetrachloride-induced liver damage in rats

    PubMed Central

    Akbartabar Toori, Mehdi; Joodi, Behzad; Sadeghi, Heibatollah; Sadeghi, Hossein; Jafari, Mehrzad; Talebianpoor, Mohammad Sharif; Mehraban, Foad; Mostafazadeh, Mostafa; Ghavamizadeh, Mehdi

    2015-01-01

    Objective: To evaluate the hepatoprotective properties of Otostegia persica (O. persica) ethanol extract on carbon tetrachloride-induced liver damage in rats. Materials and Methods: Fifty adult male Wistar rats were randomly divided into five groups. Group I served as normal control and was given only olive oil intraperitoneally (i.p.). Group II, III, IV, and V were administered CCl4 mixed with olive oil 1:1 (1 ml/kg) i.p., twice a week for 8 weeks. Group II was maintained as CCl4-intoxicated control (hepatotoxic group). Group III, IV, and V received O. persica extract at a dose of 40, 80, and 120 mg/kg for 8 weeks every 48 h orally, respectively. Biochemical parameters including aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin (TB), albumin (ALB), total protein (TP), and lipid peroxidation marker (Malonaldialdehyde, (MDA) were determined in serum. After 8 weeks, animals were sacrificed, livers dissected out, and evaluated for histomorphological changes. Results: The administration of CCl4 increased AST, ALT, ALP, TB, and MDA in serum but it decreased TP , and ALB compared with normal control. Treatment with O. persica extract at three doses resulted in decreased enzyme markers, bilirubin levels, and lipid peroxidation marker (MDA) and increased TP and ALB compared with CCl4 group. The results of pathological study also support the hepatoprotective effects which were observed at doses of 80 and 120 mg/kg. Conclusion: The results of the present study indicate that ethanol extract of O. persica may have hepatoprotective effect which is probably due to its antioxidant property. PMID:26101757

  20. Fucoidan from Fucus vesiculosus protects against alcohol-induced liver damage by modulating inflammatory mediators in mice and HepG2 cells.

    PubMed

    Lim, Jung Dae; Lee, Sung Ryul; Kim, Taeseong; Jang, Seon-A; Kang, Se Chan; Koo, Hyun Jung; Sohn, Eunsoo; Bak, Jong Phil; Namkoong, Seung; Kim, Hyoung Kyu; Song, In Sung; Kim, Nari; Sohn, Eun-Hwa; Han, Jin

    2015-02-01

    Fucoidan is an l-fucose-enriched sulfated polysaccharide isolated from brown algae and marine invertebrates. In this study, we investigated the protective effect of fucoidan from Fucus vesiculosus on alcohol-induced murine liver damage. Liver injury was induced by oral administration of 25% alcohol with or without fucoidan (30 mg/kg or 60 mg/kg) for seven days. Alcohol administration increased serum aspartate aminotransferase and alanine aminotransferase levels, but these increases were suppressed by the treatment of fucoidan. Transforming growth factor beta 1 (TGF-β1), a liver fibrosis-inducing factor, was highly expressed in the alcohol-fed group and human hepatoma HepG2 cell; however, the increase in TGF-β1 expression was reduced following fucoidan administration. Treatment with fucoidan was also found to significantly reduce the production of inflammation-promoting cyclooygenase-2 and nitric oxide, while markedly increasing the expression of the hepatoprotective enzyme, hemeoxygenase-1, on murine liver and HepG2 cells. Taken together, the antifibrotic and anti-inflammatory effects of fucoidan on alcohol-induced liver damage may provide valuable insights into developing new therapeutics or interventions. PMID:25690093

  1. Field and laboratory studies on pathological and biochemical characterization of microcystin-induced liver and kidney damage in the phytoplanktivorous bighead carp.

    PubMed

    Li, Li; Xie, Ping; Guo, Longgen; Ke, Zhixin; Zhou, Qiong; Liu, Yaqin; Qiu, Tong

    2008-01-01

    Field and experimental studies were conducted to investigate pathological characterizations and biochemical responses in the liver and kidney of the phytoplanktivorous bighead carp after intraperitoneal (i.p.) administration of microcystins (MCs) and exposure to natural cyanobacterial blooms in Meiliang Bay, Lake Taihu. Bighead carp in field and laboratory studies showed a progressive recovery of structure and function in terms of histological, cellular, and biochemical features. In laboratory study, when fish were i.p. injected with extracted MCs at the doses of 200 and 500 microg MC-LReq/kg body weight, respectively, liver pathology in bighead carp was observed in a time dose-dependent manner within 24 h postinjection and characterized by disruption of liver structure, condensed cytoplasm, and the appearance of massive hepatocytes with karyopyknosis, karyorrhexis, and karyolysis. In comparison with previous studies on other fish, bighead carp in field study endured higher MC doses and longer-term exposure, but displayed less damage in the liver and kidney. Ultrastructural examination in the liver revealed the presence of lysosome proliferation, suggesting that bighead carp might eliminate or lessen cell damage caused by MCs through lysosome activation. Biochemically, sensitive responses in the antioxidant enzymes and higher basal glutathione concentrations might be responsible for their powerful resistance to MCs, suggesting that bighead carp can be used as biomanipulation fish to counteract cyanotoxin contamination. PMID:18264629

  2. Hepatoprotective and nephroprotective effects of Cnidoscolus aconitifolius in protein energy malnutrition induced liver and kidney damage

    PubMed Central

    Oyagbemi, Ademola A.; Odetola, Adebimpe A.

    2013-01-01

    Introduction: This study was designed to evaluate the ameliorative and hypocholesterolemic effects of dietary supplementation of Cnidoscolus aconitifolius leaf meal (CALM) on hepatic injury and kidney injury associated with protein energy malnutrition (PEM). Materials and Methods: In this study, PEM was induced in weaning male Wistar albino rats by feeding them with low protein diet for 2 weeks. The effects of several recovery diets containing 20% soya protein or 20% C. aconitifolius in place of soya protein or 10% soya proteins with 10% C. aconitifolius or commercial rat feed were assessed in PEM rats. Plasma biochemical parameters were assessed as well. Results: After the induction of PEM, results obtained showed significant increase in alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total proteins (T.P), total bilirubin (T.Bil), triglycerides, total cholesterol, low density lipoproteins (LDL), blood urea nitrogen (BUN), and creatinine with significant reduction in plasma high density lipoproteins (HDL), albumin, sodium (Na+), potassium (K+), chloride (Cl−), bicarbonate (HC03−), and phosphate (P042−) in PEM rats. Upon introduction of recovery diets containing 20% soya protein or 20% C. aconitifolius in place of soya protein or 10% soya proteins with 10% C. aconitifolius or commercial rat feed for 4 weeks caused significant (P < 0.05) reduction in plasma values of ALP, ALT, AST, T.bil, T.P., LDL, total cholesterol, triglycerides, BUN, creatinine, and significant increase in HDL and complete restoration of plasma electrolytes. Conclusions: C. aconitifolius in protein deficient diets has a protective role against hepatic injury and renal damage associated with PEM. PMID:24174819

  3. Protective effect of hesperidin on oxidative and histological liver damage following carbon tetrachloride administration in Wistar rats

    PubMed Central

    Çiftçi, Osman; Otlu, Ali

    2016-01-01

    Introduction In the current study, the protective effect of hesperidin (HP) on carbon tetrachloride (CCl4)-induced hepatotoxicity in rats was investigated. Material and methods Twenty-eight rats were divided equally into four groups. The first group was kept as a control and given only vehicle. In the second, rats were orally administered 50 mg/kg/day HP for 10 days. Carbon tetrachloride was given in a single intraperitoneal injection at the dose of 2 ml/kg in the third group. In the fourth group, the rats were treated with equal doses of CCl4 and HP. Results It was found that CCl4 induced oxidative stress via a significant increase in the formation of thiobarbituric acid-reactive substances (TBARS) and caused a significant decline in the levels of glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) in rats. In contrast, HP blocked these toxic effects induced by CCl4, causing an increase in GSH, CAT and SOD levels and decreased formation of TBARS (p < 0.01). In addition, histopathological damage increased with CCl4 treatment. In contrast, HP treatment eliminated the effects of CCl4 and stimulated anti-apoptotic events, as characterized by reduced caspase-3 activation. Conclusions The current study demonstrated that CCl4-induced hepatotoxicity can be prevented with HP treatment. Thus, co-administration of HP with CCl4 may be useful for attenuating the negative effects of CCl4 on the liver. PMID:27279838

  4. The Protective Effect of Grape-Seed Proanthocyanidin Extract on Oxidative Damage Induced by Zearalenone in Kunming Mice Liver

    PubMed Central

    Long, Miao; Yang, Shu-Hua; Han, Jian-Xin; Li, Peng; Zhang, Yi; Dong, Shuang; Chen, Xinliang; Guo, Jiayi; Wang, Jun; He, Jian-Bin

    2016-01-01

    Although grape-seed proanthocyanidin extract (GSPE) demonstrates strong anti-oxidant activity, little research has been done to clearly reveal the protective effects on the hepatotoxicity caused by zearalenone (ZEN). This study is to explore the protective effect of GSPE on ZEN-induced oxidative damage of liver in Kunming mice and the possible protective molecular mechanism of GSPE. The results indicated that GSPE could greatly reduce the ZEN-induced increase of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities. GSPE also significantly decreased the content of MDA but enhanced the activities of antioxidant enzymes SOD and GSH-Px. The analysis indicated that ZEN decreased both mRNA expression levels and protein expression levels of nuclear erythroid2-related factor2 (Nrf2). Nrf2 is considered to be an essential antioxidative transcription factor, as downstream GSH-Px, γ-glutamyl cysteine synthetase (γ-GCS), hemeoxygenase-1 (HO-1), and quinone oxidoreductase 1 (NQO1) decreased simultaneously, whereas the pre-administration of GSPE groups was shown to elevate these expressions. The results indicated that GSPE exerted a protective effect on ZEN-induced hepatic injury and the mechanism might be related to the activation of the Nrf2/ARE signaling pathway. PMID:27231898

  5. Antioxidant and Hepatoprotective Effect of Aqueous Extract of Germinated and Fermented Mung Bean on Ethanol-Mediated Liver Damage

    PubMed Central

    Mohd Ali, Norlaily; Mohd Yusof, Hamidah; Long, Kamariah; Yeap, Swee Keong; Ho, Wan Yong; Beh, Boon Kee; Koh, Soo Peng; Abdullah, Mohd Puad; Alitheen, Noorjahan Banu

    2013-01-01

    Mung bean is a hepatoprotective agent in dietary supplements. Fermentation and germination processes are well recognized to enhance the nutritional values especially the concentration of active compounds such as amino acids and GABA of various foods. In this study, antioxidant and hepatoprotective effects of freeze-dried mung bean and amino-acid- and GABA-enriched germinated and fermented mung bean aqueous extracts were compared. Liver superoxide dismutase (SOD), malondialdehyde (MDA), ferric reducing antioxidant power (FRAP), nitric oxide (NO) levels, and serum biochemical profile such as aspartate transaminase (AST), alanine transaminase (ALT), triglycerides (TG), and cholesterol and histopathological changes were examined for the antioxidant and hepatoprotective effects of these treatments. Germinated and fermented mung bean have recorded an increase of 27.9 and 7.3 times of GABA and 8.7 and 13.2 times of amino acid improvement, respectively, as compared to normal mung bean. Besides, improvement of antioxidant levels, serum markers, and NO level associated with better histopathological evaluation indicated that these extracts could promote effective recovery from hepatocyte damage. These results suggested that freeze-dried, germinated, and fermented mung bean aqueous extracts enriched with amino acids and GABA possessed better hepatoprotective effect as compared to normal mung bean. PMID:23484140

  6. The Protective Effect of Grape-Seed Proanthocyanidin Extract on Oxidative Damage Induced by Zearalenone in Kunming Mice Liver.

    PubMed

    Long, Miao; Yang, Shu-Hua; Han, Jian-Xin; Li, Peng; Zhang, Yi; Dong, Shuang; Chen, Xinliang; Guo, Jiayi; Wang, Jun; He, Jian-Bin

    2016-01-01

    Although grape-seed proanthocyanidin extract (GSPE) demonstrates strong anti-oxidant activity, little research has been done to clearly reveal the protective effects on the hepatotoxicity caused by zearalenone (ZEN). This study is to explore the protective effect of GSPE on ZEN-induced oxidative damage of liver in Kunming mice and the possible protective molecular mechanism of GSPE. The results indicated that GSPE could greatly reduce the ZEN-induced increase of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities. GSPE also significantly decreased the content of MDA but enhanced the activities of antioxidant enzymes SOD and GSH-Px. The analysis indicated that ZEN decreased both mRNA expression levels and protein expression levels of nuclear erythroid2-related factor2 (Nrf2). Nrf2 is considered to be an essential antioxidative transcription factor, as downstream GSH-Px, γ-glutamyl cysteine synthetase (γ-GCS), hemeoxygenase-1 (HO-1), and quinone oxidoreductase 1 (NQO1) decreased simultaneously, whereas the pre-administration of GSPE groups was shown to elevate these expressions. The results indicated that GSPE exerted a protective effect on ZEN-induced hepatic injury and the mechanism might be related to the activation of the Nrf2/ARE signaling pathway. PMID:27231898

  7. Supplementation of T3 Recovers Hypothyroid Rat Liver Cells from Oxidatively Damaged Inner Mitochondrial Membrane Leading to Apoptosis

    PubMed Central

    Mukherjee, Sutapa; Samanta, Luna; Roy, Anita; Bhanja, Shravani; Chainy, Gagan B. N.

    2014-01-01

    Hypothyroidism is a growing medical concern. There are conflicting reports regarding the mechanism of oxidative stress in hypothyroidism. Mitochondrial oxidative stress is pivotal to thyroid dysfunction. The present study aimed to delineate the effects of hepatic inner mitochondrial membrane dysfunction as a consequence of 6-n-propyl-2-thiouracil-induced hypothyroidism in rats. Increased oxidative stress predominance in the submitochondrial particles (SMP) and altered antioxidant defenses in the mitochondrial matrix fraction correlated with hepatocyte apoptosis. In order to check whether the effects caused by hypothyroidism are reversed by T3, the above parameters were evaluated in a subset of T3-treated hypothyroid rats. Complex I activity was inhibited in hypothyroid SMP, whereas T3 supplementation upregulated electron transport chain complexes. Higher mitochondrial H2O2 levels in hypothyroidism due to reduced matrix GPx activity culminated in severe oxidative damage to membrane lipids. SMP and matrix proteins were stabilised in hypothyroidism but exhibited increased carbonylation after T3 administration. Glutathione content was higher in both. Hepatocyte apoptosis was evident in hypothyroid liver sections; T3 administration, on the other hand, exerted antiapoptotic and proproliferative effects. Hence, thyroid hormone level critically regulates functional integrity of hepatic mitochondria; hypothyroidism injures mitochondrial membrane lipids leading to hepatocyte apoptosis, which is substantially recovered upon T3 supplementation. PMID:24987693

  8. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    SciTech Connect

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.

  9. Inhibition of the translocation and extracellular release of high-mobility group box 1 alleviates liver damage in fibrotic mice in response to D-galactosamine/lipopolysaccharide challenge

    PubMed Central

    BAI, LI; KONG, MING; ZHENG, QINGFEN; ZHANG, XIAOHUI; LIU, XIN; ZU, KEJIA; CHEN, YU; ZHENG, SUJUN; LI, JUNFENG; REN, FENG; LOU, JINLI; LIU, SHUANG; DUAN, ZHONGPING

    2016-01-01

    Acute liver injury in the setting of fibrosis is an area of interest in investigations, and remains to be fully elucidated. Previous studies have suggested the beneficial effects of liver fibrosis induced by thioacetamide and partial bile duct ligation against Fas-mediated acute liver injury. The activation of AKT and extracellular signal-regulated kinase signaling is considered to be crucial in this hepatoprotection. To demonstrate the protection of CCl4-induced liver fibrosis against lethal challenge, the present study compared the reactivity to lethal doses of D-galactosamine (D-GalN)/lipopolysaccharide (LPS) between fibrotic mice and control mice groups. The extent of hepatic damage was assessed by survival rate and histopathological analysis. The molecular basis of the fibrosis-based hepatoprotection was examined, with a particular focus on the translocation and release of high-mobility group box (HMGB)1 and the inflammatory response triggered by HMGB1. Hepatoprotection induced by fibrosis was demonstrated by improved survival rates (100%, vs. 20%) and improved preservation of liver architecture in fibrotic mice subjected to D-GalN/LPS, compared with control mice treated in the same way. D-GalN/LPS evoked the translocation and release of HMGB1, detected by immunohistochemistry, in the control mice, which was significantly inhibited in the fibrotic mice. The gene expression levels of HMGB1-associated proinflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α and IL-12p40, were markedly inhibited in the fibrotic mice when exposed to D-GalN/LPS. These findings confirmed that CCl4-based fibrosis induced hepatoprotection, and provided evidence that fibrosis inhibited the translocation and release of HMGB1, and the proinflammatory response triggered by HMGB1. This alleviated liver damage following exposure to D-GalN/LPS challenge. PMID:27035642

  10. Effects of freshwater clam extract supplementation on time to exhaustion, muscle damage, pro/anti-inflammatory cytokines, and liver injury in rats after exhaustive exercise.

    PubMed

    Huang, Kuo-Chin; Wu, Wen-Tien; Yang, Fwu-Lin; Chiu, Yi-Han; Peng, Tai-Chu; Hsu, Bang-Gee; Liao, Kuang-Wen; Lee, Ru-Ping

    2013-01-01

    The potent anti-inflammatory activities and tissue-protective effects of freshwater clams (Corbicula fluminea) have been well reported. The aim of this study was to determine the effects of freshwater clam extract (FCE) supplementation on time to exhaustion, muscle damage, pro- and anti-inflammatory cytokines, and liver injury in rats after exhaustive exercise. Thirty-two rats were divided into four groups: sedentary control (SC); SC group with FCE supplementation (SC+FCE); exhaustive exercise (E); and E group with FCE supplementation (E+FCE). The SC+FCE and E+FCE groups were treated with gavage administration of 20 mg/kg for seven consecutive days. Blood samples were collected for the evaluation of biochemical parameters. The cytokine levels of TNF-α and IL-10 were also examined. Twenty-four hours after exhaustive exercise, the rat livers were removed for H & E staining. The FCE supplementation could extend the time to exhaustion in exercised rats. The levels of CPK, LDH, AST, ALT, lactate, TNF-α and H & E stains of the liver injury were significantly decreased in the E+FCE group, but the blood glucose and IL-10 were significantly higher in comparison with the E group. This study suggests that FCE supplementation may improve endurance performance and reduce exercise-induced muscle damage, inflammatory stress and liver injury. PMID:23531600

  11. A newly developed hydroxyl radical scavenger, EPC-K1 can improve the survival of swine warm ischemia-damaged transplanted liver grafts.

    PubMed

    Yagi, T; Sakagami, K; Nakagawa, H; Takaishi, Y; Orita, K

    1992-01-01

    Using a swine orthotopic liver transplantation (SOLTx) model, we assessed the effect of a new hydroxyl radical scavenger EPC-K1 on warm ischemic damage of the liver graft and recipient survival. Animals were divided into 5 groups. The first group (control group 1) consisted of 5 pigs which were not operated on but served as controls for the indocianine green disappearance rate (K-ICG) determinations. In the second group (control group 2), 10 livers were transplanted without warm ischemia (WI) and the K-ICG values were measured. The third group (control group 3) was the main control group for the study groups and consisted of 5 liver transplants with 30 min of WI without any special treatment. The fourth and fifth groups served as study groups 1 and 2. Five transplants were carried out in each group, as in control group 3. In study group 1 recipients were treated with an additional 5 mg/kg i.v. EPC-K1 and in study group 2 with 20 mg/kg i.v. EPC-K1. Significant improvement in glutamic oxaloacetic transaminase (GOT) and lactate dehydrogenase (LDH) levels, K-ICG values and histological findings were observed in the EPC-K1 treated groups. The intravenous administration of this agent had a strong protective effect on warm ischemic damage after 30 min of WI and could significantly prolong the graft and recipient survival. PMID:14621836

  12. Ethanolic Extract of Acanthopanax koreanum Nakai Alleviates Alcoholic Liver Damage Combined with a High-Fat Diet in C57BL/6J Mice.

    PubMed

    Kim, Haein; Park, Minyoung; Shin, Jae-Ho; Kwon, Oran

    2016-01-01

    Alcoholic and nonalcoholic liver steatosis have an indistinguishable spectrum of histological features and liver enzyme elevations. In this study, we investigated the potential of the ethanolic extract of Acanthopanax koreanum Nakai (AK) to protect against experimental alcoholic liver disease in a mouse model that couples diet and daily ethanol bolus gavage. Fifty-six C57BL/6J mice were randomly divided into seven groups: normal control (NC), alcohol control (AC), alcohol/HFD control (AH), low-dose (1%) AK in alcohol group (ACL), high-dose (3%) AK in alcohol group (ACH), low-dose AK in alcohol/HFD group (AHL), and high-dose AK in alcohol/HFD group (AHH). The AH group showed more severe damage than the AC group in terms of biochemical and molecular data that were observed in this study. The administration of AK exerted remarkable effects in: plasma ALT (p < 0.0001), total lipid (p = 0.014), TG (p = 0.0037) levels; CPT-1α (p = 0.0197), TLR4 (p < 0.0001), CD14 (p = 0.0002), IL-6 (p = 0.0264) and MCP-1 (p = 0.0045) gene expressions; and ALDH (p < 0.0001) and CAT (p = 0.0076) activities. The data suggested that at least the high dose AK might confer protection against alcoholic liver damage combined with an HFD by accelerating lipid oxidation and alcohol metabolism and by suppressing the inflammatory response, including the TLR pathway. PMID:27231887

  13. Loss of vascular fibrinolytic activity following irradiation of the liver--an aspect of late radiation damage

    SciTech Connect

    Henderson, B.W.; Bicher, H.I.; Johnson, R.J.

    1983-09-01

    The vascular fibrinolytic activity, known to originate from the endothelium, was studied histochemically by fibrinolysis autography in liver samples from beagles exposed to radiation treatment. Eighteen to thirty months prior to sacrifice, six dogs received X irradiation (4600 rad in 5 weeks) and three dogs received X irradiation plus aspirin (1 g/kg). Two dogs served as untreated controls. Control livers showed extensive fibrinolytic activity related to large and small vascular structures. The vascular fibrinolytic activity had been lost from all vessels except the major portal branches in five irradiated livers and was severely diminished in three. One irradiated liver appeared to possess normal fibrinolytic activity.

  14. Relationship between DNA damage in liver, heart, spleen and total blood cells and disease pathogenesis of infected rats by Trypanosoma evansi.

    PubMed

    Baldissera, Matheus D; Sagrillo, Michele R; de Sá, Mariângela F; Grando, Thirssa H; Souza, Carine F; de Brum, Gerson F; da Luz, Sônia C A; Oliveira, Sérgio S; De Mello, Adriana L B; Nascimento, Kátia; Tatsch, Etiane; Moresco, Rafael N; da Silva, Aleksandro S; Monteiro, Silvia G

    2016-02-01

    Trypanosoma evansi is an important pathogen that causes changes in nitric oxide (NO) levels and antioxidant enzymes, as well as oxidative stress. The present study evaluated the in vivo effect of T. evansi infection on frequency and index of DNA damage in liver, heart, spleen and total blood of rats. Twenty rats were assigned into two groups with ten rats each, being subdivided into four subgroups (A1 and A2, 5 animals/group; and B1 and B2, 5 animals/group). Rats in the subgroups A1 and A2 were used as control (uninfected) and animals in the subgroups B1 and B2 were inoculated with T. evansi (infected). NO in serum and the comet assay were used to measure DNA damage index (DI) and damage frequency (DF) in liver, heart, spleen and total blood of infected rats. Increased NO levels on days 3 and 9 post-infection (PI) was observed (P < 0.001). Also, it was verified an increase on DI and DF in the evaluated organs on days 3 and 9 PI (P < 0.001). Our data show that T. evansi infection causes genotoxicity due to the production of NO, causing not only the death of the protozoan, but also inducing DNA damage in the host. PMID:26704663

  15. Liver-Specific Deletion of Phosphatase and Tensin Homolog Deleted on Chromosome 10 Significantly Ameliorates Chronic EtOH-Induced Increases in Hepatocellular Damage.

    PubMed

    Shearn, Colin T; Orlicky, David J; McCullough, Rebecca L; Jiang, Hua; Maclean, Kenneth N; Mercer, Kelly E; Stiles, Bangyan L; Saba, Laura M; Ronis, Martin J; Petersen, Dennis R

    2016-01-01

    Alcoholic liver disease is a significant contributor to global liver failure. In murine models, chronic ethanol consumption dysregulates PTEN/Akt signaling. Hepatospecific deletion of phosphatase and tensin homolog deleted on chromosome 10 (PTENLKO) mice possess constitutive activation of Akt(s) and increased de novo lipogenesis resulting in increased hepatocellular steatosis. This makes PTENLKO a viable model to examine the effects of ethanol in an environment of preexisting steatosis. The aim of this study was to determine the impact of chronic ethanol consumption and the absence of PTEN (PTENLKO) compared to Alb-Cre control mice (PTENf/f) on hepatocellular damage as evidenced by changes in lipid accumulation, protein carbonylation and alanine amino transferase (ALT). In the control PTENf/f animals, ethanol significantly increased ALT, liver triglycerides and steatosis. In contrast, chronic ethanol consumption in PTENLKO mice decreased hepatocellular damage when compared to PTENLKO pair-fed controls. Consumption of ethanol elevated protein carbonylation in PTENf/f animals but had no effect in PTENLKO animals. In PTENLKO mice, overall hepatic mRNA expression of genes that contribute to GSH homeostasis as well as reduced glutathione (GSH) and oxidized glutathione (GSSG) concentrations were significantly elevated compared to respective PTENf/f counterparts. These data indicate that during conditions of constitutive Akt activation and steatosis, increased GSH homeostasis assists in mitigation of ethanol-dependent induction of oxidative stress and hepatocellular damage. Furthermore, data herein suggest a divergence in EtOH-induced hepatocellular damage and increases in steatosis due to polyunsaturated fatty acids downstream of PTEN. PMID:27124661

  16. Liver-Specific Deletion of Phosphatase and Tensin Homolog Deleted on Chromosome 10 Significantly Ameliorates Chronic EtOH-Induced Increases in Hepatocellular Damage

    PubMed Central

    Orlicky, David J.; McCullough, Rebecca L.; Jiang, Hua; Maclean, Kenneth N.; Mercer, Kelly E.; Stiles, Bangyan L.; Saba, Laura M.; Ronis, Martin J.; Petersen, Dennis R.

    2016-01-01

    Alcoholic liver disease is a significant contributor to global liver failure. In murine models, chronic ethanol consumption dysregulates PTEN/Akt signaling. Hepatospecific deletion of phosphatase and tensin homolog deleted on chromosome 10 (PTENLKO) mice possess constitutive activation of Akt(s) and increased de novo lipogenesis resulting in increased hepatocellular steatosis. This makes PTENLKO a viable model to examine the effects of ethanol in an environment of preexisting steatosis. The aim of this study was to determine the impact of chronic ethanol consumption and the absence of PTEN (PTENLKO) compared to Alb-Cre control mice (PTENf/f) on hepatocellular damage as evidenced by changes in lipid accumulation, protein carbonylation and alanine amino transferase (ALT). In the control PTENf/f animals, ethanol significantly increased ALT, liver triglycerides and steatosis. In contrast, chronic ethanol consumption in PTENLKO mice decreased hepatocellular damage when compared to PTENLKO pair-fed controls. Consumption of ethanol elevated protein carbonylation in PTENf/f animals but had no effect in PTENLKO animals. In PTENLKO mice, overall hepatic mRNA expression of genes that contribute to GSH homeostasis as well as reduced glutathione (GSH) and oxidized glutathione (GSSG) concentrations were significantly elevated compared to respective PTENf/f counterparts. These data indicate that during conditions of constitutive Akt activation and steatosis, increased GSH homeostasis assists in mitigation of ethanol-dependent induction of oxidative stress and hepatocellular damage. Furthermore, data herein suggest a divergence in EtOH-induced hepatocellular damage and increases in steatosis due to polyunsaturated fatty acids downstream of PTEN. PMID:27124661

  17. Maize Purple Plant Pigment Protects Against Fluoride-Induced Oxidative Damage of Liver and Kidney in Rats

    PubMed Central

    Zhang, Zhuo; Zhou, Bo; Wang, Hiaohong; Wang, Fei; Song, Yingli; Liu, Shengnan; Xi, Shuhua

    2014-01-01

    Anthocyanins are polyphenols and well known for their biological antioxidative benefits. Maize purple plant pigment (MPPP) extracted and separated from maize purple plant is rich in anthocyanins. In the present study, MPPP was used to alleviate the adverse effects generated by fluoride on liver and kidney in rats. The results showed that the ultrastructure of the liver and kidney in fluoride treated rats displayed shrinkage of nuclear and cell volume, swollen mitochondria and endoplasmic reticulum and vacuols formation in the liver and kidney cells. MPPP significantly attenuated these fluoride-induced pathological changes. The MDA levels in serum and liver tissue of fluoride alone treated group were significantly higher than those of the control group (p < 0.05). The presence of 5 g/kg MPPP in the diet reduced the elevation of MDA levels in blood and liver, and increased the SOD and GSH-Px activities in kidney and GSH level in liver and kidney compared with the fluoride alone treated group (p < 0.05). In addition, MPPP alleviated the decrease of Bcl-2 protein expression and the increase of Bax protein expression induced by fluoride. This study demonstrated the protective role of MPPP against fluoride-induced oxidative stress in liver and kidney of rats. PMID:24419046

  18. Protective activity of Panduratin A against Thioacetamide-induced oxidative damage: demonstration with in vitro experiments using WRL-68 liver cell line

    PubMed Central

    2013-01-01

    Background Chalcone Panduratin A (PA) has been known for its antioxidant property, but its merits against oxidative damage in liver cells has yet to be investigated. Hence, the paper aimed at accomplishing this task with normal embryonic cell line WRL-68. Methods PA was isolated from Boesenbergia rotunda rhizomes and its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and ferric reducing power (FRAP) activities were measured in comparison with that of the standard reference drug Silymarin (SI). Oxidative damage was induced by treating the cells with 0.04 g/ml of toxic thioacetamide for 60 minutes followed by treatment with 1, 10 and 100 μg/ml concentrations of either PA or SI. The severities of oxidative stress in the control and experimental groups of cells were measured by Malondialdehyde (MDA) levels, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. Results PA exhibited an acceptable DPPH scavenging and FRAP activities close to that of Silymarin. Treating the injured cells with PA significantly reduced the MDA level and increased the cell viability, comparable to SI. The activities of SOD, CAT and GPx were significantly elevated in the PA-treated cells in a dose dependent manner and again similar to SI. Conclusion Collectively, data suggested that PA has capacity to protect normal liver cells from oxidative damage, most likely via its antioxidant scavenging ability. PMID:24156366

  19. Kupffer Cells Undergo Fundamental Changes during the Development of Experimental NASH and Are Critical in Initiating Liver Damage and Inflammation.

    PubMed

    Reid, D T; Reyes, J L; McDonald, B A; Vo, T; Reimer, R A; Eksteen, B

    2016-01-01

    Non-alcoholic fatty liver disease has become the leading liver disease in North America and is associated with the progressive inflammatory liver disease non-alcoholic steatohepatitis (NASH). Considerable effort has been made to understand the role of resident and recruited macrophage populations in NASH however numerous questions remain. Our goal was to characterize the dynamic changes in liver macrophages during the initiation of NASH in a murine model. Using the methionine-choline deficient diet we found that liver-resident macrophages, Kupffer cells were lost early in disease onset followed by a robust infiltration of Ly-6C+ monocyte-derived macrophages that retained a dynamic phenotype. Genetic profiling revealed distinct patterns of inflammatory gene expression between macrophage subsets. Only early depletion of liver macrophages using liposomal clodronate prevented the development of NASH in mice suggesting that Kupffer cells are critical for the orchestration of inflammation during experimental NASH. Increased understanding of these dynamics may allow us to target potentially harmful populations whilst promoting anti-inflammatory or restorative populations to ultimately guide the development of effective treatment strategies. PMID:27454866

  20. Kupffer Cells Undergo Fundamental Changes during the Development of Experimental NASH and Are Critical in Initiating Liver Damage and Inflammation

    PubMed Central

    Reid, D. T.; Reyes, J. L.; McDonald, B. A.; Vo, T.; Reimer, R. A.; Eksteen, B.

    2016-01-01

    Non-alcoholic fatty liver disease has become the leading liver disease in North America and is associated with the progressive inflammatory liver disease non-alcoholic steatohepatitis (NASH). Considerable effort has been made to understand the role of resident and recruited macrophage populations in NASH however numerous questions remain. Our goal was to characterize the dynamic changes in liver macrophages during the initiation of NASH in a murine model. Using the methionine-choline deficient diet we found that liver-resident macrophages, Kupffer cells were lost early in disease onset followed by a robust infiltration of Ly-6C+ monocyte-derived macrophages that retained a dynamic phenotype. Genetic profiling revealed distinct patterns of inflammatory gene expression between macrophage subsets. Only early depletion of liver macrophages using liposomal clodronate prevented the development of NASH in mice suggesting that Kupffer cells are critical for the orchestration of inflammation during experimental NASH. Increased understanding of these dynamics may allow us to target potentially harmful populations whilst promoting anti-inflammatory or restorative populations to ultimately guide the development of effective treatment strategies. PMID:27454866

  1. Hispolon Protects against Acute Liver Damage in the Rat by Inhibiting Lipid Peroxidation, Proinflammatory Cytokine, and Oxidative Stress and Downregulating the Expressions of iNOS, COX-2, and MMP-9

    PubMed Central

    Huang, Guan-Jhong; Deng, Jeng-Shyan; Chiu, Chuan-Sung; Liao, Jung-Chun; Hsieh, Wen-Tsong; Sheu, Ming-Jyh; Wu, Chieh-Hsi

    2012-01-01

    The hepatoprotective potential of hispolon against carbon tetrachloride (CCl4)-induced liver damage was evaluated in preventive models in rats. Male rats were intraperitoneally treated with hispolon or silymarin once daily for 7 consecutive days. One hour after the final hispolon or silymarin treatment, the rats were injected with CCl4. Administration with hispolon or silymarin significantly decreased the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in serum and increased the activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione (GSH) content and decreased the malondialdehyde (MDA) content in liver compared with CCl4-treated group. Liver histopathology also showed that hispolon reduced the incidence of liver lesions induced by CCl4. In addition, hispolon decreased nitric oxide (NO) production and tumor necrosis factor (TNF-α), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) activation in CCl4-treated rats. We also examined the involvement of matrix metalloproteinase (MMP)-9 in the development of CCl4-induced liver damage in rats. Hispolon inhibited the expression of MMP-9 protein, indicating that MMP-9 played an important role in the development of CCl4-induced rat liver damage. Therefore, we speculate that hispolon protects rats from liver damage through their prophylactic redox balancing ability and anti-inflammation capacity. PMID:22013489

  2. Protective Effects of Crocus Sativus L. Extract and Crocin against Chronic-Stress Induced Oxidative Damage of Brain, Liver and Kidneys in Rats

    PubMed Central

    Bandegi, Ahmad Reza; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Ghadrdoost, Behshid

    2014-01-01

    Purpose: Chronic stress has been reported to induce oxidative damage of the brain. A few studies have shown that Crocus Sativus L., commonly known as saffron and its active constituent crocin may have a protective effect against oxidative stress. The present work was designed to study the protective effects of saffron extract and crocin on chronic – stress induced oxidative stress damage of the brain, liver and kidneys. Methods: Rats were injected with a daily dose of saffron extract (30 mg/kg, IP) or crocin (30 mg/kg, IP) during a period of 21 days following chronic restraint stress (6 h/day). In order to determine the changes of the oxidative stress parameters following chronic stress, the levels of the lipid peroxidation product, malondialdehyde (MDA), the total antioxidant reactivity (TAR), as well as antioxidant enzyme activities glutathione peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase (SOD) were measured in the brain, liver and kidneys tissues after the end of chronic stress. Results: In the stressed animals that receiving of saline, levels of MDA, and the activities of GPx, GR, and SOD were significantly higher (P<0.0001) and the TAR capacity were significantly lower than those of the non-stressed animals (P<0.0001). Both saffron extract and crocin were able to reverse these changes in the stressed animals as compared with the control groups (P<0.05). Conclusion: These observations indicate that saffron and its active constituent crocin can prevent chronic stress–induced oxidative stress damage of the brain, liver and kidneys and suggest that these substances may be useful against oxidative stress. PMID:25671180

  3. Fluoride-induced oxidative stress is involved in the morphological damage and dysfunction of liver in female mice.

    PubMed

    Zhou, Bian-hua; Zhao, Jing; Liu, Jeffrey; Zhang, Ji-liang; Li, Jian; Wang, Hong-wei

    2015-11-01

    Fluoride (F), one of the most toxic environmental and industrial pollutants, is known to exert hepatotoxicity. The contribution of oxidative stress to the F tolerance of liver remains largely unknown. In this study, the morphological and ultrastructural characteristics of liver were observed using hematoxylin and eosin staining and transmission electron microscopy (TEM), respectively. Oxidative-stress participations was analysed and the mRNA expression levels of catalase (Cat), glutathione peroxidase 1 (GSH-Px1), nitric oxide synthase 2 (NOS2), and superoxide dismutase 1 (SOD1) were investigated by real-time PCR. Changes in liver-function parameters were also detected. Results showed that the reactive content of reactive oxygen species increased significantly, whereas SOD and GSH-Px activities, as well as total anti-oxidising capability (T-AOC), decreased significantly, with increased nitric oxide (NO) and malondialdehyde (MDA) contents in liver and serum after 70days of F treatment. The mRNA expression levels of Cat, GSH-Px1, and SOD were significantly downregulated, whereas NOS2 mRNA expression level was up upregulated, after F treatment for 70days. Light microscopy also revealed that hepatocytes were fused into pieces; cell boundaries were unclear, and nuclei were lightly stained. TEM further showed that hepatocytes were characterised by vague nuclear and mitochondrial membranes, dilated endoplasmic reticulum, and aggravated vacuolar degeneration. Activities of alanine transaminase, aspartate aminotransferase, alkaline phosphatase and lactate dehydrogenase, as well as the level of total bilirubin in serum increased. Overall, these results indicated that F interfered with the balance of antioxidase activity and morphological changes in liver, which were involved in mouse liver dysfunction. PMID:26295688

  4. Plasma glutathione S-transferase and F protein are more sensitive than alanine aminotransferase as markers of paracetamol (acetaminophen)-induced liver damage.

    PubMed

    Beckett, G J; Foster, G R; Hussey, A J; Oliveira, D B; Donovan, J W; Prescott, L F; Proudfoot, A T

    1989-11-01

    Concentrations of glutathione S-transferase (GST; glutathione transferase; EC 2.5.1.18) B1 subunits, F protein, and the activity of alanine aminotransferase (ALT; EC 2.6.1.2) were measured in sequential plasma samples taken from nine patients with self-administered paracetamol (acetaminophen) poisoning. GST exceeded the reference interval in all patients at the time of admission, and F protein was increased in seven. In contrast, abnormal activities of ALT in plasma were found in only one of the nine on admission, a patient admitted 12 h after poisoning. Subsequent to admission nine, eight, and five patients, respectively, had abnormal concentrations of GST, F protein, and ALT. When expressed as multiples of the upper reference limit, the highest values for GST measured in each patient always far exceeded the greatest abnormalities in ALT; this was true for F protein in only five patients. Patients in whom the concentration of GST exceeded 10 micrograms/L on admission subsequently went on to develop moderate or severe liver damage, despite treatment with N-acetylcysteine. F protein and ALT measurements on admission were not as efficient as GST at predicting the clinical outcome of the patients. We conclude that GST and F protein offer clear advantages over ALT for detecting minor degrees of acute liver dysfunction, particularly when only centrilobular damage may be involved. PMID:2582614

  5. Differences in DNA damage and repair produced by systemic, hepatocarcinogenic and sarcomagenic dibenzocarbazole derivatives in a model of rat liver progenitor cells.

    PubMed

    Valovicová, Zuzana; Marvanová, Sona; Mészárosová, Monika; Srancíková, Annamária; Trilecová, Lenka; Milcová, Alena; Líbalová, Helena; Vondrácek, Jan; Machala, Miroslav; Topinka, Jan; Gábelová, Alena

    2009-06-01

    Liver progenitor (oval) cells are a potential target cell population for hepatocarcinogens. Our recent study showed that the liver carcinogens 7H-dibenzo[c,g]carbazole (DBC) and 5,9-dimethyldibenzo[c,g]carbazole (DiMeDBC), but not the sarcomagen N-methyldibenzo[c,g]carbazole (N-MeDBC), induced several cellular events associated with tumor promotion in WB-F344 cells, an in vitro model of liver oval cells [J. Vondracek, L. Svihalkova-Sindlerova, K. Pencikova, P. Krcmar, Z. Andrysik, K. Chramostova, S. Marvanova, Z. Valovicova, A. Kozubik, A. Gabelova, M. Machala, 7H-Dibenzo[c,g]carbazole and 5,9-dimethyldibenzo[c,g]carbazole exert multiple toxic events contributing to tumor promotion in rat liver epithelial 'stem-like' cells, Mutat. Res. Fundam. Mol. Mech. Mutagen. 596 (2006) 43-56]. In this study, we focused on the genotoxic effects generated by these dibenzocarbazoles in WB-F344 cells to better understand the cellular and molecular mechanisms involved in hepatocarcinogenesis. Lower IC(50) values determined for DBC and DiMeDBC, as compared with N-MeDBC, indicated a higher sensitivity of WB-F344 cells towards hepatocarcinogens. Accordingly, DBC produced a dose-dependent DNA-adduct formation resulting in substantial inhibition of DNA replication and transcription. In contrast, DNA-adduct number detected in DiMeDBC-exposed cells was almost negligible, whereas N-MeDBC produced a low level of DNA adducts. Although all dibenzocarbazoles significantly increased the level of strand breaks (p<0.05) and micronuclei (p<0.001) after 2-h treatment, differences in the kinetics of strand break rejoining were found. The strand break level in DiMeDBC- and N-MeDBC-exposed cells returned to near the background level within 24h after treatment, whereas a relatively high DNA damage level was detected in DBC-treated cells up to 48h after exposure. Additional breaks detected after incubation of DiMeDBC-exposed WB-F344 cells with a repair-specific endonuclease, along with a nearly 3-fold

  6. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DNA damage in rats.

    PubMed

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. PMID:23999541

  7. 6-Gingerol-Rich Fraction from Zingiber officinale Prevents Hematotoxicity and Oxidative Damage in Kidney and Liver of Rats Exposed to Carbendazim.

    PubMed

    Salihu, Mariama; Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O

    2016-07-01

    Ginger (Zingiber officinale) is a globally marketed flavoring agent and cooking spice with a long history of human health benefits. The fungicide carbendazim (CBZ) is often detected in fruits and vegetables for human nutrition and has been reported to elicit toxic effects in different experimental animal models. The present study investigated the protective effects of 6-Gingerol-rich fraction (6-GRF) from ginger on hematotoxicity and hepatorenal damage in rats exposed to CBZ. CBZ was administered at a dose of 50 mg/kg alone or simultaneously administered with 6-GRF at 50, 100, and 200 mg/kg, whereas control rats received corn oil alone at 2 mL/kg for 14 days. Hematological examination showed that CBZ-mediated toxicity to the total white blood cell (WBC), neutrophils, lymphocytes, and platelets counts were normalized to the control values in rats cotreated with 6-GRF. Moreover, administration of CBZ significantly decreased the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase as well as glutathione level in the livers and kidneys of rats compared with control. However, the levels of hydrogen peroxide (H2O2) and malondialdehyde were markedly elevated in kidneys and livers of CBZ-treated rats compared with control. The significant elevation in the plasma indices of renal and hepatic dysfunction in CBZ-treated rats was confirmed by light microscopy. Coadministration of 6-GRF exhibited chemoprotection against CBZ-mediated hematotoxicity, augmented antioxidant status, and prevented oxidative damage in the kidney and liver of rats. PMID:26673969

  8. New therapeutic aspect for carvedilol: Antifibrotic effects of carvedilol in chronic carbon tetrachloride-induced liver damage

    SciTech Connect

    Hamdy, Nadia; El-Demerdash, Ebtehal

    2012-06-15

    Portal hypertension is a common complication of chronic liver diseases associated with liver fibrosis and cirrhosis. At present, beta-blockers such as carvedilol remain the medical treatment of choice for protection against variceal bleeding and other complications. Since carvedilol has powerful antioxidant properties we assessed the potential antifibrotic effects of carvedilol and the underlying mechanisms that may add further benefits for its clinical usefulness using a chronic model of carbon tetrachloride (CCl4)-induced hepatotoxicity. Two weeks after CCl4 induction of chronic hepatotoxicity, rats were co-treated with carvedilol (10 mg/kg, orally) daily for 6 weeks. It was found that treatment of animals with carvedilol significantly counteracted the changes in liver function and histopathological lesions induced by CCl4. Also, carvedilol significantly counteracted lipid peroxidation, GSH depletion, and reduction in antioxidant enzyme activities; glutathione-S-transferase and catalase that was induced by CCl4. In addition, carvedilol ameliorated the inflammation induced by CCl4 as indicated by reducing the serum level of acute phase protein marker; alpha-2-macroglobulin and the liver expression of nuclear factor-kappa B (NF-κB). Finally, carvedilol significantly reduced liver fibrosis markers including hydroxyproline, collagen accumulation, and the expression of the hepatic stellate cell (HSC) activation marker; alpha smooth muscle actin. In conclusion, the present study provides evidences for the promising antifibrotic effects of carvedilol that can be explained by amelioration of oxidative stress through mainly, replenishment of GSH, restoration of antioxidant enzyme activities and reduction of lipid peroxides as well as amelioration of inflammation and fibrosis by decreasing collagen accumulation, acute phase protein level, NF-κB expression and finally HSC activation. -- Highlights: ► Carvedilol is a beta blocker with antioxidant and antifibrotic

  9. Dietary supplementation of pyrroloquinoline quinone disodium protects against oxidative stress and liver damage in laying hens fed an oxidized sunflower oil-added diet.

    PubMed

    Wang, J; Zhang, H J; Xu, L; Long, C; Samuel, K G; Yue, H Y; Sun, L L; Wu, S G; Qi, G H

    2016-07-01

    and tail moment to the basal levels in fresh oil diet. These results indicate that PQQ.Na2 is a potential antioxidant and is as effective against oxidized oil-related liver injury in laying hens as vitamin E. The protective effects of PQQ.Na2 against liver damage induced by oxidized oil may be partially due to its role in the scavenging of free radicals, inhibiting of lipid peroxidation and enhancing of antioxidant defense systems. PMID:26837542

  10. Evaluation of Oxidative DNA Damage Using an Alkaline Single Cell Gel Electrophoresis (SCGE) Comet Assay, and the Protective Effects of N-Acetylcysteine Amide on Zearalenone-induced Cytotoxicity in Chang Liver Cells.

    PubMed

    Kang, Changgeun; Lee, Hyungkyoung; Yoo, Yong-San; Hah, Do-Yun; Kim, Chung Hui; Kim, Euikyung; Kim, Jong Shu

    2013-03-01

    Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by several species of Fusarium that are found in cereals and agricultural products. ZEN has been implicated in mycotoxicosis in farm animals and in humans. The toxic effects of ZEN are well known, but the ability of an alkaline Comet assay to assess ZEN-induced oxidative DNA damage in Chang liver cells has not been established. The first aim of this study was to evaluate the Comet assay for the determination of cytotoxicity and extent of DNA damage induced by ZEN toxin, and the second aim was to investigate the ability of N-acetylcysteine amide (NACA) to protect cells from ZEN-induced toxicity. In the Comet assay, DNA damage was assessed by quantifying the tail extent moment (TEM; arbitrary unit) and tail length (TL; arbitrary unit), which are used as indicators of DNA strand breaks in SCGE. The cytotoxic effects of ZEN in Chang liver cells were mediated by inhibition of cell proliferation and induction of oxidative DNA damage. Increasing the concentration of ZEN increased the extent of DNA damage. The extent of DNA migration, and percentage of cells with tails were significantly increased in a concentration-dependent manner following treatment with ZEN toxin (p < 0.05). Treatment with a low concentration of ZEN toxin (25 μM) induced a relatively low level of DNA damage, compared to treatment of cells with a high concentration of ZEN toxin (250 μM). Oxidative DNA damage appeared to be a key determinant of ZEN-induced toxicity in Chang liver cells. Significant reductions in cytolethality and oxidative DNA damage were observed when cells were pretreated with NACA prior to exposure to any concentration of ZEN. Our data suggest that ZEN induces DNA damage in Chang liver cells, and that the antioxidant activity of NACA may contribute to the reduction of ZEN-induced DNA damage and cytotoxicity via elimination of oxidative stress. PMID:24278628

  11. Free Radical-Scavenging, Anti-Inflammatory/Anti-Fibrotic and Hepatoprotective Actions of Taurine and Silymarin against CCl4 Induced Rat Liver Damage

    PubMed Central

    Abdel-Moneim, Ashraf M.; Al-Kahtani, Mohammed A.; El-Kersh, Mohamed A.; Al-Omair, Mohammed A.

    2015-01-01

    The present study aims to investigate the hepatoprotective effect of taurine (TAU) alone or in combination with silymarin (SIL) on CCl4-induced liver damage. Twenty five male rats were randomized into 5 groups: normal control (vehicle treated), toxin control (CCl4 treated), CCl4+TAU, CCl4+SIL and CCl4+TAU+SIL. CCl4 provoked significant increases in the levels of hepatic TBARS, NO and NOS compared to control group, but the levels of endogenous antioxidants such as SOD, GPx, GR, GST and GSH were significantly decreased. Serum pro-inflammatory and fibrogenic cytokines including TNF-α, TGF-β1, IL-6, leptin and resistin were increased while the anti-inflammatory (adiponectin) cytokine was decreased in all treated rats. Our results also showed that CCl4 induced an increase in liver injury parameters like serum ALT, AST, ALP, GGT and bilirubin. In addition, a significant increase in liver tissue hydroxyproline (a major component of collagen) was detected in rats exposed to CCl4. Moreover, the concentrations of serum TG, TC, HDL-C, LDL-C, VLDL-C and FFA were significantly increased by CCl4. Both TAU and SIL (i.e., antioxidants) post-treatments were effectively able to relieve most of the above mentioned imbalances. However, the combination therapy was more effective than single applications in reducing TBARS levels, NO production, hydroxyproline content in fibrotic liver and the activity of serum GGT. Combined treatment (but not TAU- or SIL-alone) was also able to effectively prevent CCl4-induced decrease in adiponectin serum levels. Of note, the combined post-treatment with TAU+SIL (but not monotherapy) normalized serum FFA in CCl4-treated rats. The biochemical results were confirmed by histological and ultrastructural changes as compared to CCl4-poisoned rats. Therefore, on the basis of our work, TAU may be used in combination with SIL as an additional adjunct therapy to cure liver diseases such as fibrosis, cirrhosis and viral hepatitis. PMID:26659465

  12. Liver damage in primary biliary cirrhosis and accompanied by primary Sjögren's syndrome: a retrospective pilot study

    PubMed Central

    Zhu, Yun; Ma, Xiaolei; Tang, Xiaojun

    2016-01-01

    Introduction Primary biliary cirrhosis (PBC) and primary Sjögren's syndrome (pSS) have been referred to as “generalized autoimmune epithelitis”. Indeed, the pathogenic mechanisms, clinical features, and optimal therapeutic approaches for them are not yet fully defined. Material and methods A retrospective analysis was carried out on clinical data obtained from 302 inpatients newly diagnosed with PBC, pSS, or the coexistence of PBC and SS between May 2011 and December 2014. Forty-two patients with abnormal hepatic function were divided into the PBC group (n = 17), the coexistent group (PBC accompanied by SS, n = 13), and the pSS group (n = 12). Their clinical symptoms, laboratory data, and pathological features were collected and analyzed when they were first diagnosed. The clinical and laboratory data were collected at 0, 1, and 3 months after treatment. Results Of the 42 patients with abnormal liver function, 4 were male and 38 were female patients. Compared with the patients in the PBC group, the patients in the other 2 groups were more likely to have an elevated erythrocyte sedimentation rate (ESR) and serum immunoglobulin G (IgG) levels. Abnormal serum immunoglobulin M levels (IgM) were more frequent in the PBC group. Corticosteroids were effective in normalizing elevated liver enzyme levels in patients with SS and in those with coexistent conditions. Conclusions This pilot study suggests that patients with PBC, pSS, and PBC/SS coexistence and having liver function abnormality share similar symptoms, but have different pathogenesis and prognosis. PMID:27536204

  13. Evaluation of hepatoprotective effect of methanolic extract of Clitoria ternatea (Linn.) flower against acetaminophen-induced liver damage

    PubMed Central

    Nithianantham, Kuppan; Ping, Kwan Yuet; Latha, Lachimanan Yoga; Jothy, Subramanion L; Darah, Ibrahim; Chen, Yeng; Chew, Ai-Lan; Sasidharan, Sreenivasan

    2013-01-01

    Objective To evaluate the hepatoprotective and antioxidant activity of Clitoria ternatea (C. ternatea) flower extract against acetaminophen-induced liver toxicity. Methods The antioxidant property of C. ternatea flower extract was investigated by employing established in vitro antioxidant assay. The C. ternatea flower extract was studied in this work for its hepatoprotective effect against acetaminophen-induced liver toxicity in mice. Activity was measured by monitoring the levels of aspartate aminotransferase, alanine aminotransferase, billirubin and glutathione with histopathological analysis. Results The amount of total phenolics and flavonoids were estimated to be 105.40±2.47 mg/g gallic acid equivalent and 72.21±0.05 mg/g catechin equivalent respectively. The antioxidant activity of C. ternatea flower extract was 68.9% at a concentration of 1 mg/mL and was also concentration dependant, with an IC50 value of 327.00 µg/mL. The results of acetaminophen-induced liver toxicity experiment showed that mice treated with the extract (200 mg/kg) showed a significant decrease in alanine aminotransferase, aspartate aminotransferase, and bilirubin levels, which were all elevated in the paracetamol group (P<0.05). Meanwhile, the level of glutathione was found to be restored in extract treated animals compared to the groups treated with acetaminophen alone (P<0.05). Therapy of extract also showed its protective effect on histopathological alterations and supported the biochemical finding. Conclusion The present work confirmed the hepatoprotective effect of C. ternatea flower against model hepatotoxicant acetaminophen.

  14. Isolation of adult human pluripotent stem cells from mesenchymal cell populations and their application to liver damages.

    PubMed

    Wakao, Shohei; Kitada, Masaaki; Kuroda, Yasumasa; Dezawa, Mari

    2012-01-01

    We have found a novel type of pluripotent stem cells, Multilineage-differentiating stress enduring (Muse) cells that can be isolated from mesenchymal cell populations. Muse cells are characterized by stress tolerance, expression of pluripotency markers, self-renewal, and the ability to differentiate into endodermal-, mesodermal-, and ectodermal-lineage cells from a single cell, demonstrating that they are pluripotent stem cells. They can be isolated as cells positive for stage-specific embryonic antigen-3, a human pluripotent stem cell marker. Here, we introduce the isolation method for Muse cells and the effect of transplantation of these cells on chronic liver diseases. PMID:22167642

  15. Species peculiarities in damage to regulatory systems of murine rodents` liver cells in conditions of slight radioactive contamination

    SciTech Connect

    Kudyasheva, A.G.; Shishkina, L.N.; Zagorskaya, N.G.

    1995-07-01

    Results are given from comparative analysis of the antioxidation activity (AOA) of lipids, composition of phospholipids, and activity of Krebs`-cycle and glycolysis enzymes in the liver of three species of murine rodents caught in the slightly contaminated zone of the accident at the Chernobyl nuclear power plant. Disruptions were found in individual links of the regulation of processes of peroxidation of lipids (POL), as well as depression and discoordination of dehydrogenation process. The sharpest shifts in biochemical and biophysical indices were noted in the more radiosensitive root vole.

  16. Correlation between HIV viral load and aminotransferases as liver damage markers in HIV infected naive patients: a concordance cross-sectional study

    PubMed Central

    Mata-Marín, José Antonio; Gaytán-Martínez, Jesús; Grados-Chavarría, Bernardo Horacio; Fuentes-Allen, José Luis; Arroyo-Anduiza, Carla Ileana; Alfaro-Mejía, Alfredo

    2009-01-01

    Abnormalities in liver function tests could be produced exclusively by direct inflammation in hepatocytes, caused by the human immunodeficiency virus (HIV). Mechanisms by which HIV causes hepatic damage are still unknown. Our aim was to determine the correlation between HIV viral load, and serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) as markers of hepatic damage in HIV naive infected patients. We performed a concordance cross-sectional study. Patients with antiviral treatment experience, hepatotoxic drugs use or co-infection were excluded. We used a Pearson's correlation coefficient to calculate the correlation between aminotransferases serum levels with HIV viral load. We enrolled 59 patients, 50 men and 9 women seen from 2006 to 2008. The mean (± SD) age of our subjects was 34.24 ± 9.5, AST 37.73 ± 29.94 IU/mL, ALT 43.34 ± 42.41 IU/mL, HIV viral load 199,243 ± 292,905 copies/mL, and CD4+ cells count 361 ± 289 cells/mm3. There was a moderately strong, positive correlation between AST serum levels and HIV viral load (r = 0.439, P < 0.001); and a weak correlation between ALT serum levels and HIV viral load (r = 0.276, P = 0.034); after adjusting the confounders in lineal regression model the correlation remained significant. Our results suggest that there is an association between HIV viral load and aminotransferases as markers of hepatic damage; we should improved recognition, diagnosis and potential therapy of hepatic damage in HIV infected patients. PMID:19878552

  17. Correlation between HIV viral load and aminotransferases as liver damage markers in HIV infected naive patients: a concordance cross-sectional study.

    PubMed

    Mata-Marín, José Antonio; Gaytán-Martínez, Jesús; Grados-Chavarría, Bernardo Horacio; Fuentes-Allen, José Luis; Arroyo-Anduiza, Carla Ileana; Alfaro-Mejía, Alfredo

    2009-01-01

    Abnormalities in liver function tests could be produced exclusively by direct inflammation in hepatocytes, caused by the human immunodeficiency virus (HIV). Mechanisms by which HIV causes hepatic damage are still unknown. Our aim was to determine the correlation between HIV viral load, and serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) as markers of hepatic damage in HIV naive infected patients. We performed a concordance cross-sectional study. Patients with antiviral treatment experience, hepatotoxic drugs use or co-infection were excluded. We used a Pearson's correlation coefficient to calculate the correlation between aminotransferases serum levels with HIV viral load. We enrolled 59 patients, 50 men and 9 women seen from 2006 to 2008. The mean (+/- SD) age of our subjects was 34.24 +/- 9.5, AST 37.73 +/- 29.94 IU/mL, ALT 43.34 +/- 42.41 IU/mL, HIV viral load 199,243 +/- 292,905 copies/mL, and CD4+ cells count 361 +/- 289 cells/mm(3). There was a moderately strong, positive correlation between AST serum levels and HIV viral load (r = 0.439, P < 0.001); and a weak correlation between ALT serum levels and HIV viral load (r = 0.276, P = 0.034); after adjusting the confounders in lineal regression model the correlation remained significant. Our results suggest that there is an association between HIV viral load and aminotransferases as markers of hepatic damage; we should improved recognition, diagnosis and potential therapy of hepatic damage in HIV infected patients. PMID:19878552

  18. Short Term Feeding of a High Fat Diet Exerts an Additive Effect on Hepatocellular Damage and Steatosis in Liver-Specific PTEN Knockout Mice

    PubMed Central

    Shearn, Colin T.; Mercer, Kelly E.; Orlicky, David J.; Hennings, Leah; Smathers-McCullough, Rebecca L.; Stiles, Bangyan L.; Ronis, Martin J. J.; Petersen, Dennis R.

    2014-01-01

    Background Hepatospecific deletion of PTEN results in constitutive activation of Akt and increased lipogenesis. In mice, the addition of a high fat diet (HFD) downregulates lipogenesis. The aim of this study was to determine the effects of a HFD on hepatocellular damage induced by deletion of PTEN. Methods 12 Week old male flox/flox hepatospecific PTEN mice (PTENf/f) or Alb-Cre controls were fed a HFD composed of 45% fat-derived calories (from corn oil) or a normal chow. Animals were then analyzed for hepatocellular damage, oxidative stress and expression of enzymes involved in fatty acid metabolism. Results In the Alb-Cre animals, the addition of a HFD resulted in a significant increase in liver triglycerides and altered REDOX capacity as evidenced by increased GPX activity, decreased GST activity and decreased hepatic concentrations of GSSG. In addition, SCD2, ACLY and FASN were all downregulated by the addition of HFD. Furthermore, expression of PPARα and PPARα-dependent proteins Cyp4a and ACSL1 were upregulated. In the PTENf/f mice, HFD resulted in significant increased in ALT, serum triglycerides and decreased REDOX capacity. Although expression of fatty acid synthetic enzymes was elevated in the chow fed PTENf/f group, the addition of HFD resulted in SCD2, ACLY and FASN downregulation. Compared to the Alb-Cre HFD group, expression of PGC1α, PPARα and its downstream targets ACSL and Cyp4a were upregulated in PTENf/f mice. Conclusions These data suggest that during conditions of constitutive Akt activation and increased steatosis, the addition of a HFD enhances hepatocellular damage due to increased CD36 expression and altered REDOX status. In addition, this work indicates HFD-induced hepatocellular damage occurs in part, independently of Akt signaling. PMID:24818992

  19. Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria.

    PubMed

    López-Torres, Mónica; Gredilla, Ricardo; Sanz, Alberto; Barja, Gustavo

    2002-05-01

    The effect of long-term caloric restriction and aging on the rates of mitochondrial H2O2 production and oxygen consumption as well as on oxidative damage to nuclear (nDNA) and mitochondrial DNA (mtDNA) was studied in rat liver tissue. Long-term caloric restriction significantly decreased H2O2 production of rat liver mitochondria (47% reduction) and significantly reduced oxidative damage to mtDNA (46% reduction) with no changes in nDNA. The decrease in ROS production was located at complex I because it only took place with complex I-linked substrates (pyruvate/malate) but not with complex II-linked substrates (succinate). The mechanism responsible for that decrease in ROS production was not a decrease in mitochondrial oxygen consumption because it did not change after long-term restriction. Instead, the caloric restricted mitochondria released less ROS per unit electron flow, due to a decrease in the reduction degree of the complex I generator. On the other hand, increased ROS production with aging in state 3 was observed in succinate-supplemented mitochondria because old control animals were unable to suppress H2O2 production during the energy transition from state 4 to state 3. The levels of 8-oxodG in mtDNA increased with age in old animals and this increase was abolished by caloric restriction. These results support the idea that caloric restriction reduces the aging rate at least in part by decreasing the rate of mitochondrial ROS production and so, the rate of oxidative attack to biological macromolecules like mtDNA. PMID:11978489

  20. Hepatoprotective and Antioxidant Effects of Saponarin, Isolated from Gypsophila trichotoma Wend. on Paracetamol-Induced Liver Damage in Rats

    PubMed Central

    Vitcheva, Vessela; Kondeva-Burdina, Magdalena; Krasteva, Ilina; Manov, Vassil; Mitcheva, Mitka

    2013-01-01

    The hepatoprotective potential of saponarin, isolated from Gypsophila trichotoma, was evaluated in vitro/in vivo using a hepatotoxicity model of paracetamol-induced liver injury. In freshly isolated rat hepatocytes, paracetamol (100 μmol) led to a significant decrease in cell viability, increased LDH leakage, decreased levels of cellular GSH, and elevated MDA quantity. Saponarin (60–0.006 μg/mL) preincubation, however, significantly ameliorated paracetamol-induced hepatotoxicity in a concentration-dependent manner. The beneficial effect of saponarin was also observed in vivo. Rats were challenged with paracetamol alone (600 mg/kg, i.p.) and after 7-day pretreatment with saponarin (80 mg/kg, oral gavage). Paracetamol toxicity was evidenced by increase in MDA quantity and decrease in cell GSH levels and antioxidant defence system. No changes in phase I enzyme activities of AH and EMND and cytochrome P 450 quantity were detected. Saponarin pretreatment resulted in significant increase in cell antioxidant defence system and GSH levels and decrease in lipid peroxidation. The biochemical changes are in good correlation with the histopathological data. Protective activity of saponarin was similar to the activity of positive control silymarin. On the basis of these results, it can be concluded that saponarin exerts antioxidant and hepatoprotective activity against paracetamol liver injury in vitro/in vivo. PMID:23878818

  1. Induction of multiple granulomas in the liver with severe hepatocyte damage by montan wax, a natural food additive, in a 90-day toxicity study in F344 rats.

    PubMed

    Ikeda, Mico; Yamakawa, Keiko; Saoo, Kousuke; Matsuda, Yoko; Hosokawa, Kyoko; Takeuchi, Hijiri; Li, Jia-Qing; Zeng, Yu; Yokohira, Masanao; Imaida, Katsumi

    2008-02-01

    Montan wax is a mineral wax extracted from lignite type coal. It has been registered as a food additive in Japan though there have been no reports of toxicological evaluation, mainly due to the fact that it is considered a natural product. As part of a general safety assessment of montan wax, we have performed a 90-day toxicity study in Fisher 344 (F344) rats. Groups of 10 males and 10 females were given the material at dose levels of 0 (Group 1), 0.56 (Group 2), 1.67 (Group 3), or 5% (Group 4) in the diet for 90 days. During the experiment, there were no remarkable changes in general conditions and no deaths occurred in any group. On hematological examination, Hb, Ht, MCV and MCH were significantly decreased and WBC was significantly increased in all treated rats. On serum biochemical examination, AST and ALT were found to be elevated more than four fold in all treated groups as compared to the respective control group values in both sexes. Furthermore, relative organ weights for the liver, spleen, lung and kidneys were increased in all treated groups of both sexes. Histopathological examination revealed diffuse multiple granulomas in the livers with severe hepatocyte damage and lymphocytic infiltration. Granulomatous lesions were also apparent in the mesenteric lymph nodes in all treated males and females. These findings clearly demonstrate that montan wax, at doses of more than 0.56% in the diet, induces multiple granulomas with severe inflammation in the liver. Because pathological, hematological and serum biochemical changes were observed in the lowest dose group, a no-observed-adverse-effect level (NOAEL) could not be determined in the present study. PMID:17950973

  2. In Vivo Evidence for Alcohol-Induced Neurochemical Changes in Rat Brain Without Protracted Withdrawal, Pronounced Thiamine Deficiency, or Severe Liver Damage

    PubMed Central

    Zahr, Natalie M; Mayer, Dirk; Vinco, Shara; Orduna, Juan; Luong, Richard; Sullivan, Edith V; Pfefferbaum, Adolf

    2009-01-01

    Magnetic resonance spectroscopy (MRS) studies in human alcoholics report decreases in N-acetylaspartate (NAA) and choline-containing (Cho) compounds. Whether alterations in brain metabolite levels are attributable to alcohol per se or to physiological effects of protracted withdrawal or impaired nutritional or liver status remains unclear. Longitudinal effects of alcohol on brain metabolites measured in basal ganglia with single-voxel MRS were investigated in sibling pairs of wild-type Wistar rats, with one rat per pair exposed to escalating doses of vaporized alcohol, the other to vapor chamber air. MRS was conducted before alcohol exposure and twice during exposure. After 16 weeks of alcohol exposure, rats achieved average blood alcohol levels (BALs) of ~ 293 mg per 100 ml and had higher Cho and a trend for higher glutamine + glutamate (Glx) than controls. After 24 weeks of alcohol exposure, BALs rose to ~ 445 mg per 100 ml, and alcohol-exposed rats had higher Cho, Glx, and glutamate than controls. Thiamine and thiamine monophosphate levels were significantly lower in the alcohol than the control group but did not reach levels low enough to be considered clinically relevant. Histologically, livers of alcohol-exposed rats exhibited greater steatosis and lower glycogenosis than controls, but were not cirrhotic. This study demonstrates a specific pattern of neurobiochemical changes suggesting excessive membrane turnover or inflammation, indicated by high Cho, and alterations to glutamate homeostasis in the rat brain in response to extended vaporized alcohol exposure. Thus, we provide novel in vivo evidence for alcohol exposure as causing changes in brain chemistry in the absence of protracted withdrawal, pronounced thiamine deficiency, or severe liver damage. PMID:18704091

  3. Antioxidant and Hepatoprotective Activities of Ethanolic Extracts of Leaves of Premna esculenta Roxb. against Carbon Tetrachloride-Induced Liver Damage in Rats

    PubMed Central

    Mahmud, ZA; Bachar, SC; Qais, N

    2012-01-01

    Premna esculenta Roxb. (family Verbenaceae) is a shrub used by the ethnic people of Chittagong Hill Tracts of Bangladesh for the treatment of hepatocellular jaundice. The present study was done to evaluate the hepatoprotective and the in vivo antioxidant activity of ethanolic extracts of leaves of the plant in carbon tetrachloride-induced liver damage in rats. Hepatotoxicity was induced in rats by i.p. injection of CCl4 diluted with olive oil (1:1 v/v; 1 mL/kg body weight) on alternate days for 7 days. After 7 days of pretreatment of test extracts, the biochemical markers such as Serum Glutamate Oxaloacetate Transaminase (SGOT), Serum Glutamate Pyruvate Transaminase (SGPT), Alkaline Phosphatase (ALP), total protein, and albumin were estimated followed by the measurement of liver cytosolic antioxidant enzymes such as superoxide dismutase, catalase, and peroxidase. The data were analyzed using one-way analysis of variance (ANOVA) followed by Dunnett's t-test. The extract both at the doses of 200 and 400 mg/kg p.o. significantly (P < 0.001) reduced the elevated levels of SGPT, SGOT, ALP and increased the reduced levels of total protein and albumin compared to the CCl4-treated animals. The extracts also showed a significant (P < 0.001) increase in the reduced levels of superoxide dismutase (SOD), catalase, and peroxidase. The effects of the extracts on these parameters were comparable with those of the standard, silymarin. The findings of the study indicate that the leaf extract of P. esculenta showed a potential hepatoprotective activity and the protective action might have manifested by restoring the hepatic SOD, catalase, and peroxidase levels. The results justify the traditional use of this plant in liver disorders. PMID:23493235

  4. Protective Effect of Tulbaghia violacea Harv. on Aortic Pathology, Tissue Antioxidant Enzymes and Liver Damage in Diet-Induced Atherosclerotic Rats

    PubMed Central

    Olorunnisola, Olubukola S.; Bradley, Graeme; Afolayan, Anthony J.

    2012-01-01

    The protective effect Tulbaghia violacea rhizomes (TVR) against derangements in serum lipid profile, tissue antioxidant enzyme depletion, endothelium dysfunction and histopathological changes in the aorta and liver of rats fed with an atherosclerogenic (Ath) diet (4% cholesterol, 1% cholic acid and 0.5% thiouracil) was investigated in this study. Co-treatment with the TVR extracts (250 and 500 mg/kg body weight for two weeks significantly (p < 0.05) protected against elevated serum triglyceride (TG), total cholesterol (TC), LDL-cholesterol, VLDL-cholesterol and decreased HDL-cholesterol in a dosedependent manner when compared with the atherogenic control. The extracts also reduced (p < 0.05) elevated thiobabutric reacting substance (TBARS) and reversed endothelial dysfunction parameters (fibrinogen and total NO levels) and tissue antioxidant enzyme activities to near normal. The protective ability of the extract was confirmed by the significant (p < 0.05) reduction in the activities of serum markers of liver (LDH, AST, ALT, ALP, bilirubin) and kidney damage (creatinine and bilirubin) in extract-treated groups compared with the atherogenic control group. Also, histopathology evaluations of aorta sections revealed that the extracts protected against the development of fatty streak plaques (aorta) and fatty changes in hepatocytes. The observed activities of the extracts compared favorably with standard drug atorvastatin. Our study thus showed that the methanolic extract of TVR could protect against the early onset of atherosclerosis. PMID:23202923

  5. Cell-based therapy for acute and chronic liver failures: Distinct diseases, different choices

    PubMed Central

    Sun, Kai; Xie, Xuqin; Xie, Jing; Jiao, Shufan; Chen, Xiaojing; Zhao, Xue; Wang, Xin; Wei, Lixin

    2014-01-01

    Cell-based therapies (CBTs) are considered the effective approaches to treat liver failure. However, which cell type is the most suitable source of CBTs for acute liver failure (ALF) or chronic liver failure (CLF) remains unclear. To investigate this, mature hepatocytes in adult liver (adult HCs), fetal liver cells (FLCs), induced hepatic stem cells (iHepSCs) and bone marrow derived mesenchymal stromal cells (BMSCs) were used to CBTs for ConA-induced ALF and Fah-deficient induced CLF in mice. The results showed that only BMSCs remitted liver damage and rescued ALF in ConA-treated mice. In this process, BMSCs inhibited ConA-induced inflammatory response by decreasing the mRNA expressions of TNF-α, IFN-γ and FasL and increasing IL-10 mRNA expression. However, in the CLF model, not BMSCs but adult HCs transplantation lessened liver injury, recovered liver function and rescued the life of Fah-/- mice after NTBC withdrawal. Further study showed that adult HCs offered more effective liver regeneration compared to other cells in Fah-/- mice without NTBC. These results demonstrated that BMSCs and adult HCs are the optimal sources of CBTs for ConA-induced ALF and Fah-deficient induced CLF in mice, respectively. This finding deepens our understanding about how to select a proper CBT for different liver failure. PMID:25263068

  6. Liver metastases

    MedlinePlus

    Metastases to the liver; Metastatic liver cancer; Liver cancer - metastatic; Colorectal cancer - liver metastases; Colon cancer - liver metastases; Esophageal cancer - liver metastases; Lung cancer - liver metastases; Melanoma - liver metastases

  7. Moringa oleifera Lam. seed extract prevents fat diet induced oxidative stress in mice and protects liver cell-nuclei from hydroxyl radical mediated damage.

    PubMed

    Das, Nilanjan; Ganguli, Debdutta; Dey, Sanjit

    2015-12-01

    High fat diet (HFD) prompts metabolic pattern inducing reactive oxygen species (ROS) production in mitochondria thereby triggering multitude of chronic disorders in human. Antioxidants from plant sources may be an imperative remedy against this disorder. However, it requires scientific validation. In this study, we explored if (i) Moringa oleifera seed extract (MoSE) can neutralize ROS generated in HFD fed mice; (ii) protect cell-nuclei damage developed by Fenton reaction in vitro. Swiss mice were fed with HFD to develop oxidative stress model (HFD group). Other groups were control, seed extract alone treated, and MoSE simultaneously (HS) treated. Treatment period was of 15 days. Antioxidant enzymes with tissue nitrite content (TNC) and lipid peroxidation (LPO) were estimated from liver homogenate. HS group showed significantly higher (P < 0.05) superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) activity, and ferric reducing antioxidant power (FRAP) compared to only HFD fed group. Further, TNC and LPO decreased significantly (P < 0.05) in HS group compared to HFD fed group. MoSE also protected hepatocytes nuclei from the hydroxyl radicals generated by Fenton reaction. MoSE was found to be polyphenol rich with potent reducing power, free radicals and hydroxyl radicals scavenging activity. Thus, MoSE exhibited robust antioxidant prospective to neutralize ROS developed in HFD fed mice and also protected the nuclei damage from hydroxyl radicals. Hence, it can be used as herbal medication against HFD induced ROS mediated disorders. PMID:26742324

  8. Effects of a 6-wk intraduodenal supplementation with quercetin on energy metabolism and indicators of liver damage in periparturient dairy cows.

    PubMed

    Stoldt, Ann-Kathrin; Derno, Michael; Nürnberg, Gerd; Weitzel, Joachim M; Otten, Winfried; Starke, Alexander; Wolffram, Siegfried; Metges, Cornelia C

    2015-07-01

    conclusion, supplementation with Q resulted in lower pp plasma aminotransferase and glutamate dehydrogenase, which indicated reduced liver damage. However, the direct effects of Q on the liver and the implications for animal performance remain to be investigated. PMID:25935242

  9. Ethanol-induced mitophagy in liver is associated with activation of the PINK1-Parkin pathway triggered by oxidative DNA damage.

    PubMed

    Eid, Nabil; Ito, Yuko; Horibe, Akio; Otsuki, Yoshinori

    2016-10-01

    Mitophagy is a cytoprotective mechanism against mitochondrial damaging agents. Studies demonstrating morphological evidence for the involvement of the PINK1-Parkin pathway in the hepatocyte mitophagic response to ethanol toxicity, and potential links to apoptosis and mitochondrial alterations such as spheroid formation are still lacking. We addressed these unresolved issues using a rat model of binge alcohol exposure. Adult rats were injected with ethanol (5g/kg) and liver samples were taken at 0, 3, 6, and 24 hours after ethanol administration and processed for light and electron microscopic studies. Ethanol induced a low level of hepatocyte apoptosis, peaking at 3 h and decreasing significantly by 24 h. In contrast, there was enhanced formation of mitophagic vacuoles in the majority of normal hepatocytes of ethanol-treated rats (ETRs), which peaked at 6 h and was maintained up to 24 h based on electron microscopy and TUNEL/LC3 double labelling. Moreover, enhanced mitophagy in ETR hepatocytes was confirmed by increased LC3 puncta formation, and co-localization of Parkin and LC3 with mitochondrial and lysosomal markers. Immunoelectron microscopy demonstrated the localization of PINK1 and Parkin to damaged mitochondria of ETR hepatocytes, which was consistent with co-localization of Parkin with 8-OHdG, a marker of oxidative mitochondrial DNA damage. Furthermore, electron microscopy showed enhanced formation of mitochondrial spheroids in ETR hepatocytes. These data are the first direct morphological evidence linking PINK1-Parkin pathway activation to the enhanced mitophagic response of hepatocytes to ethanol toxicity. Ethanol-induced hepatic mitophagy may be a prosurvival mechanism, which may have therapeutic implications. PMID:26935412

  10. Ectopic expression of H2AX protein promotes TrkA-induced cell death via modulation of TrkA tyrosine-490 phosphorylation and JNK activity upon DNA damage

    SciTech Connect

    Jung, Eun Joo; Kim, Deok Ryong

    2011-01-21

    Research highlights: {yields} We established TrkA-inducible U2OS cells stably expressing GFP-H2AX proteins. {yields} GFP-H2AX was colocalized with TrkA in the cytoplasm. {yields} {gamma}H2AX production was significantly increased upon activation of TrkA and suppressed by TrkA inhibitor or JNK inhibitor. {yields} Ectopic expression of H2AX promoted TrkA-mediated cell death through the modulation of TrkA tyrosine-490 phosphorylation and JNK activity upon DNA damage. -- Abstract: We previously reported that TrkA overexpression causes accumulation of {gamma}H2AX proteins in the cytoplasm, subsequently leading to massive cell death in U2OS cells. To further investigate how cytoplasmic H2AX is associated with TrkA-induced cell death, we established TrkA-inducible cells stably expressing GFP-tagged H2AX. We found that TrkA co-localizes with ectopically expressed GFP-H2AX proteins in the cytoplasm, especially at the juxta-nuclear membranes, which supports our previous results about a functional connection between TrkA and {gamma}H2AX in TrkA-induced cell death. {gamma}H2AX production from GFP-H2AX proteins was significantly increased when TrkA was overexpressed. Moreover, ectopic expression of H2AX activated TrkA-mediated signal pathways via up-regulation of TrkA tyrosine-490 phosphorylation. In addition, suppression of TrkA tyrosine-490 phosphorylation under a certain condition was removed by ectopic expression of H2AX, indicating a functional role of H2AX in the maintenance of TrkA activity. Indeed, TrkA-induced cell death was highly elevated by ectopic H2AX expression, and it was further accelerated by DNA damage via JNK activation. These all results suggest that cytoplasmic H2AX could play an important role in TrkA-mediated cell death by modulating TrkA upon DNA damage.

  11. Solanum torvum Swartz. fruit attenuates cadmium-induced liver and kidney damage through modulation of oxidative stress and glycosylation.

    PubMed

    Ramamurthy, C H; Subastri, A; Suyavaran, A; Subbaiah, K C V; Valluru, L; Thirunavukkarasu, C

    2016-04-01

    Increased levels of environmental pollutants are linked to almost all human disorders; the efficient method to manage the human health is through naturally available dietary molecule. Solanum torvum (ST) Swartz (Solanaceae) commonly called Turkey Berry is found in Africa, Asia, and South America. Its fruit, part of traditional Indian cuisine, is a widely consumed nutritious herb, acclaimed for its medicinal value. ST aqueous extract (STAe) (250, 500, and 1000 mg/kg b.w., 6 days; oral) against acute Cadmium (Cd) (6.3 mg/kg b.w., single dose; oral) toxicity was evaluated in rats. Protective effect was assessed using serum markers, tissue antioxidants, oxidant derivatives, glycoprotein, and histopathological studies. The activities of serum marker enzymes were increased (40-60 %); antioxidant enzymes such as SOD and CAT, GSH, and its metabolic enzyme activities were decreased (50-80 %) in the liver and kidney upon Cd intoxication. During STAe pre-treatment, at doses of 250 and 500 mg/kg b.w., the above changes were brought to near normal (25-63 %). Tissue 4-hydroxynonenal, 3-nitrotyrosine, and protein carbonyls were increased (8-15 fold) in Cd-alone-treated rats, whereas pre-supplementation of STAe significantly decreased their levels and inhibited the protein glycosylation effectively. The pharmacological effect of STAe was confirmed by histopathological observations. Based on previous literature and present investigation, we conclude that ST may serve as a potential functional food against environmental contaminant such as heavy metal-induced oxidative stress. PMID:26762936

  12. Protectin D1 reduces concanavalin A-induced liver injury by inhibiting NF-κB-mediated CX3CL1/CX3CR1 axis and NLR family, pyrin domain containing 3 inflammasome activation.

    PubMed

    Ren, Jun; Meng, Shanshan; Yan, Bingdi; Yu, Jinyan; Liu, Jing

    2016-04-01

    Protectin D1 (PD1) is a bioactive product generated from docosahexaenoic acid, which may exert anti-inflammatory effects in various inflammatory diseases. However, the underlying molecular mechanism of its anti‑inflammatory activity on concanavalin A (Con A)-induced hepatitis remains unknown. The aim of the present study was to investigate the protective effects of PD1 against Con A‑induced liver injury and the underlying mechanisms via intravenous injection of PD1 prior to Con A administration. C57BL/6 mice were randomly divided into four experimental groups as follows: Control group, Con A group (30 mg/kg), 20 µg/kg PD1 + Con A (30 mg/kg) group and 10 µg/kg PD1 + Con A (30 mg/kg) group. PD1 pretreatment was demonstrated to significantly inhibit elevated plasma aminotransferase levels, high mobility group box 1 and liver necrosis, which were observed in Con A‑induced hepatitis. Furthermore, compared with the Con A group, PD1 pretreatment prevented the production of pro‑inflammatory cytokines, including tumor necrosis factor‑α, interferon‑γ and interleukin‑2, ‑1β and ‑6. In addition, pretreatment with PD1 markedly downregulated cluster of differentiation (CD)4+, CD8+ and natural killer T (NKT) cell infiltration in the liver. PD1 pretreatment was observed to suppress the messenger RNA and protein expression levels of NLR family, pyrin domain containing 3 and Toll‑like receptor (TLR) 4 in liver tissue samples. Further data indicated that PD1 pretreatment inhibited the activation of the nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB) signaling pathway and chemokine (C‑X3‑C motif) ligand 1 (CX3CL1)/chemokine (C-X3-C motif) receptor 1 (CX3CR1) axis by preventing phosphorylation of nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor, α and NF‑κB in Con A‑induced liver injury. Therefore, these results suggest that PD1 administration protects mice against Con

  13. Effects of glyphosate on juvenile rainbow trout (Oncorhynchus mykiss): transcriptional and enzymatic analyses of antioxidant defence system, histopathological liver damage and swimming performance.

    PubMed

    Topal, Ahmet; Atamanalp, Muhammed; Uçar, Arzu; Oruç, Ertan; Kocaman, Esat Mahmut; Sulukan, Ekrem; Akdemir, Fatih; Beydemir, Şükrü; Kılınç, Namık; Erdoğan, Orhan; Ceyhun, Saltuk Buğrahan

    2015-01-01

    This study aims to determine the effect of glyphosate on the transcriptional and enzymatic activity of antioxidant metabolism enzymes of juvenile rainbow trout with short term (6, 12, 24, 48 and 96 h) and long term (21 days) exposures followed by a recovery treatment. This study also aims to determine the effects of glyphosate exposure on liver tissue damage and swimming performance due to short term (2.5, 5 and 10 mg/L) and long term (2.5 and 5 mg/L) exposures. Following pesticide administration, ten fish, each as a sample, were caught at 6th, 12th, 24th, 48th and 96th -h for the short term, and at 21st day for the long term exposure study. GPx activity was found to be significantly induced 12 h after the exposure to 2.5 mg/L of glyphosate as compared with the control group. A similar degree of induction was also observed for CAT activity but not for SOD. For long term exposure, except for the GPx activity after exposure to 5 mg/L of glyphosate, the activities of all other enzymes remained on a par with the control group. It was also observed that the levels of gene expression of these enzymes were not comparable with each other. It is assumed that these differences might result from the effect of glyphosate before translation and the possible reasons for this scenario are also discussed. The results of swimming performance are found to be consistent with responses of the antioxidant system, and they are attributed to the energy metabolism. The data are also supported with liver histopathology analysis. PMID:25450935

  14. Two cases of food additive-induced severe liver damage associated with positive results on lymphocyte stimulation test and for antinuclear antibodies.

    PubMed

    Kaneko, Rena; Ohishi, Chitose; Kim, Miniru; Shiina, Masaaki; Kusayanagi, Satoshi; Ogawa, Masazumi; Munakata, Kazuo; Mizuno, Kyoichi; Sato, Yuzuru

    2012-08-01

    Two cases of severe liver injury and positive result for antinuclear antibodies induced by food additives are reported. The first patient reported long-term intake of Mabo Ramen(®) noodle soup, nutritional supplements, and over-the-counter drugs. Total bilirubin, aspartate aminotransferase, and alanine aminotransferase were 9.6 mg/dL, 1,048, and 1,574 IU/L, respectively. Antinuclear antibody was 80×. The drug-induced lymphocyte stimulation test (DLST) was positive for Mabo Ramen(®) and its additives such as Xanthan gum, guar gum, and Doubanjiang. Histologic examination of a liver biopsy specimen showed lymphocyte infiltration and necrosis. The autoimmune hepatitis score was 3. The second patient reported intake of dietary supplements, including Bimore C(®) and Chokora BB(®). Laboratory tests revealed that total bilirubin was 9.8 mg/dL, aspartate aminotransferase was 1,130 IU/L, and alanine aminotransferase was 1,094 IU/L. Antinuclear antibody was 320×. Co-existing pancreatic damage was confirmed by the findings on abdominal CT and elevation of serum lipase, span-1, and DUPAN-2. DLSTs were positive for both supplements. These two supplements contained additives such as titanium oxide, magnesium stearate, and hydroxypropylcellulose. DLSTs for all three additives were positive. Histologic examination revealed periportal necrosis and lymphocyte infiltration of lobular and portal areas. These two cases demonstrate that repeating DLSTs is useful for identifying causative constituents in foods and supplements. PMID:26182392

  15. Protective Effects of Selenium, Vitamin E, and Purple Carrot Anthocyanins on D-Galactose-Induced Oxidative Damage in Blood, Liver, Heart and Kidney Rats.

    PubMed

    Li, Xia; Zhang, Yunlong; Yuan, Yuan; Sun, Yong; Qin, Yan; Deng, Zeyuan; Li, Hongyan

    2016-10-01

    The present study was performed to investigate the protective effects of selenium (Se), vitamin E (Vit E) and anthocyanins from purple carrots and their combination against the oxidative stress induced by D-galactose in rats. A total of 80 male rats were equally divided into 11 groups, one of which acted as control (I) just receiving intraperitoneal injections of physiological saline. The remaining ten groups (II-XI) were intraperitoneally injected with D-galactose at a dose of 400 mg kg(-1) body weight (BW) per day for 42 consecutive days. Rats in groups III-XI were treated with antioxidants via gavage per day as follows: group III: Se-methylselenocysteine (SeMSC), IV: Se as sodium selenite (Na2SeO3), V: Se-enriched yeast (SeY), VI: Vit E as α-tocopherol acetate, VII: anthocyanin from purple carrots (APC), VIII: APC + Vit E, IX: SeMSC + APC+ Vit E, X: Na2SeO3 + APC + Vit E, XI: SeY + Ant + Vit E. The results showed that the rats treated with antioxidants (III-XI) showed significant decreases in the levels of malondialdehyde (MDA) and carbonyl protein (PCO) compared with the D-galactose-treated group (II) in the heart, liver, kidneys, and blood. Moreover, there were significant increases in the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), glutathione (GSH) concentration, and total antioxidant capacity (T-AOC) in the heart, liver, kidneys, and blood of antioxidant-treated animals (III-XI) than those in control group (I). In addition, the combined treatments of two or three antioxidants showed greater antioxidant activities than those of individual treatments, suggesting the synergistic antioxidant effects of Se, Vit E, and APC. In conclusion, all the antioxidants exhibited protective effects against D-galactose-induced oxidative damage in rats, and these antioxidants showed a synergistic effect. PMID:27025718

  16. Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity

    PubMed Central

    Seo, Ji Yeon; Lim, Soon Sung; Park, Jia; Lim, Ji-Sun; Kim, Hyo Jung; Kang, Hui Jung; Yoon Park, Jung Han

    2010-01-01

    Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by CCl4 treatment to the control level. Hepatic injury induced by CCl4 was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by CCl4. PMID:20461196

  17. Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity.

    PubMed

    Seo, Ji Yeon; Lim, Soon Sung; Park, Jia; Lim, Ji-Sun; Kim, Hyo Jung; Kang, Hui Jung; Yoon Park, Jung Han; Kim, Jong-Sang

    2010-04-01

    Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by CCl(4) treatment to the control level. Hepatic injury induced by CCl(4) was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by CCl(4). PMID:20461196

  18. Naja naja karachiensis Envenomation: Biochemical Parameters for Cardiac, Liver, and Renal Damage along with Their Neutralization by Medicinal Plants

    PubMed Central

    Asad, Muhammad Hassham Hassan Bin; Ubaid, Muhammad; Durr-e-Sabih; Sajjad, Ashif; Mehmood, Rubada; Mahmood, Qaisar; Ansari, Muhammad Muzzmil; Karim, Sabiha; Mehmood, Zahid; Hussain, Izhar

    2014-01-01

    Naja naja karachiensis envenomation was found to hit more drastically heart, liver, and kidneys. 400 μg/kg of venom-raised moderate serum levels of ALT (72 ± 4.70 U/L, 0.1 > P > 0.05), AST (157 ± 24.24 U/L, 0.1 > P > 0.05), urea (42 ± 3.08 mg/dL, 0.05 > P > 0.02), creatinine (1.74 ± 0.03 mg/dL, 0.01 > P > 0.001), CK-MB (21 ± 1.5 U/L, 0.05 > P > 0.02), and LDH (2064 ± 15.98 U/L, P < 0.001) were injected in experimental rabbits. However, lethality was enhanced with 800 μg/kg of venom in terms of significant release of ALT (86 ± 5.0 U/L, 0.05 > P > 0.02), AST (251 ± 18.2 U/L, 0.01 > P > 0.001), urea (57.6 ± 3.84 mg/dL, 0.02 > P > 0.01), creatinine (2.1 ± 0.10 mg/dL, 0.02 > P > 0.01), CK-MB (77 ± 11.22 U/L, 0.05 > P > 0.02), and LDH (2562 ± 25.14 U/L, P ≪ 0.001). Among twenty-eight tested medicinal plant extracts, only Stenolobium stans (L.) Seem was found the best antivenom (P > 0.5) compared to the efficacy of standard antidote (ALT = 52.5 ± 3.51 U/L, AST = 69.5 ± 18.55 U/L, urea = 31.5 ± 0.50 mg/dL, creatinine = 1.08 ± 0.02 mg/dL, CK-MB = 09 ± 0.85 U/L, and LDH = 763 ± 6.01 U/L). Other plant extracts were proved less beneficial and partly neutralized the toxicities posed by cobra venom. However, it is essential in future to isolate and characterize bioactive compound(s) from Stenolobium stans (L.) Seem extract to overcome the complications of snake bite. PMID:24877153

  19. Apricot attenuates oxidative stress and modulates of Bax, Bcl-2, caspases, NFκ-B, AP-1, CREB expression of rats bearing DMBA-induced liver damage and treated with a combination of radiotherapy.

    PubMed

    Karabulut, Aysun Bay; Karadag, Nese; Gurocak, Simay; Kiran, Tugba; Tuzcu, Mehmet; Sahin, Kazım

    2014-08-01

    We evaluated the ability of apricot to attenuate apoptosis and oxidative stress developed during the process of 7,12-dimethylbenz[a]anthracene (DMBA) and radiotherapy in the liver of rats bearing liver damage. Fifty female Wistar rats were divided into 7 groups; (i) normal control rats; (ii) rats fed with standard diet with apricot (20%), (ii) rats fed with standard diet and administrated 6 gray radiotherapy with Co 60 device applied to a single fraction, (iv) rats fed with standard diet and administered intraperitoneally DMBA (20mg/kg), (v) rats fed with standard diet and administered DMBA and 6 gray radiotherapy, (vi) rats fed with standard rat diet and administered DMBA and supplemented apricot, (vii) rats fed with standard diet supplemented apricot administered DMBA and radiotherapy (RT) for 6weeks. Expression of Bax, caspase 3, and glutathione activity decreased in the liver but liver expression of NF-κB, AP-1, CREB, Bcl-2 and ALT, AST, 5'NT, MDA, NO levels increased in DMBA-induced liver damage rats. In conclusion, the results suggest that apricot supplementation and irradiation given in combination, offer maximum protection against DMBA-induced hepatic carcinogenesis. PMID:24819963

  20. Loss of brain function - liver disease

    MedlinePlus

    ... of chronic liver damage. Common causes of chronic liver disease in the United States are: Chronic hepatitis B ... hepatitis Bile duct disorders Some medicines Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) Once you have ...

  1. Expression of transforming growth factor-beta and determination of apoptotic index in histopathological sections for assessment of the effects of Apigenin (4', 5', 7'- Trihydroxyflavone) on Cyclosporine A induced renal damage.

    PubMed

    Chong, F W; Chakravarthi, Srikumar; Nagaraja, H S; Thanikachalam, P M; Lee, Nagarajah

    2009-06-01

    Cyclosporine A (CsA), a calcineurin inhibitor produced by the fungi Trichoderma polysporum and Cylindrocarpon lucidum, is an immunosuppressant prescribed in organ transplants to prevent rejection. Its adverse effect on renal dysfunction has limited its use in a clinical setting. Apigenin (4',5',7'-Trihydroxyflavone), a herbal extract, with anti-inflammatory and anti-tumour properties, has been investigated for properties to reverse this adverse effect. This research was conducted to establish a standard protocol for immunohistochemical estimation of Transforming Growth Factor beta (TGF-beta) expression, as an indicator of Cyclosporine A induced damage, and to observe whether apoptotic index and TGF-beta expression can be used to assess effects of Apigenin on CsA induced renal dysfunction. Six groups of 5 male Sprague-Dawley albino rats each were dosed once daily for 21 days, as follows: (1) negative control--oral corn oil, (2) positive control--Cyclosporine A (25 mg/kg), (3) Group 3--Apigenin (20 mg/kg), (4) Group 4--Cyclosporine A (25 mg/kg) +Apigenin (10 mg/kg), (5) Group 5--Cyclosporine A (25 mg/kg) +Apigenin (15 mg/kg) and (6) Group 6--Cyclosporine A (25 mg/kg) +Apigenin (20 mg/kg). Cyclosporine A was administered intra-peritoneally while Apigenin was given orally. The rat kidneys were harvested and examined microscopically to assess the apoptotic index, and stained by immunohistochemistry for multifunctioning polypeptide TGF-beta expression. A high apoptotic index and TGF-beta intensity was observed in the Cyclosporine A group. Apigenin significantly reduced the both apoptotic index and TGF-beta intensity. The apoptotic index correlated with TGF-beta intensity, especially in glomeruli. This study indicates that Cyclosporine A can enhance the TGF-beta expression in rat kidney, signifying accelerated apoptosis. TGF-beta and apoptotic index may be used to assess Apigenin and its effect on Cyclosporine A induced renal damage. PMID:19694312

  2. Glutathione peroxidase 1 deficiency attenuates concanavalin A-induced hepatic injury by modulation of T-cell activation

    PubMed Central

    Lee, D H; Son, D J; Park, M H; Yoon, D Y; Han, S B; Hong, J T

    2016-01-01

    Concanavalin A (Con A)-induced hepatitis model is well-established experimental T cell-mediated liver disease. Reactive oxygen species (ROS) is associated with T-cell activation and proliferation, but continued ROS exposure induces T-cell hyporesponsiveness. Because glutathione peroxidase 1 (Gpx1) is an antioxidant enzyme and is involved in T-cell development, we investigated the role of Gpx1 during Con A-induced liver injury in Gpx1 knockout (KO) mice. Male wild-type (WT) mice and Gpx1 KO mice were intravenously injected with Con A (10 mg/kg), and then killed after 8 h after Con A injection. Serum levels of aspartate transaminase and alanine transaminase were measured to assess hepatic injury. To identify that Gpx1 affects T cell-mediated inflammation, we pretreated Gpx1 inhibitor to Human Jurkat T cells then treated Con A. Con A-induced massive liver damage in WT mice but its damage was attenuated in Gpx1 KO mice. Con A-induced Th1 cytokines such as tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin (IL)-2 were also decreased in the liver and spleen of Gpx1 KO mice compared with WT mice. In Jurkat T cells, Con A-induced mRNA levels of IL-2, IFN-γ and TNF-α were downregulated by pretreatment of Gpx inhibitor, mercaptosuccinic acid. We also observed that Gpx1 KO mice showed increasing oxidative stress in the liver and spleen compared with WT mice. These results suggest that Gpx1 deficiency attenuates Con A-induced liver injury by induction of T-cell hyporesponsiveness through chronic ROS exposure. PMID:27124582

  3. [Liver intervention].

    PubMed

    Oi, H

    2000-12-01

    Interventional radiology is now widely performed for the treatment of liver tumors, because surgery is sometimes limited by poor liver function. Transcatheter arterial chemoembolization(TACE) is an effective therapy for hepatocellular carcinoma. Lipiodol TACE shows a strong antitumor effect because of the overflow of excess iodized oil into the portal veins, and segmental TACE is recommended to avoid deteriorating liver function. Selective CT arteriography is performed in order to decide on the treatment area, and TACE under CT guidance leads to effective results in terms of dense accumulation of the chemotherapeutic drug in the individual tumors that are affected by the ischemic state and anticancer drugs. Percutaneous microwave or radiofrequency coagulation therapy is adequate for a few of the hypovascular tumors. Excessive coagulation through the needle tract is indispensable in these therapies, and precisely designed puncture is necessary to minimize damage to the liver parenchyma. Selective chemotherapy to the tumor-bearing organ is the first step in a number of liver tumors. Continuous intra-arterial infusion chemotherapy is performed for multiple liver metastases. The reservoir implantation technique is percutaneously achieved via the left subclavian artery under ultrasound guidance, without the exposure of an artery in the incision method, which can induce thrombus formation. PMID:11197832

  4. Kava Linked to Liver Damage

    MedlinePlus

    ... from the FDA Center for Food Safety and Applied Nutrition, please visit the FDA web site . Additional Resources Kava: At a Glance Using Dietary Supplements Wisely Herbs at a Glance Find Active Medical Research Studies on Kava (ClinicalTrials.gov) Related Topics Kava: ...

  5. 1,25-(OH){sub 2}-vitamin D{sub 3} prevents activation of hepatic stellate cells in vitro and ameliorates inflammatory liver damage but not fibrosis in the Abcb4{sup −/−} model

    SciTech Connect

    Reiter, Florian P.; Hohenester, Simon; Nagel, Jutta M.; Wimmer, Ralf; Artmann, Renate; Wottke, Lena; Makeschin, Marie-Christine; Mayr, Doris; Rust, Christian; Trauner, Michael; Denk, Gerald U.

    2015-04-03

    Background/Purpose of the study: Vitamin D{sub 3}-deficiency is common in patients with chronic liver-disease and may promote disease progression. Vitamin D{sub 3}-administration has thus been proposed as a therapeutic approach. Vitamin D{sub 3} has immunomodulatory effects and may modulate autoimmune liver-disease such as primary sclerosing cholangitis. Although various mechanisms of action have been proposed, experimental evidence is limited. Here we test the hypothesis that active 1,25-(OH){sub 2}-vitamin D{sub 3} inhibits activation of hepatic stellate cells (HSC) in vitro and modulates liver-injury in vivo. Methods: Proliferation and activation of primary murine HSC were assessed by BrdU- and PicoGreen{sup ®}-assays, immunoblotting, immunofluorescence-microscopy, quantitative-PCR, and zymography following calcitriol-treatment. Wild-type and ATP-binding cassette transporter b4{sup −/−} (Abcb4{sup −/−})-mice received calcitriol for 4 weeks. Liver-damage, inflammation, and fibrosis were assessed by serum liver-tests, Sirius-red staining, quantitative-PCR, immunoblotting, immunohistochemistry and hydroxyproline quantification. Results: In vitro, calcitriol inhibited activation and proliferation of murine HSC as shown by reduced α-smooth muscle actin and platelet-derived growth factor-receptor-β-protein-levels, BrdU and PicoGreen®-assays. Furthermore, mRNA-levels and activity of matrix metalloproteinase 13 were profoundly increased. In vivo, calcitriol ameliorated inflammatory liver-injury reflected by reduced levels of alanine aminotransferase in Abcb4{sup −/−}-mice. In accordance, their livers had lower mRNA-levels of F4/80, tumor necrosis factor-receptor 1 and a lower count of portal CD11b positive cells. In contrast, no effect on overall fibrosis was observed. Conclusion: Calcitriol inhibits activation and proliferation of HSCs in vitro. In Abcb4{sup −/−}-mice, administration of calcitriol ameliorates inflammatory liver-damage but has

  6. DNA damage induced by 7,12-dimethylbenz[a]anthracene in the liver and the mammary gland of rats exposed to polycyclic aromatic hydrocarbon enzyme inducers during perinatal life.

    PubMed

    Bolognesi, C; Parrini, M; Aiello, C; Rossi, L

    1991-03-01

    The long-lasting modulating effect induced by the prenatal or neonatal exposure to phenobarbital (PB) and aroclor on the genotoxic activity of 7,12-dimethylbenz[a]anthracene (DMBA) in female Sprague-Dawley rats was studied. The effect was measured as DNA damage evaluated in the liver and in the mammary gland of 55-day-old animals, 4 and 24 h after an i.g. injection of 80 mg/kg of DMBA. PB was given per os, i.g. or in drinking water to pregnant females and by i.g. only to neonates or in adult progeny. Aroclor was injected i.g. in prenatal and in neonatal life, and a second dose was given in adult life. Under these experimental conditions it was shown that DNA damage kinetics caused by DMBA are modulated by exposure to PB and, to a minor extent, by aroclor. The amount and persistence of DNA damage were highest when PB was administered to neonates. An average 2-fold increase in the elution constants (K) of DNA in the liver and the mammary gland was observed 4 h after DMBA treatment, as compared to uninduced animals. Repeated enzyme induction by PB seems to reduce DMBA genotoxicity, as shown by a decrease in DNA damage and persistence in the liver and mammary gland. The inducibility of the monooxygenase enzyme system in perinatal life favouring metabolic activation or inactivation of polycyclic aromatic hydrocarbons might be critical in determining individual susceptibility of adult progeny to chemical carcinogenesis by DMBA. PMID:1905382

  7. Liver Cancer

    MedlinePlus

    ... body digest food, store energy, and remove poisons. Primary liver cancer starts in the liver. Metastatic liver ... and spreads to your liver. Risk factors for primary liver cancer include Having hepatitis B or C ...

  8. Liver scan

    MedlinePlus

    ... hyperplasia or adenoma of the liver Abscess Budd-Chiari syndrome Infection Liver disease (such as cirrhosis or ... Amebic liver abscess Cirrhosis Hepatic vein obstruction (Budd-Chiari) Hepatitis Liver cancer - hepatocellular carcinoma Liver disease Splenic ...

  9. Comparative Effects of Phosphoenolpyruvate, a Glycolytic Intermediate, as an Organ Preservation Agent with Glucose and N-Acetylcysteine against Organ Damage during Cold Storage of Mouse Liver and Kidney

    PubMed Central

    Ishitsuka, Yoichi; Fukumoto, Yusuke; Kondo, Yuki; Irikura, Mitsuru; Kadowaki, Daisuke; Narita, Yuki; Hirata, Sumio; Moriuchi, Hiroshi; Maruyama, Toru; Hamasaki, Naotaka; Irie, Tetsumi

    2013-01-01

    We evaluated the usefulness of phosphoenolpyruvate (PEP), a glycolytic intermediate with antioxidative and energy supplementation potentials, as an organ preservation agent. Using ex vivo mouse liver and kidney of a static cold storage model, we compared the effects of PEP against organ damage and oxidative stress during cold preservation with those of glucose or N-acetylcysteine (NAC). Lactate dehydrogenase (LDH) leakage, histological changes, and oxidative stress parameters (measured as thiobarbituric acid reactive substance and glutathione content) were determined. PEP (100 mM) significantly prevented an increase in LDH leakage, histological changes, such as tubulonecrosis and vacuolization, and changes in oxidative stress parameters during 72 h of cold preservation in mouse liver. Although glucose (100 mM) partly prevented LDH leakage and histological changes, no effects against oxidative stress were observed. By contrast, NAC inhibited oxidative stress in the liver and did not prevent LDH leakage or histological changes. PEP also significantly prevented kidney damage during cold preservation in a dose-dependent manner, and the protective effects were superior to those of glucose and NAC. We suggest that PEP, a functional carbohydrate with organ protective and antioxidative activities, may be useful as an organ preservation agent in clinical transplantation. PMID:24490082

  10. FXR and liver carcinogenesis

    PubMed Central

    Huang, Xiong-fei; Zhao, Wei-yu; Huang, Wen-dong

    2015-01-01

    Farnesoid X receptor (FXR) is a member of the nuclear receptor family and a ligand-modulated transcription factor. In the liver, FXR has been considered a multi-functional cell protector and a tumor suppressor. FXR can suppress liver carcinogenesis via different mechanisms: 1) FXR maintains the normal liver metabolism of bile acids, glucose and lipids; 2) FXR promotes liver regeneration and repair after injury; 3) FXR protects liver cells from death and enhances cell survival; 4) FXR suppresses hepatic inflammation, thereby preventing inflammatory damage; and 5) FXR can directly increase the expression of some tumor-suppressor genes and repress the transcription of several oncogenes. However, inflammation and epigenetic silencing are known to decrease FXR expression during tumorigenesis. The reactivation of FXR function in the liver may be a potential therapeutic approach for patients with liver cancer. PMID:25500874

  11. Liver fibrosis markers in alcoholic liver disease

    PubMed Central

    Chrostek, Lech; Panasiuk, Anatol

    2014-01-01

    Alcohol is one of the main factors of liver damage. The evaluation of the degree of liver fibrosis is of great value for therapeutic decision making in patients with alcoholic liver disease (ALD). Staging of liver fibrosis is essential to define prognosis and management of the disease. Liver biopsy is a gold standard as it has high sensitivity and specificity in fibrosis diagnostics. Taking into account the limitations of liver biopsy, there is an exigency to introduce non-invasive serum markers for fibrosis that would be able to replace liver biopsy. Ideal serum markers should be specific for the liver, easy to perform and independent to inflammation and fibrosis in other organs. Serum markers of hepatic fibrosis are divided into direct and indirect. Indirect markers reflect alterations in hepatic function, direct markers reflect extracellular matrix turnover. These markers should correlate with dynamic changes in fibrogenesis and fibrosis resolution. The assessment of the degree of liver fibrosis in alcoholic liver disease has diagnostic and prognostic implications, therefore noninvasive assessment of fibrosis remains important. There are only a few studies evaluating the diagnostic and prognostic values of noninvasive biomarkers of fibrosis in patients with ALD. Several noninvasive laboratory tests have been used to assess liver fibrosis in patients with alcoholic liver disease, including the hyaluronic acid, FibroTest, FibrometerA, Hepascore, Forns and APRI indexes, FIB4, an algorithm combining Prothrombin index (PI), α-2 macroglobulin and hyaluronic acid. Among these tests, Fibrotest, FibrometerA and Hepascore demonstrated excellent diagnostic accuracy in identifying advanced fibrosis and cirrhosis, and additionally, Fibrotest was independently associated with survival. Therefore, the use of biomarkers may reduce the need for liver biopsy and permit an earlier treatment of alcoholic patients. PMID:25009372

  12. [Liver and artificial liver].

    PubMed

    Chamuleau, R A

    1998-06-01

    Despite good results of orthotopic liver transplantation in patients with fulminant hepatic failure the need still exists for an effective and safe artificial liver, able to temporarily take over the complex liver function so as to bridge the gap with transplantation or regeneration. Attempts to develop non-biological artificial livers have failed, mostly when controlled clinical trials were performed. In the last decade several different types of bioartificial livers have been devised, in which the biocomponent consists of freshly isolated porcine hepatocytes or a human hepatoblastoma cell line. The majority use semipermeable hollow fibers known from artificial kidney devices. The liver cells may lie either inside or outside the lumen of these fibers. In vitro analysis of liver function and animal experimental work showing that the bioartificial liver increases survival justify clinical application. Bioartificial livers are connected to patients extracorporeally by means of plasmapheresis circuit for periods of about 6 hours. In different trials about 40 patients with severe liver failure have been treated. No important adverse effects have not been reported in these phase I trials. Results of controlled studies are urgently needed. As long as no satisfactory immortalised human liver cell line with good function is available, porcine hepatocytes will remain the first choice, provided transmission of porcine pathogens to man is prevented. PMID:9752034

  13. Induction of Nrf2-dependent Antioxidation and Protection Against Carbon Tetrachloride-induced Liver Damage by Andrographis Herba (穿心蓮chuān xīn lián) Ethanolic Extract

    PubMed Central

    Chen, Haw-Wen; Huang, Yu-Ju; Yao, Hsien-Tsung; Lii, Chong-Kuei

    2012-01-01

    Andrographis paniculata is a traditional Chinese herb and displays diverse biological activities including antioxidation, anti-tumorigenesis, anti-virus, and anti-atherogenesis. In this study, we investigated the up-regulation of ethanolic extract of A. paniculata (APE) on the antioxidant defense in rat livers and whether this enhancement protected against carbon tetrachloride (CCl4)-induced liver damage. Male Sprague-Dawley rats were orally administered (i.g.) 0, 0.75, or 2 g/kg/d APE for 5 d. At d 6, rats were sacrificed and liver tissues were removed. Some animals (n=8) were intraperitoneally injected CCl4 (1 mL/kg, 50% in olive oil) and blood was drawn 24 h after CCl4 treatment. The results showed that APE increased hepatic glutathione (GSH) content and superoxide dismutase, GSH peroxidase, and GSH S-transferase activities in a dose-dependent manner (p < 0.05). Results of immunoblotting and RT-PCR revealed that rats treated with APE had higher glutamate cysteine ligase catalytic and modifier subunits, heme oxygenase 1, superoxide dismutase 1, and GSH S-transferase Ya and Yb protein and mRNA expression than those of control rats. Moreover, APE increased Nrf2 nuclear translocation and Nrf2 binding to DNA in rat liver. In the presence of CCl4, APE decreased hepatic thiobarbituric acid-reactive substances production and plasma aspartate aminotransferase and alanine aminotransferase activities. These results suggest that APE protection against CCl4 insult is attributed, at least in part, to its up-regulation of antioxidant defense in rat liver. PMID:24716135

  14. Liver ultrastructural morphology and mitochondrial DNA levels in HIV/hepatitis C virus coinfection: no evidence of mitochondrial damage with highly active antiretroviral therapy.

    PubMed

    Matsukura, Motoi; Chu, Fanny F S; Au, May; Lu, Helen; Chen, Jennifer; Rietkerk, Sonja; Barrios, Rolando; Farley, John D; Montaner, Julio S; Montessori, Valentina C; Walker, David C; Côté, Hélène C F

    2008-06-19

    Liver mitochondrial toxicity is a concern, particularly in HIV/hepatitis C virus (HCV) coinfection. Liver biopsies from HIV/HCV co-infected patients, 14 ON-highly active antiretroviral therapy (HAART) and nine OFF-HAART, were assessed by electron microscopy quantitative morphometric analyses. Hepatocytes tended to be larger ON-HAART than OFF-HAART (P = 0.05), but mitochondrial volume, cristae density, lipid volume, mitochondrial DNA and RNA levels were similar. We found no evidence of increased mitochondrial toxicity in individuals currently on HAART, suggesting that concomitant HAART should not delay HCV therapy. PMID:18525271

  15. NKP30-B7-H6 Interaction Aggravates Hepatocyte Damage through Up-Regulation of Interleukin-32 Expression in Hepatitis B Virus-Related Acute-On-Chronic Liver Failure

    PubMed Central

    Pan, Xingfei; Lu, Ying; Liao, Sihong; Wang, Xicheng; Wang, Guoying; Lin, Dongjun

    2015-01-01

    Background and Aims Previous work conducted by our group has shown that the accumulation of hepatic natural killer (NK) cells and the up-regulation of natural cytotoxicity receptors (NKP30 and NKP46) on NK cells from patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) were correlated with disease progression in HBV-ACLF. The natural cytotoxicity receptors expressed on NK cells are believed to be probable candidates involved in the NK cell-mediated hepatocyte damage in HBV-ACLF. However, the underlying mechanisms remain to be elucidated. In the present study, we aimed to discover the role of NKP30-B7-H6 interaction in NK cells-mediated hepatocyte damage in HBV-ACLF. Methods Hepatic expressions of B7-H6 and interleukin-32 (IL-32) were examined by immunochemistry staining in samples from patients with HBV-ACLF or mild chronic hepatitis B (CHB). The cytotoxicity of NK-92 cell against target cells (Huh-7 and LO2) was evaluated by CCK8 assay. Expression of IL-32 in liver NK cell, T cells and NK-92 cell line was detected by the flow cytometric analysis. The effect of IL-32 on the apoptosis of Huh7 cells was evaluated using Annexin V/PI staining analysis. Results An enhancement of hepatic B7-H6 and IL-32 expression was associated with the severity of liver injury in HBV-ACLF. And there was a positive association between hepatic B7-H6 and IL-32 expression. Expressions of IL-32 in liver NK cells and T cells were increased in HBV-ACLF patients. In vitro NK-92 cells are highly capable of killing the high B7-H6 expressing Huh7 cells and B7-H6-tansfected hepatocyte line LO2 cells dependent on NKP30 and B7-H6 interaction. Furthermore, NK-92 cells exhibited elevated IL-32 expression when stimulated with anti-NKP30 antibodies or when co-cultured with Huh7 cells. IL-32 can induce the apoptosis of Huh7 cells in a dose-dependent manner. Conclusion Our results suggest that NKP30-B7-H6 interaction can aggravate hepatocyte damage, probably through up

  16. Liver Facts

    MedlinePlus

    ... Home / Before The Transplant / Organ Facts / Liver Organ Facts Heart Lung Heart/Lung Kidney Pancreas Kidney/Pancreas Liver ... Receiving "the call" About the Operation Heart Lung Heart/Lung Kidney Pancreas Kidney/Pancreas Liver Intestine Liver Facts How the Liver Works The liver is one ...

  17. STAT3, a Key Parameter of Cytokine-Driven Tissue Protection during Sterile Inflammation – the Case of Experimental Acetaminophen (Paracetamol)-Induced Liver Damage

    PubMed Central

    Mühl, Heiko

    2016-01-01

    Acetaminophen (APAP, N-acetyl-p-aminophenol, or paracetamol) overdosing is a prevalent cause of acute liver injury. While clinical disease is initiated by overt parenchymal hepatocyte necrosis in response to the analgetic, course of intoxication is substantially influenced by associated activation of innate immunity. This process is supposed to be set in motion by release of danger-associated molecular patterns (DAMPs) from dying hepatocytes and is accompanied by an inflammatory cytokine response. Murine models of APAP-induced liver injury emphasize the complex role that DAMPs and cytokines play in promoting either hepatic pathogenesis or resolution and recovery from intoxication. Whereas the function of key inflammatory cytokines is controversially discussed, a subclass of specific cytokines capable of efficiently activating the hepatocyte signal transducer and activator of transcription (STAT)-3 pathway stands out as being consistently protective in murine models of APAP intoxication. Those include foremost interleukin (IL)-6, IL-11, IL-13, and IL-22. Above all, activation of STAT3 under the influence of these cytokines has the capability to drive hepatocyte compensatory proliferation, a key principle of the regenerating liver. Herein, the role of these specific cytokines during experimental APAP-induced liver injury is highlighted and discussed in a broader perspective. In hard-to-treat or at-risk patients, standard therapy may fail and APAP intoxication can proceed toward a fatal condition. Focused administration of recombinant STAT3-activating cytokines may evolve as novel therapeutic approach under those ill-fated conditions. PMID:27199988

  18. Activin A-Smad Signaling Mediates Connective Tissue Growth Factor Synthesis in Liver Progenitor Cells

    PubMed Central

    Ding, Ze-Yang; Jin, Guan-Nan; Wang, Wei; Sun, Yi-Min; Chen, Wei-Xun; Chen, Lin; Liang, Hui-Fang; Datta, Pran K.; Zhang, Ming-Zhi; Zhang, Bixiang; Chen, Xiao-Ping

    2016-01-01

    Liver progenitor cells (LPCs) are activated in chronic liver damage and may contribute to liver fibrosis. Our previous investigation reported that LPCs produced connective tissue growth factor (CTGF/CCN2), an inducer of liver fibrosis, yet the regulatory mechanism of the production of CTGF/CCN2 in LPCs remains elusive. In this study, we report that Activin A is an inducer of CTGF/CCN2 in LPCs. Here we show that expression of both Activin A and CTGF/CCN2 were upregulated in the cirrhotic liver, and the expression of Activin A positively correlates with that of CTGF/CCN2 in liver tissues. We go on to show that Activin A induced de novo synthesis of CTGF/CCN2 in LPC cell lines LE/6 and WB-F344. Furthermore, Activin A contributed to autonomous production of CTGF/CCN2 in liver progenitor cells (LPCs) via activation of the Smad signaling pathway. Smad2, 3 and 4 were all required for this induction. Collectively, these results provide evidence for the fibrotic role of LPCs in the liver and suggest that the Activin A-Smad-CTGF/CCN2 signaling in LPCs may be a therapeutic target of liver fibrosis. PMID:27011166

  19. Time-course changes in the expression levels of miR-122, -155, and -21 as markers of liver cell damage, inflammation, and regeneration in acetaminophen-induced liver injury in rats

    PubMed Central

    Park, Hyun-Kyu; Jo, Woori; Choi, Hyun-Ji; Jang, Sungwoong; Ryu, Jae-Eun; Lee, Hyo-Ju; Lee, Hyojin; Kim, Hyejin; Yu, Eun-Sil

    2016-01-01

    Drug-induced liver injury (DILI) is a significant threat to patient health and a major concern during drug development. Recently, multiple circulating microRNAs (miRNAs) have been reported to be potential biomarkers for DILI. To adapt and validate miRNAs for clinical use, we investigated the time-course changes in miR-122 expression levels in an acetaminophen-induced liver injury model in rats. In addition, miR-155 and miR-21 were evaluated as makers of inflammation and regeneration, respectively, to characterize liver status. Our results revealed that miR-122 is an early and sensitive biomarker of hepatocellular injury at a stage when alanine transaminase, aspartate transaminase, and total bilirubin were not detectable. However, no significant differences in the expression levels of other miRNAs (miR-155 and -21) were observed between treatment and vehicle groups. Collectively, these time-course changes in the expression levels of miRNAs may be useful as markers for clinical decision-making, in the diagnosis and treatment of DILI. PMID:27051339

  20. Dynamic metabolic profiling of urine biomarkers in rats with alcohol‑induced liver damage following treatment with Zhi‑Zi‑Da‑Huang decoction.

    PubMed

    An, Li; Lang, Qiaoling; Shen, Wenbin; Shi, Qingshui; Feng, Fang

    2016-09-01

    Alcoholic liver disease (ALD) is a leading cause of liver‑associated morbidity and mortality. Zhi‑Zi‑Da‑Huang decoction (ZZDHD), a traditional Chinese medicine formula, has been frequently used to treat or alleviate the symptoms of the various stages of ALD. To identify metabolic changes and the ZZDHD mechanism of action on ALD, potential urine biomarkers involved in the effects of ZZDHD were identified. Additionally, dynamic metabolomic profiles were systematically analyzed using nuclear magnetic resonance (NMR) spectroscopy in conjunction with statistical analysis. Alcohol administration to experimental rats disrupted multiple metabolic pathways, including methionine, gut bacterial, energy and amino acid metabolism. However, ZZDHD relieved certain effects of alcohol on the metabolism and regulated changes in potential characteristic biomarkers, including dimethylglycine, hippurate, lactate and creatine. The present study investigated time‑dependent metabolomic changes in the development of alcohol‑induced liver injury, including the effect of ZZDHD intervention. These findings elucidated important information regarding the metabolic responses to the protective effects of ZZDHD. 1H NMR‑based metabolomics method a reliable and useful tool for determining the metabolic progression of alcohol‑induced liver injury and elucidating the underlying mechanisms of the effect of traditional Chinese medicine formulas. This study also demonstrated that NMR‑based metabolomics approach is a powerful tool for understanding the molecular basis of pathogenesis and drug intervention processes. PMID:27430289

  1. Epigallocatechin-3-gallate (EGCG) attenuates concanavalin A-induced hepatic injury in mice.

    PubMed

    Liu, Dongmei; Zhang, Xiaoli; Jiang, Li; Guo, Yun; Zheng, Changqing

    2014-05-01

    (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenolic compound present in green tea and has been shown to possess anti-inflammatory and anti-oxidative properties. In this study, we investigated the protective effects of EGCG against concanavalin A (ConA)-induced liver injury and the underlying mechanisms. EGCG (5 mg/kg) was administered orally by gavage to mice twice daily for 10 days before an intravenous injection of ConA. We found that EGCG effectively rescued lethality, improved hepatic pathological damage, and decreased serum levels of alanine aminotransaminase (ALT) in ConA-challenged mice. Furthermore, EGCG also significantly prevented the release of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-4, and IL-6 in serum, reduced malondialdehyde (MDA) levels, and restored glutathione (GSH) content and superoxide dismutase (SOD) activity in liver tissues from ConA-challenged mice. Finally, nuclear factor (NF)-κB activation and expression levels of Toll-like receptor (TLR) 2, TLR4 and TLR9 protein in liver tissues were significantly inhibited by EGCG pretreatment. Taken together, our data suggest that EGCG possesses hepatoprotective properties against ConA-induced liver injury through its anti-inflammatory and anti-oxidant actions. PMID:24373695

  2. Acute liver failure and liver transplantation.

    PubMed

    Akamatsu, Nobuhisa; Sugawara, Yasuhiko; Kokudo, Norihiro

    2013-08-01

    Acute liver failure (ALF) is defined by the presence of coagulopathy (International Normalized Ratio ≥ 1.5) and hepatic encephalopathy due to severe liver damage in patients without pre-existing liver disease. Although the mortality due to ALF without liver transplantation is over 80%, the survival rates of patients have considerably improved with the advent of liver transplantation, up to 60% to 90% in the last two decades. Recent large studies in Western countries reported 1, 5, and 10-year patient survival rates after liver transplantation for ALF of approximately 80%, 70%, and 65%, respectively. Living donor liver transplantation (LDLT), which has mainly evolved in Asian countries where organ availability from deceased donors is extremely scarce, has also improved the survival rate of ALF patients in these regions. According to recent reports, the overall survival rate of adult ALF patients who underwent LDLT ranges from 60% to 90%. Although there is still controversy regarding the graft type, optimal graft volume, and ethical issues, LDLT has become an established treatment option for ALF in areas where the use of deceased donor organs is severely restricted. PMID:25343108

  3. Liver Wellness

    MedlinePlus

    ... to liver wellness. • There are more than 100 liver diseases. • Liver disease is one of the top 10 causes of ... out of every 10 Americans is affected by liver disease. • Some liver diseases such as hepatitis A, hepatitis ...

  4. Short term feeding of a high fat diet exerts an additive effect on hepatocellular damage and steatosis in liver-specific PTEN knockout mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hepatospecific deletion of PTEN results in constitutive activation of Akt and increased lipogenesis. In mice, the addition of a high fat diet (HFD) downregulates lipogenesis. The aim of this study was to determine the effects of a HFD on hepatocellular damage induced by deletion of PTEN. Twelve-week...

  5. Liver Transplant

    MedlinePlus

    ... You Can Use April May Calendar Liver Lowdown Mar 2014 Calendar of Events In The News Academic ... 2016 Calendar Jan Feb 2016 recipe Liver Lowdown Mar/Apr 2016 Liver Lowdown August 2016 Know Your ...

  6. Liver Diseases

    MedlinePlus

    ... remove poisons. There are many kinds of liver diseases. Viruses cause some of them, like hepatitis A, ... the skin, can be one sign of liver disease. Cancer can affect the liver. You could also ...

  7. Liver disease

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000205.htm Liver disease To use the sharing features on this page, please enable JavaScript. The term "liver disease" applies to many conditions that stop the liver ...

  8. Probiotic Escherichia coli CFR 16 producing pyrroloquinoline quinone (PQQ) ameliorates 1,2-dimethylhydrazine-induced oxidative damage in colon and liver of rats.

    PubMed

    Pandey, Sumeet; Singh, Ashish; Kumar, Prasant; Chaudhari, Archana; Nareshkumar, G

    2014-06-01

    Inflammation of the gastrointestinal tract is associated with reactive oxygen species (ROS) genesis. Alleviation of oxidative stress is achieved by using antioxidants and probiotics. Present study investigates a synergistic effect of the probiotic Escherichia coli CFR 16 containing Vitreoscilla haemoglobin gene (vgb), green fluorescent protein (gfp) gene and pyrroloquinoline quinone (pqq) gene cluster on oxidative stress induced by 1,2-dimethylhydrazine (DMH). Adult virgin Charles foster male rats (3-4 months) weighing 200-250 g were administered with DMH (25 mg/kg body weight, s.c.) twice a week for eight consecutive weeks. Rats receiving only DMH dose showed increased lipid peroxidation in liver and intestinal tissues with reduced activity of antioxidant enzymes, i.e. superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Oral dose of E. coli CFR 16::vgb-gfp harbouring pqq gene cluster increased rat faecal PQQ concentration by twofold, reduced lipid peroxidation and retained SOD, CAT and GPx activities close to normal levels in liver and colonic tissues following DMH treatment. In addition, significant protection was found in colonic histological sections of these rat groups. This study demonstrates a protective efficacy in the following order: E. coli CFR 16 < E. coli CFR 16::vgb-gfp < vitamin C = PQQ < E. coli CFR 16::vgb-gfp (pqq). PMID:24718737

  9. Astaxanthin as a Potential Protector of Liver Function: A Review

    PubMed Central

    Chen, Jui-Tung; Kotani, Kazuhiko

    2016-01-01

    Protecting against liver damage, such as non-alcoholic fatty liver disease, is currently considered to be important for the prevention of adverse conditions, such as cardiovascular and cancerous diseases. Liver damage often occurs in relation to oxidative stress with metabolic disorders, including cellular lipid accumulation. Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′dione), a xanthophyll carotenoid, is a candidate for liver protection. Here, we briefly review astaxanthin as a potential protector against liver damage. In particular, studies have reported antioxidative effects of astaxanthin in liver tissues. Astaxanthin treatment is also reported to improve hyperlipidemia, which indirectly induces the antioxidative effects of astaxanthin on liver pathologies. Furthermore, astaxanthin may alleviate liver damage independent of its antioxidative effects. Of note, there are still insufficient human data to observe the effect of astaxanthin treatment on liver function in clinical conditions. More studies investigating the relevance of astaxanthin on liver protection are necessary.

  10. Aqueous extract of Senecio candicans DC induce liver and kidney damage in a sub-chronic oral toxicity study in Wistar rats.

    PubMed

    Lakshmanan, Hariprasath; Raman, Jegadeesh; Pandian, Arjun; Kuppamuthu, Kumaresan; Nanjian, Raaman; Sabaratam, Vikineswary; Naidu, Murali

    2016-08-01

    Senecio candicans DC. (Asteraceae) is used as a remedy for gastric ulcer and stomach pain in the Nilgiris, district, Tamil Nadu. The present investigation was carried out to evaluate the sub-chronic toxicity of an aqueous extract of Senecio candicans (AESC) plant in Wistar albino rats. The study was conducted in consideration of the OECD 408 study design (Repeated Dose 90-Day Oral Toxicity Study in Rodents) and the extract was administered via gavage at doses of 250, 500 or 750 mg/kg body weight per day for 90-days. Hematological, biochemical parameters were determined on days 0, 30, 60 and 90 of administration. Animals were euthanized after 90 d treatment and its liver and kidney sections were taken for histological study. The results of sub-chronic study showed significant increase (P < 0.05) in serum uric acid, creatinine, aspartate transaminase (AST) and alanine transaminase (ALP) levels. Histological examination of liver showed mild mononuclear infiltration in the portal trait, enlarged nucleus around the central vein and mild loss of hepatocyte architecture in rats treated with 750 mg/kg of AESC. Histological examination of kidney showed focal interstitial fibrosis, crowding of glomeruli and mild hydropic change with hypercellular glomeruli in rats treated with 750 mg/kg of AESC. However, no remarkable histoarchitectural change in hepatocytes and glomeruli were observed in rats treated with lower concentrations (250 and 500 mg/kg b.w.) of AESC compared to control group animals. The no-observed adverse effect level (NOAEL) of AESC in the present study was 500 mg/kg b.w. Signs of toxic effects are evident from the current study. Although AESC contains low concentrations of PA, findings from this study suggest that regular consumers of herbal remedies derived from this plant may develop kidney and liver toxicity. Further studies on the isolation and characterization of PAs are necessary to determine the safe dose level of the extract for therapeutic use

  11. Polymorphism of UGT1A1*28 (TA)7 and liver damage in hepatitis B virus-positive patients in Albania.

    PubMed

    Marku, E; Maltese, P E; Koni, M; Capodicasa, N; Qendro, I S; Rigoni, E; Cecchin, S; Bertelli, M

    2015-01-01

    Hepatitis B virus (HBV) is the infectious agent of both acute and chronic hepatitis. HBV exists in multiple genotypic variants that differ in their capacity to become persistent chronic infections and in their clinical manifestations, including hepatocellular carcinoma. The 8 genotypes (A-H) of HBV show a specific worldwide geographic distribution and are correlated with different disease course, severity, and response to therapy. We isolated DNA from 75 HBV-positive blood donors, chosen randomly from the database of the National Blood Bank in Tirana, to specifically analyze the UGT1A1 polymorphism to determine its correlations with bilirubin levels and liver function. The large number of subjects who were HBV-positive carriers of heterozygosis or homozygosis for the UGT1A1*28 (TA)7 polymorphism suggests that these individuals may be more susceptible to cancer and should follow a strict regime of prevention. PMID:26125716

  12. Chicken Fetal Liver DNA Damage and Adduct Formation by Activation-Dependent DNA-Reactive Carcinogens and Related Compounds of Several Structural Classes

    PubMed Central

    Williams, Gary M.; Duan, Jian-Dong; Brunnemann, Klaus D.; Iatropoulos, Michael J.; Vock, Esther; Deschl, Ulrich

    2014-01-01

    The chicken egg genotoxicity assay (CEGA), which utilizes the liver of an intact and aseptic embryo-fetal test organism, was evaluated using four activation-dependent DNA-reactive carcinogens and four structurally related less potent carcinogens or non-carcinogens. In the assay, three daily doses of test substances were administered to eggs containing 9–11-day-old fetuses and the fetal livers were assessed for two endpoints, DNA breaks using the alkaline single cell gel electrophoresis (comet) assay and DNA adducts using the 32P-nucleotide postlabeling (NPL) assay. The effects of four carcinogens of different structures requiring distinct pathways of bioactivation, i.e., 2-acetylaminofluorene (AAF), aflatoxin B1 (AFB1), benzo[a]pyrene (B[a]P), and diethylnitrosamine (DEN), were compared with structurally related non-carcinogens fluorene (FLU) and benzo[e]pyrene (B[e]P) or weak carcinogens, aflatoxin B2 (AFB2) and N-nitrosodiethanolamine (NDELA). The four carcinogens all produced DNA breaks at microgram or low milligram total doses, whereas less potent carcinogens and non-carcinogens yielded borderline or negative results, respectively, at higher doses. AAF and B[a]P produced DNA adducts, whereas none was found with the related comparators FLU or B[e]P, consistent with comet results. DEN and NDELA were also negative for adducts, as expected in the case of DEN for an alkylating agent in the standard NPL assay. Also, AFB1 and AFB2 were negative in NPL, as expected, due to the nature of ring opened aflatoxin adducts, which are resistant to enzymatic digestion. Thus, the CEGA, using comet and NPL, is capable of detection of the genotoxicity of diverse DNA-reactive carcinogens, while not yielding false positives for non-carcinogens. PMID:24973097

  13. Mangiferin, a Natural Xanthone, Protects Murine Liver in Pb(II) Induced Hepatic Damage and Cell Death via MAP Kinase, NF-κB and Mitochondria Dependent Pathways

    PubMed Central

    Pal, Pabitra Bikash; Sinha, Krishnendu; Sil, Parames C.

    2013-01-01

    One of the most well-known naturally occurring environmental heavy metals, lead (Pb) has been reported to cause liver injury and cellular apoptosis by disturbing the prooxidant-antioxidant balance via oxidative stress. Several studies, on the other hand, reported that mangiferin, a naturally occurring xanthone, has been used for a broad range of therapeutic purposes. In the present study, we, therefore, investigated the molecular mechanisms of the protective action of mangiferin against lead-induced hepatic pathophysiology. Lead [Pb(II)] in the form of Pb(NO3)2 (at a dose of 5 mg/kg body weight, 6 days, orally) induced oxidative stress, hepatic dysfunction and cell death in murine liver. Post treatment of mangiferin at a dose of 100 mg/kg body weight (6 days, orally), on the other hand, diminished the formation of reactive oxygen species (ROS) and reduced the levels of serum marker enzymes [alanine aminotranferase (ALT) and alkaline phosphatase (ALP)]. Mangiferin also reduced Pb(II) induced alterations in antioxidant machineries, restored the mitochondrial membrane potential as well as mutual regulation of Bcl-2/Bax. Furthermore, mangiferin inhibited Pb(II)-induced activation of mitogen-activated protein kinases (MAPKs) (phospho-ERK 1/2, phosphor-JNK phospho- p38), nuclear translocation of NF-κB and apoptotic cell death as was evidenced by DNA fragmentation, FACS analysis and histological assessment. In vitro studies using hepatocytes as the working model also showed the protective effect of mangiferin in Pb(II) induced cytotoxicity. All these beneficial effects of mangiferin contributes to the considerable reduction of apoptotic hepatic cell death induced by Pb(II). Overall results demonstrate that mangiferin exhibit both antioxidative and antiapoptotic properties and protects the organ in Pb(II) induced hepatic dysfunction. PMID:23451106

  14. Lipids changes in liver cancer*

    PubMed Central

    Jiang, Jing-ting; Xu, Ning; Zhang, Xiao-ying; Wu, Chang-ping

    2007-01-01

    Liver is one of the most important organs in energy metabolism. Most plasma apolipoproteins and endogenous lipids and lipoproteins are synthesized in the liver. It depends on the integrity of liver cellular function, which ensures homeostasis of lipid and lipoprotein metabolism. When liver cancer occurs, these processes are impaired and the plasma lipid and lipoprotein patterns may be changed. Liver cancer is the fifth common malignant tumor worldwide, and is closely related to the infections of hepatitis B virus (HBV) and hepatitis C virus (HCV). HBV and HCV infections are quite common in China and other Southeast Asian countries. In addition, liver cancer is often followed by a procession of chronic hepatitis or cirrhosis, so that hepatic function is damaged obviously on these bases, which may significantly influence lipid and lipoprotein metabolism in vivo. In this review we summarize the clinical significance of lipid and lipoprotein metabolism under liver cancer. PMID:17565510

  15. Polychlorinated Biphenyl Quinone Metabolite Promotes p53-Dependent DNA Damage Checkpoint Activation, S-Phase Cycle Arrest and Extrinsic Apoptosis in Human Liver Hepatocellular Carcinoma HepG2 Cells.

    PubMed

    Song, Xiufang; Li, Lingrui; Shi, Qiong; Lehmler, Hans-Joachim; Fu, Juanli; Su, Chuanyang; Xia, Xiaomin; Song, Erqun; Song, Yang

    2015-11-16

    Polychlorinated biphenyls (PCBs) are a group of persistent organic pollutants. The toxic behavior and mechanism of PCBs individuals and congeners have been extensively investigated. However, there is only limited information on their metabolites. Our previous studies have shown that a synthetic PCB metabolite, PCB29-pQ, causes oxidative damage with the evidence of cytotoxicity, genotoxicity, and mitochondrial-derived intrinsic apoptosis. Here, we investigate the effects of PCB29-pQ on DNA damage checkpoint activation, cell cycle arrest, and death receptor-related extrinsic apoptosis in human liver hepatocellular carcinoma HepG2 cells. Our results illustrate that PCB29-pQ increases the S-phase cell population by down-regulating cyclins A/D1/E, cyclin-dependent kinases (CDK 2/4/6), and cell division cycle 25A (CDC25A) and up-regulating p21/p27 protein expressions. PCB29-pQ also induces apoptosis via the up-regulation of Fas/FasL and the activation of caspase 8/3. Moreover, p53 plays a pivotal role in PCB29-pQ-induced cell cycle arrest and apoptosis via the activation of ATM/Chk2 and ATR/Chk1 checkpoints. Cell cycle arrest and apoptotic cell death were attenuated by the pretreatment with antioxidant N-acetyl-cysteine (NAC). Taken together, these results demonstrate that PCB29-pQ induces oxidative stress and promotes p53-dependent DNA damage checkpoint activation, S-phase cycle arrest, and extrinsic apoptosis in HepG2 cells. PMID:26451628

  16. Compositional characterisation of soluble apple polysaccharides, and their antioxidant and hepatoprotective effects on acute CCl4-caused liver damage in mice.

    PubMed

    Yang, Xingbin; Yang, Su; Guo, Yurong; Jiao, Yadong; Zhao, Yan

    2013-06-01

    Water-soluble apple peel polysaccharides (APP) and apple flesh polysaccharides (AFP) were isolated from Pink Lady fruits, and their in vitro antioxidant capacities were characterised by DPPH(), HO(), and O(2)(-) systems, and ferric-reducing antioxidant power assay. Oral administration of APP at 250 and 500 mg/kg bw in mice was shown to be as effective as AFP in lowering the CCl(4)-caused increases of serum alanine aminotransferase, aspartate aminotransferase and lactic dehydrogenase activities, and hepatic malondialdehyde level, and antagonising the decreases in antioxidant superoxide dismutase and glutathione peroxidase activities caused by CCl(4) (p<0.05). Histopathological examinations further confirmed that both APP and AFP could protect the liver from CCl(4)-induced histological alteration. HPLC analysis also showed similar profiles of monosaccharide composition for APP and AFP with arabinose, galactose and galacturonic acid being main component monosaccharides. All of these findings demonstrate that the extracts of both APP and AFP possess antioxidant and hepatoprotective potential. PMID:23411241

  17. The Pros and the Cons for the Use of Silybin-Rich Oral Formulations in Treatment of Liver Damage (NAFLD in Particular).

    PubMed

    Rosso, Natalia; Marin, Veronica; Giordani, Antonio; Persiani, Stefano; Sala, Federica; Cavicchioli, Lucio; Rovati, Lucio C; Tiribelli, Claudio

    2015-01-01

    The increasing prevalence of Non-Alcoholic Fatty Liver Disease (NAFLD) worldwide is becoming a challenge for the modern global care system. The lipotoxic process is characterized by an oxidative stress followed by a burst of the inflammatory response, prompting the wound healing process (fibrosis), which can ultimately lead to the development of cirrhosis and the subsequent complications. There is no consensus concerning an effective pharmacological treatment. Therefore, there is a need for effective therapeutic compounds. Silibinin the major active compound of Milk Thistle may be a potential candidate mainly due to its anti-oxidant, anti-inflammatory, and anti-fibrotic properties. In spite of the large number of data obtained in experimental models, the translation of the evidence in clinical setting is far to be conclusive. The aim of this paper is to critically review the aspects of the use of the different formulations of Silibinin in several experimental and clinical settings and to provide hints on the needed future studies. PMID:26219393

  18. Mitigative action of mono isoamyl 2, 3-dimercaptosuccinate (MiADMS) against cadmium-induced damage in cultured rat normal liver cells

    PubMed Central

    Odewumi, Caroline O.; Buggs, Rebecca; Badisa, Veera L.D.; Latinwo, Lekan M.; Badisa, Ramesh B.; Ikediobi, Christopher O.; Darling-Reed, Selina F.; Owens, Marcia A.

    2012-01-01

    Cadmium is non-essential, carcinogenic and multitarget pollutant in the environment. Monoisoamyl 2, 3-dimercaptosuccinate (MiADMS) is an ester of dimercaptosuccinicacid that acts as an antioxidant and chelator. Therefore, the mitigative action of MiADMS on viability, morphology, antioxidative enzymes and cell cycle were studied on rat liver cells treated with cadmium chloride (CdCl2). The cells were treated with 150 μM CdCl2 alone or cotreated with 300 μM MiADMS (concurrently, 2 h or 4 h post CdCl2 treatment) for 24 h. The viability of cells treated with CdCl2 alone was decreased in comparison to the control cells. Cotreatment with MiADMS resulted in an increase in cell viability in comparison to the CdCl2 alone treated cells. The CdCl2 treatment altered the morphological shape of the cells, while cotreatment with MiADMS restored the shape. Antioxidative enzymes activities were decreased in the cells treated with CdCl2 alone, while MiADMS cotreatment resulted in an increase in enzyme activities. The CdCl2 arrested the cells in S phase of the cell cycle. Cotreatment with MiADMS alleviated cell cycle arrest by shifting to G1 phase. These results clearly show the mitigative action of MiADMS on CdCl2 toxicity and may suggest that MiADMS can be used as an antidote against cadmium. PMID:21911053

  19. Liver transplant

    MedlinePlus

    ... series References Keefe EB. Hepatic failure and liver transplantation. In: Goldman L, Schafer AI, eds. Goldman's Cecil ... 2011:chap 157. Martin P, Rosen HR. Liver transplantation. In: Feldman M, Friedman LS, Brandt LJ, eds. ...

  20. Liver spots

    MedlinePlus

    Sun-induced skin changes - liver spots; Senile or solar lentigines; Skin spots - aging; Age spots ... Liver spots are changes in skin color that occur in older skin. The coloring may be due to aging, exposure to the sun ...

  1. Liver biopsy

    MedlinePlus

    ... Test is Performed The biopsy helps diagnose many liver diseases . The procedure also helps assess the stage (early, advanced) of liver disease. This is especially important in hepatitis C infection. ...

  2. Liver Diseases

    MedlinePlus

    Your liver is the largest organ inside your body. It helps your body digest food, store energy, and remove poisons. There are many kinds of liver diseases. Viruses cause some of them, like hepatitis ...

  3. Liver Biopsy

    MedlinePlus

    ... Organizations ​​ (PDF, 341 KB)​​​​. Alternate Language URL Español Liver Biopsy Page Content On this page: What is ... Points to Remember Clinical Trials What is a liver biopsy? A liver biopsy is a procedure that ...

  4. Liver Biopsy

    MedlinePlus

    ... PDF, 341 KB)​​​​. Alternate Language URL Español Liver Biopsy Page Content On this page: What is a ... to Remember Clinical Trials What is a liver biopsy? A liver biopsy is a procedure that involves ...

  5. Hepatitis C Therapy May Reduce Need for Liver Transplants

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_158321.html Hepatitis C Therapy May Reduce Need for Liver Transplants If ... for people with severe liver damage and hepatitis C, a new study suggests. This study included 103 ...

  6. Bisphenol A-Induced Ovotoxicity Involves DNA Damage Induction to Which the Ovary Mounts a Protective Response Indicated by Increased Expression of Proteins Involved in DNA Repair and Xenobiotic Biotransformation.

    PubMed

    Ganesan, Shanthi; Keating, Aileen F

    2016-07-01

    Bisphenol A (BPA) is an endocrine disrupting chemical with ubiquitous human exposure. BPA causes primordial follicle loss and DNA damage in germ cells, thus we hypothesized that BPA induces ovarian DNA damage, thereby precipitating follicle loss. We also anticipated that the ovary activates DNA repair and xenobiotic biotransformation to minimize oocyte damage and/or, activate cell death signaling to deplete follicles. Postnatal day 4 F344 rat ovaries were cultured in medium containing vehicle control (1% dimethylsulfoxide [DMSO]) ± BPA (440 µM) for 2-8 days. BPA reduced (P < 0.05) small primary, large primary and secondary follicle numbers after 2 days, followed by a reduction (P < .05) in primordial follicle numbers after 4 days. Phosphorylated H2AX (γH2AX) and Ataxia-telangiectasia mutated (ATM), markers of DNA double-strand breaks, were increased (P < .05) in abundance prior to observed follicle loss. DNA repair genes (Atm, Prkdc, Xrcc6, Brca1, Mre11a, Rad50, and Smc1a) were increased (P < .05) after 1 day of BPA exposure. mRNA encoding Meh, Gstm, c-kit, Kitlg, and Akt were increased (P < .05), as was MEH, AKT, pAKT, Jun N-terminal kinase, and P53 protein abundance, while GST isoforms pi and Nuclear factor erythroid-related factor 2 proteins were decreased (P < .05) by BPA exposure. These data demonstrate the dynamic ovarian response to BPA exposure, which indicates that BPA, via biotransformation, may be converted to a DNA alkylating agent, causing ovarian DNA damage, to which the ovary mounts a protective response and further our knowledge on the biological impacts of BPA on the female germline. PMID:27208089

  7. Liver transplantation☆

    PubMed Central

    Rossi, M.; Mennini, G.; Lai, Q.; Ginanni Corradini, S.; Drudi, F.M.; Pugliese, F.; Berloco, P.B.

    2007-01-01

    Orthotopic liver transplantation (OLT) involves the substitution of a diseased native liver with a normal liver (or part of one) taken from a deceased or living donor. Considered an experimental procedure through the 1980s, OLT is now regarded as the treatment of choice for a number of otherwise irreversible forms of acute and chronic liver disease. The first human liver transplantation was performed in the United States in 1963 by Prof. T.E. Starzl of the University of Colorado. The first OLT to be performed in Italy was done in 1982 by Prof. R. Cortesini. The procedure was successfully performed at the Policlinico Umberto I of the University of Rome (La Sapienza). The paper reports the indications for liver transplantation, donor selection and organ allocation in our experience, surgical technique, immunosuppression, complications and results of liver transplantation in our center. PMID:23396075

  8. Diverse routes to liver regeneration.

    PubMed

    Alison, Malcolm R; Lin, Wey-Ran

    2016-02-01

    The liver's ability to regenerate is indisputable; for example, after a two-thirds partial hepatectomy in rats all residual hepatocytes can divide, questioning the need for a specific stem cell population. On the other hand, there is a potential stem cell compartment in the canals of Hering, giving rise to ductular reactions composed of hepatic progenitor cells (HPCs) when the liver's ability to regenerate is hindered by replicative senescence, but the functional relevance of this response has been questioned. Several papers have now clarified regenerative mechanisms operative in the mouse liver, suggesting that the liver is possibly unrivalled in its versatility to replace lost tissue. Under homeostatic conditions a perivenous population of clonogenic hepatocytes operates, whereas during chronic damage a minor population of periportal clonogenic hepatocytes come to the fore, while the ability of HPCs to completely replace the liver parenchyma has now been shown. PMID:26510495

  9. Liver spots

    MedlinePlus

    Sun-induced skin changes - liver spots; Senile or solar lentigines; Skin spots - aging; Age spots ... Liver spots are changes in skin color that occur in older skin. The coloring may be due to aging, exposure to the sun or other sources of ...

  10. Epigallocatechin-3-gallate attenuates apoptosis and autophagy in concanavalin A-induced hepatitis by inhibiting BNIP3

    PubMed Central

    Li, Sainan; Xia, Yujing; Chen, Kan; Li, Jingjing; Liu, Tong; Wang, Fan; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2016-01-01

    Background Epigallocatechin-3-gallate (EGCG) is the most effective compound in green tea, and possesses a wide range of beneficial effects, including anti-inflammatory, antioxidant, antiobesity, and anticancer effects. In this study, we investigated the protective effects of EGCG in concanavalin A (ConA)-induced hepatitis in mice and explored the possible mechanisms involved in these effects. Methods Balb/C mice were injected with ConA (25 mg/kg) to induce acute autoimmune hepatitis, and EGCG (10 or 30 mg/kg) was administered orally twice daily for 10 days before ConA injection. Serum liver enzymes, proinflammatory cytokines, and other marker proteins were determined 2, 8, and 24 hours after the ConA administration. Results BNIP3 mediated cell apoptosis and autophagy in ConA-induced hepatitis. EGCG decreased the immunoreaction and pathological damage by reducing inflammatory factors, such as TNF-α, IL-6, IFN-γ, and IL-1β. EGCG also exhibited an antiapoptotic and antiautophagic effect by inhibiting BNIP3 via the IL-6/JAKs/STAT3 pathway. Conclusion EGCG attenuated liver injury in ConA-induced hepatitis by downregulating IL-6/JAKs/STAT3/BNIP3-mediated apoptosis and autophagy. PMID:26929598

  11. Protective Effects of Astaxanthin on ConA-Induced Autoimmune Hepatitis by the JNK/p-JNK Pathway-Mediated Inhibition of Autophagy and Apoptosis

    PubMed Central

    Liu, Tong; Wang, Junshan; Dai, Weiqi; Wang, Fan; Zheng, Yuanyuan; Chen, Kan; Li, Sainan; Abudumijiti, Huerxidan; Zhou, Zheng; Wang, Jianrong; Lu, Wenxia; Zhu, Rong; Yang, Jing; Zhang, Huawei; Yin, Qin; Wang, Chengfen; Zhou, Yuqing; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2015-01-01

    Objective Astaxanthin, a potent antioxidant, exhibits a wide range of biological activities, including antioxidant, atherosclerosis and antitumor activities. However, its effect on concanavalin A (ConA)-induced autoimmune hepatitis remains unclear. The aim of this study was to investigate the protective effects of astaxanthin on ConA-induced hepatitis in mice, and to elucidate the mechanisms of regulation. Materials and Methods Autoimmune hepatitis was induced in in Balb/C mice using ConA (25 mg/kg), and astaxanthin was orally administered daily at two doses (20 mg/kg and 40 mg/kg) for 14 days before ConA injection. Levels of serum liver enzymes and the histopathology of inflammatory cytokines and other maker proteins were determined at three time points (2, 8 and 24 h). Primary hepatocytes were pretreated with astaxanthin (80 μM) in vitro 24 h before stimulation with TNF-α (10 ng/ml). The apoptosis rate and related protein expression were determined 24 h after the administration of TNF-α. Results Astaxanthin attenuated serum liver enzymes and pathological damage by reducing the release of inflammatory factors. It performed anti-apoptotic effects via the descending phosphorylation of Bcl-2 through the down-regulation of the JNK/p-JNK pathway. Conclusion This research firstly expounded that astaxanthin reduced immune liver injury in ConA-induced autoimmune hepatitis. The mode of action appears to be downregulation of JNK/p-JNK-mediated apoptosis and autophagy. PMID:25761053

  12. Liver bioengineering

    PubMed Central

    Caralt, Mireia; Velasco, Enrique; Lanas, Angel; Baptista, Pedro M

    2014-01-01

    Liver bioengineering has been a field of intense research and popular excitement in the past decades. It experiences great interest since the introduction of whole liver acellular scaffolds generated by perfusion decellularization1–3. Nevertheless, the different strategies developed so far have failed to generate hepatic tissue in vitro bioequivalent to native liver tissue. Even notable novel strategies that rely on iPSC-derived liver progenitor cells potential to self-organize in association with endothelial cells in hepatic organoids are lacking critical components of the native tissue (e.g., bile ducts, functional vascular network, hepatic microarchitecture, etc)4. Hence, it is vital to understand the strengths and short comes of our current strategies in this quest to re-create liver organogenesis in vitro. To shed some light into these issues, this review describes the different actors that play crucial roles in liver organogenesis and highlights the steps still missing to successfully generate whole livers and hepatic organoids in vitro for multiple applications. PMID:25102189

  13. The management of liver trauma.

    PubMed Central

    Macfarlane, R.

    1985-01-01

    Despite advances in the management of liver trauma during the past 40 years, haemorrhage has remained the commonest cause of death. This article outlines the diversity of opinion between the desire to determine the extent of damage and resect devitalised tissue with its attendant risk of exacerbating haemorrhage, and the alternative of a more conservative approach. PMID:3895205

  14. Liver Regeneration

    PubMed Central

    Michalopoulos, George K.

    2009-01-01

    Liver regeneration after partial hepatectomy is a very complex and well-orchestrated phenomenon. It is carried out by the participation of all mature liver cell types. The process is associated with signaling cascades involving growth factors, cytokines, matrix remodeling, and several feedbacks of stimulation and inhibition of growth related signals. Liver manages to restore any lost mass and adjust its size to that of the organism, while at the same time providing full support for body homeostasis during the entire regenerative process. In situations when hepatocytes or biliary cells are blocked from regeneration, these cell types can function as facultative stem cells for each other. PMID:17559071

  15. EGFR Signaling in Liver Diseases

    PubMed Central

    Komposch, Karin; Sibilia, Maria

    2015-01-01

    The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase that is activated by several ligands leading to the activation of diverse signaling pathways controlling mainly proliferation, differentiation, and survival. The EGFR signaling axis has been shown to play a key role during liver regeneration following acute and chronic liver damage, as well as in cirrhosis and hepatocellular carcinoma (HCC) highlighting the importance of the EGFR in the development of liver diseases. Despite the frequent overexpression of EGFR in human HCC, clinical studies with EGFR inhibitors have so far shown only modest results. Interestingly, a recent study has shown that in human HCC and in mouse HCC models the EGFR is upregulated in liver macrophages where it plays a tumor-promoting function. Thus, the role of EGFR in liver diseases appears to be more complex than what anticipated. Further studies are needed to improve the molecular understanding of the cell-specific signaling pathways that control disease development and progression to be able to develop better therapies targeting major components of the EGFR signaling network in selected cell types. In this review, we compiled the current knowledge of EGFR signaling in different models of liver damage and diseases, mainly derived from the analysis of HCC cell lines and genetically engineered mouse models (GEMMs). PMID:26729094

  16. What Is Liver Cancer?

    MedlinePlus

    ... Topic Key statistics about liver cancer What is liver cancer? Cancer starts when cells in the body ... structure and function of the liver. About the liver The liver is the largest internal organ. It ...

  17. Benign Liver Tumors

    MedlinePlus

    ... Search: Your Liver Liver Health and Wellness Recipes Liver Disease Information Patients & Families Caregiver's FAQ Become an Organ ... 2013 Liver Awareness Month Personal Story - David Roncori Liver Disease - The Big Picture 13 Ways to a Healthy ...

  18. JUNB/AP-1 controls IFN-γ during inflammatory liver disease

    PubMed Central

    Thomsen, Martin K.; Bakiri, Latifa; Hasenfuss, Sebastian C.; Hamacher, Rainer; Martinez, Lola; Wagner, Erwin F.

    2013-01-01

    Understanding the molecular pathogenesis of inflammatory liver disease is essential to design efficient therapeutic approaches. In hepatocytes, the dimeric transcription factor c-JUN/AP-1 is a major mediator of cell survival during hepatitis, although functions for other JUN proteins in liver disease are less defined. Here, we found that JUNB was specifically expressed in human and murine immune cells during acute liver injury. We analyzed the molecular function of JUNB in experimental models of hepatitis, including administration of concanavalin A (ConA) or α-galactosyl-ceramide, which induce liver inflammation and injury. Mice specifically lacking JUNB in hepatocytes displayed a mild increase in ConA-induced liver damage. However, targeted deletion of Junb in immune cells and hepatocytes protected against hepatitis in experimental models that involved NK/NKT cells. The absence of JUNB in immune cells decreased IFN-γ expression and secretion from NK and NKT cells, leading to reduced STAT1 pathway activation. Systemic IFN-γ treatment or adenovirus-based IRF1 delivery to Junb-deficient mice restored hepatotoxicity, and we demonstrate that Ifng is a direct transcriptional target of JUNB. These findings demonstrate that JUNB/AP-1 promotes cell death during acute hepatitis by regulating IFN-γ production in NK and NKT cells and thus functionally antagonizes the hepatoprotective function of c-JUN/AP-1 in hepatocytes. PMID:24200694

  19. ASSESSMENT OF CLINICAL PROCEDURES TO EVALUATE LIVER INTOXICATION IN FISH

    EPA Science Inventory

    Procedures were developed to clinically evaluate liver damage and liver function in rainbow trout following either acute intraperitoneal (i.p.) treatment or subacute bath exposure to selected mammalian hepatotoxic agents. Elevations in serum of liver specific enzymes such as aspa...

  20. [Non-invasive assessment of fatty liver].

    PubMed

    Egresi, Anna; Lengyel, Gabriella; Hagymási, Krisztina

    2015-04-01

    As the result of various harmful effects (infectious agents, metabolic diseases, unhealthy diet, obesity, toxic agents, autoimmune processes) hepatic damage may develop, which can progress towards liver steatosis, and fibrosis as well. The most common etiological factors of liver damages are hepatitis B and C infection, alcohol consumption and non-alcoholic fatty liver disease. Liver biopsy is considered as the gold standard for the diagnosis of chronic liver diseases. Due to the dangers and complications of liver biopsy, studies are focused on non-invasive markers and radiological imaging for liver steatosis, progression of fatty liver, activity of the necroinflammation and the severity of the fibrosis. Authors review the possibilities of non-invasive assessment of liver steatosis. The statistical features of the probes (positive, negative predictive values, sensitivity, specificity) are reviewed. The role of radiological imaging is also discussed. Although the non-invasive methods discussed in this article are useful to assess liver steatosis, further studies are needed to validate to follow progression of the diseases and to control therapeutic response. PMID:25819147

  1. Liver Panel

    MedlinePlus

    ... liver; the best test for detecting hepatitis Alkaline phosphatase (ALP) – an enzyme related to the bile ducts ... only moderately elevated or close to normal. Alkaline phosphatase (ALP) ALP may be significantly increased with obstructed ...

  2. Liver cirrhosis.

    PubMed Central

    Williams, E. J.; Iredale, J. P.

    1998-01-01

    Liver fibrosis and its related complications continue to represent a significant worldwide healthcare burden. Over the past decade there has been considerable improvement in our understanding of the cellular mechanisms and pathophysiology underlying hepatic fibrosis. This greater insight into the relevant basic sciences may lead to the development of novel treatment strategies designed to block the fibrogenic cascade or even enhance matrix degradation. In addition, there have been significant advances in the management of the complications of cirrhosis, with specific treatments now available for some conditions. Perhaps most notably, liver transplantation is now a highly successful treatment for end-stage liver disease and should be considered in all patients with chronic liver disease. PMID:9683971

  3. Liver transplant

    MedlinePlus

    Risks for any anesthesia are: Problems breathing Reactions to medications Risks for any surgery are: Bleeding Heart attack or stroke Infection Liver transplant surgery and management after surgery carry major risks. There is ...

  4. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of nonalcoholic fatty liver disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is often associated with a cluster of increased health risks collectively known as "Metabolic Syndrome" (MS). MS is often accompanied by development of fatty liver. Sometimes fatty liver results in damage leading to reduced liver function, and need for a transplant. This condition is known...

  5. Liver enzyme alteration: a guide for clinicians

    PubMed Central

    Giannini, Edoardo G.; Testa, Roberto; Savarino, Vincenzo

    2005-01-01

    ISOLATED ALTERATIONS OF BIOCHEMICAL MARKERS OF LIVER DAMAGE in a seemingly healthy patient can present a challenge for the clinician. In this review we provide a guide to interpreting alterations to liver enzyme levels. The functional anatomy of the liver and pathophysiology of liver enzyme alteration are briefly reviewed. Using a schematic approach that classifies enzyme alterations as predominantly hepatocellular or predominantly cholestatic, we review abnormal enzymatic activity within the 2 subgroups, the most common causes of enzyme alteration and suggested initial investigations. PMID:15684121

  6. New Approaches for Studying Alcoholic Liver Disease

    PubMed Central

    Xu, Jun; Liu, Xiao; Gao, Bin; Karin, Michael; Tsukamoto, Hidekazu; Brenner, David

    2015-01-01

    Alcoholic liver disease (ALD) is major cause of chronic liver injury which results in liver fibrosis and cirrhosis. According to the surveillance report published by the National Institute on Alcohol Abuse and Alcoholism, liver cirrhosis is the 12th leading cause of death in the United States with 48 % of these deaths being attributed to excessive alcohol consumption. ALD includes a spectrum of disorders from simple steatosis to steatohepatitis, fibrosis, and hepatocellular carcinoma. Several mechanisms play a critical role in the pathogenesis of ALD. These include ethanol–induced oxidative stress and depletion of glutathione, pathological methionine metabolism, increased gut permeability and release of endotoxins into the portal blood, recruitment and activation of inflammatory cells including bone marrow-derived and liver resident macrophages (Kupffer cells). Chronic alcohol consumption results in liver damage and activation of hepatic stellate cells (HSCs) and myofibroblasts, leading to liver fibrosis. Here we discuss the current view on factors that are specific for different stages of ALD and those that regulate its progression, including cytokines and chemokines, alcohol-responsive intracellular signaling pathways, and transcriptional factors. We also review recent studies demonstrating that alcohol-mediated changes can be regulated on an epigenetic level, including microRNAs. Finally, we discuss the reversibility of liver fibrosis and inactivation of HSCs as a potential strategy for treating alcohol-induced liver damage. PMID:26594598

  7. Liver cancer - hepatocellular carcinoma

    MedlinePlus

    Primary liver cell carcinoma; Tumor - liver; Cancer - liver; Hepatoma ... Hepatocellular carcinoma accounts for most liver cancers. This type of cancer occurs more often in men than women. It is usually diagnosed in people age 50 or older. Hepatocellular ...

  8. Liver cancer - hepatocellular carcinoma

    MedlinePlus

    Primary liver cell carcinoma; Tumor - liver; Cancer - liver; Hepatoma ... Hepatocellular carcinoma accounts for most liver cancers. This type of cancer occurs more often in men than women. It is usually diagnosed in people age 50 or older. ...

  9. Liver disease - resources

    MedlinePlus

    Resources - liver disease ... The following organizations are good resources for information on liver disease : American Liver Foundation -- www.liverfoundation.org Children's Liver Association for Support Services -- www.classkids.org Hepatitis ...

  10. Tests for Liver Cancer

    MedlinePlus

    ... cancer Next Topic Liver cancer stages Tests for liver cancer If you have some of the signs ... cancer has come back (recurred). Other blood tests Liver function tests (LFTs): Because liver cancer often develops ...

  11. Tulipalin A induced phytotoxicity

    PubMed Central

    McCluskey, James; Bourgeois, Marie; Harbison, Raymond

    2014-01-01

    Tulipalin A induced phytotoxicity is a persistent allergic contact dermatitides documented in floral workers exposed to Alstroemeria and its cultivars.[1] The causative allergen is tulipalin A, a toxic glycoside named for the tulip bulbs from which it was first isolated.[2] The condition is characterized by fissured acropulpitis, often accompanied by hyperpigmentation, onychorrhexis, and paronychia. More of the volar surface may be affected in sensitized florists. Dermatitis and paronychia are extremely common conditions and diagnostic errors may occur. A thorough patient history, in conjunction with confirmatory patch testing with a bulb sliver and tuliposide A exposure, can prevent misdiagnosis. We report a case of Tulipalin A induced phytotoxicity misdiagnosed as an unresolved tinea manuum infection in a patient evaluated for occupational exposure. PMID:25024947

  12. Tulipalin A induced phytotoxicity.

    PubMed

    McCluskey, James; Bourgeois, Marie; Harbison, Raymond

    2014-04-01

    Tulipalin A induced phytotoxicity is a persistent allergic contact dermatitides documented in floral workers exposed to Alstroemeria and its cultivars.[1] The causative allergen is tulipalin A, a toxic glycoside named for the tulip bulbs from which it was first isolated.[2] The condition is characterized by fissured acropulpitis, often accompanied by hyperpigmentation, onychorrhexis, and paronychia. More of the volar surface may be affected in sensitized florists. Dermatitis and paronychia are extremely common conditions and diagnostic errors may occur. A thorough patient history, in conjunction with confirmatory patch testing with a bulb sliver and tuliposide A exposure, can prevent misdiagnosis. We report a case of Tulipalin A induced phytotoxicity misdiagnosed as an unresolved tinea manuum infection in a patient evaluated for occupational exposure. PMID:25024947

  13. Anti-inflammatory effects of anthocyanins-rich extract from bilberry (Vaccinium myrtillus L.) on croton oil-induced ear edema and Propionibacterium acnes plus LPS-induced liver damage in mice.

    PubMed

    Luo, Hui; Lv, Xiao-Dan; Wang, Guo-En; Li, Yi-Fang; Kurihara, Hiroshi; He, Rong-Rong

    2014-08-01

    Bilberry (Vaccinium myrtillus L.) has been known to play a protective role in human health due to its high anthocyanin content. This study investigated the anti-inflammatory effects of bilberry extract (BE, containing 42.04% anthocyanin) on Propionibacterium acnes (P. acnes) plus lipopolysaccharide (LPS) induced liver injury and croton oil-induced ear edema in mice. Results showed that BE could effectively inhibit croton oil-induced ear edema and liver inflammation provoked by P. acnes plus LPS, as reflected by the reduced plasma alanine aminotransferase and aspartate aminotransferase activities. These findings were confirmed by hepatic pathological examination. Moreover, BE administration markedly suppressed the increase of liver mRNA levels of iNOS, TNF-α, IL-1β and IL-6, and the protein levels of iNOS, TNF-α and NF-κB. In addition, liver malondialdehyde and NO contents were significantly reduced by BE treatment. These results indicated that BE has potent protective effects on acute and immunological inflammation, which might contribute to the study of the anti-inflammatory effects of natural products and healthy food. PMID:24548119

  14. Methane-rich saline protects against concanavalin A-induced autoimmune hepatitis in mice through anti-inflammatory and anti-oxidative pathways.

    PubMed

    He, Rong; Wang, Liping; Zhu, Jiali; Fei, Miaomiao; Bao, Suhong; Meng, Yan; Wang, Yuanyuan; Li, Jinbao; Deng, Xiaoming

    2016-01-29

    Methane is a common gas which has been reported to play a protective role in organ injury and presents an anti-inflammatory property. However, its effects on Concanavalin A (Con A)-induced autoimmune hepatitis (AIH) remain unknown. Thus, the aim of this study was to investigate the effects of methane on Con A-induced autoimmune hepatitis in mice and its underlying mechanism. Autoimmune hepatitis was induced by Con A (15 mg/kg) in healthy C57BL/6 mice and methane-rich saline (MS) (20 ml/kg) was intraperitoneally injected 30 min after the challenge with Con A. We found that methane treatment significantly reduced the elevated serum aminotransferase levels and ameliorated liver pathological damage. Furthermore, methane treatment obviously suppressed the secretion of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-6 (IL-6) and interleukin-1β (IL-1β) and increased anti-inflammatory cytokine interleukin-10 (IL-10). Moreover, we found that the levels of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were highly increased while the activities of superoxide dismutase (SOD) and catalase (CAT) were decreased in liver with the injection of Con A, which was reversed by methane. Also, the data demonstrated that the phosphorylated IκB, NF-κB and P38 MAPK in liver were significantly down-regulated by methane. These results suggested that methane protected liver against Con A-induced injury through anti-inflammatory and anti-oxidative pathways. PMID:26721437

  15. Liver disease after bone marrow transplantation.

    PubMed Central

    Farthing, M J; Clark, M L; Sloane, J P; Powles, R L; McElwain, T J

    1982-01-01

    Liver dysfunction occurs after bone marrow transplantation but the relative importance of graft versus host disease and other factors, such as infection, radiation, and drugs, has not been clearly established. We have studied liver status before and after bone marrow transplantation in 43 consecutive patients and have related this to survival and factors that are recognised to cause liver injury. Minor abnormalities of liver tests occurred in 21% of patients before grafting but this did not influence survival or the development of liver disease after transplantation. During the first 50 days after grafting, 83% of patients had abnormal liver tests which were more severe in patients who subsequently died. Alanine transaminase was significantly higher in non-survivors and appeared to predict survival early after transplantation. Only non-survivors developed clinical signs of liver disease. Severe liver disease was always associated with graft versus host disease and atypia of the small bile ducts was the most useful histological marker of hepatic involvement with this disease. Two of the patients with hepatic graft versus host disease also has hepatic veno-occlusive disease and three fatalities had opportunistic infection of the liver, although, in the latter, death was not due primarily to liver dysfunction. Previous hepatitis and androgen therapy could not be implicated as important causes of hepatic damage but chemotherapy for acute leukaemia and conditioning regimens for bone marrow transplantation appear to be the most important factors in the development of hepatic veno-occlusive disease. Images Fig. 3 Fig. 4 PMID:7042484

  16. Mechanisms of Immune-Mediated Liver Injury

    PubMed Central

    Adams, David H.; Ju, Cynthia; Ramaiah, Shashi K.; Uetrecht, Jack; Jaeschke, Hartmut

    2010-01-01

    Hepatic inflammation is a common finding during a variety of liver diseases including drug-induced liver toxicity. The inflammatory phenotype can be attributed to the innate immune response generated by Kupffer cells, monocytes, neutrophils, and lymphocytes. The adaptive immune system is also influenced by the innate immune response leading to liver damage. This review summarizes recent advances in specific mechanisms of immune-mediated hepatotoxicity and its application to drug-induced liver injury. Basic mechanisms of activation of lymphocytes, macrophages, and neutrophils and their unique mechanisms of recruitment into the liver vasculature are discussed. In particular, the role of adhesion molecules and various inflammatory mediators in this process are explored. In addition, the authors describe mechanisms of liver cell damage by these inflammatory cells and critically evaluate the functional significance of each cell type for predictive and idiosyncratic drug-induced liver injury. It is expected that continued advances in our understanding of immune mechanisms of liver injury will lead to an earlier detection of the hepatotoxic potential of drugs under development and to an earlier identification of susceptible individuals at risk for predictive and idiosyncratic drug toxicities. PMID:20071422

  17. Osteoporosis across chronic liver disease.

    PubMed

    Guarino, M; Loperto, I; Camera, S; Cossiga, V; Di Somma, C; Colao, A; Caporaso, N; Morisco, F

    2016-06-01

    Osteoporosis is a complication of chronic liver disease, with impact on morbidity, quality of life, and survival. The progress of medicine and the new therapies stretched the disease's natural history and improved the survival of patients with liver disease. So, it is fundamental to make better the quality of life and to prevent complications. Metabolic bone disorders are common complications of chronic liver disease (CLD). Patients with CLD have an increased risk of bone fractures, with significant impact on morbidity, quality of life, and even on survival. Bone diseases, including osteomalacia, osteoporosis, and osteopenia, are frequently observed in many types of liver disease. The pathogenesis of damage and the mechanisms of bone loss are different in relation to the specific liver disease. The relevance of these conditions induced many authors to create a new nosographic entity known as "hepatic osteodystrophy", although this term is rarely used anymore and it is now commonly referred to as osteopenia or osteoporosis associated with chronic liver disease. This review is based on the personal experiences of the authors and upon research done of the available literature on this subject matter. The authors searched the PubMed database for publications containing the term "liver disease" in combination with "bone disease", "hepatic osteodistrophy", "osteoporosis", "osteopenia", "osteomalacia", and "fractures". They selected publications from the past 10 years but did not exclude older seminal publications, especially for colestatic liver diseases. This review of literature shows that osteoporosis crosses all CLD. It is important to underline that the progress of medicine and the new therapies stretched the disease's natural history and improved the survival of patients with CLD. It is fundamental to make better the quality of life and it is mandatory to prevent complications and in particular the osteoporotic ones, especially fractures. PMID:26846777

  18. Liver toxicity of rosuvastatin therapy.

    PubMed

    Famularo, Giuseppe; Miele, Luca; Minisola, Giovanni; Grieco, Antonio

    2007-02-28

    We report here a case of clinically significant liver toxicity after a brief course of rosuvastatin, which is the first statin approved by the regulatory authorities since the withdrawal of cerivastatin. Whether rosuvastatin has a greater potential compared with other statins to damage the liver is unclear and the involved mechanisms are also unknown. However, rosuvastatin is taken up by hepatocytes more selectively and more efficiently than other statins, and this may reasonably represent an important variable to explain the hepatotoxic potential of rosuvastatin. Our report supports the view that a clinically significant risk of liver toxicity should be considered even when rosuvastatin is given at the range of doses used in common clinical practice. PMID:17451217

  19. Liver autophagy in anorexia nervosa and acute liver injury.

    PubMed

    Kheloufi, Marouane; Boulanger, Chantal M; Durand, François; Rautou, Pierre-Emmanuel

    2014-01-01

    Autophagy, a lysosomal catabolic pathway for long-lived proteins and damaged organelles, is crucial for cell homeostasis, and survival under stressful conditions. During starvation, autophagy is induced in numerous organisms ranging from yeast to mammals, and promotes survival by supplying nutrients and energy. In the early neonatal period, when transplacental nutrients supply is interrupted, starvation-induced autophagy is crucial for neonates' survival. In adult animals, autophagy provides amino acids and participates in glucose metabolism following starvation. In patients with anorexia nervosa, autophagy appears initially protective, allowing cells to copes with nutrient deprivation. However, when starvation is critically prolonged and when body mass index reaches 13 kg/m(2) or lower, acute liver insufficiency occurs with features of autophagic cell death, which can be observed by electron microscopy analysis of liver biopsy samples. In acetaminophen overdose, a classic cause of severe liver injury, autophagy is induced as a protective mechanism. Pharmacological enhancement of autophagy protects against acetaminophen-induced necrosis. Autophagy is also activated as a rescue mechanism in response to Efavirenz-induced mitochondrial dysfunction. However, Efavirenz overdose blocks autophagy leading to liver cell death. In conclusion, in acute liver injury, autophagy appears as a protective mechanism that can be however blocked or overwhelmed. PMID:25250330

  20. Liver Autophagy in Anorexia Nervosa and Acute Liver Injury

    PubMed Central

    Kheloufi, Marouane; Boulanger, Chantal M.; Durand, François

    2014-01-01

    Autophagy, a lysosomal catabolic pathway for long-lived proteins and damaged organelles, is crucial for cell homeostasis, and survival under stressful conditions. During starvation, autophagy is induced in numerous organisms ranging from yeast to mammals, and promotes survival by supplying nutrients and energy. In the early neonatal period, when transplacental nutrients supply is interrupted, starvation-induced autophagy is crucial for neonates' survival. In adult animals, autophagy provides amino acids and participates in glucose metabolism following starvation. In patients with anorexia nervosa, autophagy appears initially protective, allowing cells to copes with nutrient deprivation. However, when starvation is critically prolonged and when body mass index reaches 13 kg/m2 or lower, acute liver insufficiency occurs with features of autophagic cell death, which can be observed by electron microscopy analysis of liver biopsy samples. In acetaminophen overdose, a classic cause of severe liver injury, autophagy is induced as a protective mechanism. Pharmacological enhancement of autophagy protects against acetaminophen-induced necrosis. Autophagy is also activated as a rescue mechanism in response to Efavirenz-induced mitochondrial dysfunction. However, Efavirenz overdose blocks autophagy leading to liver cell death. In conclusion, in acute liver injury, autophagy appears as a protective mechanism that can be however blocked or overwhelmed. PMID:25250330

  1. The role of the liver in sepsis

    PubMed Central

    Yan, Jun; Li, Song; Li, Shulin

    2014-01-01

    Despite the progress made in the clinical management of sepsis, sepsis morbidity and mortality rates remain high. The inflammatory pathogenesis and organ injury leading to death from sepsis are not fully understood for vital organs, especially the liver. Only recently has the role of the liver in sepsis begun to be revealed. Pre-existing liver dysfunction is a risk factor for the progression of infection to sepsis. Liver dysfunction after sepsis is an independent risk factor for multiple organ dysfunction and sepsis-induced death. The liver works as a lymphoid organ in response to sepsis. Acting as a double-edged sword in sepsis, the liver-mediated immune response is responsible for clearing bacteria and toxins but also causes inflammation, immunosuppression, and organ damage. Attenuating liver injury and restoring liver function lowers morbidity and mortality rates in patients with sepsis. This review summarizes the central role of liver in the host immune response to sepsis and in clinical outcomes. PMID:24611785

  2. MicroRNAs in liver disease

    PubMed Central

    Szabo, Gyongyi; Bala, Shashi

    2014-01-01

    Small, noncoding microRNAs (miRNAs) regulate diverse biological functions in the liver and increasing evidence suggests that they have a role in liver pathology. This Review summarizes advances in the field of miRNAs in liver diseases, inflammation and cirrhosis. MicroRNA-122, the most abundant miRNA in hepatocytes, has well-defined roles in HCV replication, and data indicate that it also serves as a viable therapeutic target. The role of miR-122 is also emerging in other liver diseases. Ample evidence exists for the important regulatory potential of other miRNAs in conditions associated with liver inflammation related to alcohol use, the metabolic syndrome or autoimmune processes. In addition, a broad array of miRNAs have been associated with the development of liver fibrosis both in animal models and human studies. The significance of the function and cellular distribution of miRNAs in the liver and the potential of miRNAs as a means of communication between cells and organs is discussed as well as the emerging utility of circulating miRNAs as biomarkers of different forms of liver damage and as early markers of disease and progression in hepatocellular carcinoma. Importantly, miRNA modulation in the liver represents a new therapeutic approach in the treatment armamentarium of hepatologists in the future. PMID:23689081

  3. TGF-β signalling and liver disease.

    PubMed

    Fabregat, Isabel; Moreno-Càceres, Joaquim; Sánchez, Aránzazu; Dooley, Steven; Dewidar, Bedair; Giannelli, Gianluigi; Ten Dijke, Peter

    2016-06-01

    The transforming growth factor-beta (TGF-β) family signalling pathways play essential roles in the regulation of different cellular processes, including proliferation, differentiation, migration or cell death, which are essential for the homeostasis of tissues and organs. Because of the diverse and pleiotropic TGF-β functions, deregulation of its pathways contributes to human disease. In the case of the liver, TGF-β signalling participates in all stages of disease progression, from initial liver injury through inflammation and fibrosis, to cirrhosis and cancer. TGF-β has cytostatic and apoptotic effects in hepatocytes, promoting liver differentiation during embryogenesis and physiological liver regeneration. However, high levels of TGF-β, as a consequence of chronic liver damage, result in activation of stellate cells to myofibroblasts and massive hepatocyte cell death, which contributes to the promotion of liver fibrosis and later cirrhosis. During liver tumorigenesis, TGF-β may behave as a suppressor factor at early stages; however, there is strong evidence that overactivation of TGF-β signalling might contribute to later tumour progression, once cells escape from its cytostatic effects. For these reasons, targeting the TGF-β signalling pathway is being explored to counteract liver disease progression. In this review, we aim to shed light on the state-of-the-art in the signalling pathways induced by TGF-β that are involved in different stages of liver physiology and pathology. PMID:26807763

  4. Epithelial-mesenchymal transition in liver fibrosis

    PubMed Central

    ZHAO, YA-LEI; ZHU, RONG-TAO; SUN, YU-LING

    2016-01-01

    Liver fibrosis is the result of a sustained wound healing response to sustained chronic liver injury, which includes viral, alcoholic and autoimmune hepatitis. Hepatic regeneration is the dominant outcome of liver damage. The outcomes of successful repair are the replacement of dead epithelial cells with healthy epithelial cells, and reconstruction of the normal hepatic structure and function. Prevention of the development of epithelial-mesenchymal transition (EMT) may control and even reverse liver fibrosis. EMT is a critical process for an epithelial cell to undergo a conversion to a mesenchymal phenotype, and is believed to be an inflammation-induced response, which may have a central role in liver fibrosis. The origin of fibrogenic cells in liver fibrosis remains controversial. Numerous studies have investigated the origin of all fibrogenic cells within the liver and the mechanism of the signaling pathways that lead to the activation of EMT programs during numerous chronic liver diseases. The present study aimed to summarize the evidence to explain the possible role of EMT in liver fibrosis. PMID:26998262

  5. Hydroxycut-induced Liver Toxicity

    PubMed Central

    Kaswala, DH; Shah, S; Patel, N; Raisoni, S; Swaminathan, S

    2014-01-01

    In the recent era, use of various nutritional supplements is highly encouraged amongst the people of United States. Weight loss supplements are major part of the nutritional supplements and their usage is unregulated in the US. Obesity is a major health concern in the US and Americans spend around $30 billion a year for weight loss supplements. At times, these supplements can be responsible for documented or undocumented adverse drug effects. The health consequences related to these supplements are often overlooked by the general public, even though FDA issues advisories regarding them. One common supplement used for weight loss was Hydroxycut (Iovate Health Sciences Research, Oakville, Ontario, Canada). Hydroxycut was recalled from the market after a FDA warning in May 2009 because of 23 reports of serious health problems ranging from jaundice and elevated liver enzymes to liver damage. 1 This case report adds evidence for Hydroxycut - induced hepatotoxicity. A 27 year old man with right upper quadrant pain and jaundice was found to have elevated liver enzymes and was taking Hydroxycut along with other supplements. Liver biopsy showed drug induced hepatotoxicity. Discontinuation of Hydroxycut dramatically improved liver functions and related symptoms. PMID:24669349

  6. Progression of Liver Disease

    MedlinePlus

    ... You Can Use April May Calendar Liver Lowdown Mar 2014 Calendar of Events In The News Academic ... 2016 Calendar Jan Feb 2016 recipe Liver Lowdown Mar/Apr 2016 Liver Lowdown August 2016 Know Your ...

  7. Liver Function Tests

    MedlinePlus

    ... herbal supplements you are taking. What are normal ranges for liver function tests? Normal ranges for liver function tests can vary by age, ... other factors. Laboratory test results usually provide normal ranges for each liver function test with your results. ...

  8. Liver Function Tests

    MedlinePlus

    ... food, store energy, and remove poisons. Liver function tests are blood tests that check to see how well your liver ... hepatitis and cirrhosis. You may have liver function tests as part of a regular checkup. Or you ...

  9. Pyogenic liver abscess

    MedlinePlus

    Liver abscess; Bacterial liver abscess ... There are many potential causes of liver abscesses, including: Abdominal infection, such as appendicitis , diverticulitis , or a perforated bowel Infection in the blood Infection of the bile draining tubes ...

  10. Diet and Your Liver

    MedlinePlus

    ... scarring of your liver (cirrhosis). For people with liver disease, even a small amount of alcohol can make ... time. Eating an unhealthy diet can lead to liver disease. For example, a person who eats a lot ...

  11. Metabolic liver disease.

    PubMed

    McKiernan, Pat

    2012-06-01

    Diagnosis of metabolic liver disease requires a high level of diagnostic suspicion. Diet is usually the primary treatment for metabolic liver disease. Where indicated, liver transplantation provides lifelong functional correction of liver-based metabolic defects. Liver cell therapy warrants further study for the future treatment of metabolic liver disease. All families should receive genetic advice and pre-emptive management of future affected siblings. PMID:22521124

  12. Liver regeneration - mechanisms and models to clinical application.

    PubMed

    Forbes, Stuart J; Newsome, Philip N

    2016-08-01

    Liver regeneration has been studied for many decades and the mechanisms underlying regeneration of the normal liver following resection or moderate damage are well described. A large number of factors extrinsic (such as bile acids and circulating growth factors) and intrinsic to the liver interact to initiate and regulate liver regeneration. Less well understood, and more clinically relevant, are the factors at play when the abnormal liver is required to regenerate. Fatty liver disease, chronic scarring, prior chemotherapy and massive liver injury can all inhibit the normal programme of regeneration and can lead to liver failure. Understanding these mechanisms could enable the rational targeting of specific therapies to either reduce the factors inhibiting regeneration or directly stimulate liver regeneration. Although animal models of liver regeneration have been highly instructive, the clinical relevance of some models could be improved to bridge the gap between our in vivo model systems and the clinical situation. Likewise, modern imaging techniques such as spectroscopy will probably improve our understanding of whole-organ metabolism and how this predicts the liver's regenerative capacity. This Review describes briefly the mechanisms underpinning liver regeneration, the models used to study this process, and discusses areas in which failed or compromised liver regeneration is clinically relevant. PMID:27353402

  13. Amebic liver abscess

    MedlinePlus

    Hepatic amebiasis; Extraintestinal amebiasis; Abscess - amebic liver ... Amebic liver abscess is caused by Entamoeba histolytica. This parasite causes amebiasis , an intestinal infection that is also called ...

  14. Silymarin Accelerates Liver Regeneration after Partial Hepatectomy

    PubMed Central

    Wu, Jia-Ping; Tsai, Chin-Chuan; Yeh, Yu-Lan; Lin, Yueh-Min; Lin, Chien-Chung; Day, Cecilia Hsuan; Shen, Chia-Yao; Padma, V. Vijaya; Pan, Lung-Fa; Huang, Chih-Yang

    2015-01-01

    Partial hepatectomy (PHx) is a liver regeneration physiological response induced to maintain homeostasis. Liver regeneration evolved presumably to protect wild animals from catastrophic liver loss caused by toxins or tissue injury. Silymarin (Sm) ability to stimulate liver regeneration has been an object of curiosity for many years. Silymarin has been investigated for use as an antioxidant and anticarcinogen. However, its use as a supportive treatment for liver damage is elusive. In this study, we fed silymarin (Sm, 25 mg/kg) to male Sprague-Dawley rats for 7 weeks. Surgical 2/3 PHx was then conducted on the rats at 6 hrs, 24 hrs, and 72 hrs. Western blot and RT-PCR were conducted to detect the cell cycle activities and silymarin effects on hepatic regeneration. The results showed that silymarin enhanced liver regeneration by accelerating the cell cycle in PHx liver. Silymarin led to increased G1 phase (cyclin D1/pRb), S phase (cyclin E/E2F), G2 phase (cyclin B), and M phase (cyclin A) protein and mRNA at 6 hrs, 24 hrs, and 72 hrs PHx. HGF, TGFα, and TGFβ1 growth factor expressions were also enhanced. We suggest that silymarin plays a crucial role in accelerated liver regeneration after PHx. PMID:26339266

  15. Oxidative stress-related DNA damage and homologous recombination repairing induced by N,N-dimethylformamide.

    PubMed

    Wang, Cui; Yang, Jinhuan; Lu, Dezhao; Fan, Yongsheng; Zhao, Meirong; Li, Zhuoyu

    2016-07-01

    The intensified anthropogenic release of N,N-dimethylformamide (DMF) has been proven to have hepatotoxic effects. However, the potential mechanism for DMF-induced toxicity has rarely been investigated. Our research implicated that DMF induced a significantly dose-dependent increase in reactive oxygen species (ROS) in HL-7702 human liver cells. Moreover, oxidative stress-related DNA damage, marked as 8-hydroxy-2'-deoxyguanosine, was increased 1.5-fold at 100 mmol l(-1) . The most severe DNA lesion (double-strand break, DSB), measured as the formation of γH2AX foci, was increased at/above 6.4 mmol l(-1) , and approximately 50% of cells underwent DSB at the peak induction. Subsequently, the DNA repair system triggered by molecules of RAD50 and MRE11A induced the homologous recombination (HR) pathway by upregulation of both gene and protein levels of RAD50, RAD51, XRCC2 and XRCC3 at 16 mmol l(-1) and was attenuated at 40 mmol l(-1) . Consequently, cellular death observed at 40 mmol l(-1) was exaggerated compared with exposure at 16 mmol l(-1) . Although the exact mechanism relying on the DMF-induced hepatotoxicity needs further clarification, oxidative stress and DNA damage involved in DSBs partially explain the reason for DMF-induced liver injury. Oxidative stress-induced DNA damage should be first considered during risk assessment on liver-targeted chemicals. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26387567

  16. Right Hemisphere Brain Damage

    MedlinePlus

    ... Language and Swallowing / Disorders and Diseases Right Hemisphere Brain Damage [ en Español ] What is right hemisphere brain ... right hemisphere brain damage ? What is right hemisphere brain damage? Right hemisphere brain damage (RHD) is damage ...

  17. Autophagy in alcohol-induced liver diseases.

    PubMed

    Dolganiuc, Angela; Thomes, Paul G; Ding, Wen-Xing; Lemasters, John J; Donohue, Terrence M

    2012-08-01

    Alcohol is the most abused substance worldwide and a significant source of liver injury; the mechanisms of alcohol-induced liver disease are not fully understood. Significant cellular toxicity and impairment of protein synthesis and degradation occur in alcohol-exposed liver cells, along with changes in energy balance and modified responses to pathogens. Autophagy is the process of cellular catabolism through the lysosomal-dependent machinery, which maintains a balance among protein synthesis, degradation, and recycling of self. Autophagy is part of normal homeostasis and it can be triggered by multiple factors that threaten cell integrity, including starvation, toxins, or pathogens. Multiple factors regulate autophagy; survival and preservation of cellular integrity at the expense of inadequately folded proteins and damaged high-energy generating intracellular organelles are prominent targets of autophagy in pathological conditions. Coincidentally, inadequately folded proteins accumulate and high-energy generating intracellular organelles, such as mitochondria, are damaged by alcohol abuse; these alcohol-induced pathological findings prompted investigation of the role of autophagy in the pathogenesis of alcohol-induced liver damage. Our review summarizes the current knowledge about the role and implications of autophagy in alcohol-induced liver disease. PMID:22551004

  18. Candidates for liver transplantation with alcoholic liver disease: Psychosocial aspects

    PubMed Central

    Telles-Correia, Diogo; Mega, Inês

    2015-01-01

    In Europe, 30% to 50% of liver transplantations are currently due to alcoholic liver disease (ALD). In the United States, this percentage is 17.2%. Post-transplant survival and other predictors of clinical course do not differ significantly from those in other types of transplanted patients, as long as there is no relapse of drinking. However, 20%-25% of these patients lapse or relapse to heavy drinking post-operatively, which has been associated with an increased risk of liver damage and mortality. It is therefore crucial to design specific selection and follow-up strategies aimed at this particular type of patient. Several good and poor prognosis factors that could help to predict a relapse have been suggested, among them the duration of abstinence, social support, a family history of alcoholism, abuse diagnosis versus alcohol dependence, non-acceptance of diagnosis related to alcohol use, presence of severe mental illness, non-adherence in a broad sense, number of years of alcoholism, and daily quantity of alcohol consumption. In this article, we discuss these and other, more controversial factors in selecting ALD patients for liver transplantation. Abstinence should be the main goal after transplantation in an ALD patient. In this article, we review the several definitions of post-transplant relapse, its monitoring and the psychopharmacological and psychotherapeutic treatment. PMID:26494959

  19. Candidates for liver transplantation with alcoholic liver disease: Psychosocial aspects.

    PubMed

    Telles-Correia, Diogo; Mega, Inês

    2015-10-21

    In Europe, 30% to 50% of liver transplantations are currently due to alcoholic liver disease (ALD). In the United States, this percentage is 17.2%. Post-transplant survival and other predictors of clinical course do not differ significantly from those in other types of transplanted patients, as long as there is no relapse of drinking. However, 20%-25% of these patients lapse or relapse to heavy drinking post-operatively, which has been associated with an increased risk of liver damage and mortality. It is therefore crucial to design specific selection and follow-up strategies aimed at this particular type of patient. Several good and poor prognosis factors that could help to predict a relapse have been suggested, among them the duration of abstinence, social support, a family history of alcoholism, abuse diagnosis versus alcohol dependence, non-acceptance of diagnosis related to alcohol use, presence of severe mental illness, non-adherence in a broad sense, number of years of alcoholism, and daily quantity of alcohol consumption. In this article, we discuss these and other, more controversial factors in selecting ALD patients for liver transplantation. Abstinence should be the main goal after transplantation in an ALD patient. In this article, we review the several definitions of post-transplant relapse, its monitoring and the psychopharmacological and psychotherapeutic treatment. PMID:26494959

  20. Alcohol-Related Liver Disease

    MedlinePlus

    ... to run events. Please support us. Donate | Volunteer Alcohol-Related Liver Disease Discussion on Inspire Support Community ... Liver > Liver Disease Information > Alcohol-Related Liver Disease Alcohol-Related Liver Disease Explore this section to learn ...

  1. Alcoholic Liver Disease and Liver Transplantation.

    PubMed

    Gallegos-Orozco, Juan F; Charlton, Michael R

    2016-08-01

    Excessive alcohol use is a common health care problem worldwide and is associated with significant morbidity and mortality. Alcoholic liver disease represents the second most frequent indication for liver transplantation in North America and Europe. The pretransplant evaluation of patients with alcoholic liver disease should aim at identifying those at high risk for posttransplant relapse of alcohol use disorder, as return to excessive drinking can be deleterious to graft and patient survival. Carefully selected patients with alcoholic liver disease, including those with severe alcoholic hepatitis, will have similar short-term and long-term outcomes when compared with other indications for liver transplantation. PMID:27373614

  2. Changes in Liver Metabolic Gene Expression after Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, Virginia E.

    2012-01-01

    The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments.

  3. Role of liver progenitors in liver regeneration

    PubMed Central

    Best, Jan; Manka, Paul; Syn, Wing-Kin; Dollé, Laurent; van Grunsven, Leo A.

    2015-01-01

    During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs. PMID:25713804

  4. Influence of Squid Liver Powder on Accumulation of Cadmium in Serum, Kidney and Liver of Mice

    PubMed Central

    Kim, Byoung-Mok; Lee, Soo-Young; Jeong, In-Hak

    2013-01-01

    In this study, the effect of squid liver powder intake on accumulation of cadmium in mice was investigated. Subjects were divided into 4 groups including the control group (CON), squid liver powder group with lipids not removed (SLP100), and squid liver powder groups with lipids removed (LFSLP50 and LFSLP100). Feed intake and food efficiency ratio of squid liver powder groups was significantly higher than the CON. As a result of investigating cadmium content in hair, serum, liver, and kidney during intake of squid liver powder, all groups showed increase in cadmium accumulation through consistent, long-term intake. Especially, cadmium content in liver and kidney of LFSLP100 was significantly higher than the content of SLP100 and CON. As a result of pathological observation on liver and kidney tissues according to squid liver powder diet, LFSLP100 showed most serious pathological symptoms. In case of kidney tissues, degeneration was significantly more severe in LFSLP100 compared to other groups. Such results suggest that cadmium concentration in human body can be increased by ingestion of whole squid including internal organs and that tissues can be damaged by increased cadmium concentration. More specific and systematic studies are deemed necessary. PMID:24471103

  5. Mouse models of liver fibrosis mimic human liver fibrosis of different etiologies.

    PubMed

    Martínez, Allyson K; Maroni, Luca; Marzioni, Marco; Ahmed, Syed T; Milad, Mena; Ray, Debolina; Alpini, Gianfranco; Glaser, Shannon S

    2014-12-01

    The liver has the amazing capacity to repair itself after injury; however, the same processes that are involved in liver regeneration after acute injury can cause serious consequences during chronic liver injury. In an effort to repair damage, activated hepatic stellate cells trigger a cascade of events that lead to deposition and accumulation of extracellular matrix components causing the progressive replacement of the liver parenchyma by scar tissue, thus resulting in fibrosis. Although fibrosis occurs as a result of many chronic liver diseases, the molecular mechanisms involved depend on the underlying etiology. Since studying liver fibrosis in human subjects is complicated by many factors, mouse models of liver fibrosis that mimic the human conditions fill this void. This review summarizes the general mouse models of liver fibrosis and mouse models that mimic specific human disease conditions that result in liver fibrosis. Additionally, recent progress that has been made in understanding the molecular mechanisms involved in the fibrogenic processes of each of the human disease conditions is highlighted. PMID:25396098

  6. Mouse models of liver fibrosis mimic human liver fibrosis of different etiologies

    PubMed Central

    Martínez, Allyson K.; Maroni, Luca; Marzioni, Marco; Ahmed, Syed T.; Milad, Mena; Ray, Debolina; Alpini, Gianfranco; Glaser, Shannon S.

    2014-01-01

    The liver has the amazing capacity to repair itself after injury; however, the same processes that are involved in liver regeneration after acute injury can cause serious consequences during chronic liver injury. In an effort to repair damage, activated hepatic stellate cells trigger a cascade of events that lead to deposition and accumulation of extracellular matrix components causing the progressive replacement of the liver parenchyma by scar tissue, thus resulting in fibrosis. Although fibrosis occurs as a result of many chronic liver diseases, the molecular mechanisms involved depend on the underlying etiology. Since studying liver fibrosis in human subjects is complicated by many factors, mouse models of liver fibrosis that mimic the human conditions fill this void. This review summarizes the general mouse models of liver fibrosis and mouse models that mimic specific human disease conditions that result in liver fibrosis. Additionally, recent progress that has been made in understanding the molecular mechanisms involved in the fibrogenic processes of each of the human disease conditions is highlighted. PMID:25396098

  7. Primer for Teachers: Quick and Easy Liver Wellness, Hepatitis B and Substance Abuse Prevention Messages.

    ERIC Educational Resources Information Center

    Thiel, Thelma King

    This guide provides information for teachers to use in teaching about liver wellness, hepatitis B, and substance abuse. The guide includes effective motivational techniques to help students understand how valuable their liver is to their health and well being. It also provides basic information to help students avoid liver damaging behaviors, such…

  8. Liver immunology and its role in inflammation and homeostasis.

    PubMed

    Robinson, Mark W; Harmon, Cathal; O'Farrelly, Cliona

    2016-05-01

    The human liver is usually perceived as a non-immunological organ engaged primarily in metabolic, nutrient storage and detoxification activities. However, we now know that the healthy liver is also a site of complex immunological activity mediated by a diverse immune cell repertoire as well as non-hematopoietic cell populations. In the non-diseased liver, metabolic and tissue remodeling functions require elements of inflammation. This inflammation, in combination with regular exposure to dietary and microbial products, creates the potential for excessive immune activation. In this complex microenvironment, the hepatic immune system tolerates harmless molecules while at the same time remaining alert to possible infectious agents, malignant cells or tissue damage. Upon appropriate immune activation to challenge by pathogens or tissue damage, mechanisms to resolve inflammation are essential to maintain liver homeostasis. Failure to clear 'dangerous' stimuli or regulate appropriately activated immune mechanisms leads to pathological inflammation and disrupted tissue homeostasis characterized by the progressive development of fibrosis, cirrhosis and eventual liver failure. Hepatic inflammatory mechanisms therefore have a spectrum of roles in the healthy adult liver; they are essential to maintain tissue and organ homeostasis and, when dysregulated, are key drivers of the liver pathology associated with chronic infection, autoimmunity and malignancy. In this review, we explore the changing perception of inflammation and inflammatory mediators in normal liver homeostasis and propose targeting of liver-specific immune regulation pathways as a therapeutic approach to treat liver disease. PMID:27063467

  9. Liver immunology and its role in inflammation and homeostasis

    PubMed Central

    Robinson, Mark W; Harmon, Cathal; O'Farrelly, Cliona

    2016-01-01

    The human liver is usually perceived as a non-immunological organ engaged primarily in metabolic, nutrient storage and detoxification activities. However, we now know that the healthy liver is also a site of complex immunological activity mediated by a diverse immune cell repertoire as well as non-hematopoietic cell populations. In the non-diseased liver, metabolic and tissue remodeling functions require elements of inflammation. This inflammation, in combination with regular exposure to dietary and microbial products, creates the potential for excessive immune activation. In this complex microenvironment, the hepatic immune system tolerates harmless molecules while at the same time remaining alert to possible infectious agents, malignant cells or tissue damage. Upon appropriate immune activation to challenge by pathogens or tissue damage, mechanisms to resolve inflammation are essential to maintain liver homeostasis. Failure to clear ‘dangerous' stimuli or regulate appropriately activated immune mechanisms leads to pathological inflammation and disrupted tissue homeostasis characterized by the progressive development of fibrosis, cirrhosis and eventual liver failure. Hepatic inflammatory mechanisms therefore have a spectrum of roles in the healthy adult liver; they are essential to maintain tissue and organ homeostasis and, when dysregulated, are key drivers of the liver pathology associated with chronic infection, autoimmunity and malignancy. In this review, we explore the changing perception of inflammation and inflammatory mediators in normal liver homeostasis and propose targeting of liver-specific immune regulation pathways as a therapeutic approach to treat liver disease. PMID:27063467

  10. Engineering Liver

    PubMed Central

    Griffith, Linda G.; Wells, Alan; Stolz, Donna Beer

    2014-01-01

    Interest in “engineering liver” arises from multiple communities: therapeutic replacement; mechanistic models of human processes; and drug safety and efficacy studies. An explosion of micro- and nano-fabrication, biomaterials, microfluidic, and other technologies potentially afford unprecedented opportunity to create microphysiological models of human liver, but engineering design principles for how to deploy these tools effectively towards specific applications, including how to define the essential constraints of any given application (including available sources of cells, acceptable cost, and user-friendliness) are still emerging. Arguably less appreciated is the parallel growth in computational systems biology approaches towards these same problems – particularly, in parsing complex disease processes from clinical material, building models of response networks, and in how to interpret the growing compendium of data on drug efficacy and toxicology in patient populations. Here, we provide insight into how the complementary paths of “engineering liver” – experimental and computational – are beginning to interplay towards greater illumination of human disease states and technologies for drug development. PMID:24668880

  11. Liver xenotransplantation.

    PubMed

    Marino, I R; Tzakis, A G; Fung, J J; Todo, S; Doyle, H R; Manez, R; Starzl, T E

    1993-10-01

    During the past 30 years orthotopic liver transplantation has become a highly successful form of surgical treatments. The significant advances achieved in this field have led to an increased demand for organs and created a wide gap between organ availability and organ supply. A wider availability of organs for transplantation would allow an expansions rather than a contraction of the indications for transplantation, and, at the same time a relaxation of the patient selection criteria. All these facts clearly justify the renewed interest observed in the last decade in xenotransplantation. The original concept of xenografting, meaning the transplantation of cells, tissues, or organs between different species, is so ancient that it is easily recognizable in Greek and Roman mythology. The centaur Chiron, the teacher of Esculapius, and the Chimera are legendary examples of discordant xenogeneic creatures. However, it is only during this century that scientists have been able to bring this idea into the clinical arena. The early efforts were prompted by the shortage of humans organs at a time when there were few alternatives for treating end-stage organ failure. PMID:25951555

  12. Evolving therapies for liver fibrosis

    PubMed Central

    Schuppan, Detlef; Kim, Yong Ook

    2013-01-01

    Fibrosis is an intrinsic response to chronic injury, maintaining organ integrity when extensive necrosis or apoptosis occurs. With protracted damage, fibrosis can progress toward excessive scarring and organ failure, as in liver cirrhosis. To date, antifibrotic treatment of fibrosis represents an unconquered area for drug development, with enormous potential but also high risks. Preclinical research has yielded numerous targets for antifibrotic agents, some of which have entered early-phase clinical studies, but progress has been hampered due to the relative lack of sensitive and specific biomarkers to measure fibrosis progression or reversal. Here we focus on antifibrotic approaches for liver that address specific cell types and functional units that orchestrate fibrotic wound healing responses and have a sound preclinical database or antifibrotic activity in early clinical trials. We also touch upon relevant clinical study endpoints, optimal study design, and developments in fibrosis imaging and biomarkers. PMID:23635787

  13. Liver disease in menopause

    PubMed Central

    Brady, Carla W

    2015-01-01

    There are numerous physiologic and biochemical changes in menopause that can affect the function of the liver and mediate the development of liver disease. Menopause represents a state of growing estrogen deficiency, and this loss of estrogen in the setting of physiologic aging increases the likelihood of mitochondrial dysfunction, cellular senescence, declining immune responses to injury, and disarray in the balance between antioxidant formation and oxidative stress. The sum effect of these changes can contribute to increased susceptibility to development of significant liver pathology, particularly nonalcoholic fatty liver disease and hepatocellular carcinoma, as well as accelerated progression of fibrosis in liver diseases, as has been particularly demonstrated in hepatitis C virus liver disease. Recognition of the unique nature of these mediating factors should raise suspicion for liver disease in perimenopausal and menopausal women and offer an opportunity for implementation of aggressive treatment measures so as to avoid progression of liver disease to cirrhosis, liver cancer and liver failure. PMID:26167064

  14. Autophagy and apoptosis in liver injury

    PubMed Central

    Wang, Kewei

    2015-01-01

    Apoptosis is a primary characteristic in the pathogenesis of liver disease. Hepatic apoptosis is regulated by autophagic activity. However, mechanisms mediating their interaction remain to be determined. Basal level of autophagy ensures the physiological turnover of old and damaged organelles. Autophagy also is an adaptive response under stressful conditions. Autophagy can control cell fate through different cross-talk signals. A complex interplay between hepatic autophagy and apoptosis determines the degree of hepatic apoptosis and the progression of liver disease as demonstrated by pre-clinical models and clinical trials. This review summarizes recent advances on roles of autophagy that plays in pathophysiology of liver. The autophagic pathway can be a novel therapeutic target for liver disease. PMID:25927598

  15. Diffuse reflectance spectroscopy of liver tissue

    NASA Astrophysics Data System (ADS)

    Reistad, Nina; Nilsson, Jan; Vilhelmsson Timmermand, Oskar; Sturesson, Christian; Andersson-Engels, Stefan

    2015-06-01

    Diffuse reflectance spectroscopy (DRS) with a fiber-optic contact probe is a cost-effective, rapid, and non-invasive optical method used to extract diagnosis information of tissue. By combining commercially available VIS- and NIR-spectrometers with various fiber-optic contact-probes, we have access to the full wavelength range from around 400 to 1600 nm. Using this flexible and portable spectroscopy system, we have acquired ex-vivo DRS-spectra from murine, porcine, and human liver tissue. For extracting the tissue optical properties from the measured spectra, we have employed and compared predictions from two models for light propagation in tissue, diffusion theory model (DT) and Monte Carlo simulations (MC). The focus in this work is on the capacity of this DRS-technique in discriminating metastatic tumor tissue from normal liver tissue as well as in assessing and characterizing damage to non-malignant liver tissue induced by preoperative chemotherapy for colorectal liver metastases.

  16. Autophagy and apoptosis in liver injury.

    PubMed

    Wang, Kewei

    2015-01-01

    Apoptosis is a primary characteristic in the pathogenesis of liver disease. Hepatic apoptosis is regulated by autophagic activity. However, mechanisms mediating their interaction remain to be determined. Basal level of autophagy ensures the physiological turnover of old and damaged organelles. Autophagy also is an adaptive response under stressful conditions. Autophagy can control cell fate through different cross-talk signals. A complex interplay between hepatic autophagy and apoptosis determines the degree of hepatic apoptosis and the progression of liver disease as demonstrated by pre-clinical models and clinical trials. This review summarizes recent advances on roles of autophagy that plays in pathophysiology of liver. The autophagic pathway can be a novel therapeutic target for liver disease. PMID:25927598

  17. Acute liver failure and self-medication

    PubMed Central

    de OLIVEIRA, André Vitorio Câmara; ROCHA, Frederico Theobaldo Ramos; ABREU, Sílvio Romero de Oliveira

    2014-01-01

    Introduction Not responsible self-medication refers to drug use in high doses without rational indication and often associated with alcohol abuse. It can lead to liver damage and drug interactions, and may cause liver failure. Aim To warn about how the practice of self-medication can be responsible for acute liver failure. Method Were used the Medline via PubMed, Cochrane Library, SciELO and Lilacs, and additional information on institutional sites of interest crossing the headings acute liver failure [tiab] AND acetaminophen [tiab]; self-medication [tiab] AND acetaminophen [tiab]; acute liver failure [tiab] AND dietary supplements [tiab]; self-medication [tiab] AND liver failure [tiab] and self-medication [tiab] AND green tea [tiab]. In Lilacs and SciELO used the descriptor self medication in Portuguese and Spanish. From total surveyed were selected 27 articles and five sites specifically related to the purpose of this review. Conclusions Legislation and supervision disabled and information inaccessible to people, favors the emergence of cases of liver failure drug in many countries. In the list of released drugs that deserve more attention and care, are some herbal medicines used for the purpose of weight loss, and acetaminophen. It is recommended that institutes of health intensify supervision and better orient their populations on drug seemingly harmless, limiting the sale of products or requiring a prescription for release them. PMID:25626943

  18. Interaction between periodontitis and liver diseases

    PubMed Central

    Han, Pengyu; Sun, Dianxing; Yang, Jie

    2016-01-01

    Periodontitis is an oral disease that is highly prevalent worldwide, with a prevalence of 30–50% of the population in developed countries, but only ~10% present with severe forms. It is also estimated that periodontitis results in worldwide productivity losses amounting to ~54 billion USD yearly. In addition to the damage it causes to oral health, periodontitis also affects other types of disease. Numerous studies have confirmed the association between periodontitis and systemic diseases, such as diabetes, respiratory disease, osteoporosis and cardiovascular disease. Increasing evidence also indicated that periodontitis may participate in the progression of liver diseases, such as non-alcoholic fatty liver disease, cirrhosis and hepatocellular carcinoma, as well as affecting liver transplantation. However, to the best of our knowledge, there are currently no reviews elaborating upon the possible links between periodontitis and liver diseases. Therefore, the current review summarizes the human trials and animal experiments that have been conducted to investigate the correlation between periodontitis and liver diseases. Furthermore, in the present review, certain mechanisms that have been postulated to be responsible for the role of periodontitis in liver diseases (such as bacteria, pro-inflammatory mediators and oxidative stress) are considered. The aim of the review is to introduce the hypothesis that periodontitis may be important in the progression of liver disease, thus providing dentists and physicians with an improved understanding of this issue. PMID:27588170

  19. Telomeres, NAFLD and Chronic Liver Disease

    PubMed Central

    Donati, Benedetta; Valenti, Luca

    2016-01-01

    Telomeres consist of repeat DNA sequences located at the terminal portion of chromosomes that shorten during mitosis, protecting the tips of chromosomes. During chronic degenerative conditions associated with high cell replication rate, progressive telomere attrition is accentuated, favoring senescence and genomic instability. Several lines of evidence suggest that this process is involved in liver disease progression: (a) telomere shortening and alterations in the expression of proteins protecting the telomere are associated with cirrhosis and hepatocellular carcinoma; (b) advanced liver damage is a feature of a spectrum of genetic diseases impairing telomere function, and inactivating germline mutations in the telomerase complex (including human Telomerase Reverse Transcriptase (hTERT) and human Telomerase RNA Component (hTERC)) are enriched in cirrhotic patients independently of the etiology; and (c) experimental models suggest that telomerase protects from liver fibrosis progression. Conversely, reactivation of telomerase occurs during hepatocarcinogenesis, allowing the immortalization of the neoplastic clone. The role of telomere attrition may be particularly relevant in the progression of nonalcoholic fatty liver, an emerging cause of advanced liver disease. Modulation of telomerase or shelterins may be exploited to prevent liver disease progression, and to define specific treatments for different stages of liver disease. PMID:26999107

  20. Telomeres, NAFLD and Chronic Liver Disease.

    PubMed

    Donati, Benedetta; Valenti, Luca

    2016-01-01

    Telomeres consist of repeat DNA sequences located at the terminal portion of chromosomes that shorten during mitosis, protecting the tips of chromosomes. During chronic degenerative conditions associated with high cell replication rate, progressive telomere attrition is accentuated, favoring senescence and genomic instability. Several lines of evidence suggest that this process is involved in liver disease progression: (a) telomere shortening and alterations in the expression of proteins protecting the telomere are associated with cirrhosis and hepatocellular carcinoma; (b) advanced liver damage is a feature of a spectrum of genetic diseases impairing telomere function, and inactivating germline mutations in the telomerase complex (including human Telomerase Reverse Transcriptase (hTERT) and human Telomerase RNA Component (hTERC)) are enriched in cirrhotic patients independently of the etiology; and (c) experimental models suggest that telomerase protects from liver fibrosis progression. Conversely, reactivation of telomerase occurs during hepatocarcinogenesis, allowing the immortalization of the neoplastic clone. The role of telomere attrition may be particularly relevant in the progression of nonalcoholic fatty liver, an emerging cause of advanced liver disease. Modulation of telomerase or shelterins may be exploited to prevent liver disease progression, and to define specific treatments for different stages of liver disease. PMID:26999107

  1. Diagnostic challenges in alcohol use disorder and alcoholic liver disease

    PubMed Central

    Vonghia, Luisa; Michielsen, Peter; Dom, Geert; Francque, Sven

    2014-01-01

    Alcohol use disorders represent a heterogeneous spectrum of clinical manifestations that have been defined by the Diagnostic and Statistical Manual of Mental Disorders-5. Excessive alcohol intake can lead to damage of various organs, including the liver. Alcoholic liver disease includes different injuries ranging from steatosis to cirrhosis and implicates a diagnostic assessment of the liver disease and of its possible complications. There is growing interest in the possible different tools for assessing previous alcohol consumption and for establishing the severity of liver injury, especially by non-invasive methods. PMID:25009373

  2. Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution

    PubMed Central

    Baiocchini, Andrea; Montaldo, Claudia; Conigliaro, Alice; Grimaldi, Alessio; Correani, Virginia; Mura, Francesco; Ciccosanti, Fabiola; Rotiroti, Nicolina; Brenna, Alessia; Montalbano, Marzia; D’Offizi, Gianpiero; Capobianchi, Maria Rosaria; Alessandro, Riccardo; Piacentini, Mauro; Schininà, Maria Eugenia; Maras, Bruno; Del Nonno, Franca; Tripodi, Marco; Mancone, Carmine

    2016-01-01

    Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies. PMID:26998606

  3. Biomarkers for liver fibrosis

    SciTech Connect

    Jacobs, Jon M.; Burnum-Johnson, Kristin E.; Baker, Erin M.; Smith, Richard D.; Gritsenko, Marina A.; Orton, Daniel

    2015-09-15

    Methods and systems for diagnosing or prognosing liver fibrosis in a subject are provided. In some examples, such methods and systems can include detecting liver fibrosis-related molecules in a sample obtained from the subject, comparing expression of the molecules in the sample to controls representing expression values expected in a subject who does not have liver fibrosis or who has non-progressing fibrosis, and diagnosing or prognosing liver fibrosis in the subject when differential expression of the molecules between the sample and the controls is detected. Kits for the diagnosis or prognosis of liver fibrosis in a subject are also provided which include reagents for detecting liver fibrosis related molecules.

  4. Oral administration of polyamines ameliorates liver ischemia/reperfusion injury and promotes liver regeneration in rats.

    PubMed

    Okumura, Shinya; Teratani, Takumi; Fujimoto, Yasuhiro; Zhao, Xiangdong; Tsuruyama, Tatsuaki; Masano, Yuki; Kasahara, Naoya; Iida, Taku; Yagi, Shintaro; Uemura, Tadahiro; Kaido, Toshimi; Uemoto, Shinji

    2016-09-01

    Polyamines are essential for cell growth and differentiation. They play important roles in protection from liver damage and promotion of liver regeneration. However, little is known about the effect of oral exogenous polyamine administration on liver damage and regeneration. This study investigated the impact of polyamines (spermidine and spermine) on ischemia/reperfusion injury (IRI) and liver regeneration. We used a rat model in which a 70% hepatectomy after 40 minutes of ischemia was performed to mimic the clinical condition of living donor partial liver transplantation (LT). Male Lewis rats were separated into 2 groups: a polyamine group given polyamines before and after operation as treatment and a vehicle group given distilled water as placebo. The levels of serum aspartate aminotransferase and alanine aminotransferase at 6, 24, and 48 hours after reperfusion were significantly lower in the polyamine group compared with those in the vehicle group. Polyamine treatment reduced the expression of several proinflammatory cytokines and chemokines at 6 hours after reperfusion. Histological analysis showed significantly less necrosis and apoptosis in the polyamine group at 6 hours after reperfusion. Sinusoidal endothelial cells were also well preserved in the polyamine group. In addition, the regeneration of the remnant liver at 24, 48, and 168 hours after reperfusion was significantly accelerated, and the Ki-67 labeling index and the expressions of proliferating cell nuclear antigen and phosphorylated retinoblastoma protein at 24 hours after reperfusion were significantly higher in the polyamine group compared with those in the vehicle group. In conclusion, perioperative oral polyamine administration attenuates liver IRI and promotes liver regeneration. It might be a new therapeutic option to improve the outcomes of partial LT. Liver Transplantation 22 1231-1244 2016 AASLD. PMID:27102080

  5. Integrated ablation and division device for liver resection

    PubMed Central

    Chang, Stephen Kin Yong; Hlaing, Wah Wah; Huang, Wei Hsuan; Chui, Chee Kong

    2011-01-01

    Background Intraoperative blood loss during liver resection may be minimized by ablating the liver parenchyma using radiofrequency (RF) energy. However, it is difficult to estimate the depth of the avascular plane and more RF energy than necessary may be inadvertently used as a result of lack of feedback. Methods Laparoscopic liver resection was performed on a live porcine model to determine the feasibility and applicability of a model which integrates ablation and division in a single device. Results Liver resection was uncomplicated with minimal bleeding. The integration of the ablation and division mechanism resolved the difficulty of estimating the depth of the avascular plane after coagulation. The real-time feedback mechanism minimized liver damage by eliminating the application of unnecessary RF. Conclusions The proposed model is functionally acceptable and represents a possible method of determining the depth of the avascular plane and the amount of RF energy required during liver resection. PMID:21309931

  6. Cod Liver Oil

    MedlinePlus

    ... Talk with your health provider.Medications that slow blood clotting (Anticoagulant / Antiplatelet drugs)Cod liver oil might slow blood clotting. Taking cod liver oil along with medications that ...

  7. Liver (Hepatocellular) Cancer Prevention

    MedlinePlus

    ... Liver cancer is not common in the United States. Liver cancer is the fourth most common cancer and the third leading cause of cancer death in the world. In the United States, men, especially Chinese American men, have an increased ...

  8. Fatty liver - nonalcoholic

    MedlinePlus

    ... American Gastroenterological Association. The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and ...

  9. Alcoholic liver disease

    MedlinePlus

    ... blood count (CBC) Liver biopsy Liver function tests Coagulation studies Tests to rule out other diseases include: ... over-the-counter medicines. MEDICINES FROM YOUR DOCTOR "Water pills" (diuretics) to get rid of fluid build- ...

  10. Liver transplant - series (image)

    MedlinePlus

    Liver failure causes many problems, including malnutrition, problems with blood clotting, bleeding form the gastrointestinal tract, and jaundice. Frequently, patients who undergo liver transplantation are quite ill, and require ...

  11. Antioxidants in liver health

    PubMed Central

    Casas-Grajales, Sael; Muriel, Pablo

    2015-01-01

    Liver diseases are a worldwide medical problem because the liver is the principal detoxifying organ and maintains metabolic homeostasis. The liver metabolizes various compounds that produce free radicals (FR). However, antioxidants scavenge FR and maintain the oxidative/antioxidative balance in the liver. When the liver oxidative/antioxidative balance is disrupted, the state is termed oxidative stress. Oxidative stress leads to deleterious processes in the liver and produces liver diseases. Therefore, restoring antioxidants is essential to maintain homeostasis. One method of restoring antioxidants is to consume natural compounds with antioxidant capacity. The objective of this review is to provide information pertaining to various antioxidants found in food that have demonstrated utility in improving liver diseases. PMID:26261734

  12. Diet - liver disease

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002441.htm Diet - liver disease To use the sharing features on this page, please enable JavaScript. Some people with liver disease must eat a special diet. This diet helps ...

  13. Autoimmune liver disease panel

    MedlinePlus

    Liver disease test panel - autoimmune ... Autoimmune disorders are a possible cause of liver disease. The most common of these diseases are autoimmune hepatitis and primary biliary cirrhosis. This group of tests helps your health care provider diagnose ...

  14. Alcoholic liver disease

    MedlinePlus

    Liver disease due to alcohol; Cirrhosis or hepatitis - alcoholic; Laennec's cirrhosis ... Alcoholic liver disease occurs after years of heavy drinking. Over time, scarring and cirrhosis can occur. Cirrhosis is the ...

  15. Liver angioscintigraphy: clinical applications.

    PubMed

    Dragoteanu, Mircea; Cotul, Sabin O; Pîgleşan, Cecilia; Tamaş, Stefan

    2004-03-01

    Liver angioscintigraphy (LAS) is a radio-isotope method for the investigation of liver perfusion and its alteration in various hepatic diseases. It measures the arterial and portal venous fractions of total liver blood flow. The percentage of liver blood flow supplied by hepatic artery is estimated mathematically by the hepatic perfusion index (HPI), normally between 25 % and 40 %. The decrease of portal blood flow in liver cirrhosis is compensated ("buffer" mechanisms) by increased arterial supply, with higher HPI value. For a patient with chronic liver disease, HPI over 50% suggests arterialization of hepatic perfusion, guiding the diagnose to liver cirrhosis. Splenic curve is completing the diagnostic information of the hepatic curve. Corroborated with per rectal scintigraphy and liver SPECT, LAS offers a good hemodynamic staging of chronic inflammatory liver diseases. Malignant tumors (primitive or metastases) increase the arterial supply of the liver and decrease the portal flow, HPI being over 50% (currently 65 % - 90 %). Benign tumors do not change portal/arterial liver blood flow ratio. SPECT or non-scintigraphic morphological investigations increase the diagnostic value of LAS for primitive liver tumors. Liver cancer occurring on cirrhosis is a limitative factor for LAS. Hepatic metastases increase the arterial perfusion (and HPI value) very quickly, before their size allows morphologic imaging diagnosis. LAS is therefore an early method to diagnose liver metastases being especially used in colorectal cancer. Other clinical applications of LAS are: follow up of liver toxicity of drugs, evaluation of portal vein permeability, post surgery follow up of the liver tumor patients. PMID:15054528

  16. Threshold doses and prediction of visually apparent liver dysfunction after stereotactic body radiation therapy in cirrhotic and normal livers using magnetic resonance imaging

    PubMed Central

    Doi, Hiroshi; Shiomi, Hiroya; Masai, Norihisa; Tatsumi, Daisaku; Igura, Takumi; Imai, Yasuharu; Oh, Ryoong-Jin

    2016-01-01

    The purpose of the present study was to investigate the threshold dose for focal liver damage after stereotactic body radiation therapy (SBRT) in cirrhotic and normal livers using magnetic resonance imaging (MRI). A total of 64 patients who underwent SBRT for liver tumors, including 54 cirrhotic patients with hepatocellular carcinoma (HCC) and 10 non-cirrhotic patients with liver metastases, were analyzed. MRI was performed 3−6 months after SBRT, using gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced T1-weighted sequences. All MRI datasets were merged with 3D dosimetry data. All dose distributions were corrected to the biologically effective dose using the linear–quadratic model with an assumed α/β ratio of 2 Gy. The development of liver dysfunction was validly correlated with isodose distribution. The median biologically effective dose (BED2) that provoked liver dysfunction was 57.3 (30.0−227.9) and 114.0 (70.4−244.9) Gy in cirrhotic and normal livers, respectively (P = 0.0002). The BED2 associated with a >5% risk of liver dysfunction was 38.5 in cirrhotic livers and 70.4 Gy in normal livers. The threshold BED2 for liver dysfunction was not significantly different between Child−Pugh A and B patients (P = 0.0719). Moreover, the fractionation schedule was not significantly correlated with threshold BED2 for liver dysfunction in the cirrhotic liver (P = 0.1019). In the cirrhotic liver, fractionation regimen and Child−Pugh classification did not significantly influence the threshold BED2 for focal liver damage after SBRT. We suggest that the threshold BED2 for liver dysfunction after SBRT is 40 and 70 Gy in the cirrhotic and normal liver, respectively. PMID:26983986

  17. Prophylactic effects of humic acid-glucan combination against experimental liver injury

    PubMed Central

    Vetvicka, Vaclav; Garcia-Mina, Jose Maria; Yvin, Jean-Claude

    2015-01-01

    Aim: Despite intensive research, liver diseases represent a significant health problem and current medicine does not offer a substance able to significantly inhibit the hepatotoxicity leading to various stages of liver disease. Based on our previously published studies showing the protective effects of a glucan-humic acid (HA) combination, we focused on the hypothesis that the combination of these two natural molecules can offer prophylactic protection against experimentally induced hepatotoxicity. Materials and Methods: Lipopolysaccharide, carbon tetrachloride, and ethanol were used to experimentally damage the liver. Levels of aspartate aminotransferase, alanine transaminase, alkaline phosphatase, glutathione, superoxide dismutase, and malondialdehyde, known to correspond to the liver damage, were assayed. Results: Using three different hepatotoxins, we found that in all cases, some samples of HA and most of all the glucan-HA combination, offer strong protection against liver damage. Conclusion: Glucan-HA combination is a promising agent for use in liver protection. PMID:26401416

  18. Cell Therapies for Liver Diseases

    PubMed Central

    Yu, Yue; Fisher, James E.; Lillegard, Joseph B.; Rodysill, Brian; Amiot, Bruce; Nyberg, Scott L.

    2011-01-01

    Cell therapies, which include bioartificial liver support and hepatocyte transplantation, have emerged as potential treatments for a variety of liver diseases. Acute liver failure (ALF), acute-on-chronic liver failure, and inherited metabolic liver diseases are examples of liver diseases that have been successfully treated with cell therapies at centers around the world. Cell therapies also have the potential for wide application in other liver diseases, including non-inherited liver diseases and liver cancer, and in improving the success of liver transplantation. Here we briefly summarize current concepts of cell therapy for liver diseases. PMID:22140063

  19. Natural Killer Cells and Liver Fibrosis

    PubMed Central

    Fasbender, Frank; Widera, Agata; Hengstler, Jan G.; Watzl, Carsten

    2016-01-01

    In the 40 years since the discovery of natural killer (NK) cells, it has been well established that these innate lymphocytes are important for early and effective immune responses against transformed cells and infections with different pathogens. In addition to these classical functions of NK cells, we now know that they are part of a larger family of innate lymphoid cells and that they can even mediate memory-like responses. Additionally, tissue-resident NK cells with distinct phenotypical and functional characteristics have been identified. Here, we focus on the phenotype of different NK cell subpopulations that can be found in the liver and summarize the current knowledge about the functional role of these cells with a special emphasis on liver fibrosis. NK cell cytotoxicity can contribute to liver damage in different forms of liver disease. However, NK cells can limit liver fibrosis by killing hepatic stellate cell-derived myofibroblasts, which play a key role in this pathogenic process. Therefore, liver NK cells need to be tightly regulated in order to balance these beneficial and pathological effects. PMID:26858722

  20. Ozone inhalation modifies the rat liver proteome☆

    PubMed Central

    Theis, Whitney S.; Andringa, Kelly K.; Millender-Swain, Telisha; Dickinson, Dale A.; Postlethwait, Edward M.; Bailey, Shannon M.

    2013-01-01

    Ozone (O3) is a serious public health concern. Recent findings indicate that the damaging health effects of O3 extend to multiple systemic organ systems. Herein, we hypothesize that O3 inhalation will cause downstream alterations to the liver. To test this, male Sprague-Dawley rats were exposed to 0.5 ppm O3 for 8 h/day for 5 days. Plasma liver enzyme measurements showed that 5 day O3 exposure did not cause liver cell death. Proteomic and mass spectrometry analysis identified 10 proteins in the liver that were significantly altered in abundance following short-term O3 exposure and these included several stress responsive proteins. Glucose-regulated protein 78 and protein disulfide isomerase increased, whereas glutathione S-transferase M1 was significantly decreased by O3 inhalation. In contrast, no significant changes were detected for the stress response protein heme oxygenase-1 or cytochrome P450 2E1 and 2B in liver of O3 exposed rats compared to controls. In summary, these results show that an environmentally-relevant exposure to inhaled O3 can alter the expression of select proteins in the liver. We propose that O3 inhalation may represent an important unrecognized factor that can modulate hepatic metabolic functions. PMID:25544660

  1. Major hepatectomy for complex liver trauma.

    PubMed

    Ariche, Arie; Klein, Yoram; Cohen, Amir; Lahat, Eylon

    2015-08-01

    The liver is the most frequently injured intraperitoneal organ, despite its relatively protected location. The liver consisting of a relatively fragile parenchyma contained within the Glisson capsule, which is thin and does not provide it with great protection. The management of hepatic trauma has undergone a paradigm shift over the past several decades with significant improvement in outcomes. Shifting from mandatory operation to selective nonoperative treatment, and, presently, to nonoperative treatment with selective operation. Operative management emphasizes packing, damage control, and utilization of interventional radiology, such as angiography and embolization. Because of the high morbidity and mortality, liver resection seems to have a minimal role in the management of hepatic injury in many reports, but in a specialized referral center, like our institute, surgical treatment becomes, in many cases, the only life-saving treatment. Innovations in liver transplant surgery, living liver donation, and the growth of specialized liver surgery teams have changed the way that surgeons and hepatic resection are done. PMID:26311308

  2. Liver transplantation and the management of progressive familial intrahepatic cholestasis in children

    PubMed Central

    Mehl, Ashley; Bohorquez, Humberto; Serrano, Maria-Stella; Galliano, Gretchen; Reichman, Trevor W

    2016-01-01

    Progressive familial intrahepatic cholestasis (PFIC) is a constellation of inherited disorders that result in the impairment of bile flow through the liver that predominantly affects children. The accumulation of bile results in progressive liver damage, and if left untreated leads to end stage liver disease and death. Patients often present with worsening jaundice and pruritis within the first few years of life. Many of these patients will progress to end stage liver disease and require liver transplantation. The role and timing of liver transplantation still remains debated especially in the management of PFIC1. In those patients who are appropriately selected, liver transplantation offers an excellent survival benefit. Appropriate timing and selection of patients for liver transplantation will be discussed, and the short and long term management of patients post liver transplantation will also be described. PMID:27358773

  3. Liver transplantation and the management of progressive familial intrahepatic cholestasis in children.

    PubMed

    Mehl, Ashley; Bohorquez, Humberto; Serrano, Maria-Stella; Galliano, Gretchen; Reichman, Trevor W

    2016-06-24

    Progressive familial intrahepatic cholestasis (PFIC) is a constellation of inherited disorders that result in the impairment of bile flow through the liver that predominantly affects children. The accumulation of bile results in progressive liver damage, and if left untreated leads to end stage liver disease and death. Patients often present with worsening jaundice and pruritis within the first few years of life. Many of these patients will progress to end stage liver disease and require liver transplantation. The role and timing of liver transplantation still remains debated especially in the management of PFIC1. In those patients who are appropriately selected, liver transplantation offers an excellent survival benefit. Appropriate timing and selection of patients for liver transplantation will be discussed, and the short and long term management of patients post liver transplantation will also be described. PMID:27358773

  4. Protective effects of C-phycocyanin on alcohol-induced acute liver injury in mice

    NASA Astrophysics Data System (ADS)

    Xia, Dong; Liu, Bing; Luan, Xiying; Sun, Junyan; Liu, Nana; Qin, Song; Du, Zhenning

    2016-03-01

    Excessive alcohol consumption leads to liver disease. Extensive evidence suggests that C-phycocyanin (C-PC), a chromophore phycocyanobilin derived from Spirulina platensis, exerts protective effects against chemical-induced organ damage. In this study, we investigated whether C-PC could protect against ethanol-induced acute liver injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (CHOL), low-density lipoprotein (LDL), liver homogenate malondialdehyde (MDA), superoxide dismutase (SOD) content were measured, and pathological examination of liver sections were examined. C-PC showed obvious inhibitory effects on serum ALT, AST, TG, CHOL, LDL and MDA, and SOD content significantly increased in the liver. The structure of hepatic lobules was clear, liver sinus returned to normal, and liver cell cords were arranged in neat rows. Cloudiness, swelling, inflammatory cell infiltration and spotty necrosis of liver cells were significantly reduced. Therefore, C-PC can significantly protect against ethanol-induced acute liver injury.

  5. Novel strategy to decrease reperfusion injuries and improve function of cold-preserved livers using normothermic ex vivo liver perfusion machine.

    PubMed

    Banan, Babak; Xiao, Zhenyu; Watson, Rao; Xu, Min; Jia, Jianluo; Upadhya, Gundumi A; Mohanakumar, Thalachallour; Lin, Yiing; Chapman, William

    2016-03-01

    Normothermic extracorporeal liver perfusion (NELP) can decrease ischemia/reperfusion injury to the greatest degree when cold ischemia time is minimized. Warm perfusion of cold-stored livers results in hepatocellular damage, sinusoidal endothelial cell (SEC) dysfunction, and Kupffer cell activation. However, the logistics of organ procurement mandates a period of cold preservation before NELP. The aim of this study was to determine the beneficial effects of gradual rewarming of cold-stored livers by placement on NELP. Three female porcine livers were used for each group. In the immediate NELP group, procured livers were immediately placed on NELP for 8 hours. In the cold NELP group, livers were cold-stored for 4 hours followed by NELP for 4 hours. In rewarming groups, livers were cold-stored for 4 hours, then gradually rewarmed in different durations to 38°C and kept on NELP for an additional 4 hours. For comparison purposes, the last 4 hours of NELP runs were considered to be the evaluation phase. Immediate NELP livers had significantly lower concentrations of liver transaminases, hyaluronic acid, and β-galactosidase and had higher bile production compared to the other groups. Rewarming livers had significantly lower concentrations of hyaluronic acid and β-galactosidase compared to the cold NELP livers. In addition, there was a significant decline in international normalized ratio values, improved bile production, reduced biliary epithelial cell damage, and improved cholangiocyte function. Thus, if a NELP machine is not available at the procurement site and livers will need to undergo a period of cold preservation, a gradual rewarming protocol before NELP may greatly reduce damages that are associated with reperfusion. In conclusion, gradual rewarming of cold-preserved livers upon NELP can minimize the hepatocellular damage, Kupffer cell activation, and SEC dysfunction. PMID:26439190

  6. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    PubMed Central

    Li, Sha; Tan, Hor-Yue; Wang, Ning; Zhang, Zhang-Jin; Lao, Lixing; Wong, Chi-Woon; Feng, Yibin

    2015-01-01

    A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed. PMID:26540040

  7. Liver Transplantation for Alcoholic Liver Disease.

    PubMed

    Addolorato, Giovanni; Bataller, Ramón; Burra, Patrizia; DiMartini, Andrea; Graziadei, Ivo; Lucey, Michael R; Mathurin, Philippe; OʼGrady, John; Pageaux, Georges; Berenguer, Marina

    2016-05-01

    Alcohol-related liver disease is the second most frequent indication for liver transplantation (LT), yet as many as 90% to 95% of patients with alcohol-related end-stage liver disease are never formally evaluated for LT. Furthermore, despite its significance as a cause of chronic liver disease and indication for LT, it has received little attention in recent years for several reasons, including the good posttransplant short-term results, and the lack of specific "drugs" used for this disease. A writing group, endorsed by the International Liver Transplant Society, was convened to write guidelines on Liver Transplantation for Alcoholic Liver Disease to summarize current knowledge and provide answers to controversial and delicate ethical as well as clinical problems. We report here a short version of the guidelines (long version available at www.ilts.org) with the final recommendations graded for level of evidence. The writing group membership is expected to remain active for 5 years, reviewing the guideline annually, and updating the online version when appropriate. PMID:26985744

  8. Protective Effects of Guava Pulp on Cholestatic Liver Injury

    PubMed Central

    Peng, Jian; Yue, Chunyan; Qiu, Kai; Chen, Jie; Aller, Maria-Angeles; Ko, Kwang Suk

    2013-01-01

    Background. Cholestatic liver injury is a leading cause of chronic liver diseases involved with oxidative stress changes and inflammation; thus, antioxidant and anti-inflammation compound-rich guava may play a pivotal role in protecting against the cholestatic liver damages. Our aims for this study are to determine whether guava pulp (GP) has protective effects on cholestatic liver injury-induced mouse model and on interleukin-6 (IL-6) mediated proliferation of QBC939 cholangiocarcinoma cell line. Methods. Mice were induced to cholestatic liver damage by left and median bile duct ligation (LMBDL) surgery and then treated with GP. Plasma and liver samples were collected for biochemical and pathological assays. 5-Bromo-2′-deoxyuridine (BrdU) assay and Western blots were used to detect proliferation and gene expression in QBC939 cells, respectively. Results. Compared with LMBDL only group, in GP-treated mice, the levels of alanine aminotransferase (ALT) and bilirubin decreased, biliary epithelial cell proliferation and liver fibrogenesis were suppressed, Src/MEK/ERK1/2/c-Myc pathway and expressions of transforming growth factor β1(TGF-β1), tissue inhibitor of metalloproteinases TIMP), and procollagen 1α1(COL1α1) were downregulated significantly. Moreover, the GP extract reduced IL-6-enhanced QBC939 cell proliferation, p-ERK, and c-Myc expression as well. Conclusions. GP may provide a new perspective for the treatment of cholestatic liver injury. PMID:27335829

  9. MicroRNAs in liver fibrosis: Focusing on the interaction with hedgehog signaling.

    PubMed

    Hyun, Jeongeun; Jung, Youngmi

    2016-08-01

    Liver fibrosis is a repair process in response to damage in the liver; however, severe and chronic injury promotes the accumulation of fibrous matrix, destroying the normal functions and architecture of liver. Hepatic stellate cells (HSCs) are quiescent in normal livers, but in damaged livers, they transdifferentiate into myofibroblastic HSCs, which produce extracellular matrix proteins. Hedgehog (Hh) signaling orchestrates tissue reconstruction in damaged livers and contributes to liver fibrogenesis by regulating HSC activation. MicroRNAs (miRNAs), endogenous small non-coding RNAs interfering with RNA post-transcriptionally, regulate various cellular processes in healthy organisms. The dysregulation of miRNAs is closely associated with diseases, including liver diseases. Thus, miRNAs are good targets in the diagnosis and treatment of various diseases, including liver fibrosis; however, the regulatory mechanisms of miRNAs that interact with Hh signaling in liver fibrosis remain unclear. We review growing evidence showing the association of miRNAs with Hh signaling. Recent studies suggest that Hh-regulating miRNAs induce inactivation of HSCs, leading to decreased hepatic fibrosis. Although miRNA-delivery systems and further knowledge of interacting miRNAs with Hh signaling need to be improved for the clinical usage of miRNAs, recent findings indicate that the miRNAs regulating Hh signaling are promising therapeutic agents for treating liver fibrosis. PMID:27547008

  10. MicroRNAs in liver fibrosis: Focusing on the interaction with hedgehog signaling

    PubMed Central

    Hyun, Jeongeun; Jung, Youngmi

    2016-01-01

    Liver fibrosis is a repair process in response to damage in the liver; however, severe and chronic injury promotes the accumulation of fibrous matrix, destroying the normal functions and architecture of liver. Hepatic stellate cells (HSCs) are quiescent in normal livers, but in damaged livers, they transdifferentiate into myofibroblastic HSCs, which produce extracellular matrix proteins. Hedgehog (Hh) signaling orchestrates tissue reconstruction in damaged livers and contributes to liver fibrogenesis by regulating HSC activation. MicroRNAs (miRNAs), endogenous small non-coding RNAs interfering with RNA post-transcriptionally, regulate various cellular processes in healthy organisms. The dysregulation of miRNAs is closely associated with diseases, including liver diseases. Thus, miRNAs are good targets in the diagnosis and treatment of various diseases, including liver fibrosis; however, the regulatory mechanisms of miRNAs that interact with Hh signaling in liver fibrosis remain unclear. We review growing evidence showing the association of miRNAs with Hh signaling. Recent studies suggest that Hh-regulating miRNAs induce inactivation of HSCs, leading to decreased hepatic fibrosis. Although miRNA-delivery systems and further knowledge of interacting miRNAs with Hh signaling need to be improved for the clinical usage of miRNAs, recent findings indicate that the miRNAs regulating Hh signaling are promising therapeutic agents for treating liver fibrosis. PMID:27547008

  11. Coffee and Liver Disease.

    PubMed

    Wadhawan, Manav; Anand, Anil C

    2016-03-01

    Coffee is the most popular beverage in the world. Consumption of coffee has been shown to benefit health in general, and liver health in particular. This article reviews the effects of coffee intake on development and progression of liver disease due to various causes. We also describe the putative mechanisms by which coffee exerts the protective effect. The clinical evidence of benefit of coffee consumption in Hepatitis B and C, as well as nonalcoholic fatty liver disease and alcoholic liver disease, has also been presented. Coffee consumption is associated with improvement in liver enzymes (ALT, AST, and GGTP), especially in individuals with risk for liver disease. Coffee intake more than 2 cups per day in patients with preexisting liver disease has been shown to be associated with lower incidence of fibrosis and cirrhosis, lower hepatocellular carcinoma rates, as well as decreased mortality. PMID:27194895

  12. [Tumours and liver transplants].

    PubMed

    Mejzlík, Vladimír; Husová, Libuše; Kuman, Milan; Štěpánková, Soňa; Ondrášek, Jiří; Němec, Petr

    2015-01-01

    Liver transplantation as a curative treatment method can be used for selected primary liver tumours, in particular for hepatocellular carcinoma and rather rare semi-malignant tumours such as epithelioid hemangioendothelioma, further for infiltration of liver by metastatic neuroendocrine tumours (provided that metastases are only located in the liver and the primary tumour was removed) and for benign tumours (hemangiomas and adenomas) with oppression symptoms and size progression. Cholangiocarcinoma is not indicated for liver transplantation at the CKTCH Brno. In recent years liver transplants for hepatocellular carcinoma have increased and hepatocellular carcinoma has also been more frequently found ex post, in the explanted livers. Liver transplantation is indicated in selected patients with a good chance of long-term survival after liver transplantation (a generally accepted limit is 5 year survival of 50 % after transplantation). By 20 March 2015 there were liver transplants carried out on 38 patients - in 25 of them was hepatocellular carcinoma diagnosed before transplantation and in 13 it was found in the liver explants. 5 year survival following transplantation is reached by 53 % of this cohort. 32 % patients suffered from chronic hepatitis C. The longest surviving (32 years) patient at CKTCH Brno had liver transplanted for a big fibrolamellar hepatocellular carcinoma, which points to the prognostic significance of tumour histology: the criterion only considered in some indication schemes for practical reasons. Benign liver tumours (adenomatosis, cystadenoma, hemangioma with oppression symptoms) are rather rare indications and the transplantation results are favourable. 4 patients underwent transplantation for infiltration of liver by carcinoid, tumour recurrence occurred in one. PMID:26375706

  13. Acute Liver Failure including Acetaminophen Overdose

    PubMed Central

    Fontana, Robert J.

    2008-01-01

    Synopsis Acute liver failure (ALF) is a dramatic and highly unpredictable clinical syndrome defined by the sudden onset of coagulopathy and encephalopathy. Although many disease processes can cause ALF, acetaminophen overdose is the leading cause in the United States, and has a 66% chance of recovery with early N-acetylcysteine treatment and supportive care. Cerebral edema and infectious complications are notoriously difficult to detect and treat in ALF patients and may lead to irreversible brain damage and multi-organ failure. Emergency liver transplantation is associated with a 70% 1-year patient survival but 20% of listed patients die, highlighting the importance of early referral of ALF patients with a poor prognosis to a liver transplant center. PMID:18570942

  14. Oligofructose protects against arsenic-induced liver injury in a model of environment/obesity interaction

    SciTech Connect

    Massey, Veronica L.; Stocke, Kendall S.; Schmidt, Robin H.; Tan, Min; Ajami, Nadim; Neal, Rachel E.; Petrosino, Joseph F.; Barve, Shirish; Arteel, Gavin E.

    2015-05-01

    Arsenic (As) tops the ATSDR list of hazardous environmental chemicals and is known to cause liver injury. Although the concentrations of As found in the US water supply are generally too low to directly damage the liver, subhepatotoxic doses of As sensitize the liver to experimental NAFLD. It is now suspected that GI microbiome dysbiosis plays an important role in development of NALFD. Importantly, arsenic has also been shown to alter the microbiome. The purpose of the current study was to test the hypothesis that the prebiotic oligofructose (OFC) protects against enhanced liver injury caused by As in experimental NAFLD. Male C57Bl6/J mice were fed low fat diet (LFD), high fat diet (HFD), or HFD containing oligofructose (OFC) during concomitant exposure to either tap water or As-containing water (4.9 ppm as sodium arsenite) for 10 weeks. HFD significantly increased body mass and caused fatty liver injury, as characterized by an increased liver weight-to-body weight ratio, histologic changes and transaminases. As observed previously, As enhanced HFD-induced liver damage, which was characterized by enhanced inflammation. OFC supplementation protected against the enhanced liver damage caused by As in the presence of HFD. Interestingly, arsenic, HFD and OFC all caused unique changes to the gut flora. These data support previous findings that low concentrations of As enhance liver damage caused by high fat diet. Furthermore, these results indicate that these effects of arsenic may be mediated, at least in part, by GI tract dysbiosis and that prebiotic supplementation may confer significant protective effects. - Highlights: • Arsenic (As) enhances liver damage caused by a high-fat (HFD) diet in mice. • Oligofructose protects against As-enhanced liver damage caused by HFD. • As causes dysbiosis in the GI tract and exacerbates the dysbiosis caused by HFD. • OFC prevents the dysbiosis caused by HFD and As, increasing commensal bacteria.

  15. Main features of the oxidative metabolism in gills and liver of Odontesthes nigricans Richardson (Pisces, Atherinopsidae).

    PubMed

    Lattuca, M E; Malanga, G; Aguilar Hurtado, C; Pérez, A F; Calvo, J; Puntarulo, S

    2009-12-01

    The aim of this work was to study comparatively the oxidative metabolism in gills and liver of a silverside, Odontesthes nigricans, in their natural environment, the Beagle Channel. Oxidative damage to lipids was evaluated by assessing TBARS and lipid radical content, in gills and liver. Gills showed a significantly higher degree of damage than liver. The content of alpha-tocopherol, beta-carotene and catalase activity showed significantly higher values in the liver than in the gills. The ascorbyl radical (A(*)) content showed no significant differences between gills and liver. The ascorbate (AH(-)) content was 12+/-2 and 159+/-28 nmol/mg FW in gills and liver, respectively. Oxidative metabolism at the hydrophilic level was assessed as the ratio A(*)/AH(-). The ratio A(*)/AH(-) was significantly different between organs, (6+/-2)10(-5) and (5+/-2)10(-6), for the gills and the liver, respectively. Both, lipid radical content/alpha-tocopherol content and lipid radical content/beta-carotene content ratios were significantly higher in gills as compared to the values recorded for the liver, suggesting an increased situation of oxidative stress condition in the lipid phase of the gills. Taken as a whole, the O. nigricans liver exhibited a better control of oxidative damage than the gills, allowing minimization of intracellular damage when exposed to environmental stressing conditions. PMID:19706336

  16. [Liver and drug metabolism].

    PubMed

    Mikheeva, O M

    2011-01-01

    Liver metabolism aims to change the biological activity of drugs to make them water-soluble to be excreted with bile and urine. The degree of metabolism depends on fermentative capacity for each drag (P450 fermentative system is localized in microsomal fraction of hepatocyte). Metabolism ability also changes under the influence of other substances. Liver diseases lead up to decrease of drug clirens and to increase the semi-excretion time because of reduction of liver metabolism. Therefore the drags usually undergoing intensive liver metabolism necessitate a high risk of overdose when liver diseases present. On the other hand no risk of overdose exist when drags with low liver metabolism are used. PMID:21560652

  17. Liver transplantation in India.

    PubMed

    Narasimhan, Gomathy; Kota, Venugopal; Rela, Mohamed

    2016-07-01

    Liver transplantation as an established form of treatment for end-stage liver disease has gained acceptance in India over the last 10 years. Liver transplantation in India has unique features that have contributed to the growth of both deceased donor and living donor transplantations of which living donor currently dominates the picture. Living donor contributes to 80% and deceased donor to 20% of the liver transplants currently performed in India. The majority of these transplants are performed within the private sector with public sector hospitals lagging behind significantly. This article gives an overview of the evolution of liver transplantation in India and the potential future challenges. Liver Transplantation 22 1019-1024 2016 AASLD. PMID:27082718

  18. Tolerance Induction in Liver.

    PubMed

    Karimi, M H; Geramizadeh, B; Malek-Hosseini, S A

    2015-01-01

    Liver is an exclusive anatomical and immunological organ that displays a considerable tolerance effect. Liver allograft acceptance is shown to occur spontaneously within different species. Although in human transplant patients tolerance is rarely seen, the severity level and cellular mechanisms of transplant rejection vary. Non-paranchymal liver cells, including Kupffer cells, liver sinusoidal endothelial cells, hepatic stellate cells, and resident dendritic cells may participate in liver tolerogenicity. The mentioned cells secret anti-inflammatory cytokines such as TGF-β and IL-10 and express negative co-stimulatory molecules like PD-L1 to mediate immunosuppression. Other mechanisms such as microchimerism, soluble major histocompatibility complex and regulatory T cells may take part in tolerance induction. Understanding the mechanisms involved in liver transplant rejection/tolerance helps us to improve therapeutic options to induce hepatic tolerance. PMID:26082828

  19. Dietary sugar intake increases liver tumor incidence in female mice

    PubMed Central

    Healy, Marin E.; Lahiri, Sujoy; Hargett, Stefan R.; Chow, Jenny D.Y.; Byrne, Frances L.; Breen, David S.; Kenwood, Brandon M.; Taddeo, Evan P.; Lackner, Carolin; Caldwell, Stephen H.; Hoehn, Kyle L.

    2016-01-01

    Overnutrition can promote liver cancer in mice and humans that have liver damage caused by alcohol, viruses, or carcinogens. However, the mechanism linking diet to increased liver tumorigenesis remains unclear in the context of whether tumorigenesis is secondary to obesity, or whether nutrients like sugar or fat drive tumorigenesis independent of obesity. In male mice, liver tumor burden was recently found to correlate with sugar intake, independent of dietary fat intake and obesity. However, females are less susceptible to developing liver cancer than males, and it remains unclear how nutrition affects tumorigenesis in females. Herein, female mice were exposed to the liver carcinogen diethylnitrosamine (DEN) and fed diets with well-defined sugar and fat content. Mice fed diets with high sugar content had the greatest liver tumor incidence while dietary fat intake was not associated with tumorigenesis. Diet-induced postprandial hyperglycemia and fasting hyperinsulinemia significantly correlated with tumor incidence, while tumor incidence was not associated with obesity and obesity-related disorders including liver steatosis, glucose intolerance, or elevated serum levels of estrogen, ALT, and lipids. These results simplify the pathophysiology of diet-induced liver tumorigenesis by focusing attention on the role of sugar metabolism and reducing emphasis on the complex milieu associated with obesity. PMID:26924712

  20. Protective effect of crocin on liver toxicity induced by morphine

    PubMed Central

    Salahshoor, Mohammad Reza; khashiadeh, Mojtaba; Roshankhah, Shiva; Kakabaraei, Seyran; Jalili, Cyrus

    2016-01-01

    Crocin, a bioactive molecule of saffron can be purely isolated from the saffron extract. It has different pharmacological effects such as antioxidant and anticancer activities. Morphine is an opioid analgesic drug. It is mainly metabolized in liver and causes devastating effects. It can increase the generation of free radicals. This study was designed to evaluate the protective role of crocin against morphine-induced toxicity in the mouse liver. In this study, various doses of crocin (12.5, 25 and 50 mg/kg) and crocin plus morphine were administered interaperitoneally once daily to 48 male mice for 20 consecutive days. These mice were randomly assigned to 8 groups of 6 each. The liver weight and histology, aspartate amino transferase, alanine aminotransferase, alkaline phosphatase (ALP) and serum nitric oxide levels were studied. The results indicated that morphine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein diameters, liver enzyme levels, and blood serum nitric oxide level compared to saline group (P<0.05). However, crocin administration significantly boosted liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes and nitric oxide levels in all groups compared to the group received morphine alone (P<0.05). It seems that crocin administration could protect the liver damage induced by morphine. The antioxidant effect of crocin may be a major reason for its positive impact on liver parameters. PMID:27168751

  1. Dietary sugar intake increases liver tumor incidence in female mice.

    PubMed

    Healy, Marin E; Lahiri, Sujoy; Hargett, Stefan R; Chow, Jenny D Y; Byrne, Frances L; Breen, David S; Kenwood, Brandon M; Taddeo, Evan P; Lackner, Carolin; Caldwell, Stephen H; Hoehn, Kyle L

    2016-01-01

    Overnutrition can promote liver cancer in mice and humans that have liver damage caused by alcohol, viruses, or carcinogens. However, the mechanism linking diet to increased liver tumorigenesis remains unclear in the context of whether tumorigenesis is secondary to obesity, or whether nutrients like sugar or fat drive tumorigenesis independent of obesity. In male mice, liver tumor burden was recently found to correlate with sugar intake, independent of dietary fat intake and obesity. However, females are less susceptible to developing liver cancer than males, and it remains unclear how nutrition affects tumorigenesis in females. Herein, female mice were exposed to the liver carcinogen diethylnitrosamine (DEN) and fed diets with well-defined sugar and fat content. Mice fed diets with high sugar content had the greatest liver tumor incidence while dietary fat intake was not associated with tumorigenesis. Diet-induced postprandial hyperglycemia and fasting hyperinsulinemia significantly correlated with tumor incidence, while tumor incidence was not associated with obesity and obesity-related disorders including liver steatosis, glucose intolerance, or elevated serum levels of estrogen, ALT, and lipids. These results simplify the pathophysiology of diet-induced liver tumorigenesis by focusing attention on the role of sugar metabolism and reducing emphasis on the complex milieu associated with obesity. PMID:26924712

  2. Relevance of ADAMTS13 to liver transplantation and surgery

    PubMed Central

    Ko, Saiho; Chisuwa, Hisanao; Matsumoto, Masanori; Fujimura, Yoshihiro; Okano, Eiji; Nakajima, Yoshiyuki

    2015-01-01

    A disintegrin-like and metalloproteinase with thrombospondin type-1 motifs 13 (ADAMTS13) specifically cleaves unusually-large von Willebrand factor (VWF) multimers under high shear stress, and down-regulates VWF function to form platelet thrombi. Deficiency of plasma ADAMTS13 activity induces a life-threatening systemic disease, termed thrombotic microangiopathy (TMA) including thrombotic thrombocytopenic purpura (TTP). Children with advanced biliary cirrhosis due to congenital biliary atresia sometimes showed pathological features of TMA, with a concomitant decrease of plasma ADAMTS13 activity. Disappearance of their clinical findings of TTP after successful liver transplantation suggested that the liver is a major organ producing plasma ADAMTS13. In situ hybridization analysis showed that ADAMTS13 was produced by hepatic stellate cells. Subsequently, it was found that ADADTS13 was not merely responsible to development of TMA and TTP, but also related to some kinds of liver dysfunction after liver transplantation. Ischemia-reperfusion injury and acute rejection in liver transplant recipients were often associated with marked decrease of ADAMTS13 and concomitant formation of unusually large VWF multimers without findings of TMA/TTP. The similar phenomenon was observed also in patients who underwent hepatectomy for liver tumors. Imbalance between ADAMTS13 and VWF in the hepatic sinusoid might cause liver damage due to microcirculatory disturbance. It can be called as “local TTP like mechanism” which plays a crucial role in liver dysfunction after liver transplantation and surgery. PMID:26167250

  3. Protective effect of crocin on liver toxicity induced by morphine.

    PubMed

    Salahshoor, Mohammad Reza; Khashiadeh, Mojtaba; Roshankhah, Shiva; Kakabaraei, Seyran; Jalili, Cyrus

    2016-01-01

    Crocin, a bioactive molecule of saffron can be purely isolated from the saffron extract. It has different pharmacological effects such as antioxidant and anticancer activities. Morphine is an opioid analgesic drug. It is mainly metabolized in liver and causes devastating effects. It can increase the generation of free radicals. This study was designed to evaluate the protective role of crocin against morphine-induced toxicity in the mouse liver. In this study, various doses of crocin (12.5, 25 and 50 mg/kg) and crocin plus morphine were administered interaperitoneally once daily to 48 male mice for 20 consecutive days. These mice were randomly assigned to 8 groups of 6 each. The liver weight and histology, aspartate amino transferase, alanine aminotransferase, alkaline phosphatase (ALP) and serum nitric oxide levels were studied. The results indicated that morphine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein diameters, liver enzyme levels, and blood serum nitric oxide level compared to saline group (P<0.05). However, crocin administration significantly boosted liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes and nitric oxide levels in all groups compared to the group received morphine alone (P<0.05). It seems that crocin administration could protect the liver damage induced by morphine. The antioxidant effect of crocin may be a major reason for its positive impact on liver parameters. PMID:27168751

  4. Trisulfate Disaccharide Decreases Calcium Overload and Protects Liver Injury Secondary to Liver Ischemia/Reperfusion

    PubMed Central

    Vasques, Enio Rodrigues; Cunha, Jose Eduardo Monteiro; Coelho, Ana Maria Mendonca; Sampietre, Sandra N.; Patzina, Rosely Antunes; Abdo, Emilio Elias; Nader, Helena B.; Tersariol, Ivarne L. S.; Lima, Marcelo Andrade; Godoy, Carlos M. G.; Rodrigues, Tiago; Chaib, Eleazar; D’Albuquerque, Luiz A. C.

    2016-01-01

    Background Ischemia and reperfusion (I/R) causes tissue damage and intracellular calcium levels are a factor of cell death. Sodium calcium exchanger (NCX) regulates calcium extrusion and Trisulfated Disaccharide (TD) acts on NCX decreasing intracellular calcium through the inhibition of the exchange inhibitory peptide (XIP). Objectives The aims of this research are to evaluate TD effects in liver injury secondary to I/R in animals and in vitro action on cytosolic calcium of hepatocytes cultures under calcium overload. Methods Wistar rats submitted to partial liver ischemia were divided in groups: Control: (n = 10): surgical manipulation with no liver ischemia; Saline: (n = 15): rats receiving IV saline before reperfusion; and TD: (n = 15): rats receiving IV TD before reperfusion. Four hours after reperfusion, serum levels of AST, ALT, TNF-α, IL-6, and IL-10 were measured. Liver tissue samples were collected for mitochondrial function and malondialdehyde (MDA) content. Pulmonary vascular permeability and histologic parameters of liver were determined. TD effect on cytosolic calcium was evaluated in BRL3A hepatic rat cell cultures stimulated by thapsigargin pre and after treatment with TD. Results AST, ALT, cytokines, liver MDA, mitochondrial dysfunction and hepatic histologic injury scores were less in TD group when compared to Saline Group (p<0.05) with no differences in pulmonary vascular permeability. In culture cells, TD diminished the intracellular calcium raise and prevented the calcium increase pre and after treatment with thapsigargin, respectively. Conclusion TD decreases liver cell damage, preserves mitochondrial function and increases hepatic tolerance to I/R injury by calcium extrusion in Ca2+ overload situations. PMID:26901764

  5. Auxiliary partial orthotopic liver transplant for Criggler-Najjar Syndrome: Report of 2 cases from Pakistan.

    PubMed

    Dar, Faisal Saud; Bhatti, Abu Bakar Hafeez; Hashmi, Syeda Shaheera; Zia, Haseeb; Malik, Munir Iqbal

    2016-05-01

    Auxiliary partial orthotopic liver transplant (APOLT) is a treatment option for certain liver disorders where liver structure is preserved. It includes Criggler Najjar syndrome (CNS), urea cycle defects and familial hypercholesterolaemia. Liver transplant as a treatment modality has only recently become available in Pakistan. Here we report two paediatric cases of CNS type 1 where auxiliary liver transplant was performed to correct jaundice and prevent inevitable brain damage. Both recipients and their respective living donors had successful surgery and are doing well. PMID:27183949

  6. Robotic liver surgery

    PubMed Central

    Leung, Universe

    2014-01-01

    Robotic surgery is an evolving technology that has been successfully applied to a number of surgical specialties, but its use in liver surgery has so far been limited. In this review article we discuss the challenges of minimally invasive liver surgery, the pros and cons of robotics, the evolution of medical robots, and the potentials in applying this technology to liver surgery. The current data in the literature are also presented. PMID:25392840

  7. [Various pathways leading to the progression of chronic liver diseases].

    PubMed

    Egresi, Anna; Lengyel, Gabriella; Somogyi, Anikó; Blázovics, Anna; Hagymási, Krisztina

    2016-02-21

    As the result of various effects (viruses, metabolic diseases, nutritional factors, toxic agents, autoimmune processes) abnormal liver function, liver steatosis and connective tissue remodeling may develop. Progression of this process is complex including various pathways and a number of factors. The authors summarize the factors involved in the progression of chronic liver disease. They describe the role of cells and the produced inflammatory mediators and cytokines, as well as the relationship between the disease and the intestinal flora. They emphasize the role of oxidative stress, mitochondrial dysfunction and cell death in disease progression. Insulin resistance and micro-elements (iron, copper) in relation to liver damage are also discussed, and genetic and epigenetic aspects underlying disease progression are summarized. Discovery of novel treatment options, assessment of the effectiveness of treatment, as well as the success and proper timing of liver transplantation may depend on a better understanding of the process of disease progression. PMID:26876265

  8. Spaceflight Activates Lipotoxic Pathways in Mouse Liver

    PubMed Central

    Jonscher, Karen R.; Alfonso-Garcia, Alba; Suhalim, Jeffrey L.; Orlicky, David J.; Potma, Eric O.; Ferguson, Virginia L.; Bouxsein, Mary L.; Bateman, Ted A.; Stodieck, Louis S.; Levi, Moshe; Friedman, Jacob E.; Gridley, Daila S.; Pecaut, Michael J.

    2016-01-01

    Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease. PMID:27097220

  9. Spaceflight Activates Lipotoxic Pathways in Mouse Liver.

    PubMed

    Jonscher, Karen R; Alfonso-Garcia, Alba; Suhalim, Jeffrey L; Orlicky, David J; Potma, Eric O; Ferguson, Virginia L; Bouxsein, Mary L; Bateman, Ted A; Stodieck, Louis S; Levi, Moshe; Friedman, Jacob E; Gridley, Daila S; Pecaut, Michael J

    2016-01-01

    Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease. PMID:27097220

  10. Radiologic evaluation of the liver in the alcoholic patient

    SciTech Connect

    Peng, J.J.; Hirsch, G.; Posteraro, R.H.; Leo, J.S.; Blackwell, D.E.

    1985-03-01

    It has been well documented that long-term abuse of alcohol leads to dysfunction of multiple organ systems of the body. The liver, which is the primary organ responsible for alcohol metabolism, is also a major target for damage. Cirrhosis of the liver is the seventh leading cause of death in the United States. The radiologist plays an important role in the evaluation and possibly in the treatment of the conditions which result from alcohol abuse. The advantages and limitations of various radiologic diagnostic modalities in the evaluation of alcoholic liver disease are presented and discussed. 47 references.

  11. Liver ergothioneine accumulation in a guinea pig model of non-alcoholic fatty liver disease. A possible mechanism of defence?

    PubMed

    Cheah, Irwin K; Tang, Richard; Ye, Peng; Yew, Terry S Z; Lim, Keith H S; Halliwell, Barry

    2016-01-01

    L-ergothioneine (ET), a putative antioxidant compound acquired by animals through dietary sources, has been suggested to accumulate in certain cells and tissues in the body that are predisposed to high oxidative stress. In the present study, we identified an elevation of ET in the liver of a guinea pig model of non-alcoholic fatty liver disease (NAFLD), elucidated a possible mechanism for the increased uptake and investigated the possible role for this accumulation. This increase in liver ET levels correlated with cholesterol accumulation and disease severity. We identified an increase in the transcriptional factor, RUNX1, which has been shown to upregulate the expression of the ET-specific transporter OCTN1, and could consequently lead to the observable elevation in ET. An increase was also seen in heat shock protein 70 (HSP70) which seemingly corresponds to ET elevation. No significant increase was observed in oxidative damage markers, F2-isoprostanes, and protein carbonyls, which could possibly be attributed to the increase in liver ET through direct antioxidant action, induction of HSP70, or by chelation of Fe(2+), preventing redox chemistry. The data suggest a novel mechanism by which the guinea pig fatty liver accumulates ET via upregulation of its transporter, as a possible stress response by the damaged liver to further suppress oxidative damage and delay tissue injury. Similar events may happen in other animal models of disease, and researchers should be aware of the possibility. PMID:26634964

  12. Statins and the Liver.

    PubMed

    Herrick, Cynthia; Bahrainy, Samira; Gill, Edward A

    2016-03-01

    Lipid lowering, particularly with 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors ("statins"), reduces the risk of cardiovascular disease. Patients with chronic liver disease present challenges to the use of lipid medications. In the case of most liver disorders, the concern has been one of safety. There is evidence that most lipid-lowering medications can be used safely in many situations, although large outcomes trials are lacking. This review examines lipid physiology and cardiovascular risk in specific liver diseases and reviews the evidence for lipid lowering and the use of statins in chronic liver disease. PMID:26893001

  13. Adipose tissue-liver axis in alcoholic liver disease.

    PubMed

    Wang, Zhi-Gang; Dou, Xiao-Bing; Zhou, Zhan-Xiang; Song, Zhen-Yuan

    2016-02-15

    Alcoholic liver disease (ALD) remains an important health problem worldwide. The disease spectrum is featured by early steatosis, steatohepatitis (steatosis with inflammatory cells infiltration and necrosis), with some individuals ultimately progressing to fibrosis/cirrhosis. Although the disease progression is well characterized, no effective therapies are currently available for the treatment in humans. The mechanisms underlying the initiation and progression of ALD are multifactorial and complex. Emerging evidence supports that adipose tissue dysfunction contributes to the pathogenesis of ALD. In the first part of this review, we discuss the mechanisms whereby chronic alcohol exposure contributed to adipose tissue dysfunction, including cell death, inflammation and insulin resistance. It has been long known that aberrant hepatic methionine metabolism is a major metabolic abnormality induced by chronic alcohol exposure and plays an etiological role in the pathogenesis of ALD. The recent studies in our group documented the similar metabolic effect of chronic alcohol drinking on methionine in adipose tissue. In the second part of this review, we also briefly discuss the recent research progress in the field with a focus on how abnormal methionine metabolism in adipose tissue contributes to adipose tissue dysfunction and liver damage. PMID:26909225

  14. Adipose tissue-liver axis in alcoholic liver disease

    PubMed Central

    Wang, Zhi-Gang; Dou, Xiao-Bing; Zhou, Zhan-Xiang; Song, Zhen-Yuan

    2016-01-01

    Alcoholic liver disease (ALD) remains an important health problem worldwide. The disease spectrum is featured by early steatosis, steatohepatitis (steatosis with inflammatory cells infiltration and necrosis), with some individuals ultimately progressing to fibrosis/cirrhosis. Although the disease progression is well characterized, no effective therapies are currently available for the treatment in humans. The mechanisms underlying the initiation and progression of ALD are multifactorial and complex. Emerging evidence supports that adipose tissue dysfunction contributes to the pathogenesis of ALD. In the first part of this review, we discuss the mechanisms whereby chronic alcohol exposure contributed to adipose tissue dysfunction, including cell death, inflammation and insulin resistance. It has been long known that aberrant hepatic methionine metabolism is a major metabolic abnormality induced by chronic alcohol exposure and plays an etiological role in the pathogenesis of ALD. The recent studies in our group documented the similar metabolic effect of chronic alcohol drinking on methionine in adipose tissue. In the second part of this review, we also briefly discuss the recent research progress in the field with a focus on how abnormal methionine metabolism in adipose tissue contributes to adipose tissue dysfunction and liver damage. PMID:26909225

  15. Silybin and the liver: From basic research to clinical practice

    PubMed Central

    Loguercio, Carmela; Festi, Davide

    2011-01-01

    Herbal products are increasingly used, mainly in chronic liver disease. Extracts of milk thistle, Silymarin and silybin, are the most prescribed natural compounds, with different indications, but with no definitive results in terms of clinical efficacy. This review analyzes the available studies on the effects of the purified product silybin, both as a free and a conjugated molecule, on liver cells or on experimentally induced liver damage, and in patients with liver disease. We searched PUBMED for articles pertaining to the in vitro and in vivo effects of silybin, its antifibrotic, anti-inflammatory, and antioxidant properties, as well as its metabolic effects, combined with the authors’ own knowledge of the literature. Results indicate that the bioavailability of silybin phytosome is higher than that of silymarin and is less influenced by liver damage; silybin does not show significant interactions with other drugs and at doses < 10 g/d has no significant side effects. Experimental studies have clearly demonstrated the antifibrotic, antioxidant and metabolic effects of silybin; previous human studies were insufficient for confirming the clinical efficacy in chronic liver disease, while ongoing clinical trials are promising. On the basis of literature data, silybin seems a promising drug for chronic liver disease. PMID:21633595

  16. Role of Nrf2 in chronic liver disease

    PubMed Central

    Tang, Wei; Jiang, Yong-Fang; Ponnusamy, Murugavel; Diallo, Mamadou

    2014-01-01

    Nuclear erythroid 2-related factor 2 (Nrf2) is a central regulator of antioxidative response elements-mediated gene expression. It has a significant role in adaptive responses to oxidative stress by interacting with the antioxidant response element, which induces the expression of a variety of downstream targets aimed at cytoprotection. Previous studies suggested oxidative stress and associated damage could represent a common link between different forms of diseases. Oxidative stress has been implicated in various liver diseases, including viral hepatitis, nonalcoholic fatty liver disease/steatohepatitis, alcoholic liver disease and drug-induced liver injury. Nrf2 activation is initiated by oxidative or electrophilic stress, and aids in the detoxification and elimination of potentially harmful exogenous chemicals and their metabolites. The expression of Nrf2 has been observed throughout human tissue, with high expression in detoxification organs, especially the liver. Thus, Nrf2 may serve as a major regulator of several cellular defense associated pathways by which hepatic cells combat oxidative stress. We review the relevant literature concerning the crucial role of Nrf2 and its signaling pathways against oxidative stress to protect hepatic cell from oxidative damage during development of common chronic liver diseases. We also review the use of Nrf2 as a therapeutic target to prevent and treat liver diseases. PMID:25278702

  17. Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Liu, Xin; Burczynski, Frank J.; Fletcher, Linda M.; Gobe, Glenda C.; Roberts, Michael S.

    2011-11-01

    Ischemia-reperfusion (I/R) injury is a common occurrence in liver surgery. In orthotopic transplantation, the donor liver is exposed to periods of ischemia and when oxygenated blood is reintroduced to the liver, oxidative stress may develop and lead to graft failure. The aim of this project was to investigate whether noninvasive multiphoton and fluorescence lifetime imaging microscopy, without external markers, were useful in detecting early liver damage caused by I/R injury. Localized hepatic ischemia was induced in rats for 1 h followed by 4 h reperfusion. Multiphoton and fluorescence lifetime imaging microscopy was conducted prior to ischemia and up to 4 h of reperfusion and compared to morphological and biochemical assessment of liver damage. Liver function was significantly impaired at 2 and 4 h of reperfusion. Multiphoton microscopy detected liver damage at 1 h of reperfusion, manifested by vacuolated cells and heterogeneous spread of damage over the liver. The damage was mainly localized in the midzonal region of the liver acinus. In addition, fluorescence lifetime imaging showed a decrease in cellular metabolic activity. Multiphoton and fluorescence lifetime imaging microscopy detected evidence of early I/R injury both structurally and functionally. This provides a simple noninvasive technique useful for following progressive liver injury without external markers.

  18. Human Liver Progenitor Cells for Liver Repair

    PubMed Central

    Lombard, Catherine A.; Prigent, Julie; Sokal, Etienne M.

    2013-01-01

    Because of their high proliferative capacity, resistance to cryopreservation, and ability to differentiate into hepatocyte-like cells, stem and progenitor cells have recently emerged as attractive cell sources for liver cell therapy, a technique used as an alternative to orthotopic liver transplantation in the treatment of various hepatic ailments ranging from metabolic disorders to end-stage liver disease. Although stem and progenitor cells have been isolated from various tissues, obtaining them from the liver could be an advantage for the treatment of hepatic disorders. However, the techniques available to isolate these stem/progenitor cells are numerous and give rise to cell populations with different morphological and functional characteristics. In addition, there is currently no established consensus on the tests that need to be performed to ensure the quality and safety of these cells when used clinically. The purpose of this review is to describe the different types of liver stem/progenitor cells currently reported in the literature, discuss their suitability and limitations in terms of clinical applications, and examine how the culture and transplantation techniques can potentially be improved to achieve a better clinical outcome. PMID:26858860

  19. [Mitochondrial dysfunction and compensatory mechanisms in liver cells during acute carbon tetrachloride-induced rat intoxication].

    PubMed

    Zavodnik, I B

    2015-01-01

    Electron-transport chain and redox-balance of mitochondria are important targets that are damaged during intoxication. The aim of the present work was to estimate the role of impairments in cellular bioenergetic function in the development of liver damage during acute carbon tetrachloride intoxication in rats and to elucidate possible compensatory mechanisms. Acute CCl4-induced rat intoxication (0.8 g/kg or 4 g/kg) resulted in considerable impairments of respiratory and synthetic mitochondrial functions; their manifestations depended on the dose of the toxic agent and the duration of the intoxication increased and accompanied by complete uncoupling of oxidation and phosphorylation processes in liver mitochondria. The intoxication induced considerable liver damage and accumulation of NO in blood plasma and liver tissue. The changes of some parameters of liver mitochondrial functional activity demonstrate an oscillative pattern, reflecting compensatory mechanisms during intoxication that involved increased reduced glutathione level and enhanced succinate dehydrogenase activity. PMID:26716745

  20. Glial cell line-derived neurotrophic factor-induced mice liver defatting: A novel strategy to enable transplantation of steatotic livers.

    PubMed

    Taba Taba Vakili, Sahar; Kailar, Roshni; Rahman, Khalidur; Nezami, Behtash Ghazi; Mwangi, Simon Musyoka; Anania, Frank A; Srinivasan, Shanthi

    2016-04-01

    Moderate macrovesicular steatosis (>30%), which is present in almost 50% of livers considered for transplantation, increases the risk of primary graft dysfunction. Our previously published data showed that glial cell line-derived neurotrophic factor (GDNF) is protective against high-fat diet (HFD)-induced hepatic steatosis in mice. Hence, we hypothesized that perfusion of steatotic livers with GDNF may reduce liver fat content before transplantation. Livers from 8 weeks of regular diet (RD) and of HFD-fed mice were perfused ex vivo for 4 hours with either vehicle, GDNF, or a previously described defatting cocktail. The liver's residual fat was quantified colorimetrically using a triglyceride (TG) assay kit and by Oil Red O (ORO) and Nile red/Hoechst staining. Liver tissue injury was assessed by using a lactate dehydrogenase (LDH) activity assay. In vitro induction of lipolysis in HepG2 cells was assessed by measuring glycerol and free fatty acid release. ORO staining showed significantly more steatosis in livers from HFD-fed mice compared with RD-fed mice (P < 0.001). HFD livers perfused with GDNF had significantly less steatosis than those not perfused (P = 0.001) or perfused with vehicle (P < 0.05). GDNF is equally effective in steatotic liver defatting compared to the defatting cocktail; however, GDNF induces less liver damage than the defatting cocktail. These observations were consistent with data obtained from assessment of liver TG content. Assessment of liver injury revealed significant hepatocyte injury in livers perfused with the control defatting cocktail but no evidence of injury in livers perfused with either GDNF or vehicle. In vitro, GDNF reduced TG accumulation in HepG2 cells and stimulated increased TG lipolysis. In conclusion, GDNF can decrease mice liver fat content to an acceptable range and could be a potential defatting agent before liver transplantation. Liver Transplantation 22 459-467 2016 AASLD. PMID:26714616

  1. Parents: Acetaminophen in Pain Relief Medicines Can Cause Liver Damage

    MedlinePlus

    ... Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Drugs Home Drugs Resources for ... Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products

  2. Genetic damage in multiple organs of acutely exercised rats.

    PubMed

    Pozzi, Renan; Rosa, Jose C; Eguchi, Ricardo; Oller do Nascimento, Claudia M; Oyama, Lila M; Aguiar, Odair; Chaves, Marcelo D; Ribeiro, Daniel A

    2010-12-01

    The aim of this study was to investigate the effects of acute exercise on genomic damage in an animal model. Male adult Wistar rats were divided into the following groups: control and acute exercised (experimental). For this purpose, 15 animals were accustomed to running on a rodent treadmill for 15 min per day for 5 days (10-20 m min(-1); 08 grade). After 4 days at rest, active animals ran on the treadmill (22 m min(-1), 58 grade) till exhaustion. Cells from peripheral blood, liver, heart, and brain were collected after 0, 2, and 6 h after exercise. The results showed that acute exercise was able to induce genetic damage in peripheral blood cells after 2 and 6 h of exercise, whereas liver pointed out genetic damage for all periods evaluated. No genetic damage was induced either in brain or in heart cells. In conclusion, our results suggest that acute exercise could contribute to the genetic damage in peripheral blood and liver cells. It seems that liver is a sensitive organ to the genotoxic insult after acute exercise. PMID:20979236

  3. Liver transplantation for polycystic liver disease.

    PubMed

    Pirenne, J; Aerts, R; Yoong, K; Gunson, B; Koshiba, T; Fourneau, I; Mayer, D; Buckels, J; Mirza, D; Roskams, T; Elias, E; Nevens, F; Fevery, J; McMaster, P

    2001-03-01

    Polycystic liver disease (PLD) may provoke massive hepatomegaly and severe physical and social handicaps. Data on orthotopic liver transplantation (OLT) for PLD are rare and conflicting. Conservative surgery (resection or fenestration) is indicated for large single cysts, but its value for small diffuse cysts is questionable. In addition, conservative surgery is not devoid of morbidity and mortality. OLT offers the prospect of a fully curative treatment, but controversy remains because those patients usually have preserved liver function. Thus, we reviewed our experience with OLT for PLD. Sixteen adult women underwent OLT for small diffuse PLD between 1990 and 1999. Mean age was 45 years (range, 34 to 56 years). Fourteen patients had combined liver and kidney cystic disease, but only 1 patient required combined liver and kidney transplantation, whereas 13 patients underwent OLT alone. Two patients had isolated PLD. Indications for transplantation were massive hepatomegaly causing physical handicaps (n = 16), social handicaps (n = 16), malnutrition (n = 4), and cholestasis and/or portal hypertension (n = 5). OLT caused no technical difficulty in 15 of 16 patients (surgery duration, 6.8 hours; range, 5 to 8 hours), with blood transfusions of 7.9 units (range, 0 to 22 units). One patient who underwent attempted liver-mass reduction pre-OLT died of bleeding and pulmonary emboli. Native liver weight was 10 to 20 kg. Posttransplantation immunosuppression consisted of cyclosporine or FK506, azathioprine, and steroids (discontinued at 3 months). Morbidity included biliary stricture (2 patients), revision for bleeding and hepatitis (1 patient), pneumothorax and subphrenic collection (1 patient), and tracheostomy (1 patient). One patient died of lung cancer 6 years posttransplantation. Both patient and graft survival rates are 87.5% (follow-up, 3 months to 9 years). Of 15 patients who underwent OLT alone, only 1 patient needed a kidney transplant 4 years after OLT. Kidney

  4. Nonalcoholic Fatty Liver Disease and Liver Transplantation.

    PubMed

    Pham, Tuan; Dick, Travis B; Charlton, Michael R

    2016-05-01

    Nonalcoholic fatty liver disease (NAFLD) is prevalent in the general population and a growing indication for liver transplant. Longer wait times and challenges with pretransplant survivorship are expected, underscoring the need for improved management of attendant comorbidities. Recognition with potential modification of obesity, sarcopenia, chronic kidney disease, and cardiovascular disease in patients with NAFLD may have important implications in the pretransplant and posttransplant periods. Although patients with NAFLD have generally favorable postoperative outcomes, they are at risk for developing recurrent disease in their allograft, driving the need for pharmacotherapies and dietary innovations appropriate for use in the posttransplant period. PMID:27063277

  5. About the Operation: Liver Transplant

    MedlinePlus

    ... Heart/Lung Kidney Pancreas Kidney/Pancreas Liver Intestine Liver Transplant There are two very different surgical approaches to liver transplantation: the orthotopic and the heterotopic approach, both of ...

  6. About the Operation: Liver Transplant

    MedlinePlus

    ... Heart/Lung Kidney Pancreas Kidney/Pancreas Liver Intestine Liver Transplant There are two very different surgical approaches to liver transplantation: the orthotopic and the heterotopic approach, both ...

  7. Liver Cell Culture Devices

    PubMed Central

    Andria, B.; Bracco, A.; Cirino, G.; Chamuleau, R. A. F. M.

    2010-01-01

    In the last 15 years many different liver cell culture devices, consisting of functional liver cells and artificial materials, have been developed. They have been devised for numerous different applications, such as temporary organ replacement (a bridge to liver transplantation or native liver regeneration) and as in vitro screening systems in the early stages of the drug development process, like assessing hepatotoxicity, hepatic drug metabolism, and induction/inhibition studies. Relevant literature is summarized about artificial human liver cell culture systems by scrutinizing PubMed from 2003 to 2009. Existing devices are divided in 2D configurations (e.g., static monolayer, sandwich, perfused cells, and flat plate) and 3D configurations (e.g., liver slices, spheroids, and different types of bioreactors). The essential features of an ideal liver cell culture system are discussed: different types of scaffolds, oxygenation systems, extracellular matrixes (natural and artificial), cocultures with nonparenchymal cells, and the role of shear stress problems. Finally, miniaturization and high-throughput systems are discussed. All these factors contribute in their own way to the viability and functionality of liver cells in culture. Depending on the aim for which they are designed, several good systems are available for predicting hepatotoxicity and hepatic metabolism within the general population. To predict hepatotoxicity in individual cases genomic analysis might be essential as well. PMID:26998397

  8. Nutrition and liver diseases.

    PubMed

    Teran, J C

    1999-08-01

    Malnutrition and micronutrient deficiencies are common in patients with liver diseases. The pathogenesis of protein-energy malnutrition in cirrhosis involves many factors, including poor oral intake, malabsorption, and metabolic abnormalities similar to stress. Encephalopathy may complicate cirrhosis but is usually not caused by diet. Protein restriction is only necessary in rare patients with refractory encephalopathy. The use of branched-chain amino-acid solutions is not supported by the literature. Chronic liver diseases without cirrhosis are not usually associated with protein-energy malnutrition, but vitamin and mineral deficiencies are common, especially with significant cholestasis. Fatty liver may result from excessive triglyceride uptake and production by the liver or by a secretory defect. Therapy for fatty liver depends on its cause. Chronic total parenteral nutrition may induce fatty liver and inflammation especially in patients with short-bowel syndrome. Deficiency of choline in parenteral nutrition has been proposed as the mechanism for liver disease. Acute liver diseases such as fulminant hepatic failure or alcoholic hepatitis are considered hypercatabolic diseases and thus require prompt nutritional intervention with a high-calorie enteral or parenteral formula. In fulminant hepatic failure, low-protein, fluid-restricted formulas are recommended. PMID:10980970

  9. Protective Effects of Dracocephalum heterophyllum in ConA-Induced Acute Hepatitis

    PubMed Central

    Wang, Qilan; Lu, Xiaohua; Shi, Qiangqiang; Zou, Junhui

    2016-01-01

    Dracocephalum heterophyllum (DH) is a Chinese herbal medicine used in treating hepatitis. However, the protective effects and pharmacological mechanisms of DH in hepatitis are unknown. In this study, we found that pretreatment with DH extract significantly ameliorated liver injury and suppressed the production of inflammatory cytokines, including tumor necrosis factor (TNF-α) and interferon-γ (IFN-γ) in Concanavalin A- (ConA-) induced hepatitis (CIH). DH recruited more CD11b+ Gr1+ myeloid-derived suppressor cells (MDSCs) to the liver and suppressed infiltration of macrophages (Kupffer cells) in the liver. The present work explores DH as an effective hepatoprotective medicine to inhibit inflammation and liver injury caused by hepatitis. PMID:27524863

  10. Investigation of water spray to reduce collateral thermal damage during laser resection of soft tissue

    NASA Astrophysics Data System (ADS)

    Theisen-Kunde, D.; Wolken, H.; Ellebrecht, D.; Danicke, V.; Wurster, L.; Kleemann, M.; Birngruber, R.

    2013-06-01

    To reduce unwanted collateral thermal damage to surrounding tissue and organs during laparoscopic laser dissection (cw, wavelength: 1.9μm) of porcine liver water spray was used. Size and amount of the produced water droplets of the water spray were photographed by short time imaging and analyzed by imaging software. At in vivo measurements on fresh porcine liver the depth of thermal damage was reduced by 85 % with water spray and the lateral size of thermal damage at the tissue surface could be reduced by 67%. This results show that especially for laparoscopic laser surgery water spray application might be a useful tool to avoid unwanted collateral thermal damage.

  11. Panhypopituitarism due to Absence of the Pituitary Stalk: A Rare Aetiology of Liver Cirrhosis

    PubMed Central

    Gonzalez Rozas, Marta; Hernanz Roman, Lidia; Gonzalez, Diego Gonzalez; Pérez-Castrillón, José Luis

    2016-01-01

    Studies have established a relationship between hypothalamic-pituitary dysfunction and the onset of liver damage, which may occasionally progress to cirrhosis. Patients with hypopituitarism can develop a metabolic syndrome-like phenotype. Insulin resistance is the main pathophysiological axis of metabolic syndrome and is the causal factor in the development of nonalcoholic fatty liver disease (NAFLD). We present the case of a young patient with liver cirrhosis of unknown aetiology that was finally attributed to panhypopituitarism. PMID:27213061

  12. [Liver diseases in the elderly].

    PubMed

    Bruguera, Miguel

    2014-11-01

    Liver diseases in the elderly have aroused less interest than diseases of other organs, since the liver plays a limited role in aging. There are no specific liver diseases of old age, but age-related anatomical and functional modifications of the liver cause changes in the frequency and clinical behavior of some liver diseases compared with those in younger patients. This review discusses the most important features of liver function in the healthy elderly population, as well as the features of the most prevalent liver diseases in this age group, especially the diagnostic approach to the most common liver problems in the elderly: asymptomatic elevation of serum transaminases and jaundice. PMID:24951302

  13. Fenofibrate, a peroxisome proliferator-activated receptor α ligand, prevents abnormal liver function induced by a fasting–refeeding process

    SciTech Connect

    Lee, Joon No; Dutta, Raghbendra Kumar; Kim, Seul-Gi; Lim, Jae-Young; Kim, Se-Jin; Choe, Seong-Kyu; Yoo, Kyeong-Won; Song, Seung Ryel; Park, Do-Sim; So, Hong-Seob; Park, Raekil

    2013-12-06

    Highlights: •A fasting–refeeding high fat diet (HDF) model mimics irregular eating habit. •A fasting–refeeding HFD induces liver ballooning injury. •A fasting–refeeding HDF process elicits hepatic triglyceride accumulation. •Fenofibrate, PPARα ligand, prevents liver damage induced by refeeding HFD. -- Abstract: Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is an anti-hyperlipidemic agent that has been widely used in the treatment of dyslipidemia. In this study, we examined the effect of fenofibrate on liver damage caused by refeeding a high-fat diet (HFD) in mice after 24 h fasting. Here, we showed that refeeding HFD after fasting causes liver damage in mice determined by liver morphology and liver cell death. A detailed analysis revealed that hepatic lipid droplet formation is enhanced and triglyceride levels in liver are increased by refeeding HFD after starvation for 24 h. Also, NF-κB is activated and consequently induces the expression of TNF-α, IL1-β, COX-2, and NOS2. However, treating with fenofibrate attenuates the liver damage and triglyceride accumulation caused by the fasting–refeeding HFD process. Fenofibrate reduces the expression of NF-κB target genes but induces genes for peroxisomal fatty acid oxidation, peroxisome biogenesis and mitochondrial fatty acid oxidation. These results strongly suggest that the treatment of fenofibrate ameliorates the liver damage induced by fasting–refeeding HFD, possibly through the activation of fatty acid oxidation.

  14. Investigation of the hepatoprotective effects of Sesame (Sesamum indicum L.) in carbon tetrachloride-induced liver toxicity.

    PubMed

    Cengiz, Nureddin; Kavak, Servet; Güzel, Ali; Ozbek, Hanefi; Bektaş, Hava; Him, Aydın; Erdoğan, Ender; Balahoroğlu, Ragıb

    2013-01-01

    More than 600 chemicals can cause damage in liver, one of which is carbon tetrachloride (CCl₄). Hepatoprotective agents could prevent tissue damage and reduce morbidity and mortality rates; such agents may include alternative or folkloric treatments. We investigated sesame (Sesamum indicum L.) for its hepatoprotective effect in CCl₄-induced experimental liver damage. To this end, 0.8 mg/kg of sesame fixed oil was provided intraperitoneally to rats whose livers were damaged by CCl₄. Tissue and blood samples were taken at the end of the experiments and evaluated histologically and biochemically. Ballooning degenerations and an increase in lipid droplets in liver parenchyma and increases in serum alanine transaminase, aspartate transaminase, and bilirubin were found in the CCl₄ group. Biochemical and histopathological findings in the sesame fixed oil treated group were not significantly different from the CCl₄ group. Sesame did not show a hepatoprotective effect in CCl₄-induced liver toxicity. PMID:22915054

  15. Nanotechnology applications for the therapy of liver fibrosis

    PubMed Central

    Giannitrapani, Lydia; Soresi, Maurizio; Bondì, Maria Luisa; Montalto, Giuseppe; Cervello, Melchiorre

    2014-01-01

    Chronic liver diseases represent a major global health problem both for their high prevalence worldwide and, in the more advanced stages, for the limited available curative treatment options. In fact, when lesions of different etiologies chronically affect the liver, triggering the fibrogenesis mechanisms, damage has already occurred and the progression of fibrosis will have a major clinical impact entailing severe complications, expensive treatments and death in end-stage liver disease. Despite significant advances in the understanding of the mechanisms of liver fibrinogenesis, the drugs used in liver fibrosis treatment still have a limited therapeutic effect. Many drugs showing potent antifibrotic activities in vitro often exhibit only minor effects in vivo because insufficient concentrations accumulate around the target cell and adverse effects result as other non-target cells are affected. Hepatic stellate cells play a critical role in liver fibrogenesis , thus they are the target cells of antifibrotic therapy. The application of nanoparticles has emerged as a rapidly evolving area for the safe delivery of various therapeutic agents (including drugs and nucleic acid) in the treatment of various pathologies, including liver disease. In this review, we give an overview of the various nanotechnology approaches used in the treatment of liver fibrosis. PMID:24966595

  16. Non-alcoholic Fatty Liver Disease (NAFLD)--A Review.

    PubMed

    Karim, M F; Al-Mahtab, M; Rahman, S; Debnath, C R

    2015-10-01

    Non-alcoholic fatty liver disease (NAFLD) is an emerging problem in Hepatology clinics. It is closely related to the increased frequency of overweight or obesity. It has recognised association with metabolic syndrome. Central obesity, diabetes mellitus, dyslipidemia are commonest risk factors. Association with hepatitis C genotype 3 is also recognised. NAFLD is an important cause of cyptogenic cirrhosis of liver. It affects all populations and all age groups. Most patients with NAFLD are asymptomatic or vague upper abdominal pain. Liver function tests are mostly normal or mild elevation of aminotranferases. Histological features almost identical to those of alcohol-induced liver damage and can range from mild steatosis to cirrhosis. Two hit hypothesis is prevailing theory for the development of NAFLD. Diagnosis is usually made by imaging tools like ultrasonogram which reveal a bright liver while liver biopsy is gold standard for diagnosis as well as differentiating simple fatty liver and non-alcoholic steatohepatitis (NASH). Prognosis is variable. Simple hepatic steatosis generally has a benign long-term prognosis. However, one to two third of NASH progress to fibrosis or cirrhosis and may have a similar prognosis as cirrhosis from other liver diseases. Treatment is mostly control of underlying disorders and dietary advice, exercise, insulin sensitizers, antioxidants, or cytoprotective agents. The prevalence of NAFLD is increasing. So it needs more research to address this problem. PMID:26620035

  17. Synthesis in vitro of glycosaminoglycans in regenerating rat liver.

    PubMed

    Gressner, A M; Cadenbach, J E; Greiling, H

    1981-07-01

    Chronic liver damage is accompanied by both liver cell multiplication and stimulated synthesis of proteoglycans, but the relationship between the two biochemical processes has not been investigated so far. We found that the incorporation of [14C]glucosamine into total glycosaminoglycans of rat liver slices from regenerating tissue is depressed by about 50% 1 and 3 days after operation if referred to that measured in sham-operated control liver slices. 6 h after partial hepatectomy [14C]glucosamine incorporation into glycosaminoglycans is stimulated by more than 30% in relation to sham operated livers. The proportional rates of synthesis of heparan sulfate and chondroitin sulfate (about 8:1) did not change in regenerating liver tissue. Furthermore, there was no difference in the intracellular uptake of [14C]glucosamine by rat liver slices from sham operated and partially hepatectomized rats; the pool size of UDP-N-acetylhexosamine was only slightly larger (about 14%) under the latter experimental condition. We conclude that liver regeneration by itself is not responsible for the elevated production and the changing pattern of proteoglycans in long-lasting hepatic injury. PMID:6799611

  18.  Liver transplantation followed by autologous stem cell transplantation for acute liver failure caused by AL amyloidosis. Case report and review of the literature.

    PubMed

    Elnegouly, Mayada; Specht, Katja; Zoller, Heinz; Matevossian, Edouard; Bassermann, Florian; Umgelter, Andreas

    2016-01-01

     Hepatic involvement in AL amyloidosis may present as acute liver failure. Historically, liver transplantation in these cases has achieved poor outcomes due to progress of amyloidosis and non-hepatic organ damage. In the era of bortezomib treatment, the prognosis of AL amyloidosis has been markedly improved and may also result in better post-transplant outcomes. We present a case of isolated acute liver failure caused by AL amyloidosis, bridged to transplantation with bortezomib and treated with sequential orthotopic liver transplantation (OLT) and autologous stem cell transplantation. The patient is in stable remission 3 years after OLT. PMID:27236160

  19. Technetium-99m galactosyl-neoglycoalbumin (Tc-NGA) liver imaging: Application in liver transplantation

    SciTech Connect

    Woodle, E.S.; Ward, R.E.; Vera, D.R.; Stadalnik, R.C.

    1985-05-01

    Tc-NGA is a new liver imaging agent which binds to hepatic binding protein (HBP), a hepatocyte-specific membrane receptor. The purpose of the present study was to evaluate the potential role of Tc-NGA imaging in liver transplantation. The molar Tc-NGA dose was standardized according to patient weight (0.7 nmole/kg). After a 30 minute dynamic imaging study (5 mCi, IV), kinetic analysis of time activity data (heart, liver), provided values for receptor concentration, (HBP), and hepatic blood flow, Q. Eleven Tc-NGA imaging studies were performed in transplant candidates and 22 studies were performed in seven transplant recipients. Preservation damage was manifested by diffuse patchiness in tracer distribution which resolved during the following two weeks. Histologically proven, localized hepatic infarcts were demonstrated in three recipients. Lobar infarction was demonstrated in one recipient. Hepatic regeneration was later demonstrated in this patient after hepatic lobectomy. Hepatic blood flow was markedly decreased in the early postoperative period, but improved with time. Increased (HBP) was demonstrated with regeneration. Markedly decreased (HBP) and Q were obtained in several candidates who died awaiting transplantation. These studies indicate that TC-NGA liver imaging provides a valuable new means for: (1) evaluation of preservation damage, (2) early demonstration of hepatic infarction, (3) evaluation of hepatic rejection, and (4) selection of patients for hepatic transplantation.

  20. Monogenic diseases that can be cured by liver transplantation.

    PubMed

    Fagiuoli, Stefano; Daina, Erica; D'Antiga, Lorenzo; Colledan, Michele; Remuzzi, Giuseppe

    2013-09-01

    While the prevalence of most diseases caused by single-gene mutations is low and defines them as rare conditions, all together, monogenic diseases account for approximately 10 in every 1000 births according to the World Health Organisation. Orthotopic liver transplantation (LT) could offer a therapeutic option in monogenic diseases in two ways: by substituting for an injured liver or by supplying a tissue that can replace a mutant protein. In this respect, LT may be regarded as the correction of a disease at the level of the dysfunctional protein. Monogenic diseases that involve the liver represent a heterogeneous group of disorders. In conditions associated with predominant liver parenchymal damage (i.e., genetic cholestatic disorders, Wilson's disease, hereditary hemochromatosis, tyrosinemia, α1 antitrypsin deficiency), hepatic complications are the major source of morbidity and LT not only replaces a dysfunctional liver but also corrects the genetic defect and effectively cures the disease. A second group includes liver-based genetic disorders characterised by an architecturally near-normal liver (urea cycle disorders, Crigler-Najjar syndrome, familial amyloid polyneuropathy, primary hyperoxaluria type 1, atypical haemolytic uremic syndrome-1). In these defects, extrahepatic complications are the main source of morbidity and mortality while liver function is relatively preserved. Combined transplantation of other organs may be required, and other surgical techniques, such as domino and auxiliary liver transplantation, have been attempted. In a third group of monogenic diseases, the underlying genetic defect is expressed at a systemic level and liver involvement is just one of the clinical manifestations. In these conditions, LT might only be partially curative since the abnormal phenotype is maintained by extrahepatic synthesis of the toxic metabolites (i.e., methylmalonic acidemia, propionic acidemia). This review focuses on principles of diagnosis, management

  1. Acetaminophen-induced acute liver injury in HCV transgenic mice

    SciTech Connect

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U.; Tech, Katherine; Macdonald, Jeffrey M.; Boorman, Gary A.; Chatterjee, Saurabh; Mason, Ronald P.; Melnyk, Stepan B.; Tryndyak, Volodymyr P.; Pogribny, Igor P.; Rusyn, Ivan

    2013-01-15

    The exact etiology of clinical c