Science.gov

Sample records for a-induced oxidative stress

  1. Green tea extract attenuates cyclosporine A-induced oxidative stress in rats.

    PubMed

    Mohamadin, A M; El-Beshbishy, H A; El-Mahdy, M A

    2005-01-01

    Cyclosporine A (CsA) nephrotoxicity underweighs the therapeutic benefits of such a powerful immunosuppressant. Whether oxidative stress plays a role in such toxicity is not well delineated. We investigated the potential of green tea extract (GTE) to attenuate CsA-induced renal dysfunction in rats. Three main groups of Sprague-Dawley rats were used: CsA, GTE, and GTE plus CsA-receiving animals. Corresponding control groups were also used. CsA was administered in a dose of 20mg kg(-1) day(-1), i.p., for 21 days. In the GTE/CsA groups, the rats received different concentrations of GTE (0.5, 1.0 and 1.5%), as their sole source of drinking water, 4 days before and 21 days concurrently with CsA. The GTE group was treated with 1.5% concentration of GTE only for 25 days. A concomitant administration of GTE, to CsA receiving rats, markedly prevented the generation of thiobarbituric acid-reacting substances (TBARS) and significantly attenuated CsA-induced renal dysfunction as assessed by estimating serum creatinine, blood urea nitrogen, uric acid and urinary excretion of glucose. A considerable improvement in terms of reduced glutathione content and activity of antioxidant enzymes in the kidney homogenate of the GTE/CsA-receiving rats was observed. The activity of lysosomal enzymes, N-acetyl-beta-glucosaminidase, beta-glucuronidase and acid phosphatase was significantly inhibited following GTE co-administration. Our data prove the role of oxidative stress in the pathogenesis of CsA-induced kidney dysfunction. Supplementation of GTE could be useful in reducing CsA nephrotoxicity in rats. However, clinical studies are warranted to investigate such an effect in human subjects.

  2. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses

    SciTech Connect

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye

    2014-11-01

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected inmore » the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. - Highlights: • We studied OTA toxicities in both the rat liver and kidney for 13 weeks. • OTA exerts limited effects on oxidative stress in the rat liver and kidney. • OTA induced renal carcinogenicity resulting from cell proliferation.« less

  3. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses.

    PubMed

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye; Gao, Jing; He, Xiaoyun; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2014-11-01

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells

    PubMed Central

    Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu

    2017-01-01

    Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells. PMID:28936177

  5. The photodynamic action of pheophorbide a induces cell death through oxidative stress in Leishmania amazonensis.

    PubMed

    Miranda, Nathielle; Volpato, Hélito; da Silva Rodrigues, Jean Henrique; Caetano, Wilker; Ueda-Nakamura, Tânia; de Oliveira Silva, Sueli; Nakamura, Celso Vataru

    2017-09-01

    Leishmaniasis is a disease caused by hemoflagellate protozoa, affecting millions of people worldwide. The difficulties of treating patients with this parasitosis include the limited efficacy and many side effects of the currently available drugs. Therefore, the search for new compounds with leishmanicidal action is necessary. Photodynamic therapy has been studied in the medical field because of its selectivity, utilizing a combination of visible light, a photosensitizer compound, and singlet oxygen to reach the area of treatment. The continued search for selective alternative treatments and effective targets that impact the parasite and not the host are fundamentally important for the development of new drugs. Pheophorbide a is a photosensitizer that may be promising for the treatment of leishmaniasis. The present study evaluated the in vitro biological effects of pheophorbide a and its possible mechanisms of action in causing cell death in L. amazonensis. Pheophorbide a was active against promastigote and amastigote forms of the parasite. After treatment, we observed ultrastructural alterations in this protozoan. We also observed changes in promastigote macromolecules and organelles, such as loss of mitochondrial membrane potential [∆Ψ m ], lipid peroxidation, an increase in lipid droplets, DNA fragmentation, phosphatidylserine exposure, an increase in caspase-like activity, oxidative imbalance, and a decrease in antioxidant defense systems. These findings suggest that cell death occurred through apoptosis. The mechanism of cell death in intracellular amastigotes appeared to involve autophagy, in which we clearly observed an increase in reactive oxygen species, a compromised ∆Ψ m , and an increase in the number of autophagic vacuoles. The present study contributes to the development of new photosensitizers against L. amazonensis. We also elucidated the mechanism of action of pheophorbide a, mainly in intracellular amastigotes, which is the most clinically

  6. Oxidative Stress.

    PubMed

    Sies, Helmut; Berndt, Carsten; Jones, Dean P

    2017-06-20

    Oxidative stress is two sided: Whereas excessive oxidant challenge causes damage to biomolecules, maintenance of a physiological level of oxidant challenge, termed oxidative eustress, is essential for governing life processes through redox signaling. Recent interest has focused on the intricate ways by which redox signaling integrates these converse properties. Redox balance is maintained by prevention, interception, and repair, and concomitantly the regulatory potential of molecular thiol-driven master switches such as Nrf2/Keap1 or NF-κB/IκB is used for system-wide oxidative stress response. Nonradical species such as hydrogen peroxide (H 2 O 2 ) or singlet molecular oxygen, rather than free-radical species, perform major second messenger functions. Chemokine-controlled NADPH oxidases and metabolically controlled mitochondrial sources of H 2 O 2 as well as glutathione- and thioredoxin-related pathways, with powerful enzymatic back-up systems, are responsible for fine-tuning physiological redox signaling. This makes for a rich research field spanning from biochemistry and cell biology into nutritional sciences, environmental medicine, and molecular knowledge-based redox medicine.

  7. Limited Link between Oxidative Stress and Ochratoxin A-Induced Renal Injury in an Acute Toxicity Rat Model.

    PubMed

    Zhu, Liye; Yu, Tao; Qi, Xiaozhe; Gao, Jing; Huang, Kunlun; He, Xiaoyun; Luo, Haoshu; Xu, Wentao

    2016-12-14

    Ochratoxin A (OTA) displays nephrotoxicity and hepatotoxicity. However, in the acute toxicity rat model, there is no evidence on the relationship between OTA and nephrotoxicity and hepatotoxicity. Based on this, the integrated analysis of physiological status, damage biomarkers, oxidative stress, and DNA damage were performed. After OTA treatment, the body weight decreased and AST, ALP, TP, and BUN levels in serum increased. Hydropic degeneration, swelling, vacuolization, and partial drop occurred in proximal tubule epithelial cells. PCNA and Kim-1 were dose-dependently increased in the kidney, but Cox-2 expression and proliferation were not found in the liver. In OTA-treated kidneys, the mRNA expressions of Kim-1 , Cox-2 , Lcn2 , and Clu were dose-dependently increased. The mRNA expressions of Vim and Cox-2 were decreased in OTA-treated livers. Some oxidative stress indicators were altered in the kidneys (ROS and SOD) and livers (SOD and GSH). DNA damage and oxidative DNA damage were not found. In conclusion, there is a limited link between oxidative stress and OTA-induced renal injury in an acute toxicity rat model.

  8. Bisphenol A induces oxidative stress and mitochondrial dysfunction in lymphoblasts from children with autism and unaffected siblings.

    PubMed

    Kaur, Kulbir; Chauhan, Ved; Gu, Feng; Chauhan, Abha

    2014-11-01

    Autism is a behaviorally defined neurodevelopmental disorder. Although there is no single identifiable cause for autism, roles for genetic and environmental factors have been implicated in autism. Extensive evidence suggests increased oxidative stress and mitochondrial dysfunction in autism. In this study, we examined whether bisphenol A (BPA) is an environmental risk factor for autism by studying its effects on oxidative stress and mitochondrial function in the lymphoblasts. When lymphoblastoid cells from autistic subjects and age-matched unaffected sibling controls were exposed to BPA, there was an increase in the generation of reactive oxygen species (ROS) and a decrease in mitochondrial membrane potential in both groups. A further subdivision of the control group into two subgroups-unaffected nontwin siblings and twin siblings-showed significantly higher ROS levels without any exposure to BPA in the unaffected twin siblings compared to the unaffected nontwin siblings. ROS levels were also significantly higher in the autism vs the unaffected nontwin siblings group. The effect of BPA on three important mtDNA genes-NADH dehydrogenase 1, NADH dehydrogenase 4, and cytochrome b-was analyzed to observe any changes in the mitochondria after BPA exposure. BPA induced a significant increase in the mtDNA copy number in the lymphoblasts from the unaffected siblings group and in the unaffected twin siblings group vs the unaffected nontwin siblings. In all three genes, the mtDNA increase was seen in 70% of the subjects. These results suggest that BPA exposure results in increased oxidative stress and mitochondrial dysfunction in the autistic subjects as well as the age-matched sibling control subjects, particularly unaffected twin siblings. Therefore, BPA may act as an environmental risk factor for autism in genetically susceptible children by inducing oxidative stress and mitochondrial dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Oxidative Stress in Atherosclerosis.

    PubMed

    Kattoor, Ajoe John; Pothineni, Naga Venkata K; Palagiri, Deepak; Mehta, Jawahar L

    2017-09-18

    Atherosclerosis is now considered a chronic inflammatory disease. Oxidative stress induced by generation of excess reactive oxygen species has emerged as a critical, final common mechanism in atherosclerosis. Reactive oxygen species (ROS) are a group of small reactive molecules that play critical roles in the regulation of various cell functions and biological processes. Although essential for vascular homeostasis, uncontrolled production of ROS is implicated in vascular injury. Endogenous anti-oxidants function as checkpoints to avoid these untoward consequences of ROS, and an imbalance in the oxidant/anti-oxidant mechanisms leads to a state of oxidative stress. In this review, we discuss the role of ROS and anti-oxidant mechanisms in the development and progression of atherosclerosis, the role of oxidized low-density lipoprotein cholesterol, and highlight potential anti-oxidant therapeutic strategies relevant to atherosclerosis. There is growing evidence on how traditional risk factors translate into oxidative stress and contribute to atherosclerosis. Clinical trials evaluating anti-oxidant supplements had failed to improve atherosclerosis. Current studies focus on newer ROS scavengers that specifically target mitochondrial ROS, newer nanotechnology-based drug delivery systems, gene therapies, and anti-miRNAs. Synthetic LOX-1 modulators that inhibit the effects of Ox-LDL are currently in development. Research over the past few decades has led to identification of multiple ROS generating systems that could potentially be modulated in atherosclerosis. Therapeutic approaches currently being used for atheroslcerotic vascular disease such as aspirin, statins, and renin-angiotensin system inhibitors exert a pleiotropic antioxidative effects. There is ongoing research to identify novel therapeutic modalities to selectively target oxidative stress in atherosclerosis.

  10. Oxidative Stress in Myopia

    PubMed Central

    Francisco, Bosch-Morell; Salvador, Mérida; Amparo, Navea

    2015-01-01

    Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem. PMID:25922643

  11. Hyperinsulinemia and oxidative stress.

    PubMed

    Kyselová, P; Zourek, M; Rusavý, Z; Trefil, L; Racek, J

    2002-01-01

    The aim of the study was to compare the effect of short-term hyperglycemia and short-term hyperinsulinemia on parameters of oxidative stress in Wistar rats. Twenty male rats (aged 3 months, average weight 325 g) were tested by hyperinsulinemic clamp (100 IU/l) at two different glycemia levels (6 and 12 mmol/l). Further 20 rats were used as a control group infused with normal saline (instead of insulin) and 30 % glucose simultaneously. Measured parameters of oxidative stress were malondialdehyd (MDA), reduced glutathion (GSH) and total antioxidant capacity (AOC). AOC remained unchanged during hyperglycemia and hyperinsulinemia. Malondialdehyde (as a marker of lipid peroxidation) decreased significantly (p<0.05) during the euglycemic hyperinsulinemic clamp, and increased significantly during isolated hyperglycemia without hyperinsulinemia. Reduced glutathion decreased significantly (p<0.05) during hyperglycemia without hyperinsulinemia. These results suggest that the short-term exogenous hyperinsulinemia reduced the production of reactive oxygen species (ROS) during hyperglycemia in an animal model compared with the control group.

  12. BRCA1 and Oxidative Stress

    PubMed Central

    Yi, Yong Weon; Kang, Hyo Jin; Bae, Insoo

    2014-01-01

    The breast cancer susceptibility gene 1 (BRCA1) has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS) is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers. PMID:24704793

  13. Oxidative stress in Alzheimer disease.

    PubMed

    Gella, Alejandro; Durany, Nuria

    2009-01-01

    Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production.

  14. Oxidative stress and alopecia areata.

    PubMed

    Prie, B E; Voiculescu, V M; Ionescu-Bozdog, O B; Petrutescu, B; Iosif, L; Gaman, L E; Clatici, V G; Stoian, I; Giurcaneanu, C

    2015-01-01

    Alopecia areata (AA) is an inflammatory and autoimmune disease presenting with non-scarring hair loss. The aethiopathogenesis of alopecia areata is unclear and many factors including autoimmunity, genetic predisposition, emotional and environmental stress are thought to play important roles in its development. Antioxidant/ oxidant balance perturbation is a common feature in autoimmune, emotional and environmental stress. Therefore, our paper discusses the implications of oxidative stress in alopecia areata.

  15. Oxidative stress and prostatic diseases.

    PubMed

    Roumeguère, Thierry; Sfeir, Joseph; El Rassy, Elie; Albisinni, Simone; Van Antwerpen, Pierre; Boudjeltia, Karim Zouaoui; Farès, Nassim; Kattan, Joseph; Aoun, Fouad

    2017-11-01

    Prostatic diseases are a common health problem among males in Western countries, and include chronic prostatic diseases, which have an unclear pathogenesis and few treatment options. In vitro and in vivo studies describe oxidative stress as a major pathway involved in the occurrence of benign prostatic hyperplasia, prostatic cancer and chronic prostatitis. Thus, the oxidative stress cascade is a potential target for the treatment of prostatic diseases. This paper presents a systematic review of the available data concerning the association between oxidative stress and the most common chronic prostatic diseases, and describes the available treatment options that act upon this pathway.

  16. Oxidative stress, chronic disease, and muscle wasting.

    PubMed

    Moylan, Jennifer S; Reid, Michael B

    2007-04-01

    Underlying the pathogenesis of chronic disease is the state of oxidative stress. Oxidative stress is an imbalance in oxidant and antioxidant levels. If an overproduction of oxidants overwhelms the antioxidant defenses, oxidative damage of cells, tissues, and organs ensues. In some cases, oxidative stress is assigned a causal role in disease pathogenesis, whereas in others the link is less certain. Along with underlying oxidative stress, chronic disease is often accompanied by muscle wasting. It has been hypothesized that catabolic programs leading to muscle wasting are mediated by oxidative stress. In cases where disease is localized to the muscle, this concept is easy to appreciate. Transmission of oxidative stress from diseased remote organs to skeletal muscle is thought to be mediated by humoral factors such as inflammatory cytokines. This review examines the relationship between oxidative stress, chronic disease, and muscle wasting, and the mechanisms by which oxidative stress acts as a catabolic signal.

  17. [Vitamins and oxidative stress].

    PubMed

    Kodentsova, V M; Vrzhesinskaia, O A; Mazo, V K

    2013-01-01

    The central and local stress limiting systems, including the antioxidant defense system involved in defending the organism at the cellular and systemic levels from excess activation response to stress influence, leading to damaging effects. The development of stress, regardless of its nature [cold, increased physical activity, aging, the development of many pathologies (cardiovascular, neurodegenerative diseases, diseases of the gastrointestinal tract, ischemia, the effects of burns), immobilization, hypobaric hypoxia, hyperoxia, radiation effects etc.] leads to a deterioration of the vitamin status (vitamins E, A, C). Damaging effect on the antioxidant defense system is more pronounced compared to the stress response in animals with an isolated deficiency of vitamins C, A, E, B1 or B6 and the combined vitamins deficiency in the diet. Addition missing vitamin or vitamins restores the performance of antioxidant system. Thus, the role of vitamins in adaptation to stressors is evident. However, vitamins C, E and beta-carotene in high doses, significantly higher than the physiological needs of the organism, may be not only antioxidants, but may have also prooxidant properties. Perhaps this explains the lack of positive effects of antioxidant vitamins used in extreme doses for a long time described in some publications. There is no doubt that to justify the current optimal doses of antioxidant vitamins and other dietary antioxidants specially-designed studies, including biochemical testing of initial vitamin and antioxidant status of the organism, as well as monitoring their change over time are required.

  18. Space flight and oxidative stress

    NASA Technical Reports Server (NTRS)

    Stein, T. P.

    2002-01-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress.

  19. Oxidative stress in breast cancer.

    PubMed

    Tas, Faruk; Hansel, Hasan; Belce, Ahmet; Ilvan, Sennur; Argon, Andac; Camlica, Hakan; Topuz, Erkan

    2005-01-01

    The present study was undertaken to evaluate the place of oxidative stress on breast cancer. Lipid peroxidation as evidenced by malondialdehyde (MDA) and the status of the antioxidants superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were estimated in tissues of 10 fibroadenoma and 40 breast cancer patients. Lipid peroxidation in breast cancer tissues was enhanced compared to nonmalignant tissues (p < 0.001). Similarly, antioxidants SOD (p < 0.001) and GPx (p = 0.007) in tumor tissues significantly were increased. On the contrary, CAT activity was found significantly decreased (p < 0.001). We found that oxidant/antioxidant status was independent from any prognostic factors concerning breast cancer. The results of our study have shown higher oxygen-free-radical production and decreased CAT activity support the oxidative stress hypothesis in breast carcinogenesis.

  20. [Oxidative stress in Crohn's disease].

    PubMed

    Moret, Inés; Cerrillo, Elena; Navarro-Puche, Ana; Iborra, Marisa; Rausell, Francisco; Tortosa, Luis; Beltrán, Belén

    2014-01-01

    Crohn's disease (CD) is characterized by transmural inflammation that is most frequently located in the region of the terminal ileum. Although the physiopathological mechanisms of the disease are not yet well defined, the unregulated immune response is associated with high production of reactive oxygen species (ROS). These elements are associated with complex systems known as antioxidant defenses, whose function is ROS regulation, thereby preventing the harmful effects of these elements. However, the presence of an imbalance between ROS production and ROS elimination by antioxidants has been widely described and leads to oxidative stress. In this article, we describe the most significant findings on oxidative stress in the intestinal mucosa and peripheral blood. Copyright © 2013 Elsevier España, S.L. and AEEH y AEG. All rights reserved.

  1. Oxidative stress in neurodegenerative diseases☆

    PubMed Central

    Chen, Xueping; Guo, Chunyan; Kong, Jiming

    2012-01-01

    Reactive oxygen species are constantly produced in aerobic organisms as by-products of normal oxygen metabolism and include free radicals such as superoxide anion (O2−) and hydroxyl radical (OH−), and non-radical hydrogen peroxide (H2O2). The mitochondrial respiratory chain and enzymatic reactions by various enzymes are endogenous sources of reactive oxygen species. Exogenous reactive oxygen species -inducing stressors include ionizing radiation, ultraviolet light, and divergent oxidizing chemicals. At low concentrations, reactive oxygen species serve as an important second messenger in cell signaling; however, at higher concentrations and long-term exposure, reactive oxygen species can damage cellular macromolecules such as DNA, proteins, and lipids, which leads to necrotic and apoptotic cell death. Oxidative stress is a condition of imbalance between reactive oxygen species formation and cellular antioxidant capacity due to enhanced ROS generation and/or dysfunction of the antioxidant system. Biochemical alterations in these macromolecular components can lead to various pathological conditions and human diseases, especially neurodegenerative diseases. Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal cells, often associated with cytoskeletal protein aggregates forming inclusions in neurons and/or glial cells. Deposition of abnormal aggregated proteins and disruption of metal ions homeostasis are highly associated with oxidative stress. The main aim of this review is to present as much detailed information as possible that is available on various neurodegenerative disorders and their connection with oxidative stress. A variety of therapeutic strategies designed to address these pathological processes are also described. For the future therapeutic direction, one specific pathway that involves the transcription factor nuclear factor erythroid 2-related factor 2 is receiving considerable attention

  2. Management of oxidative stress by microalgae.

    PubMed

    Cirulis, Judith T; Scott, J Ashley; Ross, Gregory M

    2013-01-01

    The aim of this review is to provide an overview of the current research on oxidative stress in eukaryotic microalgae and the antioxidant compounds microalgae utilize to control oxidative stress. With the potential to exploit microalgae for the large-scale production of antioxidants, interest in how microalgae manage oxidative stress is growing. Microalgae can experience increased levels of oxidative stress and toxicity as a result of environmental conditions, metals, and chemicals. The defence mechanisms for microalgae include antioxidant enzymes such as superoxide dismutase, catalase, peroxidases, and glutathione reductase, as well as non-enzymatic antioxidant molecules such as phytochelatins, pigments, polysaccharides, and polyphenols. Discussed herein are the 3 areas the literature has focused on, including how conditions stress microalgae and how microalgae respond to oxidative stress by managing reactive oxygen species. The third area is how beneficial microalgae antioxidants are when administered to cancerous mammalian cells or to rodents experiencing oxidative stress.

  3. Association of Oxidative Stress with Psychiatric Disorders.

    PubMed

    Hassan, Waseem; Noreen, Hamsa; Castro-Gomes, Vitor; Mohammadzai, Imdadullah; da Rocha, Joao Batista Teixeira; Landeira-Fernandez, J

    2016-01-01

    When concentrations of both reactive oxygen species and reactive nitrogen species exceed the antioxidative capability of an organism, the cells undergo oxidative impairment. Impairments in membrane integrity and lipid and protein oxidation, protein mutilation, DNA damage, and neuronal dysfunction are some of the fundamental consequences of oxidative stress. The purpose of this work was to review the associations between oxidative stress and psychological disorders. The search terms were the following: "oxidative stress and affective disorders," "free radicals and neurodegenerative disorders," "oxidative stress and psychological disorders," "oxidative stress, free radicals, and psychiatric disorders," and "association of oxidative stress." These search terms were used in conjunction with each of the diagnostic categories of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders and World Health Organization's International Statistical Classification of Diseases and Related Health Problems. Genetic, pharmacological, biochemical, and preclinical therapeutic studies, case reports, and clinical trials were selected to explore the molecular aspects of psychological disorders that are associated with oxidative stress. We identified a broad spectrum of 83 degenerative syndromes and psychiatric disorders that were associated with oxidative stress. The multi-dimensional information identified herein supports the role of oxidative stress in various psychiatric disorders. We discuss the results from the perspective of developing novel therapeutic interventions.

  4. Oxidative stress, anti-oxidant therapies and chronic kidney disease.

    PubMed

    Small, David M; Coombes, Jeff S; Bennett, Nigel; Johnson, David W; Gobe, Glenda C

    2012-05-01

    Chronic kidney disease (CKD) is a common and serious problem that adversely affects human health, limits longevity and increases costs to health-care systems worldwide. Its increasing incidence cannot be fully explained by traditional risk factors. Oxidative stress is prevalent in CKD patients and is considered to be an important pathogenic mechanism. Oxidative stress develops from an imbalance between free radical production often increased through dysfunctional mitochondria formed with increasing age, type 2 diabetes mellitus, inflammation, and reduced anti-oxidant defences. Perturbations in cellular oxidant handling influence downstream cellular signalling and, in the kidney, promote renal cell apoptosis and senescence, decreased regenerative ability of cells, and fibrosis. These factors have a stochastic deleterious effect on kidney function. The majority of studies investigating anti-oxidant treatments in CKD patients show a reduction in oxidative stress and many show improved renal function. Despite heterogeneity in the oxidative stress levels in the CKD population, there has been little effort to measure patient oxidative stress levels before the use of any anti-oxidants therapies to optimize outcome. This review describes the development of oxidative stress, how it can be measured, the involvement of mitochondrial dysfunction and the molecular pathways that are altered, the role of oxidative stress in CKD pathogenesis and an update on the amelioration of CKD using anti-oxidant therapies. © 2012 The Authors. Nephrology © 2012 Asian Pacific Society of Nephrology.

  5. Oxidative stress in neonatology: a review.

    PubMed

    Mutinati, M; Pantaleo, M; Roncetti, M; Piccinno, M; Rizzo, A; Sciorsci, R L

    2014-02-01

    Free radicals are highly reactive oxidizing agents containing one or more unpaired electrons. Both in human and veterinary neonathology, it is generally accepted that oxidative stress functions as an important catalysator of neonatal disease. Soon after birth, many sudden physiological and environmental conditions make the newborn vulnerable for the negative effects of oxidative stress, which potentially can impair neonatal vitality. As a clinician, it is important to have in depth knowledge about factors affecting maternal/neonatal oxidative status and the cascades of events that enrol when the neonate is subjected to oxidative stress. This report aims at providing clinicians with an up-to-date review about oxidative stress in neonates across animal species. It will be emphasized which handlings and treatments that are applied during neonatal care or resuscitation can actually impose oxidative stress upon the neonate. Views and opinions about maternal and/or neonatal antioxydative therapy will be shared. © 2013 Blackwell Verlag GmbH.

  6. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    PubMed Central

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches. PMID:27190572

  7. Oxidative stress in oncohematologic diseases: an update.

    PubMed

    Imbesi, Selene; Musolino, Caterina; Allegra, Alessandro; Saija, Antonella; Morabito, Fortunato; Calapai, Gioacchino; Gangemi, Sebastiano

    2013-06-01

    An increased risk of cancer in various organs has been related to oxidative stress and several studies have revealed the mechanism by which continued oxidative stress can lead to chronic inflammation, which in turn could mediate most chronic diseases including cancer. A variety of transcription factors may be activated in consequence of oxidative stress, leading to the expression of over 500 different genes, including those for growth factors, inflammatory cytokines, chemokines, cell cycle regulatory molecules and anti-inflammatory molecules. In this review, the data related to the action of oxidative stress on the onset of various oncohematologic diseases are summarized, thus bringing together some of the latest information available on the pathogenetic role of oxidative stress in cancer. The authors evaluate the most recent publications on this topic, and, in particular, show the newest evidence of a relationship between oxidative stress and hematological malignancies, such as chronic lymphocytic leukemia, Hodgkin's lymphoma, multiple myeloma and chronic Ph-negative myeloproliferative diseases. A separate section is devoted to the implications of a change of oxidative stress in patients undergoing bone marrow transplantation. Finally, particular attention is given to the new markers of oxidative stress, such as carbonyl groups, advanced glycation end products, advanced oxidation protein products and S-nitrosylated proteins, which are certainly more stable, reliable, cheaper and more easily identifiable than those already used in clinical practice. New approaches that aim to evaluate subcellular and microenvironment redox potential may be useful in developing cancer diagnostics and therapeutics.

  8. Oxidative Stress and Epilepsy: Literature Review

    PubMed Central

    Aguiar, Carlos Clayton Torres; Almeida, Anália Barbosa; Araújo, Paulo Victor Pontes; de Abreu, Rita Neuma Dantas Cavalcante; Chaves, Edna Maria Camelo; do Vale, Otoni Cardoso; Macêdo, Danielle Silveira; Woods, David John; Fonteles, Marta Maria de França; Vasconcelos, Silvania Maria Mendes

    2012-01-01

    Backgrounds. The production of free radicals has a role in the regulation of biological function, cellular damage, and the pathogenesis of central nervous system conditions. Epilepsy is a highly prevalent serious brain disorder, and oxidative stress is regarded as a possible mechanism involved in epileptogenesis. Experimental studies suggest that oxidative stress is a contributing factor to the onset and evolution of epilepsy. Objective. A review was conducted to investigate the link between oxidative stress and seizures, and oxidative stress and age as risk factors for epilepsy. The role of oxidative stress in seizure induction and propagation is also discussed. Results/Conclusions. Oxidative stress and mitochondrial dysfunction are involved in neuronal death and seizures. There is evidence that suggests that antioxidant therapy may reduce lesions induced by oxidative free radicals in some animal seizure models. Studies have demonstrated that mitochondrial dysfunction is associated with chronic oxidative stress and may have an essential role in the epileptogenesis process; however, few studies have shown an established link between oxidative stress, seizures, and age. PMID:22848783

  9. Induction of Oxidative Stress in Kidney

    PubMed Central

    Ozbek, Emin

    2012-01-01

    Oxidative stress has a critical role in the pathophysiology of several kidney diseases, and many complications of these diseases are mediated by oxidative stress, oxidative stress-related mediators, and inflammation. Several systemic diseases such as hypertension, diabetes mellitus, and hypercholesterolemia; infection; antibiotics, chemotherapeutics, and radiocontrast agents; and environmental toxins, occupational chemicals, radiation, smoking, as well as alcohol consumption induce oxidative stress in kidney. We searched the literature using PubMed, MEDLINE, and Google scholar with “oxidative stress, reactive oxygen species, oxygen free radicals, kidney, renal injury, nephropathy, nephrotoxicity, and induction”. The literature search included only articles written in English language. Letters or case reports were excluded. Scientific relevance, for clinical studies target populations, and study design, for basic science studies full coverage of main topics, are eligibility criteria for articles used in this paper. PMID:22577546

  10. Clinical Relevance of Biomarkers of Oxidative Stress.

    PubMed

    Frijhoff, Jeroen; Winyard, Paul G; Zarkovic, Neven; Davies, Sean S; Stocker, Roland; Cheng, David; Knight, Annie R; Taylor, Emma Louise; Oettrich, Jeannette; Ruskovska, Tatjana; Gasparovic, Ana Cipak; Cuadrado, Antonio; Weber, Daniela; Poulsen, Henrik Enghusen; Grune, Tilman; Schmidt, Harald H H W; Ghezzi, Pietro

    2015-11-10

    Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use. Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker.

  11. Clinical Relevance of Biomarkers of Oxidative Stress

    PubMed Central

    Frijhoff, Jeroen; Winyard, Paul G.; Zarkovic, Neven; Davies, Sean S.; Stocker, Roland; Cheng, David; Knight, Annie R.; Taylor, Emma Louise; Oettrich, Jeannette; Ruskovska, Tatjana; Gasparovic, Ana Cipak; Cuadrado, Antonio; Weber, Daniela; Poulsen, Henrik Enghusen; Grune, Tilman; Schmidt, Harald H.H.W.

    2015-01-01

    Abstract Significance: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. Recent Advances: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. Critical Issues: The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use. Future Directions: Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker. Antioxid. Redox Signal. 23, 1144–1170. PMID:26415143

  12. Protoporphyrin IX and oxidative stress.

    PubMed

    Afonso, S; Vanore, G; Batlle, A

    1999-09-01

    The short- and long-term pro-oxidant effect of protoporphyrin IX (PROTO) administration to mice was studied in liver. A peak of liver porphyrin accumulation was found 2 h after the injection of PROTO (3.5 mg/kg, i.p.); then the amount of porphyrins diminished due to biliar excretion. After several doses of PROTO (1 dose every 24 h up to 5 doses) a sustained enhancement of liver porphyrins was observed. The activity of delta-aminolevulinic acid synthetase was induced 70-90% over the control values 4 h after the first injection of PROTO and stayed at these high levels throughout the period of the assay. Administration of PROTO induced rapid liver damage, involving lipid peroxidation. Hepatic GSH content was increased 2h after the first injection of PROTO, but then decreased below the control values which were maintained after several doses of porphyrin. After a single dose of PROTO, Cu-Zn superoxide dismutase (SOD) was rapidly induced, suggesting that superoxide radicals had been generated. Increased levels of hydrogen peroxide coming from the reaction catalyzed by SOD and lipid peroxides as a consequence of membrane peroxidation, induced the activity of catalase and glutathione peroxidase (GPx), while decreased GSH levels induced glutathione reductase (GRed) activity. However after 5 doses of PROTO, the activity of SOD was reduced reaching control values. GPx and catalase activities slowly went down, while GRed continued increasing as long as the levels of GSH were kept very low. TBARS values, although lower than those observed after a single dose of PROTO, remained above control values; Glutathione S-transferase activity was instead greatly diminished, indicating sustained liver damage. Our findings would indicate that accumulation of PROTO in liver induces oxidative stress, leading to rapid increase in the activity of the antioxidant enzymes to avoid or revert liver damage. However, constant accumulation of porphyrins provokes a liver damage so severe that the

  13. PARTICULATE MATTER, OXIDATIVE STRESS AND ...

    EPA Pesticide Factsheets

    Particulate matter (PM), a component of air pollution has been epidemiologically associated with sudden deaths, cardiovascular and respiratory illnesses. The effects are more pronounced in patients with pre-existing conditions such as asthma, diabetes or obstructive pulmonary disorders. Clinical and experimental studies have historically focused on the cardiopulmonary effects of PM. However, since PM particles carry numerous biocontaminants that are capable of triggering free radical production and cytokine release, the possibility that PM may affect organs systems sensitive to oxidative stress must be considered. Four independent studies that summarize the neurochemical and neuropathological changes found in the brains of PM exposed animals are described here. These were recently presented at two 2007 symposia sponsored by the Society of Toxicology (Charlotte, NC) and the International Neurotoxicology Association (Monterey, CA). Particulates are covered with biocontaminants (e.g., endotoxins, mold, pollen) which convey free radical activity that can damage the lipids, nucleic acids, and proteins of target cells on contact and stimulate inflammatory cytokine release. Although, the historical focus of PM toxicity has been cardiopulmonary targets, it is now appreciated that inhaled nano-size (<100 nm) particles quickly exit the lungs and enter the circulation where they distribute to various organ systems (l.e., liver, kidneys, testes, lymph nodes) (Takenaka et aI

  14. Oxidative stress and diabetic complications

    PubMed Central

    Giacco, Ferdinando; Brownlee, Michael

    2010-01-01

    Oxidative stress plays a pivotal role in the development of diabetes complications, both microvascular and cardiovascular. The metabolic abnormalities of diabetes cause mitochondrial superoxide overproduction in endothelial cells of both large and small vessels, and also in the myocardium. This increased superoxide production causes the activation of five major pathways involved in the pathogenesis of complications: polyol pathway flux, increased formation of advanced glycation end-products (AGEs), increased expression of the receptor for AGEs and its activating ligands, activation of protein kinase C (PKC) isoforms, and overactivity of the hexosamine pathway. It also directly inactivates two critical antiatherosclerotic enzymes, eNOS and prostacyclin synthase. Through these pathways, increased intracellular ROS cause defective angiogenesis in response to ischemia, activate a number of pro-inflammatory pathways, and cause long-lasting epigenetic changes which drive persistent expression of proinflammatory genes after glycemia is normalized (‘hyperglycemic memory’). Atherosclerosis and cardiomyopathy in type 2 diabetes are caused in part by pathway-selective insulin resistance, which increases mitochondrial ROS production from free fatty acids and by inactivation of anti-atherosclerosis enzymes by ROS. Overexpression of superoxide dismutase in transgenic diabetic mice prevents diabetic retinopathy, nephropathy, and cardiomyopathy. The aim of this review is to highlight advances in understanding the role of metabolite-generated ROS in the development of diabetic complications. PMID:21030723

  15. Nutrigenetics and modulation of oxidative stress.

    PubMed

    Da Costa, Laura A; Badawi, Alaa; El-Sohemy, Ahmed

    2012-01-01

    Oxidative stress develops as a result of an imbalance between the production and accumulation of reactive species and the body's ability to manage them using exogenous and endogenous antioxidants. Exogenous antioxidants obtained from the diet, including vitamin C, vitamin E, and carotenoids, have important roles in preventing and reducing oxidative stress. Individual genetic variation affecting proteins involved in the uptake, utilization and metabolism of these antioxidants may alter their serum levels, exposure to target cells and subsequent contribution to the extent of oxidative stress. Endogenous antioxidants include the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, paraoxanase, and glutathione S-transferase. These enzymes metabolize reactive species and their by-products, reducing oxidative stress. Variation in the genes coding these enzymes may impact their enzymatic antioxidant activity and, thus, the levels of reactive species, oxidative stress, and risk of disease development. Oxidative stress may contribute to the development of chronic disease, including osteoporosis, type 2 diabetes, neurodegenerative diseases, cardiovascular disease, and cancer. Indeed, polymorphisms in most of the genes that code for antioxidant enzymes have been associated with several types of cancer, although inconsistent findings between studies have been reported. These inconsistencies may, in part, be explained by interactions with the environment, such as modification by diet. In this review, we highlight some of the recent studies in the field of nutrigenetics, which have examined interactions between diet, genetic variation in antioxidant enzymes, and oxidative stress. Copyright © 2012 S. Karger AG, Basel.

  16. Oxidative stress and the ageing endocrine system.

    PubMed

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  17. Oxidative Stress and Antioxidant System in Periodontitis

    PubMed Central

    Wang, Yue; Andrukhov, Oleh; Rausch-Fan, Xiaohui

    2017-01-01

    Periodontitis is a common inflammatory disease, which is initiated by bacterial infection and subsequently progressed by aberrant host response. It can result in the destruction of teeth supporting tissues and have an influence on systemic health. When periodontitis occurs, reactive oxygen species, which are overproduced mostly by hyperactive neutrophils, could not be balanced by antioxidant defense system and cause tissues damage. This is characterized by increased metabolites of lipid peroxidation, DNA damage and protein damage. Local and systemic activities of antioxidants can also be influenced by periodontitis. Total antioxidant capacity, total oxidant status and oxidative stress index have been used to evaluate the oxidative stress associated with periodontitis. Studies have confirmed that inflammatory response in periodontitis is associated with an increased local and systemic oxidative stress and compromised antioxidant capacity. Our review focuses on increased oxidative stress in periodontal disease, specifically, on the relationship between the local and systemic biomarkers of oxidative stress and periodontitis and their association with the pathogenesis of periodontitis. Also, the relationship between periodontitis and systemic inflammation, and the effects of periodontal therapy on oxidative stress parameters will be discussed. PMID:29180965

  18. Oxidative stress and wasting in cancer.

    PubMed

    Laviano, Alessandro; Meguid, Michael M; Preziosa, Isabella; Rossi Fanelli, Filippo

    2007-07-01

    Cancer anorexia-cachexia syndrome is becoming a critical component in the comprehensive approach to cancer patients because it influences morbidity, mortality and quality of life. Consequently, pathogenic mechanisms have been elucidated to facilitate development of better therapies. Reported findings indicate that increased production of reactive oxygen species and reduced activity of antioxidant enzymes contribute to development of anorexia and cachexia in cancer. Systemic inflammation impairs tryptophan handling, promoting oxidative stress, which appears to mimic hypothalamic negative feedback signalling. Thus, tryptophan contributes to cancer anorexia by stimulating hypothalamic serotonergic activity and promoting oxidative stress, because neuroinflammation facilitates tryptophan degradation into free radical generators via the kynurenine pathway. Upregulation of protein degradation by increased oxidative stress has been documented in cancer. Also, hypothalamic, cytokine-mediated suppression of fatty acid oxidation reduces food intake, and triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle, thus potentially increasing oxidative stress. Increased oxidative stress contributes to cancer anorexia and cachexia. Preliminary clinical data on the efficacy of antioxidant therapy in cancer patients are encouraging, but uncertainty persists regarding the optimal dose and timing of administration. Also, better biological/genetic characterization of those cancer patients who are more likely to obtain significant clinical benefits appears necessary.

  19. Oxidative Stress and Heavy Metals in Plants.

    PubMed

    Fryzova, Radka; Pohanka, Miroslav; Martinkova, Pavla; Cihlarova, Hana; Brtnicky, Martin; Hladky, Jan; Kynicky, Jindrich

    2018-01-01

    Oxidative stress is a pathological process related to not only animal kingdom but also plants. Regarding oxidative stress in plants, heavy metals are frequently discussed as causative stimuli with relevance to ecology. Because heavy metals have broad technological importance, they can easily contaminate the environment. Much of previous effort regarding the harmful impact of the heavy metals was given to their toxicology in the animals and humans. Their implication in plant pathogeneses is less known and remains underestimated.The current paper summarizes basic facts about heavy metals, their distribution in soil, mobility, accumulation by plants, and initiation of oxidative stress including the decline in basal metabolism. The both actual and frontier studies in the field are summarized and discussed. The major pathophysiological pathways are introduced as well and link between heavy metals toxicity and their ability to initiate an oxidative damage is provided. Mobility and bioaccessibility of the metals is also considered as key factors in their impact on oxidative stress development in the plant. The metals like lead, mercury, copper, cadmium, iron, zinc, nickel, vanadium are depicted in the text.Heavy metals appear to be significant contributors to pathological processes in the plants and oxidative stress is probably an important contributor to the effect. The most sensitive plant species are enlisted and discussed in this review. The facts presented here outline next effort to investigate pathological processes in the plants.

  20. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay

    PubMed Central

    Rahal, Anu; Kumar, Amit; Singh, Vivek; Yadav, Brijesh

    2014-01-01

    Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS) are maintained at low levels by various enzyme systems participating in the in vivo redox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue. PMID:24587990

  1. Oxidative Stress in Aging Human Skin

    PubMed Central

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-01-01

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis. PMID:25906193

  2. Oxidative Stress in Placenta: Health and Diseases

    PubMed Central

    Wu, Fan; Tian, Fu-Ju; Lin, Yi

    2015-01-01

    During pregnancy, development of the placenta is interrelated with the oxygen concentration. Embryo development takes place in a low oxygen environment until the beginning of the second trimester when large amounts of oxygen are conveyed to meet the growth requirements. High metabolism and oxidative stress are common in the placenta. Reactive oxidative species sometimes harm placental development, but they are also reported to regulate gene transcription and downstream activities such as trophoblast proliferation, invasion, and angiogenesis. Autophagy and apoptosis are two crucial, interconnected processes in the placenta that are often influenced by oxidative stress. The proper interactions between them play an important role in placental homeostasis. However, an imbalance between the protective and destructive mechanisms of autophagy and apoptosis seems to be linked with pregnancy-related disorders such as miscarriage, preeclampsia, and intrauterine growth restriction. Thus, potential therapies to hold oxidative stress in leash, promote placentation, and avoid unwanted apoptosis are discussed. PMID:26693479

  3. Repression of gene expression by oxidative stress.

    PubMed Central

    Morel, Y; Barouki, R

    1999-01-01

    Gene expression is modulated by both physiological signals (hormones, cytokines, etc.) and environmental stimuli (physical parameters, xenobiotics, etc.). Oxidative stress appears to be a key pleiotropic modulator which may be involved in either pathway. Indeed, reactive oxygen species (ROS) have been described as second messengers for several growth factors and cytokines, but have also been shown to rise following cellular insults such as xenobiotic metabolism or enzymic deficiency. Extensive studies on the induction of stress-response genes by oxidative stress have been reported. In contrast, owing to the historical focus on gene induction, less attention has been paid to gene repression by ROS. However, a growing number of studies have shown that moderate (i.e. non-cytotoxic) oxidative stress specifically down-regulates the expression of various genes. In this review, we describe the alteration of several physiological functions resulting from oxidative-stress-mediated inhibition of gene transcription. We will then focus on the repressive oxidative modulation of various transcription factors elicited by ROS. PMID:10477257

  4. Oxidative stress resistance in Porphyromonas gingivalis

    PubMed Central

    Henry, Leroy G; McKenzie, Rachelle ME; Robles, Antonette; Fletcher, Hansel M

    2012-01-01

    Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital. We discuss multiple mechanisms and systems that clearly work in synergy to defend and protect P. gingivalis against oxidative damage caused by reactive oxygen species. The involvement of multiple hypothetical proteins and/or proteins of unknown function in this process may imply other unique mechanisms and potential therapeutic targets. PMID:22439726

  5. Oxidative stress in neurodegenerative diseases: a review.

    PubMed

    Sahebkar, Amirhossein; Panahi, Yunes; Yaribeygi, Habib; Javadi, Behjat

    2018-04-25

    Neurodegeneration is a condition in which progressive loss of function and structure of neurons happen. Many lines of evidence suggest that oxidative stress have a central role in neurodegenerative diseases. To survey molecular mechanisms underlying the involvement of oxidative stress in developing different neurodegenerative diseases. Original and review articles were retrieved through a PubMed and Google scholar search (from 1989 to 2015) using the following key words: "oxidative stress", "nerve degeneration" and "neurodegenerative diseases". A comprehensive analysis of the obtained articles confirmed the strong involvement of oxidative stress in pathophysiology of neurodegenerative diseases through a variety of mechanisms including oxidation of nucleic acids, proteins and lipids, formation of advanced glycation end products, mitochondrial dysfunction, glial cell activation, amyloid β deposition and plaque formation, activation of apoptosis, increased cytokine production and inflammatory responses and proteasomal dysfunction. Regarding the pivotal role of OS in neurodegeneration, modulation of free radical production or alleviating their harmful effects can be considered as potential therapeutic strategies for preventing and controlling NDs. Accordingly; boosting endogenous antioxidant capacity besides providing exogenous sources of antioxidants can be subjected to future research in order to discover new anti-NDs agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Oxidative stress parameters in localized scleroderma patients.

    PubMed

    Kilinc, F; Sener, S; Akbaş, A; Metin, A; Kirbaş, S; Neselioglu, S; Erel, O

    2016-11-01

    Localized scleroderma (LS) (morphea) is a chronic, inflammatory skin disease with unknown cause that progresses with sclerosis in the skin and/or subcutaneous tissues. Its pathogenesis is not completely understood. Oxidative stress is suggested to have a role in the pathogenesis of localized scleroderma. We have aimed to determine the relationship of morphea lesions with oxidative stress. The total oxidant capacity (TOC), total antioxidant capacity (TAC), paroxonase (PON) and arylesterase (ARES) activity parameters of PON 1 enzyme levels in the serum were investigated in 13 LS patients (generalized and plaque type) and 13 healthy controls. TOC values of the patient group were found higher than the TOC values of the control group (p < 0.01). ARES values of the patient group was found to be higher than the control group (p < 0.0001). OSI was significantly higher in the patient group when compared to the control (p < 0.005). Oxidative stress seems to be effective in the pathogenesis. ARES levels have increased in morphea patients regarding to the oxidative stress and its reduction. Further controlled studies are required in wider series.

  7. Vascular oxidative stress in Alzheimer disease.

    PubMed

    Zhu, Xiongwei; Smith, Mark A; Honda, Kazuhiro; Aliev, Gjumrakch; Moreira, Paula I; Nunomura, Akihiko; Casadesus, Gemma; Harris, Peggy L R; Siedlak, Sandra L; Perry, George

    2007-06-15

    Alzheimer disease and cerebrovascular dementia are two common causes of dementia and, by present diagnostic criteria, are mutually exclusive using vascular pathology as an arbitrary demarcation in differential diagnosis. However, evidence from epidemiological, neuropathological, clinical, pharmacological, and functional studies suggest considerable overlap in risk factors and pathological changes suggesting shared common pathogenic mechanisms between these two diseases such that vascular factors play a vital role in the pathogenesis of Alzheimer disease. A high energy demand and lack of an endogenous fuel reserve make the brain highly dependent upon a continuous blood supply where disruption of cerebral blood vessels and blood flow can have serious consequences on neural activities. Indeed, many studies implicate metabolic defects in Alzheimer disease, such a reduced brain metabolism is one of the best documented abnormalities in the disease. Notably, since endothelial reactive oxygen species such as nitric oxide act as vasodilators at low concentrations, increased production coupled with elevated reactive oxygen species scavenging of nitric oxide, can lead to reduced bioavailability of nitric oxide and increased oxidative stress that damage sensitive vascular cells. In this respect, we and others have demonstrated that oxidative stress is one of the earliest pathological changes in the brain of Alzheimer disease patients and plays a critical role in the vascular abnormalities underlying metabolic defects in Alzheimer disease. Here, we discuss vascular factors in relation to Alzheimer disease and review hypoperfusion as a potential cause by triggering mitochondrial dysfunction and increased oxidative stress initiating the pathogenic process.

  8. Potential Modulation of Sirtuins by Oxidative Stress

    PubMed Central

    Santos, Leonardo; Escande, Carlos; Denicola, Ana

    2016-01-01

    Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1–7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions. PMID:26788256

  9. Potential Modulation of Sirtuins by Oxidative Stress.

    PubMed

    Santos, Leonardo; Escande, Carlos; Denicola, Ana

    2016-01-01

    Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1-7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions.

  10. Ultraviolet A-induced oxidation in cornea: Characterization of the early oxidation-related events.

    PubMed

    Zinflou, Corinne; Rochette, Patrick J

    2017-07-01

    Exposure to sunlight ultraviolet-A (UVA), the main component of solar UV reaching the eyes, is suspected to play an important part in the onset of ocular pathologies. UVA primary biological deleterious effects arise from the photo-induction of oxidative stress in cells. However, the molecular bases linking UVA-induced oxidation to UVA toxicity in eyes remain poorly understood, especially with regards to the cornea. To shed some light on this issue, we have investigated the susceptibility and response potential of the different corneal cellular layers (epithelium, stroma and endothelium) to UVA-induced oxidation. We have monitored UVA-induced immediate effects on cellular redox balance, on mitochondrial membrane potential, on 8-Hydroxy-2'-deoxyguanosine (8-OHdG) accumulation in cellular DNA and on S-glutathionylated proteins (PSSG) levels along whole rabbit corneas. Higher redox imbalance was observed in the posterior part of the cornea following irradiation. Conversely, UVA-altered mitochondrial membrane potentials were observed only in anterior portions of the cornea. UVA-induced 8-OHdG were found in nuclear DNA of epithelia, while they were found in both nuclear and mitochondrial DNA in stromal and endothelial cells. Finally, significantly higher levels of cytosolic PSSG were measured in epithelia and endothelia immediately after UVA exposure, but not in stromas. Taken together, our findings indicate that while corneal epithelial cells are subjected to important modifications in response to UVA exposure, they efficiently limit the early manifestations of UVA-induced toxicity. On the other hand, the corneal endothelium is more susceptible to UVA-induced oxidation-related toxicity. Copyright © 2017. Published by Elsevier Inc.

  11. Stress generation and evolution in oxide heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Fluri, Aline; Pergolesi, Daniele; Wokaun, Alexander; Lippert, Thomas

    2018-03-01

    Many physical properties of oxides can be changed by inducing lattice distortions in the crystal through heteroepitaxial growth of thin films. The average lattice strain can often be tuned by changing the film thickness or using suitable buffer layers between film and substrate. The exploitation of the full potential of strain engineering for sample or device fabrication rests on the understanding of the fundamental mechanisms of stress generation and evolution. For this study an optical measurement of the substrate curvature is used to monitor in situ how the stress builds up and relaxes during the growth of oxide thin films by pulsed laser deposition. The relaxation behavior is correlated with the growth mode, which is monitored simultaneously with reflection high-energy electron diffraction. The stress relaxation data is fitted and compared with theoretical models for stress evolution which were established for semiconductor epitaxy. The initial stage of the growth appears to be governed by surface stress and surface energy effects, while the subsequent stress relaxation is found to be fundamentally different between films grown on single-crystal substrates and on buffer layers. The first case can be rationalized with established theoretical models, but these models fail in the attempt to describe the growth on buffer layers. This is most probably due to the larger average density of crystalline defects in the buffer layers, which leads to a two-step stress relaxation mechanism, driven first by the nucleation and later by the migration of dislocation lines.

  12. Oxidative Stress Control by Apicomplexan Parasites

    PubMed Central

    Izui, Natália M.; Schettert, Isolmar; Liebau, Eva

    2015-01-01

    Apicomplexan parasites cause infectious diseases that are either a severe public health problem or an economic burden. In this paper we will shed light on how oxidative stress can influence the host-pathogen relationship by focusing on three major diseases: babesiosis, coccidiosis, and toxoplasmosis. PMID:25722976

  13. Essential hypertension and oxidative stress: New insights

    PubMed Central

    González, Jaime; Valls, Nicolás; Brito, Roberto; Rodrigo, Ramón

    2014-01-01

    Essential hypertension is a highly prevalent pathological condition that is considered as one of the most relevant cardiovascular risk factors and is an important cause of morbidity and mortality around the world. Despite the fact that mechanisms underlying hypertension are not yet fully elucidated, a large amount of evidence shows that oxidative stress plays a central role in its pathophysiology. Oxidative stress can be defined as an imbalance between oxidant agents, such as superoxide anion, and antioxidant molecules, and leads to a decrease in nitric oxide bioavailability, which is the main factor responsible for maintaining the vascular tone. Several vasoconstrictor peptides, such as angiotensin II, endothelin-1 and urotensin II, act through their receptors to stimulate the production of reactive oxygen species, by activating enzymes like NADPH oxidase and xanthine oxidase. The knowledge of the mechanism described above has allowed generating new therapeutic strategies against hypertension based on the use of antioxidants agents, including vitamin C and E, N-Acetylcysteine, polyphenols and selenium, among others. These substances have different therapeutic targets, but all represent antioxidant reinforcement. Several clinical trials using antioxidants have been made. The aim of the present review is to provide new insights about the key role of oxidative stress in the pathophysiology of essential hypertension and new clinical attempts to demonstrate the usefulness of antioxidant therapy in the treatment of hypertension. PMID:24976907

  14. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    PubMed Central

    Busch, Andrea W.U.; Montgomery, Beronda L.

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. PMID:25618582

  15. Piracetam improves mitochondrial dysfunction following oxidative stress

    PubMed Central

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. Piracetam treatment at concentrations between 100 and 1000 μM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 μM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. Piracetam treatment (100–500 mg kg−1 daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients. PMID:16284628

  16. [Mitochondria, oxidative stress and aging].

    PubMed

    Szarka, András; Bánhegyi, Gábor; Sümegi, Balázs

    2014-03-23

    The free radical theory of aging was defined in the 1950s. On the base of this theory, the reactive oxygen species formed in the metabolic pathways can play pivotal role in ageing. The theory was modified by defining the mitochondrial respiration as the major cellular source of reactive oxygen species and got the new name mitochondrial theory of aging. Later on the existence of a "vicious cycle" was proposed, in which the reactive oxygen species formed in the mitochondrial respiration impair the mitochondrial DNA and its functions. The formation of reactive oxygen species are elevated due to mitochondrial dysfunction. The formation of mitochondrial DNA mutations can be accelerated by this "vicious cycle", which can lead to accelerated aging. The exonuclease activity of DNA polymerase γ, the polymerase responsible for the replication of mitochondrial DNA was impaired in mtDNA mutator mouse recently. The rate of somatic mutations in mitochondrial DNA was elevated and an aging phenotype could have been observed in these mice. Surprisingly, no oxidative impairment neither elevated reactive oxygen species formation could have been observed in the mtDNA mutator mice, which may question the existence of the "vicious cycle".

  17. Oxidative Stress in Acute Hypobaric Hypoxia.

    PubMed

    Irarrázaval, Sebastián; Allard, Claudio; Campodónico, Juan; Pérez, Druso; Strobel, Pablo; Vásquez, Luis; Urquiaga, Inés; Echeverría, Guadalupe; Leighton, Federico

    2017-06-01

    Irarrázaval, Sebastián, Claudio Allard, Juan Campodónico, Druso Pérez, Pablo Strobel, Luis Vásquez, Inés Urquiaga, Guadalupe Echeverría, and Federico Leighton. Oxidative stress in acute hypobaric hypoxia. High Alt Med Biol. 18:128-134, 2017.-The effects of acute hypobaric hypoxia endured by mountaineers were studied, specifically as evidenced by acute mountain sickness (AMS) and oxidative stress damage. Ten male volunteers were exposed to acute hypobaric hypoxia, and AMS was evaluated through arterial oxygen saturation (SaO 2 ), cardiac rate, and the Lake Louise Score (LLS). Oxidative stress was determined through blood profile tests performed 24 hours before and after high-altitude exposure, assessing the oxidative damage and antioxidant profiles. Dietary habits were assessed using the Chilean Mediterranean Diet Index. During ascent (i.e., first 8 hours), all volunteers presented AMS (LLS ≥3 points), as manifested by a median LLS increment of four points, a 15 bpm cardiac rate, and 17% decrease in SaO 2 . Additionally, plasma lipid oxidative damage increased after the expedition, as evaluated through malondialdehyde, which was directly correlated with the LLS (R 2  = 0.720, p = 0.003) and inversely correlated with SaO 2 (R 2  = 0.436; p = 0.035) at a high altitude. Preascent carbonyl levels were inversely correlated to SaO 2 (R 2  = 0.490; p = 0.008) and directly correlated to cardiac rate (R 2  = 0.225, p = 0.016) at a high altitude. Moreover, dietary habits were inversely correlated with increased carbonyls during the expedition (R 2  = 0.436; p = 0.047). In conclusion, acute hypobaric hypoxia induced AMS and an increment in oxidative stress markers 24 hours after altitude exposure in the volunteers. Furthermore, oxidative stress damage was related to AMS severity. Finally, volunteers with closer adherence to a Mediterranean diet presented a lower increase in oxidative damage during ascent, reflecting the

  18. Good Stress, Bad Stress and Oxidative Stress: Insights from Anticipatory Cortisol Reactivity

    PubMed Central

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M.; Dhabhar, Firdaus S.; Su, Yali; Epel, Elissa

    2014-01-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F2α (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-OxoG) and 8-hydroxy-2′-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as “peak” cortisol reactivity, while the increase from 0 to 15 min was defined as “anticipatory” cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (p<.01). A moderated mediation model was tested, in which it was hypothesized that heightened anticipatory cortisol reactivity would mediate the relationship between perceived stress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-OxoG and IsoP (but not

  19. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    PubMed

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F(2α) (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-oxoG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as "peak" cortisol reactivity, while the increase from 0 to 15 min was defined as "anticipatory" cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (p<.01). A moderated mediation model was tested, in which it was hypothesized that heightened anticipatory cortisol reactivity would mediate the relationship between perceived stress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-oxoG and IsoP (but not 8-OHd

  20. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    PubMed Central

    Consales, Claudia; Merla, Caterina; Marino, Carmela; Benassi, Barbara

    2012-01-01

    Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system. PMID:22991514

  1. Airway oxidative stress in chronic cough

    PubMed Central

    2013-01-01

    Background The mechanisms of chronic cough are unclear. Many reactive oxygen species affect airway sensory C-fibres which are capable to induce cough. Several chronic lung diseases are characterised by cough and oxidative stress. In asthma, an association between the cough severity and airway oxidative stress has been demonstrated. The present study was conducted to investigate whether airway oxidative stress is associated with chronic cough in subjects without chronic lung diseases. Methods Exhaled breath condensate samples were obtained in 43 non-smoking patients with chronic cough and 15 healthy subjects. Exclusion criteria included a doctor’s diagnosis of any lung disorders and any abnormality in lung x-ray. The concentration of 8-isoprostane was measured. In addition, the patients filled in Leicester Cough Questionnaire and underwent hypertonic saline cough provocation test, spirometry, ambulatory peak flow monitoring, nitric oxide measurement, and histamine airway challenge. In a subgroup of patients the measurements were repeated during 12 weeks’ treatment with inhaled budesonide, 800 ug/day. Results The 8-isoprostane concentrations were higher in the cough patients than in the healthy subjects (24.6 ± 1.2 pg/ml vs. 10.1 ± 1.7 pg/ml, p = 0.045). The 8-isoprostane concentration was associated with the Leicester Cough Questionnaire total score (p = 0.044) but not with the cough sensitivity to saline or other tests. Budesonide treatment did not affect the 8-isoprostane concentrations. Conclusions Chronic cough seems to be associated with airway oxidative stress in subjects with chronic cough but without chronic lung diseases. This finding may help to develop novel antitussive drugs. Trial registration The study was registered in ClinicalTrials.gov database (KUH5801112), identifier NCT00859274. PMID:24294924

  2. Nitric oxide function in plant abiotic stress.

    PubMed

    Fancy, Nurun Nahar; Bahlmann, Ann-Kathrin; Loake, Gary J

    2017-04-01

    Abiotic stress is one of the main threats affecting crop growth and production. An understanding of the molecular mechanisms that underpin plant responses against environmental insults will be crucial to help guide the rational design of crop plants to counter these challenges. A key feature during abiotic stress is the production of nitric oxide (NO), an important concentration dependent, redox-related signalling molecule. NO can directly or indirectly interact with a wide range of targets leading to the modulation of protein function and the reprogramming of gene expression. The transfer of NO bioactivity can occur through a variety of potential mechanisms but chief among these is S-nitrosylation, a prototypic, redox-based, post-translational modification. However, little is known about this pivotal molecular amendment in the regulation of abiotic stress signalling. Here, we describe the emerging knowledge concerning the function of NO and S-nitrosylation during plant responses to abiotic stress. © 2016 John Wiley & Sons Ltd.

  3. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.

    PubMed

    Liu, Shaobin; Zeng, Tingying Helen; Hofmann, Mario; Burcombe, Ehdi; Wei, Jun; Jiang, Rongrong; Kong, Jing; Chen, Yuan

    2011-09-27

    Health and environmental impacts of graphene-based materials need to be thoroughly evaluated before their potential applications. Graphene has strong cytotoxicity toward bacteria. To better understand its antimicrobial mechanism, we compared the antibacterial activity of four types of graphene-based materials (graphite (Gt), graphite oxide (GtO), graphene oxide (GO), and reduced graphene oxide (rGO)) toward a bacterial model-Escherichia coli. Under similar concentration and incubation conditions, GO dispersion shows the highest antibacterial activity, sequentially followed by rGO, Gt, and GtO. Scanning electron microscope (SEM) and dynamic light scattering analyses show that GO aggregates have the smallest average size among the four types of materials. SEM images display that the direct contacts with graphene nanosheets disrupt cell membrane. No superoxide anion (O(2)(•-)) induced reactive oxygen species (ROS) production is detected. However, the four types of materials can oxidize glutathione, which serves as redox state mediator in bacteria. Conductive rGO and Gt have higher oxidation capacities than insulating GO and GtO. Results suggest that antimicrobial actions are contributed by both membrane and oxidation stress. We propose that a three-step antimicrobial mechanism, previously used for carbon nanotubes, is applicable to graphene-based materials. It includes initial cell deposition on graphene-based materials, membrane stress caused by direct contact with sharp nanosheets, and the ensuing superoxide anion-independent oxidation. We envision that physicochemical properties of graphene-based materials, such as density of functional groups, size, and conductivity, can be precisely tailored to either reducing their health and environmental risks or increasing their application potentials. © 2011 American Chemical Society

  4. Wet-cupping removes oxidants and decreases oxidative stress.

    PubMed

    Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol

    2014-12-01

    Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. [Atherosclerosis, oxidative stress and physical activity. Review].

    PubMed

    Calderón, Juan Camilo; Fernández, Ana Zita; María de Jesús, Alina Isabel

    2008-09-01

    Atherosclerosis and related diseases have emerged as the leading cause of morbidity and mortality in the western world and, therefore, as a problem of public health. Free radicals and reactive oxygen species have been suggested to be part of the pathophysiology of these diseases. It is well known that physical activity plays an important role as a public health measure by reducing the risk of developing atherosclerosis-related cardiovascular events in the general population. It is also known that physical activity increases in some tissues, the reactive oxygen species production. In this review the atherosclerosis-oxidative stress-physical activity relationship is focused on the apparent paradox by which physical activity reduces atherosclerosis and cardiovascular risk in parallel with the activation of an apparently damaging mechanism which is an increased oxidative stress. A hypothesis including the experimental and clinical evidence is presented to explain the aforementioned paradox.

  6. Oxidative stress and apoptosis in preeclampsia.

    PubMed

    Can, Murat; Guven, Berrak; Bektas, Sibel; Arikan, Ilker

    2014-12-01

    We aimed to determine the oxidative stress and antioxidant status in preeclamptic placenta. Also, we investigated the apoptotic index of villous trophoblast and proliferation index of cytotrophoblasts. The study included 32 pregnant with preeclampsia and 31 normotensive healthy pregnant women. Malondialdehyde (MDA) and total antioxidant status (TAS) levels were measured in the placenta. For detection of apoptosis and proliferation in trophoblast, apoptosis protease activating factor 1 (APAF-1) and Ki-67 were used. Placental MDA levels in preeclamptic women were significantly higher than normal pregnancies (p=0.002). There was no significant difference between the groups in the TAS levels of placenta (p=0.773). Also, the apoptotic index in villous trophoblasts increased (p<0.001), but proliferation index did not change in preeclampsia (p=0.850). Increased oxidative stress and apoptosis in pathological placenta are not balanced by antioxidant systems and proliferation mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Renal oxidative stress, oxygenation, and hypertension.

    PubMed

    Palm, Fredrik; Nordquist, Lina

    2011-11-01

    Hypertension is closely associated with progressive kidney dysfunction, manifested as glomerulosclerosis, interstitial fibrosis, proteinuria, and eventually declining glomerular filtration. The postulated mechanism for development of glomerulosclerosis is barotrauma caused by increased capillary pressure, but the reason for development of interstitial fibrosis and the subsequently reduced kidney function is less clear. However, it has been hypothesized that tissue hypoxia induces fibrogenesis and progressive renal failure. This is very interesting, since recent reports highlight several different mechanisms resulting in altered oxygen handling and availability in the hypertensive kidney. Such mechanisms include decreased renal blood flow due to increased vascular tone induced by ANG II that limits oxygen delivery and increases oxidative stress, resulting in increased mitochondrial oxygen usage, increased oxygen usage for tubular electrolyte transport, and shunting of oxygen from arterial to venous blood in preglomerular vessels. It has been shown in several studies that interventions to prevent oxidative stress and to restore kidney tissue oxygenation prevent progression of kidney dysfunction. Furthermore, inhibition of ANG II activity, by either blocking ANG II type 1 receptors or angiotensin-converting enzyme, or by preventing oxidative stress by administration of antioxidants also results in improved blood pressure control. Therefore, it seems likely that tissue hypoxia in the hypertensive kidney contributes to progression of kidney damage, and perhaps also persistence the high blood pressure.

  8. Oxidative Stress in Ageing of Hair

    PubMed Central

    Trüeb, Ralph M

    2009-01-01

    Experimental evidence supports the hypothesis that oxidative stress plays a major role in the ageing process. Reactive oxygen species are generated by a multitude of endogenous and environmental challenges. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage cellular structural membranes, lipids, proteins, and DNA. The body possesses endogenous defence mechanisms, such as antioxidative enzymes and non-enzymatic antioxidative molecules, protecting it from free radicals by reducing and neutralizing them. With age, the production of free radicals increases, while the endogenous defence mechanisms decrease. This imbalance leads to the progressive damage of cellular structures, presumably resulting in the ageing phenotype. Ageing of hair manifests as decrease of melanocyte function or graying, and decrease in hair production or alopecia. There is circumstantial evidence that oxidative stress may be a pivotal mechanism contributing to hair graying and hair loss. New insights into the role and prevention of oxidative stress could open new strategies for intervention and reversal of the hair graying process and age-dependent alopecia. PMID:20805969

  9. Oxidative stress in ageing of hair.

    PubMed

    Trüeb, Ralph M

    2009-01-01

    Experimental evidence supports the hypothesis that oxidative stress plays a major role in the ageing process. Reactive oxygen species are generated by a multitude of endogenous and environmental challenges. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage cellular structural membranes, lipids, proteins, and DNA. The body possesses endogenous defence mechanisms, such as antioxidative enzymes and non-enzymatic antioxidative molecules, protecting it from free radicals by reducing and neutralizing them. With age, the production of free radicals increases, while the endogenous defence mechanisms decrease. This imbalance leads to the progressive damage of cellular structures, presumably resulting in the ageing phenotype. Ageing of hair manifests as decrease of melanocyte function or graying, and decrease in hair production or alopecia. There is circumstantial evidence that oxidative stress may be a pivotal mechanism contributing to hair graying and hair loss. New insights into the role and prevention of oxidative stress could open new strategies for intervention and reversal of the hair graying process and age-dependent alopecia.

  10. Oxidative stress sensitivity in Debaryomyces hansenii.

    PubMed

    Navarrete, Clara; Siles, Alicia; Martínez, José L; Calero, Fernando; Ramos, José

    2009-06-01

    Debaryomyces hansenii is an osmotolerant and halotolerant yeast of increasing interest for fundamental and applied research. In this work, we have performed a first study on the effect of oxidative stress on the performance of this yeast. We have used Saccharomyces cerevisiae as a well-known reference yeast. We show that D. hansenii is much more susceptible than S. cerevisiae to cadmium chloride, hydrogen peroxide or 1,4-dithiothreitol. These substances induced the formation of reactive oxygen species (ROS) in both yeasts, the amounts measured being significantly higher in the case of D. hansenii. We also show that NaCl exerted a protective effect against oxidative stress in Debaryomyces, but that this was not the case in Saccharomyces because sodium protected that yeast only when toxicity was induced with cadmium. On the basis of the present results, we raised the hypothesis that the sensitivity to oxidative stress in D. hansenii is related to the high amounts of ROS formed in that yeast and that observations such as low glutathione amounts, low basal superoxide dismutase and peroxidase activities, decrease in ATP levels produced in the presence of ROS inducers and high cadmium accumulation are determinants directly or indirectly involved in the sensitivity process.

  11. Lamins as mediators of oxidative stress

    SciTech Connect

    Sieprath, Tom; Darwiche, Rabih; De Vos, Winnok H., E-mail: Winnok.DeVos@UGent.be

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer The nuclear lamina defines structural and functional properties of the cell nucleus. Black-Right-Pointing-Pointer Lamina dysfunction leads to a broad spectrum of laminopathies. Black-Right-Pointing-Pointer Recent data is reviewed connecting laminopathies to oxidative stress. Black-Right-Pointing-Pointer A framework is proposed to explain interactions between lamins and oxidative stress. -- Abstract: The nuclear lamina defines both structural and functional properties of the eukaryotic cell nucleus. Mutations in the LMNA gene, encoding A-type lamins, lead to a broad spectrum of diseases termed laminopathies. While different hypotheses have been postulated to explain disease development, there is still no unified view on the mechanistic basismore » of laminopathies. Recent observations indicate that laminopathies are often accompanied by altered levels of reactive oxygen species and a higher susceptibility to oxidative stress at the cellular level. In this review, we highlight the role of reactive oxygen species for cell function and disease development in the context of laminopathies and present a framework of non-exclusive mechanisms to explain the reciprocal interactions between a dysfunctional lamina and altered redox homeostasis.« less

  12. Photoaging: the role of oxidative stress.

    PubMed

    Burke, K E

    2010-08-01

    Our skin suffers from daily exposure to oxidative stress, primarily from exposure to the sun's damaging ultraviolet (UV) rays. This results in the appearance of premature aging. The mechanisms of this photodamage to all layers of the skin by the various wavelengths (UVB and UVA) will be clarified. Recent research further demonstrates a synergistic enhancement of oxidative damage when the skin is exposed to UVA in combination with environmental urban pollutants (including cigarette smoke). The fact that photoaging is largely caused by oxidative damage is confirmed by the demonstration that treatment with topical antioxidants can prevent and even partially reverse UV-induced photodamage. Research substantiating the efficacy of vitamins C and E and of selenium will be reviewed.

  13. [Oxidative stress in station service workers].

    PubMed

    Basso, A; Elia, G; Petrozzi, M T; Zefferino, R

    2004-01-01

    The aim of this study is to identify an oxidative stress in service station workers. Previous studies verified an increased incidence of leukemia and myeloma, however other authors haven't verified it. There are reports of nasal, pharyngeal, laryngeal, and lung cancer in service station workers. Our study wants to evaluate the oxidative balance in the fuel workers. We studied 44 subjects with gasoline exposure and 29 control subjects. We determined the blood concentrations of Glutathione reduced and oxidized, Protein sulfhydrylic (PSH) Vitamine E, Vitamine C, Malondialdehyde, Protein oxidized (OX-PROT) and beta carotene. The t test was performed to analyze the differences between the means, the Chi square was used to evaluate the statistical significance of associations between variable categorical (redox index). The Anova test excluded the confusing effect of age, smoke and alcohol habit. The mean age of the workers was 36.6 years, instead the control group was 38. In the workers Glutathione reduced, Vit. E and Beta carotene were lower than in the control subjects, this difference was statistically significant (p < 0.01). The Malondialdehyde concentration was higher in the workers higher than in the control group, but this difference wasn't statistically significant. Our data demonstrated Glutathione, Vit. E, and Beta carotene are useful to verify a reduction of the antioxidant activity. The only marker of the presence of oxidative injury that correlated to work exposure was the malondialdehyde. The redox index was surest marker. The limit of our study is the number of control group, it was little and lower than workers. Conclusively we believe it's useful to continue our studies and, if our results are going to be confirmed, we retain that stress oxidative determination would be verified in occupational medicine using these markers, especially to study exposure of the fuel workers who were investigated less and, in our opinion, would receive more attention.

  14. Role of oxidative stress in female reproduction

    PubMed Central

    Agarwal, Ashok; Gupta, Sajal; Sharma, Rakesh K

    2005-01-01

    In a healthy body, ROS (reactive oxygen species) and antioxidants remain in balance. When the balance is disrupted towards an overabundance of ROS, oxidative stress (OS) occurs. OS influences the entire reproductive lifespan of a woman and even thereafter (i.e. menopause). OS results from an imbalance between prooxidants (free radical species) and the body's scavenging ability (antioxidants). ROS are a double-edged sword – they serve as key signal molecules in physiological processes but also have a role in pathological processes involving the female reproductive tract. ROS affect multiple physiological processes from oocyte maturation to fertilization, embryo development and pregnancy. It has been suggested that OS modulates the age-related decline in fertility. It plays a role during pregnancy and normal parturition and in initiation of preterm labor. Most ovarian cancers appear in the surface epithelium, and repetitive ovulation has been thought to be a causative factor. Ovulation-induced oxidative base damage and damage to DNA of the ovarian epithelium can be prevented by antioxidants. There is growing literature on the effects of OS in female reproduction with involvement in the pathophsiology of preeclampsia, hydatidiform mole, free radical-induced birth defects and other situations such as abortions. Numerous studies have shown that OS plays a role in the pathoysiology of infertility and assisted fertility. There is some evidence of its role in endometriosis, tubal and peritoneal factor infertility and unexplained infertility. This article reviews the role OS plays in normal cycling ovaries, follicular development and cyclical endometrial changes. It also discusses OS-related female infertility and how it influences the outcomes of assisted reproductive techniques. The review comprehensively explores the literature for evidence of the role of oxidative stress in conditions such as abortions, preeclampsia, hydatidiform mole, fetal embryopathies, preterm

  15. Renal Dopamine Receptors, Oxidative Stress, and Hypertension

    PubMed Central

    Cuevas, Santiago; Villar, Van Anthony; Jose, Pedro A.; Armando, Ines

    2013-01-01

    Dopamine, which is synthesized in the kidney, independent of renal nerves, plays an important role in the regulation of fluid and electrolyte balance and systemic blood pressure. Lack of any of the five dopamine receptor subtypes (D1R, D2R, D3R, D4R, and D5R) results in hypertension. D1R, D2R, and D5R have been reported to be important in the maintenance of a normal redox balance. In the kidney, the antioxidant effects of these receptors are caused by direct and indirect inhibition of pro-oxidant enzymes, specifically, nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase, and stimulation of anti-oxidant enzymes, which can also indirectly inhibit NADPH oxidase activity. Thus, stimulation of the D2R increases the expression of endogenous anti-oxidants, such as Parkinson protein 7 (PARK7 or DJ-1), paraoxonase 2 (PON2), and heme oxygenase 2 (HO-2), all of which can inhibit NADPH oxidase activity. The D5R decreases NADPH oxidase activity, via the inhibition of phospholipase D2, and increases the expression of HO-1, another antioxidant. D1R inhibits NADPH oxidase activity via protein kinase A and protein kinase C cross-talk. In this review, we provide an overview of the protective roles of a specific dopamine receptor subtype on renal oxidative stress, the different mechanisms involved in this effect, and the role of oxidative stress and impairment of dopamine receptor function in the hypertension that arises from the genetic ablation of a specific dopamine receptor gene in mice. PMID:23985827

  16. Oxidative stress inhibition and oxidant activity by fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia

    2015-09-01

    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Oxidative Stress and Autophagy in Cardiovascular Homeostasis

    PubMed Central

    Morales, Cyndi R.; Pedrozo, Zully; Lavandero, Sergio

    2014-01-01

    Abstract Significance: Autophagy is an evolutionarily ancient process of intracellular protein and organelle recycling required to maintain cellular homeostasis in the face of a wide variety of stresses. Dysregulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to oxidative damage. Both autophagy and ROS/RNS serve pathological or adaptive roles within cardiomyocytes, depending on the context. Recent Advances: ROS/RNS and autophagy communicate with each other via both transcriptional and post-translational events. This cross talk, in turn, regulates the structural integrity of cardiomyocytes, promotes proteostasis, and reduces inflammation, events critical to disease pathogenesis. Critical Issues: Dysregulation of either autophagy or redox state has been implicated in many cardiovascular diseases. Cardiomyocytes are rich in mitochondria, which make them particularly sensitive to oxidative damage. Maintenance of mitochondrial homeostasis and elimination of defective mitochondria are each critical to the maintenance of redox homeostasis. Future Directions: The complex interplay between autophagy and oxidative stress underlies a wide range of physiological and pathological events and its elucidation holds promise of potential clinical applicability. Antioxid. Redox Signal. 20, 507–518. PMID:23641894

  18. Smog induces oxidative stress and microbiota disruption.

    PubMed

    Wong, Tit-Yee

    2017-04-01

    Smog is created through the interactions between pollutants in the air, fog, and sunlight. Air pollutants, such as carbon monoxide, heavy metals, nitrogen oxides, ozone, sulfur dioxide, volatile organic vapors, and particulate matters, can induce oxidative stress in human directly or indirectly through the formation of reactive oxygen species. The outermost boundary of human skin and mucous layers are covered by a complex network of human-associated microbes. The relation between these microbial communities and their human host are mostly mutualistic. These microbes not only provide nutrients, vitamins, and protection against other pathogens, they also influence human's physical, immunological, nutritional, and mental developments. Elements in smog can induce oxidative stress to these microbes, leading to community collapse. Disruption of these mutualistic microbiota may introduce unexpected health risks, especially among the newborns and young children. Besides reducing the burning of fossil fuels as the ultimate solution of smog formation, advanced methods by using various physical, chemical, and biological means to reduce sulfur and nitrogen contains in fossil fuels could lower smog formation. Additionally, information on microbiota disruption, based on functional genomics, culturomics, and general ecological principles, should be included in the risk assessment of prolonged smog exposure to the health of human populations. Copyright © 2017. Published by Elsevier B.V.

  19. Oxidative & nitrosative stress in depression: why so much stress?

    PubMed

    Moylan, Steven; Berk, Michael; Dean, Olivia M; Samuni, Yuval; Williams, Lana J; O'Neil, Adrienne; Hayley, Amie C; Pasco, Julie A; Anderson, George; Jacka, Felice N; Maes, Michael

    2014-09-01

    Many studies support a crucial role for oxidative & nitrosative stress (O&NS) in the pathophysiology of unipolar and bipolar depression. These disorders are characterized inter alia by lowered antioxidant defenses, including: lower levels of zinc, coenzyme Q10, vitamin E and glutathione; increased lipid peroxidation; damage to proteins, DNA and mitochondria; secondary autoimmune responses directed against redox modified nitrosylated proteins and oxidative specific epitopes. This review examines and details a model through which a complex series of environmental factors and biological pathways contribute to increased redox signaling and consequently increased O&NS in mood disorders. This multi-step process highlights the potential for future interventions that encompass a diverse range of environmental and molecular targets in the treatment of depression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Oxidative stress and antioxidants: Distress or eustress?

    PubMed

    Niki, Etsuo

    2016-04-01

    There is a growing consensus that reactive oxygen species (ROS) are not just associated with various pathologies, but that they act as physiological redox signaling messenger with important regulatory functions. It is sometimes stated that "if ROS is a physiological signaling messenger, then removal of ROS by antioxidants such as vitamins E and C may not be good for human health." However, it should be noted that ROS acting as physiological signaling messenger and ROS removed by antioxidants are not the same. The lipid peroxidation products of polyunsaturated fatty acids and cholesterol induce adaptive response and enhance defense capacity against subsequent oxidative insults, but it is unlikely that these lipid peroxidation products are physiological signaling messenger produced on purpose. The removal of ROS and inhibition of lipid peroxidation by antioxidants should be beneficial for human health, although it has to be noted also that they may not be an effective inhibitor of oxidative damage mediated by non-radical oxidants. The term ROS is vague and, as there are many ROS and antioxidants which are different in chemistry, it is imperative to explicitly specify ROS and antioxidant to understand the effects and role of oxidative stress and antioxidants properly. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Air pollution and circulating biomarkers of oxidative stress.

    PubMed

    Delfino, Ralph J; Staimer, Norbert; Vaziri, Nosratola D

    2011-03-01

    Chemical components of air pollutant exposures that induce oxidative stress and subsequent inflammation may be partly responsible for associations of cardiovascular morbidity and mortality with airborne particulate matter and combustion-related pollutant gasses. However, epidemiologic evidence regarding this is limited. An exposure-assessment approach is to measure the oxidative potential of particle mixtures because it is likely that hundreds of correlated chemicals are involved in overall effects of air pollution on health. Oxidative potential likely depends on particle composition and size distribution, especially ultrafine particle concentration, and on transition metals and certain semivolatile and volatile organic chemicals. For health effects, measuring systemic oxidative stress in the blood is one feasible approach, but there is no universal biomarker of oxidative stress and there are many potential target molecules (lipids, proteins, DNA, nitric oxide, etc.), which may be more or less suitable for specific study goals. Concurrent with the measurement of oxidative stress, it is important to measure gene and/or protein expression of endogenous antioxidant enzymes because they can modify relations between oxidative stress biomarkers and air pollutants. Conversely, the expression and activities of these enzymes are modified by oxidative stress. This interplay will likely determine the observed effects of air pollutants on systemic inflammatory and thrombotic mediators and related clinical outcomes. Studies are needed to assess the reliability and validity of oxidative stress biomarkers, evaluate differences in associations between oxidative stress biomarkers and various pollutant measurements (mass, chemical components, and oxidative potential), and evaluate impacts of antioxidant responses on these relations.

  2. Free radicals, reactive oxygen species, oxidative stress and its classification.

    PubMed

    Lushchak, Volodymyr I

    2014-12-05

    Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Menopause as risk factor for oxidative stress.

    PubMed

    Sánchez-Rodríguez, Martha A; Zacarías-Flores, Mariano; Arronte-Rosales, Alicia; Correa-Muñoz, Elsa; Mendoza-Núñez, Víctor Manuel

    2012-03-01

    The aim of this study was to determine the influence of menopause (hypoestrogenism) as a risk factor for oxidative stress. We carried out a cross-sectional study with 187 perimenopausal women from Mexico City, including 94 premenopausal (mean ± SD age, 44.9 ± 4.0 y; estrogen, 95.8 ± 65.7 pg/mL; follicle-stimulating hormone, 13.6 ± 16.9 mIU/mL) and 93 postmenopausal (mean ± SD age, 52.5 ± 3.3 y; estrogen, 12.8 ± 6.8 pg/mL; follicle-stimulating hormone, 51.4 ± 26.9 mIU/mL) women. We measured lipoperoxides using a thiobarbituric acid-reacting substance assay, erythrocyte superoxide dismutase and glutathione peroxidase activities, and the total antioxidant status with the Randox kit. An alternative cutoff value for lipoperoxide level of 0.320 μmol/L or higher was defined on the basis of the 90th percentile of young healthy participants. All women answered the Menopause Rating Scale, the Athens Insomnia Scale, and a structured questionnaire about pro-oxidant factors, that is, smoking, consumption of caffeinated and alcoholic beverages, and physical activity. Finally, we measured weight and height and calculated body mass index. The lipoperoxide levels were significantly higher in the postmenopausal group than in the premenopausal group (0.357 ± 0.05 vs 0.331 ± 0.05 μmol/L, P = 0.001). Using logistic regression to control pro-oxidant variables, we found that menopause was the main risk factor for oxidative stress (odds ratio, 2.62; 95% CI, 1.35-5.11; P < 0.01). We also found a positive correlation between menopause rating score, insomnia score, and lipoperoxides, and this relationship was most evident in the postmenopausal group (menopause scale, r = 0.327 [P = 0.001]; insomnia scale, r = 0.209 [P < 0.05]). Our findings suggest that the depletion of estrogen in postmenopause could cause oxidative stress in addition to the known symptoms.

  4. Nitric oxide availability as a marker of oxidative stress.

    PubMed

    Pierini, Dan; Bryan, Nathan S

    2015-01-01

    Nitric oxide (NO) is widely considered one of the most important molecules produced in the human body, acting as a necessary regulator in a vast array of vital physiological functions, namely, blood pressure, immune response, and neural communication. Healthy endothelium is defined by the ability to produce adequate levels of NO. Reactive oxygen species (ROS) play a major role in NO-based cell signaling. ROS can affect NO availability both from production to post-production scavenging and lead to a myriad of vascular disorders due to compromised NO functionality. In 2004, it was identified in animal models that oxidative stress plays a significant role in the development of hypertension, in part by inactivation of NO (Ghosh et al., Br J Pharmacol 141(4):562-573, 2004). It was thus concluded that NO bioavailability was reduced in the presence of ROS. We speculated that the accurate detection of NO and quantification in biological matrices is critical as a marker of oxidative stress (Bryan et al., Proc Natl Acad Sci USA 101(12):4308-4313, 2004). The elucidation of new mechanisms and signaling pathways involving NO hinges on our ability to specifically, selectively, and sensitively detect and quantify NO and all relevant NO products and metabolites in complex biological matrices. Here, we present a method for the rapid and sensitive analysis of nitrite and nitrate by HPLC as well as detection of free NO in biological samples using in vitro ozone-based chemiluminescence with chemical derivatization to determine molecular source of NO as well as ex vivo with organ bath myography. This approach ties fundamental biochemistry to functional response.

  5. Metastasis: cancer cell's escape from oxidative stress.

    PubMed

    Pani, Giovambattista; Galeotti, Tommaso; Chiarugi, Paola

    2010-06-01

    According to a "canonical" view, reactive oxygen species (ROS) positively contribute, in different ways, to carcinogenesis and to malignant progression of tumor cells: they drive genomic damage and genetic instability, transduce, as signaling intermediates, mitogenic and survival inputs by growth factor receptors and adhesion molecules, promote cell motility and shape the tumor microenvironment by inducing inflammation/repair and angiogenesis. Chemopreventive and tumor-inhibitory effects of endogenous, diet-derived or supplemented antioxidants largely support this notion. However, emerging lines of evidence indicates that tumor cells also need to defend themselves from oxidative damage in order to survive and successfully spread at distance. This "heresy" has recently received important impulse from studies on the role of antioxidant capacity in cancer stem cells self-renewal and resistance to therapy; additionally, the transforming activity of some oncogenes has been unexpectedly linked to their capacity to maintain elevated intracellular levels of reduced glutathione (GSH), the principal redox buffer. These studies underline the importance of cellular antioxidant capacity in metastasis, as the result of a complex cell program involving enhanced motility and a profound change in energy metabolism. The glycolytic switch (Warburg effect) observed in malignant tissues is triggered by mitochondrial oxidative damage and/or activation of redox-sensitive transcription factors, and results in an increase of cell resistance to oxidants. On the other hand, cytoskeleton rearrangement underlying cell motile and tumor-aggressive behavior use ROS as intermediates and are therefore facilitated by oxidative stress. Along this line of speculation, we suggest that metastasis represents an integrated strategy for cancer cells to avoid oxidative damage and escape excess ROS in the primary tumor site, explaning why redox signaling pathways are often up-regulated in malignancy and

  6. Dyslipidemia and oxidative stress in PCOS.

    PubMed

    Macut, Djuro; Bjekić-Macut, Jelica; Savić-Radojević, Ana

    2013-01-01

    Polycystic ovary syndrome (PCOS) is a common metabolic and reproductive disorder in women. An increased cardiovascular risk has to be anticipated in PCOS as it is a metabolically unstable condition. Among cardiovascular risk factors, dyslipidemia is certainly the most persistent and highly prevalent. Predominant observation is an elevation of LDL cholesterol in all PCOS patients. Decreased concentrations of HDL cholesterol are found in obese PCOS from the third decade of life onwards while triglycerides start to rise from the second decade of life. PCOS is associated with oxidative stress, namely increased production of free radicals followed by decreased serum antioxidant levels and antioxidant enzyme activity. Broad range of endocrine and metabolic disturbances like obesity, hyperinsulinemia as well as dyslipidemia might be responsible for PCOS-associated oxidative stress. Therapeutic interventions in PCOS women based on lifestyle modification as well as use of insulin sensitizers did not show significant effect on dyslipidemia. Statins are considered to be a group of promising agents that are safe and effective in improving total cholesterol, LDL cholesterol and triglycerides, and possess antioxidant activity. Supplementation with omega-3 fatty acids, α-lipoic acid and N-acetylcysteine is considered to have an anti-inflammatory and antioxidant effect and to improve dyslipidemia and insulin sensitivity in PCOS women. Copyright © 2013 S. Karger AG, Basel.

  7. Nutritionally Mediated Oxidative Stress and Inflammation

    PubMed Central

    Muñoz, Alexandra; Costa, Max

    2013-01-01

    There are many sources of nutritionally mediated oxidative stress that trigger inflammatory cascades along short and long time frames. These events are primarily mediated via NFκB. On the short-term scale postprandial inflammation is characterized by an increase in circulating levels of IL-6 and TNF-α and is mirrored on the long-term by proinflammatory gene expression changes in the adipocytes and peripheral blood mononuclear cells (PBMCs) of obese individuals. Specifically the upregulation of CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CXCL2/MIP-2α, and CXCL3/MIP-2β is noted because these changes have been observed in both adipocytes and PBMC of obese humans. In comparing numerous human intervention studies it is clear that pro-inflammatory and anti-inflammatory consumption choices mediate gene expression in humans adipocytes and peripheral blood mononuclear cells. Arachidonic acid and saturated fatty acids (SFAs) both demonstrate an ability to increase pro-inflammatory IL-8 along with numerous other inflammatory factors including IL-6, TNFα, IL-1β, and CXCL1 for arachidonic acid and IGB2 and CTSS for SFA. Antioxidant rich foods including olive oil, fruits, and vegetables all demonstrate an ability to lower levels of IL-6 in PBMCs. Thus, dietary choices play a complex role in the mediation of unavoidable oxidative stress and can serve to exacerbate or dampen the level of inflammation. PMID:23844276

  8. Oxidative Stress in Genetic Mouse Models of Parkinson's Disease

    PubMed Central

    Varçin, Mustafa; Bentea, Eduard; Michotte, Yvette; Sarre, Sophie

    2012-01-01

    There is extensive evidence in Parkinson's disease of a link between oxidative stress and some of the monogenically inherited Parkinson's disease-associated genes. This paper focuses on the importance of this link and potential impact on neuronal function. Basic mechanisms of oxidative stress, the cellular antioxidant machinery, and the main sources of cellular oxidative stress are reviewed. Moreover, attention is given to the complex interaction between oxidative stress and other prominent pathogenic pathways in Parkinson's disease, such as mitochondrial dysfunction and neuroinflammation. Furthermore, an overview of the existing genetic mouse models of Parkinson's disease is given and the evidence of oxidative stress in these models highlighted. Taken into consideration the importance of ageing and environmental factors as a risk for developing Parkinson's disease, gene-environment interactions in genetically engineered mouse models of Parkinson's disease are also discussed, highlighting the role of oxidative damage in the interplay between genetic makeup, environmental stress, and ageing in Parkinson's disease. PMID:22829959

  9. Going retro: Oxidative stress biomarkers in modern redox biology.

    PubMed

    Margaritelis, N V; Cobley, J N; Paschalis, V; Veskoukis, A S; Theodorou, A A; Kyparos, A; Nikolaidis, M G

    2016-09-01

    The field of redox biology is inherently intertwined with oxidative stress biomarkers. Oxidative stress biomarkers have been utilized for many different objectives. Our analysis indicates that oxidative stress biomarkers have several salient applications: (1) diagnosing oxidative stress, (2) pinpointing likely redox components in a physiological or pathological process and (3) estimating the severity, progression and/or regression of a disease. On the contrary, oxidative stress biomarkers do not report on redox signaling. Alternative approaches to gain more mechanistic insights are: (1) measuring molecules that are integrated in pathways linking redox biochemistry with physiology, (2) using the exomarker approach and (3) exploiting -omics techniques. More sophisticated approaches and large trials are needed to establish oxidative stress biomarkers in the clinical setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Management of multicellular senescence and oxidative stress

    PubMed Central

    Haines, David D; Juhasz, Bela; Tosaki, Arpad

    2013-01-01

    Progressively sophisticated understanding of cellular and molecular processes that contribute to age-related physical deterioration is being gained from ongoing research into cancer, chronic inflammatory syndromes and other serious disorders that increase with age. Particularly valuable insight has resulted from characterization of how senescent cells affect the tissues in which they form in ways that decrease an organism's overall viability. Increasingly, the underlying pathophysiology of ageing is recognized as a consequence of oxidative damage. This leads to hyperactivity of cell growth pathways, prominently including mTOR (mammalian target of rapamycin), that contribute to a build-up in cells of toxic aggregates such as progerin (a mutant nuclear cytoskeletal protein), lipofuscin and other cellular debris, triggering formation of senescent cellular phenotypes, which interact destructively with surrounding tissue. Indeed, senescent cell ablation dramatically inhibits physical deterioration in progeroid (age-accelerated) mice. This review explores ways in which oxidative stress creates ageing-associated cellular damage and triggers induction of the cell death/survival programs’ apoptosis, necrosis, autophagy and ‘necroapoptophagy’. The concept of ‘necroapoptophagy’ is presented here as a strategy for varying tissue oxidative stress intensity in ways that induce differential activation of death versus survival programs, resulting in enhanced and sustained representation of healthy functional cells. These strategies are discussed in the context of specialized mesenchymal stromal cells with the potential to synergize with telocytes in stabilizing engrafted progenitor cells, thereby extending periods of healthy life. Information and concepts are summarized in a hypothetical approach to suppressing whole-organism senescence, with methods drawn from emerging understandings of ageing, gained from Cnidarians (jellyfish, corals and anemones) that undergo a

  11. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL

    PubMed Central

    Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R.; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment. PMID:27636901

  12. Postprandial lipaemia, oxidative stress and endothelial function: a review.

    PubMed

    Wallace, J P; Johnson, B; Padilla, J; Mather, K

    2010-02-01

    Postprandial lipaemia-induced endothelial dysfunction is felt to be mediated by increases in oxidative stress. In this review, we have examined the cross-sectional relationships found among these three variables. We found 20 studies conducted by 16 independent investigative teams through a Medline search from 1980 to 2008; studies were required to report correlations between at least two of the three variables of interest in studies of humans. This review is divided into (i) discussions on the biomarkers and other measures of postprandial lipaemia, oxidative stress and endothelial function; (ii) associations reported among the three variables; and (iii) other considerations including alternative intervention studies. Triglycerides and free fatty acids are robust and well-standardised biomarkers of lipaemia. Measures of oxidative stress ranged from electron spin techniques to measures of lipid peroxidation and are limited by lack of standardisation. Brachial artery flow-mediated dilatation is the most commonly used measure of endothelial function. The associations between postprandial lipaemia and oxidative stress and between postprandial lipaemia and endothelial function are strong and consistent. However, the association between postprandial oxidative stress and endothelial function appears weak, at least using current approaches to measurement of oxidative stress. These observations are consistent with the proposed concept that oxidative stress mediates the adverse effects of postprandial lipaemia on endothelial function; they are limited by the difficulties in measuring oxidative stress. Efforts directed at optimising and standardising the measurement of oxidative stress will be of value in future works in this area.

  13. The physiopathologic role of oxidative stress in skeletal muscle.

    PubMed

    Scicchitano, Bianca Maria; Pelosi, Laura; Sica, Gigliola; Musarò, Antonio

    2018-03-01

    Muscle senescence is a complex mechanism that is usually associated with a decrease in mass, strength and velocity of contraction. This state, known as sarcopenia, is a multifactorial process and it may be the consequence of several events, including accumulation of oxidative stress. The role of oxidative stress in the physiopathology of skeletal muscle is quite complex. Transiently increased levels of oxidative stress might reflect a potentially health promoting process, while an uncontrolled accumulation might have pathological implication. The physiopathological role of oxidative stress on skeletal muscle, its involvement in aging-induced sarcopenia, and potential countermeasures will be discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. "Cumulative Stress": The Effects of Maternal and Neonatal Oxidative Stress and Oxidative Stress-Inducible Genes on Programming of Atopy.

    PubMed

    Manti, Sara; Marseglia, Lucia; D'Angelo, Gabriella; Cuppari, Caterina; Cusumano, Erika; Arrigo, Teresa; Gitto, Eloisa; Salpietro, Carmelo

    2016-01-01

    Although extensive epidemiological and laboratory studies have been performed to identify the environmental and immunological causes of atopy, genetic predisposition seems to be the biggest risk factor for allergic diseases. The onset of atopic diseases may be the result of heritable changes of gene expression, without any alteration in DNA sequences occurring in response to early environmental stimuli. Findings suggest that the establishment of a peculiar epigenetic pattern may also be generated by oxidative stress (OS) and perpetuated by the activation of OS-related genes. Analyzing the role of maternal and neonatal oxidative stress and oxidative stress-inducible genes, the purpose of this review was to summarize what is known about the relationship between maternal and neonatal OS-related genes and the development of atopic diseases.

  15. Strontium and oxidative stress in normal pregnancy.

    PubMed

    Barneo-Caragol, Clara; Martínez-Morillo, Eduardo; Rodríguez-González, Susana; Lequerica-Fernández, Paloma; Vega-Naredo, Ignacio; Álvarez Menéndez, Francisco V

    2018-01-01

    Pregnancy brings about metabolic and oxidative changes that involve various trace elements and oxidative stress. Strontium (Sr) is a trace element scarcely studied in this context, although it has been suggested that it may play a role in the pathophysiology of preeclampsia. The main aim of this study was to evaluate Sr concentrations and oxidative status in normal pregnancy. The study population included non-pregnant women (n=31), healthy pregnant women in the first (n=50), second (n=51) and third (n=53) trimesters of gestation, and women in postpartum period (n=31). Additionally, samples from another twenty pregnant women were obtained in the three trimesters. Strontium, copper, selenium and zinc were measured by inductively coupled plasma-mass spectrometry. Calcium (Ca), uric acid (UA), lipid peroxidation and total antioxidant activity (TAA) were measured by spectrophotometric assays. Strontium remained unchanged until the third trimester of pregnancy, in which significantly higher levels were found (p=0.001). The other elements showed diverse trends during pregnancy. Uric acid levels were significantly different in all groups (p<0.001), increasing gradually as the pregnancy progresses. In serial samples, there was a statistically significant positive correlation between Sr and gestational week of sampling (r=0.31, p=0.01), UA (r=0.40, p=0.001) and lipid peroxidation/TAA ratio (r=0.38, p=0.0002). Additionally, Sr correlated negatively with TAA (r=-0.40, p=0.0001). Strontium seems to play a physiological role in the oxidative status of the human organism. Further studies involving Sr and pathologies of pregnancy are warranted. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Effects of oxidative stress on erythrocyte deformability

    NASA Astrophysics Data System (ADS)

    Bayer, Rainer; Wasser, Gerd

    1996-05-01

    Hemolysis as a consequence of open heart surgery is well investigated and explained by the oxidative and/or mechanical stress produced, e.g. by the heart lung machine. In Europe O3 is widely used by physicians, dedicated to alternative medicine. They apply O3 mostly by means of the Major Autohematotherapy (MAH, a process of removing 50 - 100 ml of blood, adding O3 gas to it and returning it to the patient's body). No controlled studies on the efficacy of O3 are available so far, but several anecdotal cases appear to confirm that MAH improves microcirculation, possibly due to increased RBC flexibility. Most methods established to estimate RBC deformability are hard to standardize and include high error of measurement. For our present investigation we used the method of laser diffraction in combination with image analysis. The variation coefficient of the measurement is less than 1%. Previous investigations of our group have shown, that mechanical stress decreases deformability, already at rather low levels of mechanical stress which do not include hemolysis. On the other hand exposure to O2, H2O2 or O3 does not alter the deformability of RBC and--except O3--does not induce considerably hemolysis. However this only holds true if deformability (shear rates 36/s - 2620/s) is determined in isotonic solutions. In hypertonic solutions O3 decreases RBC deformability, but improves it in hypotonic solutions. The results indicate that peroxidative stress dehydrates RBC and reduces their size. To explain the positive effect of O3 on the mechanical fragility of RBC we tentatively assume, that the reduction of RBC size facilitates the feed through small pore filters. In consequence, the size reduction in combination with undisturbed deformability at iso-osmolarity may have a beneficial effect on microcirculation.

  17. Testosterone and oxidative stress: the oxidation handicap hypothesis

    PubMed Central

    Alonso-Alvarez, Carlos; Bertrand, Sophie; Faivre, Bruno; Chastel, Olivier; Sorci, Gabriele

    2006-01-01

    Secondary sexual traits (SST) are usually thought to have evolved as honest signals of individual quality during mate choice. Honesty of SST is guaranteed by the cost of producing/maintaining them. In males, the expression of many SST is testosterone-dependent. The immunocompetence handicap hypothesis has been proposed as a possible mechanism ensuring honesty of SST on the basis that testosterone, in addition to its effect on sexual signals, also has an immunosuppressive effect. The immunocompetence handicap hypothesis has received mixed support. However, the cost of testosterone-based signalling is not limited to immunosuppression and might involve other physiological functions such as the antioxidant machinery. Here, we tested the hypothesis that testosterone depresses resistance to oxidative stress in a species with a testosterone-dependent sexual signal, the zebra finch. Male zebra finches received subcutaneous implants filled with flutamide (an anti-androgen) or testosterone, or kept empty (control). In agreement with the prediction, we found that red blood cell resistance to a free radical attack was the highest in males implanted with flutamide and the lowest in males implanted with testosterone. We also found that cell-mediated immune response was depressed in testosterone-treated birds, supporting the immunocompetence handicap hypothesis. The recent finding that red blood cell resistance to free radicals is negatively associated with mortality in this species suggests that benefits of sexual signalling might trade against the costs derived from oxidation. PMID:17251089

  18. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    PubMed Central

    Li, Sha; Tan, Hor-Yue; Wang, Ning; Zhang, Zhang-Jin; Lao, Lixing; Wong, Chi-Woon; Feng, Yibin

    2015-01-01

    A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed. PMID:26540040

  19. The Role of Oxidative Stress and Antioxidants in Liver Diseases.

    PubMed

    Li, Sha; Tan, Hor-Yue; Wang, Ning; Zhang, Zhang-Jin; Lao, Lixing; Wong, Chi-Woon; Feng, Yibin

    2015-11-02

    A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.

  20. Chronic Oxidative Stress as a Mechanism for Radiation Nephropathy

    PubMed Central

    Lenarczyk, Marek; Cohen, Eric P.; Fish, Brian L.; Irving, Amy A.; Sharma, Mukut; Driscoll, Collin D.; Moulder, John E.

    2009-01-01

    Suppression of the renin-angiotensin system has proven efficacy for mitigation and treatment of radiation nephropathy, and it has been hypothesized that this efficacy is due to suppression of radiation-induced chronic oxidative stress. It is known that radiation exposure leads to acute oxidative stress, but direct evidence for radiation-induced chronic renal oxidative stress is sparse. We looked for evidence of oxidative stress after total-body irradiation in a rat model, focusing on the period before there is physiologically significant renal damage. No statistically significant increase in urinary 8-isoprostane (a marker of lipid peroxidation) or carbonylated proteins (a marker of protein oxidation) was found over the first 42 days after irradiation, while a small but statistically significant increase in urinary 8-hydroxydeoxy-guanosine (a marker of DNA oxidation) was detected at 35-55 days. When we examined renal tissue from these animals, we found no significant increase in either DNA or protein oxidation products over the first 89 days after irradiation. Using five different standard methods for detecting oxidative stress in vivo, we found no definitive evidence for radiation-induced renal chronic oxidative stress. If chronic oxidative stress is part of the pathogenesis of radiation nephropathy, it does not leave widespread or easily detectable evidence behind. PMID:19267541

  1. Mitochondrial oxidative stress and cardiac ageing.

    PubMed

    Martín-Fernández, Beatriz; Gredilla, Ricardo

    According with different international organizations, cardiovascular diseases are becoming the first cause of death in western countries. Although exposure to different risk factors, particularly those related to lifestyle, contribute to the etiopathogenesis of cardiac disorders, the increase in average lifespan and aging are considered major determinants of cardiac diseases events. Mitochondria and oxidative stress have been pointed out as relevant factors both in heart aging and in the development of cardiac diseases such as heart failure, cardiac hypertrophy and diabetic cardiomyopathy. During aging, cellular processes related with mitochondrial function, such as bioenergetics, apoptosis and inflammation are altered leading to cardiac dysfunction. Increasing our knowledge about the mitochondrial mechanisms related with the aging process, will provide new strategies in order to improve this process, particularly the cardiovascular ones. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Air Pollution, Oxidative Stress, and Alzheimer's Disease

    PubMed Central

    Moulton, Paula Valencia; Yang, Wei

    2012-01-01

    Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide and will continue to affect millions more with population aging on the rise. AD causality is multifactorial. Known causal factors include genetic predisposition, age, and sex. Environmental toxins such as air pollution (AP) have also been implicated in AD causation. Exposure to AP can lead to chronic oxidative stress (OS), which is involved in the pathogenesis of AD. Whereas AP plays a role in AD pathology, the epidemiological evidence for this association is limited. Given the significant prevalence of AP exposure combined with increased population aging, epidemiological evidence for this link is important to consider. In this paper, we examine the existing evidence supporting the relationship between AP, OS, and AD and provide recommendations for future research on the population level, which will provide evidence in support of public health interventions. PMID:22523504

  3. Thyroid Hormones, Oxidative Stress, and Inflammation

    PubMed Central

    Raimondo, Sebastiano; Olivieri, Giulio; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  4. Oxidative stress, free radicals and protein peroxides.

    PubMed

    Gebicki, Janusz M

    2016-04-01

    Primary free radicals generated under oxidative stress in cells and tissues produce a cascade of reactive secondary radicals, which attack biomolecules with efficiency determined by the reaction rate constants and target concentration. Proteins are prominent targets because they constitute the bulk of the organic content of cells and tissues and react readily with many of the secondary radicals. The reactions commonly lead to the formation of carbon-centered radicals, which generally convert in vivo to peroxyl radicals and finally to semistable hydroperoxides. All of these intermediates can initiate biological damage. This article outlines the advantages of the application of ionizing radiations to studies of radicals, with particular reference to the generation of desired radicals, studies of the kinetics of their reactions and correlating the results with events in biological systems. In one such application, formation of protein hydroperoxides in irradiated cells was inhibited by the intracellular ascorbate and glutathione. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Sport and oxidative stress in oncological patients.

    PubMed

    Knop, K; Schwan, R; Bongartz, M; Bloch, W; Brixius, K; Baumann, F

    2011-12-01

    Oxidative stress is thought to be an important factor in the onset, progression and recurrence of cancer. In order to investigate how it is influenced by physical activity, we measured oxidative stress and antioxidative capacity (aoC) in 12 women with breast cancer and 6 men with prostate cancer, before and after long hiking trips. Before the hike, the men had a ROS-concentration of 1.8±0.6 mM H2O2 and an aoC of 0.7±0.6 mM Trolox-equivalent (Tro), while the women had a ROS-concentration of 3.1±0.7 mM H2O2 and an aoC of 1.2±0.2 mM Tro. After the hike, women showed no significant change in ROS and a significant increase in aoC (1.3±0.2 mM Tro), while the ROS concentration in men increased significantly (2.1±0.3 mM H2O2) and their aoC decreased (0.25±0.1 mM Tro). After a regenerative phase, the ROS concentration of the men decreased to 1.7±0.4 mM H2O2 and their aoC recovered significantly (1.2±0.4 mM Tro), while the women presented no significant change in the concentration of H2O2 but showed an ulterior increase in antioxidant capacity (2.05±0.43 mM Tro). From this data we conclude that physical training programs as for example long distance hiking trips can improve the aoC in the blood of oncological patients. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Myeloperoxidase and oxidative stress in rheumatoid arthritis.

    PubMed

    Stamp, Lisa K; Khalilova, Irada; Tarr, Joanna M; Senthilmohan, Revathy; Turner, Rufus; Haigh, Richard C; Winyard, Paul G; Kettle, Anthony J

    2012-10-01

    To determine whether MPO contributes to oxidative stress and disease activity in RA and whether it produces hypochlorous acid in SF. Plasma and where possible SF were collected from 77 RA patients while 120 healthy controls supplied plasma only. MPO and protein carbonyls were measured by ELISAs. 3-Chlorotyrosine in proteins and allantoin in plasma were measured by mass spectrometry. Plasma MPO concentrations were significantly higher in patients with RA compared with healthy controls [10.8 ng/ml, inter-quartile range (IQR): 7.2-14.2; P<0.05], but there was no significant difference in plasma MPO protein concentrations between RA patients with high disease activity (HDA; DAS-28 >3.2) and those with low disease activity (LDA; DAS-28 ≤ 3.2) (HDA 27.9 ng/ml, 20.2-34.1 vs LDA 22.1 ng/ml, 16.9-34.9; P>0.05). There was a significant relationship between plasma MPO and DAS-28 (r=0.35; P=0.005). Plasma protein carbonyls and allantoin were significantly higher in patients with RA compared with the healthy controls. MPO protein was significantly higher in SF compared with plasma (median 624.0 ng/ml, IQR 258.4-2433.0 vs 30.2 ng/ml, IQR 25.1-50.9; P<0.0001). The MPO present in SF was mostly active. 3-Chlorotyrosine, a specific biomarker of hypochlorous acid, was present in proteins from SF and related to the concentration of MPO (r=0.69; P=0.001). Protein carbonyls in SF were associated with MPO protein concentration (r=0.40; P=0.019) and 3-chlorotyrosine (r=0.66; P=0.003). MPO is elevated in patients with RA and promotes oxidative stress through the production of hypochlorous acid.

  7. Sulfur mustard intoxication, oxidative stress, and antioxidants.

    PubMed

    Naghii, M R

    2002-07-01

    Sulfur Mustard (SM) is a potent alkylating agent with electrophilic property which has been used as a chemical warfare agent in at least 12 conflicts. It has reemerged as a major threat in recent years. Medical attention is primarily concerned with its action on the skin, eyes, and respiratory tract which may be complicated by damage to ophthalmic, pulmonary, and gasterointestinal systems, followed by bone marrow depression. The cytotoxicity of SM and production of reactive oxygen substances (ROS) has been proposed to result from electrophilic or oxidative stress with depletion of cellular detoxifying thiol levels including glutathione. Also, ROS are transformed by iron-requiring reactions into highly toxic oxidants that cause a chain reaction with membrane phospholipids to form lipid peroxides, leading to loss of membrane function, membrane fluidity, and finally membrane integrity. Provision and availability of scavengers of ROS and electrophilic compounds such as glutathione, sulfhydryls compounds, antioxidants, and substances that will increase production of endogenous scavengers may be considered protective and useful. Thereby, the role of substances such as selenium, copper, zinc, and antioxidants including vitamin E, vitamin C, and compounds like beta-carotene against SM cytotoxicity and lipid peroxidation might be interesting to be investigated in experimental animal models.

  8. Oxidative stress, protein modification and Alzheimer disease.

    PubMed

    Tramutola, A; Lanzillotta, C; Perluigi, M; Butterfield, D Allan

    2017-07-01

    Alzheimer disease (AD) is a progressive neurodegenerative disease that affects the elderly population with complex etiology. Many hypotheses have been proposed to explain different causes of AD, but the exact mechanisms remain unclear. In this review, we focus attention on the oxidative-stress hypothesis of neurodegeneration and we discuss redox proteomics approaches to analyze post-mortem human brain from AD brain. Collectively, these studies have provided valuable insights into the molecular mechanisms involved both in the pathogenesis and progression of AD, demonstrating the impairment of numerous cellular processes such as energy production, cellular structure, signal transduction, synaptic function, mitochondrial function, cell cycle progression, and degradative systems. Each of these cellular functions normally contributes to maintain healthy neuronal homeostasis, so the deregulation of one or more of these functions could contribute to the pathology and clinical presentation of AD. In particular, we discuss the evidence demonstrating the oxidation/dysfunction of a number of enzymes specifically involved in energy metabolism that support the view that reduced glucose metabolism and loss of ATP are crucial events triggering neurodegeneration and progression of AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Implantation of Neural Probes in the Brain Elicits Oxidative Stress

    PubMed Central

    Ereifej, Evon S.; Rial, Griffin M.; Hermann, John K.; Smith, Cara S.; Meade, Seth M.; Rayyan, Jacob M.; Chen, Keying; Feng, He; Capadona, Jeffrey R.

    2018-01-01

    Clinical implantation of intracortical microelectrodes has been hindered, at least in part, by the perpetual inflammatory response occurring after device implantation. The neuroinflammatory response observed after device implantation has been correlated to oxidative stress that occurs due to neurological injury and disease. However, there has yet to be a definitive link of oxidative stress to intracortical microelectrode implantation. Thus, the objective of this study is to give direct evidence of oxidative stress following intracortical microelectrode implantation. This study also aims to identify potential molecular targets to attenuate oxidative stress observed postimplantation. Here, we implanted adult rats with silicon non-functional microelectrode probes for 4 weeks and compared the oxidative stress response to no surgery controls through postmortem gene expression analysis and qualitative histological observation of oxidative stress markers. Gene expression analysis results at 4 weeks postimplantation indicated that EH domain-containing 2, prion protein gene (Prnp), and Stearoyl-Coenzyme A desaturase 1 (Scd1) were all significantly higher for animals implanted with intracortical microelectrode probes compared to no surgery control animals. To the contrary, NADPH oxidase activator 1 (Noxa1) relative gene expression was significantly lower for implanted animals compared to no surgery control animals. Histological observation of oxidative stress showed an increased expression of oxidized proteins, lipids, and nucleic acids concentrated around the implant site. Collectively, our results reveal there is a presence of oxidative stress following intracortical microelectrode implantation compared to no surgery controls. Further investigation targeting these specific oxidative stress linked genes could be beneficial to understanding potential mechanisms and downstream therapeutics that can be utilized to reduce oxidative stress-mediated damage following

  10. Antioxidant status and biomarkers of oxidative stress in canine lymphoma

    USDA-ARS?s Scientific Manuscript database

    Background – Oxidative stress might play a role in carcinogenesis, as well as impacting morbidity and mortality of veterinary cancer patients. The purpose of this study was to evaluate antioxidant concentrations and biomarkers of oxidative stress in dogs with newly-diagnosed lymphoma prior to treatm...

  11. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  12. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    EPA Science Inventory

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ)induce oxidative stress by redox cycling, which generates hydrogen peroxide (H202). Cysteinylthio...

  13. Integral indicator of oxidative stress in human blood.

    PubMed

    Kolesnikova, L I; Semyonova, N V; Grebenkina, L A; Darenskaya, M A; Suturina, L V; Gnusina, S V

    2014-10-01

    Here we performed individual evaluation of the oxidative stress index that serves as an integral criterion for the balance of LPO-antioxidant defense system in women with endocrine pathology (type 1 diabetes mellitus and infertility with hyperprolactinemia). The state of the LPO-antioxidant defense system was estimated from blood levels of LPO substrates with conjugated double bonds, conjugated dienes, ketodienes, conjugated trienes, thiobarbituric acid-reactive substances, retinol, α-tocopherol, reduced and oxidized glutathione, and SOD activity. The use of this oxidative stress index allowed us to diagnose oxidative stress in female patients with endocrine pathology.

  14. Inhibition of Proline Oxidation by Water Stress 1

    PubMed Central

    Stewart, Cecil R.; Boggess, Samuel F.; Aspinall, Don; Paleg, Leslie G.

    1977-01-01

    The conversion of proline to glutamic acid and hence to other soluble compounds (proline oxidation) proceeds readily in turgid barley (Hordeum vulgare) leaves and is stimulated by higher concentrations of proline. This suggests that proline oxidation could function as a control mechanism for maintaining low cellular levels of proline in turgid tissue. In water-stressed tissue, however, proline oxidation is reduced to negligible rates. These results are consistent with the idea that proline accumulation results from inactivation by water stress of normal control mechanisms. It seems likely that inhibition of proline oxidation is necessary in maintaining the high levels of proline found in stressed barley leaves. PMID:16659970

  15. Nanoparticles, lung injury, and the role of oxidant stress.

    PubMed

    Madl, Amy K; Plummer, Laurel E; Carosino, Christopher; Pinkerton, Kent E

    2014-01-01

    The emergence of engineered nanoscale materials has provided significant advancements in electronic, biomedical, and material science applications. Both engineered nanoparticles and nanoparticles derived from combustion or incidental processes exhibit a range of physical and chemical properties that induce inflammation and oxidative stress in biological systems. Oxidative stress reflects the imbalance between the generation of reactive oxygen species and the biochemical mechanisms to detoxify and repair the damage resulting from reactive intermediates. This review examines current research on incidental and engineered nanoparticles in terms of their health effects on lungs and the mechanisms by which oxidative stress via physicochemical characteristics influences toxicity or biocompatibility. Although oxidative stress has generally been thought of as an adverse biological outcome, this review also briefly discusses some of the potential emerging technologies to use nanoparticle-induced oxidative stress to treat disease in a site-specific fashion.

  16. Nanoparticles, Lung Injury, and the Role of Oxidant Stress

    PubMed Central

    Madl, Amy K.; Plummer, Laurel E.; Carosino, Christopher; Pinkerton, Kent E.

    2015-01-01

    The emergence of engineered nanoscale materials has provided significant advancements in electronic, biomedical, and material science applications. Both engineered nanoparticles and nanoparticles derived from combustion or incidental processes exhibit a range of physical and chemical properties, which have been shown to induce inflammation and oxidative stress in biologic systems. Oxidative stress reflects the imbalance between the generation of reaction oxygen species (ROS) and the biochemical mechanisms to detoxify and repair resulting damage of reactive intermediates. This review examines current research incidental and engineered nanoparticles in terms of their health effects on the lungs and mechanisms by which oxidative stress via physicochemical characteristics influence toxicity or biocompatibility. Although oxidative stress has generally been thought of as an adverse biological outcome, this review will also briefly discuss some of the potential emerging technologies to use nanoparticle-induced oxidative stress to treat disease in a site specific fashion. PMID:24215442

  17. Oxidative stress signaling to chromatin in health and disease

    PubMed Central

    Kreuz, Sarah; Fischle, Wolfgang

    2016-01-01

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation. PMID:27319358

  18. Clinical Perspective of Oxidative Stress in Sporadic ALS

    PubMed Central

    D’Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M.; Mitsumoto, Hiroshi

    2013-01-01

    Sporadic amyotrophic lateral sclerosis (sALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/anti-oxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine, are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly support the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033

  19. Traumatic stress, oxidative stress and posttraumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis

    PubMed Central

    Miller, Mark W.; Sadeh, Naomi

    2014-01-01

    Posttraumatic stress disorder (PTSD) is associated with elevated risk for a variety of age-related diseases and neurodegeneration. In this paper, we review evidence relevant to the hypothesis that chronic PTSD constitutes a form of persistent life stress that potentiates oxidative stress (OXS) and accelerates cellular aging. We provide an overview of empirical studies that have examined the effects of psychological stress on OXS, discuss the stress-perpetuating characteristics of PTSD, and then identify mechanisms by which PTSD might promote OXS and accelerated aging. We review studies on OXS-related genes and the role that they may play in moderating the effects of PTSD on neural integrity and conclude with a discussion of directions for future research on antioxidant treatments and biomarkers of accelerated aging in PTSD. PMID:25245500

  20. Hypertension and physical exercise: The role of oxidative stress.

    PubMed

    Korsager Larsen, Monica; Matchkov, Vladimir V

    2016-01-01

    Oxidative stress is associated with the pathogenesis of hypertension. Decreased bioavailability of nitric oxide (NO) is one of the mechanisms involved in the pathogenesis. It has been suggested that physical exercise could be a potential non-pharmacological strategy in treatment of hypertension because of its beneficial effects on oxidative stress and endothelial function. The aim of this review is to investigate the effect of oxidative stress in relation to hypertension and physical exercise, including the role of NO in the pathogenesis of hypertension. Endothelial dysfunction and decreased NO levels have been found to have the adverse effects in the correlation between oxidative stress and hypertension. Most of the previous studies found that aerobic exercise significantly decreased blood pressure and oxidative stress in hypertensive subjects, but the intense aerobic exercise can also injure endothelial cells. Isometric exercise decreases normally only systolic blood pressure. An alternative exercise, Tai chi significantly decreases blood pressure and oxidative stress in normotensive elderly, but the effect in hypertensive subjects has not yet been studied. Physical exercise and especially aerobic training can be suggested as an effective intervention in the prevention and treatment of hypertension and cardiovascular disease via reduction in oxidative stress. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Mitochondrial oxidative stress in aging and healthspan

    PubMed Central

    2014-01-01

    The free radical theory of aging proposes that reactive oxygen species (ROS)-induced accumulation of damage to cellular macromolecules is a primary driving force of aging and a major determinant of lifespan. Although this theory is one of the most popular explanations for the cause of aging, several experimental rodent models of antioxidant manipulation have failed to affect lifespan. Moreover, antioxidant supplementation clinical trials have been largely disappointing. The mitochondrial theory of aging specifies more particularly that mitochondria are both the primary sources of ROS and the primary targets of ROS damage. In addition to effects on lifespan and aging, mitochondrial ROS have been shown to play a central role in healthspan of many vital organ systems. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and dysfunction in aging and healthspan, including cardiac aging, age-dependent cardiovascular diseases, skeletal muscle aging, neurodegenerative diseases, insulin resistance and diabetes as well as age-related cancers. The crosstalk of mitochondrial ROS, redox, and other cellular signaling is briefly presented. Potential therapeutic strategies to improve mitochondrial function in aging and healthspan are reviewed, with a focus on mitochondrial protective drugs, such as the mitochondrial antioxidants MitoQ, SkQ1, and the mitochondrial protective peptide SS-31. PMID:24860647

  2. Mitochondria and oxidative stress in heart aging.

    PubMed

    Martín-Fernández, Beatriz; Gredilla, Ricardo

    2016-08-01

    As average lifespan of humans increases in western countries, cardiac diseases become the first cause of death. Aging is among the most important risk factors that increase susceptibility for developing cardiovascular diseases. The heart has very aerobic metabolism, and is highly dependent on mitochondrial function, since mitochondria generate more than 90 % of the intracellular ATP consumed by cardiomyocytes. In the last few decades, several investigations have supported the relevance of mitochondria and oxidative stress both in heart aging and in the development of cardiac diseases such as heart failure, cardiac hypertrophy, and diabetic cardiomyopathy. In the current review, we compile different studies corroborating this role. Increased mitochondria DNA instability, impaired bioenergetic efficiency, enhanced apoptosis, and inflammation processes are some of the events related to mitochondria that occur in aging heart, leading to reduced cellular survival and cardiac dysfunction. Knowing the mitochondrial mechanisms involved in the aging process will provide a better understanding of them and allow finding approaches to more efficiently improve this process.

  3. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us?

    PubMed Central

    Hussain, Tarique; Yin, Yulong; Blachier, Francois; Tossou, Myrlene C. B.; Rahu, Najma

    2016-01-01

    Oxidative stress is viewed as an imbalance between the production of reactive oxygen species (ROS) and their elimination by protective mechanisms, which can lead to chronic inflammation. Oxidative stress can activate a variety of transcription factors, which lead to the differential expression of some genes involved in inflammatory pathways. The inflammation triggered by oxidative stress is the cause of many chronic diseases. Polyphenols have been proposed to be useful as adjuvant therapy for their potential anti-inflammatory effect, associated with antioxidant activity, and inhibition of enzymes involved in the production of eicosanoids. This review aims at exploring the properties of polyphenols in anti-inflammation and oxidation and the mechanisms of polyphenols inhibiting molecular signaling pathways which are activated by oxidative stress, as well as the possible roles of polyphenols in inflammation-mediated chronic disorders. Such data can be helpful for the development of future antioxidant therapeutics and new anti-inflammatory drugs. PMID:27738491

  4. Oxidative stress in asthma: a distinct clinical and pathologic feature?

    PubMed

    Li, Y; Li, G P

    2016-01-01

    Asthma is a type of chronic airway inflammation. Corticosteroids are inadequate for asthma therapy. However, it remains unclear whether oxidative stress is a distinct clinical and pathologic feature in asthma. We reviewed the articles on asthma-associated oxidative stress. The exposures to airborne allergens, such as house dust mite (HDM) and birch pollen, may not only trigger innate and adaptive immune responses but also cause oxidative stress damage in the airways. Allergen-induced reactive oxygen species (ROS) is involved in p38 MAPK, phosphoinositide-3-kinase (PI3K)/Akt and nuclear factor erythroid 2-related factor (Nrf2) kinase pathway signaling. Airborne particulate matter (PM) is an important environmental contaminant and is related to asthma development through increasing oxidative stress in the airways. Whether oxidative stress status is associated with the degree of asthma is needed to be further studied. Oxidative stress-induced corticosteroid insensitivity was associated with p38 MAPK, PI3K/Akt and Nrf2 signaling, and inhibited histone deacetylase 2 (HDAC2) activity and corticosteroid receptor (GR) function. Antioxidant treatments may be useful for oxidative stress in asthma.

  5. Oxidative stress responses in Escherichia coli and Salmonella typhimurium.

    PubMed Central

    Farr, S B; Kogoma, T

    1991-01-01

    Oxidative stress is strongly implicated in a number of diseases, such as rheumatoid arthritis, inflammatory bowel disorders, and atherosclerosis, and its emerging as one of the most important causative agents of mutagenesis, tumorigenesis, and aging. Recent progress on the genetics and molecular biology of the cellular responses to oxidative stress, primarily in Escherichia coli and Salmonella typhimurium, is summarized. Bacteria respond to oxidative stress by invoking two distinct stress responses, the peroxide stimulon and the superoxide stimulon, depending on whether the stress is mediated by peroxides or the superoxide anion. The two stimulons each contain a set of more than 30 genes. The expression of a subset of genes in each stimulon is under the control of a positive regulatory element; these genes constitute the OxyR and SoxRS regulons. The schemes of regulation of the two regulons by their respective regulators are reviewed in detail, and the overlaps of these regulons with other stress responses such as the heat shock and SOS responses are discussed. The products of Oxy-R- and SoxRS-regulated genes, such as catalases and superoxide dismutases, are involved in the prevention of oxidative damage, whereas others, such as endonuclease IV, play a role in the repair of oxidative damage. The potential roles of these and other gene products in the defense against oxidative damage in DNA, proteins, and membranes are discussed in detail. A brief discussion of the similarities and differences between oxidative stress responses in bacteria and eukaryotic organisms concludes this review. PMID:1779927

  6. Dietary Modulation of Oxidative Stress in Alzheimer's Disease.

    PubMed

    Thapa, Arjun; Carroll, Nick J

    2017-07-21

    Cells generate unpaired electrons, typically via oxygen- or nitrogen-based by-products during normal cellular respiration and under stressed situations. These pro-oxidant molecules are highly unstable and may oxidize surrounding cellular macromolecules. Under normal conditions, the reactive oxygen or nitrogen species can be beneficial to cell survival and function by destroying and degrading pathogens or antigens. However, excessive generation and accumulation of the reactive pro-oxidant species over time can damage proteins, lipids, carbohydrates, and nucleic acids. Over time, this oxidative stress can contribute to a range of aging-related degenerative diseases such as cancer, diabetes, macular degeneration, and Alzheimer's, and Parkinson's diseases. It is well accepted that natural compounds, including vitamins A, C, and E, β-carotene, and minerals found in fruits and vegetables are powerful anti-oxidants that offer health benefits against several different oxidative stress induced degenerative diseases, including Alzheimer's disease (AD). There is increasing interest in developing anti-oxidative therapeutics to prevent AD. There are contradictory and inconsistent reports on the possible benefits of anti-oxidative supplements; however, fruits and vegetables enriched with multiple anti-oxidants (e.g., flavonoids and polyphenols) and minerals may be highly effective in attenuating the harmful effects of oxidative stress. As the physiological activation of either protective or destructive pro-oxidant behavior remains relatively unclear, it is not straightforward to relate the efficacy of dietary anti-oxidants in disease prevention. Here, we review oxidative stress mediated toxicity associated with AD and highlight the modulatory roles of natural dietary anti-oxidants in preventing AD.

  7. Protein Methionine Sulfoxide Dynamics in Arabidopsis thaliana under Oxidative Stress

    PubMed Central

    Jacques, Silke; Ghesquière, Bart; De Bock, Pieter-Jan; Demol, Hans; Wahni, Khadija; Willems, Patrick; Messens, Joris; Van Breusegem, Frank; Gevaert, Kris

    2015-01-01

    Reactive oxygen species such as hydrogen peroxide can modify proteins via direct oxidation of their sulfur-containing amino acids, cysteine and methionine. Methionine oxidation, studied here, is a reversible posttranslational modification that is emerging as a mechanism by which proteins perceive oxidative stress and function in redox signaling. Identification of proteins with oxidized methionines is the first prerequisite toward understanding the functional effect of methionine oxidation on proteins and the biological processes in which they are involved. Here, we describe a proteome-wide study of in vivo protein-bound methionine oxidation in plants upon oxidative stress using Arabidopsis thaliana catalase 2 knock-out plants as a model system. We identified over 500 sites of oxidation in about 400 proteins and quantified the differences in oxidation between wild-type and catalase 2 knock-out plants. We show that the activity of two plant-specific glutathione S-transferases, GSTF9 and GSTT23, is significantly reduced upon oxidation. And, by sampling over time, we mapped the dynamics of methionine oxidation and gained new insights into this complex and dynamic landscape of a part of the plant proteome that is sculpted by oxidative stress. PMID:25693801

  8. 13 reasons why the brain is susceptible to oxidative stress.

    PubMed

    Cobley, James Nathan; Fiorello, Maria Luisa; Bailey, Damian Miles

    2018-05-01

    The human brain consumes 20% of the total basal oxygen (O 2 ) budget to support ATP intensive neuronal activity. Without sufficient O 2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O 2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O 2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity) through redox signalling (i.e. positive functionality). Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality). To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  9. The Role of Flavonoids on Oxidative Stress in Epilepsy

    PubMed Central

    Diniz, Tâmara Coimbra; Silva, Juliane Cabral; de Lima-Saraiva, Sarah Raquel Gomes; Ribeiro, Fernanda Pires Rodrigues de Almeida; Pacheco, Alessandra Gomes Marques; de Freitas, Rivelilson Mendes; Quintans-Júnior, Lucindo José; Quintans, Jullyana de Souza Siqueira; Mendes, Rosemairy Luciane; Almeida, Jackson Roberto Guedes da Silva

    2015-01-01

    Backgrounds. Oxidative stress can result from excessive free-radical production and it is likely implicated as a possible mechanism involved in the initiation and progression of epileptogenesis. Flavonoids can protect the brain from oxidative stress. In the central nervous system (CNS) several flavonoids bind to the benzodiazepine site on the GABAA-receptor resulting in anticonvulsive effects. Objective. This review provides an overview about the role of flavonoids in oxidative stress in epilepsy. The mechanism of action of flavonoids and its relation to the chemical structure is also discussed. Results/Conclusions. There is evidence that suggests that flavonoids have potential for neuroprotection in epilepsy. PMID:25653736

  10. A comprehensive study of oxidative stress in sudden hearing loss.

    PubMed

    Gul, Fatih; Muderris, Togay; Yalciner, Gokhan; Sevil, Ergun; Bercin, Sami; Ergin, Merve; Babademez, Mehmet Ali; Kiris, Muzaffer

    2017-03-01

    Little is known about the association between idiopathic sudden sensorineural hearing loss (ISSNHL) and oxidative stress. We investigated changes in a wide range of oxidants and antioxidants to create a comprehensive picture of oxidative imbalance. In the peripheral blood of 50 ISSNHL patients and 50 healthy subjects, total oxidant status (TOS), total antioxidant status (TAS), paraoxonase (PON), thiol/disulphide levels were measured. Moreover, a global oxidative stress index, reflecting both oxidative and antioxidant counterparts, was also calculated. One-way analysis between oxidative markers and severity of hearing loss were evaluated. The ISSNHL patients showed significantly higher TOS levels than controls (6.02 ± 3.17 vs. 4.5 ± 2.22; p = 0.018). The oxidative index was also significantly higher in patients than controls (0.39 ± 0.19 vs. 0.3 ± 0.14; p = 0.035). TAS, PON, native thiol, and total thiol were not altered. There was no statistical significance between oxidative markers and severity of hearing loss. The binary logistic regression model revealed that disulphide and TOS were associated with ISSNHL. There are alterations in a wide array of oxidants and antioxidants, with balance shifting toward increased oxidative stress in ISSNHL. Our findings may suggest endothelial dysfunction in ISSNHL etiopathogenesis.

  11. Oxidative stress as an iceberg in carcinogenesis and cancer biology.

    PubMed

    Toyokuni, Shinya

    2016-04-01

    After the conquest of numerous infectious diseases, the average life span for humans has been enormously prolonged, reaching more than 80 years in many developed countries. However, cancer is one of the top causes of death, and its incidence continues to increase in many countries, including Japan. I was deeply influenced during my career as a cancer researcher by the concept of oxidative stress, which was established by Helmut Sies in 1985. I have no doubt that oxidative stress is a major cause of carcinogenesis in humans but that other factors and chemicals modify it. Notably, established cancer cells are more oxidatively stressed than their non-tumorous counterparts are, and this stress may be associated with selection under oxidative stress and, thus, faster proliferation compared with non-tumorous cells. For cancer prevention, both avoidance of specific risks that are associated with genetic susceptibility and decreasing oxidative stress in general should delay carcinogenesis. For cancer therapy, individualization and precision medicine require further research in the future. In addition to the currently burgeoning array of humanized antibodies and protein kinase inhibitors, novel methods to increase oxidative stress only in cancer cells would be helpful. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Severe Life Stress and Oxidative Stress in the Brain: From Animal Models to Human Pathology

    PubMed Central

    Jaquet, Vincent; Trabace, Luigia; Krause, Karl-Heinz

    2013-01-01

    Abstract Significance: Severe life stress (SLS), as opposed to trivial everyday stress, is defined as a serious psychosocial event with the potential of causing an impacting psychological traumatism. Recent Advances: Numerous studies have attempted to understand how the central nervous system (CNS) responds to SLS. This response includes a variety of morphological and neurochemical modifications; among them, oxidative stress is almost invariably observed. Oxidative stress is defined as disequilibrium between oxidant generation and the antioxidant response. Critical Issues: In this review, we discuss how SLS leads to oxidative stress in the CNS, and how the latter impacts pathophysiological outcomes. We also critically discuss experimental methods that measure oxidative stress in the CNS. The review covers animal models and human observations. Animal models of SLS include sleep deprivation, maternal separation, and social isolation in rodents, and the establishment of hierarchy in non-human primates. In humans, SLS, which is caused by traumatic events such as child abuse, war, and divorce, is also accompanied by oxidative stress in the CNS. Future Directions: The outcome of SLS in humans ranges from resilience, over post-traumatic stress disorder, to development of chronic mental disorders. Defining the sources of oxidative stress in SLS might in the long run provide new therapeutic avenues. Antioxid. Redox Signal. 18, 1475–1490. PMID:22746161

  13. Mini-review: Biofilm responses to oxidative stress.

    PubMed

    Gambino, Michela; Cappitelli, Francesca

    2016-01-01

    Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.

  14. Oxidative stress negatively affects human sperm mitochondrial respiration.

    PubMed

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress.

    PubMed

    Zimmer, Cédric; Spencer, Karen A

    2015-05-01

    Stress exposure during early-life development can have long-term consequences for a variety of biological functions including oxidative stress. The link between early-life stress and oxidative balance is beginning to be explored and previous studies have focused on this link in adult non-breeding or immature individuals. However, as oxidative stress is considered as the main physiological mechanism underlying the trade-off between self-maintenance and investment in reproduction, it is necessary to look at the consequences of early-life stress on oxidative status during reproduction. Here, we investigated the effects of exposure to pre- and/or post-natal stress on oxidative balance during reproduction under benign or stressful environmental conditions in an avian model species, the Japanese quail. We determined total antioxidant status (TAS), total oxidant status (TOS) and resistance to a free-radical attack in individual exposed to pre-natal stress, post-natal stress or both and in control individuals exposed to none of the stressors. TAS levels decreased over time in all females that reproduced under stressful conditions. TOS decreased between the beginning and the end of reproductive period in pre-natal control females. In all females, resistance to a free-radical attack decreased over the reproductive event but this decrease was more pronounced in females from a pre-natal stress development. Our results suggest that pre-natal stress may be associated with a higher cost of reproduction in terms of oxidative stress. These results also confirm that early-life stress can be associated with both benefits and costs depending of the life-history stage or environmental context. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Nexus Implicated in Bowel Disease Pathophysiology.

    PubMed

    Chong, Wai Chin; Shastri, Madhur D; Eri, Rajaraman

    2017-04-05

    The endoplasmic reticulum (ER) is a complex protein folding and trafficking organelle. Alteration and discrepancy in the endoplasmic reticulum environment can affect the protein folding process and hence, can result in the production of misfolded proteins. The accumulation of misfolded proteins causes cellular damage and elicits endoplasmic reticulum stress. Under such stress conditions, cells exhibit reduced functional synthesis, and will undergo apoptosis if the stress is prolonged. To resolve the ER stress, cells trigger an intrinsic mechanism called an unfolded protein response (UPR). UPR is an adaptive signaling process that triggers multiple pathways through the endoplasmic reticulum transmembrane transducers, to reduce and remove misfolded proteins and improve the protein folding mechanism, in order to improve and maintain endoplasmic reticulum homeostasis. An increasing number of studies support the view that oxidative stress has a strong connection with ER stress. During the protein folding process, reactive oxygen species are produced as by-products, leading to impaired reduction-oxidation (redox) balance conferring oxidative stress. As the protein folding process is dependent on redox homeostasis, the oxidative stress can disrupt the protein folding mechanism and enhance the production of misfolded proteins, causing further ER stress. It is proposed that endoplasmic reticulum stress and oxidative stress together play significant roles in the pathophysiology of bowel diseases.

  17. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Nexus Implicated in Bowel Disease Pathophysiology

    PubMed Central

    Chong, Wai Chin; Shastri, Madhur D.; Eri, Rajaraman

    2017-01-01

    The endoplasmic reticulum (ER) is a complex protein folding and trafficking organelle. Alteration and discrepancy in the endoplasmic reticulum environment can affect the protein folding process and hence, can result in the production of misfolded proteins. The accumulation of misfolded proteins causes cellular damage and elicits endoplasmic reticulum stress. Under such stress conditions, cells exhibit reduced functional synthesis, and will undergo apoptosis if the stress is prolonged. To resolve the ER stress, cells trigger an intrinsic mechanism called an unfolded protein response (UPR). UPR is an adaptive signaling process that triggers multiple pathways through the endoplasmic reticulum transmembrane transducers, to reduce and remove misfolded proteins and improve the protein folding mechanism, in order to improve and maintain endoplasmic reticulum homeostasis. An increasing number of studies support the view that oxidative stress has a strong connection with ER stress. During the protein folding process, reactive oxygen species are produced as by-products, leading to impaired reduction-oxidation (redox) balance conferring oxidative stress. As the protein folding process is dependent on redox homeostasis, the oxidative stress can disrupt the protein folding mechanism and enhance the production of misfolded proteins, causing further ER stress. It is proposed that endoplasmic reticulum stress and oxidative stress together play significant roles in the pathophysiology of bowel diseases. PMID:28379196

  18. Regulation of oxidative stress in patients with Kawasaki disease.

    PubMed

    Sekine, Kaori; Mochizuki, Hiroyuki; Inoue, Yoshinari; Kobayashi, Tohru; Suganuma, Eisuke; Matsuda, Shinichi; Arakawa, Hirokazu

    2012-06-01

    Although there is ample evidence that Kawasaki disease (KD) is associated with vascular inflammation, few studies have addressed the influence of oxidative stress. The goal of this study was to determine whether oxidative stress contributes to inflammation during KD, and also whether corticosteroid therapy can reduce oxidative stress. Serum reduced glutathione (sGSH) and serum thioredoxin (sTRX) were measured during KD to evaluate the phase-dependent change in the redox state in KD. Additionally, the efficacy of the therapies to reduce oxidative stress was assessed. The sGSH level significantly decreased post-intravenous immunoglobulin (IVIG). The sGSH level significantly increased during the convalescent phase. The sTRX level was significantly lower during the convalescent phase than that during the pre- and the post-IVIG. There was no difference in the sGSH and sTRX changes between the IVIG therapy and the IVIG + prednisolone (PSL) therapy, except for the convalescent phase in sTRX. Systemic inflammation in KD induces changes in the redox state, whereas the IVIG + PSL therapy did not show any remarkable change on oxidative stress in comparison to the IVIG therapy. Therapeutic intervention against oxidative stress might therefore be beneficial as adjunctive therapies for KD.

  19. Infrared Dielectric Properties of Low-Stress Silicon Oxide

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe; Wollack, Edward J.; Brown, Ari D.; Miller, Kevin H.

    2016-01-01

    Silicon oxide thin films play an important role in the realization of optical coatings and high-performance electrical circuits. Estimates of the dielectric function in the far- and mid-infrared regime are derived from the observed transmittance spectrum for a commonly employed low-stress silicon oxide formulation. The experimental, modeling, and numerical methods used to extract the dielectric function are presented.

  20. ELECTROSTATIC CHARGE STIMULATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can create oxidative stress (OS)-mediated inflammatory changes upon impact. The oxidative burst signals the activation of phage-lineage cells such as peripheral macrophages, Kupffer cells and CNS microgl...

  1. CONCENTRATED AMBIENT AIR POLLUTION CREATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  2. Oxidative Stress, Inflammation, and Neuroprogression in Chronic PTSD.

    PubMed

    Miller, Mark W; Lin, Alex P; Wolf, Erika J; Miller, Danielle R

    Posttraumatic stress disorder is a serious and often disabling syndrome that develops in response to a traumatic event. Many individuals who initially develop the disorder go on to experience a chronic form of the condition that in some cases can last for many years. Among these patients, psychiatric and medical comorbidities are common, including early onset of age-related conditions such as chronic pain, cardiometabolic disease, neurocognitive disorders, and dementia. The hallmark symptoms of posttraumatic stress-recurrent sensory-memory reexperiencing of the trauma(s)-are associated with concomitant activations of threat- and stress-related neurobiological pathways that occur against a tonic backdrop of sleep disturbance and heightened physiological arousal. Emerging evidence suggests that the molecular consequences of this stress-perpetuating syndrome include elevated systemic levels of oxidative stress and inflammation. In this article we review evidence for the involvement of oxidative stress and inflammation in chronic PTSD and the neurobiological consequences of these processes, including accelerated cellular aging and neuroprogression. Our aim is to update and expand upon previous reviews of this rapidly developing literature and to discuss magnetic resonance spectroscopy as an imaging technology uniquely suited to measuring oxidative stress and inflammatory markers in vivo. Finally, we highlight future directions for research and avenues for the development of novel therapeutics targeting oxidative stress and inflammation in patients with PTSD.

  3. Oxidative Stress in Alzheimer's Disease: Why Did Antioxidant Therapy Fail?

    PubMed Central

    Cedazo-Minguez, Angel

    2014-01-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly, with increasing prevalence and no disease-modifying treatment available yet. A remarkable amount of data supports the hypothesis that oxidative stress is an early and important pathogenic operator in AD. However, all clinical studies conducted to date did not prove a clear beneficial effect of antioxidant treatment in AD patients. In the current work, we review the current knowledge about oxidative stress in AD pathogeny and we suggest future paths that are worth to be explored in animal models and clinical studies, in order to get a better approach of oxidative imbalance in this inexorable neurodegenerative disease. PMID:24669288

  4. Oxidative stress in Alzheimer's disease: why did antioxidant therapy fail?

    PubMed

    Persson, Torbjörn; Popescu, Bogdan O; Cedazo-Minguez, Angel

    2014-01-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly, with increasing prevalence and no disease-modifying treatment available yet. A remarkable amount of data supports the hypothesis that oxidative stress is an early and important pathogenic operator in AD. However, all clinical studies conducted to date did not prove a clear beneficial effect of antioxidant treatment in AD patients. In the current work, we review the current knowledge about oxidative stress in AD pathogeny and we suggest future paths that are worth to be explored in animal models and clinical studies, in order to get a better approach of oxidative imbalance in this inexorable neurodegenerative disease.

  5. Oxidative stress and chronic renal failure: markers and management.

    PubMed

    Massy, Ziad A; Nguyen-Khoa, Thao

    2002-01-01

    New reliable oxidative stress markers are present in chronic renal failure (CRF) patients, indicating that CRF is a pro-oxidant state. However, the pathogenesis of oxidative stress in CRF patients remains poorly defined. Moreover, the limited data available provide no clear-cut evidence in favor of the clinical benefit of antioxidant manoeuvres aimed at reducing cardiovascular disease in CRF patients or in the general population as well. Therefore, no practical recommendations can be given at this stage, and further studies are clearly needed.

  6. Oxidative stress in β-thalassaemia and sickle cell disease

    PubMed Central

    Voskou, S.; Aslan, M.; Fanis, P.; Phylactides, M.; Kleanthous, M.

    2015-01-01

    Sickle cell disease and β-thalassaemia are inherited haemoglobinopathies resulting in structural and quantitative changes in the β-globin chain. These changes lead to instability of the generated haemoglobin or to globin chain imbalance, which in turn impact the oxidative environment both intracellularly and extracellularly. The ensuing oxidative stress and the inability of the body to adequately overcome it are, to a large extent, responsible for the pathophysiology of these diseases. This article provides an overview of the main players and control mechanisms involved in the establishment of oxidative stress in these haemoglobinopathies. PMID:26285072

  7. Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging.

    PubMed

    Kong, Yahui; Trabucco, Sally E; Zhang, Hong

    2014-01-01

    Aging is characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-associated diseases and death. One potential cause of aging is the progressive accumulation of dysfunctional mitochondria and oxidative damage with age. Considerable efforts have been made in our understanding of the role of mitochondrial dysfunction and oxidative stress in aging and age-associated diseases. This chapter outlines the interplay between oxidative stress and mitochondrial dysfunction, and discusses their impact on senescence, cell death, stem cell function, age-associated diseases and longevity.

  8. Salivary markers of oxidative stress in oral diseases

    PubMed Central

    Tóthová, L'ubomíra; Kamodyová, Natália; Červenka, Tomáš; Celec, Peter

    2015-01-01

    Saliva is an interesting alternative diagnostic body fluid with several specific advantages over blood. These include non-invasive and easy collection and related possibility to do repeated sampling. One of the obstacles that hinders the wider use of saliva for diagnosis and monitoring of systemic diseases is its composition, which is affected by local oral status. However, this issue makes saliva very interesting for clinical biochemistry of oral diseases. Periodontitis, caries, oral precancerosis, and other local oral pathologies are associated with oxidative stress. Several markers of lipid peroxidation, protein oxidation and DNA damage induced by reactive oxygen species can be measured in saliva. Clinical studies have shown an association with oral pathologies at least for some of the established salivary markers of oxidative stress. This association is currently limited to the population level and none of the widely used markers can be applied for individual diagnostics. Oxidative stress seems to be of local oral origin, but it is currently unclear whether it is caused by an overproduction of reactive oxygen species due to inflammation or by the lack of antioxidants. Interventional studies, both, in experimental animals as well as humans indicate that antioxidant treatment could prevent or slow-down the progress of periodontitis. This makes the potential clinical use of salivary markers of oxidative stress even more attractive. This review summarizes basic information on the most commonly used salivary markers of oxidative damage, antioxidant status, and carbonyl stress and the studies analyzing these markers in patients with caries or periodontitis. PMID:26539412

  9. Compensation for chronic oxidative stress in ALADIN null mice

    PubMed Central

    Peitzsch, Mirko; Gärtner, Sebastian; Landgraf, Dana; Eisenhofer, Graeme; Huebner, Angela; Koehler, Katrin

    2018-01-01

    ABSTRACT Mutations in the AAAS gene coding for the nuclear pore complex protein ALADIN lead to the autosomal recessive disorder triple A syndrome. Triple A patients present with a characteristic phenotype including alacrima, achalasia and adrenal insufficiency. Patient fibroblasts show increased levels of oxidative stress, and several in vitro studies have demonstrated that the nucleoporin ALADIN is involved in both the cellular oxidative stress response and adrenal steroidogenesis. It is known that ALADIN knock-out mice lack a phenotype resembling human triple A syndrome. The objective of this study was to determine whether the application of chronic oxidative stress by ingestion of paraquat would generate a triple A-like phenotype in ALADIN null mice. Adult male mice were fed either a paraquat (0.25 g/kg diet) or control diet for 11 days. After application of chronic oxidative stress, ALADIN knock-out mice presented with an unexpected compensated glutathione metabolism, but lacked a phenotype resembling human triple A syndrome. We did not observe increased levels of oxidative stress and alterations in adrenal steroidogenesis in mice depleted for ALADIN. This study stresses the species-specific role of the nucleoporin ALADIN, which in mice involves a novel compensatory mechanism for regulating the cellular glutathione redox response. PMID:29362278

  10. Compensation for chronic oxidative stress in ALADIN null mice.

    PubMed

    Jühlen, Ramona; Peitzsch, Mirko; Gärtner, Sebastian; Landgraf, Dana; Eisenhofer, Graeme; Huebner, Angela; Koehler, Katrin

    2018-01-23

    Mutations in the AAAS gene coding for the nuclear pore complex protein ALADIN lead to the autosomal recessive disorder triple A syndrome. Triple A patients present with a characteristic phenotype including alacrima, achalasia and adrenal insufficiency. Patient fibroblasts show increased levels of oxidative stress, and several in vitro studies have demonstrated that the nucleoporin ALADIN is involved in both the cellular oxidative stress response and adrenal steroidogenesis. It is known that ALADIN knock-out mice lack a phenotype resembling human triple A syndrome. The objective of this study was to determine whether the application of chronic oxidative stress by ingestion of paraquat would generate a triple A-like phenotype in ALADIN null mice. Adult male mice were fed either a paraquat (0.25 g/kg diet) or control diet for 11 days. After application of chronic oxidative stress, ALADIN knock-out mice presented with an unexpected compensated glutathione metabolism, but lacked a phenotype resembling human triple A syndrome. We did not observe increased levels of oxidative stress and alterations in adrenal steroidogenesis in mice depleted for ALADIN. This study stresses the species-specific role of the nucleoporin ALADIN, which in mice involves a novel compensatory mechanism for regulating the cellular glutathione redox response. © 2018. Published by The Company of Biologists Ltd.

  11. Zinc and its effects on oxidative stress in Alzheimer's disease.

    PubMed

    Yuan, Ye; Niu, Fenglan; Liu, Ya; Lu, Na

    2014-06-01

    Alzheimer's disease (AD) is a progressive age-related neurodegenerative disorder. The patho-physiological characteristic of AD is abnormal deposition of fibrillar amyloid β protein, intracellular neurofibrillary tangles, oxidative damage and neuronal death in the brain. Zinc is an important trace element in human body regulating many physiological processes. Increasing evidence suggests that the etiology of AD may involve disruptions of zinc homeostasis, and oxidative stress facilitating reactive oxygen species production is an early and sustained event in AD disease progression. Both Zn deficiency and Zn overload may affect cellular Zn distribution and be linked to neurodegeneration in AD. Meanwhile, Zn may play paradoxical roles in initiating and inhibiting oxidative stress and neurotoxicity. This review will focus on aspects of the role of zinc in AD, which includes a large body of research regarding zinc dyshomeostasis and its relation with oxidative stress.

  12. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus

    PubMed Central

    Tangvarasittichai, Surapon

    2015-01-01

    Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356

  13. [The development of therapeutics targeting oxidative stress in prostate cancer].

    PubMed

    Shiota, Masaki; Yokomizo, Akira; Naito, Seiji

    2014-12-01

    Oxidative stress is caused by increased reactive-oxygen species (ROS) due to augmented ROS production and impaired anti-oxidative capacity. Recently, oxidative stress has been revealed to promote castration resistance via androgen receptor(AR)-dependent pathway such as AR overexpression, AR cofactor, and AR post-translational modification as well as AR-independent pathway, leading to the emergence of castration-resistant prostate cancer (CRPC). Therefore, antioxidants therapy using natural and chemical ROS scavengers and inhibitors of ROS production seems to be a promising therapy for CRPC as well as preventing castration resistance. However, at present, the application to therapeutics is limited. Therefore, further research on oxidative stress in prostate cancer, as well as on the development for clinical application would be needed.

  14. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress

    PubMed Central

    Zhang, Shenshen; Ma, Jifei; Wang, Hao; Wang, Fudi

    2017-01-01

    Oxidative stress is a common denominator in the pathogenesis of many chronic diseases. Therefore, antioxidants are often used to protect cells and tissues and reverse oxidative damage. It is well known that iron metabolism underlies the dynamic interplay between oxidative stress and antioxidants in many pathophysiological processes. Both iron deficiency and iron overload can affect redox state, and these conditions can be restored to physiological conditions using iron supplementation and iron chelation, respectively. Similarly, the addition of antioxidants to these treatment regimens has been suggested as a viable therapeutic approach for attenuating tissue damage induced by oxidative stress. Notably, many bioactive plant-derived compounds have been shown to regulate both iron metabolism and redox state, possibly through interactive mechanisms. This review summarizes our current understanding of these mechanisms and discusses compelling preclinical evidence that bioactive plant-derived compounds can be both safe and effective for managing both iron deficiency and iron overload conditions. PMID:28657578

  15. Markers of Oxidative Stress and Neuroprogression in Depression Disorder

    PubMed Central

    Vaváková, Magdaléna; Trebatická, Jana

    2015-01-01

    Major depression is multifactorial disorder with high prevalence and alarming prognostic in the nearest 15 years. Several mechanisms of depression are known. Neurotransmitters imbalance and imbalance between neuroprogressive and neuroprotective factors are observed in major depression. Depression is accompanied by inflammatory responses of the organism and consequent elevation of proinflammatory cytokines and increased lipid peroxidation are described in literature. Neuropsychiatric disorders including major depression are also associated with telomerase shortening, oxidative changes in nucleotides, and polymorphisms in several genes connected to metabolism of reactive oxygen species. Mitochondrion dysfunction is directly associated with increasing levels of oxidative stress. Oxidative stress plays significant role in pathophysiology of major depression via actions of free radicals, nonradical molecules, and reactive oxygen and nitrogen species. Products of oxidative stress represent important parameters for measuring and predicting of depression status as well as for determining effectiveness of administrated antidepressants. Positive effect of micronutrients, vitamins, and antioxidants in depression treatment is also reviewed. PMID:26078821

  16. Oxidative stress in Alzheimer disease: a possibility for prevention.

    PubMed

    Bonda, David J; Wang, Xinglong; Perry, George; Nunomura, Akihiko; Tabaton, Massimo; Zhu, Xiongwei; Smith, Mark A

    2010-01-01

    Oxidative stress is at the forefront of Alzheimer disease (AD) research. While its implications in the characteristic neurodegeneration of AD are vast, the most important aspect is that it seems increasingly apparent that oxidative stress is in fact a primary progenitor of the disease, and not merely an epiphenomenon. Moreover, evidence indicates that a long "dormant period" of gradual oxidative damage accumulation precedes and actually leads to the seemingly sudden appearance of clinical and pathological AD symptoms, including amyloid-beta deposition, neurofibrillary tangle formation, metabolic dysfunction, and cognitive decline. These findings provide important insights into the development of potential treatment regimens and even allude to the possibility of a preventative cure. In this review, we elaborate on the dynamic role of oxidative stress in AD and present corresponding treatment strategies that are currently under investigation. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders.

    PubMed

    Islam, Md Torequl

    2017-01-01

    Reactive species play an important role in physiological functions. Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species along with the failure of balance by the body's antioxidant enzyme systems results in destruction of cellular structures, lipids, proteins, and genetic materials such as DNA and RNA. Moreover, the effects of reactive species on mitochondria and their metabolic processes eventually cause a rise in ROS/RNS levels, leading to oxidation of mitochondrial proteins, lipids, and DNA. Oxidative stress has been considered to be linked to the etiology of many diseases, including neurodegenerative diseases (NDDs) such as Alzheimer diseases, Amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, Multiple sclerosis, and Parkinson's diseases. In addition, oxidative stress causing protein misfold may turn to other NDDs include Creutzfeldt-Jakob disease, Bovine Spongiform Encephalopathy, Kuru, Gerstmann-Straussler-Scheinker syndrome, and Fatal Familial Insomnia. An overview of the oxidative stress and mitochondrial dysfunction-linked NDDs has been summarized in this review.

  18. Oxidative Stress in Human Atherothrombosis: Sources, Markers and Therapeutic Targets

    PubMed Central

    Martin-Ventura, Jose Luis; Rodrigues-Diez, Raquel; Martinez-Lopez, Diego; Salaices, Mercedes; Blanco-Colio, Luis Miguel; Briones, Ana M.

    2017-01-01

    Atherothrombosis remains one of the main causes of morbidity and mortality worldwide. The underlying pathology is a chronic pathological vascular remodeling of the arterial wall involving several pathways, including oxidative stress. Cellular and animal studies have provided compelling evidence of the direct role of oxidative stress in atherothrombosis, but such a relationship is not clearly established in humans and, to date, clinical trials on the possible beneficial effects of antioxidant therapy have provided equivocal results. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is one of the main sources of reactive oxygen species (ROS) in human atherothrombosis. Moreover, leukocyte-derived myeloperoxidase (MPO) and red blood cell-derived iron could be involved in the oxidative modification of lipids/lipoproteins (LDL/HDL) in the arterial wall. Interestingly, oxidized lipoproteins, and antioxidants, have been analyzed as potential markers of oxidative stress in the plasma of patients with atherothrombosis. In this review, we will revise sources of ROS, focusing on NADPH oxidase, but also on MPO and iron. We will also discuss the impact of these oxidative systems on LDL and HDL, as well as the value of these modified lipoproteins as circulating markers of oxidative stress in atherothrombosis. We will finish by reviewing some antioxidant systems and compounds as therapeutic strategies to prevent pathological vascular remodeling. PMID:29099757

  19. Neuroendocrine, immune and oxidative stress in shift workers.

    PubMed

    Faraut, Brice; Bayon, Virginie; Léger, Damien

    2013-12-01

    Shift work is commonly associated with disturbed life rhythms, resulting in chronic exposure to circadian desynchronization and sleep restriction. Epidemiological data have shown that shift workers are at an increased risk of cardiovascular disease and breast cancer. In this review, we will explore how observed increases in neuroendocrine stress, non-specific immune responses and pro-oxidative status could act as biological mediators for these damaging health risks in shift workers. To explain these risks, compelling evidence from laboratory studies links circadian misalignment but also sleep restriction to disruptions in the neuroendocrine, immune and oxidative stress systems. Assessment of neuroendocrine, oxidative and immune stress in the shift worker population is still a limited and novel field, which may have considerable clinical relevance. Finally, we will consider the potential benefits of a countermeasure, such as napping, in minimizing the neuroendocrine and immune stress and cardiovascular risk imposed by shift work. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Ergometry induces systemic oxidative stress in healthy human subjects.

    PubMed

    Antoncic-Svetina, Maja; Sentija, Davor; Cipak, Ana; Milicic, Davor; Meinitzer, Andreas; Tatzber, Franz; Andrisic, Luka; Zelzer, Sieglinde; Zarkovic, Neven

    2010-05-01

    Oxidative stress is an important pathogenic factor of cancer and cardiovascular, metabolic and degenerative diseases. On the other hand, mild oxidative stress, as in case of physical exercise, can increase the antioxidant defense system. However, the mechanisms underlying such desirable effects of mild oxidative stress are not well understood, because the production of hydroxyl radical, the most aggressive oxygen free radical, was not yet evaluated under physiological circumstances. Therefore, in this study, we evaluated the overall production of hydroxyl radical using blood samples of ten healthy male students before and 1 h after ergometry. One h before exercise, they took salicylic acid (1g) orally so that hydroxyl radical was trapped with salicylic acid, yielding a measurable reaction product, 2,3-dihydroxybenzoic acid. Oxidative stress response to exercise was also evaluated in the volunteers without premedication by measuring serum peroxides and total antioxidant capacity of serum. These parameters of oxidative stress were then correlated with physical performance of the subjects. Ergometry caused an increase of the plasma hydroxyl radical level by 37.5% (p < 0.05), whereas the levels of total serum peroxides did not change significantly. Total serum antioxidant capacity, measured as uric acid equivalents, was higher after ergometry by 39.7% (p < 0.05), and was in positive correlation (r = 0.81) with anaerobic threshold, an indicator of physical condition. Hence, ergometry induces hydroxyl radical production and systemic oxidative stress response in the healthy subjects. Egometry could be used to study physiological oxidative stress response and to improve antioxidant defense capacities in humans.

  1. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies.

    PubMed

    Rani, Vibha; Deep, Gagan; Singh, Rakesh K; Palle, Komaraiah; Yadav, Umesh C S

    2016-03-01

    Increased body weight and metabolic disorder including insulin resistance, type 2 diabetes and cardiovascular complications together constitute metabolic syndrome. The pathogenesis of metabolic syndrome involves multitude of factors. A number of studies however indicate, with some conformity, that oxidative stress along with chronic inflammatory condition pave the way for the development of metabolic diseases. Oxidative stress, a state of lost balance between the oxidative and anti-oxidative systems of the cells and tissues, results in the over production of oxidative free radicals and reactive oxygen species (ROS). Excessive ROS generated could attack the cellular proteins, lipids and nucleic acids leading to cellular dysfunction including loss of energy metabolism, altered cell signalling and cell cycle control, genetic mutations, altered cellular transport mechanisms and overall decreased biological activity, immune activation and inflammation. In addition, nutritional stress such as that caused by high fat high carbohydrate diet also promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation, and decreased antioxidant system and reduced glutathione (GSH) levels. These changes lead to initiation of pathogenic milieu and development of several chronic diseases. Studies suggest that in obese person oxidative stress and chronic inflammation are the important underlying factors that lead to development of pathologies such as carcinogenesis, obesity, diabetes, and cardiovascular diseases through altered cellular and nuclear mechanisms, including impaired DNA damage repair and cell cycle regulation. Here we discuss the aspects of metabolic disorders-induced oxidative stress in major pathological conditions and strategies for their prevention and therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    PubMed Central

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K.; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z.; Mastorakos, George; Fatouros, Ioannis G.

    2017-01-01

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty. PMID:28106721

  3. Oxidative stress, protein damage and repair in bacteria.

    PubMed

    Ezraty, Benjamin; Gennaris, Alexandra; Barras, Frédéric; Collet, Jean-François

    2017-07-01

    Oxidative damage can have a devastating effect on the structure and activity of proteins, and may even lead to cell death. The sulfur-containing amino acids cysteine and methionine are particularly susceptible to reactive oxygen species (ROS) and reactive chlorine species (RCS), which can damage proteins. In this Review, we discuss our current understanding of the reducing systems that enable bacteria to repair oxidatively damaged cysteine and methionine residues in the cytoplasm and in the bacterial cell envelope. We highlight the importance of these repair systems in bacterial physiology and virulence, and we discuss several examples of proteins that become activated by oxidation and help bacteria to respond to oxidative stress.

  4. Elevated circulating nitric oxide levels correlates with enhanced oxidative stress in patients with hyperemesis gravidarum.

    PubMed

    Beyazit, Fatma; Türkön, Hakan; Pek, Eren; Ozturk, Filiz Halici; Ünsal, Mesut

    2018-02-01

    Since the biochemical and molecular mechanisms responsible for ongoing oxidative stress in hyperemesis gravidarum (HEG) patients have not yet been fully elucidated, the aim of this study was to evaluate the possible role of nitric oxide (NO), malondialdehyde (MDA) and other oxidative stress markers in the disease pathophysiology. Moreover, the relation between oxidative stress markers and Helicobacter pylori (H. pylori) infection was also investigated. Women with pregnancies complicated by HEG (n = 33) were compared with pregnant women without HEG (n = 30) and with healthy non-pregnant women (n = 31). Serum NO, MDA, total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI) and H. pylori infection status were determined for each subject. Serum NO levels and OSI index were found to be increased (p = .001 and .013, respectively) and TAS levels were decreased (p < .001) in HEG patients compared with both controls regardless of H. pylori infection status. Serum MDA and TOS levels were not different between the study groups. Helicobacter pylori infection rates were similar in each group. The reduced antioxidant activities, as well as the increased OSI and NO levels in HEG patients indicate possible oxidative stress conditions in HEG patients. Moreover, serum NO levels may be used as an adjunctive marker to distinguish HEG patients from other causes of emesis during pregnancy. Impact statement What is already known on this subject? Current evidence suggests that oxidative stress is a significant factor responsible for a number of complications during pregnancy. What do the results of this study add? Hyperemesis gravidarum is an oxidative stress condition, as reflected by increased nitric oxide (NO) and decreased total antioxidant status activity, regardless of H. Pylori infection. What are the implications for clinical practice and/or further research? Full disclosure of the association between circulating NO and

  5. Lithospermum erythrorhizon extract protects keratinocytes and fibroblasts against oxidative stress.

    PubMed

    Yoo, Hee Geun; Lee, Bong Han; Kim, Wooki; Lee, Jong Suk; Kim, Gun Hee; Chun, Ock K; Koo, Sung I; Kim, Dae-Ok

    2014-11-01

    Oxidative stress damages dermal and epidermal cells and degrades extracellular matrix proteins, such as collagen, ultimately leading to skin aging. The present study evaluated the potential protective effect of the aqueous methanolic extract obtained from Lithospermum erythrorhizon (LE) against oxidative stress, induced by H2O2 and ultraviolet (UV) irradiation, on human keratinocyte (HaCaT) and human dermal fibroblast-neonatal (HDF-n) cells. Exposure of cells to H2O2 or UVB irradiation markedly increased oxidative stress and reduced cell viability. However, pretreatment of cells with the LE extract not only increased cell viability (up to 84.5%), but also significantly decreased oxidative stress. Further, the LE extract downregulated the expression of matrix metalloproteinase-1, an endopeptidase that degrades extracellular matrix collagen. In contrast, treatment with the LE extract did not affect the expression of procollagen type 1 in HDF-n cells exposed to UVA irradiation. Thirteen phenolic compounds, including derivatives of shikonin and caffeic acid, were identified by ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. These results suggest that LE-derived extracts may protect oxidative-stress-induced skin aging by inhibiting degradation of skin collagen, and that this protection may derive at least in part from the antioxidant phenolics present in these extracts. Further studies are warranted to determine the potential utility of LE-derived extracts in both therapeutic and cosmetic applications.

  6. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    SciTech Connect

    Lefevre, Sophie; ED515 UPMC, 4 place Jussieu 75005 Paris; Sliwa, Dominika

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrialmore » fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.« less

  7. Role of Magnesium in Oxidative Stress in Individuals with Obesity.

    PubMed

    Morais, Jennifer Beatriz Silva; Severo, Juliana Soares; Santos, Loanne Rocha Dos; de Sousa Melo, Stéfany Rodrigues; de Oliveira Santos, Raisa; de Oliveira, Ana Raquel Soares; Cruz, Kyria Jayanne Clímaco; do Nascimento Marreiro, Dilina

    2017-03-01

    Adipose tissue is considered an endocrine organ that promotes excessive production of reactive oxygen species when in excess, thus contributing to lipid peroxidation. Magnesium deficiency contributes to the development of oxidative stress in obese individuals, as this mineral plays a role as an antioxidant, participates as a cofactor of several enzymes, maintains cell membrane stability and mitigates the effects of oxidative stress. The objective of this review is to bring together updated information on the participation of magnesium in the oxidative stress present in obesity. We conducted a search of articles published in the PubMed, SciELO and LILACS databases, using the keywords 'magnesium', 'oxidative stress', 'malondialdehyde', 'superoxide dismutase', 'glutathione peroxidase', 'reactive oxygen species', 'inflammation' and 'obesity'. The studies show that obese subjects have low serum concentrations of magnesium, as well as high concentrations of oxidative stress marker in these individuals. Furthermore, it is evident that the adequate intake of magnesium contributes to its appropriate homeostasis in the body. Thus, this review of current research can help define the need for intervention with supplementation of this mineral for the prevention and treatment of disorders associated with this chronic disease.

  8. Osteogenesis potential of different titania nanotubes in oxidative stress microenvironment.

    PubMed

    Yu, Yonglin; Shen, Xinkun; Luo, Zhong; Hu, Yan; Li, Menghuan; Ma, Pingping; Ran, Qichun; Dai, Liangliang; He, Ye; Cai, Kaiyong

    2018-06-01

    Oxidative stress is commonly existed in bone degenerative disease (osteoarthritis, osteoporosis etc.) and some antioxidants had great potential to enhance osteogenesis. In this study, we aim to investigate the anti-oxidative properties of various TiO 2 nanotubes (TNTs) so to screen the desirable size for improved osteogenesis and reveal the underlying molecular mechanism in vitro. Comparing cellular behaviors under normal and oxidative stress conditions, an interesting conclusion was obtained. In normal microenvironment, small TNTs were beneficial for adhesion and proliferation of osteoblasts, but large TNTs greatly increased osteogenic differentiation. However, after H 2 O 2 (300 μM) treatment (mimicking oxidative stress), only large TNTs samples demonstrated superior cellular behaviors of increased osteoblasts' adhesion, survival and differentiation when comparing with those of native titanium (control). Molecular results revealed that oxidative stress resistance of large nanotubes was closely related to the high expression of integrin α5β1 (ITG α5β1), which further up-regulated the production of anti-apoptotic proteins (p-FAK, p-Akt, p-FoxO3a and Bcl2) and down-regulated the expression of pro-apoptotic protein (Bax). Moreover, we found that Wnt signals (Wnt3a, Wnt5a, Lrp5, Lrp6 and β-catenin) played an important role in promoting osteogenic differentiation of osteoblasts under oxidative condition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Involvement of new oxidative stress markers in chronic spontaneous urticaria.

    PubMed

    Nettis, Eustachio; Distaso, Maria; Saitta, Salvatore; Casciaro, Marco; Cristani, Mariateresa; Saija, Antonina; Vacca, Angelo; Gangemi, Sebastiano; Minciullo, Paola L

    2017-10-01

    Oxidative stress is a result of an imbalance between endogenous production of free reactive oxygen species and reduced effectiveness of antioxidant defence mechanisms. Advanced glycation end products (AGEs) and advanced oxidation protein products (AOPPs) are compounds formed by transformation of macromolecules, including proteins which can serve as markers of oxidative stress and inflammation in several diseases. To investigate the role of AGEs and AOPPs as new markers of oxidative stress and inflammation in patients with chronic spontaneous urticaria (CSU). Advanced glycation end products and AOPP levels were determined in the sera of 85 patients with CSU and 64 healthy controls, using spectrofluorimetry and spectrophotometry, respectively. Advanced oxidation protein products levels in patients were statistically higher than those in controls. These levels were not affected by the presence of positive autologous serum test results or autologous plasma test results. No statistically significant differences were found between AGE levels in patients and controls. Formation of AGEs and AOPPs may be accelerated in immunological and allergic disorders. Depending on the sites evaluated, the presence or absence of oxidative stress in chronic urticaria is controversial. To our knowledge, this is the first study showing the possible involvement of AOPPs in CSU. The different behaviour observed for these two biomarkers is very likely due to the activation of specific related biochemical pathways associated with the condition under study.

  10. Oxidative Stress, Inflammation, and DNA Damage Responses Elicited by Silver, Titanium Dioxide, and Cerium Oxide Nanomaterials

    EPA Science Inventory

    Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...

  11. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage

    USDA-ARS?s Scientific Manuscript database

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked: considerable variation in oxidative stress resistance exists among and within species and ...

  12. Oxidative stress and life histories: unresolved issues and current needs.

    PubMed

    Speakman, John R; Blount, Jonathan D; Bronikowski, Anne M; Buffenstein, Rochelle; Isaksson, Caroline; Kirkwood, Tom B L; Monaghan, Pat; Ozanne, Susan E; Beaulieu, Michaël; Briga, Michael; Carr, Sarah K; Christensen, Louise L; Cochemé, Helena M; Cram, Dominic L; Dantzer, Ben; Harper, Jim M; Jurk, Diana; King, Annette; Noguera, Jose C; Salin, Karine; Sild, Elin; Simons, Mirre J P; Smith, Shona; Stier, Antoine; Tobler, Michael; Vitikainen, Emma; Peaker, Malcolm; Selman, Colin

    2015-12-01

    Life-history theory concerns the trade-offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life-history trade-offs, but the details remain obscure. As life-history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life-history trade-offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life-history information is available, cannot generally be performed without compromising the aims of the studies that generated the life-history data. There is a need therefore for novel non-invasive measurements of multi-tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life-history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life-history trade-offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting

  13. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis.

    PubMed

    Förstermann, Ulrich; Xia, Ning; Li, Huige

    2017-02-17

    Major reactive oxygen species (ROS)-producing systems in vascular wall include NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase, xanthine oxidase, the mitochondrial electron transport chain, and uncoupled endothelial nitric oxide (NO) synthase. ROS at moderate concentrations have important signaling roles under physiological conditions. Excessive or sustained ROS production, however, when exceeding the available antioxidant defense systems, leads to oxidative stress. Animal studies have provided compelling evidence demonstrating the roles of vascular oxidative stress and NO in atherosclerosis. All established cardiovascular risk factors such as hypercholesterolemia, hypertension, diabetes mellitus, and smoking enhance ROS generation and decrease endothelial NO production. Key molecular events in atherogenesis such as oxidative modification of lipoproteins and phospholipids, endothelial cell activation, and macrophage infiltration/activation are facilitated by vascular oxidative stress and inhibited by endothelial NO. Atherosclerosis develops preferentially in vascular regions with disturbed blood flow (arches, branches, and bifurcations). The fact that these sites are associated with enhanced oxidative stress and reduced endothelial NO production is a further indication for the roles of ROS and NO in atherosclerosis. Therefore, prevention of vascular oxidative stress and improvement of endothelial NO production represent reasonable therapeutic strategies in addition to the treatment of established risk factors (hypercholesterolemia, hypertension, and diabetes mellitus). © 2017 American Heart Association, Inc.

  14. Oxidative stress, fibrosis, and early afterdepolarization-mediated cardiac arrhythmias

    PubMed Central

    Karagueuzian, Hrayr S.; Nguyen, Thao P.; Qu, Zhilin; Weiss, James N.

    2013-01-01

    Animal and clinical studies have demonstrated that oxidative stress, a common pathophysiological factor in cardiac disease, reduces repolarization reserve by enhancing the L-type calcium current, the late Na, and the Na-Ca exchanger, promoting early afterdepolarizations (EADs) that can initiate ventricular tachycardia and ventricular fibrillation (VT/VF) in structurally remodeled hearts. Increased ventricular fibrosis plays a key facilitatory role in allowing oxidative-stress induced EADs to manifest as triggered activity and VT/VF, since normal non-fibrotic hearts are resistant to arrhythmias when challenged with similar or higher levels of oxidative stress. The findings imply that antifibrotic therapy, in addition to therapies designed to suppress EAD formation at the cellular level, may be synergistic in reducing the risk of sudden cardiac death. PMID:23423152

  15. Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants.

    PubMed

    Carini, Francesco; Mazzola, Margherita; Rappa, Francesca; Jurjus, Abdo; Geagea, Alice Gerges; Al Kattar, Sahar; Bou-Assi, Tarek; Jurjus, Rosalyn; Damiani, Provvidenza; Leone, Angelo; Tomasello, Giovanni

    2017-09-01

    One of the contributory causes of colon cancer is the negative effect of reactive oxygen species on DNA repair mechanisms. Currently, there is a growing support for the concept that oxidative stress may be an important etiological factor for carcinogenesis. The purpose of this review is to elucidate the role of oxidative stress in promoting colorectal carcinogenesis and to highlight the potential protective role of antioxidants. Several studies have documented the importance of antioxidants in countering oxidative stress and preventing colorectal carcinogenesis. However, there are conflicting data in the literature concerning its proper use in humans, since these studies did not yield definitive results and were performed mostly in vitro on cell populations, or in vivo in experimental animal models. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Discovery of biomarkers for oxidative stress based on cellular metabolomics.

    PubMed

    Wang, Ningli; Wei, Jianteng; Liu, Yewei; Pei, Dong; Hu, Qingping; Wang, Yu; Di, Duolong

    2016-07-01

    Oxidative stress has a close relationship with various pathologic physiology phenomena and the potential biomarkers of oxidative stress may provide evidence for clinical diagnosis or disease prevention. Metabolomics was employed to identify the potential biomarkers of oxidative stress. High-performance liquid chromatography-diode array detector, mass spectrometry and partial least squares discriminate analysis were used in this study. The 10, 15 and 13 metabolites were considered to discriminate the model group, vitamin E-treated group and l-glutathione-treated group, respectively. Some of them have been identified, namely, malic acid, vitamin C, reduced glutathione and tryptophan. Identification of other potential biomarkers should be conducted and their physiological significance also needs to be elaborated.

  17. Variability of oxidative stress biomarkers in hemodialysis patients.

    PubMed

    Dahwa, Rumbidzai; Fassett, Robert G; Wang, Zaimin; Briskey, David; Mallard, Alistair R; Coombes, Jeff S

    2014-03-01

    Oxidative stress biomarkers may have a role in the future to assist clinical decisions regarding the use of antioxidant therapies and their efficacy. The aims of this study were to evaluate the within and between-individual variability of plasma oxidative stress biomarkers and investigate factors affecting their variability. Plasma F2-isoprostanes and protein carbonyls were measured in 14 hemodialysis patients every 2 weeks for 10 weeks. Within-individual coefficients of variation (CVs) were isoprostanes = 30.4% (range = 6.1-66.7%) and protein carbonyls = 16.3% (8.4-29.5%). Between-individual CVs were isoprostanes = 34.4% (28.9-40.2%) and protein carbonyls = 19.5% (15.6-24.5%). There were no significant (p > 0.05) relationships between the oxidative stress biomarkers and dietary antioxidant intake, medications, clinical and demographic parameters.

  18. Impacts of Oxidative Stress and Antioxidants on Semen Functions

    PubMed Central

    Bansal, Amrit Kaur; Bilaspuri, G. S.

    2011-01-01

    Oxidative stress (OS) has been considered a major contributory factor to the infertility. Oxidative stress is the result of imbalance between the reactive oxygen species (ROS) and antioxidants in the body which can lead to sperm damage, deformity, and eventually male infertility. Although high concentrations of the ROS cause sperm pathology (ATP depletion) leading to insufficient axonemal phosphorylation, lipid peroxidation, and loss of motility and viability but, many evidences demonstrate that low and controlled concentrations of these ROS play an important role in sperm physiological processes such as capacitation, acrosome reaction, and signaling processes to ensure fertilization. The supplementation of a cryopreservation extender with antioxidant has been shown to provide a cryoprotective effect on mammalian sperm quality. This paper reviews the impacts of oxidative stress and reactive oxygen species on spermatozoa functions, causes of ROS generation, and antioxidative strategies to reduce OS. In addition, we also highlight the emerging concept of utilizing OS as a tool of contraception. PMID:20871827

  19. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    PubMed

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention.

  20. Age dependence of seizure-induced oxidative stress.

    PubMed

    Patel, M; Li, Q Y

    2003-01-01

    The mechanisms underlying the decreased vulnerability of the immature brain to seizure-induced neuronal death remain unknown. We asked whether oxidative stress plays a role in the resistance of immature animals to seizure-induced brain damage. Mitochondrial aconitase inactivation and 8-hydroxy-2-deoxyguanosine (8-OHdG) were used as indices of steady-state mitochondrial superoxide (O(2)(-)) production and oxidative DNA damage, respectively. Kainate-induced seizures resulted in increased mitochondrial aconitase inactivation and 8-OHdG formation in adult (postnatal day 30 or more), but not in immature rats (postnatal days 12 and 21). Kainate administration did not induce manganese superoxide dismutase (MnSOD) or CuZnSOD in immature or adult rats. This developmental increase in mitochondrial O(2)(-) production and oxidative DNA damage following kainate seizures suggests that mitochondrial oxidative stress may be a key factor that renders the developing brain resistant to seizure-induced brain damage.

  1. Oxygen and oxidative stress in the perinatal period.

    PubMed

    Torres-Cuevas, Isabel; Parra-Llorca, Anna; Sánchez-Illana, Angel; Nuñez-Ramiro, Antonio; Kuligowski, Julia; Cháfer-Pericás, Consuelo; Cernada, María; Escobar, Justo; Vento, Máximo

    2017-08-01

    Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a

  2. Work at high altitude and oxidative stress: antioxidant nutrients.

    PubMed

    Askew, E W

    2002-11-15

    A significant portion of the world's geography lies above 10,000 feet elevation, an arbitrary designation that separates moderate and high altitude. Although the number of indigenous people living at these elevations is relatively small, many people travel to high altitude for work or recreation, exposing themselves to chronic or intermittent hypoxia and the associated risk of acute mountain sickness (AMS) and less frequently, high altitude pulmonary edema (HAPE) and high altitude cerebral edema (HACE). The symptoms of AMS (headache, nausea, anorexia, fatigue, lassitude) occur in those who travel too high, too fast. Some investigators have linked the development of these symptoms with the condition of altered blood-brain barrier permeability, possibly related to hypoxia induced free radical formation. The burden of oxidative stress increases during the time spent at altitude and may even persist for some time upon return to sea level. The physiological and medical consequences of increased oxidative stress engendered by altitude is unclear; indeed, hypoxia is believed to be the trigger for the cascade of signaling events that ultimately leads to adaptation to altitude. These signaling events include the generation of reactive oxygen species (ROS) that may elicit important adaptive responses. If produced in excess, however, these ROS may contribute to impaired muscle function and reduced capillary perfusion at altitude or may even play a role in precipitating more serious neurological and pulmonary crisis. Oxidative stress can be observed at altitude without strenuous physical exertion; however, environmental factors other than hypoxia, such as exercise, UV light exposure and cold exposure, can also contribute to the burden. Providing antioxidant nutrients via the diet or supplements to the diet can reduce oxidative stress secondary to altitude exposure. In summary, the significant unanswered question concerning altitude exposure and antioxidant supplementation is

  3. Oxidative stress in MeHg-induced neurotoxicity

    SciTech Connect

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br; Aschner, Michael; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have beenmore » reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the

  4. Fluorescence lifetime imaging of endogenous biomarker of oxidative stress

    PubMed Central

    Datta, Rupsa; Alfonso-García, Alba; Cinco, Rachel; Gratton, Enrico

    2015-01-01

    Presence of reactive oxygen species (ROS) in excess of normal physiological level results in oxidative stress. This can lead to a range of pathological conditions including inflammation, diabetes mellitus, cancer, cardiovascular and neurodegenerative disease. Biomarkers of oxidative stress play an important role in understanding the pathogenesis and treatment of these diseases. A number of fluorescent biomarkers exist. However, a non-invasive and label-free identification technique would be advantageous for in vivo measurements. In this work we establish a spectroscopic method to identify oxidative stress in cells and tissues by fluorescence lifetime imaging (FLIM). We identified an autofluorescent, endogenous species with a characteristic fluorescent lifetime distribution as a probe for oxidative stress. To corroborate our hypothesis that these species are products of lipid oxidation by ROS, we correlate the spectroscopic signals arising from lipid droplets by combining FLIM with THG and CARS microscopy which are established techniques for selective lipid body imaging. Further, we performed spontaneous Raman spectral analysis at single points of the sample which provided molecular vibration information characteristics of lipid droplets. PMID:25993434

  5. Muscle Aging and Oxidative Stress in Wild-Caught Shrews

    PubMed Central

    Hindle, Allyson G.; Lawler, John M.; Campbell, Kevin L.; Horning, Markus

    2010-01-01

    Red-toothed shrews (Soricidae, subfamily Soricinae) are an intriguing model system to examine the free radical theory of aging in wild mammals, given their short (<18 month) lifespan and high mass-specific metabolic rates. As muscle performance underlies both foraging ability and predator avoidance, any age-related decline should be detrimental to fitness and survival. Muscle samples of water shrews (Sorex palustris) and sympatrically distributed short-tailed shrews (Blarina brevicauda) were therefore assessed for oxidative stress markers, protective antioxidant enzymes and apoptosis. Activity levels of catalase and glutathione peroxidase increased with age in both species. Similarly, Cu,Zn-superoxide dismutase isoform content was elevated significantly in older animals of both species (increases of 60% in the water shrew, 25% in the short-tailed shrew). Only one oxidative stress marker (lipid peroxidation) was age-elevated; the others were stable or declined (4-hydroxynonenal adducts and dihydroethidium oxidation). Glutathione peroxidase activity was significantly higher in the short-tailed shrew, while catalase activity was 2× higher in water shrews. Oxidative stress indicators were on average higher in short-tailed shrews. Apoptosis occurred in <1% of myocytes examined, and did not increase with age. Within the constraints of the sample size we found evidence of protection against elevated oxidative stress in wild-caught shrews. PMID:20109576

  6. Association between oxidative stress and nutritional status in the elderly.

    PubMed

    Moreira, Priscila Lucelia; Villas Boas, Paulo Jose Fortes; Ferreira, Ana Lucia Anjos

    2014-01-01

    Ageing is a dynamic and progressive process that is characterized by the occurrence of morphological, biochemical, functional and psychological changes in the organism. The aim of the present article is to provide updated concepts on oxidative stress, covering its importance in aging, as well as nutritional status and supplementation with antioxidants (substances that prevent or attenuate oxidation of oxidizable substrates, such as lipids, proteins, carbohydrates and deoxyribonucleic acid) in the geriatric population. Evidence suggests that there is an inverse relationship between oxidative stress and nutritional status in elderly individuals. Although an increase in oxidative stress in chronic diseases associated with aging has been proven, such as Parkinson's disease and Alzheimer's disease, up to now there has been no consistent clinical evidence proving the efficiency of supplementation with antioxidants against oxidative stress. In this context, supplementation is not recommended. On the other hand, the elderly should be encouraged to eat antioxidant foods, such as fruits and vegetables. Maintaining a normal weight (body mass index between 23 and 28 Kg/m(2)) should also be stimulated.

  7. Systems analysis of oxidant stress in the vasculature.

    PubMed

    Handy, Diane E; Loscalzo, Joseph; Leopold, Jane A

    2013-11-01

    Systems biology and network analysis are emerging as valuable tools for the discovery of novel relationships, the identification of key regulatory factors, and the prediction of phenotypic changes in complex biological systems. Redox homeostasis in the vasculature is maintained by an intricate balance between oxidant-generating and antioxidant systems. When these systems are perturbed, conditions are permissive for oxidant stress, which, in turn, promotes vascular dysfunction and structural remodeling. Owing to the number of elements involved in redox regulation and the different vascular pathophenotypes associated with oxidant stress, vascular oxidant stress represents an ideal system to study by network analysis. Networks offer a method to organize experimentally derived factors, including proteins, metabolites, and DNA, that are represented as nodes into an unbiased comprehensive platform for study. Through analysis of the network, it is possible to determine essential or regulatory nodes, identify previously unknown connections between nodes, and locate modules, which are groups of nodes located within the same neighborhood that function together and have implications for phenotype. Investigators have only recently begun to construct oxidant stress-related networks to examine vascular structure and function; however, these early studies have provided mechanistic insight to further our understanding of this complicated biological system. © 2013 International Union of Biochemistry and Molecular Biology.

  8. In vitro model suggests oxidative stress involved in keratoconus disease

    NASA Astrophysics Data System (ADS)

    Karamichos, D.; Hutcheon, A. E. K.; Rich, C. B.; Trinkaus-Randall, V.; Asara, J. M.; Zieske, J. D.

    2014-04-01

    Keratoconus (KC) affects 1:2000 people and is a disorder where cornea thins and assumes a conical shape. Advanced KC requires surgery to maintain vision. The role of oxidative stress in KC remains unclear. We aimed to identify oxidative stress levels between human corneal keratocytes (HCKs), fibroblasts (HCFs) and keratoconus cells (HKCs). Cells were cultured in 2D and 3D systems. Vitamin C (VitC) and TGF-β3 (T3) were used for 4 weeks to stimulate self-assembled extracellular matrix (ECM). No T3 used as controls. Samples were analyzed using qRT-PCR and metabolomics. qRT-PCR data showed low levels of collagen I and V, as well as keratocan for HKCs, indicating differentiation to a myofibroblast phenotype. Collagen type III, a marker for fibrosis, was up regulated in HKCs. We robustly detected more than 150 metabolites of the targeted 250 by LC-MS/MS per condition and among those metabolites several were related to oxidative stress. Lactate levels, lactate/malate and lactate/pyruvate ratios were elevated in HKCs, while arginine and glutathione/oxidized glutathione ratio were reduced. Similar patterns found in both 2D and 3D. Our data shows that fibroblasts exhibit enhanced oxidative stress compared to keratocytes. Furthermore the HKC cells exhibit the greatest level suggesting they may have a myofibroblast phenotype.

  9. Sporadic Alzheimer disease fibroblasts display an oxidative stress phenotype.

    PubMed

    Ramamoorthy, Mahesh; Sykora, Peter; Scheibye-Knudsen, Morten; Dunn, Christopher; Kasmer, Cindy; Zhang, Yongqing; Becker, Kevin G; Croteau, Deborah L; Bohr, Vilhelm A

    2012-09-15

    Alzheimer disease (AD) is a major health problem in the United States, affecting one in eight Americans over the age of 65. The number of elderly suffering from AD is expected to continue to increase over the next decade, as the average age of the U.S. population increases. The risk factors for and etiology of AD are not well understood; however, recent studies suggest that exposure to oxidative stress may be a contributing factor. Here, microarray gene expression signatures were compared in AD-patient-derived fibroblasts and normal fibroblasts exposed to hydrogen peroxide or menadione (to simulate conditions of oxidative stress). Using the 23K Illumina cDNA microarray to screen expression of >14,000 human genes, we identified a total of 1017 genes that are chronically up- or downregulated in AD fibroblasts, 215 of which were also differentially expressed in normal human fibroblasts within 12h after exposure to hydrogen peroxide or menadione. Pathway analysis of these 215 genes and their associated pathways revealed cellular functions that may be critically dysregulated by oxidative stress and play a critical role in the etiology and/or pathology of AD. We then examined the AD fibroblasts for the presence of oxidative DNA damage and found increased accumulation of 8-oxo-guanine. These results indicate the possible role of oxidative stress in the gene expression profile seen in AD. Published by Elsevier Inc.

  10. Stressed Oxidation Life Prediction for C/SiC Composites

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.

    2004-01-01

    The residual strength and life of C/SiC is dominated by carbon interface and fiber oxidation if seal coat and matrix cracks are open to allow oxygen ingress. Crack opening is determined by the combination of thermal, mechanical and thermal expansion mismatch induced stresses. When cracks are open, life can be predicted by simple oxidation based models with reaction controlled kinetics at low temperature, and by gas phase diffusion controlled kinetics at high temperatures. Key life governing variables in these models include temperature, stress, initial strength, oxygen partial pressure, and total pressure. These models are described in this paper.

  11. Food-Derived Bioactive Peptides on Inflammation and Oxidative Stress

    PubMed Central

    2014-01-01

    Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases. PMID:24527452

  12. Food-derived bioactive peptides on inflammation and oxidative stress.

    PubMed

    Chakrabarti, Subhadeep; Jahandideh, Forough; Wu, Jianping

    2014-01-01

    Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases.

  13. Overview of Oxidative Stress Response Genes in Selected Halophilic Fungi.

    PubMed

    Gostinčar, Cene; Gunde-Cimerman, Nina

    2018-03-06

    Exposure of microorganisms to stress, including to high concentrations of salt, can lead to increased production of reactive oxygen species in the cell. To limit the resulting damage, cells have evolved a variety of antioxidant defenses. The role of these defenses in halotolerance has been proposed before. Whole genome sequencing for some of the most halotolerant and halophilic fungal species has enabled us to investigate the possible links between oxidative and salt stress tolerance on the genomic level. We identified genes involved in oxidative stress response in the halophilic basidiomycete Wallemia ichthyophaga , and halotolerant ascomycetous black yeasts Hortaea werneckii and Aureobasidium pullulans , and compared them to genes from 16 other fungi, both asco- and basidiomycetes. According to our results, W. ichthyophaga can survive salinities detrimental to most other organisms with only a moderate number of oxidative stress response genes. In other investigated species, however, the maximum tolerated salinity correlated with the number of genes encoding three major enzymes of the cellular oxidative stress response: superoxide dismutases, catalases, and peroxiredoxins. This observation supports the hypothetical link between the antioxidant capacity of cells and their halotolerance.

  14. Haptoglobin Is Required to Prevent Oxidative Stress and Muscle Atrophy

    PubMed Central

    Lo Verso, Francesca; Santini, Ferruccio; Vitti, Paolo; Chisari, Carmelo; Sandri, Marco; Maffei, Margherita

    2014-01-01

    Background Oxidative stress (OS) plays a major role on tissue function. Several catabolic or stress conditions exacerbate OS, inducing organ deterioration. Haptoglobin (Hp) is a circulating acute phase protein, produced by liver and adipose tissue, and has an important anti-oxidant function. Hp is induced in pro-oxidative conditions such as systemic inflammation or obesity. The role of systemic factors that modulate oxidative stress inside muscle cells is still poorly investigated. Results We used Hp knockout mice (Hp-/-) to determine the role of this protein and therefore, of systemic OS in maintenance of muscle mass and function. Absence of Hp caused muscle atrophy and weakness due to activation of an atrophy program. When animals were stressed by acute exercise or by high fat diet (HFD), OS, muscle atrophy and force drop were exacerbated in Hp-/-. Depending from the stress condition, autophagy-lysosome and ubiquitin-proteasome systems were differently induced. Conclusions Hp is required to prevent OS and the activation of pathways leading to muscle atrophy and weakness in normal condition and upon metabolic challenges. PMID:24959824

  15. High-Mobility Group Box 1, Oxidative Stress, and Disease

    PubMed Central

    Kang, Rui; Zeh, Herbert J.

    2011-01-01

    Abstract Oxidative stress and associated reactive oxygen species can modify lipids, proteins, carbohydrates, and nucleic acids, and induce the mitochondrial permeability transition, providing a signal leading to the induction of autophagy, apoptosis, and necrosis. High-mobility group box 1 (HMGB1) protein, a chromatin-binding nuclear protein and damage-associated molecular pattern molecule, is integral to oxidative stress and downstream apoptosis or survival. Accumulation of HMGB1 at sites of oxidative DNA damage can lead to repair of the DNA. As a redox-sensitive protein, HMGB1 contains three cysteines (Cys23, 45, and 106). In the setting of oxidative stress, it can form a Cys23-Cys45 disulfide bond; a role for oxidative homo- or heterodimerization through the Cys106 has been suggested for some of its biologic activities. HMGB1 causes activation of nicotinamide adenine dinucleotide phosphate oxidase and increased reactive oxygen species production in neutrophils. Reduced and oxidized HMGB1 have different roles in extracellular signaling and regulation of immune responses, mediated by signaling through the receptor for advanced glycation end products and/or Toll-like receptors. Antioxidants such as ethyl pyruvate, quercetin, green tea, N-acetylcysteine, and curcumin are protective in the setting of experimental infection/sepsis and injury including ischemia-reperfusion, partly through attenuating HMGB1 release and systemic accumulation. Antioxid. Redox Signal. 14, 1315–1335. PMID:20969478

  16. [Biological consequences of oxidative stress induced by pesticides].

    PubMed

    Grosicka-Maciąg, Emilia

    2011-06-17

    Pesticides are used to protect plants and numerous plant products. They are also utilized in several industrial branches. These compounds are highly toxic to living organisms. In spite of close supervision in the use of pesticides there is a serious risk that these agents are able to spread into the environment and contaminate water, soil, food, and feedstuffs. Recently, more and more studies have been focused on understanding the toxic mechanisms of pesticide actions. The data indicate that the toxic action of pesticides may include the induction of oxidative stress and accumulation of free radicals in the cell. Long-lasting or acute oxidative stress disturbs cell metabolism and is able to produce permanent changes in the structure of proteins, lipids, and DNA. The proteins that are oxidized may lose or enhance their activity. Moreover, the proteins oxidized are able to form aggregates that inhibit the systems responsible for protein degradation and lead to alterations of proteins in the cell. Once oxidized, lipids have the capacity to damage and depolarize cytoplasmic membranes. Free oxygen radicals are harmful to DNA including damage to single nitric bases, DNA strand breaks and adduct production. Many studies indicate that oxidative stress may accelerate development of numerous diseases including cancer and neurodegenerative ones such as Alzheimer’s and Parkinson’s disease and may also be responsible for infertility.

  17. Oxidative stress and its biomarkers in systemic lupus erythematosus

    PubMed Central

    2014-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease whose etiology remains largely unknown. The uncontrolled oxidative stress in SLE contributes to functional oxidative modifications of cellular protein, lipid and DNA and consequences of oxidative modification play a crucial role in immunomodulation and trigger autoimmunity. Measurements of oxidative modified protein, lipid and DNA in biological samples from SLE patients may assist in the elucidation of the pathophysiological mechanisms of the oxidative stress-related damage, the prediction of disease prognosis and the selection of adequate treatment in the early stage of disease. Application of these biomarkers in disease may indicate the early effectiveness of the therapy. This review is intended to provide an overview of various reactive oxygen species (ROS) formed during the state of disease and their biomarkers linking with disease. The first part of the review presents biochemistry and pathophysiology of ROS and antioxidant system in disease. The second part of the review discusses the recent development of oxidative stress biomarkers that relates pathogenesis in SLE patients and animal model. Finally, this review also describes the reported clinical trials of antioxidant in the disease that have evaluated the efficacy of antioxidant in the management of disease with ongoing conventional therapy. PMID:24636579

  18. Gamma-Glutamylcysteine Inhibits Oxidative Stress in Human Endothelial Cells

    DTIC Science & Technology

    2012-01-01

    Aims: γ-Glutamylcysteine (GGC) is a dipeptide and substrate for synthesis of the antioxidant glutathione (GSH), whose health promoting properties...synthesis, GGC may play a role in protection against oxida- tive stress by serving as an antioxidant and modulating the expression of protein(s) related to... antioxidant defense. Thus, we speculate that GGC may serve as a novel intra- and intercellular therapeutic dipeptide for oxidative stress-related

  19. Dehydrins Impart Protection against Oxidative Stress in Transgenic Tobacco Plants

    PubMed Central

    Halder, Tanmoy; Upadhyaya, Gouranga; Basak, Chandra; Das, Arup; Chakraborty, Chandrima; Ray, Sudipta

    2018-01-01

    Environmental stresses generate reactive oxygen species (ROS) which might be detrimental to the plants when produced in an uncontrolled way. However, the plants ameliorate such stresses by synthesizing antioxidants and enzymes responsible for the dismutation of ROS. Additionally, the dehydrins were also able to protect the inactivation of the enzyme lactate dehydrogenase against hydroxyl radicals (OH⋅) generated during Fenton’s reaction. SbDhn1 and SbDhn2 overexpressing transgenic tobacco plants were able to protect against oxidative damage. Transgenic tobacco lines showed better photosynthetic efficiency along with high chlorophyll content, soluble sugar and proline. However, the malonyl dialdehyde (MDA) content was significantly lower in transgenic lines. Experimental evidence demonstrates the protective effect of dehydrins on electron transport chain in isolated chloroplast upon methyl viologen (MV) treatment. The transgenic tobacco plants showed significantly lower superoxide radical generation () upon MV treatment. The accumulation of the H2O2 was also lower in the transgenic plants. Furthermore, in the transgenic plants the expression of ROS scavenging enzymes was higher compared to non-transformed (NT) or vector transformed (VT) plants. Taken together these data, during oxidative stress dehydrins function by scavenging the () directly and also by rendering protection to the enzymes responsible for the dismutation of () thereby significantly reducing the amount of hydrogen peroxides formed. Increase in proline content along with other antioxidants might also play a significant role in stress amelioration. Dehydrins thus function co-operatively with other protective mechanisms under oxidative stress conditions rendering protection in stress environment. PMID:29491874

  20. Dehydrins Impart Protection against Oxidative Stress in Transgenic Tobacco Plants.

    PubMed

    Halder, Tanmoy; Upadhyaya, Gouranga; Basak, Chandra; Das, Arup; Chakraborty, Chandrima; Ray, Sudipta

    2018-01-01

    Environmental stresses generate reactive oxygen species (ROS) which might be detrimental to the plants when produced in an uncontrolled way. However, the plants ameliorate such stresses by synthesizing antioxidants and enzymes responsible for the dismutation of ROS. Additionally, the dehydrins were also able to protect the inactivation of the enzyme lactate dehydrogenase against hydroxyl radicals (OH ⋅ ) generated during Fenton's reaction. SbDhn1 and SbDhn2 overexpressing transgenic tobacco plants were able to protect against oxidative damage. Transgenic tobacco lines showed better photosynthetic efficiency along with high chlorophyll content, soluble sugar and proline. However, the malonyl dialdehyde (MDA) content was significantly lower in transgenic lines. Experimental evidence demonstrates the protective effect of dehydrins on electron transport chain in isolated chloroplast upon methyl viologen (MV) treatment. The transgenic tobacco plants showed significantly lower superoxide radical generation () upon MV treatment. The accumulation of the H 2 O 2 was also lower in the transgenic plants. Furthermore, in the transgenic plants the expression of ROS scavenging enzymes was higher compared to non-transformed (NT) or vector transformed (VT) plants. Taken together these data, during oxidative stress dehydrins function by scavenging the () directly and also by rendering protection to the enzymes responsible for the dismutation of () thereby significantly reducing the amount of hydrogen peroxides formed. Increase in proline content along with other antioxidants might also play a significant role in stress amelioration. Dehydrins thus function co-operatively with other protective mechanisms under oxidative stress conditions rendering protection in stress environment.

  1. Battles with Iron: Manganese in Oxidative Stress Protection*

    PubMed Central

    Aguirre, J. Dafhne; Culotta, Valeria C.

    2012-01-01

    The redox-active metal manganese plays a key role in cellular adaptation to oxidative stress. As a cofactor for manganese superoxide dismutase or through formation of non-proteinaceous manganese antioxidants, this metal can combat oxidative damage without deleterious side effects of Fenton chemistry. In either case, the antioxidant properties of manganese are vulnerable to iron. Cellular pools of iron can outcompete manganese for binding to manganese superoxide dismutase, and through Fenton chemistry, iron may counteract the benefits of non-proteinaceous manganese antioxidants. In this minireview, we highlight ways in which cells maximize the efficacy of manganese as an antioxidant in the midst of pro-oxidant iron. PMID:22247543

  2. Augmented oxidative stress in infertile women with persistent chlamydial infection.

    PubMed

    Tošić-Pajić, Jelena; Šeklić, Dragana; Radenković, Jelena; Marković, Snežana; Čukić, Jelena; Baskić, Dejan; Popović, Suzana; Todorović, Milos; Sazdanović, Predrag

    2017-06-01

    There is established association between oxidative stress, infections of genital tract and fertility. Genital tract infections may provoke increased production of free radicals and generate oxidative stress that can be involved in pathophysiology of a number of reproductive diseases and complications during pregnancy. The aim of this study was to determine connection between oxidative stress and infertility associated with persistent chlamydial infection. Serum samples of infertile women with tubal factor infertility (TFI), women with multiple spontaneous abortions (MSA) and fertile women was screened for C. trachomatis MOMP specific IgG and IgA antibodies and cHSP60 specific igG antibodies using ELISA. The levels of superoxide anion radical, nitric oxide and reduced glutathione were determined spectrophotometricaly. Serum levels of testosterone, luteinizing hormone and follicle stimulating hormone were determined by enzyme-linked fluorescent immunoassay method. Our results showed that persistent infection was more prevalent in TFI than in MSA group, whereas seropositivity was higher in MSA than in TFI group of patients. We also found that superoxide anion was significantly lower, while LH was markedly higher in TFI and MSA group of patients. However, when our results were analyzed according to the serological status of chlamydial infection, we found that parameters of oxidative stress, superoxide anion and index of oxidative stress, defined as relative ratio between superoxide anion and nitrites sum and glutathione ((O 2 - +NO 2 - )/GSH) were significantly elevated in infertile patients with persistent chlamydial infection compared to seropositive and seronegative patients. Our findings point to the possible impact of Chlamydia trachomatis infection on prooxidative-antioxidative balance that can influence fertility potential in women with persistent chlamydial infection. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction

  3. Association of military training with oxidative stress and overreaching.

    PubMed

    Tanskanen, Minna M; Uusitalo, Arja L; Kinnunen, Hannu; Häkkinen, Keijo; Kyröläinen, Heikki; Atalay, Mustafa

    2011-08-01

    We hypothesized that increased oxidative stress and disrupted redox balance may be predisposing factors and markers for overreaching (OR). The study's purpose was to examine whether oxidative stress markers and antioxidant status and physical fitness are related to OR during an 8-wk military basic training (BT) period. Oxidative stress and antioxidant status were evaluated in the beginning and after 4 and 7 wk of training in 35 males (age = 19.7 ± 0.3 yr) at rest and immediately after a 45-min submaximal exercise. Physical activity (PA) was monitored by an accelerometer throughout BT. Indicators of OR were also examined. From baseline to week 4, increased daytime moderate to vigorous PA led to concomitant decreases in the ratio of oxidized to total glutathione (GSSG/TGSH) and GSSG. After 4 wk of BT, GSSG/TGSH and GSSG returned to the baseline values at rest, whereas PA remained unchanged. At every time point, acute exercise decreased TGSH and increased GSSG and GSSG/TGSH, whereas a decrease was observed in antioxidant capacity after 4 wk of training. In the beginning of BT, OR subjects (11 of the 35 males) had higher GSSG, GSSG/TGSH, and malondialdehyde (a marker of lipid peroxidation) at rest (P < 0.01-0.05) and lower response of GSSG and GSSG/TGSH ratio (P < 0.01) to exercise than non-OR subjects. Moreover, OR subjects had higher PA during BT than non-OR (P < 0.05). The sustained training load during the last 4 wk of BT led to oxidative stress observable both at rest and after submaximal exercise. Increased oxidative stress may be a marker of insufficient recovery leading possibly to OR.

  4. Crosstalk between endoplasmic reticulum stress, oxidative stress and autophagy: Potential therapeutic targets for acute CNS injuries

    PubMed Central

    Nakka, Venkata Prasuja; Prakash-babu, Phanithi; Vemuganti, Raghu

    2014-01-01

    Endoplasmic reticulum (ER) stress induces a variety of neuronal cell death pathways that play a critical role in the pathophysiology of Stroke. ER stress occurs when unfolded/misfolded proteins accumulate and the folding capacity of ER chaperones exceeds the capacity of ER lumen to facilitate their disposal. As a consequence, a complex set of signaling pathways will be induced that transmit from ER to cytosol and nucleus to compensate damage and to restore the normal cellular homeostasis, collectively known as unfolded protein response (UPR). However, failure of UPR due to severe or prolonged stress leads to cell death. Following acute CNS injuries, chronic disturbances in protein folding and oxidative stress prolong ER stress leading to sustained ER dysfunction and neuronal cell death. While ER stress responses have been well studied after stroke, there is an emerging need to study the association of ER stress with other cell pathways that exacerbate neuronal death after an injury. In this review we summarize the current understanding of the role for ER stress in acute brain injuries, highlighting the diverse molecular mechanisms associated with ER stress and its relation to oxidative stress and autophagy. We also discussed the existing and developing therapeutic options aimed to reduce ER stress to protect the CNS after acute injuries. PMID:25482050

  5. Elevated reproduction does not affect telomere dynamics and oxidative stress.

    PubMed

    Sudyka, Joanna; Casasole, Giulia; Rutkowska, Joanna; Cichoń, Mariusz

    2016-01-01

    Oxidative stress and telomere dynamics are considered to be powerful biomarkers quantifying a potential trade-off between current reproduction and self-maintenance. Recent studies confirmed the negative impact of elevated reproduction on telomeres, but the evidence for the cost of reproduction in terms of oxidative stress remains equivocal. In order to induce reproductive costs, we experimentally manipulated reproductive effort by increasing brood size in captive zebra finches ( Taeniopygia guttata ) and additionally challenged all birds by a low ambient temperature to facilitate detection of these costs. We were not able to show any negative effects of elevated reproductive effort on telomere dynamics and oxidative stress among parents, although brood enlargement was effective in terms of total mass and number of fledged young. Interestingly, irrespective of brood size treatment, we found a significant increase in antioxidant capacity at peak breeding while oxidative damage did not change with time. Our results may suggest that reproduction, instead of generating costs, may stimulate physiological functions promoting self-maintenance in terms of higher protection against free radicals. Possibly, opportunistic breeders such as zebra finches may not impede their future performance for the sake of current reproduction. This study interrogates a molecular background behind one of the most intriguing trade-offs that potentially occurs between self-maintenance and reproduction. We manipulated breeding effort in zebra finches to understand if the cost of reproduction can be mediated by telomere dynamics and oxidative stress. In our study system, we did not detect the direct reproductive costs in terms of parental oxidative damage and telomere loss; instead, these costs were paid by the offspring in terms of their inhibited growth rate. Moreover, we found that entering into the reproductive state strongly stimulated self-maintenance by increasing antioxidant capacity in

  6. Oxidative metabolism genes are not responsive to oxidative stress in rodent Beta cell lines.

    PubMed

    Morrison, Faer; Johnstone, Karen; Murray, Anna; Locke, Jonathan; Harries, Lorna W

    2012-01-01

    Altered expression of oxidative metabolism genes has been described in the skeletal muscle of individuals with type 2 diabetes. Pancreatic beta cells contain low levels of antioxidant enzymes and are particularly susceptible to oxidative stress. In this study, we explored the effect of hyperglycemia-induced oxidative stress on a panel of oxidative metabolism genes in a rodent beta cell line. We exposed INS-1 rodent beta cells to low (5.6 mmol/L), ambient (11 mmol/L), and high (28 mmol/L) glucose conditions for 48 hours. Increases in oxidative stress were measured using the fluorescent probe dihydrorhodamine 123. We then measured the expression levels of a panel of 90 oxidative metabolism genes by real-time PCR. Elevated reactive oxygen species (ROS) production was evident in INS-1 cells after 48 hours (P < 0.05). TLDA analysis revealed a significant (P < 0.05) upregulation of 16 of the 90 genes under hyperglycemic conditions, although these expression differences did not reflect differences in ROS. We conclude that although altered glycemia may influence the expression of some oxidative metabolism genes, this effect is probably not mediated by increased ROS production. The alterations to the expression of oxidative metabolism genes previously observed in human diabetic skeletal muscle do not appear to be mirrored in rodent pancreatic beta cells.

  7. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  8. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    PubMed

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  9. Restraint stress alters immune parameters and induces oxidative stress in the mouse uterus during embryo implantation.

    PubMed

    Liu, Guanhui; Dong, Yulan; Wang, Zixu; Cao, Jing; Chen, Yaoxing

    2014-12-01

    The influence of stress on embryo implantation is not well understood. Prior studies have focused on later gestational stages and the long-term impact of stress on immune function. The objective of this study is to investigate the effects of restraint stress on the immune parameters and the oxidative states of the uterus during implantation. In this study, pregnant CD1 mice were subjected to restraint stress (4 h/d) on embryonic day 1 (E1) and sacrificed on E3, E5, and E7. Maternal plasma corticosterone (CORT) secretion and implantation sites in the uterus were examined. The uterine (excluding embryos) homogenate and uterine lymphocytes were collected to examine oxidative stress states and associated immune parameters. The results demonstrated that restraint stress increased maternal plasma CORT secretion and reduced the number of implantation sites by 15.3% on E5 and by 26.1% on E7. Moreover, restraint stress decreased the density of uterine natural killer (uNK) cells in the endometrium by 22.1-47.9% and increased the density of mast cells in the myometrium by 55.6-76.9%. Restraint stress remarkably decreased the CD3(+)CD4(+) T/CD3(+)CD8(+) T cell ratio (by 26.2-28.9%) and attenuated uterine lymphocyte proliferation and secretion of cytokines. In addition, restraint stress threatened the intracellular equilibrium between oxidants and antioxidants, resulting in decreased glutathione peroxidase (GSH-PX) (32.2% and 45.7%), superoxide dismutase (SOD) (15.5% and 26.1%), and total antioxidant capacity (T-AOC) (18.4% and 18.2%) activities and increased malondialdehyde (MDA) (34.4% and 43.0%) contents on E5 and E7. In conclusion, these findings demonstrate that restraint stress causes abnormal implantation and negatively impacts immune parameters in association with oxidative stress in mice.

  10. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    PubMed Central

    Cejka, Cestmir; Cejkova, Jitka

    2015-01-01

    Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress) leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown. PMID:25861412

  11. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa

    PubMed Central

    Gurunathan, Sangiliyandi; Han, Jae Woong; Dayem, Ahmed Abdal; Eppakayala, Vasuki; Kim, Jin-Hoi

    2012-01-01

    Background Graphene holds great promise for potential use in next-generation electronic and photonic devices due to its unique high carrier mobility, good optical transparency, large surface area, and biocompatibility. The aim of this study was to investigate the antibacterial effects of graphene oxide (GO) and reduced graphene oxide (rGO) in Pseudomonas aeruginosa. In this work, we used a novel reducing agent, betamercaptoethanol (BME), for synthesis of graphene to avoid the use of toxic materials. To uncover the impacts of GO and rGO on human health, the antibacterial activity of two types of graphene-based material toward a bacterial model P. aeruginosa was studied and compared. Methods The synthesized GO and rGO was characterized by ultraviolet-visible absorption spectroscopy, particle-size analyzer, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. Further, to explain the antimicrobial activity of graphene oxide and reduced graphene oxide, we employed various assays, such as cell growth, cell viability, reactive oxygen species generation, and DNA fragmentation. Results Ultraviolet-visible spectra of the samples confirmed the transition of GO into graphene. Dynamic light-scattering analyses showed the average size among the two types of graphene materials. X-ray diffraction data validated the structure of graphene sheets, and high-resolution scanning electron microscopy was employed to investigate the morphologies of prepared graphene. Raman spectroscopy data indicated the removal of oxygen-containing functional groups from the surface of GO and the formation of graphene. The exposure of cells to GO and rGO induced the production of superoxide radical anion and loss of cell viability. Results suggest that the antibacterial activities are contributed to by loss of cell viability, induced oxidative stress, and DNA fragmentation. Conclusion The antibacterial activities of GO and rGO against P. aeruginosa were compared. The loss of P

  12. Molecular and biochemical responses of Volvox carteri to oxidative stress

    NASA Astrophysics Data System (ADS)

    Lingappa, U.; Rankin-Gee, E. K.; Lera, M.; Bebour, B.; Marcu, O.

    2014-03-01

    Understanding the intracellular response to environmental stresses is a key aspect to understanding the limits of habitability for life as we know it. A wide range of relevant stressors, from heat shock to radiation, result in the intracellular production of reactive oxygen species (ROS). ROS are used physiologically as signaling molecules to cause changes in gene expression and metabolism. However, ROS, including superoxide (O2-) and peroxides, are also highly reactive molecules that cause oxidative damage to proteins, lipids and DNA. Here we studied stress response in the multicellular, eukaryotic green alga Volvox carteri, after exposure to heat shock conditions. We show that the ROS response to heat stress is paralleled by changes in photosynthetic metabolism, antioxidant enzyme activity and gene expression, and fluctuations in the elemental composition of cells. Metabolism, as measured by pulse amplitude modulated (PAM) fluorometry over two hours of heat stress, showed a linear decrease in the photosynthetic efficiency of Volvox. ROS quantification uncovered an increase in ROS in the culture medium, paralleled by a decrease in ROS within the Volvox colonies, suggesting an export mechanism is utilized to mitigate stress. Enzyme kinetics indicated an increase in superoxide dismutase (SOD) activity over the heat stress timecourse. Using X-ray fluorescence (XRF) at the Stanford Synchrotron Radiation Lightsource, we show that these changes coincide with cell-specific import/export and intracellular redistribution of transition elements and halides, suggesting that the cellular metallome is also engaged in mediating oxidative stress in Volvox.

  13. Power of Proteomics in Linking Oxidative Stress and Female Infertility

    PubMed Central

    Gupta, Sajal; Sharma, Rakesh; Agarwal, Ashok

    2014-01-01

    Endometriosis, PCOS, and unexplained infertility are currently the most common diseases rendering large numbers of women infertile worldwide. Oxidative stress, due to its deleterious effects on proteins and nucleic acids, is postulated to be the one of the important mechanistic pathways in differential expression of proteins and in these diseases. The emerging field of proteomics has allowed identification of proteins involved in cell cycle, as antioxidants, extracellular matrix (ECM), cytoskeleton, and their linkage to oxidative stress in female infertility related diseases. The aim of this paper is to assess the association of oxidative stress and protein expression in the reproductive microenvironments such as endometrial fluid, peritoneal fluid, and follicular fluid, as well as reproductive tissues and serum. The review also highlights the literature that proposes the use of the fertility related proteins as potential biomarkers for noninvasive and early diagnosis of the aforementioned diseases rather than utilizing the more invasive methods used currently. The review will highlight the power of proteomic profiles identified in infertility related disease conditions and their linkage with underlying oxidative stress. The power of proteomics will be reviewed with regard to eliciting molecular mechanisms for early detection and management of these infertility related conditions. PMID:24900998

  14. Oxidative Stress and Endometriosis: A Systematic Review of the Literature

    PubMed Central

    Scutiero, Gennaro; Bernardi, Giulia; Bonaccorsi, Gloria; Spadaro, Savino; Greco, Pantaleo; Nappi, Luigi

    2017-01-01

    Endometriosis is one of the most common gynaecologic diseases in women of reproductive age. It is characterized by the presence of endometrial tissue outside the uterine cavity. The women affected suffer from pelvic pain and infertility. The complex etiology is still unclear and it is based on three main theories: retrograde menstruation, coelomic metaplasia, and induction theory. Genetics and epigenetics also play a role in the development of endometriosis. Recent studies have put the attention on the role of oxidative stress, defined as an imbalance between reactive oxygen species (ROS) and antioxidants, which may be implicated in the pathophysiology of endometriosis causing a general inflammatory response in the peritoneal cavity. Reactive oxygen species are intermediaries produced by normal oxygen metabolism and are inflammatory mediators known to modulate cell proliferation and to have deleterious effects. A systematic review was performed in order to clarify the different roles of oxidative stress and its role in the development of endometriosis. Several issues have been investigated: iron metabolism, oxidative stress markers (in the serum, peritoneal fluid, follicular fluid, peritoneal environment, ovarian cortex, and eutopic and ectopic endometrial tissue), genes involved in oxidative stress, endometriosis-associated infertility, and cancer development. PMID:29057034

  15. Factors associated with oxidative stress in women with breast cancer.

    PubMed

    Vieira, F G K; Di Pietro, P F; Boaventura, B C B; Ambrosi, C; Rockenbach, G; Fausto, Ma A; Crippa, C G; Da Silva, E L

    2011-01-01

    To assess the association between physiological, physical, lifestyle and nutritional variables and oxidative stress biomarkers in women with breast cancer. This cross-sectional study was conducted on 55 women newly diagnosed with breast cancer. The extent of oxidative stress was analyzed by the measurement of plasma lipid hydroperoxides (LH), thiobarbituric acid reactive substances (TBARS), protein carbonyl, whole blood reduced glutathione (GSH) and serum antioxidant capacity (AC). Diet data were obtained from food frequency questionnaire. Linear regression was used to determine the association between the variables studied and oxidative stress biomarkers. The protein carbonyl data was not included in the linear regression analyses since the data did not show a normal distribution, even after logarithmic and other transformations. After adjusting for energy intake, the intake of chicken and high-fat dairy products was associated with increased levels of LH, while vitamin E intake was associated with decreased LH levels (R² = 23.8%). Intake of oils was associated with increased levels of TBARS (R² = 6.82%). Positive axillary lymph node status was associated with decreased levels of GSH (R² = 9.31%). Increasing age was directly associated with levels of AC, while animal fat, dairy product, and sweet food intakes were associated with low levels of AC (R² = 41.42%). Intake of chicken, vitamin E, dairy products (particularly high-fat dairy products), oils, animal fat, and sweet foods, along with axillary lymph node status and age, may be important determinants of oxidative stress in women with breast cancer.

  16. Effects of Diesel Exhaust on Cardiovascular Function and Oxidative Stress.

    PubMed

    Wilson, Simon J; Miller, Mark R; Newby, David E

    2018-03-20

    Air pollution is a major global health concern with particulate matter (PM) being especially associated with increases in cardiovascular morbidity and mortality. Diesel exhaust emissions are a particularly rich source of the smallest sizes of PM ("fine" and "ultrafine") in urban environments, and it is these particles that are believed to be the most detrimental to cardiovascular health. Recent Advances: Controlled exposure studies to diesel exhaust in animals and man demonstrate alterations in blood pressure, heart rate, vascular tone, endothelial function, myocardial perfusion, thrombosis, atherogenesis, and plaque stability. Oxidative stress has emerged as a highly plausible pathobiological mechanism by which inhalation of diesel exhaust PM leads to multiple facets of cardiovascular dysfunction. Diesel exhaust inhalation promotes oxidative stress in several biological compartments that can be directly associated with adverse cardiovascular effects. Further studies with more sensitive and specific in vivo human markers of oxidative stress are required to determine if targeting oxidative stress pathways involved in the actions of diesel exhaust PM could be of therapeutic value. Antioxid. Redox Signal. 28, 819-836.

  17. OXIDATIVE STRESS PARTICIPATES IN PARTICULATE MATTER (PM) INDUCED LUNG INJURY

    EPA Science Inventory

    Oxidative stress participates in particulate matter (PM) induced acute lung injury.
    Elizabeth S. Roberts1, Judy L. Richards2, Kevin L. Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC, 2US Environmental Protection Agency, NHEERL, RTP, NC.
    Epidemiol...

  18. Oxidative stress and mitochondrial adaptive shift during pituitary tumoral growth.

    PubMed

    Sabatino, Maria Eugenia; Grondona, Ezequiel; Sosa, Liliana D V; Mongi Bragato, Bethania; Carreño, Lucia; Juarez, Virginia; da Silva, Rodrigo A; Remor, Aline; de Bortoli, Lucila; de Paula Martins, Roberta; Pérez, Pablo A; Petiti, Juan Pablo; Gutiérrez, Silvina; Torres, Alicia I; Latini, Alexandra; De Paul, Ana L

    2018-03-13

    The cellular transformation of normal functional cells to neoplastic ones implies alterations in the cellular metabolism and mitochondrial function in order to provide the bioenergetics and growth requirements for tumour growth progression. Currently, the mitochondrial physiology and dynamic shift during pituitary tumour development are not well understood. Pituitary tumours present endocrine neoplastic benign growth which, in previous reports, we had shown that in addition to increased proliferation, these tumours were also characterized by cellular senescence signs with no indication of apoptosis. Here, we show clear evidence of oxidative stress in pituitary cells, accompanied by bigger and round mitochondria during tumour development, associated with augmented biogenesis and an increased fusion process. An activation of the Nrf2 stress response pathway together with the attenuation of the oxidative damage signs occurring during tumour development were also observed which will probably provide survival advantages to the pituitary cells. These neoplasms also presented a progressive increase in lactate production, suggesting a metabolic shift towards glycolysis metabolism. These findings might imply an oxidative stress state that could impact on the pathogenesis of pituitary tumours. These data may also reflect that pituitary cells can modulate their metabolism to adapt to different energy requirements and signalling events in a pathophysiological situation to obtain protection from damage and enhance their survival chances. Thus, we suggest that mitochondria function, oxidative stress or damage might play a critical role in pituitary tumour progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Antioxidant agents against trichothecenes: new hints for oxidative stress treatment

    PubMed Central

    Nepovimova, Eugenie; Wang, Yun; Yang, Hualin; Li, Li; Zhang, Xiujuan; Kuca, Kamil

    2017-01-01

    Trichothecenes are a group of mycotoxins mainly produced by fungi of genus Fusarium. Due to high toxicity and widespread dissemination, T-2 toxin and deoxynivalenol (DON) are considered to be the most important compounds of this class. Trichothecenes generate free radicals, including reactive oxygen species (ROS), which induce lipid peroxidation, decrease levels of antioxidant enzymes, and ultimately lead to apoptosis. Consequently, oxidative stress is an active area of research on the toxic mechanisms of trichothecenes, and identification of antioxidant agents that could be used against trichothecenes is crucial for human health. Numerous natural compounds have been analyzed and have shown to function very effectively as antioxidants against trichothecenes. In this review, we summarize the molecular mechanisms underlying oxidative stress induced by these compounds, and discuss current knowledge regarding such antioxidant agents as vitamins, quercetin, selenium, glucomannan, nucleotides, antimicrobial peptides, bacteria, polyunsaturated fatty acids, oligosaccharides, and plant extracts. These products inhibit trichothecene-induced oxidative stress by (1) inhibiting ROS generation and induced DNA damage and lipid peroxidation; (2) increasing antioxidant enzyme activity; (3) blocking the MAPK and NF-κB signaling pathways; (4) inhibiting caspase activity and apoptosis; (5) protecting mitochondria; and (6) regulating anti-inflammatory actions. Finally, we summarize some decontamination methods, including bacterial and yeast biotransformation and degradation, as well as mycotoxin-binding agents. This review provides a comprehensive overview of antioxidant agents against trichothecenes and casts new light on the attenuation of oxidative stress. PMID:29299181

  20. Targeting oxidative stress component in the therapeutics of epilepsy.

    PubMed

    Azam, Faizul; Prasad, M V V; Thangavel, Neelaveni

    2012-01-01

    The role of free radical-mediated reactions in human neuropathology continues to attract significant interest. Oxidative injury produced by free radicals may play a role in the initiation and progression of epilepsy and, therapies aimed at reducing oxidative stress may ameliorate tissue damage and favorably alter the clinical course. The prevalence of epilepsy increases with age, and mitochondrial oxidative stress is a leading mechanism of aging and age-related degenerative disease, signifying a further involvement of mitochondrial dysfunction in seizure generation. Oxidative stress occurs when the generation of reactive oxygen species in a system exceeds the body's ability to neutralize and eliminate them, thus creating an imbalance or over abundance of free radicals. Therefore, it is imperative to maintain oxidative balance and control in the brain, and this is tightly regulated by antioxidants. In the last two decades, there has been an explosive interest in the role of antioxidants or neuroprotectants in clinical as well as experimental models of epilepsy. In this regard, the present review is intended to discuss the current state of knowledge pertaining to neuroprotection in epileptic conditions by employing diverse chemical agents including conventional as well as novel anti-epileptic drugs, and to highlight the efficacy of distinct neuroprotective strategies for preventing or treating epilepsy.

  1. Modulating Oxidative Stress and Inflammation in Elders: The MOXIE Study.

    PubMed

    Ellis, Amy Cameron; Dudenbostel, Tanja; Locher, Julie L; Crowe-White, Kristi

    2016-01-01

    Cardiovascular disease (CVD) is the leading cause of death among women in the United States. Endothelial dysfunction and arterial stiffness increase with advancing age and are early predictors of future CVD outcomes. We designed the Modulating Oxidative Stress and Inflammation in Elders (MOXIE) study to examine the effects of 100% watermelon juice as a "food-first" intervention to reduce CVD risk among African American (AA) and European American (EA) women aged 55-69 years. Vascular dysfunction is more pronounced in AA compared to EA women due in part to lower nitric oxide bioavailability caused by higher oxidative stress. However, bioactive compounds in watermelon may improve vascular function by increasing nitric oxide bioavailability and antioxidant capacity. This trial will use a randomized, placebo-controlled, crossover design to investigate the potential of 100% watermelon juice to positively impact various robust measures of vascular function as well as serum biomarkers of oxidative stress and antioxidant capacity. This nutrition intervention and its unique methodology to examine both clinical and mechanistic outcomes are described in this article.

  2. Modulating Oxidative Stress and Inflammation in Elders: The MOXIE Study

    PubMed Central

    Ellis, Amy Cameron; Dudenbostel, Tanja; Locher, Julie L.; Crowe-White, Kristi

    2016-01-01

    Cardiovascular disease (CVD) is the leading cause of death among women in the United States. Endothelial dysfunction and arterial stiffness increase with advancing age and are early predictors of future CVD outcomes. We designed the Modulating Oxidative Stress and Inflammation in Elders (MOXIE) study to examine the effects of 100% watermelon juice as a “food-first” intervention to reduce CVD risk among African American (AA) and European American (EA) women aged 55–69 years. Vascular dysfunction is more pronounced in AA compared to EA women due in part to lower nitric oxide bioavailability caused by higher oxidative stress. However, bioactive compounds in watermelon may improve vascular function by increasing nitric oxide bioavailability and antioxidant capacity. This trial will use a randomized, placebo-controlled, crossover design to investigate the potential of 100% watermelon juice to positively impact various robust measures of vascular function as well as serum biomarkers of oxidative stress and antioxidant capacity. This nutrition intervention and its unique methodology to examine both clinical and mechanistic outcomes are described in this article. PMID:27897608

  3. Cocoa Phenolic Extract Protects Pancreatic Beta Cells against Oxidative Stress

    PubMed Central

    Martín, María Ángeles; Ramos, Sonia; Cordero-Herrero, Isabel; Bravo, Laura; Goya, Luis

    2013-01-01

    Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE) containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH) on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5–20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult. PMID:23912326

  4. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    PubMed

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Srivastava, Alka; Singh, Anumeha; Mishra, Arun Kumar

    2016-11-01

    In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

  6. Non-thermal Plasma and Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  7. Marine Carotenoids against Oxidative Stress: Effects on Human Health.

    PubMed

    Gammone, Maria Alessandra; Riccioni, Graziano; D'Orazio, Nicolantonio

    2015-09-30

    Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.

  8. Antioxidant Therapeutic Strategies for Cardiovascular Conditions Associated with Oxidative Stress

    PubMed Central

    Molina, Víctor M.; Carrasco, Rodrigo A.; Figueroa, Elías; Letelier, Pablo; Castillo, Rodrigo L.

    2017-01-01

    Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability to scavenge these ROS by endogenous antioxidant systems, where ROS overwhelms the antioxidant capacity. Excessive presence of ROS results in irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Oxidative stress plays a crucial role in the pathogenesis of cardiovascular diseases related to hypoxia, cardiotoxicity and ischemia–reperfusion. Here, we describe the participation of OS in the pathophysiology of cardiovascular conditions such as myocardial infarction, anthracycline cardiotoxicity and congenital heart disease. This review focuses on the different clinical events where redox factors and OS are related to cardiovascular pathophysiology, giving to support for novel pharmacological therapies such as omega 3 fatty acids, non-selective betablockers and microRNAs. PMID:28862654

  9. Antioxidant Therapeutic Strategies for Cardiovascular Conditions Associated with Oxidative Stress.

    PubMed

    Farías, Jorge G; Molina, Víctor M; Carrasco, Rodrigo A; Zepeda, Andrea B; Figueroa, Elías; Letelier, Pablo; Castillo, Rodrigo L

    2017-09-01

    Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability to scavenge these ROS by endogenous antioxidant systems, where ROS overwhelms the antioxidant capacity. Excessive presence of ROS results in irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Oxidative stress plays a crucial role in the pathogenesis of cardiovascular diseases related to hypoxia, cardiotoxicity and ischemia-reperfusion. Here, we describe the participation of OS in the pathophysiology of cardiovascular conditions such as myocardial infarction, anthracycline cardiotoxicity and congenital heart disease. This review focuses on the different clinical events where redox factors and OS are related to cardiovascular pathophysiology, giving to support for novel pharmacological therapies such as omega 3 fatty acids, non-selective betablockers and microRNAs.

  10. The effects of anesthetic agents on oxidative stress

    NASA Astrophysics Data System (ADS)

    Yakan, Selvinaz; Düzgüner, Vesile

    2016-04-01

    Oxidative stress can be defined as the instability between antioxidant defense of the body and the production of free radical that causes peroxydation on the lipid layer. Free radicals are reactive oxygen species that are produced in the course of normal metabolisms of aerobe organisms and they may cause disorders in cell structure and organelles by interacting macromolecules, like lipid, protein, nucleic acids. Therefore, they may cause cardiovascular, immune system, liver, kidney illnesses and many other illnesses like cancer, aging, cataract, diabetes. It is known that many drugs used for the purpose of anesthetizing may cause lipid peroxidation in organism. For these reasons, determining the Oxidative stress index of anaesthetic stress chosen in the ones that are exposed to long term anaesthetic agents and anaesthesia appliccations, is so substantial.

  11. RAGE polymorphisms and oxidative stress levels in Hashimoto's thyroiditis.

    PubMed

    Giannakou, Maria; Saltiki, Katerina; Mantzou, Emily; Loukari, Eleni; Philippou, Georgios; Terzidis, Konstantinos; Lili, Kiriaki; Stavrianos, Charalampos; Kyprianou, Miltiades; Alevizaki, Maria

    2017-05-01

    Polymorphisms of the receptor for advanced glycation end products (RAGE) gene have been studied in various autoimmune disorders, but not in Hashimoto's thyroiditis. Also, increased oxidative stress has been described in patients with Hashimoto's thyroiditis. The aim of this study was to investigate the possible role of two common RAGE polymorphisms (-429T>C, -374T>A) in Hashimoto's thyroiditis; in parallel, we studied oxidative stress levels. A total of 300 consecutive euthyroid women were examined and classified into three groups: Hashimoto's thyroiditis with treatment (n = 96), Hashimoto's thyroiditis without treatment (n = 109) and controls (n = 95). For a rough evaluation of oxidative stress, total lipid peroxide levels in serum were measured. The -429T>C AluI and -374T>A MfeI polymorphisms of RAGE were studied in genomic DNA. Significant association of the RAGE system with Hashimoto's thyroiditis was found only with regard to the prevalence of the -429T>C, but not with -374T>A polymorphism. The levels of oxidative stress were significantly elevated in Hashimoto's thyroiditis patients under treatment. Further analysis demonstrated that an oxidative stress cut-off value of 590 μmol/L is associated with an increased risk of progression of Hashimoto's thyroiditis from euthyroidism to hypothyroidism; this risk is further increased in carriers of the RAGE -429T>C polymorphism. Our findings indicate that both examined risk factors may be implicated in the occurrence of Hashimoto's thyroiditis, but this covers only a fraction of the pathophysiology of the disease. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.

  12. Graded hypoxia and blood oxidative stress during exercise recovery.

    PubMed

    Peters, Bridget; Ballmann, Christopher; Mcginnis, Graham; Epstein, Erin; Hyatt, Hayden; Slivka, Dustin; Cuddy, John; Hailes, William; Dumke, Charles; Ruby, Brent; Quindry, John

    2016-01-01

    Altitude exposure and exercise elicit oxidative stress in blood; however, exercise recovery at 5000 m attenuates oxidative stress. The purpose was to determine the altitude threshold at which blood oxidative stress is blunted during exercise recovery. Twelve males 18-28 years performed four-cycle ergometry bouts (60 min, 70% VO2max, at 975 m). In a randomised counterbalanced crossover design, participants recovered 6 h at 0, 1667, 3333 and 5000 m in a normobaric hypoxia chamber (recovery altitudes were simulated by using a computerised system in an environmental chamber by lowering the partial pressure of oxygen to match that of the respective altitude). Oxygen saturation was monitored throughout exercise recovery. Blood samples obtained pre-, post-, 1 h post- and 5 h post-exercise were assayed for ferric-reducing antioxidant plasma, Trolox equivalent antioxidant capacity, uric acid, lipid hydroperoxides and protein carbonyls. Muscle biopsies obtained pre and 6 h were analysed by real-time polymerase chain reaction to quantify expression of hemeoxgenase 1, superoxide dismutase 2 and nuclear factor (euthyroid-derived 2)-like factor. Pulse oximetry data were similar during exercise, but decreased for the three highest recovery elevations (0 m = 0%, 1667 m = -3%; 3333 m = -7%; 5000 m = -17%). A time-dependent oxidative stress occurred following exercise for all variables, but the two highest recovery altitudes partially attenuated the lipid hydroperoxide response (0 m = +135%, 1667 m = +251%, 3333 m = +99%; 5000 m = +108%). Data may indicate an altitude threshold between 1667 and 3333 m, above which the oxidative stress response is blunted during exercise recovery.

  13. Oxidative stress in normal hematopoietic stem cells and leukemia.

    PubMed

    Samimi, Azin; Kalantari, Heybatullah; Lorestani, Marzieh Zeinvand; Shirzad, Reza; Saki, Najmaldin

    2018-04-01

    Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  14. Iron acquisition and oxidative stress response in aspergillus fumigatus.

    PubMed

    Brandon, Madison; Howard, Brad; Lawrence, Christopher; Laubenbacher, Reinhard

    2015-04-24

    Aspergillus fumigatus is a ubiquitous airborne fungal pathogen that presents a life-threatening health risk to individuals with weakened immune systems. A. fumigatus pathogenicity depends on its ability to acquire iron from the host and to resist host-generated oxidative stress. Gaining a deeper understanding of the molecular mechanisms governing A. fumigatus iron acquisition and oxidative stress response may ultimately help to improve the diagnosis and treatment of invasive aspergillus infections. This study follows a systems biology approach to investigate how adaptive behaviors emerge from molecular interactions underlying A. fumigatus iron regulation and oxidative stress response. We construct a Boolean network model from known interactions and simulate how changes in environmental iron and superoxide levels affect network dynamics. We propose rules for linking long term model behavior to qualitative estimates of cell growth and cell death. These rules are used to predict phenotypes of gene deletion strains. The model is validated on the basis of its ability to reproduce literature data not used in model generation. The model reproduces gene expression patterns in experimental time course data when A. fumigatus is switched from a low iron to a high iron environment. In addition, the model is able to accurately represent the phenotypes of many knockout strains under varying iron and superoxide conditions. Model simulations support the hypothesis that intracellular iron regulates A. fumigatus transcription factors, SreA and HapX, by a post-translational, rather than transcriptional, mechanism. Finally, the model predicts that blocking siderophore-mediated iron uptake reduces resistance to oxidative stress. This indicates that combined targeting of siderophore-mediated iron uptake and the oxidative stress response network may act synergistically to increase fungal cell killing.

  15. L-arginine attenuates oxidative stress condition during cardiomyopathy.

    PubMed

    Tripathi, Pratima; Pandey, Shivani

    2013-04-01

    Increased production of oxygen free radicals and decreased oxidant capacity occur in coronary artery diseases (CAD) This pro-oxidant shift in intracellular redox state may induce cell death by either direct cell membrane damage by lipic peroxidation or apoptosis through activation of transcription factors. These changes occur not only in cardiomyocytes, bu also in cardiac sympathetic nerves, which are very sensitive to oxidative damage. Patients with heart failure encountel reduced peripheralblood flow at rest, during exercise and in response to endothelium-dependentvasodilators. Current treatments of cardiomyopathy, a degenerative condition of the myocardium frequently associated with heart failure have done little to enhance patient survival. Decreased myocardial contractility and altered regulation of peripheral circulation along with oxidative conditions are important contributors to the symptoms and prognosis of the disease process. Nitric oxide formed from L-arginine (2-amino-5 guanidinovaleric acid) metabolism in endothelial cells contributes to regulation of blood flow under these conditions. L-Arginine is the precursor of nitric oxide, an endogenous messenger molecule involved in a variety of endothelium-mediated physiological effects in the vascular system. In the present study, we investigated the effect of oral administration of L-arginine (3 g/day) on the intracellular redox status of the patients of ischemic cardiomyopathy aged 45-60 yrs. The enzymatic and non-enzymatic antioxidant parameters like superoxide dismutase, catalase, total thiols (TSH) and ascorbic acid along with pro-oxidant parameters, such as xanthine oxidase, as well as index of oxidative stress as protein carbonyl content and malondialdehyde (a marker of lipid peroxidation) were investigated in the plasma and RBC lysate. L-Arginine (3 g/day) administration was found to improve the levels of these parameters in the patients and regulate the blood flow, as evident by the improved blood

  16. Different Impacts of Cardiovascular Risk Factors on Oxidative Stress

    PubMed Central

    Mansego, Maria L.; Redon, Josep; Martinez-Hervas, Sergio; Real, Jose T.; Martinez, Fernando; Blesa, Sebastian; Gonzalez-Albert, Veronica; Saez, Guillermo T.; Carmena, Rafael; Chaves, Felipe J.

    2011-01-01

    The objective of the study was to evaluate oxidative stress (OS) status in subjects with different cardiovascular risk factors. With this in mind, we have studied three models of high cardiovascular risk: hypertension (HT) with and without metabolic syndrome, familial hypercholesterolemia (FH) and familial combined hyperlipidemia (FCH) with and without insulin resistance. Oxidative stress markers (oxidized/reduced glutathione ratio, 8-oxo-deoxyguanosine and malondialdehide) together with the activity of antioxidant enzyme triad (superoxide dismutase, catalase, glutathione peroxidase) and activation of both pro-oxidant enzyme (NAPDH oxidase components) and AGTR1 genes, as well as antioxidant enzyme genes (CuZn-SOD, CAT, GPX1, GSR, GSS and TXN) were measured in mononuclear cells of controls (n = 20) and patients (n = 90) by assessing mRNA levels. Activity of some of these antioxidant enzymes was also tested. An increase in OS and pro-oxidant gene mRNA values was observed in patients compared to controls. The hypertensive group showed not only the highest OS values, but also the highest pro-oxidant activation compared to those observed in the other groups. In addition, in HT a significantly reduced antioxidant activity and mRNA induction of antioxidant genes were found when compared to controls and the other groups. In FH and FCH, the activation of pro-oxidant enzymes was also higher and antioxidant ones lower than in the control group, although it did not reach the values obtained in hypertensives. The thioredoxin system was more activated in patients as compared to controls, and the highest levels were in hypertensives. The increased oxidative status in the presence of cardiovascular risk factors is a consequence of both the activation of pro-oxidant mechanisms and the reduction of the antioxidant ones. The altered response of the main cytoplasmic antioxidant systems largely contributes to OS despite the apparent attempt of the thioredoxin system to control it. PMID

  17. Old Yellow Enzyme Protects the Actin Cytoskeleton from Oxidative Stress

    PubMed Central

    Haarer, Brian K.; Amberg, David C.

    2004-01-01

    Old Yellow Enzyme (OYE) has long served as a paradigm for the study of flavin-containing NADPH oxido-reductases and yet its physiological role has remained a mystery. A two-hybrid interaction between Oye2p and actin led us to investigate a possible function in the actin cytoskeleton. We found that oye deletion strains have an overly elaborate actin cytoskeleton that cannot be attributed to changes in actin concentration but likely reflect stabilization of actin filaments, resulting in excessive actin assembly. Cells expressing the actin mutant act1-123p, which has a weakened interaction with Oye2p, show comparable defects in actin organization to the oye deletion strain that can be suppressed by overexpression of Oye2p. Similarly, mutation of either conserved cysteine of the potential disulfide pair Cys285-Cys374 in actin completely suppresses the actin organization defect of the oyeΔ phenotype. Strains lacking Oye function are also sensitive to oxidative stress as induced by H2O2, menadione, and diamide treatment. Mutation of either Cys285 or Cys374 of actin suppresses the sensitivity of oyeΔ strains to oxidative stress and in fact confers super-resistance to oxidative stress in otherwise wild-type strains. These results suggest that oxidative damage to actin, like that which has been observed in irreversibly sickled red blood cells, may be a general phenomenon and that OYE functions to control the redox state of actin thereby maintaining the proper plasticity of the actin cytoskeleton. In addition to uncovering a long sought biological function for Old Yellow Enzyme, these results establish that cellular sensitivity to oxidative stress can in part be directly attributed to a specific form (C285-C374 disulfide bond formation) of oxidative damage to actin. PMID:15304519

  18. Linking phosphorus availability with photo-oxidative stress in plants.

    PubMed

    Hernández, Iker; Munné-Bosch, Sergi

    2015-05-01

    Plants have evolved a plethora of mechanisms to circumvent the potential damaging effects of living under low phosphorus availability in the soil. These mechanisms include different levels of organization, from root-shoot signalling at the whole-plant level to specific biochemical responses at the subcellular level, such as reductions in photosynthesis and the consequent activation of photo- and antioxidant mechanisms in chloroplasts. Some recent studies clearly indicate that severe phosphorus deficiency can lead to alterations in the photosynthetic apparatus, including reductions in CO2 assimilation rates, a down-regulation of photosynthesis-related genes and photoinhibition at the photosystem II level, thus causing potential photo-oxidative stress. Photo-oxidative stress is characterized by an increased production of reactive oxygen species in chloroplasts, which at low concentrations can serve a signalling, protective role, but when present at high concentrations can cause damage to lipids, proteins and nucleic acids, thus leading to irreversible injuries. We discuss here the mechanisms that phosphate-starved plants have evolved to withstand photo-oxidative stress, including changes at the subcellular level (e.g. activation of photo- and antioxidant protection mechanisms in chloroplasts), cellular and tissular levels (e.g. activation of photorespiration and anthocyanin accumulation) and whole-plant level (alterations in source-sink relationships modulated by hormones). Of particular importance is the current evidence demonstrating that phosphate-starved plants activate simultaneous responses at multiple levels, from transcriptional changes to root-shoot signalling, to prevent oxidative damage. In this review, we summarize current knowledge about the occurrence of photo-oxidative stress in phosphate-starved plants and highlight the mechanisms these plants have evolved to prevent oxidative damage under phosphorus limitation at the subcellular, cellular and whole

  19. L-carnitine modulates blood platelet oxidative stress.

    PubMed

    Saluk-Juszczak, Joanna; Olas, Beata; Wachowicz, Barbara; Glowacki, Rafal; Bald, Edward

    2010-08-01

    The oxidative stress induced by acute exertion may interfere with blood platelet activation. The beneficial effect of L-carnitine (gamma-trimethylamino-beta-hydroxybutyric acid) on oxidative stress in blood platelets has not been fully investigated; however, different studies indicate that this compound modulates platelet functions. The aim of our study was to assess the effects of L-carnitine on platelet activation and oxidative/nitrative protein damage (determined by the levels of protein carbonyl groups, thiol groups, and 3-nitrotyrosine residues) in resting blood platelets or platelets treated with peroxynitrite (ONOO(-), a strong physiological oxidant) in vitro. We also investigated the effects of L-carnitine on the level of platelet glutathione and on the formation of superoxide anion radicals O2(-*), lipid peroxidation measured by thiobarbituric acid reactive substances (TBARS) in blood platelets stimulated by thrombin (a strong physiological agonist), and platelet aggregation induced by adenosine diphosphate (a strong physiological stimulator). We have observed that carnitine decreases platelet activation (measured by platelet aggregation, the generation of O2(-*), and TBARS production). Moreover, our results in vitro demonstrate that carnitine may protect against oxidation of thiol groups induced by ONOO(-). Thus, carnitine may have some protectory effects against oxidative changes induced in blood platelets.

  20. Coriandrum sativum L. protects human keratinocytes from oxidative stress by regulating oxidative defense systems.

    PubMed

    Park, G; Kim, H G; Kim, Y O; Park, S H; Kim, S Y; Oh, M S

    2012-01-01

    Oxidative radicals are major environmental causes of human skin damage. Oxidative defense factors, including nuclear factor erythroid-derived 2-related factor 2 (Nrf2), are centrally involved in repairing skin cells or protecting them from oxidative damage. Coriandrum sativum L. (coriander; CS) is a commonly consumed food and a traditional phytomedicine in Asia and Europe. In this study, we examined the protective effects of a standardized CS leaf extract against oxidative stress in human HaCaT keratinocytes. CS significantly and dose-dependently protected cells against reduced cell viability caused by H2O2-induced damage, as assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Other assays demonstrated that CS protected HaCaT cells by increasing the levels of glutathione and activities of oxidative defense enzymes, such as superoxide dismutase and catalase. Moreover, it increased the expression of activated Nrf2, which plays a crucial role in protecting skin cells against oxidative stress. These results suggest that CS protects human keratinocytes from H2O2-induced oxidative stress through antioxidant effects. Copyright © 2012 S. Karger AG, Basel.

  1. Thiamine Deficiency and Neurodegeneration: the Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy.

    PubMed

    Liu, Dexiang; Ke, Zunji; Luo, Jia

    2017-09-01

    Thiamine (vitamin B1) is an essential nutrient and indispensable for normal growth and development of the organism due to its multilateral participation in key biochemical and physiological processes. Humans must obtain thiamine from their diet since it is synthesized only in bacteria, fungi, and plants. Thiamine deficiency (TD) can result from inadequate intake, increased requirement, excessive deletion, and chronic alcohol consumption. TD affects multiple organ systems, including the cardiovascular, muscular, gastrointestinal, and central and peripheral nervous systems. In the brain, TD causes a cascade of events including mild impairment of oxidative metabolism, neuroinflammation, and neurodegeneration, which are commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Thiamine metabolites may serve as promising biomarkers for neurodegenerative diseases, and thiamine supplementations exhibit therapeutic potential for patients of some neurodegenerative diseases. Experimental TD has been used to model aging-related neurodegenerative diseases. However, to date, the cellular and molecular mechanisms underlying TD-induced neurodegeneration are not clear. Recent research evidence indicates that TD causes oxidative stress, endoplasmic reticulum (ER) stress, and autophagy in the brain, which are known to contribute to the pathogenesis of various neurodegenerative diseases. In this review, we discuss the role of oxidative stress, ER stress, and autophagy in TD-mediated neurodegeneration. We propose that it is the interplay of oxidative stress, ER stress, and autophagy that contributes to TD-mediated neurodegeneration.

  2. Visualization of Oxidative Stress Induced by Experimental Periodontitis in Keap1-Dependent Oxidative Stress Detector-Luciferase Mice.

    PubMed

    Kataoka, Kota; Ekuni, Daisuke; Tomofuji, Takaaki; Irie, Koichiro; Kunitomo, Muneyoshi; Uchida, Yoko; Fukuhara, Daiki; Morita, Manabu

    2016-11-16

    The aim of this study was to investigate whether a Keap1-dependent oxidative stress detector-luciferase (OKD-LUC) mouse model would be useful for the visualization of oxidative stress induced by experimental periodontitis. A ligature was placed around the mandibular first molars for seven days to induce periodontitis. Luciferase activity was measured with an intraperitoneal injection of d-luciferin on days 0, 1, and 7. The luciferase activity in the periodontitis group was significantly greater than that in the control group at seven days. The expressions of heme oxygenase-1 (HO-1) and malondialdehyde in periodontal tissue were significantly higher in the periodontitis group than in the control group. Immunofluorescent analysis confirmed that the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) occurred more frequently in the periodontitis group than in the control group. This study found that under oxidative stress induced by experimental periodontitis, the Nrf2/antioxidant defense pathway was activated and could be visualized from the luciferase activity in the OKD-LUC model. Thus, the OKD-LUC mouse model may be useful for exploring the mechanism underlying the relationship between the Nrf2/antioxidant defense pathway and periodontitis by enabling the visualization of oxidative stress over time.

  3. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Cutler, Roy G.; Kelly, Jeremiah; Storie, Kristin; Pedersen, Ward A.; Tammara, Anita; Hatanpaa, Kimmo; Troncoso, Juan C.; Mattson, Mark P.

    2004-02-01

    Alzheimer's disease (AD) is an age-related disorder characterized by deposition of amyloid -peptide (A) and degeneration of neurons in brain regions such as the hippocampus, resulting in progressive cognitive dysfunction. The pathogenesis of AD is tightly linked to A deposition and oxidative stress, but it remains unclear as to how these factors result in neuronal dysfunction and death. We report alterations in sphingolipid and cholesterol metabolism during normal brain aging and in the brains of AD patients that result in accumulation of long-chain ceramides and cholesterol. Membrane-associated oxidative stress occurs in association with the lipid alterations, and exposure of hippocampal neurons to A induces membrane oxidative stress and the accumulation of ceramide species and cholesterol. Treatment of neurons with -tocopherol or an inhibitor of sphingomyelin synthesis prevents accumulation of ceramides and cholesterol and protects them against death induced by A. Our findings suggest a sequence of events in the pathogenesis of AD in which A induces membrane-associated oxidative stress, resulting in perturbed ceramide and cholesterol metabolism which, in turn, triggers a neurodegenerative cascade that leads to clinical disease. amyloid | apoptosis | hippocampus | lipid peroxidation | sphingomyelin

  4. Metabolic syndrome and periodontitis: is oxidative stress a common link?

    PubMed

    Bullon, P; Morillo, J M; Ramirez-Tortosa, M C; Quiles, J L; Newman, H N; Battino, M

    2009-06-01

    A review of pathological mechanisms that can explain the relationship between periodontitis and cardiovascular disease (CVD) is necessary to improve the management of both conditions. Metabolic syndrome is a combination of obesity, hypertension, impaired glucose tolerance or diabetes, hyperinsulinemia, and dyslipidemia. All these have been examined in recent years in terms of their relationship to periodontitis. Reviewed data indicate an association between some of them (body mass index, high-density lipoprotein-cholesterol [HDL-C], triglycerides, high blood pressure, among others) and periodontitis. Oxidative stress may act as a potential common link to explain relationships between each component of metabolic syndrome and periodontitis. Both conditions show increased serum levels of products derived from oxidative damage, with a pro-inflammatory state likely influencing each other bidirectionally. Adipocytokines might modulate the oxidant/anti-oxidant balance in this relationship.

  5. Oxidative stress-related biomarkers in multiple sclerosis: a review.

    PubMed

    Ibitoye, Richard; Kemp, Kevin; Rice, Claire; Hares, Kelly; Scolding, Neil; Wilkins, Alastair

    2016-08-01

    To provide an up-to-date review of oxidative stress biomarkers in multiple sclerosis and thus identify candidate molecules with greatest promise as biomarkers of diagnosis, disease activity or prognosis. A semi-systematic literature search using PubMed and other databases. Nitric oxide metabolites, superoxide dismutase, catalase, glutathione reductase, inducible nitric oxide synthase, protein carbonyl, 3-nitrotyrosine, isoprostanes, malondialdehyde and products of DNA oxidation have been identified across multiple studies as having promise as diagnostic, therapeutic or prognostic markers in MS. Heterogeneity of study design, particularly patient selection, limits comparability across studies. Further cohort studies are needed, and we would recommend promising markers be incorporated into future clinical trials to prospectively validate their potential.

  6. Psychosocial work environment and oxidative stress among nurses'.

    PubMed

    Salem, Eman A; Ebrahem, Sabah M

    2018-03-27

    Work stress among nurses has increased in recent years due to the demands of clinical nursing. To investigate psychosocial work stress among nurses using the effort-reward imbalance (ERI) model with assessment malondialdehyde (MDA) as an oxidative stress marker and total antioxidants. The present study was conducted on 204 registered nurses worked at two tertiary hospitals in Menoufia governorate, Egypt through the period from the 1st of February to the end of July 2016. Two questionnaires were applied including general demographic and occupational histories as well as effort-reward questionnaire. Blood analysis was performed to assess MDA and total antioxidant levels. ERI was prevalent among the study participants (72.5%). ERI was more prevalent among young married nurses who worked more than 10 years. Nurses that worked at ICUs complained more of ERI (43.2%) while nurses that worked at operation rooms complained more of overcommitment (62.5%). MDA levels were significantly positively correlated with E/R ratios (rho = 0.350, P ≤ 0.001). Work stress was prevalent among the studied nurses as revealed by the high ERI and MDA levels. Young married female nurses complained more of work stress. ICUs and operating rooms were the most stressful departments at the studied hospitals. Hence, implementing programs and strategies that eliminate stressful working conditions at hospitals is critical to the reduction and prevention of work stress among nurses.

  7. Psychosocial work environment and oxidative stress among nurses'

    PubMed Central

    Salem, Eman A.; Ebrahem, Sabah M.

    2017-01-01

    Background: Work stress among nurses has increased in recent years due to the demands of clinical nursing. Objectives: To investigate psychosocial work stress among nurses using the effort-reward imbalance (ERI) model with assessment malondialdehyde (MDA) as an oxidative stress marker and total antioxidants. Methods: The present study was conducted on 204 registered nurses worked at two tertiary hospitals in Menoufia governorate, Egypt through the period from the 1st of February to the end of July 2016. Two questionnaires were applied including general demographic and occupational histories as well as effort-reward questionnaire. Blood analysis was performed to assess MDA and total antioxidant levels. Results: ERI was prevalent among the study participants (72.5%). ERI was more prevalent among young married nurses who worked more than 10 years. Nurses that worked at ICUs complained more of ERI (43.2%) while nurses that worked at operation rooms complained more of overcommitment (62.5%). MDA levels were significantly positively correlated with E/R ratios (rho = 0.350, P ≤ 0.001). Conclusions: Work stress was prevalent among the studied nurses as revealed by the high ERI and MDA levels. Young married female nurses complained more of work stress. ICUs and operating rooms were the most stressful departments at the studied hospitals. Hence, implementing programs and strategies that eliminate stressful working conditions at hospitals is critical to the reduction and prevention of work stress among nurses. PMID:29311439

  8. Live-cell Imaging Approaches for the Investigation of Xenobiotic-Induced Oxidant Stress

    EPA Science Inventory

    BACKGROUND: Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular t...

  9. Protein Carbonyl Formation in Response to Propiconazole-Induced Oxidative Stress.

    EPA Science Inventory

    Propiconazole, a widely used fungicide, is hepatotoxic and hepatotumorigenic in mice. Previous genomic analysis of liver tissues from propiconazole-treated mice identified genes and pathways involved in oxidative stress, suggesting that oxidative stress may play a role in propico...

  10. Mitochondrial oxidative stress in aortic stiffening with age: the role of smooth muscle cell function.

    EPA Science Inventory

    OBJECTIVE: Age-related aortic stiffness is an independent risk factor for cardiovascular diseases. Although oxidative stress is implicated in aortic stiffness, the underlying molecular mechanisms remain unelucidated. Here, we examined the source of oxidative stress in aging and i...

  11. Role of oxidative stress in pathogenesis of metabolic syndrome

    PubMed Central

    Mahjoub, Soleiman; Masrour-Roudsari, Jila

    2012-01-01

    The metabolic syndrome (MS) recognized as a major cause of type 2 diabetes and cardiovascular diseases, has become one of the major public health challenges worldwide. The pathogenesis of the metabolic syndrome is multiple and still poorly understood. No single factor has yet been identified as an underlying causal factor. There is a growing belief, however, that obesity, especially visceral obesity, may play an important role in the development of the syndrome. Visceral adiposity seems to be an independent predictor of insulin sensitivity, impaired glucose tolerance, dyslipidemia and elevated blood pressure. An increasing number of studies confirm that oxidative stress, chronic inflammation and angiogenesis all play important roles in the pathogenesis of MS. Chronic hyperglycemia causes oxidative stress in tissues prone to complications in patients with diabetes. Oxidative stress occurs in a cellular system when the production of free radical moieties exceeds the antioxidant capacity of that system. If cellular antioxidants do not remove free radicals, radicals attack and damage proteins, lipids, and nucleic acids. The oxidized or nitrosylated products of free radical attack have decreased biological activity, leading to loss of energy metabolism, cell signaling, transport, and other major functions. These altered products are also targeted for proteosome degradation, further decreasing cellular function. Accumulation of such injury ultimately leads a cell to die through necrotic or apoptotic mechanisms. In conclusion, a puzzle of many pieces of evidence suggests that free radical overgeneration may be considered the key in the generation of insulin resistance, diabetes, and cardiovascular disease. PMID:26557292

  12. Increased Serum Oxidative Stress Markers in Women with Uterine Leiomyoma

    PubMed Central

    Santulli, Pietro; Borghese, Bruno; Lemaréchal, Herve; Leconte, Mahaut; Millischer, Anne-Elodie; Batteux, Frédéric

    2013-01-01

    Background Uterine leiomyomas (fibroids) are the most common gynaecological benign tumors in premenopausal women. Evidences support the role of oxidative stress in the development of uterine leiomyoma. We have analysed oxidative stress markers (thiols, advanced oxidized protein products (AOPP), protein carbonyls and nitrates/nitrites) in preoperative sera from women with histologically proven uterine leiomyoma. Methodology/Principal Findings We conducted a laboratory study in a tertiary-care university hospital. Fifty-nine women with histologically proven uterine leiomyoma and ninety-two leiomyoma-free control women have been enrolled in this study. Complete surgical exploration of the abdominopelvic cavity was performed in each patient. Preoperative serum samples were obtained from all study participants to assay serum thiols, AOPP, protein carbonyls and nitrates/nitrites. Concentrations of serum protein carbonyl groups and AOPP were higher in leiomyoma patients than in the control group (p=0.005 and p<0.001, respectively). By contrast, serum thiol levels were lower in leiomyoma patients (p<0.001). We found positive correlations between serum AOPP concentrations and total fibroids weight (r=0.339; p=0.028), serum AOPP and serum protein carbonyls with duration of infertility (r=0.762; p=0.006 and r=0.683; p=0.021, respectively). Conclusions/Significance This study, for the first time, reveals a significant increase of protein oxidative stress status and reduced antioxidant capacity in sera from women with uterine leiomyoma. PMID:23951284

  13. Revisiting an age-old question regarding oxidative stress

    PubMed Central

    Edrey, Yael H.; Salmon, Adam B.

    2014-01-01

    Significant advances in maintaining health throughout life can be made through a clear understanding of the fundamental mechanisms that regulate aging. The Oxidative Stress Theory of Aging (OSTA) is likely the most well-studied mechanistic theory of aging and suggests that the rate of aging is controlled by accumulation of oxidative damage. To directly test the OSTA, aging has been measured in several lines of mice with genetic alteration of the expression of enzymatic antioxidants. Under its strictest interpretation, these studies do not support the OSTA, as modulation of antioxidant expression does not generally affect mouse lifespan. However, the incidence of many age-related diseases and pathologies is altered in these models suggesting that oxidative stress does significantly impact some aspects of the aging process. Further, oxidative stress may affect aging in disparate patterns among tissues or under different environmental conditions. In this review, we summarize the current literature regarding aging in antioxidant mutant mice and offer several interpretations on their support of the OSTA. PMID:24704971

  14. Oxidative stress and hypertension: Possibility of hypertension therapy with antioxidants

    PubMed Central

    Baradaran, Azar; Nasri, Hamid; Rafieian-Kopaei, Mahmoud

    2014-01-01

    Hypertension is a major risk factor for myocardial infarction, heart failure, stroke, peripheral arterial disease, and aortic aneurysm, and is a cause of chronic kidney disease. Hypertension is often associated with metabolic abnormalities such as diabetes and dyslipidemia, and the rate of these diseases is increasing nowadays. Recently it has been hypothesized that oxidative stress is a key player in the pathogenesis of hypertension. A reduction in superoxide dismutase and glutathione peroxidase activity has been observed in newly diagnosed and untreated hypertensive subjects, which are inversely correlated with blood pressure. Hydrogen peroxide production is also higher in hypertensive subjects. Furthermore, hypertensive patients have higher lipid hydroperoxide production. Oxidative stress is also markedly increased in hypertensive patients with renovascular disease. If oxidative stress is indeed a cause of hypertension, then, antioxidants should have beneficial effects on hypertension control and reduction of oxidative damage should result in a reduction in blood pressure. Although dietary antioxidants may have beneficial effects on hypertension and cardiovascular risk factors, however, antioxidant supplementation has not been shown consistently to be effective and improvement is not usually seen in blood pressure after treatment with single or combination antioxidant therapy in subjects thought to be at high risk of cardiovascular disease. This matter is the main focus of this paper. A list of medicinal plants that have been reported to be effective in hypertension is also presented. PMID:25097610

  15. Exercise‐induced oxidative stress: past, present and future

    PubMed Central

    Radak, Zsolt; Ji, Li Li

    2016-01-01

    Abstract The existence of free radicals in living cells was first reported in 1954 and this important finding helped launch the field of free radical biology. However, the discovery that muscular exercise is associated with increased biomarkers of oxidative stress did not occur until 1978. Following the initial report that exercise promotes oxidative stress in humans, many studies have confirmed that prolonged or short‐duration high intensity exercise results in increased radical production in active skeletal muscles resulting in the formation of oxidized lipids and proteins in the working muscles. Since these early descriptive studies, the investigation of radicals and redox biology related to exercise and skeletal muscle has grown as a discipline and the importance of this research in the biomedical sciences is widely recognized. This review will briefly summarize the history of research in exercise‐induced oxidative stress and will discuss the major paradigm shifts that the field has undergone and continues to experience. We conclude with a discussion of future directions in the hope of stimulating additional research in this important field. PMID:26893258

  16. Toxicological and pharmacological concerns on oxidative stress and related diseases

    SciTech Connect

    Saeidnia, Soodabeh; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon; Abdollahi, Mohammad, E-mail: Mohammad@TUMS.Ac.Ir

    2013-12-15

    Although reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are generated as the natural byproduct of normal oxygen metabolism, they can create oxidative damage via interaction with bio-molecules. The role of oxidative stress as a remarkable upstream part is frequently reported in the signaling cascade of inflammation as well as chemo attractant production. Even though hydrogen peroxide can control cell signaling and stimulate cell proliferation at low levels, in higher concentrations it can initiate apoptosis and in very high levels may create necrosis. So far, the role of ROS in cellular damage and death is wellmore » documented with implicating in a broad range of degenerative alterations e.g. carcinogenesis, aging and other oxidative stress related diseases (OSRDs). Reversely, it is cleared that antioxidants are potentially able to suppress (at least in part) the immune system and to enhance the normal cellular protective responses to tissue damage. In this review, we aimed to provide insights on diverse OSRDs, which are correlated with the concept of oxidative stress as well as its cellular effects that can be inhibited by antioxidants. Resveratrol, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statins, nebivolol and carvedilol, pentaerythritol tetranitrate, mitochondria-targeted antioxidants, and plant-derived drugs (alone or combined) are the potential medicines that can be used to control OSRD.« less

  17. Attenuation of cisplathin-induced toxic oxidative stress by propofol.

    PubMed

    Taheri Moghadam, Ghazaleh; Hosseini-Zijoud, Seyed-Mostafa; Heidary Shayesteh, Tavakol; Ghasemi, Hassan; Ranjbar, Akram

    2014-10-01

    Antioxidant effects of propofol (2, 6-diisopropylphenol) were evaluated against cisplatin-i‎nduced oxidative stress in rat. In this experimental study, 20 male rats were equally divided into 4 groups (5 rats each), and were treated by propofol (10 mg/kg/day, IP), or cisplatin (7 mg /kg/day, IP), or both. G‎roup one was control, while group 2 was given cisplatin (7 mg /kg/day, IP). Animals of the third group received only propofol (10 mg/kg/day, IP). Group 4 was given propofol with cisplatin once per day for 7 days. After treatment, blood urea nitrogen, creatinine levels, and oxidative stress m‎arkers such as total thiol groups (TTG), lipid peroxidation (LPO), and total antioxidant ‎capacity (TAC) were measured. Oxidative stress induced by cisplatin, was evident by a significant increase in LPO and decrease in TTG and TAC. Propofol recovered ‎cisplatin -induced changes in TAC, TTG and LPO in blood. It is concluded that oxidative ‎damage is the mechanism of cisplatin toxicity, which can be recovered by propofol.‎

  18. Exercise-induced oxidative stress: past, present and future.

    PubMed

    Powers, Scott K; Radak, Zsolt; Ji, Li Li

    2016-09-15

    The existence of free radicals in living cells was first reported in 1954 and this important finding helped launch the field of free radical biology. However, the discovery that muscular exercise is associated with increased biomarkers of oxidative stress did not occur until 1978. Following the initial report that exercise promotes oxidative stress in humans, many studies have confirmed that prolonged or short-duration high intensity exercise results in increased radical production in active skeletal muscles resulting in the formation of oxidized lipids and proteins in the working muscles. Since these early descriptive studies, the investigation of radicals and redox biology related to exercise and skeletal muscle has grown as a discipline and the importance of this research in the biomedical sciences is widely recognized. This review will briefly summarize the history of research in exercise-induced oxidative stress and will discuss the major paradigm shifts that the field has undergone and continues to experience. We conclude with a discussion of future directions in the hope of stimulating additional research in this important field. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  19. Oxidative stress in resuscitation and in ventilation of newborns.

    PubMed

    Gitto, E; Pellegrino, S; D'Arrigo, S; Barberi, I; Reiter, R J

    2009-12-01

    The lungs of newborns are especially prone to oxidative damage induced by both reactive oxygen and reactive nitrogen species. Yet, these infants are often 1) exposed to high oxygen concentrations, 2) have infections or inflammation, 3) have reduced antioxidant defense, and 4) have high free iron levels which enhance toxic radical generation. Oxidative stress has been postulated to be implicated in several newborn conditions with the phrase "oxygen radical diseases of neonatology" having been coined. There is, however, reason to believe that oxidative stress is increased more when resuscitation is performed with pure oxygen compared with ambient air and that the most effective ventilatory strategy is the avoidance of mechanical ventilation with the use of nasopharyngeal continuous positive airway pressure whenever possible. Multiple ventilation strategies have been attempted to reduce injury and improve outcomes in newborn infants. In this review, the authors summarise the scientific evidence concerning oxidative stress as it relates to resuscitation in the delivery room and to the various modalities of ventilation.

  20. Soy protein reduces paraquat-induced oxidative stress in rats.

    PubMed

    Aoki, Hisa; Otaka, Yukiko; Igarashi, Kiharu; Takenaka, Asako

    2002-08-01

    The effect of soy protein, soy isoflavones and saponins on paraquat (PQ)-induced oxidative stress was investigated in rats. Rats were fed experimental diets containing casein (CAS), soy protein (SPI), and casein with soy isoflavones and saponins (CAS + IS). The diets were supplemented or not with 0.025% paraquat (CAS + PQ, SPI + PQ, and CAS + IS + PQ). The protective effects of soy protein, soy isoflavones, and saponins on paraquat-induced oxidative stress were examined. Ingestion of soy protein generally mitigated the lung enlargement (P = 0.076), loss of body weight (P = 0.051) and oxidation of liver lipid (P = 0.043) and glutathione (P = 0.035) induced by paraquat, although soy isoflavones and saponins did not. To determine whether soy protein exerted its antioxidative effects by preventing paraquat absorption from digestive organs, rats were fed CAS or SPI diets and orally administered a 12.5 g/L paraquat solution. Plasma, urine, and fecal paraquat concentrations did not differ between the two groups, indicating that soy protein did not prevent paraquat absorption. The present study suggests that intake of soy protein itself, but not soy isoflavones and saponins, reduces paraquat-induced oxidative stress in rats, although this effect was not due to reduced absorption of paraquat from digestive organs.

  1. Liquiritigenin restores osteoblast damage through regulating oxidative stress and mitochondrial dysfunction.

    PubMed

    Choi, Eun Mi; Suh, Kwang Sik; Lee, Young Soon

    2014-06-01

    We investigated the protective effect of liquiritigenin, one of the flavonoids present in Glycyrrhizae radix, against antimycin A-induced mitochondrial dysfunction in MC3T3-E1 osteoblast cells. Osteoblastic MC3T3-E1 cells were pre-incubated with liquiritigenin before treatment with antimycin A, and markers of mitochondrial function and oxidative damage were examined. In addition, the effects of liquiritigenin on the activation of phosphoinositide 3-kinase (PI3K) were examined in MC3T3-E1 cells. Liquiritigenin protected MC3T3-E1 cells from antimycin A-induced cell death. However, the PI3K inhibitor, LY294002, significantly attenuated liquiritigenin-mediated cell survival, indicating the involvement of PI3K in the cytoprotective effect of liquiritigenin. Pretreatment with liquiritigenin prior to antimycin A exposure significantly reduced antimycin A-induced PI3K inactivation, mitochondrial membrane potential dissipation, complex IV inactivation, and ATP loss. Liquiritigenin also reduced mitochondrial superoxide generation, nitrotyrosine production, and cardiolipin peroxidation during mitochondrial complex inhibition with antimycin A. Taken together, the results of this study show that modulation of PI3K, antioxidant effects, and the attenuation of mitochondrial dysfunction by liquiritigenin represent an important mechanism for its protection of osteoblasts against cytotoxicity resulting from mitochondrial oxidative stress. Copyright © 2013 John Wiley & Sons, Ltd.

  2. An update on oxidative stress-mediated organ pathophysiology.

    PubMed

    Rashid, Kahkashan; Sinha, Krishnendu; Sil, Parames C

    2013-12-01

    Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    PubMed Central

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  4. Molecular Mechanisms behind Free Radical Scavengers Function against Oxidative Stress

    PubMed Central

    Ahmadinejad, Fereshteh; Hashemzadeh-Chaleshtori, Morteza; Bidkhori, Gholamreza; Jami, Mohammad-Saeid

    2017-01-01

    Accumulating evidence shows that oxidative stress is involved in a wide variety of human diseases: rheumatoid arthritis, Alzheimer’s disease, Parkinson’s disease, cancers, etc. Here, we discuss the significance of oxidative conditions in different disease, with the focus on neurodegenerative disease including Parkinson’s disease, which is mainly caused by oxidative stress. Reactive oxygen and nitrogen species (ROS and RNS, respectively), collectively known as RONS, are produced by cellular enzymes such as myeloperoxidase, NADPH-oxidase (nicotinamide adenine dinucleotide phosphate-oxidase) and nitric oxide synthase (NOS). Natural antioxidant systems are categorized into enzymatic and non-enzymatic antioxidant groups. The former includes a number of enzymes such as catalase and glutathione peroxidase, while the latter contains a number of antioxidants acquired from dietary sources including vitamin C, carotenoids, flavonoids and polyphenols. There are also scavengers used for therapeutic purposes, such as 3,4-dihydroxyphenylalanine (L-DOPA) used routinely in the treatment of Parkinson’s disease (not as a free radical scavenger), and 3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone) that acts as a free radical detoxifier frequently used in acute ischemic stroke. The cell surviving properties of L-DOPA and Edaravone against oxidative stress conditions rely on the alteration of a number of stress proteins such as Annexin A1, Peroxiredoxin-6 and PARK7/DJ-1 (Parkinson disease protein 7, also known as Protein deglycase DJ-1). Although they share the targets in reversing the cytotoxic effects of H2O2, they seem to have distinct mechanism of function. Exposure to L-DOPA may result in hypoxia condition and further induction of ORP150 (150-kDa oxygen-regulated protein) with its concomitant cytoprotective effects but Edaravone seems to protect cells via direct induction of Peroxiredoxin-2 and inhibition of apoptosis. PMID:28698499

  5. Protective effects of glutamine on human melanocyte oxidative stress model.

    PubMed

    Jiang, Liya; Guo, Zhen; Kong, Yulong; Liang, Jianhua; Wang, Yi; Wang, Keyu

    2018-01-01

    Vitiligo is a disorder caused by the loss of the melanocyte activity on melanin pigment generation. Studies show that oxidative-stress induced apoptosis in melanocytes is closely related to the pathogenesis of vitiligo. Glutamine is a well known antioxidant with anti-apoptotic effects, and is used in a variety of diseases. However, it is unclear whether glutamine has an antioxidant or anti-apoptotic effect on melanocytes. The aim of this study was to investigate the protective effects of glutamine on a human melanocyte oxidative stress model. The oxidative stress model was established on human melanocytes using hydrogen peroxide. The morphology and viability of melanocytes, levels of oxidants [reactive oxygen species and malondialdehyde], levels of antioxidants [superoxide dismutase and glutathione-S-transferase], and apoptosis-related indicators (caspase-3, bax and bcl-2) were examined after glutamine exposure at various concentrations. Expressions of nuclear factor-E2-related factor 2, heme oxygenase-1, and heat shock protein 70 were detected using western blot technique after glutamine exposure at various concentrations. Our results demonstrate that pre-treatment and post-treatment with glutamine promoted melanocyte viability, increased levels of superoxide dismutase, glutathione-S-transferase and bcl-2, decreased levels of reactive oxygen species, malondialdehyde, bax and caspase-3, and enhanced nuclear factor-E2-related factor 2, heme oxygenase-1, and heat shock protein 70 expression in a dose dependent manner. The effect of pre-treatment was more significant than post-treatment, at the same concentration. The mechanisms of glutamine activated nuclear factor-E2-related factor 2 antioxidant responsive element signaling pathway need further investigation. Glutamine enhances the antioxidant and anti-apoptotic capabilities of melanocytes and protects them against oxidative stress.

  6. Exhaled Nitric Oxide Decreases during Academic Examination Stress in Asthma.

    PubMed

    Ritz, Thomas; Trueba, Ana F; Liu, Jiayan; Auchus, Richard J; Rosenfield, David

    2015-11-01

    Fractional exhaled nitric oxide (FeNO) is known to vary with multiple endogenous and exogenous factors. Laboratory stress and depressive mood have been associated with altered FeNO levels, but little is known about the susceptibility of FeNO to longer-lasting states of psychological stress in asthma. We sought to study changes in FeNO, lung function, and endogenous cortisol levels in students in a low-stress period during the academic term and in high-stress periods of up to 5 days during final exams. One hundred nine participants (35 with asthma) enrolled in a final examination stress study were assessed during the academic term (low stress) and during final exams (high stress). FeNO, spirometric lung function (FEV1, peak flow), salivary cortisol, and negative affect were measured at three time points. Control variables were medication use, cold symptoms, sex, and age. FeNO decreased substantially from low-stress baseline to the high-stress examination periods, with more pronounced decreases occurring in subjects with asthma (-11.5 ppb) than control subjects (-1.2 ppb). FEV1 decreased in both groups. Negative affect and cortisol increased during final exams, but these increases were smaller in asthma. Greater initial depression and greater cortisol increases were related to larger FeNO decreases during the final exam period, the latter only in asthma. Inhaled corticosteroid use did not affect these changes. Psychological stress and depressive mood are accompanied by decreases in both FeNO and lung function in asthma. Fluctuations related to life stress and mood levels should be considered in FeNO monitoring for asthma.

  7. Circadian Rhythm Connections to Oxidative Stress: Implications for Human Health

    PubMed Central

    Wilking, Melissa; Ndiaye, Mary; Mukhtar, Hasan

    2013-01-01

    Abstract Significance: Oxygen and circadian rhythmicity are essential in a myriad of physiological processes to maintain homeostasis, from blood pressure and sleep/wake cycles, down to cellular signaling pathways that play critical roles in health and disease. If the human body or cells experience significant stress, their ability to regulate internal systems, including redox levels and circadian rhythms, may become impaired. At cellular as well as organismal levels, impairment in redox regulation and circadian rhythms may lead to a number of adverse effects, including the manifestation of a variety of diseases such as heart diseases, neurodegenerative conditions, and cancer. Recent Advances: Researchers have come to an understanding as to the basics of the circadian rhythm mechanism, as well as the importance of the numerous species of oxidative stress components. The effects of oxidative stress and dysregulated circadian rhythms have been a subject of intense investigations since they were first discovered, and recent investigations into the molecular mechanisms linking the two have started to elucidate the bases of their connection. Critical Issues: While much is known about the mechanics and importance of oxidative stress systems and circadian rhythms, the front where they interact has had very little research focused on it. This review discusses the idea that these two systems are together intricately involved in the healthy body, as well as in disease. Future Directions: We believe that for a more efficacious management of diseases that have both circadian rhythm and oxidative stress components in their pathogenesis, targeting both systems in tandem would be far more successful. Antioxid. Redox Signal. 19, 192–208 PMID:23198849

  8. Oxidative costs of reproduction: Oxidative stress in mice fed standard and low antioxidant diets.

    PubMed

    Vaanholt, L M; Milne, A; Zheng, Y; Hambly, C; Mitchell, S E; Valencak, T G; Allison, D B; Speakman, J R

    2016-02-01

    Lactation is one of the most energetically expensive behaviours, and trade-offs may exist between the energy devoted to it and somatic maintenance, including protection against oxidative damage. However, conflicting data exist for the effects of reproduction on oxidative stress. In the wild, a positive relationship is often observed, but in laboratory studies oxidative damage is often lower in lactating than in non-breeding animals. We hypothesised that this discrepancy may exist because during lactation food intake increases many-fold resulting in a large increase in the intake of dietary antioxidants which are typically high in laboratory rodent chow where they are added as a preservative. We supplied lactating and non-breeding control mice with either a standard or low antioxidant diet and studied how this affected the activity of endogenous antioxidants (catalase, superoxide dismutase; SOD, and glutathione peroxidise; GPx) and oxidative damage to proteins (protein carbonyls, PC) in liver and brain tissue. The low antioxidant diet did not significantly affect activities of antioxidant enzymes in brain or liver, and generally did not result in increased protein damage, except in livers of control mice on low antioxidant diet. Catalase activity, but not GPx or SOD, was decreased in both control and lactating mice on the low antioxidant diet. Lactating mice had significantly reduced oxidative damage to both liver and brain compared to control mice, independent of the diet they were given. In conclusion, antioxidant content of the diet did not affect oxidative stress in control or reproductive mice, and cannot explain the previously observed reduction in oxidative stress in lactating mammals studied in the laboratory. The reduced oxidative stress in the livers of lactating mice even under low antioxidant diet treatment was consistent with the 'shielding' hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Assessment of Eccentric Exercise-Induced Oxidative Stress Using Oxidation-Reduction Potential Markers

    PubMed Central

    Stagos, Dimitrios; Goutzourelas, Nikolaos; Ntontou, Amalia-Maria; Kafantaris, Ioannis; Deli, Chariklia K.; Poulios, Athanasios; Jamurtas, Athanasios Z.; Bar-Or, David; Kouretas, Dimitrios

    2015-01-01

    The aim of the present study was to investigate the use of static (sORP) and capacity ORP (cORP) oxidation-reduction potential markers as measured by the RedoxSYS Diagnostic System in plasma, for assessing eccentric exercise-induced oxidative stress. Nineteen volunteers performed eccentric exercise with the knee extensors. Blood was collected before, immediately after exercise, and 24, 48, and 72 h after exercise. Moreover, common redox biomarkers were measured, which were protein carbonyls, thiobarbituric acid-reactive substances, total antioxidant capacity in plasma, and catalase activity and glutathione levels in erythrocytes. When the participants were examined as one group, there were not significant differences in any marker after exercise. However, in 11 participants there was a high increase in cORP after exercise, while in 8 participants there was a high decrease. Thus, the participants were divided in low cORP group exhibiting significant decrease in cORP after exercise and in high cORP group exhibiting significant increase. Moreover, only in the low cORP group there was a significant increase in lipid peroxidation after exercise suggesting induction of oxidative stress. The results suggested that high decreases in cORP values after exercise may indicate induction of oxidative stress by eccentric exercise, while high increases in cORP values after exercise may indicate no existence of oxidative stress. PMID:25874019

  10. Assessment of eccentric exercise-induced oxidative stress using oxidation-reduction potential markers.

    PubMed

    Stagos, Dimitrios; Goutzourelas, Nikolaos; Ntontou, Amalia-Maria; Kafantaris, Ioannis; Deli, Chariklia K; Poulios, Athanasios; Jamurtas, Athanasios Z; Bar-Or, David; Kouretas, Dimitrios

    2015-01-01

    The aim of the present study was to investigate the use of static (sORP) and capacity ORP (cORP) oxidation-reduction potential markers as measured by the RedoxSYS Diagnostic System in plasma, for assessing eccentric exercise-induced oxidative stress. Nineteen volunteers performed eccentric exercise with the knee extensors. Blood was collected before, immediately after exercise, and 24, 48, and 72 h after exercise. Moreover, common redox biomarkers were measured, which were protein carbonyls, thiobarbituric acid-reactive substances, total antioxidant capacity in plasma, and catalase activity and glutathione levels in erythrocytes. When the participants were examined as one group, there were not significant differences in any marker after exercise. However, in 11 participants there was a high increase in cORP after exercise, while in 8 participants there was a high decrease. Thus, the participants were divided in low cORP group exhibiting significant decrease in cORP after exercise and in high cORP group exhibiting significant increase. Moreover, only in the low cORP group there was a significant increase in lipid peroxidation after exercise suggesting induction of oxidative stress. The results suggested that high decreases in cORP values after exercise may indicate induction of oxidative stress by eccentric exercise, while high increases in cORP values after exercise may indicate no existence of oxidative stress.

  11. How Does the Macula Protect Itself from Oxidative Stress?

    PubMed Central

    Handa, James T.

    2012-01-01

    Oxidative stress has been hypothesized to contribute to the development of age-related macular degeneration (AMD), the most common cause of blindness in the United States. At present, there is no treatment for early disease. Reactive oxygen species (ROS) play a physiological role in the retinal pigment epithelium (RPE), a key cell type in this disease, but with excessive ROS, oxidative damage or excessive innate immune system activation can result. The RPE has developed a robust antioxidant system driven by the transcription factor Nrf2. Impaired Nrf2 signaling can lead to oxidative damage or activate the innate immune response, both of which can lead to RPE apoptosis, a defining change in AMD. Several mouse models simulating environmental stressors or targeting specific antioxidant enzymes such as superoxide dismutase or Nrf2, have simulated some of the features of AMD. While ROS are short-lived, oxidatively damaged molecules termed oxidation specific epitopes (OSEs), can be long-lived and a source of chronic stress that activates the innate immune system through pattern recognition receptors (PRRs). The macula accumulates a number of OSEs including carboxyethylpyrrole, malondialdehyde, 4-hydroxynonenal, and advanced glycation endproducts, as well as their respective neutralizing PRRs. Excessive accumulation of OSEs results in pathologic immune activation. For example, mice immunized with the carboxyethylpyrrole develop cardinal features of AMD. Regulating ROS in the RPE by modulating antioxidant systems or neutralizing OSEs through an appropriate innate immune response are potential modalities to treat or prevent early AMD. PMID:22503691

  12. How does the macula protect itself from oxidative stress?

    PubMed

    Handa, James T

    2012-08-01

    Oxidative stress has been hypothesized to contribute to the development of age-related macular degeneration (AMD), the most common cause of blindness in the United States. At present, there is no treatment for early disease. Reactive oxygen species (ROS) play a physiological role in the retinal pigment epithelium (RPE), a key cell type in this disease, but with excessive ROS, oxidative damage or excessive innate immune system activation can result. The RPE has developed a robust antioxidant system driven by the transcription factor Nrf2. Impaired Nrf2 signaling can lead to oxidative damage or activate the innate immune response, both of which can lead to RPE apoptosis, a defining change in AMD. Several mouse models simulating environmental stressors or targeting specific antioxidant enzymes such as superoxide dismutase or Nrf2, have simulated some of the features of AMD. While ROS are short-lived, oxidatively damaged molecules termed oxidation specific epitopes (OSEs), can be long-lived and a source of chronic stress that activates the innate immune system through pattern recognition receptors (PRRs). The macula accumulates a number of OSEs including carboxyethylpyrrole, malondialdehyde, 4-hydroxynonenal, and advanced glycation endproducts, as well as their respective neutralizing PRRs. Excessive accumulation of OSEs results in pathologic immune activation. For example, mice immunized with the carboxyethylpyrrole develop cardinal features of AMD. Regulating ROS in the RPE by modulating antioxidant systems or neutralizing OSEs through an appropriate innate immune response are potential modalities to treat or prevent early AMD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Flow of essential elements in subcellular fractions during oxidative stress.

    PubMed

    Lago, Larissa; Nunes, Emilene A; Vigato, Aryane A; Souza, Vanessa C O; Barbosa, Fernando; Sato, João R; Batista, Bruno L; Cerchiaro, Giselle

    2017-02-01

    Essential trace elements are commonly found in altered concentrations in the brains of patients with neurodegenerative diseases. Many studies in trace metal determination and quantification are conducted in tissue, cell culture or whole brain. In the present investigation, we determined by ICP-MS Fe, Cu, Zn, Ca, Se, Co, Cr, Mg, and Mn in organelles (mitochondria, nuclei) and whole motor neuron cell cultured in vitro. We performed experiments using two ways to access oxidative stress: cell treatments with H 2 O 2 or Aβ-42 peptide in its oligomeric form. Both treatments caused accumulation of markers of oxidative stress, such as oxidized proteins and lipids, and alteration in DNA. Regarding trace elements, cells treated with H 2 O 2 showed higher levels of Zn and lower levels of Ca in nuclei when compared to control cells with no oxidative treatments. On the other hand, cells treated with Aβ-42 peptide in its oligomeric form showed higher levels of Mg, Ca, Fe and Zn in nuclei when compared to control cells. These differences showed that metal flux in cell organelles during an intrinsic external oxidative condition (H 2 O 2 treatment) are different from an intrinsic external neurodegenerative treatment.

  14. Oxidative Stress in Female Athletes Using Combined Oral Contraceptives.

    PubMed

    Cauci, Sabina; Buligan, Cinzia; Marangone, Micaela; Francescato, Maria Pia

    2016-12-01

    Oxidative stress in female athletes is understudied. We investigated oxidative stress in sportswomen of different disciplines according to combined oral contraceptive (OC) use and lifestyle/alimentary habits. Italian sportswomen (n = 144; mean age 23.4 ± 4.2 years; body mass index 21.2 ± 2.2 kg m -2 ; sport activity 9.2 ± 4.1 h week -1 ) were analyzed; 48 % were volleyball players, 12.5 % soccer players, 10.4 % track-and-field sports, and followed by other disciplines' athletes. Oxidative stress was evaluated by free oxygen radical test (FORT) assessing blood hydroperoxides and free oxygen radical defense (FORD) assay evaluating antioxidant capacity in OC users (n = 42) compared to non-OC users. Elevated oxidative stress levels (≥310 FORT units) were found in 92.9 % of OC users and in 23.5 % of non-OC users (crude OR = 42, 95 % CI 12-149, p < 0.001; adjusted OR = 60, 95 % CI 11-322, p < 0.001). Continuous values of hydroperoxides were twofold higher in OC users versus non-OC users (median 484 versus 270 FORT units, p < 0.001) and were inversely related to FORD units in OC users (p = 0.01). Hydroperoxides were not associated with weekly hours of exercise. In OC users, lifestyle/alimentary habits were not correlated to hydroperoxides. In non-OC users only, hydroperoxide values were positively correlated with weight and BMI and inversely correlated with chocolate and fish consumption. The markedly elevated oxidative stress we revealed in OC-user athletes could be detrimental to physical activity and elevate cardiovascular risk (as thromboembolism). Further research is needed to extend our results, to clarify the biochemical pathways leading to increased hydroperoxides (mainly lipid peroxides) and reduced antioxidant defense, and to elucidate the potential effects on athletic performance. OC use should be considered when developing gender-focused strategies against oxidative stress.

  15. l-Arginine Enhances Resistance against Oxidative Stress and Heat Stress in Caenorhabditis elegans.

    PubMed

    Ma, Heran; Ma, Yudan; Zhang, Zhixian; Zhao, Ziyuan; Lin, Ran; Zhu, Jinming; Guo, Yi; Xu, Li

    2016-09-29

    The antioxidant properties of l-arginine (l-Arg) in vivo, and its effect on enhancing resistance to oxidative stress and heat stress in Caenorhabditis elegans were investigated. C. elegans , a worm model popularly used in molecular and developmental biology, was used in the present study. Here, we report that l-Arg, at a concentration of 1 mM, prolonged C. elegans life by 26.98% and 37.02% under oxidative and heat stress, respectively. Further experiments indicated that the longevity-extending effects of l-Arg may be exerted by its free radical scavenging capacity and the upregulation of aging-associated gene expression in worms. This work is important in the context of numerous recent studies that concluded that environment stresses are associated with an increased population death rate.

  16. l-Arginine Enhances Resistance against Oxidative Stress and Heat Stress in Caenorhabditis elegans

    PubMed Central

    Ma, Heran; Ma, Yudan; Zhang, Zhixian; Zhao, Ziyuan; Lin, Ran; Zhu, Jinming; Guo, Yi; Xu, Li

    2016-01-01

    The antioxidant properties of l-arginine (l-Arg) in vivo, and its effect on enhancing resistance to oxidative stress and heat stress in Caenorhabditis elegans were investigated. C. elegans, a worm model popularly used in molecular and developmental biology, was used in the present study. Here, we report that l-Arg, at a concentration of 1 mM, prolonged C. elegans life by 26.98% and 37.02% under oxidative and heat stress, respectively. Further experiments indicated that the longevity-extending effects of l-Arg may be exerted by its free radical scavenging capacity and the upregulation of aging-associated gene expression in worms. This work is important in the context of numerous recent studies that concluded that environment stresses are associated with an increased population death rate. PMID:27690079

  17. Neuroendocrine Profile in a Rat Model of Psychosocial Stress: Relation to Oxidative Stress

    PubMed Central

    Colaianna, Marilena; Schiavone, Stefania; Zotti, Margherita; Tucci, Paolo; Morgese, Maria Grazia; Bäckdahl, Liselotte; Holmdahl, Rikard; Krause, Karl-Heinz; Cuomo, Vincenzo

    2013-01-01

    Abstract Aims: Psychosocial stress alters the hypothalamic-pituitary-adrenal axis (HPA-axis). Increasing evidence shows a link between these alterations and oxidant elevation. Oxidative stress is implicated in the stress response and in the pathogenesis of neurologic and psychiatric diseases. NADPH oxidases (NOXs) are a major source of reactive oxygen species (ROS) in the central nervous system. Here, we investigated the contributory role of NOX2-derived ROS to the development of neuroendocrine alterations in a rat model of chronic psychosocial stress, the social isolation. Results: Significant elevations in the hypothalamic levels of corticotropin-releasing factor and plasmatic adrenocorticotropic hormone were observed from 4 weeks of social isolation. Increased levels of peripheral markers of the HPA-axis (plasmatic and salivary corticosterone) were observed at a later time point of social isolation (7 weeks). Alteration in the exploratory activity of isolated rats followed the same time course. Increased expression of markers of oxidative stress (8-hydroxy-2-deoxyguanosine [8OhdG] and nitrotyrosine) and NOX2 mRNA was early detectable in the hypothalamus of isolated rats (after 2 weeks), but later (after 7 weeks) in the adrenal gland. A 3-week treatment with the antioxidant/NOX inhibitor apocynin stopped the progression of isolation-induced alterations of the HPA-axis. Rats with a loss-of-function mutation in the NOX2 subunit p47phox were totally protected from the alterations of the neuroendocrine profile, behavior, and increased NOX2 mRNA expression induced by social isolation. Innovation: We demonstrate that psychosocial stress induces early elevation of NOX2-derived oxidative stress in the hypothalamus and consequent alterations of the HPA-axis, leading ultimately to an altered behavior. Conclusion: Pharmacological targeting of NOX2 might be of crucial importance for the treatment of psychosocial stress-induced psychosis. Antioxid. Redox Signal. 18, 1385

  18. Endoplasmic reticulum stress and oxidative stress are involved in ZnO nanoparticle-induced hepatotoxicity

    PubMed Central

    Yang, Xia; Shao, Huali; Liu, Weirong; Gu, Weizhong; Shu, Xiaoli; Mo, Yiqun; Chen, Xuejun; Zhang, Qunwei; Jiang, Mizu

    2015-01-01

    Zinc oxide nanoparticles (Nano-ZnO) are widely used in sunscreens, clothes, medicine and electronic devices. However, the potential risks of human exposure and the potential for adverse health impacts are not well understood. Previous studies have demonstrated that exposure to Nano-ZnO caused liver damage and hepatocyte apoptosis through oxidative stress, but the molecular mechanisms that are involved in Nano-ZnO-induced hepatotoxicity are still unclear. Endoplasmic reticulum (ER) is sensitive to oxidative stress, and also plays a crucial role in oxidative stress-induced damage. Previous studies showed that ER stress was involved in many chemical-induced liver injuries. We hypothesized that exposure to Nano-ZnO caused oxidative stress and ER stress that were involved in Nano-ZnO-induced liver injury. To test our hypothesis, mice were gavaged with 200 mg/kg or 400 mg/kg of Nano-ZnO once a day for a period of 90 days, and blood and liver tissues were obtained for study. Our results showed that exposure to Nano-ZnO caused liver injury that was reflected by focal hepatocellular necrosis, congestive dilation of central veins, and significantly increased alanine transaminase (ALT) and aspartate transaminase (AST) levels. Exposure to Nano-ZnO also caused depletion of glutathione (GSH) the liver tissues. In addition, our electron microscope results showed that ER swelling and ribosomal degranulation were observed in the liver tissues from mice treated with Nano-ZnO. The mRNA expression levels of ER stress-associated genes (grp78, grp94, pdi-3, xbp-1) were also up-regulated in Nano-ZnO-treated mice. Nano-ZnO caused increased phosphorylation of RNA-dependent protein kinase-like ER kinase (PERK) and eukaryotic initiation factor 2α (eIF2α). Finally, we found that exposure to Nano-ZnO caused increased ER stress-associated apoptotic protein levels, such as caspase-3, caspase-9, caspase-12, phosphorylation of JNK, and CHOP/GADD153, and up-regulation of pro-apoptotic genes (chop

  19. Reproduction is not costly in terms of oxidative stress.

    PubMed

    Ołdakowski, Łukasz; Wasiluk, Aleksandra; Sadowska, Edyta T; Koteja, Paweł; Taylor, Jan R E

    2015-12-01

    One of the core assumptions of life-history theory is the negative trade-off between current and future reproduction. Investment in current reproduction is expected to decrease future reproductive success or survival, but the physiological mechanisms underlying these costs are still obscure. To test for a role of oxidative stress, we measured oxidative damage to lipids and proteins in liver, heart, kidneys and muscles, as well as the level of antioxidants (total glutathione and catalase), in breeding and non-breeding bank voles. We used females from lines selected for high aerobic metabolism and non-selected control lines and manipulated their reproductive investment by decreasing or increasing litter size. Unlike in most previous studies, the females reared four consecutive litters (the maximum possible during a breeding season). Contrary to predictions, oxidative damage in reproducing females was decreased or not changed, and did not differ between the selected and control lines. Oxidative damage to lipids and proteins in the liver was lower in females that weaned enlarged litters than in non-breeding ones, and was intermediate in those with reduced litters. Oxidative damage to proteins in the heart also tended to be lower in breeding females than in non-breeding ones. A negative relationship between the level of oxidative damage and activity of catalase in kidneys indicated a protective action of antioxidants. In conclusion, our study falsified the hypothesis that oxidative stress is a part of the proximate physiological mechanism underlying the fundamental life-history trade-off between current and future reproduction. © 2015. Published by The Company of Biologists Ltd.

  20. Nivalenol induces oxidative stress and increases deoxynivalenol pro-oxidant effect in intestinal epithelial cells

    SciTech Connect

    Del Regno, Marisanta; Adesso, Simona; Popolo, Ada

    2015-06-01

    Mycotoxins are secondary fungal metabolites often found as contaminants in almost all agricultural commodities worldwide, and the consumption of food or feed contaminated by mycotoxins represents a major risk for human and animal health. Reactive oxygen species are normal products of cellular metabolism. However, disproportionate generation of reactive oxygen species poses a serious problem to bodily homeostasis and causes oxidative tissue damage. In this study we analyzed the effect of two trichothecenes mycotoxins: nivalenol and deoxynivalenol, alone and in combination, on oxidative stress in the non-tumorigenic intestinal epithelial cell line IEC-6. Our results indicate the pro-oxidant nivalenol effect in IEC-6,more » the stronger pro-oxidant effect of nivalenol when compared to deoxynivalenol and, interestingly, that nivalenol increases deoxynivalenol pro-oxidative effects. Mechanistic studies indicate that the observed effects were mediated by NADPH oxidase, calcium homeostasis alteration, NF-kB and Nrf2 pathways activation and by iNOS and nitrotyrosine formation. The toxicological interaction by nivalenol and deoxynivalenol reported in this study in IEC-6, points out the importance of the toxic effect of these mycotoxins, mostly in combination, further highlighting the risk assessment process of these toxins that are of growing concern. - Highlights: • Nivalenol induces oxidative stress in intestinal epithelial cells (IECs). • Nivalenol increases deoxynivalenol pro-oxidant effects in IECs. • Nivalenol and deoxynivalenol trigger antioxidant response IECs. • These results indicate the importance of mycotoxins co-contamination.« less

  1. Quercetin Treatment Ameliorates Systemic Oxidative Stress in Cirrhotic Rats

    PubMed Central

    Vieira, Emanuelle Kerber; Bona, Silvia; Di Naso, Fábio Cangeri; Porawski, Marilene; Tieppo, Juliana; Marroni, Norma Possa

    2011-01-01

    Our aim was to investigate whether the antioxidant quercetin protects against liver injury and ameliorates the systemic oxidative stress in rats with common bile duct ligation. Secondary biliary cirrhosis was induced through 28 days of bile duct obstruction. Animals received quercetin (Q) after 14 days of obstruction. Groups of control (CO) and cirrhotic (CBDL) animals received a daily 50 mg/kg body weight i.p. injection of quercetin (CO + Q; CBDL + Q) or vehicle (CO; CBDL). Quercetin corrected the reduction in superoxide dismutase (SOD), catalase CAT, and glutathione peroxidase GPx activities and prevented the increase of thiobarbituric acid reactive substances (TBARS), aminotransferases, and alkaline phosphatase in cirrhotic animals. Quercetin administration also corrected the reduced total nitrate concentration in the liver and prevented liver fibrosis and necrosis. These effects suggest that quercetin might be a useful agent to preserve liver function and prevent systemic oxidative stress. PMID:21991520

  2. Sulfasalazine induced oxidative stress: a possible mechanism of male infertility.

    PubMed

    Alonso, Virginia; Linares, Victoria; Bellés, Montserrat; Albina, Maria L; Sirvent, Juan J; Domingo, José L; Sánchez, Domènec J

    2009-01-01

    The mechanism of action of sulfasalazine (SASP) in male infertility is not well elucidated. For it, an oxidative stress-like mechanism inductor of infertility was hypothesized. Adult male Sprague-Dawley rats (20/group) were orally administered 0, 300, and 600mg SASP/kg body weight for 14 days. One-half of animals in each group remained an additional period of 14 days without treatment. SASP induced a significant decrease of superoxide dismutase (SOD) and glutathione reductase (GR) at the highest dose in both testis and epididymis. GR remained altered in these tissues within the recovery period. However, an increase in SOD was noted in epididymis. An increase in thiobarbituric acid-reactive substances (TBARS) was noted in all SASP-treated groups. In epididymis, catalase (CAT) significantly increased at 600mg/(kgday). These results suggest that SASP induces oxidative stress, which in turn might act as a possible mechanism of male-induced infertility.

  3. Small diverse antioxidant functionalities for oxidative stress disease drug discovery.

    PubMed

    Sikazwe, D; Grillo, A; Ramsinghani, S; Davis, J; McQuiston, K; Ablordeppey, S Y

    2012-07-01

    There is an up-surge of interest in antioxidants because of their potential use in mitigating a wide array of oxidative stress mediated diseases. In the course of our literature search for diverse functional groups, with utility in the design of potential drugs for preventing oxidative stress related cell injury, we have collected a small literature library of core structures or moieties possessing antioxidant activities. These functional groups can be re-configured into robust antioxidants drug molecules, in their own right, or incorporated into drug structures where the antioxidant capability is required. The lack of single papers presenting a collection of diverse small molecule antioxidant moieties as potential design leads prompted us to write this short review of twenty five such functionalities.

  4. Cardiovascular Complications in CKD Patients: Role of Oxidative Stress

    PubMed Central

    Gosmanova, Elvira O.; Le, Ngoc-Anh

    2011-01-01

    Starting with the early stages, patients with chronic kidney disease (CKD) experience higher burden of cardiovascular disease (CVD). Moreover, CVD complications are the major cause of mortality in CKD patients as compared with complications from chronic kidney failure. While traditional CVD risk factors, including diabetes, hypertension, hyperlipidemia, obesity, physical inactivity, may be more prevalent among CKD patients, these factors seem to underestimate the accelerated cardiovascular disease in the CKD population. Search for additional biomarkers that could explain the enhanced CVD risk in CKD patients has gained increasing importance. Although it is unlikely that any single nontraditional risk factor would fully account for the increased CVD risk in individuals with CKD, oxidative stress appears to play a central role in the development and progression of CVD and its complications. We will review the data that support the contribution of oxidative stress in the pathogenesis of CVD in patients with chronic kidney failure. PMID:21253517

  5. Preclinical Alzheimer disease: brain oxidative stress, Abeta peptide and proteomics.

    PubMed

    Aluise, Christopher D; Robinson, Renã A Sowell; Beckett, Tina L; Murphy, M Paul; Cai, Jian; Pierce, William M; Markesbery, William R; Butterfield, D Allan

    2010-08-01

    Alzheimer disease (AD) is a neurodegenerative disorder characterized clinically by progressive memory loss and subsequent dementia and neuropathologically by senile plaques, neurofibrillary tangles, and synapse loss. Interestingly, a small percentage of individuals with normal antemortem psychometric scores meet the neuropathological criteria for AD (termed 'preclinical' AD (PCAD)). In this study, inferior parietal lobule (IPL) from PCAD and control subjects was compared for oxidative stress markers by immunochemistry, amyloid beta peptide by ELISA, and identification of protein expression differences by proteomics. We observed a significant increase in highly insoluble monomeric Abeta42, but no significant differences in oligomeric Abeta nor in oxidative stress measurements between controls and PCAD subjects. Expression proteomics identified proteins whose trends in PCAD are indicative of cellular protection, possibly correlating with previous studies showing no cell loss in PCAD. Our analyses may reveal processes involved in a period of protection from neurodegeneration that mimic the clinical phenotype of PCAD.

  6. Oxidative Stress after Surgery on the Immature Heart

    PubMed Central

    Fudulu, Daniel; Angelini, Gianni

    2016-01-01

    Paediatric heart surgery is associated with increased inflammation and the production of reactive oxygen species. Use of the extracorporeal cardiopulmonary bypass during correction of congenital heart defects generates reactive oxygen species by various mechanisms: haemolysis, neutrophil activation, ischaemia reperfusion injury, reoxygenation injury, or depletion of the endogenous antioxidants. The immature myocardium is more vulnerable to reactive oxygen species because of developmental differences compared to the adult heart but also because of associated congenital heart diseases that can deplete its antioxidant reserve. Oxidative stress can be manipulated by various interventions: exogenous antioxidants, use of steroids, cardioplegia, blood prime strategies, or miniaturisation of the cardiopulmonary bypass circuit. However, it is unclear if modulation of the redox pathways can alter clinical outcomes. Further studies powered to look at clinical outcomes are needed to define the role of oxidative stress in paediatric patients. PMID:27123154

  7. Antidepressant Flavonoids and Their Relationship with Oxidative Stress

    PubMed Central

    Hritcu, Lucian; Ionita, Radu; Postu, Paula Alexandra; Gupta, Girish Kumar; Turkez, Hasan; Lima, Tamires Cardoso; Carvalho, Caroline Uchôa Souza

    2017-01-01

    Depression is a serious disorder that affects hundreds of millions of people around the world and causes poor quality of life, problem behaviors, and limitations in activities of daily living. Therefore, the search for new therapeutic options is of high interest and growth. Research on the relationship between depression and oxidative stress has shown important biochemical aspects in the development of this disease. Flavonoids are a class of natural products that exhibit several pharmacological properties, including antidepressant-like activity, and affects various physiological and biochemical functions in the body. Studies show the clinical potential of antioxidant flavonoids in treating depressive disorders and strongly suggest that these natural products are interesting prototype compounds in the study of new antidepressant drugs. So, this review will summarize the chemical and pharmacological perspectives related to the discovery of flavonoids with antidepressant activity. The mechanisms of action of these compounds are also discussed, including their actions on oxidative stress relating to depression. PMID:29410733

  8. Cardiovascular Complications of Sleep Apnea: Role of Oxidative Stress

    PubMed Central

    Ayas, Najib

    2014-01-01

    Obstructive sleep apnea (OSA) occurs in 2% of middle-aged women and 4% of middle-aged men with a higher prevalence among obese subjects. This condition is considered as an independent risk factor for cerebrovascular and cardiovascular diseases. One of the major pathophysiological characteristics of OSA is intermittent hypoxia. Hypoxia can lead to oxidative stress and overproduction of reactive oxygen species, which can lead to endothelial dysfunction, a hallmark of atherosclerosis. Many animal models, such as the rodent model of intermittent hypoxia, mimic obstructive sleep apnea in human patients and allow more in-depth investigation of biological and cellular mechanisms of this condition. This review discusses the role of oxidative stress in cardiovascular disease resulting from OSA in humans and animal models. PMID:24734153

  9. Oxidative stress in recalcitrant tissue cultures of grapevine.

    PubMed

    Benson, E E; Roubelakis-Angelakis, K A

    1994-03-01

    Thiobarbituric acid reactive substances (TBARS), and fluorescent compounds with spectral characteristics typical of products associated with oxidative stress in senescent and aging plant and animal cells, were detected in tissue cultures of the recalcitrant grapevine Vitis vinifera L. cultivar, Sultanina. These compounds increased during the early stages of dedifferentiation (callogenesis) of nodal stem explants. Catalase activity was not detected in the original explant, but was induced during callogenic dedifferentiation. Conversely, superoxide dismutase activity was detectable in the original explant, but diminished during the first week of callus induction. Transfer to callus induction medium promoted a large increase in the sulfhydryl content of nodal tissues. TBARS and fluorescent products accumulated in Sultanina callus during long-term culture (over 6 months). The possibility that oxidative stress may contribute to culture recalcitrance in this vine is discussed.

  10. Oxidative stress status in congenital hypogonadism: an appraisal.

    PubMed

    Haymana, C; Aydoğdu, A; Soykut, B; Erdem, O; Ibrahimov, T; Dinc, M; Meric, C; Basaran, Y; Sonmez, A; Azal, O

    2017-07-01

    Patients with hypogonadism are at increased risk of cardiac and metabolic diseases. However, the pathogenesis of increased cardiometabolic risk in patients with hypogonadism is not clear. Oxidative stress plays an important role in the pathogenesis of cardiometabolic diseases. This study aimed to investigate possible differences in oxidative stress conditions between patients with hypogonadism and healthy controls. In this study, 38 male patients with congenital hypogonadotropic hypogonadism (CHH) (mean age: 21.7 ± 1.6 years) and 44 healthy male controls (mean age: 22.3 ± 1.4 years) with almost equal body mass index were enrolled. The demographic parameters, follicle-stimulating hormone (FSH), luteinizing hormone (LH), total and free testosterone, homeostatic model assessment of insulin resistance (HOMA-IR) and oxidative stress parameters, such as superoxide dismutase, catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA), were compared between both groups. Compared to the healthy controls, triglycerides (p = .02), insulin levels, HOMA-IR values, CAT activities and MDA levels (p < .001 for all) were significantly higher and HDL cholesterol (p = .04), total and free testosterone, FSH, LH levels and GPx activity were significantly lower (p < .001 for all) in patients with CHH. There were significant correlations between total testosterone levels and CAT activity (r = -.33 p = .01), GPx activity (r = .36 p = .007) and MDA (r = -.47 p < .001) levels. The results of this study showed that young and treatment-naïve patients with congenital hypogonadism had an increased status of oxidative stress.

  11. Oxidative stress and plasma lipoproteins in cancer patients

    PubMed Central

    Maia, Fernanda Maria Machado; Santos, Emanuelly Barbosa; Reis, Germana Elias

    2014-01-01

    Objective To evaluate the relation between oxidative stress and lipid profile in patients with different types of cancer. Methods This was an observational cross-sectional. A total of 58 subjects were evaluated, 33 males, divided into two groups of 29 patients each: Group 1, patients with cancer of the digestive tract and accessory organs; Group 2 patients with other types of cancers, all admitted to a public hospital. The plasma levels (lipoproteins and total cholesterol, HDL, and triglycerides, for example) were analyzed by enzymatic kits, and oxidative stress based on thiobarbituric acid-reactive substances, by assessing the formation of malondialdehyde. Results In general the levels of malondialdehyde of patients were high (5.00μM) as compared to 3.31μM for healthy individuals. The median values of lipids exhibited normal triacylglycerol (138.78±89.88mg/dL), desirable total cholesterol values (163.04±172.38mg/dL), borderline high LDL (151.30±178.25mg/dL) and low HDL (31.70±22.74mg/dL). Median HDL levels in Group 1 were lower (31.32mg/dL) than the cancer patients in Group 2 (43.67mg/dL) (p=0.038). Group 1 also showed higher levels of oxidative stress (p=0.027). Conclusion The lipid profile of patients with cancer was not favorable, which seems to have contributed to higher lipid peroxidation rate, generating a significant oxidative stress. PMID:25628201

  12. Acute hypoxia and exercise-induced blood oxidative stress.

    PubMed

    McGinnis, Graham; Kliszczewiscz, Brian; Barberio, Matthew; Ballmann, Christopher; Peters, Bridget; Slivka, Dustin; Dumke, Charles; Cuddy, John; Hailes, Walter; Ruby, Brent; Quindry, John

    2014-12-01

    Hypoxic exercise is characterized by workloads decrements. Because exercise and high altitude independently elicit redox perturbations, the study purpose was to examine hypoxic and normoxic steady-state exercise on blood oxidative stress. Active males (n = 11) completed graded cycle ergometry in normoxic (975 m) and hypoxic (3,000 m) simulated environments before programing subsequent matched intensity or workload steady-state trials. In a randomized counterbalanced crossover design, participants completed three 60-min exercise bouts to investigate the effects of hypoxia and exercise intensity on blood oxidative stress. Exercise conditions were paired as such; 60% normoxic VO(2)peak performed in a normoxic environment (normoxic intensity-normoxic environment, NI-NE), 60% hypoxic VO(2)peak performed in a normoxic environment (HI-NE), and 60% hypoxic VO(2)peak performed in a hypoxic environment (HI-HE). Blood plasma samples drawn pre (Pre), 0 (Post), 2 (2HR) and 4 (4HR) hr post exercise were analyzed for oxidative stress biomarkers including ferric reducing ability of plasma (FRAP), trolox equivalent antioxidant capacity (TEAC), lipid hydroperoxides (LOOH) and protein carbonyls (PCs). Repeated-measures ANOVA were performed, a priori significance of p ≤ .05. Oxygen saturation during the HI-HE trial was lower than NI-NE and HI-NE (p < .05). A Time × Trial interaction was present for LOOH (p = .013). In the HI-HE trial, LOOH were elevated for all time points post while PC (time; p = .001) decreased post exercise. As evidenced by the decrease in absolute workload during hypoxic VO(2)peak and LOOH increased during HI-HE versus normoxic exercise of equal absolute (HI-NE) and relative (NI-NE) intensities. Results suggest acute hypoxia elicits work decrements associated with post exercise oxidative stress.

  13. The influence of homocysteine and oxidative stress on pregnancy outcome

    PubMed Central

    Micle, O; Muresan, M; Antal, L; Bodog, F; Bodog, A

    2012-01-01

    Oxidative stress in utero–placental tissues plays an important role in the development of placental-related diseases. Maternal hiperhomocysteinemia is associated with placental mediated diseases, such as preeclampsia, spontaneous abortion and placental abruption. The aim of our study is to appreciate the clinical usefulness of the dosage serum homocysteine and malondialdehyde, as an oxidative stress marker, in the pregnancies complicated with risk of abortion or preterm birth. The study was performed at the Obstetric Gynecology Clinical Hospital Oradea from December 2009 until April 2010. It included 18 patients with risk of abortion (group 1), 22 with preterm birth (group 2). The results were compared with a control group composed by 14 healthy pregnant women. Serum homocysteine level was measured by an enzymatic method, on the instrument Hitachi 912, Roche, reagent: Axis-Shield Enzymatic. For proving the oxidative stress we established the level of malondialdehyde using a method with thiobarbituric acid TBA (Kei Satoh 1978) and the level of ceruloplasmin with the Ravin method .Also AST, ALT,CRP, iron, uric acid, urea were assessed. High level of homocysteine in both groups of study in comparison with the control group was found. The concentration of MDA was significantly higher in pregnancies complicated with risk of abortion and preterm birth compared to the control group (p=0.040, p=0.031). Considerable differences of ceruloplasmin concentration between group 1 and group 2 (p=0.045), and between group 2 and control group (p=0.034), was noticed but not any important differences between group 1 and control group (p=0.683). In women with risk of abortion or with preterm birth an oxidative stress and a hyperhomocysteinemia are present. PMID:22574089

  14. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli.

    PubMed

    Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi

    2016-06-04

    Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs) have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH) and adenosine triphosphate (ATP) significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH), glutathione S-transferase (GST), super oxide dismutase (SOD), and catalase (CAT). These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and heat stress

  15. Oxidative Stress and Microglial Cells in Parkinson's Disease

    PubMed Central

    Peterson, Lynda J.; Flood, Patrick M.

    2012-01-01

    Significant evidence has now been accumulated that microglial cells play a central role in the degeneration of DA neurons in animal models of PD. The oxidative stress response by microglial cells, most notably the activity of the enzyme NADPH oxidase, appears to play a central role in the pathology of PD. This oxidative stress response occurs in microglia through the activation of the ERK signaling pathway by proinflammatory stimuli, leading to the phosphorylation and translocation of the p47phox and p67phox cytosolic subunits, the activation of membrane-bound PHOX, and the production of ROS. Therapeutic anti-inflammatories which prevent DA neurodegeneration in PD, including anti-inflammatory cytokines, morphinan compounds, NADPH oxidase inhibitors, NF-κB inhibitors, and β2-AR agonists, all function to inhibit the activation of the PHOX in microglial cells. These observations suggest a central role for the oxidative stress response in microglial cells as a mediator or regulator of DA neurodegeneration in PD. PMID:22544998

  16. Evaluation of oxidative stress in mice subjected to aerobic exercise.

    PubMed

    Lima, Mônica Cruvinel de; Marks, Guido; Silva, Iandara Schettert; Silva, Baldomero Antonio Kato da; Cônsolo, Lourdes Zélia Zanoni; Nogueira, Gabriel Bogalho

    2012-08-01

    To evaluate the influence of aerobic exercise on oxidative stress in mice. The study included twenty female mice Mus musculus-Swiss divided into two groups: sedentary control (GA) and exercise (GB), each containing ten animals. All animals underwent an adaptation period of seven days isolated in individual boxes. After this period, the animals in the exercise group (GB) were trained in angled running wheel with circumference of 25 cm assembled on an articulated axle during five minutes for three consecutive days. On the fourth day, they underwent an exercise program of one session lasting 45 minutes. The evaluation of oxidative stress was performed by determining the levels of malondialhyde derived of lipid peroxidation by the TBA method. The samples were read in a spectrophotometer at 535 nm. No significant difference was observed in the intergroup comparison of MDA levels in the tissues evaluated. A significant difference was observed in the intragroup comparison of MDA levels in the control group (p = 0.0201).The Tukeys' post hoc test indicated significantly lower values of MDA in the smooth muscle in relation to plasma. In the analysis of variance in the exercise group, a significant difference between tissues (p = 0.0009), with significantly lower values in the smooth muscle in relation to plasma (p<0.001) and higher in striated muscle in relation to smooth muscle (p<0.05) was observed. There was no change in the analysis of oxidative stress in mice which were undergone a single session of aerobic exercise.

  17. The Role of Oxidative Stress and Antioxidants in Diabetic Complications

    PubMed Central

    Matough, Fatmah A; Budin, Siti B; Hamid, Zariyantey A; Alwahaibi, Nasar; Mohamed, Jamaludin

    2012-01-01

    Diabetes is considered to be one of the most common chronic diseases worldwide. There is a growing scientific and public interest in connecting oxidative stress with a variety of pathological conditions including diabetes mellitus (DM) as well as other human diseases. Previous experimental and clinical studies report that oxidative stress plays a major role in the pathogenesis and development of complications of both types of DM. However, the exact mechanism by which oxidative stress could contribute to and accelerate the development of complications in diabetic mellitus is only partly known and remains to be clarified. On the one hand, hyperglycemia induces free radicals; on the other hand, it impairs the endogenous antioxidant defense system in patients with diabetes. Endogenous antioxidant defense mechanisms include both enzymatic and non-enzymatic pathways. Their functions in human cells are to counterbalance toxic reactive oxygen species (ROS). Common antioxidants include the vitamins A, C, and E, glutathione (GSH), and the enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GRx). This review describes the importance of endogenous antioxidant defense systems, their relationship to several pathophysiological processes and their possible therapeutic implications in vivo. PMID:22375253

  18. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    PubMed

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence.

  19. Blue light-induced oxidative stress in live skin.

    PubMed

    Nakashima, Yuya; Ohta, Shigeo; Wolf, Alexander M

    2017-07-01

    Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Oxidative Stress Contributes to Status Epilepticus Associated Mortality.

    PubMed

    Pearson-Smith, Jennifer N; Liang, Li-Ping; Rowley, Shane D; Day, Brian J; Patel, Manisha

    2017-07-01

    Status epilepticus is a common manifestation of nerve agent toxicity and represents a serious medical emergency with high rates of mortality and neurologic injury in those that survive. The aim of the current study was to determine if targeting oxidative stress with the catalytic antioxidant, AEOL10150, would reduce pilocarpine-induced mortality and attenuate neuronal death and neuroinflammation. We found that treatment with AEOL10150 in conjunction with scopolamine and diazepam following pilocarpine-induced SE was able to significantly reduce mortality compared to treatment with just scopolamine and diazepam. Mortality was further reduced when AEOL10150 was used in conjunction with atropine and diazepam which is considered the standard of care for nerve agent exposures. Both treatment paradigms offered significant protection against SE-induced oxidative stress. Additionally, treatment with scopolamine, AEOL10150 and diazepam attenuated SE-induced neuronal loss and neuroinflammation. Taken together, the data suggest that pharmacological targeting of oxidative stress can improve survival and attenuate secondary neurological damage following SE induced by the nerve agent surrogate pilocarpine.

  1. Oxidative Stress Contributes to Status Epilepticus Associated Mortality

    PubMed Central

    Pearson-Smith, Jennifer N.; Liang, Li-Ping; Rowley, Shane D.; Day, Brian J.

    2017-01-01

    Status epilepticus is a common manifestation of nerve agent toxicity and represents a serious medical emergency with high rates of mortality and neurologic injury in those that survive. The aim of the current study was to determine if targeting oxidative stress with the catalytic antioxidant, AEOL10150, would reduce pilocarpine-induced mortality and attenuate neuronal death and neuroinflammation. We found that treatment with AEOL10150 in conjunction with scopolamine and diazepam following pilocarpine-induced SE was able to significantly reduce mortality compared to treatment with just scopolamine and diazepam. Mortality was further reduced when AEOL10150 was used in conjunction with atropine and diazepam which is considered the standard of care for nerve agent exposures. Both treatment paradigms offered significant protection against SE-induced oxidative stress. Additionally, treatment with scopolamine, AEOL10150 and diazepam attenuated SE-induced neuronal loss and neuroinflammation. Taken together, the data suggest that pharmacological targeting of oxidative stress can improve survival and attenuate secondary neurological damage following SE induced by the nerve agent surrogate pilocarpine. PMID:28462450

  2. Glia activation and its role in oxidative stress.

    PubMed

    Ogundele, Olalekan Michael; Omoaghe, Adams Olalekan; Ajonijebu, Duyilemi Chris; Ojo, Abiodun Ayodele; Fabiyi, Temitope Deborah; Olajide, Olayemi Joseph; Falode, Deborah Tolulope; Adeniyi, Philip Adeyemi

    2014-06-01

    Glia activation and neuroinflamation are major factors implicated in the aetiology of most neurodegenerative diseases (NDDs). Several agents and toxins have been known to be capable of inducing glia activation an inflammatory response; most of which are active substances that can cause oxidative stress by inducing production of reactive oxygen species (ROS). Neurogenesis on the other hand involves metabolic and structural interaction between neurogenic and glia cells of the periventricular zone (PVZ); a region around the third ventricle. This study investigates glia activation (GFAP), cell proliferation (Ki-67) and neuronal metabolism (NSE) during neurogenesis and oxidative stress by comparing protein expression in the PVZ against that of the parietal cortex. Adult Wistar Rats were treated with normal saline and 20 mg/Kg KCN for 7 days. The tissue sections were processed for immunohistochemistry to demonstrate glia cells (anti Rat-GFAP), cell proliferation (anti Rat-Ki-67) and neuronal metabolism (anti Rat-NSE) using the antigen retrieval method. The sections from Rats treated with cyanide showed evidence of neurodegeneration both in the PVZ and cortex. The distribution of glia cells (GFAP), Neuron specific Enolase (NSE) and Ki-67 increased with cyanide treatment, although the increases were more pronounced in the neurogenic cell area (PVZ) when compared to the cortex. This suggests the close link between neuronal metabolism and glia activation both in neurogenesis and oxidative stress.

  3. Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae.

    PubMed

    Sadowska-Bartosz, Izabela; Pączka, Aleksandra; Mołoń, Mateusz; Bartosz, Grzegorz

    2013-12-01

    Dimethyl sulfoxide (DMSO) is used as a cryoprotectant for the preservation of cells, including yeast, and as a solvent for chemical compounds. We report that DMSO induces oxidative stress in the yeast. Saccharomyces cerevisiae wt strain EG-103 and its mutants Δsod1, Δsod2, and Δsod1 Δsod2 were used. Yeast were subjected to the action of 1-14% DMSO for 1 h at 28 °C. DMSO induced a concentration-dependent inhibition of yeast growth, the effect being more pronounced for mutants devoid of SOD (especially Δsod1 Δsod2). Cell viability was compromised. DMSO-concentration-dependent activity loss of succinate dehydrogenase, a FeS enzyme sensitive to oxidative stress, was observed. DMSO enhanced formation of reactive oxygen species, estimated with dihydroethidine in a concentration-dependent manner, the effect being again more pronounced in mutants devoid of superoxide dismutases. The content of cellular glutathione was increased with increasing DMSO concentrations, which may represent a compensatory response. Membrane fluidity, estimated by fluorescence polarization of DPH, was decreased by DMSO. These results demonstrate that DMSO, although generally considered to be antioxidant, induces oxidative stress in yeast cells. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. [Correlationship between chemokines and oxidative stress in chronic hepatitis B].

    PubMed

    Wang, Jing-Wei; Wang, Li-Yuan; Zhao, Zhen-Hua; Wang, Cheng-Bao; Liu, Xing; Huang, Li-Mei; Wang, Kai

    2012-08-01

    The aim of this study is to investigate the possible associations of chemokines IP-10, Rantes and oxidative stress in chronic hepatits B (CHB). 70 CHB patients and 10 healthy controls were enrolled in the study. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum levels of IFN-gamma-inducible protein-10 (IP-10) and regulated on activation normal T-cell-expressed and secreted (Rantes) and oxidative stress parameters (glutathione, GSH; glutathione disulfide, GSSG). Correlationship were analyzed by Spearman's rank correlation. The levels of IP-10 and Rantes were higher in CHB patients than healthy controls, and strong positive associations were found between IP-10/Rantes and alanine aminotransferase (ALT). The levels of GSH and GSH/GSSG were lower in CHB patients than healthy controls, and GSH and GSH/GSSG were negatively correlated with ALT. The levels of IP-10 and Rantes were negatively correlated with GSH and GSH/GSSG respectively. Strong associations were found between chemokines and oxidative stress which participated in the pathogenesis of CHB.

  5. Effects of exogenous antioxidants on oxidative stress in pregnancy

    PubMed Central

    Mureşan, A; Tache, S; Moldovan, R

    2011-01-01

    Objective: The present study evaluated the effects on gestation, in terms of oxidative stress, of two antioxidant factors–vitamin E and coenzyme Q10–during pregnancy, with the purpose of applying the results in further human clinical practice. Methods: For each aspect we have studied, we used three types of female rats of Wistar race (un–pregnant, primiparous, multiparous), divided in 10 rats/group. From the blood we have sampled, we have determined the oxidative stress (OS) markers: malondialdehyde (MDA) and carbonylated proteins (CP), but also the markers of the antioxidant defense: the hydrogen donor capacity of the plasma (HD) and the sulfhydryl groups (SH). Results: Vitamin E administration determines significant decreases of MDA and significant increases of CP and HD at primiparous, and also significant increases of SH groups at multiparous. In the case of pregnant animals that received CoQ10 in antioxidant complexes, we have observed an increase of oxidative stress (OS)–MDA in primiparous and CP in multiparous. Conclusions: In the case of Vitamin E, taking into account the benefits on redox homeostasis, the decrease of OS, the authors recommend vitamin E administration during pregnancy. However, because of the increase of the OS in the case of pregnant animals, the authors do not recommend the administration of CoQ10 in antioxidant complexes during pregnancy. PMID:21776299

  6. Oxidative stress induces overgrowth of the Drosophila neuromuscular junction

    PubMed Central

    Milton, Valerie J.; Jarrett, Helen E.; Gowers, Kate; Chalak, Salma; Briggs, Laura; Robinson, Iain M.; Sweeney, Sean T.

    2011-01-01

    Synaptic terminals are known to expand and contract throughout an animal's life. The physiological constraints and demands that regulate appropriate synaptic growth and connectivity are currently poorly understood. In previous work, we identified a Drosophila model of lysosomal storage disease (LSD), spinster (spin), with larval neuromuscular synapse overgrowth. Here we identify a reactive oxygen species (ROS) burden in spin that may be attributable to previously identified lipofuscin deposition and lysosomal dysfunction, a cellular hallmark of LSD. Reducing ROS in spin mutants rescues synaptic overgrowth and electrophysiological deficits. Synapse overgrowth was also observed in mutants defective for protection from ROS and animals subjected to excessive ROS. ROS are known to stimulate JNK and fos signaling. Furthermore, JNK and fos in turn are known potent activators of synapse growth and function. Inhibiting JNK and fos activity in spin rescues synapse overgrowth and electrophysiological deficits. Similarly, inhibiting JNK, fos, and jun activity in animals with excessive oxidative stress rescues the overgrowth phenotype. These data suggest that ROS, via activation of the JNK signaling pathway, are a major regulator of synapse overgrowth. In LSD, increased autophagy contributes to lysosomal storage and, presumably, elevated levels of oxidative stress. In support of this suggestion, we report here that impaired autophagy function reverses synaptic overgrowth in spin. Our data describe a previously unexplored link between oxidative stress and synapse overgrowth via the JNK signaling pathway. PMID:21987827

  7. Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes

    PubMed Central

    Kneeshaw, Sophie; Keyani, Rumana; Delorme-Hinoux, Valérie; Imrie, Lisa; Loake, Gary J.; Reichheld, Jean-Philippe

    2017-01-01

    Cellular accumulation of reactive oxygen species (ROS) is associated with a wide range of developmental and stress responses. Although cells have evolved to use ROS as signaling molecules, their chemically reactive nature also poses a threat. Antioxidant systems are required to detoxify ROS and prevent cellular damage, but little is known about how these systems manage to function in hostile, ROS-rich environments. Here we show that during oxidative stress in plant cells, the pathogen-inducible oxidoreductase Nucleoredoxin 1 (NRX1) targets enzymes of major hydrogen peroxide (H2O2)-scavenging pathways, including catalases. Mutant nrx1 plants displayed reduced catalase activity and were hypersensitive to oxidative stress. Remarkably, catalase was maintained in a reduced state by substrate-interaction with NRX1, a process necessary for its H2O2-scavenging activity. These data suggest that unexpectedly H2O2-scavenging enzymes experience oxidative distress in ROS-rich environments and require reductive protection from NRX1 for optimal activity. PMID:28724723

  8. Effects of caloric restriction on oxidative stress parameters.

    PubMed

    Stankovic, Marija; Mladenovic, Dusan; Ninkovic, Milica; Vucevic, Danijela; Tomasevic, Tina; Radosavljevic, Tatjana

    2013-06-01

    Moderate caloric restriction prolongs lifespan. Changes in oxidative stress and hormesis may be involved in this process. The aim of this study is to examine the effects of different levels of chronic caloric restriction (CR) and acute fasting on stress response and oxidative stress parameters in rat liver and plasma. Forty-two rats were divided into groups: control group, calorie-restricted groups with intake of 80-90%, 60-70%, 40-50%, 20-30% of daily caloric needs and acute fasting group. To determine alanine aminotransferase (ALT), aspartate aminotransferase (AST) and superoxide dismutase (SOD) activity, concentration of corticosterone, nitrites and nitrates (NOx), malondialdehyde (MDA) and glutathione (GSH), liver samples and blood were collected. Increase in plasma corticosterone concentration and AST and ALT activity was found in severe CR. Ingestion 40-50% daily caloric needs or less increased liver MDA and NOx concentration and decreased SOD activity. Ingestion 60-70% daily caloric needs increased Mn-SOD activity, GSH and NOx. In acute fasting group and group taking 20-30% daily caloric needs, GSH was significantly lower than in control group. Severe CR and acute fasting increase oxidative damage and decrease antioxidative capacity of hepatocytes. Moderate CR increases antioxidative capacity of hepatocytes due to increase in Mn-SOD activity and GSH concentration, which might have a role in anti-aging and hormetic mechanism of CR.

  9. Oxidative Stress Levels in Aqueous Humor from High Myopic Patients

    PubMed Central

    Kim, Eun Bi; Kim, Ha Kyoung; Hyon, Joon Young; Wee, Won Ryang

    2016-01-01

    Purpose To compare oxidative stress status in the aqueous humor of highly myopic eyes and control eyes. Methods Aqueous humor samples were collected from 15 highly myopic eyes (high myopia group) and 23 cataractous eyes (control group) during cataract surgery. Central corneal thickness, corneal endothelial cell density, hexagonality of corneal endothelial cells, and cell area of corneal endothelial cells were measured using specular microscopy. Axial length was measured using ultrasound biometry. 8-Hydroxydeoxyguanosine (8-OHdG) and malondialdehyde levels were measured using enzyme-linked immunosorbent assay. Results 8-OHdG level was lower in the aqueous humor of myopic patients than in that of control group (p = 0.014) and was positively correlated with central corneal thickness and negatively correlated with axial length (r = 0.511, p = 0.02; r = -0.382, p < 0.001). There was no correlation between 8-OHdG level and corneal endothelial cell density, hexagonality, or cell area. Malondialdehyde level did not show any correlation with any parameters evaluated. Conclusions 8-OHdG might be a sensitive biomarker for evaluating oxidative stress status in the eye. Oxidative stress level was lower in the aqueous humor of highly myopic eyes compared to that in control eyes, which indicates lower metabolic activity in these eyes. PMID:27247516

  10. Resveratrol Attenuates Cisplatin Renal Cortical Cytotoxicity by Modifying Oxidative Stress

    PubMed Central

    Valentovic, Monica A.; Ball, John G.; Brown, J. Mike; Terneus, Marcus V.; McQuade, Elizabeth; Van Meter, Stephanie; Hedrick, Hayden M.; Roy, Amy Allison; Williams, Tierra

    2014-01-01

    Cisplatin, a cancer chemotherapy drug, is nephrotoxic. The aim of this study was to investigate whether resveratrol (RES) reduced cisplatin cytotoxicity and oxidative stress. Rat renal cortical slices were pre-incubated 30 min with 0 (VEH, ethanol) or 30 μg/ml RES followed by 60, 90 or 120 min co-incubation with 0, 75, or 150 μg/mL cisplatin. Lactate dehydrogenase (LDH) leakage was unchanged at 60 and 90 min by cisplatin. Cisplatin increased (p<0.05) LDH leakage at 120 min which was protected by RES. Cisplatin induced oxidative stress prior to LDH leakage as cisplatin depressed glutathione peroxidase and superoxide dismutase (SOD) activity, increased lipid peroxidation, protein carbonyls and 4-hydroxynonenal (4-HNE) adducted proteins within 60 min. RES failed to reverse glutathione (GSH) depression by cisplatin. In order to eliminated an extracellular interaction between RES and cisplatin, additional studies (RINSE studies) allowed a 30 min RES uptake into slices, transfer of slices to buffer lacking RES, followed by 120 min cisplatin incubation. RES in the RINSE studies prevented LDH leakage by cisplatin indicating that RES protection was not via a physical interaction with cisplatin in the media. These findings indicate that RES diminished cisplatin in vitro renal toxicity and prevented the development of oxidative stress. PMID:24239945

  11. Blood markers of oxidative stress in Alzheimer's disease

    PubMed Central

    Skoumalová, Alice; Hort, Jakub

    2012-01-01

    Alzheimer′s disease (AD) represents a highly common form of dementia, but can be diagnosed in the earlier stages before dementia onset. Early diagnosis is crucial for successful therapeutic intervention. The introduction of new diagnostic biomarkers for AD is aimed at detecting underlying brain pathology. These biomarkers reflect structural or biochemical changes related to AD. Examination of cerebrospinal fluid has many drawbacks; therefore, the search for sensitive and specific blood markers is ongoing. Investigation is mainly focused on upstream processes, among which oxidative stress in the brain is of particular interest. Products of oxidative stress may diffuse into the blood and evaluating them can contribute to diagnosis of AD. However, results of blood oxidative stress markers are not consistent among various studies, as documented in this review. To find a specific biochemical marker for AD, we should concentrate on specific metabolic products formed in the brain. Specific fluorescent intermediates of brain lipid peroxidation may represent such candidates as the composition of brain phospholipids is unique. They are small lipophilic molecules and can diffuse into the blood stream, where they can then be detected. We propose that these fluorescent products are potential candidates for blood biomarkers of AD. PMID:22564475

  12. Nanoparticle Inhalation Increases Microvascular Oxidative Stress and Compromises Nitric Oxide Bioavailability

    EPA Science Inventory

    We have shown that pulmonary nanoparticle exposure impairs endothelium dependent dilation in systemic arterioles. However, the mechanism(s) through which this effect occurs are unclear. The purpose of this study was to identify alterations in the production of oxidative stress an...

  13. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  14. Modeling Oxidation Induced Stresses in Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Freborg, A. M.; Petrus, G. J.; Brindley, William J.

    1998-01-01

    The use of thermal barrier coatings (TBC's) in gas turbines has increased dramatically in recent years, due mainly to the need for component protection from ever increasing service temperatures. Oxidation of the bond coat has been identified as an important contributing factor to spallation of the ceramic top coat during service. Additional variables found to influence TBC thermal cycle life include bond coat coefficient of thermal expansion, creep behavior of both the ceramic and bond coat layers, and modulus of elasticity. The purpose of this work was to characterize the effects of oxidation on the stress states within the TBC system, as well as to examine the interaction of oxidation with other factors affecting TBC life.

  15. Oxidative stress and antioxidant status in patients with complicated urolithiasis.

    PubMed

    Ceban, E; Banov, P; Galescu, A; Botnari, V

    2016-01-01

    In recent years, intense efforts have been made to clarify the pathogenesis of urolithiasis, which affects more than 10% of the population of developed countries. Currently, a number of studies have assumed a key role in the pathogenesis of oxalate urolithiasis, which is the most common one that belongs to the active forms of oxygen generated in the kidney, as a result of the activation of free radical oxidation that occurs in the interaction of calcium oxalate crystals with renal tubular epithelial cells. In the current work, oxidant and antioxidant status were assessed in the blood of patients with complicated urolithiasis pre - and post surgery. The surgical treatment of complicated urolithiasis leads a decrease of the oxidative stress and an increase in the potential of antiradical and antiperoxidative protection.

  16. Oxidative stress and antioxidant status in patients with complicated urolithiasis

    PubMed Central

    Ceban, E; Banov, P; Galescu, A; Botnari, V

    2016-01-01

    In recent years, intense efforts have been made to clarify the pathogenesis of urolithiasis, which affects more than 10% of the population of developed countries. Currently, a number of studies have assumed a key role in the pathogenesis of oxalate urolithiasis, which is the most common one that belongs to the active forms of oxygen generated in the kidney, as a result of the activation of free radical oxidation that occurs in the interaction of calcium oxalate crystals with renal tubular epithelial cells. In the current work, oxidant and antioxidant status were assessed in the blood of patients with complicated urolithiasis pre - and post surgery. The surgical treatment of complicated urolithiasis leads a decrease of the oxidative stress and an increase in the potential of antiradical and antiperoxidative protection. PMID:27974930

  17. Oxidative Stress and the Homeodynamics of Iron Metabolism

    PubMed Central

    Bresgen, Nikolaus; Eckl, Peter M.

    2015-01-01

    Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress. PMID:25970586

  18. Erythrocyte nitric oxide availability and oxidative stress following exercise.

    PubMed

    Medeiros-Lima, Daniel Jose Matos; Mendes-Ribeiro, Antonio Claudio; Brunini, Tatiana Marlowe Cunha; Martins, Marcela Anjos; Mury, Wanda Vianna; Freire, Raul Almeira; Monteiro, Walace David; Farinatti, Paulo Tarso Veras; Matsuura, Cristiane

    2017-01-01

    Growing evidence has shown that acute exercise impairs erythrocyte membrane structure and function as a consequence of increased physical and chemical stress. Erythrocyte-synthesized nitric oxide (NO) is known to modulate membrane fluidity, and its bioavailability depends on the balance between its production and scavenging by reactive oxygen species. Here, we investigated whether a maximal exercise test could affect erythrocyte NO bioavailability and oxidative stress. Twelve men (26±4 years old, V̇O2peak 44.1±4.3 mL·kg-1·min-1) performed a treadmill maximal cardiopulmonary exercise test. Blood was collected at rest and immediately after exercise for erythrocytes isolation. Maximal exercise caused an increase in erythrocytes count, haemoglobin and haematocrit levels. There was no change in L-arginine influx into erythrocytes after exercise. Yet, nitric oxide synthase activity, and thus, NO production, was increased after maximal test, as well cyclic GMP levels. In relation to biomarkers of oxidative stress, maximal test resulted in increased levels of lipid peroxidation, and diminished superoxide dismutase activity. Neither glutathione peroxidase nor catalase activity was affected by maximal test. Our findings demonstrate that the increased erythrocyte membrane rigidity caused by an acute bout of exercise may be caused, in part, by an increased lipid oxidative damage caused by ROS produced exogenously.

  19. The Effect of Reagents Mimicking Oxidative Stress on Fibrinogen Function

    PubMed Central

    Štikarová, Jana; Kotlín, Roman; Riedel, Tomáš; Suttnar, Jiří; Pimková, Kristýna; Chrastinová, Leona; Dyr, Jan E.

    2013-01-01

    Fibrinogen is one of the plasma proteins most susceptible to oxidative modification. It has been suggested that modification of fibrinogen may cause thrombotic/bleeding complications associated with many pathophysiological states of organism. We exposed fibrinogen molecules to three different modification reagents—malondialdehyde, sodium hypochlorite, and peroxynitrite—that are presented to various degrees in different stages of oxidative stress. We studied the changes in fibrin network formation and platelet interactions with modified fibrinogens under flow conditions. The fastest modification of fibrinogen was caused by hypochlorite. Fibers from fibrinogen modified with either reagent were thinner in comparison with control fibers. We found that platelet dynamic adhesion was significantly lower on fibrinogen modified with malondialdehyde and significantly higher on fibrinogen modified either with hypochlorite or peroxynitrite reflecting different prothrombotic/antithrombotic properties of oxidatively modified fibrinogens. It seems that, in the complex reactions ongoing in living organisms at conditions of oxidation stress, hypochlorite modifies proteins (e.g., fibrinogen) faster and more preferentially than malondialdehyde. It suggests that the prothrombotic effects of prior fibrinogen modifications may outweigh the antithrombotic effect of malondialdehyde-modified fibrinogen in real living systems. PMID:24235886

  20. The effect of reagents mimicking oxidative stress on fibrinogen function.

    PubMed

    Štikarová, Jana; Kotlín, Roman; Riedel, Tomáš; Suttnar, Jiří; Pimková, Kristýna; Chrastinová, Leona; Dyr, Jan E

    2013-01-01

    Fibrinogen is one of the plasma proteins most susceptible to oxidative modification. It has been suggested that modification of fibrinogen may cause thrombotic/bleeding complications associated with many pathophysiological states of organism. We exposed fibrinogen molecules to three different modification reagents-malondialdehyde, sodium hypochlorite, and peroxynitrite-that are presented to various degrees in different stages of oxidative stress. We studied the changes in fibrin network formation and platelet interactions with modified fibrinogens under flow conditions. The fastest modification of fibrinogen was caused by hypochlorite. Fibers from fibrinogen modified with either reagent were thinner in comparison with control fibers. We found that platelet dynamic adhesion was significantly lower on fibrinogen modified with malondialdehyde and significantly higher on fibrinogen modified either with hypochlorite or peroxynitrite reflecting different prothrombotic/antithrombotic properties of oxidatively modified fibrinogens. It seems that, in the complex reactions ongoing in living organisms at conditions of oxidation stress, hypochlorite modifies proteins (e.g., fibrinogen) faster and more preferentially than malondialdehyde. It suggests that the prothrombotic effects of prior fibrinogen modifications may outweigh the antithrombotic effect of malondialdehyde-modified fibrinogen in real living systems.

  1. Increased DNA damage and oxidative stress among silver jewelry workers.

    PubMed

    Aktepe, Necmettin; Kocyigit, Abdurrahim; Yukselten, Yunus; Taskin, Abdullah; Keskin, Cumali; Celik, Hakim

    2015-04-01

    Silver has long been valued as a precious metal, and it is used to make ornaments, jewelry, high-value tableware, utensils, and currency coins. Human exposures to silver and silver compounds can occur oral, dermal, or by inhalation. In this study, we investigated genotoxic and oxidative effects of silver exposure among silver jewelry workers. DNA damage in peripheral mononuclear leukocytes was measured by using the comet assay. Serum total antioxidative status (TAS), total oxidative status (TOS), total thiol contents, and ceruloplasmin levels were measured by using colorimetric methods among silver jewelry workers. Moreover, oxidative stress index (OSI) was calculated. Results were compared with non-exposed healthy subjects. The mean values of mononuclear leukocyte DNA damage were significantly higher than control subjects (p < 0.001). Serum TOS, OSI, and ceruloplasmin levels were also found to be higher in silver particles exposed group than those of non-exposed group (p < 0.001, p < 0.001, p < 0.01, respectively). However, serum TAS levels and total thiol contents of silver exposed group were found significantly lower (p < 0.05, p < 0.001, respectively). Exposure to silver particles among silver jewelry workers caused oxidative stress and accumulation of severe DNA damage.

  2. Oxidative stress, activity behaviour and body mass in captive parrots

    PubMed Central

    Larcombe, S D; Tregaskes, C A; Coffey, J; Stevenson, A E; Alexander, L G

    2015-01-01

    Abstract Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melopsittacus undulatus) maintained in typical pet cages and on ad libitum food varied in oxidative profile, behaviour and body mass. Importantly, as with many birds held in captivity, they did not have enough space to engage in extensive free flight. Four types of oxidative damage, single-stranded DNA breaks (low-pH comet assay), alkali-labile sites in DNA (high-pH comet assay), sensitivity of DNA to ROS (H2O2-treated comet assay) and malondialdehyde (a byproduct of lipid peroxidation), were uncorrelated with each other and with plasma concentrations of dietary antioxidants. Without strenuous exercise over 28 days in a relatively small cage, more naturally ‘active’ individuals had more single-stranded DNA breaks than sedentary birds. High body mass at the start or end of the experiment, coupled with substantial mass gain, were all associated with raised sensitivity of DNA to ROS. Thus, high body mass in these captive birds was associated with oxidative damage. These birds were not lacking dietary antioxidants, because final body mass was positively related to plasma levels of retinol, zeaxanthin and α-tocopherol. Individuals varied widely in activity levels, feeding behaviour, mass gain and oxidative profile despite standardized living conditions. DNA damage is often associated with poor immunocompetence, low fertility and faster ageing. Thus, we have candidate mechanisms for the limited lifespan and fecundity common to many birds kept for conservation purposes

  3. Oxidative stress and antioxidant response in a thermotolerant yeast.

    PubMed

    Mejía-Barajas, Jorge A; Montoya-Pérez, Rocío; Salgado-Garciglia, Rafael; Aguilera-Aguirre, Leopoldo; Cortés-Rojo, Christian; Mejía-Zepeda, Ricardo; Arellano-Plaza, Melchor; Saavedra-Molina, Alfredo

    Stress tolerance is a key attribute that must be considered when using yeast cells for industrial applications. High temperature is one factor that can cause stress in yeast. High environmental temperature in particular may exert a natural selection pressure to evolve yeasts into thermotolerant strains. In the present study, three yeasts (Saccharomyces cerevisiae, MC4, and Kluyveromyces marxianus, OFF1 and SLP1) isolated from hot environments were exposed to increased temperatures and were then compared with a laboratory yeast strain. Their resistance to high temperature, oxidative stress, and antioxidant response were evaluated, along with the fatty acid composition of their cell membranes. The SLP1 strain showed a higher specific growth rate, biomass yield, and biomass volumetric productivity while also showing lower duplication time, reactive oxygen species (ROS) production, and lipid peroxidation. In addition, the SLP1 strain demonstrated more catalase activity after temperature was increased, and this strain also showed membranes enriched in saturated fatty acids. It is concluded that the SLP1 yeast strain is a thermotolerant yeast with less oxidative stress and a greater antioxidant response. Therefore, this strain could be used for fermentation at high temperatures. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Nitric oxide and nitrosative stress tolerance in yeast

    PubMed Central

    Tillmann, Anna; Gow, Neil A.R.; Brown, Alistair J.P.

    2013-01-01

    The opportunistic human fungal pathogen Candida albicans encounters diverse environmental stresses when it is in contact with its host. When colonising and invading human tissues C. albicans is exposed to reactive oxygen (ROS) and reactive nitrogen intermediates (RNI). ROS and RNI are generated in the first line of host defence by phagocytic cells such as macrophages and neutrophils. In order to escape these host-induced oxidative and nitrosative stresses C. albicans has developed various detoxification mechanisms. One such mechanism is the detoxification of nitric oxide (NO) to nitrate by the flavohaemoglobin enzyme, CaYhb1. Members of the haemoglobin superfamily are highly conserved and are found in archaea, eukaryotes, and bacteria. Flavohemoglobins have a dioxygenase activity (NOD) and contain three domains: a globin domain, an FAD-binding domain, and an NAD(P)-binding domain. Here we examine the nitrosative stress response in three fungal models: the pathogenic yeast C. albicans, the benign budding yeast Saccharomyces cerevisiae, and the benign fission yeast Schizosaccharomyces pombe. We compare their enzymatic and non-enzymatic NO and RNI detoxification mechanisms and summarise fungal responses to nitrosative stress. PMID:21265777

  5. PML nuclear bodies: assembly and oxidative stress-sensitive sumoylation.

    PubMed

    Sahin, Umut; de Thé, Hugues; Lallemand-Breitenbach, Valérie

    2014-01-01

    PML Nuclear Bodies (NBs) have fascinated cell biologists due to their exquisitely dynamic nature and their involvement in human diseases, notably acute promyelocytic leukemia. NBs, as well as their master organizer--the PML protein--exhibit multiple connections with stress responses. Initially viewed as a tumor suppressor, PML recently re-emerged as a multifaceted protein, capable of controlling numerous aspects of cellular homeostasis. NBs recruit many functionally diverse proteins and function as stress-regulated sumoylation factories. SUMO-initiated partner retention can subsequently facilitate a variety of other post-translational modifications, as well as partner degradation. With this newly elucidated central role of stress-enhanced sumoylation, it should now be possible to build a working model for the different NB-regulated cellular activities. Moreover, pharmacological manipulation of NB formation by interferons or oxidants holds the promise of clearing many undesirable proteins for clinical management of malignant, viral or neurodegenerative diseases.

  6. PML nuclear bodies: Assembly and oxidative stress-sensitive sumoylation

    PubMed Central

    Sahin, Umut; de Thé, Hugues; Lallemand-Breitenbach, Valérie

    2014-01-01

    PML Nuclear Bodies (NBs) have fascinated cell biologists due to their exquisitely dynamic nature and their involvement in human diseases, notably acute promyelocytic leukemia. NBs, as well as their master organizer - the PML protein - exhibit multiple connections with stress responses. Initially viewed as a tumor suppressor, PML recently re-emerged as a multifaceted protein, capable of controlling numerous aspects of cellular homeostasis. NBs recruit many functionally diverse proteins and function as stress-regulated sumoylation factories. SUMO-initiated partner retention can subsequently facilitate a variety of other post-translational modifications, as well as partner degradation. With this newly elucidated central role of stress-enhanced sumoylation, it should now be possible to build a working model for the different NB-regulated cellular activities. Moreover, pharmacological manipulation of NB formation by interferons or oxidants holds the promise of clearing many undesirable proteins for clinical management of malignant, viral or neurodegenerative diseases. PMID:25482067

  7. Oxidative and nitrosative stress markers in bus drivers.

    PubMed

    Rossner, Pavel; Svecova, Vlasta; Milcova, Alena; Lnenickova, Zdena; Solansky, Ivo; Santella, Regina M; Sram, Radim J

    2007-04-01

    Exposure to ambient air pollution is associated with many diseases. Oxidative and nitrosative stress are believed to be two of the major sources of particulate matter (PM)-mediated adverse health effects. PM in ambient air arises from industry, local heating, and vehicle emissions and poses a serious problem mainly in large cities. In the present study we analyzed the level of oxidative and nitrosative stress among 50 bus drivers from Prague, Czech Republic, and 50 matching controls. We assessed simultaneously the levels of 15-F(2t)-isoprostane (15-F(2t)-IsoP) and 8-oxodeoxyguanosine (8-oxodG) in urine and protein carbonyl groups and 3-nitrotyrosine (NT) in blood plasma. For the analysis of all four markers we used ELISA techniques. We observed significantly increased levels of oxidative and nitrosative stress markers in bus drivers. The median levels (min, max) of individual markers in bus drivers versus controls were as follows: 8-oxodG: 7.79 (2.64-12.34)nmol/mmol versus 6.12 (0.70-11.38)nmol/mmol creatinine (p<0.01); 15-F(2t)-IsoP: 0.81 (0.38-1.55)nmol/mmol versus 0.68 (0.39-1.79)nmol/mmol creatinine (p<0.01); carbonyl levels: 14.1 (11.8-19.0)nmol/ml versus 12.9 (9.8-16.6)nmol/ml plasma (p<0.001); NT: 694 (471-3228)nmol/l versus 537 (268-13833)nmol/l plasma (p<0.001). 15-F(2t)-IsoP levels correlated with vitamin E (R=0.23, p<0.05), vitamin C (R=-0.33, p<0.01) and cotinine (R=0.47, p<0.001) levels. Vitamin E levels also positively correlated with 8-oxodG (R=0.27, p=0.01) and protein carbonyl levels (R=0.32, p<0.001). Both oxidative and nitrosative stress markers positively correlated with PM2.5 and PM10 exposure. In conclusion, our study indicates that exposure to PM2.5 and PM10 results in increased oxidative and nitrosative stress.

  8. YhgC protects Bacillus anthracis from oxidative stress.

    PubMed

    Kiran, Madanahally D; Bala, Shashi; Hirshberg, Miriam; Balaban, Naomi

    2010-09-01

    Bacillus anthracis can cause lethal inhalational anthrax and can be used as a bioweapon due to its ability to form spores and to survive under various environmental stress conditions. YhgC in bacilli are structural homologues of TRAP, a protein involved in stress response in staphylococci. To test the role of YhgC in B. anthracis, yhgC gene was deleted in B. anthracis strain Sterne and parent and mutant strains tested. Immunolocalization studies indicated that YhgC is clustered both on the cell surface and within the cytoplasm. Phenotypic analyses indicated that YhgC is an important factor for oxidative stress tolerance and for macrophage infection in vitro. Accordingly, transcriptomics studies indicated that yhgC has a profound effect on genes encoding for stress response regulatory proteins where it negatively regulates the expression of genes encoding for Class I and Class III stress response proteins belonging to the regulons hrcA (hrcA, grpE, dnaK, dnaJ, groEL and groES) and ctsR (ctsR, mcsA, mcsB, clpC/mecB, clpP1). Proteomics studies also indicated that YhgC positively regulates the expression of ClpP-2 and camelysin, which are proteins involved in adaptive responses and pathogenesis in various Gram-positive bacteria. Put together, these results suggest that YhgC is important for the survival of B. anthracis under oxidative stress conditions and thus inhibition of YhgC may compromise the ability of the bacteria to survive within the host.

  9. Oxidative Stress and Antioxidant Potential of One Hundred Medicinal Plants.

    PubMed

    Hassan, Waseem; Noreen, Hamsa; Rehman, Shakila; Gul, Shehnaz; Kamal, Mohammad Amjad; Kamdem, Jean Paul; Zaman, Bakht; da Rocha, Joao B T

    2017-01-01

    Reactive species are produced in biological system because of redox reactions. The imbalance in pro-oxidant and antioxidant homeostasis leads to the production of toxic reactive oxygen and nitrogen species like hydrogen peroxide, organic peroxides, hydroxyl radicals, superoxide anion and nitric oxide. Inactivation of metabolic enzymes, oxidation of biomolecules and cellular damage are some of the prominent characteristics of reactive species. Similarly, oxidative stress has been associated with more than one hundred (100) pathologies such as atherosclerosis, diabetes, cardiovascular diseases, pancreatic and liver diseases, joint disorders, cardiac fibrosis, acute respiratory distress syndrome, neurological diseases (amyotrophic lateral sclerosis, Huntington's disorder, Parkinson's disease and Alzheimer's disease), ageing and cancer etc. The toxicity of reactive species is balanced by the integrated antioxidant systems, which include enzymatic and non-enzymatic antioxidants. Antioxidant therapies or defenses protect the biological sites by removing or quenching the free radicals (prooxidants). Medicinal plants can not only protect the oxidative damage, but also play a vital role in health maintenance and prevention of chronic degenerative diseases. This review will provide a valuable discussion of one hundred (100) well known medicinal plants, which may add to the optimization of antioxidants rank. Besides, some of the antioxidant evaluation techniques or mechanisms via which medicinal plants act as antioxidants are also described. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Role of oxidative stress in cadmium toxicity and carcinogenesis

    SciTech Connect

    Liu Jie; Qu Wei; Kadiiska, Maria B.

    2009-08-01

    Cadmium (Cd) is a toxic metal, targeting the lung, liver, kidney, and testes following acute intoxication, and causing nephrotoxicity, immunotoxicity, osteotoxicity and tumors after prolonged exposures. Reactive oxygen species (ROS) are often implicated in Cd toxicology. This minireview focused on direct evidence for the generation of free radicals in intact animals following acute Cd overload and discussed the association of ROS in chronic Cd toxicity and carcinogenesis. Cd-generated superoxide anion, hydrogen peroxide, and hydroxyl radicals in vivo have been detected by the electron spin resonance spectra, which are often accompanied by activation of redox sensitive transcription factors (e.g., NF-{kappa}B, AP-1more » and Nrf2) and alteration of ROS-related gene expression. It is generally agreed upon that oxidative stress plays important roles in acute Cd poisoning. However, following long-term Cd exposure at environmentally-relevant low levels, direct evidence for oxidative stress is often obscure. Alterations in ROS-related gene expression during chronic exposures are also less significant compared to acute Cd poisoning. This is probably due to induced adaptation mechanisms (e.g., metallothionein and glutathione) following chronic Cd exposures, which in turn diminish Cd-induced oxidative stress. In chronic Cd-transformed cells, less ROS signals are detected with fluorescence probes. Acquired apoptotic tolerance renders damaged cells to proliferate with inherent oxidative DNA lesions, potentially leading to tumorigenesis. Thus, ROS are generated following acute Cd overload and play important roles in tissue damage. Adaptation to chronic Cd exposure reduces ROS production, but acquired Cd tolerance with aberrant gene expression plays important roles in chronic Cd toxicity and carcinogenesis.« less

  11. Oxidative stress in bone remodeling: role of antioxidants.

    PubMed

    Domazetovic, Vladana; Marcucci, Gemma; Iantomasi, Teresa; Brandi, Maria Luisa; Vincenzini, Maria Teresa

    2017-01-01

    ROS are highly reactive molecules which consist of a number of diverse chemical species, including radical and non-radical oxygen species. Oxidative stress occurs as a result of an overproduction of ROS not balanced by an adequate level of antioxidants. The natural antioxidants are: thiol compounds among which GSH is the most representative, and non-thiol compounds such as polyphenols, vitamins and also various enzymes. Many diseases have been linked to oxidative stress including bone diseases among which one of the most important is the osteoporosis. The redox state changes are also related to the bone remodeling process which allows the continuous bone regeneration through the coordinated action of bone cells: osteoclasts, osteoblasts and osteocytes. Changes in ROS and/or antioxidant systems seem to be involved in the pathogenesis of bone loss. ROS induce the apoptosis of osteoblasts and osteocytes, and this favours osteoclastogenesis and inhibits the mineralization and osteogenesis. Excessive osteocyte apoptosis correlates with oxidative stress causing an imbalance in favor of osteoclastogenesis which leads to increased turnover of bone remodeling and bone loss. Antioxidants either directly or by counteracting the action of oxidants contribute to activate the differentiation of osteoblasts, mineralization process and the reduction of osteoclast activity. In fact, a marked decrease in plasma antioxidants was found in aged or osteoporotic women. Some evidence shows a link among nutrients, antioxidant intake and bone health. Recent data demonstrate the antioxidant properties of various nutrients and their influence on bone metabolism. Polyphenols and anthocyanins are the most abundant antioxidants in the diet, and nutritional approaches to antioxidant strategies, in animals or selected groups of patients with osteoporosis or inflammatory bone diseases, suggest the antioxidant use in anti-resorptive therapies for the treatment and prevention of bone loss.

  12. Creatine supplementation and oxidative stress in rat liver

    PubMed Central

    2013-01-01

    Background The objective of this study was to determine the effects of creatine supplementation on liver biomarkers of oxidative stress in exercise-trained rats. Methods Forty 90-day-old adult male Wistar rats were assigned to four groups for the eight-week experiment. Control group (C) rats received a balanced control diet; creatine control group (CCr) rats received a balanced diet supplemented with 2% creatine; trained group (T) rats received a balanced diet and intense exercise training equivalent to the maximal lactate steady state phase; and supplemented-trained (TCr) rats were given a balanced diet supplemented with 2% creatine and subjected to intense exercise training equivalent to the maximal lactate steady state phase. At the end of the experimental period, concentrations of creatine, hydrogen peroxide (H2O2) and thiobarbituric acid reactive substances (TBARS) were measured as well as the enzyme activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-GPx) and catalase (CAT). Liver tissue levels of reduced glutathione (GSH), oxidized glutathione (GSSG) and the GSH/GSSG ratio were also determined. Results Hepatic creatine levels were highest in the CCr and TCr groups with increased concentration of H2O2 observed in the T and TCr animal groups. SOD activity was decreased in the TCr group. GSH-GPx activity was increased in the T and TCr groups while CAT was elevated in the CCr and TCr groups. GSH, GGS and the GSH/GSSG ratio did not differ between all animal subsets. Conclusions Our results demonstrate that creatine supplementation acts in an additive manner to physical training to raise antioxidant enzymes in rat liver. However, because markers of liver oxidative stress were unchanged, this finding may also indicate that training-induced oxidative stress cannot be ameliorated by creatine supplementation. PMID:24325803

  13. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs

    PubMed Central

    2014-01-01

    Background The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Results Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Conclusions Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory. PMID:25056725

  14. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs.

    PubMed

    Smith, Samson W; Latta, Leigh C; Denver, Dee R; Estes, Suzanne

    2014-07-24

    The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory.

  15. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L.

    PubMed

    Wang, You-Sheng; Yang, Zhi-Min

    2005-12-01

    Nitric oxide (NO) as a key signaling molecule has been involved in mediation of various biotic and abiotic stress-induced physiological responses in plants. In the present study, we investigated the effect of NO on Cassia tora L. plants exposed to aluminum (Al). Plants pre-treated for 12 h with 0.4 mM sodium nitroprusside (SNP), an NO donor, and subsequently exposed to 10 microM Al treatment for 24 h exhibited significantly greater root elongation as compared with the plants without SNP treatment. The NO-promoted root elongation was correlated with a decrease in Al accumulation in root apexes. Furthermore, oxidative stress associated with Al treatment increased lipid peroxidation and reactive oxygen species, and the activation of lipoxygenase and antioxidant enzymes was reduced by NO. Such effects were confirmed by the histochemical staining for the detection of peroxidation of lipids and loss of membrane integrity in roots. The ameliorating effect of NO was specific, because the NO scavenger cPTIO [2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide] completely reversed the effect of NO on root growth in the presence of Al. These results indicate that NO plays an important role in protecting the plant against Al-induced oxidative stress.

  16. Graphene oxide induces cytotoxicity and oxidative stress in bluegill sunfish cells.

    PubMed

    Srikanth, Koigoora; Sundar, L Syam; Pereira, Eduarda; Duarte, Armando Costa

    2018-04-01

    Graphene oxide (GO) is considered a promising material for biological application due to its unique properties. However, the potential toxicity of GO to aquatic organism particularly bluegill sun fish cells (BF-2) is unexplored or remains poorly understood. GO-induced cytotoxicity and oxidative stress in BF-2 cells were assessed using a battery of biomarkers. Two different biological assays (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and neutral red uptake were used to evaluate the cytotoxicity of GO on BF-2 cells. It was found that GO induced dose- and time-dependent cytotoxicity on BF-2 cells. BF-2 cells exposed to lower concentration of GO (40 μg ml -1 ) for 24 induced morphological changes when compared to their respective controls. As evidence for oxidative stress lipid peroxidation, superoxide dismutase, catalase, reactive oxygen species and 8-hydroxy-2'-deoxyguanosine levels were increased and glutathione levels were found to decline in BF-2 cells after treatment with GO. Our findings demonstrate that GO when exposed to BF-2 fish cells cause oxidative stress. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Nitric oxide mitigates arsenic-induced oxidative stress and genotoxicity in Vicia faba L.

    PubMed

    Shukla, Pratiksha; Singh, A K

    2015-09-01

    The protective effects of nitric oxide (NO) against arsenic (As)-induced structural disturbances in Vicia faba have been investigated. As treatment (0.25, 0.50, and 1 mM) resulted in a declined growth of V. faba seedlings. Arsenic treatment stimulates the activity of SOD and CAT while the activities of APX and GST content were decreased. The oxidative stress markers such as superoxide radical, hydrogen peroxide and malondialdehyde (lipid peroxidation) contents were enhanced by As. Overall results revealed that significant accumulation of As suppressed growth, photosynthesis, antioxidant enzymes (SOD, CAT, APX, and GST activity), mitotic index, and induction of different chromosomal abnormalities, hence led to oxidative stress. The concentration of SNP (0.02 mM) was very effective in counteracting the adverse effect of As toxicity. These abnormalities use partially or fully reversed by a simultaneous application of As and NO donor and sodium nitroprusside and has an ameliorating effect against As-induced oxidative stress and genotoxicity in V. faba roots.

  18. SCO2 Mediates Oxidative Stress-Induced Glycolysis to Oxidative Phosphorylation Switch in Hematopoietic Stem Cells.

    PubMed

    Du, Wei; Amarachintha, Surya; Wilson, Andrew F; Pang, Qishen

    2016-04-01

    Fanconi anemia (FA) is an inherited bone marrow (BM) failure syndrome, presumably resulting from defects in hematopoietic stem cells (HSCs). Normal HSCs depend more on glycolysis than on oxidative phosphorylation (OXPHOS) for energy production. Here, we show that FA HSCs are more sensitive to the respiration inhibitor NaN3 treatment than to glycolytic inhibitor 2-deoxy-d-glucose (2-DG), indicating more dependence on OXPHOS. FA HSCs undergo glycolysis-to-OXPHOS switch in response to oxidative stress through a p53-dependent mechanism. Metabolic stresses induce upregulation of p53 metabolic targets in FA HSCs. Inactivation of p53 in FA HSCs prevents glycolysis-to-OXPHOS switch. Furthermore, p53-deficient FA HSCs are more sensitive to 2-DG-mediated metabolic stress. Finally, oxidative stress-induced glycolysis-to-OXPHOS switch is mediated by synthesis of cytochrome c oxidase 2 (SCO2). These findings demonstrate p53-mediated OXPHOS function as a compensatory alteration in FA HSCs to ensure a functional but mildly impaired energy metabolism and suggest a cautious approach to manipulating p53 signaling in FA. © 2015 AlphaMed Press.

  19. Buprenorphine Alters Inflammatory and Oxidative Stress Molecular Markers in Arthritis

    PubMed Central

    Hitchon, Carol

    2017-01-01

    Buprenorphine is recommended for use as an analgesic in animal models including in murine models of collagen-induced arthritis (CIA). However, the effect of buprenorphine on the expression of disease-associated biomarkers is not well defined. We examined the effect of buprenorphine administration on disease progression and the expression of inflammatory and oxidative stress markers, in a murine model of CIA. Buprenorphine administration altered the expression of cytokines, IFN-γ, IL-6, and MMP-3, and oxidative markers, for example, iNOS, superoxide dismutase (SOD1), and catalase (CAT), in the CIA mice. As buprenorphine is an analgesic, we further monitored the association of expression of these biomarkers with pain scores in a human cohort of early rheumatoid arthritis (RA). Serum MMP-3 levels and blood mRNA expression of antioxidants sod1 and cat correlated with pain scores in the RA cohort. We have demonstrated that administration of buprenorphine alters the expression of inflammatory and oxidative stress-related molecular markers in a murine model of CIA. This caveat needs to be considered in animal experiments using buprenorphine as an analgesic, as it can be a confounding factor in murine studies used for prediction of response to therapy. Furthermore, the antioxidant enzymes that showed an association with pain scores in the human cohort may be explored as biomarkers for pain in future studies. PMID:28572711

  20. Oxidative stress in obesity: a critical component in human diseases.

    PubMed

    Marseglia, Lucia; Manti, Sara; D'Angelo, Gabriella; Nicotera, Antonio; Parisi, Eleonora; Di Rosa, Gabriella; Gitto, Eloisa; Arrigo, Teresa

    2014-12-26

    Obesity, a social problem worldwide, is characterized by an increase in body weight that results in excessive fat accumulation. Obesity is a major cause of morbidity and mortality and leads to several diseases, including metabolic syndrome, diabetes mellitus, cardiovascular, fatty liver diseases, and cancer. Growing evidence allows us to understand the critical role of adipose tissue in controlling the physic-pathological mechanisms of obesity and related comorbidities. Recently, adipose tissue, especially in the visceral compartment, has been considered not only as a simple energy depository tissue, but also as an active endocrine organ releasing a variety of biologically active molecules known as adipocytokines or adipokines. Based on the complex interplay between adipokines, obesity is also characterized by chronic low grade inflammation with permanently increased oxidative stress (OS). Over-expression of oxidative stress damages cellular structures together with under-production of anti-oxidant mechanisms, leading to the development of obesity-related complications. The aim of this review is to summarize what is known in the relationship between OS in obesity and obesity-related diseases.

  1. Glycogen controls Caenorhabditis elegans lifespan and resistance to oxidative stress

    PubMed Central

    Gusarov, Ivan; Pani, Bibhusita; Gautier, Laurent; Smolentseva, Olga; Eremina, Svetlana; Shamovsky, Ilya; Katkova-Zhukotskaya, Olga; Mironov, Alexander; Nudler, Evgeny

    2017-01-01

    A high-sugar diet has been associated with reduced lifespan in organisms ranging from worms to mammals. However, the mechanisms underlying the harmful effects of glucose are poorly understood. Here we establish a causative relationship between endogenous glucose storage in the form of glycogen, resistance to oxidative stress and organismal aging in Caenorhabditis elegans. We find that glycogen accumulated on high dietary glucose limits C. elegans longevity. Glucose released from glycogen and used for NADPH/glutathione reduction renders nematodes and human hepatocytes more resistant against oxidative stress. Exposure to low levels of oxidants or genetic inhibition of glycogen synthase depletes glycogen stores and extends the lifespan of animals fed a high glucose diet in an AMPK-dependent manner. Moreover, glycogen interferes with low insulin signalling and accelerates aging of long-lived daf-2 worms fed a high glucose diet. Considering its extensive evolutionary conservation, our results suggest that glycogen metabolism might also have a role in mammalian aging. PMID:28627510

  2. Oxidative stress of crystalline lens in rat menopausal model.

    PubMed

    Acer, Semra; Pekel, Gökhan; Küçükatay, Vural; Karabulut, Aysun; Yağcı, Ramazan; Çetin, Ebru Nevin; Akyer, Şahika Pınar; Şahin, Barbaros

    2016-01-01

    To evaluate lenticular oxidative stress in rat menopausal models. Forty Wistar female albino rats were included in this study. A total of thirty rats underwent oophorectomy to generate a menopausal model. Ten rats that did not undergo oophorectomy formed the control group (Group 1). From the rats that underwent oophorectomy, 10 formed the menopause control group (Group 2), 10 were administered a daily injection of methylprednisolone until the end of the study (Group 3), and the remaining 10 rats were administered intraperitoneal streptozocin to induce diabetes mellitus (Group 4). Total oxidant status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI) measurements of the crystalline lenses were analyzed. The mean OSI was the lowest in group 1 and highest in group 4. Nevertheless, the difference between the groups was not statistically significant in terms of OSI (p >0.05). The mean TOS values were similar between the groups (p >0.05), whereas the mean TAC of group 1 was significantly higher than that of the other groups (p <0.001). Our results indicate that menopause may not promote cataract formation.

  3. Oxidative stress and DNA methylation in prostate cancer.

    PubMed

    Donkena, Krishna Vanaja; Young, Charles Y F; Tindall, Donald J

    2010-01-01

    The protective effects of fruits, vegetables, and other foods on prostate cancer may be due to their antioxidant properties. An imbalance in the oxidative stress/antioxidant status is observed in prostate cancer patients. Genome oxidative damage in prostate cancer patients is associated with higher lipid peroxidation and lower antioxidant levels. Oxygen radicals are associated with different steps of carcinogenesis, including structural DNA damage, epigenetic changes, and protein and lipid alterations. Epigenetics affects genetic regulation, cellular differentiation, embryology, aging, cancer, and other diseases. DNA methylation is perhaps the most extensively studied epigenetic modification, which plays an important role in the regulation of gene expression and chromatin architecture, in association with histone modification and other chromatin-associated proteins. This review will provide a broad overview of the interplay of oxidative stress and DNA methylation, DNA methylation changes in regulation of gene expression, lifestyle changes for prostate cancer prevention, DNA methylation as biomarkers for prostate cancer, methods for detection of methylation, and clinical application of DNA methylation inhibitors for epigenetic therapy.

  4. [Oxidative Stress Level of Vanadium-exposed Workers].

    PubMed

    Wei, Teng-da; Li, Shun-pin; Liu, Yun-xing; Tan, Chun-ping; Li, Juan; Zhang, Zu-hui; Lan, Ya-jia; Zhang, Qin

    2015-11-01

    To determine the oxidative stress level in peripheral blood of vanadium-exposed workers, as an indication of population health effect of vanadium on human neurobehavioral system. 86 vanadium-exposed workers and 65 non-exposed workers were recruited by cluster sampling. A questionnaire was administered to collect demographic and occupational exposure information. Serum activity of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS) and malonaldehyde (MDA) contents were detected by kit assay. The differences in oxidative stress level between vanadium-exposed and non-exposed workers were compared. Vanadium-exposed workers had higher levels of MDA contents than the controls. The total superoxide dismutase(T-SOD) activity in vanadium-exposed workers was significantly lower than that in the controls, which was associated with lowered levels of manganese superoxide dismutase (Mn-SOD) activity. No changes in serum levels of cupro-zinc superoxide dismutase (CuZn-SOD) was found in vanadium-exposed workers. No difference in iNOS activity was found between vanadium-exposed workers and controls. Vanadium exposure increases free radical production in serum and reduces antioxidant capacity. But the relationship between vanadium exposure and iNOS damage remains uncertain.

  5. Oxidative stress and inflammatory signaling in cerulein pancreatitis

    PubMed Central

    Yu, Ji Hoon; Kim, Hyeyoung

    2014-01-01

    Oxidative stress is considered to be an important regulator of the pathogenesis of acute pancreatitis. Reactive oxygen species (ROS) regulate the activation of inflammatory cascades, the recruitment of inflammatory cells and tissue damage in acute pancreatitis. A hallmark of the inflammatory response in pancreatitis is the induction of cytokine expression, which is regulated by a number of signaling molecules including oxidant-sensitive transcription factors such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinases (MAPKs). Cross-talk between ROS and pro-inflammatory cytokines is mediated by NF-κB, AP-1, STAT3, and MAPKs; this crosstalk amplifies the inflammatory cascade in acute pancreatitis. Therapeutic studies have shown that antioxidants and natural compounds can have beneficial effects for patients with pancreatitis and can also influence the expression of proinflammatory cytokines in cerulein-induced pancreatitis. Since oxidative stress may activate inflammatory signaling pathways and contribute to the development of pancreatitis, antioxidant therapy may alleviate the symptoms or prevent the development of pancreatitis. Since chronic administration of high doses of antioxidants may have deleterious effects, dosage levels and duration of antioxidant treatment should be carefully determined. PMID:25516643

  6. Oxidative Stress in the Carcinogenicity of Chemical Carcinogens

    PubMed Central

    Kakehashi, Anna; Wei, Min; Fukushima, Shoji; Wanibuchi, Hideki

    2013-01-01

    This review highlights several in vivo studies utilizing non-genotoxic and genotoxic chemical carcinogens, and the mechanisms of their high and low dose carcinogenicities with respect to formation of oxidative stress. Here, we survey the examples and discuss possible mechanisms of hormetic effects with cytochrome P450 inducers, such as phenobarbital, α-benzene hexachloride and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane. Epigenetic processes differentially can be affected by agents that impinge on oxidative DNA damage, repair, apoptosis, cell proliferation, intracellular communication and cell signaling. Non-genotoxic carcinogens may target nuclear receptors and induce post-translational modifications at the protein level, thereby impacting on the stability or activity of key regulatory proteins, including oncoproteins and tumor suppressor proteins. We further discuss role of oxidative stress focusing on the low dose carcinogenicities of several genotoxic carcinogens such as a hepatocarcinogen contained in seared fish and meat, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, arsenic and its metabolites, and the kidney carcinogen potassium bromate. PMID:24202448

  7. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats.

    PubMed

    Gharib, Ola Ali

    2009-11-27

    Trichloroethylene (TCE) may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Twenty male albino rats were divided into four groups: (1) the control group treated with vehicle, (2) Kombucha (KT)-treated group, (3) TCE-treated group and (4) KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO) and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities were also measured. TCE administration increased the malondiahyde (MDA) and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH) level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  8. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats

    PubMed Central

    2009-01-01

    Background Trichloroethylene (TCE) may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Methods Twenty male albino rats were divided into four groups: (1) the control group treated with vehicle, (2) Kombucha (KT)-treated group, (3) TCE-treated group and (4) KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO) and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities were also measured. Results TCE administration increased the malondiahyde (MDA) and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH) level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. Conclusion The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment. PMID:19943946

  9. Marine Carotenoids against Oxidative Stress: Effects on Human Health

    PubMed Central

    Gammone, Maria Alessandra; Riccioni, Graziano; D’Orazio, Nicolantonio

    2015-01-01

    Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases. PMID:26437420

  10. Nanostructured Peptidotoxins as Natural Pro-Oxidants Induced Cancer Cell Death via Amplification of Oxidative Stress.

    PubMed

    Qiao, Hongzhi; Fang, Dong; Zhang, Lei; Gu, Xiaochen; Lu, Yin; Sun, Minjie; Sun, Chunmeng; Ping, Qineng; Li, Junsong; Chen, Zhipeng; Chen, Jun; Hu, Lihong; Di, Liuqing

    2018-02-07

    Melittin (Mel), one of the host defense peptides derived from the venom of honeybees, demonstrates substantial anticancer properties, which is attributed to augmenting reactive oxygen species (ROS) generation. However, little has been reported on its pro-oxidation capacity in cancer oxidation therapy. In this study, an ROS amplifying nanodevice was fabricated through direct complexation of two natural pro-oxidants, Mel and condensed epigallocatechin gallate (pEGCG). The obtained nanocomplex (NC) was further covered with phenylboronic acid derivatized hyaluronic acid (pHA) through the ROS-responsive boronate ester coordination bond to produce pHA-NC. Upon undergoing receptor-mediated endocytosis into cancer cells, the inner cores of pHA-NC will be partially uncovered once pHA corona is degraded by hyaluronidase and will then escape from the lysosome by virtue of cytolytic Mel. The elevated ROS level in the tumor cytoplasm can disrupt the boronate ester bond to facilitate drug release. Both Mel and pEGCG could synergistically amplify oxidative stress and prolong ROS retention in cancer cells, leading to enhanced anticancer efficacy. This ROS cascade amplifier based on selective coordination bond and inherent pro-oxidation properties of natural ingredients could detect and elevate intracellular ROS signals, potentiating to move the tumor away from its homeostasis and make the tumor vulnerable. Compared to previously reported chemosynthetic pro-oxidants, the ROS self-sufficient system, fully composed of natural medicine, from this study provides a new insight in developing cancer oxidation therapy.

  11. Neuroprotective effects of sildenafil against oxidative stress and memory dysfunction in mice exposed to noise stress.

    PubMed

    Sikandaner, Hu Erxidan; Park, So Young; Kim, Min Jung; Park, Shi Nae; Yang, Dong Won

    2017-02-15

    Noise exposure has been well characterized as an environmental stressor, and is known to have auditory and non-auditory effects. Phosphodiesterase 5 (PDE5) inhibitors affect memory and hippocampus plasticity through various signaling cascades which are regulated by cGMP. In this study, we investigated the effects of sildenafil on memory deficiency, neuroprotection and oxidative stress in mice caused by chronic noise exposure. Mice were exposed to noise for 4h every day up to 14days at 110dB SPL of noise level. Sildenafil (15mg/kg) was orally administered 30min before noise exposure for 14days. Behavioral assessments were performed using novel object recognition (NOR) test and radial arm maze (RAM) test. Higher levels of memory dysfunction and oxidative stress were observed in noise alone-induced mice compared to control group. Interestingly, sildenafil administration increased memory performance, decreased oxidative stress, and increased neuroprotection in the hippocampus region of noise alone-induced mice likely through affecting memory related pathways such as cGMP/PKG/CREB and p25/CDK5, and induction of free radical scavengers such as SOD1, SOD2, SOD3, Prdx5, and catalase in the brain of stressed mice. Copyright © 2016. Published by Elsevier B.V.

  12. Oxidative Stress and Cardiac Remodeling: An Updated Edge.

    PubMed

    Rababa'h, Abeer M; Guillory, Ashley N; Mustafa, Rima; Hijjawi, Tamara

    2018-03-14

    A common phenotype associated with heart failure is the development of cardiac hypertrophy. Cardiac hypertrophy occurs in response to stress, such as hypertension, coronary vascular disease, or myocardial infarction. The most critical pathophysiological conditions involved may include dilated hypertrophy, fibrosis and contractile malfunction. The intricate pathophysiological mechanisms of cardiac hypertrophy have been the core of several scientific studies, which may help in opening a new avenue in preventive and curative procedures. To our knowledge from the literature, the development of cardiac remodeling and hypertrophy is multifactorial. Thus, in this review, we will focus and summarize the potential role of oxidative stress in cardiac hypertrophy development. Oxidative stress is considered a major stimulant for the signal transduction in cardiac cells pathological conditions, including inflammatory cytokines, and MAP kinase. The understanding of the pathophysiological mechanisms which are involved in cardiac hypertrophy and remodeling process is crucial for the development of new therapeutic plans, especially that the mortality rates related to cardiac remodeling/dysfunction remain high. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Oxidative stress and nitrosative stress are involved in different stages of proteolytic pulmonary emphysema.

    PubMed

    Lanzetti, Manuella; da Costa, Cristiane Aguiar; Nesi, Renata Tiscoski; Barroso, Marina Valente; Martins, Vanessa; Victoni, Tatiana; Lagente, Vincent; Pires, Karla Maria Pereira; e Silva, Patrícia Machado Rodrigues; Resende, Angela Castro; Porto, Luis Cristóvão; Benjamim, Cláudia Farias; Valença, Samuel Santos

    2012-12-01

    Our aim was to investigate the role of oxidative stress in elastase-induced pulmonary emphysema. C57BL/6 mice were subjected to pancreatic porcine elastase (PPE) instillation (0.05 or 0.5 U per mouse, i.t.) to induce pulmonary emphysema. Lungs were collected on days 7, 14, and 21 after PPE instillation. The control group was sham injected. Also, mice treated with 1% aminoguanidine (AMG) and inducible NO synthase (iNOS) knockout mice received 0.5 U PPE (i.t.), and lungs were analyzed 21 days after. We performed bronchoalveolar lavage, biochemical analyses of oxidative stress, and lung stereology and morphometry assays. Emphysema was observed histologically at 21 days after 0.5 U PPE treatment; tissues from these mice exhibited increased alveolar linear intercept and air-space volume density in comparison with the control group. TNF-α was elevated at 7 and 14 days after 0.5 U PPE treatment, concomitant with a reduction in the IL-10 levels at the same time points. Myeloperoxidase was elevated in all groups treated with 0.5 U PPE. Oxidative stress was observed during early stages of emphysema, with increased nitrite levels and malondialdehyde and superoxide dismutase activity at 7 days after 0.5 U PPE treatment. Glutathione peroxidase activity was increased in all groups treated with 0.5 U PPE. The emphysema was attenuated when iNOS was inhibited using 1% AMG and in iNOS knockout mice. Furthermore, proteolytic stimulation by PPE enhanced the expression of nitrotyrosine and iNOS, whereas the PPE+AMG group showed low expression of iNOS and nitrotyrosine. PPE stimulus also induced endothelial (e) NOS expression, whereas AMG reduced eNOS. Our results suggest that the oxidative and nitrosative stress pathways are triggered by nitric oxide production via iNOS expression in pulmonary emphysema. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Helicobacter pylori VacA induces autophagic cell death in gastric epithelial cells via the endoplasmic reticulum stress pathway.

    PubMed

    Zhu, Pan; Xue, Jun; Zhang, Zhu-Jun; Jia, Yin-Ping; Tong, Ya-Nan; Han, Dan; Li, Qian; Xiang, Yang; Mao, Xu-Hu; Tang, Bin

    2017-12-13

    The Helicobacter pylori vacuolating cytotoxin (VacA) can promote progressive vacuolation and gastric injury and may be associated with human gastric cancer. Increasing evidence indicates that autophagy is involved in the cell death induced by VacA, but the specific mechanisms need to be further elucidated. We show here that VacA could induce autophagy and increase cell death in human gastric cancer cell lines. Further investigations revealed that inhibition of autophagy could decrease the VacA-induced cell death in AGS cells. Furthermore, numerous dilated endoplasmic reticula (ER) were observed, and the phosphorylation of a subunit of eukaryotic translation initiation factor 2 subunit 1 also increased in the VacA-treated AGS cells, while repression of ER stress could reduce autophagy and cell death through knockdown of activating transcription factor 4 and DNA-damage-inducible transcript 3. In addition, the expression of pseudokinase tribbles homolog 3 (TRIB3) upon ER stress was triggered by VacA, and knockdown of TRIB3 could also decrease VacA-induced cell death. Finally, inhibition of autophagy could decrease VacA s1m1 -induced cell death and apoptosis, and apoptosis inhibitor Z-VAD had no significant effect on autophagy induced by VacA s1m1 . Thus, these results suggested that VacA causes autophagic cell death via ER stress in gastric epithelial cells.

  15. Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease

    PubMed Central

    Cao, Stewart Siyan

    2014-01-01

    Abstract Significance: The endoplasmic reticulum (ER) is a specialized organelle for the folding and trafficking of proteins, which is highly sensitive to changes in intracellular homeostasis and extracellular stimuli. Alterations in the protein-folding environment cause accumulation of misfolded proteins in the ER that profoundly affect a variety of cellular signaling processes, including reduction–oxidation (redox) homeostasis, energy production, inflammation, differentiation, and apoptosis. The unfolded protein response (UPR) is a collection of adaptive signaling pathways that evolved to resolve protein misfolding and restore an efficient protein-folding environment. Recent Advances: Production of reactive oxygen species (ROS) has been linked to ER stress and the UPR. ROS play a critical role in many cellular processes and can be produced in the cytosol and several organelles, including the ER and mitochondria. Studies suggest that altered redox homeostasis in the ER is sufficient to cause ER stress, which could, in turn, induce the production of ROS in the ER and mitochondria. Critical Issues: Although ER stress and oxidative stress coexist in many pathologic states, whether and how these stresses interact is unknown. It is also unclear how changes in the protein-folding environment in the ER cause oxidative stress. In addition, how ROS production and protein misfolding commit the cell to an apoptotic death and contribute to various degenerative diseases is unknown. Future Directions: A greater fundamental understanding of the mechanisms that preserve protein folding homeostasis and redox status will provide new information toward the development of novel therapeutics for many human diseases. Antioxid. Redox Signal. 21, 396–413. PMID:24702237

  16. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    SciTech Connect

    Mazière, Cécile, E-mail: maziere.cecile@chu-amiens.fr; Salle, Valéry; INSERM U1088

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level inmore » a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.« less

  17. Prune melanoidins protect against oxidative stress and endothelial cell death.

    PubMed

    Posadino, Anna Maria; Cossu, Annalisa; Piga, Antonio; Madrau, Monica Assunta; Del Caro, Alessandra; Colombino, Maria; Paglietti, Bianca; Rubino, Salvatore; Iaccarino, Ciro; Crosio, Claudia; Sanna, Bastiano; Pintus, Gianfranco

    2011-06-01

    The health-promoting effects of fruit and vegetable consumption are thought to be due to phytochemicals contained in fresh plant material. Whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed plums (prunes) were isolated and their presence confirmed by hydroxymethylfurfural content and browning index. Oxidative-induced endothelial cell (EC) damage is the trigger for the development of cardiovascular diseases (CVD); therefore the potential protective effect of prune melanoidins on hydrogen peroxide-induced oxidative cell damage was investigated on human endothelial ECV304 cells. Cytoplasmic and mitochondrial redox status was assessed by using the novel, redox-sensitive, ratiometric fluorescent protein sensor (roGFP), while mitochondrial membrane potential (MMP) was investigated with the fluorescent dye, JC-1. Treatment of ECV304 cells with hydrogen peroxide dose-dependently induced both mitochondrial and cytoplasmic oxidation, in addition to MMP dissipation, with ensuing cell death. Pretreatment of ECV304 with prune melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide elicited phenomena, clearly indicating that these polymers protect human EC against oxidative stress.

  18. Oxidative and nitrosative stress biomarkers in chronic schizophrenia.

    PubMed

    Boll, Karine Maria; Noto, Cristiano; Bonifácio, Kamila Landucci; Bortolasci, Chiara Cristina; Gadelha, Ary; Bressan, Rodrigo Affonseca; Barbosa, Décio Sabbatini; Maes, Michael; Moreira, Estefania Gastaldello

    2017-07-01

    There is evidence that the acute phase of schizophrenia (SCZ) is accompanied by specific changes in oxidative and nitrosative stress (O&NS) biomarkers. There are, however, no firm data regarding these biomarkers in chronic SCZ. Therefore, this study aimed to delineate O&NS biomarkers in patients with chronic SCZ. 125 outpatients with SCZ and 118 controls were enrolled. The markers included lipid hydroperoxides (LOOH), advanced oxidation protein products (AOPP), nitric oxide metabolites (NOx), total radical-trapping antioxidant parameter (TRAP) and paraoxonase 1 (PON-1) activity. Immune-inflammatory markers known to be altered in SCZ were also measured: leptin, IL-6, soluble TNF receptors (sTNF-Rs) and the chemokines CCL-11 and CCL-3. There were no significant associations between chronic SCZ and the O&NS markers (AOPP, NOx, LOOH) and the anti-oxidants PON-1 and TRAP. Leptin, sTNF-R, CCL-3 and CCL-11 were significantly higher in SCZ. There were significant associations between pro-inflammatory and O&NS biomarkers (leptin/CCL-8 and AOPP; IL-6 and NOx; CCL-3 and LOOH; CCL-3/IL-6/NOx and TRAP). In conclusion, there were significant intercorrelations between inflammatory and O&NS pathways, which play a role in the pathophysiology of chronic SCZ. O&NS markers and the enzyme PON-1 are not useful as biomarkers in chronic stable polymedicated SCZ patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  19. Targeting urate to reduce oxidative stress in Parkinson disease.

    PubMed

    Crotty, Grace F; Ascherio, Alberto; Schwarzschild, Michael A

    2017-12-01

    Oxidative stress has been implicated as a core contributor to the initiation and progression of multiple neurological diseases. Genetic and environmental factors can produce oxidative stress through mitochondrial dysfunction leading to the degeneration of dopaminergic and other neurons underlying Parkinson disease (PD). Although clinical trials of antioxidants have thus far failed to demonstrate slowed progression of PD, oxidative stress remains a compelling target. Rather than prompting abandonment of antioxidant strategies, these failures have raised the bar for justifying drug and dosing selections and for improving study designs to test for disease modification by antioxidants. Urate, the main antioxidant found in plasma as well as the end product of purine metabolism in humans, has emerged as a promising potential neuroprotectant with advantages that distinguish it from previously tested antioxidant agents. Uniquely, higher urate levels in plasma or cerebrospinal fluid (CSF) have been linked to both a lower risk of developing PD and to a slower rate of its subsequent progression in numerous large prospective epidemiological and clinical cohorts. Laboratory evidence that urate confers neuroprotection in cellular and animal models of PD, possibly via the Nrf2 antioxidant response pathway, further strengthened its candidacy for rapid clinical translation. An early phase trial of the urate precursor inosine demonstrated its capacity to safely produce well tolerated, long-term elevation of plasma and CSF urate in early PD, supporting a phase 3 trial now underway to determine whether oral inosine dosed to elevate urate to concentrations predictive of favorable prognosis in PD slows clinical decline in people with recently diagnosed, dopamine transporter-deficient PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Secondhand smoke exposure induces acutely airway acidification and oxidative stress.

    PubMed

    Kostikas, Konstantinos; Minas, Markos; Nikolaou, Eftychia; Papaioannou, Andriana I; Liakos, Panagiotis; Gougoura, Sofia; Gourgoulianis, Konstantinos I; Dinas, Petros C; Metsios, Giorgos S; Jamurtas, Athanasios Z; Flouris, Andreas D; Koutedakis, Yiannis

    2013-02-01

    Previous studies have shown that secondhand smoke induces lung function impairment and increases proinflammatory cytokines. The aim of the present study was to evaluate the acute effects of secondhand smoke on airway acidification and airway oxidative stress in never-smokers. In a randomized controlled cross-over trial, 18 young healthy never-smokers were assessed at baseline and 0, 30, 60, 120, 180 and 240 min after one-hour secondhand smoke exposure at bar/restaurant levels. Exhaled NO and CO measurements, exhaled breath condensate collection (for pH, H(2)O(2) and NO(2)(-)/NO(3)(-) measurements) and spirometry were performed at all time-points. Secondhand smoke exposure induced increases in serum cotinine and exhaled CO that persisted until 240 min. Exhaled breath condensate pH decreased immediately after exposure (p < 0.001) and returned to baseline by 180 min, whereas H(2)O(2) increased at 120 min and remained increased at 240 min (p = 0.001). No changes in exhaled NO and NO(2)/NO(3) were observed, while decreases in FEV(1) (p < 0.001) and FEV(1)/FVC (p < 0.001) were observed after exposure and returned to baseline by 180 min. A 1-h exposure to secondhand smoke induced airway acidification and increased airway oxidative stress, accompanied by significant impairment of lung function. Despite the reversal in EBC pH and lung function, airway oxidative stress remained increased 4 h after the exposure. Clinical trial registration number (EudraCT): 2009-013545-28. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Erythrocyte oxidative stress markers in children with sickle cell disease.

    PubMed

    Hermann, Priscila Bacarin; Pianovski, Mara Albonei Dudeque; Henneberg, Railson; Nascimento, Aguinaldo José; Leonart, Maria Suely Soares

    2016-01-01

    To determine eight parameters of oxidative stress markers in erythrocytes from children with sickle cell disease and compare with the same parameters in erythrocytes from healthy children, since oxidative stress plays an important role in the pathophysiology of sickle cell disease and because this disease is a serious public health problem in many countries. Blood samples were obtained from 45 children with sickle cell disease (21 males and 24 females with a mean age of 9 years; range: 3-13 years) and 280 blood samples were obtained from children without hemoglobinopathies (137 males and 143 females with a mean age of 10 years; range: 8-11 years), as a control group. All blood samples were analyzed for methemoglobin, reduced glutathione, thiobarbituric acid reactive substances, percentage of hemolysis, reactive oxygen species, and activity of the enzymes glucose 6-phosphate dehydrogenase, superoxide dismutase, and catalase. Data were analyzed using Student's t-test and were expressed as the mean±standard deviation. A p-value of <0.05 was considered significant. Significant differences were observed between children with sickle cell disease and the control group for the parameters methemoglobin, thiobarbituric acid reactive substances, hemolysis, glucose 6-phosphate dehydrogenase activity, and reactive oxygen species, with higher levels in the patients than in the controls. Oxidative stress parameters in children's erythrocytes were determined using simple laboratory methods with small volumes of blood; these biomarkers can be useful to evaluate disease progression and outcomes in patients. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  2. Salmonella Rapidly Regulates Membrane Permeability To Survive Oxidative Stress.

    PubMed

    van der Heijden, Joris; Reynolds, Lisa A; Deng, Wanyin; Mills, Allan; Scholz, Roland; Imami, Koshi; Foster, Leonard J; Duong, Franck; Finlay, B Brett

    2016-08-09

    The outer membrane (OM) of Gram-negative bacteria provides protection against toxic molecules, including reactive oxygen species (ROS). Decreased OM permeability can promote bacterial survival under harsh circumstances and protects against antibiotics. To better understand the regulation of OM permeability, we studied the real-time influx of hydrogen peroxide in Salmonella bacteria and discovered two novel mechanisms by which they rapidly control OM permeability. We found that pores in two major OM proteins, OmpA and OmpC, could be rapidly opened or closed when oxidative stress is encountered and that the underlying mechanisms rely on the formation of disulfide bonds in the periplasmic domain of OmpA and TrxA, respectively. Additionally, we found that a Salmonella mutant showing increased OM permeability was killed more effectively by treatment with antibiotics. Together, these results demonstrate that Gram-negative bacteria regulate the influx of ROS for defense against oxidative stress and reveal novel targets that can be therapeutically targeted to increase bacterial killing by conventional antibiotics. Pathogenic bacteria have evolved ways to circumvent inflammatory immune responses. A decrease in bacterial outer membrane permeability during infection helps protect bacteria from toxic molecules produced by the host immune system and allows for effective colonization of the host. In this report, we reveal molecular mechanisms that rapidly alter outer membrane pores and their permeability in response to hydrogen peroxide and oxidative stress. These mechanisms are the first examples of pores that are rapidly opened or closed in response to reactive oxygen species. Moreover, one of these mechanisms can be targeted to artificially increase membrane permeability and thereby increase bacterial killing by the antibiotic cefotaxime during in vitro experiments and in a mouse model of infection. We envision that a better understanding of the regulation of membrane

  3. Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms

    PubMed Central

    Ramu, Vemanna S.; Paramanantham, Anjugam; Ramegowda, Venkategowda; Mohan-Raju, Basavaiah; Udayakumar, Makarla

    2016-01-01

    In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses. PMID:27314499

  4. Interactions between methamphetamine and environmental stress: role of oxidative stress, glutamate and mitochondrial dysfunction.

    PubMed

    Tata, Despina A; Yamamoto, Bryan K

    2007-04-01

    Methamphetamine is an amphetamine derivative that is abused increasingly world-wide at an alarming rate over the last decade. Pre-clinical and human studies have shown that methamphetamine is neurotoxic to brain dopamine and serotonin. Other lines of study indicate that stress enhances the vulnerability to drug abuse. The purpose of this review is to shed light on the biochemical similarities between methamphetamine and stress in an effort to highlight the possibility that prior exposure to stress may interact with methamphetamine to exacerbate neurotoxicity. A review of the literature on methamphetamine and stress was conducted that focused on the common neurotoxic and biochemical consequences of methamphetamine administration and stress exposure. Experimental findings of a large number of studies suggest that there are parallels between stress and methamphetamine with regard to their ability to increase glutamate release, produce a metabolic compromise and cause oxidative damage. A combination of methamphetamine administration and stress can act synergistically and/or additively to cause or augment toxicity in brain regions such as striatum and hippocampus.

  5. Rutin inhibits amylin-induced neurocytotoxicity and oxidative stress.

    PubMed

    Yu, Xiao-Lin; Li, Ya-Nan; Zhang, He; Su, Ya-Jing; Zhou, Wei-Wei; Zhang, Zi-Ping; Wang, Shao-Wei; Xu, Peng-Xin; Wang, Yu-Jiong; Liu, Rui-Tian

    2015-10-01

    Recent evidence showed that amylin deposition is not only found in the pancreas in type 2 diabetes mellitus (T2DM) patients, but also in other peripheral organs, such as kidneys, heart and brain. Circulating amylin oligomers that cross the blood-brain barrier and accumulate in the brain may be an important contributor to diabetic cerebral injury and neurodegeneration. Moreover, increasing epidemiological studies indicate that there is a significant association between T2DM and Alzheimer's disease (AD). Amylin and β-amyloid (Aβ) may share common pathophysiology and show strikingly similar neurotoxicity profiles in the brain. To explore the potential effects of rutin on AD, we here investigated the effect of rutin on amylin aggregation by thioflavin T dyeing, evaluated the effect of rutin on amylin-induced neurocytotoxicity by the MTT assay, and assessed oxidative stress, as well as the generation of nitric oxide (NO) and pro-inflammatory cytokines in neuronal cells. Our results showed that the flavonoid antioxidant rutin inhibited amylin-induced neurocytotoxicity, decreased the production of reactive oxygen species (ROS), NO, glutathione disulfide (GSSG), malondialdehyde (MDA) and pro-inflammatory cytokines TNF-α and IL-1β, attenuated mitochondrial damage and increased the GSH/GSSG ratio. These protective effects of rutin may have resulted from its ability to inhibit amylin aggregation, enhance the antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and reduce inducible nitric oxide synthase (iNOS) activity. These in vitro results indicate that rutin is a promising natural product for protecting neuronal cells from amylin-induced neurotoxicity and oxidative stress, and rutin administration could be a feasible therapeutic strategy for preventing AD development and protecting the aging brain or slowing neurodegenerative processes.

  6. Red mold, diabetes, and oxidative stress: a review.

    PubMed

    Shi, Yeu-Ching; Pan, Tzu-Ming

    2012-04-01

    Type 2 diabetes is a major health concern and a rapidly growing disease with a modern etiology, which produces significant morbidity and mortality. The optimal management of type 2 diabetes aims to control hyperglycemia, hypertension, and dyslipidemia to reduce overall risks. Diabetes and its complications usually develop as oxidative stress increases. Monascus-fermented rice, also called red mold rice or red mold dioscorea are used in China to enhance food color and flavor. Red mold-fermented products are popular health foods that are considered to have antiobesity, antifatigue, antioxidation, and cancer prevention effects. This review article describes the antidiabetic and antioxidative stress effects on humans and animals of red mold-fermented products or their secondary metabolites.

  7. Mitochondrial dynamics altered by oxidative stress in cancer.

    PubMed

    Kim, Boyun; Song, Yong Sang

    2016-10-01

    Mitochondria as crucial organelles regulate cellular energy generation, calcium and redox homeostasis, and apoptosis. To perform the cellular functions effectively, mitochondria continuously change their structure and morphology through protein machineries controlling fission and fusion process (mitochondrial dynamics). Traditionally, many researches had focused on the interaction of mitochondrial dynamics and apoptosis. However, recent studies are reporting the alteration of mitochondrial dynamics in human diseases including many types of cancers. Considering that cancers maintain a high level of reactive oxygen species (ROS), mitochondrial dynamics can be influenced by oxidative stress. In this review, we will discuss the alteration of mitochondrial dynamics by ROS and its effect on metastasis and chemoresistance in cancers.

  8. Impact of diabetes on gingival wound healing via oxidative stress

    PubMed Central

    Kido, Daisuke; Mizutani, Koji; Takeda, Kohei; Mikami, Risako; Matsuura, Takanori; Iwasaki, Kengo; Izumi, Yuichi

    2017-01-01

    The aim of this study is to investigate the mechanisms linking high glucose to gingival wound healing. Bilateral wounds were created in the palatal gingiva adjacent to maxillary molars of control rats and rats with streptozotocin-induced diabetes. After evaluating postsurgical wound closure by digital imaging, the maxillae including wounds were resected for histological examinations. mRNA expressions of angiogenesis, inflammation, and oxidative stress markers in the surgical sites were quantified by real-time polymerase chain reaction. Primary fibroblast culture from the gingiva of both rats was performed in high glucose and normal medium. In vitro wound healing and cell proliferation assays were performed. Oxidative stress marker mRNA expressions and reactive oxygen species production were measured. Insulin resistance was evaluated via PI3K/Akt and MAPK/Erk signaling following insulin stimulation using Western blotting. To clarify oxidative stress involvement in high glucose culture and cells of diabetic rats, cells underwent N-acetyl-L-cysteine treatment; subsequent Akt activity was measured. Wound healing in diabetic rats was significantly delayed compared with that in control rats. Nox1, Nox2, Nox4, p-47, and tumor necrosis factor-α mRNA levels were significantly higher at baseline in diabetic rats than in control rats. In vitro study showed that cell proliferation and migration significantly decreased in diabetic and high glucose culture groups compared with control groups. Nox1, Nox2, Nox4, and p47 expressions and reactive oxygen species production were significantly higher in diabetic and high glucose culture groups than in control groups. Akt phosphorylation decreased in the high glucose groups compared with the control groups. Erk1/2 phosphorylation increased in the high glucose groups, with or without insulin treatment, compared with the control groups. Impaired Akt phosphorylation partially normalized after antioxidant N-acetyl-L-cysteine treatment

  9. Oxidative stress impairs myocyte autophagy, resulting in myocyte hypertrophy.

    PubMed

    Wang, Jia-Pu; Chi, Rui-Fang; Wang, Ke; Ma, Teng; Guo, Xiao-Fei; Zhang, Xiao-Li; Li, Bao; Qin, Fu-Zhong; Han, Xue-Bin; Fan, Bian-Ai

    2018-04-01

    What is the central question of this study? Does oxidative stress induce impairment of autophagy that results in myocyte hypertrophy early after pressure overload? What is the main finding and its importance? In cultured myocytes, hydrogen peroxide decreased autophagy and increased hypertrophy, and inhibition of autophagy enhanced myocyte hypertrophy. In rats with early myocardial hypertrophy after pressure overload, myocyte autophagy was progressively decreased. The antioxidant N-acetyl-cysteine or the superoxide dismutase mimic tempol prevented the decrease of myocyte autophagy and attenuated myocyte hypertrophy early after pressure overload. These findings suggest that oxidative stress impairs myocyte autophagy that results in myocyte hypertrophy. Insufficient or excessive myocyte autophagy is associated with left ventricular (LV) hypertrophy. Reactive oxygen species mediate myocyte hypertrophy in vitro and pressure overload-induced LV hypertrophy in vivo. In the present study, we tested the hypothesis that oxidative stress induces an impairment of autophagy that results in myocyte hypertrophy. H9C2 cardiomyocytes pretreated with the autophagy inhibitor 3-methyladenine were exposed to 10 and 50 μm hydrogen peroxide (H 2 O 2 ) for 48 h. Male Sprague-Dawley rats underwent abdominal aortic constriction (AAC) or sham operation. The animals were killed 24, 48 or 72 h after surgery. In a separate group, the AAC and sham-operated rats randomly received the antioxidant N-acetyl-cysteine or the superoxide dismutase mimic tempol for 72 h. In H9C2 cardiomyocytes, H 2 O 2 decreased the ratio of microtubule-associated protein light chain 3 (LC3) II to LC3 I and increased P62 and phosphorylated ERK (p-ERK) proteins and myocyte surface area. 3-Methyladenine further increased H 2 O 2 -induced p-ERK expression. In rats after AAC, the heart to body weight ratio was progressively increased, the LC3 II/I ratio was progressively decreased, p62 and p-ERK expression was increased

  10. Effects of creatine supplementation on oxidative stress profile of athletes.

    PubMed

    Percário, Sandro; Domingues, Sérgio Paulo de Tarso; Teixeira, Luiz Felipe Milano; Vieira, Jose Luiz Fernandes; de Vasconcelos, Flavio; Ciarrocchi, Daiane Marques; Almeida, Eduardo Dias; Conte, Marcelo

    2012-12-21

    Creatine (Cr) supplementation has been widely used among athletes and physically active individuals. Secondary to its performance-enhancing ability, an increase in oxidative stress may occur, thus prompting concern about its use. The purpose of this study is to investigate the effects of Cr monohydrate supplementation and resistance training on muscle strength and oxidative stress profile in healthy athletes. A randomized, double-blind, placebo-controlled method was used to assess twenty-six male elite Brazilian handball players divided into 3 groups: Cr monohydrate supplemented group (GC, N = 9), placebo group (GP, N = 9), no treatment group (COT, N = 8) for 32 days. All subjects underwent a resistance training program. Blood samples were drawn on 0 and 32 days post Cr supplementation to analyze the oxidative stress markers, thiobarbituric acid reactive species (TBARS), total antioxidant status (TAS), and uric acid. Creatine phosphokinase, urea, and creatinine were also analyzed, as well. Fitness tests (1 repetition maximum - 1RM and muscle endurance) were performed on the bench press. Body weight and height, body fat percentage (by measuring skin folds) and upper muscular area were also evaluated. Statistical analysis was performed using ANOVA. Only GC group showed increase in 1RM (54 ± 9 vs. 63 ± 10 kg; p = 0.0356) and uric acid (4.6 ± 1.0 vs. 7.4 ± 1.6 mg/dl; p = 0.025), with a decrease in TAS (1.11 ± 0.34 vs. 0.60 ± 0.19 mmol/l; p = 0.001). No differences (pre- vs. post-training) in TBARS, creatine phosphokinase, urea, creatinine, body weight and height, body fat percentage, or upper muscular area were observed in any group. When compared to COT, GC group showed greater decrease in TAS (-0.51 ± 0.36 vs. -0.02 ± 0.50 mmol/l; p = 0.0268), higher increase in 1RM (8.30 ± 2.26 vs. 5.29 ± 2.36 kg; p = 0.0209) and uric acid (2.77 ± 1.70 vs. 1.00 ± 1.03 mg/dl; p = 0.0276). We conclude that Cr monohydrate supplementation associated with a specific

  11. Oxidative Stress and Immune System in Vitiligo and Thyroid Diseases

    PubMed Central

    Colucci, Roberta; Dragoni, Federica

    2015-01-01

    Vitiligo is an acquired dermatological disease frequently associated with autoimmune thyroid disorders. Several theories have been proposed so far to unravel the complex vitiligo pathogenesis. Currently, the autocytotoxic and the autoimmune theories are the most accredited hypothesis, since they are sustained by several important clinical and experimental evidences. A growing body of evidences shows that autoimmunity and oxidative stress strictly interact to finally determine melanocyte loss. In this scenario, associated thyroid autoimmunity might play an active and important role in triggering and maintaining the depigmentation process of vitiligo. PMID:25838868

  12. Mesozeaxanthin Protects Retina from Oxidative Stress in a Rat Model.

    PubMed

    Orhan, Cemal; Akdemir, Fatih; Tuzcu, Mehmet; Sahin, Nurhan; Yilmaz, Ismet; Deshpande, Jayant; Juturu, Vijaya; Sahin, Kazim

    2016-11-01

    Mesozeaxanthin (MZ) is able to protect against chronic and cumulative eye damage and neutralize free radicals produced by oxidative stress. The objective of the present study was to evaluate the protective potential of MZ against retinal oxidative damage and growth and transcription factors of the retina in rats fed with high-fat diet (HFD). Twenty-eight Sprague Dawley rats were randomly divided into the following 4 groups: (1) Control, (2) MZ (100 mg/kg bw/d), (3) HFD (42% of calories as fat), and (4) HFD+MZ (100 mg/kg bw/d) group rats were administered daily as supplement for 12 weeks. Consumption of HFD was associated with hyperglycemia and oxidative stress as reflected by increased serum MDA concentration (P < 0.001). No measurable zeaxanthin (Z)+MZ and lutein (L) could be detected in the serum of control and HFD rats, whereas they were observed in the serum of MZ-administered rats. Retinal antioxidant enzyme [superoxide dismutase (SOD) and catalase (CAT)] activities were significantly decreased in the HFD group compared to the normal group (P < 0.01). However, retinal antioxidant enzymes were restored close to normal levels in HFD+MZ-treated rats (P < 0.05). The retina of rats fed with HFD had increased levels of vascular endothelial growth factor (VEGF), inducible nitric oxide (iNOS), intercellular adhesion molecule-1 (ICAM-1), and nuclear factor-kappa B (NF-κB) levels and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1(HO-1) levels compared to the healthy rat retina (P < 0.001). Rats treated with MZ partially alleviated the inflammation as reflected by suppressed VEGF, iNOS, ICAM, and NF-κB levels and increased Nrf2 and HO-1 levels in the retina of rats fed (P < 0.05). Results from the present study suggest that MZ has protective effects on the retina and the ability to modulate oxidative stress of retina in rats fed an HFD by suppressing retinal lipid peroxidation and regulating growth and

  13. Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties

    PubMed Central

    Xia, Tian; Kovochich, Michael; Liong, Monty; Mädler, Lutz; Gilbert, Benjamin; Shi, Haibin; Yeh, Joanne I.; Zink, Jeffrey I.; Nel, Andre E.

    2014-01-01

    Nanomaterials (NM) exhibit novel physicochemical properties that determine their interaction with biological substrates and processes. Three metal oxides nanoparticles that are currently being produced in high tonnage, TiO2, ZnO and CeO2, were synthesized by flame spray pyrolysis process and compared in a mechanistic study to elucidate the physicochemical characteristics that determine cellular uptake, subcellular localization, and toxic effects based on a test paradigm that was originally developed for oxidative stress and cytotoxicity in RAW 264.7 and BEAS-2B cell lines. ZnO induced toxicity in both cells, leading to the generation of reactive oxygen species (ROS), oxidant injury, excitation of inflammation and cell death. Using ICP-MS and fluorescent-labeled ZnO, it is found that ZnO dissolution could happen in culture medium and endosomes. Non-dissolved ZnO nanoparticles enter caveolae in BEAS-2B, but enter lysosomes in RAW 264.7 cells in which smaller particle remnants dissolve. In contrast, fluorescent-labeled CeO2 nanoparticles were taken up intact into caveolin-1 and LAMP-1 positive endosomal compartments, respectively, in BEAS-2B and RAW 264.7 cells, without inflammation or cytotoxicity. Instead, CeO2 suppressed ROS production and induced cellular resistance to an exogenous source of oxidative stress. Fluorescent-labeled TiO2 was processed by the same uptake pathways as CeO2 but did not elicit any adverse or protective effects. These results demonstrate that metal oxide nanoparticles induce a range of biological responses that vary from cytotoxic to cytoprotective and can only be properly understood by using a tiered test strategy such as we developed for oxidative stress and adapted to study other aspects of nanoparticle toxicity. PMID:19206459

  14. Oxidative stress and oxidative DNA damage is characteristic for mixed Alzheimer disease/vascular dementia.

    PubMed

    Gackowski, Daniel; Rozalski, Rafal; Siomek, Agnieszka; Dziaman, Tomasz; Nicpon, Krzysztof; Klimarczyk, Maciej; Araszkiewicz, Aleksander; Olinski, Ryszard

    2008-03-15

    Oxidative DNA damage may contribute to neuronal cell loss and may be involved in pathogenesis of some neurodegenerative diseases. We assessed the broad spectrum of oxidative DNA damage biomarkers and antioxidants in mixed Alzheimer disease/vascular dementia (MD) and in control patients. The amount of the products of oxidative DNA damage repair (8-oxo-2'-deoxyguanosine and 8-oxoguanine) excreted into urine and cerebrospinal fluid (CSF) was measured by gas chromatography/mass spectrometry with HPLC pre-purification. The level of 8-oxo-2'-deoxyguanosine in leukocytes' DNA, antioxidant vitamins and uric acid concentrations in blood plasma were analyzed by the mean of HPLC technique. For the first time we demonstrated oxidative DNA damage on the level of whole organism and in CSF of MD patients. Urinary excretion of oxidative DNA damage repair products were higher in patients with MD than in the control group. The level 8-oxoguanine in cerebrospinal fluid of MD patients almost doubled the level found in the control group. Also the concentrations of ascorbic acid and retinol in plasma were reduced in MD patients. Oxidative stress/DNA damage is an important factor that may be involved in pathogenesis of mixed dementia. It is likely that treatment of these patients with antioxidants may slow down the progression of the disease.

  15. Limitations in Using Chemical Oxidative Potential to Understand Oxidative Stress from Particulate Matter

    NASA Astrophysics Data System (ADS)

    Chan, A. W. H.; Wang, S.; Wang, X.; Kohl, L.; Chow, C. W.

    2017-12-01

    Particulate matter (PM) in the atmosphere is known to cause adverse cardiorespiratory health effects. It has been suggested that the ability of PM to generate oxidative stress leads to a proinflammatory response. In this work, we study the biological relevance of using a chemical oxidative potential (OP) assay to evaluate proinflammatory response in airway epithelial cells. Here we study the OPs of laboratory secondary organic aerosol (SOA) and metal mixtures, ambient PM from India, ash from the 2016 Alberta wildfires, and diesel exhaust particles. We use SOA derived from naphthalene and from monoterpenes as model systems for SOA. We measure OP using the dithiothreitol (DTT) assay, and cytosolic reactive oxygen species (ROS) production in BEAS-2B cell culture was measured using CellROX assay. We found that both SOA and copper show high OPs individually, but the OP of the combined SOA/copper mixture, which is more atmospherically relevant, was lower than either of the individual OPs. The reduced activity is attributed to chelation between metals and organic compounds using proton nuclear magnetic resonance. There is reasonable association between DTT activity and cellular ROS production within each particle type, but weak association across different particle types, suggesting that particle composition plays an important role in distinguishing between antioxidant consumption and ROS production. Our results highlight that while oxidative potential is a useful metric of PM's ability to generate oxidative stress, the chemical composition and cellular environment should be considered in understanding health impacts of PM.

  16. Casuarinin protects cultured MDCK cells from hydrogen peroxide-induced oxidative stress and DNA oxidative damage.

    PubMed

    Chen, Ching-Hsein; Liu, Tsan-Zon; Kuo, Tsun-Cheng; Lu, Fung-Jou; Chen, Yu-Chin; Chang-Chien, Yi-Wen; Lin, Chun-Ching

    2004-11-01

    Casuarinin has been shown to be an antioxidant in acellular experiments. This study was designed to assess the ability of casuarinin, extracted from Terminalia arjuna, to protect cultured Madin-Darby canine kidney (MDCK) cells against H2O2-mediated oxidative stress. A comparison with trolox, a hydrosoluble vitamin E analogue was performed. MDCK cells were pretreated with casuarinin or trolox for 1 h, then exposed to H2O2. After incubation with 0.8 mM H2O2 for 1 h, casuarinin caused a decrease in intracellular peroxide production as shown by dichlorofluorescein (DCF) fluorescence in a concentration-dependent manner. After 3 h exposure to 8 mM H2O2, the percentage of intracellular glutathione (GSH)-negative cells was reduced in the casuarinin-treated group. Addition of 32mM H2O2 to MDCK cells for 3 h induced an increase in the percentage of cells containing 8-oxoguanine but the level of such cells declined in casuarinin-treated cells. These results show that casuarinin is more effective against H2O2-induced oxidative damage than trolox. The data suggest that casuarinin attenuates H2O2-induced oxidative stress, decreases DNA oxidative damage and prevents the depletion of intracellular GSH in MDCK cells.

  17. Monosodium urate crystals induce oxidative stress in human synoviocytes.

    PubMed

    Zamudio-Cuevas, Yessica; Martínez-Flores, Karina; Fernández-Torres, Javier; Loissell-Baltazar, Yahir A; Medina-Luna, Daniel; López-Macay, Ambar; Camacho-Galindo, Javier; Hernández-Díaz, Cristina; Santamaría-Olmedo, Mónica G; López-Villegas, Edgar Oliver; Oliviero, Francesca; Scanu, Anna; Cerna-Cortés, Jorge Francisco; Gutierrez, Marwin; Pineda, Carlos; López-Reyes, Alberto

    2016-05-21

    Gout is the most common inflammatory arthropathy of metabolic origin and it is characterized by intense inflammation, the underlying mechanisms of which are unknown. The aim of this study was to evaluate the oxidative stress in human fibroblast-like synoviocytes (FLS) exposed to monosodium urate (MSU) crystals, which trigger an inflammatory process. Human FLS isolated from synovial tissue explants were stimulated with MSU crystals (75 μg/mL) for 24 h. Cellular viability was evaluated by crystal violet staining, apoptosis was assessed using Annexin V, and the cellular content of reactive oxygen species (ROS) and nitrogen species (RNS) (O2 (-), H2O2, NO) was assessed with image-based cytometry and fluorometric methods. In order to determine protein oxidation levels, protein carbonyls were detected through oxyblot analysis, and cell ultrastructural changes were assessed by transmission electron microscopy. The viability of FLS exposed to MSU crystals decreased by 30 % (P < 0.05), while apoptosis increased by 42 % (P = 0.01). FLS stimulated with MSU crystals exhibited a 2.1-fold increase in H2O2 content and a 1.5-fold increase in O2 (-) and NO levels. Oxyblots revealed that the spots obtained from FLS protein lysates exposed to MSU crystals exhibited protein carbonyl immunoreactivity, which reflects the presence of oxidatively modified proteins. Concomitantly, MSU crystals triggered the induction of changes in the morphostructure of FLS, such as the thickening and discontinuity of the endoplasmic reticulum, and the formation of vacuoles and misfolded glycoproteins. Our results prove that MSU crystals induce the release of ROS and RNS in FLS, subsequently oxidizing proteins and altering the cellular oxidative state of the endoplasmic reticulum, which results in FLS apoptosis.

  18. Increased oxidative stress in pemphigus vulgaris is related to disease activity and HLA-association.

    PubMed

    Shah, Amit Aakash; Dey-Rao, Rama; Seiffert-Sinha, Kristina; Sinha, Animesh A

    2016-06-01

    Pemphigus vulgaris (PV) is a rare blistering skin disorder characterized by the disadhesion of keratinocytes due to autoantibody attack against epidermal targets including desmoglein (Dsg) 3, Dsg 1 and possibly other adhesion and non-adhesion molecules. The mechanisms leading to immune-mediated pathology in PV are multifactorial and not fully understood. Recently, oxidative stress (antioxidant/oxidant disequilibrium) has been proposed as a contributory mechanism of autoimmune skin diseases, including PV. In this study, we directly assessed oxidative stress via measurement of total antioxidant capacity (TAC) using ELISA in 47 PV patients, 25 healthy controls and 18 bullous pemphigoid (BP) patients. We also performed microarray gene expression analysis on a separate set of 21 PV patients and 10 healthy controls to evaluate transcriptional dysregulation in oxidative stress-related pathways. Our data indicate that there is a significant reduction in TAC levels in PV patients compared with healthy controls, as well as BP patients. Furthermore, PV patients with active disease have significantly lower TAC levels than PV patients in remission. We also find that HLA allele status has a significant influence on oxidative stress. These findings are corroborated by microarray analysis showing differentially expressed genes involved in oxidative stress between the aforementioned groups. Collectively, our findings provide support for a role of oxidative stress in PV. Whether increased oxidative stress leads to disease manifestation and/or activity, or if disease activity leads to increased oxidative stress remains unknown. Future longitudinal studies may help to further elucidate the relationship between PV and oxidative stress.

  19. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    PubMed

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Honey Bee (Apis mellifera) Drones Survive Oxidative Stress due to Increased Tolerance instead of Avoidance or Repair of Oxidative Damage

    PubMed Central

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K.; Tarpy, David R.; Rueppell, Olav

    2016-01-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. PMID:27422326

  1. Oxidative stress in aging: advances in proteomic approaches.

    PubMed

    Ortuño-Sahagún, Daniel; Pallàs, Mercè; Rojas-Mayorquín, Argelia E

    2014-01-01

    Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging.

  2. AVE 0991 attenuates cardiac hypertrophy through reducing oxidative stress.

    PubMed

    Ma, Yuedong; Huang, Huiling; Jiang, Jingzhou; Wu, Lingling; Lin, Chunxi; Tang, Anli; Dai, Gang; He, Jiangui; Chen, Yili

    2016-06-10

    AVE 0991, the nonpeptide angiotensin-(1-7) (Ang-(1-7)) analog, is recognized as having beneficial cardiovascular effects. However, the mechanisms have not been fully elucidated. This study was designed to investigate the effects of AVE 0991 on cardiac hypertrophy and the mechanisms involved. Mice were underwent aortic banding to induce cardiac hypertrophy followed by the administration of AVE 0991 (20 mg kg·day (-1)) for 4 weeks. It was shown that AVE 0991 reduced left ventricular hypertrophy and improved heart function, characterized by decreases in left ventricular weight and left ventricular end-diastolic diameter, and increases in ejection fraction. Moreover, AVE 0991 significantly down-regulated mean myocyte diameter and attenuate the gene expression of the hypertrophic markers. Furthermore, AVE 0991 inhibited the expression of NOX 2 and NOX 4, meaning that AVE 0991 reduced oxidative stress of cardiac hypertrophy mice. Our data showed that AVE 0991 treatment could attenuate cardiac hypertrophy and improve heart function, which may be due to reduce oxidative stress. Copyright © 2016. Published by Elsevier Inc.

  3. Leveraging oxidative stress questions in vivo: Implications and limitations.

    PubMed

    Arteel, Gavin E

    2016-04-01

    The elegance of Helmut Sies' original definition of oxidative stress belies the complexity of the reactions that are potentially involved. This is by no means a criticism of the author, but rather how the words have been used to oversimplify the concept by some. Reactive oxygen and nitrogen species (ROS and RNS, respectively) can be products of a myriad of events within the living body. Indeed, it is now understood that ROS/RNS are critical for normal cellular metabolism and have beneficial effects (e.g., cytotoxicity against invading bacteria). A general problem of studying prooxidants in vivo is that, due to their inherent reactivity, they generally cannot be measured directly. This indirect detection of 'footprints' leaves a very large black box that we are to this day only beginning to understand. This manuscript will summarize some considerations that are of utmost importance when translating oxidative stress into in vivo research. Helmut has been a key thought leader, researcher and mentor whose contributions to this field are immeasurable. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Oxidative stress markers after a race in professional cyclists.

    PubMed

    Córdova, Alfredo; Sureda, Antoni; Albina, María Luisa; Linares, Victoria; Bellés, Montse; Sánchez, Domènec J

    2015-04-01

    The aim was to determine the levels and activities of the oxidative stress markers in erythrocytes, plasma, and urine after a flat cyclist stage. Eight voluntary male professional trained-cyclists participated in the study. Exercise significantly increased erythrocyte, leukocyte, platelet, and reticulocyte counts. The exercise induced significant increases in the erythrocyte activities of catalase (19.8%) and glutathione reductase (19.2%), while glutathione peroxidase activity decreased significantly (29.3%). Erythrocyte GSSG concentration was significantly increased after exercise (21.4%), whereas GSH was significantly diminished (20.4%). Erythrocyte malondialdehyde levels evidenced a significant decrease 3 h after finishing the stage (44.3%). Plasma malondialdehyde, GSH and GSSG levels significantly decreased after 3 hr recovery (26.8%, 48.6%, and 31.1%, respectively). The exercise significantly increased the F2-isoprostane concentration in urine from 359 ± 71 pg/mg creatinine to 686 ± 139 pg/mg creatinine. In conclusion, a flat cycling stage induced changes in oxidative stress markers in erythrocytes, plasma, and urine of professional cyclists. Urine F2-isoprostane is a more useful biomarker for assessing the effects of acute exercise than the traditional malondialdehyde measurement.

  5. The role of oxidative stress and antioxidants in male fertility.

    PubMed

    Walczak-Jedrzejowska, Renata; Wolski, Jan Karol; Slowikowska-Hilczer, Jolanta

    2013-01-01

    Oxidative stress results from the imbalance between production of the reactive oxygen species (ROS) and the protective effect of the antioxidant system responsible for their neutralization and removal. An excess of ROS causes a pathological reaction resulting in damage to cells and tissues. Spermatozoa are particularly vulnerable to the harmful effects of ROS. Oxidative stress affects their activity, damages DNA structure, and accelerates apoptosis, all of which consequently decrease their numbers, hinders motility and development of normal morphology, and impairs function. This leads to disturbances in fertility or embryo development disorder. The main cellular source of ROS in the semen are immature sperm cells and white blood cells. The increase in the number of leukocytes may be due to infection and inflammation, but can also be secondary to harmful environmental factors, long sexual abstinence, or varicocele. The protective antioxidant system in the semen is composed of enzymes, as well as nonenzymatic substances, which closely interact with each other to ensure optimal protection against ROS. Non-enzymatic antioxidants include vitamins A, E, C, and B complex, glutathione, pantothenic acid, coenzyme Q10 and carnitine, and micronutrients such as zinc, selenium, and copper. It seems that a deficiency of any of them can cause a decrease in total antioxidant status. In vitro and in vivo that studies demonstrate many antioxidants possess a beneficial effect on fertility and, therefore, their use is recommended as supportive therapy for the treatment of infertility in men.

  6. Salmonella Rapidly Regulates Membrane Permeability To Survive Oxidative Stress

    PubMed Central

    van der Heijden, Joris; Reynolds, Lisa A.; Deng, Wanyin; Mills, Allan; Scholz, Roland; Imami, Koshi; Foster, Leonard J.; Duong, Franck

    2016-01-01

    ABSTRACT The outer membrane (OM) of Gram-negative bacteria provides protection against toxic molecules, including reactive oxygen species (ROS). Decreased OM permeability can promote bacterial survival under harsh circumstances and protects against antibiotics. To better understand the regulation of OM permeability, we studied the real-time influx of hydrogen peroxide in Salmonella bacteria and discovered two novel mechanisms by which they rapidly control OM permeability. We found that pores in two major OM proteins, OmpA and OmpC, could be rapidly opened or closed when oxidative stress is encountered and that the underlying mechanisms rely on the formation of disulfide bonds in the periplasmic domain of OmpA and TrxA, respectively. Additionally, we found that a Salmonella mutant showing increased OM permeability was killed more effectively by treatment with antibiotics. Together, these results demonstrate that Gram-negative bacteria regulate the influx of ROS for defense against oxidative stress and reveal novel targets that can be therapeutically targeted to increase bacterial killing by conventional antibiotics. PMID:27507830

  7. Oxidative stress contributes to methamphetamine-induced left ventricular dysfunction.

    PubMed

    Lord, Kevin C; Shenouda, Sylvia K; McIlwain, Elizabeth; Charalampidis, Dimitrios; Lucchesi, Pamela A; Varner, Kurt J

    2010-07-01

    Our aim was to test the hypothesis that the repeated, binge administration of methamphetamine would produce oxidative stress in the myocardium leading to structural remodeling and impaired left ventricular function. Echocardiography and Millar pressure-volume catheters were used to monitor left ventricular structure and function in rats subjected to four methamphetamine binges (3 mg/kg, iv for 4 days, separated by a 10-day drug-free period). Hearts from treated and control rats were used for histological or proteomic analysis. When compared with saline treatment, four methamphetamine binges produced eccentric left ventricular hypertrophy. The drug also significantly impaired systolic function (decreased fractional shortening, ejection fraction, and adjusted maximal power) and produced significant diastolic dysfunction (increased -dP/dt and tau). Dihydroethedium staining showed that methamphetamine significantly increased (285%) the levels of reactive oxygen species in the left ventricle. Treatment with methamphetamine also resulted in the tyrosine nitration of myofilament (desmin, myosin light chain) and mitochondrial (ATP synthase, NADH dehydrogenase, cytochrome c oxidase, prohibitin) proteins. Treatment with the superoxide dismutase mimetic, tempol in the drinking water prevented methamphetamine-induced left ventricular dilation and systolic dysfunction; however, tempol (2.5 mM) did not prevent the diastolic dysfunction. Tempol significantly reduced, but did not eliminate dihydroethedium staining in the left ventricle, nor did it prevent the tyrosine nitration of mitochondrial and contractile proteins. This study shows that oxidative stress plays a significant role in mediating methamphetamine-induced eccentric left ventricular dilation and systolic dysfunction.

  8. Oxidative Stress in Shiga Toxin Production by Enterohemorrhagic Escherichia coli.

    PubMed

    Licznerska, Katarzyna; Nejman-Faleńczyk, Bożena; Bloch, Sylwia; Dydecka, Aleksandra; Topka, Gracja; Gąsior, Tomasz; Węgrzyn, Alicja; Węgrzyn, Grzegorz

    2016-01-01

    Virulence of enterohemorrhagic Escherichia coli (EHEC) strains depends on production of Shiga toxins. These toxins are encoded in genomes of lambdoid bacteriophages (Shiga toxin-converting phages), present in EHEC cells as prophages. The genes coding for Shiga toxins are silent in lysogenic bacteria, and prophage induction is necessary for their efficient expression and toxin production. Under laboratory conditions, treatment with UV light or antibiotics interfering with DNA replication are commonly used to induce lambdoid prophages. Since such conditions are unlikely to occur in human intestine, various research groups searched for other factors or agents that might induce Shiga toxin-converting prophages. Among other conditions, it was reported that treatment with H2O2 caused induction of these prophages, though with efficiency significantly lower relative to UV-irradiation or mitomycin C treatment. A molecular mechanism of this phenomenon has been proposed. It appears that the oxidative stress represents natural conditions provoking induction of Shiga toxin-converting prophages as a consequence of H2O2 excretion by either neutrophils in infected humans or protist predators outside human body. Finally, the recently proposed biological role of Shiga toxin production is described in this paper, and the "bacterial altruism" and "Trojan Horse" hypotheses, which are connected to the oxidative stress, are discussed.

  9. Oxidative Stress in Hypertension: Role of the Kidney

    PubMed Central

    Araujo, Magali

    2014-01-01

    Abstract Significance: Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective antioxidant system also can contribute. Recent Advances: Superoxide has been identified as the principal ROS implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in diminishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in hypertensive animals. Critical Issues and Future Directions: Increased renal ROS have been implicated in renal vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches are required to dampen the renal oxidative stress pathways to reduced O2−• rather than H2O2 selectivity and/or to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-damaging effects of hypertension. Antioxid. Redox Signal. 20, 74–101. PMID:23472618

  10. Oxidative stress equilibrium during obstetric event in normal pregnancy.

    PubMed

    Salas-Pacheco, Jose Manuel; Lourenco-Jaramillo, Diana Lelidett; Mendez-Hernandez, Edna Madai; Sandoval-Carrillo, Ada Agustina; Hernandez Rayon, Yessica Ivonne; Llave-Leon, Osmel La; Aguilar-Duran, Marisela; Lopez-Terrones, Marcos Alonso; Barraza-Salas, Marcelo; Vazquez-Alaniz, Fernando

    2017-08-01

    The aim of this study was to determine malondialdehyde (MDA) concentration as an oxidative stress marker and total antioxidant capacity (TAC) in pregnancy before and after perinatal event. This study was performed on 200 healthy full-term pregnant women admitted to pregnancy resolution in Maternal-Child Hospital of Durango, Mexico. Oxidative stress and TAC were assessed through detection of lipid peroxidation by quantitation of thiobarbituric acid-reactive substances (TBARS) and TAC through ferric reducing ability of the plasma (FRAP). Our results showed increased levels of MDA after vaginal delivery (VD). TAC was also increased after obstetric event, but it did not differ between VD and caesarean section. We demonstrated that MDA concentrations are increased two hours after obstetric event, and this increase correlates with VD. The TAC was increased as a compensatory mechanism during obstetric event. Another important finding is that women receiving analgesia administration in VD, as well as dexamethasone administration in caesarean section, experienced a protector effect that decreased MDA levels.

  11. Mitophagy in TGEV infection counteracts oxidative stress and apoptosis.

    PubMed

    Zhu, Liqi; Mou, Chunxiao; Yang, Xing; Lin, Jian; Yang, Qian

    2016-05-10

    The intestinal epithelial cells contain a large number of mitochondria for persisting absorption and barrier function. Selective autophagy of mitochondria (mitophagy) plays an important role in the quality control of mitochondria and maintenance of cell homeostasis. Transmissible gastroenteritis virus (TGEV) is a porcine enteropathogenic coronavirus which induces malabsorption and lethal watery diarrhea in suckling piglets. The role of mitophagy in the pathological changes caused by TGEV infection is unclear. Here, we report that TGEV induces mitophagy to suppress oxidative stress and apoptosis induced by viral infection in porcine epithelial cells (IPEC-J2). We observe that TGEV infection induce mitochondrial injury, abnormal morphology, complete mitophagy, and without obvious apoptosis after TGEV infection. Meanwhile, TGEV also induces DJ-1 and some antioxidant genes upregulation to suppress oxidative stress induced by viral infection. Furthermore, silencing DJ-1 inhibit mitophagy and increase apoptosis after TGEV infection. In addition, we demonstrate for the first time that viral nucleocapsid protein (N) is located in mitochondria and mitophagosome during virus infection or be expressed alone. Those results provide a novel perspective for further improvement of prevention and treatment in TGEV infection. These results suggest that TGEV infection induce mitophagy to promote cell survival and possibly viral infection.

  12. Mitophagy in TGEV infection counteracts oxidative stress and apoptosis

    PubMed Central

    Zhu, Liqi; Mou, Chunxiao; Yang, Xing; Lin, Jian; Yang, Qian

    2016-01-01

    The intestinal epithelial cells contain a large number of mitochondria for persisting absorption and barrier function. Selective autophagy of mitochondria (mitophagy) plays an important role in the quality control of mitochondria and maintenance of cell homeostasis. Transmissible gastroenteritis virus (TGEV) is a porcine enteropathogenic coronavirus which induces malabsorption and lethal watery diarrhea in suckling piglets. The role of mitophagy in the pathological changes caused by TGEV infection is unclear. Here, we report that TGEV induces mitophagy to suppress oxidative stress and apoptosis induced by viral infection in porcine epithelial cells (IPEC-J2). We observe that TGEV infection induce mitochondrial injury, abnormal morphology, complete mitophagy, and without obvious apoptosis after TGEV infection. Meanwhile, TGEV also induces DJ-1 and some antioxidant genes upregulation to suppress oxidative stress induced by viral infection. Furthermore, silencing DJ-1 inhibit mitophagy and increase apoptosis after TGEV infection. In addition, we demonstrate for the first time that viral nucleocapsid protein (N) is located in mitochondria and mitophagosome during virus infection or be expressed alone. Those results provide a novel perspective for further improvement of prevention and treatment in TGEV infection. These results suggest that TGEV infection induce mitophagy to promote cell survival and possibly viral infection. PMID:27027356

  13. New Insights for Oxidative Stress and Diabetes Mellitus

    PubMed Central

    2015-01-01

    The release of reactive oxygen species (ROS) and the generation of oxidative stress are considered critical factors for the pathogenesis of diabetes mellitus (DM), a disorder that is growing in prevalence and results in significant economic loss. New therapeutic directions that address the detrimental effects of oxidative stress may be especially warranted to develop effective care for the millions of individuals that currently suffer from DM. The mechanistic target of rapamycin (mTOR), silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), and Wnt1 inducible signaling pathway protein 1 (WISP1) are especially justified to be considered treatment targets for DM since these pathways can address the complex relationship between stem cells, trophic factors, impaired glucose tolerance, programmed cell death pathways of apoptosis and autophagy, tissue remodeling, cellular energy homeostasis, and vascular biology that greatly impact the biology and disease progression of DM. The translation and development of these pathways into viable therapies will require detailed understanding of their proliferative nature to maximize clinical efficacy and limit adverse effects that have the potential to lead to unintended consequences. PMID:26064426

  14. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease

    PubMed Central

    Tönnies, Eric; Trushina, Eugenia

    2017-01-01

    Alzheimer’s disease (AD) is a devastating neurodegenerative disorder without a cure. Most AD cases are sporadic where age represents the greatest risk factor. Lack of understanding of the disease mechanism hinders the development of efficacious therapeutic approaches. The loss of synapses in the affected brain regions correlates best with cognitive impairment in AD patients and has been considered as the early mechanism that precedes neuronal loss. Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurodegenerative diseases including AD. Increased production of reactive oxygen species (ROS) associated with age- and disease-dependent loss of mitochondrial function, altered metal homeostasis, and reduced antioxidant defense directly affect synaptic activity and neurotransmission in neurons leading to cognitive dysfunction. In addition, molecular targets affected by ROS include nuclear and mitochondrial DNA, lipids, proteins, calcium homeostasis, mitochondrial dynamics and function, cellular architecture, receptor trafficking and endocytosis, and energy homeostasis. Abnormal cellular metabolism in turn could affect the production and accumulation of amyloid-β (Aβ) and hyperphosphorylated Tau protein, which independently could exacerbate mitochondrial dysfunction and ROS production, thereby contributing to a vicious cycle. While mounting evidence implicates ROS in the AD etiology, clinical trials with antioxidant therapies have not produced consistent results. In this review, we will discuss the role of oxidative stress in synaptic dysfunction in AD, innovative therapeutic strategies evolved based on a better understanding of the complexity of molecular mechanisms of AD, and the dual role ROS play in health and disease. PMID:28059794

  15. Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease.

    PubMed

    Tönnies, Eric; Trushina, Eugenia

    2017-01-01

    Alzheimer's disease (AD) is a devastating neurodegenerative disorder without a cure. Most AD cases are sporadic where age represents the greatest risk factor. Lack of understanding of the disease mechanism hinders the development of efficacious therapeutic approaches. The loss of synapses in the affected brain regions correlates best with cognitive impairment in AD patients and has been considered as the early mechanism that precedes neuronal loss. Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurodegenerative diseases including AD. Increased production of reactive oxygen species (ROS) associated with age- and disease-dependent loss of mitochondrial function, altered metal homeostasis, and reduced antioxidant defense directly affect synaptic activity and neurotransmission in neurons leading to cognitive dysfunction. In addition, molecular targets affected by ROS include nuclear and mitochondrial DNA, lipids, proteins, calcium homeostasis, mitochondrial dynamics and function, cellular architecture, receptor trafficking and endocytosis, and energy homeostasis. Abnormal cellular metabolism in turn could affect the production and accumulation of amyloid-β (Aβ) and hyperphosphorylated Tau protein, which independently could exacerbate mitochondrial dysfunction and ROS production, thereby contributing to a vicious cycle. While mounting evidence implicates ROS in the AD etiology, clinical trials with antioxidant therapies have not produced consistent results. In this review, we will discuss the role of oxidative stress in synaptic dysfunction in AD, innovative therapeutic strategies evolved based on a better understanding of the complexity of molecular mechanisms of AD, and the dual role ROS play in health and disease.

  16. Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease

    PubMed Central

    Gentric, Géraldine; Maillet, Vanessa; Paradis, Valérie; Couton, Dominique; L’Hermitte, Antoine; Panasyuk, Ganna; Fromenty, Bernard; Celton-Morizur, Séverine; Desdouets, Chantal

    2015-01-01

    Polyploidization is one of the most dramatic changes that can occur in the genome. In the liver, physiological polyploidization events occur during both liver development and throughout adult life. Here, we determined that a pathological polyploidization takes place in nonalcoholic fatty liver disease (NAFLD), a widespread hepatic metabolic disorder that is believed to be a risk factor for hepatocellular carcinoma (HCC). In murine models of NAFLD, the parenchyma of fatty livers displayed alterations of the polyploidization process, including the presence of a large proportion of highly polyploid mononuclear cells, which are rarely observed in normal hepatic parenchyma. Biopsies from patients with nonalcoholic steatohepatitis (NASH) revealed the presence of alterations in hepatocyte ploidy compared with tissue from control individuals. Hepatocytes from NAFLD mice revealed that progression through the S/G2 phases of the cell cycle was inefficient. This alteration was associated with activation of a G2/M DNA damage checkpoint, which prevented activation of the cyclin B1/CDK1 complex. Furthermore, we determined that oxidative stress promotes the appearance of highly polyploid cells, and antioxidant-treated NAFLD hepatocytes resumed normal cell division and returned to a physiological state of polyploidy. Collectively, these findings indicate that oxidative stress promotes pathological polyploidization and suggest that this is an early event in NAFLD that may contribute to HCC development. PMID:25621497

  17. Oxidative stress and dysfunctional NRF2 underlie pachyonychia congenita phenotypes.

    PubMed

    Kerns, Michelle L; Hakim, Jill M C; Lu, Rosemary G; Guo, Yajuan; Berroth, Andreas; Kaspar, Roger L; Coulombe, Pierre A

    2016-06-01

    Palmoplantar keratoderma (PPK) are debilitating lesions that arise in individuals with pachyonychia congenita (PC) and feature upregulation of danger-associated molecular patterns and skin barrier regulators. The defining features of PC-associated PPK are reproduced in mice null for keratin 16 (Krt16), which is commonly mutated in PC patients. Here, we have shown that PPK onset is preceded by oxidative stress in footpad skin of Krt16-/- mice and correlates with an inability of keratinocytes to sustain nuclear factor erythroid-derived 2 related factor 2-dependent (NRF2-dependent) synthesis of the cellular antioxidant glutathione (GSH). Additionally, examination of plantar skin biopsies from individuals with PC confirmed the presence of high levels of hypophosphorylated NRF2 in lesional tissue. In Krt16-/- mice, genetic ablation of Nrf2 worsened spontaneous skin lesions and accelerated PPK development in footpad skin. Hypoactivity of NRF2 in Krt16-/- footpad skin correlated with decreased levels or activity of upstream NRF2 activators, including PKCδ, receptor for activated C kinase 1 (RACK1), and p21. Topical application of the NRF2 activator sulforaphane to the footpad of Krt16-/- mice prevented the development of PPK and normalized redox balance via regeneration of GSH from existing cellular pools. Together, these findings point to oxidative stress and dysfunctional NRF2 as contributors to PPK pathogenesis, identify K16 as a regulator of NRF2 activation, and suggest that pharmacological activation of NRF2 should be further explored for PC treatment.

  18. Oxidative Stress: A Link between Diabetes Mellitus and Periodontal Disease.

    PubMed

    Monea, Adriana; Mezei, Tibor; Popsor, Sorin; Monea, Monica

    2014-01-01

    Objective. To investigate oxidative stress (OS) and histological changes that occur in the periodontium of subjects with type 2 diabetes mellitus without signs of periodontal disease and to establish if oxidative stress is a possible link between diabetes mellitus and periodontal changes. Materials and Methods. Tissue samples from ten adult patients with type 2 diabetes mellitus (T2D) and eight healthy adults were harvested. The specimens were examined by microscope using standard hematoxylin-eosin stain, at various magnifications, and investigated for tissue levels of malondialdehyde (MDA) and glutathione (GSH). Results. Our results showed that periodontal tissues in patients with T2D present significant inflammation, affecting both epithelial and connective tissues. Mean MDA tissue levels were 3.578 ± 0.60 SD in diabetics versus 0.406 ± 0.27 SD in controls (P < 0.0001), while mean GSH tissue levels were 2.48 ± 1.02 SD in diabetics versus 9.7875 ± 2.42 SD in controls (P < 0.0001). Conclusion. Diabetic subjects had higher MDA levels in their periodontal tissues, suggesting an increased lipid peroxidation in T2D, and decreased GSH tissue levels, suggesting an alteration of the local antioxidant defense mechanism. These results are in concordance with the histological changes that we found in periodontal tissues of diabetic subjects, confirming the hypothesis of OS implication, as a correlation between periodontal disease incidence and T2D.

  19. Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death

    PubMed Central

    Khanna, Puja; Ong, Cynthia; Bay, Boon Huat; Baeg, Gyeong Hun

    2015-01-01

    Nanoparticles are emerging as a useful tool for a wide variety of biomedical, consumer and instrumental applications that include drug delivery systems, biosensors and environmental sensors. In particular, nanoparticles have been shown to offer greater specificity with enhanced bioavailability and less detrimental side effects as compared to the existing conventional therapies in nanomedicine. Hence, bionanotechnology has been receiving immense attention in recent years. However, despite the extensive use of nanoparticles today, there is still a limited understanding of nanoparticle-mediated toxicity. Both in vivo and in vitro studies have shown that nanoparticles are closely associated with toxicity by increasing intracellular reactive oxygen species (ROS) levels and/or the levels of pro-inflammatory mediators. The homeostatic redox state of the host becomes disrupted upon ROS induction by nanoparticles. Nanoparticles are also known to up-regulate the transcription of various pro-inflammatory genes, including tumor necrosis factor-α and IL (interleukins)-1, IL-6 and IL-8, by activating nuclear factor-kappa B (NF-κB) signaling. These sequential molecular and cellular events are known to cause oxidative stress, followed by severe cellular genotoxicity and then programmed cell death. However, the exact molecular mechanisms underlying nanotoxicity are not fully understood. This lack of knowledge is a significant impediment in the use of nanoparticles in vivo. In this review, we will provide an assessment of signaling pathways that are involved in the nanoparticle-induced oxidative stress and propose possible strategies to circumvent nanotoxicity. PMID:28347058

  20. Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death.

    PubMed

    Khanna, Puja; Ong, Cynthia; Bay, Boon Huat; Baeg, Gyeong Hun

    2015-06-30

    Nanoparticles are emerging as a useful tool for a wide variety of biomedical, consumer and instrumental applications that include drug delivery systems, biosensors and environmental sensors. In particular, nanoparticles have been shown to offer greater specificity with enhanced bioavailability and less detrimental side effects as compared to the existing conventional therapies in nanomedicine. Hence, bionanotechnology has been receiving immense attention in recent years. However, despite the extensive use of nanoparticles today, there is still a limited understanding of nanoparticle-mediated toxicity. Both in vivo and in vitro studies have shown that nanoparticles are closely associated with toxicity by increasing intracellular reactive oxygen species (ROS) levels and/or the levels of pro-inflammatory mediators. The homeostatic redox state of the host becomes disrupted upon ROS induction by nanoparticles. Nanoparticles are also known to up-regulate the transcription of various pro-inflammatory genes, including tumor necrosis factor-α and IL (interleukins)-1, IL-6 and IL-8, by activating nuclear factor-kappa B (NF-κB) signaling. These sequential molecular and cellular events are known to cause oxidative stress, followed by severe cellular genotoxicity and then programmed cell death. However, the exact molecular mechanisms underlying nanotoxicity are not fully understood. This lack of knowledge is a significant impediment in the use of nanoparticles in vivo . In this review, we will provide an assessment of signaling pathways that are involved in the nanoparticle- induced oxidative stress and propose possible strategies to circumvent nanotoxicity.

  1. Exercise-Induced Oxidative Stress and Dietary Antioxidants

    PubMed Central

    Yavari, Abbas; Javadi, Maryam; Mirmiran, Parvin; Bahadoran, Zahra

    2015-01-01

    Context: Overproduction of reactive oxygen and nitrogen species during physical exercise, exercise induced oxidative stress and antioxidant supplementation is interesting and controversial concepts that have been considered during the past decades. Evidence Acquisition: In this review, we aimed to summarize current evidence in relation to antioxidant supplementation outcomes during exercise and physical activity. For this aim, we obtained relevant articles through searches of the Medline and PubMed databases between 1980 to 2013. Although major studies have indicated that antioxidants could attenuate biomarkers of exercise-induced oxidative stress and the use of antioxidant supplement is a common phenomenon among athletes and physically active people, there are some doubts regarding the benefits of these. Results: It seems that the best recommendations regarding antioxidants and exercise are having a balanced diet rich in natural antioxidants and phytochemicals. Conclusions: Regular consumption of various fresh fruits and vegetables, whole grains, legumes and beans, sprouts and seeds is an effective and safe way to meet all antioxidant requirements in physically active persons and athletes. PMID:25883776

  2. Influence of Synbiotics on Selected Oxidative Stress Parameters

    PubMed Central

    2017-01-01

    The aim of the present study was to assess synbiotic (Lactobacillus casei + inulin) influence on oxidative stress parameters such as concentrations of malondialdehyde (MDA), hydrogen peroxide (H2O2), glutathione, and free sulfhydryl groups content. Experiments were carried out on healthy volunteers (n = 32). The subjects were divided into women group (n = 16) and men group (n = 16) and randomly assigned to synbiotic and control groups. Blood samples were collected before synbiotic supplementation and after 7 wks, at the end of the study. The administration of synbiotic resulted in a significant decrease in MDA (p < 0.01), H2O2 (p < 0.01), and GSSG concentrations (p < 0.05) as compared with the control groups and significant increase in the concentrations of GSHt (p < 0.001), GSH (p < 0.01), and -SH group content (p < 0.05) versus control. Synbiotics containing L. casei plus inulin may have positive influence on selected oxidative stress markers. PMID:28286605

  3. The Bad, the Good, and the Ugly about Oxidative Stress

    PubMed Central

    Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2012-01-01

    Alzheimer's disease (AD), Parkinson's disease (PD), and cancer (e.g., leukemia) are the most devastating disorders affecting millions of people worldwide. Except for some kind of cancers, no effective and/or definitive therapeutic treatment aimed to reduce or to retard the clinic and pathologic symptoms induced by AD and PD is presently available. Therefore, it is urgently needed to understand the molecular basis of these disorders. Since oxidative stress (OS) is an important etiologic factor of the pathologic process of AD, PD, and cancer, understanding how intracellular signaling pathways respond to OS will have a significant implication in the therapy of these diseases. Here, we propose a model of minimal completeness of cell death signaling induced by OS as a mechanistic explanation of neuronal and cancer cell demise. This mechanism might provide the basis for therapeutic design strategies. Finally, we will attempt to associate PD, cancer, and OS. This paper critically analyzes the evidence that support the “oxidative stress model” in neurodegeneration and cancer. PMID:22619696

  4. Hyperglycemia-Mediated Oxidative Stress Increases Pulmonary Vascular Permeability

    PubMed Central

    Clemmer, John S.; Xiang, Lusha; Lu, Silu; Mittwede, Peter N.; Hester, Robert L.

    2016-01-01

    Objective Hyperglycemia in diabetes mellitus is associated with endothelial dysfunction as evidenced by increased oxidative stress and vascular permeability. Whether impaired glucose control in metabolic syndrome impacts pulmonary vascular permeability is unknown. We hypothesized that in metabolic syndrome, hyperglycemia increases lung vascular permeability through superoxide. Methods Lung capillary filtration coefficient (Kf) and vascular superoxide were measured in the isolated lungs of lean Zucker (LZ) and obese Zucker rats (OZ). OZ were subjected to 4 weeks of metformin treatment (300 mg/kg/day orally) to improve insulin sensitivity. In a separate experiment, lung vascular permeability and vascular superoxide were measured in LZ exposed to acute hyperglycemia (30 mM). Results As compared to LZ, OZ had impaired glucose and insulin tolerance and elevated vascular superoxide which was associated with an elevated lung Kf. Chronic metformin treatment in OZ improved glucose control and insulin sensitivity which was associated with decreased vascular oxidative stress and lung Kf. Acute hyperglycemia in isolated lungs from LZ increased lung Kf, which was blocked with the NADPH oxidase inhibitor, apocynin (3mM). Apocynin also decreased baseline Kf in OZ. Conclusions These data suggest that hyperglycemia in metabolic syndrome exacerbates lung vascular permeability through increases in vascular superoxide, possibly through NADPH oxidase. PMID:26749564

  5. Two-photon microscopy imaging of oxidative stress in human living erythrocytes

    PubMed Central

    Tsakanova, Gohar; Arakelova, Elina; Ayvazyan, Violetta; Ayvazyan, Anna; Tatikyan, Stepan; Aroutiounian, Rouben; Dalyan, Yeva; Haroutiunian, Samvel; Tsakanov, Vasili; Arakelyan, Arsen

    2017-01-01

    Red blood cells (RBCs) are known to be the most suitable cells to study oxidative stress, which is implicated in the etiopathology of many human diseases. The goal of the current study was to develop a new effective approach for assessing oxidative stress in human living RBCs using two-photon microscopy. To mimic oxidative stress in human living RBCs, an in vitro model was generated followed by two-photon microscopy imaging. The results revealed that oxidative stress is clearly visible on the two-photon microscopy images of RBCs under oxidative stress compared to no fluorescence in controls (P<0.0001). This novel approach for oxidative stress investigation in human living RBCs could efficiently be applied in clinical research and antioxidant compounds testing. PMID:29296508

  6. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress.

    PubMed

    Islam, Faisal; Yasmeen, Tahira; Ali, Qasim; Ali, Shafaqat; Arif, Muhammad Saleem; Hussain, Sabir; Rizvi, Hina

    2014-06-01

    Plant Growth Promoting Rhizobacteria (PGPR), whose role is still underestimated, plays an important (or perhaps essential) role in improving plant growth. The comprehensive understanding of bacterial plant growth promoting mechanism helps to get sustainable agriculture production under biotic and abiotic stresses. In the present study, plant growth promoting (PGP) bacterial strain Pseudomonas aeruginosa having maximum inhibitory concentration of 1500mg kg(-1) against Zn was isolated from arable land, irrigated with industrial effluent and evaluated to determine it bioremediation potential. The study was mainly focused on plant biomass production, nutrient uptake and oxidative stress tolerance in relation to the activities of antioxidative enzymes and the content of non-enzymatic antioxidants. The oxidative stress tolerance was measured by estimating the MDA accumulation as well as H2O2 production in wheat plants under Zn (1000mg kg(-1)) stress and inoculation of soil with Zn resistant Pseudomonas aeruginosa. Zn in rooting medium reduced the plant growth, leaf photosynthetic pigments as well as uptake of N and P. However, content of MDA and H2O2 increased at higher concentration of Zn. Inoculation of P. aeruginosa improved the uptake of P and N in wheat plants with an increase in leaf chlorophyll, total soluble protein and plant biomass production. Analysis of plant root and shoot disclosed that Zn concentration was significantly lowered in P. aeruginosa inoculated zinc stressed plants as compare to the plants grown under Zn stress only. The amelioration of adverse effects of Zn stress on biomass production due to P. aeruginosa inoculation was related with enhanced antioxidative enzyme activities (SOD, POD and CAT), and the contents of non-enzymatic components such as ascorbic acid and total phenolics (TPC) as compare to Zn-treated plants. The up-gradation in antioxidative defense mechanism, resulted a reduction in H2O2 and MDA content due to the scavenging of ROS

  7. Oxidative stress and insulin resistance in policemen working shifts.

    PubMed

    Demir, Irfan; Toker, Aysun; Zengin, Selcuk; Laloglu, Esra; Aksoy, Hulya

    2016-04-01

    Shift work is a work schedule involving irregular or unusual hours, compared to those of a normal daytime work schedule. In developed countries, night shift work is very common. In several cities of our country, 12/24 shift system is implemented in police organization. While night shift work composes half of the 20 shift in a month, in ergonomic shift system, an alternative shift schedule, shift work can be performed in three shifts in a day. In this study, we aimed to investigate the effects of 12/24 shift work system on insulin resistance and oxidative stress and systemic inflammation. Two hundred and four 12/24 shift workers (age 44.3 ± 5.6 years) and 193 ergonomic shift workers (age 42.6 ± 5.5 years) were included to study. Serum oxidized LDL (ox-LDL), neutrophil gelatinase lipocalin-2 (NGAL) as oxidative stress markers, glucose, insulin, ferritin, high-sensitive C-reactive protein (hsCRP) and erythrocyte sedimentation rate values were measured. Homeostasis model assessment for insulin resistance (HOMA-IR) was calculated to evaluate insulin resistance. Serum ox-LDL, HOMA-IR, hsCRP and NGAL levels in 12/24 shift system were found to be significantly higher compared with ergonomic shift workers (p < 0.0001, p = 0.02, p = 0.03, p = 0.02, respectively). When evaluated all subjects, weak but significant correlation was found between HOMA-IR with ox-LDL (r = 0.12, p = 0.01), hsCRP (r = 0.17, p = 0.001) and ferritin (r = 0.15, r = 0.003). Also in 12/24 shift work group, there were significant correlations between HOMA-IR with hsCRP (r = 0.17, p = 0.01) and ferritin (r = 0.25, p = 0.0001). It may be concluded that 12/24 shift system might give rise to insulin resistance and oxidative stress. Additionally, workers in this system may under risk of systemic inflammatory response. Working hours must be arranged in accordance with the physiological rhythm.

  8. Diazinon-induced oxidative stress and renal dysfunction in rats.

    PubMed

    Shah, Muhammad Dawood; Iqbal, Mohammad

    2010-12-01

    Diazinon (O,O-diethyl-O-[2-isopropyl-6-methyl-4-pyrimidinyl] phosphoro thioate), an organo-phosphate insecticide, has been used worldwide in agriculture and domestic for several years, which has led to a variety of negative effects in non target species including humans. However, its nephrotoxic effects and mechanism of action has not been fully elucidated so far. Therefore, the present study was aimed at evaluating the nephrotoxic effects of diazinon and its mechanism of action with special reference to its possible ROS generating potential in rats. Treatment of rats with diazinon significantly enhances renal lipid peroxidation which is accompanied by a decrease in the activities of renal antioxidant enzymes (e.g. catalase, glutathione peroxidise, glutathione reductase, glucose-6-phosphate dehydrogenase, glutathione S-transferase) and depletion in the level of glutathione reduced. In contrast, the activities of renal γ-glutamyl transpeptidase and quinone reductase were increased. Parallel to these changes, diazinon treatment enhances renal damage as evidenced by sharp increase in blood urea nitrogen and serum creatinine. Additionally, the impairment of renal function corresponds histopathologically. In summary, our results indicate that diazinon treatment eventuates in decreased renal glutathione reduced, a fall in the activities of antioxidant enzymes including the enzymes involved in glutathione metabolism and excessive production of oxidants with concomitant renal damage, all of which are involved in the cascade of events leading to diazinon-mediated renal oxidative stress and toxicity. We concluded that in diazinon exposure, depletion of antioxidant enzymes is accompanied by induction of oxidative stress that might be beneficial in monitoring diazinon toxicity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy.

    PubMed

    McMonnies, Charles

    This review examines the role of oxidative stress in damage to cells of the trabecular meshwork and associated impaired aqueous drainage as well as damage to retinal ganglion cells and associated visual field losses. Consideration is given to the interaction between vascular and mechanical explanations for pathological changes in glaucoma. For example, elevated intraocular pressure (IOP) forces may contribute to ischaemia but there is increasing evidence that altered blood flow in a wider sense is also involved. Both vascular and mechanical theories are involved through fluctuations in intraocular pressure and dysregulation of blood flow. Retinal function is very sensitive to changes in haemoglobin oxygen concentration and the associated variations in the production of reactive oxygen species. Reperfusion injury and production of reactive oxygen species occurs when IOP is elevated or blood pressure is low and beyond the capacity for blood flow autoregulation to maintain appropriate oxygen concentration. Activities such as those associated with postural changes, muscular effort, eye wiping and rubbing which cause IOP fluctuation, may have significant vascular, mechanical, reperfusion and oxidative stress consequences. Hyperbaric oxygen therapy exposes the eye to increased oxygen concentration and the risk of oxidative damage in susceptible individuals. However, oxygen concentration in aqueous humour, and the risk of damage to trabecular meshwork cells may be greater if hyperbaric oxygen is delivered by a hood which exposes the anterior ocular surface to higher than normal oxygen levels. Oronasal mask delivery of hyperbaric oxygen therapy appears to be indicated in these cases. Copyright © 2017 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  10. Oxidative stress parameters in different systemic rheumatic diseases.

    PubMed

    Firuzi, Omidreza; Fuksa, Leos; Spadaro, Chiara; Bousová, Iva; Riccieri, Valeria; Spadaro, Antonio; Petrucci, Rita; Marrosu, Giancarlo; Saso, Luciano

    2006-07-01

    The involvement of oxidative stress in the pathogenesis of rheumatic disorders, such as systemic sclerosis (SSc) and chronic polyarthritides, has been suggested yet not thoroughly verified experimentally. We analysed 4 plasmatic parameters of oxidative stress in patients with SSc (n = 17), psoriatic arthritis (PsA) (n = 10) and rheumatoid arthritis (RA) (n = 9) compared with healthy subjects (n = 22). The biomarkers were: total antioxidant capacity (TAC) measured by ferric reducing antioxidant power (FRAP) method, hydroperoxides determined by ferrous ion oxidation in presence of xylenol orange (FOX) method and sulfhydryl and carbonyl groups assessed by spectrophotometric assays. The results showed significantly increased hydroperoxides in SSc, PsA and RA (3.97 +/- 2.25, 4.87 +/- 2.18 and 5.13 +/- 2.36 micromol L(-1), respectively) compared with the control group (2.31 +/- 1.40 micromol L(-1); P < 0.05). Sulfhydryls were significantly lower in SSc (0.466 +/- 0.081 mmol L(-1)), PsA (0.477 +/- 0.059 mmol L(-1)) and RA (0.439 +/- 0.065 mmol L(-1)) compared with the control group (0.547 +/- 0.066 mmol L(-1); P < 0.05). TAC in all three diseases showed no difference in comparison with controls. Carbonyls were significantly higher in RA than in the control group (32.1 +/- 42 vs 2.21 +/- 1.0 nmol (mg protein)(-1); P < 0.05). The obtained data indicate augmented free radical-mediated injury in these rheumatic diseases and suggest a role for the use of antioxidants in prevention and treatment of these pathologies.

  11. Astaxanthin blocks preeclampsia progression by suppressing oxidative stress and inflammation.

    PubMed

    Xuan, Rong-Rong; Niu, Ting-Ting; Chen, Hai-Min

    2016-09-01

    To investigate the antioxidative effect of astaxanthin on Nω-nitro-L-arginine methyl ester (L-NAME)-induced preeclamptic rats. Cell survival, the level of reactive oxygen species (ROS) and the changes in mitochondrial membrane potential (MMP) were examined in astaxanthin and H2O2-treated human umbilical vein endothelial cells (HUVECs). The preeclamptic Sprague-Dawley (SD) rat model was established by injection of L‑NAME and treatment with astaxanthin. The activities of malondialdehyde (MDA), superoxide dismutase (SOD) and nitric oxide synthase (NOS) in serum were analyzed. Pathological changes were examined by hematoxylin and eosin (H&E) staining. The expression of nuclear factor (NF)‑κB, Rho‑associated protein kinase II (ROCK II), heme oxygenase‑1 (HO‑1) and caspase 3 in preeclamptic placentas were examined by immunohistochemistry. Astaxanthin significantly reduced H2O2‑induced HUVEC cell death, decreased ROS and increased MMP. Astaxanthin significantly reduced blood pressure and the content of MDA, but significantly increased the activity of SOD in preeclamptic rats. The urinary protein and the level of NO and NOS were also decreased. H&E staining revealed that the thickness of the basilar membrane was increased, while the content of trophoblast cells and spiral arteries were reduced following astaxanthin treatment. Immunohistochemistry results showed that the expression of NF‑κB, ROCK II and caspase 3 in preeclamptic placentas was significantly decreased after astaxanthin treatment, while HO‑1 expression was increased. In conclusion, astaxanthin inhibited H2O2‑induced oxidative stress in HUVECs. Astaxanthin treatment significantly improved L‑NAME‑induced preeclamptic symptoms and reduced the oxidative stress and inflammatory damages in preeclamptic placentas. Astaxanthin treatment may effectively prevent and treat preeclampsia.

  12. Cadmium-induced oxidative stress in two potato cultivars.

    PubMed

    Gonçalves, J F; Tabaldi, L A; Cargnelutti, D; Pereira, L B; Maldaner, J; Becker, A G; Rossato, L V; Rauber, R; Bagatini, M D; Bisognin, D A; Schetinger, M R C; Nicoloso, F T

    2009-10-01

    A hydroponic experiment was carried out to characterize the oxidative stress responses of two potato cultivars (Solanum tuberosum L. cvs. Asterix and Macaca) to cadmium (Cd). Plantlets were exposed to four Cd levels (0, 50, 100, 150 and 200 microM) for 7 days. Cd concentration was increased in both roots and shoot. Number of sprouts and roots was not decreased, whereas Cd treatment affected the number of nodal segments. Chlorophyll content and ALA-D activity were decreased in both cultivars, whereas carotenoids content was decreased only in Macaca. Cd caused lipid peroxidation in roots and shoot of both cultivars. Protein oxidation was only verified at the highest Cd level. H(2)O(2) content was increased in roots and shoot of Asterix, and apparently, a compensatory response between roots and shoot of Macaca was observed. SOD activity was inhibited in roots of Asterix at all Cd treatments, whereas in Macaca it was only increased at two highest Cd levels. Shoot SOD activity increased in Asterix and decreased in Macaca. Root CAT activity in Asterix decreased at 100 and 150 microM, whereas in Macaca it decreased only at 50 microM. Shoot CAT activity was decreased in Macaca. Root AsA content in Macaca was not affected, whereas in shoot it was reduced at 100 microM and increased at 200 microM. Cd caused increase in NPSH content in roots and shoot. Our results suggest that Cd induces oxidative stress in both potato cultivars and that of the two cultivars, Asterix showed greater sensitivity to Cd levels.

  13. Plasmodium falciparum uses vitamin E to avoid oxidative stress.

    PubMed

    Sussmann, Rodrigo A C; Fotoran, Wesley L; Kimura, Emilia A; Katzin, Alejandro M

    2017-10-10

    Plasmodium falciparum is sensitive to oxidative stress in vitro and in vivo, and many drugs such as artemisinin, chloroquine and cercosporin interfere in the parasite's redox system. To minimize the damage caused by reactive radicals, antioxidant enzymes and their substrates found in parasites and in erythrocytes must be functionally active. It was shown that P. falciparum synthesizes vitamin E and that usnic acid acts as an inhibitor of its biosynthesis. Vitamin E is a potent antioxidant that protects polyunsaturated fatty acids from lipid peroxidation, and this activity can be measured by detecting its oxidized product and by evaluating reactive oxygen species (ROS) levels. Here, we demonstrated that ROS levels increased in P. falciparum when vitamin E biosynthesis was inhibited by usnic acid treatment and decreased to basal levels if exogenous vitamin E was added. Furthermore, we used metabolic labelling to demonstrate that vitamin E biosynthesized by the parasite acts as an antioxidant since we could detect its radiolabeled oxidized product. The treatment with chloroquine or cercosporin of the parasites increased the ratio between α-tocopherolquinone and α-tocopherol. Our findings demonstrate that vitamin E produced endogenously by P. falciparum is active as an antioxidant, probably protecting the parasite from the radicals generated by drugs.

  14. Oxidative stress and aging: correlation with clinical parameters.

    PubMed

    da Cruz, Ana Carla; Petronilho, Fabricia; Heluany, Claudia Cipriano Vidal; Vuolo, Francieli; Miguel, Samantha Pereira; Quevedo, João; Romano-Silva, Marco Aurélio; Dal-Pizzol, Felipe

    2014-02-01

    The free radical theory of aging has been receiving a lot of attention in the past years. The aim of this study was to examine the correlation between oxidative damage, antioxidant enzyme activities and plasma antioxidant potential with clinical parameters in elderly people. Elderly subjects over 80 years old were included in the study. Clinical data were collected based on the Cumulative Illness Rating Scale (n = 132). In addition, blood samples were collected to determine biochemical and oxidative stress. The results showed that the mean age of the participants was 85.1 ± 4.0 years old. Diabetic patients presented higher plasma protein carbonyl levels when compared with non-diabetic, and plasma levels of thiobarbituric acid-reactive substances were correlated to serum triglyceride and LDL fraction. In contrast, a lower plasma total antioxidant capacity presented a relation with the presence of diabetes and arterial hypertension. In addition, healthy elderly subjects presented a higher plasma total antioxidant capacity. Thus, it seemed that plasma antioxidant potential is a better predictor of successful aging in the elderly than oxidative damage parameters or plasma antioxidant enzyme activities.

  15. Oxidative stress fuels Trypanosoma cruzi infection in mice.

    PubMed

    Paiva, Claudia N; Feijó, Daniel F; Dutra, Fabianno F; Carneiro, Vitor C; Freitas, Guilherme B; Alves, Letícia S; Mesquita, Jacilene; Fortes, Guilherme B; Figueiredo, Rodrigo T; Souza, Heitor S P; Fantappié, Marcelo R; Lannes-Vieira, Joseli; Bozza, Marcelo T

    2012-07-01

    Oxidative damage contributes to microbe elimination during macrophage respiratory burst. Nuclear factor, erythroid-derived 2, like 2 (NRF2) orchestrates antioxidant defenses, including the expression of heme-oxygenase-1 (HO-1). Unexpectedly, the activation of NRF2 and HO-1 reduces infection by a number of pathogens, although the mechanism responsible for this effect is largely unknown. We studied Trypanosoma cruzi infection in mice in which NRF2/HO-1 was induced with cobalt protoporphyrin (CoPP). CoPP reduced parasitemia and tissue parasitism, while an inhibitor of HO-1 activity increased T. cruzi parasitemia in blood. CoPP-induced effects did not depend on the adaptive immunity, nor were parasites directly targeted. We also found that CoPP reduced macrophage parasitism, which depended on NRF2 expression but not on classical mechanisms such as apoptosis of infected cells, induction of type I IFN, or NO. We found that exogenous expression of NRF2 or HO-1 also reduced macrophage parasitism. Several antioxidants, including NRF2 activators, reduced macrophage parasite burden, while pro-oxidants promoted it. Reducing the intracellular labile iron pool decreased parasitism, and antioxidants increased the expression of ferritin and ferroportin in infected macrophages. Ferrous sulfate reversed the CoPP-induced decrease in macrophage parasite burden and, given in vivo, reversed their protective effects. Our results indicate that oxidative stress contributes to parasite persistence in host tissues and open a new avenue for the development of anti-T. cruzi drugs.

  16. Oxidative stress fuels Trypanosoma cruzi infection in mice

    PubMed Central

    Paiva, Claudia N.; Feijó, Daniel F.; Dutra, Fabianno F.; Carneiro, Vitor C.; Freitas, Guilherme B.; Alves, Letícia S.; Mesquita, Jacilene; Fortes, Guilherme B.; Figueiredo, Rodrigo T.; Souza, Heitor S.P.; Fantappié, Marcelo R.; Lannes-Vieira, Joseli; Bozza, Marcelo T.

    2012-01-01

    Oxidative damage contributes to microbe elimination during macrophage respiratory burst. Nuclear factor, erythroid-derived 2, like 2 (NRF2) orchestrates antioxidant defenses, including the expression of heme-oxygenase–1 (HO-1). Unexpectedly, the activation of NRF2 and HO-1 reduces infection by a number of pathogens, although the mechanism responsible for this effect is largely unknown. We studied Trypanosoma cruzi infection in mice in which NRF2/HO-1 was induced with cobalt protoporphyrin (CoPP). CoPP reduced parasitemia and tissue parasitism, while an inhibitor of HO-1 activity increased T. cruzi parasitemia in blood. CoPP-induced effects did not depend on the adaptive immunity, nor were parasites directly targeted. We also found that CoPP reduced macrophage parasitism, which depended on NRF2 expression but not on classical mechanisms such as apoptosis of infected cells, induction of type I IFN, or NO. We found that exogenous expression of NRF2 or HO-1 also reduced macrophage parasitism. Several antioxidants, including NRF2 activators, reduced macrophage parasite burden, while pro-oxidants promoted it. Reducing the intracellular labile iron pool decreased parasitism, and antioxidants increased the expression of ferritin and ferroportin in infected macrophages. Ferrous sulfate reversed the CoPP-induced decrease in macrophage parasite burden and, given in vivo, reversed their protective effects. Our results indicate that oxidative stress contributes to parasite persistence in host tissues and open a new avenue for the development of anti–T. cruzi drugs. PMID:22728935

  17. Azadirachta indica attenuates cisplatin-induced nephrotoxicity and oxidative stress.

    PubMed

    Abdel Moneim, Ahmed E; Othman, Mohamed S; Aref, Ahmed M

    2014-01-01

    We investigated the effects of methanolic leaves extract of Azadirachta indica (MLEN, 500 mg/kg bwt) on cisplatin- (CP-) induced nephrotoxicity and oxidative stress in rats. CP (5 mg/kg bwt) was injected intraperitoneally and MLEN was given by gastric gavage for 5 days before or after CP injection. After 5 days of CP injection, CP-induced injury of the renal tissue was evidenced (i) as histopathological damage of the renal tissue, (ii) as increases in serum uric acid, urea, and creatinine, (iii) as increases in malondialdehyde (MDA) and nitric oxide (NO), (iv) as decreases in the level of glutathione and activities of superoxide dismutase, catalase, glutathione reductase, glutathione-S-transferase, and glutathione peroxidase, and (v) as increase in the expression of nuclear factor kappa B and apoptosis in kidney tissues. However, the oral administration of MLEN to CP-intoxicated rats for 5 days brought back MDA, NO production, and enzymatic and nonenzymatic antioxidants to near normalcy. Moreover, the histological observations evidenced that neem extract effectively rescues the kidney from CP-mediated oxidative damage. Furthermore, PCR results for caspase-3 and caspase-9 and Bax genes showed downregulation in MLEN treated groups. Therefore, Azadirachta indica can be considered a potential candidate for protection of nephrotoxicity induced by cisplatin.

  18. Oak kombucha protects against oxidative stress and inflammatory processes.

    PubMed

    Vázquez-Cabral, B D; Larrosa-Pérez, M; Gallegos-Infante, J A; Moreno-Jiménez, M R; González-Laredo, R F; Rutiaga-Quiñones, J G; Gamboa-Gómez, C I; Rocha-Guzmán, N E

    2017-06-25

    Black tea infusion is the common substrate for preparing kombucha; however other sources such as oak leaves infusions can be used for the same purpose. Almost any white oak species have been used for medicinal applications by some ethnic groups in Mexico and could be also suitable for preparing kombucha analogues from oak (KAO). The objective of this research was to investigate the antioxidant activity and anti-inflammatory effects of KAO by examining its modulation ability on macrophage-derived TNF-alpha and IL-6. Herbal infusions from oak and black tea were fermented by kombucha consortium during seven days at 28 °C. Chemical composition was determined by LC-ESI-MS/MS. The antioxidant activity of samples against oxidative damage caused by H 2 O 2 in monocytes activated (macrophages) was explored. Additionally, it was determined the anti-inflammatory activity using lipopolysaccharide (LPS) - stimulated macrophages; in particular, the nitric oxide (NO), TNF-alpha, and IL-6 production was assessed. Levels of pro-inflammatory cytokines IL-6 and TNF-alpha were significantly reduced by the sample treatment. Likewise, NO production was lower in treatment with kombucha and KAO compared with LPS-stimulated macrophages. Fermented beverages of oak effectively down-regulated the production of NO, while pro-inflammatory cytokines (TNF-alpha and IL-6) in macrophages were stimulated with LPS. Additionally, phytochemical compounds present in KAO decrease oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Oxidative Stress in Hemodialysis Patients: A Review of the Literature

    PubMed Central

    Roumeliotis, Stefanos; Gorny, Xenia; Mertens, Peter R.

    2017-01-01

    Hemodialysis (HD) patients are at high risk for all-cause mortality and cardiovascular events. In addition to traditional risk factors, excessive oxidative stress (OS) and chronic inflammation emerge as novel and major contributors to accelerated atherosclerosis and elevated mortality. OS is defined as the imbalance between antioxidant defense mechanisms and oxidant products, the latter overwhelming the former. OS appears in early stages of chronic kidney disease (CKD), advances along with worsening of renal failure, and is further exacerbated by the HD process per se. HD patients manifest excessive OS status due to retention of a plethora of toxins, subsidized under uremia, nutrition lacking antioxidants and turn-over of antioxidants, loss of antioxidants during renal replacement therapy, and leukocyte activation that leads to accumulation of oxidative products. Duration of dialysis therapy, iron infusion, anemia, presence of central venous catheter, and bioincompatible dialyzers are several factors triggering the development of OS. Antioxidant supplementation may take an overall protective role, even at early stages of CKD, to halt the deterioration of kidney function and antagonize systemic inflammation. Unfortunately, clinical studies have not yielded unequivocal positive outcomes when antioxidants have been administered to hemodialysis patients, likely due to their heterogeneous clinical conditions and underlying risk profile. PMID:29138677

  20. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    SciTech Connect

    Riganti, Chiara; Costamagna, Costanzo; Bosia, Amalia

    2006-05-01

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H{sub 2}O{sub 2} concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin.more » The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution.« less

  1. Levistolide A Induces Apoptosis via ROS-Mediated ER Stress Pathway in Colon Cancer Cells.

    PubMed

    Yang, Yingjuan; Zhang, Yanhua; Wang, Lan; Lee, Shaochin

    2017-01-01

    Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Levistolide A (LA), a natural compound isolated from the traditional Chinese herb Ligusticum chuanxiong Hort, is used for treating cancer. In this study, we investigated the anticancer effect of LA in HCT116 and its isogenic p53-/- colon cancer cells, as well as the underlying mechanisms. MTT assay was used to evaluate the effect of LA on the viability of cancer cells. Apoptosis and reactive oxygen species (ROS) production by the cells were determined by flow cytometry. Protein expression was detected by western blotting. The results showed that LA inhibited viability and caused apoptosis of both wild-type and p53-/- HCT116 cells. LA was able to trigger production of ROS and endoplasmic reticulum (ER) stress. Inhibition of ROS using N-acetylcysteine abrogated LA-induced ER stress and apoptosis, as well as the reduction in cancer cell viability. Our results indicate that LA causes apoptosis of colon cancer cells via ROS-mediated ER stress pathway. It will be interesting to develop the natural compound for chemotherapy of cancers such as CRC. © 2017 The Author(s). Published by S. Karger AG, Basel.

  2. Effect of Oxidative Stress on Cardiovascular System in Response to Gravity

    PubMed Central

    Okumura, Hiroki; Guo, Rui; Naruse, Keiji

    2017-01-01

    Long-term habitation in space leads to physiological alterations such as bone loss, muscle atrophy, and cardiovascular deconditioning. Two predominant factors—namely space radiation and microgravity—have a crucial impact on oxidative stress in living organisms. Oxidative stress is also involved in the aging process, and plays important roles in the development of cardiovascular diseases including hypertension, left ventricular hypertrophy, and myocardial infarction. Here, we discuss the effects of space radiation, microgravity, and a combination of these two factors on oxidative stress. Future research may facilitate safer living in space by reducing the adverse effects of oxidative stress. PMID:28677649

  3. Effect of Oxidative Stress on Cardiovascular System in Response to Gravity.

    PubMed

    Takahashi, Ken; Okumura, Hiroki; Guo, Rui; Naruse, Keiji

    2017-07-04

    Long-term habitation in space leads to physiological alterations such as bone loss, muscle atrophy, and cardiovascular deconditioning. Two predominant factors-namely space radiation and microgravity-have a crucial impact on oxidative stress in living organisms. Oxidative stress is also involved in the aging process, and plays important roles in the development of cardiovascular diseases including hypertension, left ventricular hypertrophy, and myocardial infarction. Here, we discuss the effects of space radiation, microgravity, and a combination of these two factors on oxidative stress. Future research may facilitate safer living in space by reducing the adverse effects of oxidative stress.

  4. Investigation on oxidative stress of nitric oxide synthase interacting protein from Clonorchis sinensis.

    PubMed

    Bian, Meng; Xu, Qingxia; Xu, Yanquan; Li, Shan; Wang, Xiaoyun; Sheng, Jiahe; Wu, Zhongdao; Huang, Yan; Yu, Xinbing

    2016-01-01

    Numerous evidences indicate that excretory-secretory products (ESPs) from liver flukes trigger the generation of free radicals that are associated with the initial pathophysiological responses in host cells. In this study, we first constructed a Clonorchis sinensis (C. sinensis, Cs)-infected BALB/c mouse model and examined relative results respectively at 3, 5, 7, and 9 weeks postinfection (p.i.). Quantitative reverse transcription (RT)-PCR indicated that the transcriptional level of both endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD) gradually decreased with lastingness of infection, while the transcriptional level of inducible NOS (iNOS) significantly increased. The level of malondialdehyde (MDA) in sera of infected mouse significantly increased versus the healthy control group. These results showed that the liver of C. sinensis-infected mouse was in a state with elevated levels of oxidation stress. Previously, C. sinensis NOS interacting protein coding gene (named CsNOSIP) has been isolated and recombinant CsNOSIP (rCsNOSIP) has been expressed in Escherichia coli, which has been confirmed to be a component present in CsESPs and confirmed to play important roles in immune regulation of the host. In the present paper, we investigated the effects of rCsNOSIP on the lipopolysaccharide (LPS)-induced activated RAW264.7, a murine macrophage cell line. We found that endotoxin-free rCsNOSIP significantly promoted the levels of nitric oxide (NO) and reactive oxygen species (ROS) after pretreated with rCsNOSIP, while the level of SOD decreased. Furthermore, rCsNOSIP could also increase the level of lipid peroxidation MDA. Taken together, these results suggested that CsNOSIP was a key molecule which was involved in the production of nitric oxide (NO) and its reactive intermediates, and played an important role in oxidative stress during C. sinensis infection.

  5. The effects of oxidative stress on female reproduction: a review

    PubMed Central

    2012-01-01

    Oxidative stress (OS), a state characterized by an imbalance between pro-oxidant molecules including reactive oxygen and nitrogen species, and antioxidant defenses, has been identified to play a key role in the pathogenesis of subfertility in both males and females. The adverse effects of OS on sperm quality and functions have been well documented. In females, on the other hand, the impact of OS on oocytes and reproductive functions remains unclear. This imbalance between pro-oxidants and antioxidants can lead to a number of reproductive diseases such as endometriosis, polycystic ovary syndrome (PCOS), and unexplained infertility. Pregnancy complications such as spontaneous abortion, recurrent pregnancy loss, and preeclampsia, can also develop in response to OS. Studies have shown that extremes of body weight and lifestyle factors such as cigarette smoking, alcohol use, and recreational drug use can promote excess free radical production, which could affect fertility. Exposures to environmental pollutants are of increasing concern, as they too have been found to trigger oxidative states, possibly contributing to female infertility. This article will review the currently available literature on the roles of reactive species and OS in both normal and abnormal reproductive physiological processes. Antioxidant supplementation may be effective in controlling the production of ROS and continues to be explored as a potential strategy to overcome reproductive disorders associated with infertility. However, investigations conducted to date have been through animal or in vitro studies, which have produced largely conflicting results. The impact of OS on assisted reproductive techniques (ART) will be addressed, in addition to the possible benefits of antioxidant supplementation of ART culture media to increase the likelihood for ART success. Future randomized controlled clinical trials on humans are necessary to elucidate the precise mechanisms through which OS affects female

  6. Hepatotoxicity and oxidative stress induced by Naja haje crude venom.

    PubMed

    Al-Quraishy, Saleh; Dkhil, Mahamed A; Abdel Moneim, Ahmed Esmat

    2014-01-01

    Snake venoms are synthesized and stored in venom glands. Most venoms are complex mixtures of several proteins, peptides, enzymes, toxins and non-protein components. In the present study, we investigated the oxidative stress and apoptosis in rat liver cells provoked by Naja haje crude injection (LD50) after four hours. Wistar rats were randomly divided into two groups, the control group was intraperitoneally injected with saline solution while LD50-dose envenomed group was intraperitoneally injected with venom at a dose of 0.025 μg/kg of body weight. Animals were killed four hours after the injection. Lipid peroxidation, nitric oxide and glutathione levels were measured as oxidative markers in serum and liver homogenate. In addition, liver function parameters and activities of antioxidant enzymes were determined. N. haje crude venom (0.025 μg/kg of body weight) enhanced lipid peroxidation and nitric oxide production in both serum and liver with concomitant reduction in glutathione, catalase, glutathione reductase and glutathione-S-transferase activities. Superoxide dismutase and glutathione peroxidase activities were significantly increased in liver of envenomed rats. These findings were associated with apoptosis induction in the liver. In addition, N. haje crude venom caused hepatic injury as indicated by histopathological changes in the liver tissue with an elevation in total bilirubin, serum alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transpeptidase, and alkaline phosphatase. Based on the present results, it can hypothesized that N. haje crude venom is a potent inducer of toxin-mediated hepatotoxicity associated with apoptosis in the liver.

  7. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress.

    PubMed

    Sies, Helmut

    2017-04-01

    Hydrogen peroxide emerged as major redox metabolite operative in redox sensing, signaling and redox regulation. Generation, transport and capture of H 2 O 2 in biological settings as well as their biological consequences can now be addressed. The present overview focuses on recent progress on metabolic sources and sinks of H 2 O 2 and on the role of H 2 O 2 in redox signaling under physiological conditions (1-10nM), denoted as oxidative eustress. Higher concentrations lead to adaptive stress responses via master switches such as Nrf2/Keap1 or NF-κB. Supraphysiological concentrations of H 2 O 2 (>100nM) lead to damage of biomolecules, denoted as oxidative distress. Three questions are addressed: How can H 2 O 2 be assayed in the biological setting? What are the metabolic sources and sinks of H 2 O 2 ? What is the role of H 2 O 2 in redox signaling and oxidative stress? Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Methionine oxidation activates a transcription factor in response to oxidative stress.

    PubMed

    Drazic, Adrian; Miura, Haruko; Peschek, Jirka; Le, Yan; Bach, Nina C; Kriehuber, Thomas; Winter, Jeannette

    2013-06-04

    Oxidant-mediated antibacterial response systems are broadly used to control bacterial proliferation. Hypochlorite (HOCl) is an important component of the innate immune system produced in neutrophils and specific epithelia. Its antimicrobial activity is due to damaging cellular macromolecules. Little is known about how bacteria escape HOCl-inflicted damage. Recently, the transcription factor YjiE was identified that specifically protects Escherichia coli from HOCl killing. According to its function, YjiE is now renamed HypT (hypochlorite-responsive transcription factor). Here we unravel that HypT is activated by methionine oxidation to methionine sulfoxide. Interestingly, so far only inactivation of cellular proteins by methionine oxidation has been reported. Mutational analysis revealed three methionines that are essential to confer HOCl resistance. Their simultaneous substitution by glutamine, mimicking the methionine sulfoxide state, increased the viability of E. coli cells upon HOCl stress. Triple glutamine substitution generates a constitutively active HypT that regulates target genes independently of HOCl stress and permanently down-regulates intracellular iron levels. Inactivation of HypT depends on the methionine sulfoxide reductases A/B. Thus, microbial protection mechanisms have evolved along the evolution of antimicrobial control systems, allowing bacteria to survive within the host environment.

  9. [Serum markers of oxidative stress in infertile women with endometriosis].

    PubMed

    Andrade, Aline Zyman de; Rodrigues, Jhenifer Kliemchen; Dib, Luciana Azôr; Romão, Gustavo Salata; Ferriani, Rui Alberto; Jordão Junior, Alceu Afonso; Navarro, Paula Andrea de Albuquerque Salles

    2010-06-01

    to compare serum markers of oxidative stress between infertile patients with and without endometriosis and to assess the association of these markers with disease staging. this was a prospective study conducted on 112 consecutive infertile, non-obese patients younger than 39 years, divided into two groups: Endometriosis (n=48, 26 with minimal and mild endometriosis - Stage I/II, and 22 with moderate and severe endometriosis - Stage III/IV) and Control (n=64, with tubal and/or male factor infertility). Blood samples were collected during the early follicular phase of the menstrual cycle for the analysis of serum malondialdehyde, glutathione and total hydroxyperoxide levels by spectrophotometry and of vitamin E by high performance liquid chromatography. The results were compared between the endometriosis and control groups, stage I/II endometriosis and control, stage III/IV endometriosis and control, and between the two endometriosis subgroups. The level of significance was set at 5% (p < 0.05) in all analyses. vitamin E and glutathione levels were lower in the serum of infertile women with moderate/severe endometriosis (21.7 ± 6.0 mMol/L and 159.6 ± 77.2 nMol/g protein, respectively) compared to women with minimal and mild endometriosis (28.3 ± 14.4 mMol/L and 199.6 ± 56.1 nMol/g protein, respectively). Total hydroxyperoxide levels were significantly higher in the endometriosis group (8.9 ± 1.8 µMol/g protein) than in the Control Group (8.0 ± 2 µMol/g protein) and among patients with stage III/IV disease (9.7 ± 2.3 µMol/g protein) compared to patients with stage I/II disease (8.2 ± 1.0 µMol/g protein). No significant differences in serum malondialdehyde levels were observed between groups. we demonstrated a positive association between infertility related to endometriosis, advanced disease stage and increased serum hydroxyperoxide levels, suggesting an increased production of reactive species in women with endometriosis. These data, taken together with

  10. Oxidative stress in patients affected by primary aldosteronism.

    PubMed

    Petramala, Luigi; Pignatelli, Pasquale; Carnevale, Roberto; Zinnamosca, Laura; Marinelli, Cristiano; Settevendemmie, Amina; Concistrè, Antonio; Tonnarini, Gianfranco; De Toma, Giorgio; Violi, Francesco; Letizia, Claudio

    2014-10-01

    Primary aldosteronism, an important form of secondary hypertension, is associated with significant increase of cardiovascular risk (ischaemic heart, cerebrovascular events, arrhythmias) (relative risk 4.6). The specific treatment of primary aldosteronism significantly reduces cardiovascular risk. In addition to high blood pressure values and direct action of aldosterone, new mechanisms such as increased oxidative stress are involved in the development of organ damage, metabolic, endothelial and coagulation complications. The aim of the study was to evaluate parameters of oxidative stress in 38 patients (21 men, 17 women, mean age 53.3 ± 4.7 years) with primary aldosteronism [11 aldosterone-producing adenoma (APA) (4 men, 7 women, mean age 50.2 ± 4.5 years) and 27 idiopathic adrenal hyperplasia (IHA) (17 men, 10 women, mean age 54.5 ± 5.3 years)] at diagnosis and after specific treatment (surgical or pharmacological), with respect to 50 patients with essential hypertension (26 men, 24 women, mean age 49 ± 7.4 years) and 50 healthy individuals (28 men, 22 women, mean age 48.7 ± 4.4 years). Patients with primary aldosteronism showed significant increase of NADPH oxidase (Nox2-dp) plasma levels and urinary isoprostanes (34.9 ± 4.3 μg/dl and 216.3 ± 15.7 ng/mg, respectively; P < 0.05) than essential hypertensive patients (27.1 ± 3.7 μg/dl and 144.8 ± 9.4 ng/mg, respectively; P < 0.05). In APA patients undergoing adrenalectomy, we observed significant reduction of both circulating levels of Nox2-dp (29 ± 2.1  vs. 22,4 ± 1.7 μg/dl; P < 0.05) and urinary levels of isoprostanes (221.1 ± 10.5 vs. 132.6 ± 8.7 ng/mg; P < 0.05). This is the first study showing an increased oxidative stress in primary aldosteronism, characterized by increased serum levels of Nox2-dp and urinary excretion of isoprostanes. After APA removal with laparoscopic adrenalectomy, we found reduction of serum

  11. Starved Escherichia coli preserve reducing power under nitric oxide stress

    SciTech Connect

    Gowers, Glen-Oliver F.; Robinson, Jonathan L.; Brynildsen, Mark P., E-mail: mbrynild@princeton.edu

    2016-07-15

    Nitric oxide (NO) detoxification enzymes, such as NO dioxygenase (NOD) and NO reductase (NOR), are important to the virulence of numerous bacteria. Pathogens use these defense systems to ward off immune-generated NO, and they do so in environments that contain additional stressors, such as reactive oxygen species, nutrient deprivation, and acid stress. NOD and NOR both use reducing equivalents to metabolically deactivate NO, which suggests that nutrient deprivation could negatively impact their functionality. To explore the relationship between NO detoxification and nutrient deprivation, we examined the ability of Escherichia coli to detoxify NO under different levels of carbon source availabilitymore » in aerobic cultures. We observed failure of NO detoxification under both carbon source limitation and starvation, and those failures could have arisen from inabilities to synthesize Hmp (NOD of E. coli) and/or supply it with sufficient NADH (preferred electron donor). We found that when limited quantities of carbon source were provided, NO detoxification failed due to insufficient NADH, whereas starvation prevented Hmp synthesis, which enabled cells to maintain their NADH levels. This maintenance of NADH levels under starvation was confirmed to be dependent on the absence of Hmp. Intriguingly, these data show that under NO stress, carbon-starved E. coli are better positioned with regard to reducing power to cope with other stresses than cells that had consumed an exhaustible amount of carbon. -- Highlights: •Carbon source availability is critical to aerobic E. coli NO detoxification. •Carbon source starvation, under NO stress, preserves intracellular NADH levels. •Preservation of NADH depends on starvation-dependent inhibition of Hmp induction.« less

  12. Phenolic compounds of Triplaris gardneriana can protect cells against oxidative stress and restore oxidative balance.

    PubMed

    de Almeida, Thiago Silva; Neto, José Joaquim Lopes; de Sousa, Nathanna Mateus; Pessoa, Igor Parra; Vieira, Leonardo Rogério; de Medeiros, Jackeline Lima; Boligon, Aline Augusti; Hamers, Astrid R M; Farias, Davi Felipe; Peijnenburg, Ad; Carvalho, Ana Fontenele Urano

    2017-09-01

    This work aimed to add value to an underexploited plant species from Brazil, Triplaris gardneriana. To that, the phenolic compounds profile of its seed ethanolic extract and fractions was examined by HPLC and the antioxidant capacity assessed using chemical assays as well as in vitro cell imaging. Twelve compounds were quantified and classified as either phenolic acids or flavonoids. The fractionation process did not generate fractions with different compositions except for chloroformic fraction, which showed only 6 out of 12 standard compounds used. DPPH assay revealed samples with a concentration-dependent radical scavenging activity, being methanolic fraction the one with the largest activity (SC 50 11.45±0.02μg/mL). Lipid peroxidation assessment, in the presence and absence of stress inducer, showed that particularly the ethanol extract (IC 50 26.75±0.08μg/mL) and the ethyl acetate fraction (IC 50 6.14±0.03μg/mL) could inhibit lipid peroxidation. The ethyl acetate fraction performed best in chelating iron (48% complexation at 1000μg/mL). Cell imaging experiments showed that the ethanolic extract could protect cells against oxidative stress as well as restore the oxidative balance upon stress induction. In conclusion, T. gardneriana seeds showed a promising phenolic compounds profile and antioxidant activity that may be further exploited. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Hepatic oxidative stress in an animal model of sleep apnoea: effects of different duration of exposure.

    PubMed

    Rosa, Darlan P; Martinez, Denis; Picada, Jaqueline N; Semedo, Juliane G; Marroni, Norma P

    2011-07-05

    Repeated apnoea events cause intermittent hypoxia (IH), which alters the function of various systems and produces free radicals and oxidative stress. We investigated hepatic oxidative stress in adult mice subjected to intermittent hypoxia, simulating sleep apnoea. Three groups were submitted to 21 days of IH (IH-21), 35 days of IH (IH-35), or 35 days of sham IH. We assessed the oxidative damage to lipids by TBARS and to DNA by comet assay; hepatic tissue inflammation was assessed in HE-stained slides. Antioxidants were gauged by catalase, superoxide dismutase, glutathione peroxidase activity and by total glutathione. After IH-21, no significant change was observed in hepatic oxidative stress. After IH-35, significant oxidative stress, lipid peroxidation, DNA damage and reduction of endogenous antioxidants were detected. In an animal model of sleep apnoea, intermittent hypoxia causes liver damage due to oxidative stress after 35 days, but not after 21 days.

  14. The Impact of Oxidative Stress on the Bone System in Response to the Space Special Environment

    PubMed Central

    Tian, Ye; Ma, Xiaoli; Yang, Chaofei; Su, Peihong; Yin, Chong

    2017-01-01

    The space special environment mainly includes microgravity, radiation, vacuum and extreme temperature, which seriously threatens an astronaut’s health. Bone loss is one of the most significant alterations in mammalians after long-duration habitation in space. In this review, we summarize the crucial roles of major factors—namely radiation and microgravity—in space in oxidative stress generation in living organisms, and the inhibitory effect of oxidative stress on bone formation. We discussed the possible mechanisms of oxidative stress-induced skeletal involution, and listed some countermeasures that have therapeutic potentials for bone loss via oxidative stress antagonism. Future research for better understanding the oxidative stress caused by space environment and the development of countermeasures against oxidative damage accordingly may facilitate human beings to live more safely in space and explore deeper into the universe. PMID:29023398

  15. The Impact of Oxidative Stress on the Bone System in Response to the Space Special Environment.

    PubMed

    Tian, Ye; Ma, Xiaoli; Yang, Chaofei; Su, Peihong; Yin, Chong; Qian, Ai-Rong

    2017-10-12

    The space special environment mainly includes microgravity, radiation, vacuum and extreme temperature, which seriously threatens an astronaut's health. Bone loss is one of the most significant alterations in mammalians after long-duration habitation in space. In this review, we summarize the crucial roles of major factors-namely radiation and microgravity-in space in oxidative stress generation in living organisms, and the inhibitory effect of oxidative stress on bone formation. We discussed the possible mechanisms of oxidative stress-induced skeletal involution, and listed some countermeasures that have therapeutic potentials for bone loss via oxidative stress antagonism. Future research for better understanding the oxidative stress caused by space environment and the development of countermeasures against oxidative damage accordingly may facilitate human beings to live more safely in space and explore deeper into the universe.

  16. Licochalcone A-Induced Human Bladder Cancer T24 Cells Apoptosis Triggered by Mitochondria Dysfunction and Endoplasmic Reticulum Stress

    PubMed Central

    Yuan, Xuan; Li, Defang; Zhao, Hong; Jiang, Jiangtao; Wang, Penglong; Ma, Xiaoyi; Sun, Xiling; Zheng, Qiusheng

    2013-01-01

    Licochalcone A (LCA), a licorice chalconoid, is considered to be a bioactive agent with chemopreventive potential. This study investigated the mechanisms involved in LCA-induced apoptosis in human bladder cancer T24 cells. LCA significantly inhibited cells proliferation, increased reactive oxygen species (ROS) levels, and caused T24 cells apoptosis. Moreover, LCA induced mitochondrial dysfunction, caspase-3 activation, and poly-ADP-ribose polymerase (PARP) cleavage, which displayed features of mitochondria-dependent apoptotic signals. Besides, exposure of T24 cells to LCA triggered endoplasmic reticulum (ER) stress; as indicated by the enhancement in 78 kDa glucose-regulated protein (GRP 78), growth arrest and DNA damage-inducible gene 153/C/EBP homology protein (GADD153/CHOP) expression, ER stress-dependent apoptosis is caused by the activation of ER-specific caspase-12. All the findings from our study suggest that LCA initiates mitochondrial ROS generation and induces oxidative stress that consequently causes T24 cell apoptosis via the mitochondria-dependent and the ER stress-triggered signaling pathways. PMID:23936805

  17. Serum Levels of Stress Hormones and Oxidative Stress Biomarkers Differ according to Sasang Constitutional Type