Science.gov

Sample records for a-inhibited guanine nucleotide-exchange

  1. Unfolded protein response and cell death after depletion of brefeldin A-inhibited guanine nucleotide-exchange protein GBF1

    PubMed Central

    Citterio, Carmen; Vichi, Alessandro; Pacheco-Rodriguez, Gustavo; Aponte, Angel M.; Moss, Joel; Vaughan, Martha

    2008-01-01

    Guanine nucleotide-exchange factors (GEFs) activate ADP-ribosylation factor (ARF) GTPases that recruit coat proteins to membranes to initiate transport vesicle formation. Three mammalian GEFs are inhibited by brefeldin A (BFA). GBF1, predominantly associated with cis-Golgi membranes, functions early in the secretory pathway, whereas BIG1 and BIG2 act in trans-Golgi or later sites. Perturbation of endoplasmic reticulum (ER) functions can result in accumulation of unfolded or misfolded proteins that causes ER stress and unfolded protein response (UPR), with accumulation of ER stress response element (ERSE) gene products. BFA treatment of cells causes accumulation of proteins in the ER, ER stress, and ultimately apoptosis. To assess involvement of BFA-sensitive GEFs in the damage resulting from prolonged BFA treatment, HepG2 cells were selectively depleted of BIG1, BIG2, or GBF1 by using specific siRNA. Only GBF1 siRNA dramatically slowed cell growth, led to cell-cycle arrest in G0/G1 phase, and caused dispersion of Golgi markers β-COP and GM130, whereas ER structure appeared intact. GBF1 depletion also significantly increased levels of ER proteins calreticulin and protein disulfide isomerase (PDI). Proteomic analysis identified ER chaperones involved in the UPR that were significantly increased in amounts in GBF1-depleted cells. Upon ER stress, transcription factor ATF6 translocates from the ER to Golgi, where it is sequentially cleaved by site 1 and site 2 proteases, S1P and S2P, to a 50-kDa form that activates transcription of ERSE genes. Depletion of GBF1, but not BIG1 or BIG2, induced relocation of S2P from Golgi to ER with proteolysis of ATF6 followed by up-regulation of ER chaperones, mimicking a UPR response. PMID:18287014

  2. Quantitative Analysis of Guanine Nucleotide Exchange Factors (GEFs) as Enzymes

    PubMed Central

    Randazzo, Paul A; Jian, Xiaoying; Chen, Pei-Wen; Zhai, Peng; Soubias, Olivier; Northup, John K

    2014-01-01

    The proteins that possess guanine nucleotide exchange factor (GEF) activity, which include about ~800 G protein coupled receptors (GPCRs),1 15 Arf GEFs,2 81 Rho GEFs,3 8 Ras GEFs,4 and others for other families of GTPases,5 catalyze the exchange of GTP for GDP on all regulatory guanine nucleotide binding proteins. Despite their importance as catalysts, relatively few exchange factors (we are aware of only eight for ras superfamily members) have been rigorously characterized kinetically.5–13 In some cases, kinetic analysis has been simplistic leading to erroneous conclusions about mechanism (as discussed in a recent review14). In this paper, we compare two approaches for determining the kinetic properties of exchange factors: (i) examining individual equilibria, and; (ii) analyzing the exchange factors as enzymes. Each approach, when thoughtfully used,14,15 provides important mechanistic information about the exchange factors. The analysis as enzymes is described in further detail. With the focus on the production of the biologically relevant guanine nucleotide binding protein complexed with GTP (G•GTP), we believe it is conceptually simpler to connect the kinetic properties to cellular effects. Further, the experiments are often more tractable than those used to analyze the equilibrium system and, therefore, more widely accessible to scientists interested in the function of exchange factors. PMID:25332840

  3. Snapshots form a big picture of guanine nucleotide exchange.

    PubMed

    Rittinger, Katrin

    2009-10-06

    Small guanosine triphosphatases (GTPases) regulate a vast array of cellular functions. Their highly controlled activation, which is catalyzed by guanine nucleotide exchange factors (GEFs), links input signals emanating from various events such as stimulation of cell surface receptors to a similarly diverse range of downstream responses. Due to the central role of GEFs in the regulation of GTPase-mediated signaling processes, their mode of action has been intensively investigated. A new structural study on the DOCK family of Rho family-specific GEFs now uncovers an unusual variation in the way in which GEFs can regulate the nucleotide status of GTPases and provides the most complete picture of a GDP-GTP exchange cycle to date.

  4. Activation of G Proteins by Guanine Nucleotide Exchange Factors Relies on GTPase Activity

    PubMed Central

    Stanley, Rob J.; Thomas, Geraint M. H.

    2016-01-01

    G proteins are an important family of signalling molecules controlled by guanine nucleotide exchange and GTPase activity in what is commonly called an ‘activation/inactivation cycle’. The molecular mechanism by which guanine nucleotide exchange factors (GEFs) catalyse the activation of monomeric G proteins is well-established, however the complete reversibility of this mechanism is often overlooked. Here, we use a theoretical approach to prove that GEFs are unable to positively control G protein systems at steady-state in the absence of GTPase activity. Instead, positive regulation of G proteins must be seen as a product of the competition between guanine nucleotide exchange and GTPase activity—emphasising a central role for GTPase activity beyond merely signal termination. We conclude that a more accurate description of the regulation of G proteins via these processes is as a ‘balance/imbalance’ mechanism. This result has implications for the understanding of intracellular signalling processes, and for experimental strategies that rely on modulating G protein systems. PMID:26986850

  5. Distinct Subclasses of Small GTPases Interact with Guanine Nucleotide Exchange Factors in a Similar Manner

    PubMed Central

    Day, Gwo-Jen; Mosteller, Raymond D.; Broek, Daniel

    1998-01-01

    The Ras-related GTPases are small, 20- to 25-kDa proteins which cycle between an inactive GDP-bound form and an active GTP-bound state. The Ras superfamily includes the Ras, Rho, Ran, Arf, and Rab/YPT1 families, each of which controls distinct cellular functions. The crystal structures of Ras, Rac, Arf, and Ran reveal a nearly superimposible structure surrounding the GTP-binding pocket, and it is generally presumed that the Rab/YPT1 family shares this core structure. The Ras, Rac, Ran, Arf, and Rab/YPT1 families are activated by interaction with family-specific guanine nucleotide exchange factors (GEFs). The structural determinants of GTPases required for interaction with family-specific GEFs have begun to emerge. We sought to determine the sites on YPT1 which interact with GEFs. We found that mutations of YPT1 at position 42, 43, or 49 (effector loop; switch I), position 69, 71, 73, or 75 (switch II), and position 107, 109, or 115 (alpha-helix 3–loop 7 [α3-L7]) are intragenic suppressors of dominant interfering YPT1 mutant N22 (YPT1-N22), suggesting these mutations prevent YPT1-N22 from binding to and sequestering an endogenous GEF. Mutations at these positions prevent interaction with the DSS4 GEF in vitro. Mutations in the switch II and α3-L7 regions do not prevent downstream signaling in yeast when combined with a GTPase-defective (activating) mutation. Together, these results show that the YPT1 GTPase interacts with GEFs in a manner reminiscent of that for Ras and Arf in that these GTPases use divergent sequences corresponding to the switch I and II regions and α3-L7 of Ras to interact with family-specific GEFs. This finding suggests that GTPases of the Ras superfamily each may share common features of GEF-mediated guanine nucleotide exchange even though the GEFs for each of the Ras subfamilies appear evolutionarily unrelated. PMID:9819430

  6. Phosphorylation-dependent Regulation of Connecdenn/DENND1 Guanine Nucleotide Exchange Factors*

    PubMed Central

    Kulasekaran, Gopinath; Nossova, Nadya; Marat, Andrea L.; Lund, Ingrid; Cremer, Christopher; Ioannou, Maria S.; McPherson, Peter S.

    2015-01-01

    Connecdenn 1/2 are DENN (differentially expressed in normal and neoplastic cells) domain-bearing proteins that function as GEFs (guanine nucleotide exchange factors) for the small GTPase Rab35. Disruption of connecdenn/Rab35 function leads to defects in the recycling of multiple cargo proteins from endosomes with altered cell function, yet the regulation of connecdenn GEF activity is unexplored. We now demonstrate that connecdenn 1/2 are autoinhibited such that the purified, full-length proteins have significantly less Rab35 binding and GEF activity than the isolated DENN domain. Both proteins are phosphorylated with prominent phosphorylation sites between residues 500 and 600 of connecdenn 1. A large scale proteomics screen revealed that connecdenn 1 is phosphorylated at residues Ser-536 and Ser-538 in an Akt-dependent manner in response to insulin stimulation of adipocytes. Interestingly, we find that an Akt inhibitor reduces connecdenn 1 interaction with Rab35 after insulin treatment of adipocytes. Remarkably, a peptide flanking Ser-536/Ser-538 binds the DENN domain of connecdenn 1, whereas a phosphomimetic peptide does not. Moreover, connecdenn 1 interacts with 14-3-3 proteins, and this interaction is also disrupted by Akt inhibition and by mutation of Ser-536/Ser-538. We propose that Akt phosphorylation of connecdenn 1 downstream of insulin activation regulates connecdenn 1 function through an intramolecular interaction. PMID:26055712

  7. The connecdenn family, Rab35 guanine nucleotide exchange factors interfacing with the clathrin machinery.

    PubMed

    Marat, Andrea L; McPherson, Peter S

    2010-04-02

    Rabs constitute the largest family of monomeric GTPases, yet for the majority of Rabs relatively little is known about their activation and recruitment to vesicle-trafficking pathways. We recently identified connecdenn (DENND1A), which contains an N-terminal DENN (differentially expressed in neoplastic versus normal cells) domain, a common and evolutionarily ancient protein module. Through its DENN domain, connecdenn functions enzymatically as a guanine-nucleotide exchange factor (GEF) for Rab35. Here we identify two additional connecdenn family members and demonstrate that all connecdenns function as Rab35 GEFs, albeit with different levels of activity. The DENN domain of connecdenn 1 and 2 binds Rab35, whereas connecdenn 3 does not, indicating that Rab35 binding and activation are separable functions. Through their highly divergent C termini, each of the connecdenns binds to clathrin and to the clathrin adaptor AP-2. Interestingly, all three connecdenns use different mechanisms to bind AP-2. Characterization of connecdenn 2 reveals binding to the beta2-ear of AP-2 on a site that overlaps with that used by the autosomal recessive hypercholesterolemia protein and betaarrestin, although the sequence used by connecdenn 2 is unique. Loss of connecdenn 2 function through small interference RNA knockdown results in an enlargement of early endosomes, similar to what is observed upon loss of Rab35 activity. Our studies reveal connecdenn DENN domains as generalized GEFs for Rab35 and identify a new AP-2-binding motif, demonstrating a complex link between the clathrin machinery and Rab35 activation.

  8. Phosphorylation-dependent Regulation of Connecdenn/DENND1 Guanine Nucleotide Exchange Factors.

    PubMed

    Kulasekaran, Gopinath; Nossova, Nadya; Marat, Andrea L; Lund, Ingrid; Cremer, Christopher; Ioannou, Maria S; McPherson, Peter S

    2015-07-17

    Connecdenn 1/2 are DENN (differentially expressed in normal and neoplastic cells) domain-bearing proteins that function as GEFs (guanine nucleotide exchange factors) for the small GTPase Rab35. Disruption of connecdenn/Rab35 function leads to defects in the recycling of multiple cargo proteins from endosomes with altered cell function, yet the regulation of connecdenn GEF activity is unexplored. We now demonstrate that connecdenn 1/2 are autoinhibited such that the purified, full-length proteins have significantly less Rab35 binding and GEF activity than the isolated DENN domain. Both proteins are phosphorylated with prominent phosphorylation sites between residues 500 and 600 of connecdenn 1. A large scale proteomics screen revealed that connecdenn 1 is phosphorylated at residues Ser-536 and Ser-538 in an Akt-dependent manner in response to insulin stimulation of adipocytes. Interestingly, we find that an Akt inhibitor reduces connecdenn 1 interaction with Rab35 after insulin treatment of adipocytes. Remarkably, a peptide flanking Ser-536/Ser-538 binds the DENN domain of connecdenn 1, whereas a phosphomimetic peptide does not. Moreover, connecdenn 1 interacts with 14-3-3 proteins, and this interaction is also disrupted by Akt inhibition and by mutation of Ser-536/Ser-538. We propose that Akt phosphorylation of connecdenn 1 downstream of insulin activation regulates connecdenn 1 function through an intramolecular interaction. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Diverse roles of guanine nucleotide exchange factors in regulating collective cell migration

    PubMed Central

    Tseng, Yun-Yu; Rabadán, M. Angeles; Krishna, Shefali; Hall, Alan

    2017-01-01

    Efficient collective migration depends on a balance between contractility and cytoskeletal rearrangements, adhesion, and mechanical cell–cell communication, all controlled by GTPases of the RHO family. By comprehensive screening of guanine nucleotide exchange factors (GEFs) in human bronchial epithelial cell monolayers, we identified GEFs that are required for collective migration at large, such as SOS1 and β-PIX, and RHOA GEFs that are implicated in intercellular communication. Down-regulation of the latter GEFs differentially enhanced front-to-back propagation of guidance cues through the monolayer and was mirrored by down-regulation of RHOA expression and myosin II activity. Phenotype-based clustering of knockdown behaviors identified RHOA-ARHGEF18 and ARHGEF3-ARHGEF28-ARHGEF11 clusters, indicating that the latter may signal through other RHO-family GTPases. Indeed, knockdown of RHOC produced an intermediate between the two phenotypes. We conclude that for effective collective migration, the RHOA-GEFs → RHOA/C → actomyosin pathways must be optimally tuned to compromise between generation of motility forces and restriction of intercellular communication. PMID:28512143

  10. How not to do kinetics: examples involving GTPases and guanine nucleotide exchange factors.

    PubMed

    Goody, Roger S

    2014-01-01

    Guanine nucleotide exchange factors (GEFs) are crucial regulators of the action of GTPases in signal transduction and cellular regulation. Although their basic mechanism of action has been apparent for almost 20 years, there are still misconceptions concerning their properties, and these are confounded by superficial or incorrect interpretation of experimental results in individual cases. Here, an example is described in which an incorrect mechanism was derived because of an inadequate analysis of kinetic results. In a second example, a case is discussed where certain GTP analogs were erroneously described as being able to function as low molecular mass GEFs. In both cases, a lack of distinction between rates, rate constants, and apparent rate constants, together with a disregard of relative signal amplitudes, led to the misinterpretations. In a final example, it is shown how the lack of an appropriate kinetic investigation led to the false conclusion that a secreted protein from Legionella pneumophila can act not only as a GEF towards eukaryotic Rab1 but also as a factor that is able to actively dissociate the stable complex between Rab1 and GDP dissociation inhibitor. © 2013 FEBS.

  11. Diverse roles of guanine nucleotide exchange factors in regulating collective cell migration.

    PubMed

    Zaritsky, Assaf; Tseng, Yun-Yu; Rabadán, M Angeles; Krishna, Shefali; Overholtzer, Michael; Danuser, Gaudenz; Hall, Alan

    2017-06-05

    Efficient collective migration depends on a balance between contractility and cytoskeletal rearrangements, adhesion, and mechanical cell-cell communication, all controlled by GTPases of the RHO family. By comprehensive screening of guanine nucleotide exchange factors (GEFs) in human bronchial epithelial cell monolayers, we identified GEFs that are required for collective migration at large, such as SOS1 and β-PIX, and RHOA GEFs that are implicated in intercellular communication. Down-regulation of the latter GEFs differentially enhanced front-to-back propagation of guidance cues through the monolayer and was mirrored by down-regulation of RHOA expression and myosin II activity. Phenotype-based clustering of knockdown behaviors identified RHOA-ARHGEF18 and ARHGEF3-ARHGEF28-ARHGEF11 clusters, indicating that the latter may signal through other RHO-family GTPases. Indeed, knockdown of RHOC produced an intermediate between the two phenotypes. We conclude that for effective collective migration, the RHOA-GEFs → RHOA/C → actomyosin pathways must be optimally tuned to compromise between generation of motility forces and restriction of intercellular communication. © 2017 Zaritsky et al.

  12. Proteomic analysis of Rac1 signaling regulation by guanine nucleotide exchange factors

    PubMed Central

    Marei, Hadir; Carpy, Alejandro; Macek, Boris; Malliri, Angeliki

    2016-01-01

    ABSTRACT The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects. PMID:27152953

  13. Proteomic analysis of Rac1 signaling regulation by guanine nucleotide exchange factors.

    PubMed

    Marei, Hadir; Carpy, Alejandro; Macek, Boris; Malliri, Angeliki

    2016-08-02

    The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects.

  14. Rabin8 suppresses autophagosome formation independently of its guanine nucleotide-exchange activity towards Rab8.

    PubMed

    Amagai, Yuta; Itoh, Takashi; Fukuda, Mitsunori; Mizuno, Kensaku

    2015-08-01

    Macroautophagy is a bulk degradation system conserved from yeast to human. In budding yeast, the guanine nucleotide-exchange factor (GEF) Sec2p is required for autophagy. We examined the role of Rabin8 (a mammalian ortholog of Sec2p) with Rab8-GEF activity in autophagy in mammalian cells. Unexpectedly, depletion of Rabin8 promoted nutrient starvation-induced autophagosome formation, indicating that Rabin8 suppresses autophagosome formation. Depletion of Rab8 did not affect autophagosome formation, and expression of a Rabin8 GEF-domain mutant reverted the Rabin8 depletion-induced increase in autophagosomes, indicating that Rabin8 suppresses autophagosome formation independently of its Rab8-GEF activity. Nuclear Dbf2-related (NDR) kinases phosphorylate Rabin8 at Ser-272. The non-phosphorylatable Rabin8-S272A mutant did not revert the Rabin8 depletion-induced increase in autophagosomes, suggesting that Ser-272 phosphorylation of Rabin8 is involved in its suppressive function in autophagy. Depletion of NDR kinases enhanced autophagosome formation and reduced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) activity, suggesting that NDR kinases suppress autophagosome formation by increasing mTORC1 activity, in addition to phosphorylating Rabin8. Expression of a C-terminal fragment of Rabin8, but not that of Sec2p, suppressed nutrient starvation-induced autophagosome formation. Thus, contrary to the stimulative role of yeast Sec2p, Rabin8 has a suppressive function in autophagy in mammalian cells through its non-conserved C-terminal region. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  15. Activation of JNK by Epac is independent of its activity as a Rap guanine nucleotide exchanger.

    PubMed

    Hochbaum, Daniel; Tanos, Tamara; Ribeiro-Neto, Fernando; Altschuler, Daniel; Coso, Omar A

    2003-09-05

    Guanine nucleotide exchange factors (GEFs) and their associated GTP-binding proteins (G-proteins) are key regulatory elements in the signal transduction machinery that relays information from the extracellular environment into specific intracellular responses. Among them, the MAPK cascades represent ubiquitous downstream effector pathways. We have previously described that, analogous to the Ras-dependent activation of the Erk-1/2 pathway, members of the Rho family of small G-proteins activate the JNK cascade when GTP is loaded by their corresponding GEFs. Searching for novel regulators of JNK activity we have identified Epac (exchange protein activated by cAMP) as a strong activator of JNK-1. Epac is a member of a growing family of GEFs that specifically display exchange activity on the Rap subfamily of Ras small G-proteins. We report here that while Epac activates the JNK severalfold, a constitutively active (G12V) mutant of Rap1b does not, suggesting that Rap-GTP is not sufficient to transduce Epac-dependent JNK activation. Moreover, Epac signaling to the JNKs was not blocked by inactivation of endogenous Rap, suggesting that Rap activation is not necessary for this response. Consistent with these observations, domain deletion mutant analysis shows that the catalytic GEF domain is dispensable for Epac-mediated activation of JNK. These studies identified a region overlapping the Ras exchange motif domain as critical for JNK activation. Consistent with this, an isolated Ras exchange motif domain from Epac is sufficient to activate JNK. We conclude that Epac signals to the JNK cascade through a new mechanism that does not involve its canonical catalytic action, i.e. Rap-specific GDP/GTP exchange. This represents not only a novel way to activate the JNKs but also a yet undescribed mechanism of downstream signaling by Epac.

  16. The Connecdenn Family, Rab35 Guanine Nucleotide Exchange Factors Interfacing with the Clathrin Machinery*

    PubMed Central

    Marat, Andrea L.; McPherson, Peter S.

    2010-01-01

    Rabs constitute the largest family of monomeric GTPases, yet for the majority of Rabs relatively little is known about their activation and recruitment to vesicle-trafficking pathways. We recently identified connecdenn (DENND1A), which contains an N-terminal DENN (differentially expressed in neoplastic versus normal cells) domain, a common and evolutionarily ancient protein module. Through its DENN domain, connecdenn functions enzymatically as a guanine-nucleotide exchange factor (GEF) for Rab35. Here we identify two additional connecdenn family members and demonstrate that all connecdenns function as Rab35 GEFs, albeit with different levels of activity. The DENN domain of connecdenn 1 and 2 binds Rab35, whereas connecdenn 3 does not, indicating that Rab35 binding and activation are separable functions. Through their highly divergent C termini, each of the connecdenns binds to clathrin and to the clathrin adaptor AP-2. Interestingly, all three connecdenns use different mechanisms to bind AP-2. Characterization of connecdenn 2 reveals binding to the β2-ear of AP-2 on a site that overlaps with that used by the autosomal recessive hypercholesterolemia protein and βarrestin, although the sequence used by connecdenn 2 is unique. Loss of connecdenn 2 function through small interference RNA knockdown results in an enlargement of early endosomes, similar to what is observed upon loss of Rab35 activity. Our studies reveal connecdenn DENN domains as generalized GEFs for Rab35 and identify a new AP-2-binding motif, demonstrating a complex link between the clathrin machinery and Rab35 activation. PMID:20154091

  17. The guanine nucleotide exchange factor Vav3 regulates differentiation of progenitor cells in the developing mouse retina.

    PubMed

    Luft, Veronika; Reinhard, Jacqueline; Shibuya, Masabumi; Fischer, Klaus D; Faissner, Andreas

    2015-02-01

    The seven main cell types in the mammalian retina arise from multipotent retinal progenitor cells, a process that is tightly regulated by intrinsic and extrinsic signals. However, the molecular mechanisms that control proliferation, differentiation and cell-fate decisions of retinal progenitor cells are not fully understood yet. Here, we report that the guanine nucleotide exchange factor Vav3, a regulator of Rho-GTPases, is involved in retinal development. We demonstrate that Vav3 is expressed in the mouse retina during the embryonic period. In order to study the role of Vav3 in the developing retina, we generate Vav3-deficient mice. The loss of Vav3 results in an accelerated differentiation of retinal ganglion cells and cone photoreceptors during early and late embryonic development. We provide evidence that more retinal progenitor cells express the late progenitor marker Sox9 in Vav3-deficient mice than in wild-types. This premature differentiation is compensated during the postnatal period and late-born cell types such as bipolar cells and Müller glia display normal numbers. Taken together, our data imply that Vav3 is a regulator of retinal progenitor cell differentiation, thus highlighting a novel role for guanine nucleotide exchange factors in retinogenesis.

  18. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration

    PubMed Central

    Marei, Hadir; Carpy, Alejandro; Woroniuk, Anna; Vennin, Claire; White, Gavin; Timpson, Paul; Macek, Boris; Malliri, Angeliki

    2016-01-01

    The small GTPase Rac1 has been implicated in the formation and dissemination of tumours. Upon activation by guanine nucleotide exchange factors (GEFs), Rac1 associates with a variety of proteins in the cell thereby regulating various functions, including cell migration. However, activation of Rac1 can lead to opposing migratory phenotypes raising the possibility of exacerbating tumour progression when targeting Rac1 in a clinical setting. This calls for the identification of factors that influence Rac1-driven cell motility. Here we show that Tiam1 and P-Rex1, two Rac GEFs, promote Rac1 anti- and pro-migratory signalling cascades, respectively, through regulating the Rac1 interactome. In particular, we demonstrate that P-Rex1 stimulates migration through enhancing the interaction between Rac1 and the actin-remodelling protein flightless-1 homologue, to modulate cell contraction in a RhoA-ROCK-independent manner. PMID:26887924

  19. Guanine nucleotide exchange-independent activation of Gs protein by beta2-adrenoceptor.

    PubMed

    Ugur, Ozlem; Oner, Sükrü Sadik; Molinari, Paola; Ambrosio, Caterina; Sayar, Kemal; Onaran, H Ongun

    2005-09-01

    beta2-adrenoceptor-mediated activation of Gs and adenylyl cyclase or other receptor-mediated G protein activations is believed to occur by receptor-catalyzed replacement of GDP with GTP on the alpha-subunit of the G protein. Here we showed that a beta2-adrenoceptor-Gs system, heterologously expressed in cyc- or human embryonic kidney (HEK)-293 cells, can be activated in the presence of GDP or its phosphorylation-resistant analog, guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS). The potency and maximal ability of GDP to activate Gs and adenylyl cyclase were identical to those of GTP. GDP-mediated activation of adenylyl cyclase, similar to that mediated by GTP, was concentration-dependent, required high magnesium concentrations, was inhibited by inverse agonists, and was correlated with the efficacy of receptor ligands used to stimulate the receptor. UDP did not block the GDP-mediated activation, although it completely blocked the formation of a small amount of GTP ( approximately 5% GDP) from GDP. Moreover, the activation of Gs in the presence of GDP was insensitive to cholera toxin treatment of the cells, whereas that observed in the presence of GTP was amplified by the treatment, which showed that the activation observed in the presence of GDP was not mediated by GTP. Therefore, we concluded that GDP itself could mediate beta-adrenoceptor-induced activation of Gs-adenylyl cyclase system as much as GTP. We discuss the results in the context of the current paradigm of receptor-mediated G protein activation and propose an additional mode of activation for beta2-adrenoceptor-G(s) adenylyl cyclase system where nucleotide exchange is not necessary and GDP and GTP play identical roles in receptor-induced Gs protein activation.

  20. Regulation of the G-protein Regulatory-Gαi Signaling Complex by Nonreceptor Guanine Nucleotide Exchange Factors*

    PubMed Central

    Oner, Sukru Sadik; Maher, Ellen M.; Gabay, Meital; Tall, Gregory G.; Blumer, Joe B.; Lanier, Stephen M.

    2013-01-01

    Group II activators of G-protein signaling (AGS) serve as binding partners for Gαi/o/t via one or more G-protein regulatory (GPR) motifs. GPR-Gα signaling modules may be differentially regulated by cell surface receptors or by different nonreceptor guanine nucleotide exchange factors. We determined the effect of the nonreceptor guanine nucleotide exchange factors AGS1, GIV/Girdin, and Ric-8A on the interaction of two distinct GPR proteins, AGS3 and AGS4, with Gαil in the intact cell by bioluminescence resonance energy transfer (BRET) in human embryonic kidney 293 cells. AGS3-Rluc-Gαi1-YFP and AGS4-Rluc-Gαi1-YFP BRET were regulated by Ric-8A but not by Gα-interacting vesicle-associated protein (GIV) or AGS1. The Ric-8A regulation was biphasic and dependent upon the amount of Ric-8A and Gαi1-YFP. The inhibitory regulation of GPR-Gαi1 BRET by Ric-8A was blocked by pertussis toxin. The enhancement of GPR-Gαi1 BRET observed with Ric-8A was further augmented by pertussis toxin treatment. The regulation of GPR-Gαi interaction by Ric-8A was not altered by RGS4. AGS3-Rluc-Gαi1-YFP and AGS4-Rluc-G-Gαi1-YFP BRET were observed in both pellet and supernatant subcellular fractions and were regulated by Ric-8A in both fractions. The regulation of the GPR-Gαi1 complex by Ric-8A, as well as the ability of Ric-8A to restore Gα expression in Ric8A−/− mouse embryonic stem cells, involved two helical domains at the carboxyl terminus of Ric-8A. These data indicate a dynamic interaction between GPR proteins, Gαi1 and Ric-8A, in the cell that influences subcellular localization of the three proteins and regulates complex formation. PMID:23212907

  1. Regulation of the G-protein regulatory-Gαi signaling complex by nonreceptor guanine nucleotide exchange factors.

    PubMed

    Oner, Sukru Sadik; Maher, Ellen M; Gabay, Meital; Tall, Gregory G; Blumer, Joe B; Lanier, Stephen M

    2013-02-01

    Group II activators of G-protein signaling (AGS) serve as binding partners for Gα(i/o/t) via one or more G-protein regulatory (GPR) motifs. GPR-Gα signaling modules may be differentially regulated by cell surface receptors or by different nonreceptor guanine nucleotide exchange factors. We determined the effect of the nonreceptor guanine nucleotide exchange factors AGS1, GIV/Girdin, and Ric-8A on the interaction of two distinct GPR proteins, AGS3 and AGS4, with Gα(il) in the intact cell by bioluminescence resonance energy transfer (BRET) in human embryonic kidney 293 cells. AGS3-Rluc-Gα(i1)-YFP and AGS4-Rluc-Gα(i1)-YFP BRET were regulated by Ric-8A but not by Gα-interacting vesicle-associated protein (GIV) or AGS1. The Ric-8A regulation was biphasic and dependent upon the amount of Ric-8A and Gα(i1)-YFP. The inhibitory regulation of GPR-Gα(i1) BRET by Ric-8A was blocked by pertussis toxin. The enhancement of GPR-Gα(i1) BRET observed with Ric-8A was further augmented by pertussis toxin treatment. The regulation of GPR-Gα(i) interaction by Ric-8A was not altered by RGS4. AGS3-Rluc-Gα(i1)-YFP and AGS4-Rluc-G-Gα(i1)-YFP BRET were observed in both pellet and supernatant subcellular fractions and were regulated by Ric-8A in both fractions. The regulation of the GPR-Gα(i1) complex by Ric-8A, as well as the ability of Ric-8A to restore Gα expression in Ric8A(-/-) mouse embryonic stem cells, involved two helical domains at the carboxyl terminus of Ric-8A. These data indicate a dynamic interaction between GPR proteins, Gα(i1) and Ric-8A, in the cell that influences subcellular localization of the three proteins and regulates complex formation.

  2. Protein Kinase A (PKA) Type I Interacts with P-Rex1, a Rac Guanine Nucleotide Exchange Factor

    PubMed Central

    Chávez-Vargas, Lydia; Adame-García, Sendi Rafael; Cervantes-Villagrana, Rodolfo Daniel; Castillo-Kauil, Alejandro; Bruystens, Jessica G. H.; Fukuhara, Shigetomo; Taylor, Susan S.; Mochizuki, Naoki; Reyes-Cruz, Guadalupe; Vázquez-Prado, José

    2016-01-01

    Morphology of migrating cells is regulated by Rho GTPases and fine-tuned by protein interactions and phosphorylation. PKA affects cell migration potentially through spatiotemporal interactions with regulators of Rho GTPases. Here we show that the endogenous regulatory (R) subunit of type I PKA interacts with P-Rex1, a Rac guanine nucleotide exchange factor that integrates chemotactic signals. Type I PKA holoenzyme interacts with P-Rex1 PDZ domains via the CNB B domain of RIα, which when expressed by itself facilitates endothelial cell migration. P-Rex1 activation localizes PKA to the cell periphery, whereas stimulation of PKA phosphorylates P-Rex1 and prevents its activation in cells responding to SDF-1 (stromal cell-derived factor 1). The P-Rex1 DEP1 domain is phosphorylated at Ser-436, which inhibits the DH-PH catalytic cassette by direct interaction. In addition, the P-Rex1 C terminus is indirectly targeted by PKA, promoting inhibitory interactions independently of the DEP1-PDZ2 region. A P-Rex1 S436A mutant construct shows increased RacGEF activity and prevents the inhibitory effect of forskolin on sphingosine 1-phosphate-dependent endothelial cell migration. Altogether, these results support the idea that P-Rex1 contributes to the spatiotemporal localization of type I PKA, which tightly regulates this guanine exchange factor by a multistep mechanism, initiated by interaction with the PDZ domains of P-Rex1 followed by direct phosphorylation at the first DEP domain and putatively indirect regulation of the C terminus, thus promoting inhibitory intramolecular interactions. This reciprocal regulation between PKA and P-Rex1 might represent a key node of integration by which chemotactic signaling is fine-tuned by PKA. PMID:26797121

  3. A High-Throughput Assay for Rho Guanine Nucleotide Exchange Factors Based on the Transcreener GDP Assay.

    PubMed

    Reichman, Melvin; Schabdach, Amanda; Kumar, Meera; Zielinski, Tom; Donover, Preston S; Laury-Kleintop, Lisa D; Lowery, Robert G

    2015-12-01

    Ras homologous (Rho) family GTPases act as molecular switches controlling cell growth, movement, and gene expression by cycling between inactive guanosine diphosphate (GDP)- and active guanosine triphosphate (GTP)-bound conformations. Guanine nucleotide exchange factors (GEFs) positively regulate Rho GTPases by accelerating GDP dissociation to allow formation of the active, GTP-bound complex. Rho proteins are directly involved in cancer pathways, especially cell migration and invasion, and inhibiting GEFs holds potential as a therapeutic strategy to diminish Rho-dependent oncogenesis. Methods for measuring GEF activity suitable for high-throughput screening (HTS) are limited. We developed a simple, generic biochemical assay method for measuring GEF activity based on the fact that GDP dissociation is generally the rate-limiting step in the Rho GTPase catalytic cycle, and thus addition of a GEF causes an increase in steady-state GTPase activity. We used the Transcreener GDP Assay, which relies on selective immunodetection of GDP, to measure the GEF-dependent stimulation of steady-state GTP hydrolysis by small GTPases using Dbs (Dbl's big sister) as a GEF for Cdc42, RhoA, and RhoB. The assay is well suited for HTS, with a homogenous format and far red fluorescence polarization (FP) readout, and it should be broadly applicable to diverse Rho GEF/GTPase pairs. © 2015 Society for Laboratory Automation and Screening.

  4. The guanine nucleotide exchange factors Sec2 and PRONE: candidate synapomorphies for the Opisthokonta and the Archaeplastida.

    PubMed

    Elias, Marek

    2008-08-01

    Although recent multigene phylogenetic analyses support close relationship of Metazoa and Fungi (the eukaryotic supergroup Opisthokonta) and monophyly of eukaryotes with the primary plastid, that is, Chloroplastida, Rhodophyta, and Glaucophyta (the supergroup Archaeplastida or Plantae), some authors still challenge this scheme. I found that 2 particular types of guanine nucleotide exchange factors (GEFs, i.e., cofactors of GTPases) might provide a new piece of evidence to resolve this controversy. An exhaustive analysis of available sequence data revealed that Sec2-related proteins, known to serve as GEF for exocytic GTPases of the Rab8/Sec4 subfamily, are restricted to opisthokonts, whereas proteins with the PRONE domain, recently described as novel plant-specific GEFs for RHO family GTPases, occur only in Chloroplastida and Rhodophyta. The results thus point to possible evolutionary innovations in the exocytic apparatus of the ancestral opisthokonts and reveal the probably first plastid-independent trait (i.e., a unique mode of RHO GTPase regulation) exclusive for Chloroplastida + Rhodophyta, further supporting monophyly of these 2 groups.

  5. Mammalian Mon2/Ysl2 regulates endosome-to-Golgi trafficking but possesses no guanine nucleotide exchange activity toward Arl1 GTPase

    NASA Astrophysics Data System (ADS)

    Mahajan, Divyanshu; Boh, Boon Kim; Zhou, Yan; Chen, Li; Cornvik, Tobias Carl; Hong, Wanjin; Lu, Lei

    2013-11-01

    Arl1 is a member of Arf family small GTPases that is essential for the organization and function of Golgi complex. Mon2/Ysl2, which shares significant homology with Sec7 family Arf guanine nucleotide exchange factors, was poorly characterized in mammalian cells. Here, we report the first in depth characterization of mammalian Mon2. We found that Mon2 localized to trans-Golgi network which was dependent on both its N and C termini. The depletion of Mon2 did not affect the Golgi localized or cellular active form of Arl1. Furthermore, our in vitro assay demonstrated that recombinant Mon2 did not promote guanine nucleotide exchange of Arl1. Therefore, our results suggest that Mon2 could be neither necessary nor sufficient for the guanine nucleotide exchange of Arl1. We demonstrated that Mon2 was involved in endosome-to-Golgi trafficking as its depletion accelerated the delivery of furin and CI-M6PR to Golgi after endocytosis.

  6. Overexpression of GEFT, a Rho family guanine nucleotide exchange factor, predicts poor prognosis in patients with rhabdomyosarcoma.

    PubMed

    Sun, Chao; Liu, Chunxia; Li, Shugang; Li, Hongan; Wang, Yuanyuan; Xie, Yuwen; Li, Bingcheng; Cui, Xiaobin; Chen, Yunzhao; Zhang, Wenjie; Li, Feng

    2014-01-01

    Rhabdomyosarcoma (RMS) is one of the most common soft-tissue sarcomas in children and adolescents with poor prognosis. Yet, there is lack of effective prognostic biomarkers for RMS. The present study, therefore, aimed to explore potential biomarkers for RMS based on our previous findings using array comparative genomic hybridization. We investigated guanine nucleotide exchange factor, GEFT, at expression level in 45 RMS patients and 36 normal striated muscle controls using immunohistochemistry using tissue microarrays. The expression rate of GEFT in RMS samples (42/45, 93.33%) was significantly higher (P<0.05) than that in normal controls (5/36, 13.89%). Moreover, the overexpression rate of GEFT in RMS (31/45, 68.89%) was also significantly higher (P<0.05) than that in normal controls (0/36, 0.00%). Increased expression of GEFT correlated significantly with advanced disease stages (stages III/IV) (P=0.001), lymph node metastasis (P=0.019), and distant metastasis (P=0.004), respectively, in RMS patients. In addition, RMS patients having overexpressed GEFT experienced worse overall survival (OS) than those having low levels of GEFT (P=0.001). GEFT overexpression was determined to be an independent prognostic factor for poor OS in RMS patients (hazard ratio: 3.491, 95% confidence interval: 1.121-10.871, P=0.004). In conclusion, these observations provide the first evidence of GEFT overexpression in RMS and its correlations with disease aggressiveness and metastasis. These findings suggest that GEFT may serve as a promising biomarker predicting poor prognosis in RMS patients, thus implying its potential as a therapeutic target.

  7. The Tiam1 guanine nucleotide exchange factor is auto-inhibited by its pleckstrin homology coiled-coil extension domain.

    PubMed

    Xu, Zhen; Gakhar, Lokesh; Bain, Fletcher E; Spies, Maria; Fuentes, Ernesto J

    2017-10-27

    T-cell lymphoma invasion and metastasis 1 (Tiam1) is a Dbl-family guanine nucleotide exchange factor (GEF) that specifically activates the Rho-family GTPase Rac1 in response to upstream signals, thereby regulating cellular processes including cell adhesion and migration. Tiam1 contains multiple domains, including an N-terminal pleckstrin homology coiled-coiled extension (PH n -CC-Ex) and catalytic Dbl homology and C-terminal pleckstrin homology (DH-PH c ) domain. Previous studies indicate that larger fragments of Tiam1, such as the region encompassing the N-terminal to C-terminal pleckstrin homology domains (PH n -PH c ), are auto-inhibited. However, the domains in this region responsible for inhibition remain unknown. Here, we show that the PH n -CC-Ex domain inhibits Tiam1 GEF activity by directly interacting with the catalytic DH-PH c domain, preventing Rac1 binding and activation. Enzyme kinetics experiments suggested that Tiam1 is auto-inhibited through occlusion of the catalytic site rather than by allostery. Small angle X-ray scattering and ensemble modeling yielded models of the PH n -PH c fragment that indicate it is in equilibrium between "open" and "closed" conformational states. Finally, single-molecule experiments support a model in which conformational sampling between the open and closed states of Tiam1 contributes to Rac1 dissociation. Our results highlight the role of the PH n -CC-Ex domain in Tiam1 GEF regulation and suggest a combinatorial model for GEF inhibition and activation of the Rac1 signaling pathway. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Insights into the Molecular Activation Mechanism of the RhoA-specific Guanine Nucleotide Exchange Factor, PDZRhoGEF

    SciTech Connect

    Bielnicki, Jakub A.; Shkumatov, Alexander V.; Derewenda, Urszula

    2012-10-09

    PDZRhoGEF (PRG) belongs to a small family of RhoA-specific nucleotide exchange factors that mediates signaling through select G-protein-coupled receptors via G{alpha}{sub 12/13} and activates RhoA by catalyzing the exchange of GDP to GTP. PRG is a multidomain protein composed of PDZ, regulators of G-protein signaling-like (RGSL), Dbl-homology (DH), and pleckstrin-homology (PH) domains. It is autoinhibited in cytosol and is believed to undergo a conformational rearrangement and translocation to the membrane for full activation, although the molecular details of the regulation mechanism are not clear. It has been shown recently that the main autoregulatory elements of PDZRhoGEF, the autoinhibitory 'activation box'more » and the 'GEF switch,' which is required for full activation, are located directly upstream of the catalytic DH domain and its RhoA binding surface, emphasizing the functional role of the RGSL-DH linker. Here, using a combination of biophysical and biochemical methods, we show that the mechanism of PRG regulation is yet more complex and may involve an additional autoinhibitory element in the form of a molten globule region within the linker between RGSL and DH domains. We propose a novel, two-tier model of autoinhibition where the activation box and the molten globule region act synergistically to impair the ability of RhoA to bind to the catalytic DH-PH tandem. The molten globule region and the activation box become less ordered in the PRG-RhoA complex and dissociate from the RhoA-binding site, which may constitute a critical step leading to PRG activation.« less

  9. Ric-8A catalyzes guanine nucleotide exchange on G alphai1 bound to the GPR/GoLoco exchange inhibitor AGS3.

    PubMed

    Thomas, Celestine J; Tall, Gregory G; Adhikari, Anirban; Sprang, Stephen R

    2008-08-22

    Microtubule pulling forces that govern mitotic spindle movement of chromosomes are tightly regulated by G-proteins. A host of proteins, including Galpha subunits, Ric-8, AGS3, regulators of G-protein signalings, and scaffolding proteins, coordinate this vital cellular process. Ric-8A, acting as a guanine nucleotide exchange factor, catalyzes the release of GDP from various Galpha.GDP subunits and forms a stable nucleotide-free Ric-8A:Galpha complex. AGS3, a guanine nucleotide dissociation inhibitor (GDI), binds and stabilizes Galpha subunits in their GDP-bound state. Because Ric-8A and AGS3 may recognize and compete for Galpha.GDP in this pathway, we probed the interactions of a truncated AGS3 (AGS3-C; containing only the residues responsible for GDI activity), with Ric-8A:Galpha(il) and that of Ric-8A with the AGS3-C:Galpha(il).GDP complex. Pulldown assays, gel filtration, isothermal titration calorimetry, and rapid mixing stopped-flow fluorescence spectroscopy indicate that Ric-8A catalyzes the rapid release of GDP from AGS3-C:Galpha(i1).GDP. Thus, Ric-8A forms a transient ternary complex with AGS3-C:Galpha(i1).GDP. Subsequent dissociation of AGS3-C and GDP from Galpha(i1) yields a stable nucleotide free Ric-8A.Galpha(i1) complex that, in the presence of GTP, dissociates to yield Ric-8A and Galpha(i1).GTP. AGS3-C does not induce dissociation of the Ric-8A.Galpha(i1) complex, even when present at very high concentrations. The action of Ric-8A on AGS3:Galpha(i1).GDP ensures unidirectional activation of Galpha subunits that cannot be reversed by AGS3.

  10. Protein Kinase A (PKA) Type I Interacts with P-Rex1, a Rac Guanine Nucleotide Exchange Factor: EFFECT ON PKA LOCALIZATION AND P-Rex1 SIGNALING.

    PubMed

    Chávez-Vargas, Lydia; Adame-García, Sendi Rafael; Cervantes-Villagrana, Rodolfo Daniel; Castillo-Kauil, Alejandro; Bruystens, Jessica G H; Fukuhara, Shigetomo; Taylor, Susan S; Mochizuki, Naoki; Reyes-Cruz, Guadalupe; Vázquez-Prado, José

    2016-03-18

    Morphology of migrating cells is regulated by Rho GTPases and fine-tuned by protein interactions and phosphorylation. PKA affects cell migration potentially through spatiotemporal interactions with regulators of Rho GTPases. Here we show that the endogenous regulatory (R) subunit of type I PKA interacts with P-Rex1, a Rac guanine nucleotide exchange factor that integrates chemotactic signals. Type I PKA holoenzyme interacts with P-Rex1 PDZ domains via the CNB B domain of RIα, which when expressed by itself facilitates endothelial cell migration. P-Rex1 activation localizes PKA to the cell periphery, whereas stimulation of PKA phosphorylates P-Rex1 and prevents its activation in cells responding to SDF-1 (stromal cell-derived factor 1). The P-Rex1 DEP1 domain is phosphorylated at Ser-436, which inhibits the DH-PH catalytic cassette by direct interaction. In addition, the P-Rex1 C terminus is indirectly targeted by PKA, promoting inhibitory interactions independently of the DEP1-PDZ2 region. A P-Rex1 S436A mutant construct shows increased RacGEF activity and prevents the inhibitory effect of forskolin on sphingosine 1-phosphate-dependent endothelial cell migration. Altogether, these results support the idea that P-Rex1 contributes to the spatiotemporal localization of type I PKA, which tightly regulates this guanine exchange factor by a multistep mechanism, initiated by interaction with the PDZ domains of P-Rex1 followed by direct phosphorylation at the first DEP domain and putatively indirect regulation of the C terminus, thus promoting inhibitory intramolecular interactions. This reciprocal regulation between PKA and P-Rex1 might represent a key node of integration by which chemotactic signaling is fine-tuned by PKA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Inositol phospholipids regulate the guanine-nucleotide-exchange factor Tiam1 by facilitating its binding to the plasma membrane and regulating GDP/GTP exchange on Rac1.

    PubMed

    Fleming, Ian N; Batty, Ian H; Prescott, Alan R; Gray, Alex; Kular, Gursant S; Stewart, Hazel; Downes, C Peter

    2004-09-15

    Binding of the Rac1-specific guanine-nucleotide-exchange factor, Tiam1, to the plasma membrane requires the N-terminal pleckstrin homology domain. In the present study, we show that membrane-association is mediated by binding of PtdIns(4,5)P(2) to the pleckstrin homology domain. Moreover, in 1321N1 astrocytoma cells, translocation of Tiam1 to the cytosol, following receptor-mediated stimulation of PtdIns(4,5)P(2) breakdown, correlates with decreased Rac1-GTP levels, indicating that membrane-association is required for GDP/GTP exchange on Rac1. In addition, we show that platelet-derived growth factor activates Rac1 in vivo by increasing PtdIns(3,4,5)P(3) concentrations, rather than the closely related lipid, PtdIns(3,4)P(2). Finally, the data demonstrate that PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3) bind to the same pleckstrin homology domain in Tiam1 and that soluble inositol phosphates appear to compete with lipids for this binding. Together, these novel observations provide strong evidence that distinct phosphoinositides regulate different functions of this enzyme, indicating that local concentrations of signalling lipids and the levels of cytosolic inositol phosphates will play crucial roles in determining its activity in vivo.

  12. MADD/DENN/Rab3GEP functions as a guanine nucleotide exchange factor for Rab27 during granule exocytosis of rat parotid acinar cells.

    PubMed

    Imai, Akane; Ishida, Morié; Fukuda, Mitsunori; Nashida, Tomoko; Shimomura, Hiromi

    2013-08-01

    We previously reported that the small GTPase Rab27 and its effectors regulate isoproterenol (IPR)-stimulated amylase release from rat parotid acinar cells. Although activation of Rab27 by a specific guanine nucleotide exchange factor (GEF) is thought to be required for amylase release, its activation mechanism is poorly understood, because GEF for Rab27 has not been reported in parotid acinar cells. In the present study, we investigated the possible involvement of MADD/DENN/Rab3GEP, which was recently described as a Rab27-GEF in melanocytes, in amylase release from rat parotid acinar cells. Reverse transcription-PCR analyses indicated that mRNA of DENND family members, including MADD, was expressed in parotid acinar cells. MADD protein was also expressed in the cytosolic fraction of parotid acinar cells. Incubation of an antibody against the C-terminal 150 amino acids of MADD (anti-MADD-C antibody) with streptolysin O-permeabilized parotid acinar cells caused not only inhibition of IPR-induced amylase release but also reduction in the amount of GTP-Rab27. Our findings indicated that MADD functions as a GEF for Rab27 in parotid acinar cells and that its GEF activity for Rab27, i.e., GDP/GTP cycling, is required for IPR-induced amylase release. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Vav links the T cell antigen receptor to the actin cytoskeleton and T cell activation independently of intrinsic Guanine nucleotide exchange activity.

    PubMed

    Miletic, Ana V; Graham, Daniel B; Sakata-Sogawa, Kumiko; Hiroshima, Michio; Hamann, Michael J; Cemerski, Saso; Kloeppel, Tracie; Billadeau, Daniel D; Kanagawa, Osami; Tokunaga, Makio; Swat, Wojciech

    2009-08-12

    T cell receptor (TCR) engagement leads to formation of signaling microclusters and induction of rapid and dynamic changes in the actin cytoskeleton, although the exact mechanism by which the TCR initiates actin polymerization is incompletely understood. The Vav family of guanine nucleotide exchange factors (GEF) has been implicated in generation of TCR signals and immune synapse formation, however, it is currently not known if Vav's GEF activity is required in T cell activation by the TCR in general, and in actin polymerization downstream of the TCR in particular. Here, we report that Vav1 assembles into signaling microclusters at TCR contact sites and is critical for TCR-initiated actin polymerization. Surprisingly, Vav1 functions in TCR signaling and Ca(++) mobilization via a mechanism that does not appear to strictly depend on the intrinsic GEF activity. We propose here a model in which Vav functions primarily as a tyrosine phosphorylated linker-protein for TCR activation of T cells. Our results indicate that, contrary to expectations based on previously published studies including from our own laboratory, pharmacological inhibition of Vav1's intrinsic GEF activity may not be an effective strategy for T cell-directed immunosuppressive therapy.

  14. Regulation of focal adhesion kinase activation, breast cancer cell motility, and amoeboid invasion by the RhoA guanine nucleotide exchange factor Net1.

    PubMed

    Carr, Heather S; Zuo, Yan; Oh, Wonkyung; Frost, Jeffrey A

    2013-07-01

    Net1 is a RhoA guanine nucleotide exchange factor (GEF) that is overexpressed in a subset of human cancers and contributes to cancer cell motility and invasion in vitro. However, the molecular mechanism accounting for its role in cell motility and invasion has not been described. In the present work, we show that expression of both Net1 isoforms in breast cancer cells is required for efficient cell motility. Although loss of Net1 isoform expression only partially blocks RhoA activation, it inhibits lysophosphatidic acid (LPA)-stimulated migration as efficiently as knockdown of RhoA itself. However, we demonstrate that the Net1A isoform predominantly controls myosin light-chain phosphorylation and is required for trailing edge retraction during migration. Net1A interacts with focal adhesion kinase (FAK), localizes to focal adhesions, and is necessary for FAK activation and focal adhesion maturation during cell spreading. Net1A expression is also required for efficient invasion through a Matrigel matrix. Analysis of invading cells demonstrates that Net1A is required for amoeboid invasion, and loss of Net1A expression causes cells to shift to a mesenchymal phenotype characterized by high β1-integrin activity and membrane type 1 matrix metalloproteinase (MT1-MMP) expression. These results demonstrate a previously unrecognized role for the Net1A isoform in controlling FAK activation during planar cell movement and amoeboid motility during extracellular matrix (ECM) invasion.

  15. Vav Links the T Cell Antigen Receptor to the Actin Cytoskeleton and T Cell Activation Independently of Intrinsic Guanine Nucleotide Exchange Activity

    PubMed Central

    Hiroshima, Michio; Hamann, Michael J.; Cemerski, Saso; Kloeppel, Tracie; Billadeau, Daniel D.; Kanagawa, Osami; Tokunaga, Makio; Swat, Wojciech

    2009-01-01

    Background T cell receptor (TCR) engagement leads to formation of signaling microclusters and induction of rapid and dynamic changes in the actin cytoskeleton, although the exact mechanism by which the TCR initiates actin polymerization is incompletely understood. The Vav family of guanine nucleotide exchange factors (GEF) has been implicated in generation of TCR signals and immune synapse formation, however, it is currently not known if Vav's GEF activity is required in T cell activation by the TCR in general, and in actin polymerization downstream of the TCR in particular. Methodology/Principal Findings Here, we report that Vav1 assembles into signaling microclusters at TCR contact sites and is critical for TCR-initiated actin polymerization. Surprisingly, Vav1 functions in TCR signaling and Ca++ mobilization via a mechanism that does not appear to strictly depend on the intrinsic GEF activity. Conclusions/Significance We propose here a model in which Vav functions primarily as a tyrosine phosphorylated linker-protein for TCR activation of T cells. Our results indicate that, contrary to expectations based on previously published studies including from our own laboratory, pharmacological inhibition of Vav1's intrinsic GEF activity may not be an effective strategy for T cell-directed immunosuppressive therapy. PMID:19672294

  16. The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes

    PubMed Central

    Chang, Ying-Ju; Pownall, Scott; Jensen, Thomas E; Mouaaz, Samar; Foltz, Warren; Zhou, Lily; Liadis, Nicole; Woo, Minna; Hao, Zhenyue; Dutt, Previn; Bilan, Philip J; Klip, Amira; Mak, Tak; Stambolic, Vuk

    2015-01-01

    Adipose tissue is crucial for the maintenance of energy and metabolic homeostasis and its deregulation can lead to obesity and type II diabetes (T2D). Using gene disruption in the mouse, we discovered a function for a RhoA-specific guanine nucleotide exchange factor PDZ-RhoGEF (Arhgef11) in white adipose tissue biology. While PDZ-RhoGEF was dispensable for a number of RhoA signaling-mediated processes in mouse embryonic fibroblasts, including stress fiber formation and cell migration, it's deletion led to a reduction in their proliferative potential. On a whole organism level, PDZ-RhoGEF deletion resulted in an acute increase in energy expenditure, selectively impaired early adipose tissue development and decreased adiposity in adults. PDZ-RhoGEF-deficient mice were protected from diet-induced obesity and T2D. Mechanistically, PDZ-RhoGEF enhanced insulin/IGF-1 signaling in adipose tissue by controlling ROCK-dependent phosphorylation of the insulin receptor substrate-1 (IRS-1). Our results demonstrate that PDZ-RhoGEF acts as a key determinant of mammalian metabolism and obesity-associated pathologies. DOI: http://dx.doi.org/10.7554/eLife.06011.001 PMID:26512886

  17. Novel C-terminal Motif within Sec7 Domain of Guanine Nucleotide Exchange Factors Regulates ADP-ribosylation Factor (ARF) Binding and Activation*

    PubMed Central

    Lowery, Jason; Szul, Tomasz; Seetharaman, Jayaraman; Jian, Xiaoying; Su, Min; Forouhar, Farhad; Xiao, Rong; Acton, Thomas B.; Montelione, Gaetano T.; Lin, Helen; Wright, John W.; Lee, Eunjoo; Holloway, Zoe G.; Randazzo, Paul A.; Tong, Liang; Sztul, Elizabeth

    2011-01-01

    ADP-ribosylation factors (ARFs) and their activating guanine nucleotide exchange factors (GEFs) play key roles in membrane traffic and signaling. All ARF GEFs share a ∼200-residue Sec7 domain (Sec7d) that alone catalyzes the GDP to GTP exchange that activates ARF. We determined the crystal structure of human BIG2 Sec7d. A C-terminal loop immediately following helix J (loop>J) was predicted to form contacts with helix H and the switch I region of the cognate ARF, suggesting that loop>J may participate in the catalytic reaction. Indeed, we identified multiple alanine substitutions within loop>J of the full length and/or Sec7d of two large brefeldin A-sensitive GEFs (GBF1 and BIG2) and one small brefeldin A-resistant GEF (ARNO) that abrogated binding of ARF and a single alanine substitution that allowed ARF binding but inhibited GDP to GTP exchange. Loop>J sequences are highly conserved, suggesting that loop>J plays a crucial role in the catalytic activity of all ARF GEFs. Using GEF mutants unable to bind ARF, we showed that GEFs associate with membranes independently of ARF and catalyze ARF activation in vivo only when membrane-associated. Our structural, cell biological, and biochemical findings identify loop>J as a key regulatory motif essential for ARF binding and GDP to GTP exchange by GEFs and provide evidence for the requirement of membrane association during GEF activity. PMID:21828055

  18. Ric-8a, a guanine nucleotide exchange factor for heterotrimeric G proteins, regulates bergmann glia-basement membrane adhesion during cerebellar foliation.

    PubMed

    Ma, Shang; Kwon, Hyo Jun; Huang, Zhen

    2012-10-24

    The cerebellum consists of an intricate array of lobules that arises during the process of foliation. Foliation not only increases surface area, but may also facilitate organization of cerebellar neural circuitry. Defects in cerebellar foliation are associated with a number of diseases. Yet, little is known about how foliation, a process involving large-scale and simultaneous movement of several different cell types, is coordinated by cell-cell signaling at the molecular level. Here we show that Ric-8a, a guanine nucleotide exchange factor in the G-protein-coupled receptor pathway, is specifically required in Bergmann glia during cerebellar foliation. We find that ric-8a mutation in mice results in disorganized Bergmann glial scaffolding, defective granule cell migration, and disrupted Purkinje cell positioning. These abnormalities result from primary defects in Bergmann glia since mutations in granule cells do not show similar effects. They first arise during late embryogenesis, at the onset of foliation, when ric-8a mutant Bergmann glia fail to maintain adhesion to the basement membrane specifically at emerging fissures. This suggests that Ric-8a is essential for the enhanced Bergmann glia-basement membrane adhesion required for fissure formation. Indeed, we find that ric-8a-deficient cerebellar glia show decreased affinity for basement membrane components. We also find that weakening Bergmann glia-basement membrane interaction by β1 integrin deletion results in a similar phenotype. These results thus reveal a novel role of Ric-8a in modulating Bergmann glia-basement membrane adhesion during foliation, and provide new insights into the signaling pathways that coordinate cellular movement during cerebellar morphogenesis.

  19. Coordinated regulation by two VPS9 domain-containing guanine nucleotide exchange factors in small GTPase Rab5 signaling pathways in fission yeast

    SciTech Connect

    Tsukamoto, Yuta; Kagiwada, Satoshi; Shimazu, Sayuri

    2015-03-20

    The small GTPase Rab5 is reported to regulate various cellular functions, such as vesicular transport and endocytosis. VPS9 domain-containing proteins are thought to activate Rab5(s) by their guanine-nucleotide exchange activities. Numerous VPS9 proteins have been identified and are structurally conserved from yeast to mammalian cells. However, the functional relationships among VPS9 proteins in cells remain unclear. Only one Rab5 and two VPS9 proteins were identified in the Schizosaccharomyces pombe genome. Here, we examined the cellular function of two VPS9 proteins and the relationship between these proteins in cellular functions. Vps901-GFP and Vps902-GFP exhibited dotted signals in vegetative and differentiated cells.more » vps901 deletion mutant (Δvps901) cells exhibited a phenotype deficient in the mating process and responses to high concentrations of ions, such as calcium and metals, and Δvps901Δvps902 double mutant cells exhibited round cell shapes similar to ypt5-909 (Rab5 mutant allele) cells. Deletion of both vps901 and vps902 genes completely abolished the mating process and responses to various stresses. A lack of vacuole formation and aberrant inner cell membrane structures were also observed in Δvps901Δvps902 cells by electron microscopy. These data strongly suggest that Vps901 and Vps902 are cooperatively involved in the regulation of cellular functions, such as cell morphology, sexual development, response to ion stresses, and vacuole formation, via Rab5 signaling pathways in fission yeast cells. - Highlights: • Roles of Rab5 activator VPS9 proteins in cellular functions. • Cooperation between VPS9 proteins in Rab5 signaling pathway. • Roles of each VPS9 protein in Rab5 signaling pathway are discussed.« less

  20. A Guanine Nucleotide Exchange Factor for Rab5 Proteins Is Essential for Intracellular Transport of the Proglutelin from the Golgi Apparatus to the Protein Storage Vacuole in Rice Endosperm1[C][W][OA

    PubMed Central

    Fukuda, Masako; Wen, Liuying; Satoh-Cruz, Mio; Kawagoe, Yasushi; Nagamura, Yoshiaki; Okita, Thomas W.; Washida, Haruhiko; Sugino, Aya; Ishino, Sonoko; Ishino, Yoshizumi; Ogawa, Masahiro; Sunada, Mariko; Ueda, Takashi; Kumamaru, Toshihiro

    2013-01-01

    Rice (Oryza sativa) glutelins are synthesized on the endoplasmic reticulum as a precursor, which are then transported via the Golgi to protein storage vacuoles (PSVs), where they are proteolytically processed into acidic and basic subunits. The glutelin precursor mutant6 (glup6) accumulates abnormally large amounts of proglutelin. Map-base cloning studies showed that glup6 was a loss-of-function mutant of guanine nucleotide exchange factor (GEF), which activates Rab GTPase, a key regulator of membrane trafficking. Immunofluorescence studies showed that the transport of proglutelins and α-globulins to PSV was disrupted in glup6 endosperm. Secreted granules of glutelin and α-globulin were readily observed in young glup6 endosperm, followed by the formation of large dilated paramural bodies (PMBs) containing both proteins as the endosperm matures. The PMBs also contained membrane biomarkers for the Golgi and prevacuolar compartment as well as the cell wall component, β-glucan. Direct evidence was gathered showing that GLUP6/GEF activated in vitro GLUP4/Rab5 as well as several Arabidopsis (Arabidopsis thaliana) Rab5 isoforms to the GTP-bound form. Therefore, loss-of-function mutations in GEF or Rab5 disrupt the normal transport of proglutelin from the Golgi to PSVs, resulting in the initial extracellular secretion of these proteins followed, in turn, by the formation of PMBs. Overall, our results indicate that GLUP6/GEF is the activator of Rab5 GTPase and that the cycling of GTP- and GDP-bound forms of this regulatory protein is essential for the intracellular transport of proglutelin and α-globulin from the Golgi to PSVs and in the maintenance of the general structural organization of the endomembrane system in rice seeds. PMID:23580596

  1. CLL2-1, a chemical derivative of orchid 1,4-phenanthrenequinones, inhibits human platelet aggregation through thiol modification of calcium-diacylglycerol guanine nucleotide exchange factor-I (CalDAG-GEFI).

    PubMed

    Liao, Chieh-Yu; Lee, Chia-Lin; Wang, Hui-Chun; Liang, Shih-Shin; Kung, Po-Hsiung; Wu, Yang-Chang; Chang, Fang-Rong; Wu, Chin-Chung

    2015-01-01

    CalDAG-GEFI is a guanine nucleotide exchange factor, which actives small GTPase Rap1 and plays an important role in platelet aggregation. Our previous study has shown that CalDAG-GEFI contains redox-sensitive thiols, and its function can be inhibited by thiol modification. In the present study, the effect of CLL2-1, a 1,4-phenanthrenequinone, on CalDAG-GEFI and platelet functions was investigated. In human platelets, CLL2-1 prevented platelet aggregation caused by various stimulators. Flow cytometric analysis revealed that CLL2-1 inhibited GPIIb/IIIa activation and P-selectin secretion. Moreover, CLL2-1 prevented Rap1 activation caused by thrombin, the Ca(2+) ionophore A23187, and the diacylglycerol mimetic phorbol 12-myristate 13-acetate, while only slightly inhibited thrombin-induced increases in [Ca(2+)]i and did not inhibit protein kinase C activation. Western blots after reducing SDS-PAGE showed that treatment of either platelets or platelet lysates with CLL2-1 led to a decrease of monomeric CalDAG-GEFI and appearance of cross-linked oligomers of CalDAG-GEFI, and these effects were inhibited by pretreatment of platelets or lysates with thiol reducing agents prior to the addition of CLL2-1, indicating thiol modification of CalDAG-GEFI by CLL2-1. Furthermore, the thiol reducing agents also prevented the inhibitory effect of CLL2-1 on Rap1 activation, GPIIb/IIIa activation, and platelet aggregation. In CalDAG-GEFI-overexpressing human embryonic kidney 293T cells, CLL2-1 also inhibited CalDAG-GEFI-mediated Rap1 activation. Taken together, our results suggest that the antiplatelet effect of CLL2-1 is due to, at least in part, inhibition of CalDAG-GEFI-mediated Rap1 activation, and provide the basis for development of novel antiplatelet drugs. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A homogeneous quenching resonance energy transfer assay for the kinetic analysis of the GTPase nucleotide exchange reaction.

    PubMed

    Kopra, Kari; Ligabue, Alessio; Wang, Qi; Syrjänpää, Markku; Blaževitš, Olga; Veltel, Stefan; van Adrichem, Arjan J; Hänninen, Pekka; Abankwa, Daniel; Härmä, Harri

    2014-07-01

    A quenching resonance energy transfer (QRET) assay for small GTPase nucleotide exchange kinetic monitoring is demonstrated using nanomolar protein concentrations. Small GTPases are central signaling proteins in all eukaryotic cells acting as a "molecular switches" that are active in the GTP-state and inactive in the GDP-state. GTP-loading is highly regulated by guanine nucleotide exchange factors (GEFs). In several diseases, most prominently cancer, this process in misregulated. The kinetics of the nucleotide exchange reaction reports on the enzymatic activity of the GEF reaction system and is, therefore, of special interest. We determined the nucleotide exchange kinetics using europium-labeled GTP (Eu-GTP) in the QRET assay for small GTPases. After GEF catalyzed GTP-loading of a GTPase, a high time-resolved luminescence signal was found to be associated with GTPase bound Eu-GTP, whereas the non-bound Eu-GTP fraction was quenched by soluble quencher. The association kinetics of the Eu-GTP was measured after GEF addition, whereas the dissociation kinetics could be determined after addition of unlabeled GTP. The resulting association and dissociation rates were in agreement with previously published values for H-Ras(Wt), H-Ras(Q61G), and K-Ras(Wt), respectively. The broader applicability of the QRET assay for small GTPases was demonstrated by determining the kinetics of the Ect2 catalyzed RhoA(Wt) GTP-loading. The QRET assay allows the use of nanomolar protein concentrations, as more than 3-fold signal-to-background ratio was achieved with 50 nM GTPase and GEF proteins. Thus, small GTPase exchange kinetics can be efficiently determined in a HTS compatible 384-well plate format.

  3. Juvenile Hormone Regulation of Drosophila Epac - A Guanine Nucleotide Exchange Factor for Rap1 Small GTPase

    USDA-ARS?s Scientific Manuscript database

    Previously, we utilized a microchip array encompassing probes for 14,010 genes of Drosophila melanogaster to analyze the effect of (10R) juvenile hormone III (JH) on genome-wide gene expression in Drosophila S2 cells. Treatment with JH yielded a collection of 32 gene transcripts that demonstrated a ...

  4. Bijective transformation circular codes and nucleotide exchanging RNA transcription.

    PubMed

    Michel, Christian J; Seligmann, Hervé

    2014-04-01

    The C(3) self-complementary circular code X identified in genes of prokaryotes and eukaryotes is a set of 20 trinucleotides enabling reading frame retrieval and maintenance, i.e. a framing code (Arquès and Michel, 1996; Michel, 2012, 2013). Some mitochondrial RNAs correspond to DNA sequences when RNA transcription systematically exchanges between nucleotides (Seligmann, 2013a,b). We study here the 23 bijective transformation codes ΠX of X which may code nucleotide exchanging RNA transcription as suggested by this mitochondrial observation. The 23 bijective transformation codes ΠX are C(3) trinucleotide circular codes, seven of them are also self-complementary. Furthermore, several correlations are observed between the Reading Frame Retrieval (RFR) probability of bijective transformation codes ΠX and the different biological properties of ΠX related to their numbers of RNAs in GenBank's EST database, their polymerization rate, their number of amino acids and the chirality of amino acids they code. Results suggest that the circular code X with the functions of reading frame retrieval and maintenance in regular RNA transcription, may also have, through its bijective transformation codes ΠX, the same functions in nucleotide exchanging RNA transcription. Associations with properties such as amino acid chirality suggest that the RFR of X and its bijective transformations molded the origins of the genetic code's machinery. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Ric-8A, a G protein chaperone with nucleotide exchange activity induces long-range secondary structure changes in Gα

    PubMed Central

    Kant, Ravi; Zeng, Baisen; Thomas, Celestine J; Bothner, Brian; Sprang, Stephen R

    2016-01-01

    Cytosolic Ric-8A has guanine nucleotide exchange factor (GEF) activity and is a chaperone for several classes of heterotrimeric G protein α subunits in vertebrates. Using Hydrogen-Deuterium Exchange-Mass Spectrometry (HDX-MS) we show that Ric-8A disrupts the secondary structure of the Gα Ras-like domain that girds the guanine nucleotide-binding site, and destabilizes the interface between the Gαi1 Ras and helical domains, allowing domain separation and nucleotide release. These changes are largely reversed upon binding GTP and dissociation of Ric-8A. HDX-MS identifies a potential Gα interaction site in Ric-8A. Alanine scanning reveals residues crucial for GEF activity within that sequence. HDX confirms that, like G protein-coupled receptors (GPCRs), Ric-8A binds the C-terminus of Gα. In contrast to GPCRs, Ric-8A interacts with Switches I and II of Gα and possibly at the Gα domain interface. These extensive interactions provide both allosteric and direct catalysis of GDP unbinding and release and GTP binding. DOI: http://dx.doi.org/10.7554/eLife.19238.001 PMID:28008853

  6. Structure of the nucleotide exchange factor eIF2B reveals mechanism of memory-enhancing molecule.

    PubMed

    Tsai, Jordan C; Miller-Vedam, Lakshmi E; Anand, Aditya A; Jaishankar, Priyadarshini; Nguyen, Henry C; Renslo, Adam R; Frost, Adam; Walter, Peter

    2018-03-30

    Regulation by the integrated stress response (ISR) converges on the phosphorylation of translation initiation factor eIF2 in response to a variety of stresses. Phosphorylation converts eIF2 from a substrate to a competitive inhibitor of its dedicated guanine nucleotide exchange factor, eIF2B, thereby inhibiting translation. ISRIB, a drug-like eIF2B activator, reverses the effects of eIF2 phosphorylation, and in rodents it enhances cognition and corrects cognitive deficits after brain injury. To determine its mechanism of action, we solved an atomic-resolution structure of ISRIB bound in a deep cleft within decameric human eIF2B by cryo-electron microscopy. Formation of fully active, decameric eIF2B holoenzyme depended on the assembly of two identical tetrameric subcomplexes, and ISRIB promoted this step by cross-bridging a central symmetry interface. Thus, regulation of eIF2B assembly emerges as a rheostat for eIF2B activity that tunes translation during the ISR and that can be further modulated by ISRIB. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. The Putative Guanine Nucleotide Exchange Factor RicA Mediates Upstream Signaling for Growth and Development in Aspergillus

    PubMed Central

    Kwon, Nak-Jung; Park, Hee-Soo; Jung, Seunho; Kim, Sun Chang

    2012-01-01

    Heterotrimeric G proteins (G proteins) govern growth, development, and secondary metabolism in various fungi. Here, we characterized ricA, which encodes a putative GDP/GTP exchange factor for G proteins in the model fungus Aspergillus nidulans and the opportunistic human pathogen Aspergillus fumigatus. In both species, ricA mRNA accumulates during vegetative growth and early developmental phases, but it is not present in spores. The deletion of ricA results in severely impaired colony growth and the total (for A. nidulans) or near (for A. fumigatus) absence of asexual sporulation (conidiation). The overexpression (OE) of the A. fumigatus ricA gene (AfricA) restores growth and conidiation in the ΔAnricA mutant to some extent, indicating partial conservation of RicA function in Aspergillus. A series of double mutant analyses revealed that the removal of RgsA (an RGS protein of the GanB Gα subunit), but not sfgA, flbA, rgsB, or rgsC, restored vegetative growth and conidiation in ΔAnricA. Furthermore, we found that RicA can physically interact with GanB in yeast and in vitro. Moreover, the presence of two copies or OE of pkaA suppresses the profound defects caused by ΔAnricA, indicating that RicA-mediated growth and developmental signaling is primarily through GanB and PkaA in A. nidulans. Despite the lack of conidiation, brlA and vosA mRNAs accumulated to normal levels in the ΔricA mutant. In addition, mutants overexpressing fluG or brlA (OEfluG or OEbrlA) failed to restore development in the ΔAnricA mutant. These findings suggest that the commencement of asexual development requires unknown RicA-mediated signaling input in A. nidulans. PMID:23002107

  8. ITAM Signaling by Vav Family Rho Guanine Nucleotide Exchange Factors Regulates Interstitial Transit Rates of Neutrophils In Vivo

    PubMed Central

    Mascarenhas, Francesca; Delgado, Ryan; Miller, Mark J.; Swat, Wojciech

    2009-01-01

    Background In response to infection, neutrophils are quickly recruited from the blood into inflamed tissues. The interstitial migration of neutrophils is crucial for the efficient capture and control of rapidly proliferating microbes before microbial growth can overwhelm the host's defenses. However, the molecular mechanisms that regulate interstitial migration are incompletely understood. Methodology/Principal Findings Here, we use two-photon microscopy (2PM) to study discrete steps of neutrophil responses during subcutaneous infection with bacteria. Our study demonstrates that signals emanating from ITAM-containing receptors mediated by Vav family Rho GEFs control the velocity, but not the directionality, of neutrophil migration towards sites of bacterial infection. Conclusions/Significance Here we show that during neutrophil migration towards sites of bacterial infection, signals emanating from ITAM-containing receptors specifically control interstitial neutrophil velocity. PMID:19247495

  9. Structural and functional characterization of a DARPin which inhibits Ras nucleotide exchange.

    PubMed

    Guillard, Sandrine; Kolasinska-Zwierz, Paulina; Debreczeni, Judit; Breed, Jason; Zhang, Jing; Bery, Nicolas; Marwood, Rose; Tart, Jon; Overman, Ross; Stocki, Pawel; Mistry, Bina; Phillips, Christopher; Rabbitts, Terence; Jackson, Ronald; Minter, Ralph

    2017-07-14

    Ras mutations are the oncogenic drivers of many human cancers and yet there are still no approved Ras-targeted cancer therapies. Inhibition of Ras nucleotide exchange is a promising new approach but better understanding of this mechanism of action is needed. Here we describe an antibody mimetic, DARPin K27, which inhibits nucleotide exchange of Ras. K27 binds preferentially to the inactive Ras GDP form with a K d of 4 nM and structural studies support its selectivity for inactive Ras. Intracellular expression of K27 significantly reduces the amount of active Ras, inhibits downstream signalling, in particular the levels of phosphorylated ERK, and slows the growth in soft agar of HCT116 cells. K27 is a potent, non-covalent inhibitor of nucleotide exchange, showing consistent effects across different isoforms of Ras, including wild-type and oncogenic mutant forms.

  10. Systematic asymmetric nucleotide exchanges produce human mitochondrial RNAs cryptically encoding for overlapping protein coding genes.

    PubMed

    Seligmann, Hervé

    2013-05-07

    GenBank's EST database includes RNAs matching exactly human mitochondrial sequences assuming systematic asymmetric nucleotide exchange-transcription along exchange rules: A→G→C→U/T→A (12 ESTs), A→U/T→C→G→A (4 ESTs), C→G→U/T→C (3 ESTs), and A→C→G→U/T→A (1 EST), no RNAs correspond to other potential asymmetric exchange rules. Hypothetical polypeptides translated from nucleotide-exchanged human mitochondrial protein coding genes align with numerous GenBank proteins, predicted secondary structures resemble their putative GenBank homologue's. Two independent methods designed to detect overlapping genes (one based on nucleotide contents analyses in relation to replicative deamination gradients at third codon positions, and circular code analyses of codon contents based on frame redundancy), confirm nucleotide-exchange-encrypted overlapping genes. Methods converge on which genes are most probably active, and which not, and this for the various exchange rules. Mean EST lengths produced by different nucleotide exchanges are proportional to (a) extents that various bioinformatics analyses confirm the protein coding status of putative overlapping genes; (b) known kinetic chemistry parameters of the corresponding nucleotide substitutions by the human mitochondrial DNA polymerase gamma (nucleotide DNA misinsertion rates); (c) stop codon densities in predicted overlapping genes (stop codon readthrough and exchanging polymerization regulate gene expression by counterbalancing each other). Numerous rarely expressed proteins seem encoded within regular mitochondrial genes through asymmetric nucleotide exchange, avoiding lengthening genomes. Intersecting evidence between several independent approaches confirms the working hypothesis status of gene encryption by systematic nucleotide exchanges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Unique Structural and Nucleotide Exchange Features of the Rho1 GTPase of Entamoeba histolytica

    SciTech Connect

    Bosch, Dustin E.; Wittchen, Erika S.; Qiu, Connie

    2012-08-10

    The single-celled human parasite Entamoeba histolytica possesses a dynamic actin cytoskeleton vital for its intestinal and systemic pathogenicity. The E. histolytica genome encodes several Rho family GTPases known to regulate cytoskeletal dynamics. EhRho1, the first family member identified, was reported to be insensitive to the Rho GTPase-specific Clostridium botulinum C3 exoenzyme, raising the possibility that it may be a misclassified Ras family member. Here, we report the crystal structures of EhRho1 in both active and inactive states. EhRho1 is activated by a conserved switch mechanism, but diverges from mammalian Rho GTPases in lacking a signature Rho insert helix. EhRho1 engagesmore » a homolog of mDia, EhFormin1, suggesting a role in mediating serum-stimulated actin reorganization and microtubule formation during mitosis. EhRho1, but not a constitutively active mutant, interacts with a newly identified EhRhoGDI in a prenylation-dependent manner. Furthermore, constitutively active EhRho1 induces actin stress fiber formation in mammalian fibroblasts, thereby identifying it as a functional Rho family GTPase. EhRho1 exhibits a fast rate of nucleotide exchange relative to mammalian Rho GTPases due to a distinctive switch one isoleucine residue reminiscent of the constitutively active F28L mutation in human Cdc42, which for the latter protein, is sufficient for cellular transformation. Nonconserved, nucleotide-interacting residues within EhRho1, revealed by the crystal structure models, were observed to contribute a moderating influence on fast spontaneous nucleotide exchange. Collectively, these observations indicate that EhRho1 is a bona fide member of the Rho GTPase family, albeit with unique structural and functional aspects compared with mammalian Rho GTPases.« less

  12. The Nucleotide Exchange Factor Ric-8A Is a Chaperone for the Conformationally Dynamic Nucleotide-Free State of Gαi1

    PubMed Central

    Thomas, Celestine J.; Briknarová, Klára; Hilmer, Jonathan K.; Movahed, Navid; Bothner, Brian; Sumida, John P.; Tall, Gregory G.; Sprang, Stephen R.

    2011-01-01

    Heterotrimeric G protein α subunits are activated upon exchange of GDP for GTP at the nucleotide binding site of Gα, catalyzed by guanine nucleotide exchange factors (GEFs). In addition to transmembrane G protein-coupled receptors (GPCRs), which act on G protein heterotrimers, members of the family cytosolic proteins typified by mammalian Ric-8A are GEFs for Gi/q/12/13-class Gα subunits. Ric-8A binds to Gα•GDP, resulting in the release of GDP. The Ric-8A complex with nucleotide-free Gαi1 is stable, but dissociates upon binding of GTP to Gαi1. To gain insight into the mechanism of Ric-8A-catalyzed GDP release from Gαi1, experiments were conducted to characterize the physical state of nucleotide-free Gαi1 (hereafter referred to as Gαi1[ ]) in solution, both as a monomeric species, and in the complex with Ric-8A. We found that Ric-8A-bound, nucleotide-free Gαi1 is more accessible to trypsinolysis than Gαi1•GDP, but less so than Gαi1[ ] alone. The TROSY-HSQC spectrum of [15N]Gαi1[ ] bound to Ric-8A shows considerable loss of peak intensity relative to that of [15N]Gαi1•GDP. Hydrogen-deuterium exchange in Gαi1[ ] bound to Ric-8A is 1.5-fold more extensive than in Gαi1•GDP. Differential scanning calorimetry shows that both Ric-8A and Gαi1•GDP undergo cooperative, irreversible unfolding transitions at 47° and 52°, respectively, while nucleotide-free Gαi1 shows a broad, weak transition near 35°. The unfolding transition for Ric-8A:Gαi1[ ] is complex, with a broad transition that peaks at 50°, suggesting that both Ric-8A and Gαi1[ ] are stabilized within the complex, relative to their respective free states. The C-terminus of Gαi1 is shown to be a critical binding element for Ric-8A, as is also the case for GPCRs, suggesting that the two types of GEF might promote nucleotide exchange by similar mechanisms, by acting as chaperones for the unstable and dynamic nucleotide-free state of Gα. PMID:21853086

  13. Disease Mutations in Rab7 Result in Unregulated Nucleotide Exchange and Inappropriate Activation

    SciTech Connect

    B McCray; E Skordalakes; J Taylor

    2011-12-31

    Rab GTPases are molecular switches that orchestrate vesicular trafficking, maturation and fusion by cycling between an active, GTP-bound form, and an inactive, GDP-bound form. The activity cycle is coupled to GTP hydrolysis and is tightly controlled by regulatory proteins. Missense mutations of the GTPase Rab7 cause a dominantly inherited axonal degeneration known as Charcot-Marie-Tooth type 2B through an unknown mechanism. We present the 2.8 A crystal structure of GTP-bound L129F mutant Rab7 which reveals normal conformations of the effector binding regions and catalytic site, but an alteration to the nucleotide binding pocket that is predicted to alter GTP binding. Throughmore » extensive biochemical analysis, we demonstrate that disease-associated mutations in Rab7 do not lead to an intrinsic GTPase defect, but permit unregulated nucleotide exchange leading to both excessive activation and hydrolysis-independent inactivation. Consistent with augmented activity, mutant Rab7 shows significantly enhanced interaction with a subset of effector proteins. In addition, dynamic imaging demonstrates that mutant Rab7 is abnormally retained on target membranes. However, we show that the increased activation of mutant Rab7 is counterbalanced by unregulated, GTP hydrolysis-independent membrane cycling. Notably, disease mutations are able to rescue the membrane cycling of a GTPase-deficient mutant. Thus, we demonstrate that disease mutations uncouple Rab7 from the spatial and temporal control normally imposed by regulatory proteins and cause disease not by a gain of novel toxic function, but by misregulation of native Rab7 activity.« less

  14. Interactions between Kar2p and Its Nucleotide Exchange Factors Sil1p and Lhs1p Are Mechanistically Distinct*

    PubMed Central

    Hale, Sarah J.; Lovell, Simon C.; de Keyzer, Jeanine; Stirling, Colin J.

    2010-01-01

    Kar2p, an essential Hsp70 chaperone in the endoplasmic reticulum of Saccharomyces cerevisiae, facilitates the transport and folding of nascent polypeptides within the endoplasmic reticulum lumen. The chaperone activity of Kar2p is regulated by its intrinsic ATPase activity that can be stimulated by two different nucleotide exchange factors, namely Sil1p and Lhs1p. Here, we demonstrate that the binding requirements for Lhs1p are complex, requiring both the nucleotide binding domain plus the linker domain of Kar2p. In contrast, the IIB domain of Kar2p is sufficient for binding of Sil1p, and point mutations within IIB specifically blocked Sil1p-dependent activation while remaining competent for activation by Lhs1p. Taken together, these results demonstrate that the interactions between Kar2p and its two nucleotide exchange factors can be functionally resolved and are thus mechanistically distinct. PMID:20430899

  15. Nucleotide Binding by Lhs1p Is Essential for Its Nucleotide Exchange Activity and for Function in Vivo*

    PubMed Central

    de Keyzer, Jeanine; Steel, Gregor J.; Hale, Sarah J.; Humphries, Daniel; Stirling, Colin J.

    2009-01-01

    Protein translocation and folding in the endoplasmic reticulum of Saccharomyces cerevisiae involves two distinct Hsp70 chaperones, Lhs1p and Kar2p. Both proteins have the characteristic domain structure of the Hsp70 family consisting of a conserved N-terminal nucleotide binding domain and a C-terminal substrate binding domain. Kar2p is a canonical Hsp70 whose substrate binding activity is regulated by cochaperones that promote either ATP hydrolysis or nucleotide exchange. Lhs1p is a member of the Grp170/Lhs1p subfamily of Hsp70s and was previously shown to function as a nucleotide exchange factor (NEF) for Kar2p. Here we show that in addition to this NEF activity, Lhs1p can function as a holdase that prevents protein aggregation in vitro. Analysis of the nucleotide requirement of these functions demonstrates that nucleotide binding to Lhs1p stimulates the interaction with Kar2p and is essential for NEF activity. In contrast, Lhs1p holdase activity is nucleotide-independent and unaffected by mutations that interfere with ATP binding and NEF activity. In vivo, these mutants show severe protein translocation defects and are unable to support growth despite the presence of a second Kar2p-specific NEF, Sil1p. Thus, Lhs1p-dependent nucleotide exchange activity is vital for ER protein biogenesis in vivo. PMID:19759005

  16. Facilitation of β-cell KATP channel sulfonylurea sensitivity by a cAMP analog selective for the cAMP-regulated guanine nucleotide exchange factor Epac

    PubMed Central

    Leech, Colin A.; Dzhura, Igor; Chepurny, Oleg G.; Schwede, Frank; Genieser, Hans-G.; Holz, George G.

    2010-01-01

    Clinical studies demonstrate that combined administration of sulfonylureas with exenatide can induce hypoglycemia in type 2 diabetic subjects. Whereas sulfonylureas inhibit β-cell KATP channels by binding to the sulfonylurea receptor-1 (SUR1), exenatide binds to the GLP-1 receptor, stimulates β-cell cAMP production, and activates both PKA and Epac. In this study, we hypothesized that the adverse in vivo interaction of sulfonylureas and exenatide to produce hypoglycemia might be explained by Epac-mediated facilitation of KATP channel sulfonylurea sensitivity. We now report that the inhibitory action of a sulfonylurea (tolbutamide) at KATP channels was facilitated by 2’-O-Me-cAMP, a selective activator of Epac. Thus, under conditions of excised patch recording, the dose-response relationship describing the inhibitory action of tolbutamide at human β-cell or rat INS-1 cell KATP channels was left-shifted in the presence of 2’-O-Me-cAMP, and this effect was abolished in INS-1 cells expressing a dominant-negative Epac2. Using an acetoxymethyl ester prodrug of an Epac-selective cAMP analog (8-pcPT-2’-O-Me-cAMP-AM), the synergistic interaction of an Epac activator and tolbutamide to depolarize INS-1 cells and to raise [Ca2+]i was also measured. This effect of 8-pCPT-2’-O-Me-cAMP-AM correlated with its ability to stimulate phosphatidylinositol 4,5-bisphosphate hydrolysis that might contribute to the changes in KATP channel sulfonylurea-sensitivity reported here. On the basis of such findings, we propose that the adverse interaction of sulfonylureas and exenatide to induce hypoglycemia involves at least in part, a functional interaction of these two compounds to close KATP channels, to depolarize β-cells, and to promote insulin secretion. PMID:20428467

  17. The adaptor protein 3BP2 associates with VAV guanine nucleotide exchange factors to regulate NFAT activation by the B-cell antigen receptor.

    PubMed

    Foucault, Isabelle; Le Bras, Séverine; Charvet, Céline; Moon, Chéol; Altman, Amnon; Deckert, Marcel

    2005-02-01

    Engagement of the B-cell antigen receptor (BCR) activates kinases of the Src and Syk families and signaling complexes assembled by adaptor proteins, which dictate B-cell fate and function. The adaptor 3BP2/SH3BP2, an Abl Src homology domain 3 (SH3)-binding and Syk-kinases interacting protein, exhibits positive regulatory roles in T, natural killer (NK), and basophilic cells. However, its involvement in BCR signaling is completely unknown. Here we show that 3BP2 is tyrosine phosphorylated following BCR aggregation on B lymphoma cells, and that 3BP2 is a substrate for Syk and Fyn, but not Btk. To further explore the function of 3BP2 in B cells, we screened a yeast 2-hybrid B-lymphocyte library and found 3BP2 as a binding partner of Vav proteins. The interaction between 3BP2 and Vav proteins involved both constitutive and inducible mechanisms. 3BP2 also interacted with other components of the BCR signaling pathway, including Syk and phospholipase C gamma (PLC-gamma). Furthermore, overexpression and RNAi blocking experiments showed that 3BP2 regulated BCR-mediated activation of nuclear factor of activated T cells (NFATs). Finally, evidence was provided that 3BP2 functionally cooperates with Vav proteins and Rho GTPases to activate NFATs. Our results show that 3BP2 may regulate BCR-mediated gene activation through Vav proteins.

  18. Novel K-Ras G12C Switch-II Covalent Binders Destabilize Ras and Accelerate Nucleotide Exchange.

    PubMed

    Nnadi, Chimno I; Jenkins, Meredith L; Gentile, Daniel R; Bateman, Leslie A; Zaidman, Daniel; Balius, Trent E; Nomura, Daniel K; Burke, John E; Shokat, Kevan M; London, Nir

    2018-02-26

    The success of targeted covalent inhibitors in the global pharmaceutical industry has led to a resurgence of covalent drug discovery. However, covalent inhibitor design for flexible binding sites remains a difficult task due to a lack of methodological development. Here, we compared covalent docking to empirical electrophile screening against the highly dynamic target K-Ras G12C . While the overall hit rate of both methods was comparable, we were able to rapidly progress a docking hit to a potent irreversible covalent binder that modifies the inactive, GDP-bound state of K-Ras G12C . Hydrogen-deuterium exchange mass spectrometry was used to probe the protein dynamics of compound binding to the switch-II pocket and subsequent destabilization of the nucleotide-binding region. SOS-mediated nucleotide exchange assays showed that, contrary to prior switch-II pocket inhibitors, these new compounds appear to accelerate nucleotide exchange. This study highlights the efficiency of covalent docking as a tool for the discovery of chemically novel hits against challenging targets.

  19. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The color additive guanine shall conform in identity and specifications to the requirements of § 73.1329 (a)(1) and (b). (2) Color additive mixtures of guanine may contain the following diluents: (i) For...

  20. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The color additive guanine shall conform in identity and specifications to the requirements of § 73.1329 (a)(1) and (b). (2) Color additive mixtures of guanine may contain the following diluents: (i) For...

  1. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The color additive guanine shall conform in identity and specifications to the requirements of § 73.1329 (a)(1) and (b). (2) Color additive mixtures of guanine may contain the following diluents: (i) For...

  2. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The color additive guanine shall conform in identity and specifications to the requirements of § 73.1329 (a)(1) and (b). (2) Color additive mixtures of guanine may contain the following diluents: (i) For...

  3. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The color additive guanine shall conform in identity and specifications to the requirements of § 73.1329 (a)(1) and (b). (2) Color additive mixtures of guanine may contain the following diluents: (i) For...

  4. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity

    PubMed Central

    Maurer, Till; Garrenton, Lindsay S.; Oh, Angela; Pitts, Keith; Anderson, Daniel J.; Skelton, Nicholas J.; Fauber, Benjamin P.; Pan, Borlan; Malek, Shiva; Stokoe, David; Ludlam, Mary J. C.; Bowman, Krista K.; Wu, Jiansheng; Giannetti, Anthony M.; Starovasnik, Melissa A.; Mellman, Ira; Jackson, Peter K.; Rudolph, Joachim; Wang, Weiru; Fang, Guowei

    2012-01-01

    The Ras gene is frequently mutated in cancer, and mutant Ras drives tumorigenesis. Although Ras is a central oncogene, small molecules that bind to Ras in a well-defined manner and exert inhibitory effects have not been uncovered to date. Through an NMR-based fragment screen, we identified a group of small molecules that all bind to a common site on Ras. High-resolution cocrystal structures delineated a unique ligand-binding pocket on the Ras protein that is adjacent to the switch I/II regions and can be expanded upon compound binding. Structure analysis predicts that compound-binding interferes with the Ras/SOS interactions. Indeed, selected compounds inhibit SOS-mediated nucleotide exchange and prevent Ras activation by blocking the formation of intermediates of the exchange reaction. The discovery of a small-molecule binding pocket on Ras with functional significance provides a new direction in the search of therapeutically effective inhibitors of the Ras oncoprotein. PMID:22431598

  5. Measurement of nucleotide exchange rate constants in single rabbit soleus myofibrils during shortening and lengthening using a fluorescent ATP analog.

    PubMed

    Shirakawa, I; Chaen, S; Bagshaw, C R; Sugi, H

    2000-02-01

    The kinetics of displacement of a fluorescent nucleotide, 2'(3')-O-[N[2-[[Cy3]amido]ethyl]carbamoyl]-adenosine 5'-triphosphate (Cy3-EDA-ATP), bound to rabbit soleus muscle myofibrils were studied using flash photolysis of caged ATP. Use of myofibrils from this slow twitch muscle allowed better resolution of the kinetics of nucleotide exchange than previous studies with psoas muscle myofibrils (, Biophys. J. 73:2033-2042). Soleus myofibrils in the presence of Cy3-EDA-nucleotides (Cy3-EDA-ATP or Cy3-EDA-ADP) showed selective fluorescence staining of the A-band. The K(m) for Cy3-EDA-ATP and the K(d) for Cy3-EDA-ADP binding to the myofibril A-band were 1.9 microM and 3.8 microM, respectively, indicating stronger binding of nucleotide to soleus cross-bridges compared to psoas cross-bridges (2.6 microM and 50 microM, respectively). After flash photolysis of caged ATP, the A-band fluorescence of the myofibril in the Cy3-EDA-ATP solution under isometric conditions decayed exponentially with a rate constant of 0.045 +/- 0.007 s(-1) (n = 32) at 10 degrees C, which was about seven times slower than that for psoas myofibrils. When a myofibril was allowed to shorten with a constant velocity, the nucleotide displacement rate constant increased from 0.066 s(-1) (isometric) to 0.14 s(-1) at 20 degrees C with increasing shortening velocity up to 0.1 myofibril length/s (V(max), the shortening velocity under no load was approximately 0. 2 myofibril lengths/s). The rate constant was not significantly affected by an isovelocity stretch of up to 0.1 myofibril lengths/s. These results suggest that the cross-bridge kinetics are not significantly affected at higher strain during lengthening but depend on the lower strain during shortening. These data also indicate that the interaction distance between a cross-bridge and the actin filament is at least 16 nm for a single cycle of the ATPase.

  6. Electronic excitations in Guanine quadruplexes.

    PubMed

    Changenet-Barret, Pascale; Hua, Ying; Markovitsi, Dimitra

    2015-01-01

    Guanine rich DNA strands, such as those encountered at the extremities of human chromosomes, have the ability to form four-stranded structures (G-quadruplexes) whose building blocks are guanine tetrads. G-quadruplex structures are intensively studied in respect of their biological role, as targets for anticancer therapy and, more recently, of their potential applications in the field of molecular electronics. Here we focus on their electronic excited states which are compared to those of non-interacting mono-nucleotides and those of single and double stranded structures. Particular emphasis is given to excited state relaxation processes studied by time-resolved fluorescence spectroscopy from femtosecond to nanosecond time scales. They include ultrafast energy transfer and trapping of ππ* excitations by charge transfer states. The effect of various structural parameters, such as the nature of the metal cations located in the central cavity of G-quadruplexes, the number of tetrads or the conformation of the constitutive single strands, are examined.

  7. Collision induced dissociation of deprotonated guanine

    NASA Astrophysics Data System (ADS)

    Sultan, Jassim

    2008-06-01

    This investigation of collision induced dissociation of deprotonated guanine was conducted by using sequential ion trap tandem mass spectrometry and isotopically labelled guanine analogs to clarify the complex dissociation reactions of pyrimidine ring of deprotonated guanine. The fragmentation patterns confirmed that the gas-phase dissociation processes are initiated from the pyrimidine ring through charge site controlled reactions involving charge redistribution, proton transfer and nucleophilic attack to generate the three primary fragment products by the elimination of ammonia, cyanamide and isocyanic acid. Our findings shed light on the process of pyrimidine ring opening and closure prior to the decomposition of deprotonated guanine and therefore the identity of N1 and exocyclic N2 is lost in deprotonated guanine as a result of scrambling. Intriguing association products of water addition to fragment ions have been structurally characterized to establish the role of ketene group in the selective gas-phase reaction of water addition and the formation of water adducts. The elimination of CO2 from negatively charged water adducts provides evidence for the covalent attachment of water to the ketene moiety. The established mechanisms of the dissociation reactions of pyrimidine ring should provide a basis for the structural elucidation of guanine relevant species modified on its active sites. To lend support for our proposals, collision induced dissociation study of 8-phenyl-2'-deoxyguanosine adduct was performed.

  8. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function.

    PubMed

    Horiuchi, H; Lippé, R; McBride, H M; Rubino, M; Woodman, P; Stenmark, H; Rybin, V; Wilm, M; Ashman, K; Mann, M; Zerial, M

    1997-09-19

    The small GTPase Rab5 plays an essential role in endocytic traffic. Rab GDP dissociation inhibitor delivers Rab5 to the membrane, where a nucleotide exchange activity allows recruitment of an effector protein, Rabaptin-5. Here we uncovered a novel 60 kDa Rab5-binding protein, Rabex-5. Rabex-5 forms a tight physical complex with Rabaptin-5, and this complex is essential for endocytic membrane fusion. Sequencing of mammalian Rabex-5 by nanoelectrospray mass spectrometry and cloning revealed striking homology to Vps9p, a yeast protein implicated in endocytic traffic. Rabex-5 displays GDP/GTP exchange activity on Rab5 upon delivery of the GTPase to the membrane. This demonstrates that a soluble exchange factor coupled to a Rab effector translocates from cytosol to the membrane, where the complex stabilizes the GTPase in the active state.

  9. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Guanine. 73.1329 Section 73.1329 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... vary from 3 to 25 percent, depending on the particular fish and tissue from which the crystals are...

  10. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Guanine. 73.1329 Section 73.1329 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... vary from 3 to 25 percent, depending on the particular fish and tissue from which the crystals are...

  11. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Guanine. 73.1329 Section 73.1329 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... vary from 3 to 25 percent, depending on the particular fish and tissue from which the crystals are...

  12. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Guanine. 73.1329 Section 73.1329 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... vary from 3 to 25 percent, depending on the particular fish and tissue from which the crystals are...

  13. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Guanine. 73.1329 Section 73.1329 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... vary from 3 to 25 percent, depending on the particular fish and tissue from which the crystals are...

  14. Neurodevelopmental disabilities in children with intermediate and premutation range fragile X cytosine-guanine-guanine expansions.

    PubMed

    Renda, Meredith M; Voigt, Robert G; Babovic-Vuksanovic, Dusica; Highsmith, W Edward; Vinson, Sherry S; Sadowski, Christine M; Hagerman, Randi J

    2014-03-01

    To determine the range of neurodevelopmental diagnoses associated with intermediate (45-54 repeats) and premutation (55-200 repeats) range cytosine-guanine-guanine fragile X expansions, the medical records of children with intermediate or premutation range expansions were retrospectively reviewed, and all neurodevelopmental diagnoses were abstracted. Twenty-nine children (9 female, 20 male; age, 13 months to 17 years) with intermediate (n = 25) or premutation (n = 4) range expansions were identified with neurodevelopmental diagnoses, including global developmental delay/intellectual disability (n = 15), language and learning disorders (n = 9), attention-deficit hyperactivity disorder (n = 5), epilepsy (n = 5), and motor disorders (n = 12), including 2 boys younger than 4 years of age with tremor and ataxia. Thus, children with intermediate or premutation range fragile X cytosine-guanine-guanine expansions may be more susceptible than children without such expansions to other processes, both genetic and environmental, that contribute to neurodevelopmental disability.

  15. Structural analysis of the Sil1-Bip complex reveals the mechanism for Sil1 to function as a nucleotide-exchange factor

    SciTech Connect

    Yan, Ming; Li, Jingzhi; Sha, Bingdong

    2013-01-16

    Sil1 functions as a NEF (nucleotide-exchange factor) for the ER (endoplasmic reticulum) Hsp70 (heat-shock protein of 70 kDa) Bip in eukaryotic cells. Sil1 may catalyse the ADP release from Bip by interacting directly with the ATPase domain of Bip. In the present study we show the complex crystal structure of the yeast Bip and the NEF Sil1 at the resolution of 2.3 {angstrom} (1 {angstrom} = 0.1 nm). In the Sil1-Bip complex structure, the Sil1 molecule acts as a 'clamp' which binds lobe IIb of the Bip ATPase domain. The binding of Sil1 causes the rotation of lobe IIb {approx}more » 13.5{sup o} away from the ADP-binding pocket. The complex formation also induces lobe Ib to swing in the opposite direction by {approx} 3.7{sup o}. These conformational changes open up the nucleotide-binding pocket in the Bip ATPase domain and disrupt the hydrogen bonds between Bip and bound ADP, which may catalyse ADP release. Mutation of the Sil1 residues involved in binding the Bip ATPase domain compromise the binding affinity of Sil1 to Bip, and these Sil1 mutants also abolish the ability to stimulate the ATPase activity of Bip.« less

  16. An unexpected role for the yeast nucleotide exchange factor Sil1 as a reductant acting on the molecular chaperone BiP

    PubMed Central

    Siegenthaler, Kevin D; Pareja, Kristeen A; Wang, Jie; Sevier, Carolyn S

    2017-01-01

    Unfavorable redox conditions in the endoplasmic reticulum (ER) can decrease the capacity for protein secretion, altering vital cell functions. While systems to manage reductive stress are well-established, how cells cope with an overly oxidizing ER remains largely undefined. In previous work (Wang et al., 2014), we demonstrated that the chaperone BiP is a sensor of overly oxidizing ER conditions. We showed that modification of a conserved BiP cysteine during stress beneficially alters BiP chaperone activity to cope with suboptimal folding conditions. How this cysteine is reduced to reestablish 'normal' BiP activity post-oxidative stress has remained unknown. Here we demonstrate that BiP's nucleotide exchange factor – Sil1 – can reverse BiP cysteine oxidation. This previously unexpected reductant capacity for yeast Sil1 has potential implications for the human ataxia Marinesco-Sjögren syndrome, where it is interesting to speculate that a disruption in ER redox-signaling (due to genetic defects in SIL1) may influence disease pathology. DOI: http://dx.doi.org/10.7554/eLife.24141.001 PMID:28257000

  17. Flo11p-Independent Control of “Mat” Formation by Hsp70 Molecular Chaperones and Nucleotide Exchange Factors in Yeast

    PubMed Central

    Martineau, Céline N.; Beckerich, Jean-Marie; Kabani, Mehdi

    2007-01-01

    The yeast Saccharomyces cerevisiae has been used as a model for fungal biofilm formation due to its ability to adhere to plastic surfaces and to form mats on low-density agar petri plates. Mats are complex multicellular structures composed of a network of cables that form a central hub from which emanate multiple radial spokes. This reproducible and elaborate pattern is indicative of a highly regulated developmental program that depends on specific transcriptional programming, environmental cues, and possibly cell–cell communication systems. While biofilm formation and sliding motility were shown to be strictly dependent on the cell-surface adhesin Flo11p, little is known about the cellular machinery that controls mat formation. Here we show that Hsp70 molecular chaperones play key roles in this process with the assistance of the nucleotide exchange factors Fes1p and Sse1p and the Hsp40 family member Ydj1p. The disruption of these cofactors completely abolished mat formation. Furthermore, complex interactions among SSA genes were observed: mat formation depended mostly on SSA1 while minor defects were observed upon loss of SSA2; additional mutations in SSA3 or SSA4 further enhanced these phenotypes. Importantly, these mutations did not compromise invasive growth or Flo11p expression, suggesting that Flo11p-independent pathways are necessary to form mats. PMID:17947402

  18. Guanine modification during chemical DNA synthesis.

    PubMed Central

    Eadie, J S; Davidson, D S

    1987-01-01

    Base modification during solid-phase phosphoramidite synthesis of oligodeoxynucleotides has been investigated. We have discovered chemical modification that converts dG and dG-containing oligomers to a fluorescent form. This modification has been linked to N,N-dimethylaminopyridine (DMAP), an acylation catalyst, which can displace phosphate triester adducts at the 6-position of guanine. Further, we have found that this fluorescent intermediate can be converted in ammonium hydroxide solution to 2,6 diaminopurine deoxyribonucleoside (2,6 DAP), a potentially mutagenic nucleoside analog. We have shown that N-methylimidazole (NMI) in place of DMAP eliminates the fluorescent species and reduces 2,6 DAP contamination. Images PMID:3671086

  19. The Formation and Biological Significance of N7-Guanine Adducts

    PubMed Central

    Boysen, Gunnar; Pachkowski, Brian F.; Nakamura, Jun; Swenberg, James A

    2009-01-01

    DNA alkylation or adduct formation occurs at nucleophilic sites in DNA, mainly the N7-position of guanine. Ever since identification of the first N7-guanine adduct, several hundred studies on DNA adducts have been reported. Major issues addressed include the relationships between N7-guanine adducts and exposure, mutagenesis, and other biological endpoints. It became quickly apparent that N7-guanine adducts are frequently formed, but may have minimal biological relevance, since they are chemically unstable and do not participate in Watson Crick base pairing. However, N7-guanine adducts have been shown to be excellent biomarkers for internal exposure to direct acting and metabolically activated carcinogens. Questions arise, however, regarding the biological significance for N7-guanine adducts that are readily formed, do not persist, and are not likely to be mutagenic. Thus, we set out to review the current literature to evaluate their formation and the mechanistic evidence for the involvement of N7-guanine adducts in mutagenesis or other biological processes. It was concluded that there is insufficient evidence that N7-guanine adducts can be used beyond confirmation of exposure to the target tissue and demonstration of the molecular dose. There is little to no evidence that N7-guanine adducts or their depurination product, apurinic sites, are the cause of mutations in cells and tissues, since increases in AP sites have not been shown unless toxicity is extant. However, more research is needed to define the extent of chemical depurination versus removal by DNA repair proteins. Interestingly, N7-guanine adducts are clearly present as endogenous background adducts and the endogenous background amounts appear to increase with age. Furthermore, the N7-guanine adducts have been shown to convert to ring opened lesions (FAPy), which are much more persistent and have higher mutagenic potency. Studies in humans are limited in sample size and differences between controls and

  20. Exploring the characterization tools of Guanine-Quadruplexes.

    PubMed

    Kaushik, Mahima; Kaushik, Shikha; Kukreti, Shrikant

    2016-01-01

    Occurrence of guanine-rich sequences throughout the genome at specific locations like chromosomal ends (telomeres), promoters and Untranslated regions (UTR's) is very well documented. Quite recently, visualization of guanine-quadruplex in human and mammalian cells have also provided a very significant evidence for the in vivo existence of guanine-quadruplex, reconfirming their biological relevance in cellular processes like replication, transcription, recombination, etc. Guanine quadruplexes have enormous potential of exhibiting various topologies which differ, by number/ orientation of strands or loop orientations etc. Some relatively new polymorphic structures like 3+1 quadruplex, G-triplex, and Tri-G-quadruplex have also been proposed for the guanine-rich sequences. Various biochemical and biophysical techniques have been used to characterize these multistranded DNA structures. An extensive review of the mechanistic models of the already existing and newly emerging techniques is actually required, which may further facilitate our understanding about these structures. This review aims to summarize some of these techniques along with their requirements and limitations, which might further give some insights for the fine tuning of the solution and environmental conditions needed for facilitating guanine-quadruplex formation.

  1. Hydrogen exchange dynamics of the P22 virion determined by time-resolved Raman spectroscopy. Effects of chromosome packaging on the kinetics of nucleotide exchanges.

    PubMed

    Reilly, K E; Thomas, G J

    1994-08-05

    similar for both adenine and guanine residues, indicating that they do not originate from purine-specific interactions but probably reflect steric shielding of the major groove of packaged DNA from free access to solvent. This effect is likely distributed throughout the 43,400 base-pair genome. (3) Only a small population (approximately 15 to 20%) of subunit amide protons exchanges within the time frame of complete exchange of all protons of packaged P22 DNA. Complete exchange of the capsid is not achieved even after several months of incubation at 40 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)

  2. [Triplet expansion cytosine-guanine-guanine: Three cases of OMIM syndrome in the same family].

    PubMed

    González-Pérez, Jesús; Izquierdo-Álvarez, Silvia; Fuertes-Rodrigo, Cristina; Monge-Galindo, Lorena; Peña-Segura, José Luis; López-Pisón, Francisco Javier

    2016-04-01

    The dynamic increase in the number of triplet repeats of cytosine-guanine-guanine (CGG) in the FMR1 gene mutation is responsible for three OMIM syndromes with a distinct clinical phenotype: Fragile X syndrome (FXS) and two pathologies in adult carriers of the premutation (55-200 CGG repeats): Primary ovarian insufficiency (FXPOI) and tremor-ataxia syndrome (FXTAS) associated with FXS. CGG mutation dynamics of the FMR1 gene were studied in DNA samples from peripheral blood from the index case and other relatives of first, second and third degree by TP-PCR, and the percentage methylation. Diagnosis of FXS was confirmed in three patients (21.4%), eight patients (57.1%) were confirmed in the premutation range transmitters, one male patient with full mutation/permutation mosaicism (7.1%) and two patients (14.3%) with normal study. Of the eight permutated patients, three had FXPOI and one male patient had FXTAS. Our study suggests the importance of making an early diagnosis of SXF in order to carry out a family study and genetic counselling, which allow the identification of new cases or premutated patients with FMR1 gene- associated syndromes (FXTAS, FXPOI). Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  3. Impedimetric investigation of gold nanoparticles - guanine modified electrode

    NASA Astrophysics Data System (ADS)

    Vulcu, A.; Pruneanu, S.; Berghian-Grosan, C.; Olenic, L.; Muresan, L. M.; Barbu-Tudoran, L.

    2013-11-01

    In this paper we report the preparation of a modified electrode with gold nanoparticles and guanine. The colloidal suspension of gold nanoparticles was obtained by Turkevich method and was next analyzed by UV-Vis spectroscopy and Transmission Electron Microscopy (TEM). The gold electrode was modified by self-assembling the gold nanoparticles with guanine, the organic molecule playing also the role of linker. The electrochemical characteristics of the bare and modified electrode were investigated by Electrochemical Impedance Spectroscopy (EIS). A theoretical model was developed based on an electrical equivalent circuit which contain solution resistance (Rs), charge transfer resistance (Rct), Warburg impedance (ZW) and double layer capacitance (Cdl).

  4. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed Central

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-01-01

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  5. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-10-25

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides.

  6. Camptothecins guanine interactions: mechanism of charge transfer reaction upon photoactivation

    NASA Astrophysics Data System (ADS)

    Steenkeste, K.; Guiot, E.; Tfibel, F.; Pernot, P.; Mérola, F.; Georges, P.; Fontaine-Aupart, M. P.

    2002-01-01

    The potent activity exhibited by the antitumoral camptothecin (CPT) and its analog irinotecan (CPT-11) is known to be related to a close contact between the drug and the nucleic acid base guanine. This specificity of interaction between these two chromophores was examined by following changes in the photophysical properties of the drug using steady-state as well as time-resolved absorption and fluorescence methods. The observed effects on absorption, fluorescence emission and singlet excited state lifetimes give evidence for the occurrence of a stacking complex formation restricted to the quinoline part of CPT or CPT-11 and the guanine base but also with the adenine base. The triplet excited state properties of the drugs have been also characterized in absence and in presence of guanosine monophosphate and reveal the occurrence of an electron transfer from the guanine base to the drug. Support for this conclusion was obtained from the studies of a set of biological targets of various oxido-reduction potentials, adenosine monophosphate, cytidine, cytosine, tryptophan, tyrosine and phenylalanine. This finding gives an interpretation of the CPT-induced guanine photolesions previously reported in the literature. These data taken together are discussed in connection with the drug activity. The stacking complex CPT/guanine is necessary but not sufficient to explain the role of the chirality and of the lactone structure in the function of the drug. A stereospecific interaction with the enzyme topoisomerase I seems necessary to stabilize the stacking complex. The first experiments using time-resolved fluorescence by two-photon excitation confirms that CPT does not bind to the isolated enzyme.

  7. IR-UV double resonance spectroscopy of guanine-H2O clusters.

    PubMed

    Crews, Bridgit; Abo-Riziq, Ali; Grace, Louis; Callahan, Michael; Kabelác, Martin; Hobza, Pavel; de Vries, Mattanjah S

    2005-08-21

    We present the IR-UV double resonance spectrum of guanine monohydrate in the region 3100 cm(-1) to 3800 cm(-1) along with the energies and frequencies of these structures calculated at the non-empirical correlated ab initio RI-MP2/cc-pVDZ level. We assign the structures of guanine-water clusters by comparing the experimental spectra with the ab initio calculations and with the IR spectra of the bare guanine monomer. We find two clusters with guanine in the enol-amino tautomeric form and one structure with guanine in the keto-amino form.

  8. Guanine base stacking in G-quadruplex nucleic acids

    PubMed Central

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-01-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444

  9. Biologically Controlled Morphology and Twinning in Guanine Crystals.

    PubMed

    Hirsch, Anna; Palmer, Benjamin A; Elad, Nadav; Gur, Dvir; Weiner, Steve; Addadi, Lia; Kronik, Leeor; Leiserowitz, Leslie

    2017-08-01

    Guanine crystals are widely used in nature as components of multilayer reflectors. Guanine-based reflective systems found in the copepod cuticle and in the mirror of the scallop eye are unique in that the multilayered reflectors are tiled to form a contiguous packed array. In the copepod cuticle, hexagonal crystals are closely packed to produce brilliant colors. In the scallop eye, square crystals are tiled to obtain an image-forming reflecting mirror. The tiles are about 1 μm in size and 70 nm thick. According to analysis of their electron diffraction patterns, the hexagon and square tiles are not single crystals. Rather, each tile type is a composite of what appears to be three crystalline domains differently oriented and stacked onto one another, achieved through a twice-repeated twinning about their ⟨011⟩ and ⟨021⟩ crystal axes, respectively. By these means, the monoclinic guanine crystal mimics higher symmetry hexagonal and tetragonal structures to achieve unique morphologies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. `Guanigma': the revised structure of biogenic anhydrous guanine

    NASA Astrophysics Data System (ADS)

    Hirsch, Anna; Gur, Dvir; Polishchuk, Iryna; Levy, Davide; Pokroy, Boaz; Cruz-Cabeza, Aurora J.; Addadi, Lia; Kronik, Leeor; Leiserowitz, Leslie

    Living organisms display a spectrum of colors, produced by pigmentation, structural coloration, or both. A relatively well-studied system, which produces colors via an array of alternating anhydrous guanine crystals and cytoplasm, is responsible for the metallic luster of many fish. The structure of biogenic anhydrous guanine was believed to be the same as that of the synthetic one - a monoclinic polymorph. Here we re-examine the structure of biogenic guanine, using experimental X-ray and electron diffraction (ED) data exposing troublesome inconsistencies - namely, a 'guanigma'. To address this, we sought alternative candidate polymorphs using symmetry and packing considerations, then used first principles calculations to determine whether the selected candidates could be energetically stable. We identified theoretically a different monoclinic polymorph, were able to synthesize it, and to confirm using X-ray diffraction that it is this polymorph that occurs in biogenic samples. However, the ED data were still not consistent with this polymorph, but rather with a theoretically generated orthorhombic polymorph. This apparent inconsistency was resolved by showing how the ED pattern could be affected by crystal structural faults composed of offset molecular layers.

  11. Quantum molecular modeling of the interaction between guanine and alkylating agents--2--nitrogen mustard.

    PubMed

    Hamza, A; Broch, H; Vasilescu, D

    1996-06-01

    The alkylation mechanism of guanine by nitrogen mustard (HN2) was studied by using a supermolecular modeling at the ab initio 6-31G level. Our computations show that interaction of guanine with the aziridinium form of HN2 necessitates a transition state for the N7 alkylation route. The pathway of N7-guanine alkylation by nitrogen and sulfur mustards is discussed on the basis of the Molecular Electrostatic Potential and HOMO-LUMO properties of these molecules.

  12. Effects of Site-Specific Guanine C8-Modifications on an Intramolecular DNA G-Quadruplex

    PubMed Central

    Lech, Christopher Jacques; Cheow Lim, Joefina Kim; Wen Lim, Jocelyn Mei; Amrane, Samir; Heddi, Brahim; Phan, Anh Tuân

    2011-01-01

    Understanding the fundamentals of G-quadruplex formation is important both for targeting G-quadruplexes formed by natural sequences and for engineering new G-quadruplexes with desired properties. Using a combination of experimental and computational techniques, we have investigated the effects of site-specific substitution of a guanine with C8-modified guanine derivatives, including 8-bromo-guanine, 8-O-methyl-guanine, 8-amino-guanine, and 8-oxo-guanine, within a well-defined (3 + 1) human telomeric G-quadruplex platform. The effects of substitutions on the stability of the G-quadruplex were found to depend on the type and position of the modification among different guanines in the structure. An interesting modification-dependent NMR chemical-shift effect was observed across basepairing within a guanine tetrad. This effect was reproduced by ab initio quantum mechanical computations, which showed that the observed variation in imino proton chemical shift is largely influenced by changes in hydrogen-bond geometry within the guanine tetrad. PMID:22004753

  13. Interactions of fluoride and guanine nucleotides with thyroid adenylate cyclase.

    PubMed

    Goldhammer, A; Wolff, J

    1982-02-18

    The activation of bovine thyroid adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) by Gpp(NH)p has been studied using steady-state kinetic methods. This activation is complex and may be characterized by two Gpp(NH)p binding sites of different affinities with measured constants: Ka1 = 0.1 micro M and Ka2 = 2.9 micro M. GDP beta S does not completely inhibit the Gpp(NH)p activation: analysis of the data is consistent with a single GDP beta S inhibitory site which is competitive with the weaker Gpp(NH)p site. Guanine nucleotide effects upon F- activation of adenylate cyclase have been studied. When App(NH)p is the substrate, 10 micro M GTP along with 10 mM NaF gives higher activity than NaF alone, while GDP together with NaF inhibits the activity by 50% relative to NaF. These features are not observed when the complex is assayed with ATP in the presence of a nucleotide regenerating system or when analogs Gpp)NH)p or GDP beta S are used along with NaF. These effects were studied in three other membrane systems using App(NH)p as substrate: rat liver, rat ovary and turkey erythrocyte. No consistent pattern of guanine nucleotide effects upon fluoride activation could be observed in the different membrane preparations. Previous experiments showed that the size of soluble thyroid adenylate cyclase changed whether membranes were preincubated with Gpp(NH)p or NaF. This size change roughly corresponded to the molecular weight of the nucleotide regulatory protein. This finding, coupled with the present data, suggests that two guanine nucleotide binding sites may be involved in regulating thyroid cyclase and that these sites may be on different protein chains.

  14. Structure-Based Design of Trna-Guanine Transglycosylase Inhibitors

    NASA Astrophysics Data System (ADS)

    Klebe, Gerhard

    Taking the development of inhibitors for the tRNA-modifying enzyme tRNA-guanine transglycosylase (TGT) as an example, the scope of a structure-based drug development project will be demonstrated, performed via several cycles of iterative design. The described example is based on studies, performed at ETH-Zurich and University of Marburg in joint collaboration. As these studies have been executed in an academic environment, different tools of structure-based design have been applied and several issues of more fundamental interest to the methodological background of the project could be addressed.

  15. Production of guanine from NH(4)CN polymerizations

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Oro, J.

    1999-01-01

    The synthesis of adenine from the polymerization of concentrated ammonium cyanide solutions is well known. We show here that guanine is also produced by this reaction but at yields ranging from 10 to 40 times less than that of adenine. This synthesis is effective at both +80 and -20 degrees C. Since high concentrations of NH(4)CN are obtainable only by freezing, this prebiotic synthesis would be applicable to frozen regions of the primitive Earth, the Jovian satellite Europa and other icy satellites, and the parent body of the Murchison meteorite.

  16. Probing Guanine and Cytosine Tautomers in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Pena, I.; Vaquero, V.; López, J. C.; Alonso, J. L.

    2009-06-01

    Using laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) we have recently studied the nucleic acid bases uracil and thymine. We have now successfully probed in isolation conditions in the gas phase cytosine and guanine which are solids with high melting points (m.p.>300°C) and a low vapour pressure, and consequently, they are elusive to gas-phase rotational studies. Five rotational species have been detected in the supersonic expansion of cytosine. The unambiguous assignment of the observed species to the various tautomer/conformer structures is based on the markedly different values of the quadrupole coupling constants of the three ^{14}N nuclei, which act as fingerprints for the identification of the various species. Four species have been observed in the rotational spectra of Guanine. The comparison between the experimental rotational constants and those calculated ab initio provide a definitive test for the identification of the four lowest energy forms. The planarity of the tautomers is discussed on the basis of the inertial defect values (Δ=I_c-I_a-I_b). V. Vaquero, M.E. Sanz, J.C. López and J.L. Alonso, J. Phys. Chem. A 111, 3443 (2007) J.C. López, M.I. Peña, M.E. Sanz and J.L. Alonso, J. Chem. Phys. 126, 191103 (2007)

  17. Mapping the sequences of potential guanine quadruplex motifs

    PubMed Central

    Todd, Alan K.; Neidle, Stephen

    2011-01-01

    The knowledge that potential guanine quadruplex sequences (PQs) are non-randomly distributed in relation to genomic features is now well established. However, this is for a general potential quadruplex motif which is characterized by short runs of guanine separated by loop regions, regardless of the nature of the loop sequence. There have been no studies to date which map the distribution of PQs in terms of primary sequence or which categorize PQs. To this end, we have generated clusters of PQ sequence groups of various sizes and various degrees of similarity for the non-template strand of introns in the human genome. We started with 86 697 sequences, and successively merged them into groups based on sequence similarity, carrying out 66 clustering cycles before convergence. We have demonstrated here that by using complete linkage hierarchical agglomerative clustering such PQ sequence categorization can be achieved. Our results give an insight into sequence diversity and categories of PQ sequences which occur in human intronic regions. We also highlight a number of clusters for which interesting relationships among their members were immediately evident and other clusters whose members seem unrelated, illustrating, we believe, a distinct role for different sequence types. PMID:21357607

  18. Electrochemical antioxidant detection technique based on guanine-bonded graphene and magnetic nanoparticles composite materials.

    PubMed

    Li, Peng; Zhang, Wei; Zhao, Jingjing; Meng, Fanjun; Yue, Qiaoli; Wang, Lei; Li, Haibo; Gu, Xiaohong; Zhang, Shuqiu; Liu, Jifeng

    2012-09-21

    An antioxidant (AO) amperometric technique based on guanine attached to graphene and Fe(3)O(4) nanoparticles (NPs) magnetic materials was developed. Guanine molecules acted as an antioxidant competitor were bonded with graphene nanosheets, onto which magnetic Fe(3)O(4) NPs were attached and the as-prepared magnetic composite can be attracted to the electrode surface by an external magnetic field. When applied with negative potentials, the dissolved oxygen was reduced to H(2)O(2) at the electrode surface, and then reacted with the EDTA-Fe(ii) complex via a Fenton-like reaction to produce OH radicals. After oxidation damage by OH radicals, the electrochemical oxidation of guanine gave a decreased current. In the presence of AOs, the reactive oxygen species (ROS, e.g. OH radicals and H(2)O(2)) were scavenged by AOs and fewer guanine probe molecules were oxidized, thus inducing a higher electrochemical oxidation current of guanine. So AOs competed with the guanine probe molecules toward oxidation by ROS. The current signals of the guanine probe molecules were proportional to the concentrations of AOs. A kinetic model was proposed to quantify the ROS scavenging capacities of the AOs. Using guanine as an oxidizable probe and OH radicals and H(2)O(2) as endogenous ROS, this kind of AO detection technique mimicks the antioxidant protection mechanism by small AO molecules in the human body.

  19. Phosphodiester-mediated reaction of cisplatin with guanine in oligodeoxyribonucleotides.

    PubMed

    Campbell, Meghan A; Miller, Paul S

    2008-12-02

    The cancer chemotherapeutic agent cis-diamminedichloroplatinum(II) or cisplatin reacts primarily with guanines in DNA to form 1,2-Pt-GG and 1,3-Pt-GNG intrastrand cross-links and, to a lesser extent, G-G interstrand cross-links. Recent NMR evidence has suggested that cisplatin can also form a coordination complex with the phosphodiester internucleotide linkage of DNA. We have examined the effects of the phosphodiester backbone on the reactions of cisplatin with oligodeoxyribonucleotides that lack or contain a GTG sequence. Cisplatin forms a stable adduct with TpT that can be isolated by reversed phase HPLC. The cis-Pt-TpT adduct contains a single Pt, as determined by atomic absorption spectroscopy (AAS) and by electrospray ionization mass spectrometry (ESI-MS), and is resistant to digestion by snake venom phosphodiesterase. Treatment of the adduct with sodium cyanide regenerates TpT. Similar adduct formation was observed when T(pT)(8) was treated with cisplatin, but not when the phosphodiester linkages of T(pT)(8) were replaced with methylphosphonate groups. These results suggest that the platinum may be coordinated with the oxygens of the thymine and possibly with those of the phosphodiester group. As expected, reaction of a 9-mer containing a GTG sequence with cisplatin yielded an adduct that contained a 1,3-Pt-GTG intrastrand cross-link. However, we found that the number and placement of phosphodiesters surrounding a GTG sequence significantly affected intrastrand cross-link formation. Increasing the number of negatively charged phosphodiesters in the oligonucleotide increased the amount of GTG platination. Surrounding the GTG sequence with nonionic methylphosphonate linkages inhibited or eliminated cross-link formation. These observations suggest that interactions between cisplatin and the negatively charged phosphodiester backbone may play an important role in facilitating platination of guanine nucleotides in DNA.

  20. Lifetimes and Reaction Pathways of Guanine Radical Cations and Neutral Guanine Radicals in an Oligonucleotide in Aqueous Solutions

    PubMed Central

    Rokhlenko, Yekaterina; Geacintov, Nicholas E.; Shafirovich, Vladimir

    2012-01-01

    The exposure of guanine in the oligonucleotide 5’-d(TCGCT) to one-electron oxidants leads initially to the formation of the guanine radical cation G•+, its deptotonation product G(−H)• and, ultimately, to various two- and four-electron oxidation products via pathways that depend on the oxidants and reaction conditions. We utilized single or successive multiple laser pulses (308 nm, 1 Hz rate) to generate the oxidants CO3•− and SO4•− (via the photolysis of S2O82− in aqueous solutions in the presence and absence of bicarbonate, respectively) at concentrations/pulse that were ~20-fold lower than the concentration of 5’-d(TCGCT). Time-resolved absorption spectroscopy measurements following single-pulse excitation show that the G•+ radical (pKa = 3.9) can be observed only at low pH and is hydrated within ≥ 3 ms at pH 2.5, thus forming the two-electron oxidation product 8-oxo-7,8-dihydroguanosine (8-oxoG). At neutral pH, and single pulse excitation, the principal reactive intermediate is G(−H)• that at best, reacts only slowly with H2O, and lives for ≥ 70 ms in the absence of oxidants/other radicals to form base sequence-dependent intrastrand cross-links via the nucleophilic addition of N3-thymidine to C8-guanine (5'-G*CT* and 5'-T*CG*). Alternatively, G(−H)• can be oxidized further by reaction with CO3•− generating the two electron products 8-oxoG (C8 addition), and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih, by C5 addition). The four-electron oxidation products, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), appear only after a second (or more) laser pulses. The levels of all products, except 8-oxoG, which remains at a low constant value, increase with the number of laser pulses. PMID:22329445

  1. Lifetimes and reaction pathways of guanine radical cations and neutral guanine radicals in an oligonucleotide in aqueous solutions.

    PubMed

    Rokhlenko, Yekaterina; Geacintov, Nicholas E; Shafirovich, Vladimir

    2012-03-14

    The exposure of guanine in the oligonucleotide 5'-d(TCGCT) to one-electron oxidants leads initially to the formation of the guanine radical cation G(•+), its deptotonation product G(-H)(•), and, ultimately, various two- and four-electron oxidation products via pathways that depend on the oxidants and reaction conditions. We utilized single or successive multiple laser pulses (308 nm, 1 Hz rate) to generate the oxidants CO(3)(•-) and SO(4)(•-) (via the photolysis of S(2)O(8)(2-) in aqueous solutions in the presence and absence of bicarbonate, respectively) at concentrations/pulse that were ∼20-fold lower than the concentration of 5'-d(TCGCT). Time-resolved absorption spectroscopy measurements following single-pulse excitation show that the G(•+) radical (pK(a) = 3.9) can be observed only at low pH and is hydrated within 3 ms at pH 2.5, thus forming the two-electron oxidation product 8-oxo-7,8-dihydroguanosine (8-oxoG). At neutral pH, and single pulse excitation, the principal reactive intermediate is G(-H)(•), which, at best, reacts only slowly with H(2)O and lives for ∼70 ms in the absence of oxidants/other radicals to form base sequence-dependent intrastrand cross-links via the nucleophilic addition of N3-thymidine to C8-guanine (5'-G*CT* and 5'-T*CG*). Alternatively, G(-H)(•) can be oxidized further by reaction with CO(3)(•-), generating the two-electron oxidation products 8-oxoG (C8 addition) and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih, by C5 addition). The four-electron oxidation products, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), appear only after a second (or more) laser pulse. The levels of all products, except 8-oxoG, which remains at a low constant value, increase with the number of laser pulses.

  2. Guanine Oxidation in Double-stranded DNA by MnTMPyP/KHSO5: At Least Three Independent Reaction Pathways

    PubMed Central

    Lapi, Andrea; Pratviel, Geneviève

    2001-01-01

    In order to better define the mechanism and the products of guanine oxidation within DNA, we investigated the details of the mechanism of guanine oxidation by a metalloporphyrin, Mn-TMPyP, associated to KHSO5 on oligonucleotides. We found that the three major products of guanine oxidation are formed by independent reaction routes. The oxidized guanidinohydantoin (1) and the proposed spiro compound 3 derivatives are not precursors of imidazolone lesion (Iz). These guanine lesions as well as their degradation products, may account for non-detected guanine oxidation products on oxidatively damaged DNA. PMID:18475975

  3. Quantum molecular modeling of the interaction between guanine and alkylating agents--1--sulfur mustard.

    PubMed

    Broch, H; Hamza, A; Vasilescu, D

    1996-06-01

    Interaction between Guanine and the episulfonium form of Sulfur mustard (HD) was studied using the ab initio LCAO-MO method at the HF/6-31G level. The alkylation mechanism on guanine-N7 was analyzed by using a supermolecular modeling. Our stereostructural results associated with the molecular electrostatic potentials and HOMO-LUMO properties, show that in vacuum the alkylation of the N7 of guanine by HD in the aggressive episulfonium form is a direct process without transition state and of which the pathway is determined.

  4. Charge splitters and charge transport junctions based on guanine quadruplexes

    NASA Astrophysics Data System (ADS)

    Sha, Ruojie; Xiang, Limin; Liu, Chaoren; Balaeff, Alexander; Zhang, Yuqi; Zhang, Peng; Li, Yueqi; Beratan, David N.; Tao, Nongjian; Seeman, Nadrian C.

    2018-04-01

    Self-assembling circuit elements, such as current splitters or combiners at the molecular scale, require the design of building blocks with three or more terminals. A promising material for such building blocks is DNA, wherein multiple strands can self-assemble into multi-ended junctions, and nucleobase stacks can transport charge over long distances. However, nucleobase stacking is often disrupted at junction points, hindering electric charge transport between the two terminals of the junction. Here, we show that a guanine-quadruplex (G4) motif can be used as a connector element for a multi-ended DNA junction. By attaching specific terminal groups to the motif, we demonstrate that charges can enter the structure from one terminal at one end of a three-way G4 motif, and can exit from one of two terminals at the other end with minimal carrier transport attenuation. Moreover, we study four-way G4 junction structures by performing theoretical calculations to assist in the design and optimization of these connectors.

  5. Oligomeric state of hypoxanthine-guanine phosphoribosyltransferase from Mycobacterium tuberculosis.

    PubMed

    Eng, Wai Soon; Keough, Dianne T; Hockova, Dana; Winzor, Donald J; Guddat, Luke W

    2017-04-01

    Sedimentation equilibrium and size-exclusion chromatography experiments on Mycobacterium tuberculosis hypoxanthine-guanine phosphoribosyltransferase (MtHGPRT) have established the existence of this enzyme as a reversibly associating mixture of dimeric and tetrameric species in 0.1 M Tris-HCl-0.012 M MgCl 2 , pH 7.4. Displacement of the equilibrium position towards the larger oligomer by phosphate signifies the probable existence of MtHGPRT as a tetramer in the biological environment. These data thus add credibility to the relevance of considering enzyme function in the light of a published tetrameric structure deduced from X-ray crystallography. Failure of 5-phospho-α-d-ribosyl-1-pyrophosphate (PRib-PP) to perturb the dimer-tetramer equilibrium position indicates the equivalence and independence of binding for this substrate (the first to bind in an ordered sequential mechanism) to the two oligomers. By virtue of the displacement of the equilibrium position towards dimer that is affected by removing MgCl 2 from the Tris-HCl buffer, it can be concluded that divalent metal ions, as well as phosphate, can affect the oligomerization. These characteristics of MtHGPRT in solution are correlated with published crystal structures of four enzyme-ligand complexes. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. Mechanisms involved in the antinociception induced by spinal administration of inosine or guanine in mice.

    PubMed

    de Oliveira, Enderson D; Schallenberger, Cristhine; Böhmer, Ana Elisa; Hansel, Gisele; Fagundes, Aécio C; Milman, Michael; Silva, Marcos D P; Oses, Jean P; Porciúncula, Lisiane O; Portela, Luís V; Elisabetsky, Elaine; Souza, Diogo O; Schmidt, André P

    2016-02-05

    It is well known that adenine-based purines exert multiple effects on pain transmission. Recently, we have demonstrated that guanine-based purines may produce some antinociceptive effects against chemical and thermal pain in mice. The present study was designed to investigate the antinociceptive effects of intrathecal (i.t.) administration of inosine or guanine in mice. Additionally, investigation into the mechanisms of action of these purines, their general toxicity and measurements of CSF purine levels were performed. Animals received an i.t. injection of vehicle (30mN NaOH), inosine or guanine (up to 600nmol) and submitted to several pain models and behavioural paradigms. Guanine and inosine produced dose-dependent antinociceptive effects in the tail-flick, hot-plate, intraplantar (i.pl.) glutamate, i.pl. capsaicin and acetic acid pain models. Additionally, i.t. inosine inhibited the biting behaviour induced by spinal injection of capsaicin and i.t. guanine reduced the biting behaviour induced by spinal injection of glutamate or AMPA. Intrathecal administration of inosine (200nmol) induced an approximately 115-fold increase on CSF inosine levels. This study provides new evidence on the mechanism of action of extracellular guanine and inosine presenting antinociceptive effects following spinal administration. These effects seem to be related, at least partially, to the modulation of A1 adenosine receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Structural Basis for Promutagenicity of 8-Halogenated Guanine*

    PubMed Central

    Koag, Myong-Chul; Min, Kyungjin; Lee, Seongmin

    2014-01-01

    8-Halogenated guanine (haloG), a major DNA adduct formed by reactive halogen species during inflammation, is a promutagenic lesion that promotes misincorporation of G opposite the lesion by various DNA polymerases. Currently, the structural basis for such misincorporation is unknown. To gain insights into the mechanism of misincorporation across haloG by polymerase, we determined seven x-ray structures of human DNA polymerase β (polβ) bound to DNA bearing 8-bromoguanine (BrG). We determined two pre-catalytic ternary complex structures of polβ with an incoming nonhydrolyzable dGTP or dCTP analog paired with templating BrG. We also determined five binary complex structures of polβ in complex with DNA containing BrG·C/T at post-insertion and post-extension sites. In the BrG·dGTP ternary structure, BrG adopts syn conformation and forms Hoogsteen base pairing with the incoming dGTP analog. In the BrG·dCTP ternary structure, BrG adopts anti conformation and forms Watson-Crick base pairing with the incoming dCTP analog. In addition, our polβ binary post-extension structures show Hoogsteen BrG·G base pair and Watson-Crick BrG·C base pair. Taken together, the first structures of haloG-containing DNA bound to a protein indicate that both BrG·G and BrG·C base pairs are accommodated in the active site of polβ. Our structures suggest that Hoogsteen-type base pairing between G and C8-modified G could be accommodated in the active site of a DNA polymerase, promoting G to C mutation. PMID:24425881

  8. A combined QM and MM investigation into guanine quadruplexes.

    PubMed

    Clay, Emma H; Gould, Ian R

    2005-10-01

    This paper reports on the application of quantum mechanical (QM) energy calculations, QM optimisations and MD simulations to explore the stability of a human telomeric guanine quadruplex, containing potassium and sodium cations. G-quadruplexes are of great biological interest as it has been suggested that they offer a novel path to cancer inhibition. By understanding the stability and geometry of these DNA features gives us the ability to design ligands which can bind and stabilise the G-quadruplex. There are significant structural differences between the potassium containing crystal structure of human telomeric G-quadruplex and the sodium containing NMR structure; in this paper, we investigate the energetics and dynamics of the potassium derived crystal structure and a model for the sodium containing structure. QM investigations upon the 12 G-quadruplex core, extracted from the human potassium quadruplex crystal structure, indicate that replacement of the potassium cations with sodium yields an energetically more favourable structure. However, attempts to geometry optimise both structures at the QM level proved unsuccessful, the structure of the partially optimised potassium containing G-quadruplex retains significant structural integrity with respect to the original crystal structure, whilst the sodium containing G-quadruplex shows significant structural distortion. QM investigation of the 12 G-quadruplex core containing no cations unsurprisingly yields a highly unfavourable energetic structure. MD simulations on the complete quadruplex structure, containing potassium cations, yields a remarkably stable structure after 4ns of simulation, the most significant deviation from the original crystal structure being the loss of the capping potassium cation from the structure. MD simulation of the sodium containing quadruplex for 4ns show significant structural reorganisation compared with the original potassium containing crystal structure.

  9. Novel Riboswitch Ligand Analogs as Selective Inhibitors of Guanine-Related Metabolic Pathways

    PubMed Central

    Mulhbacher, Jérôme; Brouillette, Eric; Allard, Marianne; Fortier, Louis-Charles; Malouin, François; Lafontaine, Daniel A.

    2010-01-01

    Riboswitches are regulatory elements modulating gene expression in response to specific metabolite binding. It has been recently reported that riboswitch agonists may exhibit antimicrobial properties by binding to the riboswitch domain. Guanine riboswitches are involved in the regulation of transport and biosynthesis of purine metabolites, which are critical for the nucleotides cellular pool. Upon guanine binding, these riboswitches stabilize a 5′-untranslated mRNA structure that causes transcription attenuation of the downstream open reading frame. In principle, any agonistic compound targeting a guanine riboswitch could cause gene repression even when the cell is starved for guanine. Antibiotics binding to riboswitches provide novel antimicrobial compounds that can be rationally designed from riboswitch crystal structures. Using this, we have identified a pyrimidine compound (PC1) binding guanine riboswitches that shows bactericidal activity against a subgroup of bacterial species including well-known nosocomial pathogens. This selective bacterial killing is only achieved when guaA, a gene coding for a GMP synthetase, is under the control of the riboswitch. Among the bacterial strains tested, several clinical strains exhibiting multiple drug resistance were inhibited suggesting that PC1 targets a different metabolic pathway. As a proof of principle, we have used a mouse model to show a direct correlation between the administration of PC1 and the reduction of Staphylococcus aureus infection in mammary glands. This work establishes the possibility of using existing structural knowledge to design novel guanine riboswitch-targeting antibiotics as powerful and selective antimicrobial compounds. Particularly, the finding of this new guanine riboswitch target is crucial as community-acquired bacterial infections have recently started to emerge. PMID:20421948

  10. Design and synthesis of novel adenine fluorescence probe based on Eu(III) complexes with dtpa-bis(guanine) ligand

    NASA Astrophysics Data System (ADS)

    Tian, Fengyun; Jiang, Xiaoqing; Dou, Xuekai; Wu, Qiong; Wang, Jun; Song, Youtao

    2017-05-01

    A novel adenine (Ad) fluorescence probe (EuIII-dtpa-bis(guanine)) was designed and synthesized by improving experimental method based on the Eu(III) complex and dtpa-bis(guanine) ligand. The dtpa-bis(guanine) ligand was first synthesized by the acylation action between dtpaa and guanine (Gu), and the corresponding Eu(III) complex was successfully prepared through heat-refluxing method with dtpa-bis(guanine) ligand. As a novel fluorescence probe, the EuIII-dtpa-bis(guanine) complex can detect adenine (Ad) with characteristics of strong targeting, high specificity and high recognition ability. The detection mechanism of the adenine (Ad) using this probe in buffer solution was studied by ultraviolet-visible (UV-vis) and fluorescence spectroscopy. When the EuIII-dtpa-bis(guanine) was introduced to the adenine (Ad) solution, the fluorescence emission intensity was significantly enhanced. However, adding other bases such as guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) with similar composition and structure to that of adenine (Ad) to the EuIII-dtpa-bis(guanine) solution, the fluorescence emission intensities are nearly invariable. Meanwhile, the interference of guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) on the detection of the adenine using EuIII-dtpa-bis(guanine) probe was also studied. It was found that presence of these bases does not affect the detection of adenine (Ad). A linear response of fluorescence emission intensities of EuIII-dtpa-bis(guanine) at 570 nm as a function of adenine (Ad) concentration in the range of 0.00-5.00 × 10- 5 mol L- 1 was observed. The detection limit is about 4.70 × 10- 7 mol L- 1.

  11. Highly sensitive and selective fluorescent assay for guanine based on the Cu(2+)/eosin Y system.

    PubMed

    Shi, Huimin; Cui, Yi; Gong, Yijun; Feng, Suling

    2016-05-15

    A fluorescent probe has been developed for the determination of guanine based on the quenched fluorescence signal of Cu(2+)/eosin Y. Cu(2+) interacted with eosin Y, resulting in fluorescence quenching. Subsequently, with the addition of guanine to the Cu(2+)/eosin Y system, guanine reacted with Cu(2+) to form 1:1 chelate cation, which further combined with eosin Y to form a 1:1 ternary ion-association complex by electrostatic attraction and hydrophobic interaction, resulting in significant decrease of the fluorescence. Hence, a fluorescent system was constructed for rapid, sensitive and selective detection of guanine with a detection limit as low as 1.5 nmol L(-1) and a linear range of 3.3-116 nmol L(-1). The method has been applied satisfactorily to the determination of guanine in DNA and urine samples with the recoveries from 98.7% to 105%. This study significantly expands the realm of application of ternary ion-association complex in fluorescence probe. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Highly sensitive and selective fluorescent assay for guanine based on the Cu2 +/eosin Y system

    NASA Astrophysics Data System (ADS)

    Shi, Huimin; Cui, Yi; Gong, Yijun; Feng, Suling

    2016-05-01

    A fluorescent probe has been developed for the determination of guanine based on the quenched fluorescence signal of Cu2 +/eosin Y. Cu2 + interacted with eosin Y, resulting in fluorescence quenching. Subsequently, with the addition of guanine to the Cu2 +/eosin Y system, guanine reacted with Cu2 + to form 1:1 chelate cation, which further combined with eosin Y to form a 1:1 ternary ion-association complex by electrostatic attraction and hydrophobic interaction, resulting in significant decrease of the fluorescence. Hence, a fluorescent system was constructed for rapid, sensitive and selective detection of guanine with a detection limit as low as 1.5 nmol L- 1 and a linear range of 3.3-116 nmol L- 1. The method has been applied satisfactorily to the determination of guanine in DNA and urine samples with the recoveries from 98.7% to 105%. This study significantly expands the realm of application of ternary ion-association complex in fluorescence probe.

  13. A DFT investigation on interactions between asymmetric derivatives of cisplatin and nucleobase guanine

    NASA Astrophysics Data System (ADS)

    Tai, Truong Ba; Nhat, Pham Vu

    2017-07-01

    The interactions of hydrolysis products of cisplatin and its asymmetric derivatives cis- and trans-[PtCl2(iPram)(Mepz)] with guanine were studied using DFT methods. These interactions are dominated by electrostatic effects, namely hydrogen bond contributions and there exists a charge flow from H-atoms of ligands to the O-atoms of guanine. The replacement of NH3 moieties by larger functional groups accompanies with a moderate reaction between PtII and guanine molecule, diminishing the cytotoxicity of the drug. The asymmetric and symmetric NH2 stretching modes of complexes having strong hydrogen bond interactions are red shifted importantly as compared to complexes without presence of hydrogen bond interactions.

  14. Polymerase bypass of N7-guanine monoadducts of cisplatin, diepoxybutane, and epichlorohydrin.

    PubMed

    Ye, Jiayu; Farrington, Caitlin R; Millard, Julie T

    2018-03-20

    DNA oligonucleotides containing site-specific N7-guanine monoadducts of cisplatin, diepoxybutane, and epichlorohydrin were used as templates for DNA synthesis by two bacterial DNA polymerases and human polymerase β. These polymerases were able to bypass the lesions effectively, although the efficiency was decreased, with inhibition increasing with the size of the lesion. Fidelity of incorporation was essentially unaltered, suggesting that N7-guanine monoadducts do not significantly contribute to the mutational spectra of these agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. HPLC-ESI+-MS/MS analysis of N7-guanine-N7-guanine DNA cross-links in tissues of mice exposed to 1,3-butadiene.

    PubMed

    Goggin, Melissa; Loeber, Rachel; Park, Soobong; Walker, Vernon; Wickliffe, Jeffrey; Tretyakova, Natalia

    2007-05-01

    1,3-butadiene (BD) is a major industrial chemical used in rubber and plastics production and is recognized as an animal and human carcinogen. Although the exact mechanism of BD-induced carcinogenesis is unknown, chemical reactions of epoxide metabolites of BD with DNA to form nucleobase adducts are likely to contribute to multistage carcinogenesis. Among BD-derived epoxy metabolites, 1,2:3,4-diepoxybutane (DEB) appears to be the most genotoxic and carcinogenic, probably because of its bifunctional nature. Initial DNA alkylation by DEB produces N7-(2'-hydroxy-3',4'-epoxybut-1'-yl)guanine monoadducts, which can then be hydrolyzed to N7-(2',3',4'-trihydroxy-1'-yl)guanine or can react with another site in double-stranded DNA to form 1,4-bis(guan-7-yl)-2,3-butanediol (bis-N7G-BD) cross-links. While (2',3',4'-trihydroxy-1'-yl)guanine lesions have been previously quantified in vivo, they cannot be used as a biomarker of DEB because the same lesions are also formed by another, more prevalent BD metabolite, 1,2-epoxy-3,4-butanediol. In contrast, bis-N7G-BD can only be formed from DEB, potentially providing a specific biomarker of DEB formation. We have developed a quantitative HPLC-ESI+-MS/MS method for measuring racemic and meso forms of bis-N7G-BD in DNA extracted from tissues of BD-exposed laboratory animals. In our approach, bis-N7G-BD adducts are released from DNA as free bases by neutral thermal hydrolysis, purified by solid-phase extraction, and subjected to HPLC-ESI+-MS/MS analysis. Selected reaction monitoring is performed by following the loss of a guanine moiety from protonated molecules of bis-N7G-BD and the formation of protonated guanine under collision-induced dissociation. Quantitative analysis of racemic and meso forms of bis-N7G-BD is based on isotope dilution with the corresponding 15N-labeled internal standards. The lower limit of quantification of our current method is 10-20 fmol/0.1 mg of DNA. The accuracy and precision of the new method were

  16. A novel method for detecting 7-methyl guanine reveals aberrant methylation levels in Huntington disease

    PubMed Central

    Thomas, Beena; Matson, Samantha; Chopra, Vanita; Sun, Liping; Sharma, Swati; Hersch, Steven; Rosas, H. Diana; Scherzer, Clemens; Ferrante, Robert; Matson, Wayne

    2014-01-01

    Guanine methylation is a ubiquitous process affecting DNA and various RNA species. N-7 guanine methylation (7-MG), though relatively less studied, could have a significant role in normal transcriptional regulation as well as in the onset and development of pathological conditions. The lack of a sensitive method to accurately quantify trace amounts of altered bases like 7-MG, has been a major deterrent in delineating its biological function(s). Here we report the development of methods to detect trace amounts of 7-MG in biological samples using electrochemical detection combined with HPLC separation of compounds. We further sought to assess global alterations in DNA methylation in Huntington's disease (HD) in which transcriptional dysregulation, is a major factor in pathogenesis. The developed method was used to study guanine methylation in cytoplasmic and nuclear nucleic acids from human and transgenic mouse HD brain and controls. Significant differences were observed in the guanine methylation levels in mouse and human samples, consistent with the known transcriptional pathology of HD. The sensitivity of the method makes it capable of detecting subtle aberrations. Identification of changes in methylation pattern will provide insights into the molecular mechanisms changes that translate into onset and/or development of symptoms in diseases like HD. PMID:23416183

  17. Vibrational investigations of guanine, thioguanine and their singly charged cations and anions

    NASA Astrophysics Data System (ADS)

    Singh, R.; Yadav, R. A.

    2017-01-01

    The complete vibrational studies have been done with help of quantum mechanics for the neutral Guanine (Gua) and Thioguanine (TGua) molecules and their singly charged cations and anions employing the B3LYP/6-311++G** method. Neutral Thioguanine and cations of Guanine and Thioguanine show planar structures and belong to Cs point group symmetry while the neutral Guanine and anions of Guanine and Thioguanine possess non-planar structure with C1 point group symmetry. Vibrational studies of ionic radicals of Gua and its thio- derivative are not available in literatures. Such extensive studies have been attempted for the first time. The normal modes of all the species have been assigned on the basis using potential energy distributions (PEDs) using GAR2PED software. The PEDs have also been calculated to make a conspicuous assignment as animation available in GaussView is not a guarantee for correct normal mode assignment. Charge transfer occurs in the molecule have been shown by the calculated highest occupied molecular orbital—lowest unoccupied molecular orbital (HOMO-LUMO) energies. The mapping of electron density iso-surface with electrostatic potential, has been carried out to get the information about the size, shape, charge density distribution and site of chemical reactivity of the molecule. The electronic properties HOMO and LUMO energies have been measured. The energy gap from HOMO to LUMO of the Gua is 5.0547 eV and TGua 4.0743 eV.

  18. Improved bioactivity of G-rich triplex-forming oligonucleotides containing modified guanine bases

    PubMed Central

    Rogers, Faye A; Lloyd, Janice A; Tiwari, Meetu Kaushik

    2014-01-01

    Triplex structures generated by sequence-specific triplex-forming oligonucleotides (TFOs) have proven to be promising tools for gene targeting strategies. In addition, triplex technology has been highly utilized to study the molecular mechanisms of DNA repair, recombination and mutagenesis. However, triplex formation utilizing guanine-rich oligonucleotides as third strands can be inhibited by potassium-induced self-association resulting in G-quadruplex formation. We report here that guanine-rich TFOs partially substituted with 8-aza-7-deaza-guanine (PPG) have improved target site binding in potassium compared with TFOs containing the natural guanine base. We designed PPG-substituted TFOs to bind to a polypurine sequence in the supFG1 reporter gene. The binding efficiency of PPG-substituted TFOs to the target sequence was analyzed using electrophoresis mobility gel shift assays. We have determined that in the presence of potassium, the non-substituted TFO, AG30 did not bind to its target sequence, however binding was observed with the PPG-substituted AG30 under conditions with up to 140 mM KCl. The PPG-TFOs were able to maintain their ability to induce genomic modifications as measured by an assay for gene-targeted mutagenesis. In addition, these compounds were capable of triplex-induced DNA double strand breaks, which resulted in activation of apoptosis. PMID:25483840

  19. Scaffold-hopping from xanthines to tricyclic guanines: A case study of dipeptidyl peptidase 4 (DPP4) inhibitors

    SciTech Connect

    Pissarnitski, Dmitri A.; Zhao, Zhiqiang; Cole, David

    2016-11-01

    Molecular modeling of unbound tricyclic guanine scaffolds indicated that they can serve as effective bioisosteric replacements of xanthines. This notion was further confirmed by a combination of X-ray crystallography and SAR studies, indicating that tricyclic guanine DPP4 inhibitors mimic the binding mode of xanthine inhibitors, exemplified by linagliptin. Realization of the bioisosteric relationship between these scaffolds potentially will lead to a wider application of cyclic guanines as xanthine replacements in drug discovery programs for a variety of biological targets. Newly designed DPP4 inhibitors achieved sub-nanomolar potency range and demonstrated oral activity in vivo in mouse glucose tolerance test.

  20. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    NASA Astrophysics Data System (ADS)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  1. N7-(carboxymethyl)guanine-Lithium Crystalline Complex: A Bioinspired Solid Electrolyte

    PubMed Central

    Dutta, Dipak; Nagapradeep, N.; Zhu, Haijin; Forsyth, Maria; Verma, Sandeep; Bhattacharyya, Aninda J.

    2016-01-01

    Electrochemical device with components having direct significance to biological life processes is a potent futuristic strategy for the realization of all-round green and sustainable development. We present here synthesis design, structural analysis and ion transport of a novel solid organic electrolyte (G7Li), a compound reminiscent of ion channels, derived from regioisomeric N7-guanine-carboxylate conjugate and Li-ions. G7Li, with it’s in-built supply of Li+-ions, exhibited remarkably high lithium-ion transference number (= 0.75) and tunable room temperature ionic conductivity spanning three decades (≈10−7 to 10−3 Ω−1 cm−1) as a function of moisture content. The ionic conductivity show a distinct reversible transition around 80–100 °C, from a dual Li+ and H+ (<100 °C) to a pure Li+ conductor (>100 °C). Systematic studies reveal a transition from water-assisted Li-ion transport to Li hopping-like mechanism involving guanine-Li coordination. While as-synthesized G7Li has potential in humidity sensors, the anhydrous G7Li is attractive for rechargeable batteries. PMID:27091631

  2. Guanine nucleotides have a direct inhibitory effect on polyphosphoinositide turnover in rat cortical synaptosomes.

    PubMed

    Wei, J W; Hung, W C

    1990-01-01

    1. The possible involvement of guanosine 5'-triphosphate (GTP)-binding proteins in the receptor mediated polyphosphoinositide (PPI) turnover event was investigated in rat cortical synaptosomes. 2. It was studied under the effects of guanine nucleotides on 32Pi incorporation into synaptosomal phospholipids in the absence or presence of carbachol. 3. The basal 32Pi incorporation into these phospholipids was altered by the presence of 1 mM carbachol: i.e. a decrease in 32Pi incorporation into phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-4-phosphate and an increase in the incorporation of 32Pi into phosphatidylinositol and phosphatidic acid. 4. In the presence of guanine nucleotides: GTP, Gpp(NH)p and GDP at suitable concentrations, there was a general decreasing effect on 32Pi incorporation into all 4 phospholipids, which are all involved in PPI turnover cycle, either in the basal or carbachol-stimulated levels. 5. There was no selective effect among the guanine nucleotides studied on this PPI turnover event. It is, therefore, likely that these nucleotides have a direct inhibitory effect on PPI turnover, and this action may not act through a GTP-binding protein.

  3. Synthesis and antiviral activity of 8-aza analogs of chiral [2-(phosphonomethoxy) propyl]guanines.

    PubMed

    Franchetti, P; Sheikha, G A; Cappellacci, L; Grifantini, M; De Montis, A; Piras, G; Loi, A G; La Colla, P

    1995-09-29

    (R)- And (S)-8-aza-9(-)[2-(phosphonomethoxy)propyl]guanine [(R)-and (S)-8-aza-PMPG] were synthesized and tested in vitro for anti-human immunodeficiency virus (HIV) activity. The synthesis of the above compounds and of (R)-9(-)[2-(phosphonomethoxy)propyl]guanine [(R)-PMPG] was carried out through the alkylation of 8-azaguanine or guanine with (R)- and (S)-2-O(-)[(diisopropylphosphono)methyl]-1-O-(tolylsulfonyl) -1,2-propanediol followed by deprotection of the phosphonic moiety. A different, even more convenient synthesis of (R)-8-aza-PMPG starting from 2-amino-6-chloro-5-nitro-4(3H)-pyrimidinone and (R)(-)[2(-)[(diisopropylphosphono)-methoxy]propyl]amine is also reported. Both (R)-8-aza-PMPG and (R)-PMPG demonstrated anti-HIV activity in the MTT assay with EC50 values of 12 and 4.5 microM, respectively. The corresponding S enantiomers were found to be less potent. When evaluated in combination with AZT, ddI, or DABO 603, (R)-8-aza-PMPG gave additive, additive, and synergistic anti-HIV-1 effects, respectively.

  4. Rates of Chemical Cleavage of DNA and RNA Oligomers Containing Guanine Oxidation Products

    PubMed Central

    2016-01-01

    The nucleobase guanine in DNA (dG) and RNA (rG) has the lowest standard reduction potential of the bases, rendering it a major site of oxidative damage in these polymers. Mapping the sites at which oxidation occurs in an oligomer via chemical reagents utilizes hot piperidine for cleaving oxidized DNA and aniline (pH 4.5) for cleaving oxidized RNA. In the present studies, a series of time-dependent cleavages of DNA and RNA strands containing various guanine lesions were examined to determine the strand scission rate constants. The guanine base lesions 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin (Sp), 5-guanidinohydantoin (Gh), 2,2,4-triamino-2H-oxazol-5-one (Z), and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) were evaluated in piperidine-treated DNA and aniline-treated RNA. These data identified wide variability in the chemical lability of the lesions studied in both DNA and RNA. Further, the rate constants for cleaving lesions in RNA were generally found to be significantly smaller than for lesions in DNA. The OG nucleotides were poorly cleaved in DNA and RNA; Sp nucleotides were slowly cleaved in DNA and did not cleave significantly in RNA; Gh and Z nucleotides cleaved in both DNA and RNA at intermediate rates; and 2Ih oligonucleotides cleaved relatively quickly in both DNA and RNA. The data are compared and contrasted with respect to future experimental design. PMID:25853314

  5. Glyoxals as in vivo RNA structural probes of guanine base-pairing.

    PubMed

    Mitchell, David; Ritchey, Laura E; Park, Hongmarn; Babitzke, Paul; Assmann, Sarah M; Bevilacqua, Philip C

    2018-01-01

    Elucidation of the folded structures that RNA forms in vivo is vital to understanding its functions. Chemical reagents that modify the Watson-Crick (WC) face of unprotected nucleobases are particularly useful in structure elucidation. Dimethyl sulfate penetrates cell membranes and informs on RNA base-pairing and secondary structure but only modifies the WC face of adenines and cytosines. We present glyoxal, methylglyoxal, and phenylglyoxal as potent in vivo reagents that target the WC face of guanines as well as cytosines and adenines. Tests on rice ( Oryza sativa) 5.8S rRNA in vitro read out by reverse transcription and gel electrophoresis demonstrate specific modification of almost all guanines in a time- and pH-dependent manner. Subsequent in vivo tests on rice, a eukaryote, and Bacillus subtilis and Escherichia coli , Gram-positive and Gram-negative bacteria, respectively, showed that all three reagents enter living cells without prior membrane permeabilization or pH adjustment of the surrounding media and specifically modify solvent-exposed guanine, cytosine, and adenine residues. © 2018 Mitchell et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  6. Inosine Nucleobase Acts as Guanine in Interactions with Protein Side Chains.

    PubMed

    Hajnic, Matea; Ruiter, Anita de; Polyansky, Anton A; Zagrovic, Bojan

    2016-05-04

    A central intermediate in purine catabolism, the inosine nucleobase hypoxanthine is also one of the most abundant modified nucleobases in RNA and plays key roles in the regulation of gene expression and determination of cell fate. It is known that hypoxanthine acts as guanine when interacting with other nucleobases and base pairs most favorably with cytosine. However, its preferences when it comes to interactions with amino acids remain unknown. Here we present for the first time the absolute binding free energies and the associated interaction modes between hypoxanthine and all standard, non-glycyl/non-prolyl amino acid side chain analogs as derived from molecular dynamics simulations and umbrella sampling in high- and low-dielectric environments. We illustrate the biological relevance of the derived affinities by providing a quantitative explanation for the specificity of hypoxanthine-guanine phosphoribosyltransferase, a key enzyme in the purine salvage pathway. Our results demonstrate that in its affinities for protein side chains, hypoxanthine closely matches guanine, much more so than its precursor adenine.

  7. The pivotal role of guanine phosphoribosyltransferase in purine salvage by Giardia lamblia.

    PubMed

    Munagala, Narsimha; Wang, Ching C

    2002-05-01

    Giardia lamblia is an anaerobic binucleate flagellated protozoan known to lack de novo synthesis of purine nucleotides. Our previous metabolic studies indicated two major parallel pathways mediated by adenine phosphoribosyltransferase (APRT) and guanine phosphoribosyltransferase (GPRT) that constitute the primary route of purine salvage in this organism. To verify further that these enzymes play a pivotal role in replenishing the purine ribonucleotide pool and are required for replicative growth of Giardia, a knock-out of GPRT gene expression in this organism was attempted. A hammerhead ribozyme flanked by two arms of GPRT antisense RNA (GPRZ) was designed, synthesized and found capable of cleaving a GPRT mRNA fragment in vitro at the designated site. GPRZ cDNA was then cloned into a viral vector pC631pac, derived from the genome of giardiavirus (GLV), and its transcript was introduced into GLV-infected Giardia trophozoites by electroporation. Stable transformants selected under increasing concentrations of puromycin displayed parallel increases in ribozyme levels and associated decreases in GPRT mRNA levels, GPRT enzyme activity and replicative cell growth to less than 10-20% of wild-type levels. Metabolite analyses showed specific depletion of the guanine ribonucleotide pools in parallel with slower cell growth. We conclude that GPRT plays an essential role in supplying guanine nucleotides required for growth and multiplication of Giardia, emphasizing its potential as a bona fide target for antigiardiasis chemotherapy.

  8. Kinetics of activation of phospholipase C by P2Y purinergic receptor agonists and guanine nucleotides.

    PubMed

    Boyer, J L; Downes, C P; Harden, T K

    1989-01-15

    Membranes prepared from [3H]inositol-labeled turkey erythrocytes express a phospholipase C that is markedly stimulated by stable analogs of GTP (Harden, T. K., Stephens, L., Hawkins, P. T., and Downes, C. P. (1987) J. Biol. Chem. 262, 9057-9061). We now report that P2-purinergic receptor-mediated regulation of the enzyme occurs in the membrane preparation. The order of potency of a series of ATP and ADP analogs for stimulation of inositol phosphate formation, i.e. 2-methylthioadenosine 5'-triphosphate (2MeSATP) greater than adenosine 5'-O-(2-thiodiphosphate) greater than adenosine 5'-O-(3-thiotriphosphate) greater than ATP greater than 5'-adenylyl imidodiphosphate approximately ADP greater than alpha, beta-methyleneadenosine 5'-triphosphate greater than beta, gamma-methyleneadenosine 5'-triphosphate, was consistent with that for the P2Y-purinergic receptor subtype. Agonist-stimulated effects were completely dependent on the presence of guanine nucleotide. Activation of phospholipase C by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) occurred with a considerable time lag. The rate of activation followed first order kinetics and was markedly increased by increasing concentrations of a P2Y receptor agonist; in contrast, the rate of activation at a fixed agonist concentration was independent of guanine nucleotide concentration. Addition of guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) prior to addition of agonist and GTP, 5'-guanylyl imidodiphosphate (Gpp(NH)p), or GTP gamma S blocked in a concentration-dependent manner the stimulatory effect of guanine nucleotide. GDP beta S, added subsequent to preactivation of membranes with 2MeSATP and GTP gamma S or Gpp(NH)p had only small inhibitory effects on the rate of inositol phosphate production observed over the subsequent 10 min. In contrast, addition of GDP beta S to GTP-preactivated membranes resulted in a rapid return of enzyme activity to the basal state within 60 s. Taken together, the data are consistent with

  9. Increased mobility and on/off ratio in organic field-effect transistors using low-cost guanine-pentacene multilayers

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Zheng, Yifan; Taylor, André D.; Yu, Junsheng; Katz, Howard E.

    2017-07-01

    Layer-by-layer deposited guanine and pentacene in organic field-effect transistors (OFETs) is introduced. Through adjusting the layer thickness ratio of guanine and pentacene, the tradeoff of two electronic parameters in OFETs, charge carrier mobility and current on/off ratio, was controlled. The charge mobility was enhanced by depositing pentacene over and between guanine layers and by increasing the proportion of pentacene in the layer-by-layer system, while the current on/off ratio was increased via the decreased off current induced by the guanine layers. The tunable device performance was mainly ascribed to the trap and dopant neutralizing properties of the guanine layers, which would decrease the density of free hydroxyl groups in the OFETs. Furthermore, the cost of the devices could be reduced remarkably via the adoption of low-cost guanine.

  10. Effect O6-guanine alkylation on DNA flexibility studied by comparative molecular dynamics simulations.

    PubMed

    Kara, Mahmut; Drsata, Tomas; Lankas, Filip; Zacharias, Martin

    2015-01-01

    Alkylation of guanine at the O6 atom is a highly mutagenic DNA lesion because it alters the coding specificity of the base causing G:C to A:T transversion mutations. Specific DNA repair enzymes, e.g. O(6)-alkylguanin-DNA-Transferases (AGT), recognize and repair such damage after looping out the damaged base to transfer it into the enzyme active site. The exact mechanism how the repair enzyme identifies a damaged site within a large surplus of undamaged DNA is not fully understood. The O(6)-alkylation of guanine may change the deformability of DNA which may facilitate the initial binding of a repair enzyme at the damaged site. In order to characterize the effect of O(6)-methyl-guanine (O(6)-MeG) containing base pairs on the DNA deformability extensive comparative molecular dynamics (MD) simulations on duplex DNA with central G:C, O(6)-MeG:C or O(6)-MeG:T base pairs were performed. The simulations indicate significant differences in the helical deformability due to the presence of O(6)-MeG compared to regular undamaged DNA. This includes enhanced base pair opening, shear and stagger motions and alterations in the backbone fine structure caused in part by transient rupture of the base pairing at the damaged site and transient insertion of water molecules. It is likely that the increased opening motions of O(6)-MeG:C or O(6)-MeG:T base pairs play a decisive role for the induced fit recognition or for the looping out of the damaged base by repair enzymes. © 2014 Wiley Periodicals, Inc.

  11. Purification and characterization of transfer RNA (guanine-1)methyltransferase from Escherichia coli.

    PubMed

    Hjalmarsson, K J; Byström, A S; Björk, G R

    1983-01-25

    The tRNA modifying enzyme, tRNA (guanine-1)methyltransferase has been purified to near homogeneity from an overproducing Escherichia coli strain harboring a multicopy plasmid carrying the structural gene of the enzyme. The preparation gives a single major band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is probably a single polypeptide chain of molecular weight 32,000. The amino acid composition is presented and the NH2-terminal amino acid sequence was established to be H2N-Met-Trp-Ile-Gly-Ile-Ile-Ser-Leu-Phe-Pro. The enzyme has a pI of 5.2. The tRNA (guanine-1)-methyltransferase has a pH optimum of 8.0-8.5, an apparent Km of 5 microM for S-adenosylmethionine. S-adenosylhomocysteine is a competitive inhibitor for the enzyme with an apparent Ki of 6 microM. Spermidine or putrescine are not required for activity, but they stimulate the rate of methylation 1.2-fold with optima at 2 and 6 mM, respectively. Ammonium ion is not required and is inhibitory at concentrations above 0.15 M. Magnesium ion inhibited the activity at a concentration as low as 2 mM. Sodium and potassium ions were inhibitory at concentrations above 0.1 M. The molecular activity of tRNA (guanine-1)-methyltransferase was calculated to 10.0 min-1. It was estimated that the enzyme is present at 80 molecules/genome in cells growing with a specific growth rate of 1.0.

  12. Interactions of. beta. -adrenergic receptors with guanine nucleotide-binding proteins

    SciTech Connect

    Abramson, S.N.

    1985-01-01

    The properties of ..beta..-adrenergic receptors were investigated with radioligand binding assays using the agonists (/sup 3/H)hydroxybenzyl-isoproterenol (/sup 3/H-HBI) and (/sup 3/H)epinephrine (/sup 3/H-EPI), and the antagonist (/sup 125/I)iodopindolol (/sup 125/I-IPIN). Membranes prepared from L6 myoblasts bound (/sup 3/H)HBI, (/sup 3/H)EPI, and (/sup 125/I)IPIN with high affinity and Scatchard plots revealed densities of 222 +/- 23, 111 +/- 7, and 325 +/- 37 fmol/mg of protein, respectively. Binding of (/sup 3/H)HBI and (/sup 3/H)EPI was inhibited allosterically by guanine nucleotides. Membranes prepared from wild-type S49 lymphoma cells bound (/sup 3/H)HBI and (/sup 125/I)IPIN with high affinity and Scatchard plots revealed densitiesmore » of 48.9 +/- 7.1 and 196 +/- 29 fmol/mg of protein, respectively. Binding of (/sup 3/H)HBI was inhibited allosterically by GTP. Similar results were obtained with membranes prepared from the adenylate cyclase deficient variant of S49 lymphoma cells (cyc-), which does not contain a functional stimulatory guanine nucleotide-binding protein (N/sub s/), but does contain a functional inhibitory guanine nucleotide-binding protein (N/sub i/). Binding of (/sup 3/H)HBI to membranes prepared from cyc- S49 cells was inhibited by pretreatment of cells with pertussis toxin. These results suggest that ..beta..-adrenergic receptors on membranes prepared from cyc- S49 cells interact with N/sub i/ to form a ternary complex composed of agonist, receptor, and N/sub i/.« less

  13. Cloning, expression and characterization of an unusual guanine phosphoribosyltransferase from Giardia lamblia.

    PubMed

    Sommer, J M; Ma, H; Wang, C C

    1996-06-01

    Giardia lamblia is one of the most ancient eukaryotes identified to date. It lacks de novo purine biosynthesis and is thought to rely solely on the functions of two salvage enzymes, adenine and guanine phosphoribosyltransferases (APRTase and GPRTase). We have cloned the gene encoding the G. lamblia GPRTase by complementation of the E. coli strain Sø609 (delta gpt-pro-lac, thi, hpt, pup, purH,J, strA) with a genomic library consisting of Sau3AI-digested G. lamblia DNA inserted into the Bluescript vector. Transformed Sø609 colonies grew on minimal medium supplemented with guanine at a frequency of 3.3 x 10(-5) ampicillin-resistant colonies, but were unable to salvage hypoxanthine or xanthine, as predicted from previous studies of the native G. lamblia GPRTase. The sequence analysis of cloned DNA fragments reveals an open reading frame of 690 bp, encoding a protein of 26.3 kDa with an estimated pI of 6.83, in agreement with the reported subunit molecular weight of the native G. lamblia GPRTase. The deduced protein has less than 20% sequence identity to the human and other known HGPRTases, and features several significant changes in the primary sequence of the putative active sites of the enzyme, which may reflect the stringent substrate specificity of GPRTase. The recombinant GPRTase was expressed in E. coli and purified to > 95% homogeneity. Kinetic studies of the recombinant enzyme showed an apparent K(m) of 74 microM for guanine. Hypoxanthine as an alternate purine substrate was used only when present in millimolar amounts, and xanthine was not utilized at all. This Giardia enzyme is thus a highly unique purine PRTase without a known parallel in any other living organisms.

  14. Acyclic phosph(on)ate inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase

    PubMed Central

    Clinch, Keith; Crump, Douglas R.; Evans, Gary B.; Hazleton, Keith Z.; Mason, Jennifer M.; Schramm, Vern L.

    2013-01-01

    The pathogenic protozoa responsible for malaria lack enzymes for the de novo synthesis of purines and rely on purine salvage from the host. In Plasmodium falciparum (Pf), hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) converts hypoxanthine to inosine monophosphate and is essential for purine salvage making the enzyme an anti-malarial drug target. We have synthesized a number of simple acyclic aza-C- nucleosides and shown that some are potent inhibitors of Pf HGXPRT while showing excellent selectivity for the Pf versus the human enzyme. PMID:23810424

  15. First-Principles Vibrational Electron Energy Loss Spectroscopy of β -Guanine

    NASA Astrophysics Data System (ADS)

    Radtke, G.; Taverna, D.; Lazzeri, M.; Balan, E.

    2017-07-01

    A general approach to model vibrational electron energy loss spectra obtained using an electron beam positioned away from the specimen is presented. The energy-loss probability of the fast electron is evaluated using first-principles quantum mechanical calculations (density functional theory) of the dielectric response of the specimen. The validity of the method is assessed using recently measured anhydrous β -guanine, an important molecular solid used by animals to produce structural colors. The good agreement between theory and experiments lays the basis for a quantitative interpretation of this spectroscopy in complex systems.

  16. Kinetics and structural aspects of the cisplatin interactions with guanine: A quantum mechanical description

    NASA Astrophysics Data System (ADS)

    Costa, Luiz Antônio S.; Hambley, Trevor W.; Rocha, Willian R.; Almeida, Wagner B. De; Dos Santos, Hélio F.

    The interaction of cisplatin with guanine DNA bases has been investigated using ab initio Hartree-Fock (HF) and density functional levels of theory in gas phase and aqueous solution. The overall process was divided into three steps: the reaction of the monoaqua [Pt(NH3)2Cl(H2O)]+ species with guanine (G) (reaction 1), the hydrolysis process yielding the adduct [Pt(NH3)2(G) (H2O)]2+ (reaction 2) and the reaction with a second guanine leading to the product [Pt(NH3)2(G)2]2+ (reaction 3). The functionals B3LYP, BHandH, and mPW1PW91 were used in the present study, to develop an understanding of the role of the distinct models. The geometries presented for the intermediate structures were obtained by IRC calculations from the transition state structure for each reaction. The structural analysis for the intermediates and transition states showed that hydrogen bonds with the guanine O6 atom play an important role in stabilizing these species. The geometries were not very sensitive to the level of theory applied with the HF level, giving a satisfactory overall performance. However, the energy barriers and the rate constants were found to be strongly dependent on the level of calculation and basis set, with the DFT calculations giving more accurate results. For reaction 1 the rate constant calculated in aqueous solution at PCM-BHandH/6-311G* (k1 = 7.55 × 10-1 M-1 s-1) was in good agreement with the experiment (5.4 × 10-1 M-1 s-1). The BHandH/6-31G* calculated gas phase rate constants for reactions 2 and 3 were: k2 = 0.9 × 10-6 M-1 s-1 and k3 = 2.99 × 10-4 M-1 s-1 in fairly good accordance with the experimental findings for reaction 2 (1.0 × 10-6 M-1 s-1) and reaction 3 (3.0 × 10-4 M-1 s-1).

  17. Silver (I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints

    NASA Astrophysics Data System (ADS)

    Swasey, Steven M.; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G.

    2015-05-01

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag+ is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg2+. In contrast to prior studies of Ag+ incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag+-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag+ bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag+-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science.

  18. Membrane-permeable Rab27A is a regulator of the acrosome reaction: Role of geranylgeranylation and guanine nucleotides.

    PubMed

    Bustos, Matías A; Lucchesi, Ornella; Ruete, María C; Tomes, Claudia N

    2018-04-01

    The acrosome reaction is the regulated exocytosis of mammalian sperm's single secretory granule, essential for fertilization. It relies on small GTPases, the cAMP binding protein Epac, and the SNARE complex, among other components. Here, we describe a novel tool to investigate Rab27-related signaling pathways: a hybrid recombinant protein consisting of human Rab27A fused to TAT, a cell penetrating peptide. With this tool, we aimed to unravel the connection between Rab3, Rab27 and Rap1 in sperm exocytosis and to deepen our understanding about how isoprenylation and guanine nucleotides influence the behaviour of Rab27 in exocytosis. Our results show that TAT-Rab27A-GTP-γ-S permeated into live sperm and triggered acrosomal exocytosis per se when geraylgeranylated but inhibited it when not lipid-modified. Likewise, an impermeant version of Rab27A elicited exocytosis in streptolysin O-permeabilized - but not in non-permeabilized - cells when geranylgeranylated and active. When GDP-β-S substituted for GTP-γ-S, isoprenylated TAT-Rab27A inhibited the acrosome reaction triggered by progesterone and an Epac-selective cAMP analogue, whereas the non-isoprenylated protein did not. Geranylgeranylated TAT-Rab27A-GTP-γ-S promoted the exchange of GDP for GTP on Rab3 and Rap1 detected by far-immunofluorescence with Rab3-GTP and Rap1-GTP binding cassettes. In contrast, TAT-Rab27A lacking isoprenylation or loaded with GDP-β-S prevented the activation of Rab3 and Rap1 elicited by progesterone. Challenging streptolysin O-permeabilized human sperm with calcium increased the population of sperm with Rap1-GTP, Rab3-GTP and Rab27-GTP in the acrosomal region; pretreatment with anti-Rab27 antibodies prevented the activation of all three. The novel findings reported here include: the description of membrane permeant TAT-Rab27A as a trustworthy tool to unveil the regulation of the human sperm acrosome reaction by Rab27 under physiological conditions; that the activation of endogenous Rab27

  19. Monitoring guanine photo-oxidation by enantiomerically resolved Ru(II) dipyridophenazine complexes using inosine-substituted oligonucleotides.

    PubMed

    Keane, Páraic M; Poynton, Fergus E; Hall, James P; Clark, Ian P; Sazanovich, Igor V; Towrie, Michael; Gunnlaugsson, Thorfinnur; Quinn, Susan J; Cardin, Christine J; Kelly, John M

    2015-01-01

    The intercalating [Ru(TAP)2(dppz)](2+) complex can photo-oxidise guanine in DNA, although in mixed-sequence DNA it can be difficult to understand the precise mechanism due to uncertainties in where and how the complex is bound. Replacement of guanine with the less oxidisable inosine (I) base can be used to understand the mechanism of electron transfer (ET). Here the ET has been compared for both Λ- and Δ-enantiomers of [Ru(TAP)2(dppz)](2+) in a set of sequences where guanines in the readily oxidisable GG step in {TCGGCGCCGA}2 have been replaced with I. The ET has been monitored using picosecond and nanosecond transient absorption and picosecond time-resolved IR spectroscopy. In both cases inosine replacement leads to a diminished yield, but the trends are strikingly different for Λ- and Δ-complexes.

  20. New investigations of the guanine trichloro cuprate(II) complex crystal

    NASA Astrophysics Data System (ADS)

    Fabijanić, Ivana; Matković-Čalogović, Dubravka; Pilepić, Viktor; Ivanišević, Irena; Mohaček-Grošev, Vlasta; Sanković, Krešimir

    2017-01-01

    Crystals of the guanine trichloro cuprate(II) complex, (HGua)2[Cu2Cl6]·2H2O (HGua = protonated guanine), were prepared and analysed by spectroscopic (IR, Raman) and computational methods. A new single-crystal X-ray diffraction analysis was conducted to obtain data with lower standard uncertainties than those in the previously published structure. Raman and IR spectroscopy and quantum-mechanical analysis gave us new insight into the vibrational states of the (HGua)2[Cu2Cl6]·2H2O crystal. The vibrational spectra of the crystal were assigned by performing a normal coordinate analysis for a free dimer with a centre of inversion as the only symmetry element. The stretching vibration observed at 279 cm-1 in the infrared spectrum corresponds to the N-Cu bond. The noncovalent interaction (NCI) plots and quantum theory of atoms in molecules (QTAIM) analysis of the electron density obtained from periodic DFT calculations elucidated the interactions that exist within the crystal structure. Closed-shell ionic attractions, as well as weak and medium strength hydrogen bonds, prevailed in the crystal packing.

  1. Strong binding of naphthyridine derivatives to a guanine base in DNA duplexes containing an AP site.

    PubMed

    Gao, Qiang; Satake, Hiroyuki; Dai, Qing; Ono, Katsuya; Nishizawa, Seiichi; Teramae, Norio

    2005-01-01

    By using UV thermal denaturation and isothermal titration calorimetry (ITC), we examine the binding behaviors of a hydrogen bond-forming ligand, 2-acetylamino-7-methyl-1,8-naphthyridine (AcMND), with a guanine base opposite an abasic site (AP site) in a DNA duplex (5'-TCC AGX GCA AC-3'/3'-AGG TCG CGT TG-5', X = AP site, G = target). In the presence of AcMND, the melting temperature (Tm) of the AP site-containing DNA duplex increases by 8.6 degrees C while hardly any change in Tm is observed for a corresponding normal duplex that has no AP sites. The examination by ITC reveals that, in solutions buffered to pH 7.0 (at 10 degrees C, I = 0.11 M), AcMND is able to recognize guanine base with a 1:1 binding constant of 3.4x10(5) M(-1). The ligand-nucleotide interaction is clearly enthalpy driven, with deltaH(o) of -12.5 kcal/mol. We discuss these binding functions of AcMND at the AP site with a view towards development of ligand-based assay for SNPs (single-nucleotide polymorphisms) typing.

  2. Catalysis in human hypoxanthine-guanine phosphoribosyltransferase: Asp 137 acts as a general acid/base.

    PubMed

    Xu, Y; Grubmeyer, C

    1998-03-24

    Hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) catalyzes the reversible formation of IMP and GMP from their respective bases hypoxanthine (Hx) and guanine (Gua) and the phosphoribosyl donor 5-phosphoribosyl-1-pyrophosphate (PRPP). The net formation and cleavage of the nucleosidic bond requires removal/addition of a proton at the purine moiety, allowing enzymic catalysis to reduce the energy barrier associated with the reaction. The pH profile of kcat for IMP pyrophosphorolysis revealed an essential acidic group with pKa of 7.9 whereas those for IMP or GMP formation indicated involvement of essential basic groups. Based on the crystal structure of human HGPRTase, protonation/deprotonation is likely to occur at N7 of the purine ring, and Lys 165 or Asp 137 are each candidates for the general base/acid. We have constructed, purified, and kinetically characterized two mutant HGPRTases to test this hypothesis. D137N displayed an 18-fold decrease in kcat for nucleotide formation with Hx as substrate, a 275-fold decrease in kcat with Gua, and a 500-fold decrease in kcat for IMP pyrophosphorolysis. D137N also showed lower KD values for nucleotides and PRPP. The pH profiles of kcat for D137N were severely altered. In contrast to D137N, the kcat for K165Q was decreased only 2-fold in the forward reaction and was slightly increased in the reverse reaction. The Km and KD values showed that K165Q interacts with substrates more weakly than does the wild-type enzyme. Pre-steady-state experiments with K165Q indicated that the phosphoribosyl transfer step was fast in the forward reaction, as observed with the wild type. In contrast, D137N showed slower phosphoribosyl transfer chemistry, although guanine (3000-fold reduction) was affected much more than hypoxanthine (32-fold reduction). In conclusion, Asp137 acts as a general catalytic acid/base for HGPRTase and Lys165 makes ground-state interactions with substrates.

  3. Pathways of arachidonic acid peroxyl radical reactions and product formation with guanine radicals.

    PubMed

    Crean, Conor; Geacintov, Nicholas E; Shafirovich, Vladimir

    2008-02-01

    Peroxyl radicals were derived from the one-electron oxidation of polyunsaturated fatty acids by sulfate radicals that were generated by the photodissociation of peroxodisulfate anions in air-equilibrated aqueous solutions. Reactions of these peroxyl and neutral guanine radicals, also generated by oxidation with sulfate radicals, were investigated by laser kinetic spectroscopy, and the guanine oxidation products were identified by HPLC and mass spectrometry methods. Sulfate radicals rapidly oxidize arachidonic (ArAc), linoleic (LnAc), and palmitoleic (PmAc) acids with similar rate constants, (2-4) x 10 (9) M (-1) s (-1). The C-centered radicals derived from the oxidation of ArAc and LnAc include nonconjugated Rn(.) ( approximately 80%) and conjugated bis-allylic Rba(.) ( approximately 20%) radicals. The latter were detectable in the absence of oxygen by their prominent, narrow absorption band at 280 nm. The Rn(.) radicals of ArAc (containing three bis-allylic sites) transform to the Rba(.) radicals via an intramolecular H-atom abstraction [rate constant (7.5 +/- 0.7) x 10 (4) s (-1)]. In contrast, the Rn(.) radicals of LnAc that contain only one bis-allylic site do not transform intramolecularly to the Rba(.) radicals. In the case of PmAc, which contains only one double bond, the Rba(.) radicals are not observed. The Rn(.) radicals of PmAc rapidly combine with oxygen with a rate constant of (3.8 +/- 0.4) x 10(9) M(-1) s(-1). The Rba(.) radicals of ArAc are less reactive and react with oxygen with a rate constant of (2.2 +/- 0.2) x 10 (8) M (-1) s (-1). The ArAc peroxyl radicals formed spontaneously eliminate superoxide radical anions [rate constant = (3.4 +/- 0.3) x 10 (4) M (-1) s (-1)]. The stable oxidative lesions derived from the 2',3',5'-tri- O-acetylguanosine or 2',3',5'-tri- O-acetyl-8-oxo-7,8-dihydroguanosine radicals and their subsequent reactions with ArAc peroxyl radicals were also investigated. The major products found were the 2,5-diamino-4 H

  4. Mechanism of epoxide hydrolysis in microsolvated nucleotide bases adenine, guanine and cytosine: a DFT study.

    PubMed

    Vijayalakshmi, Kunduchi P; Mohan, Neetha; Ajitha, Manjaly J; Suresh, Cherumuttathu H

    2011-07-21

    Six water molecules have been used for microsolvation to outline a hydrogen bonded network around complexes of ethylene epoxide with nucleotide bases adenine (EAw), guanine (EGw) and cytosine (ECw). These models have been developed with the MPWB1K-PCM/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) level of DFT method and calculated S(N)2 type ring opening of the epoxide due to amino group of the nucleotide bases, viz. the N6 position of adenine, N2 position of guanine and N4 position of cytosine. Activation energy (E(act)) for the ring opening was found to be 28.06, 28.64, and 28.37 kcal mol(-1) respectively for EAw, EGw and ECw. If water molecules were not used, the reactions occurred at considerably high value of E(act), viz. 53.51 kcal mol(-1) for EA, 55.76 kcal mol(-1) for EG and 56.93 kcal mol(-1) for EC. The ring opening led to accumulation of negative charge on the developing alkoxide moiety and the water molecules around the charge localized regions showed strong hydrogen bond interactions to provide stability to the intermediate systems EAw-1, EGw-1 and ECw-1. This led to an easy migration of a proton from an activated water molecule to the alkoxide moiety to generate a hydroxide. Almost simultaneously, a proton transfer chain reaction occurred through the hydrogen bonded network of water molecules and resulted in the rupture of one of the N-H bonds of the quaternized amino group. The highest value of E(act) for the proton transfer step of the reaction was 2.17 kcal mol(-1) for EAw, 2.93 kcal mol(-1) for EGw and 0.02 kcal mol(-1) for ECw. Further, the overall reaction was exothermic by 17.99, 22.49 and 13.18 kcal mol(-1) for EAw, EGw and ECw, respectively, suggesting that the reaction is irreversible. Based on geometric features of the epoxide-nucleotide base complexes and the energetics, the highest reactivity is assigned for adenine followed by cytosine and guanine. Epoxide-mediated damage of DNA is reported in the literature and the present results suggest that

  5. Solution structures of oligonucleotides containing either a guanine or a cytosine in front of a gap of one nucleotide

    NASA Astrophysics Data System (ADS)

    Boulard, Y.; Faibis, V.; Fazakerley, G. V.

    1999-10-01

    We report NMR and molecular modelling studies on two DNA duplexes containing a gap of one nucleotides. The difference between the two oligonucleotides lies in the central base face to the gap, a guanine or a cytosine. For the gapG, we observed in solution a B-form conformation where the guanine stacks in the helix. For the gapC, we reveal the existence of two species, one majority where the cytosine is inside the helix and a second for which the cytosine is extrahelical. Nous présentons une étude par RMN et modélisation moléculaire sur deux duplexes d'ADN contenant une lacune de un nucléotide. La différence entre les deux oligonucléotides réside dans la base centrale en face de la lacune, une guanine ou une cytosine. Pour le duplex appelé gapG, nous observons en solution une hélice de type B dans laquelle la guanine est empilée à l'intérieur de l'hélice. Dans le cas du duplex gapC, nous montrons l'existence de deux formes, l'une où la cytosine est à l'intérieur de l'hélice; la seconde où la cytosine est extra hélicale.

  6. Quantum mechanical calculations unveil the structure and properties of the absorbing and emitting excited electronic states of guanine quadruplex.

    PubMed

    Improta, Roberto

    2014-06-23

    Herein, a full quantum mechanical study, in solution, of several models of guanine-quadruplex helices, both parallel and antiparallel, containing up to eight guanine residues, in their electronic excited state is reported. By exploiting TD-DFT calculations and including solvent effects by the polarizable continuum model, we provide the first atomistic description of the processes triggered by the absorption of UV light, reproducing and assigning the experimental optical and electronic circular dichroism spectra. The absorbing excited states are delocalized over multiple bases, whereas emission involves a stacked guanine dimer or a monomer. Several states, with a varying degree of localization and charge-transfer character, rule the photoexcited dynamics, which are deeply affected by the quadruplex topology. The lowest excited-state minimum for parallel quadruplex is an asymmetric excimer involving two stacked guanines, with a small charge transfer character, whereas for the anti-parallel structure, with the same topology of the thrombin binding aptamer, it is a fully symmetric excimer, characterized by a strong decrease of the stacking distance. A monomer-like decay path is the most relevant nonradiative decay pathway. Insights on the effect of the ions (K(+) or Na(+)) on the excited state decay are also provided. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Highly Oxidizing Excited States of One-Electron Oxidized Guanine in DNA: Wavelength and pH Dependence

    PubMed Central

    Khanduri, Deepti; Adhikary, Amitava; Sevilla, Michael D.

    2011-01-01

    Excited states of one-electron oxidized guanine in DNA are known to induce hole transfer to the sugar moiety and on deprotonation result in neutral sugar radicals that are precursors of DNA-strand breaks. This work carried out in homogeneous aqueous glass (7.5 M LiCl) at low temperatures (77 to 175 K) shows the extent of photoconversion of one-electron oxidized guanine and the associated yields of individual sugar radicals and are crucially controlled by photon energy, protonation state, and strandedness of the oligomer. In addition to forming sugar radicals, highly oxidizing excited states of one-electron oxidized guanine are produced with 405 nm light at pH 5 and below that are able to oxidize chloride ion in the surrounding solution to form Cl2•− via an excited state hole transfer process. Among the various DNA model systems studied in this work, the maximum amount of Cl2•− is produced with ds (double stranded) DNA where the one-electron oxidized guanine exists in its cation radical (G•+:C) form. Thus, via excited state hole transfer, the dsDNA is apparently able to protect itself from cation radical excited states by transfer of damage to the surrounding environment. PMID:21381665

  8. Guanine nucleotide-binding activity as an assay for src protein of rat-derived murine sarcoma viruses

    PubMed Central

    Scolnick, Edward M.; Papageorge, Alex G.; Shih, Thomas Y.

    1979-01-01

    We have recently identified a 21,000-dalton protein, p21, coded for by Kirsten or Harvey murine sarcoma virus. On the basis of the results obtained with the p21 of a mutant of Kirsten sarcoma virus, temperature sensitive for the maintenance of transformation, we concluded that the p21 was required for the maintenance of transformation induced by either virus. We report herein that when extracts from cells transformed by Kirsten or Harvey sarcoma virus are incubated with [3H]GDP or [α-32P]GTP, picomole quantities of guanine nucleotide can be immunoprecipitated with antisera that contain antibodies to the p21. Previously we have shown that the immunoprecipitability of [35S]methionine-labeled p21 of the temperature-sensitive mutant of Kirsten sarcoma virus is thermolabile. The binding of guanine nucleotide is shown herein also to be thermolabile in extracts of cells transformed by the same mutant. However, the immunoprecipitability of the [35S]methionine-labeled p21 in such extracts of the temperature-sensitive mutant can be preserved if the extracts containing labeled p21 are incubated with added GDP or GTP prior to heating. The results suggest an interaction between p21 and certain guanine nucleotides, and the possible roles of guanine nucleotides and p21 in the maintenance of transformation are discussed. Images PMID:228288

  9. The role of alkali metal cations in the stabilization of guanine quadruplexes: why K(+) is the best.

    PubMed

    Zaccaria, F; Paragi, G; Fonseca Guerra, C

    2016-08-21

    The alkali metal ion affinity of guanine quadruplexes has been studied using dispersion-corrected density functional theory (DFT-D). We have done computational investigations in aqueous solution that mimics artificial supramolecular conditions where guanine bases assemble into stacked quartets as well as biological environments in which telomeric quadruplexes are formed. In both cases, an alkali metal cation is needed to assist self-assembly. Our quantum chemical computations on these supramolecular systems are able to reproduce the experimental order of affinity of the guanine quadruplexes for the cations Li(+), Na(+), K(+), Rb(+), and Cs(+). The strongest binding is computed between the potassium cation and the quadruplex as it occurs in nature. The desolvation and the size of alkali metal cations are thought to be responsible for the order of affinity. Until now, the relative importance of these two factors has remained unclear and debated. By assessing the quantum chemical 'size' of the cation, determining the amount of deformation of the quadruplex needed to accommodate the cation and through the energy decomposition analysis (EDA) of the interaction energy between the cation and the guanines, we reveal that the desolvation and size of the alkali metal cation are both almost equally responsible for the order of affinity.

  10. Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil

    PubMed Central

    2016-01-01

    Using picosecond excitation at 1064 nm, surface-enhanced hyper-Raman scattering (SEHRS) spectra of the nucleobases adenine, guanine, cytosine, thymine, and uracil with two different types of silver nanoparticles were obtained. Comparing the SEHRS spectra with SERS data from the identical samples excited at 532 nm and with known infrared spectra, the major bands in the spectra are assigned. Due to the different selection rules for the one- and two-photon excited Raman scattering, we observe strong variation in relative signal strengths of many molecular vibrations obtained in SEHRS and SERS spectra. The two-photon excited spectra of the nucleobases are found to be very sensitive with respect to molecule–nanoparticle interactions. Using both the SEHRS and SERS data, a comprehensive vibrational characterization of the interaction of nucleobases with silver nanostructures can be achieved. PMID:28077982

  11. Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil.

    PubMed

    Madzharova, Fani; Heiner, Zsuzsanna; Gühlke, Marina; Kneipp, Janina

    2016-07-21

    Using picosecond excitation at 1064 nm, surface-enhanced hyper-Raman scattering (SEHRS) spectra of the nucleobases adenine, guanine, cytosine, thymine, and uracil with two different types of silver nanoparticles were obtained. Comparing the SEHRS spectra with SERS data from the identical samples excited at 532 nm and with known infrared spectra, the major bands in the spectra are assigned. Due to the different selection rules for the one- and two-photon excited Raman scattering, we observe strong variation in relative signal strengths of many molecular vibrations obtained in SEHRS and SERS spectra. The two-photon excited spectra of the nucleobases are found to be very sensitive with respect to molecule-nanoparticle interactions. Using both the SEHRS and SERS data, a comprehensive vibrational characterization of the interaction of nucleobases with silver nanostructures can be achieved.

  12. Acyclic Immucillin Phosphonates. Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase

    SciTech Connect

    Hazelton, Keith Z.; Ho, Meng-Chaio; Cassera, Maria B.

    2012-06-22

    We found that Plasmodium falciparum is the primary cause of deaths from malaria. It is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. We present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPsmore » are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.« less

  13. Electrochemical genosensor for mitomycin C-DNA interaction based on guanine signal.

    PubMed

    Ozkan, Dilsat; Karadeniz, Hakan; Erdem, Arzum; Mascini, Marco; Ozsoz, Mehmet

    2004-06-29

    The interaction of mitomycin C (MC) with fish sperm or calf thymus DNA immobilized onto carbon screen-printed electrodes (CSPE) and carbon paste electrode (CPE) have been studied by using electrochemical techniques as square wave voltammetry (SWV) and differential pulse voltammetry (DPV). After the interaction was occurred between DNA and MC on electrode surface, it was observed that the guanine signal was higher with bare electrode than DNA-modified one. The changes in the experimental parameters such as the concentration of MC, and the accumulation time of MC were studied by using SWV and DPV. In addition, reproducibility, and detection limit parameters were determined using both electrodes. The partition coefficient of MC was also calculated before and after interaction of MC with dsDNA at CPE surface. These results showed that these two different DNA biosensors could be used for the sensitive, rapid and cost effective detection of MC-DNA interaction. Copyright 2004 Elsevier B.V.

  14. Guanine holes are prominent targets for mutation in cancer and inherited disease.

    PubMed

    Bacolla, Albino; Temiz, Nuri A; Yi, Ming; Ivanic, Joseph; Cer, Regina Z; Donohue, Duncan E; Ball, Edward V; Mudunuri, Uma S; Wang, Guliang; Jain, Aklank; Volfovsky, Natalia; Luke, Brian T; Stephens, Robert M; Cooper, David N; Collins, Jack R; Vasquez, Karen M

    2013-01-01

    Single base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G • C bp in the context of all 64 5'-NGNN-3' motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials). Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease.

  15. Guanine Holes Are Prominent Targets for Mutation in Cancer and Inherited Disease

    PubMed Central

    Bacolla, Albino; Temiz, Nuri A.; Yi, Ming; Ivanic, Joseph; Cer, Regina Z.; Donohue, Duncan E.; Ball, Edward V.; Mudunuri, Uma S.; Wang, Guliang; Jain, Aklank; Volfovsky, Natalia; Luke, Brian T.; Stephens, Robert M.; Cooper, David N.; Collins, Jack R.; Vasquez, Karen M.

    2013-01-01

    Single base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G•C bp in the context of all 64 5′-NGNN-3′ motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials). Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease. PMID:24086153

  16. Functional modification of the guanine nucleotide regulatory protein after desensitization of turkey erythrocytes by catecholamines.

    PubMed

    Briggs, M M; Stadel, J M; Iyengar, R; Lefkowitz, R J

    1983-07-01

    Densensitization of turkey erythrocytes by exposure to the beta-adrenergic agonist (-)isoproterenol leads to decreased activation of adenylate cyclase by agonist, NaF, and guanyl-5'-yl imido diphosphate, with no reduction in the number of beta-adrenergic receptors. Interactions between the receptor and the guanine nucleotide regulatory protein (N protein) also seem to be impaired. These observations suggest that a component distal to the beta-adrenergic receptor may be a locus of modification. Accordingly we examined the N protein to determine whether it was altered by desensitization. The rate at which (-)isoproterenol stimulated the release of [3H]GDP from the N protein was substantially lower in membranes prepared from desensitized cells, providing further evidence for uncoupling of the receptor and the N protein. The amount of N protein in membranes from control and desensitized cells was compared by labeling the 42,000 Mr component of the N protein with [32P]NAD+ and cholera toxin; no significant difference was found. However, significantly more N protein (p less than .001) was solubilized by cholate extraction of desensitized membranes, suggesting an altered association of the N protein with the membrane after desensitization. The functional activity of the N protein was measured by reconstitution of cholate extracts of turkey erythrocyte membranes into S49 lymphoma cyc- membranes. Reconstitution of (-)isoproterenol stimulation of adenylate cyclase activity was reduced significantly (p less than .05) after desensitization. These observations suggest that desensitization of the turkey erythrocyte by (-)isoproterenol results in functional modifications of the guanine nucleotide regulatory protein, leading to impaired interactions with the beta-adrenergic receptor and reduced activation of adenylate cyclase.

  17. Transient complexes. A structural model for the activation of adenylate cyclase by hormone receptors (guanine nucleotides/irradiation inactivation)

    PubMed Central

    Martin, B. Richard; Stein, Janet M.; Kennedy, Edwina L.; Doberska, Christine A.; Metcalfe, James C.

    1979-01-01

    1. The irradiation-inactivation procedure was used to study changes in the state of association of the protein components of adenylate cyclase in intact rat liver plasma membranes by measurement of alterations in the target size determined from the catalytic activity of the enzyme. 2. A decrease in target size at 30°C in response to p[NH]ppG (guanosine 5′-[βγ-imido]triphosphate) or GTP was demonstrated, which we take to reflect the dissociation of a regulatory subunit. The effect of GTP is potentiated by glucagon. This effect is not observed at 0°C. 3. An increase in target size was observed in response to glucagon in the absence of guanine nucleotides, which we take to reflect the association of glucagon receptor with adenylate cyclase. 4. We propose a model for the activation of adenylate cyclase by glucagon in which the binding of the hormone to its receptor causes an initial association of the receptor with the catalytic unit of the enzyme and a regulatory subunit to form a ternary complex. The subsequent activation of the adenylate cyclase results from the dissociation of the ternary complex to leave a free catalytic unit in the activated state. This dissociation requires the binding of a guanine nucleotide to the regulatory subunit. 5. The effects of variation of temperature on the activation of adenylate cyclase by glucagon and guanine nucleotides were examined and are discussed in relation to the irradiation-activation data. 6. The effectiveness of hormones, guanine nucleotides and combinations of hormone and guanine nucleotides as activators of adenylate cyclase in both rat liver and rat fat-cell plasma membranes was studied and the results are discussed in relation to the model proposed, which is also considered in relation to the observations published by other workers. PMID:230831

  18. Investigation of base pairs containing oxidized guanine using ab initio method and ABEEMσπ polarizable force field.

    PubMed

    Liu, Cui; Wang, Yang; Zhao, Dongxia; Gong, Lidong; Yang, Zhongzhi

    2014-02-01

    The integrity of the genetic information is constantly threatened by oxidizing agents. Oxidized guanines have all been linked to different types of cancers. Theoretical approaches supplement the assorted experimental techniques, and bring new sight and opportunities to investigate the underlying microscopic mechanics. Unfortunately, there is no specific force field to DNA system including oxidized guanines. Taking high level ab initio calculations as benchmark, we developed the ABEEMσπ fluctuating charge force field, which uses multiple fluctuating charges per atom. And it was applied to study the energies, structures and mutations of base pairs containing oxidized guanines. The geometries were obtained in reference to other studies or using B3LYP/6-31+G* level optimization, which is more rational and timesaving among 24 quantum mechanical methods selected and tested by this work. The energies were determined at MP2/aug-cc-pVDZ level with BSSE corrections. Results show that the constructed potential function can accurately simulate the change of H-bond and the buckled angle formed by two base planes induced by oxidized guanine, and it provides reliable information of hydrogen bonding, stacking interaction and the mutation processes. The performance of ABEEMσπ polarizable force field in predicting the bond lengths, bond angles, dipole moments etc. is generally better than those of the common force fields. And the accuracy of ABEEMσπ PFF is close to that of the MP2 method. This shows that ABEEMσπ model is a reliable choice for further research of dynamics behavior of DNA fragment including oxidized guanine. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    PubMed

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  20. Synthesis of adenine, guanine, cytosine, and other nitrogen organic compounds by a Fischer-Tropsch-like process.

    NASA Technical Reports Server (NTRS)

    Yang, C. C.; Oro, J.

    1971-01-01

    Study of the formation of purines, pyrimidines, and other bases from CO, H2, and NH3 under conditions similar to those used in the Fischer-Tropsch process. It is found that industrial nickel/iron alloy catalyzes the synthesis of adenine, guanine, cytosine, and other nitrogenous compounds from mixtures of CO, H2, and NH3 at temperatures of about 600 C. Sufficient sample was accumulated to isolate as solid products adenine, guanine, and cytosine, which were identified by infrared spectrophotometry. In the absence of nickel/iron catalyst, at 650 C, or in the presence of this catalyst, at 450 C, no purines or pyrimidines were synthesized. These results confirm and extend some of the work reported by Kayatsu et al. (1968).

  1. Automated quantum chemistry based molecular dynamics simulations of electron ionization induced fragmentations of the nucleobases Uracil, Thymine, Cytosine, and Guanine.

    PubMed

    Grimme, Stefan; Bauer, Christopher Alexander

    2015-01-01

    The gas-phase decomposition pathways of electron ionization (EI)-induced radical cations of the nucleobases uracil, thymine, cytosine, and guanine are investigated by means of mixed quantum-classical molecular dynamics. No preconceived fragmentation channels are used in the calculations. The results compare well to a plethora of experimental and theoretical data for these important biomolecules. With our combined stochastic and dynamic approach, one can access in an unbiased way the energetically available decomposition mechanisms. Additionally, we are able to separate the EI mass spectra of different tautomers of cytosine and guanine. Our method (previously termed quantum chemistry electron ionization mass spectra) reproduces free nucleobase experimental mass spectra well and provides detailed mechanistic in-sight into high-energy unimolecular decomposition processes.

  2. Generation of guanine-thymine cross-links in human cells by one-electron oxidation mechanisms.

    PubMed

    Madugundu, Guru S; Wagner, J Richard; Cadet, Jean; Kropachev, Konstantin; Yun, Byeong Hwa; Geacintov, Nicholas E; Shafirovich, Vladimir

    2013-07-15

    The one-electron oxidation of cellular DNA in cultured human HeLa cells initiated by intense nanosecond 266 nm laser pulse irradiation produces cross-links between guanine and thymine bases (G*-T*), characterized by a covalent bond between C8 guanine (G*) and N3 thymine (T*) atoms. The DNA lesions were quantified by isotope dilution LC-MS/MS methods in the multiple reaction-monitoring mode using isotopically labeled [(15)N, (13)C]-nucleotides as internal standards. Among several known pyrimidine and 8-oxo-7,8-dihydroguanine lesions, the G*-T* cross-linked lesions were detected at levels of ~0.21 and 1.19 d(G*-T*) lesions per 10(6) DNA bases at laser intensities of 50 and 280 mJ/cm(2)/pulse, respectively.

  3. Stabilization of Mixed Frenkel-Charge Transfer Excitons Extended Across Both Strands of Guanine-Cytosine DNA Duplexes.

    PubMed

    Huix-Rotllant, Miquel; Brazard, Johanna; Improta, Roberto; Burghardt, Irene; Markovitsi, Dimitra

    2015-06-18

    The photoreactive pathways that may lead to DNA damage depend crucially upon the nature of the excited electronic states. The study of alternating guanine-cytosine duplexes by fluorescence spectroscopy and quantum mechanical calculations identifies a novel type of excited states that can be populated following UVB excitation. These states, denoted High-energy Emitting Long-lived Mixed (HELM) states, extend across both strands and arise from mixing between cytosine Frenkel excitons and guanine-to-cytosine charge transfer states. They emit at energies higher than ππ* states localized on single bases, survive for several nanoseconds, are sensitive to the ionic strength of the solution, and are strongly affected by the structural transition from the B form to the Z form. Their impact on the formation of lesions of the genetic code needs to be assessed.

  4. Structure of Radicals from X-irradiated Guanine Derivatives: An Experimental and Computational Study of Sodium Guanosine Dihydrate Single Crystals

    PubMed Central

    Jayatilaka, Nayana; Nelson, William H.

    2008-01-01

    In sodium guanosine dihydrate single crystals, the guanine moiety is deprotonated at N1 due to growth from high-pH (>12) solutions. EPR and ENDOR study of crystals x-irradiated at 10 K detected evidence for three radical forms. Radical R1,characterized by two proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the N1-deprotonated guanine unit. R1 exhibited an unusually distorted structure leading to net positive isotropic components of the hydrogen couplings. Radical R2, characterized by one proton and one nitrogen hyperfine coupling was identified as the primary electron loss product. This product is equivalent to that of deprotonation at N1 by the guanine cation and represents the first ENDOR characterization of that product. Radical R3, characterized by a single hydrogen hyperfine coupling, was identified as the product of net dehydrogenation at C1 of the ribose moiety. The identification of radicals R1-R3 was supported by DFT calculations on several possible structures using the B3LYP/6-311G(2df,p)//6-31G(d,p) approach. Radical R4, detected after warming the crystals to room temperature, was identified as the well-known product of net hydrogenation of C8 of the (N1-deprotonated) guanine component. Radical R1, evidently formed by protonation of the primary electron addition product, was present as roughly 60% of the total radicals detected at 10 K. Radical R2 was present as roughly 27% of the total yield, and the concentration of R3 contributed the remaining 13%. R3 is evidently the product of oneelectron oxidation followed by deprotonation; thus, the balance of oxidation and reduction products is approximately equal within experimental uncertainty. PMID:17249824

  5. Uncovering the Signaling Pathway behind Extracellular Guanine-Induced Activation of NO System: New Perspectives in Memory-Related Disorders.

    PubMed

    Zuccarini, Mariachiara; Giuliani, Patricia; Frinchi, Monica; Mudò, Giuseppa; Serio, Rosa Maria; Belluardo, Natale; Buccella, Silvana; Carluccio, Marzia; Condorelli, Daniele F; Caciagli, Francesco; Ciccarelli, Renata; Di Iorio, Patrizia

    2018-01-01

    Mounting evidence suggests that the guanine-based purines stand out as key player in cell metabolism and in several models of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. Guanosine (GUO) and guanine (GUA) are extracellular signaling molecules derived from the breakdown of the correspondent nucleotide, GTP, and their intracellular and extracellular levels are regulated by the fine-tuned activity of two major enzymes, purine nucleoside phosphorylase (PNP) and guanine deaminase (GDA). Noteworthy, GUO and GUA, seem to play opposite roles in the modulation of cognitive functions, such as learning and memory. Indeed GUO, despite exerting neuroprotective, anti-apoptotic and neurotrophic effects, causes a decay of cognitive activities, whereas GUA administration in rats results in working memory improvement (prevented by L-NAME pre-treatment). This study was designed to investigate, in a model of SH-SY5Y neuroblastoma cell line, the signal transduction pathway activated by extracellular GUA. Altogether, our results showed that: (i) in addition to an enhanced phosphorylation of ASK1, p38 and JNK, likely linked to a non-massive and transient ROS production, the PKB/NO/sGC/cGMP/PKG/ERK cascade seems to be the main signaling pathway elicited by extracellular GUA; (ii) the activation of this pathway occurs in a pertussis-toxin sensitive manner, thus suggesting the involvement of a putative G protein coupled receptor; (iii) the GUA-induced NO production, strongly reduced by cell pre-treatment with L-NAME, is negatively modulated by the EPAC-cAMP-CaMKII pathway, which causes the over-expression of GDA that, in turn, reduces the levels of GUA. These molecular mechanisms activated by GUA may be useful to support our previous observation showing that GUA improves learning and memory functions through the stimulation of NO signaling pathway, and underscore the therapeutic potential of oral administration of guanine for treating memory-related disorders.

  6. Ball with hair: modular functionalization of highly stable G-quadruplex DNA nano-scaffolds through N2-guanine modification.

    PubMed

    Lech, Christopher Jacques; Phan, Anh Tuân

    2017-06-20

    Functionalized nanoparticles have seen valuable applications, particularly in the delivery of therapeutic and diagnostic agents in biological systems. However, the manufacturing of such nano-scale systems with the consistency required for biological application can be challenging, as variation in size and shape have large influences in nanoparticle behavior in vivo. We report on the development of a versatile nano-scaffold based on the modular functionalization of a DNA G-quadruplex. DNA sequences are functionalized in a modular fashion using well-established phosphoramidite chemical synthesis with nucleotides containing modification of the amino (N2) position of the guanine base. In physiological conditions, these sequences fold into well-defined G-quadruplex structures. The resulting DNA nano-scaffolds are thermally stable, consistent in size, and functionalized in a manner that allows for control over the density and relative orientation of functional chemistries on the nano-scaffold surface. Various chemistries including small modifications (N2-methyl-guanine), bulky aromatic modifications (N2-benzyl-guanine), and long chain-like modifications (N2-6-amino-hexyl-guanine) are tested and are found to be generally compatible with G-quadruplex formation. Furthermore, these modifications stabilize the G-quadruplex scaffold by 2.0-13.3 °C per modification in the melting temperature, with concurrent modifications producing extremely stable nano-scaffolds. We demonstrate the potential of this approach by functionalizing nano-scaffolds for use within the biotin-avidin conjugation approach. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Quenching of light flickering in synthetic guanine crystals in aqueous solutions under strong static magnetic fields

    NASA Astrophysics Data System (ADS)

    Mootha, A.; Takanezawa, Y.; Iwasaka, M.

    2018-05-01

    The present study focused on the vibration of micro crystal particles of guanine due to Brownian motion. The organic particle has a refractive index of 1.83 and caused a flickering of light. To test the possibility of using magnetic properties under wet conditions, changes in the frequency of particle vibration by applying magnetic fields were investigated. At first, we found that the exposure at 5 T inhibited the flickering light intensities and the particle vibration slightly decreased. Next, we carried out a high speed camera measurement of the Brownian motion of the particle with a time resolution of 100 flame per second (fps) with and without magnetic field exposures. It was revealed that the vibrational speed of synthetic particles was enhanced at 500 mT. Detailed analyses of the particle vibration by changing the direction of magnetic fields versus the light source revealed that the Brownian motion's vibrational frequency was entrained under magnetic fields at 500 mT, and an increase in vibration speed to 20Hz was observed. Additional measurements of light scattering fluctuation using photo-detector and analyses on auto-correlation also confirmed this speculation. The studied Brownian vibration may be influenced by the change in mechanical interactions between the vibration particles and surrounding medium. The discovered phenomena can be applied for molecular and biological interactions in future studies.

  8. Characterization of a mimivirus RNA cap guanine-N2 methyltransferase.

    PubMed

    Benarroch, Delphine; Qiu, Zhicheng R; Schwer, Beate; Shuman, Stewart

    2009-04-01

    A 2,2,7-trimethylguanosine (TMG) cap is a signature feature of eukaryal snRNAs, telomerase RNAs, and trans-spliced nematode mRNAs. TMG and 2,7-dimethylguanosine (DMG) caps are also present on mRNAs of two species of alphaviruses (positive strand RNA viruses of the Togaviridae family). It is presently not known how viral mRNAs might acquire a hypermethylated cap. Mimivirus, a giant DNA virus that infects amoeba, encodes many putative enzymes and proteins implicated in RNA transactions, including the synthesis and capping of viral mRNAs and the promotion of cap-dependent translation. Here we report the identification, purification, and characterization of a mimivirus cap-specific guanine-N2 methyltransferase (MimiTgs), a monomeric enzyme that catalyzes a single round of methyl transfer from AdoMet to an m(7)G cap substrate to form a DMG cap product. MimiTgs, is apparently unable to convert a DMG cap to a TMG cap, and is thereby distinguished from the structurally homologous yeast and human Tgs1 enzymes. Nonetheless, we show genetically that MimiTgs is a true ortholog of Saccharomyces cerevisiae Tgs1. Our results hint that DMG caps can satisfy many of the functions of TMG caps in vivo. We speculate that DMG capping of mimivirus mRNAs might favor viral protein synthesis in the infected host.

  9. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells

    SciTech Connect

    Palella, T.D.; Silverman, L.J.; Schroll, C.T.

    1988-01-01

    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolationmore » of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.« less

  10. Polymerase chain reaction optimization for amplification of Guanine-Cytosine rich templates using buccal cell DNA.

    PubMed

    Bhagya, C H W M R Chandrasekara; Wijesundera Sulochana, W S; Hemamali, N Perera

    2013-01-01

    Amplification of Guanine-Cytosine (GC) -rich sequences becomes important in screening and diagnosis of certain genetic diseases such as diseases arising due to expansion of GC-rich trinucleotide repeat regions. However, GC-rich sequences in the genome are refractory to standard polymerase chain reaction (PCR) amplification and require a special reaction conditions and/or modified PCR cycle parameters. Optimize a cost effective PCR assay to amplify the GC-rich DNA templates. Fragile X mental retardation gene (FMR 1) is an ideal candidate for PCR optimization as its GC content is more than 80%. Primers designed to amplify the GC rich 5' untranslated region of the FMR 1 gene, was selected for the optimization of amplification using DNA extracted from buccal mucosal cells. A simple and rapid protocol was used to extract DNA from buccal cells. PCR optimization was carried out using three methods, (a) substituting a substrate analog 7-deaza-dGTP to dGTP (b) in the presence of a single PCR additive and (c) using a combination of PCR additives. All PCR amplifications were carried out using a low-cost thermostable polymerase. Optimum PCR conditions were achieved when a combination of 1M betaine and 5% dimethyl sulfoxide (DMSO) was used. It was possible to amplify the GC rich region of FMR 1 gene with reproducibility in the presence of betaine and DMSO as additives without the use of commercially available kits for DNA extraction and the expensive thermostable polymerases.

  11. Heat capacity changes associated with guanine quadruplex formation: an isothermal titration calorimetry study.

    PubMed

    Majhi, Pinaki R; Qi, Jianying; Tang, Chung-Fei; Shafer, Richard H

    2008-04-01

    This study addresses the temperature dependence of the enthalpy of formation for several unimolecular quadruplexes in the presence of excess monovalent salt. We examined a series of biologically significant guanine-rich DNA sequences: thrombin binding aptamer (TBA) (d(G(2)T(2)G(2)TGTG(2)T(2)G(2)), PS2.M, a catalytically active aptamer (d(GTG(3)TAG(3)CG(3)T(2)G(2))), and the human telomere repeat (HT) (d(AG(3)(T(2)AG(3))(3))). Using CD spectra and UV melting, we confirmed the presence of quadruplex structures and established the temperature range in which quadruplex conformation is stable. We then performed ITC experiments, adding DNA to a solution containing excess NaCl or KCl. In this approach, only several additions are made, and only the enthalpy of quadruplex formation is measured. This measurement was repeated at different temperatures to determine the temperature dependence of the enthalpy change accompanying quadruplex formation. To control for the effect of nonspecific salt interactions during DNA folding, we repeated the experiment by replacing the quadruplex-forming sequences with a similar but nonfolding sequence. Dilution enthalpies were also subtracted to obtain the final enthalpy value involving only the quadruplex folding process. For all sequences studied, quadruplex formation was exothermic but with an increasing magnitude with increasing temperature. These results are discussed in terms of the change in heat capacity associated with quadruplex formation.

  12. Fluorescent excimers and exciplexes of the purine base derivative 8-phenylethynyl-guanine in DNA hairpins.

    PubMed

    Brown, Kristen E; Singh, Arunoday P N; Wu, Yi-Lin; Ma, Lin; Mishra, Ashutosh K; Phelan, Brian T; Young, Ryan M; Lewis, Frederick D; Wasielewski, Michael R

    2018-04-17

    The ground- and excited-state electronic interactions between the nucleobase analog 8-(4'-phenylethynyl)deoxyguanosine, EG, with natural nucleobases and 7-deazaguanine, as well as between adjacent EG base analogs, have been characterized using a combination of steady-state spectroscopy and time-resolved fluorescence, absorption, and stimulated Raman spectroscopies. The properties of the nucleoside EG-H2 are only weakly perturbed upon incorporation into synthetic DNA hairpins in which thymine, cytosine or adenine are the bases flanking EG. Incorporation of the nucleoside to be adjacent to guanine or deazaguanine results in the formation of short-lived (40-80 ps) exciplexes, the charge transfer character of which increases as the oxidation potential of the donor decreases. Hairpins possessing two or three adjacent EG base analogs display exciton-coupled circular dichroism in the ground state and form long-lived fluorescent excited states upon electronic excitation. Incorporation of EG into the helical scaffold of the DNA hairpins places it adjacent to its neighboring nucleobases or a second EG, thus providing the close proximity required for the formation of exciplex or excimer intermediates upon geometric relaxation of the short-lived EG excited state. The three time-resolved spectroscopic methods employed permit both the characterization of the several intermediates and the kinetics of their formation and decay.

  13. A new functional domain of guanine nucleotide dissociation inhibitor (alpha-GDI) involved in Rab recycling.

    PubMed

    Luan, P; Heine, A; Zeng, K; Moyer, B; Greasely, S E; Kuhn, P; Balch, W E; Wilson, I A

    2000-03-01

    Guanine nucleotide dissociation inhibitor (GDI) is a 55-kDa protein that functions in vesicular membrane transport to recycle Rab GTPases. We have now determined the crystal structure of bovine alpha-GDI at ultra-high resolution (1.04 A). Refinement at this resolution highlighted a region with high mobility of its main-chain residues. This corresponded to a surface loop in the primarily alpha-helical domain II at the base of alpha-GDI containing the previously uncharacterized sequence-conserved region (SCR) 3A. Site-directed mutagenesis showed that this mobile loop plays a crucial role in binding of GDI to membranes and extraction of membrane-bound Rab. This domain, referred to as the mobile effector loop, in combination with Rab-binding residues found in the multi-sheet domain I at the apex of alpha-GDI may provide flexibility for recycling of diverse Rab GTPases. We propose that conserved residues in domains I and II synergize to form the functional face of GDI, and that domain II mediates a critical step in Rab recycling during vesicle fusion.

  14. Platinum(II) and palladium(II) complexes of tridentate hydrazone-based ligands as selective guanine quadruplex binders.

    PubMed

    Schmidt, Alexander; Guha, Rweetuparna; Hepp, Alexander; Müller, Jens

    2017-10-01

    Several tridentate hydrazone-based ligands, synthesized by a condensation reaction of either 2-(1-methylhydrazinyl)pyridine or 2-(1-methylhydrazinyl)quinoline with an aldehyde (picolinaldehyde, 1H-pyrrole-2-carbaldehyde, 2-mercaptobenzaldehyde, 2-aminobenzaldehyde) have been reacted with palladium(II) and platinum(II) salts and precursor complexes to yield nine new metal complexes. These planar complexes were investigated with respect to their capability to interact with guanine quadruplex DNA. Two sequences (H-telo, derived from the human telomeric sequence, and c-myc, representing an excerpt of the promoter region of the c-Myc oncogene) were investigated. Circular dichroism (CD) spectroscopy, temperature-dependent CD spectroscopy, UV-Vis spectroscopy and a fluorescent intercalator displacement (FID) assay were applied in this respect. The spectroscopic data show that the complexes indeed interact with guanine quadruplex DNA. According to the FID assay, some of the complexes belong to the highest-affinity metal-containing quadruplex binders reported so far. Their affinity towards quadruplex DNA is up to 80-fold higher than to a reference double helix. These findings make the metal complexes good candidates as anticancer drugs, as guanine quadruplexes have been proposed as potential targets in anticancer drug design. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Guanine-derived radicals: dielectric constant-dependent stability and UV/Vis spectral properties: a DFT study.

    PubMed

    Naumov, Sergej; von Sonntag, Clemens

    2008-03-01

    Upon successive deprotonation of the guanine radical cation, various neutral radicals and radical anions can be formed. Their relative stability and UV/Vis absorption spectra have been calculated by DFT in the vacuum and in aqueous solution. Good agreement with experimental data is obtained when solvent effects are taken into account. The experimental observation that in the nucleosides deprotonation of the guanine radical cation occurs at N1 (formation of N1G(*)) in water and at N2 (formation of N2G(*)) in single crystals is now explained by a strong effect of the dielectric constant of the environment on their stability. While SCRF=PCM and CPCM (Gaussian 03) describe the trend, SCRF=DPCM (Gaussian 98) even shows the crossover from N2G(*) to N1G(*) at high dielectric constant. A crossover of the preferred deprotonation site is also given by the nucleoside itself. While for the gas phase a deprotonation at N2 is calculated to be favored over that at N1, the reverse is found for an aqueous environment (in agreement with the experiment). The radical anions of guanine, N9N1G(*)(-) and N9N2G(*)(-), are very similar in energy, but a comparison of the experimental and calculated UV/Vis spectra allows us to identify the experimentally observed intermediate clearly as N9N1G(*)(-).

  16. Evidence for the involvement of cytosolic 5'-nucleotidase (cN-II) in the synthesis of guanine nucleotides from xanthosine.

    PubMed

    Barsotti, Catia; Pesi, Rossana; Giannecchini, Michela; Ipata, Piero L

    2005-04-08

    In this paper, we show that in vitro xanthosine does not enter any of the pathways known to salvage the other three main natural purine nucleosides: guanosine; inosine; and adenosine. In rat brain extracts and in intact LoVo cells, xanthosine is salvaged to XMP via the phosphotransferase activity of cytosolic 5'-nucleotidase. IMP is the preferred phosphate donor (IMP + xanthosine --> XMP + inosine). XMP is not further phosphorylated. However, in the presence of glutamine, it is readily converted to guanyl compounds. Thus, phosphorylation of xanthosine by cytosolic 5'-nucleotidase circumvents the activity of IMP dehydrogenase, a rate-limiting enzyme, catalyzing the NAD(+)-dependent conversion of IMP to XMP at the branch point of de novo nucleotide synthesis, thus leading to the generation of guanine nucleotides. Mycophenolic acid, an inhibitor of IMP dehydrogenase, inhibits the guanyl compound synthesis via the IMP dehydrogenase pathway but has no effect on the cytosolic 5'-nucleotidase pathway of guanine nucleotides synthesis. We propose that the latter pathway might contribute to the reversal of the in vitro antiproliferative effect exerted by IMP dehydrogenase inhibitors routinely seen with repletion of the guanine nucleotide pools.

  17. Sensitive Immunoassay of a Biomarker Tumor Necrosis Factor-[alpha] Based on Poly(guanine)-Functionalized Silica Nanoparticle Label

    SciTech Connect

    Wang, Jun; Liu, Guodong; Engelhard, Mark H.

    2006-10-01

    A novel electrochemical immunosensor for the detection of tumor necrosis factor-alpha (TNF-a) based on poly(guanine)-functionalized silica nanoparticles (NPs) label is presented. The detection of mouse TNF-a via immunological reaction is based on a dual amplification: 1) a large amount of guanine residues is introduced on the electrode surface through the silica nanoparticle and immunoreaction, 2) mediator-induced catalytic oxidation of guanine, which results in great enhancement of anodic current. The synthesized silica NP conjugates were characterized with atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemistry. These experiments confirmed that poly[G] and avidin were immobilized on the surface of silica NPs. Themore » performance of the electrochemical immunosensor was evaluated and some experiment parameters (e.g., concentration of Ru(bpy)32+, incubation time of TNF-a, etc.) were optimized. The detection of limit for TNF-a is found to be 5.0x10-11 g mL-1 (2.0 pM), which corresponds to 60 attomoles TNF-a in 30 uL. This immunosensor based on the poly[G] functionalized silica NP label offers great promise for rapid, simple, cost-effective analysis of biological samples.« less

  18. Increased activity of rat liver N2-guanine tRNA methyltransferase II in response to liver damage.

    PubMed

    Wainfan, E; Dizik, M; Balis, M E

    1984-06-29

    Alterations in rat liver transfer RNA (tRNA) methyltransferase activities have been observed after liver damage by various chemicals or by partial hepatectomy. The qualitative and quantitative nature of these activity changes and the time course for their induction have been studied. Since homologous tRNAs are essentially fully modified in vivo, E. coli tRNAs were used as in vitro substrates for the rat liver enzymes in these studies. Each of the liver-damaging agents tested rapidly caused increases in activities of the enzyme(s) catalyzing methyl group transfer to tRNAs that have an unmodified guanine at position 26 from the 5' end of the molecule. This group of tRNAs includes E. coli tRNANfmet, tRNAAla1, tRNALeu1, or Leu2, and tRNASer3 (Group 1). In each case N2-methylguanine and N2,N2-dimethylguanine represented 90% or more of the products of these in vitro methylations. The product and substrate specificity observed are characteristic of N2-guanine methyltransferase II (S-adenosyl-L-methionine : tRNA (guanine-2)-methyltransferase, EC 2.1.1.32). In crude and partially purified preparations derived from livers of both control and treated animals this enzyme activity was not diminished significantly by exposure to 50 degrees C for min. The same liver-damaging agents induced little or no change in the activities of enzymes that catalyze methyl group transfer to various other E. coli tRNAs that do not have guanine at position 26 (Group 2). The results of mixing experiments appear to rule out the likelihood that the observed enzyme activity changes are due to stimulatory or inhibitory materials present in the enzyme preparations from control or treated animals. Thus, our experiments indicate that liver damage by each of several different methods, including surgery or administration of chemicals that are strong carcinogens, hepatotoxins, or cancer-promoting substances, all produce changes in liver tRNA methyltransferase activity that represent a selective increase in

  19. De Novo Guanine Biosynthesis but Not the Riboswitch-Regulated Purine Salvage Pathway Is Required for Staphylococcus aureus Infection In Vivo

    PubMed Central

    Yan, Donghong; Katakam, Anand K.; Reichelt, Mike; Lin, Baiwei; Kim, Janice; Park, Summer; Date, Shailesh V.; Monk, Ian R.; Xu, Min; Austin, Cary D.; Maurer, Till

    2016-01-01

    ABSTRACT De novo guanine biosynthesis is an evolutionarily conserved pathway that creates sufficient nucleotides to support DNA replication, transcription, and translation. Bacteria can also salvage nutrients from the environment to supplement the de novo pathway, but the relative importance of either pathway during Staphylococcus aureus infection is not known. In S. aureus, genes important for both de novo and salvage pathways are regulated by a guanine riboswitch. Bacterial riboswitches have attracted attention as a novel class of antibacterial drug targets because they have high affinity for small molecules, are absent in humans, and regulate the expression of multiple genes, including those essential for cell viability. Genetic and biophysical methods confirm the existence of a bona fide guanine riboswitch upstream of an operon encoding xanthine phosphoribosyltransferase (xpt), xanthine permease (pbuX), inosine-5′-monophosphate dehydrogenase (guaB), and GMP synthetase (guaA) that represses the expression of these genes in response to guanine. We found that S. aureus guaB and guaA are also transcribed independently of riboswitch control by alternative promoter elements. Deletion of xpt-pbuX-guaB-guaA genes resulted in guanine auxotrophy, failure to grow in human serum, profound abnormalities in cell morphology, and avirulence in mouse infection models, whereas deletion of the purine salvage genes xpt-pbuX had none of these effects. Disruption of guaB or guaA recapitulates the xpt-pbuX-guaB-guaA deletion in vivo. In total, the data demonstrate that targeting the guanine riboswitch alone is insufficient to treat S. aureus infections but that inhibition of guaA or guaB could have therapeutic utility. IMPORTANCE De novo guanine biosynthesis and purine salvage genes were reported to be regulated by a guanine riboswitch in Staphylococcus aureus. We demonstrate here that this is not true, because alternative promoter elements that uncouple the de novo pathway from

  20. Orbital based electronic structural signatures of the guanine keto G-7H/G-9H tautomer pair as studied using dual space analysis.

    PubMed

    Jones, D B; Wang, F; Winkler, D A; Brunger, M J

    2006-05-20

    Electronic structural signatures of the guanine-7H and guanine-9H tautomers have been investigated on an orbital by orbital basis using dual space analysis. A combination of density functional theory (B3LYP/TZVP), the statistical average of model orbital potentials (SAOP/TZ2P) method and outer valence Green's function theory (OVGF/TZVP) has been used to generate optimal tautomer geometries and accurate ionization energy spectra for the guanine tautomer pair. The present work found that the non-planar form for both of the guanine keto pair possesses lower energies than their corresponding planar counterparts, and that the canonical form of the guanine-7H tautomer has slightly lower total energy than guanine-9H. This latter result is in agreement with previous experimental and theoretical findings. In the planar guanine pair the geometric parameters and anisotropic molecular properties are compared, focusing on changes caused by the mobile proton transfer. It is demonstrated that the mobile proton only causes limited disturbance to isotropic properties, such as geometry and the energetics, of the guanine keto tautomer pair. The exception to this general statement is for related local changes such as the N((7))-C((8)) and C((8))-N((9)) bond length resonance between the single and double bonds, reflecting the nitrogen atom being bonded with the mobile proton in the tautomers. The mobile proton distorts the electron distribution of the tautomers, which leads to significant changes in the molecular anisotropic properties. The dipole moment of guanine-7H is altered by about a factor of three, from 2.23 to 7.05 D (guanine-9H), and the molecular electrostatic potentials also reflect significant electron charge distortion. The outer valence orbital momentum distributions, which were obtained using the plane wave impulse approximation (PWIA), have demonstrated quantitatively that the outer valence orbitals of the tautomer pair can be divided into three groups. That is

  1. Guanine nucleotide induced conformational change of Cdc42 revealed by hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Yang, Sheng-Wei; Ting, Hsiu-Chi; Lo, Yi-Ting; Wu, Ting-Yuan; Huang, Hung-Wei; Yang, Chia-Jung; Chan, Jui-Fen Riva; Chuang, Min-Chieh; Hsu, Yuan-Hao Howard

    2016-01-01

    Cdc42 regulates pathways related to cell division. Dysregulation of Cdc42 can lead to cancer, cardiovascular diseases and neurodegenerative diseases. GTP induced activation mechanism plays an important role in the activity and biological functions of Cdc42. P-loop, Switch I and Switch II are critical regions modulating the enzymatic activity of Cdc42. We applied amide hydrogen/deuterium exchange coupled with liquid chromatography mass spectrometry (HDXMS) to investigate the dynamic changes of apo-Cdc42 after GDP, GTP and GMP-PCP binding. The natural substrate GTP induced significant decreases of deuteration in P-loop and Switch II, moderate changes of deuteration in Switch I and significant changes of deuteration in the α7 helix, a region far away from the active site. GTP binding induced similar effects on H/D exchange to its non-hydrolysable analog, GMP-PCP. HDXMS results indicate that GTP binding blocked the solvent accessibility in the active site leading to the decrease of H/D exchange rate surrounding the active site, and further triggered a conformational change resulting in the drastic decrease of H/D exchange rate at the remote α7 helix. Comparing the deuteration levels in three activation states of apo-Cdc42, Cdc42-GDP and Cdc42-GMP-PCP, the apo-Cdc42 has the most flexible structure, which can be stabilized by guanine nucleotide binding. The rates of H/D exchange of Cdc42-GDP are between the GMP-PCP-bound and the apo form, but more closely to the GMP-PCP-bound form. Our results show that the activation of Cdc42 is a process of conformational changes involved with P-loop, Switch II and α7 helix for structural stabilization. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Evolution of complete proteomes: guanine-cytosine pressure, phylogeny and environmental influences blend the proteomic architecture

    PubMed Central

    2013-01-01

    Background Guanine-cytosine (GC) composition is an important feature of genomes. Likewise, amino acid composition is a distinct, but less valued, feature of proteomes. A major concern is that it is not clear what valuable information can be acquired from amino acid composition data. To address this concern, in-depth analyses of the amino acid composition of the complete proteomes from 63 archaea, 270 bacteria, and 128 eukaryotes were performed. Results Principal component analysis of the amino acid matrices showed that the main contributors to proteomic architecture were genomic GC variation, phylogeny, and environmental influences. GC pressure drove positive selection on Ala, Arg, Gly, Pro, Trp, and Val, and adverse selection on Asn, Lys, Ile, Phe, and Tyr. The physico-chemical framework of the complete proteomes withstood GC pressure by frequency complementation of GC-dependent amino acid pairs with similar physico-chemical properties. Gln, His, Ser, and Val were responsible for phylogeny and their constituted components could differentiate archaea, bacteria, and eukaryotes. Environmental niche was also a significant factor in determining proteomic architecture, especially for archaea for which the main amino acids were Cys, Leu, and Thr. In archaea, hyperthermophiles, acidophiles, mesophiles, psychrophiles, and halophiles gathered successively along the environment-based principal component. Concordance between proteomic architecture and the genetic code was also related closely to genomic GC content, phylogeny, and lifestyles. Conclusions Large-scale analyses of the complete proteomes of a wide range of organisms suggested that amino acid composition retained the trace of GC variation, phylogeny, and environmental influences during evolution. The findings from this study will help in the development of a global understanding of proteome evolution, and even biological evolution. PMID:24088322

  3. Activator of G protein signaling 3 is a guanine dissociation inhibitor for Gαi subunits

    PubMed Central

    De Vries, Luc; Fischer, Thierry; Tronchère, Hélène; Brothers, Greg M.; Strockbine, Bentley; Siderovski, David P.; Farquhar, Marilyn Gist

    2000-01-01

    Activator of G protein signaling 3 (AGS3) is a newly identified protein shown to act at the level of the G protein itself. AGS3 belongs to the GoLoco family of proteins, sharing the 19-aa GoLoco motif that is a Gαi/o binding motif. AGS3 interacts only with members of the Gαi/o subfamily. By surface plasmon resonance, we found that AGS3 binds exclusively to the GDP-bound form of Gαi3. In GTPγS binding assays, AGS3 behaves as a guanine dissociation inhibitor (GDI), inhibiting the rate of exchange of GDP for GTP by Gαi3. AGS3 interacts with both Gαi3 and Gαo subunits, but has GDI activity only on Gαi3, not on Gαo. The fourth GoLoco motif of AGS3 is a major contributor to this activity. AGS3 stabilizes Gαi3 in its GDP-bound form, as it inhibits the increase in tryptophan fluorescence of the Gαi3-GDP subunit stimulated by AlF4−. AGS3 is widely expressed as it is detected by immunoblotting in brain, testis, liver, kidney, heart, pancreas, and in PC-12 cells. Several different sizes of the protein are detected. By Northern blotting, AGS3 shows 2.3-kb and 3.5-kb mRNAs in heart and brain, respectively, suggesting tissue-specific alternative splicing. Taken together, our results demonstrate that AGS3 is a GDI. To the best of our knowledge, no other GDI has been described for heterotrimeric G proteins. Inhibition of the Gα subunit and stimulation of heterotrimeric G protein signaling, presumably by stimulating Gβγ, extend the possibilities for modulating signal transduction through heterotrimeric G proteins. PMID:11121039

  4. Guanine-Centric Self-Assembly of Nucleotides in Water: An Important Consideration in Prebiotic Chemistry

    PubMed Central

    Cassidy, Lauren M.; Burcar, Bradley T.; Stevens, Wyatt; Moriarty, Elizabeth M.

    2014-01-01

    Abstract Investigations of plausible prebiotic chemistry on early Earth must consider not only chemical reactions to form more complex products such as proto-biopolymers but also reversible, molecular self-assembly that would influence the availability, organization, and sequestration of reactant molecules. The self-assembly of guanosine compounds into higher-order structures and lyotropic liquid crystalline “gel” phases through formation of hydrogen-bonded guanine tetrads (G-tetrads) is one such consideration that is particularly relevant to an RNA-world scenario. G-tetrad-based gelation has been well studied for individual guanosine compounds and was recently observed in mixtures of guanosine with 5′-guanosine monophosphate (GMP) as well. The present work investigates the self-assembly of GMP in the presence of the other RNA nucleotides. Effects of the total concentration and relative proportion of the nucleotides in the mixtures, the form (disodium salt vs. free acid) of the nucleotides, temperature, pH, and salt concentration were determined by visual observations and circular dichroism (CD) spectroscopy. The results show that formation of cholesteric G-tetrad phases is influenced by interactions with other nucleotides, likely through association (e.g., intercalation) of the nucleotides with the G-tetrad structures. These interactions affect the structure and stability of the G-tetrad gel phase, as well as the formation of alternate self-assembled GMP structures such as a continuous, hydrogen-bonded GMP helix or dimers and aggregates of GMP. These interactions and multiple equilibria are influenced by the presence of cations, especially in the presence of K+. This work could have important implications for the emergence of an RNA or proto-RNA world, which would require mixtures of nucleotides at sufficiently high, local concentrations for abiotic polymerization to occur. Key Words: RNA world—Prebiotic chemistry—RNA polymerization

  5. Spiroiminodihydantoin lesions derived from guanine oxidation: structures, energetics, and functional implications.

    PubMed

    Jia, Lei; Shafirovich, Vladimir; Shapiro, Robert; Geacintov, Nicholas E; Broyde, Suse

    2005-04-26

    Reactive oxygen species present in the cell generate DNA damage. One of the major oxidation products of guanine in DNA, 8-oxo-7,8-dihydroguanine, formed by loss of two electrons, is among the most extensively studied base lesions. The further removal of two electrons from this product can yield spiroiminodihydantoin (Sp) R and S stereoisomers. Both in vitro and in vivo experiments have shown that the Sp stereoisomers are highly mutagenic, causing G --> T and G --> C transversions. Hence, they are of interest as examples of endogenous DNA damage that may initiate cancer. To interpret the mutagenic properties of the Sp lesions, an understanding of their structural properties is needed. To elucidate these structural effects, we have carried out computational investigations at the level of the Sp-modified base and nucleoside. At the base level, quantum mechanical geometry optimization studies have revealed exact mirror image symmetry of the R and S stereoisomers, with a near-perpendicular geometry of the two rings. At the nucleoside level, an extensive survey of the potential energy surface by molecular mechanics calculations using AMBER has provided three-dimensional potential energy maps. These maps reveal that the range and flexibility of the glycosidic torsion angles are significantly more restricted in both stereoisomeric adducts than in unmodified 2'-deoxyguanosine. The structural and energetic results suggest that the unusual geometric, steric, and hydrogen bonding properties of these lesions underlie their mutagenicity. In addition, stereoisomer-specific differences indicate the possibility that their processing by cellular replication and repair enzymes may be differentially affected by their absolute configuration.

  6. Elimination and Utilization of Oxidized Guanine Nucleotides in the Synthesis of RNA and Its Precursors*

    PubMed Central

    Sekiguchi, Takeshi; Ito, Riyoko; Hayakawa, Hiroshi; Sekiguchi, Mutsuo

    2013-01-01

    Reactive oxygen species are produced as side products of oxygen utilization and can lead to the oxidation of nucleic acids and their precursor nucleotides. Among the various oxidized bases, 8-oxo-7,8-dihydroguanine seems to be the most critical during the transfer of genetic information because it can pair with both cytosine and adenine. During the de novo synthesis of guanine nucleotides, GMP is formed first, and it is converted to GDP by guanylate kinase. This enzyme hardly acts on an oxidized form of GMP (8-oxo-GMP) formed by the oxidation of GMP or by the cleavage of 8-oxo-GDP and 8-oxo-GTP by MutT protein. Although the formation of 8-oxo-GDP from 8-oxo-GMP is thus prevented, 8-oxo-GDP itself may be produced by the oxidation of GDP by reactive oxygen species. The 8-oxo-GDP thus formed can be converted to 8-oxo-GTP because nucleoside-diphosphate kinase and adenylate kinase, both of which catalyze the conversion of GDP to GTP, do not discriminate 8-oxo-GDP from normal GDP. The 8-oxo-GTP produced in this way and by the oxidation of GTP can be used for RNA synthesis. This misincorporation is prevented by MutT protein, which has the potential to cleave 8-oxo-GTP as well as 8-oxo-GDP to 8-oxo-GMP. When 14C-labeled 8-oxo-GTP was applied to CaCl2-permeabilized cells of a mutT− mutant strain, it could be incorporated into RNA at 4% of the rate for GTP. Escherichia coli cells appear to possess mechanisms to prevent misincorporation of 8-oxo-7,8-dihydroguanine into RNA. PMID:23376345

  7. Activation of transfer RNA-guanine ribosyltransferase by protein kinase C.

    PubMed Central

    Morris, R C; Brooks, B J; Eriotou, P; Kelly, D F; Sagar, S; Hart, K L; Elliott, M S

    1995-01-01

    Transfer RNA-guanine ribosyltransferase (TGRase) irreversibly incorporates queuine into the first position in the anticodon of four tRNA isoacceptors. Rat brain protein kinase C (PKC) was shown to stimulate rat liver TGRase activity. TGRase preparations derived from rat liver have been observed to decrease in activity over time in storage at -20 or -70 degrees C. Contamination of the samples by phosphatases was indicated by a p-nitrophenylphosphate conversion test. The addition of micromolar concentrations of the phosphatase inhibitors sodium pyrophosphate and sodium fluoride into TGRase isolation buffers resulted in a greater return of TGRase activity than without these inhibitors. Inactive TGRase preparations were reactivated to their original activity with the addition of PKC. In assays combining both TGRase and PKC enzymes, inhibitors of protein kinase C (sphingosine, staurosporine, H-7 and calphostin C) all blocked the reactivation of TGRase, whereas activators of protein kinase C (calcium, diacylglycerol and phosphatidyl serine) increased the activity of TGRase. None of the PKC modulators affected TGRase activity directly. Alkaline phosphatase, when added to assays, decreased the activity of TGRase and also blocked the reactivation of TGRase with PKC. Denaturing PAGE and autoradiography was performed on TGRase isolates that had been labelled with 32P by PKC. The resulting strong 60 kDa band (containing the major site for phosphorylation) and weak 34.5 kDa band (containing the TGRase activity) are suggested to associate to make up a 104 kDa heterodimer that comprises the TGRase enzyme. This was corroberated by native and denaturing size-exclusion chromatography. These results suggest that PKC-dependent phosphorylation of TGRase is tied to efficient enzymatic function and therefore control of the queuine modification of tRNA. Images PMID:7630727

  8. Guanine nucleotide-binding protein regulation of melatonin receptors in lizard brain

    SciTech Connect

    Rivkees, S.A.; Carlson, L.L.; Reppert, S.M.

    1989-05-01

    Melatonin receptors were identified and characterized in crude membrane preparations from lizard brain by using {sup 125}I-labeled melatonin ({sup 125}I-Mel), a potent melatonin agonist. {sup 125}I-Mel binding sites were saturable; Scatchard analysis revealed high-affinity and lower affinity binding sites, with apparent K{sub d} of 2.3 {plus minus} 1.0 {times} 10{sup {minus}11} M and 2.06 {plus minus} 0.43 {times} 10{sup {minus}10} M, respectively. Binding was reversible and inhibited by melatonin and closely related analogs but not by serotonin or norepinephrine. Treatment of crude membranes with the nonhydrolyzable GTP analog guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)), significantly reduced the number of high-affinity receptors and increasedmore » the dissociation rate of {sup 125}I-Mel from its receptor. Furthermore, GTP({gamma}S) treatment of ligand-receptor complexes solubilized by Triton X-100 also led to a rapid dissociation of {sup 125}I-Mel from solubilized ligand-receptor complexes. Gel filtration chromatography of solubilized ligand-receptor complexes revealed two major peaks of radioactivity corresponding to M{sub r} > 400,000 and M{sub r} ca. 110,000. This elution profile was markedly altered by pretreatment with GTP({gamma}S) before solubilization; only the M{sub r} 110,000 peak was present in GTP({gamma}S)-pretreated membranes. The results strongly suggest that {sup 125}I-mel binding sites in lizard brain are melatonin receptors, with agonist-promoted guanine nucleotide-binding protein (G protein) coupling and that the apparent molecular size of receptors uncoupled from G proteins is about 110,000.« less

  9. Deciphering the photochemical mechanisms describing the UV-induced processes occurring in solvated guanine monophosphate

    NASA Astrophysics Data System (ADS)

    Altavilla, Salvatore; Segarra-Martí, Javier; Nenov, Artur; Conti, Irene; Rivalta, Ivan; Garavelli, Marco

    2015-04-01

    The photophysics and photochemistry of water-solvated guanine monophosphate (GMP) are here characterized by means of a multireference quantum-chemical/molecular mechanics theoretical approach (CASPT2//CASSCF/AMBER) in order to elucidate the main photo-processes occurring upon UV-light irradiation. The effect of the solvent and of the phosphate group on the energetics and structural features of this system are evaluated for the first time employing high-level ab initio methods and thoroughly compared to those in vacuo previously reported in the literature and to the experimental evidence to assess to which extent they influence the photoinduced mechanisms. Solvated electronic excitation energies of solvated GMP at the Franck-Condon (FC) region show a red shift for the ππ* La and Lb states, whereas the energy of the oxygen lone-pair nπ* state is blue-shifted. The main photoinduced decay route is promoted through a ring-puckering motion along the bright lowest-lying La state towards a conical intersection (CI) with the ground state, involving a very shallow stationary point along the minimum energy pathway in contrast to the barrierless profile found in gas-phase, the point being placed at the end of the minimum energy path (MEP) thus endorsing its ultrafast deactivation in accordance with time-resolved transient and photoelectron spectroscopy experiments. The role of the nπ* state in the solvated system is severely diminished as the crossings with the initially populated La state and also with the Lb state are placed too high energetically to partake prominently in the deactivation photo-process. The proposed mechanism present in solvated and in vacuo DNA/RNA chromophores validates the intrinsic photostability mechanism through CI-mediated non-radiative processes accompanying the bright excited-state population towards the ground state and subsequent relaxation back to the FC region.

  10. Pre-thymic somatic mutation leads to high mutant frequency at hypoxanthine-guanine phosphoribosyltransferase gene

    SciTech Connect

    Jett, J.

    1994-12-01

    While characterizing the background mutation spectrum of the Hypoxathine-guanine phosphoribosyltransferase (HPRT) gene in a healthy population, an outlier with a high mutant frequency of thioguanine resistant lymphocytes was found. When studied at the age of 46, this individual had been smoking 60 cigarettes per day for 38 years. His mutant frequency was calculated at 3.6 and 4.2x10{sup {minus}4} for two sampling periods eight months apart. Sequencing analysis of the HPRT gene in his mutant thioguanine resistant T lymphocytes was done to find whether the cells had a high rate of mutation, or if the mutation was due to a singlemore » occurrence of mutation and, if so, when in the T lymphocyte development the mutation occurred. By T-cell receptor analysis it has been found that out of 35 thioguanine resistant clones there was no dominant gamma T cell receptor gene rearrangement. During my appointment in the Science & Engineering Research Semester, I found that 34 of those clones have the same base substitution of G{yields}T at cDNA position 197. Due to the consistent mutant frequency from both sampling periods and the varying T cell receptors, the high mutant frequency cannot be due to recent proliferation of a mature mutant T lymphocyte. From the TCR and DNA sequence analysis we conclude that the G{yields}T mutation must have occurred in a T lymphocyte precursor before thymic differentiation so that the thioguanine resistant clones share the same base substitution but not the same gamma T cell receptor gene.« less

  11. Guanine-centric self-assembly of nucleotides in water: an important consideration in prebiotic chemistry.

    PubMed

    Cassidy, Lauren M; Burcar, Bradley T; Stevens, Wyatt; Moriarty, Elizabeth M; McGown, Linda B

    2014-10-01

    Investigations of plausible prebiotic chemistry on early Earth must consider not only chemical reactions to form more complex products such as proto-biopolymers but also reversible, molecular self-assembly that would influence the availability, organization, and sequestration of reactant molecules. The self-assembly of guanosine compounds into higher-order structures and lyotropic liquid crystalline "gel" phases through formation of hydrogen-bonded guanine tetrads (G-tetrads) is one such consideration that is particularly relevant to an RNA-world scenario. G-tetrad-based gelation has been well studied for individual guanosine compounds and was recently observed in mixtures of guanosine with 5'-guanosine monophosphate (GMP) as well. The present work investigates the self-assembly of GMP in the presence of the other RNA nucleotides. Effects of the total concentration and relative proportion of the nucleotides in the mixtures, the form (disodium salt vs. free acid) of the nucleotides, temperature, pH, and salt concentration were determined by visual observations and circular dichroism (CD) spectroscopy. The results show that formation of cholesteric G-tetrad phases is influenced by interactions with other nucleotides, likely through association (e.g., intercalation) of the nucleotides with the G-tetrad structures. These interactions affect the structure and stability of the G-tetrad gel phase, as well as the formation of alternate self-assembled GMP structures such as a continuous, hydrogen-bonded GMP helix or dimers and aggregates of GMP. These interactions and multiple equilibria are influenced by the presence of cations, especially in the presence of K(+). This work could have important implications for the emergence of an RNA or proto-RNA world, which would require mixtures of nucleotides at sufficiently high, local concentrations for abiotic polymerization to occur.

  12. Vacuum-ultraviolet photoionization studies of the microhydration of DNA bases (guanine, cytosine, adenine, and thymine).

    PubMed

    Belau, Leonid; Wilson, Kevin R; Leone, Stephen R; Ahmed, Musahid

    2007-08-09

    In this work, we report on a photoionization study of the microhydration of the four DNA bases. Gas-phase clusters of water with DNA bases [guanine (G), cytosine (C), adenine (A), and thymine (T)] are generated via thermal vaporization of the bases and expansion of the resultant vapor in a continuous supersonic jet expansion of water seeded in Ar. The resulting clusters are investigated by single-photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for the DNA bases and the following water (W) clusters: G, GWn (n = 1-3); C, CWn (n = 1-3); A, AWn (n = 1,2); and T, TWn (n = 1-3). Appearance energies (AE) are derived from the onset of these PIE curves (all energies in eV): G (8.1 +/- 0.1), GW (8.0 +/- 0.1), GW2 (8.0 +/- 0.1), and GW3 (8.0); C (8.65 +/- 0.05), CW (8.45 +/- 0.05), CW2 (8.4 +/- 0.1), and CW3 (8.3 +/- 0.1); A (8.30 +/- 0.05), AW (8.20 +/- 0.05), and AW2 (8.1 +/- 0.1); T (8.90 +/- 0.05); and TW (8.75 +/- 0.05), TW2 (8.6 +/- 0.1), and TW3 (8.6 +/- 0.1). The AEs of the DNA bases decrease slightly with the addition of water molecules (up to three) but do not converge to values found for photoinduced electron removal from DNA bases in solution.

  13. Effect of 9-(2-Hydroxyethoxymethyl)guanine on Herpesvirus-Induced Keratitis and Iritis in Rabbits

    PubMed Central

    Kaufman, Herbert E.; Varnell, Emily D.; Centifanto, Ysolina M.; Rheinstrom, Stephen D.

    1978-01-01

    Drugs used for the inhibition of DNA viruses, such as iododeoxyuridine, adenine arabinoside, or trifluorothymidine, are not biochemically selective in their action and also interfere with normal cellular functions. The recently reported 9-(2-hydroxyethoxymethyl)guanine (acycloguanosine) is selectively phosphorylated by viral thymidine kinase but not by normal cellular thymidine kinase. Our present studies show that the acycloguanosine is as effective in treating herpetic keratitis in the rabbit as iododeoxyuridine and trifluorothymidine when given topically as an ointment. It is also effective when given intravenously for the treatment of herpetic iritis and is effective in preventing death from encephalitis in rabbits. PMID:217301

  14. A compositional segmentation of the human mitochondrial genome is related to heterogeneities in the guanine mutation rate

    PubMed Central

    Samuels, David C.; Boys, Richard J.; Henderson, Daniel A.; Chinnery, Patrick F.

    2003-01-01

    We applied a hidden Markov model segmentation method to the human mitochondrial genome to identify patterns in the sequence, to compare these patterns to the gene structure of mtDNA and to see whether these patterns reveal additional characteristics important for our understanding of genome evolution, structure and function. Our analysis identified three segmentation categories based upon the sequence transition probabilities. Category 2 segments corresponded to the tRNA and rRNA genes, with a greater strand-symmetry in these segments. Category 1 and 3 segments covered the protein- coding genes and almost all of the non-coding D-loop. Compared to category 1, the mtDNA segments assigned to category 3 had much lower guanine abundance. A comparison to two independent databases of mitochondrial mutations and polymorphisms showed that the high substitution rate of guanine in human mtDNA is largest in the category 3 segments. Analysis of synonymous mutations showed the same pattern. This suggests that this heterogeneity in the mutation rate is partly independent of respiratory chain function and is a direct property of the genome sequence itself. This has important implications for our understanding of mtDNA evolution and its use as a ‘molecular clock’ to determine the rate of population and species divergence. PMID:14530452

  15. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization.

    PubMed

    Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E; Ding, Zhong-Tao

    2015-02-25

    In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Nature of guanine oxidation in RNA via the flash-quench technique versus direct oxidation by a metal oxo complex.

    PubMed

    Holcomb, Dana R; Ropp, Patricia A; Theil, Elizabeth C; Thorp, H Holden

    2010-02-01

    Oxidation of RNA can be effected by two different techniques: a photochemical, electron-transfer method termed "flash-quench" and direct oxidation by metal oxo complexes. The flash-quench method produces selective oxidation using a metal photosensitizer, tris(bipyridyl)ruthenium(III) trichloride (Ru(bpy)(3)(3+)), and quencher, pentaamminechlorocobalt(III) chloride (Co(NH(3))(5)Cl(2+)). We have optimized the flash-quench technique for the following RNAs: tRNA(Phe), human ferritin iron-responsive element (IRE), and a mutated human ferritin IRE. We have also employed a chemical footprinting technique involving the oxoruthenium(IV) complex (Ru(tpy)(bpy)O(2+) (tpy = 2,2',2''-terpyridine; bpy = 2,2'-bipyridine)) to oxidize guanine. Comparison of the two methods shows that the flash-quench technique provides a visualization of nucleotide accessibility for a static conformation of RNA while the Ru(tpy)(bpy)O(2+) complex selectively oxidizes labile guanines and gives a visualization of a composite of multiple conformations of the RNA structure.

  17. Effect of guanine to inosine substitution on stability of canonical DNA and RNA duplexes: molecular dynamics thermodynamics integration study.

    PubMed

    Krepl, Miroslav; Otyepka, Michal; Banáš, Pavel; Šponer, Jiří

    2013-02-14

    Guanine to inosine (G → I) substitution has often been used to study various properties of nucleic acids. Inosine differs from guanine only by loss of the N2 amino group, while both bases have similar electrostatic potentials. Therefore, G → I substitution appears to be optimally suited to probe structural and thermodynamics effects of single H-bonds and atomic groups. However, recent experiments have revealed substantial difference in free energy impact of G → I substitution in the context of B-DNA and A-RNA canonical helices, suggesting that the free energy changes reflect context-dependent balance of energy contributions rather than intrinsic strength of a single H-bond. In the present study, we complement the experiments by free energy computations using thermodynamics integration method based on extended explicit solvent molecular dynamics simulations. The computations successfully reproduce the basic qualitative difference in free energy impact of G → I substitution in B-DNA and A-RNA helices although the magnitude of the effect is somewhat underestimated. The computations, however, do not reproduce the salt dependence of the free energy changes. We tentatively suggest that the different effect of G → I substitution in A-RNA and B-DNA may be related to different topologies of these helices, which affect the electrostatic interactions between the base pairs and the negatively charged backbone. Limitations of the computations are briefly discussed.

  18. Constructing a novel 8-hydroxy-2'-deoxyguanosine electrochemical sensor and application in evaluating the oxidative damages of DNA and guanine.

    PubMed

    Guo, Zhipan; Liu, Xiuhui; Liu, Yuelin; Wu, Guofan; Lu, Xiaoquan

    2016-12-15

    8-Hydroxy-2'-deoxyguanosine (8-OHdG) is commonly identified as a biomarker of oxidative DNA damage. In this work, a novel and facile 8-OHdG sensor was developed based on the multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE). It exhibited good electrochemical responses toward the oxidation of 8-OHdG, and the linear ranges were 5.63×10(-8)-6.08×10(-6)M and 6.08×10(-6)-1.64×10(-5)M, with the detection limit of 1.88×10(-8)M (S/N=3). Moreover, the fabricated sensor was applied for the determination of 8-OHdG generated from damaged DNA and guanine, respectively, and the oxidation currents of 8-OHdG increased along with the damaged DNA and guanine within certain concentrations. These results could be used to evaluate the DNA damage, and provide useful information on diagnosing diseases caused by mutation and deficiency of the immunity system. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The excited electronic states of adenine-guanine stacked dimers in aqueous solution: a PCM/TD-DFT study.

    PubMed

    Santoro, Fabrizio; Barone, Vincenzo; Lami, Alessandro; Improta, Roberto

    2010-05-21

    The excited-state behavior in the Franck-Condon (FC) region of the d(ApG) and d(GpA) dinucleoside monophosphate (A = adenine, G = guanine) is investigated in aqueous solution by means of time-dependent Density Functional Calculations, including solvent effects by the Polarizable Continuum Model and using three different functionals, i.e. PBE0, M052X, and CAM-B3LYP. Our analysis, focussed mainly on the two stacked dimers formed by 9-methyl-adenine and 9-methyl-guanine in the same arrangement as in the B structure of DNA (AG and GA), provides absorption and ECD spectra in very good agreement with their experimental counterparts. The sequence dependence of the dinucleoside excited-state properties is fully reproduced and it is explained on the grounds of the different interactions among the nucleobases' frontier orbitals existing in AG and GA. Our calculations predict that the 9Me-G --> 9Me-A charge transfer (CT) excited state is, at least, as stable as the lowest energy bright state of the dimers and that it is more stable than the intra-strand CT state in the (9Me-A)(2) stacked dimer. On the other hand, in AG and GA the 9Me-G --> 9Me-A CT state is significantly coupled to the dimer bright excited states and deviations from the decay rate predicted on the ground of the Marcus Theory are possible.

  20. Enzymatic synthesis of guanine nucleotides labeled with 15N at the 2-amino group of the purine ring.

    PubMed

    Bouhss, A; Sakamoto, H; Palibroda, N; Chiriac, M; Sarfati, R; Smith, J M; Craescu, C T; Bârzu, O

    1995-02-10

    GMP and dGMP labeled with 15N at the 2-amino group of the purine ring was obtained enzymatically from NH4Cl (> 99 at.% 15N) and from IMP or dIMP, respectively, by several reactions involving IMP-dehydrogenase, GMP-synthetase, adenylate kinase, and creatine kinase. The first three enzymes were obtained by overexpression in Escherichia coli of the corresponding genes. The isotope content of the primary amino group of guanine determined by mass spectrometry after acid hydrolysis of nucleotides was found higher than 98 at.% 15N. The proton NMR spectrum of [15N]GMP in solution in the absence of nitrogen decoupling showed a doublet with a coupling constant of 92 Hz. When nitrogen decoupling was used during the acquisition time, the doublet was replaced by a single peak at 6.47 ppm, indicating that the corresponding proton is bound to 15N.

  1. Spectroscopic (UV/VIS, Raman) and Electrophoresis Study of Cytosine-Guanine Oligonucleotide DNA Influenced by Magnetic Field.

    PubMed

    Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Boon Tong, Goh; Abdul Rahman, Saadah

    2016-01-01

    Studying the effect of a magnetic field on oligonucleotide DNA can provide a novel DNA manipulation technique for potential application in bioengineering and medicine. In this work, the optical and electrochemical response of a 100 bases oligonucleotides DNA, cytosine-guanine (CG100), is investigated via exposure to different magnetic fields (250, 500, 750, and 1000 mT). As a result of the optical response of CG100 to the magnetic field, the ultra-violet-visible spectrum indicated a slight variation in the band gap of CG100 of about 0.3 eV. Raman spectroscopy showed a significant deviation in hydrogen and phosphate bonds' vibration after exposure to the magnetic field. Oligonucleotide DNA mobility was investigated in the external electric field using the gel electrophoresis technique, which revealed a small decrease in the migration of CG100 after exposure to the magnetic field.

  2. Spectroscopic (UV/VIS, Raman) and Electrophoresis Study of Cytosine-Guanine Oligonucleotide DNA Influenced by Magnetic Field

    PubMed Central

    Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Boon Tong, Goh; Abdul Rahman, Saadah

    2016-01-01

    Studying the effect of a magnetic field on oligonucleotide DNA can provide a novel DNA manipulation technique for potential application in bioengineering and medicine. In this work, the optical and electrochemical response of a 100 bases oligonucleotides DNA, cytosine-guanine (CG100), is investigated via exposure to different magnetic fields (250, 500, 750, and 1000 mT). As a result of the optical response of CG100 to the magnetic field, the ultra-violet-visible spectrum indicated a slight variation in the band gap of CG100 of about 0.3 eV. Raman spectroscopy showed a significant deviation in hydrogen and phosphate bonds’ vibration after exposure to the magnetic field. Oligonucleotide DNA mobility was investigated in the external electric field using the gel electrophoresis technique, which revealed a small decrease in the migration of CG100 after exposure to the magnetic field. PMID:26999445

  3. Fingerprints of Both Watson-Crick and Hoogsteen Isomers of the Isolated (Cytosine-Guanine)H+ Pair.

    PubMed

    Cruz-Ortiz, Andrés F; Rossa, Maximiliano; Berthias, Francis; Berdakin, Matías; Maitre, Philippe; Pino, Gustavo A

    2017-11-16

     Gas phase protonated guanine-cytosine (CGH + ) pair was generated using an electrospray ionization source from solutions at two different pH (5.8 and 3.2). Consistent evidence from MS/MS fragmentation patterns and differential ion mobility spectra (DIMS) point toward the presence of two isomers of the CGH + pair, whose relative populations depend strongly on the pH of the solution. Gas phase infrared multiphoton dissociation (IRMPD) spectroscopy in the 900-1900 cm -1 spectral range further confirms that the Watson-Crick isomer is preferentially produced (91%) at pH = 5.8, while the Hoogsteen isomer predominates (66%) at pH = 3.2). These fingerprint signatures are expected to be useful for the development of new analytical methodologies and to trigger isomer selective photochemical studies of protonated DNA base pairs.

  4. Guanine to inosine substitution leads to large increases in the population of a transient G·C Hoogsteen base pair.

    PubMed

    Nikolova, Evgenia N; Stull, Frederick; Al-Hashimi, Hashim M

    2014-11-25

    We recently showed that Watson-Crick base pairs in canonical duplex DNA exist in dynamic equilibrium with G(syn)·C+ and A(syn)·T Hoogsteen base pairs that have minute populations of ∼1%. Here, using nuclear magnetic resonance R1ρ relaxation dispersion, we show that substitution of guanine with the naturally occurring base inosine results in an ∼17-fold increase in the population of transient Hoogsteen base pairs, which can be rationalized by the loss of a Watson-Crick hydrogen bond. These results provide further support for transient Hoogsteen base pairs and demonstrate that their population can increase significantly upon damage or chemical modification of the base.

  5. Excited state proton transfer is not involved in the ultrafast deactivation of Guanine-Cytosine pair in solution.

    PubMed

    Biemann, Lars; Kovalenko, Sergey A; Kleinermanns, Karl; Mahrwald, Rainer; Markert, Morris; Improta, Roberto

    2011-12-14

    Different derivatives of Guanine (G) and Cytosine (C), which sterically enforce the Watson-Crick (WC) conformer, have been studied in CHCl(3) by means of broad-band transient absorption spectroscopy. Our experiments rule out the involvement of an Excited State Proton Transfer (ESPT), which dominates the excited state decay of GC in the gas phase. Instead, the ultrafast dynamics via internal conversion occurs in a polar environment mainly by relaxation in the monomer moieties. Time-dependent density functional theory (TD-DFT) calculations in solution indeed indicate that population transfer from the bright excited states toward the charge transfer state is not effective in CHCl(3) and a noticeable energy barrier is associated with the ESPT reaction. ESPT is therefore not expected to be a main deactivation route for GC pairs within DNA. © 2011 American Chemical Society

  6. Angiotensin II vascular receptors in fowl aorta: binding specificity and modulation by divalent cations and guanine nucleotides.

    PubMed

    Stallone, J N; Nishimura, H; Khosla, M C

    1989-12-01

    In the domestic fowl, angiotensin (ANG) II causes a unique vasodepressor response in vivo and vascular relaxation of aortic rings in vitro that appear to be mediated by ANG II receptors. In initial studies using radioligand binding techniques, we identified specific vascular ANG II receptors in the fowl aorta. In the present study, we have characterized fowl vascular ANG II receptors in terms of binding specificity and their modulation by divalent cations and guanine nucleotide, to understand how the fowl receptor might differ from mammalian vascular ANG II receptors that mediate vasoconstriction. Competitive displacement of [125I] ANG II binding by ANG agonist and antagonist analogs revealed a unique pattern of receptor specificity, with the potency rank order: [Asn1, Val5]ANG II greater than [Asp1, Ile5]ANG II greater than [Asp1, Val5, Ser9] ANG I = [Asp1, Val5]ANG II much greater than [Val5]ANG III greater than [sarcosine(Sar)1, Ile5]ANG II greater than [Sar1, Ile8]ANG II much greater than [Sar1, Thr8]ANG II. Divalent cations (Ca++, Mg++ and Mn++) inhibited equilibrium radioligand binding by as much as 50% at 100 mM, with the potency order: Ca++ greater than Mn++ greater than Mg++. Mg++ and Mn++ stimulated binding very slightly (110%) at low doses (1-10 mM). The stable guanine nucleotide analog 5'-guanylyl imidodiphosphate inhibited equilibrium radioligand binding moderately (15% at 100 microM) in the presence of 10 mM MgCl2, but failed to alter the dissociation rate of receptor-bound ligand (half-time = 10.92 min). These results suggest that fowl vascular ANG II receptors exhibit specificity and regulatory properties fundamentally different from those of mammalian vascular ANG II receptors.

  7. Fluorescence properties of 8-(2-pyridyl)guanine "2PyG" as compared to 2-aminopurine in DNA.

    PubMed

    Dumas, Anaëlle; Luedtke, Nathan W

    2011-09-05

    Because of their environment-sensitive fluorescence quantum yields, base analogues such as 2-aminopurine (2AP), 6-methylisoxanthopterin (6-MI), and 3-methylisoxanthopterin (3-MI) are widely used in nucleic-acid folding and catalysis assays. Emissions from these guanine mimics are quenched by base-stacking interactions and collisions with purine residues. Fluorescent base analogues that remain highly emissive in folded nucleic acids can provide sensitive means to differentiate DNA/RNA structures by participating in energy transfer from proximal ensembles of unmodified nucleobases. The development of new, highly emissive guanine mimics capable of proper base stacking and base-pairing interactions is an important prerequisite to this approach. Here we report a comparison of the most commonly used probe, 2-aminopurine (2AP), to 8-(2-pyridyl)-2'-deoxyguanosine (2PyG). The photophysical properties of these purine derivatives are very different. 2PyG exhibits enhanced fluorescence quantum yields upon its incorporation into folded nucleic acids--approximately 50-fold brighter fluorescence intensity than 2AP in the context of duplex DNA. Due to its bright fluorescence and compatibility with proper DNA folding, 2PyG can be used to accurately quantify energy-transfer efficiencies, whereas 2AP is much less sensitive to structure-specific trends in energy transfer. When using nucleoside monomers, Stern-Volmer plots of 2AP fluorescence revealed upward curvature of F(0) /F upon titration of guanosine monophoshate (GMP), whereas 2PyG exhibited unusual downward curvature of F(0) /F that resulted in a recovery of fluorescence at high GMP concentrations. These results are consistent with the trends observed for 2PyG- and 2AP-containing oligonucleotides, and furthermore suggest that solutions containing high concentrations of GMP can, in some ways, mimic the high local nucleobase densities of folded nucleic acids. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Molecular dynamics simulation study of the binding of purine bases to the aptamer domain of the guanine sensing riboswitch

    PubMed Central

    Villa, Alessandra; Wöhnert, Jens; Stock, Gerhard

    2009-01-01

    Riboswitches are a novel class of genetic control elements that function through the direct interaction of small metabolite molecules with structured RNA elements. The ligand is bound with high specificity and affinity to its RNA target and induces conformational changes of the RNA's secondary and tertiary structure upon binding. To elucidate the molecular basis of the remarkable ligand selectivity and affinity of one of these riboswitches, extensive all-atom molecular dynamics simulations in explicit solvent (≈1 μs total simulation length) of the aptamer domain of the guanine sensing riboswitch are performed. The conformational dynamics is studied when the system is bound to its cognate ligand guanine as well as bound to the non-cognate ligand adenine and in its free form. The simulations indicate that residue U51 in the aptamer domain functions as a general docking platform for purine bases, whereas the interactions between C74 and the ligand are crucial for ligand selectivity. These findings either suggest a two-step ligand recognition process, including a general purine binding step and a subsequent selection of the cognate ligand, or hint at different initial interactions of cognate and noncognate ligands with residues of the ligand binding pocket. To explore possible pathways of complex dissociation, various nonequilibrium simulations are performed which account for the first steps of ligand unbinding. The results delineate the minimal set of conformational changes needed for ligand release, suggest two possible pathways for the dissociation reaction, and underline the importance of long-range tertiary contacts for locking the ligand in the complex. PMID:19515936

  9. Crystal structure of a chimera of human and Plasmodium falciparum hypoxanthine guanine phosphoribosyltransferases provides insights into oligomerization.

    PubMed

    Gayathri, P; Sujay Subbayya, I N; Ashok, Chethan S; Selvi, T Senthamizh; Balaram, Hemalatha; Murthy, M R N

    2008-12-01

    The crystal structure of a chimera of Plasmodium falciparum (Pf) and human hypoxanthine guanine phosphoribosyltransferases (HGPRT), which consists of the core of the protein from the human enzyme and the hood region from the Pf enzyme, has been determined as a complex with the product guanosine monophosphate (GMP). The chimera can utilize hypoxanthine, guanine, and xanthine as substrates, similar to the Pf enzyme. It exists as a monomer-dimer mixture in solution, but shifts to a tetramer on addition of phosphoribosyl pyrophosphate (PRPP). The structural studies reveal that the asymmetric unit of the crystal consists of two monomers of the chimeric HGPRT. Surprisingly, the dimer interface of the chimera is the less extensive AC interface of the parent HGPRTs. An analysis of the crystal structures of the various human HGPRTs provides an explanation for the oligomeric characteristics of the chimera. Pro93 and Tyr197 form part of crucial interactions holding together the AB interface in the unliganded or GMP-bound forms of HGPRT, while Pro93 and His26 interact at the interface after binding of PRPP. Replacement of Tyr197 of human HGPRT by Ile207 in the chimera disrupts the interaction at the AB interface in the absence of PRPP. In the presence of PRPP, the interaction between Pro93 and His26 could restore the AB interface, shifting the chimeric enzyme to a tetrameric state. The structure provides valuable insights into the differences in the AB interface between Pf and human HGPRTs, which may be useful for designing selective inhibitors against the parasite enzyme.

  10. Magnetically-assembled micro/mesopixels exhibiting light intensity enhancement in the (012) planes of fish guanine crystals

    NASA Astrophysics Data System (ADS)

    Chikashige, T.; Iwasaka, M.

    2018-05-01

    In this study, a new method was investigated to form light-reflecting dots at the micrometer scale using the magnetic orientations of biogenic guanine crystals obtained from fish skin and scales. The crystal platelets, possessing average dimensions of 5 μm×20 μm×100 nm, were dispersed in water and observed during exposure to vertical magnetic fields up to 5 T. The magnetic field direction was parallel to Earth's gravity, and allowed the narrowest edges of the crystals to be observed at the micrometer scale for the first time. The magnetic orientation process was initiated under conditions where the crystal platelets in water were laid on a glass substrate or where the platelets had random orientations. In the former case, the crystal platelets followed a two-stage magnetic orientation process where, in the first step, the platelet widths were aligned in the magnetic field direction. The second step required rotation of the ˜20-μm-long plates with respect to the Earth's gravity, where application of a 5 T magnetic field enabled their orientation. Real-time images of the magnetically aligning platelets provided new evidence that the crystal platelets also emitted reflected light from a very narrow window at two crystal planes (i.e., (0 1 ¯ 2 ¯ ) and (0 1 ¯ 2 )). In the latter case with random platelet orientation, spatially-condensed light-reflecting dots appeared while the guanine crystal platelets were floating and maintaining their orientation. The technique developed for controlling light-reflecting microscale objects in an aqueous medium can be applied to produce a type of microfluidic optical tool.

  11. Molecular cloning, characterization, and expression of human ADP-ribosylation factors: Two guanine nucleotide-dependent activators of cholera toxin

    SciTech Connect

    Bobak, D.A.; Nightingale, M.S.; Murtagh, J.J.

    1989-08-01

    ADP-ribosylation factors (ARFs) are small guanine nucleotide-binding proteins that enhance the enzymatic activities of cholera toxin. Two ARF cDNAs, ARF1 and ARF3, were cloned from a human cerebellum library. Based on deduced amino acid sequences and patterns of hybridization of cDNA and oligonucleotide probes with mammalian brain poly(A){sup +} RNA, human ARF1 is the homologue of bovine ARF1. Human ARF3, which differs from bovine ARF1 and bovine ARF2, appears to represent a newly identified third type of ARF. Hybridization patterns of human ARF cDNA and clone-specific oligonucleotides with poly(A){sup +} RNA are consistent with the presence of at least two,more » and perhaps four, separate ARF messages in human brain. In vitro translation of ARF1, ARF2, and ARF3 produced proteins that behaved, by SDS/PAGE, similar to a purified soluble brain ARF. Deduced amino acid sequences of human ARF1 and ARF3 contain regions, similar to those in other G proteins, that are believed to be involved in GTP binding and hydrolysis. ARFS also exhibit a modest degree of homology with a bovine phospholipase C. The observations reported here support the conclusion that the ARFs are members of a multigene family of small guanine nucleotide-binding proteins. Definition of the regulation of ARF mRNAs and of function(s) of recombinant ARF proteins will aid in the elucidation of the physiologic role(s) of ARFs.« less

  12. Intrastrand G-U cross-links generated by the oxidation of guanine in 5'-d(GCU) and 5'-r(GCU)

    PubMed Central

    Crean, Conor; Geacintov, Nicholas E.; Shafirovich, Vladimir

    2008-01-01

    It has been suggested that carbonate radical anions are biologically important because they may be produced during the inflammatory response. The carbonate radicals can selectively oxidize guanine in DNA and RNA by one-electron transfer mechanisms and the guanine radicals thus formed decay by diverse competing pathways with other free radicals or nucleophiles. Using a photochemical method to generate CO3•− radicals in vitro, we compare the distributions of products initiated by the one-electron oxidation of guanine in the trinucleotides 5’-r(GpCpU) and 5’-d(GpCpU) in aqueous buffer solutions (pH 7.4). Similar distributions of stable end-products identified by LC-MS/MS methods were found in both cases. The guanine oxidation products include the diastereomeric pair of spiroiminodihydantoin (Sp) and 2,5-diamino-4H-imidazolone (Iz). In addition, intrastrand cross-linked products involving covalent bonds between the G and U bases (G*CU*) were also found, although with different relative yields in the 2’-deoxy- and the ribotrinucleotides. The positive ion MS/MS spectra of the 5’-r(G*pCpU*) and 5’-d(G*pCpU*) products clearly indicate the presence of covalently linked G*-U* products that have a mass smaller by 2 Da than the sum of the G and U bases in both types of trinucleotides. The 5’-d(G*CU*) cross-linked product was further characterized by 1D and 2D NMR methods that confirm its cyclic structure in which the guanine C8-atom is covalently linked to the uracil N3-atom. PMID:18692567

  13. Intrastrand G-U cross-links generated by the oxidation of guanine in 5'-d(GCU) and 5'-r(GCU).

    PubMed

    Crean, Conor; Geacintov, Nicholas E; Shafirovich, Vladimir

    2008-10-15

    It has been suggested that carbonate radical anions are biologically important because they may be produced during the inflammatory response. The carbonate radicals can selectively oxidize guanine in DNA and RNA by one-electron transfer mechanisms and the guanine radicals thus formed decay by diverse competing pathways with other free radicals or nucleophiles. Using a photochemical method to generate CO(3)(-) radicals in vitro, we compare the distributions of products initiated by the one-electron oxidation of guanine in the trinucleotides 5'-r(GpCpU) and 5'-d(GpCpU) in aqueous buffer solutions (pH 7.5). Similar distributions of stable end products identified by LC-MS/MS methods were found in both cases. The guanine oxidation products include the diastereomeric pair of spiroiminodihydantoin (Sp) and 2,5-diamino-4H-imidazolone (Iz). In addition, intrastrand cross-linked products involving covalent bonds between the G and the U bases (GCU) were also found, although with different relative yields in the 2'-deoxy- and the ribotrinucleotides. The positive-ion MS/MS spectra of the 5'-r(GpCpU) and 5'-d(GpCpU) products clearly indicate the presence of covalently linked G-U products that have a mass smaller by 2 Da than the sum of the G and U bases in both types of trinucleotides. The 5'-d(GCU) cross-linked product was further characterized by 1D and 2D NMR methods that confirm its cyclic structure in which the guanine C8 atom is covalently linked to the uracil N3 atom.

  14. Combined theoretical and computational study of interstrand DNA guanine-guanine cross-linking by trans-[Pt(pyridine)2] derived from the photoactivated prodrug trans,trans,trans-[Pt(N3)2(OH)2(pyridine)2].

    PubMed

    Tai, Hui-Chung; Brodbeck, Ralf; Kasparkova, Jana; Farrer, Nicola J; Brabec, Viktor; Sadler, Peter J; Deeth, Robert J

    2012-06-18

    Molecular modeling and extensive experimental studies are used to study DNA distortions induced by binding platinum(II)-containing fragments derived from cisplatin and a new class of photoactive platinum anticancer drugs. The major photoproduct of the novel platinum(IV) prodrug trans,trans,trans-[Pt(N(3))(2)(OH)(2)(py)(2)] (1) contains the trans-{Pt(py)(2)}(2+) moiety. Using a tailored DNA sequence, experimental studies establish the possibility of interstrand binding of trans-{Pt(py)(2)}(2+) (P) to guanine N7 positions on each DNA strand. Ligand field molecular mechanics (LFMM) parameters for Pt-guanine interactions are then derived and validated against a range of experimental structures from the Cambridge Structural Database, published quantum mechanics (QM)/molecular mechanics (MM) structures of model Pt-DNA systems and additional density-functional theory (DFT) studies. Ligand field molecular dynamics (LFMD) simulation protocols are developed and validated using experimentally characterized bifunctional DNA adducts involving both an intra- and an interstrand cross-link of cisplatin. We then turn to the interaction of P with the DNA duplex dodecamer, d(5'-C(1)C(2)T(3)C(4)T(5)C(6)G(7)T(8)C(9)T(10)C(11)C(12)-3')·d(5'-G(13)G(14)A(15)G(16)A(17)C(18)G(19)A(20)G(21)A(22)G(23)G(24)-3') which is known to form a monofunctional adduct with cis-{Pt(NH(3))(2)(py)}. P coordinated to G(7) and G(19) is simulated giving a predicted bend toward the minor groove. This is widened at one end of the platinated site and deepened at the opposite end, while the P-DNA complex exhibits a global bend of ∼67° and an unwinding of ∼20°. Such cross-links offer possibilities for specific protein-DNA interactions and suggest possible mechanisms to explain the high potency of this photoactivated complex.

  15. VUV and mid-UV photoabsorption cross sections of thin films of guanine and uracil: application on their photochemistry in the solar system.

    PubMed

    Saïagh, Kafila; Cottin, Hervé; Aleian, Aicha; Fray, Nicolas

    2015-04-01

    We present a photostability study of two nucleobases, guanine and uracil. For the first time, the photoabsorption cross-section spectra of these molecules in the solid phase were measured in the VUV and mid-UV domain (115≤λ≤300 nm). They show a quite similar absorption level throughout this wavelength range, highlighting the importance of considering the whole VUV and UV domain during photolysis experiments in the laboratory. Their photolysis constant (J) can be estimated from those measurements as follows: 2.2×10(-2) s(-1)±11% for guanine and 5.3×10(-2) s(-1)±14% for uracil. This work shows that (i) measuring kinetic constants from a direct and "traditional" photolysis of a thin sample in the laboratory suffers strong limitations and (ii) achieving this measurement requires comprehensive modeling of the radiative transfer that occurs in any sample not optically thin (i.e.,≤2 nm). Moreover, this work has provided other data of interest: the refractive index of solid guanine and of uracil at 650 nm are 1.52 (±0.01) and 1.39 (±0.02), respectively, and the integrated IR band strengths (A) of solid guanine between 3700 and 2120 cm(-1) (3.4×10(-16) cm·molecule(-1)±13%) and of solid uracil between 3400 and 1890 cm(-1) (2.1×10(-16) cm·molecule(-1)±21%).

  16. Regulation of sigma receptors and responsiveness to guanine nucleotides following repeated exposure of rats to haloperidol: further evidence for multiple sigma binding sites.

    PubMed

    Itzhak, Y; Stein, I

    1991-12-06

    The sigma binding sites are postulated to be involved in various central nervous system (CNS) disorders. The neuroleptic drug, haloperidol, displays high affinity for these receptor sites in the CNS. In the present study the effect of repeated exposure of rats to haloperidol (4 mg/kg/day for 14 days) on sigma binding sites labeled with (+)-3-(3-hydroxyphenyl)-N-1-(propyl)piperidine [+)-3-PPP) and 1,3-di-o-tolyl-guanidine (DTG) was investigated. In addition, the regulatory effect of guanine nucleotides on the binding of these two ligands to brain membranes derived from saline and haloperidol-treated rats was examined. Repeated administration of haloperidol induced down-regulation of (+)[3H]-3-PPP binding sites (75% decrease in the number of binding sites compared to control) which persisted for at least 7 days after termination of the haloperidol-treatment. The down-regulation of (+)-3-PPP binding sites was accompanied by reduced responsiveness to guanine nucleotides (i.e. 5-guanylylimidodiphosphate (Gpp(NH)p) compared to the sensitivity of (+)-3-PPP binding sites to the nucleotides tested in control membranes. However, at the 28th day after termination of the haloperidol-treatment, a complete recovery in the total number of (+)[3H]-3-PPP binding sites was observed, and the sensitivity to guanine nucleotides was regained. These findings suggest a marked plasticity in (+)-3-PPP/sigma receptor binding activity. In contrast, [3H]DTG binding sites expressed neither sensitivity to the repeated exposure to haloperidol nor to guanine nucleotides, suggesting a distinction between DTG and (+)-3-PPP binding sites in rat brain.

  17. Molecular cloning of Ras cDNA from Penaeus japonicus (Crustacea, decapoda): geranylgeranylation and guanine nucleotide binding.

    PubMed

    Huang, C F; Chuang, N N

    1998-12-11

    A cDNA was isolated from the shrimp Penaeus japonicus by homology cloning. The shrimp hepatopancreas cDNA encodes a 187-residue polypeptide whose predicted amino acid sequence shares 85% homology with mammalian K-Ras 4B protein and demonstrates identity in the guanine nucleotide binding domains. Expression of the shrimp cDNA in Escherichia coli yielded a 21-kDa polypeptide with a positive reactivity towards the monoclonal antibodies against mammalian Ras. The GTP binding of the shrimp ras-encoded fusion protein was approximated to be 30000units/mg of protein, whereas the binding for GDP was 5000units/mg of protein. Fluorography analysis demonstrated that the prenylation of both shrimp Ras GDP and shrimp Ras GTP by protein geranylgeranyltransferase I of shrimp Penaeus japonicus exceeded the shrimp Ras nucleotide-free form by 10-fold, and fourfold, respectively; that is, the shrimp protein geranylgeranyltransferase I prefers to react with the shrimp ras-encoded p25 fusion protein in the GDP-bound form.

  18. Functional characterization of naturally occurring genetic variations of the human guanine-rich RNA sequence binding factor 1 (GRSF1).

    PubMed

    Sofi, Sajad; Fitzgerald, Julia C; Jähn, Désirée; Dumoulin, Bernhard; Stehling, Sabine; Kuhn, Hartmut; Ufer, Christoph

    2018-04-01

    The guanine-rich RNA sequence binding factor 1 (GRSF1) constitutes an ubiquitously occurring RNA-binding protein (RBP), which belongs to the family of heterogeneous nuclear ribonucleoprotein F/H (hnRNP F/H). It has been implicated in nuclear, cytosolic and mitochondrial RNA metabolism. Although the crystal structures of GRSF1 orthologs have not been solved, amino acid alignments with similar RNA-binding proteins suggested the existence of three RNA-binding domains designated quasi-RNA recognition motifs (qRRMs). Here we established 3D-models for the three qRRMs of human GRSF1 on the basis of the NMR structure of hnRNP F and identified the putative RNA interacting amino acids. Next, we explored the genetic variability of the three qRRMs of human GRSF1 by searching genomic databases and tested the functional consequences of naturally occurring mutants. For this purpose the RNA-binding capacity of wild-type and mutant recombinant GRSF1 protein species was assessed by quantitative RNA electrophoretic mobility shift assays. We found that some of the naturally occurring GRSF1 mutants exhibited a strongly reduced RNA-binding activity although the general protein structure was hardly affected. These data suggested that homozygous allele carriers of these particular mutants express dysfunctional GRSF1 and thus may show defective GRSF1 signaling. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

    PubMed Central

    López-Cruz, Roberto I.; Crocker, Daniel E.; Gaxiola-Robles, Ramón; Bernal, Jaime A.; Real-Valle, Roberto A.; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  20. Ligand-mediated and tertiary interactions cooperatively stabilize the P1 region in the guanine-sensing riboswitch

    PubMed Central

    Hanke, Christian A.

    2017-01-01

    Riboswitches are genetic regulatory elements that control gene expression depending on ligand binding. The guanine-sensing riboswitch (Gsw) binds ligands at a three-way junction formed by paired regions P1, P2, and P3. Loops L2 and L3 cap the P2 and P3 helices and form tertiary interactions. Part of P1 belongs to the switching sequence dictating the fate of the mRNA. Previous studies revealed an intricate relationship between ligand binding and presence of the tertiary interactions, and between ligand binding and influence on the P1 region. However, no information is available on the interplay among these three main regions in Gsw. Here we show that stabilization of the L2-L3 region by tertiary interactions, and the ligand binding site by ligand binding, cooperatively influences the structural stability of terminal base pairs in the P1 region in the presence of Mg2+ ions. The results are based on molecular dynamics simulations with an aggregate simulation time of ~10 μs across multiple systems of the unbound state of the Gsw aptamer and a G37A/C61U mutant, and rigidity analyses. The results could explain why the three-way junction is a central structural element also in other riboswitches and how the cooperative effect could become contextual with respect to intracellular Mg2+ concentration. The results suggest that the transmission of allosteric information to P1 can be entropy-dominated. PMID:28640851

  1. Differential Distortion of Purine Substrates by Human and Plasmodium falciparum Hypoxanthine-Guanine Phosphoribosyltransferase to Catalyse the Formation of Mononucleotides.

    PubMed

    Karnawat, Vishakha; Gogia, Spriha; Balaram, Hemalatha; Puranik, Mrinalini

    2015-07-20

    Plasmodium falciparum (Pf) hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is a potential therapeutic target. Compared to structurally homologous human enzymes, it has expanded substrate specificity. In this study, 9-deazapurines are used as in situ probes of the active sites of human and Pf HGPRTs. Through the use of these probes it is found that non-covalent interactions stabilise the pre-transition state of the HGPRT-catalysed reaction. Vibrational spectra reveal that the bound substrates are extensively distorted, the carbonyl bond of nucleobase moiety is weakened and the substrate is destabilised along the reaction coordinate. Raman shifts of the human and Pf enzymes are used to quantify the differing degrees of hydrogen bonding in the homologues. A decreased Raman cross-section in enzyme-bound 9-deazaguanine (9DAG) shows that the phenylalanine residue (Phe186 in human and Phe197 in Pf) of HGPRT stacks with the nucleobase. Differential loss of the Raman cross-section suggests that the active site is more compact in human HGPRT as compared to the Pf enzyme, and is more so in the phosphoribosyl pyrophosphate (PRPP) complex 9DAG-PRPP-HGPRT than in 9-deazahypoxanthine (9DAH)-PRPP-HGPRT. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    PubMed

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements.

  3. [The clinical effects of a new antiviral 9-(2-hydroxyethoxymethyl) guanine (aciclovir) against herpes virus infections].

    PubMed

    Masaoka, T; Shibata, H; Amaki, I; Takeo, H; Sakurai, K; Ise, T; Ohhira, M; Tanaka, M; Shimoyama, M; Ishihara, K; Shibata, A; Moriyama, Y; Arimori, S; Nagao, T; Yamada, K; Ohno, R; Kodera, Y; Yamada, H; Hirota, Y; Fujiwara, Y; Nakaide, Y; Yoshikawa, S; Yoshikawa, H; Akao, Y; Hattori, K; Funada, H; Yoshida, T; Tsujino, G; Sako, M; Nagai, K; Kanamaru, A; Fujita, S; Tasaka, E; Hamada, T; Takahashi, M

    1983-04-01

    The clinical effects of a new anti-viral 9-(2-hydroxymethoxymethyl) guanine (Aciclovir) against Herpes virus infections have been investigated. The patients had malignant tumours or auto-immune disease complicated by shingles and chicken pox due to Vaicella zoster virus (VZV) (43 cases), Herpes simplex virus (HSV) (10 cases) and 9 cases which were clinically diagnosed as Herpes, though the virus was not confirmed as the causative agent. As a general principle the dosage of Aciclovir was 5 mg/kg, t. i. d. for 5 days by slow intravenous infusion. The clinically effective rate against VZV was 93%, being excellent in 42% and against HSV it was 80%, being excellent in 40% and when the results of the cases of unknown origin were included it was excellent in 40% and the cumulative effective rate was 88%. Concerning the efficacy in reduction of pain, swelling, disappearance of vesicles and new scab formation, the effect was most noticeable after the third day of treatment. Treatment given early in the disease is likely to provide better results. Concerning side effects, one of 62 patients had proteinuria and the other had a drug rash and an abnormal liver function test. It is likely that the combination of treatment and the primary disease had some influence, but the cause/effect relationship to Aciclovir treatment is not clear.

  4. Free energy profiles for two ubiquitous damaging agents: methylation and hydroxylation of guanine in B-DNA.

    PubMed

    Grüber, R; Aranda, J; Bellili, A; Tuñón, I; Dumont, E

    2017-06-07

    DNA methylation and hydroxylation are two ubiquitous reactions in DNA damage induction, yet insights are scarce concerning the free energy of activation within B-DNA. We resort to multiscale simulations to investigate the attack of a hydroxyl radical and of the primary diazonium onto a guanine embedded in a solvated dodecamer. Reaction free energy profiles characterize two strongly exergonic processes, yet allow unprecedented quantification of the barrier towards this damage reaction, not higher than 6 kcal mol -1 and sometimes inexistent, and of the exergonicities. In the case of the [G(C8)-OH]˙ intermediate, we challenge the functional dependence of such simulations: recently-proposed functionals, such as M06-2X and LC-BLYP, agree on a ∼4 kcal mol -1 barrier, whereas the hybrid GGA B3LYP functional predicts a barrier-less pathway. In the long term, multiscale approaches can help build up a unified panorama of DNA lesion induction. These results stress the importance of DFT/MM-MD simulations involving new functionals towards the sound modelling of biomolecule damage even in the ground state.

  5. DNA-directed aniline mustards with high selectivity for adenine or guanine bases: mutagenesis in a variety of Salmonella typhimurium strains differing in DNA-repair capability.

    PubMed

    Ferguson, L R; Denny, W A; Boritzki, T J

    1994-04-01

    Two closely-related aniline monomustards (1 and 2), linked to a DNA-targeting acridine chromophore by a linker chain of different length, show high selectivity for alkylation of polymer DNA. The shorter-chain derivative (2) alkylates mainly at guanine N7 sites, while the longer-chain analogue (1) reacts almost exclusively at adenine N1. The biological effects of these compounds have been studied in standard Ames Salmonella typhimurium strains in order to determine the mutagenic consequences of such well-defined DNA lesions, and the effect of DNA-repair systems on them. Both compounds caused detectable mutations in strains TA1537, TA98 or TA100 and some related strains. Mutation rates were greatly enhanced in strains carrying either a uvrB deletion or the plasmid pKM101. Frameshift mutagenesis by both compounds was completely eliminated by recA deletion, in both the presence or absence of the plasmid. The adenine-selective compound (1) appeared more sensitive to the DNA-repair defects than the guanine-selective derivative (2). Additionally, only the adenine-selective compound (1) caused statistically significant levels of detectable mutation in the repair-proficient strains TA102, TA4001 or TA4006. The bacterial mutagenesis evidence suggests that a bulky, major groove-residing adenine lesion may be more readily recognised by DNA-repair systems, and more likely to lead to a wider range of mutagenic events, than a similar guanine lesion.

  6. A label-free electrochemical sensor for detection of mercury(II) ions based on the direct growth of guanine nanowire.

    PubMed

    Huang, Yan Li; Gao, Zhong Feng; Jia, Jing; Luo, Hong Qun; Li, Nian Bing

    2016-05-05

    A simple, sensitive and label-free electrochemical sensor is developed for detection of Hg(2+) based on the strong and stable T-Hg(2+)-T mismatches. In the presence of Mg(2+), the parallel G-quadruplex structures could be specifically recognized and precipitated in parallel conformation. Therefore, the guanine nanowire was generated on the electrode surface, triggering the electrochemical H2O2-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). In this research, a new method of signal amplification for the quantitative detection of Hg(2+) was described based on the direct growth of guanine nanowire via guanine nanowire. Under optimum conditions, Hg(2+) was detected in the range of 100 pM-100 nM, and the detection limit is 33 pM. Compared to the traditional single G-quadruplex label unit, this electrochemical sensor showed high sensitivity and selectivity for detecting Hg(2+). Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Disruption of the Ran System by Cysteine Oxidation of the Nucleotide Exchange Factor RCC1

    PubMed Central

    Chatterjee, Mandovi

    2014-01-01

    Transport regulation by the Ran GTPase requires its nuclear localization and GTP loading by the chromatin-associated exchange factor RCC1. These reactions generate Ran protein and Ran nucleotide gradients between the nucleus and the cytoplasm. Cellular stress disrupts the Ran gradients, but the specific mechanisms underlying this disruption have not been elucidated. We used biochemical approaches to determine how oxidative stress disrupts the Ran system. RCC1 exchange activity was reduced by diamide-induced oxidative stress and restored with dithiothreitol. Using mass spectrometry, we found that multiple solvent-exposed cysteines in RCC1 are oxidized in cells treated with diamide. The cysteines oxidized in RCC1 included Cys93, which is solvent exposed and unique because it becomes buried upon contact with Ran. A Cys93Ser substitution dramatically reduced exchange activity through an effect on RCC1 binding to RanGDP. Diamide treatment reduced the size of the mobile fraction of RCC1-green fluorescent protein in cells and inhibited nuclear import in digitonin-permeabilized cell assays. The Ran protein gradient was also disrupted by UV-induced stress but without affecting RCC1 exchange activity. Our data suggest that stress can disrupt the Ran gradients through RCC1-dependent and RCC1-independent mechanisms, possibly dependent on the particular stress condition. PMID:25452301

  8. Fine structure mapping of the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene region of the human X chromosome (Xq26).

    PubMed Central

    Nicklas, J A; Hunter, T C; O'Neill, J P; Albertini, R J

    1991-01-01

    The Xq26-q27 region of the X chromosome is interesting, as an unusually large number of genes and anonymous RFLP probes have been mapped in this area. A number of studies have used classical linkage analysis in families to map this region. Here, we use mutant human T-lymphocyte clones known to be deleted for all or part of the hypoxanthine-guanine phosphoribosyltransferase (hprt) gene, to order anonymous probes known to map to Xq26. Fifty-seven T-cell clones were studied, including 44 derived from in vivo mutation and 13 from in vitro irradiated T-lymphocyte cultures. Twenty anonymous probes (DXS10, DXS11, DXS19, DXS37, DXS42, DXS51, DXS53, DXS59, DXS79, DXS86, DXS92, DXS99, DXS100d, DXS102, DXS107, DXS144, DXS172, DXS174, DXS177, and DNF1) were tested for codeletion with the hprt gene by Southern blotting methods. Five of these probes (DXS10, DXS53, DXS79, DXS86 and DXS177) showed codeletion with hprt in some mutants. The mutants established the following unambiguous ordering of the probes relative to the hprt gene: DXS53-DXS79-5'hprt3'-DXS86-DXS10-DXS177 . The centromere appears to map proximal to DXS53. These mappings order several closely linked but previously unordered probes. In addition, these studies indicate that rather large deletions of the functionally haploid X chromosome can occur while still retaining T-cell viability. Images Figure 1 PMID:1678246

  9. Potential Association of Urinary N7-(2-Carbamoyl-2-hydroxyethyl) Guanine with Dietary Acrylamide Intake of Smokers and Nonsmokers.

    PubMed

    Huang, Chih-Chun Jean; Wu, Chia-Fang; Shih, Wei-Chung; Luo, Yu-Syuan; Chen, Ming-Feng; Li, Chien-Ming; Liou, Saou-Hsing; Chung, Wen-Sheng; Chiang, Su-Yin; Wu, Kuen-Yuh

    2015-01-20

    Acrylamide (AA), a rodent carcinogen, is widely used in industry and present in cigarette smoke as well as in foods processed at high temperatures. The metabolic activation of AA to glycidamide (GA) could be critical for AA carcinogenicity since GA causes DNA adduct formation in vivo. N7-(2-carbamoyl-2-hydroxyethyl) guanine (N7-GAG), the most abundant DNA adduct of AA, is subjected to spontaneous and enzymatic depurination and excreted through urine. Urinary N7-GAG analysis can confirm AA genotoxicity and identify active species of AA metabolites in humans, thereby serving as a risk-associated biomarker for molecular epidemiology studies. This study aimed to develop an isotope-dilution solid-phase extraction liquid chromatography tandem mass spectrometry method to comparatively analyze urinary N7-GAG levels in nonsmokers and smokers. Urinary N-acetyl-S-(propionamide)-cysteine (AAMA), a metabolite of AA, was also analyzed as a biomarker for current AA exposure. Urinary N7-GAG was quantified by monitoring m/z 239 → 152 for N7-GAG and m/z 242 → 152 for (13)C3-labeled N7-GAG under positive electron spray ionization and multiple reaction mode. The median urinary N7-GAG level was 0.93 μg/g creatinine in nonsmokers (n = 33) and 1.41 μg/g creatinine in smokers (n = 30). Multiple linear regression analysis of data revealed that N7-GAG levels were only significantly associated with AAMA levels. These results demonstrate that urinary N7-GAG of nonsmokers and smokers is significantly associated with a very low level of dietary AA intake, assessed by analyzing urinary AAMA.

  10. Role of Bacillus subtilis Error Prevention Oxidized Guanine System in Counteracting Hexavalent Chromium-Promoted Oxidative DNA Damage

    PubMed Central

    Santos-Escobar, Fernando; Gutiérrez-Corona, J. Félix

    2014-01-01

    Chromium pollution is potentially detrimental to bacterial soil communities, compromising carbon and nitrogen cycles that are essential for life on earth. It has been proposed that intracellular reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] may cause bacterial death by a mechanism that involves reactive oxygen species (ROS)-induced DNA damage; the molecular basis of the phenomenon was investigated in this work. Here, we report that Bacillus subtilis cells lacking a functional error prevention oxidized guanine (GO) system were significantly more sensitive to Cr(VI) treatment than cells of the wild-type (WT) strain, suggesting that oxidative damage to DNA is involved in the deleterious effects of the oxyanion. In agreement with this suggestion, Cr(VI) dramatically increased the ROS concentration and induced mutagenesis in a GO-deficient B. subtilis strain. Alkaline gel electrophoresis (AGE) analysis of chromosomal DNA of WT and ΔGO mutant strains subjected to Cr(VI) treatment revealed that the DNA of the ΔGO strain was more susceptible to DNA glycosylase Fpg attack, suggesting that chromium genotoxicity is associated with 7,8-dihydro-8-oxodeoxyguanosine (8-oxo-G) lesions. In support of this notion, specific monoclonal antibodies detected the accumulation of 8-oxo-G lesions in the chromosomes of B. subtilis cells subjected to Cr(VI) treatment. We conclude that Cr(VI) promotes mutagenesis and cell death in B. subtilis by a mechanism that involves radical oxygen attack of DNA, generating 8-oxo-G, and that such effects are counteracted by the prevention and repair GO system. PMID:24973075

  11. Localization of the 5-phospho-alpha-D-ribosyl-1-pyrophosphate binding site of human hypoxanthine-guanine phosphoribosyltransferase.

    PubMed

    Keough, D T; Emmerson, B T; de Jersey, J

    1991-02-22

    Human erythrocyte hypoxanthine-guanine phosphoribosyltransferase (HPRT) is inactivated by iodoacetate in the absence, but not in the presence, of the substrate, 5-phospho-alpha-D-ribosyl-1-pyrophosphate (PRib-PP). Treatment of HPRT with [14C]iodoacetate followed by tryptic digestion, peptide separation and sequencing has shown that Cys-22 reacts with iodoacetate only in the absence of PRib-PP; this strongly suggests that Cys-22 is in or near the PRib-PP binding site. In contrast, Cys-105 reacts with [14C]iodoacetate both in the presence and absence of PRib-PP. Carboxymethylation of Cys-22 resulted in an increase in the Km for PRib-PP, but no change in Vmax. Storage of HPRT also resulted in an increase in the Km for PRib-PP and a decrease in its susceptibility to inactivation by iodoacetate. Dialysis of stored enzyme against 1 mM dithiothreitol resulted in a marked decrease in Km for PRib-PP. The stoichiometry of the reaction of [14C]iodoacetate with Cys-22 in HPRT leading to inactivation (approx. 1 residue modified per tetramer) showed that, in this preparation of HPRT purified from erythrocytes, only about 25% of the Cys-22 side chains were present as free and accessible thiols. Titration of thiol groups [with 5,5'-dithiobis(2-nitrobenzoic acid)] and the effect of dithiothreitol on Km for PRib-PP indicate that oxidation of thiol groups occurs on storage of HPRT, even in the presence of 1 mM beta-mercaptoethanol.

  12. Guanine nucleotide-binding protein subunit beta-2-like 1, a new Annexin A7 interacting protein

    SciTech Connect

    Du, Yue; Meng, Jinyi; Huang, Yuhong

    2014-02-28

    Highlights: • RACK1 formed a complex with Annexin A7. • Depletion of RACK1 inhibited the proliferation, migration and invasion. • RACK1 RNAi abolished RACK1-Annexin A7 interaction. • RACK1-Annexin A7 may play a role in regulating the metastatic potentials. - Abstract: We report for the first time that Guanine nucleotide-binding protein subunit beta-2-like 1 (RACK1) formed a complex with Annexin A7. Hca-F and Hca-P are a pair of syngeneic mouse hepatocarcinoma cell lines established and maintained in our laboratory. Our previous study showed that both Annexin A7 and RACK1 were expressed higher in Hca-F (lymph node metastasis >70%) than Hca-P (lymphmore » node metastasis <30%). Suppression of Annexin A7 expression in Hca-F cells induced decreased migration and invasion ability. In this study, knockdown of RACK1 by RNA interference (RNAi) had the same impact on metastasis potential of Hca-F cells as Annexin A7 down-regulation. Furthermore, by co-immunoprecipitation and double immunofluorescence confocal imaging, we found that RACK1 was in complex with Annexin A7 in control cells, but not in the RACK1-down-regulated cells, indicating the abolishment of RACK1-Annexin A7 interaction in Hca-F cells by RACK1 RNAi. Taken together, these results suggest that RACK1-Annexin A7 interaction may be one of the means by which RACK1 and Annexin A7 influence the metastasis potential of mouse hepatocarcinoma cells in vitro.« less

  13. Folding of guanine quadruplex molecules-funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies.

    PubMed

    Šponer, Jiří; Bussi, Giovanni; Stadlbauer, Petr; Kührová, Petra; Banáš, Pavel; Islam, Barira; Haider, Shozeb; Neidle, Stephen; Otyepka, Michal

    2017-05-01

    Guanine quadruplexes (GQs) play vital roles in many cellular processes and are of much interest as drug targets. In contrast to the availability of many structural studies, there is still limited knowledge on GQ folding. We review recent molecular dynamics (MD) simulation studies of the folding of GQs, with an emphasis paid to the human telomeric DNA GQ. We explain the basic principles and limitations of all types of MD methods used to study unfolding and folding in a way accessible to non-specialists. We discuss the potential role of G-hairpin, G-triplex and alternative GQ intermediates in the folding process. We argue that, in general, folding of GQs is fundamentally different from funneled folding of small fast-folding proteins, and can be best described by a kinetic partitioning (KP) mechanism. KP is a competition between at least two (but often many) well-separated and structurally different conformational ensembles. The KP mechanism is the only plausible way to explain experiments reporting long time-scales of GQ folding and the existence of long-lived sub-states. A significant part of the natural partitioning of the free energy landscape of GQs comes from the ability of the GQ-forming sequences to populate a large number of syn-anti patterns in their G-tracts. The extreme complexity of the KP of GQs typically prevents an appropriate description of the folding landscape using just a few order parameters or collective variables. We reconcile available computational and experimental studies of GQ folding and formulate basic principles characterizing GQ folding landscapes. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mutation Analysis of Inhibitory Guanine Nucleotide Binding Protein Alpha (GNAI) Loci in Young and Familial Pituitary Adenomas

    PubMed Central

    Demir, Hande; Donner, Iikki; Kivipelto, Leena; Kuismin, Outi; Schalin-Jäntti, Camilla; De Menis, Ernesto; Karhu, Auli

    2014-01-01

    Pituitary adenomas are neoplasms of the anterior pituitary lobe and account for 15–20% of all intracranial tumors. Although most pituitary tumors are benign they can cause severe symptoms related to tumor size as well as hypopituitarism and/or hypersecretion of one or more pituitary hormones. Most pituitary adenomas are sporadic, but it has been estimated that 5% of patients have a familial background. Germline mutations of the tumor suppressor gene aryl hydrocarbon receptor-interacting protein (AIP) predispose to hereditary pituitary neoplasia. Recently, it has been demonstrated that AIP mutations predispose to pituitary tumorigenesis through defective inhibitory GTP binding protein (Gαi) signaling. This finding prompted us to examine whether germline loss-of-function mutations in inhibitory guanine nucleotide (GTP) binding protein alpha (GNAI) loci are involved in genetic predisposition of pituitary tumors. To our knowledge, this is the first time GNAI genes are sequenced in order to examine the occurrence of inactivating germline mutations. Thus far, only somatic gain-of-function hot-spot mutations have been studied in these loci. Here, we have analyzed the coding regions of GNAI1 , GNAI2, and GNAI3 in a set of young sporadic somatotropinoma patients (n = 32; mean age of diagnosis 32 years) and familial index cases (n = 14), thus in patients with a disease phenotype similar to that observed in AIP mutation carriers. In addition, expression of Gαi proteins was studied in human growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone (ACTH)-secreting and non-functional pituitary tumors. No pathogenic germline mutations affecting the Gαi proteins were detected. The result suggests that loss-of-function mutations of GNAI loci are rare or nonexistent in familial pituitary adenomas. PMID:25291362

  15. In Silico Design of New Inhibitors of Guanine Phosphoribosyltransferase (GPRT) from Giardia lamblia as Antiparasitic Drug Candidates.

    PubMed

    das Neves, Gustavo M; Kagami, Luciano P; Rodrigues, Ricardo P; da Silva, Vinícius B; Eifler-Lima, Vera L; Kawano, Daniel F

    2017-01-01

    Guanine phosphoribosyltransferase (GPRT) is a very attractive target for the development of new drugs against G. lamblia because of its critical role in the synthesis of DNA and RNA. Herein we report the use of in silico approaches to identify potential G. lamblia GPRT inhibitors. Analyses of the binding site of the enzyme accomplished through the use of several methods allowed the construction of a pharmacophore model, which was screened against a database of commercial substances. The resulting retrieved compounds were then screened against GPRT by consensus docking with two different methods, and the top 10% scored compounds had their poses visually inspected. Root Mean Square Deviation (RMSD) values ≤ 2.0 Å were used to define a consensual pose while RMSD values between 2 and 3 Å defined a partial consensus. Main toxicity endpoints were predicted through substructural analyses. From the 1,230 compounds retrieved in the pharmacophore-based screening, eleven had their binding modes consensually ascribed by the docking methods, suggesting a better selectivity for the parasite enzyme in comparison to the human counterpart by avoiding steric bumps with a flexible loop in the human enzyme binding site. One compound, ZINC38139588, was predicted to be totally devoid of toxicity, being perhaps the most promising of this series. Through rigorously validated docking protocols, we predicted the binding mode of these compounds in the GPRT binding site. The use of a consensus docking strategy yielded more reliable predictions of the binding modes to guide the future biological assays. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Oxidation of single-stranded oligonucleotides by carbonate radical anions: generating intrastrand cross-links between guanine and thymine bases separated by cytosines

    PubMed Central

    Crean, Conor; Uvaydov, Yuriy; Geacintov, Nicholas E.; Shafirovich, Vladimir

    2008-01-01

    The carbonate radical anion is a biologically important one-electron oxidant that can directly abstract an electron from guanine, the most easily oxidizable DNA base. Oxidation of the 5′-d(CCTACGCTACC) sequence by photochemically generated CO3·− radicals in low steady-state concentrations relevant to biological processes results in the formation of spiroiminodihydantoin diastereomers and a previously unknown lesion. The latter was excised from the oxidized oligonucleotides by enzymatic digestion with nuclease P1 and alkaline phosphatase and identified by LC-MS/MS as an unusual intrastrand cross-link between guanine and thymine. In order to further characterize the structure of this lesion, 5′-d(GpCpT) was exposed to CO3·− radicals, and the cyclic nature of the 5′-d(G*pCpT*) cross-link in which the guanine C8-atom is bound to the thymine N3-atom was confirmed by LC-MS/MS, 1D and 2D NMR studies. The effect of bridging C bases on the cross-link formation was studied in the series of 5′-d(GpCnpT) and 5′-d(TpCnpG) sequences with n = 0, 1, 2 and 3. Formation of the G*-T* cross-links is most efficient in the case of 5′-d(GpCpT). Cross-link formation (n = 0) was also observed in double-stranded DNA molecules derived from the self-complementary 5′-d(TTACGTACGTAA) sequence following exposure to CO3·− radicals and enzymatic excision of the 5′-d(G*pT*) product. PMID:18084033

  17. Guanine nucleotide-sensitive interaction of a radiolabeled agonist with a phospholipase C-linked P2y-purinergic receptor.

    PubMed

    Cooper, C L; Morris, A J; Harden, T K

    1989-04-15

    Analogs of ATP and ADP produce a guanine nucleotide-dependent activation of phospholipase C in turkey erythrocyte membranes with pharmacological properties consistent with those of a P2y-purinergic receptor (Boyer, J. L., Downes, C. P., and Harden, T.K. (1989) J. Biol. Chem. 264, 884-890). This study describes the interaction of adenosine-5'-O-2-thio[35S] diphosphate ([35S]ADP beta S) with this putative P2y-purinergic receptor on purified plasma membranes prepared from turkey erythrocytes. In binding assays performed at 30 degrees C, the association rate constant of [35S] was 1.1 x 10(7) M-1 min-1 and the dissociation rate constant was 3.8 x 10(-2) min-1. [35S]ADP beta S bound with high affinity (Kd = 6-10 nM) to an apparently homogeneous population of sites (Bmax = 2-4 pmol/mg protein). ATP and ADP analogs (2-methylthio ATP, ADP beta S, ATP, ADP, 5'-adenylyl imidodiphosphate, alpha, beta-methylene adenosine-5'-triphosphate, and beta, gamma-methylene adenosine 5'-triphosphate) inhibited the binding of [35S]ADP beta S with properties consistent with ligand interaction by simple law of mass action kinetics at a single site. The rank order of potency for inhibition of [35S]ADP beta S binding was identical to the potency order observed for these same agonists for stimulation of phospholipase C in turkey erythrocyte ghosts. Guanine nucleotides inhibited [35S]ADP beta S binding in a noncompetitive manner with the following potency order: guanosine 5'-O-(3-thiotriphosphate) greater than 5'-guanylyl imidodiphosphate greater than GTP = GDP greater than guanosine 5'-O-2-(thiodiphosphate). The data are consistent with the idea that [35S]ADP beta S may be used to radiolabel the P2y-purinergic receptor linked to activation of phospholipase C in turkey erythrocyte membranes. In addition, interaction of radiolabeled agonist with the receptor is modified by guanine nucleotides, providing evidence that an agonist-induced receptor/guanine nucleotide regulatory protein complex may be

  18. Structure of Low-Lying Excited States of Guanine in DNA and Solution: Combined Molecular Mechanics and High-Level Coupled Cluster Studies

    DOE PAGES

    Kowalski, Karol; Valiev, Marat

    2007-01-01

    High-level ab-initio equation-of-motion coupled-cluster methods with singles, doubles, and noniterative triples are used, in conjunction with the combined quantum mechanical molecular mechanics approach, to investigate the structure of low-lying excited states of the guanine base in DNA and solvated environments. Our results indicate that while the excitation energy of the first excited state is barely changed compared to its gas-phase counterpart, the excitation energy of the second excited state is blue-shifted by 0.24 eV.

  19. ADP-ribosylation factors: a family of approximately 20-kDa guanine nucleotide-binding proteins that activate cholera toxin.

    PubMed

    Welsh, C F; Moss, J; Vaughan, M

    1994-09-01

    ADP-ribosylation factors (ARFs) comprise a family of approximately 20 kDa guanine nucleotide-binding proteins that were discovered as one of several cofactors required in cholera toxin-catalyzed ADP-ribosylation of Gs alpha, the guanine nucleotide-binding protein responsible for stimulation of adenylyl cyclase, and was subsequently found to enhance all cholera toxin-catalyzed reactions and to directly interact with, and activate the toxin. ARF is dependent on GTP or its analogues for activity, binds GTP with high affinity in the presence of dimyristoylphosphatidylcholine/cholate and contains consensus sequences for GTP-binding and hydrolysis. Six mammalian family members have been identified which have been classified into three groups (Class I, II, and III) based on size, deduced amino acid sequence identity, phylogenetic analysis and gene structure. ARFs are ubiquitous among eukaryotes, with a deduced amino acid sequence that is highly conserved across diverse species. They have recently been shown to associate with phospholipid and Golgi membranes in a GTP-dependent manner and are involved in regulating vesicular transport.

  20. The effect of S-substitution at the O6-guanine site on the structure and dynamics of a DNA oligomer containing a G:T mismatch.

    PubMed

    Moore, Elaine Ann; Xu, Yao-Zhong

    2017-01-01

    The effect of S-substitution on the O6 guanine site of a 13-mer DNA duplex containing a G:T mismatch is studied using molecular dynamics. The structure, dynamic evolution and hydration of the S-substituted duplex are compared with those of a normal duplex, a duplex with S-substitution on guanine, but no mismatch and a duplex with just a G:T mismatch. The S-substituted mismatch leads to cell death rather than repair. One suggestion is that the G:T mismatch recognition protein recognises the S-substituted mismatch (GS:T) as G:T. This leads to a cycle of futile repair ending in DNA breakage and cell death. We find that some structural features of the helix are similar for the duplex with the G:T mismatch and that with the S-substituted mismatch, but differ from the normal duplex, notably the helical twist. These differences arise from the change in the hydrogen-bonding pattern of the base pair. However a marked feature of the S-substituted G:T mismatch duplex is a very large opening. This showed considerable variability. It is suggested that this enlarged opening would lend support to an alternative model of cell death in which the mismatch protein attaches to thioguanine and activates downstream damage-response pathways. Attack on the sulphur by reactive oxygen species, also leading to cell death, would also be aided by the large, variable opening.

  1. Universal 1/f noise, crossovers of scaling exponents, and chromosome-specific patterns of guanine-cytosine content in DNA sequences of the human genome

    NASA Astrophysics Data System (ADS)

    Li, Wentian; Holste, Dirk

    2005-04-01

    Spatial fluctuations of guanine and cytosine base content (GC%) are studied by spectral analysis for the complete set of human genomic DNA sequences. We find that (i) 1/fα decay is universally observed in the power spectra of all 24 chromosomes, and (ii) the exponent α≈1 extends to about 107 bases, one order of magnitude longer than has previously been observed. We further find that (iii) almost all human chromosomes exhibit a crossover from α1≈1 (1/fα1) at lower frequency to α2<1 (1/fα2) at higher frequency, typically occurring at around 30 000-100 000 bases, while (iv) the crossover in this frequency range is virtually absent in human chromosome 22. In addition to the universal 1/fα noise in power spectra, we find (v) several lines of evidence for chromosome-specific correlation structures, including a 500 000 base long oscillation in human chromosome 21. The universal 1/fα spectrum in the human genome is further substantiated by a resistance to reduction in variance of guanine and cytosine content when the window size is increased.

  2. Salvinorin A Inhibits Airway Hyperreactivity Induced by Ovalbumin Sensitization

    PubMed Central

    Rossi, Antonietta; Caiazzo, Elisabetta; Bilancia, Rossella; Riemma, Maria A.; Pagano, Ester; Cicala, Carla; Ialenti, Armando; Zjawiony, Jordan K.; Izzo, Angelo A.; Capasso, Raffaele; Roviezzo, Fiorentina

    2017-01-01

    Salvinorin A, a neoclerodane diterpene isolated from Salvia divinorum, exerts a number of pharmacological actions which are not solely limited to the central nervous system. Recently it has been demonstrated that Salvinorin A inhibits acute inflammatory response affecting leukotriene (LT) production. Since LTs are potent lipid mediators implicated in allergic diseases, we evaluated the effect of Salvinorin A on allergic inflammation and on airways following sensitization in the mouse. Mice were sensitized with s.c. injection of ovalbumin (OVA) on days 1 and 8. Sensitized mice received on days 9 and 12 on the shaved dorsal surface air administration to induce the development of the air-pouches. On day 15 animals were challenged by injection of OVA into the air-pouch. Salvinorin A, administered (10 mg/kg) before each allergen exposure, significantly reduced OVA-induced LT increase in the air pouch. This effect was coupled to a reduction in cell recruitment and Th2 cytokine production. In another set of experiments, mice were sensitized with OVA and both bronchial reactivity and pulmonary inflammation were assessed. Salvinorin A abrogated bronchial hyperreactivity and interleukin (IL)-13 production, without effect on pulmonary inflammation. Indeed cell infiltration and peribronchial edema were still present following diterpenoid treatment. Similarly, pulmonary IL-4 and plasmatic IgE levels were not modulated. Conversely, Salvinorin A significantly reduced LTC4 production in the lung of sensitized mice. Finally mast cell activity was evaluated by means of toluidine blue staining. Data obtained evidenced that Salvinorin A significantly inhibited mast cell degranulation in the lung. Our study demonstrates that Salvinorin A inhibits airway hyperreactivity induced by sensitization by inhibition of LT production and mast cell degranulation. In conclusion Salvinorin A could represent a promising candidate for drug development in allergic diseases such as asthma. PMID

  3. Identification of the Structural Features of Guanine Derivatives as MGMT Inhibitors Using 3D-QSAR Modeling Combined with Molecular Docking.

    PubMed

    Sun, Guohui; Fan, Tengjiao; Zhang, Na; Ren, Ting; Zhao, Lijiao; Zhong, Rugang

    2016-06-23

    DNA repair enzyme O⁶-methylguanine-DNA methyltransferase (MGMT), which plays an important role in inducing drug resistance against alkylating agents that modify the O⁶ position of guanine in DNA, is an attractive target for anti-tumor chemotherapy. A series of MGMT inhibitors have been synthesized over the past decades to improve the chemotherapeutic effects of O⁶-alkylating agents. In the present study, we performed a three-dimensional quantitative structure activity relationship (3D-QSAR) study on 97 guanine derivatives as MGMT inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. Three different alignment methods (ligand-based, DFT optimization-based and docking-based alignment) were employed to develop reliable 3D-QSAR models. Statistical parameters derived from the models using the above three alignment methods showed that the ligand-based CoMFA (Qcv² = 0.672 and Rncv² = 0.997) and CoMSIA (Qcv² = 0.703 and Rncv² = 0.946) models were better than the other two alignment methods-based CoMFA and CoMSIA models. The two ligand-based models were further confirmed by an external test-set validation and a Y-randomization examination. The ligand-based CoMFA model (Qext² = 0.691, Rpred² = 0.738 and slope k = 0.91) was observed with acceptable external test-set validation values rather than the CoMSIA model (Qext² = 0.307, Rpred² = 0.4 and slope k = 0.719). Docking studies were carried out to predict the binding modes of the inhibitors with MGMT. The results indicated that the obtained binding interactions were consistent with the 3D contour maps. Overall, the combined results of the 3D-QSAR and the docking obtained in this study provide an insight into the understanding of the interactions between guanine derivatives and MGMT protein, which will assist in designing novel MGMT inhibitors with desired activity.

  4. [New studies on inhibition of tRNA N2 guanine methyltransferase by S-adenosyl-homocysteine and S-adenosyl-methionine analogs].

    PubMed

    Michelot, R; Legreverend, M; Farrugia, G; Lederer, E

    1976-01-01

    New structural analogs of S-adenosyl homocysteine (SAH) 1-9, 11-14, 19-21) and of S-adenosyl methionine (15-18) have been tested as inhibitors of a N-2 guanine methyltransferase extract from rabbit liver with E. coli B tRNA as substrate. The sulfonium compounds (mixture of +/- diastereoisomers) are more inhibitory than the sulfide derivatives but less inhibitory than SAH itself. The replacement of the aminoacid chain in SAH by various alphatic radicals leads to a correlation between their bulk and the size of the enzymatic site. The monosubstitution of N-6 amino group does not affect significantly the inhibitory effect, which is completely canceled by the disubstitution of N-6.

  5. Relative Stability of the La and Lb Excited States in Adenine and Guanine: Direct Evidence from TD-DFT Calculations of MCD Spectra.

    PubMed

    Santoro, Fabrizio; Improta, Roberto; Fahleson, Tobias; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-06-05

    The relative position of La and Lb ππ* electronic states in purine nucleobases is a much debated topic, since it can strongly affect our understanding of their photoexcited dynamics. To assess this point, we calculated the absorption and magnetic circular dichroism (MCD) spectra of adenine, guanine, and their nucleosides in gas-phase and aqueous solution, exploiting recent developments in MCD computational technology within time-dependent density functional theory. MCD spectroscopy allows us to resolve the intense S0→ La transition from the weak S0→ Lb transition. The spectra obtained in water solution, by using B3LYP and CAM-B3LYP functionals and describing solvent effect by cluster models and by the polarizable continuum model (PCM), are in very good agreement with the experimental counterparts, thus providing direct and unambiguous evidence that the energy ordering predicted by TD-DFT, La < Lb, is the correct one.

  6. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro

    SciTech Connect

    Bethlenfalvay, N.C.; White, J.C.; Chadwick, E.

    1990-06-01

    High pressure liquid radiochromatography was used to test the ability of opossum erythrocytes to incorporate tracer amounts of (G-{sup 3}H) hypoxanthine (Hy) into ({sup 3}H) labelled triphosphates of adenine and guanine. In the presence of supraphysiologic (30 mM) phosphate which is optimal for PRPP synthesis, both ATP and GTP are extensively labelled. When physiologic (1 mM) medium phosphate is used, red cells incubated under an atmosphere of nitrogen accumulate ({sup 3}H) ATP in a linear fashion suggesting ongoing PRPP synthesis in red cells whose hemoglobin is deoxygenated. In contrast, a lesser increase of labelled ATP is observed in cells incubatedmore » under oxygen, suggesting that conditions for purine nucleotide formation from ambient Hy are more favorable in the venous circulation.« less

  7. De novo synthesis of purine nucleotides in human peripheral blood leukocytes. Excessive activity of the pathway in hypoxanthine-guanine phosphoribosyltransferase deficiency.

    PubMed Central

    Brosh, S; Boer, P; Kupfer, B; de Vries, A; Sperling, O

    1976-01-01

    Human peripheral blood leukocytes were studied for the presence and the regulatory properties of the pathway of de novo synthesis of purine nucleotides. The cells were found to incorporate the labeled precursors formate and glycine into purines. The rate of [14C]-formate incorporation was decreased by several compounds known to inhibit purine synthesis by affecting the activity by glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase, the first committed enzyme in the pathway, either through decreasing the availability of PRPP, a substrate for this enzyme, or through exerting inhibition on this enzyme. PRPP availability in the leukocyte was found to be limiting for purine synthesis. Increased PRPP availability resulting from activation of PRPP synthetase by increasing inorganic phosphate (Pi) concentration caused acceleration of purine synthesis. On the other hand, no clear-cut evidence was obtained for the availability of ribose-5-phosphate in the leukocyte being rate limiting at physiological extracellular Pi concentration for PRPP generation, and thus for purine synthesis. However, the addition of methylene blue, which accelerates the oxidative pentose shunt that produces ribose-5-phosphate, resulted in acceleration of PRPP generation and of purine synthesis only when PRPP synthetase was largely activated at high Pi concentration. These results may be taken to suggest that ribose-5-phosphate availability is indeed not limiting for PRPP generation under physiological conditions. Purine synthesis de novo was accelerated more than 13-fold in the leukocytes of two gouty patients affected with partial deficiency of hypoxanthine-guanine phosphoribosyltransferase, but was normal in the leukocytes of an obligate heterozygote for this enzyme abnormality. The results domonstrate in peripheral human leukocytes the presence of the complete pathway of de novo synthesis of purine nucleotides and the manifestation in these cells of the biochemical consequences of

  8. A novel and label-free biosensors for uracil-DNA glycosylase activity based on the electrochemical oxidation of guanine bases at the graphene modified electrode.

    PubMed

    Jiao, Feipeng; Qian, Pin; Qin, Yun; Xia, Yalin; Deng, Chunyan; Nie, Zhou

    2016-01-15

    Uracil-DNA glycosylase (UDG) as an important base excision repair enzymes is widely distributed in organism, and it plays a crucial role in sustaining the genome integrity. Therefore, it is significant to carry out the analysis of UDG activity. In this present work, a novel and label-free electrochemical sensing platform for the sensitive detection of uracil DNA glycosylase (UDG) activity has been developed. Herein, the graphene modified glassy carbon (GC) electrode was prepared. And two complementary DNA strands were hybridized to form dsDNA (P1P2). In the presence of UDG, the uracil bases in P1P2 were specifically hydrolyzed, inducing the unwinding of the DNA duplex, and accompanied by the release of P1. Thus, the released P1 was adsorbed onto the graphene/GC electrode surface via π-π stacking. By investigating the electrochemical behavior of P1 at the graphene/GC electrode, the electrochemical oxidation of guanine bases in P1 was obviously observed. Therefore, using the current responses of guanine base in P1 as a signal indicator, UDG activity can be simply determined with high sensitivity, and the detectable lowest concentration is 0.01U/mL. This present design does not need covalent attachment of redox indicator to DNA, preventing participation of redox labels in the background. Meanwhile, the proposed strategy for the assay of UDG activity also has a remarkable sensitivity due to the excellent properties of graphene, which could increase both the immobilization amount of released ssDNA and the conductivity of the sensing system. All these elucidate that this developed protocol may lay a potential foundation for the sensitive detection of UDG activity in clinical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Neisseria gonorrhoeae MutS affects pilin antigenic variation through mismatch correction and not by pilE guanine quartet binding.

    PubMed

    Rotman, Ella; Seifert, H Steven

    2015-05-01

    Many pathogens use homologous recombination to vary surface antigens to avoid immune surveillance. Neisseria gonorrhoeae achieves this in part by changing the properties of its surface pili in a process called pilin antigenic variation (AV). Pilin AV occurs by high-frequency gene conversion reactions that transfer silent pilS sequences into the expressed pilE locus and requires the formation of an upstream guanine quartet (G4) DNA structure to initiate this process. The MutS and MutL proteins of the mismatch correction (MMC) system act to correct mismatches after replication and prevent homeologous (i.e., partially homologous) recombination, but MutS orthologs can also bind to G4 structures. A previous study showed that mutation of MutS resulted in a 3-fold increase in pilin AV, which could be due to the loss of MutS antirecombination properties or loss of G4 binding. We tested two site-directed separation-of-function MutS mutants that are both predicted to bind to G4s but are not able to perform MMC. Pilus phase variation assays and DNA sequence analysis of pilE variants produced in these mutants showed that all three mutS mutants and a mutL mutant had similar increased frequencies of pilin AV. Moreover, the mutS mutants all showed similar increased levels of pilin AV-dependent synthetic lethality. These results show that antirecombination by MMC is the reason for the effect that MutS has on pilin AV and is not due to pilE G4 binding by MutS. Neisseria gonorrhoeae continually changes its outer surface proteins to avoid recognition by the immune system. N. gonorrhoeae alters the antigenicity of the pilus by directed recombination between partially homologous pilin copies in a process that requires a guanine quartet (G4) structure. The MutS protein of the mismatch correction (MMC) system prevents recombination between partially homologous sequences and can also bind to G4s. We confirmed that loss of MMC increases the frequency of pilin antigenic variation and that

  10. Assessment of roles for the Rho-specific guanine nucleotide dissociation inhibitor Ly-GDI in platelet function: a spatial systems approach

    PubMed Central

    Ngo, Anh T. P.; Thierheimer, Marisa L. D.; Babur, Özgün; Rocheleau, Anne D.; Huang, Tao; Pang, Jiaqing; Mitrugno, Annachiara; Theodorescu, Dan; Burchard, Julja; Nan, Xiaolin; Demir, Emek; McCarty, Owen J. T.

    2017-01-01

    On activation at sites of vascular injury, platelets undergo morphological alterations essential to hemostasis via cytoskeletal reorganizations driven by the Rho GTPases Rac1, Cdc42, and RhoA. Here we investigate roles for Rho-specific guanine nucleotide dissociation inhibitor proteins (RhoGDIs) in platelet function. We find that platelets express two RhoGDI family members, RhoGDI and Ly-GDI. Whereas RhoGDI localizes throughout platelets in a granule-like manner, Ly-GDI shows an asymmetric, polarized localization that largely overlaps with Rac1 and Cdc42 as well as microtubules and protein kinase C (PKC) in platelets adherent to fibrinogen. Antibody interference and platelet spreading experiments suggest a specific role for Ly-GDI in platelet function. Intracellular signaling studies based on interactome and pathways analyses also support a regulatory role for Ly-GDI, which is phosphorylated at PKC substrate motifs in a PKC-dependent manner in response to the platelet collagen receptor glycoprotein (GP) VI–specific agonist collagen-related peptide. Additionally, PKC inhibition diffuses the polarized organization of Ly-GDI in spread platelets relative to its colocalization with Rac1 and Cdc42. Together, our results suggest a role for Ly-GDI in the localized regulation of Rho GTPases in platelets and hypothesize a link between the PKC and Rho GTPase signaling systems in platelet function. PMID:28148498

  11. Non-Faradaic electrochemical impedance spectroscopy as a reliable and facile method: Determination of the potassium ion concentration using a guanine rich aptasensor.

    PubMed

    Kazemi, Sayed Habib; Shanehsaz, Maryam; Ghaemmaghami, Mostafa

    2015-01-01

    In this article we report the application of non-Faradaic mode of electrochemical impedance spectroscopy (EIS) for determination of potassium ion (K(+)) concentration using a guanine rich K(+)-selective aptasensor (K(+)-aptasensor). This is a simple, electroactive probe free, sensitive and reproducible method allowing determination of K(+) ion concentration without any disturbance from electroactive probes used in similar works based on the Faradaic EIS method. Herein, a wide linear range of K(+) ion concentrations (1 μM-0.1mM) with a 200 nM limit of detection was achieved which is better than most of the previously reported Faradaic biosensing methods. The proposed method maintains valuable applications when it is used for K(+) determination in the presence of potentially important interferences in biological media. Thus, application of the non-Faradaic EIS method for sensing the concentration of K(+) ion with the presented K(+)-aptasensor can find an important role in clinical assay. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Activation of guanine-β-D-arabinofuranoside and deoxyguanosine to triphosphates by a common pathway blocks T lymphoblasts at different checkpoints.

    PubMed

    Leanza, Luigi; Miazzi, Cristina; Ferraro, Paola; Reichard, Peter; Bianchi, Vera

    2010-12-10

    The deoxyguanosine (GdR) analog guanine-ß-d-arabinofuranoside (araG) has a specific toxicity for T lymphocytes. Also GdR is toxic for T lymphocytes, provided its degradation by purine nucleoside phosphorylase (PNP) is prevented, by genetic loss of PNP or by enzyme inhibitors. The toxicity of both nucleosides requires their phosphorylation to triphosphates, indicating involvement of DNA replication. In cultured cells we found by isotope-flow experiments with labeled araG a rapid accumulation and turnover of araG phosphates regulated by cytosolic and mitochondrial kinases and deoxynucleotidases. At equilibrium their partition between cytosol and mitochondria depended on the substrate saturation kinetics and cellular abundance of the kinases leading to higher araGTP concentrations in mitochondria. dGTP interfered with the allosteric regulation of ribonucleotide reduction, led to highly imbalanced dNTP pools with gradual inhibition of DNA synthesis and cell-cycle arrest at the G1-S boundary. AraGTP had no effect on ribonucleotide reduction. AraG was in minute amounts incorporated into nuclear DNA and stopped DNA synthesis arresting cells in S-phase. Both nucleosides eventually induced caspases and led to apoptosis. We used high, clinically relevant concentrations of araG, toxic for nuclear DNA synthesis. Our experiments do not exclude an effect on mitochondrial DNA at low araG concentrations when phosphorylation occurs mainly in mitochondria. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Multi-level Quantum Mechanics and Molecular Mechanics Study of Ring Opening Process of Guanine Damage by Hydroxyl Radical in Aqueous Solution.

    PubMed

    Liu, Peng; Wang, Qiong; Niu, Meixing; Wang, Dunyou

    2017-08-10

    Combining multi-level quantum mechanics theories and molecular mechanics with an explicit water model, we investigated the ring opening process of guanine damage by hydroxyl radical in aqueous solution. The detailed, atomic-level ring-opening mechanism along the reaction pathway was revealed in aqueous solution at the CCSD(T)/MM levels of theory. The potentials of mean force in aqueous solution were calculated at both the DFT/MM and CCSD(T)/MM levels of the theory. Our study found that the aqueous solution has a significant effect on this reaction in solution. In particular, by comparing the geometries of the stationary points between in gas phase and in aqueous solution, we found that the aqueous solution has a tremendous impact on the torsion angles much more than on the bond lengths and bending angles. Our calculated free-energy barrier height 31.6 kcal/mol at the CCSD(T)/MM level of theory agrees well with the one obtained based on gas-phase reaction profile and free energies of solvation. In addition, the reaction path in gas phase was also mapped using multi-level quantum mechanics theories, which shows a reaction barrier at 19.2 kcal/mol at the CCSD(T) level of theory, agreeing very well with a recent ab initio calculation result at 20.8 kcal/mol.

  14. Mechanisms of the Formation of Adenine, Guanine, and Their Analogues in UV-Irradiated Mixed NH3:H2O Molecular Ices Containing Purine

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Stein, Tamar; Head-Gordon, Martin; Lee, Timothy J.

    2017-08-01

    We investigated the formation mechanisms of the nucleobases adenine and guanine and the nucleobase analogues hypoxanthine, xanthine, isoguanine, and 2,6-diaminopurine in a UV-irradiated mixed 10:1 H2O:NH3 ice seeded with precursor purine by using ab initio and density functional theory computations. Our quantum chemical investigations suggest that a multistep reaction mechanism involving purine cation, hydroxyl and amino radicals, together with water and ammonia, explains the experimentally obtained products in an independent study. The relative abundances of these products appear to largely follow from relative thermodynamic stabilities. The key role of the purine cation is likely to be the reason why purine is not functionalized in pure ammonia ice, where cations are promptly neutralized by free electrons from NH3 ionization. Amine group addition to purine is slightly favored over hydroxyl group attachment based on energetics, but hydroxyl is much more abundant due to higher abundance of H2O. The amino group is preferentially attached to the 6 position, giving 6-aminopurine, that is, adenine, while the hydroxyl group is preferentially attached to the 2 position, leading to 2-hydroxypurine. A second substitution by hydroxyl or amino group occurs at either the 6 or the 2 position depending on the first substitution. Given that H2O is far more abundant than NH3 in the experimentally studied ices (as well as based on interstellar abundances), xanthine and isoguanine are expected to be the most abundant bi-substituted photoproducts.

  15. Novel repair activities of AlkA (3-methyladenine DNA glycosylase II) and endonuclease VIII for xanthine and oxanine, guanine lesions induced by nitric oxide and nitrous acid

    PubMed Central

    Terato, Hiroaki; Masaoka, Aya; Asagoshi, Kenjiro; Honsho, Akiko; Ohyama, Yoshihiko; Suzuki, Toshinori; Yamada, Masaki; Makino, Keisuke; Yamamoto, Kazuo; Ide, Hiroshi

    2002-01-01

    Nitrosation of guanine in DNA by nitrogen oxides such as nitric oxide (NO) and nitrous acid leads to formation of xanthine (Xan) and oxanine (Oxa), potentially cytotoxic and mutagenic lesions. In the present study, we have examined the repair capacity of DNA N-glycosylases from Escherichia coli for Xan and Oxa. The nicking assay with the defined substrates containing Xan and Oxa revealed that AlkA [in combination with endonuclease (Endo) IV] and Endo VIII recognized Xan in the tested enzymes. The activity (Vmax/Km) of AlkA for Xan was 5-fold lower than that for 7-methylguanine, and that of Endo VIII was 50-fold lower than that for thymine glycol. The activity of AlkA and Endo VIII for Xan was further substantiated by the release of [3H]Xan from the substrate. The treatment of E.coli with N-methyl-N′-nitro-N-nitrosoguanidine increased the Xan-excising activity in the cell extract from alkA+ but not alkA– strains. The alkA and nei (the Endo VIII gene) double mutant, but not the single mutants, exhibited increased sensitivity to nitrous acid relative to the wild type strain. AlkA and Endo VIII also exhibited excision activity for Oxa, but the activity was much lower than that for Xan. PMID:12434002

  16. The G-BHQ synergistic effect: Improved double quenching molecular beacons based on guanine and Black Hole Quencher for sensitive simultaneous detection of two DNAs.

    PubMed

    Xiang, Dongshan; Li, Fengquan; Wu, Chenyi; Shi, Boan; Zhai, Kun

    2017-11-01

    We designed two double quenching molecular beacons (MBs) with simple structure based on guanine (G base) and Black Hole Quencher (BHQ), and developed a new analytical method for sensitive simultaneous detection of two DNAs by synchronous fluorescence analysis. In this analytical method, carboxyl fluorescein (FAM) and tetramethyl-6-carboxyrhodamine (TAMRA) were respectively selected as fluorophore of two MBs, Black Hole Quencher 1 (BHQ-1) and Black Hole Quencher 2 (BHQ-2) were respectively selected as organic quencher, and three continuous nucleotides with G base were connected to organic quencher (BHQ-1 and BHQ-2). In the presence of target DNAs, the two MBs hybridize with the corresponding target DNAs, the fluorophores are separated from organic quenchers and G bases, leading to recovery of fluorescence of FAM and TAMRA. Under a certain conditions, the fluorescence intensities of FAM and TAMRA all exhibited good linear dependence on their concentration of target DNAs (T1 and T2) in the range from 4 × 10 -10 to 4 × 10 -8 molL -1 (M). The detection limit (3σ, n = 13) of T1 was 3 × 10 -10 M and that of T2 was 2×10 -10 M, respectively. Compared with the existing analysis methods for multiplex DNA with MBs, this proposed method based on double quenching MBs is not only low fluorescence background, short analytical time and low detection cost, but also easy synthesis and good stability of MB probes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Antiviral activity of a Rac GEF inhibitor characterized with a sensitive HIV/SIV fusion assay

    SciTech Connect

    Pontow, Suzanne; Harmon, Brooke; Campbell, Nancy

    2007-11-10

    A virus-dependent fusion assay was utilized to examine the activity of a panel of HIV-1, -2, and SIV isolates of distinct coreceptor phenotypes. This assay allowed identification of entry inhibitors, and characterization of an antagonist of a Rac guanine nucleotide exchange factor, as an inhibitor of HIV-mediated fusion.

  18. Differential effect of sodium ions and guanine nucleotides on the binding of thioperamide and clobenpropit to histamine H3-receptors in rat cerebral cortical membranes.

    PubMed Central

    Clark, E A; Hill, S J

    1995-01-01

    1. Conflicting reports in the literature over heterogeneity (West et al., 1990) or homogeneity (Arrange et al., 1990) of histamine H3-receptor binding sites may be attributed to the use of different incubation conditions. In the present study we have investigated the extent to which the binding of H3-receptor ligands to rat cerebral cortical membranes can be modified by both sodium ions and guanine nucleotides. 2. The H3-selective antagonist, thioperamide, discriminated between two specific binding sites for [3H]-N alpha-methylhistamine (IC50 1 = 2.75 +/- 0.87 nM, IC50 2 101.6 +/- 12.0 nM, % site 1 = 24 +/- 2%) in 50 mM Tris HCl buffer, but showed homogeneity of binding in 50 mM Na/K phosphate buffer. 3. Sodium ions markedly altered the binding characteristics of thioperamide (i.e. heterogeneity was lost and IC50 value shifted towards the high affinity site). The competition curves for a second H3-antagonist, clobenpropit and the H3-agonist N alpha-methylhistamine however, were unaltered in the presence of sodium ions. 4. Guanylnucleotides displaced only 60% of specific [3H]-N alpha- methylhistamine binding and modulated thioperamide binding in the same way as sodium ions. 5. These data suggest that the H3-receptor can exist in different conformations for which thioperamide, but not N alpha-methylhistamine and clobenpropit, show differential affinity. 6. The potential nature of these sites, and the implications of this apparent receptor heterogeneity for H3-receptor antagonism by thioperamide, are discussed. PMID:7881735

  19. Measurement of thyroid stimulating immunoglobulins using a novel thyroid stimulating hormone receptor–guanine nucleotide-binding protein, (GNAS) fusion bioassay

    PubMed Central

    Pierce, M; Sandrock, R; Gillespie, G; Meikle, A W

    2012-01-01

    Hyperthyroidism, defined by overproduction of thyroid hormones, has a 2–3% prevalence in the population. The most common form of hyperthyroidism is Graves' disease. A diagnostic biomarker for Graves' disease is the presence of immunoglobulins which bind to, and stimulate, the thyroid stimulating hormone receptor (TSHR), a G-protein coupled receptor (GPCR). We hypothesized that the ectopically expressed TSHR gene in a thyroid stimulating immunoglobulin (TSI) assay could be engineered to increase the accumulation of the GPCR pathway second messenger, cyclic AMP (cAMP), the molecule measured in the assay as a marker for pathway activation. An ectopically expressing TSHR-mutant guanine nucleotide-binding protein, (GNAS) Chinese hamster ovary (CHO) cell clone was constructed using standard molecular biology techniques. After incubation of the new clone with sera containing various levels of TSI, GPCR pathway activation was then quantified by measuring cAMP accumulation in the clone. The clone, together with a NaCl-free cell assay buffer containing 5% polyethylene glycol (PEG)6000, was tested against 56 Graves' patients, 27 toxic thyroid nodule patients and 119 normal patients. Using receiver operating characteristic analysis, when comparing normal with Graves' sera, the assay yielded a sensitivity of 93%, a specificity of 99% and an efficiency of 98%. Total complex precision (within-run, across runs and across days), presented as a percentage coefficient of variation, was found to be 7·8, 8·7 and 7·6% for low, medium and high TSI responding serum, respectively. We conclude that the performance of the new TSI assay provides sensitive detection of TSI, allowing for accurate, early detection of Graves' disease. PMID:23039881

  20. Concordance and interaction of guanine nucleotide dissociation inhibitor (RhoGDI) with RhoA in oogenesis and early development of the sea urchin

    PubMed Central

    Zazueta-Novoa, Vanesa; Martínez-Cadena, Guadalupe; Wessel, Gary M.; Zazueta-Sandoval, Roberto; Castellano, Laura; García-Soto, Jesús

    2016-01-01

    Rho GTPases are Ras-related GTPases that regulate a variety of cellular processes. In the sea urchin Strongylocentrotus purpuratus, RhoA in the oocyte associates with the membrane of the cortical granules and directs their movement from the cytoplasm to the cell cortex during maturation to an egg. RhoA also plays an important role regulating the Na+-H+ exchanger activity which determines the internal pH of the cell during the first minutes of embryogenesis. We investigated how this activity may be regulated by a Guanine-nucleotide Dissociation Inhibitor (RhoGDI). The sequence of this RhoA regulatory protein was identified in the genome on the basis of its similarity to other RhoGDI species, especially for key segments in the formation of the isoprenyl-binding pocket and in interactions with the Rho GTPase. We examined the expression and the subcellular localization of RhoGDI during oogenesis and in different developmental stages. We found that RhoGDI mRNA levels were high in eggs and during cleavage divisions until blastula, when it disappeared, only to reappear in gastrula stage. RhoGDI localization overlaps the presence of RhoA during oogenesis and in embryonic development, reinforcing the regulatory premise of the interaction. By use of recombinant protein interactions in vitro, we also find that these two proteins selectively interact. These results support the hypothesis of a functional relationship in vivo and now enable mechanistic insight for the cellular and organellar rearrangements that occur during oogenesis and embryonic development. PMID:21492154

  1. Photoinduced electron detachment and proton transfer: the proposal for alternative path of formation of triplet states of guanine (G) and cytosine (C) pair.

    PubMed

    Gu, Jiande; Wang, Jing; Leszczynski, Jerzy

    2015-02-12

    A viable pathway is proposed for the formation of the triplet state of the GC Watson-Crick base pair. It includes the following steps: (a) a low-energy electron is captured by cytosine in the GC pair, forming the cytosine base-centered radical anion GC(-•); and (b) photoradiation with energy around 5 eV initiates the electron detachment from either cytosine (in the gas phase) or guanine (in aqueous solutions). This triggers interbase proton transfer from G to C, creating the triplet state of the GC pair. Double proton transfer involving the triplet state of GC pair leads to the formation of less stable tautomer G(N2-H)(•)C(O2H)(•). Tautomerization is accomplished through a double proton transfer process in which one proton at the N3 of C(H)(•) migrates to the N1 of G(-H)(•); meanwhile, the proton at the N2 of G transfers to the O2 of C. This process is energetically viable; the corresponding activation energy is around 12-13 kcal/mol. The base-pairing energy of the triplet is found to be ∼3-5 kcal/mol smaller than that of the singlet state. Thus, the formation of the triplet state GC pair in DNA double strand only slightly weakens its stability. The obtained highly reactive radicals are expected to cause serious damage in the DNA involved in biochemical processes, such as DNA replication where radicals are exposed in the single strands.

  2. Photoaddition of two guanine bases to single Ru-TAP complexes. Computational studies and ultrafast spectroscopies to elucidate the pH dependence of primary processes.

    PubMed

    Marcélis, Lionel; Rebarz, Mateusz; Lemaur, Vincent; Fron, Eduard; De Winter, Julien; Moucheron, Cécile; Gerbaux, Pascal; Beljonne, David; Sliwa, Michel; Kirsch-De Mesmaeker, Andrée

    2015-03-26

    The covalent photoadduct (PA) between [Ru(TAP)3](2+) (TAP = 1,4,5,8-tetraazaphenanthrene) and guanosine monophosphate (GMP) opened the way to interesting photobiological applications. In this context, the PA's capability upon illumination to give rise to the addition of a second guanine base is especially interesting. The origins of these intriguing properties are for the first time thoroughly investigated by an experimental and theoretical approach. The PA's spectroscopic and redox data combined with TDDFT results corroborated with resonance Raman data show that the properties of this PA (pKa around 7) depend on the solution pH. Theoretical results indicate that the acid form PA.H(+) when excited should relax to MLCT (metal-to-ligand charge transfer) excited states, in contrast to the basic form PA whose excited state should have LLCT/ILCT (ligand-to-ligand charge transfer/intra ligand charge transfer) characteristics. Ultrafast excitation of PA.H(+) at pH 5.9 produces continuous dynamic processes in a few hundred picoseconds involving coupled proton-electron transfers responsible for luminescence quenching. Long-lived species of a few microseconds capable of reacting with GMP are produced at that pH, in agreement with the formation of covalent addition of a second GMP to PA, as shown by mass spectrometry results. In contrast, at pH 8 (mainly nonprotonated PA), other ultrafast transient species are detected and no GMP biadduct is formed in the presence of GMP. This pH dependence of photoreaction can be rationalized with the different nature of the excited states, thus at pH 8, unreactive LLCT/ILCT states and at pH 5.9 reactive MLCT states.

  3. Quasi-irreversible binding of agonist to beta-adrenoceptors and formation of non-dissociating receptor-G(s) complex in the absence of guanine nucleotides.

    PubMed

    Onaran, H O; Gurdal, H

    2001-08-17

    Here, we tested the hypothesis that receptor-G protein and agonist may form an irreversible complex in the absence of guanine nucleotides. We used the beta-adrenoceptor-G(s) system of guinea pig lung parenchymal membranes as a model. Two groups of membranes were used in the experiments: (1) washed with nucleotide-free buffer in the presence of isoproterenol (isoproterenol-treated), and (2) washed with buffer alone or with agonist+GDP (both were treated as control). Results were as follows: (1) the iodopindolol binding capacity of isoproterenol-treated membranes was reduced by about 30%. (2) No such reduction was observed in control membranes. (3) Addition of GDP to the isoproterenol-treated membranes completely restored the pindolol binding capacity. We interpreted this result as indicating irreversible agonist-receptor complex is formed when the receptor interacts with nucleotide-free G(salpha). (4) We observed a single peak of beta(2)-adrenoceptor activity in the control group by size-exclusion chromatography of the solubilized membranes. Inclusion of isoproterenol in the washing buffer led to an additional (heavier) peak of beta(2)-adrenoceptor activity. This peak disappeared when GDP was added to the detergent extract before high-pressure liquid chromatography (HPLC) analysis. Western blot analysis of these HPLC fractions showed that the agonist-induced heavier peak contained significantly more G(salpha) protein than did the other fractions. We interpreted this result as indicating that a practically irreversible complex of receptor and G protein is formed in the absence of GDP. We suggest that the tightly bound (nucleotide-free) receptor-G protein complex also contains the agonist, and that this complex can be reversed only by the addition of nucleotides. The implications of these results are also discussed.

  4. Distinctions in beta-adrenergic receptor interactions with the magnesium-guanine nucleotide coupling proteins in turkey erythrocyte and S49 lymphoma membranes.

    PubMed

    Vauquelin, G; Cech, S Y; André, C; Strosberg, A D; Maguire, M E

    1982-01-01

    Several homogeneous cell systems contain distinct subpopulations of beta-adrenergic receptors, distinguished by their relative sensitivity to N-ethylmaleimide (NEM) in the presence of agonist but not antagonist (G. Vauquelin and M.E. Maguire (1980) Mol. Pharmacol. 18, 363-369). The sensitivity to agonist/NEM inactivation requires receptor interaction with the magnesium-guanine nucleotide coupling proteins (G/F). We have investigated the effects of agonist/NEM treatment on Mg2+ and GTP modulation of receptor affinity in two such systems, turkey erythrocytes and murine S49 lymphoma cells. In each systems, the agonist/NEM-sensitive beta-receptor subpopulation exhibits both Mg2+ and GTP modulation of beta-receptor affinity for agonist. Further, Mg2+ and GTP are not competitive with regard to alteration of receptor affinity; that is, GTP can block the effect of Mg2+, but not vice versa. In contrast, the agonist/NEM-resistant beta-receptor subpopulation shows distinct differences in Mg2+ and GTP effects when the turkey and S49 systems are compared. The agonist/NEM-resistant population in S49 shows no effect of Mg2+ or GTP on beta-receptor affinity for agonist whereas the resistant beta-receptors of turkey erythrocytes still exhibit modulation by both GTP and Mg2+. Moreover, in this receptor population the actions of GTP and Mg2+ are apparently competitive, with increasing Mg2+ concentrations able to overcome the decrease in affinity induced by GTP. Thus, beta-receptor interaction with the metal/nucleotide coupling proteins may differ significantly in the two systems examined. An additional result of these experiments is the demonstration for S49 beta-receptors that free, unchelated GTP or GDP rather than MgGTP or MgGDP modulates receptor affinity for agonist.

  5. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5'-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa).

    PubMed

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E; Gallo-Reynoso, Juan P

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5'-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5'-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5'-monophosphate (IMP), adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), ATP, guanosine 5'-diphosphate (GDP), guanosine 5'-triphosphate (GTP), and xanthosine 5'-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts.

  6. The pattern of expression of guanine nucleotide-binding protein β3 (GNB3) in the retina is conserved across vertebrate species

    PubMed Central

    Ritchey, Eric R.; Bongini, Rachel E.; Code, Kimberly A.; Zelinka, Christopher; Petersen-Jones, Simon; Fischer, Andy J.

    2010-01-01

    Guanine nucleotide-binding protein β3 (GNB3) is an isoform of the β subunit of the heterotrimeric G protein second messenger complex that is commonly associated with transmembrane receptors. The presence of GNB3 in photoreceptors, and possibly bipolar cells, has been confirmed in murine, bovine and primate retinas (Lee et al., 1992, Peng et al., 1992, Huang et al., 2003). Studies have indicated that a mutation in the GNB3 gene causes progressive retinopathy and globe enlargement (RGE) in chickens. The goals of this study were to 1) examine the expression pattern of GNB3 in wild-type and RGE mutant chickens, 2) characterize the types of bipolar cells that express GNB3 and 3) examine whether the expression of GNB3 in the retina is conserved across vertebrate species. We find that chickens homozygous for the RGE allele completely lack GNB3 protein. We find that the pattern of expression of GNB3 in the retina is highly conserved across vertebrate species, including teleost fish (Carassius auratus), frogs (Xenopus laevis), chickens (Gallus domesticus), mice (Mus musculata), guinea pigs (Cavia porcellus), dogs (Canis familiaris) and non-human primates (Macaca fasicularis). Regardless of the species, we find that GNB3 is expressed by Islet1-positive cone ON-bipolar cells and by cone photoreceptors. In some vertebrates, GNB3-immunoreactivity was observed in both rod and cone photoreceptors. A protein-protein alignment of GNB3 across different vertebrates, from fish to humans, indicates a high degree (>92%) of sequence conservation. Given that analogous types of retinal neurons express GNB3 in different species, we propose that the functions and the mechanisms that regulate the expression of GNB3 are highly conserved. PMID:20538044

  7. Role of the Active Site Guanine in the glmS Ribozyme Self-Cleavage Mechanism: Quantum Mechanical/Molecular Mechanical Free Energy Simulations

    PubMed Central

    2015-01-01

    The glmS ribozyme catalyzes a self-cleavage reaction at the phosphodiester bond between residues A-1 and G1. This reaction is thought to occur by an acid–base mechanism involving the glucosamine-6-phosphate cofactor and G40 residue. Herein quantum mechanical/molecular mechanical free energy simulations and pKa calculations, as well as experimental measurements of the rate constant for self-cleavage, are utilized to elucidate the mechanism, particularly the role of G40. Our calculations suggest that an external base deprotonates either G40(N1) or possibly A-1(O2′), which would be followed by proton transfer from G40(N1) to A-1(O2′). After this initial deprotonation, A-1(O2′) starts attacking the phosphate as a hydroxyl group, which is hydrogen-bonded to deprotonated G40, concurrent with G40(N1) moving closer to the hydroxyl group and directing the in-line attack. Proton transfer from A-1(O2′) to G40 is concomitant with attack of the scissile phosphate, followed by the remainder of the cleavage reaction. A mechanism in which an external base does not participate, but rather the proton transfers from A-1(O2′) to a nonbridging oxygen during nucleophilic attack, was also considered but deemed to be less likely due to its higher effective free energy barrier. The calculated rate constant for the favored mechanism is in agreement with the experimental rate constant measured at biological Mg2+ ion concentration. According to these calculations, catalysis is optimal when G40 has an elevated pKa rather than a pKa shifted toward neutrality, although a balance among the pKa’s of A-1, G40, and the nonbridging oxygen is essential. These results have general implications, as the hammerhead, hairpin, and twister ribozymes have guanines at a similar position as G40. PMID:25526516

  8. Structural Basis for the Failure of the C1 Domain of Ras Guanine Nucleotide Releasing Protein 2 (RasGRP2) to Bind Phorbol Ester with High Affinity*

    PubMed Central

    Czikora, Agnes; Lundberg, Daniel J.; Abramovitz, Adelle; Lewin, Nancy E.; Kedei, Noemi; Peach, Megan L.; Zhou, Xiaoling; Merritt, Raymond C.; Craft, Elizabeth A.; Braun, Derek C.; Blumberg, Peter M.

    2016-01-01

    The C1 domain represents the recognition module for diacylglycerol and phorbol esters in protein kinase C, Ras guanine nucleotide releasing protein (RasGRP), and related proteins. RasGRP2 is exceptional in that its C1 domain has very weak binding affinity (Kd = 2890 ± 240 nm for [3H]phorbol 12,13-dibutyrate. We have identified four amino acid residues responsible for this lack of sensitivity. Replacing Asn7, Ser8, Ala19, and Ile21 with the corresponding residues from RasGRP1/3 (Thr7, Tyr8, Gly19, and Leu21, respectively) conferred potent binding affinity (Kd = 1.47 ± 0.03 nm) in vitro and membrane translocation in response to phorbol 12-myristate 13-acetate in LNCaP cells. Mutant C1 domains incorporating one to three of the four residues showed intermediate behavior with S8Y making the greatest contribution. Binding activity for diacylglycerol was restored in parallel. The requirement for anionic phospholipid for [3H]phorbol 12,13-dibutyrate binding was determined; it decreased in going from the single S8Y mutant to the quadruple mutant. The full-length RasGRP2 protein with the mutated C1 domains also showed strong phorbol ester binding, albeit modestly weaker than that of the C1 domain alone (Kd = 8.2 ± 1.1 nm for the full-length protein containing all four mutations), and displayed translocation in response to phorbol ester. RasGRP2 is a guanyl exchange factor for Rap1. Consistent with the ability of phorbol ester to induce translocation of the full-length RasGRP2 with the mutated C1 domain, phorbol ester enhanced the ability of the mutated RasGRP2 to activate Rap1. Modeling confirmed that the four mutations helped the binding cleft maintain a stable conformation. PMID:27022025

  9. Guanine α-carboxy nucleoside phosphonate (G-α-CNP) shows a different inhibitory kinetic profile against the DNA polymerases of human immunodeficiency virus (HIV) and herpes viruses.

    PubMed

    Balzarini, Jan; Menni, Michael; Das, Kalyan; van Berckelaer, Lizette; Ford, Alan; Maguire, Nuala M; Liekens, Sandra; Boehmer, Paul E; Arnold, Eddy; Götte, Matthias; Maguire, Anita R

    2017-07-15

    α-Carboxy nucleoside phosphonates (α-CNPs) are modified nucleotides that represent a novel class of nucleotide-competing reverse transcriptase (RT) inhibitors (NcRTIs). They were designed to act directly against HIV-1 RT without the need for prior activation (phosphorylation). In this respect, they differ from the nucleoside or nucleotide RTIs [N(t)RTIs] that require conversion to their triphosphate forms before being inhibitory to HIV-1 RT. The guanine derivative (G-α-CNP) has now been synthesized and investigated for the first time. The (L)-(+)-enantiomer of G-α-CNP directly and competitively inhibits HIV-1 RT by interacting with the substrate active site of the enzyme. The (D)-(-)-enantiomer proved inactive against HIV-1 RT. In contrast, the (+)- and (-)-enantiomers of G-α-CNP inhibited herpes (i.e. HSV-1, HCMV) DNA polymerases in a non- or uncompetitive manner, strongly indicating interaction of the (L)-(+)- and the (D)-(-)-G-α-CNPs at a location different from the polymerase substrate active site of the herpes enzymes. Such entirely different inhibition profile of viral polymerases is unprecedented for a single antiviral drug molecule. Moreover, within the class of α-CNPs, subtle differences in their sensitivity to mutant HIV-1 RT enzymes were observed depending on the nature of the nucleobase in the α-CNP molecules. The unique properties of the α-CNPs make this class of compounds, including G-α-CNP, direct acting inhibitors of multiple viral DNA polymerases. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Modeling of Toxicity-Relevant Electrophilic Reactivity for Guanine with Epoxides: Estimating the Hard and Soft Acids and Bases (HSAB) Parameter as a Predictor.

    PubMed

    Zhang, Jing; Wang, Chenchen; Ji, Li; Liu, Weiping

    2016-05-16

    According to the electrophilic theory in toxicology, many chemical carcinogens in the environment and/or their active metabolites are electrophiles that exert their effects by forming covalent bonds with nucleophilic DNA centers. The theory of hard and soft acids and bases (HSAB), which states that a toxic electrophile reacts preferentially with a biological macromolecule that has a similar hardness or softness, clarifies the underlying chemistry involved in this critical event. Epoxides are hard electrophiles that are produced endogenously by the enzymatic oxidation of parent chemicals (e.g., alkenes and PAHs). Epoxide ring opening proceeds through a SN2-type mechanism with hard nucleophile DNA sites as the major facilitators of toxic effects. Thus, the quantitative prediction of chemical reactivity would enable a predictive assessment of the molecular potential to exert electrophile-mediated toxicity. In this study, we calculated the activation energies for reactions between epoxides and the guanine N7 site for a diverse set of epoxides, including aliphatic epoxides, substituted styrene oxides, and PAH epoxides, using a state-of-the-art density functional theory (DFT) method. It is worth noting that these activation energies for diverse epoxides can be further predicted by quantum chemically calculated nucleophilic indices from HSAB theory, which is a less computationally demanding method than the exacting procedure for locating the transition state. More importantly, the good qualitative/quantitative correlations between the chemical reactivity of epoxides and their bioactivity suggest that the developed model based on HSAB theory may aid in the predictive hazard evaluation of epoxides, enabling the early identification of mutagenicity/carcinogenicity-relevant SN2 reactivity.

  11. RasGRF2, a Guanosine Nucleotide Exchange Factor for Ras GTPases, Participates in T-Cell Signaling Responses▿

    PubMed Central

    Ruiz, Sergio; Santos, Eugenio; Bustelo, Xosé R.

    2007-01-01

    The Ras pathway is critical for the development and function of T lymphocytes. The stimulation of this GTPase in T cells occurs primarily through the Vav1- and phospholipase C-γ1-dependent activation of RasGRP1, a diacylglycerol-responsive Ras GDP/GTP exchange factor. Here, we show that a second exchange factor, RasGRF2, also participates in T-cell signaling. RasGRF2 is expressed in T cells, translocates to immune synapses, activates Ras, and stimulates the transcriptional factor NF-AT (nuclear factor of activated T cells) through Ras- and phospholipase C-γ1-dependent routes. T-cell receptor-, Vav1-, and Ca2+-elicited pathways synergize with RasGRF2 for NF-AT stimulation. The analysis of RasGRF2-deficient mice indicates that this protein is required for the induction of bona fide NF-AT targets such as the cytokines tumor necrosis factor alpha and interleukin 2, while it plays minor roles in Ras activation itself. The comparison of lymphocytes from Vav1−/−, Rasgrf2−/−, and Vav1−/−; Rasgrf2−/− mice demonstrates that the RasGRF2 pathway cooperates with the Vav1/RasGRP1 route in the blasting transformation and proliferation of mature T cells. These results identify RasGRF2 as an additional component of the signaling machinery involved in T-cell receptor- and NF-AT-mediated immune responses. PMID:17923690

  12. G-Quadruplex Folds of the Human Telomere Sequence Alter the Site Reactivity and Reaction Pathway of Guanine Oxidation Compared to Duplex DNA

    PubMed Central

    Fleming, Aaron M.; Burrows, Cynthia J.

    2013-01-01

    Telomere shortening occurs during oxidative and inflammatory stress with guanine (G) as the major site of damage. In this work, a comprehensive profile of the sites of oxidation and structures of products observed from G-quadruplex and duplex structures of the human telomere sequence was studied in the G-quadruplex folds (hybrid (K+), basket (Na+), and propeller (K+ + 50% CH3CN)) resulting from the sequence 5’-(TAGGGT)4T-3’ and in an appropriate duplex containing one telomere repeat. Oxidations with four oxidant systems consisting of riboflavin photosensitization, carbonate radical generation, singlet oxygen, and the copper Fenton-like reaction were analyzed under conditions of low product conversion to determine relative reactivity. The one-electron oxidants damaged the 5’-G in G-quadruplexes leading to spiroiminodihydantoin (Sp) and 2,2,4-triamino-2H-oxazol-5-one (Z) as major products as well as 8-oxo-7,8-dihydroguanine (OG) and 5-guanidinohydantoin (Gh) in low relative yields, while oxidation in the duplex context produced damage at the 5’- and middle-Gs of GGG sequences and resulted in Gh being the major product. Addition of the reductant N-acetylcysteine (NAC) to the reaction did not alter the riboflavin-mediated damage sites, but decreased Z by 2-fold and increased OG by 5-fold, while not altering the hydantoin ratio. However, NAC completely quenched the CO3•− reactions. Singlet oxygen oxidations of the G-quadruplex showed reactivity at all Gs on the exterior faces of G-quartets and furnished the product Sp, while no oxidation was observed in the duplex context under these conditions, and addition of NAC had no effect. Because a long telomere sequence would have higher-order structures of G-quadruplexes, studies were also conducted with 5’-(TAGGGT)8-T-3’, and it provided similar oxidation profiles to the single G-quadruplex. Lastly, CuII/H2O2-mediated oxidations were found to be indiscriminate in the damage patterns, and 5-carboxamido-5

  13. Cofactor Dependent Conformational Switching of GTPases

    PubMed Central

    Hauryliuk, Vasili; Hansson, Sebastian; Ehrenberg, Måns

    2008-01-01

    This theoretical work covers structural and biochemical aspects of nucleotide binding and GDP/GTP exchange of GTP hydrolases belonging to the family of small GTPases. Current models of GDP/GTP exchange regulation are often based on two specific assumptions. The first is that the conformation of a GTPase is switched by the exchange of the bound nucleotide from GDP to GTP or vice versa. The second is that GDP/GTP exchange is regulated by a guanine nucleotide exchange factor, which stabilizes a GTPase conformation with low nucleotide affinity. Since, however, recent biochemical and structural data seem to contradict this view, we present a generalized scheme for GTPase action. This novel ansatz accounts for those important cases when conformational switching in addition to guanine nucleotide exchange requires the presence of cofactors, and gives a more nuanced picture of how the nucleotide exchange is regulated. The scheme is also used to discuss some problems of interpretation that may arise when guanine nucleotide exchange mechanisms are inferred from experiments with analogs of GTP, like GDPNP, GDPCP, and GDP \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\gamma}\\end{equation*}\\end{document} S. PMID:18502805

  14. Immunization with Th-CTL fusion peptide and cytosine-phosphate-guanine DNA in transgenic HLA-A2 mice induces recognition of HIV-infected T cells and clears vaccinia virus challenge.

    PubMed

    Daftarian, Pirouz; Ali, Saima; Sharan, Rahul; Lacey, Simon F; La Rosa, Corinna; Longmate, Jeff; Buck, Christopher; Siliciano, Robert F; Diamond, Don J

    2003-10-15

    We evaluated immunogenicity of a novel Th-CTL fusion peptide composed of the pan DR Th epitope and a CTL epitope derived from HIV-pol in two transgenic HLA-A*0201/K(b) mouse models. The immunogenicity of peptides of this structure is highly dependent on coadministered cytosine-phosphate-guanine DNA. Initial evaluations of peptide-specific immunity are based on results of chromium release assay, intracellular cytokine, and tetramer staining. Significant cytotoxic T cell responses are found upon a single immunization with as low as 0.1 nmol both peptide and cytosine-phosphate-guanine DNA. Splenocytes from immunized mice recognize naturally processed HIV-pol expressed from vaccinia virus (pol-VV). Translation of immunologic criteria into more relevant assays was pursued using systemic challenge of immunized mice with pol-VV. Only mice receiving both peptide and DNA together successfully cleared upward of 6 logs of virus from ovaries, compared with controls. Challenge with pol-VV by intranasal route of intranasal immunized mice showed a significant reduction in the levels of VV in lung compared with naive mice. A convincing demonstration of the relevance of these vaccines is the robust lysis of HIV-infected Jurkat T cells (JA2/R7/Hyg) by immune splenocytes from peptide- and DNA-immunized mice. This surprisingly effective immunization merits consideration for clinical evaluation, because it succeeded in causing immune recognition and lysis of cells infected with its target virus and reduction in titer of highly pathogenic VV.

  15. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the. alpha. subunit of the stimulatory guanine nucleotide-binding regulatory protein

    SciTech Connect

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G.

    1988-08-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the {alpha} subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost,more » a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5{prime}-({alpha}-{sup 32}P)triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an {alpha} subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera.« less

  16. DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα)-encoding (GNAS) genomic imprinting domain are associated with performance traits

    PubMed Central

    2011-01-01

    Background Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs) spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS) domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486) were located upstream of the GNAS gene, while one SNP (rs41694646) was located in the second intron of the GNAS gene. The final SNP (rs41694656) was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. Results SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646) is associated (P ≤ 0.05) with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf) and gestation length. Association (P ≤ 0.01) with direct calving difficulty (i.e. due to calf size) and maternal calving difficulty (i.e. due to the maternal pelvic width size) was also observed at the rs43101491 SNP. Following

  17. Capillary HPLC-accurate mass MS/MS quantitation of N7-(2,3,4-trihydroxybut-1-yl)-guanine adducts of 1,3-butadiene in human leukocyte DNA.

    PubMed

    Sangaraju, Dewakar; Villalta, Peter; Goggin, Melissa; Agunsoye, Maria O; Campbell, Colin; Tretyakova, Natalia

    2013-10-21

    1,3-Butadiene (BD) is a high volume industrial chemical commonly used in polymer and rubber production. It is also present in cigarette smoke, automobile exhaust, and urban air, leading to widespread exposure of human populations. Upon entering the body, BD is metabolized to electrophilic epoxides, 3,4-epoxy-1-butene (EB), diepoxybutane (DEB), and 3,4-epoxy-1,2-diol (EBD), which can alkylate DNA nucleobases. The most abundant BD epoxide, EBD, modifies the N7-guanine positions in DNA to form N7-(2, 3, 4-trihydroxybut-1-yl) guanine (N7-THBG) adducts, which can be useful as biomarkers of BD exposure and metabolic activation to DNA-reactive epoxides. In the present work, a capillary HPLC-high resolution ESI⁺-MS/MS (HPLC-ESI⁺-HRMS/MS) methodology was developed for accurate, sensitive, and reproducible quantification of N7-THBG in cell culture and in human white blood cells. In our approach, DNA is subjected to neutral thermal hydrolysis to release N7-guanine adducts from the DNA backbone, followed by ultrafiltration, solid-phase extraction, and isotope dilution HPLC-ESI⁺-HRMS/MS analysis on an Orbitrap Velos mass spectrometer. Following method validation, N7-THBG was quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of DEB and in DNA isolated from blood of smokers, nonsmokers, individuals participating in a smoking cessation program, and occupationally exposed workers. N7-THBG concentrations increased linearly from 31.4 ± 4.84 to 966.55 ± 128.05 adducts per 10⁹ nucleotides in HT1080 cells treated with 1-100 μM DEB. N7-THBG amounts in leukocyte DNA of nonsmokers, smokers, and occupationally exposed workers were 7.08 ± 5.29, 8.20 ± 5.12, and 9.72 ± 3.80 adducts per 10⁹ nucleotides, respectively, suggesting the presence of an endogenous or environmental source for this adduct. The availability of sensitive HPLC-ESI⁺-HRMS/MS methodology for BD-induced DNA adducts in humans will enable future population studies of

  18. Capillary HPLC-Accurate Mass MS/MS Quantitation of N7-(2, 3, 4-trihydroxybut-1-yl)-guanine Adducts of 1,3-Butadiene in Human Leukocyte DNA

    PubMed Central

    Sangaraju, Dewakar; Villalta, Peter; Goggin, Melissa; Agunsoye, Maria O.; Campbell, Colin; Tretyakova, Natalia

    2013-01-01

    1,3-butadiene (BD) is a high volume industrial chemical commonly used in polymer and rubber production. It is also present in cigarette smoke, automobile exhaust, and urban air, leading to widespread exposure of human populations. Upon entering the body, BD is metabolized to electrophilic epoxides, 3,4-epoxy-1-butene (EB), diepoxybutane (DEB), and 3,4-epoxy-1,2-diol (EBD), which can alkylate DNA nucleobases. The most abundant BD epoxide, EBD, modifies the N7-guanine positions in DNA to form N7-(2, 3, 4-trihydroxybut-1-yl) guanine (N7-THBG) adducts, which can be useful as biomarkers of BD exposure and metabolic activation to DNA-reactive epoxides. In the present work, a capillary HPLC- high resolution ESI+-MS/MS (HPLC-ESI+-HRMS/MS) methodology was developed for accurate, sensitive, and reproducible quantification of N7-THBG in cell culture and in human white blood cells. In our approach, DNA is subjected to neutral thermal hydrolysis to release N7-guanine adducts from the DNA backbone, followed by ultrafiltration, solid phase extraction, and isotope dilution HPLC-ESI+-HRMS/MS analysis on an Orbitrap Velos mass spectrometer. Following method validation, N7-THBG was quantified in human fibrosarcoma (HT1080) cells treated with μmolar concentrations of DEB and in DNA isolated from blood of smokers, nonsmokers, individuals participating in a smoking cessation program, and occupationally exposed workers. N7-THBG concentrations increased linearly from 31.4μ± 4.84 to 966.55 ± 128.05 adducts per 109 nucleotides in HT1080 cells treated with 1 -100 μM DEB. N7-THBG amounts in leukocyte DNA of non-smokers, smokers, and occupationally exposed workers were 7.08 ± 5.29, 8.20 ± 5.12, and 9.72 ± 3.80 adducts per 109 nucleotides, respectively, suggesting the presence of an endogenous or environmental source for this adduct. The availability of sensitive HPLC-ESI+-HRMS/MS methodology for BD-induced DNA adducts in humans will enable future population studies of inter

  19. Mass spectrometric (HPLC/ESI--MS/MS) quantification of pyrimido[1,3-a]purin-10(3H)-one, a guanine adduct formed by reaction of malondialdehyde with DNA.

    PubMed

    Hakala, K; Auriola, S; Koivisto, A; Lönnberg, H

    1999-12-01

    A high performance liquid chromatography/electrospray ionization tandem mass spectrometric (HPLC/ESI MS/MS) method has been developed for quantification of pyrimido[1,2-a]purin-10(3H)-one adducts from DNA. The method is based on acid-catalyzed cleavage of the adducts from DNA and the use of [2,3a,10-13C3]pyrimido[1,2-a]purin-10(3H)-one as an internal standard in the analysis. For this purpose the latter compound was prepared. Rate constants for the acid-catalyzed cleavage of pyrimido[1,2-a]purin-10(3H)-one from the corresponding 2'-deoxyribonucleoside were determined, and its hydrolytic stability and possible formation by a cross reaction between guanine and [2,3a,10]pyrimido[1,2-a]purin-10(3H)-one were studied.

  20. Platinum cross-linking of adenines and guanines on the quadruplex structures of the AG3(T2AG3)3 and (T2AG3)4 human telomere sequences in Na+ and K+ solutions

    PubMed Central

    Redon, Sophie; Bombard, Sophie; Elizondo-Riojas, Miguel-Angel; Chottard, Jean-Claude

    2003-01-01

    The quadruplex structures of the human telomere sequences AG3(T2AG3)3 I and (T2AG3)4 II were investigated in the presence of Na+ and K+ ions, through the cross-linking of adenines and guanines by the cis- and trans-[Pt(NH3)2(H2O)2](NO3)2 complexes 1 and 2. The bases involved in chelation of the cis- and trans-Pt(NH3)2 moieties were identified by chemical and 3′-exonuclease digestions of the products isolated after denaturing gel electrophoresis. These are the four adenines of each sequence and four out of the 12 guanines. Two largely different structures have been reported for I: A from NMR data in Na+ solution and B from X-ray data of a K+-containing crystal. Structure A alone agrees with our conclusions about the formation of the A1–G10, A13–G22, A1–A13 platinum chelates at the top of the quadruplex and A7–A19, G4–A19 and A7–G20 at the bottom, whether the Na+ or K+ ion is present. At variance with a recent proposal that structures A and B could be the major species in Na+ and K+ solutions, respectively, our results suggest that structure A exists predominantly in the presence of both ions. They also suggest that covalent platinum cross-linking of a human telomere sequence could be used to inhibit telomerase. PMID:12626701

  1. Lactate dehydrogenase-A inhibition induces human glioblastoma multiforme stem cell differentiation and death

    PubMed Central

    Daniele, Simona; Giacomelli, Chiara; Zappelli, Elisa; Granchi, Carlotta; Trincavelli, Maria Letizia; Minutolo, Filippo; Martini, Claudia

    2015-01-01

    Therapies that target the signal transduction and metabolic pathways of cancer stem cells (CSCs) are innovative strategies to effectively reduce the recurrence and significantly improve the outcome of glioblastoma multiforme (GBM). CSCs exhibit an increased rate of glycolysis, thus rendering them intrinsically more sensitive to prospective therapeutic strategies based on the inhibition of the glycolytic pathway. The enzyme lactate dehydrogenase-A (LDH-A), which catalyses the interconversion of pyruvate and lactate, is up-regulated in human cancers, including GBM. Although several papers have explored the benefits of targeting cancer metabolism in GBM, the effects of direct LDH-A inhibition in glial tumours have not yet been investigated, particularly in the stem cell subpopulation. Here, two representative LDH-A inhibitors (NHI-1 and NHI-2) were studied in GBM-derived CSCs and compared to differentiated tumour cells. LDH-A inhibition was particularly effective in CSCs isolated from different GBM cell lines, where the two compounds blocked CSC formation and elicited long-lasting effects by triggering both apoptosis and cellular differentiation. These data demonstrate that GBM, particularly the stem cell subpopulation, is sensitive to glycolytic inhibition and shed light on the therapeutic potential of LDH-A inhibitors in this tumour type. PMID:26494310

  2. MicroRNA-302a inhibits adipogenesis by suppressing peroxisome proliferator-activated receptor γ expression.

    PubMed

    Jeong, Byung-Chul; Kang, In-Hong; Koh, Jeong-Tae

    2014-09-17

    The present study explored the involvement of miR-302a in adipocyte differentiation via interaction with 3'-untranslated region of peroxisome proliferator-activated receptor gamma (PPARγ) mRNA. In differentiating 3T3-L1 adipocytes, expression of miR-302a was negatively correlated with that of the adipogenic gene aP2 and PPARγ. Overexpression of miR-302a inhibited adipogenic differentiation with lipid accumulation, and inversely anti-miR-302a increased the differentiation. In silico analysis revealed a complementary region of miR-302a seed sequence in 3'-UTR of PPARγ mRNA. Luciferase assay showed the direct interaction of miR-302a with PPARγ at the cellular level. The miR-302a inhibition of adipocyte differentiation was reversed by PPARγ overexpression. These findings suggest that miR-302a might be a negative regulator of adipocyte differentiation and that the dysregulation of miR-302a should lead to metabolic disorders. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. NMR based structural studies decipher stacking of the alkaloid coralyne to terminal guanines at two different sites in parallel G-quadruplex DNA, [d(TTGGGGT)]4and [d(TTAGGGT)]4.

    PubMed

    Padmapriya, Kumar; Barthwal, Ritu

    2017-02-01

    Telomere elongation by telomerase gets inhibited by G-quadruplex DNA found in its guanine rich region. Stabilization of G-quadruplex DNA upon ligand binding has evolved as a promising strategy to target cancer cells in which telomerase is over expressed. Interaction of anti-leukemic alkaloid, coralyne, to tetrameric parallel [d(TTGGGGT)] 4 (Ttel7), [d(TTAGGGT)] 4 (Htel7) and monomeric anti-parallel [dGGGG(TTGGGG) 3 ] (Ttel22) G-quadruplex DNA has been studied using Circular Dichroism (CD) spectroscopy. Titrations of coralyne with Ttel7 and Htel7 were monitored by 1 H and 31 P NMR spectroscopy. Solution structure of coralyne-Ttel7 complex was obtained by restrained Molecular Dynamics (rMD) simulations using distance restraints from 2D NOESY spectra. Thermal stabilization of DNA was determined by absorption, CD and 1 H NMR. Binding of coralyne to Ttel7/Htel7 induces negative CD band at 315/300nm. A significant upfield shift in all GNH, downfield shift in T2/T7 base protons and upfield shift (1.8ppm) in coralyne protons indicates stacking interactions. 31 P chemical shifts and NOE contacts of G3, G6, T2, T7 protons with methoxy protons reveal proximity of coralyne to T2pG3 and G6pT7 sites. Solution structure reveals stacking of coralyne at G6pT7 and T2pG3 steps with two methoxy groups of coralyne located in the grooves along with formation of a hydrogen bond. Binding stabilizes Ttel7/Htel7 by ~25-35°C in 2:1 coralyne-Ttel7/Htel7 complex. The present study is the first report on solution structure of coralyne-Ttel7 complex showing stacking of coralyne with terminal guanine tetrads leading to significant thermal stabilization, which may be responsible for telomerase inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Isotope Dilution nanoLC/ESI+-HRMS3Quantitation of Urinary N7-(1-Hydroxy-3-buten-2-yl) Guanine Adducts in Humans and Their Use as Biomarkers of Exposure to 1,3-Butadiene.

    PubMed

    Sangaraju, Dewakar; Boldry, Emily J; Patel, Yesha M; Walker, Vernon; Stepanov, Irina; Stram, Daniel; Hatsukami, Dorothy; Tretyakova, Natalia

    2017-02-20

    1,3-Butadiene (BD) is an important industrial and environmental chemical classified as a known human carcinogen. Occupational exposure to BD in the polymer and monomer industries is associated with an increased incidence of lymphoma. BD is present in automobile exhaust, cigarette smoke, and forest fires, raising concern about potential exposure of the general population to this carcinogen. Following inhalation exposure, BD is bioactivated to 3,4-epoxy-1-butene (EB). If not detoxified, EB is capable of modifying guanine and adenine bases of DNA to form nucleobase adducts, which interfere with accurate DNA replication and cause cancer-initiating mutations. We have developed a nanoLC/ESI + -HRMS 3 methodology for N7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) adducts in human urine (limit of detection: 0.25 fmol/mL urine; limit of quantitation: 1.0 fmol/mL urine). This new method was successfully used to quantify EB-GII in urine of F344 rats treated with 0-200 ppm of BD, occupationally exposed workers, and smokers belonging to two different ethnic groups. EB-GII amounts increased in a dose-dependent manner in urine of laboratory rats exposed to 0, 62.5, or 200 ppm of BD. Urinary EB-GII levels were significantly increased in workers occupationally exposed to 0.1-2.2 ppm of BD (1.25 ± 0.51 pg/mg of creatinine) as compared to administrative controls exposed to <0.01 ppm of BD (0.22 ± 0.08 and pg/mg of creatinine) (p = 0.0024), validating the use of EB-GII as a biomarker of human exposure to BD. EB-GII was also detected in smokers' urine with European American smokers excreting significantly higher amounts of EB-GII than African American smokers (0.48 ± 0.09 vs 0.12 ± 0.02 pg/mg of creatinine, p = 3.1 × 10 -7 ). Interestingly, small amounts of EB-GII were observed in animals and humans with no known exposure to BD, providing preliminary evidence for its endogenous formation. Urinary EB-GII adduct levels and urinary mercapturic acids of BD (MHBMA, DHBMA) were compared

  5. Huperzine A inhibits immediate addictive behavior but not behavioral sensitization following repeated morphine administration in rats

    PubMed Central

    Sun, Jinling; Tian, Lin; Cui, Ruisi; Li, Xinwang

    2017-01-01

    Acetylcholinesterase inhibitors are regarded as promising therapeutic agents to treat addiction. The current study aimed to examine the effects of huperzine A, a cholinesterase inhibitor, on behavioral sensitization induced by repeated morphine administration and relapse induced by contextual conditioning. The present study also assessed whether the state-dependency hypothesis may explain the results. Adult rats were divided into four groups (n=8) and intraperitoneally injected with 0.2, 0.3 or 0.4 mg/kg huperzine A or saline (1 ml/kg, control), for 5 days. The effect of repeated huperzine A administration alone on locomotor activity was assessed. For the experiments that analyzed the development of morphine-induced sensitization, 40 rats were divided into five groups (n=8): Saline+Saline, Saline+Morphine, 0.2, 0.3 and 0.4 mg/kg huperzine A+Morphine. Following a withdrawal period of 7 days, all animals were administered saline or morphine, as appropriate. To test the state-dependency hypothesis, the rats in the Saline+Morphine group were injected with saline and morphine, while the other three groups were administered different doses of huperzine A and morphine. To examine the effect of huperzine A on the expression of morphine-induced sensitization, the rats in huperzine A+Morphine groups were injected with appropriate concentrations of huperzine A, and morphine. The current results indicated that the administration of huperzine A alone did not affect locomotor activity, while higher doses of huperzine A inhibited the addictive behavior induced by morphine at the development phase. Additionally, huperzine A administration during the expression phase of morphine sensitization did not inhibit the relapse induced by administration of saline. Furthermore, 0.4 mg/kg huperzine A inhibited the expression of morphine-induced behavioral sensitization. Therefore, the results of the current study do not support the state-dependency hypothesis. PMID:28413513

  6. Huperzine A inhibits immediate addictive behavior but not behavioral sensitization following repeated morphine administration in rats.

    PubMed

    Sun, Jinling; Tian, Lin; Cui, Ruisi; Li, Xinwang

    2017-04-01

    Acetylcholinesterase inhibitors are regarded as promising therapeutic agents to treat addiction. The current study aimed to examine the effects of huperzine A, a cholinesterase inhibitor, on behavioral sensitization induced by repeated morphine administration and relapse induced by contextual conditioning. The present study also assessed whether the state-dependency hypothesis may explain the results. Adult rats were divided into four groups (n=8) and intraperitoneally injected with 0.2, 0.3 or 0.4 mg/kg huperzine A or saline (1 ml/kg, control), for 5 days. The effect of repeated huperzine A administration alone on locomotor activity was assessed. For the experiments that analyzed the development of morphine-induced sensitization, 40 rats were divided into five groups (n=8): Saline+Saline, Saline+Morphine, 0.2, 0.3 and 0.4 mg/kg huperzine A+Morphine. Following a withdrawal period of 7 days, all animals were administered saline or morphine, as appropriate. To test the state-dependency hypothesis, the rats in the Saline+Morphine group were injected with saline and morphine, while the other three groups were administered different doses of huperzine A and morphine. To examine the effect of huperzine A on the expression of morphine-induced sensitization, the rats in huperzine A+Morphine groups were injected with appropriate concentrations of huperzine A, and morphine. The current results indicated that the administration of huperzine A alone did not affect locomotor activity, while higher doses of huperzine A inhibited the addictive behavior induced by morphine at the development phase. Additionally, huperzine A administration during the expression phase of morphine sensitization did not inhibit the relapse induced by administration of saline. Furthermore, 0.4 mg/kg huperzine A inhibited the expression of morphine-induced behavioral sensitization. Therefore, the results of the current study do not support the state-dependency hypothesis.

  7. IQ Motif and SEC7 Domain-containing Protein 3 (IQSEC3) Interacts with Gephyrin to Promote Inhibitory Synapse Formation.

    PubMed

    Um, Ji Won; Choii, Gayoung; Park, Dongseok; Kim, Dongwook; Jeon, Sangmin; Kang, Hyeyeon; Mori, Takuma; Papadopoulos, Theofilos; Yoo, Taesun; Lee, Yeunkum; Kim, Eunjoon; Tabuchi, Katsuhiko; Ko, Jaewon

    2016-05-06

    Gephyrin is a central scaffold protein that mediates development, function, and plasticity of mammalian inhibitory synapses by interacting with various inhibitory synaptic proteins. Here, we show that IQSEC3, a guanine nucleotide exchange factor for ARF6, directly interacts with gephyrin, an interaction that is critical for the inhibitory synapse localization of IQSEC3. Overexpression of IQSEC3 increases inhibitory, but not excitatory, synapse density in a guanine nucleotide exchange factor activity-dependent manner. Conversely, knockdown of IQSEC3 decreases size of gephyrin cluster without altering gephyrin puncta density. Collectively, these data reveal that IQSEC3 acts together with gephyrin to regulate inhibitory synapse development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. An AKAP-Lbc-RhoA interaction inhibitor promotes the translocation of aquaporin-2 to the plasma membrane of renal collecting duct principal cells

    PubMed Central

    Zühlke, Kerstin; Abdul Azeez, Kamal R.; Elkins, Jonathan M.; Neuenschwander, Martin; Oder, Andreas; Elkewedi, Mohamed; Jaksch, Sarah; Andrae, Karsten; Li, Jinliang; Fernandes, Joao; Müller, Paul Markus; Grunwald, Stephan; Marino, Stephen F.; Vukićević, Tanja; Eichhorst, Jenny; Wiesner, Burkhard; Weber, Marcus; Kapiloff, Michael; Rocks, Oliver; Daumke, Oliver; Wieland, Thomas; Knapp, Stefan; von Kries, Jens Peter

    2018-01-01

    Stimulation of renal collecting duct principal cells with antidiuretic hormone (arginine-vasopressin, AVP) results in inhibition of the small GTPase RhoA and the enrichment of the water channel aquaporin-2 (AQP2) in the plasma membrane. The membrane insertion facilitates water reabsorption from primary urine and fine-tuning of body water homeostasis. Rho guanine nucleotide exchange factors (GEFs) interact with RhoA, catalyze the exchange of GDP for GTP and thereby activate the GTPase. However, GEFs involved in the control of AQP2 in renal principal cells are unknown. The A-kinase anchoring protein, AKAP-Lbc, possesses GEF activity, specifically activates RhoA, and is expressed in primary renal inner medullary collecting duct principal (IMCD) cells. Through screening of 18,431 small molecules and synthesis of a focused library around one of the hits, we identified an inhibitor of the interaction of AKAP-Lbc and RhoA. This molecule, Scaff10-8, bound to RhoA, inhibited the AKAP-Lbc-mediated RhoA activation but did not interfere with RhoA activation through other GEFs or activities of other members of the Rho family of small GTPases, Rac1 and Cdc42. Scaff10-8 promoted the redistribution of AQP2 from intracellular vesicles to the periphery of IMCD cells. Thus, our data demonstrate an involvement of AKAP-Lbc-mediated RhoA activation in the control of AQP2 trafficking. PMID:29373579

  9. Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug

    NASA Astrophysics Data System (ADS)

    Karimi-Maleh, Hassan; Bananezhad, Asma; Ganjali, Mohammad R.; Norouzi, Parviz; Sadrnia, Abdolhossein

    2018-05-01

    Didanosine is nucleoside analog reverse transcriptase inhibitors with many side effects such as nausea and vomiting, stomach pain, tingling, burning and numbness and determination of this drug is very important in biological samples. This paper presents a DNA biosensor for determination of didanosine (DDI) in pharmaceutical samples. A pencil graphite electrode modified with conductive materials such as polypyrrole (PPy) and reduced graphene oxide (rGO) (PGE/PPy/rGO) was used for this goal. The double-stranded DNA was successfully immobilized on PGE/PPy/rGO. The PGE/PPy/rGO was characterized by microscopic and electrochemical methods. Then, the interaction of DDI with DNA was identified by decreases in the oxidation currents of guanine and adenine by differential pulse voltammetric (DPV) method. The dynamic range of DDI identified in the range of 0.02-50.0 μM and this electrode provided a low limit of detection (LOD = 8.0 nM) for DDI. The PGE/PPy/rGO loaded with ds-DNA was utilized for the measurement of DDI in real samples and obtained data were compared with HPLC method. The statistical tests such as F-test and t-test were used for confirming ability of PGE/PPy/rGO loaded with ds-DNA for analysis of DDI in real samples.

  10. The Guanine-Quadruplex Structure in the Human c-myc Gene's Promoter Is Converted into B-DNA Form by the Human Poly(ADP-Ribose)Polymerase-1

    PubMed Central

    Fekete, Anna; Kenesi, Erzsebet; Hunyadi-Gulyas, Eva; Durgo, Hajnalka; Berko, Barbara; Dunai, Zsuzsanna A.; Bauer, Pal I.

    2012-01-01

    The important regulatory role of the guanine-quadruplex (GQ) structure, present in the nuclease hypersensitive element (NHE) III1 region of the human c-myc (h c-myc) gene's promoter, in the regulation of the transcription of that gene has been documented. Here we present evidences, that the human nuclear poly(ADP-ribose)polymerase-1 (h PARP-1) protein participates in the regulation of the h c-myc gene expression through its interaction with this GQ structure, characterized by binding assays, fluorescence energy transfer (FRET) experiments and by affinity pull-down experiments in vitro, and by chromatin immunoprecipitation (ChIP)-qPCR analysis and h c-myc-promoter-luciferase reporter determinations in vivo. We surmise that h PARP-1 binds to the GQ structure and participates in the conversion of that structure into the transcriptionally more active B-DNA form. The first Zn-finger structure present in h PARP-1 participates in this interaction. PARP-1 might be a new member of the group of proteins participating in the regulation of transcription through their interactions with GQ structures present in the promoters of different genes. PMID:22880082

  11. Astaxanthin induces migration in human skin keratinocytes via Rac1 activation and RhoA inhibition.

    PubMed

    Ritto, Dakanda; Tanasawet, Supita; Singkhorn, Sawana; Klaypradit, Wanwimol; Hutamekalin, Pilaiwanwadee; Tipmanee, Varomyalin; Sukketsiri, Wanida

    2017-08-01

    Re-epithelialization has an important role in skin wound healing. Astaxanthin (ASX), a carotenoid found in crustaceans including shrimp, crab, and salmon, has been widely used for skin protection. Therefore, we investigated the effects of ASX on proliferation and migration of human skin keratinocyte cells and explored the mechanism associated with that migration. HaCaT keratinocyte cells were exposed to 0.25-1 µg/mL of ASX. Proliferation of keratinocytes was analyzed by using MTT assays and flow cytometry. Keratinocyte migration was determined by using a scratch wound-healing assay. A mechanism for regulation of migration was explored via immunocytochemistry and western blot analysis. Our results suggest that ASX produces no significant toxicity in human keratinocyte cells. Cell-cycle analysis on ASX-treated keratinocytes demonstrated a significant increase in keratinocyte cell proliferation at the S phase. In addition, ASX increased keratinocyte motility across the wound space in a time-dependent manner. The mechanism by which ASX increased keratinocyte migration was associated with induction of filopodia and formation of lamellipodia, as well as with increased Cdc42 and Rac1 activation and decreased RhoA activation. ASX stimulates the migration of keratinocytes through Cdc42, Rac1 activation and RhoA inhibition. ASX has a positive role in the re-epithelialization of wounds. Our results may encourage further in vivo and clinical study into the development of ASX as a potential agent for wound repair.

  12. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells

    SciTech Connect

    Kim, Soon-hee; Department of Food and Biotechnology, University of Science and Technology, Daejun; Park, Hee-Sook

    2008-07-18

    Inhibition of adipocyte differentiation is one approach among the anti-obesity strategies. This study demonstrates that vitisin A, a resveratrol tetramer, inhibits adipocyte differentiation most effectively of 18 stilbenes tested. Fat accumulation and PPAR{gamma} expression were decreased by vitisin A in a dose-dependent manner. Vitisin A significantly inhibited preadipocyte proliferation and consequent differentiation within the first 2 days of treatment, indicating that the anti-adipogenic effect of vitisin A was derived from anti-proliferation. Based on cell cycle analysis, vitisin A blocked the cell cycle at the G1-S phase transition, causing cells to remain in the preadipocyte state. Vitisin A increased p21 expression,more » while the Rb phosphorylation level was reduced. Therefore, vitisin A seems to induce G1 arrest through p21- and consequent Rb-dependent suppression of transcription. On the other hand, ERK and Akt signaling pathways were not involved in the anti-mitotic regulation by vitisin A. Taken together, these results suggest that vitisin A inhibits adipocyte differentiation through preadipocyte cell cycle arrest.« less

  13. Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, Julia A.; Heesch, Cheryl M.; Hasser, Eileen M.

    2002-01-01

    Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.

  14. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions

    PubMed Central

    Guillén, Hugo

    2018-01-01

    Monoamine oxidase (MAO) catalyzes the oxidative deamination of amines and neurotransmitters and is involved in mood disorders, depression, oxidative stress, and adverse pharmacological reactions. This work studies the inhibition of human MAO-A by Hypericum perforatum, Peganum harmala, and Lepidium meyenii, which are reported to improve and affect mood and mental conditions. Subsequently, the antioxidant activity associated with the inhibition of MAO is determined in plant extracts for the first time. H. perforatum inhibited human MAO-A, and extracts from flowers gave the highest inhibition (IC50 of 63.6 μg/mL). Plant extracts were analyzed by HPLC-DAD-MS and contained pseudohypericin, hypericin, hyperforin, adhyperforin, hyperfirin, and flavonoids. Hyperforin did not inhibit human MAO-A and hypericin was a poor inhibitor of this isoenzyme. Quercetin and flavonoids significantly contributed to MAO-A inhibition. P. harmala seed extracts highly inhibited MAO-A (IC50 of 49.9 μg/L), being a thousand times more potent than H. perforatum extracts owing to its content of β-carboline alkaloids (harmaline and harmine). L. meyenii root (maca) extracts did not inhibit MAO-A. These plants may exert protective actions related to antioxidant effects. Results in this work show that P. harmala and H. perforatum extracts exhibit antioxidant activity associated with the inhibition of MAO (i.e., lower production of H2O2). PMID:29568754

  15. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis

    SciTech Connect

    Shen, Xue; Kan, Shifeng; Liu, Zhen

    2017-03-01

    Eva-1 homolog A (EVA1A) is a novel lysosome and endoplasmic reticulum-associated protein involved in autophagy and apoptosis. In this study, we constructed a recombinant adenovirus 5-EVA1A vector (Ad5-EVA1A) to overexpress EVA1A in glioblastoma (GBM) cell lines and evaluated its anti-tumor activities in vitro and in vivo. We found that overexpression of EVA1A in three GBM cell lines (U251, U87 and SHG44) resulted in a suppression of tumor cell growth via activation of autophagy and induction of cell apoptosis in a dose- and time-dependent manner. EVA1A-mediated autophagy was associated with inactivation of the mTOR/RPS6KB1 signaling pathway. Furthermore in vivo, overexpression ofmore » EVA1A successfully inhibited tumor growth in NOD/SCID mice. Our data suggest that EVA1A-induced autophagy and apoptosis play a role in suppressing the development of GBM and their up-regulation may be an effective method for treating this form of cancer. - Highlights: • Overexpression of EVA1A suppresses GBM cell growth. • EVA1A induces autophagy through the mTOR/RPS6KB1 pathway. • EVA1A induces GBM cell apoptosis. • EVA1A inhibits the development of GBM in vivo.« less

  16. Astaxanthin induces migration in human skin keratinocytes via Rac1 activation and RhoA inhibition

    PubMed Central

    Ritto, Dakanda; Tanasawet, Supita; Singkhorn, Sawana; Klaypradit, Wanwimol; Hutamekalin, Pilaiwanwadee; Tipmanee, Varomyalin

    2017-01-01

    BACKGROUND/OBJECTIVES Re-epithelialization has an important role in skin wound healing. Astaxanthin (ASX), a carotenoid found in crustaceans including shrimp, crab, and salmon, has been widely used for skin protection. Therefore, we investigated the effects of ASX on proliferation and migration of human skin keratinocyte cells and explored the mechanism associated with that migration. MATERIAL/METHOD HaCaT keratinocyte cells were exposed to 0.25-1 µg/mL of ASX. Proliferation of keratinocytes was analyzed by using MTT assays and flow cytometry. Keratinocyte migration was determined by using a scratch wound-healing assay. A mechanism for regulation of migration was explored via immunocytochemistry and western blot analysis. RESULTS Our results suggest that ASX produces no significant toxicity in human keratinocyte cells. Cell-cycle analysis on ASX-treated keratinocytes demonstrated a significant increase in keratinocyte cell proliferation at the S phase. In addition, ASX increased keratinocyte motility across the wound space in a time-dependent manner. The mechanism by which ASX increased keratinocyte migration was associated with induction of filopodia and formation of lamellipodia, as well as with increased Cdc42 and Rac1 activation and decreased RhoA activation. CONCLUSIONS ASX stimulates the migration of keratinocytes through Cdc42, Rac1 activation and RhoA inhibition. ASX has a positive role in the re-epithelialization of wounds. Our results may encourage further in vivo and clinical study into the development of ASX as a potential agent for wound repair. PMID:28765773

  17. Preclinical activity of combined HDAC and KDM1A inhibition in glioblastoma

    PubMed Central

    Singh, Melissa M.; Johnson, Blake; Venkatarayan, Avinashnarayan; Flores, Elsa R.; Zhang, Jianping; Su, Xiaoping; Barton, Michelle; Lang, Frederick; Chandra, Joya

    2015-01-01

    Background Glioblastoma (GBM) is the most common and aggressive form of brain cancer. Our previous studies demonstrated that combined inhibition of HDAC and KDM1A increases apoptotic cell death in vitro. However, whether this combination also increases death of the glioma stem cell (GSC) population or has an effect in vivo is yet to be determined. Therefore, we evaluated the translational potential of combined HDAC and KDM1A inhibition on patient-derived GSCs and xenograft GBM mouse models. We also investigated the changes in transcriptional programing induced by the combination in an effort to understand the induced molecular mechanisms of GBM cell death. Methods Patient-derived GSCs were treated with the combination of vorinostat, a pan-HDAC inhibitor, and tranylcypromine, a KDM1A inhibitor, and viability was measured. To characterize transcriptional profiles associated with cell death, we used RNA-Seq and validated gene changes by RT-qPCR and protein expression via Western blot. Apoptosis was measured using DNA fragmentation assays. Orthotopic xenograft studies were conducted to evaluate the effects of the combination on tumorigenesis and to validate gene changes in vivo. Results The combination of vorinostat and tranylcypromine reduced GSC viability and displayed efficacy in the U87 xenograft model. Additionally, the combination led to changes in apoptosis-related genes, particularly TP53 and TP73 in vitro and in vivo. Conclusions These data support targeting HDACs and KDM1A in combination as a strategy for GBM and identifies TP53 and TP73 as being altered in response to treatment. PMID:25795306

  18. Preclinical activity of combined HDAC and KDM1A inhibition in glioblastoma.

    PubMed

    Singh, Melissa M; Johnson, Blake; Venkatarayan, Avinashnarayan; Flores, Elsa R; Zhang, Jianping; Su, Xiaoping; Barton, Michelle; Lang, Frederick; Chandra, Joya

    2015-11-01

    Glioblastoma (GBM) is the most common and aggressive form of brain cancer. Our previous studies demonstrated that combined inhibition of HDAC and KDM1A increases apoptotic cell death in vitro. However, whether this combination also increases death of the glioma stem cell (GSC) population or has an effect in vivo is yet to be determined. Therefore, we evaluated the translational potential of combined HDAC and KDM1A inhibition on patient-derived GSCs and xenograft GBM mouse models. We also investigated the changes in transcriptional programing induced by the combination in an effort to understand the induced molecular mechanisms of GBM cell death. Patient-derived GSCs were treated with the combination of vorinostat, a pan-HDAC inhibitor, and tranylcypromine, a KDM1A inhibitor, and viability was measured. To characterize transcriptional profiles associated with cell death, we used RNA-Seq and validated gene changes by RT-qPCR and protein expression via Western blot. Apoptosis was measured using DNA fragmentation assays. Orthotopic xenograft studies were conducted to evaluate the effects of the combination on tumorigenesis and to validate gene changes in vivo. The combination of vorinostat and tranylcypromine reduced GSC viability and displayed efficacy in the U87 xenograft model. Additionally, the combination led to changes in apoptosis-related genes, particularly TP53 and TP73 in vitro and in vivo. These data support targeting HDACs and KDM1A in combination as a strategy for GBM and identifies TP53 and TP73 as being altered in response to treatment. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Dose-response relationships for N7-(2-hydroxyethyl)guanine induced by low-dose [14C]ethylene oxide: evidence for a novel mechanism of endogenous adduct formation.

    PubMed

    Marsden, Debbie A; Jones, Donald J L; Britton, Robert G; Ognibene, Ted; Ubick, Esther; Johnson, George E; Farmer, Peter B; Brown, Karen

    2009-04-01

    Ethylene oxide (EO) is widely used in the chemical industry and is also formed in humans through the metabolic oxidation of ethylene, generated during physiologic processes. EO is classified as a human carcinogen and is a direct acting alkylating agent, primarily forming N7-(2-hydroxyethyl)guanine (N7-HEG). To conduct accurate human risk assessments, it is vital to ascertain the relative contribution of endogenously versus exogenously derived DNA damage and identify the sources of background lesions. We have therefore defined in vivo dose-response relationships over a concentration range relevant to human EO exposures using a dual-isotope approach. By combining liquid chromatography-tandem mass spectrometry and high-performance liquid chromatography-accelerator mass spectrometry analysis, both the endogenous and exogenous N7-HEG adducts were quantified in tissues of [(14)C]EO-treated rats. Levels of [(14)C]N7-HEG induced in spleen, liver, and stomach DNA increased in a linear manner from 0.002 to 4 adducts/10(8) nucleotides. More importantly, the extent of damage arising through this route was insignificant compared with the background abundance of N7-HEG naturally present. However, at the two highest doses, [(14)C]EO exposure caused a significant increase in endogenous N7-HEG formation in liver and spleen, suggesting that EO can induce physiologic pathways responsible for ethylene generation in vivo and thereby indirectly promote N7-HEG production. We present evidence for a novel mechanism of adduct formation to explain this phenomenon, involving oxidative stress and 1-aminocyclopropane-1-carboxylic acid as a potential biosynthetic precursor to ethylene in mammalian cells. Based on the proposed pathway, N7-HEG may have potential as a biomarker of cellular oxidative stress.

  20. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5′-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa)

    PubMed Central

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E.; Gallo-Reynoso, Juan P.

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5′-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5′-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5′-monophosphate (IMP), adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate (ADP), ATP, guanosine 5′-diphosphate (GDP), guanosine 5′-triphosphate (GTP), and xanthosine 5′-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts. PMID:26283971

  1. Multisite contacts involved in coupling of the beta-adrenergic receptor with the stimulatory guanine-nucleotide-binding regulatory protein. Structural and functional studies by beta-receptor-site-specific synthetic peptides.

    PubMed

    Münch, G; Dees, C; Hekman, M; Palm, D

    1991-06-01

    Synthetic peptides, 12-22 amino acid residues long, comprising the presumed coupling sites of the beta-adrenergic receptor with the stimulatory guanine-nucleotide-binding regulatory protein (Gs), were examined for their ability to modulate Gs activation in turkey erythrocyte membranes. Three peptides corresponding to the second cytoplasmic loop, the N-terminal region of the third cytoplasmic loop, and the N-terminal region of the putative fourth cytoplasmic loop, compete synergistically with the hormone-stimulated receptor for Gs activation with median effector concentrations of 15-35 microM, or 3-4 microM for combinations of two peptides. One peptide, corresponding to the C-terminal region of the third cytoplasmic loop, carries the unique ability to activate the Gs-adenylate-cyclase complex independent of the signalling state of the receptor. These observations are consistent with a dynamic model of receptor-mediated G-protein activation in membranes, where domains composed of the second, third and fourth intracellular loop of the receptor bind to and are interactive with the G-protein heterotrimer, resulting in ligand-induced conformational changes of the receptor. In response to hormone binding, the extent or the number of sites involved in interaction with Gs may be readjusted using a fourth site. Modulation of coupling sites may elicit congruent conformational changes within the Gs heterotrimer, with qualitatively different effects on GTP/GDP exchange in the alpha subunit of Gs and downstream effector regulation. This model corroborates and expands a similar model suggested for activated rhodopsin-transducin interaction [König, B., Arendt, A., McDowell, J. H., Kahlert, M., Hargrave, P. A. & Hofmann, K. P. (1989) Proc. Natl Acad. Sci. USA 86, 6878-6882].

  2. Degradation of the non-palmitoylated invertebrate visual guanine-nucleotide binding protein, iGq alpha(C3,4A), by the ubiquitin-proteasomal pathway is regulated by its activation and translocation to the cytoplasm.

    PubMed

    Go, Lynle; Mitchell, Jane

    2007-01-01

    Light-dependent translocation of invertebrate visual guanine-nucleotide binding protein, iGq alpha, from rhabdomeric membranes to the cytoplasm is one of many mechanisms that contribute to light adaptation in the invertebrate eye. We have previously cloned iGq alpha from a Loligo pealei photoreceptor cDNA library and shown that when expressed in HEK 293T cells it is palmitoylated. In this study we compared the activation, cytoplasmic translocation, and turnover of iGq alpha with that of a non-palmitoylated mutant, iGq alpha(C3,4A). In the HEK 293T cells, muscarinic M1 receptors coupled equally well to iGq alpha and iGq alpha(C3,4A) to activate phospholipase C. Activation of iGq alpha(C3,4A), but not iGq alpha, induced translocation of the alpha subunit from the membrane to cytosol with rapid degradation of the soluble protein resulting in a decreased half-life for iGq alpha(C3,4A) of 10 hours compared to 20 hours for iGq alpha. Degradation of iGq alpha(C3,4A) was inhibited by proteasomal inhibitors but not by inhibitors of lysosomal proteases or calpain. The presence of the proteasomal inhibitor led to the accumulation of polyubiquitinated species of either iGq alpha or iGq alpha(C3,4A). Our results suggest that palmitoylation of iGq alpha is required to maintain membrane association of the protein in its active conformation, and whereas membrane-bound and soluble iGq alpha can be polyubiquitinated, membrane association protects the protein from rapid degradation by the proteasomal pathway.

  3. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    PubMed Central

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  4. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange.

    PubMed

    Fenyk, Stepan; Dixon, Christopher H; Gittens, William H; Townsend, Philip D; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2016-01-15

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The nucleotide exchange factor MGE exerts a key function in the ATP-dependent cycle of mt-Hsp70-Tim44 interaction driving mitochondrial protein import.

    PubMed Central

    Schneider, H C; Westermann, B; Neupert, W; Brunner, M

    1996-01-01

    Import of preproteins into the mitochondrial matrix is driven by the ATP-dependent interaction of mt-Hsp70 with the peripheral inner membrane import protein Tim44 and the preprotein in transit. We show that Mge1p, a co-chaperone of mt-Hsp70, plays a key role in the ATP-dependent import reaction cycle in yeast. Our data suggest a cycle in which the mt-Hsp70-Tim44 complex forms with ATP: Mge1p promotes assembly of the complex in the presence of ATP. Hydrolysis of ATP by mt-Hsp70 occurs in complex with Tim44. Mge1p is then required for the dissociation of the ADP form of mt-Hsp70 from Tim44 after release of inorganic phosphate but before release of ADP. ATP hydrolysis and complex dissociation are accompanied by tight binding of mt-Hsp70 to the preprotein in transit. Subsequently, the release of mt-Hsp70 from the polypeptide chain is triggered by Mge1p which promotes release of ADP from mt-Hsp70. Rebinding of ATP to mt-Hsp70 completes the reaction cycle. Images PMID:8918457

  6. Different effects of LDH-A inhibition by oxamate in non-small cell lung cancer cells.

    PubMed

    Yang, Yang; Su, Dan; Zhao, Lin; Zhang, Dan; Xu, Jiaying; Wan, Jianmei; Fan, Saijun; Chen, Ming

    2014-12-15

    Higher rate of glycolysis has been long observed in cancer cells, as a vital enzyme in glycolysis, lactate dehydrogenase A (LDH-A) has been shown with great potential as an anti-cancer target. Accumulating evidence indicates that inhibition of LDH-A induces apoptosis mediated by oxidative stress in cancer cells. To date, it's still unclear that whether autophagy can be induced by LDH-A inhibition. Here, we investigated the effects of oxamate, one classic inhibitor of LDH-A in non-small cell lung cancer (NSCLC) cells as well as normal lung epithelial cells. The results showed that oxamate significantly suppressed the proliferation of NSCLC cells, while it exerted a much lower toxicity in normal cells. As previous studies reported, LDH-A inhibition resulted in ATP reduction and ROS (reactive oxygen species) burst in cancer cells, which lead to apoptosis and G2/M arrest in H1395 cells. However, when being exposed to oxamate, A549 cells underwent autophagy as a protective mechanism against apoptosis. Furthermore, we found evidence that LDH-A inhibition induced G0/G1 arrest dependent on the activation of GSK-3β in A549 cells. Taken together, our results provide useful clues for targeting LDH-A in NSCLC treatment and shed light on the discovery of molecular predictors for the sensitivity of LDH-A inhibitors.

  7. Different effects of LDH-A inhibition by oxamate in non-small cell lung cancer cells

    PubMed Central

    Yang, Yang; Su, Dan; Zhao, Lin; Zhang, Dan; Xu, Jiaying; Wan, Jianmei; Fan, Saijun; Chen, Ming

    2014-01-01

    Higher rate of glycolysis has been long observed in cancer cells, as a vital enzyme in glycolysis, lactate dehydrogenase A (LDH-A) has been shown with great potential as an anti-cancer target. Accumulating evidence indicates that inhibition of LDH-A induces apoptosis mediated by oxidative stress in cancer cells. To date, it's still unclear that whether autophagy can be induced by LDH-A inhibition. Here, we investigated the effects of oxamate, one classic inhibitor of LDH-A in non-small cell lung cancer (NSCLC) cells as well as normal lung epithelial cells. The results showed that oxamate significantly suppressed the proliferation of NSCLC cells, while it exerted a much lower toxicity in normal cells. As previous studies reported, LDH-A inhibition resulted in ATP reduction and ROS (reactive oxygen species) burst in cancer cells, which lead to apoptosis and G2/M arrest in H1395 cells. However, when being exposed to oxamate, A549 cells underwent autophagy as a protective mechanism against apoptosis. Furthermore, we found evidence that LDH-A inhibition induced G0/G1 arrest dependent on the activation of GSK-3β in A549 cells. Taken together, our results provide useful clues for targeting LDH-A in NSCLC treatment and shed light on the discovery of molecular predictors for the sensitivity of LDH-A inhibitors. PMID:25361010

  8. Assessment of BicC family RNA binding protein 1 and Ras protein specific guanine nucleotide releasing factor 1 as candidate genes for high myopia: A case-control study.

    PubMed

    Hepei, Li; Mingkun, Xie; Li, Wang; Jin, Wu

    2017-10-01

    The aim is to evaluate the association between high myopia and genetic variant in the BicC family RNA binding protein 1 (BICC1) as well as its association with Ras protein specific guanine nucleotide releasing factor 1 (RASGRF1) genes in a Chinese Han population with a case-control study. Five TagSNPs in BICC1 and RASGRF1 genes were selected and genotyped in 821 unrelated subjects, which composed of 419 controls (spherical equivalent within ±1.00 D in both eyes and axial length ≦24.0 mm) and 402 cases (spherical equivalent ≤-6.0D in at least one eye and axial length ≥26.0 mm). Statistical analysis was performed with SNPstats. After an analysis adjusted by age and sex, rs4245599 in BICC1 was found to be significantly associated with high myopia under the codominant, dominant, recessive and log-additive model (P = 0.001, 0.0015, 0.0045 and 2e-04, odds ratio [OR] = 2.15, 1.59, 1.73 and 1.46, respectively), and rs10763559 in BICC1 was associated with high myopia and under the dominant and log-additive model (P = 0.032 and 0.036, OR = 0.72 and 0.78, respectively). Rs4778879 in RASGRF1 was found to be significantly associated with high myopia under codominant, dominant, recessive, and log-additive model (P = 0.0088, 0.0065, 0.026, and 0.0021, OR = 1.87, 1.48, 1.56, and 1.37, respectively). However, no significant association was found between rs745030 in RASGRF1 and high myopia, neither was there any association of rs745029 in RASGRF1. The present study indicated that genetic variants in BICC1 and RASGRF1 are closely associated with high myopia, which appears to be a potential candidate for high myopia in Chinese Han population. Considering the small sample size of this study, further work is needed to validate our results. The function of BICC1 and RASGRF1 in the process of developing high myopia needs to be explored in the future.

  9. Follicle-stimulating hormone receptor-mediated uptake of sup 45 Ca sup 2+ by cultured rat Sertoli cells does not require activation of cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding proteins or adenylate cyclase

    SciTech Connect

    Grasso, P.; Reichert, L.E. Jr.

    1990-08-01

    We have previously reported that FSH stimulates flux of 45Ca2+ into cultured Sertoli cells from immature rats via voltage-sensitive and voltage-independent calcium channels. In the present study, we show that this effect of FSH does not require cholera toxin (CT)- or pertussis toxin (PT)-sensitive guanine nucleotide binding (G) protein or activation of adenylate cyclase (AC). Significant stimulation of 45Ca2+ influx was observed within 1 min, and maximal response (3.2-fold over basal levels) was achieved within 2 min after exposure to FSH. FSH-stimulated elevations in cellular cAMP paralleled increases in 45Ca2+ uptake, suggesting a possible coupling of AC activation to 45Ca2+more » influx. (Bu)2cAMP, however, was not able to enhance 45Ca2+ uptake over basal levels at a final concentration of 1000 microM, although a concentration-related increase in androstenedione conversion to estradiol was evident. Exposure of Sertoli cells to CT (10 ng/ml) consistently stimulated basal levels of androstenedione conversion to estradiol but had no effect on basal levels of 45Ca2+ uptake. Similarly, CT had no effect on FSH-induced 45Ca2+ uptake, but potentiated FSH-stimulated estradiol synthesis. PT (10 ng/ml) augmented basal and FSH-stimulated estradiol secretion without affecting 45Ca2+ influx. The adenosine analog N6-phenylisopropyladenosine, which binds to Gi-coupled adenosine receptors on Sertoli cells, inhibited FSH-stimulated androgen conversion to estradiol in a dose-related (1-1000 nM) manner, but FSH-stimulated 45Ca2+ influx remained unchanged. Our results show that in contrast to FSH-stimulated estradiol synthesis, the flux of 45Ca2+ into Sertoli cells in response to FSH is not mediated either directly or indirectly by CT- or PT-sensitive G protein, nor does it require activation of AC. Our data further suggest that the FSH receptor itself may function as a calcium channel.« less

  10. MiR-34a inhibits colon cancer proliferation and metastasis by inhibiting platelet-derived growth factor receptor α.

    PubMed

    Li, Chunyan; Wang, Yulin; Lu, Shuming; Zhang, Zhuqing; Meng, Hua; Liang, Lina; Zhang, Yan; Song, Bo

    2015-11-01

    The microRNA (miRNA), miR‑34a is significant in colon cancer progression. In the present study, the role of miR‑34a in colon cancer cell proliferation and metastasis was investigated. It was found that the expression of miR‑34a in colon cancer tissues and cell lines was lower when compared with that of normal tissues and cells. Further research demonstrated that miR‑34a inhibited cell proliferation, induced G1 phase arrest, and suppressed metastasis and epithelial mesenchymal transition in colon cancer cells. Bioinformatic prediction indicated that platelet‑derived growth factor receptor α (PDGFRA) was a potential target gene of miR‑34a and a luciferase assay identified that PDGFRA was a novel direct target gene of miR‑34a. In addition, assays of western blot analyses and quantitative reverse‑transcription polymerase chain reaction confirmed that miR‑34a decreased PDGFRA mRNA expression and protein levels in colon cancer cells. Assessment of cellular function indicated that miR‑34a inhibited colon cancer progression via PDGFRA. These findings demonstrate that miR‑34a may act as a negative regulator in colon cancer by targeting PDGFRA.

  11. Cyclosporin A inhibits the propagation of influenza virus by interfering with a late event in the virus life cycle.

    PubMed

    Hamamoto, Itsuki; Harazaki, Kazuhiro; Inase, Naohiko; Takaku, Hiroshi; Tashiro, Masato; Yamamoto, Norio

    2013-01-01

    Influenza is a global public health problem that causes a serious respiratory disease. Influenza virus frequently undergoes amino acid substitutions, which result in the emergence of drug-resistant viruses. To control influenza viruses that are resistant to currently available drugs, it is essential to develop new antiviral drugs with a novel molecular target. Here, we report that cyclosporin A (CsA) inhibits the propagation of influenza virus in A549 cells by interfering with a late event in the virus life cycle. CsA did not affect adsorption, internalization, viral RNA replication, or synthesis of viral proteins in A549 cells, but inhibited the step(s) after viral protein synthesis, such as assembly or budding. In addition, siRNA-mediated knockdown of the expression of the major CsA targets, namely cyclophilin A (CypA), cyclophilin B (CypB), and P-glycoprotein (Pgp), did not inhibit influenza virus propagation. These results suggest that CsA inhibits virus propagation by mechanism(s) independent of the inhibition of the function of CypA, CypB, and Pgp. CsA may target an unknown molecule that works as a positive regulator in the propagation of influenza virus. Our findings would contribute to the development of a novel anti-influenza virus therapy and clarification of the regulatory mechanism of influenza virus multiplication.

  12. eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine–nucleotide exchange

    PubMed Central

    Pavitt, Graham D.; Ramaiah, Kolluru V.A.; Kimball, Scot R.; Hinnebusch, Alan G.

    1998-01-01

    eIF2B is a heteropentameric guanine-nucleotide exchange factor essential for protein synthesis initiation in eukaryotes. Its activity is inhibited in response to starvation or stress by phosphorylation of the α subunit of its substrate, translation initiation factor eIF2, resulting in reduced rates of translation and cell growth. We have used an in vitro nucleotide-exchange assay to show that wild-type yeast eIF2B is inhibited by phosphorylated eIF2 [eIF2(αP)] and to characterize eIF2B regulatory mutations that render translation initiation insensitive to eIF2 phosphorylation in vivo. Unlike wild-type eIF2B, eIF2B complexes with mutated GCN3 or GCD7 subunits efficiently catalyzed GDP exchange using eIF2(αP) as a substrate. Using an affinity-binding assay, we show that an eIF2B subcomplex of the GCN3, GCD7, and GCD2 subunits binds to eIF2 and has a higher affinity for eIF2(αP), but it lacks nucleotide-exchange activity. In contrast, the GCD1 and GCD6 subunits form an eIF2B subcomplex that binds equally to eIF2 and eIF2(αP). Remarkably, this second subcomplex has higher nucleotide-exchange activity than wild-type eIF2B that is not inhibited by eIF2(αP). The identification of regulatory and catalytic eIF2B subcomplexes leads us to propose that binding of eIF2(αP) to the regulatory subcomplex prevents a productive interaction with the catalytic subcomplex, thereby inhibiting nucleotide exchange. PMID:9472020

  13. LDH-A Inhibition, a therapeutic strategy for treatment of Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC)

    PubMed Central

    Xie, Han; Valera, Vladimir A.; Merino, Maria J.; Amato, Angela M.; Signoretti, Sabina; Linehan, W. M; Sukhatme, Vikas P.; Seth, Pankaj

    2009-01-01

    The genetic basis for the Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) syndrome is germline inactivating mutation in the gene for the Krebs/tricarboxylic acid (TCA) cycle enzyme, fumarate hydratase (FH), the enzyme that converts fumarate to malate. These individuals are predisposed to development of leiomyomas of the skin and uterus as well as highly aggressive kidney cancers. Inhibition of FH should result in significant decrease in oxidative phosphorylation (OXPHOS) necessitating that glycolysis followed by fermentation of pyruvate to lactate will be required to provide adequate ATP as well as to regenerate NAD+. Moreover, FH deficiency is known to upregulate expression of hypoxia inducible factor (HIF)1 α by enhancing the stability of HIF transcript. This leads to activation of various HIF regulated genes including vascular endothelial growth factor (VEGF), glucose transporter GLUT1, and increased expression of several glycolytic enzymes. Since lactate dehydrogenase-A (LDH-A), also a HIF1 α target, promotes fermentative glycolysis (conversion of pyruvate to lactate), a step essential for regenerating NAD+, we asked whether FH deficient cells would be exquisitely sensitive to LDH-A blockade. Here we report that HLRCC tumors indeed overexpress LDH-A; that LDH-A inhibition results in increased apoptosis in a cell with FH deficiency and that this effect is reactive oxygen species (ROS) mediated; and that LDH-A knockdown in the background of FH knockdown results in significant reduction in tumor growth in a xenograft mouse model. PMID:19276158

  14. GZ-793A inhibits the neurochemical effects of methamphetamine via a selective interaction with the vesicular monoamine transporter-2.

    PubMed

    Nickell, Justin R; Siripurapu, Kiran B; Horton, David B; Zheng, Guangrong; Crooks, Peter A; Dwoskin, Linda P

    2017-01-15

    Lobeline and lobelane inhibit the behavioral and neurochemical effects of methamphetamine via an interaction with the vesicular monoamine transporter-2 (VMAT2). However, lobeline has high affinity for nicotinic receptors, and tolerance develops to the behavioral effects of lobelane. A water-soluble analog of lobelane, R-N-(1,2-dihydroxypropyl)-2,6-cis-di-(4-methoxyphenethyl)piperidine hydrochloride (GZ-793A), also interacts selectively with VMAT2 to inhibit the effects of methamphetamine, but does not produce behavioral tolerance. The current study further evaluated the mechanism underlying the GZ-793A-mediated inhibition of the neurochemical effects of methamphetamine. In contrast to lobeline, GZ-793A does not interact with the agonist recognition site on α4β2 * and α7 * nicotinic receptors. GZ-793A (0.3-100µM) inhibited methamphetamine (5µM)-evoked fractional dopamine release from rat striatal slices, and did not evoke dopamine release in the absence of methamphetamine. Furthermore, GZ-793A (1-100µM) inhibited neither nicotine (30µM)-evoked nor electrical field-stimulation-evoked (100Hz/1min) fractional dopamine release. Unfortunately, GZ-793A inhibited [ 3 H]dofetilide binding to human-ether-a-go-go related gene channels expressed on human embryonic kidney cells, and further, prolonged action potentials in rabbit cardiac Purkinje fibers, suggesting the potential for GZ-793A to induce ventricular arrhythmias. Thus, GZ-793A selectively inhibits the neurochemical effects of methamphetamine and lacks nicotinic receptor interactions; however, development as a pharmacotherapy for methamphetamine use disorders will not be pursued due to its potential cardiac liabilities. Copyright © 2016. Published by Elsevier B.V.

  15. Cyclosporin A Inhibits Rotavirus Replication and Restores Interferon-Beta Signaling Pathway In Vitro and In Vivo

    PubMed Central

    He, Haiyang; Wu, Yuzhang

    2013-01-01

    Rotavirus (RV) is the most common cause of severe diarrhea among infants and young children. Currently, there is no specific drug available against rotavirus, largely due to the lack of an ideal target molecule which has hampered drug development. Our previous studies have revealed that cyclosporin A (CsA) might be potentially useful as an anti-RV drug. We therefore used both cellular and mouse models to study the immunological safety and effectiveness of CsA as an anti-RV drug. We found that CsA treatment of HT-29 cells before, during, and after viral infection efficiently inhibited Wa strain RV replication and restored IFN-β expression in a HT-29 cell line model. Exploring the underlying mechanisms showed that CsA promoted Interferon Regulatory Factor-5 (IRF-5) expression (a key positive regulator of the type I IFN signaling pathway), but not IRF-1, IRF-3, or IRF-7. Additionally, CsA inhibited SOCS-1 expression (the key negative regulator of IFN-α/β), but not SOCS-2 or SOCS-3. The antiviral effect of CsA was confirmed in an RV-infected neonatal mouse model by evaluation of antigen clearance and assessment of changes in intestinal tissue pathology. Also, no differences in T cell frequency or proliferation between the CsA- and vehicle-treated groups were observed. Thus, both our in vitro and in vivo findings suggest that CsA, through modulating the expression of key regulators in IFN signaling pathway, promote type I IFN-based intracellular innate immunity in RV host cells. These findings suggest that CsA may be a useful candidate to develop a new anti-RV strategy, although further evaluation and characterization of CsA on RV-induced diarrhea are warranted. PMID:23990993

  16. Surfactant Protein A Inhibits Growth and Adherence of UropathogenicEscherichia coliTo Protect the Bladder from Infection.

    PubMed

    Hashimoto, Jiro; Takahashi, Motoko; Saito, Atsushi; Murata, Masaki; Kurimura, Yuichiro; Nishitani, Chiaki; Takamiya, Rina; Uehara, Yasuaki; Hasegawa, Yoshihiro; Hiyama, Yoshiki; Sawada, Norimasa; Takahashi, Satoshi; Masumori, Naoya; Kuroki, Yoshio; Ariki, Shigeru

    2017-04-01

    Surfactant protein A (SP-A) is a multifunctional host defense collectin that was first identified as a component of pulmonary surfactant. Although SP-A is also expressed in various tissues, including the urinary tract, its innate immune functions in nonpulmonary tissues are poorly understood. In this study, we demonstrated that adherence of uropathogenic Escherichia coli (UPEC) to the bladder was enhanced in SP-A-deficient mice, which suggests that SP-A plays an important role in innate immunity against UPEC. To understand the innate immune functions of SP-A in detail, we performed in vitro experiments. SP-A directly bound to UPEC in a Ca 2+ -dependent manner, but it did not agglutinate UPEC. Our results suggest that a bouquet-like arrangement seems unsuitable to agglutinate UPEC. Meanwhile, SP-A inhibited growth of UPEC in human urine. Furthermore, the binding of SP-A to UPEC decreased the adherence of bacteria to urothelial cells. These results indicate that direct action of SP-A on UPEC is important in host defense against UPEC. Additionally, adhesion of UPEC to urothelial cells was decreased when the cells were preincubated with SP-A. Adhesion of UPEC to urothelial cells is achieved via interaction between FimH, an adhesin located at bacterial pili, and uroplakin Ia, a glycoprotein expressed on the urothelium. SP-A directly bound to uroplakin Ia and competed with FimH for uroplakin Ia binding. These results lead us to conclude that SP-A plays important roles in host defense against UPEC. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. DENN Domain Proteins: Regulators of Rab GTPases*

    PubMed Central

    Marat, Andrea L.; Dokainish, Hatem; McPherson, Peter S.

    2011-01-01

    The DENN domain is a common, evolutionarily ancient, and conserved protein module, yet it has gone largely unstudied; until recently, little was known regarding its functional roles. New studies reveal that various DENN domains interact directly with members of the Rab family of small GTPases and that DENN domains function enzymatically as Rab-specific guanine nucleotide exchange factors. Thus, DENN domain proteins appear to be generalized regulators of Rab function. Study of these proteins will provide new insights into Rab-mediated membrane trafficking pathways. PMID:21330364

  18. DENN domain proteins: regulators of Rab GTPases.

    PubMed

    Marat, Andrea L; Dokainish, Hatem; McPherson, Peter S

    2011-04-22

    The DENN domain is a common, evolutionarily ancient, and conserved protein module, yet it has gone largely unstudied; until recently, little was known regarding its functional roles. New studies reveal that various DENN domains interact directly with members of the Rab family of small GTPases and that DENN domains function enzymatically as Rab-specific guanine nucleotide exchange factors. Thus, DENN domain proteins appear to be generalized regulators of Rab function. Study of these proteins will provide new insights into Rab-mediated membrane trafficking pathways.

  19. Poly(ADP-ribosyl)ation is recognized by ECT2 during mitosis.

    PubMed

    Li, Mo; Bian, Chunjing; Yu, Xiaochun

    2014-01-01

    Poly(ADP-ribosyl)ation is an unique posttranslational modification and required for spindle assembly and function during mitosis. However, the molecular mechanism of poly(ADP-ribose) (PAR) in mitosis remains elusive. Here, we show the evidence that PAR is recognized by ECT2, a key guanine nucleotide exchange factor in mitosis. The BRCT domain of ECT2 directly binds to PAR both in vitro and in vivo. We further found that α-tubulin is PARylated during mitosis. PARylation of α-tubulin is recognized by ECT2 and recruits ECT2 to mitotic spindle for completing mitosis. Taken together, our study reveals a novel mechanism by which PAR regulates mitosis.

  20. Compositions and methods for detecting Noonan syndrome

    DOEpatents

    Gelb, Bruce D [New York, NY; Tartaglia, Marco [Rome, IT; Pennacchio, Len [Walnut Creek, CA

    2012-07-17

    Diagnostic and therapeutic applications for Noonan Syndrome are described. The diagnostic and therapeutic applications are based on certain mutations in a RAS-specific guanine nucleotide exchange factor gene SOS1 or its expression product. The diagnostic and therapeutic applications are also based on certain mutations in a serine/threonine protein kinase gene RAF1 or its expression product thereof. Also described are nucleotide sequences, amino acid sequences, probes, and primers related to RAF1 or SOS1, and variants thereof, as well as host cells expressing such variants.

  1. Protein phosphatase 2A inhibition and circumvention of cisplatin cross-resistance by novel TCM-platinum anticancer agents containing demethylcantharidin.

    PubMed

    To, Kenneth K W; Wang, Xinning; Yu, Chun Wing; Ho, Yee-Ping; Au-Yeung, Steve C F

    2004-09-01

    Novel TCM-platinum compounds [Pt(C(8)H(8)O(5))(NH(2)R)(2)] 1-5, derived from integrating demethylcantharidin, a modified component from a traditional Chinese medicine (TCM) with a platinum moiety, possess anticancer and protein phosphatase 2A inhibition properties. The compounds are able to circumvent cisplatin resistance by apparently targeting the DNA repair mechanism. Novel isosteric analogues [Pt(C(9)H(10)O(4))(NH(2)R)(2)] A and B, devoid of PP2A-inhibitory activity, were found to suffer from an enhanced DNA repair and were cross-resistant to cisplatin. The results advocate a well-defined structure-activity requirement associating the PP2A-inhibiting demethylcantharidin with the circumvention of cisplatin cross-resistance demonstrated by TCM-Pt compounds 1-5.

  2. Oroxylin A inhibits glycolysis-dependent proliferation of human breast cancer via promoting SIRT3-mediated SOD2 transcription and HIF1α destabilization

    PubMed Central

    Wei, L; Zhou, Y; Qiao, C; Ni, T; Li, Z; You, Q; Guo, Q; Lu, N

    2015-01-01

    Alterations of cellular metabolism play a central role in the development and progression of cancer. Oroxylin A, an active flavonoid of a Chinese traditional medicinal plant, was previously shown to modulate glycolysis in cancer cells. However, the mechanism by which oroxylin A regulates glycolysis is still not well defined. Here, we show that oroxylin A inhibits glycolysis in breast cancer cells via the Sirtuin 3 (SIRT3)-mediated destabilization of hypoxia-inducible factor 1α (HIF1α), which controls glycolytic gene expression. Oroxylin A promotes superoxide dismutase (SOD2) gene expression through SIRT3-regulated DNA-binding activity of FOXO3a and increases the activity of SOD2 by promoting SIRT3-mediated deacetylation. In vivo, oroxylin A inhibits the growth of transplanted human breast tumors associated with glycolytic suppression. These data indicate that oroxylin A inhibits glycolysis-dependent proliferation of breast cancer cells, through the suppression of HIF1α stabilization via SIRT3 activation, providing preclinical information for the cancer therapies of SIRT3 stimulation. PMID:25855962

  3. Redox regulation of Rac1 by thiol oxidation

    PubMed Central

    Hobbs, G. Aaron; Mitchell, Lauren E.; Arrington, Megan E.; Gunawardena, Harsha P.; DeCristo, Molly J.; Loeser, Richard F.; Chen, Xian; Cox, Adrienne D.; Campbell, Sharon L.

    2016-01-01

    The Rac1 GTPase is an essential and ubiquitous protein that signals through numerous pathways to control critical cellular processes, including cell growth, morphology, and motility. Rac1 deletion is embryonic lethal, and its dysregulation or mutation can promote cancer, arthritis, cardiovascular disease, and neurological disorders. Rac1 activity is highly regulated by modulatory proteins and posttranslational modifications. Whereas much attention has been devoted to guanine nucleotide exchange factors that act on Rac1 to promote GTP loading and Rac1 activation, cellular oxidants may also regulate Rac1 activation by promoting guanine nucleotide exchange. Herein, we show that Rac1 contains a redox-sensitive cysteine (Cys18) that can be selectively oxidized at physiological pH because of its lowered pKa. Consistent with these observations, we show that Rac1 is glutathiolated in primary chondrocytes. Oxidation of Cys18 by glutathione greatly perturbs Rac1 guanine nucleotide binding and promotes nucleotide exchange. As aspartate substitutions have been previously used to mimic cysteine oxidation, we characterized the biochemical properties of Rac1C18D. We also evaluated Rac1C18S as a redox-insensitive variant and found that it retains structural and biochemical properties similar to those of Rac1WT but is resistant to thiol oxidation. In addition, Rac1C18D, but not Rac1C18S, shows greatly enhanced nucleotide exchange, similar to that observed for Rac1 oxidation by glutathione. We employed Rac1C18D in cell-based studies to assess whether this fast-cycling variant, which mimics Rac1 oxidation by glutathione, affects Rac1 activity and function. Expression of Rac1C18D in Swiss 3T3 cells showed greatly enhanced GTP-bound Rac1 relative to Rac1WT and the redox-insensitive Rac1C18S variant. Moreover, expression of Rac1C18D in HEK-293T cells greatly promoted lamellipodia formation. Our results suggest that Rac1 oxidation at Cys18 is a novel posttranslational modification that

  4. GDP-GTP exchange processes of G{alpha}i1 protein are accelerated/decelerated depending on the type and the concentration of added detergents.

    PubMed

    Kubota, Makoto; Tanaka, Takeshi; Kohno, Toshiyuki; Wakamatsu, Kaori

    2009-12-01

    Although detergents have been widely used in G-protein studies to increase solubility and stability of the protein, we noticed that detergents modulate the nucleotide-binding properties of G-proteins. Hence, we analysed the effects of detergents on guanine nucleotide exchange reactions of Galpha(i1). Lubrol PX, a non-ionic detergent, which has been widely used in nucleotide dissociation/binding assays, was found to accelerate both GDP dissociation and GTPgammaS binding from/to Galpha in parallel at above its critical micelle concentration (cmc). Sodium cholate, an anionic detergent, which have been used to extract G-proteins from animal tissues, decelerated and accelerated GDP dissociation below and above its cmc, respectively. Surprisingly, micellar cholate decelerated GTPgammaS binding, and the binding rate constant was decreased by three orders of magnitude in the presence of 2% cholate. These results demonstrate that the guanine nucleotide exchange reactions of Galpha(i1) are drastically modulated by detergents differently depending on the type and the state (monomeric or micellar) of the detergents and that dissociation of GDP from Galpha(i1) does not necessarily lead to immediate binding of GTP to Galpha(i1) in some cases. These effects of detergents on G-proteins must be taken into account in G-protein experiments.

  5. Selective effects of charge on G protein activation by FSH-receptor residues 551-555 and 650-653.

    PubMed

    Grasso, P; Deziel, M R; Reichert, L E

    1995-01-01

    Two cytosolic regions of the rat testicular FSH receptor (FSHR), residues 533-555 and 645-653, have been identified as G protein-coupling domains. We localized the activity in these domains to their C-terminal sequences, residues 551-555 (KIAKR, net charge +3) and 650-653 (RKSH, net charge +3), and examined the effects of charge on G protein activation by the C-terminal peptides, using synthetic analogs containing additions, through alanine (A) linkages, of arginine (R, +), histidine (H, +) or both. RA-KIAKR (net charge +4) mimicked the effect of FSHR-(551-555) on guanine nucleotide exchange in rat testis membranes, but reduced its ability to inhibit FSH-stimulated estradiol biosynthesis in cultured rat Sertoli cells. Further increasing net charge by the addition of H (HARA-KIAKR, net charge +5) increased guanosine 5'-triphosphate (GTP) binding, but eliminated FSHR-(551-555) effects on FSH-stimulated steroidogenesis. HA-RKSH (net charge +4) significantly inhibited guanine nucleotide exchange in rat testis membranes, but stimulated basal and potentiated FSH-induced estradiol biosynthesis in cultured rat Sertoli cells. Addition of two H residues (HAHA-RKSH, net charge +5) restored GTP binding and further potentiated basal and FSH-stimulated steroidogenesis. These results suggest that positive charges in G protein-coupling domains of the FSHR play a role in modulating G protein activation and postbinding effects of FSH, such as steroidogenesis.

  6. Phosphorylation of the Rab exchange factor Sec2p directs a switch in regulatory binding partners.

    PubMed

    Stalder, Danièle; Mizuno-Yamasaki, Emi; Ghassemian, Majid; Novick, Peter J

    2013-12-10

    Sec2p is a guanine nucleotide exchange factor that promotes exocytosis by activating the Rab GTPase Sec4p. Sec2p is highly phosphorylated, and we have explored the role of phosphorylation in the regulation of its function. We have identified three phosphosites and demonstrate that phosphorylation regulates the interaction of Sec2p with its binding partners Ypt32p, Sec15p, and phosphatidyl-inositol-4-phosphate. In its nonphosphorylated form, Sec2p binds preferentially to the upstream Rab, Ypt32p-GTP, thus forming a Rab guanine nucleotide exchange factor cascade that leads to the activation of the downstream Rab, Sec4p. The nonphosphorylated form of Sec2p also binds to the Golgi-associated phosphatidyl-inositol-4-phosphate, which works in concert with Ypt32p-GTP to recruit Sec2p to Golgi-derived secretory vesicles. In contrast, the phosphorylated form of Sec2p binds preferentially to Sec15p, a downstream effector of Sec4p and a component of the exocyst tethering complex, thus forming a positive-feedback loop that prepares the secretory vesicle for fusion with the plasma membrane. Our results suggest that the phosphorylation state of Sec2p can direct a switch in its regulatory binding partners that facilitates maturation of the secretory vesicle and helps to promote the directionality of vesicular transport.

  7. A negative-feedback loop regulating ERK1/2 activation and mediated by RasGPR2 phosphorylation

    SciTech Connect

    Ren, Jinqi; Cook, Aaron A.; Bergmeier, Wolfgang

    2016-05-20

    The dynamic regulation of ERK1 and -2 (ERK1/2) is required for precise signal transduction controlling cell proliferation, differentiation, and survival. However, the underlying mechanisms regulating the activation of ERK1/2 are not completely understood. In this study, we show that phosphorylation of RasGRP2, a guanine nucleotide exchange factor (GEF), inhibits its ability to activate the small GTPase Rap1 that ultimately leads to decreased activation of ERK1/2 in cells. ERK2 phosphorylates RasGRP2 at Ser394 located in the linker region implicated in its autoinhibition. These studies identify RasGRP2 as a novel substrate of ERK1/2 and define a negative-feedback loop that regulates the BRaf–MEK–ERKmore » signaling cascade. This negative-feedback loop determines the amplitude and duration of active ERK1/2. -- Highlights: •ERK2 phosphorylates the guanine nucleotide exchange factor RasGRP2 at Ser394. •Phosphorylated RasGRP2 has decreased capacity to active Rap1b in vitro and in cells. •Phosphorylation of RasGRP2 by ERK1/2 introduces a negative-feedback loop into the BRaf-MEK-ERK pathway.« less

  8. The Rac activator DOCK2 regulates natural killer cell-mediated cytotoxicity in mice through the lytic synapse formation.

    PubMed

    Sakai, Yusuke; Tanaka, Yoshihiko; Yanagihara, Toyoshi; Watanabe, Mayuki; Duan, Xuefeng; Terasawa, Masao; Nishikimi, Akihiko; Sanematsu, Fumiyuki; Fukui, Yoshinori

    2013-07-18

    Natural killer (NK) cells play an important role in protective immunity against viral infection and tumor progression, but they also contribute to rejection of bone marrow grafts via contact-dependent cytotoxicity. Ligation of activating NK receptors with their ligands expressed on target cells induces receptor clustering and actin reorganization at the interface and triggers polarized movement of lytic granules to the contact site. Although activation of the small GTPase Rac has been implicated in NK cell-mediated cytotoxicity, its precise role and the upstream regulator remain elusive. Here, we show that DOCK2, an atypical guanine nucleotide exchange factor for Rac, plays a key role in NK cell-mediated cytotoxicity. We found that although DOCK2 deficiency in NK cells did not affect conjugate formation with target cells, DOCK2-deficienct NK cells failed to effectively kill leukemia cells in vitro and major histocompatibility complex class I-deficient bone marrow cells in vivo, regardless of the sorts of activating receptors. In DOCK2-deficient NK cells, NKG2D-mediated Rac activation was almost completely lost, resulting in a severe defect in the lytic synapse formation. Similar results were obtained when the Rac guanine nucleotide exchange factor activity of DOCK2 was selectively abrogated. These results indicate that DOCK2-Rac axis controls NK cell-mediated cytotoxicity through the lytic synapse formation.

  9. Rescue of GABAB and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice.

    PubMed

    Lecca, Salvatore; Pelosi, Assunta; Tchenio, Anna; Moutkine, Imane; Lujan, Rafael; Hervé, Denis; Mameli, Manuel

    2016-03-01

    The lateral habenula (LHb) encodes aversive signals, and its aberrant activity contributes to depression-like symptoms. However, a limited understanding of the cellular mechanisms underlying LHb hyperactivity has precluded the development of pharmacological strategies to ameliorate depression-like phenotypes. Here we report that an aversive experience in mice, such as foot-shock exposure (FsE), induces LHb neuronal hyperactivity and depression-like symptoms. This occurs along with increased protein phosphatase 2A (PP2A) activity, a known regulator of GABAB receptor (GABABR) and G protein-gated inwardly rectifying potassium (GIRK) channel surface expression. Accordingly, FsE triggers GABAB1 and GIRK2 internalization, leading to rapid and persistent weakening of GABAB-activated GIRK-mediated (GABAB-GIRK) currents. Pharmacological inhibition of PP2A restores both GABAB-GIRK function and neuronal excitability. As a consequence, PP2A inhibition ameliorates depression-like symptoms after FsE and in a learned-helplessness model of depression. Thus, GABAB-GIRK plasticity in the LHb represents a cellular substrate for aversive experience. Furthermore, its reversal by PP2A inhibition may provide a novel therapeutic approach to alleviate symptoms of depression in disorders that are characterized by LHb hyperactivity.

  10. Cladribine Analogues via O6-(Benzotriazolyl) Derivatives of Guanine Nucleosides

    PubMed Central

    Satishkumar, Sakilam; Vuram, Prasanna K.; Relangi, Siva Subrahmanyam; Gurram, Venkateshwarlu; Zhou, Hong; Kreitman, Robert J.; Montemayor, Michelle M. Martínez; Yang, Lijia; Kaliyaperumal, Muralidharan; Sharma, Somesh; Pottabathini, Narender; Lakshman, Mahesh K.

    2016-01-01

    Cladribine, 2-chloro-2′-deoxyadenosine, is a highly efficacious clinically used nucleoside for the treatment of hairy cell leukemia. It is also being evaluated against other lymphoid malignancies and has been a molecule of interest for well over half a century. In continuation of our interest on the amide bond-activation in purine nucleosides via the use of (benzotriazol-1yl-oxy)tris(dimethylamino)phosphonium hexafluorophosphate, we have evaluated the use of O6-(benzotriazol-1-yl)-2′-deoxyguanosine as a potential precursor to cladribine and its analogues. These compounds, after appropriate deprotection, were assessed for their biological activities and the data are presented herein. Against hairy cell leukemia (HCL), T-cell lymphoma (TCL), and chronic lymphocytic leukemia (CLL) cladribine was the most active against all. The bromo analogue of cladribine showed comparable activity to the ribose analogue of cladribine against HCL, but was more active against TCL and CLL. The bromo ribo analogue of cladribine possessed activity, but was least active among the C6-NH2-containing compounds. Substitution with alkyl groups at the exocyclic amino group appears detrimental to activity, and only the C6 piperidinyl cladribine analogue demonstrated any activity. Against adenocarcinoma MDA-MB-231 cells, only cladribine and its ribose analogue were most active. PMID:26556315

  11. Preparation of guanine and diaminopurine from biuret. Part III.

    PubMed

    Lagoja, Irene M; Herdewijn, Piet

    2007-04-01

    Because of their potential prebiotic origin and relative chemical stability, urea, biuret, formic acid, and glycine amide might have played a role in the assembly process of purine bases. In this paper, we describe a short reaction path to purine nucleobases from these acyclic precursors. The formation of different purines was verified by UV and NMR spectroscopy, as well as by mass spectrometry.

  12. Total Synthesis and Evaluation of Cytostatin, its C10–C11 Diastereomers, and Additional Key Analogues: Impact on PP2A Inhibition

    PubMed Central

    Lawhorn, Brian G.; Boga, Sobhana B.; Wolkenberg, Scott E.; Colby, David A.; Gauss, Carla-Maria; Swingle, Mark R.; Amable, Lauren; Honkanen, Richard E.; Boger, Dale L.

    2008-01-01

    The total synthesis of cytostatin, an antitumor agent belonging to the fostriecin family of natural products is described in full detail. The convergent approach relied on a key epoxide opening reaction to join the two stereotriad units and a single-step late stage, stereoselective installation of the sensitive (Z,Z,E)-triene through a β-chelation controlled nucleophilic addition. The synthetic route provided rapid access to the C4–C6 stereoisomers of the cytostatin lactone, which were prepared and used to define the C4–C6 relative stereochemistry of the natural product. In addition to the natural product, each of the C10–C11 diastereomers of cytostatin was divergently prepared (11 steps from key convergence step) by this route and used to unequivocally confirm the relative and absolute stereochemistry of cytostatin. Each of the cytostatin diastereomers exhibited a reduced activity towards inhibition of PP2A (>100-fold), demonstrating the importance of the presence and stereochemistry of the C10-methyl and C11-hydroxy groups for potent PP2A inhibition. Extensions of the studies provided dephosphocytostatin (40), sulfocytostatin (67, a key analogue related to the natural product sultriecin), 11-deshydroxycytostatin (78), and 72 lacking the entire C12–C18 (Z,Z,E)-triene segment and were used to define the magnitude of the C9-phosphate (>4000-fold), C11-alcohol (250-fold), and triene (220-fold) contribution to PP2A inhibition. A model of cytostatin bound to the active site of PP2A is presented, compared to that of fostriecin which is also presented in detail for the first time, and used to provide insights into the role of the key substituents. Notably, the α,β-unsaturated lactone of cytostatin, like that of fostriecin, is projected to serve as a key electrophile providing a covalent adduct with Cys269 unique to PP2A contributing to its potency (≥200-fold for fostriecin) and accounting for its selectivity. PMID:17177422

  13. Next generation bone tissue engineering: non-viral miR-133a inhibition using collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis

    NASA Astrophysics Data System (ADS)

    Mencía Castaño, Irene; Curtin, Caroline M.; Duffy, Garry P.; O'Brien, Fergal J.

    2016-06-01

    Bone grafts are the second most transplanted materials worldwide at a global cost to healthcare systems valued over $30 billion every year. The influence of microRNAs in the regenerative capacity of stem cells offers vast therapeutic potential towards bone grafting; however their efficient delivery to the target site remains a major challenge. This study describes how the functionalisation of porous collagen-nanohydroxyapatite (nHA) scaffolds with miR-133a inhibiting complexes, delivered using non-viral nHA particles, enhanced human mesenchymal stem cell-mediated osteogenesis through the novel focus on a key activator of osteogenesis, Runx2. This study showed enhanced Runx2 and osteocalcin expression, as well as increased alkaline phosphatase activity and calcium deposition, thus demonstrating a further enhanced therapeutic potential of a biomaterial previously optimised for bone repair applications. The promising features of this platform offer potential for a myriad of applications beyond bone repair and tissue engineering, thus presenting a new paradigm for microRNA-based therapeutics.

  14. Ikarisoside A inhibits acetylcholine-induced catecholamine secretion and synthesis by suppressing nicotinic acetylcholine receptor-ion channels in cultured bovine adrenal medullary cells.

    PubMed

    Li, Xiaojia; Toyohira, Yumiko; Horisita, Takafumi; Satoh, Noriaki; Takahashi, Keita; Zhang, Han; Iinuma, Munekazu; Yoshinaga, Yukari; Ueno, Susumu; Tsutsui, Masato; Sata, Takeyoshi; Yanagihara, Nobuyuki

    2015-12-01

    Ikarisoside A is a natural flavonol glycoside derived from plants of the genus Epimedium, which have been used in Traditional Chinese Medicine as tonics, antirheumatics, and aphrodisiacs. Here, we report the effects of ikarisoside A and three other flavonol glycosides on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. We found that ikarisoside A (1-100 μM), but not icariin, epimedin C, or epimedoside A, concentration-dependently inhibited the secretion of catecholamines induced by acetylcholine, a physiological secretagogue and agonist of nicotinic acetylcholine receptors. Ikarisoside A had little effect on catecholamine secretion induced by veratridine and 56 mM K(+). Ikarisoside A (1-100 μM) also inhibited (22)Na(+) influx and (45)Ca(2+) influx induced by acetylcholine in a concentration-dependent manner similar to that of catecholamine secretion. In Xenopus oocytes expressing α3β4 nicotinic acetylcholine receptors, ikarisoside A (0.1-100 μM) directly inhibited the current evoked by acetylcholine. It also suppressed (14)C-catecholamine synthesis and tyrosine hydroxylase activity induced by acetylcholine at 1-100 μM and 10-100 μM, respectively. The present findings suggest that ikarisoside A inhibits acetylcholine-induced catecholamine secretion and synthesis by suppression of nicotinic acetylcholine receptor-ion channels in bovine adrenal medullary cells.

  15. miR-20a inhibits TCR-mediated signaling and cytokine production in human naïve CD4+ T cells.

    PubMed

    Reddycherla, Amarendra V; Meinert, Ines; Reinhold, Annegret; Reinhold, Dirk; Schraven, Burkhart; Simeoni, Luca

    2015-01-01

    Upon TCR stimulation by peptide-MHC complexes, CD4+ T cells undergo activation and proliferation. This process will ultimately culminate in T-cell differentiation and the acquisition of effector functions. The production of specific cytokines by differentiated CD4+ T cells is crucial for the generation of the appropriate immune response. Altered CD4+ T-cell activation and cytokine production result in chronic inflammatory conditions and autoimmune disorders. miRNAs have been shown to be important regulators of T-cell biology. In this study, we have focused our investigation on miR-20a, a member of the miR-17-92 cluster, whose expression is decreased in patients suffering from multiple sclerosis. We have found that miR-20a is rapidly induced upon TCR-triggering in primary human naïve CD4+ T cells and that its transcription is regulated in a Erk-, NF-κB-, and Ca++-dependent manner. We have further shown that overexpression of miR-20a inhibits TCR-mediated signaling but not the proliferation of primary human naïve CD4+ T cells. However, miR-20a overexpression strongly suppresses IL-10 secretion and moderately decreases IL-2, IL-6 and IL8 production, which are crucial regulators of inflammatory responses. Our study suggests that miR-20a is a new player in the regulation of TCR signaling strength and cytokine production.

  16. Bioactivity-Guided Identification and Cell Signaling Technology to Delineate the Lactate Dehydrogenase A Inhibition Effects of Spatholobus suberectus on Breast Cancer

    PubMed Central

    Wang, Zhiyu; Wang, Dongmei; Han, Shouwei; Wang, Neng; Mo, Feizhi; Loo, Tjing Yung; Shen, Jiangang; Huang, Hui; Chen, Jianping

    2013-01-01

    Aerobic glycolysis is an important feature of cancer cells. In recent years, lactate dehydrogenase A (LDH-A) is emerging as a novel therapeutic target for cancer treatment. Seeking LDH-A inhibitors from natural resources has been paid much attention for drug discovery. Spatholobus suberectus (SS) is a common herbal medicine used in China for treating blood-stasis related diseases such as cancer. This study aims to explore the potential medicinal application of SS for LDH-A inhibition on breast cancer and to determine its bioactive compounds. We found that SS manifested apoptosis-inducing, cell cycle arresting and anti-LDH-A activities in both estrogen-dependent human MCF-7 cells and estrogen-independent MDA-MB-231 cell. Oral herbal extracts (1 g/kg/d) administration attenuated tumor growth and LDH-A expression in both breast cancer xenografts. Bioactivity-guided fractionation finally identified epigallocatechin as a key compound in SS inhibiting LDH-A activity. Further studies revealed that LDH-A plays a critical role in mediating the apoptosis-induction effects of epigallocatechin. The inhibited LDH-A activities by epigallocatechin is attributed to disassociation of Hsp90 from HIF-1α and subsequent accelerated HIF-1α proteasome degradation. In vivo study also demonstrated that epigallocatechin could significantly inhibit breast cancer growth, HIF-1α/LDH-A expression and trigger apoptosis without bringing toxic effects. The preclinical study thus suggests that the potential medicinal application of SS for inhibiting cancer LDH-A activity and the possibility to consider epigallocatechin as a lead compound to develop LDH-A inhibitors. Future studies of SS for chemoprevention or chemosensitization against breast cancer are thus warranted. PMID:23457597

  17. microRNA-20a Inhibits Autophagic Process by Targeting ATG7 and ATG16L1 and Favors Mycobacterial Survival in Macrophage Cells.

    PubMed

    Guo, Le; Zhao, Jin; Qu, Yuliang; Yin, Runting; Gao, Qian; Ding, Shuqin; Zhang, Ying; Wei, Jun; Xu, Guangxian

    2016-01-01

    Autophagy plays important roles in the host immune response against mycobacterial infection. Mycobacterium tuberculosis ( M. tuberculosis ) can live in macrophages owing to its ability to evade attacks by regulating autophagic response. MicroRNAs (miRNAs) are small noncoding, endogenously encoded RNA which plays critical roles in precise regulation of macrophage functions. Whether miRNAs specifically influence the activation of macrophage autophagy during M. tuberculosis infection are largely unknown. In this study, we demonstrate that BCG infection of macrophages resulted in enhanced expression of miRNA-20a, which inhibits autophagic process by targeting ATG7 and ATG16L1 and promotes BCG survival in macrophages. Forced overexpression of miR-20a decreased the expression levels of LC3-II and the number of LC3 puncta in macrophages, and promoted BCG survival in macrophages, while transfection with miR-20a inhibitor had the opposite effect. Moreover, the inhibitory effect of miR-20a on autophagy was further confirmed by transmission electron microscopy (TEM) analysis. Quantification of autophagosomes per cellular cross-section revealed a significant reduction upon transfection with miR-20a mimic, but transfection with miR-20a inhibitor increased the number of autophagosomes per cellular cross-section. Moreover, silencing of ATG7 significantly inhibited autophagic response, and transfection with ATG7 siRNA plus miR-20a mimic could further decrease autophagic response. Collectively, our data reveal that miR-20a inhibits autophagic response and promotes BCG survival in macrophages by targeting ATG7 and ATG16L1, which may have implications for a better understanding of pathogenesis of M. tuberculosis infection.

  18. Modulation of mGlu2 Receptors, but Not PDE10A Inhibition Normalizes Pharmacologically-Induced Deviance in Auditory Evoked Potentials and Oscillations in Conscious Rats

    PubMed Central

    Ahnaou, Abdallah; Biermans, Ria; Drinkenburg, Wilhelmus H.

    2016-01-01

    Improvement of cognitive impairments represents a high medical need in the development of new antipsychotics. Aberrant EEG gamma oscillations and reductions in the P1/N1 complex peak amplitude of the auditory evoked potential (AEP) are neurophysiological biomarkers for schizophrenia that indicate disruption in sensory information processing. Inhibition of phosphodiesterase (i.e. PDE10A) and activation of metabotropic glutamate receptor (mGluR2) signaling are believed to provide antipsychotic efficacy in schizophrenia, but it is unclear whether this occurs with cognition-enhancing potential. The present study used the auditory paired click paradigm in passive awake Sprague Dawley rats to 1) model disruption of AEP waveforms and oscillations as observed in schizophrenia by peripheral administration of amphetamine and the N-methyl-D-aspartate (NMDA) antagonist phencyclidine (PCP); 2) confirm the potential of the antipsychotics risperidone and olanzapine to attenuate these disruptions; 3) evaluate the potential of mGluR2 agonist LY404039 and PDE10 inhibitor PQ-10 to improve AEP deficits in both the amphetamine and PCP models. PCP and amphetamine disrupted auditory information processing to the first click, associated with suppression of the P1/N1 complex peak amplitude, and increased cortical gamma oscillations. Risperidone and olanzapine normalized PCP and amphetamine-induced abnormalities in AEP waveforms and aberrant gamma/alpha oscillations, respectively. LY404039 increased P1/N1 complex peak amplitudes and potently attenuated the disruptive effects of both PCP and amphetamine on AEPs amplitudes and oscillations. However, PQ-10 failed to show such effect in either models. These outcomes indicate that modulation of the mGluR2 results in effective restoration of abnormalities in AEP components in two widely used animal models of psychosis, whereas PDE10A inhibition does not. PMID:26808689

  19. Protein phosphatase 2A inhibition and subsequent cytoskeleton reorganization contributes to cell migration caused by microcystin-LR in human laryngeal epithelial cells (Hep-2).

    PubMed

    Wang, Beilei; Liu, Jinghui; Huang, Pu; Xu, Kailun; Wang, Hanying; Wang, Xiaofeng; Guo, Zonglou; Xu, Lihong

    2017-03-01

    The major toxic mechanism of Microcystin-LR is inhibition of the activity of protein phosphatase 2A (PP2A), resulting in a series of cytotoxic effects. Our previous studies have demonstrated that microcystin-LR (MCLR) induced very different molecular effects in normal cells and the tumor cell line SMMC7721. To further explore the MCLR toxicity mechanism in tumor cells, human laryngeal epithelial cells (Hep-2) was examined in this study. Western blot, immunofluorescence, immunoprecipitation, and transwell migration assay were used to detect the effects of MCLR on PP2A activity, PP2A substrates, cytoskeleton, and cell migration. The results showed that the protein level of PP2A subunits and the posttranslational modification of the catalytic subunit were altered and that the binding of the AC core enzyme as well as the binding of PP2A/C and α4, was also affected. As PP2A substrates, the phosphorylation of MAPK pathway members, p38, ERK1/2, and the cytoskeleton-associated proteins, Hsp27, VASP, Tau, and Ezrin were increased. Furthermore, MCLR induced reorganization of the cytoskeleton and promoted cell migration. Taken together, direct covalent binding to PP2A/C, alteration of the protein levels and posttranslational modification, as well as the binding of subunits, are the main pattern for the effects of MCLR on PP2A in Hep-2. A dose-dependent change in p-Tau and p-Ezrin due to PP2A inhibition may contribute to the changes in the cytoskeleton and be related to the cell migration in Hep-2. Our data provide a comprehensive exposition of the MCLR mechanism on tumor cells. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 890-903, 2017. © 2016 Wiley Periodicals, Inc.

  20. Severe Acute Respiratory Syndrome Coronavirus ORF7a Inhibits Bone Marrow Stromal Antigen 2 Virion Tethering through a Novel Mechanism of Glycosylation Interference.

    PubMed

    Taylor, Justin K; Coleman, Christopher M; Postel, Sandra; Sisk, Jeanne M; Bernbaum, John G; Venkataraman, Thiagarajan; Sundberg, Eric J; Frieman, Matthew B

    2015-12-01

    causes disease. We have found that BST-2 is capable of restricting SARS-CoV release from cells; however, we also identified a SARS-CoV protein that inhibits BST-2 function. We show that the SARS-CoV protein ORF7a inhibits BST-2 glycosylation, leading to a loss of BST-2's antiviral function. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. KDM3A inhibition attenuates high concentration insulin‑induced vascular smooth muscle cell injury by suppressing MAPK/NF‑κB pathways.

    PubMed

    Zhang, Bo-Fang; Jiang, Hong; Chen, Jing; Guo, Xin; Hu, Qi; Yang, Shuo

    2018-03-01

    Previous studies have indicated that lysine (K)‑specific demethylase 3A (KDM3A) is associated with diverse diabetes‑associated cardiovascular complications in response to high glucose levels. However, the effects of KDM3A on the pathological progression of cardiovascular injuries in response to high insulin levels remain unknown. The present study aimed to explore whether KDM3A knockdown may attenuate high insulin‑induced vascular smooth muscle cell (VSMC) dysfunction, and to further investigate the underlying mechanisms. Primary VSMCs were isolated from the thoracic aorta of Sprague‑Dawley rats. Lentiviral vectors encoding control‑small interfering (si)RNA or KDM3A‑siRNA were transduced into VSMCs for 72 h, and cells were subsequently incubated in medium containing 100 nM insulin for a further 5 days. Cellular proli-feration, migration and apoptosis were measured by Cell Counting kit‑8, Transwell chamber assay and flow cytometry, respectively. Reactive oxygen species (ROS) were detected using the dihydroethidium fluorescent probe. The mRNA expression levels of interleukin‑6 and monocyte chemotactic protein‑1 were measured by reverse transcription‑quantitative polymerase chain reaction. Furthermore, the protein expression levels of KDM3A, mitogen‑activated protein kinases (MAPKs), nuclear factor (NF)‑κB/p65, B‑cell lymphoma 2 (Bcl‑2)‑associated X protein and Bcl‑2 were evaluated by west-ern blotting. Lentivirus transduction with KDM3A‑siRNA markedly reduced the elevated expression of KDM3A induced by high insulin stimulation in VSMCs. In addition, inhibition of KDM3A significantly ameliorated insulin‑induced VSMC proliferation and migration, which was accompanied by decreased ROS levels, cell apoptosis and inflammatory cytokine levels. Furthermore, KDM3A gene silencing mitigated phosphorylation of MAPKs and NF‑κB/p65 activation. In conclusion, KDM3A inhibition may exert numerous protective effects on high insulin

  2. Angiotensin II type 2 receptor-interacting protein 3a inhibits ovarian carcinoma metastasis via the extracellular HMGA2-mediated ERK/EMT pathway.

    PubMed

    Ping, Huang; Guo, Liang; Xi, Jie; Wang, Donghui

    2017-06-01

    Local migration and long-distance metastasis is the main reason for higher mortality of ovarian cancer. Microtubule-associated tumor suppressor 1/angiotensin II type 2 receptor-interacting protein is associated with tumor initiation and progression and exerts anti-tumor effects. High mobility group AT-hook 2 is overexpressed in majority of metastatic carcinomas, which contributes to carcinomas metastasis through Snail-induced epithelial-to-mesenchymal transition signal pathway. The purpose of this study was to investigate the signal pathway of microtubule-associated tumor suppressor 1/angiotensin II type 2 receptor-interacting protein-mediated anti-tumor effects. Our data observed that ovarian carcinoma cells exhibited lower expression of angiotensin II type 2 receptor-interacting protein 3a and higher expression of high mobility group AT-hook 2 compared to normal ovarian cells. Restoration of angiotensin II type 2 receptor-interacting protein 3a expression in ovarian carcinoma cells inhibited high mobility group AT-hook 2 expression and exhibited anti-proliferative effects. In addition, angiotensin II type 2 receptor-interacting protein 3a treatment suppressed the phosphorylation of epithelial-to-mesenchymal transition and extracellular signal-regulated kinase in ovarian carcinoma cells. We also observed that angiotensin II type 2 receptor-interacting protein 3a restoration downregulated expression of Snail, E-Cadherin, N-Cadherin, and Vimentin in ovarian carcinoma cells, whereas angiotensin II type 2 receptor-interacting protein 3a knockdown enhanced the phosphorylation of extracellular signal-regulated kinase and epithelial-to-mesenchymal transition. In vivo assay indicated that angiotensin II type 2 receptor-interacting protein 3a inhibited ovarian tumor growth and elevated survival of tumor-bearing immunodeficient mice. Tumor histological analysis indicated that Snail, E-Cadherin, N-Cadherin, and Vimentin expression levels were downregulated via decreasing

  3. The phosphomimetic mutation of an evolutionarily conserved serine residue affects the signaling properties of Rho of plants (ROPs).

    PubMed

    Fodor-Dunai, Csilla; Fricke, Inka; Potocký, Martin; Dorjgotov, Dulguun; Domoki, Mónika; Jurca, Manuela E; Otvös, Krisztina; Zárský, Viktor; Berken, Antje; Fehér, Attila

    2011-05-01

    Plant ROP (Rho of plants) proteins form a unique subgroup within the family of Rho-type small G-proteins of eukaryotes. In this paper we demonstrate that the phosphomimetic mutation of a serine residue conserved in all Rho proteins affects the signaling properties of plant ROPs. We found that the S74E mutation in Medicago ROP6 and Arabidopsis ROP4 prevented the binding of these proteins to their plant-specific upstream activator the plant-specific ROP nucleotide exchanger (PRONE)-domain-containing RopGEF (guanine nucleotide exchange factor) protein and abolished the PRONE-mediated nucleotide exchange reaction in vitro. Structural modeling supported the hypothesis that potential phosphorylation of the S74 residue interferes with the binding of the PRONE-domain to the adjacent plant-specific R76 residue which plays an important role in functional ROP-PRONE interaction. Moreover, we show that while the binding of constitutively active MsROP6 to the effector protein RIC (ROP-interactive CRIB-motif-containing protein) was not affected by the S74E mutation, the capability of this mutated protein to bind and activate the RRK1 kinase in vitro was reduced. These observations are in agreement with the morphology of tobacco pollen tubes expressing mutant forms of yellow fluorescent protein (YFP):MsROP6. The S74E mutation in MsROP6 had no influence on pollen tube morphology and attenuated the phenotype of a constitutively active form of MsROP6. The presented Medicago and Arabidopsis data support the notion that the phosphorylation of the serine residue in ROPs corresponding to S74 in Medicago ROP6 could be a general principle for regulating ROP activation and signaling in plants. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  4. ROPs in the spotlight of plant signal transduction.

    PubMed

    Berken, A

    2006-11-01

    Small guanine nucleotide binding proteins of the Rho family called ROP play a crucial role as regulators of signal transduction in plants. They participate in pathways that influence growth and development, and the adaptation of plants to various environmental situations. As members of the Ras superfamily, ROPs function as molecular switches cycling between a GDP-bound 'off' and a GTP-bound 'on' state in a strictly regulated manner. Latest research provided fascinating new insights into ROP regulation by novel guanine nucleotide exchange factors, unconventional GTPase activating proteins, and guanine nucleotide dissociation inhibitors, which apparently organize localized ROP activation. Important progress has also been made concerning signaling components upstream and downstream of the ROP cycle involving receptor-like serine/threonine kinases and effectors that can manipulate cytoskeletal dynamics, intracellular calcium levels, H2O2 production and further cellular targets. This review outlines the fast developing knowledge on ROP GTPases highlighting their specific features, regulation and roles in a cellular signaling context.

  5. Structure of Shigella IpgB2 in Complex with Human RhoA

    PubMed Central

    Klink, Björn U.; Barden, Stephan; Heidler, Thomas V.; Borchers, Christina; Ladwein, Markus; Stradal, Theresia E. B.; Rottner, Klemens; Heinz, Dirk W.

    2010-01-01

    A common theme in bacterial pathogenesis is the manipulation of eukaryotic cells by targeting the cytoskeleton. This is in most cases achieved either by modifying actin, or indirectly via activation of key regulators controlling actin dynamics such as Rho-GTPases. A novel group of bacterial virulence factors termed the WXXXE family has emerged as guanine nucleotide exchange factors (GEFs) for these GTPases. The precise mechanism of nucleotide exchange, however, has remained unclear. Here we report the structure of the WXXXE-protein IpgB2 from Shigella flexneri and its complex with human RhoA. We unambiguously identify IpgB2 as a bacterial RhoA-GEF and dissect the molecular mechanism of GDP release, an essential prerequisite for GTP binding. Our observations uncover that IpgB2 induces conformational changes on RhoA mimicking DbI- but not DOCK family GEFs. We also show that dissociation of the GDP·Mg2+ complex is preceded by the displacement of the metal ion to the α-phosphate of the nucleotide, diminishing its affinity to the GTPase. These data refine our understanding of the mode of action not only of WXXXE GEFs but also of mammalian GEFs of the DH/PH family. PMID:20363740

  6. Linking Ras to myosin function: RasGEF Q, a Dictyostelium exchange factor for RasB, affects myosin II functions.

    PubMed

    Mondal, Subhanjan; Bakthavatsalam, Deenadayalan; Steimle, Paul; Gassen, Berthold; Rivero, Francisco; Noegel, Angelika A

    2008-06-02

    Ras guanine nucleotide exchange factor (GEF) Q, a nucleotide exchange factor from Dictyostelium discoideum, is a 143-kD protein containing RasGEF domains and a DEP domain. We show that RasGEF Q can bind to F-actin, has the potential to form complexes with myosin heavy chain kinase (MHCK) A that contain active RasB, and is the predominant exchange factor for RasB. Overexpression of the RasGEF Q GEF domain activates RasB, causes enhanced recruitment of MHCK A to the cortex, and leads to cytokinesis defects in suspension, phenocopying cells expressing constitutively active RasB, and myosin-null mutants. RasGEF Q(-) mutants have defects in cell sorting and slug migration during later stages of development, in addition to cell polarity defects. Furthermore, RasGEF Q(-) mutants have increased levels of unphosphorylated myosin II, resulting in myosin II overassembly. Collectively, our results suggest that starvation signals through RasGEF Q to activate RasB, which then regulates processes requiring myosin II.

  7. Four GTPases differentially regulate the Sec7 Arf-GEF to direct traffic at the trans-golgi network.

    PubMed

    McDonold, Caitlin M; Fromme, J Christopher

    2014-09-29

    Traffic through the Golgi complex is controlled by small GTPases of the Arf and Rab families. Guanine nucleotide exchange factor (GEF) proteins activate these GTPases to control Golgi function, yet the full assortment of signals regulating these GEFs is unknown. The Golgi Arf-GEF Sec7 and the homologous BIG1/2 proteins are effectors of the Arf1 and Arl1 GTPases. We demonstrate that Sec7 is also an effector of two Rab GTPases, Ypt1 (Rab1) and Ypt31/32 (Rab11), signifying unprecedented signaling crosstalk between GTPase pathways. The molecular basis for the role of Ypt31/32 and Rab11 in vesicle formation has remained elusive. We find that Arf1, Arl1, and Ypt1 primarily affect the membrane localization of Sec7, whereas Ypt31/32 exerts a dramatic stimulatory effect on the nucleotide exchange activity of Sec7. The convergence of multiple signaling pathways on a master regulator reveals a mechanism for balancing incoming and outgoing traffic at the Golgi. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Regulation of nuclear import and export by the GTPase Ran.

    PubMed

    Steggerda, Susanne M; Paschal, Bryce M

    2002-01-01

    This review focuses on the control of nuclear import and export pathways by the small GTPase Ran. Transport of signal-containing cargo substrates is mediated by receptors that bind to the cargo proteins and RNAs and deliver them to the appropriate cellular compartment. Ran is an evolutionarily conserved member of the Ras superfamily that regulates all receptor-mediated transport between the nucleus and the cytoplasm. We describe the identification and characterization of the RanGTPase and its binding partners: the guanine nucleotide exchange factor, RanGEF; the GTPase activating protein, RanGAP; the soluble import and export receptors; Ran-binding domain-(RBD) containing proteins; and NTF2 and related factors.

  9. Activator-inhibitor coupling between Rho signaling and actin assembly make the cell cortex an excitable medium

    PubMed Central

    Bement, William M.; Leda, Marcin; Moe, Alison M.; Kita, Angela M.; Larson, Matthew E.; Golding, Adriana E.; Pfeuti, Courtney; Su, Kuan-Chung; Miller, Ann L.; Goryachev, Andrew B.; von Dassow, George

    2016-01-01

    Animal cell cytokinesis results from patterned activation of the small GTPase Rho, which directs assembly of actomyosin in the equatorial cortex. Cytokinesis is restricted to a portion of the cell cycle following anaphase onset in which the cortex is responsive to signals from the spindle. We show that shortly after anaphase onset oocytes and embryonic cells of frogs and echinoderms exhibit cortical waves of Rho activity and F-actin polymerization. The waves are modulated by cyclin-dependent kinase 1 (Cdk1) activity and require the Rho GEF (guanine nucleotide exchange factor), Ect2. Surprisingly, during wave propagation, while Rho activity elicits F-actin assembly, F-actin subsequently inactivates Rho. Experimental and modeling results show that waves represent excitable dynamics of a reaction diffusion system with Rho as the activator and F-actin the inhibitor. We propose that cortical excitability explains fundamental features of cytokinesis including its cell cycle regulation. PMID:26479320

  10. Exchange protein directly activated by cAMP encoded by the mammalian rapgef3 gene: Structure, function and therapeutics.

    PubMed

    Banerjee, Upasana; Cheng, Xiaodong

    2015-10-10

    Mammalian exchange protein directly activated by cAMP isoform 1 (EPAC1), encoded by the RAPGEF3 gene, is one of the two-membered family of cAMP sensors that mediate the intracellular functions of cAMP by acting as guanine nucleotide exchange factors for the Ras-like Rap small GTPases. Extensive studies have revealed that EPAC1-mediated cAMP signaling is highly coordinated spatiotemporally through the formation of dynamic signalosomes by interacting with a diverse array of cellular partners. Recent functional analyses of genetically engineered mouse models further suggest that EPAC1 functions as an important stress response switch and is involved in pathophysiological conditions of cardiac stresses, chronic pain, cancer and infectious diseases. These findings, coupled with the development of EPAC specific small molecule modulators, validate EPAC1 as a promising target for therapeutic interventions. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The Atg17-Atg31-Atg29 complex and Atg11 regulate autophagosome-vacuole fusion.

    PubMed

    Liu, Xu; Klionsky, Daniel J

    2016-05-03

    The macroautophagy (hereafter autophagy) process involves de novo formation of double-membrane autophagosomes; after sequestering cytoplasm these transient organelles fuse with the vacuole/lysosome. Genetic studies in yeasts have characterized more than 40 autophagy-related (Atg) proteins required for autophagy, and the majority of these proteins play roles in autophagosome formation. The fusion of autophagosomes with the vacuole is mediated by the Rab GTPase Ypt7, its guanine nucleotide exchange factor Mon1-Ccz1, and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. However, these factors are not autophagosome-vacuole fusion specific. We recently showed that 2 autophagy scaffold proteins, the Atg17-Atg31-Atg29 complex and Atg11, regulate autophagosome-vacuole fusion by recruiting the vacuolar SNARE Vam7 to the phagophore assembly site (PAS), where an autophagosome forms in yeast.

  12. Role of Rabex-5 in the sorting of ubiquitinated cargo at an early stage in the endocytic pathway.

    PubMed

    Aikawa, Yoshikatsu; Lee, Sangho

    2013-07-01

    The covalent modification of transmembrane receptors by ubiquitin (Ub) is a key biological mechanism controlling their internalization and endocytic sorting to recycling and degradative pathways to attenuate their signaling potential. In this Ub-dependent endocytic trafficking pathway, Ub-binding proteins (UBPs) play a critical role in the sorting of these ubiquitinated transmembrane proteins at the plasma membrane, early endosomes, and multivesicular bodies. We recently reported that Rabex-5, a UBP and guanine nucleotide exchange factor for Rab5, is translocated to the plasma membrane in an extracellular ligand-dependent manner to regulate the internalization of ligand-induced ubiquitinated transmembrane proteins upon stimulation with extracellular ligands. Here, we show that Rabex-5 predominantly localizes on Rab5- and syntaxin 13-positive endosomes, but not on Rab11-positive recycling endosomes before stimulation with extracellular ligands. We further discuss the significance of Rabex-5-mediated sorting of ubiquitinated transmembrane proteins as cargo at an early stage of the endocytic pathway.

  13. Combined immunodeficiency with EBV positive B cell lymphoma and epidermodysplasia verruciformis due to a novel homozygous mutation in RASGRP1.

    PubMed

    Platt, Craig D; Fried, Ari J; Hoyos-Bachiloglu, Rodrigo; Usmani, G Naheed; Schmidt, Birgitta; Whangbo, Jennifer; Chiarle, Roberto; Chou, Janet; Geha, Raif S

    2017-10-01

    RASGRP1 is a guanine-nucleotide-exchange factor essential for MAP-kinase mediated signaling in lymphocytes. We report the second case of RASGRP1 deficiency in a patient with a homozygous nonsense mutation in the catalytic domain of the protein. The patient had epidermodysplasia verruciformis, suggesting a clinically important intrinsic T cell function defect. Like the previously described patient, our proband also presented with CD4 + T cell lymphopenia, impaired T cell proliferation to mitogens and antigens, reduced NK cell function, and EBV-associated lymphoma. The severity of the disease and the development of EBV lymphoma in both patients suggest that hematopoietic stem cell transplantation should be performed rapidly in patients with RASGRP1 deficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Connecdenn DENN domain: a GEF for Rab35 mediating cargo-specific exit from early endosomes.

    PubMed

    Allaire, Patrick D; Marat, Andrea L; Dall'Armi, Claudia; Di Paolo, Gilbert; McPherson, Peter S; Ritter, Brigitte

    2010-02-12

    The DENN domain is an evolutionarily ancient protein module. Mutations in the DENN domain cause developmental defects in plants and human diseases, yet the function of this common module is unknown. We now demonstrate that the connecdenn/DENND1A DENN domain functions as a guanine nucleotide exchange factor (GEF) for Rab35 to regulate endosomal membrane trafficking. Loss of Rab35 activity causes an enlargement of early endosomes and inhibits MHC class I recycling. Moreover, it prevents early endosomal recruitment of EHD1, a common component of tubules involved in endosomal cargo recycling. Our data reveal an enzymatic activity for a DENN domain and demonstrate that distinct Rab GTPases can recruit a common protein machinery to various sites within the endosomal network to establish cargo-selective recycling pathways.

  15. The connecdenn DENN domain: a GEF for Rab35 mediating cargo-specific exit from early endosomes

    PubMed Central

    Allaire, Patrick D.; Marat, Andrea L.; Dall’Armi, Claudia; Di Paolo, Gilbert; McPherson, Peter S.; Ritter, Brigitte

    2010-01-01

    Summary The DENN domain is an evolutionarily ancient protein module. Mutations in the DENN domain cause developmental defects in plants and human diseases, yet the function of this common module is unknown. We now demonstrate that the connecdenn DENN domain functions as a guanine nucleotide exchange factor for Rab35 to regulate endosomal trafficking. Loss of Rab35 activity causes an enlargement of early endosomes, inhibits MHCI recycling, and prevents the early endosomal recruitment of EHD1, a common component recycling tubules on endosomes. Our data are the first to reveal an enzymatic activity for a DENN domain and demonstrate that distinct Rab GTPases can recruit a common protein machinery to various sites within the endosomal network to establish cargo-selective recycling pathways. PMID:20159556

  16. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development.

    PubMed

    Robichaux, William G; Cheng, Xiaodong

    2018-04-01

    This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.

  17. Grp1 plays a key role in linking insulin signaling to glut4 recycling

    PubMed Central

    Li, Jian; Malaby, Andrew W.; Famulok, Michael; Sabe, Hisataka; Lambright, David G.; Hsu, Victor W.

    2012-01-01

    SUMMARY The glucose transporter type 4 (glut4) is critical for metabolic homeostasis. Insulin regulates glut4 by modulating its expression on the cell surface. This regulation is achieved mainly by targeting the endocytic recycling of glut4. We identify Grp1 (general receptor for 3-phosphoinositides 1) as a GEF (guanine nucleotide exchange factor) for ARF6 (ADP-ribosylation factor 6) that promotes glut4 vesicle formation. Grp1 also promotes the later steps of glut4 recycling through ARF6. Insulin signaling regulates Grp1 through phosphorylation by Akt. We also find that mutations which mimic constitutive phosphorylation of Grp1 can bypass upstream insulin signaling to induce glut4 recycling. Thus, we have uncovered a major mechanism by which insulin regulates glut4 recycling. Our findings also reveal the complexity by which a single small GTPase in vesicular transport can coordinate its multiple steps to accomplish a round of transport. PMID:22609160

  18. GTPase Networks in Membrane Traffic

    PubMed Central

    Mizuno-Yamasaki, Emi; Rivera-Molina, Felix; Novick, Peter

    2013-01-01

    Members of the Rab or ARF/Sar branches of the Ras GTPase super-family regulate almost every step of intracellular membrane traffic. A rapidly growing body of evidence indicates that these GTPases do not act as lone agents but are networked to one another through a variety of mechanisms to coordinate the individual events of one stage of transport and to link together the different stages of an entire transport pathway. These mechanisms include guanine nucleotide exchange factor (GEF) cascades, GTPase-activating protein (GAP) cascades, effectors that bind to multiple GTPases, and positive-feedback loops generated by exchange factor-effector interactions. Together these mechanisms can lead to an ordered series of transitions from one GTPase to the next. As each GTPase recruits a unique set of effectors, these transitions help to define changes in the functionality of the membrane compartments with which they are associated. PMID:22463690

  19. β-Pix directs collective migration of anterior visceral endoderm cells in the early mouse embryo

    PubMed Central

    Rabadan, M. Angeles; Hernández-Martínez, Rocío; Grego-Bessa, Joaquim; Anderson, Kathryn V.

    2014-01-01

    Collective epithelial migration is important throughout embryonic development. The underlying mechanisms are poorly understood but likely involve spatially localized activation of Rho GTPases. We previously reported that Rac1 is essential for generating the protrusive activity that drives the collective migration of anterior visceral endoderm (AVE) cells in the early mouse embryo. To identify potential regulators of Rac1, we first performed an RNAi screen of Rho family exchange factors (guanine nucleotide exchange factor [GEF]) in an in vitro collective epithelial migration assay and identified β-Pix. Genetic deletion of β-Pix in mice disrupts collective AVE migration, while high-resolution live imaging revealed that this is associated with randomly directed protrusive activity. We conclude that β-Pix controls the spatial localization of Rac1 activity to drive collective AVE migration at a critical stage in mouse development. PMID:25512563

  20. β-Pix directs collective migration of anterior visceral endoderm cells in the early mouse embryo.

    PubMed

    Omelchenko, Tatiana; Rabadan, M Angeles; Hernández-Martínez, Rocío; Grego-Bessa, Joaquim; Anderson, Kathryn V; Hall, Alan

    2014-12-15

    Collective epithelial migration is important throughout embryonic development. The underlying mechanisms are poorly understood but likely involve spatially localized activation of Rho GTPases. We previously reported that Rac1 is essential for generating the protrusive activity that drives the collective migration of anterior visceral endoderm (AVE) cells in the early mouse embryo. To identify potential regulators of Rac1, we first performed an RNAi screen of Rho family exchange factors (guanine nucleotide exchange factor [GEF]) in an in vitro collective epithelial migration assay and identified β-Pix. Genetic deletion of β-Pix in mice disrupts collective AVE migration, while high-resolution live imaging revealed that this is associated with randomly directed protrusive activity. We conclude that β-Pix controls the spatial localization of Rac1 activity to drive collective AVE migration at a critical stage in mouse development. © 2014 Omelchenko et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Starvation-induced MTMR13 and RAB21 activity regulates VAMP8 to promote autophagosome–lysosome fusion

    PubMed Central

    Jean, Steve; Cox, Sarah; Nassari, Sonya; Kiger, Amy A

    2015-01-01

    Autophagy, the process for recycling cytoplasm in the lysosome, depends on membrane trafficking. We previously identified Drosophila Sbf as a Rab21 guanine nucleotide exchange factor (GEF) that acts with Rab21 in endosomal trafficking. Here, we show that Sbf/MTMR13 and Rab21 have conserved functions required for starvation-induced autophagy. Depletion of Sbf/MTMR13 or Rab21 blocked endolysosomal trafficking of VAMP8, a SNARE required for autophagosome–lysosome fusion. We show that starvation induces Sbf/MTMR13 GEF and RAB21 activity, as well as their induced binding to VAMP8 (or closest Drosophila homolog, Vamp7). MTMR13 is required for RAB21 activation, VAMP8 interaction and VAMP8 endolysosomal trafficking, defining a novel GEF-Rab-effector pathway. These results identify starvation-responsive endosomal regulators and trafficking that tunes membrane demands with changing autophagy status. PMID:25648148

  2. Sbf/MTMR13 coordinates PI(3)P and Rab21 regulation in endocytic control of cellular remodeling

    PubMed Central

    Jean, Steve; Cox, Sarah; Schmidt, Eric J.; Robinson, Fred L.; Kiger, Amy

    2012-01-01

    Cells rely on the coordinated regulation of lipid phosphoinositides and Rab GTPases to define membrane compartment fates along distinct trafficking routes. The family of disease-related myotubularin (MTM) phosphoinositide phosphatases includes catalytically inactive members, or pseudophosphatases, with poorly understood functions. We found that Drosophila MTM pseudophosphatase Sbf coordinates both phosphatidylinositol 3-phosphate (PI(3)P) turnover and Rab21 GTPase activation in an endosomal pathway that controls macrophage remodeling. Sbf dynamically interacts with class II phosphatidylinositol 3-kinase and stably recruits Mtm to promote turnover of a PI(3)P subpool essential for endosomal trafficking. Sbf also functions as a guanine nucleotide exchange factor that promotes Rab21 GTPase activation associated with PI(3)P endosomes. Of importance, Sbf, Mtm, and Rab21 function together, along with Rab11-mediated endosomal trafficking, to control macrophage protrusion formation. This identifies Sbf as a critical coordinator of PI(3)P and Rab21 regulation, which specifies an endosomal pathway and cortical control. PMID:22648168

  3. Regulation of Rap GTPases in mammalian neurons.

    PubMed

    Shah, Bhavin; Püschel, Andreas W

    2016-10-01

    Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.

  4. Mediation of Clathrin-Dependent Trafficking during Cytokinesis and Cell Expansion by Arabidopsis STOMATAL CYTOKINESIS DEFECTIVE Proteins[W

    PubMed Central

    McMichael, Colleen M.; Reynolds, Gregory D.; Koch, Lisa M.; Wang, Chao; Jiang, Nan; Nadeau, Jeanette; Sack, Fred D.; Gelderman, Max B.; Pan, Jianwei; Bednarek, Sebastian Y.

    2013-01-01

    STOMATAL CYTOKINESIS DEFECTIVE1 (SCD1) encodes a putative Rab guanine nucleotide exchange factor that functions in membrane trafficking and is required for cytokinesis and cell expansion in Arabidopsis thaliana. Here, we show that the loss of SCD2 function disrupts cytokinesis and cell expansion and impairs fertility, phenotypes similar to those observed for scd1 mutants. Genetic and biochemical analyses showed that SCD1 function is dependent upon SCD2 and that together these proteins are required for plasma membrane internalization. Further specifying the role of these proteins in membrane trafficking, SCD1 and SCD2 proteins were found to be associated with isolated clathrin-coated vesicles and to colocalize with clathrin light chain at putative sites of endocytosis at the plasma membrane. Together, these data suggest that SCD1 and SCD2 function in clathrin-mediated membrane transport, including plasma membrane endocytosis, required for cytokinesis and cell expansion. PMID:24179130

  5. PREX1 integrates G protein-coupled receptor and phosphoinositide 3-kinase signaling to promote glioblastoma invasion

    PubMed Central

    Gont, Alexander; Daneshmand, Manijeh; Woulfe, John; Lavictoire, Sylvie J.; Lorimer, Ian A.J .

    2017-01-01

    A defining feature of the brain cancer glioblastoma is its highly invasive nature. When glioblastoma cells are isolated from patients using serum free conditions, they accurately recapitulate this invasive behaviour in animal models. The Rac subclass of Rho GTPases has been shown to promote invasive behaviour in glioblastoma cells isolated in this manner. However the guanine nucleotide exchange factors responsible for activating Rac in this context have not been characterized previously. PREX1 is a Rac guanine nucleotide exchange factor that is synergistically activated by binding of G protein αγ subunits and the phosphoinositide 3-kinase pathway second messenger phosphatidylinositol 3,4,5 trisphosphate. This makes it of particular interest in glioblastoma, as the phosphoinositide 3-kinase pathway is aberrantly activated by mutation in almost all cases. We show that PREX1 is expressed in glioblastoma cells isolated under serum-free conditions and in patient biopsies. PREX1 promotes the motility and invasion of glioblastoma cells, promoting Rac-mediated activation of p21-associated kinases and atypical PKC, which have established roles in cell motility. Glioblastoma cell motility was inhibited by either inhibition of phosphoinositide 3-kinase or inhibition of G protein βγ subunits. Motility was also inhibited by the generic dopamine receptor inhibitor haloperidol or a combination of the selective dopamine receptor D2 and D4 inhibitors L-741,626 and L-745,870. This establishes a role for dopamine receptor signaling via G protein βγ subunits in glioblastoma invasion and shows that phosphoinositide 3-kinase mutations in glioblastoma require a context of basal G protein–coupled receptor activity in order to promote this invasion. PMID:28051998

  6. Engagement of the Small GTPase Rab31 Protein and Its Effector, Early Endosome Antigen 1, Is Important for Trafficking of the Ligand-bound Epidermal Growth Factor Receptor from the Early to the Late Endosome*

    PubMed Central

    Chua, Christelle En Lin; Tang, Bor Luen

    2014-01-01

    Rab31 is a member of the Rab5 subfamily of Rab GTPases. Although localized largely to the trans-Golgi network, it shares common guanine nucleotide exchange factors and effectors with other Rab5 subfamily members that have been implicated in endocytic membrane traffic. We investigated whether Rab31 also has a role in the trafficking of the ligand-bound EGF receptor (EGFR) internalized through receptor-mediated endocytosis. We found that loss of Rab31 inhibits, but overexpression enhances, EGFR trafficking to the late endosomes and that the effect of Rab31 silencing could be specifically rescued by overexpression of a silencing-resistant form of Rab31. Rab31 was found to interact with the EGFR by coimmunoprecipitation and affinity pulldown analyses, and the primarily trans-Golgi network-localized Rab31 has increased colocalization with the EGFR in A431 cells 30 min after pulsing with EGF. A glycerol gradient sedimentation assay suggested that Rab31 is sequestered into a high molecular weight complex after stimulation with EGF, as was early endosome antigen 1 (EEA1), a factor responsible for endosomal tethering and fusion events. We found that loss of EEA1 reduced the interaction between Rab31 and the EGFR and abrogated the effect of Rab31 overexpression on the trafficking of the EGFR. Likewise, loss of GAPex5, a Rab31 guanine nucleotide exchange factor that has a role in ubiquitination and degradation of the EGFR, reduced the interaction of Rab31 with the EGFR and its effect on EGFR trafficking. Taken together, our results suggest that Rab31 is an important regulator of endocytic trafficking of the EGFR and functions in an EGFR trafficking complex that includes EEA1 and GAPex5. PMID:24644286

  7. Engagement of the small GTPase Rab31 protein and its effector, early endosome antigen 1, is important for trafficking of the ligand-bound epidermal growth factor receptor from the early to the late endosome.

    PubMed

    Chua, Christelle En Lin; Tang, Bor Luen

    2014-05-02

    Rab31 is a member of the Rab5 subfamily of Rab GTPases. Although localized largely to the trans-Golgi network, it shares common guanine nucleotide exchange factors and effectors with other Rab5 subfamily members that have been implicated in endocytic membrane traffic. We investigated whether Rab31 also has a role in the trafficking of the ligand-bound EGF receptor (EGFR) internalized through receptor-mediated endocytosis. We found that loss of Rab31 inhibits, but overexpression enhances, EGFR trafficking to the late endosomes and that the effect of Rab31 silencing could be specifically rescued by overexpression of a silencing-resistant form of Rab31. Rab31 was found to interact with the EGFR by coimmunoprecipitation and affinity pulldown analyses, and the primarily trans-Golgi network-localized Rab31 has increased colocalization with the EGFR in A431 cells 30 min after pulsing with EGF. A glycerol gradient sedimentation assay suggested that Rab31 is sequestered into a high molecular weight complex after stimulation with EGF, as was early endosome antigen 1 (EEA1), a factor responsible for endosomal tethering and fusion events. We found that loss of EEA1 reduced the interaction between Rab31 and the EGFR and abrogated the effect of Rab31 overexpression on the trafficking of the EGFR. Likewise, loss of GAPex5, a Rab31 guanine nucleotide exchange factor that has a role in ubiquitination and degradation of the EGFR, reduced the interaction of Rab31 with the EGFR and its effect on EGFR trafficking. Taken together, our results suggest that Rab31 is an important regulator of endocytic trafficking of the EGFR and functions in an EGFR trafficking complex that includes EEA1 and GAPex5.

  8. Fusel alcohols regulate translation initiation by inhibiting eIF2B to reduce ternary complex in a mechanism that may involve altering the integrity and dynamics of the eIF2B body.

    PubMed

    Taylor, Eleanor J; Campbell, Susan G; Griffiths, Christian D; Reid, Peter J; Slaven, John W; Harrison, Richard J; Sims, Paul F G; Pavitt, Graham D; Delneri, Daniela; Ashe, Mark P

    2010-07-01

    Recycling of eIF2-GDP to the GTP-bound form constitutes a core essential, regulated step in eukaryotic translation. This reaction is mediated by eIF2B, a heteropentameric factor with important links to human disease. eIF2 in the GTP-bound form binds to methionyl initiator tRNA to form a ternary complex, and the levels of this ternary complex can be a critical determinant of the rate of protein synthesis. Here we show that eIF2B serves as the target for translation inhibition by various fusel alcohols in yeast. Fusel alcohols are endpoint metabolites from amino acid catabolism, which signal nitrogen scarcity. We show that the inhibition of eIF2B leads to reduced ternary complex levels and that different eIF2B subunit mutants alter fusel alcohol sensitivity. A DNA tiling array strategy was developed that overcame difficulties in the identification of these mutants where the phenotypic distinctions were too subtle for classical complementation cloning. Fusel alcohols also lead to eIF2alpha dephosphorylation in a Sit4p-dependent manner. In yeast, eIF2B occupies a large cytoplasmic body where guanine nucleotide exchange on eIF2 can occur and be regulated. Fusel alcohols impact on both the movement and dynamics of this 2B body. Overall, these results confirm that the guanine nucleotide exchange factor, eIF2B, is targeted by fusel alcohols. Moreover, they highlight a potential connection between the movement or integrity of the 2B body and eIF2B regulation.

  9. Fusel Alcohols Regulate Translation Initiation by Inhibiting eIF2B to Reduce Ternary Complex in a Mechanism That May Involve Altering the Integrity and Dynamics of the eIF2B Body

    PubMed Central

    Taylor, Eleanor J.; Campbell, Susan G.; Griffiths, Christian D.; Reid, Peter J.; Slaven, John W.; Harrison, Richard J.; Sims, Paul F.G.; Pavitt, Graham D.; Delneri, Daniela

    2010-01-01

    Recycling of eIF2-GDP to the GTP-bound form constitutes a core essential, regulated step in eukaryotic translation. This reaction is mediated by eIF2B, a heteropentameric factor with important links to human disease. eIF2 in the GTP-bound form binds to methionyl initiator tRNA to form a ternary complex, and the levels of this ternary complex can be a critical determinant of the rate of protein synthesis. Here we show that eIF2B serves as the target for translation inhibition by various fusel alcohols in yeast. Fusel alcohols are endpoint metabolites from amino acid catabolism, which signal nitrogen scarcity. We show that the inhibition of eIF2B leads to reduced ternary complex levels and that different eIF2B subunit mutants alter fusel alcohol sensitivity. A DNA tiling array strategy was developed that overcame difficulties in the identification of these mutants where the phenotypic distinctions were too subtle for classical complementation cloning. Fusel alcohols also lead to eIF2α dephosphorylation in a Sit4p-dependent manner. In yeast, eIF2B occupies a large cytoplasmic body where guanine nucleotide exchange on eIF2 can occur and be regulated. Fusel alcohols impact on both the movement and dynamics of this 2B body. Overall, these results confirm that the guanine nucleotide exchange factor, eIF2B, is targeted by fusel alcohols. Moreover, they highlight a potential connection between the movement or integrity of the 2B body and eIF2B regulation. PMID:20444979

  10. Differential regulation of the Rac1 GTPase-activating protein (GAP) BCR during oxygen/glucose deprivation in hippocampal and cortical neurons.

    PubMed

    Smith, Katharine R; Rajgor, Dipen; Hanley, Jonathan G

    2017-12-08

    Brain ischemia causes oxygen and glucose deprivation (OGD) in neurons, triggering a cascade of events leading to synaptic accumulation of glutamate. Excessive activation of glutamate receptors causes excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts, but the mechanisms that underlie this difference are unclear. Signaling via Rho-family small GTPases, their upstream guanine nucleotide exchange factors, and GTPase-activating proteins (GAPs) is differentially dysregulated in response to OGD/ischemia in hippocampal and cortical neurons. Increased Rac1 activity caused by OGD/ischemia contributes to neuronal death in hippocampal neurons via diverse effects on NADPH oxidase activity and dendritic spine morphology. The Rac1 guanine nucleotide exchange factor Tiam1 mediates an OGD-induced increase in Rac1 activity in hippocampal neurons; however, the identity of an antagonistic GAP remains elusive. Here we show that the Rac1 GAP breakpoint cluster region (BCR) associates with NMDA receptors (NMDARs) along with Tiam1 and that this protein complex is more abundant in hippocampal compared with cortical neurons. Although total BCR is similar in the two neuronal types, BCR is more active in hippocampal compared with cortical neurons. OGD causes an NMDAR- and Ca 2+ -permeable AMPAR-dependent deactivation of BCR in hippocampal but not cortical neurons. BCR knockdown occludes OGD-induced Rac1 activation in hippocampal neurons. Furthermore, disrupting the Tiam1-NMDAR interaction with a fragment of Tiam1 blocks OGD-induced Tiam1 activation but has no effect on the deactivation of BCR. This work identifies BCR as a critical player in Rac1 regulation during OGD in hippocampal neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Cyclosporine-A inhibits MMP-2 and -9 activities in the presence of Porphyromonas gingivalis lipopolysaccharide: an experiment in human gingival fibroblast and U937 macrophage co-culture.

    PubMed

    Kuo, P-J; Tu, H-P; Chin, Y-T; Lu, S-H; Chiang, C-Y; Chen, R-Y; Fu, E

    2012-08-01

    Studies have shown that bacterial plaque and the associated gingival inflammation increase the severity of gingival overgrowth induced by cyclosporine-A (CsA). This in vitro study aimed to evaluate the effect of CsA on the activities of MMPs from the co-culture of human gingival fibroblasts and U937 macrophages in the presence or absence of Porphyromonas gingivalis lipopolysaccharide (LPS). Activities of pro-MMP-2, MMP-2 and pro-MMP-9 in the supernatants of independent cultures and co-cultures were examined by zymography. RT-PCR was selected to evaluate the expression of mRNA for membrane type-1 (MT1) MMP in the co-cultures. Activities of MMPs in the co-cultures were significantly greater when compared with any of the independent cultures. Lipopolysaccharide significantly increased the MMP activities in a dose-dependent manner in the co-cultures, whereas CsA inhibited these activities. In the presence of both CsA and LPS, the MMP activities inhibited by CsA could still be observed in the co-cultures. In the individual cultures, in contrast, the CsA-inhibited MMP activities, in the presence of LPS, were minimally detected. The mRNA expression of MT1-MMP was significantly enhanced after LPS treatment; however, this enhancement was inhibited by CsA. This study demonstrated that, in co-cultures of human gingival fibroblasts and U937 macrophages, CsA could inhibit MMP activities in the presence of P. gingivalis LPS. It might be part of the underlying reason for the persistent overgrowth of gingiva seen when bacterial plaque and local inflammation are present during CsA therapy. © 2012 John Wiley & Sons A/S.

  12. Extracranial injections of botulinum neurotoxin type A inhibit intracranial meningeal nociceptors' responses to stimulation of TRPV1 and TRPA1 channels: Are we getting closer to solving this puzzle?

    PubMed

    Zhang, XiChun; Strassman, Andrew M; Novack, Victor; Brin, Mitchell F; Burstein, Rami

    2016-08-01

    Administration of onabotulinumtoxinA (BoNT-A) to peripheral tissues outside the calvaria reduces the number of days chronic migraine patients experience headache. Because the headache phase of a migraine attack, especially those preceded by aura, is thought to involve activation of meningeal nociceptors by endogenous stimuli such as changes in intracranial pressure (i.e. mechanical) or chemical irritants that appear in the meninges as a result of a yet-to-be-discovered sequence of molecular/cellular events triggered by the aura, we sought to determine whether extracranial injections of BoNT-A alter the chemosensitivity of meningeal nociceptors to stimulation of their intracranial receptive fields. Using electrophysiological techniques, we identified 161 C- and 135 Aδ-meningeal nociceptors in rats and determined their mechanical response threshold and responsiveness to chemical stimulation of their dural receptive fields with TRPV1 and TRPA1 agonists seven days after BoNT-A administration to different extracranial sites. Two paradigms were compared: distribution of 5 U BoNT-A to the lambdoid and sagittal sutures alone, and 1.25 U to the sutures and 3.75 U to the temporalis and trapezius muscles. Seven days after it was administered to tissues outside the calvaria, BoNT-A inhibited responses of C-type meningeal nociceptors to stimulation of their intracranial dural receptive fields with the TRPV1 agonist capsaicin and the TRPA1 agonist mustard oil. BoNT-A inhibition of responses to capsaicin was more effective when the entire dose was injected along the suture lines than when it was injected into muscles and sutures. As in our previous study, BoNT-A had no effect on non-noxious mechanosensitivity of C-fibers or on responsiveness of Aδ-fibers to mechanical and chemical stimulation. This study demonstrates that extracranial administration of BoNT-A suppresses meningeal nociceptors' responses to stimulation of their intracranial dural receptive fields with capsaicin

  13. Extracranial injections of botulinum neurotoxin type A inhibit intracranial meningeal nociceptors’ responses to stimulation of TRPV1 and TRPA1 channels: Are we getting closer to solving this puzzle?

    PubMed Central

    Zhang, XiChun; Strassman, Andrew M; Novack, Victor; Brin, Mitchell F

    2016-01-01

    Background Administration of onabotulinumtoxinA (BoNT-A) to peripheral tissues outside the calvaria reduces the number of days chronic migraine patients experience headache. Because the headache phase of a migraine attack, especially those preceded by aura, is thought to involve activation of meningeal nociceptors by endogenous stimuli such as changes in intracranial pressure (i.e. mechanical) or chemical irritants that appear in the meninges as a result of a yet-to-be-discovered sequence of molecular/cellular events triggered by the aura, we sought to determine whether extracranial injections of BoNT-A alter the chemosensitivity of meningeal nociceptors to stimulation of their intracranial receptive fields. Material and methods Using electrophysiological techniques, we identified 161 C- and 135 Aδ-meningeal nociceptors in rats and determined their mechanical response threshold and responsiveness to chemical stimulation of their dural receptive fields with TRPV1 and TRPA1 agonists seven days after BoNT-A administration to different extracranial sites. Two paradigms were compared: distribution of 5 U BoNT-A to the lambdoid and sagittal sutures alone, and 1.25 U to the sutures and 3.75 U to the temporalis and trapezius muscles. Results Seven days after it was administered to tissues outside the calvaria, BoNT-A inhibited responses of C-type meningeal nociceptors to stimulation of their intracranial dural receptive fields with the TRPV1 agonist capsaicin and the TRPA1 agonist mustard oil. BoNT-A inhibition of responses to capsaicin was more effective when the entire dose was injected along the suture lines than when it was injected into muscles and sutures. As in our previous study, BoNT-A had no effect on non-noxious mechanosensitivity of C-fibers or on responsiveness of Aδ-fibers to mechanical and chemical stimulation. Discussion This study demonstrates that extracranial administration of BoNT-A suppresses meningeal nociceptors’ responses to stimulation of

  14. Evidence for two distinct Mg2+ binding sites in G(s alpha) and G(i alpha1) proteins.

    PubMed

    Malarkey, Christopher S; Wang, Guoyan; Ballicora, Miguel A; Mota de Freitas, Duarte E

    2008-08-08

    The function of guanine nucleotide binding (G) proteins is Mg(2+) dependent with guanine nucleotide exchange requiring higher metal ion concentration than guanosine 5'-triphosphate hydrolysis. It is unclear whether two Mg(2+) binding sites are present or if one Mg(2+) binding site exhibits different affinities for the inactive GDP-bound or the active GTP-bound conformations. We used furaptra, a Mg(2+)-specific fluorophore, to investigate Mg(2+) binding to alpha subunits in both conformations of the stimulatory (G(s alpha)) and inhibitory (G(i alpha1)) regulators of adenylyl cyclase. Regardless of the conformation or alpha protein studied, we found that two distinct Mg(2+) sites were present with dissimilar affinities. With the exception of G(s alpha) in the active conformation, cooperativity between the two Mg(2+) sites was also observed. Whereas the high affinity Mg(2+) site corresponds to that observed in published X-ray structures of G proteins, the low affinity Mg(2+) site may involve coordination to the terminal phosphate of the nucleotide.

  15. RILP suppresses invasion of breast cancer cells by modulating the activity of RalA through interaction with RalGDS

    PubMed Central

    Wang, Z; Zhou, Y; Hu, X; Chen, W; Lin, X; Sun, L; Xu, X; Hong, W; Wang, T

    2015-01-01

    RILP (Rab7-interacting lysosomal protein) is a key regulator for late endosomal/lysosomal trafficking, and probably a tumor suppressor in prostate cancer. However, the role of RILP in other cancers and the underlying mechanism for RILP in regulating the invasion of cancer cells remain to be investigated. In this study, we showed that overexpression of RILP in breast cancer cells inhibits the migration and invasion, whereas the depletion of RILP by RNAi-mediated knockdown promotes the migration and invasion. We identified RalGDS (Ral guanine nucleotide dissociation stimulator) as a novel interacting partner for RILP, and truncation analysis revealed the N-terminal region of RILP is responsible for interacting with the guanine nucleotide exchange factor (GEF) domain of RalGDS. Immunofluorescence microscopy revealed that RalGDS can be recruited to the late endosomal compartments by RILP. Further investigations indicated that the overexpression of RILP inhibits the activity of RalA, a downstream target of RalGDS. Our data suggest that RILP suppresses the invasion of breast cancer cells by interacting with RalGDS to inhibit its GEF activity for RalA. PMID:26469971

  16. Platelets in neutrophil recruitment to sites of inflammation.

    PubMed

    Pitchford, Simon; Pan, Dingxin; Welch, Heidi C E

    2017-01-01

    This review describes the essential roles of platelets in neutrophil recruitment from the bloodstream into inflamed and infected tissues, with a focus on recent findings. Platelets are required for the recruitment of neutrophils to sites of inflammation and infection. They fulfil this role largely by enabling contacts of circulating neutrophils with the inflamed blood vessel wall prior to extravasation. Platelets promote both early stages of neutrophil recruitment (tethering, rolling, arrest, firm adhesion) and - as recent work has demonstrated - later stages (intravascular crawling and diapedesis). Recent studies have also begun to identify platelet-signaling pathways that can elicit the underlying interactions between platelets, neutrophils and vascular endothelial cells without stimulating concomitant platelet aggregation and thrombus formation. These pathways include Rho-guanine-nucleotide binding proteins and Rho-guanine-nucleotide exchange factors. Recent findings have contributed to our burgeoning understanding of the platelet-dependent mechanisms that control neutrophil recruitment to sites of inflammation and have opened up new avenues of research aimed at increasing our knowledge of these mechanisms further. These insights might lead to the development of novel anti-inflammatory drugs that will be useful in a wide range of inflammatory diseases without causing immunodeficiency.

  17. Establishment of epithelial polarity--GEF who's minding the GAP?

    PubMed

    Ngok, Siu P; Lin, Wan-Hsin; Anastasiadis, Panos Z

    2014-08-01

    Cell polarization is a fundamental process that underlies epithelial morphogenesis, cell motility, cell division and organogenesis. Loss of polarity predisposes tissues to developmental disorders and contributes to cancer progression. The formation and establishment of epithelial cell polarity is mediated by the cooperation of polarity protein complexes, namely the Crumbs, partitioning defective (Par) and Scribble complexes, with Rho family GTPases, including RhoA, Rac1 and Cdc42. The activation of different GTPases triggers distinct downstream signaling pathways to modulate protein-protein interactions and cytoskeletal remodeling. The spatio-temporal activation and inactivation of these small GTPases is tightly controlled by a complex interconnected network of different regulatory proteins, including guanine-nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). In this Commentary, we focus on current understanding on how polarity complexes interact with GEFs and GAPs to control the precise location and activation of Rho GTPases (Crumbs for RhoA, Par for Rac1, and Scribble for Cdc42) to promote apical-basal polarization in mammalian epithelial cells. The mutual exclusion of GTPase activities, especially that of RhoA and Rac1, which is well established, provides a mechanism through which polarity complexes that act through distinct Rho GTPases function as cellular rheostats to fine-tune specific downstream pathways to differentiate and preserve the apical and basolateral domains. This article is part of a Minifocus on Establishing polarity. © 2014. Published by The Company of Biologists Ltd.

  18. Crystal Structure of the C-terminal Domain of the Subunit of Human Translation Initiation Factor eIF2B

    SciTech Connect

    Wei, J.; Jia, M; Zheng, C

    2010-01-01

    Eukaryotic translation initiation factor eIF2B, the guanine nucleotide exchange factor (GEF) for eIF2, catalyzes conversion of eIF2 {center_dot} GDP to eIF2 {center_dot} GTP. The eIF2B is composed of five subunits, {alpha}, {beta}, {gamma}, {delta} and {var_epsilon}, within which the {var_epsilon} subunit is responsible for catalyzing the guanine exchange reaction. Here we present the crystal structure of the C-terminal domain of human eIF2B{var_epsilon} (eIF2B{var_epsilon}-CTD) at 2.0-{angstrom} resolution. The structure resembles a HEAT motif and three charge-rich areas on its surface can be identified. When compared to yeast eIF2B{var_epsilon}-CTD, one area involves highly conserved AA boxes while the other two are onlymore » partially conserved. In addition, the previously reported mutations in human eIF2B{var_epsilon}-CTD, which are related to the loss of the GEF activity and human VWM disease, have been discussed. Based on the structure, most of such mutations tend to destabilize the HEAT motif.« less

  19. Ran on tracks--cytoplasmic roles for a nuclear regulator.

    PubMed

    Yudin, Dmitry; Fainzilber, Mike

    2009-03-01

    The GTPase Ran is best known for its crucial roles in the regulation of nucleocytoplasmic transport in interphase cells and in the organization of the spindle apparatus during mitosis. A flurry of recent reports has now implicated Ran in diverse cytoplasmic events, including trafficking of an ephrin receptor homolog in nematode oocytes, control of neurite outgrowth in Drosophila and mammalian neurons, and retrograde signaling in nerve axons after injury. Striking findings suggest that the guanine-nucleotide state of Ran can be regulated by local translation of the Ran-binding protein RanBP1 in axons, and that an additional Ran-binding protein, RanBP10, can act as a microtubule-binding cytoplasmic guanine-nucleotide exchange factor for Ran (RanGEF) in megakaryocytes. Thus, the Ran GTPase system can act as a spatial regulator of importin-dependent transport and signaling in distal cytoplasm, and as a regulator of cytoskeletal dynamics at sites that are distant from the nucleus.

  20. Cyclosporin A inhibits CD11a/CD18 adhesion molecules due to inhibition of TNFα and IL-1β levels in the mouse model of pleurisy induced by carrageenan

    PubMed Central

    Dalmarco, Eduardo Monguilhott; Medeiros, Yara Santos

    2008-01-01

    The mouse model of pleurisy induced by carrageenan is characterized by a significant enhancement of cell migration due to neutrophils 4 h after pleurisy induction. Forty-eight hours after pleurisy induction, a significant increase in cell migration due to mononuclear cells occurs. Recently, studies in our laboratory have demonstrated that cyclosporine A (CsA) inhibits leukocyte migration in the pleural cavity and lungs in the mouse model of pleurisy induced by carrageenan. In the present work we evaluated whether CsA was able to downregulate CD11a/CD18 adhesion molecule in the lungs, as well as TNFα and IL-1β levels in the fluid leakage of the pleural cavity in this model. Our results showed that CsA significantly decreased CD11a/CD18 in the lungs, as well as TNFα and IL-1β levels in the fluid leakage of the pleural cavity 4 h and 48 h after pleurisy induction. It is our hypothesis that the inhibitory effect elicited by CsA upon these adhesion molecules may be also be attributed to the downregulation of TNFα and IL-1β cytokines. PMID:19262158

  1. The effects of NorA inhibition on the activities of levofloxacin, ciprofloxacin and norfloxacin against two genetically related strains of Staphylococcus aureus in an in-vitro infection model.

    PubMed

    Aeschlimann, J R; Kaatz, G W; Rybak, M J

    1999-09-01

    NorA is a membrane-associated multidrug efflux protein that can decrease susceptibility to fluoroquinolones in Staphylococcus aureus. We have previously determined that NorA inhibition can increase fluoroquinolone killing activity and post-antibiotic effect. In the current investigation, we studied the killing activity and development of resistance for levofloxacin, ciprofloxacin and norfloxacin with or without the H+/K+ ATPase inhibitor omeprazole, in a wild-type strain of S. aureus (SA-1199) and its NorA hyperproducing mutant (SA-1199-3) in an in-vitro pharmacodynamic model with infected fibrin-platelet matrices. Each drug was administered every 12-24 h for 72 h and human pharmacokinetics were simulated. Levofloxacin was the most potent fluoroquinolone against both strains and its activity was not significantly affected by combination with omeprazole. The addition of omeprazole to ciprofloxacin significantly lowered colony counts at all time-points against both strains and decreased the time to 99.9% kill from 72.2 h to 33.8 h against SA-1199. The addition of omeprazole minimally increased norfloxacin activity against both strains. Omeprazole decreased the frequency of ciprofloxacin resistance nearly 100-fold at the 24 h time-point, but the frequency of resistance was not significantly different for any of the fluoroquinolone regimens after this time-point. No resistance was detected during levofloxacin regimens. The hydrophobic fluoroquinolones such as levofloxacin appear to circumvent NorA efflux, which may contribute to their better activity and decreased resistance rates against staphylococci. More durable and potent NorA inhibitor compounds are needed that can improve killing activity and prevent resistance.

  2. MCLR-induced PP2A inhibition and subsequent Rac1 inactivation and hyperphosphorylation of cytoskeleton-associated proteins are involved in cytoskeleton rearrangement in SMMC-7721 human liver cancer cell line.

    PubMed

    Wang, Hao; Liu, Jinghui; Lin, Shuyan; Wang, Beilei; Xing, Mingluan; Guo, Zonglou; Xu, Lihong

    2014-10-01

    Cyanobacteria-derived toxin microcystin-LR (MCLR) has been widely investigated in its effects on normal cells, there is little information concerning its effects on cancer cells. In the present study, the SMMC-7721 human liver cancer cell line treated with MCLR was used to investigate the change of PP2A, cytoskeleton rearrangement, phosphorylation levels of PP2A substrates that related with cytoskeleton stability and explored underlying mechanisms. Here, we confirmed that MCLR entered into SMMC-7721 cells, bound to PP2A/C subunit and inhibited the activity of PP2A. The upregulation of phosphorylation of the PP2A/C subunit and PP2A regulation protein α4, as well as the change in the association of PP2A/C with α4, were responsible for the decrease in PP2A activity. Another novel finding is that the rearrangement of filamentous actin and microtubules led by MCLR may attribute to the increased phosphorylation of HSP27, VASP and cofilin due to PP2A inhibition. As a result of weakened interactions with PP2A and alterations in its subcellular localization, Rac1 may contribute to the cytoskeletal rearrangement induced by MCLR in SMMC-7721 cells. The current paper presents the first report demonstrating the characteristic of PP2A in MCLR exposed cancer cells, which were more susceptible to MCLR compared with the normal cell lines we previously found, which may be owing to the absence of some type of compensatory mechanisms. The hyperphosphorylation of cytoskeleton-associated proteins and Rac1 inactivation which were induced by inhibition of PP2A are shown to be involved in cytoskeleton rearrangement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Tiam1/Vav2-Rac1 axis: A tug-of-war between islet function and dysfunction.

    PubMed

    Kowluru, Anjaneyulu

    2017-05-15

    Glucose-stimulated insulin secretion [GSIS] from the islet β-cell involves a well-orchestrated interplay between metabolic and cationic events. It is well established that intracellular generation of adenine and guanine nucleotide triphosphates [e.g., ATP and GTP] represents one of the requisite signaling steps in GSIS. The small molecular mass GTP-binding proteins [G-proteins; e.g., Rac1 and Cdc42] have been shown to regulate islet β-cell function including actin cytoskeletal remodeling and fusion of insulin granules with the plasma membrane for GSIS to occur. In this context, several regulatory factors for these G-proteins have been identified in the pancreatic β-cell; these include guanine nucleotide exchange factors [GEFs] and guanine nucleotide dissociation inhibitors [GDI]. Recent pharmacological and molecular biological evidence identified Tiam1 and Vav2 as GEFs for Rac1 in promoting physiological insulin secretion. Paradoxically, emerging evidence in multiple cell types, including the islet β-cell, suggests key roles for Rac1 in the onset of cellular dysfunction under conditions of metabolic stress and diabetes. Furthermore, functional inactivation of either Tiam1 or Vav2 appears to attenuate sustained activation of Rac1 and its downstream signaling events [activation of stress kinases] under conditions of metabolic stress. Together, these findings suggest both "friendly" and "non-friendly" roles for Tiam1/Vav2-Rac1 signaling axis in islet β-cell in health and diabetes. Our current understanding of the field and the knowledge gaps that exist in this area of islet biology are heighted herein. Furthermore, potential caveats in the specificity and selectivity of pharmacological inhibitors that are available currently are discussed in this Commentary. Published by Elsevier Inc.

  4. A new function and complexity for protein translation initiation factor eIF2B

    PubMed Central

    Jennings, Martin D; Pavitt, Graham D

    2014-01-01

    eIF2B is a multisubunit protein that is critical for protein synthesis initiation and its control. It is a guanine nucleotide exchange factor (GEF) for its GTP-binding protein partner eIF2. eIF2 binds initiator tRNA to ribosomes and promotes mRNA AUG codon recognition. eIF2B is critical for regulation of protein synthesis via a conserved mechanism of phosphorylation of eIF2, which converts eIF2 from a substrate to an inhibitor of eIF2B GEF. In addition, inherited mutations affecting eIF2B subunits cause the fatal disorder leukoencephalopathy with Vanishing White Matter (VWM), also called Childhood Ataxia with Central nervous system Hypomyelination (CACH). Here we review findings which reveal that eIF2B is a decameric protein and also define a new function for the eIF2B. Our results demonstrate that the eIF2Bγ subunit is required for eIF2B to gain access to eIF2•GDP. Specifically it displaces a third translation factor eIF5 (a dual function GAP and GDI) from eIF2•GDP/eIF5 complexes. Thus eIF2B is a GDI displacement factor (or GDF) in addition to its role as a GEF, prompting the redrawing of the eIF2 cycling pathway to incorporate the new steps. In structural studies using mass spectrometry and cross-linking it is shown that eIF2B is a dimer of pentamers and so is twice as large as previously thought. A binding site for GTP on eIF2B was also found, raising further questions concerning the mechanism of nucleotide exchange. The implications of these findings for eIF2B function and for VWM/CACH disease are discussed. PMID:25486352

  5. A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation.

    PubMed

    Yin, Guowei; Kistler, Samantha; George, Samuel D; Kuhlmann, Nora; Garvey, Leslie; Huynh, Minh; Bagni, Rachel K; Lammers, Michael; Der, Channing J; Campbell, Sharon L

    2017-03-17

    The KRAS GTPase plays a critical role in the control of cellular growth. The activity of KRAS is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and also post-translational modification. Lysine 104 in KRAS can be modified by ubiquitylation and acetylation, but the role of this residue in intrinsic KRAS function has not been well characterized. We find that lysine 104 is important for GEF recognition, because mutations at this position impaired GEF-mediated nucleotide exchange. Because the KRAS K104Q mutant has recently been employed as an acetylation mimetic, we conducted a series of studies to evaluate its in vitro and cell-based properties. Herein, we found that KRAS K104Q exhibited defects in both GEF-mediated exchange and GAP-mediated GTP hydrolysis, consistent with NMR-detected structural perturbations in localized regions of KRAS important for recognition of these regulatory proteins. Despite the partial defect in both GEF and GAP regulation, KRAS K104Q did not alter steady-state GTP-bound levels or the ability of the oncogenic KRAS G12V mutant to cause morphologic transformation of NIH 3T3 mouse fibroblasts and of WT KRAS to rescue the growth defect of mouse embryonic fibroblasts deficient in all Ras genes. We conclude that the KRAS K104Q mutant retains both WT and mutant KRAS function, probably due to offsetting defects in recognition of factors that up-regulate (GEF) and down-regulate (GAP) RAS activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Antimyocarditic activity of the guanine derivative BIOLF-70 in a coxsackievirus B3 murine model.

    PubMed

    Gauntt, C J; Arizpe, H M; Kung, J T; Ogilvie, K K; Cheriyan, U O

    1985-02-01

    Prophylactic administration of a nontoxic dose of 9-[[2-benzyloxyl-1-(benzyloxymethyl)ethoxy]methyl]-6-chlo roguanine (BIOLF-70) to mice reduced the number of myocarditic lesions induced by coxsackievirus B3 (CVB3). BIOLF-70 exhibited minimal antiviral activity against CVB3 in HeLa cells and murine neonatal skin fibroblasts and minimally reduced CVB3 yields in heart tissues. The drug had no effect on serum anti-CVB3 neutralizing antibody titers and did not induce the production of interferon. Flow microfluorometric analyses of splenic lymphocytes taken from BIOLF-70-treated, CVB3-inoculated mice at 7 days postinoculation showed that the proportion of T lymphocytes was increased, as measured by fluorescent staining of Thy-1 and Lyt-2 surface markers, compared with the proportion of T lymphocytes in splenic cells from virus-inoculated or BIOLF-70-treated or normal groups of mice. Splenic lymphocytes from BIOLF-70-treated, CVB3-inoculated mice showed reduced cytotoxic activity against CVB3-infected target fibroblasts. Splenic cells from BIOLF-70-treated, CVB3-inoculated mice had slightly higher natural killer cell activity than did those from the other three groups of mice, which had comparatively similar levels of natural killer cell activity. The data suggest that BIOLF-70 exerts antimyocarditic activity perhaps by some antiviral activity in heart tissues and by immunomodulatory mechanisms which appear to involve T suppressor or T cytotoxic lymphocyte subpopulations and natural killer cells.

  7. Modeling and structural analysis of human Guanine nucleotide-binding protein-like 3,nucleostemin

    PubMed Central

    Nazmi, Farinaz; Moosavi, Mohammad Amin; Rahmati, Marveh; Hoessinpour-Feizi, Mohammad Ali

    2015-01-01

    Human GNL3 (nucleostemin) is a recently discovered nucleolar protein with pivotal functions in maintaining genomic integrity and determining cell fates of various normal and cancerous stem cells. Recent reports suggest that targeting this GTP-binding protein may have therapeutic value in cancer. Although, sequence analyzing revealed that nucleostemin (NS) comprises 5 permuted GTP-binding motifs, a crystal structure for this protein is missing at Protein Data Bank (PDB). Obviously, any attempt for predicting of NS structure can further our knowledge on its functional sites and subsequently designing molecular inhibitors. Herein, we used bioinformatics tools and could model 262 amino acids of NS (132-393 aa). Initial models were built by MODELLER, refined with Scwrl4 program, and validated with ProsA and Jcsc databases as well as PSVS software. Then, the best quality model was chosen for motif and domain analyzing by Pfam, PROSITE and PRINTS. The final model was visualized by vmd program. This predicted model may pave the way for next studies regarding ligand binding states and interaction sites as well as screening of databases for potential inhibitors. PMID:26339152

  8. Modeling and structural analysis of human Guanine nucleotide-binding protein-like 3,nucleostemin.

    PubMed

    Nazmi, Farinaz; Moosavi, Mohammad Amin; Rahmati, Marveh; Hoessinpour-Feizi, Mohammad Ali

    2015-01-01

    Human GNL3 (nucleostemin) is a recently discovered nucleolar protein with pivotal functions in maintaining genomic integrity and determining cell fates of various normal and cancerous stem cells. Recent reports suggest that targeting this GTP-binding protein may have therapeutic value in cancer. Although, sequence analyzing revealed that nucleostemin (NS) comprises 5 permuted GTP-binding motifs, a crystal structure for this protein is missing at Protein Data Bank (PDB). Obviously, any attempt for predicting of NS structure can further our knowledge on its functional sites and subsequently designing molecular inhibitors. Herein, we used bioinformatics tools and could model 262 amino acids of NS (132-393 aa). Initial models were built by MODELLER, refined with Scwrl4 program, and validated with ProsA and Jcsc databases as well as PSVS software. Then, the best quality model was chosen for motif and domain analyzing by Pfam, PROSITE and PRINTS. The final model was visualized by vmd program. This predicted model may pave the way for next studies regarding ligand binding states and interaction sites as well as screening of databases for potential inhibitors.

  9. Site-Specific Covalent Conjugation of Modified mRNA by tRNA Guanine Transglycosylase.

    PubMed

    Ehret, Fabian; Zhou, Cun Yu; Alexander, Seth C; Zhang, Dongyang; Devaraj, Neal K

    2018-03-05

    Modified mRNA (mod-mRNA) has recently been widely studied as the form of RNA useful for therapeutic applications due to its high stability and lowered immune response. Herein, we extend the scope of the recently established RNA-TAG (transglycosylation at guanosine) methodology, a novel approach for genetically encoded site-specific labeling of large mRNA transcripts, by employing mod-mRNA as substrate. As a proof of concept, we covalently attached a fluorescent probe to mCherry encoding mod-mRNA transcripts bearing 5-methylcytidine and/or pseudouridine substitutions with high labeling efficiencies. To provide a versatile labeling methodology with a wide range of possible applications, we employed a two-step strategy for functionalization of the mod-mRNA to highlight the therapeutic potential of this new methodology. We envision that this novel and facile labeling methodology of mod-RNA will have great potential in decorating both coding and noncoding therapeutic RNAs with a variety of diagnostic and functional moieties.

  10. Selected health and lifestyle factors, cytosine-adenine-guanine status, and phenoconversion in Huntington's disease.

    PubMed

    Tanner, Caroline; Marder, Karen; Eberly, Shirley; Biglan, Kevin; Oakes, David; Shoulson, Ira

    2018-03-01

    In Huntington's disease, 60% of the variance in onset age is not explained by the huntingtin gene mutation. Huntington's disease onset was earlier in caffeine users. The objective of this study was to assess the relationship of lifestyle factors with motor phenoconversion among persons at risk for Huntington's disease. The associations of motor phenoconversion and exposure to selected lifestyle and health factors were examined using Cox proportional hazards analyses adjusted for age, gender, and repeat length. Of 247 participants, 36 (14.6%) phenoconverted. Mean follow-up was 4.2 years. Greater caffeinated soda use was associated with an increased hazard of phenoconversion: moderate use hazard ratio 2.26 (95% confidence interval 0.59-8.71), high use hazard ratio 4.05 (95% confidence interval 1.18-13.96). Huntington's disease onset was earlier among consumers of caffeinated soda, but not other caffeinated beverages. This finding may be spurious or not related to caffeine. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  11. DNA Lesions Caused by ROS and RNOS: A Review of Interactions and Reactions Involving Guanine

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Mishra, P. C.

    DNA is constantly attacked by a large number of endogenous and exogenous reactive oxygen species (ROS), reactive nitrogen oxide species (RNOS), and alkylating agents which produce a wide variety of modifications of its constituents, particularly the bases. Some of these modifications (lesions) are hazardous to normal cell functioning, and are implicated in several lethal conditions including chronic inflammatory diseases, atherosclerosis, aging, mutation, cancer, and neurodegenerative disorders, such as the Alzheimer's and Parkinson's diseases.

  12. Muscarinic-agonist and guanine nucleotide activation of polyphosphoinositide phosphodiesterase in isolated islet-cell membranes.

    PubMed Central

    Dunlop, M E; Larkins, R G

    1986-01-01

    Stimulated hydrolysis of the inositol phospholipids phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] was investigated by studying the phosphoinositides produced in a suspended preparation of plasma membranes by transference of 32P from [gamma-32P]ATP. At basal Ca2+ concentration (calculated free Ca2+, 150 nM) phospholipid hydrolysis was stimulated either by the muscarinic agonists carbamoylcholine and bethanecol or by the addition of the non-hydrolysable analogue of GTP, guanosine 5'-[beta gamma-imido]triphosphate [p(NH)ppG]. GTP was without effect on basal hyrolysis. Both GTP and p(NH)ppG enhanced the rapid (within 10 s) hydrolysis of PtdIns4P and PtdIns(4,5)P2 induced by carbamoylcholine in a dose-dependent manner. A rightward shift in the competition curve of carbamoylcholine for bound L-[3H]quinuclidinyl benzilate was seen on addition of GTP or p(NH)ppG (100 microM) under phosphorylating conditions. Pretreatment of intact islet cells with Bordetella pertussis toxin, islet-activating protein (IAP) or treatment of membranes with IAP under conditions which elicited ADP-ribosylation of a protein of Mr 41,000 was without effect on muscarinic binding, phosphoinositide phosphorylation or subsequent hydrolysis by carbamoylcholine. The findings indicate the involvement of a GTP-binding protein in the coupling of the muscarinic receptor to phosphoinositide hydrolysis in the islet cell and suggest that this is distinct from the GTP-binding regulatory component of adenylate cyclase which is covalently modified by IAP. Images Fig. 5. PMID:2881539

  13. Crystal structure of eukaryotic translation initiation factor 2B.

    PubMed

    Kashiwagi, Kazuhiro; Takahashi, Mari; Nishimoto, Madoka; Hiyama, Takuya B; Higo, Toshiaki; Umehara, Takashi; Sakamoto, Kensaku; Ito, Takuhiro; Yokoyama, Shigeyuki

    2016-03-03

    Eukaryotic cells restrict protein synthesis under various stress conditions, by inhibiting the eukaryotic translation initiation factor 2B (eIF2B). eIF2B is the guanine nucleotide exchange factor for eIF2, a heterotrimeric G protein consisting of α-, β- and γ-subunits. eIF2B exchanges GDP for GTP on the γ-subunit of eIF2 (eIF2γ), and is inhibited by stress-induced phosphorylation of eIF2α. eIF2B is a heterodecameric complex of two copies each of the α-, β-, γ-, δ- and ε-subunits; its α-, β- and δ-subunits constitute the regulatory subcomplex, while the γ- and ε-subunits form the catalytic subcomplex. The three-dimensional structure of the entire eIF2B complex has not been determined. Here we present the crystal structure of Schizosaccharomyces pombe eIF2B with an unprecedented subunit arrangement, in which the α2β2δ2 hexameric regulatory subcomplex binds two γε dimeric catalytic subcomplexes on its opposite sides. A structure-based in vitro analysis by a surface-scanning site-directed photo-cross-linking method identified the eIF2α-binding and eIF2γ-binding interfaces, located far apart on the regulatory and catalytic subcomplexes, respectively. The eIF2γ-binding interface is located close to the conserved 'NF motif', which is important for nucleotide exchange. A structural model was constructed for the complex of eIF2B with phosphorylated eIF2α, which binds to eIF2B more strongly than the unphosphorylated form. These results indicate that the eIF2α phosphorylation generates the 'nonproductive' eIF2-eIF2B complex, which prevents nucleotide exchange on eIF2γ, and thus provide a structural framework for the eIF2B-mediated mechanism of stress-induced translational control.

  14. Equivalent Activities of Repulsive Axon Guidance Receptors

    PubMed Central

    Long, Hong; Yoshikawa, Shingo

    2016-01-01

    Receptors on the growth cone at the leading edge of elongating axons play critical guidance roles by recognizing cues via their extracellular domains and transducing signals via their intracellular domains, resulting in changes in direction of growth. An important concept to have emerged in the axon guidance field is the importance of repulsion as a major guidance mechanism. Given the number and variety of different repulsive receptors, it is generally thought that there are likely to be qualitative differences in the signals they transduce. However, the nature of these possible differences is unknown. By creating chimeras using the extracellular and intracellular domains of three different Drosophila repulsive receptors, Unc5, Roundabout (Robo), and Derailed (Drl) and expressing them in defined cells within the embryonic nervous system, we examined the responses elicited by their intracellular domains systematically. Surprisingly, we found no qualitative differences in growth cone response or axon growth, suggesting that, despite their highly diverged sequences, each intracellular domain elicits repulsion via a common pathway. In terms of the signaling pathway(s) used by the repulsive receptors, mutations in the guanine nucleotide exchange factor Trio strongly enhance the repulsive activity of all three intracellular domains, suggesting that repulsion by Unc5, Robo, and Drl, and perhaps repulsion in general, involves Trio activity. SIGNIFICANCE STATEMENT A prevailing concept that has emerged in the axon guidance field is the importance of repulsion as a guidance mechanism for steering axons to their appropriate targets. Given the number and variety of different repulsive receptors, it is generally thought that there are differences in the signals that they transduce. However, this has never been tested directly. We have used the advanced genetics of Drosophila to compare directly the outputs of different repulsive receptors. Surprisingly, we found no qualitative

  15. Conditional Deletion of Ric-8b in Olfactory Sensory Neurons Leads to Olfactory Impairment.

    PubMed

    Machado, Cleiton F; Nagai, Maíra H; Lyra, Cassandra S; Reis-Silva, Thiago M; Xavier, André M; Glezer, Isaias; Felicio, Luciano F; Malnic, Bettina

    2017-12-13

    The olfactory system can discriminate a vast number of odorants. This ability derives from the existence of a large family of odorant receptors expressed in the cilia of the olfactory sensory neurons. Odorant receptors signal through the olfactory-specific G-protein subunit, Gαolf. Ric-8b, a guanine nucleotide exchange factor, interacts with Gαolf and can amplify odorant receptor signal transduction in vitro To explore the function of Ric-8b in vivo , we generated a tissue specific knock-out mouse by crossing OMP-Cre transgenic mice to Ric-8b floxed mice. We found that olfactory-specific Ric-8b knock-out mice of mixed sex do not express the Gαolf protein in the olfactory epithelium. We also found that in these mice, the mature olfactory sensory neuron layer is reduced, and that olfactory sensory neurons show increased rate of cell death compared with wild-type mice. Finally, behavioral tests showed that the olfactory-specific Ric-8b knock-out mice show an impaired sense of smell, even though their motivation and mobility behaviors remain normal. SIGNIFICANCE STATEMENT Ric-8b is a guanine nucleotide exchange factor (GEF) expressed in the olfactory epithelium and in the striatum. Ric-8b interacts with the olfactory Gαolf subunit, and can amplify odorant signaling through odorant receptors in vitro However, the functional significance of this GEF in the olfactory neurons in vivo remains unknown. We report that deletion of Ric-8b in olfactory sensory neurons prevents stable expression of Gαolf. In addition, we demonstrate that olfactory neurons lacking Ric-8b (and consequently Gαolf) are more susceptible to cell death. Ric-8b conditional knock-out mice display impaired olfactory guided behavior. Our results reveal that Ric-8b is essential for olfactory function, and suggest that it may also be essential for Gαolf-dependent functions in the brain. Copyright © 2017 the authors 0270-6474/17/3712202-12$15.00/0.

  16. Admixture Mapping of Subclinical Atherosclerosis and Subsequent Clinical Events Among African Americans in Two Large Cohort Studies

    PubMed Central

    Shendre, Aditi; Wiener, Howard; Irvin, Marguerite R.; Zhi, Degui; Limdi, Nita A.; Overton, Edgar T.; Wassel, Christina L.; Divers, Jasmin; Rotter, Jerome I.; Post, Wendy S.; Shrestha, Sadeep

    2017-01-01

    Background Local ancestry may contribute to the disproportionate burden of subclinical and clinical cardiovascular disease (CVD) among admixed African Americans (AAs) compared to other populations, suggesting a rationale for admixture mapping. Methods and Results We estimated local European ancestry (LEA) using Local Ancestry Inference in adMixed Populations using Linkage Disequilibrium (LAMP-LD) and evaluated the association with common carotid artery intima-media thickness (cCIMT) using multivariable linear regression analysis among 1,554 AAs from the Multi-Ethnic Study of Atherosclerosis (MESA). We conducted secondary analysis to examine the significant cCIMT-LEA associations with clinical CVD events. We observed genome-wide significance in relation to cCIMT association with the secretion regulating guanine nucleotide exchange factor (SERGEF) gene (β=0.0137, P=2.98×10−4), also associated with higher odds of stroke (odds ratio (OR)=1.71, P=0.02). Several regions, in particular Ca2+-dependent secretion activator 1 (CADPS) gene region identified in MESA were also replicated in the Atherosclerosis Risk in Communities (ARIC) cohort. We observed other cCIMT-LEA regions associated with other clinical events, most notably the regions harboring creatine kinase, mitochondrial 2 (CKMT2) and Ras protein specific guanine nucleotide releasing factor 2 (RASGRF2) genes with all clinical events except stroke, the leucine rich repeat containing 3B (LRRC3B) gene with myocardial infarction, the protein arginine methyltransferase 3 (PRMT3) gene with stroke, and the lipoma high mobility group protein I-C (HMGIC) fusion partner-like 2 (LHFPL2) gene with hard and all coronary heart disease. Conclusions We identified several novel LEA regions, in addition to previously identified genomic regions, associated with cCIMT and CVD events among African Americans. PMID:28408707

  17. Establishment of epithelial polarity – GEF who's minding the GAP?

    PubMed Central

    Ngok, Siu P.; Lin, Wan-Hsin; Anastasiadis, Panos Z.

    2014-01-01

    ABSTRACT Cell polarization is a fundamental process that underlies epithelial morphogenesis, cell motility, cell division and organogenesis. Loss of polarity predisposes tissues to developmental disorders and contributes to cancer progression. The formation and establishment of epithelial cell polarity is mediated by the cooperation of polarity protein complexes, namely the Crumbs, partitioning defective (Par) and Scribble complexes, with Rho family GTPases, including RhoA, Rac1 and Cdc42. The activation of different GTPases triggers distinct downstream signaling pathways to modulate protein–protein interactions and cytoskeletal remodeling. The spatio-temporal activation and inactivation of these small GTPases is tightly controlled by a complex interconnected network of different regulatory proteins, including guanine-nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). In this Commentary, we focus on current understanding on how polarity complexes interact with GEFs and GAPs to control the precise location and activation of Rho GTPases (Crumbs for RhoA, Par for Rac1, and Scribble for Cdc42) to promote apical–basal polarization in mammalian epithelial cells. The mutual exclusion of GTPase activities, especially that of RhoA and Rac1, which is well established, provides a mechanism through which polarity complexes that act through distinct Rho GTPases function as cellular rheostats to fine-tune specific downstream pathways to differentiate and preserve the apical and basolateral domains. This article is part of a Minifocus on Establishing polarity. For further reading, please see related articles: ‘ERM proteins at a glance’ by Andrea McClatchey (J. Cell Sci. 127, 3199–3204). ‘Integrins and epithelial cell polarity’ by Jessica Lee and Charles Streuli (J. Cell Sci. 127, 3217–3215). PMID:24994932

  18. Admixture Mapping of Subclinical Atherosclerosis and Subsequent Clinical Events Among African Americans in 2 Large Cohort Studies.

    PubMed

    Shendre, Aditi; Wiener, Howard; Irvin, Marguerite R; Zhi, Degui; Limdi, Nita A; Overton, Edgar T; Wassel, Christina L; Divers, Jasmin; Rotter, Jerome I; Post, Wendy S; Shrestha, Sadeep

    2017-04-01

    Local ancestry may contribute to the disproportionate burden of subclinical and clinical cardiovascular disease among admixed African Americans compared with other populations, suggesting a rationale for admixture mapping. We estimated local European ancestry (LEA) using Local Ancestry inference in adMixed Populations using Linkage Disequilibrium method (LAMP-LD) and evaluated the association with common carotid artery intima-media thickness (cCIMT) using multivariable linear regression analysis among 1554 African Americans from MESA (Multi-Ethnic Study of Atherosclerosis). We conducted secondary analysis to examine the significant cCIMT-LEA associations with clinical cardiovascular disease events. We observed genome-wide significance in relation to cCIMT association with the SERGEF gene (secretion-regulating guanine nucleotide exchange factor; β=0.0137; P =2.98×10 - 4 ), also associated with higher odds of stroke (odds ratio=1.71; P =0.02). Several regions, in particular CADPS gene (Ca 2+ -dependent secretion activator 1) region identified in MESA, were also replicated in the ARIC cohort (Atherosclerosis Risk in Communities). We observed other cCIMT-LEA regions associated with other clinical events, most notably the regions harboring CKMT2 gene (creatine kinase, mitochondrial 2) and RASGRF2 gene (Ras protein-specific guanine nucleotide-releasing factor 2) with all clinical events except stroke, the LRRC3B gene (leucine-rich repeat containing 3B) with myocardial infarction, the PRMT3 gene (protein arginine methyltransferase 3) with stroke, and the LHFPL2 gene (lipoma high mobility group protein I-C fusion partner-like 2) with hard and all coronary heart disease. We identified several novel LEA regions, in addition to previously identified genetic variations, associated with cCIMT and cardiovascular disease events among African Americans. © 2017 American Heart Association, Inc.

  19. Analysis of a minimal Rho-GTPase circuit regulating cell shape

    NASA Astrophysics Data System (ADS)

    Holmes, William R.; Edelstein-Keshet, Leah

    2016-08-01

    Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase (‘wave-pinning’) model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.

  20. A T42A Ran mutation: differential interactions with effectors and regulators, and defect in nuclear protein import.

    PubMed

    Murphy, G A; Moore, M S; Drivas, G; Pérez de la Ossa, P; Villamarin, A; D'Eustachio, P; Rush, M G

    1997-12-01

    Ran, the small, predominantly nuclear GTPase, has been implicated in the regulation of a variety of cellular processes including cell cycle progression, nuclear-cytoplasmic trafficking of RNA and protein, nuclear structure, and DNA synthesis. It is not known whether Ran functions directly in each process or whether many of its roles may be secondary to a direct role in only one, for example, nuclear protein import. To identify biochemical links between Ran and its functional target(s), we have generated and examined the properties of a putative Ran effector mutation, T42A-Ran. T42A-Ran binds guanine nucleotides as well as wild-type Ran and responds as well as wild-type Ran to GTP or GDP exchange stimulated by the Ran-specific guanine nucleotide exchange factor, RCC1. T42A-Ran.GDP also retains the ability to bind p10/NTF2, a component of the nuclear import pathway. In contrast to wild-type Ran, T42A-Ran.GTP binds very weakly or not detectably to three proposed Ran effectors, Ran-binding protein 1 (RanBP1), Ran-binding protein 2 (RanBP2, a nucleoporin), and karyopherin beta (a component of the nuclear protein import pathway), and is not stimulated to hydrolyze bound GTP by Ran GTPase-activating protein, RanGAP1. Also in contrast to wild-type Ran, T42A-Ran does not stimulate nuclear protein import in a digitonin permeabilized cell assay and also inhibits wild-type Ran function in this system. However, the T42A mutation does not block the docking of karyophilic substrates at the nuclear pore. These properties of T42A-Ran are consistent with its classification as an effector mutant and define the exposed region of Ran containing the mutation as a probable effector loop.

  1. The G protein regulator AGS-3 allows C. elegans to alter behaviors in response to food deprivation

    PubMed Central

    Hofler, Catherine; Koelle, Michael R.

    2012-01-01

    Behavioral responses to food deprivation are a fundamental aspect of nervous system function in all animals. In humans, these behavioral responses prevent dieting from being an effective remedy for obesity. Several signaling molecules in the mammalian brain act through G proteins of the Gαi/o family to mediate responses to food restriction. The mechanisms for neural response to food deprivation may be conserved across species, allowing the power of genetic model organisms to generate insights relevant to the problem of human obesity. In a recent study, we found that C. elegans uses Gαo signaling to mediate a number of behavioral changes that occur after food deprivation. Food deprivation causes biochemical changes in the G Protein Regulator (GPR) domain protein AGS-3 and AGS-3, together with the guanine nucleotide exchange factor RIC-8, activates Gαo signaling to alter food-seeking behavior. These proteins are all conserved in the human brain. Thus the study of behavioral responses to food deprivation in C. elegans may reveal the details of conserved molecular mechanisms underlying neural responses to food deprivation. PMID:24058824

  2. Rap G protein signal in normal and disordered lymphohematopoiesis.

    PubMed

    Minato, Nagahiro

    2013-09-10

    Rap proteins (Rap1, Rap2a, b, c) are small molecular weight GTPases of the Ras family. Rap G proteins mediate diverse cellular events such as cell adhesion, proliferation, and gene activation through various signaling pathways. Activation of Rap signal is regulated tightly by several specific regulatory proteins including guanine nucleotide exchange factors and GTPase-activating proteins. Beyond cell biological studies, increasing attempts have been made in the past decade to define the roles of Rap signal in specific functions of normal tissue systems as well as in cancer. In the immune and hematopoietic systems, Rap signal plays crucial roles in the development and function of essentially all lineages of lymphocytes and hematopoietic cells, and importantly, deregulated Rap signal may lead to unique pathological conditions depending on the affected cell types, including various types of leukemia and autoimmunity. The phenotypical studies have unveiled novel, even unexpected functional aspects of Rap signal in cells from a variety of tissues, providing potentially important clues for controlling human diseases, including malignancy. © 2013 Elsevier Inc. All rights reserved.

  3. Epac2 induces synapse remodeling and depression and its disease-associated forms alter spine morphology

    PubMed Central

    Woolfrey, Kevin M.; Srivastava, Deepak P.; Photowala, Huzefa; Yamashita, Megumi; Barbolina, Maria V.; Cahill, Michael E.; Xie, Zhong; Jones, Kelly A.; Quilliam, Lawrence A.; Prakriya, Murali; Penzes, Peter

    2009-01-01

    Dynamic remodeling of spiny synapses is crucial for cortical circuit development, refinement, and plasticity, while abnormal morphogenesis is associated with neuropsychiatric disorders. Here we show in cultured rat cortical neurons that activation of Epac2, a PKA-independent cAMP target and Rap guanine-nucleotide exchange factor (GEF), induces spine shrinkage, increases spine motility, removes synaptic GluR2/3-containing AMPA receptors, and depresses excitatory transmission, while its inhibition promotes spine enlargement and stabilization. Epac2 is required for dopamine D1-like receptor-dependent spine shrinkage and GluR2 removal from spines. Epac2 interaction with neuroligin promotes its membrane recruitment and enhances its GEF activity. Rare missense mutations in the EPAC2 gene, previously found in individuals with autism, affect basal and neuroligin-stimulated GEF activity, dendritic Rap signaling, synaptic protein distribution, and spine morphology. Thus, we identify a novel mechanism that promotes dynamic remodeling and depression of spiny synapses, whose mutations may contribute to some aspects of disease. PMID:19734897

  4. GrpL, a Grb2-related Adaptor Protein, Interacts with SLP-76 to Regulate Nuclear Factor of Activated T Cell Activation

    PubMed Central

    Law, Che-Leung; Ewings, Maria K.; Chaudhary, Preet M.; Solow, Sasha A.; Yun, Theodore J.; Marshall, Aaron J.; Hood, Leroy; Clark, Edward A.

    1999-01-01

    Propagation of signals from the T cell antigen receptor (TCR) involves a number of adaptor molecules. SH2 domain–containing protein 76 (SLP-76) interacts with the guanine nucleotide exchange factor Vav to activate the nuclear factor of activated cells (NF-AT), and its expression is required for normal T cell development. We report the cloning and characterization of a novel Grb2-like adaptor molecule designated as Grb2-related protein of the lymphoid system (GrpL). Expression of GrpL is restricted to hematopoietic tissues, and it is distinguished from Grb2 by having a proline-rich region. GrpL can be coimmunoprecipitated with SLP-76 but not with Sos1 or Sos2 from Jurkat cell lysates. In contrast, Grb2 can be coimmunoprecipitated with Sos1 and Sos2 but not with SLP-76. Moreover, tyrosine-phosphorylated LAT/pp36/38 in detergent lysates prepared from anti-CD3 stimulated T cells associated with Grb2 but not GrpL. These data reveal the presence of distinct complexes involving GrpL and Grb2 in T cells. A functional role of the GrpL–SLP-76 complex is suggested by the ability of GrpL to act alone or in concert with SLP-76 to augment NF-AT activation in Jurkat T cells. PMID:10209041

  5. CED-10/Rac1 Regulates Endocytic Recycling through the RAB-5 GAP TBC-2

    PubMed Central

    Sun, Lin; Liu, Ou; Desai, Jigar; Karbassi, Farhad; Sylvain, Marc-André; Shi, Anbing; Zhou, Zheng; Rocheleau, Christian E.; Grant, Barth D.

    2012-01-01

    Rac1 is a founding member of the Rho-GTPase family and a key regulator of membrane remodeling. In the context of apoptotic cell corpse engulfment, CED-10/Rac1 acts with its bipartite guanine nucleotide exchange factor, CED-5/Dock180-CED-12/ELMO, in an evolutionarily conserved pathway to promote phagocytosis. Here we show that in the context of the Caenorhabditis elegans intestinal epithelium CED-10/Rac1, CED-5/Dock180, and CED-12/ELMO promote basolateral recycling. Furthermore, we show that CED-10 binds to the RAB-5 GTPase activating protein TBC-2, that CED-10 contributes to recruitment of TBC-2 to endosomes, and that recycling cargo is trapped in recycling endosomes in ced-12, ced-10, and tbc-2 mutants. Expression of GTPase defective RAB-5(Q78L) also traps recycling cargo. Our results indicate that down-regulation of early endosome regulator RAB-5/Rab5 by a CED-5, CED-12, CED-10, TBC-2 cascade is an important step in the transport of cargo through the basolateral recycling endosome for delivery to the plasma membrane. PMID:22807685

  6. Tiam–Rac signaling mediates trans-endocytosis of ephrin receptor EphB2 and is important for cell repulsion

    PubMed Central

    2016-01-01

    Ephrin receptors interact with membrane-bound ephrin ligands to regulate contact-mediated attraction or repulsion between opposing cells, thereby influencing tissue morphogenesis. Cell repulsion requires bidirectional trans-endocytosis of clustered Eph–ephrin complexes at cell interfaces, but the mechanisms underlying this process are poorly understood. Here, we identified an actin-regulating pathway allowing ephrinB+ cells to trans-endocytose EphB receptors from opposing cells. Live imaging revealed Rac-dependent F-actin enrichment at sites of EphB2 internalization, but not during vesicle trafficking. Systematic depletion of Rho family GTPases and their regulatory proteins identified the Rac subfamily and the Rac-specific guanine nucleotide exchange factor Tiam2 as key components of EphB2 trans-endocytosis, a pathway previously implicated in Eph forward signaling, in which ephrins act as in trans ligands of Eph receptors. However, unlike in Eph signaling, this pathway is not required for uptake of soluble ligands in ephrinB+ cells. We also show that this pathway is required for EphB2-stimulated contact repulsion. These results support the existence of a conserved pathway for EphB trans-endocytosis that removes the physical tether between cells, thereby enabling cell repulsion. PMID:27597758

  7. Thermodynamic contribution of backbone conformational entropy in the binding between SH3 domain and proline-rich motif.

    PubMed

    Zeng, Danyun; Shen, Qingliang; Cho, Jae-Hyun

    2017-02-26

    Biological functions of intrinsically disordered proteins (IDPs), and proteins containing intrinsically disordered regions (IDRs) are often mediated by short linear motifs, like proline-rich motifs (PRMs). Upon binding to their target proteins, IDPs undergo a disorder-to-order transition which is accompanied by a large conformational entropy penalty. Hence, the molecular mechanisms underlying control of conformational entropy are critical for understanding the binding affinity and selectivity of IDPs-mediated protein-protein interactions (PPIs). Here, we investigated the backbone conformational entropy change accompanied by binding of the N-terminal SH3 domain (nSH3) of CrkII and PRM derived from guanine nucleotide exchange factor 1 (C3G). In particular, we focused on the estimation of conformational entropy change of disordered PRM upon binding to the nSH3 domain. Quantitative characterization of conformational dynamics of disordered peptides like PRMs is limited. Hence, we combined various methods, including NMR model-free analysis, δ2D, DynaMine, and structure-based calculation of entropy loss. This study demonstrates that the contribution of backbone conformational entropy change is significant in the PPIs mediated by IDPs/IDRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Genome-wide siRNA screen identifies UNC50 as a regulator of Shiga toxin 2 trafficking

    PubMed Central

    Iles, Lakesla R.; Bartholomeusz, Geoffrey

    2017-01-01

    Shiga toxins 1 and 2 (STx1 and STx2) undergo retrograde trafficking to reach the cytosol. Early endosome-to-Golgi transport allows the toxins to evade degradation in lysosomes. Targeting this trafficking step has therapeutic promise, but the mechanism of trafficking for the more potent toxin STx2 is unclear. To identify host factors required for early endosome-to-Golgi trafficking of STx2, we performed a viability-based genome-wide siRNA screen in HeLa cells. 564, 535, and 196 genes were found to be required for toxicity induced by STx1 only, STx2 only, and both toxins, respectively. We focused on validating endosome/Golgi-localized hits specific for STx2 and found that depletion of UNC50 blocked early endosome-to-Golgi trafficking and induced lysosomal degradation of STx2. UNC50 acted by recruiting GBF1, an ADP ribosylation factor–guanine nucleotide exchange factor (ARF-GEF), to the Golgi. These results provide new information about STx2 trafficking mechanisms and may advance efforts to generate therapeutically viable toxin-trafficking inhibitors. PMID:28883040

  9. EFA6B antagonizes breast cancer.

    PubMed

    Zangari, Joséphine; Partisani, Mariagrazia; Bertucci, François; Milanini, Julie; Bidaut, Ghislain; Berruyer-Pouyet, Carole; Finetti, Pascal; Long, Elodie; Brau, Frédéric; Cabaud, Olivier; Chetaille, Bruno; Birnbaum, Daniel; Lopez, Marc; Hofman, Paul; Franco, Michel; Luton, Frédéric

    2014-10-01

    One of the earliest events in epithelial carcinogenesis is the dissolution of tight junctions and cell polarity signals that are essential for normal epithelial barrier function. Here, we report that EFA6B, a guanine nucleotide exchange factor for the Ras superfamily protein Arf6 that helps assemble and stabilize tight junction, is required to maintain apico-basal cell polarity and mesenchymal phenotypes in mammary epithelial cells. In organotypic three-dimensional cell cultures, endogenous levels of EFA6B were critical to determine epithelial-mesenchymal status. EFA6B downregulation correlated with a mesenchymal phenotype and ectopic expression of EFA6B hampered TGFβ-induced epithelial-to-mesenchymal transition (EMT). Transcriptomic and immunohistochemical analyses of human breast tumors revealed that the reduced expression of EFA6B was associated with loss of tight junction components and with increased signatures of EMT, cancer stemness, and poor prognosis. Accordingly, tumors with low levels of EFA6B were enriched in the aggressive triple-negative and claudin-low breast cancer subtypes. Our results identify EFA6B as a novel antagonist in breast cancer and they point to its regulatory and signaling pathways as rational therapeutic targets in aggressive forms of this disease. ©2014 American Association for Cancer Research.

  10. Snf1/AMP-activated protein kinase activates Arf3p to promote invasive yeast growth via a non-canonical GEF domain

    PubMed Central

    Hsu, Jia-Wei; Chen, Kuan-Jung; Lee, Fang-Jen S.

    2015-01-01

    Active GTP-bound Arf GTPases promote eukaryotic cell membrane trafficking and cytoskeletal remodelling. Arf activation is accelerated by guanine nucleotide-exchange factors (GEFs) using the critical catalytic glutamate in all known Sec7 domain sequences. Yeast Arf3p, a homologue of mammalian Arf6, is required for yeast invasive responses to glucose depletion. Here we identify Snf1p as a GEF that activates Arf3p when energy is limited. SNF1 is the yeast homologue of AMP-activated protein kinase (AMPK), which is a key regulator of cellular energy homeostasis. As activation of Arf3p does not depend on the Snf1p kinase domain, assay of regulatory domain fragments yield evidence that the C-terminal hydrophobic α-helix core of Snf1p is a non-canonical GEF for Arf3p activation. Thus, our study reveals a novel mechanism for regulating cellular responses to energy deprivation, in particular invasive cell growth, through direct Arf activation by Snf1/AMPK. PMID:26198097

  11. PLC-gamma1 and Rac1 coregulate EGF-induced cytoskeleton remodeling and cell migration.

    PubMed

    Li, Siwei; Wang, Qian; Wang, Yi; Chen, Xinmei; Wang, Zhixiang

    2009-06-01

    It is well established that epidermal growth factor (EGF) induces the cytoskeleton reorganization and cell migration through two major signaling cascades: phospholipase C-gamma1 (PLC-gamma1) and Rho GTPases. However, little is known about the cross talk between PLC-gamma1 and Rho GTPases. Here we showed that PLC-gamma1 forms a complex with Rac1 in response to EGF. This interaction is direct and mediated by PLC-gamma1 Src homology 3 (SH3) domain and Rac1 (106)PNTP(109) motif. This interaction is critical for EGF-induced Rac1 activation in vivo, and PLC-gamma1 SH3 domain is actually a potent and specific Rac1 guanine nucleotide exchange factor in vitro. We have also demonstrated that the interaction between PLC-gamma1 SH3 domain and Rac1 play a significant role in EGF-induced F-actin formation and cell migration. We conclude that PLC-gamma1 and Rac1 coregulate EGF-induced cell cytoskeleton remodeling and cell migration by a direct functional interaction.

  12. Thrombin Promotes Sustained Signaling and Inflammatory Gene Expression through the CDC25 and Ras-associating Domains of Phospholipase Cϵ*

    PubMed Central

    Dusaban, Stephanie S.; Kunkel, Maya T.; Smrcka, Alan V.; Brown, Joan Heller

    2015-01-01

    Phospholipase C-epsilon (PLCϵ) plays a critical role in G-protein-coupled receptor-mediated inflammation. In addition to its ability to generate the second messengers inositol 1,4,5-trisphosphate and diacylglycerol, PLCϵ, unlike the other phospholipase C family members, is activated in a sustained manner. We hypothesized that the ability of PLCϵ to function as a guanine nucleotide exchange factor (GEF) for Rap1 supports sustained downstream signaling via feedback of Rap1 to the enzyme Ras-associating (RA2) domain. Using gene deletion and adenoviral rescue, we demonstrate that both the GEF (CDC25 homology domain) and RA2 domains of PLCϵ are required for long term protein kinase D (PKD) activation and subsequent induction of inflammatory genes. PLCϵ localization is largely intracellular and its compartmentalization could contribute to its sustained activation. Here we show that localization of PLCϵ to the Golgi is required for activation of PKD in this compartment as well as for subsequent induction of inflammatory genes. These data provide a molecular mechanism by which PLCϵ mediates sustained signaling and by which astrocytes mediate pathophysiological inflammatory responses. PMID:26350460

  13. Regulation and function of P-Rex family Rac-GEFs.

    PubMed

    Welch, Heidi C E

    2015-01-01

    The P-Rex family are Dbl-type guanine-nucleotide exchange factors for Rac family small G proteins. They are distinguished from other Rac-GEFs through their synergistic mode of activation by the lipid second messenger phosphatidyl inositol (3,4,5) trisphosphate and the Gβγ subunits of heterotrimeric G proteins, thus acting as coincidence detectors for phosphoinositide 3-kinase and G protein coupled receptor signaling. Work in genetically-modified mice has shown that P-Rex1 has physiological importance in the inflammatory response and the migration of melanoblasts during development, whereas P-Rex2 controls the dendrite morphology of cerebellar Purkinje neurons as well as glucose homeostasis in liver and adipose tissue. Deregulation of P-Rex1 and P-Rex2 expression occurs in many types of cancer, and P-Rex2 is frequently mutated in melanoma. Both GEFs promote tumor growth or metastasis. This review critically evaluates the P-Rex literature and tools available and highlights exciting recent developments and open questions.

  14. Inhibition of Cytohesins Protects against Genetic Models of Motor Neuron Disease.

    PubMed

    Zhai, Jinbin; Zhang, Lei; Mojsilovic-Petrovic, Jelena; Jian, Xiaoying; Thomas, Jeffrey; Homma, Kengo; Schmitz, Anton; Famulok, Michael; Ichijo, Hidenori; Argon, Yair; Randazzo, Paul A; Kalb, Robert G

    2015-06-17

    Mutant genes that underlie Mendelian forms of amyotrophic lateral sclerosis (ALS) and biochemical investigations of genetic disease models point to potential driver pathophysiological events involving endoplasmic reticulum (ER) stress and autophagy. Several steps in these cell biological processes are known to be controlled physiologically by small ADP-ribosylation factor (ARF) signaling. Here, we investigated the role of ARF guanine nucleotide exchange factors (GEFs), cytohesins, in models of ALS. Genetic or pharmacological inhibition of cytohesins protects motor neurons in vitro from proteotoxic insults and rescues locomotor defects in a Caenorhabditis elegans model of disease. Cytohesins form a complex with mutant superoxide dismutase 1 (SOD1), a known cause of familial ALS, but this is not associated with a change in GEF activity or ARF activation. ER stress evoked by mutant SOD1 expression is alleviated by antagonism of cytohesin activity. In the setting of mutant SOD1 toxicity, inhibition of cytohesin activity enhances autophagic flux and reduces the burden of misfolded SOD1. These observations suggest that targeting cytohesins may have potential benefits for the treatment of ALS. Copyright © 2015 the authors 0270-6474/15/359088-18$15.00/0.

  15. In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion.

    PubMed

    Hirata, Eishu; Yukinaga, Hiroko; Kamioka, Yuji; Arakawa, Yoshiki; Miyamoto, Susumu; Okada, Takaharu; Sahai, Erik; Matsuda, Michiyuki

    2012-02-15

    Two-photon excitation microscopy was used to visualized two different modes of invasion at perivascular and intraparenchymal regions of rat C6 glioblastoma cells that were orthotopically implanted into rat brains. Probes based on the principle of Förster resonance energy transfer (FRET) further revealed that glioblastoma cells penetrating the brain parenchyma showed higher Rac1 and Cdc42 activities and lower RhoA activity than those advancing in the perivascular regions. This spatial regulation of Rho-family GTPase activities was recapitulated in three-dimensional spheroid invasion assays with rat and human glioblastoma cells, in which multipod glioblastoma cells that invaded the gels and led the other glioblastoma cells exhibited higher Rac1 and Cdc42 activities than the trailing glioblastoma cells. We also studied the Cdc42-specific guanine nucleotide exchange factor Zizimin1 (also known as DOCK9) as a possible contributor to this spatially controlled activation of Rho-family GTPases, because it is known to play an essential role in the extension of neurites. We found that shRNA-mediated knockdown of Zizimin1 inhibited formation of pseudopodia and concomitant invasion of glioblastoma cells both under a 3D culture condition and in vivo. Our results suggest that the difference in the activity balance of Rac1 and Cdc42 versus RhoA determines the mode of glioblastoma invasion and that Zizimin1 contributes to the invasiveness of glioblastoma cells with high Rac1 and Cdc42 activities.

  16. Discoidin domain receptor 1 controls linear invadosome formation via a Cdc42-Tuba pathway.

    PubMed

    Juin, Amélie; Di Martino, Julie; Leitinger, Birgit; Henriet, Elodie; Gary, Anne-Sophie; Paysan, Lisa; Bomo, Jeremy; Baffet, Georges; Gauthier-Rouvière, Cécile; Rosenbaum, Jean; Moreau, Violaine; Saltel, Frédéric

    2014-11-24

    Accumulation of type I collagen fibrils in tumors is associated with an increased risk of metastasis. Invadosomes are F-actin structures able to degrade the extracellular matrix. We previously found that collagen I fibrils induced the formation of peculiar linear invadosomes in an unexpected integrin-independent manner. Here, we show that Discoidin Domain Receptor 1 (DDR1), a collagen receptor overexpressed in cancer, colocalizes with linear invadosomes in tumor cells and is required for their formation and matrix degradation ability. Unexpectedly, DDR1 kinase activity is not required for invadosome formation or activity, nor is Src tyrosine kinase. We show that the RhoGTPase Cdc42 is activated on collagen in a DDR1-dependent manner. Cdc42 and its specific guanine nucleotide-exchange factor (GEF), Tuba, localize to linear invadosomes, and both are required for linear invadosome formation. Finally, DDR1 depletion blocked cell invasion in a collagen gel. Altogether, our data uncover an important role for DDR1, acting through Tuba and Cdc42, in proteolysis-based cell invasion in a collagen-rich environment. © 2014 Juin et al.

  17. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS

    PubMed Central

    Huang, William Y. C.; Yan, Qingrong; Lin, Wan-Chen; Chung, Jean K.; Hansen, Scott D.; Christensen, Sune M.; Tu, Hsiung-Lin; Kuriyan, John; Groves, Jay T.

    2016-01-01

    The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. The generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes. PMID:27370798

  18. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS.

    PubMed

    Huang, William Y C; Yan, Qingrong; Lin, Wan-Chen; Chung, Jean K; Hansen, Scott D; Christensen, Sune M; Tu, Hsiung-Lin; Kuriyan, John; Groves, Jay T

    2016-07-19

    The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. The generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes.

  19. Forces shaping a Hox morphogenetic gene network.

    PubMed

    Sotillos, Sol; Aguilar, Mario; Hombría, James Castelli-Gair

    2013-03-12

    The Abdominal-B selector protein induces organogenesis of the posterior spiracles by coordinating an organ-specific gene network. The complexity of this network begs the questions of how it originated and what selective pressures drove its formation. Given that the network likely formed in a piecemeal fashion, with elements recruited sequentially, we studied the consequences of expressing individual effectors of this network in naive epithelial cells. We found that, with exception of the Crossveinless-c (Cv-c) Rho GTPase-activating protein, most effectors exert little morphogenetic effect by themselves. In contrast, Cv-c expression causes cell motility and down-regulates epithelial polarity and cell adhesion proteins. These effects differ in cells endogenously expressing Cv-c, which have acquired compensatory mechanisms. In spiracle cells, the down-regulation of polarity and E-cadherin expression caused by Cv-c-induced Rho1 inactivation are compensated for by the simultaneous spiracle up-regulation of guanine nucleotide exchange factor (GEF) proteins, cell polarity, and adhesion molecules. Other epithelial cells that have coopted Cv-c to their morphogenetic gene networks are also resistant to Cv-c's deleterious effects. We propose that cooption of a novel morphogenetic regulator to a selector cascade causes cellular instability, resulting in strong selective pressure that leads that same cascade to recruit molecules that compensate it. This experimental-based hypothesis proposes how the frequently observed complex organogenetic gene networks are put together.

  20. DOCK8 deficiency: Insights into pathophysiology, clinical features and management.

    PubMed

    Biggs, Catherine M; Keles, Sevgi; Chatila, Talal A

    2017-08-01

    Dedicator of cytokinesis 8 (DOCK8) deficiency is a combined immunodeficiency that exemplifies the broad clinical features of primary immunodeficiencies (PIDs), extending beyond recurrent infections to include atopy, autoimmunity and cancer. It is caused by loss of function mutations in DOCK8, encoding a guanine nucleotide exchange factor highly expressed in lymphocytes that regulates the actin cytoskeleton. Additional roles of DOCK8 have also emerged, including regulating MyD88-dependent Toll-like receptor signaling and the activation of the transcription factor STAT3. DOCK8 deficiency impairs immune cell migration, function and survival, and it impacts both innate and adaptive immune responses. Clinically, DOCK8 deficiency is characterized by allergic inflammation as well as susceptibility towards infections, autoimmunity and malignancy. This review details the pathophysiology, clinical features and management of DOCK8 deficiency. It also surveys the recently discovered combined immunodeficiency due to DOCK2 deficiency, highlighting in the process the emerging spectrum of PIDs resulting from DOCK protein family abnormalities. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The Golgi apparatus: insights from filamentous fungi.

    PubMed

    Pantazopoulou, Areti

    2016-01-01

    Cargo passage through the Golgi, albeit an undoubtedly essential cellular function, is a mechanistically unresolved and much debated process. Although the main molecular players are conserved, diversification of the Golgi among different eukaryotic lineages is providing us with tools to resolve standing controversies. During the past decade the Golgi apparatus of model filamentous fungi, mainly Aspergillus nidulans, has been intensively studied. Here an overview of the most important findings in the field is provided. Golgi architecture and dynamics, as well as the novel cell biology tools that were developed in filamentous fungi in these studies, are addressed. An emphasis is placed on the central role the Golgi has as a crossroads in the endocytic and secretory-traffic pathways in hyphae. Finally the major advances that the A. nidulans Golgi biology has yielded so far regarding our understanding of key Golgi regulators, such as the Rab GTPases RabC(Rab6) and RabE(Rab11), the oligomeric transport protein particle, TRAPPII, and the Golgi guanine nucleotide exchange factors of Arf1, GeaA(GBF1/Gea1) and HypB(BIG/Sec7), are highlighted. © 2016 by The Mycological Society of America.

  2. Insights into the Localization and Function of the Membrane Trafficking Regulator GNOM ARF-GEF at the Golgi Apparatus in Arabidopsis[W

    PubMed Central

    Naramoto, Satoshi; Otegui, Marisa S.; Kutsuna, Natsumaro; de Rycke, Riet; Dainobu, Tomoko; Karampelias, Michael; Fujimoto, Masaru; Feraru, Elena; Miki, Daisuke; Fukuda, Hiroo; Nakano, Akihiko; Friml, Jiří

    2014-01-01

    GNOM is one of the most characterized membrane trafficking regulators in plants, with crucial roles in development. GNOM encodes an ARF-guanine nucleotide exchange factor (ARF-GEF) that activates small GTPases of the ARF (ADP ribosylation factor) class to mediate vesicle budding at endomembranes. The crucial role of GNOM in recycling of PIN auxin transporters and other proteins to the plasma membrane was identified in studies using the ARF-GEF inhibitor brefeldin A (BFA). GNOM, the most prominent regulator of recycling in plants, has been proposed to act and localize at so far elusive recycling endosomes. Here, we report the GNOM localization in context of its cellular function in Arabidopsis thaliana. State-of-the-art imaging, pharmacological interference, and ultrastructure analysis show that GNOM predominantly localizes to Golgi apparatus. Super-resolution confocal live imaging microscopy identified GNOM and its closest homolog GNOM-like 1 at distinct subdomains on Golgi cisternae. Short-term BFA treatment stabilizes GNOM at the Golgi apparatus, whereas prolonged exposures results in GNOM translocation to trans-Golgi network (TGN)/early endosomes (EEs). Malformed TGN/EE in gnom mutants suggests a role for GNOM in maintaining TGN/EE function. Our results redefine the subcellular action of GNOM and reevaluate the identity and function of recycling endosomes in plants. PMID:25012191

  3. Discrete, continuous, and stochastic models of protein sorting in the Golgi apparatus

    NASA Astrophysics Data System (ADS)

    Gong, Haijun; Guo, Yusong; Linstedt, Adam; Schwartz, Russell

    2010-01-01

    The Golgi apparatus plays a central role in processing and sorting proteins and lipids in eukaryotic cells. Golgi compartments constantly exchange material with each other and with other cellular components, allowing them to maintain and reform distinct identities despite dramatic changes in structure and size during cell division, development, and osmotic stress. We have developed three minimal models of membrane and protein exchange in the Golgi—a discrete, stochastic model, a continuous ordinary differential equation model, and a continuous stochastic differential equation model—each based on two fundamental mechanisms: vesicle-coat-mediated selective concentration of cargoes and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins during vesicle formation and SNARE-mediated selective fusion of vesicles. By exploring where the models differ, we hope to discover whether the discrete, stochastic nature of vesicle-mediated transport is likely to have appreciable functional consequences for the Golgi. All three models show similar ability to restore and maintain distinct identities over broad parameter ranges. They diverge, however, in conditions corresponding to collapse and reassembly of the Golgi. The results suggest that a continuum model provides a good description of Golgi maintenance but that considering the discrete nature of vesicle-based traffic is important to understanding assembly and disassembly of the Golgi. Experimental analysis validates a prediction of the models that altering guanine nucleotide exchange factor expression levels will modulate Golgi size.

  4. Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis.

    PubMed

    Naramoto, Satoshi; Otegui, Marisa S; Kutsuna, Natsumaro; de Rycke, Riet; Dainobu, Tomoko; Karampelias, Michael; Fujimoto, Masaru; Feraru, Elena; Miki, Daisuke; Fukuda, Hiroo; Nakano, Akihiko; Friml, Jiří

    2014-07-01

    GNOM is one of the most characterized membrane trafficking regulators in plants, with crucial roles in development. GNOM encodes an ARF-guanine nucleotide exchange factor (ARF-GEF) that activates small GTPases of the ARF (ADP ribosylation factor) class to mediate vesicle budding at endomembranes. The crucial role of GNOM in recycling of PIN auxin transporters and other proteins to the plasma membrane was identified in studies using the ARF-GEF inhibitor brefeldin A (BFA). GNOM, the most prominent regulator of recycling in plants, has been proposed to act and localize at so far elusive recycling endosomes. Here, we report the GNOM localization in context of its cellular function in Arabidopsis thaliana. State-of-the-art imaging, pharmacological interference, and ultrastructure analysis show that GNOM predominantly localizes to Golgi apparatus. Super-resolution confocal live imaging microscopy identified GNOM and its closest homolog GNOM-like 1 at distinct subdomains on Golgi cisternae. Short-term BFA treatment stabilizes GNOM at the Golgi apparatus, whereas prolonged exposures results in GNOM translocation to trans-Golgi network (TGN)/early endosomes (EEs). Malformed TGN/EE in gnom mutants suggests a role for GNOM in maintaining TGN/EE function. Our results redefine the subcellular action of GNOM and reevaluate the identity and function of recycling endosomes in plants. © 2014 American Society of Plant Biologists. All rights reserved.

  5. Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements.

    PubMed

    Wong, Alexander R C; Pearson, Jaclyn S; Bright, Michael D; Munera, Diana; Robinson, Keith S; Lee, Sau Fung; Frankel, Gad; Hartland, Elizabeth L

    2011-06-01

    The human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) share a unique mechanism of colonization that results from the concerted action of effector proteins translocated into the host cell by a type III secretion system (T3SS). EPEC and EHEC not only induce characteristic attaching and effacing (A/E) lesions, but also subvert multiple host cell signalling pathways during infection. Our understanding of the mechanisms by which A/E pathogens hijack host cell signalling has advanced dramatically in recent months with the identification of novel activities for many effectors. In addition to further characterization of established effectors (Tir, EspH and Map), new effectors have emerged as important mediators of virulence through activities such as mimicry of Rho guanine nucleotide exchange factors (Map and EspM), inhibition of apoptosis (NleH and NleD), interference with inflammatory signalling pathways (NleB, NleC, NleE and NleH) and phagocytosis (EspF, EspH and EspJ). The findings have highlighted the multifunctional nature of the effectors and their ability to participate in redundant, synergistic or antagonistic relationships, acting in a co-ordinated spatial and temporal manner on different host organelles and cellular pathways during infection. © 2011 Blackwell Publishing Ltd.

  6. Discrete, continuous, and stochastic models of protein sorting in the Golgi apparatus

    PubMed Central

    Gong, Haijun; Guo, Yusong; Linstedt, Adam

    2017-01-01

    The Golgi apparatus plays a central role in processing and sorting proteins and lipids in eukaryotic cells. Golgi compartments constantly exchange material with each other and with other cellular components, allowing them to maintain and reform distinct identities despite dramatic changes in structure and size during cell division, development, and osmotic stress. We have developed three minimal models of membrane and protein exchange in the Golgi—a discrete, stochastic model, a continuous ordinary differential equation model, and a continuous stochastic differential equation model—each based on two fundamental mechanisms: vesicle-coat-mediated selective concentration of cargoes and soluble N-ethylmaleimide-sensitive factor attachment protein receptor SNARE proteins during vesicle formation and SNARE-mediated selective fusion of vesicles. By exploring where the models differ, we hope to discover whether the discrete, stochastic nature of vesicle-mediated transport is likely to have appreciable functional consequences for the Golgi. All three models show similar ability to restore and maintain distinct identities over broad parameter ranges. They diverge, however, in conditions corresponding to collapse and reassembly of the Golgi. The results suggest that a continuum model provides a good description of Golgi maintenance but that considering the discrete nature of vesicle-based traffic is important to understanding assembly and disassembly of the Golgi. Experimental analysis validates a prediction of the models that altering guanine nucleotide exchange factor expression levels will modulate Golgi size. PMID:20365406

  7. FLCN: The causative gene for Birt-Hogg-Dubé syndrome.

    PubMed

    Schmidt, Laura S; Linehan, W Marston

    2018-01-15

    Germline mutations in the novel tumor suppressor gene FLCN are responsible for the autosomal dominant inherited disorder Birt-Hogg-Dubé (BHD) syndrome that predisposes to fibrofolliculomas, lung cysts and spontaneous pneumothorax, and an increased risk for developing kidney tumors. Although the encoded protein, folliculin (FLCN), has no sequence homology to known functional domains, x-ray crystallographic studies have shown that the C-terminus of FLCN has structural similarity to DENN (differentially expressed in normal cells and neoplasia) domain proteins that act as guanine nucleotide exchange factors (GEFs) for small Rab GTPases. FLCN forms a complex with folliculin interacting proteins 1 and 2 (FNIP1, FNIP2) and with 5' AMP-activated protein kinase (AMPK). This review summarizes FLCN functional studies which support a role for FLCN in diverse metabolic pathways and cellular processes that include modulation of the mTOR pathway, regulation of PGC1α and mitochondrial biogenesis, cell-cell adhesion and RhoA signaling, control of TFE3/TFEB transcriptional activity, amino acid-dependent activation of mTORC1 on lysosomes through Rag GTPases, and regulation of autophagy. Ongoing research efforts are focused on clarifying the primary FLCN-associated pathway(s) that drives the development of fibrofolliculomas, lung cysts and kidney tumors in BHD patients carrying germline FLCN mutations. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Identification of a receptor-independent activator of G protein signaling (AGS8) in ischemic heart and its interaction with Gβγ

    PubMed Central

    Sato, Motohiko; Cismowski, Mary J.; Toyota, Eiji; Smrcka, Alan V.; Lucchesi, Pamela A.; Chilian, William M.; Lanier, Stephen M.

    2006-01-01

    As part of a broader effort to identify postreceptor signal regulators involved in specific diseases or organ adaptation, we used an expression cloning system in Saccharomyces cerevisiae to screen cDNA libraries from rat ischemic myocardium, human heart, and a prostate leiomyosarcoma for entities that activated G protein signaling in the absence of a G protein coupled receptor. We report the characterization of activator of G protein signaling (AGS) 8 (KIAA1866), isolated from a rat heart model of repetitive transient ischemia. AGS8 mRNA was induced in response to ventricular ischemia but not by tachycardia, hypertrophy, or failure. Hypoxia induced AGS8 mRNA in isolated adult ventricular cardiomyocytes but not in rat aortic smooth muscle cells, endothelial cells, or cardiac fibroblasts, suggesting a myocyte-specific adaptation mechanism involving remodeling of G protein signaling pathways. The bioactivity of AGS8 in the yeast-based assay was independent of guanine nucleotide exchange by Gα, suggesting an impact on subunit interactions. Subsequent studies indicated that AGS8 interacts directly with Gβγ and this occurs in a manner that apparently does not alter the regulation of the effector PLC-β2 by Gβγ. Mechanistically, AGS8 appears to promote G protein signaling by a previously unrecognized mechanism that involves direct interaction with Gβγ. PMID:16407149

  9. Vav3-rac1 signaling regulates prostate cancer metastasis with elevated Vav3 expression correlating with prostate cancer progression and posttreatment recurrence.

    PubMed

    Lin, Kai-Ti; Gong, Jianli; Li, Chien-Feng; Jang, Te-Hsuan; Chen, Wen-Ling; Chen, Huei-Jane; Wang, Lu-Hai

    2012-06-15

    Prostate cancer remains the second leading cause of cancer death in men in the Western world. Yet current therapies do not significantly improve the long-term survival of patients with distant metastasis. In this study, we investigated the role of the guanine nucleotide exchange factor Vav3 in prostate cancer progression and metastasis and found that Vav3 expression correlated positively with prostate cancer cell migration and invasion. Stimulation of the receptor tyrosine kinase EphA2 by ephrinA1 resulted in recruitment and tyrosine phosphorylation of Vav3, leading to Rac1 activation as well as increased migration and invasion in vitro. Reduction of Vav3 resulted in fewer para-aortic lymph nodes and bone metastasis in vivo. Clinically, expression of Vav3 and EphA2 was elevated in late-stage and metastatic prostate cancers. Among patients with stage IIB or earlier prostate cancer, higher Vav3 expression correlated with lower cumulative biochemical failure-free survival, suggesting that Vav3 may represent a prognostic marker for posttreatment recurrence of prostate cancer. Together, our findings provide evidence that the Vav3-mediated signaling pathway may serve as a therapeutic target for prostate cancer metastasis.

  10. SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function.

    PubMed

    Li, Man; Li, Yong; Weeks, Olivia; Mijatovic, Vladan; Teumer, Alexander; Huffman, Jennifer E; Tromp, Gerard; Fuchsberger, Christian; Gorski, Mathias; Lyytikäinen, Leo-Pekka; Nutile, Teresa; Sedaghat, Sanaz; Sorice, Rossella; Tin, Adrienne; Yang, Qiong; Ahluwalia, Tarunveer S; Arking, Dan E; Bihlmeyer, Nathan A; Böger, Carsten A; Carroll, Robert J; Chasman, Daniel I; Cornelis, Marilyn C; Dehghan, Abbas; Faul, Jessica D; Feitosa, Mary F; Gambaro, Giovanni; Gasparini, Paolo; Giulianini, Franco; Heid, Iris; Huang, Jinyan; Imboden, Medea; Jackson, Anne U; Jeff, Janina; Jhun, Min A; Katz, Ronit; Kifley, Annette; Kilpeläinen, Tuomas O; Kumar, Ashish; Laakso, Markku; Li-Gao, Ruifang; Lohman, Kurt; Lu, Yingchang; Mägi, Reedik; Malerba, Giovanni; Mihailov, Evelin; Mohlke, Karen L; Mook-Kanamori, Dennis O; Robino, Antonietta; Ruderfer, Douglas; Salvi, Erika; Schick, Ursula M; Schulz, Christina-Alexandra; Smith, Albert V; Smith, Jennifer A; Traglia, Michela; Yerges-Armstrong, Laura M; Zhao, Wei; Goodarzi, Mark O; Kraja, Aldi T; Liu, Chunyu; Wessel, Jennifer; Boerwinkle, Eric; Borecki, Ingrid B; Bork-Jensen, Jette; Bottinger, Erwin P; Braga, Daniele; Brandslund, Ivan; Brody, Jennifer A; Campbell, Archie; Carey, David J; Christensen, Cramer; Coresh, Josef; Crook, Errol; Curhan, Gary C; Cusi, Daniele; de Boer, Ian H; de Vries, Aiko P J; Denny, Joshua C; Devuyst, Olivier; Dreisbach, Albert W; Endlich, Karlhans; Esko, Tõnu; Franco, Oscar H; Fulop, Tibor; Gerhard, Glenn S; Glümer, Charlotte; Gottesman, Omri; Grarup, Niels; Gudnason, Vilmundur; Hansen, Torben; Harris, Tamara B; Hayward, Caroline; Hocking, Lynne; Hofman, Albert; Hu, Frank B; Husemoen, Lise Lotte N; Jackson, Rebecca D; Jørgensen, Torben; Jørgensen, Marit E; Kähönen, Mika; Kardia, Sharon L R; König, Wolfgang; Kooperberg, Charles; Kriebel, Jennifer; Launer, Lenore J; Lauritzen, Torsten; Lehtimäki, Terho; Levy, Daniel; Linksted, Pamela; Linneberg, Allan; Liu, Yongmei; Loos, Ruth J F; Lupo, Antonio; Meisinger, Christine; Melander, Olle; Metspalu, Andres; Mitchell, Paul; Nauck, Matthias; Nürnberg, Peter; Orho-Melander, Marju; Parsa, Afshin; Pedersen, Oluf; Peters, Annette; Peters, Ulrike; Polasek, Ozren; Porteous, David; Probst-Hensch, Nicole M; Psaty, Bruce M; Qi, Lu; Raitakari, Olli T; Reiner, Alex P; Rettig, Rainer; Ridker, Paul M; Rivadeneira, Fernando; Rossouw, Jacques E; Schmidt, Frank; Siscovick, David; Soranzo, Nicole; Strauch, Konstantin; Toniolo, Daniela; Turner, Stephen T; Uitterlinden, André G; Ulivi, Sheila; Velayutham, Dinesh; Völker, Uwe; Völzke, Henry; Waldenberger, Melanie; Wang, Jie Jin; Weir, David R; Witte, Daniel; Kuivaniemi, Helena; Fox, Caroline S; Franceschini, Nora; Goessling, Wolfram; Köttgen, Anna; Chu, Audrey Y

    2017-03-01

    Genome-wide association studies have identified >50 common variants associated with kidney function, but these variants do not fully explain the variation in eGFR. We performed a two-stage meta-analysis of associations between genotypes from the Illumina exome array and eGFR on the basis of serum creatinine (eGFRcrea) among participants of European ancestry from the CKDGen Consortium ( n Stage1 : 111,666; n Stage2 : 48,343). In single-variant analyses, we identified single nucleotide polymorphisms at seven new loci associated with eGFRcrea ( PPM1J , EDEM3, ACP1, SPEG, EYA4, CYP1A1 , and ATXN2L ; P Stage1 <3.7×10 -7 ), of which most were common and annotated as nonsynonymous variants. Gene-based analysis identified associations of functional rare variants in three genes with eGFRcrea, including a novel association with the SOS Ras/Rho guanine nucleotide exchange factor 2 gene, SOS2 ( P =5.4×10 -8 by sequence kernel association test). Experimental follow-up in zebrafish embryos revealed changes in glomerular gene expression and renal tubule morphology in the embryonic kidney of acp1- and sos2 -knockdowns. These developmental abnormalities associated with altered blood clearance rate and heightened prevalence of edema. This study expands the number of loci associated with kidney function and identifies novel genes with potential roles in kidney formation. Copyright © 2017 by the American Society of Nephrology.

  11. SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function

    PubMed Central

    Li, Man; Li, Yong; Weeks, Olivia; Mijatovic, Vladan; Teumer, Alexander; Huffman, Jennifer E.; Tromp, Gerard; Fuchsberger, Christian; Gorski, Mathias; Lyytikäinen, Leo-Pekka; Nutile, Teresa; Sedaghat, Sanaz; Sorice, Rossella; Tin, Adrienne; Yang, Qiong; Ahluwalia, Tarunveer S.; Arking, Dan E.; Bihlmeyer, Nathan A.; Böger, Carsten A.; Carroll, Robert J.; Chasman, Daniel I.; Cornelis, Marilyn C.; Dehghan, Abbas; Faul, Jessica D.; Feitosa, Mary F.; Gambaro, Giovanni; Gasparini, Paolo; Giulianini, Franco; Heid, Iris; Huang, Jinyan; Imboden, Medea; Jackson, Anne U.; Jeff, Janina; Jhun, Min A.; Katz, Ronit; Kifley, Annette; Kilpeläinen, Tuomas O.; Kumar, Ashish; Laakso, Markku; Li-Gao, Ruifang; Lohman, Kurt; Lu, Yingchang; Mägi, Reedik; Malerba, Giovanni; Mihailov, Evelin; Mohlke, Karen L.; Mook-Kanamori, Dennis O.; Robino, Antonietta; Ruderfer, Douglas; Salvi, Erika; Schick, Ursula M.; Schulz, Christina-Alexandra; Smith, Albert V.; Smith, Jennifer A.; Traglia, Michela; Yerges-Armstrong, Laura M.; Zhao, Wei; Goodarzi, Mark O.; Kraja, Aldi T.; Liu, Chunyu; Wessel, Jennifer; Boerwinkle, Eric; Borecki, Ingrid B.; Bork-Jensen, Jette; Bottinger, Erwin P.; Braga, Daniele; Brandslund, Ivan; Brody, Jennifer A.; Campbell, Archie; Carey, David J.; Christensen, Cramer; Coresh, Josef; Crook, Errol; Curhan, Gary C.; Cusi, Daniele; de Boer, Ian H.; de Vries, Aiko P.J.; Denny, Joshua C.; Devuyst, Olivier; Dreisbach, Albert W.; Endlich, Karlhans; Esko, Tõnu; Franco, Oscar H.; Fulop, Tibor; Gerhard, Glenn S.; Glümer, Charlotte; Gottesman, Omri; Grarup, Niels; Gudnason, Vilmundur; Hansen, Torben; Harris, Tamara B.; Hayward, Caroline; Hocking, Lynne; Hofman, Albert; Hu, Frank B.; Husemoen, Lise Lotte N.; Jackson, Rebecca D.; Jørgensen, Torben; Jørgensen, Marit E.; Kähönen, Mika; Kardia, Sharon L.R.; König, Wolfgang; Kooperberg, Charles; Kriebel, Jennifer; Launer, Lenore J.; Lauritzen, Torsten; Lehtimäki, Terho; Levy, Daniel; Linksted, Pamela; Linneberg, Allan; Liu, Yongmei; Loos, Ruth J.F.; Lupo, Antonio; Meisinger, Christine; Melander, Olle; Metspalu, Andres; Mitchell, Paul; Nauck, Matthias; Nürnberg, Peter; Orho-Melander, Marju; Parsa, Afshin; Pedersen, Oluf; Peters, Annette; Peters, Ulrike; Polasek, Ozren; Porteous, David; Probst-Hensch, Nicole M.; Psaty, Bruce M.; Qi, Lu; Raitakari, Olli T.; Reiner, Alex P.; Rettig, Rainer; Ridker, Paul M.; Rivadeneira, Fernando; Rossouw, Jacques E.; Schmidt, Frank; Siscovick, David; Soranzo, Nicole; Strauch, Konstantin; Toniolo, Daniela; Turner, Stephen T.; Uitterlinden, André G.; Ulivi, Sheila; Velayutham, Dinesh; Völker, Uwe; Völzke, Henry; Waldenberger, Melanie; Wang, Jie Jin; Weir, David R.; Witte, Daniel; Kuivaniemi, Helena; Fox, Caroline S.; Franceschini, Nora; Goessling, Wolfram

    2017-01-01

    Genome-wide association studies have identified >50 common variants associated with kidney function, but these variants do not fully explain the variation in eGFR. We performed a two-stage meta-analysis of associations between genotypes from the Illumina exome array and eGFR on the basis of serum creatinine (eGFRcrea) among participants of European ancestry from the CKDGen Consortium (nStage1: 111,666; nStage2: 48,343). In single-variant analyses, we identified single nucleotide polymorphisms at seven new loci associated with eGFRcrea (PPM1J, EDEM3, ACP1, SPEG, EYA4, CYP1A1, and ATXN2L; PStage1<3.7×10−7), of which most were common and annotated as nonsynonymous variants. Gene-based analysis identified associations of functional rare variants in three genes with eGFRcrea, including a novel association with the SOS Ras/Rho guanine nucleotide exchange factor 2 gene, SOS2 (P=5.4×10−8 by sequence kernel association test). Experimental follow-up in zebrafish embryos revealed changes in glomerular gene expression and renal tubule morphology in the embryonic kidney of acp1- and sos2-knockdowns. These developmental abnormalities associated with altered blood clearance rate and heightened prevalence of edema. This study expands the number of loci associated with kidney function and identifies novel genes with potential roles in kidney formation. PMID:27920155

  12. Peptide modulators of Rac1/Tiam1 protein-protein interaction: An alternative approach for cardiovascular diseases.

    PubMed

    Contini, Alessandro; Ferri, Nicola; Bucci, Raffaella; Lupo, Maria Giovanna; Erba, Emanuela; Gelmi, Maria Luisa; Pellegrino, Sara

    2017-11-27

    Rac1 GTPase interaction with guanine nucleotide exchange factor Tiam1 is involved in several cancer types and cardiovascular diseases. Although small molecules interfering with their protein-protein interaction (PPI) were identified and studied, the ability of small peptides and peptide mimics acting as Rac1/Tiam1 PPI inhibitors has not been yet explored. Using computational alanine scanning (CAS), the "hot" interfacial residues have been determined allowing the design of a small library of putative PPI inhibitors. In particular, the insertion of an unnatural alpha, alpha disubstituted amino acid, that is norbornane amino acid, and the side chain stapling have been evaluated regarding both conformational stability and biological activity. REMD calculations and CD studies have indicated that one single norbornane amino acid at the N-terminus is not sufficient to stabilize the helix structure, while the side-chain stapling is a more efficient strategy. Furthermore, both engineered peptides have been found able to reduce Rac1-GTP levels in cultured human smooth muscle cells, while wild type sequence is not active. © 2017 Wiley Periodicals, Inc.

  13. An Allele of Sequoia Dominantly Enhances a Trio Mutant Phenotype to Influence Drosophila Larval Behavior

    PubMed Central

    Liebl, Eric C.

    2013-01-01

    The transition of Drosophila third instar larvae from feeding, photo-phobic foragers to non-feeding, photo-neutral wanderers is a classic behavioral switch that precedes pupariation. The neuronal network responsible for this behavior has recently begun to be defined. Previous genetic analyses have identified signaling components for food and light sensory inputs and neuropeptide hormonal outputs as being critical for the forager to wanderer transition. Trio is a Rho-Guanine Nucleotide Exchange Factor integrated into a variety of signaling networks including those governing axon pathfinding in early development. Sequoia is a pan-neuronally expressed zinc-finger transcription factor that governs dendrite and axon outgrowth. Using pre-pupal lethality as an endpoint, we have screened for dominant second-site enhancers of a weakly lethal trio mutant background. In these screens, an allele of sequoia has been identified. While these mutants have no obvious disruption of embryonic central nervous system architecture and survive to third instar larvae similar to controls, they retain forager behavior and thus fail to pupariate at high frequency. PMID:24376789

  14. Brx mediates the response of lymphocytes to osmotic stress through the activation of NFAT5.

    PubMed

    Kino, Tomoshige; Takatori, Hiroaki; Manoli, Irini; Wang, Yonghong; Tiulpakov, Anatoly; Blackman, Marc R; Su, Yan A; Chrousos, George P; DeCherney, Alan H; Segars, James H

    2009-02-10

    Extracellular hyperosmolarity, or osmotic stress, generally caused by differences in salt and macromolecule concentrations across the plasma membrane, occurs in lymphoid organs and at inflammatory sites. The response of immune cells to osmotic stress is regulated by nuclear factor of activated T cells 5 (NFAT5), a transcription factor that induces the expression of hyperosmolarity-responsive genes and stimulates cytokine production. We report that the guanine nucleotide exchange factor (GEF) Brx [also known as protein kinase A-anchoring protein 13 (AKAP13)] is essential for the expression of nfat5 in response to osmotic stress, thus transmitting the extracellular hyperosmolarity signal and enabling differentiation of splenic B cells and production of immunoglobulin. This process required the activity of p38 mitogen-activated protein kinase (MAPK) and NFAT5 and involved a physical interaction between Brx and c-Jun N-terminal kinase (JNK)-interacting protein 4 (JIP4), a scaffold molecule specific to activation of the p38 MAPK cascade. Our results indicate that Brx integrates the responses of immune cells to osmotic stress and inflammation by elevating intracellular osmolarity and stimulating the production of cytokines.

  15. VAV2 and VAV3 as candidate disease genes for spontaneous glaucoma in mice and humans.

    PubMed

    Fujikawa, Keiko; Iwata, Takeshi; Inoue, Kaoru; Akahori, Masakazu; Kadotani, Hanako; Fukaya, Masahiro; Watanabe, Masahiko; Chang, Qing; Barnett, Edward M; Swat, Wojciech

    2010-02-04

    Glaucoma is a leading cause of blindness worldwide. Nonetheless, the mechanism of its pathogenesis has not been well-elucidated, particularly at the molecular level, because of insufficient availability of experimental genetic animal models. Here we demonstrate that deficiency of Vav2 and Vav3, guanine nucleotides exchange factors for Rho guanosine triphosphatases, leads to an ocular phenotype similar to human glaucoma. Vav2/Vav3-deficient mice, and to a lesser degree Vav2-deficient mice, show early onset of iridocorneal angle changes and elevated intraocular pressure, with subsequent selective loss of retinal ganglion cells and optic nerve head cupping, which are the hallmarks of glaucoma. The expression of Vav2 and Vav3 tissues was demonstrated in the iridocorneal angle and retina in both mouse and human eyes. In addition, a genome-wide association study screening glaucoma susceptibility loci using single nucleotide polymorphisms analysis identified VAV2 and VAV3 as candidates for associated genes in Japanese open-angle glaucoma patients. Vav2/Vav3-deficient mice should serve not only as a useful murine model of spontaneous glaucoma, but may also provide a valuable tool in understanding of the pathogenesis of glaucoma in humans, particularly the determinants of altered aqueous outflow and subsequent elevated intraocular pressure.

  16. Vav1 controls DAP10-mediated natural cytotoxicity by regulating actin and microtubule dynamics.

    PubMed

    Graham, Daniel B; Cella, Marina; Giurisato, Emanuele; Fujikawa, Keiko; Miletic, Ana V; Kloeppel, Tracie; Brim, Karry; Takai, Toshiyuki; Shaw, Andrey S; Colonna, Marco; Swat, Wojciech

    2006-08-15

    The NK cell-activating receptor NKG2D recognizes several MHC class I-related molecules expressed on virally infected and tumor cells. Human NKG2D transduces activation signals exclusively via an associated DAP10 adaptor containing a YxNM motif, whereas murine NKG2D can signal through either DAP10 or the DAP12 adaptor, which contains an ITAM sequence. DAP10 signaling is thought to be mediated, at least in part, by PI3K and is independent of Syk/Zap-70 kinases; however, the exact mechanism by which DAP10 induces natural cytotoxicity is incompletely understood. Herein, we identify Vav1, a Rho GTPase guanine nucleotide exchange factor, as a critical signaling mediator downstream of DAP10 in NK cells. Specifically, using mice deficient in Vav1 and DAP12, we demonstrate an essential role for Vav1 in DAP10-induced NK cell cytoskeletal polarization involving both actin and microtubule networks, maturation of the cytolytic synapse, and target cell lysis. Mechanistically, we show that Vav1 interacts with DAP10 YxNM motifs through the adaptor protein Grb2 and is required for activation of PI3K-dependent Akt signaling. Based on these findings, we propose a novel model of ITAM-independent signaling by Vav downstream of DAP10 in NK cells.

  17. Salt-Induced Remodeling of Spatially Restricted Clathrin-Independent Endocytic Pathways in Arabidopsis Root

    PubMed Central

    Baral, Anirban; Irani, Niloufer G.; Fujimoto, Masaru; Nakano, Akihiko; Mayor, Satyajit; Mathew, M.K.

    2015-01-01

    Endocytosis is a ubiquitous cellular process that is characterized well in animal cells in culture but poorly across intact, functioning tissue. Here, we analyze endocytosis throughout the Arabidopsis thaliana root using three classes of probes: a lipophilic dye, tagged transmembrane proteins, and a lipid-anchored protein. We observe a stratified distribution of endocytic processes. A clathrin-dependent endocytic pathway that internalizes transmembrane proteins functions in all cell layers, while a sterol-dependent, clathrin-independent pathway that takes up lipid and lipid-anchored proteins but not transmembrane proteins is restricted to the epidermal layer. Saline stress induces a third pathway that is clathrin-independent, nondiscriminatory in its choice of cargo, and operates across all layers of the root. Concomitantly, small acidic compartments in inner cell layers expand to form larger vacuole-like structures. Plants lacking function of the Rab-GEF (guanine nucleotide exchange factor) VPS9a (vacuolar protein sorting 9A) neither induce the third endocytic pathway nor expand the vacuolar system in response to salt stress. The plants are also hypersensitive to salt. Thus, saline stress reconfigures clathrin-independent endocytosis and remodels endomembrane systems, forming large vacuoles in the inner cell layers, both processes correlated by the requirement of VPS9a activity. PMID:25901088

  18. IbeA and OmpA of Escherichia coli K1 Exploit Rac1 Activation for Invasion of Human Brain Microvascular Endothelial Cells

    PubMed Central

    Maruvada, Ravi

    2012-01-01

    Meningitis-causing Escherichia coli K1 internalization of the blood-brain barrier is required for penetration into the brain, but the host-microbial interactions involved in E. coli entry of the blood-brain barrier remain incompletely understood. We show here that a meningitis-causing E. coli K1 strain RS218 activates Rac1 (GTP-Rac1) of human brain microvascular endothelial cells (HBMEC) in a time-dependent manner. Both activation and bacterial invasion were significantly inhibited in the presence of a Rac1 inhibitor. We further showed that the guanine nucleotide exchange factor Vav2, not β-Pix, was involved in E. coli K1-mediated Rac1 activation. Since activated STAT3 is known to bind GTP-Rac1, the relationship between STAT3 and Rac1 was examined in E. coli K1 invasion of HBMEC. Downregulation of STAT3 resulted in significantly decreased E. coli invasion compared to control HBMEC, as well as a corresponding decrease in GTP-Rac1, suggesting that Rac1 activation in response to E. coli is under the control of STAT3. More importantly, two E. coli determinants contributing to HBMEC invasion, IbeA and OmpA, were shown to affect both Rac1 activation and their association with STAT3. These findings demonstrate for the first time that specific E. coli determinants regulate a novel mechanism of STAT3 cross talk with Rac1 in E. coli K1 invasion of HBMEC. PMID:22451524

  19. IbeA and OmpA of Escherichia coli K1 exploit Rac1 activation for invasion of human brain microvascular endothelial cells.

    PubMed

    Maruvada, Ravi; Kim, Kwang Sik

    2012-06-01

    Meningitis-causing Escherichia coli K1 internalization of the blood-brain barrier is required for penetration into the brain, but the host-microbial interactions involved in E. coli entry of the blood-brain barrier remain incompletely understood. We show here that a meningitis-causing E. coli K1 strain RS218 activates Rac1 (GTP-Rac1) of human brain microvascular endothelial cells (HBMEC) in a time-dependent manner. Both activation and bacterial invasion were significantly inhibited in the presence of a Rac1 inhibitor. We further showed that the guanine nucleotide exchange factor Vav2, not β-Pix, was involved in E. coli K1-mediated Rac1 activation. Since activated STAT3 is known to bind GTP-Rac1, the relationship between STAT3 and Rac1 was examined in E. coli K1 invasion of HBMEC. Downregulation of STAT3 resulted in significantly decreased E. coli invasion compared to control HBMEC, as well as a corresponding decrease in GTP-Rac1, suggesting that Rac1 activation in response to E. coli is under the control of STAT3. More importantly, two E. coli determinants contributing to HBMEC invasion, IbeA and OmpA, were shown to affect both Rac1 activation and their association with STAT3. These findings demonstrate for the first time that specific E. coli determinants regulate a novel mechanism of STAT3 cross talk with Rac1 in E. coli K1 invasion of HBMEC.

  20. RIC-8 is required for GPR-1/2-dependent Galpha function during asymmetric division of C. elegans embryos.

    PubMed

    Afshar, Katayoun; Willard, Francis S; Colombo, Kelly; Johnston, Christopher A; McCudden, Christopher R; Siderovski, David P; Gönczy, Pierre

    2004-10-15

    Heterotrimeric G proteins are crucial for asymmetric cell division, but the mechanisms of signal activation remain poorly understood. Here, we establish that the evolutionarily conserved protein RIC-8 is required for proper asymmetric division of one-cell stage C. elegans embryos. Spindle severing experiments demonstrate that RIC-8 is required for generation of substantial pulling forces on astral microtubules. RIC-8 physically interacts with GOA-1 and GPA-16, two Galpha subunits that act in a partially redundant manner in one-cell stage embryos. RIC-8 preferentially binds to GDP bound GOA-1 and is a guanine nucleotide exchange factor (GEF) for GOA-1. Our analysis suggests that RIC-8 acts before the GoLoco protein GPR-1/2 in the sequence of events leading to Galpha activation. Furthermore, coimmunoprecipitation and in vivo epistasis demonstrate that inactivation of the Gbeta subunit GPB-1 alleviates the need for RIC-8 in one-cell stage embryos. Our findings suggest a mechanism in which RIC-8 favors generation of Galpha free from Gbetagamma and enables GPR-1/2 to mediate asymmetric cell division.

  1. Functional Analysis of BcBem1 and Its Interaction Partners in Botrytis cinerea: Impact on Differentiation and Virulence

    PubMed Central

    Schumacher, Julia; Kokkelink, Leonie; Tudzynski, Paul

    2014-01-01

    In phytopathogenic fungi the establishment and maintenance of polarity is not only essential for vegetative growth and differentiation, but also for penetration and colonization of host tissues. We investigated orthologs of members of the yeast polarity complex in the grey mould fungus Botrytis cinerea: the scaffold proteins Bem1 and Far1, the GEF (guanine nucleotide exchange factor) Cdc24, and the formin Bni1 (named Sep1 in B. cinerea). BcBem1 does not play an important role in regular hyphal growth, but has significant impact on spore formation and germination, on the establishment of conidial anastomosis tubes (CATs) and on virulence. As in other fungi, BcBem1 interacts with the GEF BcCdc24 and the formin BcSep1, indicating that in B. cinerea the apical complex has a similar structure as in yeast. A functional analysis of BcCdc24 suggests that it is essential for growth, since it was not possible to obtain homokaryotic deletion mutants. Heterokaryons of Δcdc24 (supposed to exhibit reduced bccdc24 transcript levels) already show a strong phenotype: an inability to penetrate the host tissue, a significantly reduced growth rate and malformation of conidia, which tend to burst as observed for Δbcbem1. Also the formin BcSep1 has significant impact on hyphal growth and development, whereas the role of the putative ortholog of the yeast scaffold protein Far1 remains open: Δbcfar1 mutants have no obvious phenotypes. PMID:24797931

  2. Spatial regulation of the cAMP-dependent protein kinase during chemotactic cell migration.

    PubMed

    Howe, Alan K; Baldor, Linda C; Hogan, Brian P

    2005-10-04

    Historically, the cAMP-dependent protein kinase (PKA) has a paradoxical role in cell motility, having been shown to both facilitate and inhibit actin cytoskeletal dynamics and cell migration. In an effort to understand this dichotomy, we show here that PKA is regulated in subcellular space during cell migration. Immunofluorescence microscopy and biochemical enrichment of pseudopodia showed that type II regulatory subunits of PKA and PKA activity are enriched in protrusive cellular structures formed during chemotaxis. This enrichment correlates with increased phosphorylation of key cytoskeletal substrates for PKA, including the vasodilator-stimulated phosphoprotein (VASP) and the protein tyrosine phosphatase containing a PEST motif. Importantly, inhibition of PKA activity or its ability to interact with A kinase anchoring proteins inhibited the activity of the Rac GTPase within pseudopodia. This effect correlated with both decreased guanine nucleotide exchange factor activity and increased GTPase activating protein activity. Finally, inhibition of PKA anchoring, like inhibition of total PKA activity, inhibited pseudopod formation and chemotactic cell migration. These data demonstrate that spatial regulation of PKA via anchoring is an important facet of normal chemotactic cell movement.

  3. Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity.

    PubMed

    Ruch, Travis R; Bryant, David M; Mostov, Keith E; Engel, Joanne N

    2017-01-15

    Pathogens can alter epithelial polarity by recruiting polarity proteins to the apical membrane, but how a change in protein localization is linked to polarity disruption is not clear. In this study, we used chemically induced dimerization to rapidly relocalize proteins from the cytosol to the apical surface. We demonstrate that forced apical localization of Par3, which is normally restricted to tight junctions, is sufficient to alter apical membrane identity through its interactions with phosphatidylinositol 3-kinase (PI3K) and the Rac1 guanine nucleotide exchange factor Tiam1. We further show that PI3K activity is required upstream of Rac1, and that simultaneously targeting PI3K and Tiam1 to the apical membrane has a synergistic effect on membrane remodeling. Thus, Par3 coordinates the action of PI3K and Tiam1 to define membrane identity, revealing a signaling mechanism that can be exploited by human mucosal pathogens. © 2017 Ruch et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. An Activating Mutation in sos-1 Identifies Its Dbl Domain as a Critical Inhibitor of the Epidermal Growth Factor Receptor Pathway during Caenorhabditis elegans Vulval Development▿

    PubMed Central

    Modzelewska, Katarzyna; Elgort, Marc G.; Huang, Jingyu; Jongeward, Gregg; Lauritzen, Amara; Yoon, Charles H.; Sternberg, Paul W.; Moghal, Nadeem

    2007-01-01

    Proper regulation of receptor tyrosine kinase (RTK)-Ras-mitogen-activated protein kinase (MAPK) signaling pathways is critical for normal development and the prevention of cancer. SOS is a dual-function guanine nucleotide exchange factor (GEF) that catalyzes exchange on Ras and Rac. Although the physiologic role of SOS and its CDC25 domain in RTK-mediated Ras activation is well established, the in vivo function of its Dbl Rac GEF domain is less clear. We have identified a novel gain-of-function missense mutation in the Dbl domain of Caenorhabditis elegans SOS-1 that promotes epidermal growth factor receptor (EGFR) signaling in vivo. Our data indicate that a major developmental function of the Dbl domain is to inhibit EGF-dependent MAPK activation. The amount of inhibition conferred by the Dbl domain is equal to that of established trans-acting inhibitors of the EGFR pathway, including c-Cbl and RasGAP, and more than that of MAPK phosphatase. In conjunction with molecular modeling, our data suggest that the C. elegans mutation, as well as an equivalent mutation in human SOS1, activates the MAPK pathway by disrupting an autoinhibitory function of the Dbl domain on Ras activation. Our work suggests that functionally similar point mutations in humans could directly contribute to disease. PMID:17339331

  5. Evidence for regulation of protein synthesis at the elongation step by CDK1/cyclin B phosphorylation

    PubMed Central

    Monnier, Annabelle; Bellé, Robert; Morales, Julia; Cormier, Patrick; Boulben, Sandrine; Mulner-Lorillon, Odile

    2001-01-01

    Eukaryotic elongation factor 1 (eEF-1) contains the guanine nucleotide exchange factor eEF-1B that loads the G protein eEF-1A with GTP after each cycle of elongation during protein synthesis. Two features of eEF-1B have not yet been elucidated: (i) the presence of the unique valyl-tRNA synthetase; (ii) the significance of target sites for the cell cycle protein kinase CDK1/cyclin B. The roles of these two features were addressed by elongation measurements in vitro using cell-free extracts. A poly(GUA) template RNA was generated to support both poly(valine) and poly(serine) synthesis and poly(phenylalanine) synthesis was driven by a poly(uridylic acid) template. Elongation rates were in the order phenylalanine > valine > serine. Addition of CDK1/cyclin B decreased the elongation rate for valine whereas the rate for serine and phenylalanine elongation was increased. This effect was correlated with phosphorylation of the eEF-1δ and eEF-1γ subunits of eEF-1B. Our results demonstrate specific regulation of elongation by CDK1/cyclin B phosphorylation. PMID:11266545

  6. The translation elongation factor eEF-1Bβ1 is involved in cell wall biosynthesis and plant development in Arabidopsis thaliana.

    PubMed

    Hossain, Zakir; Amyot, Lisa; McGarvey, Brian; Gruber, Margaret; Jung, Jinwook; Hannoufa, Abdelali

    2012-01-01

    The eukaryotic translation elongation factor eEF-1Bβ1 (EF1Bβ) is a guanine nucleotide exchange factor that plays an important role in translation elongation. In this study, we show that the EF1Bβ protein is localized in the plasma membrane and cytoplasm, and that the transcripts should be expressed in most tissue types in seedlings. Sectioning of the inflorescence stem revealed that EF1Bβ predominantly localizes to the xylem vessels and in the interfascicular cambium. EF1Bβ gene silencing in efβ caused a dwarf phenotype with 38% and 20% reduction in total lignin and crystalline cellulose, respectively. This loss-of-function mutant also had a lower S/G lignin monomer ratio relative to wild type plants, but no changes were detected in a gain-of-function mutant transformed with the EF1Bβ gene. Histochemical analysis showed a reduced vascular apparatus, including smaller xylem vessels in the inflorescence stem of the loss-of-function mutant. Over-expression of EF1Bβ in an eli1 mutant background restored a WT phenotype and abolished ectopic lignin deposition as well as cell expansion defects in the mutant. Taken together, these data strongly suggest a role for EF1Bβ in plant development and cell wall formation in Arabidopsis.

  7. Alcohols inhibit translation to regulate morphogenesis in C. albicans.

    PubMed

    Egbe, Nkechi E; Paget, Caroline M; Wang, Hui; Ashe, Mark P

    2015-04-01

    Many molecules are secreted into the growth media by microorganisms to modulate the metabolic and physiological processes of the organism. For instance, alcohols like butanol, ethanol and isoamyl alcohol are produced by the human pathogenic fungus, Candida albicans and induce morphological differentiation. Here we show that these same alcohols cause a rapid inhibition of protein synthesis. More specifically, the alcohols target translation initiation, a complex stage of the gene expression process. Using molecular techniques, we have identified the likely translational target of these alcohols in C. albicans as the eukaryotic translation initiation factor 2B (eIF2B). eIF2B is the guanine nucleotide exchange factor for eIF2, which supports the exchange reaction where eIF2.GDP is converted to eIF2.GTP. Even minimal regulation at this step will lead to alterations in the levels of specific proteins that may allow the exigencies of the fungus to be realised. Indeed, similar to the effects of alcohols, a minimal inhibition of protein synthesis with cycloheximide also causes an induction of filamentous growth. These results suggest a molecular basis for the effect of various alcohols on morphological differentiation in C. albicans. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. The Ancestral Gene for Transcribed, Low-Copy Repeats in the Prader-Willi/Angleman Region Encodes a Large Protein Implicated in Protein Trafficking that is Deficient in Mice with Neuromuscular and

    SciTech Connect

    Ji, Y.

    1999-01-01

    Transcribed, low-copy repeat elements are associated with the breakpoint regions of common deletions in Prader-Willi and Angelman syndromes. We report here the identification of the ancestral gene ( HERC2 ) and a family of duplicated, truncated copies that comprise these low-copy repeats. This gene encodes a highly conserved giant protein, HERC2, that is distantly related to p532 (HERC1), a guanine nucleotide exchange factor (GEF) implicated in vesicular trafficking. The mouse genome contains a single Herc2 locus, located in the jdf2 (juvenile development and fertility-2) interval of chromosome 7C. We have identified single nucleotide splice junction mutations in Herc2 in threemore » independent N-ethyl-N-nitrosourea-induced jdf2 mutant alleles, each leading to exon skipping with premature termination of translation and/or deletion of conserved amino acids. Therefore, mutations in Herc2 lead to the neuromuscular secretory vesicle and sperm acrosome defects, other developmental abnormalities and juvenile lethality of jdf2 mice. Combined, these findings suggest that HERC2 is an important gene encoding a GEF involved in protein trafficking and degradation pathways in the cell.« less

  9. Discoidin domain receptor 1 controls linear invadosome formation via a Cdc42–Tuba pathway

    PubMed Central

    Juin, Amélie; Di Martino, Julie; Leitinger, Birgit; Henriet, Elodie; Gary, Anne-Sophie; Paysan, Lisa; Bomo, Jeremy; Baffet, Georges; Gauthier-Rouvière, Cécile; Rosenbaum, Jean

    2014-01-01

    Accumulation of type I collagen fibrils in tumors is associated with an increased risk of metastasis. Invadosomes are F-actin structures able to degrade the extracellular matrix. We previously found that collagen I fibrils induced the formation of peculiar linear invadosomes in an unexpected integrin-independent manner. Here, we show that Discoidin Domain Receptor 1 (DDR1), a collagen receptor overexpressed in cancer, colocalizes with linear invadosomes in tumor cells and is required for their formation and matrix degradation ability. Unexpectedly, DDR1 kinase activity is not required for invadosome formation or activity, nor is Src tyrosine kinase. We show that the RhoGTPase Cdc42 is activated on collagen in a DDR1-dependent manner. Cdc42 and its specific guanine nucleotide-exchange factor (GEF), Tuba, localize to linear invadosomes, and both are required for linear invadosome formation. Finally, DDR1 depletion blocked cell invasion in a collagen gel. Altogether, our data uncover an important role for DDR1, acting through Tuba and Cdc42, in proteolysis-based cell invasion in a collagen-rich environment. PMID:25422375

  10. Structural Dynamics Control Allosteric Activation of Cytohesin Family Arf GTPase Exchange Factors

    SciTech Connect

    Malaby, Andrew W.; Das, Sanchaita; Chakravarthy, Srinivas

    2018-01-01

    Membrane dynamic processes including vesicle biogenesis depend on Arf guanosine triphosphatase (GTPase) activation by guanine nucleotide exchange factors (GEFs) containing a catalytic Sec7 domain and a membrane-targeting module such as a pleckstrin homology (PH) domain. The catalytic output of cytohesin family Arf GEFs is controlled by autoinhibitory interactions that impede accessibility of the exchange site in the Sec7 domain. These restraints can be relieved through activator Arf-GTP binding to an allosteric site comprising the PH domain and proximal autoinhibitory elements (Sec7-PH linker and C-terminal helix). Small-angle X-ray scattering and negative-stain electron microscopy were used to investigate the structural organization andmore » conformational dynamics of cytohesin-3 (Grp1) in autoinhibited and active states. The results support a model in which hinge dynamics in the autoinhibited state expose the activator site for Arf-GTP binding, while subsequent C-terminal helix unlatching and repositioning unleash conformational entropy in the Sec7-PH linker to drive exposure of the exchange site.« less

  11. Resistance to inhibitors of cholinesterase 8A catalyzes release of Gαi-GTP and nuclear mitotic apparatus protein (NuMA) from NuMA/LGN/Gαi-GDP complexes

    PubMed Central

    Tall, Gregory G.; Gilman, Alfred G.

    2005-01-01

    Resistance to inhibitors of cholinesterase (Ric) 8A is a guanine nucleotide exchange factor that activates certain G protein α-subunits. Genetic studies in Caenorhabditis elegans and Drosophila melanogaster have placed RIC-8 in a previously uncharacterized G protein signaling pathway that regulates centrosome movements during cell division. Components of this pathway include G protein subunits of the Gαi class, GPR or GoLoco domain-containing proteins, RGS (regulator of G protein signaling) proteins, and accessory factors. These proteins interact to regulate microtubule pulling forces during mitotic movement of chromosomes. It is unclear how the GTP-binding and hydrolysis cycle of Gαi functions in the context of this pathway. In mammals, the GoLoco domain-containing protein LGN (GPSM2), the LGN- and microtubule-binding nuclear mitotic apparatus protein (NuMA), and Gαi regulate a similar process. We find that mammalian Ric-8A dissociates Gαi-GDP/LGN/NuMA complexes catalytically, releasing activated Gαi-GTP in vitro. Ric-8A-stimulated activation of Gαi caused concomitant liberation of NuMA from LGN. We conclude that Ric-8A efficiently utilizes GoLoco/Gαi-GDP complexes as substrates in vitro and suggest that Ric-8A-stimulated release of Gαi-GTP and/or NuMA regulates the microtubule pulling forces on centrosomes during cell division. PMID:16275912

  12. Ric-8A and Gi alpha recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle.

    PubMed

    Woodard, Geoffrey E; Huang, Ning-Na; Cho, Hyeseon; Miki, Toru; Tall, Gregory G; Kehrl, John H

    2010-07-01

    In model organisms, resistance to inhibitors of cholinesterase 8 (Ric-8), a G protein alpha (G alpha) subunit guanine nucleotide exchange factor (GEF), functions to orient mitotic spindles during asymmetric cell divisions; however, whether Ric-8A has any role in mammalian cell division is unknown. We show here that Ric-8A and G alpha(i) function to orient the metaphase mitotic spindle of mammalian adherent cells. During mitosis, Ric-8A localized at the cell cortex, spindle poles, centromeres, central spindle, and midbody. Pertussis toxin proved to be a useful tool in these studies since it blocked the binding of Ric-8A to G alpha(i), thus preventing its GEF activity for G alpha(i). Linking Ric-8A signaling to mammalian cell division, treatment of cells with pertussis toxin, reduction of Ric-8A expression, or decreased G alpha(i) expression similarly affected metaphase cells. Each treatment impaired the localization of LGN (GSPM2), NuMA (microtubule binding nuclear mitotic apparatus protein), and dynein at the metaphase cell cortex and disturbed integrin-dependent mitotic spindle orientation. Live cell imaging of HeLa cells expressing green fluorescent protein-tubulin also revealed that reduced Ric-8A expression prolonged mitosis, caused occasional mitotic arrest, and decreased mitotic spindle movements. These data indicate that Ric-8A signaling leads to assembly of a cortical signaling complex that functions to orient the mitotic spindle.

  13. Resistance to inhibitors of cholinesterase 8A catalyzes release of Galphai-GTP and nuclear mitotic apparatus protein (NuMA) from NuMA/LGN/Galphai-GDP complexes.

    PubMed

    Tall, Gregory G; Gilman, Alfred G

    2005-11-15

    Resistance to inhibitors of cholinesterase (Ric) 8A is a guanine nucleotide exchange factor that activates certain G protein alpha-subunits. Genetic studies in Caenorhabditis elegans and Drosophila melanogaster have placed RIC-8 in a previously uncharacterized G protein signaling pathway that regulates centrosome movements during cell division. Components of this pathway include G protein subunits of the Galphai class, GPR or GoLoco domain-containing proteins, RGS (regulator of G protein signaling) proteins, and accessory factors. These proteins interact to regulate microtubule pulling forces during mitotic movement of chromosomes. It is unclear how the GTP-binding and hydrolysis cycle of Galphai functions in the context of this pathway. In mammals, the GoLoco domain-containing protein LGN (GPSM2), the LGN- and microtubule-binding nuclear mitotic apparatus protein (NuMA), and Galphai regulate a similar process. We find that mammalian Ric-8A dissociates Galphai-GDP/LGN/NuMA complexes catalytically, releasing activated Galphai-GTP in vitro. Ric-8A-stimulated activation of Galphai caused concomitant liberation of NuMA from LGN. We conclude that Ric-8A efficiently utilizes GoLoco/Galphai-GDP complexes as substrates in vitro and suggest that Ric-8A-stimulated release of Galphai-GTP and/or NuMA regulates the microtubule pulling forces on centrosomes during cell division.

  14. Connecdenn 3/DENND1C binds actin linking Rab35 activation to the actin cytoskeleton

    PubMed Central

    Marat, Andrea L.; Ioannou, Maria S.; McPherson, Peter S.

    2012-01-01

    The small GTPase Rab35 regulates endosomal membrane trafficking but also recruits effectors that modulate actin assembly and organization. Differentially expressed in normal and neoplastic cells (DENN)–domain proteins are a newly identified class of Rab guanine-nucleotide exchange factors (GEFs) that are grouped into eight families, each activating a common Rab. The members of one family, connecdenn 1–3/DENND1A–C, are all GEFs for Rab35. Why Rab35 requires multiple GEFs is unknown. We demonstrate that connecdenn 3 uses a unique C-terminal motif, a feature not found in connecdenn 1 or 2, to directly bind actin. This interaction couples Rab35 activation to the actin cytoskeleton, resulting in dramatic changes in cell shape, notably the formation of protrusive membrane extensions. These alterations are specific to Rab35 activated by connecdenn 3 and require both the actin-binding motif and N-terminal DENN domain, which harbors the GEF activity. It was previously demonstrated that activated Rab35 recruits the actin-bundling protein fascin to actin, but the relevant GEF for this activity was unknown. We demonstrate that connecdenn 3 and Rab35 colocalize with fascin and actin filaments, suggesting that connecdenn 3 is the relevant GEF. Thus, whereas connecdenn 1 and 2 activate Rab35 for endosomal trafficking, connecdenn 3 uniquely activates Rab35 for its role in actin regulation. PMID:22072793

  15. Connecdenn 3/DENND1C binds actin linking Rab35 activation to the actin cytoskeleton.

    PubMed

    Marat, Andrea L; Ioannou, Maria S; McPherson, Peter S

    2012-01-01

    The small GTPase Rab35 regulates endosomal membrane trafficking but also recruits effectors that modulate actin assembly and organization. Differentially expressed in normal and neoplastic cells (DENN)-domain proteins are a newly identified class of Rab guanine-nucleotide exchange factors (GEFs) that are grouped into eight families, each activating a common Rab. The members of one family, connecdenn 1-3/DENND1A-C, are all GEFs for Rab35. Why Rab35 requires multiple GEFs is unknown. We demonstrate that connecdenn 3 uses a unique C-terminal motif, a feature not found in connecdenn 1 or 2, to directly bind actin. This interaction couples Rab35 activation to the actin cytoskeleton, resulting in dramatic changes in cell shape, notably the formation of protrusive membrane extensions. These alterations are specific to Rab35 activated by connecdenn 3 and require both the actin-binding motif and N-terminal DENN domain, which harbors the GEF activity. It was previously demonstrated that activated Rab35 recruits the actin-bundling protein fascin to actin, but the relevant GEF for this activity was unknown. We demonstrate that connecdenn 3 and Rab35 colocalize with fascin and actin filaments, suggesting that connecdenn 3 is the relevant GEF. Thus, whereas connecdenn 1 and 2 activate Rab35 for endosomal trafficking, connecdenn 3 uniquely activates Rab35 for its role in actin regulation.

  16. GEF-H1 functions in apical constriction and cell intercalations and is essential for vertebrate neural tube closure

    PubMed Central

    Itoh, Keiji; Ossipova, Olga; Sokol, Sergei Y.

    2014-01-01

    ABSTRACT Rho family GTPases regulate many morphogenetic processes during vertebrate development including neural tube closure. Here we report a function for GEF-H1/Lfc/ArhGEF2, a RhoA-specific guanine nucleotide exchange factor that functions in neurulation in Xenopus embryos. Morpholino-mediated depletion of GEF-H1 resulted in severe neural tube defects, which were rescued by GEF-H1 RNA. Lineage tracing of GEF-H1 morphants at different developmental stages revealed abnormal cell intercalation and apical constriction, suggesting that GEF-H1 regulates these cell behaviors. Molecular marker analysis documented defects in myosin II light chain (MLC) phosphorylation, Rab11 and F-actin accumulation in GEF-H1-depleted cells. In gain-of-function studies, overexpressed GEF-H1 induced Rho-associated kinase-dependent ectopic apical constriction – marked by apical accumulation of phosphorylated MLC, γ-tubulin and F-actin in superficial ectoderm – and stimulated apical protrusive activity of deep ectoderm cells. Taken together, our observations newly identify functions of GEF-H1 in morphogenetic movements that lead to neural tube closure. PMID:24681784

  17. Delivery of endocytosed proteins to the cell–division plane requires change of pathway from recycling to secretion

    PubMed Central

    Richter, Sandra; Kientz, Marika; Brumm, Sabine; Nielsen, Mads Eggert; Park, Misoon; Gavidia, Richard; Krause, Cornelia; Voss, Ute; Beckmann, Hauke; Mayer, Ulrike; Stierhof, York-Dieter; Jürgens, Gerd

    2014-01-01

    Membrane trafficking is essential to fundamental processes in eukaryotic life, including cell growth and division. In plant cytokinesis, post-Golgi trafficking mediates a massive flow of vesicles that form the partitioning membrane but its regulation remains poorly understood. Here, we identify functionally redundant Arabidopsis ARF guanine-nucleotide exchange factors (ARF-GEFs) BIG1–BIG4 as regulators of post-Golgi trafficking, mediating late secretion from the trans-Golgi network but not recycling of endocytosed proteins to the plasma membrane, although the TGN also functions as an early endosome in plants. In contrast, BIG1-4 are absolutely required for trafficking of both endocytosed and newly synthesized proteins to the cell–division plane during cytokinesis, counteracting recycling to the plasma membrane. This change from recycling to secretory trafficking pathway mediated by ARF-GEFs confers specificity of cargo delivery to the division plane and might thus ensure that the partitioning membrane is completed on time in the absence of a cytokinesis-interphase checkpoint. DOI: http://dx.doi.org/10.7554/eLife.02131.001 PMID:24714496

  18. A novel role for Lsc/p115 RhoGEF and LARG in regulating RhoA activity downstream of adhesion to fibronectin.

    PubMed

    Dubash, Adi D; Wennerberg, Krister; García-Mata, Rafael; Menold, Marisa M; Arthur, William T; Burridge, Keith

    2007-11-15

    Adhesion of cells to extracellular matrix proteins such as fibronectin initiates signaling cascades that affect cell morphology, migration and survival. Some of these signaling pathways involve the Rho family of GTPases, such as Cdc42, Rac1 and RhoA, which play a key role in regulating the organization of the cytoskeleton. Although significant advances have been made in understanding how Rho proteins control cytoskeletal architecture, less is known about the signals controlling activation of the GTPases themselves. The focus of this study was to determine which guanine nucleotide exchange factor(s) are responsible for activation of RhoA downstream of adhesion to fibronectin. Using an affinity pulldown assay for activated exchange factors, we show that the RhoA-specific exchange factors Lsc/p115 RhoGEF and LARG are activated when cells are plated onto fibronectin, but not other exchange factors such as Ect2 or Dbl. Knockdown of Lsc and LARG together significantly decreases RhoA activation and formation of stress fibers and focal adhesions downstream of fibronectin adhesion. Similarly, overexpression of a catalytically inactive mutant of Lsc/p115 RhoGEF inhibits RhoA activity and formation of stress fibers and focal adhesions on fibronectin. These data establish a previously uncharacterized role for the exchange factors Lsc/p115 RhoGEF and LARG in linking fibronectin signals to downstream RhoA activation.

  19. Pressure-induced vascular oxidative stress is mediated through activation of integrin-linked kinase 1/betaPIX/Rac-1 pathway.

    PubMed

    Vecchione, Carmine; Carnevale, Daniela; Di Pardo, Alba; Gentile, Maria Teresa; Damato, Antonio; Cocozza, Germana; Antenucci, Giovanna; Mascio, Giada; Bettarini, Umberto; Landolfi, Alessandro; Iorio, Luca; Maffei, Angelo; Lembo, Giuseppe

    2009-11-01

    High blood pressure induces a mechanical stress on vascular walls and evokes oxidative stress and vascular dysfunction. The aim of this study was to characterize the intracellular signaling causing vascular oxidative stress in response to pressure. In carotid arteries subjected to high pressure levels, we observed not only an impaired vasorelaxation, increased superoxide production, and NADPH oxidase activity, but also a concomitant activation of Rac-1, a small G protein. Selective inhibition of Rac-1, with an adenovirus carrying a dominant-negative Rac-1 mutant, significantly reduced NADPH oxidase activity and oxidative stress and, more importantly, rescued vascular function in carotid arteries at high pressure. The analysis of molecular events associated with mechanotransduction demonstrated at high pressure levels an overexpression of integrin-linked kinase 1 and its recruitment to plasma membrane interacting with paxillin. The inhibition of integrin-linked kinase 1 by small interfering RNA impaired Rac-1 activation and rescued oxidative stress-induced vascular dysfunction in response to high pressure. Finally, we showed that betaPIX, a guanine-nucleotide exchange factor, is the intermediate molecule recruited by integrin-linked kinase 1, converging the intracellular signaling toward Rac-1-mediated oxidative vascular dysfunction during pressure overload. Our data demonstrate that biomechanical stress evoked by high blood pressure triggers an integrin-linked kinase 1/betaPIX/Rac-1 signaling, thus generating oxidative vascular dysfunction.

  20. Genetic evidence that Ras-like GTPases, Gtr1p, and Gtr2p, are involved in epigenetic control of gene expression in Saccharomyces cerevisiae

    SciTech Connect

    Sekiguchi, Takeshi; Core Research for Evolutional Science and Technology; Hayashi, Naoyuki

    2008-04-11

    Gtr1p and Gtr2p of Saccharomyces cerevisiae are members of the Ras-like GTP binding family and interact genetically with Prp20p (yeast RCC1), which is a guanine nucleotide exchange factor for Gsp1p (yeast homolog of Ran, involved in nuclear export). Recently, Gtr1p and Gtr2p were suggested to be molecular switches in the rapamycin-sensitive TOR signaling pathway. Here, we show that Gtr1p and Gtr2p genetically interact with the chromatin remodeling factor Ino80p. Gtr2p interacted physically with both Rvb1p and Rvb2p. Consistent with these results, Gtr2p localized to chromatin and could activate transcription. Gtr1p and Gtr2p were found to be involved in chromatin silencingmore » in the vicinity of telomeres. Gtr1p and Gtr2p were required to repress nitrogen catabolite-repressed genes, which are repressed by the TOR signaling pathway. We propose that Gtr1p and Gtr2p are involved in epigenetic control of gene expression in the TOR signaling pathway.« less

  1. Gain-of-function SOS1 mutations cause a distinctive form of noonansyndrome

    SciTech Connect

    Tartaglia, Marco; Pennacchio, Len A.; Zhao, Chen

    2006-09-01

    Noonan syndrome (NS) is a developmental disordercharacterized by short stature, facial dysmorphia, congenital heartdefects and skeletal anomalies1. Increased RAS-mitogenactivated proteinkinase (MAPK) signaling due to PTPN11 and KRAS mutations cause 50 percentof NS2-6. Here, we report that 22 of 129 NS patients without PTPN11 orKRAS mutation (17 percent) have missense mutations in SOS1, which encodesa RAS-specific guanine nucleotide exchange factor (GEF). SOS1 mutationscluster at residues implicated in the maintenance of SOS1 in itsautoinhibited form and ectopic expression of two NS-associated mutantsinduced enhanced RAS activation. The phenotype associated with SOS1defects is distinctive, although within NS spectrum, with a highprevalence of ectodermal abnormalitiesmore » but generally normal developmentand linear growth. Our findings implicate for the first timegain-of-function mutations in a RAS GEF in inherited disease and define anew mechanism by which upregulation of the RAS pathway can profoundlychange human development.« less

  2. Mechanisms of Salmonella Typhi Host Restriction.

    PubMed

    Spanò, Stefania

    2016-01-01

    Salmonella enterica serovar Typhi (S. Typhi) is the cause of typhoid fever, a life-threatening bacterial infection that is very common in the developing world. Recent spread of antimicrobial resistant isolates of S. Typhi makes typhoid fever, a global public health risk. Despite being a common disease, still very little is known about the molecular mechanisms underlying typhoid fever and S. Typhi pathogenesis. In contrast to other Salmonellae, S. Typhi can only infect humans. The molecular bases of this human restriction are mostly unknown. Recent studies identified a novel pathway that contributes to S. Typhi human restriction and is required for killing S. Typhi in macrophages of nonsusceptible species. The small Rab GTPase Rab32 and its guanine nucleotide exchange factor BLOC-3 are the critical components of this pathway. These proteins were already well known as important regulators of intracellular membrane transport. In particular, they are central for the transport of enzymes that synthetize melanin in pigment cells. The recent findings that Rab32 and BLOC-3 are required for S. Typhi host restriction point out to a novel mechanism restricting the growth of bacterial pathogen, dependent on the transport of still unknown molecule(s) to the S. Typhi vacuole. The identification of this novel antimicrobial pathway constitutes a critical starting point to study molecular mechanisms killing bacterial pathogens and possibly identify nov