Science.gov

Sample records for a-loaded pegylated chitosan-modified

  1. Effect of chitosan molecular weight on rheological behavious of chitosan modified nanoclay at highly hydrated state

    USDA-ARS?s Scientific Manuscript database

    Effect of chitosan molecular weight (M(cs)) on the rheological properties of chitosan modified clay (CMCs) at highly hydrated state was investigated. With special emphasis on its effect on the thixotropy of CMCs, the structure recovery at rest after underwent a pre-shearing process was further perfo...

  2. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Liqin; Li, Xuemin; Liu, Lingrong; Zhang, Qiqing

    2013-02-01

    Oral chemotherapy is a key step towards `chemotherapy at home', a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer.

  3. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer

    PubMed Central

    2013-01-01

    Oral chemotherapy is a key step towards ‘chemotherapy at home’, a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer. PMID:23394588

  4. Ultrafiltration of pegylated proteins

    NASA Astrophysics Data System (ADS)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine

  5. Unique rheological behavior of chitosan-modified nanoclay at highly hydrated state.

    PubMed

    Liang, Songmiao; Liu, Linshu; Huang, Qingrong; Yam, Kit L

    2009-04-30

    This work attempts to explore the dynamic and steady-state rheological properties of chitosan modified clay (CMCs) at highly hydrated state. CMCs with different initial chitosan/clay weight ratios (s) were prepared from pre-exfoliated clay via electrostatic adsorption process. Thermogravimetric analysis and optical microscopy were used to determine the adsorbed content of chitosan (m) in CMCs and the microstructure of CMCs at highly hydrated state, respectively. Dynamic rheological results indicate that both stress-strain behavior and moduli of CMCs exhibit strong dependence on m. Shear-thinning behavior for all of CMCs is observed and further confirmed by steady-state shear test. Interestingly, two unique transitions, denoted as a small peak region of the shear viscosity for CMCs with m > 2.1% and a sharp drop region of the shear viscosity for CMCs with m

  6. Disinfection of water with new chitosan-modified hybrid clay composite adsorbent.

    PubMed

    Unuabonah, Emmanuel I; Adewuyi, Adewale; Kolawole, Matthew O; Omorogie, Martins O; Olatunde, Olalekan C; Fayemi, Scott O; Günter, Christina; Okoli, Chukwunonso P; Agunbiade, Foluso O; Taubert, Andreas

    2017-08-01

    Hybrid clay composites were prepared from Kaolinite clay and Carica papaya seeds via modification with chitosan, Alum, NaOH, and ZnCl 2 in different ratios, using solvothermal and surface modification techniques. Several composite adsorbents were prepared, and the most efficient of them for the removal of gram negative enteric bacteria was the hybrid clay composite that was surface-modified with chitosan, Ch-nHYCA 1:5 (Chitosan: nHYCA = 1:5). This composite adsorbent had a maximum adsorption removal value of 4.07 × 10 6 cfu/mL for V. cholerae after 120 min, 1.95 × 10 6 cfu/mL for E. coli after ∼180 min and 3.25 × 10 6 cfu/mL for S. typhi after 270 min. The Brouers-Sotolongo model was found to better predict the maximum adsorption capacity ( q max ) of Ch-nHYCA 1:5 composite adsorbent for the removal of E. coli with a q max of 103.07 mg/g (7.93 × 10 7 cfu/mL) and V. cholerae with a q max of 154.18 mg/g (1.19 × 10 8 cfu/mL) while the Sips model best described S. typhi adsorption by Ch-nHYCA 1:5 composite with an estimated q max of 83.65 mg/g (6.43 × 10 7 cfu/mL). These efficiencies do far exceed the alert/action levels of ca. 500 cfu/mL in drinking water for these bacteria. The simplicity of the composite preparation process and the availability of raw materials used for its preparation underscore the potential of this low-cost chitosan-modified composite adsorbent (Ch-nHYCA 1:5 ) for water treatment.

  7. Improved Mesenchymal Stem Cells Attachment and In Vitro Cartilage Tissue Formation on Chitosan-Modified Poly(l-Lactide-co-Epsilon-Caprolactone) Scaffold

    PubMed Central

    Wu, Yingnan; Li, Chao; Zhang, Tianting; Zou, Yu; Hui, James H.P.; Lee, Eng Hin

    2012-01-01

    Considering the load-bearing physiological requirement of articular cartilage, scaffold for cartilage tissue engineering should exhibit appropriate mechanical responses as natural cartilage undergoing temporary deformation on loading with little structural collapse, and recovering to the original geometry on unloading. A porous elastomeric poly l-lactide-co-ɛ-caprolactone (PLCL) was generated and crosslinked at the surface to chitosan to improve its wettability. Human bone marrow derived mesenchymal stem cells (MSC) attachment, morphological change, proliferation and in vitro cartilage tissue formation on the chitosan-modified PLCL scaffold were compared with the unmodified PLCL scaffold. Chitosan surface promoted more consistent and even distribution of the seeded MSC within the scaffold. MSC rapidly adopted a distinct spread-up morphology on attachment on the chitosan-modified PLCL scaffold with the formation of F-actin stress fiber which proceeded to cell aggregation; an event much delayed in the unmodified PLCL. Enhanced cartilage formation on the chitosan-modified PLCL was shown by real-time PCR analysis, histological and immunochemistry staining and biochemical assays of the cartilage extracellular matrix components. The Young's modulus of the derived cartilage tissues on the chitosan-modified PLCL scaffold was significantly increased and doubled that of the unmodified PLCL. Our results show that chitosan modification of the PLCL scaffold improved the cell compatibility of the PLCL scaffold without significant alteration of the physical elastomeric properties of PLCL and resulted in the formation of cartilage tissue of better quality. PMID:21902611

  8. A sustained release formulation of chitosan modified PLCL:poloxamer blend nanoparticles loaded with optical agent for animal imaging

    NASA Astrophysics Data System (ADS)

    Ranjan, Amalendu P.; Zeglam, Karim; Mukerjee, Anindita; Thamake, Sanjay; Vishwanatha, Jamboor K.

    2011-07-01

    The objective of this study was to develop optical imaging agent loaded biodegradable nanoparticles with indocynanine green (ICG) using chitosan modified poly(L-lactide-co-epsilon-caprolactone) (PLCL):poloxamer (Pluronic F68) blended polymer. Nanoparticles were formulated with an emulsification solvent diffusion technique using PLCL and poloxamer as blend-polymers. Polyvinyl alcohol (PVA) and chitosan were used as stabilizers. The particle size, shape and zeta potential of the formulated nanoparticles and the release kinetics of ICG from these nanoparticles were determined. Further, biodistribution of these nanoparticles was studied in mice at various time points until 24 h following intravenous administration, using a non-invasive imaging system. The average particle size of the nanoparticles was found to be 146 ± 3.7 to 260 ± 4.5 nm. The zeta potential progressively increased from - 41.6 to + 25.3 mV with increasing amounts of chitosan. Particle size and shape of the nanoparticles were studied using transmission electron microscopy (TEM) which revealed the particles to be smooth and spherical in shape. These nanoparticles were efficiently delivered to the cytoplasm of the cells, as observed in prostate and breast cancer cells using confocal laser scanning microscopy. In vitro release studies indicated sustained release of ICG from the nanoparticles over a period of seven days. Nanoparticle distribution results in mice showing improved uptake and accumulation with chitosan modified nanoparticles in various organs and slower clearance at different time points over a 24 h period as compared to unmodified nanoparticles. The successful formulation of such cationically modified nanoparticles for encapsulating optical agents may lead to a potential deep tissue imaging technique for tumor detection, diagnosis and therapy.

  9. Solid phase pegylation of hemoglobin.

    PubMed

    Suo, Xiaoyan; Zheng, Chunyang; Yu, Pengzhan; Lu, Xiuling; Ma, Guanghui; Su, Zhiguo

    2009-01-01

    A solid phase conjugation process was developed for attachment of polyethylene glycol to hemoglobin molecule. Bovine hemoglobin was loaded onto an ion exchange chromatography column and adsorbed by the solid medium. Succinimidyl carbonate mPEG was introduced in the mobile phase after the adsorption. Pegylation took place between the hemoglobin on the solid phase, and the pegylation reagent in the liquid phase. A further elution was carried out to separate the pegylated and the unpegylated protein. Analysis by HPSEC, SDS-PAGE, and MALLS demonstrated that the fractions eluted from the solid phase contained well-defined components. Pegylated hemoglobin with one PEG chain was obtained with the yield of 75%, in comparison to the yield of 30% in the liquid phase pegylation. The P(50) values of the mono-pegylated hemoglobin, prepared with SC-mPEG 5 kDa, 10 kDa and 20 kDa, were 19.97, 20.23 and 20.54 mmHg, which were much closer to the value of red blood cells than that of pegylated hemoglobin prepared with the conventional method.

  10. Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata.

    PubMed

    Cui, Xiaoqiang; Dai, Xi; Khan, Kiran Yasmin; Li, Tingqiang; Yang, Xiaoe; He, Zhenli

    2016-10-01

    The objective of this study was to determine the feasibility of using magnesium-alginate/chitosan modified biochar microspheres to enhance removal of phosphate from aqueous solution. The introduction of MgCl2 substantially increased surface area of biochar (116.2m(2)g(-1)), and both granulation with alginate/chitosan and modification with magnesium improved phosphate sorption on the biochars. Phosphate sorption on the biochars could be well described by a simple Langmuir model, and the MgCl2-alginate modified biochar microspheres exhibited the highest phosphate sorption capacity (up to 46.56mgg(-1)). The pseudo second order kinetic model better fitted the kinetic data, and both the Yoon-Nelson and Thomas models were superior to other models in describing phosphate dynamic sorption. Precipitation with minerals and ligand exchange were the possible mechanisms of phosphate sorption on the modified biochars. These results imply that MgCl2-alginate modified biochar microspheres have potential as a green cost-effective sorbent for remediating P contaminated water environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. PEGylated nanomedicines: recent progress and remaining concerns.

    PubMed

    Vllasaliu, Driton; Fowler, Robyn; Stolnik, Snow

    2014-01-01

    Recent biopharma deals related to nanocarrier drug delivery technologies highlight the emergence of nanomedicine. This is perhaps an expected culmination of many years of research demonstrating the potential of nanomedicine as the next generation of therapeutics with improved performance. PEGylated nanocarriers play a key role within this field. The drug delivery advantages of nanomedicines in general are discussed, focusing on nanocarriers and PEGylated nanomedicines, including products under current development/clinical evaluation. Well-established drug delivery benefits of PEGylation (e.g., prolonged circulation) are only briefly covered. Instead, attention is deliberately made to less commonly reported advantages of PEGylation, including mucosal delivery of nanomedicines. Finally, some of the issues related to the safety of PEGylated nanomedicines in clinical application are discussed. The advent of nanomedicine providing therapeutic options of refined performance continues. Although PEGylation as a tool to improve the pharmacokinetics of nanomedicines is well established and is used clinically, other benefits of 'PEGnology', including enhancement of physicochemical properties and/or biocompatibility of actives and/or drug carriers, as well as mucosal delivery, have attracted less attention. While concerns regarding the clinical use of PEGylated nanomedicines remain, evidence suggests that at least some safety issues may be controlled by adequate designs of nanosystems.

  12. PEGylation of supercooled smectic cholesteryl myristate nanoparticles.

    PubMed

    Mengersen, Friederike; Bunjes, Heike

    2012-06-01

    Supercooled smectic cholesterol ester nanoparticles are under investigation as a new carrier system for lipophilic drugs. The smectic thermotropic liquid crystalline state of the matrix lipid is expected to lead to advantages with respect to physicochemical stability and drug loading capacity. Such nanoparticles can be prepared by high-pressure melt homogenization in the presence of emulsifiers. The purpose of this study was to develop PEGylated supercooled smectic cholesteryl myristate nanoparticles for parenteral administration and to provide evidence of the successful PEGylation by detecting the alterations of particle properties due to the insertion of PEGylated phospholipid into the surface layer of the particles. To achieve PEGylation, MPEG(2000)-DSPE was processed together with the phospholipids used as emulsifiers during particle preparation. The influence of the PEGylated phospholipid on the size, zeta potential, phase behavior and recrystallization tendency of the nanoparticles indicated the insertion of MPEG(2000)-DSPE into the surface layer of the particles. Evidence of the PEGylation was also obtained by (1)H NMR measurements, and the steric stabilization was verified by neutralizing the particle surface charge with calcium chloride or adjusting the pH value. As sterility is an important aspect with regard to parenteral administration of the dispersions their stability upon autoclaving was a further point of interest in the present study. The results indicate that PEGylated particles can be sterilized by autoclaving. In conclusion, the PEGylated particles are a promising formulation with respect to small particle size, stability against recrystallization and upon autoclaving. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. New polyvinyl chloride (PVC) nanocomposite consisting of aromatic polyamide and chitosan modified ZnO nanoparticles with enhanced thermal stability, low heat release rate and improved mechanical properties

    NASA Astrophysics Data System (ADS)

    Hajibeygi, Mohsen; Maleki, Mahdiye; Shabanian, Meisam; Ducos, Franck; Vahabi, Henri

    2018-05-01

    New ternary nanocomposite systems containing polylvinyl chloride (PVC), chitosan modified ZnO (CMZN) nanoparticles and new synthesized polyamide (PA) were designed and prepared by solution casting method. As a potential reinforcement, CMZN was used in PVC system combined with and without PA. Morphology, mechanical, thermal and combustion properties of the all PVC systems were studied. In the presence of the CMZN, PA showed a synergistic effect on improvement of the all investigated properties of PVC. The 5 mass% loss temperature (T5) was increased from 195 °C to 243 °C in PVC/CMZN-PA nanocomposite containing 1 mass% of each PA and CMZN (PZP 2). The peak of heat release rate was decreased from 131 W/g for PVC to 104 W/g for PVC/CMZN-PA nanocomposite containing 3 mass% of each PA and CMZN (PZP 6). According to the tensile tests, compared to the neat PVC, the tensile strength was increased from 35.4 to 53.4 MPa for PZP 6.

  14. Simultaneous enzymatic and SERS properties of bifunctional chitosan-modified popcorn-like Au-Ag nanoparticles for high sensitive detection of melamine in milk powder.

    PubMed

    Li, Junrong; Zhang, Guannan; Wang, Lihua; Shen, Aiguo; Hu, Jiming

    2015-08-01

    In this work, we suggest a chitosan-modified popcorn-like Au-Ag nanoparticles (CSPNPs) based assay for high sensitive detection of melamine, in which CSPNPs not only provide with an intrinsic peroxidase-like activity but also act as surface enhanced Raman scattering (SERS) substrates. CSPNPs can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to the charge transfer complex (CTC), which contributes to a tremendous surface-enhanced resonant Raman scattering (SERRS) signals with 632.8 nm laser excitation. The target molecule melamine can generate an additional compound with H2O2, which means the available amount of H2O2 for the oxidation of TMB reduced. Correspondingly, the SERRS intensity of CTC is decreased. The decreased Raman intensity is proportional to the concentration of melamine over a wide range from 10 nM to 50 μM (R(2)=0.989), with a limit of detection (LOD) of 8.51 nM. Moreover, the proposed highly selective method is fully capable of rapid, separation-free detection of melamine in milk powder. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Chromatographic separation and detection of contaminants from whole milk powder using a chitosan-modified silver nanoparticles surface-enhanced Raman scattering device.

    PubMed

    Li, Dan; Lv, Di Y; Zhu, Qing X; Li, Hao; Chen, Hui; Wu, Mian M; Chai, Yi F; Lu, Feng

    2017-06-01

    Methods for the on-site analysis of food contaminants are in high demand. Although portable Raman spectroscopy is commonly used to test food on-site, it can be challenge to achieve this goal with rapid detection and inexpensive substrate. In this study, we detected trace food contaminants in samples of whole milk powder using the methods that combined chromatography with surface-enhanced Raman scattering detection (SERS). We developed a simple and efficient technique to fabricate the paper with chitosan-modified silver nanoparticles as a SERS-active substrate. The soaking time of paper and the concentration of chitosan solution were optimized for chromatographic separation and SERS detection. We then studied the separation properties for real applications including complex sample matrices, and detected melamine at 1mg/L, dicyandiamide at 100mg/L and sodium sulfocyanate at 10mg/L in whole milk powder. As such, our methods have great potential for field-based detection of milk contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. PEGylated Liposomes as Carriers of Hydrophobic Porphyrins.

    PubMed

    Dzieciuch, Monika; Rissanen, Sami; Szydłowska, Natalia; Bunker, Alex; Kumorek, Marta; Jamróz, Dorota; Vattulainen, Ilpo; Nowakowska, Maria; Róg, Tomasz; Kepczynski, Mariusz

    2015-06-04

    Sterically stabilized liposomes (SSLs) (PEGylated liposomes) are applied as effective drug delivery vehicles. Understanding the interactions between hydrophobic compounds and PEGylated membranes is therefore important to determine the effectiveness of PEGylated liposomes for delivery of drugs or other bioactive substances. In this study, we have combined fluorescence quenching analysis (FQA) experiments and all-atom molecular dynamics (MD) simulations to study the effect of membrane PEGylation on the location and orientation of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (p-THPP) that has been used in our study as a model hydrophobic compound. First, we consider the properties of p-THPP in the presence of different fluid phosphatidylcholine bilayers that we use as model systems for protein-free cell membranes. Next, we studied the interaction between PEGylated membranes and p-THPP. Our MD simulation results indicated that the arrangement of p-THPP within zwitterionic membranes is dependent on their free volume, and p-THPP solubilized in PEGylated liposomes is localized in two preferred positions: deep within the membrane (close to the center of the bilayer) and in the outer PEG corona (p-THPP molecules being wrapped with the polymer chains). Fluorescence quenching methods confirmed the results of atomistic MD simulations and showed two populations of p-THPP molecules as in MD simulations. Our results provide both an explanation for the experimental observation that PEGylation improves the drug-loading efficiency of membranes and also a more detailed molecular-level description of the interactions between porphyrins and lipid membranes.

  17. Synthesis of cross-linked chitosan modified with the glycine moiety for the collection/concentration of bismuth in aquatic samples for ICP-MS determination.

    PubMed

    Oshita, Koji; Noguchi, Osamu; Oshima, Mitsuko; Motomizu, Shoji

    2007-10-01

    A chelating resin, cross-linked chitosan modified with the glycine moiety (glycine-type chitosan resin), was developed for the collection and concentration of bismuth in aquatic samples for ICP-MS measurements. The adsorption behavior of bismuth and 55 elements on glycine-type chitosan resin was systematically examined by passing a sample solution containing 56 elements through a mini-column packed with the resin (wet volume; 1 ml). After eluting the elements adsorbed on the resin with nitric acid, the eluates were measured by ICP-MS. The glycine-type chitosan resin could adsorb several cations by a chelating mechanism and several oxoanions by an anion-exchange mechanism. Especially, the resin could adsorb almost 100% Bi(III) over a wide pH region from pH 2 to 6. Bismuth could be strongly adsorbed at pH 3, and eluted quantitatively with 10 ml of 3 M nitric acid. A column pretreatment method with the glycine-type chitosan resin was used prior to removal of high concentrations of matrices in a seawater sample and the preconcentration of trace bismuth in river water samples for ICP-MS measurements. The column pretreatment method was also applied to the determination of bismuth in real samples by ICP-MS. The LOD of bismuth was 0.1 pg ml(-1) by 10-fold column preconcentration for ICP-MS measurements. The analytical results for bismuth in sea and river water samples by ICP-MS were 22.9 +/- 0.5 pg ml(-1) (RSD, 2.2%) and 2.08 +/- 0.05 pg ml(-1) (RSD, 2.4%), respectively.

  18. PEGylated human serum albumin (HSA) nanoparticles: preparation, characterization and quantification of the PEGylation extent

    NASA Astrophysics Data System (ADS)

    Fahrländer, E.; Schelhaas, S.; Jacobs, A. H.; Langer, K.

    2015-04-01

    Modification with poly(ethylene glycol) (PEG) is a widely used method for the prolongation of plasma half-life of colloidal carrier systems such as nanoparticles prepared from human serum albumin (HSA). However, the quantification of the PEGylation extent is still challenging. Moreover, the influence of different PEG derivatives, which are commonly used for nanoparticle conjugation, has not been investigated so far. The objective of the present study is to develop a method for the quantification of PEG and to monitor the influence of diverse PEG reagents on the amount of PEG linked to the surface of HSA nanoparticles. A size exclusion chromatography method with refractive index detection was established which enabled the quantification of unreacted PEG in the supernatant. The achieved results were confirmed using a fluorescent PEG derivative, which was detected by photometry and fluorimetry. Additionally, PEGylated HSA nanoparticles were enzymatically digested and the linked amount of fluorescently active PEG was directly determined. All the analytical methods confirmed that under optimized PEGylation conditions a PEGylation efficiency of up to 0.5 mg PEG per mg nanoparticle could be achieved. Model calculations made a ‘brush’ conformation of the PEG chains on the particle surface very likely. By incubating the nanoparticles with fetal bovine serum the reduced adsorption of serum proteins on PEGylated HSA nanoparticles compared to non-PEGylated HSA nanoparticles was demonstrated using sodium dodecylsulfate polyacrylamide gel electrophoresis. Finally, the positive effect of PEGylation on plasma half-life was demonstrated in an in vivo study in mice. Compared to unmodified nanoparticles the PEGylation led to a four times larger plasma half-life.

  19. An ultrasensitive chemiluminescence aptasensor for thrombin detection based on iron porphyrin catalyzing luminescence desorbed from chitosan modified magnetic oxide graphene composite.

    PubMed

    Sun, Yuanling; Wang, Yanhui; Li, Jianbo; Ding, Chaofan; Lin, Yanna; Sun, Weiyan; Luo, Chuannan

    2017-11-01

    In this work, an ultrasensitive chemiluminescence (CL) aptasensor was prepared for thrombin detection based on iron porphyrin catalyzing luminol - hydrogen peroxide luminescence under alkaline conditions, and iron porphyrin was desorbed from chitosan modified magnetic oxide graphene composite (CS@Fe 3 O 4 @GO). Firstly, CS@Fe 3 O 4 @GO was prepared. CS@Fe 3 O 4 @GO has advantages of the good biocompatibility and positively charged on its surface of CS, the large specific surface area of GO and the easy separation characteristics of Fe 3 O 4 . GO, Fe 3 O 4 and CS@Fe 3 O 4 @GO were confirmed by transmission electron microscopy (TEM), scanning electron microscope (SEM), fourier transform infrared (FTIR) and X-ray powder diffraction (XRD). Then, thrombin aptamer (T-Apt) and hemin (HM, an iron porphyrin) were sequentially modified on the surface of CS@Fe 3 O 4 @GO to form CS@Fe 3 O 4 @GO@T-Apt@HM. The immobilization properties of CS@Fe 3 O 4 @GO to T-Apt and adsorption properties of CS@Fe 3 O 4 @GO@T-Apt to HM were sequentially researched through the curves of kinetics and the curves of thermodynamics. When thrombin existed in solutions, HM was desorbed from the surface of CS@Fe 3 O 4 @GO@T-Apt@HM owing to the strong specific recognition ability between thrombin and T-Apt, causing the changes of CL signal. Under optimized CL conditions, thrombin could be measured with the linear concentration range of 5.0×10 -15 -2.5×10 -10 mol/L. The detection limit was 1.5×10 -15 mol/L (3δ) while the relative standard deviation (RSD) was 3.2%. Finally, the CS@Fe 3 O 4 @GO@T-Apt@HM-CL aptasensor was used for the determination of thrombin in practical serum samples and recoveries ranged from 95% to 103%. Those satisfactory results revealed potential application of the CS@Fe 3 O 4 @GO@T-Apt@HM-CL aptasensor for thrombin detection in monitoring and diagnosis of human blood diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A novel selective VPAC2 agonist peptide-conjugated chitosan modified selenium nanoparticles with enhanced anti-type 2 diabetes synergy effects.

    PubMed

    Zhao, Shao-Jun; Wang, De-Hua; Li, Yan-Wei; Han, Lei; Xiao, Xing; Ma, Min; Wan, David Chi-Cheong; Hong, An; Ma, Yi

    2017-01-01

    A novel neuroendocrine peptide, pituitary adenylate cyclase activating peptide (PACAP), was found to have an important role in carbohydrate or lipid metabolism and was susceptible to dipeptidyl peptidase IV degradation. It can not only mediate glucose-dependent insulin secretion and lower blood glucose by activating VPAC2 receptor, but also raise blood glucose by promoting glucagon production by VPAC1 receptor activation. Therefore, its therapeutic application is restricted by the exceedingly short-acting half-life and the stimulatory function for glycogenolysis. Herein, we generated novel peptide-conjugated selenium nanoparticles (SeNPs; named as SCD), comprising a 32-amino acid PACAP-derived peptide DBAYL that selectively binds to VPAC2, and chitosan-modified SeNPs (SeNPs-CTS, SC) as slow-release carrier. The circulating half-life of SCD is 14.12 h in mice, which is 168.4-and 7.1-fold longer than wild PACAP (~5 min) and DBAYL (~1.98 h), respectively. SCD (10 nmol/L) significantly promotes INS-1 cell proliferation, glucose uptake, insulin secretion, insulin receptor expression and also obviously reduces intracellular reactive oxygen species levels in H 2 O 2 -injured INS-1 cells. Furthermore, the biological effects of SCD are stronger than Exendin-4 (a clinically approved drug through its insulinotropic effect), DBAYL, SeNPs or SC. A single injection of SCD (20 nmol/kg) into db/db mice with type 2 diabetes leads to enhanced insulin secretion and sustained hypoglycemic effect, and the effectiveness and duration of SCD in enhancing insulin secretion and reducing blood glucose levels are much stronger than Exendin-4, SeNPs or SC. In db/db mice, chronic administration of SCD by daily injection for 12 weeks markedly improved glucose and lipid profiles, insulin sensitivity and the structures of pancreatic and adipose tissue. The results indicate that SC can play a role as a carrier for the slow release of bioactive peptides and SCD could be a hopeful therapeutic against

  1. A novel selective VPAC2 agonist peptide-conjugated chitosan modified selenium nanoparticles with enhanced anti-type 2 diabetes synergy effects

    PubMed Central

    Zhao, Shao-Jun; Wang, De-Hua; Li, Yan-Wei; Han, Lei; Xiao, Xing; Ma, Min; Wan, David Chi-Cheong; Hong, An; Ma, Yi

    2017-01-01

    A novel neuroendocrine peptide, pituitary adenylate cyclase activating peptide (PACAP), was found to have an important role in carbohydrate or lipid metabolism and was susceptible to dipeptidyl peptidase IV degradation. It can not only mediate glucose-dependent insulin secretion and lower blood glucose by activating VPAC2 receptor, but also raise blood glucose by promoting glucagon production by VPAC1 receptor activation. Therefore, its therapeutic application is restricted by the exceedingly short-acting half-life and the stimulatory function for glycogenolysis. Herein, we generated novel peptide-conjugated selenium nanoparticles (SeNPs; named as SCD), comprising a 32-amino acid PACAP-derived peptide DBAYL that selectively binds to VPAC2, and chitosan-modified SeNPs (SeNPs-CTS, SC) as slow-release carrier. The circulating half-life of SCD is 14.12 h in mice, which is 168.4-and 7.1-fold longer than wild PACAP (~5 min) and DBAYL (~1.98 h), respectively. SCD (10 nmol/L) significantly promotes INS-1 cell proliferation, glucose uptake, insulin secretion, insulin receptor expression and also obviously reduces intracellular reactive oxygen species levels in H2O2-injured INS-1 cells. Furthermore, the biological effects of SCD are stronger than Exendin-4 (a clinically approved drug through its insulinotropic effect), DBAYL, SeNPs or SC. A single injection of SCD (20 nmol/kg) into db/db mice with type 2 diabetes leads to enhanced insulin secretion and sustained hypoglycemic effect, and the effectiveness and duration of SCD in enhancing insulin secretion and reducing blood glucose levels are much stronger than Exendin-4, SeNPs or SC. In db/db mice, chronic administration of SCD by daily injection for 12 weeks markedly improved glucose and lipid profiles, insulin sensitivity and the structures of pancreatic and adipose tissue. The results indicate that SC can play a role as a carrier for the slow release of bioactive peptides and SCD could be a hopeful therapeutic against

  2. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    PubMed

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-09

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.

  3. Pegylated silica nanoparticles: cytotoxicity and macrophage uptake

    NASA Astrophysics Data System (ADS)

    Glorani, Giulia; Marin, Riccardo; Canton, Patrizia; Pinto, Marcella; Conti, Giamaica; Fracasso, Giulio; Riello, Pietro

    2017-08-01

    Here, we present a thorough study of pegylated silica nanoparticle (SNP) interaction with different biological environments. The SNPs have a mean diameter of about 40 nm and are coated with polyethylene glycol (PEG) of different molecular weights. The physicochemical characterization of SNPs allowed the confirmation of the binding of PEG chains to the silica surface, the reproducibility of the synthesis and the narrow size-dispersion. In view of clarifying the SNP interaction with biological environments, we first assessed the SNP reactivity after the incubation with two cell lines (macrophages RAW 264.7 and primary human fibroblasts), observing a reduced toxicity of pegylated SNPs compared to the bare ones. Then, we investigated the effect of the protein adsorption on the SNP surface using the model serum protein, bovine serum albumin (BSA). We found that the protein adsorption takes place more heavily on poorly pegylated SNPs, promoting the uptake of the latter by macrophages and leading to an increased mortality of these cells. To better understand this mechanism by means of flow cytometry, the dye Ru(bpy)3Cl2 was incorporated in the SNPs. The overall results highlight the SNP potentialities as a drug delivery system, thanks to the low interactions with the macrophages.

  4. Formulation and PEGylation optimization of the therapeutic PEGylated phenylalanine ammonia lyase for the treatment of phenylketonuria.

    PubMed

    Bell, Sean M; Wendt, Dan J; Zhang, Yanhong; Taylor, Timothy W; Long, Shinong; Tsuruda, Laurie; Zhao, Bin; Laipis, Phillip; Fitzpatrick, Paul A

    2017-01-01

    Phenylketonuria (PKU) is a genetic metabolic disease in which the decrease or loss of phenylalanine hydroxylase (PAH) activity results in elevated, neurotoxic levels of phenylalanine (Phe). Due to many obstacles, PAH enzyme replacement therapy is not currently an option. Treatment of PKU with an alternative enzyme, phenylalanine ammonia lyase (PAL), was first proposed in the 1970s. However, issues regarding immunogenicity, enzyme production and mode of delivery needed to be overcome. Through the evaluation of PAL enzymes from multiple species, three potential PAL enzymes from yeast and cyanobacteria were chosen for evaluation of their therapeutic potential. The addition of polyethylene glycol (PEG, MW = 20,000), at a particular ratio to modify the protein surface, attenuated immunogenicity in an animal model of PKU. All three PEGylated PAL candidates showed efficacy in a mouse model of PKU (BTBR Pahenu2) upon subcutaneous injection. However, only PEGylated Anabaena variabilis (Av) PAL-treated mice demonstrated sustained low Phe levels with weekly injection and was the only PAL evaluated that maintained full enzymatic activity upon PEGylation. A PEGylated recombinant double mutant version of AvPAL (Cys503Ser/Cys565Ser), rAvPAL-PEG, was selected for drug development based on its positive pharmacodynamic profile and favorable expression titers. PEGylation was shown to be critical for rAvPAL-PEG efficacy as under PEGylated rAvPAL had a lower pharmacodynamic effect. rAvPAL and rAvPAL-PEG had poor stability at 4°C. L-Phe and trans-cinnamate were identified as activity stabilizing excipients. rAvPAL-PEG is currently in Phase 3 clinical trials to assess efficacy in PKU patients.

  5. Effects of PEGylation on biomimetic synthesis of magnetoferritin nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Caiyun; Cao, Changqian; Cai, Yao; Xu, Huangtao; Zhang, Tongwei; Pan, Yongxin

    2017-03-01

    Recent studies have demonstrated that ferrimagnetic magnetoferritin nanoparticles are a promising novel magnetic nanomaterial in biomedical applications, including biocatalysis, imaging, diagnostics, and tumor therapy. Here we investigated the PEGylation of human H-ferritin (HFn) proteins and the possible influence on biomimetic synthesis of magnetoferritin nanoparticles. The outer surface of HFn proteins was chemically modified with different PEG molecular weights (PEG10K and PEG20K) and different modification ratios (HFn subunit:PEG20K = 1:1, 1:2, 1:4). The PEGylated HFn proteins were used for biomimetic synthesis of ferrimagnetic magnetoferritin nanoparticles. We found that, compared with magnetoferritin using non-PEGylated HFn protein templates, the synthesized magnetoferritin using the PEGylated HFn protein templates possessed larger magnetite cores, higher magnetization and relaxivity values, and improved thermal stability. These results suggest that the PEGylation of H-ferritin may improve the biomineralization of magnetoferritin nanoparticles and enhance their biomedical applications.

  6. Cellular delivery of PEGylated PLGA nanoparticles.

    PubMed

    Pamujula, Sarala; Hazari, Sidhartha; Bolden, Gevoni; Graves, Richard A; Chinta, Dakshinamurthy Devanga; Dash, Srikanta; Kishore, Vimal; Mandal, Tarun K

    2012-01-01

    The objective of this study was to investigate the efficiency of uptake of PEGylated polylactide-co-gycolide (PLGA) nanoparticles by breast cancer cells. Nanoparticles of PLGA containing various amounts of polyethylene glycol (PEG, 5%-15%) were prepared using a double emulsion solvent evaporation method. The nanoparticles were loaded with coumarin-6 (C6) as a fluorescence marker. The particles were characterized for surface morphology, particle size, zeta potential, and for cellular uptake by 4T1 murine breast cancer cells. Irrespective of the amount of PEG, all formulations yielded smooth spherical particles. However, a comparison of the particle size of various formulations showed bimodal distribution of particles. Each formulation was later passed through a 1.2 µm filter to obtain target size particles (114-335 nm) with zeta potentials ranging from -2.8 mV to -26.2 mV. While PLGA-PEG di-block (15% PEG) formulation showed significantly higher 4T1 cellular uptake than all other formulations, there was no statistical difference in cellular uptake among PLGA, PLGA-PEG-PLGA tri-block (10% PEG), PLGA-PEG di-block (5% PEG) and PLGA-PEG di-block (10% PEG) nanoparticles. These preliminary findings indicated that the nanoparticle formulation prepared with 15% PEGylated PLGA showed maximum cellular uptake due to it having the smallest particle size and lowest zeta potential. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  7. The protein corona of circulating PEGylated liposomes.

    PubMed

    Palchetti, Sara; Colapicchioni, Valentina; Digiacomo, Luca; Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; La Barbera, Giorgia; Laganà, Aldo

    2016-02-01

    Following systemic administration, liposomes are covered by a 'corona' of proteins, and preserving the surface functionality is challenging. Coating the liposome surface with polyethylene glycol (PEG) is the most widely used anti-opsonization strategy, but it cannot fully preclude protein adsorption. To date, protein binding has been studied following in vitro incubation to predict the fate of liposomes in vivo, while dynamic incubation mimicking in vivo conditions remains largely unexplored. The main aim of this investigation was to determine whether shear stress, produced by physiologically relevant dynamic flow, could influence the liposome-protein corona. The corona of circulating PEGylated liposome was thoroughly compared with that formed by incubation in vitro. Systematic comparison in terms of size, surface charge and quantitative composition was made by dynamic light scattering, microelectrophoresis and nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). Size of coronas formed under static vs. dynamic incubation did not appreciably differ from each other. On the other side, the corona of circulating liposomes was more negatively charged than its static counterpart. Of note, the variety of protein species in the corona formed in a dynamic flow was significantly wider. Collectively, these results demonstrated that the corona of circulating PEGylated liposomes can be considerably different from that formed in a static fluid. This seems to be a key factor to predict the biological activity of a liposomal formulation in a physiological environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Anaphylaxis to pegylated liposomal Doxorubicin: a case report.

    PubMed

    Sharma, L R; Subedi, A; Shah, B K

    2014-08-01

    Liposomal doxorubicin is used for the treatment of various cancers like epithelial ovarian cancers, multiple myeloma and sarcomas. We report the first case of anaphylaxis to pegylated liposomal doxorubicin.

  9. Anaphylaxis to Pegylated Liposomal Doxorubicin: A Case Report

    PubMed Central

    Sharma, LR; Subedi, A; Shah, BK

    2014-01-01

    Liposomal doxorubicin is used for the treatment of various cancers like epithelial ovarian cancers, multiple myeloma and sarcomas. We report the first case of anaphylaxis to pegylated liposomal doxorubicin. PMID:25429486

  10. pH dependent conjugation of Ibuprofen to PEGylated nanoparticles

    NASA Astrophysics Data System (ADS)

    Bharti, Shivani; Jain, Shikshita; Kaur, Gurvir; Gupta, Shikha; Tripathi, S. K.

    2018-04-01

    In this paper, Ibuprofen, a water insoluble drug was covalently attached to PEGylated nanoparticles. Firstly, Surface functionalization of water dispersed core/shell nanoparticles had been done using hydrophilic polymer PEG-diamine. Therefore, PEGylated nanoparticles contain NH2 groups over the surface of nanoparticles and can be used for the further attachment of biomolecules. Ibuprofen was covalently loaded on the PEGylated core/shell nanoparticles using carbodiimide reaction. The synthesis had been carried out under two different pH environments, as the solubility of Ibuprofen is pH dependent. The resultant samples were characterized using UV-Vis absorption and FT-IR spectroscopy. The results strongly suggest the successful chemical conjugation of Ibuprofen to PEGylated nanoparticles in aqueous media and they could be further used for drug delivery applications.

  11. Cell uptake survey of pegylated nanographene oxide.

    PubMed

    Vila, M; Portolés, M T; Marques, P A A P; Feito, M J; Matesanz, M C; Ramírez-Santillán, C; Gonçalves, G; Cruz, S M A; Nieto, A; Vallet-Regi, M

    2012-11-23

    Graphene and more specifically, nanographene oxide (GO) has been proposed as a highly efficient antitumoral therapy agent. Nevertheless, its cell uptake kinetics, its influence in different types of cells and the possibility of controlling cellular internalization timing, is still a field that remains unexplored. Herein, different cell types have been cultured in vitro for several incubation periods in the presence of 0.075 mg ml(-1) pegylated GO solutions. GO uptake kinetics revealed differences in the agent's uptake amount and speed as a function of the type of cell involved. Osteoblast-like cells GO uptake is higher and faster without resulting in greater cell membrane damage. Moreover, the dependence on the commonly used PEG nature (number of branches) also influences the viability and cell uptake speed. These facts play an important role in the future definition of timing parameters and selective cell uptake control in order to achieve an effective therapy.

  12. Improved Antitumor Efficacy and Pharmacokinetics of Bufalin via PEGylated Liposomes

    NASA Astrophysics Data System (ADS)

    Yuan, Jiani; Zhou, Xuanxuan; Cao, Wei; Bi, Linlin; Zhang, Yifang; Yang, Qian; Wang, Siwang

    2017-11-01

    Bufalin was reported to show strong pharmacological effects including cardiotonic, antiviral, immune-regulation, and especially antitumor effects. The objective of this study was to determine the characterization, antitumor efficacy, and pharmacokinetics of bufalin-loaded PEGylated liposomes compared with bufalin entity, which were prepared by FDA-approved pharmaceutical excipients. Bufalin-loaded PEGylated liposomes and bufalin-loaded liposomes were prepared reproducibly with homogeneous particle size by the combination of thin film evaporation method and high-pressure homogenization method. Their mean particle sizes were 127.6 and 155.0 nm, mean zeta potentials were 2.24 and - 18.5 mV, and entrapment efficiencies were 76.31 and 78.40%, respectively. In vitro release profile revealed that the release of bufalin in bufalin-loaded PEGylated liposomes was slower than that in bufalin-loaded liposomes. The cytotoxicity of blank liposomes has been found within acceptable range, whereas bufalin-loaded PEGylated liposomes showed enhanced cytotoxicity to U251 cells compared with bufalin entity. In vivo pharmacokinetics indicated that bufalin-loaded PEGylated liposomes could extend or eliminate the half-life time of bufalin in plasma in rats. The results suggested that bufalin-loaded PEGylated liposomes improved the solubility and increased the drug concentration in plasma.

  13. Reproductive effects of a pegylated curcumin.

    PubMed

    Murphy, Caitlin J; Tang, Huadong; Van Kirk, Edward A; Shen, Youqing; Murdoch, William J

    2012-08-01

    Curcumin, a polyphenol derived from the rhizome turmeric, has potential as an anticancer agent. We synthesized an amphipathic/surfactant pegylated curcumin (curcumin-PEG) designed for parenteral administration. Objectives of these investigations were to assess side-effects of a therapeutic regimen of curcumin-PEG in a preclinical model. Intraperitoneal (ip) tumor burdens were reduced in athymic female mice grafted with human SKOV-3 ovarian adenocarcinoma cells and injected intravenously (iv) with curcumin-PEG. There were no gross anatomical or histopathological effects detected in non-reproductive organs. Uteri (luminal fluid imbibition) and ovaries (decreased folliculogenesis) were affected by treatment. Curcumin-PEG ip hastened the onset of puberty in immature female mice. Live births were reduced in mature females housed with males and treated iv with curcumin-PEG; mating (vaginal plugs) was not affected. Accessory gland weights, testicular testosterone concentrations, and spermatogenesis were diminished in mature male mice following iv curcumin-PEG. Estrogenic/antiandrogenic and pregnancy-disrupting effects of a water soluble/bioavailable curcumin were demonstrated. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. CO binding improves the structural, functional, physical and anti-oxidation properties of the PEGylated hemoglobin.

    PubMed

    Wang, Qingqing; Hu, Tao; Sun, Lijing; Ji, Shaoyang; Zhao, Dawei; Liu, Jiaxin; Ma, Guanghui; Su, Zhiguo

    2015-02-01

    PEGylated hemoglobin (Hb) is a promising oxygen therapeutic agent for clinical application. However, it suffered from structural perturbation, functional instability and methemoglobin (metHb) formation. To improve the structural, functional, physical and anti-oxidation properties of the PEGylated Hb. PEGylation of Hb with CO binding (HbCO) was conducted using maleimide and acylation chemistry, respectively. Physical and chemical parameters were measured for Hb samples. The circular dichroism spectra, dynamic light scattering and analytical ultracentrifugation were used to investigate the structure and conformation of PEGylated HbCO. CO binding can inhibit the autoxidation of the PEGylated Hb, structurally stabilize its tetramer and improve its thermal and pH stability. Importantly, the circular dichroism spectra showed that CO binding can decrease the structural perturbation of Hb induced by PEGylation. The PEGylated HbCO with CO release showed slightly higher oxygen-delivery capacity than the PEGylated Hb. The PEGylated HbCO did not show metHb formation after 30-day storage at 4°C. CO binding structurally stabilized the PEGylated Hb, abolished its metHb formation, and significantly increased its physical stability. In particular, it also avoided the perturbation of PEG chains on the heme microenvironment. The functional property of the PEGylated HbCO can be maintained during its long-term storage, which is of great significance for field transfusion.

  15. Synthesis and Characterization of PEGylated Toll Like Receptor 7 Ligands

    PubMed Central

    Chan, Michael; Hayashi, Tomoko; Mathewson, Richard D.; Yao, Shiyin; Gray, Christine; Tawatao, Rommel; Kalenian, Kevin; Zhang, Yanmei; Hayashi, Yuki; Lao, Fitzgerald S.; Cottam, Howard B.; Carson, Dennis A.

    2011-01-01

    Toll like receptor 7 (TLR7) is located in the endosomal compartment of immune cells. Signaling through TLR7, mediated by the adaptor protein MyD88, stimulates the innate immune system and shapes adaptive immune responses. Previously, we characterized TLR7 ligands conjugated to protein, lipid or polyethylene glycol (PEG). Among the TLR7 ligand conjugates, the addition of PEG chains reduced the agonistic potency. PEGs are safe in humans and widely used for improvement of pharmacokinetics in existing biologics and some low molecular weight compounds. PEGylation could be a feasible method to alter the pharmacokinetics and pharmacodynamics of TLR7 ligands. In this study, we systematically studied the influence of PEG chain length on the in vitro and in vivo properties of potent TLR7 ligands. PEGylation increased solubility of the TLR7 ligands and modulated protein binding. Adding a 6–10 length PEG to the TLR7 ligand reduced its potency toward induction of interleukin (IL)-6 by murine macrophages in vitro and IL-6 and tumor necrosis factor (TNF) in vivo. However, PEGylation with 18 or longer chain restored, and even enhanced, the agonistic activity of the drug. In human peripheral blood mononuclear cells, similar effects of PEGylation were observed for secretion of proinflammatory cytokines, IL-6, IL-12, TNF-α, IL-1β and type 1 interferon, as well for B cell proliferation. In summary, these studies demonstrate that conjugation of PEG chains to a synthetic TLR ligand can impact its potency for cytokine induction depending on the size of the PEG moiety. Thus, PEGylation may be a feasible approach to regulate the pharmacological properties of TLR7 ligands. PMID:21338093

  16. Thiolation mediated pegylation platform to generate functional universal red blood cells.

    PubMed

    Nacharaju, Parimala; Manjula, Belur N; Acharya, Seetharama A

    2007-01-01

    The PEGylation that adds an extension arm on protein amino groups with the conservation of their positive charge masks the A and D antigens of erythrocytes efficiently. In the present study, the efficiency of masking the antigens of RBC by PEGylation protocols that do not conserve the charge with and without adding extension arms is compared. The conjugation of PEG-5000 to RBCs through the addition of extension arms masked the D antigen more efficiently than the other protocol. A combination of PEG-5 K and PEG-20 K is needed to mask the A antigen, irrespective of the PEGylation approach. The oxygen affinity of the PEGylated RBCs increased by the extension arm facilitated PEGylation. The protocol involving the conjugation of PEG-chains without adding extension arm did not alter the oxygen affinity of RBCs. A combination of PEGylation protocols is an alternate strategy to generate universal red blood cells with good levels of oxygen affinity.

  17. PEGylated Peptide-Based Imaging Agents for Targeted Molecular Imaging.

    PubMed

    Wu, Huizi; Huang, Jiaguo

    2016-01-01

    Molecular imaging is able to directly visualize targets and characterize cellular pathways with a high signal/background ratio, which requires a sufficient amount of agents to uptake and accumulate in the imaging area. The design and development of peptide based agents for imaging and diagnosis as a hot and promising research topic that is booming in the field of molecular imaging. To date, selected peptides have been increasingly developed as agents by coupling with different imaging moieties (such as radiometals and fluorophore) with the help of sophisticated chemical techniques. Although a few successes have been achieved, most of them have failed mainly caused by their fast renal clearance and therefore low tumor uptakes, which may limit the effectively tumor retention effect. Besides, several peptide agents based on nanoparticles have also been developed for medical diagnostics. However, a great majority of those agents shown long circulation times and accumulation over time into the reticuloendothelial system (RES; including spleen, liver, lymph nodes and bone marrow) after systematic administration, such long-term severe accumulation probably results in the possible likelihood of toxicity and potentially induces health hazards. Recently reported design criteria have been proposed not only to enhance binding affinity in tumor region with long retention, but also to improve clearance from the body in a reasonable amount of time. PEGylation has been considered as one of the most successful modification methods to prolong tumor retention and improve the pharmacokinetic and pharmacodynamic properties for peptide-based imaging agents. This review summarizes an overview of PEGylated peptides imaging agents based on different imaging moieties including radioisotopes, fluorophores, and nanoparticles. The unique concepts and applications of various PEGylated peptide-based imaging agents are introduced for each of several imaging moieties. Effects of PEGylation on

  18. Fusogenic activity of PEGylated pH-sensitive liposomes.

    PubMed

    Vanić, Zeljka; Barnert, Sabine; Süss, Regine; Schubert, Rolf

    2012-06-01

    The aim of this study was to investigate the fusogenic properties of poly(ethylene glycol) (PEG)ylated dioleoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) liposomes. These pH-sensitive liposomes were prepared by incorporating two different PEG lipids: distearoylphosphatidylethanolamine (DSPE)-PEG₂₀₀₀ was mixed with the liposomal lipids using the conventional method, whereas sterol-PEG₁₁₀₀ was inserted into the outer monolayer of preformed vesicles. Both types of PEGylated liposomes were characterized and compared for their entrapment efficiency, zeta potential and size, and were tested in vitro for pH sensitivity by means of proton-induced leakage and membrane fusion activity. To mimic the routes of intracellular delivery, fusion between pH-sensitive liposomes and liposomes designed to simulate the endosomal membrane was studied. Our investigations confirmed that DOPE/CHEMS liposomes were capable of rapidly releasing calcein and of fusing upon acidification. However, after incorporation of DSPE-PEG₂₀₀₀ or sterol-PEG₁₁₀₀ into the membrane, pH sensitivity was significantly reduced; as the mol ratio of PEG-lipid was increased, the ability to fuse was decreased. Comparison between two different PEGylated pH-sensitive liposomes showed that only vesicles containing 0.6 mol% sterol-PEG₁₁₀₀ in the outer monolayer were still capable of fusing with the endosome-like liposomes and showing leakage of calcein at pH 5.5.

  19. PEGylated graphene oxide elicits strong immunological responses despite surface passivation

    NASA Astrophysics Data System (ADS)

    Luo, Nana; Weber, Jeffrey K.; Wang, Shuang; Luan, Binquan; Yue, Hua; Xi, Xiaobo; Du, Jing; Yang, Zaixing; Wei, Wei; Zhou, Ruhong; Ma, Guanghui

    2017-02-01

    Engineered nanomaterials promise to transform medicine at the bio-nano interface. However, it is important to elucidate how synthetic nanomaterials interact with critical biological systems before such products can be safely utilized in humans. Past evidence suggests that polyethylene glycol-functionalized (PEGylated) nanomaterials are largely biocompatible and elicit less dramatic immune responses than their pristine counterparts. We here report results that contradict these findings. We find that PEGylated graphene oxide nanosheets (nGO-PEGs) stimulate potent cytokine responses in peritoneal macrophages, despite not being internalized. Atomistic molecular dynamics simulations support a mechanism by which nGO-PEGs preferentially adsorb onto and/or partially insert into cell membranes, thereby amplifying interactions with stimulatory surface receptors. Further experiments demonstrate that nGO-PEG indeed provokes cytokine secretion by enhancing integrin β8-related signalling pathways. The present results inform that surface passivation does not always prevent immunological reactions to 2D nanomaterials but also suggest applications for PEGylated nanomaterials wherein immune stimulation is desired.

  20. Pegylated bovine carboxyhaemoglobin utilisation in a thrombotic thrombocytopenic purpura patient.

    PubMed

    Sam, C; Desai, P; Laber, D; Patel, A; Visweshwar, N; Jaglal, M

    2017-08-01

    To determine if pegylated bovine carboxyhaemoglobin can be utilised in a thrombotic thrombocytopenic purpura (TTP) patient. TTP is a condition characterized by thrombotic microangiopathy and has a high mortality rate when left untreated. Therapeutic plasma exchange is well established as the most effective and evidence-based treatment of TTP. The ability to administer plasma exchange therapy is limited in Jehovah's Witnesses who decline blood products due to religious beliefs. Pegylated bovine carboxyhaemoglobin is a novel oxygen transfer agent in development for the management of complications of ischaemia due to acute anaemia. Treatment was well tolerated, with grade 1 paresthesia of the right face and arm 1 h after the first infusion of Sanguinate, which spontaneously resolved and did not recur, and grade 1 cardiac troponin elevation after receiving the medication (with peak at 0·079 ng mL -1 ), but further workup with electrocardiogram and echocardiogram was unremarkable. By discharge on day 19, the patient's haemoglobin increased to 8·8 g dL -1 and platelet count to 221 000. We report the first case of TTP in a Jehovah's Witness that was successfully managed with the use of pegylated bovine carboxyhaemoglobin as an adjunct medication. © 2017 British Blood Transfusion Society.

  1. Synergistic effect of PEGylated resveratrol on delivery of anticancer drugs.

    PubMed

    Wang, Wenlong; Zhang, Liang; Le, Yuan; Chen, Jian-Feng; Wang, Jiexin; Yun, Jimmy

    2016-02-10

    Resveratrol (RES) is a natural polyphenol which can be considered as a nutraceutical because of its benefits such as anticancer and antioxidant activity. In this paper, we designed polymer-RES conjugates as anticancer drug carrier for synergistic therapeutic effect in cancer treatment. Bicalutamide (BIC) was used as a model drug to investigate the drug release behaviors and in vitro anticancer performance. PEG-RES and PEG-Glycine-RES nanoparticles were prepared and characterized. The size of the prepared particles was around 50 nm with RES content of 17.2 and 16.3 wt% for PEG-RES and PEG-Glycine-RES, respectively, and BIC loading efficiency were of 81.6% and 84.5%, separately. Release rate of RES from conjugates depended on the stability of ester group against hydrolysis. BIC release was much faster than RES release. The anticancer activity of BIC loaded PEGylated RES nanoparticles was much better than that of free BIC, indicating the conjugates provided a synergetic cytotoxicity to cancer cells. Confocal laser scanning microscopy observation and flow cytometry analyses indicated that PEGylated RES conjugates were more efficiently internalized into cells, released drug into cytoplasm. These results suggest that PEGylated RES conjugates show great potential for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Transepithelial transport of PEGylated anionic poly(amidoamine) dendrimers: implications for oral drug delivery.

    PubMed

    Sweet, Deborah M; Kolhatkar, Rohit B; Ray, Abhijit; Swaan, Peter; Ghandehari, Hamidreza

    2009-08-19

    The purpose of this work was to assess the impact of PEGylation on transepithelial transport of anionic poly(amidoamine) dendrimers. Cytotoxicity, uptake and transport across Caco-2 cells of PEGylated G3.5 and G4.5 PAMAM dendrimers were studied. Methoxy polyethylene glycol (750 Da) was conjugated to carboxylic acid-terminated PAMAM dendrimers at feed ratios of 1, 2 and 4 PEG per dendrimer. Compared to the control, PEGylation of anionic dendrimers did not significantly alter cytotoxicity up to a concentration of 0.1 mM. PEGylation of G3.5 dendrimers significantly decreased cellular uptake and transepithelial transport while PEGylation of G4.5 dendrimers led to a significant increase in uptake, but also a significant decrease in transport. Dendrimer PEGylation reduced the opening of tight junctions as evidenced by confocal microscopy techniques. Modulation of the tight junctional complex correlated well with changes in PEGylated dendrimer transport and suggests that anionic dendrimers are transported primarily through the paracellular route. PEGylated dendrimers show promise in oral delivery applications where increased functionality for drug conjugation and release is desired.

  3. Transepithelial Transport of PEGylated Anionic Poly(amidoamine) Dendrimers: Implications for Oral Drug Delivery

    PubMed Central

    Sweet, Deborah M.; Kolhatkar, Rohit B.; Ray, Abhijit; Swaan, Peter; Ghandehari, Hamidreza

    2009-01-01

    The purpose of this work was to assess the impact of PEGylation on transepithelial transport of anionic poly(amidoamine) dendrimers. Cytotoxicity, uptake and transport across Caco-2 cells of PEGylated G3.5 and G4.5 PAMAM dendrimers were studied. Methoxy polyethylene glycol (750 Da) was conjugated to carboxylic acid-terminated PAMAM dendrimers at feed ratios of 1, 2 and 4 PEG per dendrimer. Compared to the control, PEGylation of anionic dendrimers did not significantly alter cytotoxicity up to a concentration of 0.1 mM. PEGylation of G3.5 dendrimers significantly decreased cellular uptake and transepithelial transport while PEGylation of G4.5 dendrimers led to a significant increase in uptake, but also a significant decrease in transport. Dendrimer PEGylation reduced the opening of tight junctions as evidenced by confocal microscopy techniques. Modulation of the tight junctional complex correlated well with changes in PEGylated dendrimer transport and suggests that anionic dendrimers are transported primarily through the paracellular route. PEGylated dendrimers show promise in oral delivery applications where increased functionality for drug conjugation and release is desired. PMID:19393702

  4. Synthesis of Mono-PEGylated Growth Hormone Releasing Peptide-2 and Investigation of its Biological Activity.

    PubMed

    Hu, Xiaoyu; Xu, Beihua; Zhou, Ziniu

    2015-10-01

    The purpose of this study was to investigate an efficient synthetic route to the mono-PEGylated growth hormone releasing peptide-2 (GHRP-2) and its biological activity in vivo. The commercially available key PEGylating reagent, mPEG-NHS ester, was successfully utilized to the synthesis of mono-PEGylated GHRP-2, during which the PEGylation profiles of GHRP-2 were monitored by high-performance liquid chromatography (HPLC). The product was purified by cation exchange chromatography, and its biological activity was conducted in rats. The desired mono-PEGylated GHRP-2 as the major product was readily obtained in anhydrous aprotic solvent, such as dimethyl formamide (DMF) and dimethylsulfoxide (DMSO), when the molar ratio of mPEG-NHS ester to GHRP-2 was fixed to be 0.8:1. The products were characterized by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. The evaluation of the biological activity for the products showed that the mono-PEGylated GHRP-2 gave a more stable activity than GHRP-2, suggesting that PEGylation led to the increase in the half-life of GHRP-2 in plasma without greatly impairing the biological activity. PEGylation of the GHRP-2 is a good choice for the development of the GHRP-2 applications.

  5. Accelerated blood clearance phenomenon upon cross-administration of PEGylated nanocarriers in beagle dogs

    PubMed Central

    Wang, Chunling; Cheng, Xiaobo; Su, Yuqing; Pei, Ying; Song, Yanzhi; Jiao, Jiao; Huang, Zhenjun; Ma, Yanfei; Dong, Yinming; Yao, Ying; Fan, Jingjing; Ta, Han; Liu, Xinrong; Xu, Hui; Deng, Yihui

    2015-01-01

    The cross-administration of nanocarriers modified by poly(ethylene glycol) (PEG), named PEGylated nanocarriers, a type of combination therapy, is becoming an increasingly important method of long-term drug delivery, to decrease side effects, avoid multidrug resistance, and increase therapeutic efficacy. However, repeated injections of PEGylated nanocarriers induces the accelerated blood clearance (ABC) phenomenon, prevents long circulation, and can cause adverse effects owing to alterations in the biodistribution of the drug. Although the nature of the ABC phenomenon that is induced by repeated injections of PEGylated nanocarriers has already been studied in detail, there are few reports on the immune response elicited by the cross-administration of PEGylated nanocarriers. In this study, we investigated the ABC phenomenon induced by the intravenous cross-administration of various PEGylated nanocarriers, including PEGylated liposomes (PL), PEG micelles (PM), PEGylated solid lipid nanoparticles (PSLN), and PEGylated emulsions (PE), in beagle dogs. The results indicated that the magnitude of the immune response elicited by the cross-administration was in the following order (from the strongest to the weakest): PL, PE, PSLN, PM. It is specifically PEG in the brush structure that elicits a significant immune response, in both the induction phase and the effectuation phase. Furthermore, the present study suggests that there is a considerable difference between the effect of repeated injections and cross-administration, depending on the colloidal structure. This work is a preliminary investigation into the cross-administration of PEGylated nanocarriers, and our observations can have serious implications for the design of combination therapies that use PEGylated vectors. PMID:25999716

  6. Low affinity PEGylated hemoglobin from Trematomus bernacchii, a model for hemoglobin-based blood substitutes

    PubMed Central

    2011-01-01

    Background Conjugation of human and animal hemoglobins with polyethylene glycol has been widely explored as a means to develop blood substitutes, a novel pharmaceutical class to be used in surgery or emergency medicine. However, PEGylation of human hemoglobin led to products with significantly different oxygen binding properties with respect to the unmodified tetramer and high NO dioxygenase reactivity, known causes of toxicity. These recent findings call for the biotechnological development of stable, low-affinity PEGylated hemoglobins with low NO dioxygenase reactivity. Results To investigate the effects of PEGylation on protein structure and function, we compared the PEGylation products of human hemoglobin and Trematomus bernacchii hemoglobin, a natural variant endowed with a remarkably low oxygen affinity and high tetramer stability. We show that extension arm facilitated PEGylation chemistry based on the reaction of T. bernacchii hemoglobin with 2-iminothiolane and maleimido-functionalyzed polyethylene glycol (MW 5000 Da) leads to a tetraPEGylated product, more homogeneous than the corresponding derivative of human hemoglobin. PEGylated T. bernacchii hemoglobin largely retains the low affinity of the unmodified tetramer, with a p50 50 times higher than PEGylated human hemoglobin. Moreover, it is still sensitive to protons and the allosteric effector ATP, indicating the retention of allosteric regulation. It is also 10-fold less reactive towards nitrogen monoxide than PEGylated human hemoglobin. Conclusions These results indicate that PEGylated hemoglobins, provided that a suitable starting hemoglobin variant is chosen, can cover a wide range of oxygen-binding properties, potentially meeting the functional requirements of blood substitutes in terms of oxygen affinity, tetramer stability and NO dioxygenase reactivity. PMID:22185675

  7. State of the art in PEGylation: the great versatility achieved after forty years of research.

    PubMed

    Pasut, Gianfranco; Veronese, Francesco M

    2012-07-20

    In the recent years, protein PEGylation has become an established and highly refined technology by moving forward from initial simple random coupling approaches based on conjugation at the level of lysine ε-amino group. Nevertheless, amino PEGylation is still yielding important conjugates, currently in clinical practice, where the degree of homogeneity was improved by optimizing the reaction conditions and implementing the purification processes. However, the current research is mainly focused on methods of site-selective PEGylation that allow the obtainment of a single isomer, thus highly increasing the degree of homogeneity and the preservation of bioactivity. Protein N-terminus and free cysteines were the first sites exploited for selective PEGylation but currently further positions can be addressed thanks to approaches like bridging PEGylation (disulphide bridges), enzymatic PEGylation (glutamines and C-terminus) and glycoPEGylation (sites of O- and N-glycosylation or the glycans of a glycoprotein). Furthermore, by combining the tools of genetic engineering with specific PEGylation approaches, the polymer can be basically coupled at any position on the protein surface, owing to the substitution of a properly chosen amino acid in the sequence with a natural or unnatural amino acid bearing an orthogonal reactive group. On the other hand, PEGylation has not achieved the same success in the delivery of small drugs, despite the large interest and several studies in this field. Targeted conjugates and PEGs for combination therapy might represent the promising answers for the so far unmet needs of PEG as carrier of small drugs. This review presents a thorough panorama of recent advances in the field of PEGylation. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Hypothyroidism In Hepatitis C Patients On Pegylated Interferon Therapy.

    PubMed

    Hameed, Muhammad Asim; Mehmood, Asif; Farooq, Muhammad Ahsan; Tayyab, Ghias Un Nabi; Haq Toor, Israr Ul

    2016-01-01

    Chronic hepatitis has become a major health problem all over the world especially in the third world countries. The most common cause of chronic hepatitis in Pakistan is hepatitis C which can lead Toliver cirrhosis and hepatocellular carcinoma. In Pakistan Pegylated Interferon Alpha is still corner stone of therapy for chronic hepatitis C. One of the major side effects of this therapy is the development of thyroid dysfunction, i.e., hypothyroidism and hyperthyroidism. This study was done to assess the frequency of hypothyroidism in hepatitis C patients after three months of pegylated interferon therapy. This study was conducted from 1st October 2013 to 31st march 2014 at outpatients department (OPD) of Gastroenterology and Hepatology, Lahore General Hospital Lahore. Descriptive case series study design was used. The sample of 200 patients was taken from the patients who visited OPD and fulfil the inclusion criteria of the study. Serum thyroid stimulating hormone level (TSH) was done before and after completion of three months therapy at centre for Nuclear Medicine (CENUM) laboratory, Mayo Hospital, Lahore by immune-radiometric assay (IRMA) and patients having TSH>4.0 mIU/L (normal range: 0.2-4.0 mIU/L) were considered hypothyroid. The mean age of the patients was 36.29±8.5 years. One hundred and twenty-three (61.5%) were male and 77 (38.5%) were female. After 3 months of interferon therapy, 163 (81.5%) patients were euthyroid and 37(18.5%) patients were having thyroid dysfunction. There were total 29 (14.5%) hypothyroid patients; 8 (27.6%) were male and 21 (72.4%) female. It is concluded from this study that frequency of hypothyroidism in patients with chronic hepatitis C was 14.5% after treatment with pegylated interferon therapy for 3 months. Female patients were more prone to develop hypothyroidism as compared to male patients.

  9. Tumor Burden Talks in Cancer Treatment with PEGylated Liposomal Drugs

    PubMed Central

    Li, Jia-Je; Hwang, Jeng-Jong; Tseng, Yun-Long; Lin, Wuu-Jyh; Lin, Ming-Hsien; Ting, Gann; Wang, Hsin-Ell

    2013-01-01

    Purpose PEGylated liposomes are important drug carriers that can passively target tumor by enhanced permeability and retention (EPR) effect in neoplasm lesions. This study demonstrated that tumor burden determines the tumor uptake, and also the tumor response, in cancer treatment with PEGylated liposomal drugs in a C26/tk-luc colon carcinoma-bearing mouse model. Methods Empty PEGylated liposomes (NanoX) and those encapsulated with VNB (NanoVNB) were labeled with In-111 to obtain InNanoX and InVNBL in high labeling yield and radiochemical purity (all >90%). BALB/c mice bearing either small (58.4±8.0 mm3) or large (102.4±22.0 mm3) C26/tk-luc tumors in the right dorsal flank were intravenously administered with NanoVNB, InNanoX, InVNBL, or NanoX as a control, every 7 days for 3 times. The therapeutic efficacy was evaluated by body weight loss, tumor growth inhibition (using calipers and bioluminescence imaging) and survival fraction. The scintigraphic imaging of tumor mouse was performed during and after treatment. Results The biodistribution study of InVNBL revealed a clear inverse correlation (r 2 = 0.9336) between the tumor uptake and the tumor mass ranged from 27.6 to 623.9 mg. All three liposomal drugs showed better therapeutic efficacy in small-tumor mice than in large-tumor mice. Tumor-bearing mice treated with InVNBL (a combination drug) showed the highest tumor growth inhibition rate and survival fraction compared to those treated with NanoVNB (chemodrug only) and InNanoX (radionuclide only). Specific tumor targeting and significantly increased tumor uptake after periodical treatment with InVNBL were evidenced by scintigraphic imaging, especially in mice bearing small tumors. Conclusion The significant differences in the outcomes of cancer treatment and molecular imaging between animals bearing small and large tumors revealed that tumor burden is a critical and discriminative factor in cancer therapy using PEGylated liposomal drugs. PMID:23675454

  10. Fluorescent proteins as efficient tools for evaluating the surface PEGylation of silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ma, Minyan; Zhang, Xiao-ai; Zhang, Ze-yu; Saleh, Sayed M.; Wang, Xu-dong

    2017-06-01

    Surface PEGylation is essential for preventing non-specific binding of biomolecules when silica nanoparticles are utilized for in vivo applications. Methods for installing poly(ethylene glycol) on a silica surface have been widely explored but varies from study to study. Because there is a lack of a satisfactory method for evaluating the properties of silica surface after PEGylation, the prepared nanoparticles are not fully characterized before use. In some cases, even non-PEGylated silica nanoparticles were produced, which is unfortunately not recognized by the end-user. In this work, a fluorescent protein was employed, which acts as a sensitive material for evaluating the surface protein adsorption properties of silica nanoparticles. Eleven different methods were systematically investigated for their reaction efficiency towards surface PEGylation. Results showed that both reaction conditions (including pH, catalyst) and surface functional groups of parent silica nanoparticles play critical roles in producing fully PEGylated silica nanoparticles. Great care needs to be taken in choosing the proper coupling chemistry for surface PEGylation. The data and method shown here will guarantee high-quality PEGylated silica nanoparticles to be produced and guide their applications in biology, chemistry, industry and medicine.

  11. Increased cellular uptake of peptide-modified PEGylated gold nanoparticles.

    PubMed

    He, Bo; Yang, Dan; Qin, Mengmeng; Zhang, Yuan; He, Bing; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang; Zhang, Hua; Yin, Changcheng

    2017-12-09

    Gold nanoparticles are promising drug delivery vehicles for nucleic acids, small molecules, and proteins, allowing various modifications on the particle surface. However, the instability and low bioavailability of gold nanoparticles compromise their clinical application. Here, we functionalized gold nanoparticles with CPP fragments (CALNNPFVYLI, CALRRRRRRRR) through sulfhydryl PEG to increase their stability and bioavailability. The resulting gold nanoparticles were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible spectrometry and X-ray photoelectron spectroscopy (XPS), and the stability in biological solutions was evaluated. Comparing to PEGylated gold nanoparticles, CPP (CALNNPFVYLI, CALRRRRRRRR)-modified gold nanoparticles showed 46 folds increase in cellular uptake in A549 and B16 cell lines, as evidenced by the inductively coupled plasma atomic emission spectroscopy (ICP-AES). The interactions between gold nanoparticles and liposomes indicated CPP-modified gold nanoparticles bind to cell membrane more effectively than PEGylated gold nanoparticles. Surface plasmon resonance (SPR) was used to measure interactions between nanoparticles and the membrane. TEM and uptake inhibitor experiments indicated that the cellular entry of gold nanoparticles was mediated by clathrin and macropinocytosis. Other energy independent endocytosis pathways were also identified. Our work revealed a new strategy to modify gold nanoparticles with CPP and illustrated the cellular uptake pathway of CPP-modified gold nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effect of PEGylation on drug entry into lipid bilayer.

    PubMed

    Rissanen, Sami; Kumorek, Marta; Martinez-Seara, Hector; Li, Yen-Chin; Jamróz, Dorota; Bunker, Alex; Nowakowska, Maria; Vattulainen, Ilpo; Kepczynski, Mariusz; Róg, Tomasz

    2014-01-09

    Poly(ethylene glycol) (PEG) is a polymer commonly used for functionalization of drug molecules to increase their bloodstream lifetime, hence efficacy. However, the interactions between the PEGylated drugs and biomembranes are not clearly understood. In this study, we employed atomic-scale molecular dynamics (MD) simulations to consider the behavior of two drug molecules functionalized with PEG (tetraphenylporphyrin used in cancer phototherapy and biochanin A belonging to the isoflavone family) in the presence of a lipid bilayer. The commonly held view is that functionalization of a drug molecule with a polymer acts as an entropic barrier, inhibiting the penetration of the drug molecule through a cell membrane. Our results indicate that in the bloodstream there is an additional source of electrostatic repulsive interactions between the PEGylated drugs and the lipid bilayer. Both the PEG chain and lipids can bind Na(+) ions, thus effectively becoming positively charged molecules. This leads to an extra repulsive effect resulting from the presence of salt in the bloodstream. Thus, our study sheds further light on the role of PEG in drug delivery.

  13. Novel polyethylene glycol derivative suitable for the preparation of mono-PEGylated protein.

    PubMed

    Yun, Qiang; Chen, Ting; Zhang, Guifeng; Bi, Jingxiu; Ma, Guanghui; Su, Zhiguo

    2005-02-01

    A novel methoxypolyethylene glycol (mPEG) derivative, containing a reactive group of 1-methyl pyridinium toluene-4-sulfonate, was synthesized and characterized. The mPEG derivative was successfully conjugated with two proteins: recombinant human granulocyte-colony stimulating factor (rhG-CSF) and consensus interferon (C-IFN). Homogeneous mono-PEGylated proteins were obtained which were identified by high performance size-exclusion chromatography and MALDI-TOF mass spectrometry. The biological activities of the mono-PEGylated rhG-CSF and the mono-PEGylated C-IFN were maintained at 90% and 88%, respectively.

  14. Site-specific PEGylation of human thyroid stimulating hormone to prolong duration of action.

    PubMed

    Qiu, Huawei; Boudanova, Ekaterina; Park, Anna; Bird, Julie J; Honey, Denise M; Zarazinski, Christine; Greene, Ben; Kingsbury, Jonathan S; Boucher, Susan; Pollock, Julie; McPherson, John M; Pan, Clark Q

    2013-03-20

    Recombinant human thyroid stimulating hormone (rhTSH or Thyrogen) has been approved for thyroid cancer diagnostics and treatment under a multidose regimen due to its short circulating half-life. To reduce dosing frequency, PEGylation strategies were explored to increase the duration of action of rhTSH. Lysine and N-terminal PEGylation resulted in heterogeneous product profiles with 40% or lower reaction yields of monoPEGylated products. Eleven cysteine mutants were designed based on a structure model of the TSH-TSH receptor (TSHR) complex to create unique conjugation sites on both α and β subunits for site-specific conjugation. Sequential screening of mutant expression level, oligomerization tendency, and conjugation efficiency resulted in the identification of the αG22C rhTSH mutant for stable expression and scale-up PEGylation. The introduced cysteine in the αG22C rhTSH mutant was partially blocked when isolated from conditioned media and could only be effectively PEGylated after mild reduction with cysteine. This produced a higher reaction yield, ~85%, for the monoPEGylated product. Although the mutation had no effect on receptor binding, PEGylation of αG22C rhTSH led to a PEG size-dependent decrease in receptor binding. Nevertheless, the 40 kDa PEG αG22C rhTSH showed a prolonged duration of action compared to rhTSH in a rat pharmacodynamics model. Reverse-phase HPLC and N-terminal sequencing experiments confirmed site-specific modification at the engineered Cys 22 position on the α-subunit. This work is another demonstration of successful PEGylation of a cysteine-knot protein by an engineered cysteine mutation.

  15. Studies of bioactivity, conformation and pharmacokinetic profiles of site-specific PEGylated thymosin alpha 1 derivatives.

    PubMed

    Qie, Jiankun; Ma, Jinbo; Wang, Liangyou; Xu, Xiaoyu; Zheng, Jianquan; Dong, Sijian; Xie, Jianwei; Sun, Huixian; Zhou, Wenxia; Qi, Chunhui; Zhao, Xiunan; Zhang, Yongxiang; Liu, Keliang

    2007-08-01

    Site-specific mono-PEGylations were performed in different conformational regions of Thymosin alpha 1 (T alpha 1) by introducing one cysteine residue into the chosen site and coupling with thiol-specific mPEG-MAL reagent. Results demonstrated that PEGylated sites and regions influenced the conformations and pharmacokinetic profiles of the peptide greatly with following order: alpha-helix, beta-turn, random coil and terminals, but little on the immunoactivity.

  16. Intra-tumor distribution of PEGylated liposome upon repeated injection: No possession by prior dose.

    PubMed

    Nakamura, Hiroyuki; Abu Lila, Amr S; Nishio, Miho; Tanaka, Masao; Ando, Hidenori; Kiwada, Hiroshi; Ishida, Tatsuhiro

    2015-12-28

    Liposomes have proven to be a viable means for the delivery of chemotherapeutic agents to solid tumors. However, significant variability has been detected in their intra-tumor accumulation and distribution, resulting in compromised therapeutic outcomes. We recently examined the intra-tumor accumulation and distribution of weekly sequentially administered oxaliplatin (l-OHP)-containing PEGylated liposomes. In that study, the first and second doses of l-OHP-containing PEGylated liposomes were distributed diversely and broadly within tumor tissues, resulting in a potent anti-tumor efficacy. However, little is known about the mechanism underlying such a diverse and broad liposome distribution. Therefore, in the present study, we investigated the influence of dosage interval on the intra-tumor accumulation and distribution of "empty" PEGylated liposomes. Intra-tumor distribution of sequentially administered "empty" PEGylated liposomes was altered in a dosing interval-dependent manner. In addition, the intra-tumor distribution pattern was closely related to the chronological alteration of tumor blood flow as well as vascular permeability in the growing tumor tissue. These results suggest that the sequential administrations of PEGylated liposomes in well-spaced intervals might allow the distribution to different areas and enhance the total bulk accumulation within tumor tissue, resulting in better therapeutic efficacy of the encapsulated payload. This study may provide useful information for a better design of therapeutic regimens involving multiple administrations of nanocarrier drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Influence of dendrimer generation and polyethylene glycol length on the biodistribution of PEGylated dendrimers.

    PubMed

    Kojima, Chie; Regino, Celeste; Umeda, Yasuhito; Kobayashi, Hisataka; Kono, Kenji

    2010-01-04

    Dendrimers are a potential drug carrier. Because modification with polyethylene glycol (PEG) is known to improve the blood retention, PEGylated dendrimers have been studied as a useful drug carrier. In this study, three types of PEGylated L-lysine-bearing polyamidoamine dendrimers (PEG2k-Lys-PAMAM (G4), PEG5k-Lys-PAMAM (G4), PEG2k-Lys-PAMAM (G5)) were synthesized, which are composed of a dendrimer of different generations (generations 4 and 5) and PEG chains with different molecular weights (2k and 5k). An acetylated L-lysine-bearing dendrimer was also synthesized as a non-PEGylated dendrimer. Bifunctional diethylenetriaminepentaacetic acid (pSCN-benzyl-DTPA) was bound to the epsilon -amino group of lysine in a dendrimer, to be labeled with radioactive indium-111. These PEGylayed dendrimers showed longer blood retention and lower accumulation in other normal organs such as the kidneys than the non-PEGylated dendrimer. The PEGylated dendrimers with the higher generation and the longer PEG led the greater blood retention.

  18. Selective functional activity measurement of a PEGylated protein with a modification-dependent activity assay.

    PubMed

    Weber, Alfred; Engelmaier, Andrea; Mohr, Gabriele; Haindl, Sonja; Schwarz, Hans Peter; Turecek, Peter L

    2017-01-05

    BAX 855 (ADYNOVATE) is a PEGylated recombinant factor VIII (rFVIII) that showed prolonged circulatory half-life compared to unmodified rFVIII in hemophilic patients. Here, the development and validation of a novel assay is described that selectively measures the activity of BAX 855 as cofactor for the serine protease factor IX, which actives factor X. This method type, termed modification-dependent activity assay, is based on PEG-specific capture of BAX 855 by an anti-PEG IgG preparation, followed by a chromogenic FVIII activity assay. The assay principle enabled sensitive measurement of the FVIII cofactor activity of BAX 855 down to the pM-range without interference by non-PEGylated FVIII. The selectivity of the capture step, shown by competition studies to primarily target the terminal methoxy group of PEG, also allowed assessment of the intactness of the attached PEG chains. Altogether, the modification-dependent activity not only enriches, but complements the group of methods to selectively, accurately, and precisely measure a PEGylated drug in complex biological matrices. In contrast to all other methods described so far, it allows measurement of the biological activity of the PEGylated protein. Data obtained demonstrate that this new method principle can be extended to protein modifications other than PEGylation and to a variety of functional activity assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Assessment of the structure of pegylated-recombinant protein therapeutics by the NMR fingerprint assay.

    PubMed

    Hodgson, Derek J; Aubin, Yves

    2017-05-10

    A number of recombinant protein therapeutic products, such as filgrastim (methionyl granulocyte colony stimulating factor [Met-GCSF] used to boost the immune system in chemotherapy treated cancer patients), and interferon alpha-2 (used for the treatment of various viral infections), have been chemically modified with the addition of a polyethylene glycol (PEG) chain. This modification prolongs residency of the drug in the body and reduces metabolic degradation, which allows less frequent administration of the products. Here we show how NMR spectroscopy methods can assess the higher order structure (HOS) of pegylated-filgrastim (Neulasta®), pegylated interferon-α2a (Pegasys®) pegylated interferon-α2b (PEG-Intron®) purchased from the marketplace. The addition of the PEG moiety effectively doubles the molecular weight of the three products. This presents a significant challenge for the application of NMR techniques. Nevertheless, the results showed that high-resolution spectra could be recorded for two of the three products. Comparison of the spectra of the pegylated protein and the non-pegylated protein shows that the chemical modification did not alter the HOS of these proteins. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  20. Fine-tuned PEGylation of chitosan to maintain optimal siRNA-nanoplex bioactivity.

    PubMed

    Guţoaia, Andra; Schuster, Liane; Margutti, Simona; Laufer, Stefan; Schlosshauer, Burkhard; Krastev, Rumen; Stoll, Dieter; Hartmann, Hanna

    2016-06-05

    Polyethylene glycol (PEG) is a widely used modification for drug delivery systems. It reduces undesired interaction with biological components, aggregation of complexes and serves as a hydrophilic linker of ligands for targeted drug delivery. However, PEGylation can also lead to undesired changes in physicochemical characteristics of chitosan/siRNA nanoplexes and hamper gene silencing. To address this conflicting issue, PEG-chitosan copolymers were synthesized with stepwise increasing degrees of PEG substitution (1.5% to 8.0%). Subsequently formed PEG-chitosan/siRNA nanoplexes were characterized physicochemically and biologically. The results showed that small ratios of chitosan PEGylation did not affect nanoplex stability and density. However, higher PEGylation ratios reduced nanoplex size and charge, as well as cell uptake and final siRNA knockdown efficiency. Therefore, we recommend fine-tuning of PEGylation ratios to generate PEG-chitosan/siRNA delivery systems with maximum bioactivity. The degree of PEGylation for chitosan/siRNA nanoplexes should be kept low in order to maintain optimal nanoplex efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Dissolution enhancement of efavirenz by solid dispersion and PEGylation techniques

    PubMed Central

    Madhavi, B. Bindu; Kusum, B.; Chatanya, CH. Krishna; Madhu, M. Naga; Harsha, V. Sri; Banji, David

    2011-01-01

    Background: Efavirenz is the preferred nonnucleotide reverse transcriptase inhibitor for first-line antiretroviral treatment in many countries. It is orally active and is specific for human immunodeficiency virus type 1. Its effectiveness can be attributed to its long half-life, which is 52–76 h after multiple doses. The drug is having poor water solubility. The formulation of poorly soluble drug for oral delivery will be one of the biggest challenges for formulation scientists in the research field. Among the available approaches, the solid dispersion technique has often proved to be the most commonly used method in improving dissolution and bioavailability of the drugs because of its simplicity and economy in preparation and evaluation. Materials and Methods: Solid dispersions were prepared by solvent evaporation and physical mixture methods by using polyethylene glycol as the hydrophilic carrier and PEGylated product was also prepared. The prepared products were evaluated for various parameters, such as polymer interaction, saturation solubility study, and drug release studies. The drug release data were analyzed by fitting it into various kinetic models. Results: There is an improvement in the dissolution from 16% to 70% with solid dispersion technology. Higuchi model was found to be the best fit model. Conclusion: Solid dispersion is the simple, efficient, and economic method to improve the dissolution of the poorly water-soluble drugs. PMID:23071917

  2. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin.

    PubMed

    Ryan, Gemma M; Kaminskas, Lisa M; Bulitta, Jürgen B; McIntosh, Michelle P; Owen, David J; Porter, Christopher J H

    2013-11-28

    Improved delivery of chemotherapeutic drugs to the lymphatic system has the potential to augment outcomes for cancer therapy by enhancing activity against lymph node metastases. Uptake of small molecule chemotherapeutics into the lymphatic system, however, is limited. Nano-sized drug carriers have the potential to promote access to the lymphatics, but to this point, this has not been examined in detail. The current study therefore evaluated the lymphatic exposure of doxorubicin after subcutaneous and intravenous administration as a simple solution formulation or when formulated as a doxorubicin loaded PEGylated poly-lysine dendrimer (hydrodynamic diameter 12 nm), a PEGylated liposome (100 nm) and various pluronic micellar formulations (~5 nm) to thoracic lymph duct cannulated rats. Plasma and lymph pharmacokinetics were analysed by compartmental pharmacokinetic modelling in S-ADAPT, and Berkeley Madonna software was used to predict the lymphatic exposure of doxorubicin over an extended period of time. The micelle formulations displayed poor in vivo stability, resulting in doxorubicin profiles that were similar to that observed after administration of the doxorubicin solution formulation. In contrast, the dendrimer formulation significantly increased the recovery of doxorubicin in the thoracic lymph after both intravenous and subcutaneous dosing when compared to the solution or micellar formulation. Dendrimer-doxorubicin also resulted in increases in lymphatic doxorubicin concentrations when compared to the liposome formulation, although liposomal doxorubicin did increase lymphatic transport when compared to the solution formulation. Specifically, the dendrimer formulation increased the recovery of doxorubicin in the lymph up to 30 h post dose by up to 685 fold and 3.7 fold when compared to the solution and liposomal formulations respectively. Using the compartmental model to predict lymphatic exposure to longer time periods suggested that doxorubicin exposure to

  3. Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications

    NASA Astrophysics Data System (ADS)

    Kopwitthaya, Atcha; Yong, Ken-Tye; Hu, Rui; Roy, Indrajit; Ding, Hong; Vathy, Lisa A.; Bergey, Earl J.; Prasad, Paras N.

    2010-08-01

    In this contribution, we report the use of a PEGylated gold nanorods formulation as a colored dye for tumor labeling in vivo. We have demonstrated that the nanorod-targeted tumor site can be easily differentiated from the background tissues by the 'naked eye' without the need of sophisticated imaging instruments. In addition to tumor labeling, we have also performed in vivo toxicity and biodistribution studies of PEGylated gold nanorods in vivo by using BALB/c mice as the model. In vivo toxicity studies indicated no mortality or adverse effects or weight changes in BALB/c mice treated with PEGylated gold nanorods. This finding will provide useful guidelines in the future development of diagnostic probes for cancer diagnosis, optically guided tumor surgery, and lymph node mapping applications.

  4. Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates.

    PubMed

    Lee, Hyukjin; Lee, Kang Dae; Pyo, Kyung Bo; Park, Sung Young; Lee, Haeshin

    2010-03-16

    We report on catechol-grafted poly(ethylene) glycol (PEG-g-catechol) for the preparation of nonfouling surfaces on versatile substrates including adhesion-resistant PTFE. PEG-g-catechol was prepared by the step-growth polymerization of PEO to which dopamine, a mussel-derived adhesive molecule, was conjugated. The immersion of substrates into an aqueous solution of PEG-g-catechol resulted in robust PEGylation on versatile surfaces of noble metals, oxides, and synthetic polymers. Surface PEGylation was unambiguously confirmed by various surface analytical tools such as ellipsometry, goniometry, infrared spectroscopy, and X-ray photoelectron spectroscopy. Contrary to existing PEG derivatives that are difficult-to-modify synthetic polymer surfaces, PEG-g-catechol can be considered to be a new class of PEGs for the facile surface PEGylation of various types of surfaces.

  5. Influence of particle geometry and PEGylation on phagocytosis of particulate carriers.

    PubMed

    Mathaes, Roman; Winter, Gerhard; Besheer, Ahmed; Engert, Julia

    2014-04-25

    Particle geometry of micro- and nanoparticles has been identified as an important design parameter to influence the interaction with cells such as macrophages. A head to head comparison of elongated, non-spherical and spherical micro- and nanoparticles with and without PEGylation was carried out to benchmark two phagocytosis inhibiting techniques. J774.A1 macrophages were incubated with fluorescently labeled PLGA micro- and nanoparticles and analyzed by confocal laser scanning microscope (CLSM) and flow cytometry (FACS). Particle uptake into macrophages was significantly reduced upon PEGylation or elongated particle geometry. A combination of both, an elongated shape and PEGylation, had the strongest phagocytosis inhibiting effect for nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Conditional internalization of PEGylated nanomedicines by PEG engagers for triple negative breast cancer therapy

    NASA Astrophysics Data System (ADS)

    Su, Yu-Cheng; Burnouf, Pierre-Alain; Chuang, Kuo-Hsiang; Chen, Bing-Mae; Cheng, Tian-Lu; Roffler, Steve R.

    2017-06-01

    Triple-negative breast cancer (TNBC) lacks effective treatment options due to the absence of traditional therapeutic targets. The epidermal growth factor receptor (EGFR) has emerged as a promising target for TNBC therapy because it is overexpressed in about 50% of TNBC patients. Here we describe a PEG engager that simultaneously binds polyethylene glycol and EGFR to deliver PEGylated nanomedicines to EGFR+ TNBC. The PEG engager displays conditional internalization by remaining on the surface of TNBC cells until contact with PEGylated nanocarriers triggers rapid engulfment of nanocargos. PEG engager enhances the anti-proliferative activity of PEG-liposomal doxorubicin to EGFR+ TNBC cells by up to 100-fold with potency dependent on EGFR expression levels. The PEG engager significantly increases retention of fluorescent PEG probes and enhances the antitumour activity of PEGylated liposomal doxorubicin in human TNBC xenografts. PEG engagers with specificity for EGFR are promising for improved treatment of EGFR+ TNBC patients.

  7. Modulation of the anti-inflammatory effects of phosphatidylserine-containing liposomes by PEGylation.

    PubMed

    Quan, Hongxuan; Park, Hee Chul; Kim, Yongjoon; Yang, Hyeong-Cheol

    2017-05-01

    Inhibiting liposome uptake by macrophages using polyethylene glycol (PEG) surface modifications is a widely used approach for extending the half-life of liposomes circulating in the blood. However, the biological effects of PEGylated liposomes on macrophages have not yet been thoroughly investigated. The purpose of this study was to examine the effects of PEGylated phosphatidylserine-containing liposomes (PEG-PSLs) on the expression of two inflammation-associated cytokines, tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β), in the murine macrophage-like cell line RAW 264.7. Previous studies have demonstrated that PSLs inhibit TNF-α secretion and enhance TGF-β synthesis in macrophages by mimicking apoptotic cells. We found that PEGylation differentially affected the TNF-α and TGF-β levels. The PSL-mediated inhibitory effect on TNF-α secretion was enhanced by PEGylation, and PEG-PSLs decreased TGF-β levels compared with non-PEGylated PSLs. Fluorescence-activated cell sorting analysis demonstrated that 1% PEGylation disturbed the incorporation of PSLs into macrophages. The interference of uptake is thought to extend the binding interaction between PS to PS receptors for PSL-mediated inhibition of TNF-α expression. Together, these findings indicate that PEG-PSLs can prevent TNF-α secretion without increasing TGF-β levels in macrophages, and they support the potential clinical use of PEG-PSLs as anti-inflammatory agents with a relatively low potential to induce tissue fibrosis. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1479-1486, 2017. © 2017 Wiley Periodicals, Inc.

  8. Optimization of random PEGylation reactions by means of high throughput screening.

    PubMed

    Maiser, Benjamin; Dismer, Florian; Hubbuch, Jürgen

    2014-01-01

    Since the first FDA approval of a PEGylated product in 1990, so called random PEGylation reactions are still used to increase the efficacy of biopharmaceuticals and represent the major technology of all approved PEG-modified drugs. However, the great influence of process parameters on PEGylation degree and the PEG-binding site results in a lack of reaction specificity which can have severe impact on the product profile. Consequently, reproducible and well characterized processes are essential to meet increasing regulative requirements resulting from the quality-by-design (QbD) initiative, especially for this kind of modification type. In this study we present a general approach which combines the simple chemistry of random PEGylation reactions with high throughput experimentation (HTE) to achieve a well-defined process. Robotic based batch experiments have been established in a 96-well plate format and were analyzed to investigate the influence of different PEGylation conditions for lysozyme as model protein. With common SEC analytics highly reproducible reaction kinetics were measured and a significant influence of PEG-excess, buffer pH, and reaction time could be investigated. Additional mono-PEG-lysozyme analytics showed the impact of varying buffer pH on the isoform distribution, which allowed us to identify optimal process parameters to get a maximum concentration of each isoform. Employing Micrococcus lysodeikticus based activity assays, PEG-lysozyme33 was identified to be the isoform with the highest residual activity, followed by PEG-lysozyme1 . Based on these results, a control space for a PEGylation reaction was defined with respect to an optimal overall volumetric activity of mono-PEG-lysozyme isoform mixtures. © 2013 Wiley Periodicals, Inc.

  9. High-resolution, preparative purification of PEGylated protein using a laterally-fed membrane chromatography device.

    PubMed

    Madadkar, Pedram; Nino, Sergio Luna; Ghosh, Raja

    2016-11-01

    We discuss the use of a laterally-fed membrane chromatography (or LFMC) device for single-step purification of mono-PEGylated lysozyme. Recent studies have shown such LFMC devices to be suitable for high-resolution, multi-component separation of proteins in the bind-and-elute mode. The device used in this study contained a stack of rectangular cation-exchange membranes having 9.25mL bed volume. PEGylation of lysozyme was carried out in batch mode using 5kDa methoxy-polyethyleneglycol propionaldehyde (or m-PEG propionaldehyde) in the presence of sodium cyanoborohydride as reducing agent. Membrane chromatographic separation was carried out at 1.62 membrane bed volumes per minute flow rate, in the bind-and-elute mode. When a salt gradient was applied, the higher PEGylated forms of lysozyme (i.e. the byproducts) eluted earlier than mono-PEGylated lysozyme (the target product), while lysozyme eluted last. Under elution conditions optimized for resolution and speed, the separation could be carried out in less than 15 membrane bed volumes. High purity and recovery of mono-PEGylated lysozyme was obtained. The resolution of separation of mono-PEGylated lysozyme obtained under the above condition was comparable to that reported in the literature for equivalent cation-exchange resin columns while the flow rate expressed in bed volumes/min was 21.7 times higher. Also, the number of theoretical plates per meter was significantly higher with the LFMC device. Therefore the LFMC based purification process discussed in this paper combined high-productivity with high-resolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Can pegylated interferon improve the outcome of polycythemia vera patients?

    PubMed

    Crisà, Elena; Cerrano, Marco; Beggiato, Eloise; Benevolo, Giulia; Lanzarone, Giuseppe; Manzini, Paola Maria; Borchiellini, Alessandra; Riera, Ludovica; Boccadoro, Mario; Ferrero, Dario

    2017-01-13

    Pegylated interferon (peg-IFN) was proven by phase II trials to be effective in polycythemia vera (PV); however, it is not clear whether it could improve patient outcome compared to hydroxyurea (HU). Here, we present an observational study on 65 PV patients aged 65 years or younger, who received either peg-IFN (30) or HU (35) according to the physician choice. Median follow-up was 75 months. The two cohorts were comparable for patient and disease characteristics. Eighty-seven percent of the patients treated with peg-INF responded, with a CR rate of 70% as compared to 100 and 49% with HU, respectively. Discontinuation rate was similar in the two groups (20% in peg-IFN vs 17% in HU). JAK2 allele burden was monitored in peg-INF arm only, and a reduction was observed in 88% of the patients. No thrombotic events were observed during peg-IFN treatment compared to three on HU. Disease progression to myelofibrosis or acute myeloid leukemia occurred to a patient only in peg-INF, compared to three in HU. Overall, three second malignancies were observed during the study, two in patients who received HU only, and one in a patient largely treated HU who received also peg-IFN for 3 months. Overall survival was significantly better for peg-IFN patients compared to HU, p = 0.027. Our study, albeit limited by small patient and event number and lack of randomization, confirms the efficacy of peg-INF in PV and shows a significant survival advantage for peg-INF-treated patients. Waiting for confirming data from the ongoing phase III trials, our study can support peg-INF as a first-line treatment option for PV, at least for younger patients.

  11. Near-infrared spectroscopy of newly developed PEGylated lipids.

    PubMed

    Bista, Rajan K; Bruch, Reinhard F

    2008-11-15

    Near-infrared (NIR) spectroscopy has been used to analyze a suite of synthesized PEGylated lipids (1-3) trademarked as QuSomes. The three amphiphiles used in this study, differ in their hydrophobic chain length and contain various units of polyethylene glycol (PEG) head groups. Whilst the spectra of QuSomes show a common pattern, differences in the spectra are observed which enable the lipids to be distinguished. NIR absorption spectra of these new artificial lipids have been recorded in the spectral range of 4800-9000 cm(-1) (approximately 2100-1100 nm) by using a new miniaturized spectrometer based on micro-optical-electro-mechanical systems (MOEMS) technology. Three NIR spectral regions are identified, (a) the high wavenumber region between 6500 and 9000 cm(-1) attributed to the first overtone of the hydroxyl stretching and second overtone of the C-H stretching mode; (b) the 5350-5900 cm(-1) region attributed to first overtone of the C-H stretching mode; and (c) the 4800-5300 cm(-1) region attributed to the combination O-H stretching and second overtone of the C=O stretching mode. For each of these regions, the lipids show distinctive spectra which allow their identification and characterization. NIR spectroscopy is a less used technique which does have great potential for the study of lipids, particularly to examine the behaviour of nanovesicles (liposomes) formed from lipids in aqueous suspensions. The study of such lipids is important since they are used as membrane models and prominent candidate for substance and drug delivery systems.

  12. Characterisation of the site-specific monoPEGylated rhG-CSF analogue pegteograstim.

    PubMed

    Hong, Jeungwoon; Lee, Byoungju; Kang, Kwanyub; Lee, Seung-Hoon; Ryu, Jaehwan; Jung, Gangsoo; Oh, Jaetaek; Jo, Eui-Cheol; Kim, Chan-Wha

    2018-01-01

    We describe the characterisation of a novel monoPEGylated recombinant human granulocyte colony-stimulating factor analogue, pegteograstim (Neulapeg), prepared by site-specific 20 kDa maleimide-PEG conjugation. An additional cysteine was inserted between Gly136 and Ala137 of filgrastim (methionyl human granulocyte colony-stimulating factor) for site-specific PEGylation, and Cys18 of filgrastim was replaced with Ser18 to prevent unwanted PEGylation. Pegteograstim was produced by Escherichia coli and purified by cation exchange chromatography, and its structural, physicochemical, biological and immunological properties were investigated. Male Sprague-Dawley rats were administered pegteograstim (100 μg/kg) and the pharmacokinetics and pharmacodynamics compared with those of filgrastim. The results of long-term stability testing of pegteograstim revealed no significant change in its quality attributes at 2-8 °C for 36 months. In addition, pegteograstim was stable under the accelerated conditions (25 ± 2 °C, RH of 60 ± 5%) for 6 months. The site-specific monoPEGylated pegteograstim is a highly pure, stable and novel drug for long-lasting treatment of chemotherapy-induced neutropenia. Copyright © 2017. Published by Elsevier Ltd.

  13. Production and characterization of a PEGylated derivative of recombinant human deoxyribonuclease I for cystic fibrosis therapy.

    PubMed

    Guichard, Marie-Julie; Patil, Harshad P; Koussoroplis, Salome Juliette; Wattiez, Ruddy; Leal, Teresinha; Vanbever, Rita

    2017-05-30

    Recombinant human deoxyribonuclease I (rhDNase) is the mucolytic agent most widely used for the treatment of respiratory disease in cystic fibrosis. However, rhDNase is rapidly cleared from the lungs which implies a high dosing frequency and limited patient adherence. The aim of this study was to produce a long-acting PEGylated derivative of rhDNase presenting a preserved enzymatic activity. Site-specific PEGylation on the N-terminal (N-ter) leucine residue of rhDNase was achieved by reductive alkylation at acidic pH using linear 20kDa, linear 30kDa or two-arm 40kDa polyethylene glycol (PEG) propionaldehydes. Yields of mono-PEGylated products ranged between 45% and 61%. Conjugation to PEG fully preserved the secondary structure and the in vitro enzymatic activity of the native protein. These properties offer interesting perspectives for in vivo inhalation studies of the PEGylated enzyme. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of increased surface hydrophobicity via drug conjugation on the clearance of inhaled PEGylated polylysine dendrimers.

    PubMed

    Haque, Shadabul; McLeod, Victoria M; Jones, Seth; Fung, Sandy; Whittaker, Michael; McIntosh, Michelle; Pouton, Colin; Owen, David J; Porter, Christopher J H; Kaminskas, Lisa M

    2017-10-01

    PEGylated polylysine dendrimers are attractive and well tolerated inhalable drug delivery platforms that have the potential to control the release, absorption kinetics and lung retention time of conjugated drugs. The clinical application of these systems though, would likely require partial substitution of surface PEG groups with drug molecules that are anticipated to alter their lung clearance kinetics and clearance pathways. In the current study, we therefore evaluated the impact of increased surface hydrophobicity via substitution of 50% surface PEG groups with a model hydrophobic drug (α-carboxyl OtButylated methotrexate) on the lung clearance of a Generation 5 PEGylated polylysine dendrimer in rats. PEG substitution with OtBu-methotrexate accelerated lung clearance of the dendrimer by increasing polylysine scaffold catabolism, improving systemic absorption of the intact dendrimer and low molecular weight products of scaffold catabolism, and enhancing mucociliary clearance. These results suggest that the conjugation of hydrophobic drug on the surface of a PEGylated dendrimer is likely to accelerate lung clearance when compared to a fully PEGylated dendrimer. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  15. PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats.

    PubMed

    Kaminskas, Lisa M; Kota, Jagannath; McLeod, Victoria M; Kelly, Brian D; Karellas, Peter; Porter, Christopher Jh

    2009-12-03

    Polylysine dendrimers have potential as highly flexible, biodegradable nanoparticular carriers that may also promote lymphatic transport. The current study was undertaken to determine the impact of PEGylation on the absorption and lymphatic transport of polylysine dendrimers modified by surface derivatisation with PEG (200, 570 or 2000Da) or 4-benzene sulphonate following SC or IV dosing. PEGylation led to the PEG(200) derived dendrimer being rapidly and completely absorbed into the blood after SC administration, however only 3% of the administered dose was recovered in pooled thoracic lymph over 30h. Increasing the PEG chain length led to a systematic decrease in absorption into the blood and an enhancement of the proportion recovered in the lymphatics (up to 29% over 30h). For the PEG(570) and PEG(2000) derived dendrimers, indirect access to the lymph via equilibration across the capillary beds also appeared to play a role in lymphatic targeting after both IV and SC dosing. In contrast, the anionic benzene sulphonate-capped dendrimer was not well absorbed from the SC injection site (26% bioavailability) into either the blood or the lymph. The data suggest that PEGylated poly-L-lysine dendrimers are well absorbed from SC injection sites and that the extent of lymphatic transport may be enhanced by increasing the size of the PEGylated dendrimer complex.

  16. Selective PEGylation of Parylene-C/SiO2 Substrates for Improved Astrocyte Cell Patterning.

    PubMed

    Raos, B J; Doyle, C S; Simpson, M C; Graham, E S; Unsworth, C P

    2018-02-09

    Controlling the spatial distribution of glia and neurons in in vitro culture offers the opportunity to study how cellular interactions contribute to large scale network behaviour. A recently developed approach to cell-patterning uses differential adsorption of animal-serum protein on parylene-C and SiO 2 surfaces to enable patterning of neurons and glia. Serum, however, is typically poorly defined and generates reproducibility challenges. Alternative activation methods are highly desirable to enable patterning without relying on animal serum. We take advantage of the innate contrasting surface chemistries of parylene-C and SiO 2 to enable selective bonding of polyethylene glycol SiO 2 surfaces, i.e. PEGylation, rendering them almost completely repulsive to cell adhesion. As the reagents used in the PEGylation protocol are chemically defined, the reproducibility and batch-to-batch variability complications associated with the used of animal serum are avoided. We report that PEGylated parylene-C/SiO 2 substrates achieve a contrast in astrocyte density of 65:1 whereas the standard serum-immersion protocol results in a contrast of 5.6:1. Furthermore, single-cell isolation was significantly improved on PEGylated substrates when astrocytes were grown on close-proximity parylene-C nodes, whereas isolation was limited on serum-activated substrates due tolerance for cell adhesion on serum-adsorbed SiO 2 surfaces.

  17. PEGylation of polypropylenimine dendrimers: effects on cytotoxicity, DNA condensation, gene delivery and expression in cancer cells.

    PubMed

    Somani, Sukrut; Laskar, Partha; Altwaijry, Najla; Kewcharoenvong, Paphitchaya; Irving, Craig; Robb, Gillian; Pickard, Benjamin S; Dufès, Christine

    2018-06-20

    Diaminobutyric polypropylenimine (DAB) dendrimers have been shown to be highly efficient non-viral gene delivery systems for cancer therapy. However, their cytotoxicity currently limits their applications. To overcome this issue, PEGylation of DAB dendrimer, using various PEG molecular weights and dendrimer generations, has been attempted to decrease the cytotoxicity and enhance the DNA condensation, size and zeta potential, cellular uptake and transfection efficacy of these dendriplexes. Among all the PEGylated dendrimers synthesized, generation 3- and generation 4-DAB conjugated to low molecular weight PEG (2 kDa) at a dendrimer: DNA ratio of 20:1 and 10:1 resulted in an increase in gene expression on almost all tested cancer cells lines (by up to 3.2-fold compared to unmodified dendrimer in A431 cells). The highest level of β-galactosidase gene expression (10.07 × 10 -3  ± 0.09 × 10 -3  U/mL) was obtained following treatment of B16F10-Luc cells with G4-dendrimer PEGylated with PEG2K at a dendrimer: DNA ratio of 20:1. These delivery systems significantly decreased cytotoxicity on B16F10-Luc cells, by more than 3.4-fold compared to unmodified dendrimer. PEGylated generations 3- and 4-DAB dendrimers are therefore promising gene delivery systems for cancer therapy, combining low cytotoxicity and high transfection efficacy.

  18. [Optimization of Formulation and Process of Paclitaxel PEGylated Liposomes by Box-Behnken Response Surface Methodology].

    PubMed

    Shi, Ya-jun; Zhang, Xiao-feil; Guo, Qiu-ting

    2015-12-01

    To develop a procedure for preparing paclitaxel encapsulated PEGylated liposomes. The membrane hydration followed extraction method was used to prepare PEGylated liposomes. The process and formulation variables were optimized by "Box-Behnken Design (BBD)" of response surface methodology (RSM) with the amount of Soya phosphotidylcholine (SPC) and PEG2000-DSPE as well as the rate of SPC to drug as independent variables and entrapment efficiency as dependent variables for optimization of formulation variables while temperature, pressure and cycle times as independent variables and particle size and polydispersion index as dependent variables for process variables. The optimized liposomal formulation was characterized for particle size, Zeta potential, morphology and in vitro drug release. For entrapment efficiency, particle size, polydispersion index, Zeta potential, and in vitro drug release of PEGylated liposomes was found to be 80.3%, (97.15 ± 14.9) nm, 0.117 ± 0.019, (-30.3 ± 3.7) mV, and 37.4% in 24 h, respectively. The liposomes were found to be small, unilamellar and spherical with smooth surface as seen in transmission electron microscopy. The Box-Behnken response surface methodology facilitates the formulation and optimization of paclitaxel PEGylated liposomes.

  19. An evaluation of the anti-tumor efficacy of oleanolic acid-loaded PEGylated liposomes

    NASA Astrophysics Data System (ADS)

    Tang, Shengnan; Gao, Dawei; Zhao, Tingting; Zhou, Jing; Zhao, Xiaoning

    2013-06-01

    The effective delivery of oleanolic acid (OA) to the target site has several benefits in therapy for different pathologies. However, the delivery of OA is challenging due to its poor aqueous solubility. The study aims to evaluate the tumor inhibition effect of the PEGylated OA nanoliposome on the U14 cervical carcinoma cell line. In our previous study, OA was successfully encapsulated into PEGylated liposome with the modified ethanol injection method. Oral administration of PEGylated OA liposome was demonstrated to be more efficient in inhibiting xenograft tumors. The results of organ index indicated that PEG liposome exhibited higher anti-tumor activity and lower cytotoxicity. It was also found that OA and OA liposomes induced tumor cell apoptosis detected by flow cytometry. Furthermore, effects of OA on the morphology of tumor and other tissues were observed by hematoxylin and eosin staining. The histopathology sections did not show pathological changes in kidney or liver in tested mice. In contrast, there was a significant difference in tumor tissues between treatment groups and the negative control group. These observations imply that PEGylated liposomes seem to have advantages for cancer therapy in terms of effective delivery of OA.

  20. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Yang, Ming-Chien; Liu, Ting-Yu; Kuo, Chih-Yu; Huang, Li-Ying; Chan, Tzu-Yi

    2017-05-01

    Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.

  1. PEGylation of Biopharmaceuticals: A Review of Chemistry and Nonclinical Safety Information of Approved Drugs.

    PubMed

    Turecek, Peter L; Bossard, Mary J; Schoetens, Freddy; Ivens, Inge A

    2016-02-01

    Modification of biopharmaceutical molecules by covalent conjugation of polyethylene glycol (PEG) molecules is known to enhance pharmacologic and pharmaceutical properties of proteins and other large molecules and has been used successfully in 12 approved drugs. Both linear and branched-chain PEG reagents with molecular sizes of up to 40 kDa have been used with a variety of different PEG derivatives with different linker chemistries. This review describes the properties of PEG itself, the history and evolution of PEGylation chemistry, and provides examples of PEGylated drugs with an established medical history. A trend toward the use of complex PEG architectures and larger PEG polymers, but with very pure and well-characterized PEG reagents is described. Nonclinical toxicology findings related to PEG in approved PEGylated biopharmaceuticals are summarized. The effect attributed to the PEG part of the molecules as observed in 5 of the 12 marketed products was cellular vacuolation seen microscopically mainly in phagocytic cells which is likely related to their biological function to absorb and remove particles and macromolecules from blood and tissues. Experience with marketed PEGylated products indicates that adverse effects in toxicology studies are usually related to the active part of the drug but not to the PEG moiety. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Glycosylation site-targeted PEGylation of glucose oxidase retains native enzymatic activity.

    PubMed

    Ritter, Dustin W; Roberts, Jason R; McShane, Michael J

    2013-04-10

    Targeted PEGylation of glucose oxidase at its glycosylation sites was investigated to determine the effect on enzymatic activity, as well as the bioconjugate's potential in an optical biosensing assay. Methoxy-poly(ethylene glycol)-hydrazide (4.5kDa) was covalently coupled to periodate-oxidized glycosylation sites of glucose oxidase from Aspergillus niger. The bioconjugate was characterized using gel electrophoresis, liquid chromatography, mass spectrometry, and dynamic light scattering. Gel electrophoresis data showed that the PEGylation protocol resulted in a drastic increase (ca. 100kDa) in the apparent molecular mass of the protein subunit, with complete conversion to the bioconjugate; liquid chromatography data corroborated this large increase in molecular size. Mass spectrometry data proved that the extent of PEGylation was six poly(ethylene glycol) chains per glucose oxidase dimer. Dynamic light scattering data indicated the absence of higher-order oligomers in the PEGylated GOx sample. To assess stability, enzymatic activity assays were performed in triplicate at multiple time points over the course of 29 days in the absence of glucose, as well as before and after exposure to 5% w/v glucose for 24h. At a confidence level of 95%, the bioconjugate's performance was statistically equivalent to native glucose oxidase in terms of activity retention over the 29 day time period, as well as following the 24h glucose exposure. Finally, the bioconjugate was entrapped within a poly(2-hydroxyethyl methacrylate) hydrogel containing an oxygen-sensitive phosphor, and the construct was shown to respond approximately linearly with a 220±73% signal change (n=4, 95% confidence interval) over the physiologically-relevant glucose range (i.e., 0-400mg/dL); to our knowledge, this represents the first demonstration of PEGylated glucose oxidase incorporated into an optical biosensing assay. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery.

    PubMed

    Luong, Duy; Kesharwani, Prashant; Deshmukh, Rahul; Mohd Amin, Mohd Cairul Iqbal; Gupta, Umesh; Greish, Khaled; Iyer, Arun K

    2016-10-01

    Poly(amidoamine) dendrimers (PAMAM) are well-defined, highly branched, nanoscale macromolecules with numerous active amine groups on the surface. PAMAM dendrimer can enhance the solubility of hydrophobic drugs, and with numerous reactive groups on the surface PAMAM dendrimer can be engineered with various functional groups for specific targeting ability. However, in physiological conditions, these amine groups are toxic to cells and limit the application of PAMAM. In the recent years, polyethylene glycol (PEG) conjugation has been the most widely used approach to reduce the toxicity of the active group on dendrimer surface. PEG molecules are known to be inert, non-immunogenic, and non-antigenic with a significant water solubility. PEGylated PAMAM-mediated delivery could not only overcome the limitations of dendrimer such as drug leakage, immunogenicity, hemolytic toxicity, systemic cytotoxicity but they also have the ability to enhance the solubilization of hydrophobic drugs and facilitates the potential for DNA transfection, siRNA delivery and tumor targeting. This review focuses on the recent developments on the application and influence of PEGylation on various biopharmaceutical properties of PAMAM dendrimers. It is well established that dendrimers have demonstrated promising potentials for drug delivery. However, the inherent toxicity poses challenges for its clinical translation. In this regard, PEGylation has helped mitigate some of the toxicity concerns of dendrimers and have paved the way forward for testing its translational potentials. The review is a collection of articles demonstrating the utility of PEGylation of the most studied PAMAM dendrimers. To our knowledge, this is a first such attempt to draw reader's attention, specifically, towards PEGylated PAMAM dendrimers. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Controlled-release, pegylation, liposomal formulations: new mechanisms in the delivery of injectable drugs.

    PubMed

    Reddy, K R

    2000-01-01

    To review recent developments in novel injectable drug delivery mechanisms and outline the advantages and disadvantages of each. A MEDLINE (1995-January 2000) search using the terms polyethylene glycol, liposomes, polymers, polylactic acid, and controlled release was conducted. Additional references were identified by scanning bibliographies. All articles were considered for inclusion. Abstracts were included only if they were judged to add critical information not otherwise available in the medical literature. A number of systems that alter the delivery of injectable drugs have been developed in attempts to improve pharmacodynamic and pharmacokinetic properties of therapeutic agents. New drug delivery systems can be produced either through a change in formulation (e.g., continuous-release products, liposomes) or an addition to the drug molecule (e.g., pegylation). Potential advantages of new delivery mechanisms include an increased or prolonged duration of pharmacologic activity, a decrease in adverse effects, and increased patient compliance and quality of life. Injectable continuous-release systems deliver drugs in a controlled, predetermined fashion and are particularly appropriate when it is important to avoid large fluctuations in plasma drug concentrations. Encapsulating a drug within a liposome can produce a prolonged half-life and a shift of distribution toward tissues with increased capillary permeability (e.g., tumors, infected tissue). Pegylation provides a method for modification of therapeutic proteins to minimize many of the limitations (e.g., poor stability, short half-life, immunogenicity) associated with these agents. Pegylation of therapeutic proteins is an established process with new applications. However, not all pegylated proteins are alike, and each requires optimization on a protein-by-protein basis to derive maximum clinical benefit. The language required to describe each pegylated therapeutic protein must be more precise to accurately

  5. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Dong-Fang; Qian, Cheng; An, Yan-Li; Chang, Di; Ju, Sheng-Hong; Teng, Gao-Jun

    2014-11-01

    Blood-brain barrier (BBB) damage during ischemia may induce devastating consequences like cerebral edema and hemorrhagic transformation. This study presents a novel strategy for dynamically imaging of BBB damage with PEGylated supermagnetic iron oxide nanoparticles (SPIONs) as contrast agents. The employment of SPIONs as contrast agents made it possible to dynamically image the BBB permeability alterations and ischemic lesions simultaneously with T2-weighted MRI, and the monitoring could last up to 24 h with a single administration of PEGylated SPIONs in vivo. The ability of the PEGylated SPIONs to highlight BBB damage by MRI was demonstrated by the colocalization of PEGylated SPIONs with Gd-DTPA after intravenous injection of SPION-PEG/Gd-DTPA into a mouse. The immunohistochemical staining also confirmed the leakage of SPION-PEG from cerebral vessels into parenchyma. This study provides a novel and convenient route for imaging BBB alteration in the experimental ischemic stroke model.

  6. Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins.

    PubMed

    Müller, Egbert; Josic, Djuro; Schröder, Tim; Moosmann, Anna

    2010-07-09

    Dynamic binding capacities and resolution of PEGylated lysozyme derivatives with varying molecular weights of poly (ethylene) glycol (PEG) with 5 kDa, 10 kDa and 30 kDa for HIC resins and columns are presented. To find the optimal range for the operating conditions, solubility studies were performed by high-throughput analyses in a 96-well plate format, and optimal salt concentrations and pH values were determined. The solubility of PEG-proteins was strongly influenced by the length of the PEG moiety. Large differences in the solubilities of PEGylated lysozymes in two different salts, ammonium sulfate and sodium chloride were found. Solubility of PEGylated lysozyme derivatives in ammonium sulfate decreases with increased length of attached PEG chains. In sodium chloride all PEGylated lysozyme derivatives are fully soluble in a concentration range between 0.1 mg protein/ml and 10 mg protein/ml. The binding capacities for PEGylated lysozyme to HIC resins are dependent on the salt type and molecular weight of the PEG polymer. In both salt solutions, ammonium sulfate and sodium chloride, the highest binding capacity of the resin was found for 5 kDa PEGylated lysozyme. For both native lysozyme and 30 kDa mono-PEGylated lysozyme the binding capacities were lower. In separation experiments on a TSKgel Butyl-NPR hydrophobic-interaction column with ammonium sulfate as mobile phase, the elution order was: native lysozyme, 5 kDa mono-PEGylated lysozyme and oligo-PEGylated lysozyme. This elution order was found to be reversed when sodium chloride was used. Furthermore, the resolution of the three mono-PEGylated forms was not possible with this column and ammonium sulfate as mobile phase. In 4 M sodium chloride a resolution of all PEGylated lysozyme forms was achieved. A tentative explanation for these phenomena can be the increased solvation of the PEG polymers in sodium chloride which changes the usual attractive hydrophobic forces in ammonium sulfate to more repulsive

  7. PEGylated and Functionalized Aliphatic Polycarbonate Polyplex Nanoparticles for Intravenous Administration of HDAC5 siRNA in Cancer Therapy.

    PubMed

    Frère, Antoine; Baroni, Alexandra; Hendrick, Elodie; Delvigne, Anne-Sophie; Orange, François; Peulen, Olivier; Dakwar, George R; Diricq, Jérôme; Dubois, Philippe; Evrard, Brigitte; Remaut, Katrien; Braeckmans, Kevin; De Smedt, Stefaan C; Laloy, Julie; Dogné, Jean-Michel; Feller, Georges; Mespouille, Laetitia; Mottet, Denis; Piel, Géraldine

    2017-01-25

    Guanidine and morpholine functionalized aliphatic polycarbonate polymers are able to deliver efficiently histone deacetylase 5 (HDAC5) siRNA into the cytoplasm of cancer cells in vitro leading to a decrease of cell proliferation were previously developed. To allow these biodegradable and biocompatible polyplex nanoparticles to overcome the extracellular barriers and be effective in vivo after an intravenous injection, polyethylene glycol chains (PEG 750 or PEG 2000 ) were grafted on the polymer structure. These nanoparticles showed an average size of about 150 nm and a slightly positive ζ-potential with complete siRNA complexation. Behavior of PEGylated and non-PEGylated polyplexes were investigated in the presence of serum, in terms of siRNA complexation (fluorescence correlation spectroscopy), size (dynamic light scattering and single-particle tracking), interaction with proteins (isothermal titration calorimetry) and cellular uptake. Surprisingly, both PEGylated and non-PEGylated formulations presented relatively good behavior in the presence of fetal bovine serum (FBS). Hemocompatibility tests showed no effect of these polyplexes on hemolysis and coagulation. In vivo biodistribution in mice was performed and showed a better siRNA accumulation at the tumor site for PEGylated polyplexes. However, cellular uptake in protein-rich conditions showed that PEGylated polyplex lost their ability to interact with biological membranes and enter into cells, showing the importance to perform in vitro investigations in physiological conditions closed to in vivo situation. In vitro, the efficiency of PEGylated nanoparticles decreases compared to non-PEGylated particles, leading to the loss of the antiproliferative effect on cancer cells.

  8. PEGylation of cationic, shell-crosslinked-knedel-like nanoparticles modulates inflammation and enhances cellular uptake in the lung

    PubMed Central

    Ibricevic, Aida; Guntsen, Sean P.; Zhang, Ke; Shrestha, Ritu; Liu, Yongjian; Sun, Jing Yi; Welch, Michael J.; Wooley, Karen L.; Brody, Steven L.

    2013-01-01

    The airway provides a direct route for administration of nanoparticles bearing therapeutic or diagnostic payloads to the lung, however optimization of nanoplatforms for intracellular delivery remains challenging. Poly(ethylene glycol) (PEG) surface modification improves systemic performance but less is known about PEGylated nanoparticles administered to the airway. To test this, we generated a library of cationic, shell crosslinked knedel-like nanoparticles (cSCKs), including PEG (1.5 kDa PEG; 2, 5, 10 molecules/polymer arm) on the outer shell. Delivery of PEGylated cSCK to the mouse airway showed significantly less inflammation in a PEG dose-dependent manner. PEGylation also enhanced the entry of cSCKs in lung alveolar epithelial cells and improved surfactant penetration. The PEGylation effect could be explained by the altered mechanism of endocytosis. While non-PEGylated cSCKs used the clathrin-dependent route for endocytosis, entry of PEGylated cSCK was clathrin-independent. Thus, nanoparticle surface modification with PEG represents an advantageous design for lung delivery. PMID:23453959

  9. ``Sheddable'' PEG-lipid to balance the contradiction of PEGylation between long circulation and poor uptake

    NASA Astrophysics Data System (ADS)

    Zhao, Caiyan; Deng, Hongzhang; Xu, Jing; Li, Shuyi; Zhong, Lin; Shao, Leihou; Wu, Yan; Liang, Xing-Jie

    2016-05-01

    PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the ``sheddable'' PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this ``sheddable'' PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy.PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic

  10. A Load Cell for Hydrostatic Weighing

    ERIC Educational Resources Information Center

    Fahey, Thomas D.; Schroeder, Richard

    1978-01-01

    Although a load cell is more expensive than the autopsy scale for hydrostatic weighing, it is more accurate, easier to read, has no moving parts, is less susceptible to rust, and is less likely to be damaged by large subjects exceeding its capacity. (Author)

  11. pHLIP®-Mediated Delivery of PEGylated Liposomes to Cancer Cells

    PubMed Central

    Yao, Lan; Daniels, Jennifer; Wijesinghe, Dayanjali; Andreev, Oleg A.; Reshetnyak, Yana K.

    2013-01-01

    We develop a method for pH-dependent fusion between liposomes and cellular membranes using pHLIP® (pH Low Insertion Peptide), which inserts into lipid bilayer of membrane only at low pH. Previously we establish the molecular mechanism of peptide action and show that pHLIP can target acidic diseased tissue. Here we investigate how coating of PEGylated liposomes with pHLIP might affect liposomal uptake by cells. The presence of pHLIP on the surface of PEGylated-liposomes enhanced membrane fusion and lipid exchange in a pH dependent fashion, leading to increase of cellular uptake and payload release, and inhibition of cell proliferation by liposomes containing ceramide. A novel type of pH-sensitive, “fusogenic” pHLIP-liposomes was developed, which could be used to selectively deliver various diagnostic and therapeutic agents to acidic diseased cells. PMID:23416366

  12. Encapsulation of docetaxel into PEGylated gold nanoparticles for vectorization to cancer cells.

    PubMed

    François, Alison; Laroche, Audrey; Pinaud, Noël; Salmon, Lionel; Ruiz, Jaime; Robert, Jacques; Astruc, Didier

    2011-11-04

    Encapsulation of docetaxel and its solubilization in water was carried out in PEGylated gold nanoparticles (AuNPs) as shown by 1H NMR (600 MHz) and UV/Vis spectroscopy and dynamic light scattering. Vectorization of PEGylated AuNP-encapsulated docetaxel was probed in vitro toward human colon carcinoma (HCT15) and human breast cancer (MCF7) cells. AuNPs alone presented no cytotoxicity toward either MCF7 or HCT15 adenocarcinoma cells. AuNP-docetaxel was found to be 2.5-fold more efficient than docetaxel alone against MCF7 cells, and the IC50 value of AuNP-docetaxel against HCT15 cells was lower than that of free docetaxel; the increased efficiency brought about by AuNP drug encapsulation was ∼1.5-fold. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Pancreatitis induced by pegylated interferon alfa-2b in a patient affected by chronic hepatitis C.

    PubMed

    Cecchi, Enrica; Forte, Paolo; Cini, Elisabetta; Banchelli, Grazia; Ferlito, Chiara; Mugelli, Alessandro

    2004-01-01

    A middle-aged man was admitted to the ED because of nausea and vomiting, abdominal distention and fainting. A blood analysis revealed high levels of serum amylase and lipase, confirming a diagnosis of acute pancreatitis. The history showed that the patient had self-administered a single dose of pegylated interferon alfa-2b and ribavirin daily for 7 days for chronic hepatitis C. The medications were stopped and his condition gradually improved. In agreement with the literature and the Naranjo algorythm result, pegylated interferon alfa-2b is associated with acute pancreatitis. Identification of a few signs and symptoms is the first 'signal' in preventing a serious drug-induced adverse event.

  14. Microcellular foaming of arabinoxylan and PEGylated arabinoxylan with supercritical CO2.

    PubMed

    Härdelin, Linda; Ström, Anna; Di Maio, Ernesto; Iannace, Salvatore; Larsson, Anette

    2018-02-01

    In this study, arabinoxylan extracted from barley husks was reacted with polyethylene glycol (PEG) of various molecular weights to introduce an internal plasticizer into the polymer matrix. A successful PEGylation reaction was identified using FTIR and elemental analysis. Thermal and mechanical properties were studied using dynamic mechanical analysis, which revealed that the attachment of PEG chains reduced the glass transition temperature by up to 25°C. Foaming experiments were conducted under different test conditions in a batch foaming process with supercritical CO 2 in a thermoregulated and pressurized cylinder. The foams were evaluated using SEM by studying the morphology of the samples foamed at different temperatures. The unmodified arabinoxylan sample was found to produce the best foam morphology, though the PEGylated samples could be produced at lower temperatures than could the unmodified arabinoxylan. This was interpreted as due to the decrease in the glass transition temperature. Copyright © 2017. Published by Elsevier Ltd.

  15. PEGylated Biodegradable Polyesters for PGSS Microparticles Formulation: Processability, Physical and Release Properties.

    PubMed

    Perinelli, D R; Cespi, M; Bonacucina, G; Naylor, A; Whitaker, M; Lam, J K W; Howdle, S M; Casettari, L; Palmieri, G F

    2016-01-01

    Particles from Gas Saturated Solution (PGSS) is an emergent method that employs supercritical carbon dioxide (scCO2) to produce microparticles. It is suitable for encapsulating biologically active compounds including therapeutic peptides and proteins. Poly(lactide acid) (PLA) and/or poly(lactic-coglycolic acid) (PLGA) are the most commonly used materials in PGSS, due to their good processability in scCO2. Previous studies demonstrated that the properties of the microparticles can be modulated by adding polyethylene glycol (PEG) or tri-block PEGylated copolymers. In the present work, the effect of the addition of biodegradable PEGylated di-block copolymers on the physical properties and drug release performance of microparticles prepared by PGSS technique was evaluated. mPEG5kDa-P(L)LA and mPEG5kDa-P(L)LGA with similar molecular weights were synthesized and their behaviour, when exposed to supercritical CO2, was investigated. Different microparticle formulations, composed of a high (81%) or low (9%) percentage of the synthesized copolymers were prepared and compared in terms of particle size distribution, morphology, yield and protein release. Drug release studies were performed using bovine serum albumin (BSA) as a model protein. PEGylated copolymers showed good processability in PGSS without significant changes to the physical properties of the microparticles. However, the addition of PEG exerted a modulating effect on the microparticle drug dissolution behaviour, increasing the rate of BSA release as a function of its content in the formulation. This study demonstrated the feasibility of producing microparticles by using PEGylated di-block copolymers through a PGSS technique at mild operating conditions (low operating pressure and temperature).

  16. Rotational behaviour of PEGylated gold nanorods in a lipid bilayer system

    NASA Astrophysics Data System (ADS)

    Oroskar, Priyanka A.; Jameson, Cynthia J.; Murad, Sohail

    2017-06-01

    PEGylated gold nanorods are widely used as nanocarriers in targeted drug delivery and other nanotechnology applications due to the special optical and photo-thermal characteristics of gold nanorods. In this work, we employ coarse-grain molecular simulations to examine the pathway by which PEGylated gold nanorods enter and exit a dipalmitoylphosphatidylcholine lipid bilayer membrane and follow the behaviour of the system to investigate the consequences. We find that PEGylated gold nanorods rotate during permeation, lying down and straightening up as they make their way through the lipid membrane. We find that this rotational behaviour, irrespective of the initial orientation of the nanorod with respect to the membrane normal, is concomitant with the changing interactions of polyethylene glycol (PEG) beads with lipid head beads in both membrane leaflets. For a nanorod with hydrophilic ligands, such as PEG, lying down appears to be driven by favourable hydrophilic interactions with the phosphate and choline groups of the lipid. Mobility of the ligands offers mechanisms for these favourable interactions and for minimising unfavourable interactions with the hydrophobic lipid tails that constitute the inner section of the membrane; the PEG ligands can stretch out to reach the phosphate and choline groups of both leaflets and they can coil in and interact with each other and avoid the alkane lipid tails. Recently developed experimental techniques for imaging, orientation, and rotation of single gold nanorods may be able to observe this predicted rotational behaviour. We find that lipid flip-flop mechanisms do not differ significantly from a spherical gold nanoparticle to a gold nanorod, and PEGylated gold nanorods like their spherical counterparts do not remove lipid molecules from the bilayer membrane. Our results should be of interest to experimentalists who plan to use functionalised gold nanorods in biomedical applications.

  17. The molar hydrodynamic volume changes of factor VIIa due to GlycoPEGylation.

    PubMed

    Plesner, Bitten; Westh, Peter; Hvidt, Søren; Nielsen, Anders D

    2011-06-01

    The effects of GlycoPEGylation on the molar hydrodynamic volume of recombinant human rFVIIa were investigated using rFVIIa and two GlycoPEGylated recombinant human FVIIa derivatives, a linear 10kDa PEG and a branched 40kDa PEG, respectively. Molar hydrodynamic volumes were determined by capillary viscometry and mass spectrometry. The intrinsic viscosities of rFVIIa, its two GlycoPEGylated compounds, and of linear 8kDa, 10kDa, 20kDa and branched 40kDa PEG polymers were determined. The measured intrinsic viscosity of rFVIIa is 6.0mL/g, while the intrinsic viscosities of 10kDa PEG-rFVIIa and 40kDa PEG-rFVIIa are 29.5mL/g and 79.0mL/g, respectively. The intrinsic viscosities of the linear PEG polymers are 20, 22.6 and 41.4mL/g for 8, 10, and 20kDa, respectively, and 61.1mL/g for the branched 40kDa PEG. From the results of the intrinsic viscosity and MALDI-TOF measurements it is evident, that the molar hydrodynamic volume of the conjugated protein is not just an addition of the molar hydrodynamic volume of the PEG and the protein. The molar hydrodynamic volume of the GlycoPEGylated protein is larger than the volume of its composites. These results suggest that both the linear and the branched PEG are not wrapped around the surface of rFVIIa but are chains that are significantly stretched out when attached to the protein. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Impact of large aggregated uricases and PEG diol on accelerated blood clearance of PEGylated canine uricase.

    PubMed

    Zhang, Chun; Fan, Kai; Ma, Xuefeng; Wei, Dongzhi

    2012-01-01

    Uricase has proven therapeutic value in treating hyperuricemia but sufficient reduction of its immunogenicity may be the largest obstacle to its chronic use. In this study, canine uricase was modified with 5 kDa mPEG-SPA and the impact of large aggregated uricases and cross-linked conjugates induced by difunctional PEG diol on immunogenicity was investigated. Recombinant canine uricase was first expressed and purified to homogeneity. Source 15Q anion-exchange chromatography was used to separate tetrameric and aggregated uricase prior to pegylation, while DEAE anion-exchange chromatography was used to remove Di-acid PEG (precursor of PEG diol) from unfractionated 5 kDa mPEG-propionic acid. Tetrameric and aggregated uricases were separately modified with the purified mPEG-SPA. In addition, tetrameric uricases was modified with unfractionated mPEG-SPA, resulting in three types of 5 kDa mPEG-SPA modified uricase. The conjugate size was evaluated by dynamic light scattering and transmission electron microscope. The influence of differently PEGylated uricases on pharmacokinetics and immunogenicity were evaluated in vivo. The accelerated blood clearance (ABC) phenomenon previously identified for PEGylated liposomes occurred in rats injected with PEGylated uricase aggregates. Anti-PEG IgM antibodies, rather than neutralizing antibodies, were found to mediate the ABC. The size of conjugates is important for triggering such phenomena and we speculate that 40-60 nm is the lower size limit that can trigger ABC. Removal of the uricase aggregates and the PEG diol contaminant and modifying with small PEG reagents enabled ABC to be successfully avoided and sufficient reduction in the immunogenicity of 5 kDa mPEG-modified tetrameric canine uricase.

  19. Impact of Large Aggregated Uricases and PEG Diol on Accelerated Blood Clearance of PEGylated Canine Uricase

    PubMed Central

    Zhang, Chun; Fan, Kai; Ma, Xuefeng; Wei, Dongzhi

    2012-01-01

    Background Uricase has proven therapeutic value in treating hyperuricemia but sufficient reduction of its immunogenicity may be the largest obstacle to its chronic use. In this study, canine uricase was modified with 5 kDa mPEG-SPA and the impact of large aggregated uricases and cross-linked conjugates induced by difunctional PEG diol on immunogenicity was investigated. Methods and Findings Recombinant canine uricase was first expressed and purified to homogeneity. Source 15Q anion-exchange chromatography was used to separate tetrameric and aggregated uricase prior to pegylation, while DEAE anion-exchange chromatography was used to remove Di-acid PEG (precursor of PEG diol) from unfractionated 5 kDa mPEG-propionic acid. Tetrameric and aggregated uricases were separately modified with the purified mPEG-SPA. In addition, tetrameric uricases was modified with unfractionated mPEG-SPA, resulting in three types of 5 kDa mPEG-SPA modified uricase. The conjugate size was evaluated by dynamic light scattering and transmission electron microscope. The influence of differently PEGylated uricases on pharmacokinetics and immunogenicity were evaluated in vivo. The accelerated blood clearance (ABC) phenomenon previously identified for PEGylated liposomes occurred in rats injected with PEGylated uricase aggregates. Anti-PEG IgM antibodies, rather than neutralizing antibodies, were found to mediate the ABC. Conclusions The size of conjugates is important for triggering such phenomena and we speculate that 40–60 nm is the lower size limit that can trigger ABC. Removal of the uricase aggregates and the PEG diol contaminant and modifying with small PEG reagents enabled ABC to be successfully avoided and sufficient reduction in the immunogenicity of 5 kDa mPEG-modified tetrameric canine uricase. PMID:22745806

  20. PEGylation of Vesicular Stomatitis Virus Extends Virus Persistence in Blood Circulation of Passively Immunized Mice

    PubMed Central

    Tesfay, Mulu Z.; Kirk, Amber C.; Hadac, Elizabeth M.; Griesmann, Guy E.; Federspiel, Mark J.; Barber, Glen N.; Henry, Stephen M.; Peng, Kah-Whye

    2013-01-01

    We are developing oncolytic vesicular stomatitis viruses (VSVs) for systemic treatment of multiple myeloma, an incurable malignancy of antibody-secreting plasma cells that are specifically localized in the bone marrow. One of the presumed advantages for using VSV as an oncolytic virus is that human infections are rare and preexisting anti-VSV immunity is typically lacking in cancer patients, which is very important for clinical success. However, our studies show that nonimmune human and mouse serum can neutralize clinical-grade VSV, reducing the titer by up to 4 log units in 60 min. In addition, we show that neutralizing anti-VSV antibodies negate the antitumor efficacy of VSV, a concern for repeat VSV administration. We have investigated the potential use of covalent modification of VSV with polyethylene glycol (PEG) or a function-spacer-lipid (FSL)–PEG construct to inhibit serum neutralization and to limit hepatosplenic sequestration of systemically delivered VSV. We report that in mice passively immunized with neutralizing anti-VSV antibodies, PEGylation of VSV improved the persistence of VSV in the blood circulation, maintaining a more than 1-log-unit increase in VSV genome copies for up to 1 h compared to the genome copy numbers for the non-PEGylated virus, which was mostly cleared within 10 min after intravenous injection. We are currently investigating if this increase in PEGylated VSV circulating half-life can translate to increased virus delivery and better efficacy in mouse models of multiple myeloma. PMID:23325695

  1. Bioresponsive release of insulin-like growth factor-I from its PEGylated conjugate.

    PubMed

    Braun, Alexandra C; Gutmann, Marcus; Mueller, Thomas D; Lühmann, Tessa; Meinel, Lorenz

    2018-06-10

    PEGylation of protein ligands, the attachment of polyethylene glycol (PEG) polymers to a therapeutic protein, increases therapeutics' half-life but frequently comes at the cost of reduced bioactivity. We are now presenting a bioinspired strategy leading out of this dilemma. To this end, we selected a position within insulin-like growth factor I (IGF-I) for decoration with a PEG 30kDa -modified protease-sensitive peptide linker (PSL) using a combination of enzymatic and chemical bioorthogonal coupling strategies. The PSL sequence responded to matrix metalloproteinases (MMP) to provide a targeted release in diseased tissue. The IGF-PSL-PEG conjugate had different binding protein affinity, cell proliferation, and endocytosis patterns as compared to the wild type. Exposure of the conjugate to elevated levels of activated MMPs, as present in inflamed tissues, fully reestablished the wild type properties through effective PSL cleavage. In conclusion, this bioinspired approach provided a blueprint for PEGylated therapeutics combining the pharmacokinetic advantages of PEGylation, while locally restoring the full suite of biological potential of therapeutics. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Clinical Trials with Pegylated Liposomal Doxorubicin in the Treatment of Ovarian Cancer

    PubMed Central

    Pisano, Carmela; Cecere, Sabrina Chiara; Di Napoli, Marilena; Cavaliere, Carla; Tambaro, Rosa; Facchini, Gaetano; Losito, Simona; Pizzolorusso, Antonio; Pignata, Sandro

    2013-01-01

    Among the pharmaceutical options available for treatment of ovarian cancer, increasing attention has been progressively focused on pegylated liposomal doxorubicin (PLD), whose unique formulation prolongs the persistence of the drug in the circulation and potentiates intratumor accumulation. Pegylated liposomal doxorubicin (PLD) has become a major component in the routine management of epithelial ovarian cancer. In 1999 it was first approved for platinum-refractory ovarian cancer and then received full approval for platinum-sensitive recurrent disease in 2005. PLD remains an important therapeutic tool in the management of recurrent ovarian cancer in 2012. Recent interest in PLD/carboplatin combination therapy has been the object of phase III trials in platinum-sensitive and chemonaïve ovarian cancer patients reporting response rates, progressive-free survival, and overall survival similar to other platinum-based combinations, but with a more favorable toxicity profile and convenient dosing schedule. This paper summarizes data clarifying the role of pegylated liposomal doxorubicin (PLD) in ovarian cancer, as well as researches focusing on adding novel targeted drugs to this cytotoxic agent. PMID:23577259

  3. Transferrin-appended PEGylated nanoparticles for temozolomide delivery to brain: in vitro characterisation.

    PubMed

    Jain, Aviral; Chasoo, Gousia; Singh, Shashank K; Saxena, Ajit K; Jain, Sanjay K

    2011-01-01

    Polymer-based nanotechnologies are proposed to be an alternative for drug administration, delivery and targeting to those of conventional formulations. The blood brain barrier is frequently a rate-limiting factor in determining permeation of a drug into brain. In this study, the surface-engineered long-circulating PLGA nanoparticles (NPs) were assessed for brain-specific delivery. Long circulating NPs of PLGA- and PEG-synthesised copolymer were prepared by emulsification solvent evaporation method. Further, the surface of PEGylated NPs was modified by anchoring transferrin (Tf) ligand for receptor-mediated targeting to brain. NPs were characterised for shape and size, zeta potential, entrapment efficiency and in vitro drug release. In vitro cytotoxicity studies were performed on human cancer cell lines. Confocal Laser Scanning Microscopy studies show the enhanced uptake of Tf-appended PEGylated NPs and their localisation in the brain tissues. Hence, the specific role of Tf ligand on PEGylated NPs for brain delivery was confirmed.

  4. On-chip Micro- and Nanofluidic Electrokinetic Injection and Separation for PEGylation Analysis

    NASA Astrophysics Data System (ADS)

    Shelton, Elijah; Baum, Mary; Morse, Dan; Pennathur, Sumita; Pennathur Nanofluidics Laboratory Collaboration; Morse Laboratory Collaboration

    2012-11-01

    We present an experimental study of micro- and nanofluidic electrokinetic injection and separation in borosilcate channels as a method for characterizing size and zeta potential of biomolecules-specifically polyethlylene glycol (PEG), keyhole limpet hemocyanine (KLH), and pegylated KLH. While pegylation (the conjugation of proteins with PEG) is an established technique for enhancing a protein's therapeutic properties, reliable characterization of these conjugations by traditional analysis techniques (i.e. gel-electrophoresis, zetasizer) remains a challenge. Using a three-step electrokinetic sequence (load, gate, and inject), FITC labeled species and a fluorescein tracer dye are injected into a channel where they separate according to differences in electrophoretic mobility. We find the average absolute mobility of pegylated subunit KLH in 1 micron channels to be 56% that of unpegylated subunit KLH. In a 250 nm channel, we measure a 33% shift in the average absolute mobility of PEG dendrimers as compared to measurements in a 1 micron channel. These results begin to demonstrate how a micro- and nanofluidic-based approach might address the demand for effective and accessible nanoparticle characterization platforms. Supported by the Institute for Collaborative Biotechnologies.

  5. Evaluation and mechanism studies of PEGylated dendrigraft poly-L-lysines as novel gene delivery vectors.

    PubMed

    Huang, Rongqin; Liu, Shuhuan; Shao, Kun; Han, Liang; Ke, Weilun; Liu, Yang; Li, Jianfeng; Huang, Shixian; Jiang, Chen

    2010-07-02

    Dendrimers have attracted great interest in the field of gene delivery due to their synthetic controllability and excellent gene transfection efficiency. In this work, dendrigraft poly-L-lysines (DGLs) were evaluated as a novel gene vector for the first time. Derivatives of DGLs (generation 2 and 3) with different extents of PEGylation were successfully synthesized and used to compact pDNA as complexes. The result of gel retardation assay showed that pDNA could be effectively packed by all the vectors at a DGLs to pDNA weight ratio greater than 2. An increase in the PEGylation extent of vectors resulted in a decrease in the incorporation efficiency and cytotoxicity of complexes in 293 cells, which also decreased the zeta potential a little but did not affect the mean diameter of complexes. Higher generation of DGLs could mediate higher gene transfection in vitro. Confocal microscopy and cellular uptake inhibition studies demonstrated that caveolae-mediated process and macropinocytosis were involved in the cellular uptake of DGLs-based complexes. Also the results indicate that proper PEGylated DGLs could mediate efficient gene transfection, showing their potential as an alternate biodegradable vector in the field of nonviral gene delivery.

  6. Studying the morphological features of plasma treated silver and PEGylated silver nanoparticles: antibacterial activity

    NASA Astrophysics Data System (ADS)

    Waseem, M.; Awan, T.; Yasin, H. M.; Rehman, N. U.

    2018-03-01

    A strategy to treat the silver and PEGylated silver nanoparticles with plasma was being purposed. Oil in water (o/w) microemulsion method was used for the synthesis of Ag nanoparticles (AgNPs). Polyethylene glycol (PEG) having molecular weight 600 was used to coat the surface of AgNPs. Optical emission spectroscopy (OES) was used to characterize the plasma and it is noted that plasma treatment is useful to modify the structural characteristic of silver nanoparticles. The nanoparticles were treated with helium-oxygen mixture plasma, generated in plasma needle at atmospheric pressure. Both AgNPs and PEGylated AgNPs before and after plasma treatment were characterized by x-rays diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The crystallite size of silver nanoparticles after the treatment of plasma decreases from 71 nm to 27 nm. The SEM micrographs show that the size of Ag nanoparticles was nearly 118 nm whereas the thickness of the silver needle was around 135 nm. All the characteristics IR bands associated to the silver nanoparticles were detected. The FTIR spectrum also support the accumulation of OH radicals in the plasma treated samples. The samples before and after plasma treatment were screened against Gram positive (Bacillus Subtilis and Staphylococcus Aureus) and Gram negative (Escherichia Coli and Pseudomonas Aeruginosa) bacteria. The promising response was detected when plasma treated PEGylated AgNPs was tested against bacterial strains.

  7. Effects of PEGylated paclitaxel nanocrystals on breast cancer and its lung metastasis

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Hu, Hongxiang; Zhang, Haoran; Dai, Wenbing; Wang, Xinglin; Wang, Xueqing; Zhang, Qiang

    2015-06-01

    As an attractive strategy developed rapidly in recent years, nanocrystals are used to deliver insoluble drugs. PEGylation may further prolong the circulation time of nanoparticles and improve the therapeutic outcome of drugs. In this study, paclitaxel (PTX) nanocrystals (PTX-NCs) and PEGylated PTX nanocrystals (PEG-PTX-NCs) were prepared using antisolvent precipitation augmented by probe sonication. The characteristics and antitumor efficacy of nanocrystals were investigated. The results indicated that the nanocrystals showed rod-like morphology, and the average particle size was 240 nm and 330 nm for PTX-NCs and PEG-PTX-NCs, respectively. The PEG molecules covered the surface of nanocrystals with an 11.54 nm fixed aqueous layer thickness (FALT), much higher than that of PTX-NCs (0.2 nm). PEG-PTX-NCs showed higher stability than PTX-NCs under both storage and physiological conditions. In breast cancer xenografted mice, PEG-PTX-NCs showed significantly better tumor inhibition compared to saline (p < 0.001) and PTX-NC groups (p < 0.05) after intravenous administration. In a model of lung tumor metastasis quantified by the luciferase activity, the PEG-PTX-NCs group showed higher anticancer efficacy not only than saline and PTX-NCs groups, but also than Taxol®, achieving an 82% reduction at the end of the experiment. These studies suggested the potential advantages of PEGylated PTX nanocrystals as alternative drug delivery systems for anticancer therapy.

  8. A site-specific PEGylated analog of exendin-4 with improved pharmacokinetics and pharmacodynamics in vivo.

    PubMed

    Gao, Mingming; Jin, Yuhao; Tong, Yue; Tian, Hong; Gao, Xiangdong; Yao, Wenbing

    2012-11-01

    Our aim was to improve the in vivo pharmacokinetics and pharmacodynamics of exendin-4 by using site-specific PEGylation. We designed the PEGylated peptide based on its structure and activity relationship and prepared the conjugate by two steps of chromatographic purification. After obtained the conjugate we confirmed its glucose-lowering activity in normal mice and determined its half-life in SD rats. Then we evaluated its anti-diabetic activity in a multiple low-dose Streptozocin (STZ)-induced diabetic mice model. With the process established in this study the product conjugate was obtained with a yield of over 60% and purity of above 99%. The conjugate maintained its original conformation after modification. In SD rats its half-life was prolonged to 27.12 ± 5.75 h which was 17.61-fold longer than that of the natural exendin-4 for which the half-life was only 1.54 ± 0.47 h. Its anti-diabetic activity was significantly improved in the diabetic mice. Compare with native exendin-4, the C-terminal site-specific PEGylated analog of exendin-4 obtained in this study has an improved pharmacokinetics and pharmacodynamics in vivo and could be regarded as a potential candidate for the future development of anti-diabetic drugs. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  9. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography.

    PubMed

    Peng, Chen; Zheng, Linfeng; Chen, Qian; Shen, Mingwu; Guo, Rui; Wang, Han; Cao, Xueyan; Zhang, Guixiang; Shi, Xiangyang

    2012-02-01

    We report the synthesis and characterization of dendrimer-entrapped gold nanoparticles (Au DENPs) modified by polyethylene glycol (PEG) with enhanced biocompatibility for computed tomography (CT) imaging applications. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH(2)) modified by PEG monomethyl ether (G5.NH(2)-mPEG(20)) were used as templates to synthesize Au DENPs, followed by acetylation of the remaining dendrimer terminal amines to generate PEGylated Au DENPs. The partial PEGylation modification of dendrimer terminal amines allows high loading of Au within the dendrimer interior, and consequently by simply varying the Au salt/dendrimer molar ratio, the size of the PEGylated Au DENPs can be controlled at a range of 2-4 nm with a narrow size distribution. The formed PEGylated Au DENPs are water-dispersible, stable in a pH range of 5-8 and a temperature range of 0-50 °C, and non-cytotoxic at a concentration as high as 100 μm. X-ray absorption coefficient measurements show that the attenuation intensity of the PEGylated Au DENPs is much higher than that of Omnipaque with iodine concentration similar to Au. With the sufficiently long half-decay time demonstrated by pharmacokinetics studies, the PEGylated Au DENPs enabled not only X-ray CT blood pool imaging of mice and rats after intravenous injection of the particles, but also effective CT imaging of a xenograft tumor model in nude mice. These findings suggest that the designed PEGylated Au DENPs can be used as a promising contrast agent with enhanced biocompatibility for CT imaging of various biological systems, especially in cancer diagnosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Benefits of PEGylation in the early post-transplant period of intraportal islet transplantation as assessed by magnetic resonance imaging of labeled islets.

    PubMed

    Jin, Sang-Man; Oh, Seung-Hoon; Oh, Bae Jun; Suh, Sunghwan; Bae, Ji Cheol; Lee, Jung Hee; Lee, Myung-Shik; Lee, Moon-Kyu; Kim, Kwang-Won; Kim, Jae Hyeon

    2014-01-01

    While a few studies have demonstrated the benefit of PEGylation in islet transplantation, most have employed renal subcapsular models and none have performed direct comparisons of islet mass in intraportal islet transplantation using islet magnetic resonance imaging (MRI). In this study, our aim was to demonstrate the benefit of PEGylation in the early post-transplant period of intraportal islet transplantation with a novel algorithm for islet MRI. Islets were PEGylated after ferucarbotran labeling in a rat syngeneic intraportal islet transplantation model followed by comparisons of post-transplant glycemic levels in recipient rats infused with PEGylated (n = 12) and non-PEGylated (n = 13) islets. The total area of hypointense spots and the number of hypointense spots larger than 1.758 mm(2) of PEGylated and non-PEGylated islets were quantitatively compared. The total area of hypointense spots (P < 0.05) and the number of hypointense spots larger than 1.758 mm(2) (P < 0.05) were higher in the PEGylated islet group 7 and 14 days post translation (DPT). These results translated into better post-transplant outcomes in the PEGylated islet group 28 DPT. In validation experiments, MRI parameters obtained 1, 7, and 14 DPT predicted normoglycemia 4 wk post-transplantation. We directly demonstrated the benefit of islet PEGylation in protection against nonspecific islet destruction in the early post-transplant period of intraportal islet transplantation using a novel algorithm for islet MRI. This novel algorithm could serve as a useful tool to demonstrate such benefit in future clinical trials of islet transplantation using PEGylated islets.

  11. Hexavalent chromium removal by chitosan modified-bioreduced nontronite

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Dong, Hailiang; Zeng, Qiang; Zhang, Li; Rengasamy, Karthikeyan

    2017-08-01

    Recent efforts have focused on structural Fe(II) in chemically or biologically reduced clay minerals to immobilize Cr(VI) from aqueous solution, but the coulombic repulsion between the negatively charged clay surface and the polyanionic form of Cr(VI), e.g., dichromate, can hinder the effectiveness of this process. The purpose of this study was to investigate the efficiency and mechanism of Cr(VI) removal by a charge-reversed nontronite (NAu-2), an Fe-rich smectite. Chitosan, a linear polysaccharide derived from chitin found in soil and groundwater, was used to reverse the charge of NAu-2. Intercalation of chitosan into NAu-2 interlayer increased the basal d-spacing of NAu-2 from 1.23 nm to 1.83 nm and zeta potential from -27.17 to +34.13 mV, with the amount of increase depending on chitosan/NAu-2 ratio. Structural Fe(III) in chitosan-exchanged NAu-2 was then biologically reduced by an iron-reducing bacterium Shewanella putrefaciens CN32 in bicarbonate buffer with lactate as the sole electron donor, with and without electron shuttle, AQDS. Without AQDS, the extent of Fe(III) reduction increased from the lowest (∼9%) for the chitosan-free NAu-2 to the highest (∼12%) for the highest chitosan loaded NAu-2 (3:1 ratio). This enhancement of Fe(III) reduction was likely due to the attachment of negatively charged bacterial cells to charge-reversed (e.g., positively charged) NAu-2 surfaces, facilitating the electron transfer between cells and structural Fe(III). With AQDS, Fe(III) reduction extent doubled relative to those without AQDS, but the enhancement effect was similar across all chitosan loadings, suggesting that AQDS was more important than chitosan in enhancing Fe(III) bioreduction. Chitosan-exchanged, biologically reduced NAu-2 was then utilized for removing Cr(VI) in batch experiments with three consecutive spikes of 50 μM Cr. With the first Cr spike, the rate of Cr(VI) removal by charged-reversed NAu-2 that was bioreduced without and with AQDS was ∼1.5 and ∼6 μmol g-1 h-1, respectively. However, the capacity of these clays to remove Cr(VI) was progressively exhausted upon addition of subsequent Cr spikes. X-ray photoelectron spectroscopy (XPS) revealed that the reduction product of Cr(VI) by chitosan-exchanged-bioreduced NAu-2 was Cr(III), possibly in the form of Cr(OH)3. In summary, our results demonstrated that the combined effects of sorption and redox reactions by charge-reversed bioreduced nontronite may offer a feasible in-situ approach for remediating Cr(VI) polluted soil and groundwater.

  12. Microcalorimetric study of the adsorption of PEGylated lysozyme and PEG on a mildly hydrophobic resin: influence of ammonium sulfate.

    PubMed

    Werner, Albert; Blaschke, Tim; Hasse, Hans

    2012-08-07

    Adsorption of native as well as mono-, di-, and tri-PEGylated lysozyme on Toyopearl PPG-600M, a mildly hydrophobic resin is studied by isothermal titration calorimetry and by independent adsorption equilibrium measurements in sodium phosphate buffer at pH 7.0 and 25 °C. For PEGylation two different PEG sizes are used (5 and 10 kDa) which leads to six different forms of PEGylated lysozyme all of which are systematically studied. Additionally, the adsorption of five pure PEGs is explored. The ammonium sulfate concentration is varied from 600 to 1200 mM. The molar enthalpy of adsorption Δh(p)(ads) is determined from the calorimetric and the adsorption equilibrium data. It is found to be endothermic in all experiments. The comparison of the adsorption of different PEGylated forms shows that the adsorption of PEGylated lysozyme is driven by the adsorption of the PEG chain. The results provide insight into the adsorption mechanisms of polymer-modified proteins on hydrophobic chromatographic resins.

  13. How hepatitis C patients manage the treatment process of pegylated interferon and ribavirin therapy: a qualitative study.

    PubMed

    Tsai, Shu-Mei; Kao, Jung-Ta; Tsai, Yun-Fang

    2016-07-11

    Hepatitis C virus (HCV) infection is a global public health issue. Adequate treatment for hepatitis C patients is important, but anticipated side effects make patients fearful of receiving treatment. Little is known about the experiences of hepatitis C patients who have completed treatment with pegylated interferon and ribavirin. The purpose of this study was to explore the experiences of hepatitis C patients who had undergone therapy with pegylated interferon and ribavirin and gain an understanding of what factors contributed to completion of treatment. This was a qualitative study with 21 adult hepatitis C patients purposively sampled from outpatient liver clinics of a medical university hospital in Taichung City, Taiwan. Participants had completed 6-12 months of therapy with pegylated interferon and ribavirin. Data were collected through individual, face-to-face, in-depth interviews conducted in the participants' homes from June-October 2013. Data were analysed using conventional content analysis. Data analysis revealed three themes that described the strategies employed to alleviate and ease symptoms and manage the processes involved: restructuring their lifestyle, adopting a positive attitude, and seeking support. Hepatitis C patients face many challenges during treatment with pegylated interferon and ribavirin. These findings provide knowledge that can be used in designing effective programs to help other Hepatitis C patients manage the side effects of pegylated interferon and ribavirin therapy, complete treatment and improve quality of life.

  14. Synthesis and comparative in vivo evaluation of 99m Tc(CO)3 -labeled PEGylated and non-PEGylated cRGDfK peptide monomers.

    PubMed

    Vats, Kusum; Satpati, Drishty; Sharma, Rohit; Sarma, Haladhar D; Banerjee, Sharmila

    2017-03-01

    This work aimed at studying the effect of insertion of medium PEG (PEG 7 ) on the pharmacokinetic behavior of cRGDfK peptide in comparison with the non-PEGylated analogue. The cRGDfK peptide has thus been derivatized at ε-amino group of lysine by conjugation with N 3 -PEG 7 -COOH/N 3 -CH 2 -COOH to prepare a PEGylated and a non-PEGylated analogue of cRGDfK. A tridentate chelator was then incorporated by click chemistry conjugation of the two peptide azides for radiolabeling with [ 99m Tc(CO) 3 (H 2 O) 3 ] + precursor. Comparative in vivo evaluation of the two 99m Tc(CO) 3 -labeled radiotracers, 99m Tc(CO) 3 -Pra-Tz-CH 2 -cRGDfK 5 and 99m Tc(CO) 3 -Pra-Tz-PEG 7 -cRGDfK 6, was carried out in C57BL/6 mice bearing α v β 3 -positive melanoma tumors to determine their potential toward targeting integrin α v β 3 receptors. The radiotracers exhibited excellent stability in saline as well as in serum. Maximum tumor uptake for the two radiotracers was observed at 30 min p.i. (5: 3.0 ± 0.7% ID/g; 6: 4.1 ± 0.5% ID/g). The two neutral 99m Tc(CO) 3 radiotracers prepared exhibited receptor-mediated uptake in melanoma tumor. The increase in the tumor uptake on introduction of PEG 7 unit was accompanied by slower clearance from other organs which resulted in decreased target-to-background ratios. The in vivo kinetics of 99m Tc(CO) 3 -labeled radiotracer, 99m Tc(CO) 3 -Pra-Tz-CH 2 -cRGDfK 5 with only methylene unit as the spacer, was found to be more favorable due to higher tumor/blood, tumor/liver, tumor/kidney, and tumor/lung ratios. © 2016 John Wiley & Sons A/S.

  15. Improvement of pharmacokinetic and antitumor activity of layered double hydroxide nanoparticles by coating with PEGylated phospholipid membrane

    PubMed Central

    Yan, Mina; Zhang, Zhaoguo; Cui, Shengmiao; Lei, Ming; Zeng, Ke; Liao, Yunhui; Chu, Weijing; Deng, Yihui; Zhao, Chunshun

    2014-01-01

    Layered double hydroxide (LDH) has attracted considerable attention as a drug carrier. However, because of its poor in vivo behavior, polyethylene glycolylated (PEGylated) phospholipid must be used as a coformer to produce self-assembled core–shell nanoparticles. In the present study, we prepared a PEGylated phospholipid-coated LDH (PLDH) (PEG-PLDH) delivery system. The PEG-PLDH nanoparticles had an average size of 133.2 nm. Their core–shell structure was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. In vitro liposome-cell-association and cytotoxicity experiments demonstrated its ability to be internalized by cells. In vivo studies showed that PEGylated phospholipid membranes greatly reduced the blood clearance rate of LDH nanoparticles. PEG-PLDH nanoparticles demonstrated a good control of tumor growth and increased the survival rate of mice. These results suggest that PEG-PLDH nanoparticles can be a useful drug delivery system for cancer therapy. PMID:25364245

  16. Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface PEGylation.

    PubMed

    Chang, Yung; Shih, Yu-Ju; Ko, Chao-Yin; Jhong, Jheng-Fong; Liu, Ying-Ling; Wei, Ta-Chin

    2011-05-03

    In this work, the hemocompatibility of PEGylated poly(vinylidene fluoride) (PVDF) microporous membranes with varying grafting coverage and structures via plasma-induced surface PEGylation was studied. Network-like and brush-like PEGylated layers on PVDF membrane surfaces were achieved by low-pressure and atmospheric plasma treatment. The chemical composition, physical morphology, grafting structure, surface hydrophilicity, and hydration capability of prepared membranes were determined to illustrate the correlations between grafting qualities and hemocompatibility of PEGylated PVDF membranes in contact with human blood. Plasma protein adsorption onto different PEGylated PVDF membranes from single-protein solutions and the complex medium of 100% human plasma were measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Hemocompatibility of the PEGylated membranes was evaluated by the antifouling property of platelet adhesion observed by scanning electron microscopy (SEM) and the anticoagulant activity of the blood coagulant determined by testing plasma-clotting time. The control of grafting structures of PEGylated layers highly regulates the PVDF membrane to resist the adsorption of plasma proteins, the adhesion of platelets, and the coagulation of human plasma. It was found that PVDF membranes grafted with brush-like PEGylated layers presented higher hydration capability with binding water molecules than with network-like PEGylated layers to improve the hemocompatible character of plasma protein and blood platelet resistance in human blood. This work suggests that the hemocompatible nature of grafted PEGylated polymers by controlling grafting structures gives them great potential in the molecular design of antithrombogenic membranes for use in human blood.

  17. A Novel Solid-Phase Site-Specific PEGylation Enhances the In Vitro and In Vivo Biostabilty of Recombinant Human Keratinocyte Growth Factor 1

    PubMed Central

    Zhang, Jingui; Zhang, Yi; Zhang, Youting; Ye, Chaohui; Wang, Xiaojie; Ilghari, Dariush; Li, Xiaokun

    2012-01-01

    Keratinocyte growth factor 1 (KGF-1) has proven useful in the treatment of pathologies associated with dermal adnexae, liver, lung, and the gastrointestinal tract diseases. However, poor stability and short plasma half-life of the protein have restricted its therapeutic applications. While it is possible to improve the stability and extend the circulating half-life of recombinant human KGF-1 (rhKGF-1) using solution-phase PEGylation, such preparations have heterogeneous structures and often low specific activities due to multiple and/or uncontrolled PEGylation. In the present study, a novel solid-phase PEGylation strategy was employed to produce homogenous mono-PEGylated rhKGF-1. RhKGF-1 protein was immobilized on a Heparin-Sepharose column and then a site-selective PEGylation reaction was carried out by a reductive alkylation at the N-terminal amino acid of the protein. The mono-PEGylated rhKGF-1, which accounted for over 40% of the total rhKGF-1 used in the PEGylation reaction, was purified to homogeneity by SP Sepharose ion-exchange chromatography. Our biophysical and biochemical studies demonstrated that the solid-phase PEGylation significantly enhanced the in vitro and in vivo biostability without affecting the over all structure of the protein. Furthermore, pharmacokinetic analysis showed that modified rhKGF-1 had considerably longer plasma half-life than its intact counterpart. Our cell-based analysis showed that, similar to rhKGF-1, PEGylated rhKGF-1 induced proliferation in NIH 3T3 cells through the activation of MAPK/Erk pathway. Notably, PEGylated rhKGF-1 exhibited a greater hepatoprotection against CCl4-induced injury in rats compared to rhKGF-1. PMID:22574160

  18. A sensitive WST-8-based bioassay for PEGylated granulocyte colony stimulating factor using the NFS-60 cell line.

    PubMed

    Tiwari, Krishna; Wavdhane, Madan; Haque, Shafiul; Govender, Thavendran; Kruger, Hendrik G; Mishra, Maheshwari K; Chandra, Ramesh; Tiwari, Dileep

    2015-06-01

    Granulocyte colony stimulating factor (G-CSF) has been commonly used to treat neutropenia caused by chemotherapy, radiotherapy, and organ transplants. Improved in vitro efficacy of G-CSF has already been observed by conjugating it to polyethylene glycol (PEG). The in vivo bioassay using tetrazolium dye with the NFS-60 cell line has been recommended for G-CSF but no such monographs are available for PEGylated G-CSF in pharmacopeias. In the present study, the assay recommended for G-CSF was evaluated for its suitability to PEGylated G-CSF. The generally used MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium]-based assay was compared with a bioassay employing a water-soluble tetrazolium dye, WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium], using NFS-60 cells at a concentration of 7 × 10(5) cells/ml against 800 IU/ml of PEGylated G-CSF at 24, 48, 72, and 72 h time points to determine the efficacy of PEGylated G-CSF. Further, the optimized WST-8 dye-based assay was used to test the potency of various commercially available PEGylated G-CSF preparations. The results demonstrated enhanced sensitivity of the WST-8-based assay over the conventional MTS-based assay for determining the potency of PEGylated G-CSF using the NFS-60 cell line. Our study demonstrates the potential application of WST-8-based bioassays for other biotherapeutic proteins of human and veterinary interest.

  19. Design and development of PEGylated liposomal formulation of HER2 blocker Lapatinib for enhanced anticancer activity and diminshed cardiotoxicity.

    PubMed

    Shrivastava, Richa; Trivedi, Shruti; Singh, Pankaj Kumar; Asif, Mohammad; Chourasia, Manish Kumar; Khanna, Amit; Bhadauria, Smrati

    2018-06-13

    Breast cancer is most frequently diagnosed cancer and fifth leading cause of death in women. About 20-30% of all breast cancers overexpress HER2/neu receptors. Lapatinib is a dual tyrosin kinase inhibitor of EGFR and HER2. It exhibits its anticancer effect via blocking intracellular domain of HER2 receptor in breast cancer. Lapatinib belongs to class II of BSC classification due to its poor solubility restricting its clinical application. Due to presence of HER2 receptor on cardiomyocytes, it is associated with generation of cardiotoxicity. The present study was aimed to design a PEGylated liposomal formulation of Lapatinib and evaluate its anticancer potential. Lapatinib liposomes were prepared using lipid layer hydration method and its characterization was done by determining its particle size, zeta potential, entrapment efficiency and in vitro release profiling. The anti-tumor activity of PEGylated liposomal formulation was evaluated in xenografted tumor induced by MDA-MB-453 breast cancer cells in chick embryos. The anti-tumor effect of lapatinib was enhanced by its PEGylated liposomal preparation as it led to the reduction in tumor size to a greater extent compared to the embryos treated with free lapatinib. Flowcytometric analysis and immunofluroscence study using cleaved PARP antibody demonstrated the enhaced apoptotic potential of PEGylated liposomes of lapatonib. SGOT levels, marker for cardiotoxicity and hepatotoxicity, significantly decreased in serum of embryos treated with PEGylated liposmes of lapatinib compared to free drug treated embryos. Hence, the PEGylated liposomal formulation of lapatininb can be used as a therapeutic strategy against HER2 positive breast cancer either alone or in combination with conventional anticancer agents and hormonal therapies. Copyright © 2018. Published by Elsevier Inc.

  20. PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo.

    PubMed

    Aldrian, Gudrun; Vaissière, Anaïs; Konate, Karidia; Seisel, Quentin; Vivès, Eric; Fernandez, Frédéric; Viguier, Véronique; Genevois, Coralie; Couillaud, Franck; Démèné, Héléne; Aggad, Dina; Covinhes, Aurélie; Barrère-Lemaire, Stéphanie; Deshayes, Sébastien; Boisguerin, Prisca

    2017-06-28

    Small interfering RNAs (siRNAs) present a strong therapeutic potential because of their ability to inhibit the expression of any desired protein. Recently, we developed the retro-inverso amphipathic RICK peptide as novel non-covalent siRNA carrier. This peptide is able to form nanoparticles (NPs) by self-assembling with the siRNA resulting in the fully siRNA protection based on its protease resistant peptide sequence. With regard to an in vivo application, we investigated here the influence of the polyethylene glycol (PEG) grafting to RICK NPs on their in vitro and in vivo siRNA delivery properties. A detailed structural study shows that PEGylation did not alter the NP formation (only decrease in zeta potential) regardless of the used PEGylation rates. Compared to the native RICK:siRNA NPs, low PEGylation rates (≤20%) of the NPs did not influence their cellular internalization capacity as well as their knock-down specificity (over-expressed or endogenous system) in vitro. Because the behavior of PEGylated NPs could differ in their in vivo application, we analyzed the repartition of fluorescent labeled NPs injected at the one-cell stage in zebrafish embryos as well as their pharmacokinetic (PK) profile after administration to mice. After an intra-cardiac injection of the PEGylated NPs, we could clearly determine that 20% PEG-RICK NPs reduce significantly liver and kidney accumulation. NPs with 20% PEGylation constitutes a modular, easy-to-handle drug delivery system which could be adapted to other types of functional moieties to develop safe and biocompatible delivery systems for the clinical application of RNAi-based cancer therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Uptake mechanism of furosemide-loaded pegylated nanoparticles by cochlear cell lines.

    PubMed

    Youm, Ibrahima; Youan, Bi-Botti C

    2013-10-01

    This study tests the hypothesis that pegylated nanoparticles (NPs) could be taken up by the cochlear cells [House Ear Institute-organ of Corti 1 (HEI-OC1) and Stria vascularis K-1 (SVK-1)], through endocytic pathways. Furthermore, the in vitro drug release and the cytotoxicity of Furosemide (FUR)-loaded NPs on these two cochlear cells are investigated. FUR-loaded pegylated NPs are prepared by the emulsion-solvent diffusion method without surfactant. The NPs are characterized for particle mean diameter, polydispersity index (PDI), morphology, percent drug encapsulation efficiency (EE%), and FUR release kinetics. The methyl tetrazolium salt (MTS) and lactate dehydrogenase (LDH) bioassays are used to evaluate in vitro, the cytotoxicity of FUR-loaded NPs and native FUR. The NPs uptake is investigated using confocal microscopy, microplate reader/fluorimetry, and flow cytometry. Spherical NPs with a mean diameter range of 133-210 nm and PDI values varying from 0.037 to 0.41 are produced. The FUR EE% is 86% and the drug is released from the NPs according to the zero-order and Higuchi models. After treatment with blank NPs, the percentage of cell viability and cell death are 95.96% and 8.95%, in HEI-OC1 cells, respectively. The NPs are internalized by HEI-OC1 cells through a clathrin-dependent pathway. In addition, results show that NPs can be taken up via clathrin and cytoskeleton mediated pathways in SVK-1 cells. The internalization of the pegylated NPs can enhance the drug toxicity by necrosis in a dose-dependent and sustained release manner. The formulated NPs provide a promising template for a targeted drug delivery system to the inner ear. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Determination of puerarin in rat plasma using PEGylated magnetic carbon nanotubes by high performance liquid chromatography.

    PubMed

    Yu, Panfeng; Wang, Qi; Ma, Hongwei; Wu, Ji; Shen, Shun

    2014-05-15

    This paper described a novel application of PEGylated magnetic carbon nanotubes as solid-phase extraction nanosorbents for the determination of puerarin in rat plasma by high performance liquid chromatography (HPLC). A solvothermal method was employed for the synthesis of monodisperse magnetites anchored onto multi-walled carbon nanotubes (MWCNTs@Fe3O4). In order to enhance the water solubility of MWCNTs@Fe3O4 that ensured sufficient contact between nanosorbents and analytes in the sampling procedure, the obtained nanomaterials were further noncovalently functionalized using a phospholipids-polyethylene glycol (DSPE-PEG). The PEGylated MWCNTs@Fe3O4 nanomaterials had an extremely large surface area and exhibit a strong interaction capability for puerarin with π-π stacking interactions. The captured puerarin/nanosorbents were easily isolated from the plasma by placing a magnet, and desorbed by acetonitrile. The experimental variables affecting the extraction efficiency were investigated. The calibration curve of puerarin was linear from 0.01 to 20 μg/ml, and the limit of detection was 0.005 μg/ml. The precisions ranged from 2.7% to 3.5% for within-day measurement, and for between-day variation was in the range of 3.1-5.9%. The method recoveries were acquired from 95.2% to 98.0%. Moreover, the analytical performance obtained by PEGylated magnetic MWCNTs was also compared with that of magnetic MWCNTs. All results showed that our proposed method was an excellent alternative for the analysis of puerarin in rat plasma. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. PEGylated non-ionic surfactant vesicles as drug delivery systems for Gambogenic acid.

    PubMed

    Lin, Tongyuan; Fang, Qingying; Peng, Daiyin; Huang, Xia; Zhu, Tingting; Luo, Qing; Zhou, Kai; Chen, Weidong

    2013-01-01

    Gambogenic acid (GNA), a popular Chinese traditional medicine, has its limitations of coming into use due to its low aqueous solubility and poor bioavailability. In this study, therefore, the PEGylated non-ionic surfactant vesicles drug delivery systems were prepared from biocompatible non-ionic surfactant of Span60, cholesterol and dicetyl phosphate (DCP) by the improved ethanol injection method, and were modified with a polyethylene glycol monostearate15 (PEG15-SA). PEG15-SA, as a biocompatible, non-toxic and non-immunogenic hydrophilic segment, was grafted onto the surface of colloidal niosomes carries to reduce the uptake by the reticuloendothelial system (RES), prolonging the circulation time and attaining higher entrapment efficiency. To our knowledge, this work is the first to report that PEG15-SA was applied to coating of niosomes for encapsulation of GNA. The optimized PEG-GNA-NISVs (P-GNA-NISVs) were characterized in terms of mean vesicles size, polydispersity index (PDI), Zeta potential and entrapment efficiency of the P-GNA-NISVs. The results showed that the mean diameter, PDI, Zeta potential, and the entrapment efficiency of the P-GNA-NISVs were 70.1 nm, 0.166, -44.3 mV and 87.74%, respectively. Furthermore, the release studies of GNA from PEGylated niosomes in vitro and the pharmacokinetics in vivo exhibited a prolonged release profile as studied over 24 h. In conclusion, the result suggests that P-GNA-NISVs prepared in this way not only have higher encapsulation capacity, more colloidal stability but also offer an approach that the PEGylated niosomes is a promising carrier for anticancer GNA.

  4. Noncovalent PEGylation through Protein-Polyelectrolyte Interaction: Kinetic Experiment and Molecular Dynamics Simulation.

    PubMed

    Kurinomaru, Takaaki; Kuwada, Kengo; Tomita, Shunsuke; Kameda, Tomoshi; Shiraki, Kentaro

    2017-07-20

    Noncovalent binding of polyethylene glycol (PEG) to a protein surface is a unique protein handling technique to control protein function and stability. A diblock copolymer containing PEG and polyelectrolyte chains (PEGylated polyelectrolyte) is a promising candidate for noncovalent attachment of PEG to a protein surface because of the binding through multiple electrostatic interactions without protein denaturation. To obtain a deeper understanding of protein-polyelectrolyte interaction at the molecular level, we investigated the manner in which cationic PEGylated polyelectrolyte binds to anionic α-amylase in enzyme kinetic experiments and molecular dynamics (MD) simulations. Cationic PEG-block-poly(N,N-dimethylaminoethyl) (PEG-b-PAMA) inhibited the enzyme activity of anionic α-amylase due to binding of PAMA chains. Enzyme kinetics revealed that the inhibition of α-amylase activity by PEG-b-PAMA is noncompetitive inhibition manner. In MD simulations, the PEG-b-PAMA molecule was initially located at six different placements of the x-, y-, and z-axis ±20 Å from the center of α-amylase, which showed that the PEG-b-PAMA nonspecifically bound to the α-amylase surface, corresponding to the noncompetitive inhibition manner that stems from the polymer binding to an enzyme surface other than the active site. In addition, the enzyme activity of α-amylase in the presence of PEG-b-PAMA was not inhibited by increasing the ionic strength, consistent with the MD simulation; i.e., PEG-b-PAMA did not interact with α-amylase in high ionic strength conditions. The results reported in this paper suggest that enzyme inhibition by PEGylated polyelectrolyte can be attributed to the random electrostatic interaction between protein and polyelectrolyte.

  5. Folic acid-modified methotrexate-conjugated PEGylated poly(ɛ-caprolactone) nanoparticles for targeted delivery

    NASA Astrophysics Data System (ADS)

    Issarachot, Ousanee; Suksiriworapong, Jiraphong; Takano, Mikihisa; Yumoto, Ryoko; Junyaprasert, Varaporn Buraphacheep

    2014-02-01

    Functionalized nanoparticles of polymer-drug conjugates of PEGylated poly(ɛ-caprolactone) (PEGylated P(CL)) with methotrexate (MTX) and folic acid (FOL) were developed and investigated for their targeting efficiency. FOL- and MTX-conjugated PEGylated P(CL) copolymers were employed to prepare P(MTXCLCL)2-PEG NPs and FOL-P(MTXCLCL)2-PEG NPs. By varying the amount of MTX, the different characteristics of nanoparticles were obtained. The results showed that an increase in particle size and more negative surface charge of P(MTXCLCL)2-PEG NPs were related to an increased amount of MTX along the polymer backbone. After being decorated with FOL, the particle size increased by nearly twofolds while the zeta potential decreased. All nanoparticles were spherical as observed under SEM micrographs. The release profiles showed pH-dependent and sustained release over 20 days. Higher extent of MTX was released in pH 4.5 medium as compared to the drug release in pH 7.4 medium. All nanoparticles showed greater toxicity to MCF-7 cells than A549 cells. In addition, FOL-P(MTXCLCL)2-PEG NPs exhibited the highest toxicity to MCF-7 cells as compared to all P(MTXCLCL)2-PEG NPs and free MTX. Furthermore, FOL-P(MTXCLCL)2-PEG NPs were internalized into MCF-7 cells higher than P(MTXCLCL)2-PEG NPs and FOL-P(MTXCLCL)2-PEG NPs incubated with free FOL. The results indicated that FOL-P(MTXCLCL)2-PEG NPs efficiently entered into MCF-7 cells via folate receptor-mediated endocytosis together with adsorptive endocytosis.

  6. Analysis of the interferences in quantitation of a site-specifically PEGylated exendin-4 analog by the Bradford method.

    PubMed

    Qian, Xiaowei; Dong, Hongxia; Hu, Xiaojing; Tian, Hong; Guo, Linfeng; Shen, Qingliang; Gao, Xiangdong; Yao, Wenbing

    2014-11-15

    Protein modification has been found to affect the estimation of protein concentration in some of the traditional dye-based absorbance measurements. In this work, a distinct reduction in A595 was observed during the quantitation of a PEGylated exendin-4 analogue (Ex4C) by the Bradford method and the PEGylation process was found to interfere with the measurement. Lys(12), Arg(20), and Lys(27) were further proved to be the major amino acids that functioned as dye-binding sites. The shielding effect produced by the large polymer was demonstrated to depend on the length of PEG that was used for modification. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. PEGylation on mixed monolayer gold nanoparticles: Effect of grafting density, chain length, and surface curvature.

    PubMed

    Lin, Jiaqi; Zhang, Heng; Morovati, Vahid; Dargazany, Roozbeh

    2017-10-15

    PEGylation on nanoparticles (NPs) is widely used to prevent aggregation and to mask NPs from the fast clearance system in the body. Understanding the molecular details of the PEG layer could facilitate rational design of PEGylated NPs that maximize their solubility and stealth ability without significantly compromising the targeting efficiency and cellular uptake. Here, we use molecular dynamics (MD) simulation to understand the structural and dynamic the PEG coating of mixed monolayer gold NPs. Specifically, we modeled gold NPs with PEG grafting densities ranging from 0-2.76chain/nm 2 , chain length with 0-10 PEG monomers, NP core diameter from 5nm to 500nm. It is found that the area accessed by individual PEG chains gradually transits from a "mushroom" to a "brush" conformation as NP surface curvature become flatter, whereas such a transition is not evident on small NPs when grafting density increases. It is shown that moderate grafting density (∼1.0chain/nm 2 ) and short chain length are sufficient enough to prevent NPs from aggregating in an aqueous medium. The effect of grafting density on solubility is also validated by dynamic light scattering measurements of PEGylated 5nm gold NPs. With respect to the shielding ability, simulations predict that increase either grafting density, chain length, or NP diameter will reduce the accessibility of the protected content to a certain size molecule. Interestingly, reducing NP surface curvature is estimated to be most effective in promoting shielding ability. For shielding against small molecules, increasing PEG grafting density is more effective than increasing chain length. A simple model that includes these three investigated parameters is developed based on the simulations to roughly estimate the shielding ability of the PEG layer with respect to molecules of different sizes. The findings can help expand our current understanding of the PEG layer and guide rational design of PEGylated gold NPs for a particular

  8. PEGylation prolongs the pulmonary retention of an anti-IL-17A Fab' antibody fragment after pulmonary delivery in three different species.

    PubMed

    Freches, Danielle; Patil, Harshad P; Machado Franco, Maria; Uyttenhove, Catherine; Heywood, Sam; Vanbever, Rita

    2017-04-15

    The PEGylation of antibody fragments has been shown to greatly prolong their residence time in the lungs in mice. The purpose of this research was to confirm the effect of PEGylation in higher animal species, that is, the rat and the rabbit. An anti-IL-17A Fab' antibody fragment was conjugated to a two-armed 40kDa polyethylene glycol (PEG) via site-selective thiol PEGylation. PEGylation did not significantly alter the binding activity of the Fab' fragment but it largely enhanced its inhibitory potency. PEGylation increased the residence time of the Fab' in the lungs of mice, rats and rabbits. Following intratracheal administration, the unconjugated Fab' was cleared from the lungs within 24h while large quantities of the PEGylated Fab' remained present up to 48h. No significant differences in clearance were noted between the three animal species although there was a tendency of longer residence time in higher species. PEGylation represents a promising approach to sustain the presence of antibody fragments in the lungs and to enhance their therapeutic efficacy in respiratory diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. PEGylated DX-1000: pharmacokinetics and antineoplastic activity of a specific plasmin inhibitor.

    PubMed

    Devy, Laetitia; Rabbani, Shafaat A; Stochl, Mark; Ruskowski, Mary; Mackie, Ian; Naa, Laurent; Toews, Mark; van Gool, Reinoud; Chen, Jie; Ley, Art; Ladner, Robert C; Dransfield, Daniel T; Henderikx, Paula

    2007-11-01

    Novel inhibitors of the urokinase-mediated plasminogen (plg) activation system are potentially of great clinical benefit as anticancer treatments. Using phage display, we identified DX-1000 a tissue factor pathway inhibitor-derived Kunitz domain protein which is a specific high-affinity inhibitor of plasmin (pln) (K(i) = 99 pM). When tested in vitro, DX-1000 blocks plasmin-mediated pro-matrix metalloproteinase-9 (proMMP-9) activation on cells and dose-dependently inhibits tube formation, while not significantly affecting hemostasis and coagulation. However, this low-molecular weight protein inhibitor ( approximately 7 kDa) exhibits rapid plasma clearance in mice and rabbits, limiting its potential clinical use in chronic diseases. After site-specific PEGylation, DX-1000 retains its activity and exhibits a decreased plasma clearance. This PEGylated derivative is effective in vitro, as well as potent in inhibiting tumor growth of green fluorescent protein (GFP)-labeled MDA-MB-231 cells. 4PEG-DX-1000 treatment causes a significant reduction of urokinase-type plasminogen activator (uPA) and plasminogen expressions, a reduction of tumor proliferation, and vascularization. 4PEG-DX-1000 treatment significantly decreases the level of active mitogen-activated protein kinase (MAPK) in the primary tumors and reduces metastasis incidence. Together, our results demonstrate the potential value of plasmin inhibitors as therapeutic agents for blocking breast cancer growth and metastasis.

  10. Decreased circulation time offsets increased efficacy of PEGylated nanocarriers targeting folate receptors of glioma

    NASA Astrophysics Data System (ADS)

    McNeeley, Kathleen M.; Annapragada, Ananth; Bellamkonda, Ravi V.

    2007-09-01

    Liposomal and other nanocarrier based drug delivery vehicles can localize to tumours through passive and/or active targeting. Passively targeted liposomal nanocarriers accumulate in tumours via 'leaky' vasculature through the enhanced permeability and retention (EPR) effect. Passive accumulation depends upon the circulation time and the degree of tumour vessel 'leakiness'. After extravasation, actively targeted liposomal nanocarriers efficiently deliver their payload by receptor-mediated uptake. However, incorporation of targeting moieties can compromise circulation time in the blood due to recognition and clearance by the reticuloendothelial system, decreasing passive accumulation. Here, we compare the efficacy of passively targeted doxorubicin-loaded PEGylated liposomal nanocarriers to that of actively targeted liposomal nanocarriers in a rat 9L brain tumour model. Although folate receptor (FR)-targeted liposomal nanocarriers had significantly reduced blood circulation time compared to PEGylated liposomal nanocarriers; intratumoural drug concentrations both at 20 and 50 h after administration were equal for both treatments. Both treatments significantly increased tumour inoculated animal survival by 60-80% compared to non-treated controls, but no difference in survival was observed between FR-targeted and passively targeted nanocarriers. Therefore, alternate approaches allowing for active targeting without compromising circulation time may be important for fully realizing the benefits of receptor-mediated active targeting of gliomas.

  11. Release modeling and comparison of nanoarchaeosomal, nanoliposomal and pegylated nanoliposomal carriers for paclitaxel.

    PubMed

    Movahedi, Fatemeh; Ebrahimi Shahmabadi, Hasan; Alavi, Seyed Ebrahim; Koohi Moftakhari Esfahani, Maedeh

    2014-09-01

    Breast cancer is the most prevalent cancer among women. Recently, delivering by nanocarriers has resulted in a remarkable evolution in treatment of numerous cancers. Lipid nanocarriers are important ones while liposomes and archaeosomes are common lipid nanocarriers. In this work, paclitaxel was used and characterized in nanoliposomal and nanoarchaeosomal form to improve efficiency. To increase stability, efficiency and solubility, polyethylene glycol 2000 (PEG 2000) was added to some samples. MTT assay confirmed effectiveness of nanocarriers on MCF-7 cell line and size measuring validated nano-scale of particles. Nanoarchaeosomal carriers demonstrated highest encapsulation efficiency and lowest release rate. On the other hand, pegylated nanoliposomal carrier showed higher loading efficiency and less release compared with nanoliposomal carrier which verifies effect of PEG on improvement of stability and efficiency. Additionally, release pattern was modeled using artificial neural network (ANN) and genetic algorithm (GA). Using ANN modeling for release prediction, resulted in R values of 0.976, 0.989 and 0.999 for nanoliposomal, pegylated nanoliposomal and nanoarchaeosomal paclitaxel and GA modeling led to values of 0.954, 0.951 and 0.976, respectively. ANN modeling was more successful in predicting release compared with the GA strategy.

  12. Synthesis of PEGylated polyglutamic acid peptide dendrimer and its application in dissolving thrombus.

    PubMed

    Zhang, Shao-Fei; Gao, Chunmei; Lü, Shaoyu; He, Jiujun; Liu, Mingzhu; Wu, Can; Liu, Yijing; Zhang, Xinyu; Liu, Zhen

    2017-11-01

    Nattokinase (NK) has been used as a new generation thrombolytic drug, due to its high safety, low cost and low side effects. However, it is sensitive to external environment and may lose the enzyme activity easily. Peptide dendrimer possesses functional groups on its surface, adjustable sizes, biodegradability, biocompatibility, and low toxicity, which could be used as ideal carrier for drug protection and delivery. Demonstrated for the first time in this paper, a PEGylated dendrimer (G n -PEG-G n ) composed of polyglutamic acid is designed and synthesized as delivery platform of NK for thrombus treatment. A panel of PEGylated dendrimers with three different generations of 2, 3, 4 was prepared to investigate the effect of dendrimer architecture on the properties and therapeutic efficacy of the resultant NK-loaded delivery systems in terms of the morphology, dimension and enzyme activity. The results demonstrated that the NK-loaded G 3 -PEG-G 3 (G 3 -PEG-G 3 /NK ratio of 6/1), of all the formulations, displayed the optimal enzyme activity for dissolving thrombus in vitro, thus offering great potential for the treatment of thrombus. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Pegylated Leptin Antagonist Is a Potent Orexigenic Agent: Preparation and Mechanism of Activity

    PubMed Central

    Elinav, Eran; Niv-Spector, Leonora; Katz, Meirav; Price, Tulin O.; Ali, Mohammed; Yacobovitz, Michal; Solomon, Gili; Reicher, Shay; Lynch, Jessica L.; Halpern, Zamir; Banks, William A.; Gertler, Arieh

    2009-01-01

    Leptin, a pleiotropic adipokine, is a central regulator of appetite and weight and a key immunomodulatory protein. Although inborn leptin deficiency causes weight gain, it is unclear whether induced leptin deficiency in adult wild-type animals would be orexigenic. Previous work with a potent competitive leptin antagonist did not induce a true metabolic state of leptin deficiency in mice because of a short circulating half-life. In this study, we increased the half-life of the leptin antagonist by pegylation, which resulted in significantly increased bioavailability and retaining of antagonistic activity. Mice administered the pegylated antagonist showed a rapid and dramatic increase in food intake with weight gain. Resulting fat was confined to the mesenteric region with no accumulation in the liver. Serum cholesterol, triglyceride, and hepatic aminotransferases remained unaffected. Weight changes were reversible on cessation of leptin antagonist treatment. The mechanism of severe central leptin deficiency was found to be primarily caused by blockade of transport of circulating leptin across the blood-brain barrier with antagonisms at the arcuate nucleus playing a more minor role. Altogether we introduce a novel compound that induces central and peripheral leptin deficiency. This compound should be useful in exploring the involvement of leptin in metabolic and immune processes and could serve as a therapeutic for the treatment of cachexia. PMID:19342450

  14. PEGylation of zinc nanoparticles amplifies their ability to enhance olfactory responses to odorant

    PubMed Central

    Singletary, Melissa; Hagerty, Samantha; Muramoto, Shin; Daniels, Yasmine; MacCrehan, William A.; Stan, Gheorghe; Lau, June W.; Pustovyy, Oleg; Globa, Ludmila; Morrison, Edward E.; Sorokulova, Iryna

    2017-01-01

    Olfactory responses are intensely enhanced with the addition of endogenous and engineered primarily-elemental small zinc nanoparticles (NPs). With aging, oxidation of these Zn nanoparticles eliminated the observed enhancement. The design of a polyethylene glycol coating to meet storage requirements of engineered zinc nanoparticles is evaluated to achieve maximal olfactory benefit. The zinc nanoparticles were covered with 1000 g/mol or 400 g/mol molecular weight polyethylene glycol (PEG). Non-PEGylated and PEGylated zinc nanoparticles were tested by electroolfactogram with isolated rat olfactory epithelium and odorant responses evoked by the mixture of eugenol, ethyl butyrate and (±) carvone after storage at 278 K (5 oC), 303 K (30 oC) and 323 K (50 oC). The particles were analyzed by atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and laser Doppler velocimetry. Our data indicate that stored ZnPEG400 nanoparticles maintain physiologically-consistent olfactory enhancement for over 300 days. These engineered Nanoparticles support future applications in olfactory research, sensitive detection, and medicine. PMID:29261701

  15. Self-assembly PEGylation assists SLN-paclitaxel delivery inducing cancer cell apoptosis upon internalization.

    PubMed

    Arranja, Alexandra; Gouveia, Luís F; Gener, Petra; Rafael, Diana F; Pereira, Carolina; Schwartz, Simó; Videira, Mafalda A

    2016-03-30

    In past years, a considerable progress has been made in the conversion of conventional chemotherapy into potent and safe nanomedicines. The ultimate goal is to improve the therapeutic window of current chemotherapeutics by reducing systemic toxicities and to deliver higher concentrations of the chemotherapeutic agents to malignant cells. In this work, we report that PEGylation of the nanocarriers increases drug intracellular bioavailability leading therefore to higher therapeutic efficacy. The surface of the already patented solid lipid nanoparticles (SLN) loaded with paclitaxel (SLN-PTX) was coated with a PEG layer (SLN-PTX_PEG) through an innovative process to provide stable and highly effective nanoparticles complying with the predefined pharmaceutical quality target product profile. We observed that PEGylation not only stabilizes the SLN, but also modulates their cellular uptake kinetics. As a consequence, the intracellular concentration of chemotherapeutics delivered by SLN-PTX_PEG increases. This leads to the increase of efficacy and thus it is expected to significantly circumvent cancer cell resistance and increase patient survival and cure. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. PEGylated Polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma.

    PubMed

    Jiang, Yan; Lv, Lingyan; Shi, Huihui; Hua, Yabing; Lv, Wei; Wang, Xiuzhen; Xin, Hongliang; Xu, Qunwei

    2016-11-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system (CNS) tumor with a short survival time. The failure of chemotherapy is ascribed to the low transport of chemotherapeutics across the Blood Brain Tumor Barrier (BBTB) and poor penetration into tumor tissue. In order to overcome the two barriers, small nanoparticles with active targeted capability are urgently needed for GBM drug delivery. In this study, we proposed PEGylated Polyamidoamine (PAMAM) dendrimer nanoparticles conjugated with glioma homing peptides (Pep-1) as potential glioma targeting delivery system (Pep-PEG-PAMAM), where PEGylated PAMAM dendrimer nanoparticle was utilized as carrier due to its small size and perfect penetration into tumor and Pep-1 was used to overcome BBTB via interleukin 13 receptor α2 (IL-13Rα2) mediated endocytosis. The preliminary availability and safety of Pep-PEG-PAMAM as a nanocarrier for glioma was evaluated. In vitro results indicated that a significantly higher amount of Pep-PEG-PAMAM was endocytosed by U87 MG cells. In vivo fluorescence imaging of U87MG tumor-bearing mice confirmed that the fluorescence intensity at glioma site of targeted group was 2.02 folds higher than that of untargeted group (**p<0.01), and glioma distribution experiment further revealed that Pep-PEG-PAMAM exhibited a significantly enhanced accumulation and improved penetration at tumor site. In conclusion, Pep-1 modified PAMAM was a promising nanocarrier for targeted delivery of brain glioma. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. PEGylated-nanoliposomal clusterin for amyloidogenic light chain-induced endothelial dysfunction.

    PubMed

    Guzman-Villanueva, Diana; Migrino, Raymond Q; Truran, Seth; Karamanova, Nina; Franco, Daniel A; Burciu, Camelia; Senapati, Subhadip; Nedelkov, Dobrin; Hari, Parameswaran; Weissig, Volkmar

    2018-06-01

    Light chain (AL) amyloidosis is a disease associated with significant morbidity and mortality arising from multi-organ injury induced by amyloidogenic light chain proteins (LC). There is no available treatment to reverse the toxicity of LC. We previously showed that chaperone glycoprotein clusterin (CLU) and nanoliposomes (NL), separately, restore human microvascular endothelial function impaired by LC. In this work, we aim to prepare PEGylated-nanoliposomal clusterin (NL-CLU) formulations that could allow combined benefit against LC while potentially enabling efficient delivery to microvascular tissue, and test efficacy on human arteriole endothelial function. NL-CLU was prepared by a conjugation reaction between the carboxylated surface of NL and the primary amines of the CLU protein. NL were made of phosphatidylcholine (PC), cholesterol (Chol) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (DSPE-PEG 2000 carboxylic acid) at 70:25:5 mol%. The protective effect of NL-CLU was tested by measuring the dilation response to acetylcholine and papaverine in human adipose arterioles exposed to LC. LC treatment significantly reduced the dilation response to acetylcholine and papaverine; co-treatment of LC with PEGylated-nanoliposomal CLU or free CLU restored the dilator response. NL-CLU is a feasible and promising approach to reverse LC-induced endothelial damage.

  18. PEGylated Polyaniline Nanofibers: Antifouling and Conducting Biomaterial for Electrochemical DNA Sensing.

    PubMed

    Hui, Ni; Sun, Xiaotian; Niu, Shuyan; Luo, Xiliang

    2017-01-25

    Biofouling arising from nonspecific adsorption is a substantial outstanding challenge in diagnostics and disease monitoring, and antifouling sensing interfaces capable of reducing the nonspecific adsorption of proteins from biological complex samples are highly desirable. We present herein the preparation of novel composite nanofibers through the grafting of polyethylene glycol (PEG) polymer onto polyaniline (PANI) nanofibers and their application in the development of antifouling electrochemical biosensors. The PEGylated PANI (PANI/PEG) nanofibers possessed large surface area and remained conductive and at the same time demonstrated excellent antifouling performances in single protein solutions as well as complex human serum samples. Sensitive and low fouling electrochemical biosensors for the breast cancer susceptibility gene (BRCA1) can be easily fabricated through the attachment of DNA probes to the PANI/PEG nanofibers. The biosensor showed a very high sensitivity to target BRCA1 with a linear range from 0.01 pM to 1 nM and was also efficient enough to detect DNA mismatches with satisfactory selectivity. Moreover, the DNA biosensor based on the PEGylated PANI nanofibers supported the quantification of BRCA1 in complex human serum, indicating great potential of this novel biomaterial for application in biosensors and bioelectronics.

  19. PEGylation of Concanavalin A to decrease nonspecific interactions in a fluorescent glucose sensor

    NASA Astrophysics Data System (ADS)

    Abraham, Alexander A.; Cummins, Brian M.; Locke, Andrea K.; Grunlan, Melissa A.; Coté, Gerard L.

    2014-02-01

    The ability of people with diabetes to both monitor and regulate blood sugar levels is limited by the conventional "finger-prick" test that provides intermittent, single point measurements. Toward the development of a continuous glucose monitoring (CGM) system, the lectin, Concanavalin A (ConA), has been utilized as a component in a Förster resonance energy transfer (FRET), competitive glucose binding assay. Recently, to avoid reversibility problems associated with ConA aggregation, a suitable competing ligand labeled with 8-aminopyrene-1,3,6-trisulfonic acid trisodium salt (APTS) has been engineered. However, its ability to function as part of a glucose sensing assay is compromised due to the negative charge (at physiological pH) of native ConA that gives rise to non-specific binding with other ConA groups as well as with electrostatically charged assay-delivery carriers. To minimize these undesirable interactions, we have conjugated ConA with monomethoxy-poly(ethylene glycol) (mPEG) (i.e. "PEGylation"). In this preliminary research, fluorescently-labeled ConA was successfully PEGylated with mPEG-Nhydroxylsuccinimide( succinimidyl carbonate) (mPEG-NHS(SC)). The FRET response of APTS-labeled competing ligand (donor) conveyed an increase in the fluorescence intensity with increasing glucose concentrations.

  20. Irradiation Induced Fluorescence Enhancement in PEGylated Cyanine-based NIR Nano- and Meso-scale GUMBOS

    PubMed Central

    Lu, Chengfei; Das, Susmita; Magut, Paul K. S.; Li, Min; El Zahab, Bilal; Warner, Isiah M.

    2014-01-01

    We report on the synthesis and characterization of a PEGylated IR786 GUMBOS (Group of Uniform Materials Based on Organic Salts). The synthesis of this material was accomplished using a three step protocol: (1) substitution of chloride on the cyclohexenyl ring in the heptamethine chain of IR786 by 6-aminohexanoic acid, (2) grafting of methoxy poly ethyleneglycol (MeOPEG) onto the 6-aminohexanoic acid via an esterification reaction, and (3) anion exchange between [PEG786][I] and lithium bis(trifluoromethylsulfonyl)imide (LiNTf2) or sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in order to obtain PEG786 GUMBOS. Examination of spectroscopic data for this PEG786 GUMBOS indicates a large stokes shift (122 nm). It was observed that this PEG786 GUMBOS associates in aqueous solution to form nano-and meso-scale self-assemblies with sizes ranging from 100 to 220 nm. These nano- and meso-scale GUMBOS are also able to resist nonspecific binding to proteins. PEGylation of the original IR786 leads to reduced cytotoxicity. In addition, it was noted that anions, such as NTf2 and AOT, play a significant role in improving the photostability of PEG786 GUMBOS. Irradiation-induced J aggregation in [PEG786][NTf2] and to some extent in [PEG786][AOT] produced enhanced photostability. This observation was supported by use of both steady state and time-resolved fluorescence measurements. PMID:22957476

  1. Lactoferrin-modified PEGylated liposomes loaded with doxorubicin for targeting delivery to hepatocellular carcinoma

    PubMed Central

    Wei, Minyan; Guo, Xiucai; Tu, Liuxiao; Zou, Qi; Li, Qi; Tang, Chenyi; Chen, Bao; Xu, Yuehong; Wu, Chuanbin

    2015-01-01

    Lactoferrin (Lf) is a potential-targeting ligand for hepatocellular carcinoma (HCC) cells because of its specific binding with asialoglycoprotein receptor (ASGPR). In this present work, a doxorubicin (DOX)-loaded, Lf-modified, polyethylene glycol (PEG)ylated liposome (Lf-PLS) system was developed, and its targeting effect and antitumor efficacy to HCC was also explored. The DOX-loaded Lf-PLS system had spherical or oval vesicles, with mean particle size approximately 100 nm, and had an encapsulation efficiency of 97%. The confocal microscopy and flow cytometry indicated that the cellular uptake of Lf-PLS was significantly higher than that of PEGylated liposome (PLS) in ASGPR-positive cells (P<0.05) but not in ASGPR-negative cells (P>0.05). Cytotoxicity assay by MTT demonstrated that DOX-loaded Lf-PLS showed significantly stronger antiproliferative effects on ASGPR-positive HCC cells than did PLS without the Lf modification (P<0.05). The in vivo antitumor studies on male BALB/c nude mice bearing HepG2 xenografts demonstrated that DOX-loaded Lf-PLS had significantly stronger antitumor efficacy compared with PLS (P<0.05) and free DOX (P<0.05). All these results demonstrated that a DOX-loaded Lf-PLS might have great potential application for HCC-targeting therapy. PMID:26316745

  2. Direct quantitative 13 C-filtered 1 H magnetic resonance imaging of PEGylated biomacromolecules in vivo.

    PubMed

    Alvares, Rohan D A; Lau, Justin Y C; Macdonald, Peter M; Cunningham, Charles H; Prosser, R Scott

    2017-04-01

    1 H MRI is an established diagnostic method that generally relies on detection of water. Imaging specific macromolecules is normally accomplished only indirectly through the use of paramagnetic tags, which alter the water signal in their vicinity. We demonstrate a new approach in which macromolecular constituents, such as proteins and drug delivery systems, are observed directly and quantitatively in vivo using 1 H MRI of 13 C-labeled poly(ethylene glycol) ( 13 C-PEG) tags. Molecular imaging of 13 C-PEG-labeled species was accomplished by incorporating a modified heteronuclear multiple quantum coherence filter into a gradient echo imaging sequence. We demonstrate the approach by monitoring the real-time distribution of 13 C-PEG and 13 C-PEGylated albumin injected into the hind leg of a mouse. Filtering the 1 H PEG signal through the directly coupled 13 C nuclei largely eliminates background water and fat signals, thus enabling the imaging of molecules using 1 H MRI. PEGylation is widely employed to enhance the performance of a multitude of macromolecular therapeutics and drug delivery systems, and 13 C-filtered 1 H MRI of 13 C-PEG thus offers the possibility of imaging and quantitating their distribution in living systems in real time. Magn Reson Med 77:1553-1561, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. High incidence of symptomatic hyperammonemia in children with acute lymphoblastic leukemia receiving pegylated asparaginase.

    PubMed

    Heitink-Pollé, Katja M J; Prinsen, Berthil H C M T; de Koning, Tom J; van Hasselt, Peter M; Bierings, Marc B

    2013-01-01

    Asparaginase is a mainstay of treatment of childhood acute lymphoblastic leukemia. Pegylation of asparaginase extends its biological half-life and has been introduced in the newest treatment protocols aiming to further increase treatment success. Hyperammonemia is a recognized side effect of asparaginase treatment, but little is known about its incidence and clinical relevance. Alerted by a patient with severe hyperammonemia after introduction of the new acute lymphoblastic leukemia protocol, we analyzed blood samples and clinical data of eight consecutive patients receiving pegylated asparaginase (PEG-asparaginase) during their treatment of acute lymphoblastic leukemia. All patients showed hyperammonemia (>50 μmol/L) and seven patients (88 %) showed ammonia concentrations > 100 μmol/L. Maximum ammonia concentrations ranged from 89 to 400 μmol/L. Symptoms varied from mild anorexia and nausea to headache, vomiting, dizziness, and lethargy and led to early interruption of PEG-asparaginase in three patients. No evidence of urea cycle malfunction was found, so overproduction of ammonia through hydrolysis of plasma asparagine and glutamine seems to be the main cause. Interestingly, ammonia concentrations correlated with triglyceride values (r = 0.68, p < 0.0001), suggesting increased overall toxicity.The prolonged half-life of PEG-asparaginase may be responsible for the high incidence of hyperammonemia and warrants future studies to define optimal dosing schedules based on ammonia concentrations and individual asparagine and asparaginase measurements.

  4. How PEGylation enhances the stability and potency of insulin: a molecular dynamics simulation.

    PubMed

    Yang, Cheng; Lu, Diannan; Liu, Zheng

    2011-04-05

    While the effectiveness of PEGylation in enhancing the stability and potency of protein pharmaceuticals has been validated for years, the underlying mechanism remains poorly understood, particularly at the molecular level. A molecular dynamics simulation was developed using an annealing procedure that allowed an all-atom level examination of the interaction between PEG polymers of different chain lengths and a conjugated protein represented by insulin. It was shown that PEG became entangled around the protein surface through hydrophobic interaction and concurrently formed hydrogen bonds with the surrounding water molecules. In addition to enhancing its structural stability, as indicated by the root-mean-square difference (rmsd) and secondary structure analyses, conjugation increased the size of the protein drug while decreasing the solvent accessible surface area of the protein. All these thus led to prolonged circulation life despite kidney filtration, proteolysis, and immunogenic side effects, as experimentally demonstrated elsewhere. Moreover, the simulation results indicated that an optimal chain length exists that would maximize drug potency underpinned by the parameters mentioned above. The simulation provided molecular insight into the interaction between PEG and the conjugated protein at the all-atom level and offered a tool that would allow for the design of PEGylated protein pharmaceuticals for given applications.

  5. Validation of a Janus role of methotrexate-based PEGylated chitosan nanoparticles in vitro

    NASA Astrophysics Data System (ADS)

    Luo, Fanghong; Li, Yang; Jia, Mengmeng; Cui, Fei; Wu, Hongjie; Yu, Fei; Lin, Jinyan; Yang, Xiangrui; Hou, Zhenqing; Zhang, Qiqing

    2014-07-01

    Recently, methotrexate (MTX) has been used to target to folate (FA) receptor-overexpressing cancer cells for targeted drug delivery. However, the systematic evaluation of MTX as a Janus-like agent has not been reported before. Here, we explored the validity of using MTX playing an early-phase cancer-specific targeting ligand cooperated with a late-phase therapeutic anticancer agent based on the PEGylated chitosan (CS) nanoparticles (NPs) as drug carriers. Some advantages of these nanoscaled drug delivery systems are as follows: (1) the NPs can ensure minimal premature release of MTX at off-target site to reduce the side effects to normal tissue; (2) MTX can function as a targeting ligand at target site prior to cellular uptake; and (3) once internalized by the target cell, the NPs can function as a prodrug formulation, releasing biologically active MTX inside the cells. The (MTX + PEG)-CS-NPs presented a sustained/proteases-mediated drug release. More importantly, compared with the PEG-CS-NPs and (FA + PEG)-CS-NPs, the (MTX + PEG)-CS-NPs showed a greater cellular uptake. Furthermore, the (MTX + PEG)-CS-NPs demonstrated a superior cytotoxicity compare to the free MTX. Our findings therefore validated that the MTX-loaded PEGylated CS-NPs can simultaneously target and treat FA receptor-overexpressing cancer cells.

  6. Enhancement in ionic liquid tolerance of cellulase immobilized on PEGylated graphene oxide nanosheets: Application in saccharification of lignocellulose.

    PubMed

    Xu, Jiaxing; Sheng, Zhenhuan; Wang, Xinfeng; Liu, Xiaoyan; Xia, Jun; Xiong, Peng; He, Bingfang

    2016-01-01

    The objective of the present work was to improve ionic liquid (IL) tolerance of cellulase based on the exploration of functional nanoscale carriers for potential application in lignocellulosic biorefinery. PEGylated graphene oxide (GO) composite was successfully fabricated by chemical binding of 4-arm-PEG-NH2 and GO and applied to the immobilization of cellulase. The PEGylated GO-Cellulase retained 61% of the initial activity in 25% (w/v) 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) while free cellulase only retained 2%. The IL stability was enhanced more than 30 times. The relatively minor change in Km value (from 2.7 to 3.2mgmL(-1)) after the immobilization suggested that PEGylated GO-Cellulase was capable of closely mimicking the performance of free enzyme. After treating rice straw with [Bmim][Cl] and dilution to a final IL concentration of 15% (w/v), the slurry was directly hydrolyzed using PEGylated GO-Cellulase without IL removing and a high hydrolysis rate of 87% was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Preparation and evaluation of a new releasable PEGylated tumor necrosis factor-α (TNF-α) conjugate for therapeutic application.

    PubMed

    Dai, ChuanYun; Fu, Ya; Chen, ShaoCheng; Li, Biao; Yao, Bo; Liu, WanHong; Zhu, LiQing; Chen, Nan; Chen, Ji; Zhang, Qiang

    2013-01-01

    To design a releasable PEGylated TNF-α (rPEG-TNF-α), a cathepsin B-sensitive dipeptide (Val-Cit moiety) was inserted into conventional PEG-modified TNF-α (PEG-TNF-α), facilitating its clinical use for anti-tumor therapy. Comparative pharmacokinetic and pharmacodynamic studies showed that the half-lives of both PEGylated forms of TNF-α were ∼60-fold greater than that of unmodified TNF-α. In addition, the in vitro bioactivity of rPEG-TNF-α was greater than that of PEG-TNF-α with the same degree of PEG modification. Release of TNF-α from rPEG-TNF-α in vitro was dependent on the presence of cathepsin B and was inhibited by a cathepsin B inhibitor. Despite the potent cytotoxicity of unmodified TNF-α against normal cells, its PEGylated forms at higher TNF-α concentrations showed low cytotoxic activity against these cells. In contrast, both forms of PEGylated TNF-α showed potent cytotoxic activity against the B16 and L929 cell lines, with rPEG-TNF-α being 5- and 9-fold more potent, respectively, than PEG-TNF-α. Moreover, rPEG-TNF-α was a more potent in vivo antitumor agent than PEG-TNF-α.

  8. Enhanced circulation half-life of site-specific PEGylated rhG-CSF: optimization of PEG molecular weight.

    PubMed

    Zhai, Yanqin; Zhao, Yongjiang; Lei, Jiandu; Su, Zhiguo; Ma, Guanghui

    2009-07-15

    Recombinant human granulocyte colony stimulating factor (rhG-CSF) and its PEGylated product "mono-PEG20-GCSF" have already been widely used for treatment of all kinds of neutropenia. However, the high required dosage of mono-PEG20-GCSF made it relatively expensive in clinical use. We postulated that an N-terminal site-specific PEGylated rhG-CSF with higher PEG Mw (PEG30 kDa) might be able to achieve longer circulation half-life while retaining its bioactivity, allowing the reduction of dosage for clinical use. rhG-CSF was PEGylated at the N-terminus by 5 kDa, 10 kDa, 20 kDa and 30 kDa methoxy-poly(ethylene glycol)-propionaldehyde (mPEG-ALD), and the four PEGylates were compared with respect to reaction, separation, characterization and also in vivo/in vitro activity, results showed that the mPEG-ALD of higher Mw demonstrated better N-terminal site-specific selectivity, separation purity and yield. The production cost and in vitro activity of mono-PEG30-GCSF and mono-PEG20-GCSF were almost the same, while mono-PEG30-GCSF showed longer in vivo circulation half-life and 60% higher drug bioavailability than mono-PEG20-GCSF. Consequently, mono-PEG30-GCSF shall be administered at a lower dosage than mono-PEG20-GCSF while retaining the same therapeutic efficacy.

  9. Silica nanogelling of environment-responsive PEGylated polyplexes for enhanced stability and intracellular delivery of siRNA.

    PubMed

    Gouda, Noha; Miyata, Kanjiro; Christie, R James; Suma, Tomoya; Kishimura, Akihiro; Fukushima, Shigeto; Nomoto, Takahiro; Liu, Xueying; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2013-01-01

    In this study, poly(ethylene glycol) (PEG)-block-polycation/siRNA complexes (PEGylated polyplexes) were wrapped with a hydrated silica, termed "silica nanogelling", in order to enhance their stability and functionality. Silica nanogelling was achieved by polycondensation of soluble silicates onto the surface of PEGylated polyplexes comprising a disulfide cross-linked core. Formation of silica nanogel layer on the PEGylated cross-linked polyplexes was confirmed by particle size increase, surface charge reduction, and elemental analysis of transmission electron micrographs. Silica nanogelling substantially improved polyplex stability against counter polyanion-induced dissociation under non-reductive condition, without compromising the reductive environment-responsive siRNA release triggered by disulfide cleavage. Silica nanogelling significantly enhanced the sequence-specific gene silencing activity of the polyplexes in HeLa cells without associated cytotoxicity, probably due lower endosomal entrapment (or lysosomal degradation) of delivered siRNA. The lower endosomal entrapment of the silica nanogel system could be explained by an accelerated endosomal escape triggered by deprotonated silanol groups in the silica (the proton sponge hypothesis) and/or a modulated intracellular trafficking, possibly via macropinocytosis, as evidenced by the cellular uptake inhibition assay. Henceforth, silica nanogelling of PEGylated siRNA polyplexes is a promising strategy for preparation of stable and functional siRNA delivery vehicles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. pH-sensitive multi-PEGylated block copolymer as a bioresponsive pDNA delivery vector.

    PubMed

    Lai, Tsz Chung; Bae, Younsoo; Yoshida, Takayuki; Kataoka, Kazunori; Kwon, Glen S

    2010-11-01

    A reversibly-PEGylated diblock copolymer, poly(aspartate-hydrazide-poly(ethylene glycol))-block-poly(aspartate-diaminoethane) (p[Asp(Hyd-PEG)]-b-p[Asp(DET)]) was reported here for enhanced gene transfection and colloidal stability. The diblock copolymer possessed a unique architecture based on a poly(aspartamide) backbone. The first block, p[Asp(Hyd)], was used for multi-PEG conjugations, and the second block, p[Asp(DET)], was used for DNA condensation and endosomal escape. p[Asp(Hyd-PEG)]-b-p[Asp(DET)] was synthesized and characterized by (1)H-NMR. Polyplexes were formed by mixing the synthesized polymers and pDNA. The polyplex size, ζ-potential, and in vitro transfection efficiency were determined by dynamic light scattering, ζ-potential measurements, and luciferase assays, respectively. pH-dependent release of PEG from the polymer was monitored by cationic-exchange chromatography. The polyplexes were 70-90 nm in size, and the surface charge was effectively shielded by a PEG layer. The transfection efficiency of the reversibly PEGylated polyplexes was confirmed to be comparable to that of the non-PEGylated counterparts and 1,000 times higher than that of the irreversibly PEGylated polyplexes. PEG release was demonstrated to be pH-sensitive. Fifty percent of the PEG was released within 30 min at pH 5, while the polymer incubated at pH 7.4 could still maintain 50% of PEG after 8 h. The reversibly PEGylated polyplexes were shown to maintain polyplex stability without compromising transfection efficiency.

  11. Aldehyde PEGylation of laccase from Trametes versicolor in route to increase its stability: effect on enzymatic activity.

    PubMed

    Mayolo-Deloisa, Karla; González-González, Mirna; Simental-Martínez, Jesús; Rito-Palomares, Marco

    2015-03-01

    Laccase is a multicopper oxidase that catalyzes the oxidation of phenolic compounds. Laccase can be used in bioremediation, beverage (wine, fruit juice, and beer) processing, ascorbic acid determination, sugar beet pectin gelation baking, and as a biosensor. Recently, the antiproliferative activity of laccase toward tumor cells has been reported. Because of the potential applications of this enzyme, the efforts for enhancing and stabilizing its activity have increased. Thus, the PEGylation of laccase can be an alternative. PEGylation is the covalent attachment of one or more molecules of methoxy poly(ethylene glycol) (mPEG) to a protein. Normally, during the PEGylation reaction, the activity is reduced but the stability increases; thus, it is important to minimize the loss of activity. In this work, the effects of molar ratio (1:4, 1:8, and 1:12), concentration of laccase (6 and 12 mg/ml), reaction time (4 and 17 h), molecular weight, and type of mPEG (20, 30, 40 kDa and 40 kDa-branched) were analyzed. The activity was measured using three substrates: ABTS, 2,6-dimethoxyphenol, and syringaldazine. The best conditions for laccase PEGylation were 12 mg/ml of laccase, molar ratio 1:4, and 4 h reaction time. Under these conditions, the enzyme was able to maintain nearly 100% of its enzymatic activity with ABTS. The PEGylation of laccase has not been extensively explored, so it is important to analyze the effects of this bioconjugation in route to produce a robust modified enzyme. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Method of recertifying a loaded bearing member

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor)

    1992-01-01

    A method is described of recertifying a loaded bearing member using ultrasound testing to compensate for different equipment configurations and temperature conditions. The standard frequency F1 of a reference block is determined via an ultrasonic tone burst generated by a first pulsed phased locked loop (P2L2) equipment configuration. Once a lock point number S is determined for F1, the reference frequency F1a of the reference block is determined at this lock point number via a second P2L2 equipment configuration to permit an equipment offset compensation factor Fo1=((F1-F1a)/F1)(1000000) to be determined. Next, a reference frequency F2 of the unloaded bearing member is determined using a second P2L2 equipment configuration and is then compensated for equipment offset errors via the relationship F2+F2(Fo1)/1000000. A lock point number b is also determined for F2. A resonant frequency F3 is determined for the reference block using a third P2L2 equipment configuration to determine a second offset compensation factor F02=((F1-F3)/F1) 1000000. Next the resonant frequency F4 of the loaded bearing member is measured at lock point number b via the third P2L2 equipment configuration and the bolt load determined by the relationship (-1000000)CI(((F2-F4)/F2)-Fo2), wherein CI is a factor correlating measured frequency shift to the applied load. Temperature compensation is also performed at each point in the process.

  13. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery.

    PubMed

    Lu, Wei; Zhang, Yan; Tan, Yu-Zhen; Hu, Kai-Li; Jiang, Xin-Guo; Fu, Shou-Kuan

    2005-10-20

    In this paper, a novel drug carrier for brain delivery, cationic bovine serum albumin (CBSA) conjugated with poly(ethyleneglycol)-poly(lactide) (PEG-PLA) nanoparticle (CBSA-NP), was developed and its effects were evaluated. The copolymers of methoxy-PEG-PLA and maleimide-PEG-PLA were synthesized by ring opening polymerization of D,L-lactide initiated by methoxy-PEG and maleimide-PEG, respectively, which were applied to prepare pegylated nanoparticles by means of double emulsion and solvent evaporation procedure. Native bovine serum albumin (BSA) was cationized and thiolated, followed by conjugation through the maleimide function located at the distal end of PEG surrounding the nanoparticle's surface. Transmission electron micrograph (TEM) and dynamic light scattering results showed that CBSA-NP had a round and regular shape with a mean diameter around 100 nm. Surface nitrogen was detected by X-ray photoelectron spectroscopy (XPS), and colloidal gold stained around the nanoparticle's surface was visualized in TEM, which proved that CBSA was covalently conjugated onto its surface. To evaluate the effects of brain delivery, BSA conjugated with pegylated nanoparticles (BSA-NP) was used as the control group and 6-coumarin was incorporated into the nanoparticles as the fluorescent probe. The qualitative and quantitative results of CBSA-NP uptake experiment compared with those of BSA-NP showed that rat brain capillary endothelial cells (BCECs) took in much more CBSA-NP than BSA-NP at 37 degrees C, at different concentrations and time incubations. After a dose of 60 mg/kg CBSA-NP or BSA-NP injection in mice caudal vein, fluorescent microscopy of brain coronal sections showed a higher accumulation of CBSA-NP in the lateral ventricle, third ventricle and periventricular region than that of BSA-NP. There was no difference on BCECs' viability between CBSA-conjugated and -unconjugated pegylated nanoparticles. The significant results in vitro and in vivo showed that CBSA-NP was

  14. Targeting hepatic cancer cells with pegylated dendrimers displaying N-acetylgalactosamine and SP94 peptide ligands.

    PubMed

    Medina, Scott H; Tiruchinapally, Gopinath; Chevliakov, Maxim V; Durmaz, Yasemin Yuksel; Stender, Rachell N; Ensminger, William D; Shewach, Donna S; Elsayed, Mohamed E H

    2013-10-01

    Poly(amidoamine) (PAMAM) dendrimers are branched water-soluble polymers defined by consecutive generation numbers (Gn) indicating a parallel increase in size, molecular weight, and number of surface groups available for conjugation of bioactive agents. In this article, we compare the biodistribution of N-acetylgalactosamine (NAcGal)-targeted [(14) C]1 -G5-(NH2 )5 -(Ac)108 -(NAcGal)14 particles to non-targeted [(14) C]1 -G5-(NH2 )127 and PEGylated [(14) C]1 -G5-(NH2 )44 -(Ac)73 -(PEG)10 particles in a mouse hepatic cancer model. Results show that both NAcGal-targeted and non-targeted particles are rapidly cleared from the systemic circulation with high distribution to the liver. However, NAcGal-targeted particles exhibited 2.5-fold higher accumulation in tumor tissue compared to non-targeted ones. In comparison, PEGylated particles showed a 16-fold increase in plasma residence time and a 5-fold reduction in liver accumulation. These results motivated us to engineer new PEGylated G5 particles with PEG chains anchored to the G5 surface via acid-labile cis-aconityl linkages where the free PEG tips are functionalized with NAcGal or SP94 peptide to investigate their potential as targeting ligands for hepatic cancer cells as a function of sugar conformation (α versus β), ligand concentration (100-4000 nM), and incubation time (2 and 24 hours) compared to fluorescently (Fl)-labeled and non-targeted G5-(Fl)6 -(NH2 )122 and G5-(Fl)6 -(Ac)107 -(cPEG)15 particles. Results show G5-(Fl)6 -(Ac)107 -(cPEG[NAcGalβ ])14 particles achieve faster uptake and higher intracellular concentrations in HepG2 cancer cells compared to other G5 particles while escaping the non-specific adsorption of serum protein and phagocytosis by Kupffer cells, which make these particles the ideal carrier for selective drug delivery into hepatic cancer cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Characterization of singly and multiply PEGylated insulin isomers by reversed-phase ultra-performance liquid chromatography interfaced with ion mobility mass spectrometry.

    PubMed

    Gerislioglu, Selim; Adams, Scott R; Wesdemiotis, Chrys

    2018-04-03

    Conjugation of poly(ethylene glycol) (PEG) to protein drugs (PEGylation) is increasingly utilized in the biotherapeutics field because it improves significantly the drugs' circulatory half-life, solubility, and shelf-life. The activity of a PEGylated drug depends on the number, size, and location of the attached PEG chain(s). This study introduces a 2D separation approach, including reversed-phase ultra-performance liquid chromatography (RP-UPLC) and ion mobility mass spectrometry (IM-MS), in order to determine the structural properties of the conjugates, as demonstrated for a PEGylated insulin sample that was prepared by random amine PEGylation. The UPLC dimension allowed separation based on polarity. Electrospray ionization (ESI) of the eluates followed by in-source dissociation (ISD) truncated the PEG chains and created insulin fragments that provided site-specific information based on whether they contained a marker at the potential conjugation sites. Separation of the latter fragments by size and charge in the orthogonal IM dimension (pseudo-4D UPLC-ISD-IM-MS approach) enabled clear detection and identification of the positional isomers formed upon PEGylation. The results showed a highly heterogeneous mixture of singly and multiply conjugated isomers plus unconjugated material. PEGylation was observed on all three possible attachment sites (ε-NH 2 of LysB29, A- and B-chain N-termini). Each PEGylation site was validated by analysis of the same product after disulfide bond cleavage, so that the PEGylated A- and B- chain could be individually characterized with the same pseudo-4D UPLC-ISD-IM-MS method. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Virioplankton 'pegylation': use of PEG (polyethylene glycol) to concentrate and purify viruses in pelagic ecosystems.

    PubMed

    Colombet, J; Robin, A; Lavie, L; Bettarel, Y; Cauchie, H M; Sime-Ngando, T

    2007-12-01

    We have described the use of Polyethylene glycol (PEG) for the precipitation of natural communities of aquatic viruses, and its comparison with the usual concentration method based on ultracentrifugation. Experimental samples were obtained from different freshwater ecosystems whose trophic status varied. Based on transmission electron microscope observations and counting of phage-shaped particles, our results showed that the greatest recovery efficiency for all ecosystems was obtained when we used the PEG protocol. On average, this protocol allowed the recovery of >2-fold more viruses, compared to ultracentrifugation. In addition, the diversity of virioplankton, based on genomic size profiling using pulsed field gel electrophoresis, was higher and better discriminated when we used the PEG method. We conclude that pegylation offers a valid, simple and cheaper alternative method to ultracentrifugation, for the concentration and the purification of pelagic viruses.

  17. Pegylated interferon de novo-induce autoimmune haemolytic anaemia in chronic hepatitis C patient.

    PubMed

    Said, Ashraf; Elbahrawy, Ashraf; Alfiomy, Mohamed; Abdellah, Mohamed; Shahat, Khaled; Salah, Mohamed; Mostafa, Sadek; Elwassief, Ahmed; Aboelfotoh, Attef; Abdelhafeez, Hafez; El-Sherif, Assem

    2011-08-11

    A 55-year-old Egyptian woman with chronic hepatitis C undergoing treatment with pegylated interferon (Peg-IFN) alfa-2a plus ribavirin was referred to our hospital on November 2010 with prolonged easy fatigability and an attack of syncope; she had no prior history of autoimmune disorders or allergy. Laboratory investigations documented the presence of Peg-IFN induced autoimmune haemolytic anaemia and autoimmune thyroiditis. Intravenous γ globulin (IVGG) failed to correct the autoimmune process; on the other hand steroid therapy dramatically corrected both haematological and thyroid values, and step down the immune process. Our report indicated that Peg-IFN de novo-induce autoimmune haemolysis, documenting a previous report. IVGG failed to step down the immune process in our case.

  18. Pegylated interferon de novo-induce autoimmune haemolytic anaemia in chronic hepatitis C patient

    PubMed Central

    Said, Ashraf; Elbahrawy, Ashraf; Alfiomy, Mohamed; Abdellah, Mohamed; Shahat, Khaled; Salah, Mohamed; Mostafa, Sadek; Elwassief, Ahmed; Aboelfotoh, Attef; Abdelhafeez, Hafez; El-Sherif, Assem

    2011-01-01

    A 55-year-old Egyptian woman with chronic hepatitis C undergoing treatment with pegylated interferon (Peg-IFN) alfa-2a plus ribavirin was referred to our hospital on November 2010 with prolonged easy fatigability and an attack of syncope; she had no prior history of autoimmune disorders or allergy. Laboratory investigations documented the presence of Peg-IFN induced autoimmune haemolytic anaemia and autoimmune thyroiditis. Intravenous γ globulin (IVGG) failed to correct the autoimmune process; on the other hand steroid therapy dramatically corrected both haematological and thyroid values, and step down the immune process. Our report indicated that Peg-IFN de novo-induce autoimmune haemolysis, documenting a previous report. IVGG failed to step down the immune process in our case. PMID:22688484

  19. Acute pancreatitis associated with pegylated interferon-alpha-2a therapy in chronic hepatitis C.

    PubMed

    Choi, Jong Wook; Lee, June Sung; Paik, Woo Hyun; Song, Tae Jun; Kim, Jung Wook; Bae, Won Ki; Kim, Kyung-Ah; Kim, Jung Gon

    2016-03-01

    Chronic hepatitis C virus (HCV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma. Combination therapy of pegylated interferon-alpha (PEG-IFN-α) and ribavirin (RBV) is a current standard treatment for chronic HCV infection in Korea, which has considerable adverse effects. Acute pancreatitis is a rare complication of PEG-IFN-α administration. We report a case of a 62-year-old female who experienced acute pancreatitis after 4 weeks of PEG-IFN-α-2a and RBV combination therapy for chronic HCV infection. The main cause of the acute pancreatitis in this case was probably PEG-IFN-α rather than RBV for several reasons. A few cases have been reported in which acute pancreatitis occurred during treatment with PEG-IFN-α-2b. This is the first report of acute pancreatitis associated with PEG-IFN-α-2a in Korea.

  20. Acute pancreatitis associated with pegylated interferon-alpha-2a therapy in chronic hepatitis C

    PubMed Central

    Choi, Jong Wook; Lee, June Sung; Paik, Woo Hyun; Song, Tae Jun; Kim, Jung Wook; Bae, Won Ki; Kim, Kyung-Ah; Kim, Jung Gon

    2016-01-01

    Chronic hepatitis C virus (HCV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma. Combination therapy of pegylated interferon-alpha (PEG-IFN-α) and ribavirin (RBV) is a current standard treatment for chronic HCV infection in Korea, which has considerable adverse effects. Acute pancreatitis is a rare complication of PEG-IFN-α administration. We report a case of a 62-year-old female who experienced acute pancreatitis after 4 weeks of PEG-IFN-α-2a and RBV combination therapy for chronic HCV infection. The main cause of the acute pancreatitis in this case was probably PEG-IFN-α rather than RBV for several reasons. A few cases have been reported in which acute pancreatitis occurred during treatment with PEG-IFN-α-2b. This is the first report of acute pancreatitis associated with PEG-IFN-α-2a in Korea. PMID:27044768

  1. Pegylated liposomal doxorubicin in the treatment of primary cutaneous T-cell lymphomas.

    PubMed

    Pulini, Stefano; Rupoli, Serena; Goteri, Gaia; Pimpinelli, Nicola; Alterini, Renato; Tassetti, Angela; Scortechini, Anna Rita; Offidani, Massimo; Mulattieri, Simonetta; Stronati, Andrea; Brandozzi, Giuliano; Giacchetti, Alfredo; Mozzicafreddo, Giorgio; Ricotti, Giuseppe; Filosa, Giorgio; Bettacchi, Alberta; Simonacci, Marco; Novelli, Nicolino; Leoni, Pietro

    2007-05-01

    Pegylated liposomal doxorubicin (Peg-Doxo) is a promising drug for advanced/recalcitrant primary cutaneous T-cell lymphomas (CTCLs). This prospective phase II trial enrolled 19 patients. We observed overall and complete response rates of 84.2% and 42.1% (with no significant differences between stage I-IIA and IIB-IV patients), and 11% grade III/IV toxicity. After a maximum 46 month-follow-up, median overall (OS), event-free (EFS) and progression-free (PFS) survival were 34, 18 and 19 months. OS, EFS and PFS rates at 46 months were 44%, 30% and 37% respectively. Peg-Doxo seems to be an active and safe principle that should be used in plurirelapsed, early stage-MF and in combination with other chemotherapeutic agents in advanced and aggressive CTCLs.

  2. Cerebrospinal fluid asparagine depletion during pegylated asparaginase therapy in children with acute lymphoblastic leukaemia.

    PubMed

    Henriksen, Louise T; Nersting, Jacob; Raja, Raheel A; Frandsen, Thomas L; Rosthøj, Steen; Schrøder, Henrik; Albertsen, Birgitte K

    2014-07-01

    L-asparaginase is an important drug in the treatment of childhood acute lymphoblastic leukaemia (ALL). Cerebrospinal fluid (CSF) asparagine depletion is considered a marker of asparaginase effect in the central nervous system (CNS) and may play a role in CNS-directed anti-leukaemia therapy. The objective of this study was to describe CSF asparagine depletion during 30 weeks of pegylated asparaginase therapy, 1000 iu/m(2) i.m. every second week, and to correlate CSF asparagine concentration with serum L-asparaginase enzyme activity. Danish children (1-17 years) with ALL, treated according to the Nordic Society of Paediatric Haematology and Oncology ALL2008 protocol, standard and intermediate risk, were included. CSF samples were obtained throughout L-asparaginase treatment at every scheduled lumbar puncture. A total of 128 samples from 31 patients were available for analysis. Median CSF asparagine concentration decreased from a pre-treatment level of 5·3 μmol/l to median levels ≤1·5 μmol/l. However, only 4/31 patients (five samples) had CSF asparagine concentrations below the limit of detection (0·1 μmol/l). In 11 patients, 24 paired same day serum and CSF samples were obtained. A decrease in CSF asparagine corresponded to serum enzyme activities above 50 iu/l. Higher serum enzyme activities were not followed by more extensive depletion. In conclusion, pegylated asparaginase 1000 iu/m(2) i.m. every second week effectively reduced CSF asparagine levels. © 2014 John Wiley & Sons Ltd.

  3. Dynamics and stability of lipid bilayers modulated by thermosensitive polypeptides, cholesterols, and PEGylated lipids.

    PubMed

    Lee, Hwankyu; Kim, Hyun Ryoung; Park, Jae Chan

    2014-02-28

    Lipid bilayers, which consist of dipalmitoylglycerophosphocholines (DPPCs), PEGylated lipids, cholesterols, and elastin-like polypeptides (ELPs; [VPGVG]3) at different molar ratios, were simulated. Simulations were carried out for 2 μs using the coarse-grained (CG) model that had captured the experimentally observed phase behavior of PEGylated lipids and lateral diffusivity of DPPC bilayers. Starting with the initial position of ELPs on the bilayer surface, ELPs insert into the hydrophobic region of the bilayer because of their interaction with lipid tails, consistent with previous all-atom simulations. Lateral diffusion coefficients of DPPCs significantly increase in the bilayer composed of more ELPs and less cholesterols, showing their opposite effects on the bilayer dynamics. In particular, ELPs modulate the dynamics and phase for the disordered liquid bilayer, but not for the ordered gel bilayer, indicating that ELPs can destabilize only the disordered bilayer. In the ordered bilayer, ELP chains tend to have a spherical shape and slowly diffuse, while they are extended and diffuse faster in the disordered bilayer, indicating the effect of the bilayer phase on the conformation and diffusivity of ELPs. These findings explain the experimental observation that the ELP-conjugated liposomes are stable at 310 K (ordered phase) but become unstable and release the encapsulated drugs at 315 K (disordered phase), which suggests the effects of ELPs and cholesterols. Since the cholesterol-stabilized bilayer can be destabilized by the extended shaped ELPs only in the disordered phase (not in the ordered phase), the inclusion of cholesterols is required to safely shield drugs at 310 K as well as allow ELPs to disrupt lipids and destabilize the liposomes at 315 K.

  4. PEGylated PEI-based biodegradable polymers as non-viral gene vectors.

    PubMed

    Huang, Fu-Wei; Wang, Hui-Yuan; Li, Cao; Wang, Hua-Fen; Sun, Yun-Xia; Feng, Jun; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2010-11-01

    Novel functional biodegradable gene vectors, poly(L-succinimide)-g-polyethylenimines-g-poly(ethylene glycol) (PSI-g-PEI-g-PEGs) were synthesized by conjugating methoxy poly(ethylene glycol) (mPEG, M(w)=750 Da) to PEI segments (M(w)=800 Da) of PSI-g-PEI. The physicochemical properties of PSI-g-PEI-g-PEGs, including buffering capability, pDNA binding ability, cytotoxicity, zeta potential and the particle size of polymer/pDNA complexes, were explored. The influence of PEGylation was discussed based on a comparative study of PSI-g-PEI-g-PEGs, PSI-g-PEI and PEI25k (M(w)=25 kDa). SEM images revealed that PSI-g-PEI-g-PEG/pDNA particles have a regular shape with the diameter ranging from 70 to 170 nm. PEGylation could suppress the aggregation occurrence between complexes, resulting in a reduction of the polymer/pDNA complex size. PSI-g-PEI-g-PEGs exhibited remarkably lower cytotoxicity compared to PSI-g-PEI and PEI25k. In 293T and HeLa cells, the obtained PSI-g-PEI-g-PEGs showed very high transfection efficiency compared to PEI25k. Fluorescent confocal microscopy demonstrated that PSI-g-PEI-g-PEGs could effectively transport pGL-3 plasmids into the nuclei of HeLa cells. Taking into account the continued high transfection efficacy and decreased toxicity after PEG modification, PSI-g-PEI-g-PEGs show great potential as the non-viral vectors for gene transfection. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Combined pegylated interferon and ribavirin for the management of chronic hepatitis C in a prison setting.

    PubMed

    Sabbatani, Sergio; Giuliani, Ruggero; Manfredi, Roberto

    2006-08-01

    The elevated frequency of chronic hepatitis C virus (HCV) infection found among prison inmates, and the availability of improved pharmacological cure for this potentially life-threatening disorder, make investigations conducted in this somewhat neglected area very relevant, since only a few, open-label experiences have been reported till now. In the metropolitan prison of Bologna (Italy), HCV seroprevalence was found to be over 31% in 2003, so that a pilot feasibility study based on treatment with pegylated interferon plus ribavirin was initiated, after careful counseling carried out by a joint commission of health care personnel of the correctional facility and infectious diseases consultants. Thirty-nine patients were enrolled, and despite expected dropouts due to difficulty in maintaining the same level of counseling pressure over time, and the particularly unfavorable climatic conditions during Summer 2003, a sustained virological response was obtained for 8 out of the 21 patients who remained evaluable after the first three month follow-up, although we need to take into account that a high percentage of subjects (67%) were selected for therapy due to their favorable HCV genotypes (types 2 and 3). Our preliminary experience shows that an intrinsically complicated therapy, such as the administration of pegylated interferon plus ribavirin, can attain a relatively high success rate, even in a very unfavorable and uncomfortable context, such as a prison, where only enforced counseling, active participation of institutional health care operators, and patient's willingness to maintain an elevated level of co-operation and adherence, can overcome most structural and relational difficulties.

  6. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo.

    PubMed

    Alibolandi, Mona; Taghdisi, Seyed Mohammad; Ramezani, Pouria; Hosseini Shamili, Fazileh; Farzad, Sara Amel; Abnous, Khalil; Ramezani, Mohammad

    2017-03-15

    In the current study camptothecin-loaded pegylated PAMAM dendrimer were synthesized and were functionalized with AS1411 anti-nucleolin aptamers for site-specific targeting against colorectal cancer cells which over expresses nucleolin receptors. The morphological properties and size dispersity of the prepared nanoparticles were evaluated using transmission electron microscope (TEM) and DLS. The drug-loading content and encapsulation efficiency were obtained 8.1% and 93.67% respectively. The in vitro release of camptothecin from the formulation was provided the sustained release of encapsulated camptothecin during 4days. Comparative in vitro cytotoxicity experiments demonstrated that the targeted camptothecin loaded-pegylated dendrimers had higher antiproliferation activity, towards nucleolin-positive HT29 and C26 colorectal cancer cells than nucleolin-negative CHO cell line. Fluorscence microscopy and flow cytometry also confirmed the enhanced cellular uptake of AS1411 targeted pegylated-dendrimer. In vivo study in C26 tumor-bearing BALB/C mice revealed that the AS1411-functionalized camptothecin loaded pegylated dendrimers improved antitumor activity and survival rate of the encapsulated camptothecin. Conjugation of AS1411 aptamer to the camptothecin loaded-pegylated dendrimer surface provides site-specific delivery of camptothecin, inhibit C26 tumor growth in vivo and significantly decrease systemic toxicity. These results suggested that the new nucleolin-targeted pegylated PAMAM dendrimer as a delivery system for camptothecin have the potential for the treatment of nucleolin-overexpressed colorectal cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The diffusion dynamics of PEGylated liposomes in the intact vitreous of the ex vivo porcine eye: A fluorescence correlation spectroscopy and biodistribution study.

    PubMed

    Eriksen, Anne Z; Brewer, Jonathan; Andresen, Thomas L; Urquhart, Andrew J

    2017-04-30

    The diffusion dynamics of nanocarriers in the vitreous and the influence of nanocarrier physicochemical properties on these dynamics is an important aspect of the efficacy of intravitreal administered nanomedicines for the treatment of posterior segment eye diseases. Here we use fluorescence correlation spectroscopy (FCS) to determine liposome diffusion coefficients in the intact vitreous (D Vit ) of ex vivo porcine eyes using a modified Miyake-Apple technique to minimize the disruption of the vitreous fine structure. We chose to investigate whether the zeta potential of polyethylene glycol functionalized (i.e. PEGylated) liposomes altered liposome in situ diffusion dynamics in the vitreous. Non-PEGylated cationic nanocarriers have previously shown little to no diffusion in the vitreous, whilst neutral and anionic have shown diffusion. The liposomes investigated had diameters below 150nm and zeta potentials ranging from -20 to +12mV. We observed that PEGylated cationic liposomes had significantly lower D Vit values (1.14μm 2 s -1 ) than PEGylated neutral and anionic liposomes (2.78 and 2.87μm 2 s -1 ). However, PEGylated cationic liposomes had a similar biodistribution profile across the vitreous to the other systems. These results show that PEGylated cationic liposomes with limited cationic charge can diffuse across the vitreous and indicate that the vitreous as a barrier to nanocarriers (Ø<500nm) is more complicated than simply an electrostatic barrier as previously suggested. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mono-PEGylation of Alpha-MMC and MAP30 from Momordica charantia L.: Production, Identification and Anti-Tumor Activity.

    PubMed

    Sun, Yun; Sun, Fenghui; Li, Jianlong; Wu, Minlu; Fan, Xiang; Meng, Yanfa; Meng, Yao

    2016-10-31

    PEGylation is a well-established and effective strategy to decrease immunogenicity, which can increase the stability and in vivo half-life time. However, the generation of multi-site modified products is inevitable due to the lysine chemistry, which will bring difficulties in subsequent research, such as purification and quantification. Site-specific modification by mPEG-succinimidyl carbonate (mPEG-SC) is a widely used method for N -terminal conjugation. In this study, we used it for site-directed modification on two ribosome-inactivating proteins (RIPs), alpha-momorcharin (α-MMC) and momordica anti-HIV protein (MAP30), from Momordica charantia L. According to the optimization of previous modification conditions, we compared Macro-Cap SP with SP-Sepharose FF chromatography for separating the final mPEGylated RIPs. Two kinds of methods both can obtain homogenous mPEGylated RIPs which were identified by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focusing electrophoresis (IEF), and matrix-assisted laser desorption ionization-time of flight/time of flight (MALDI-TOF/TOF) analysis. We also used iodine staining method to detect the amount of unmodified PEG. Furthermore, the inhibition activity of both mPEGylated and non-PEGylated RIPs against human lung adenocarcinoma epithelial A549 cells was detected. All of the results suggested that the mPEGylated α-MMC/MAP30 might be potentially developed as new anti-tumor drugs.

  9. Branch retinal vein thrombosis and visual loss probably associated with pegylated interferon therapy of chronic hepatitis C

    PubMed Central

    Gonçalves, Luciana Lofego; Farias, Alberto Queiroz; Gonçalves, Patrícia Lofego; D’Amico, Elbio Antonio; Carrilho, Flair José

    2006-01-01

    Ophthalmological complications with interferon therapy are usually mild and reversible, not requiring the withdrawal of the treatment. We report a case of a patient who had visual loss probably associated with interferon therapy. Chronic hepatitis C virus infection (genotype 1a) was diagnosed in a 33-year old asymptomatic man. His past medical history was unremarkable and previous routine ophthalmologic check-up was normal. Pegylated interferon alpha and ribavirin were started. Three weeks later he reported painless reduction of vision. Ophthalmologic examination showed extensive intraretinal hemorrhages and cotton-wool spots, associated with inferior branch retinal vein thrombosis. Antiviral therapy was immediately discontinued, but one year later he persists with severely decreased visual acuity. This case illustrates the possibility of unpredictable and severe complications during pegylated interferon therapy. PMID:16874884

  10. Incidence of retinopathy in chronic hepatitis C patients treated with pegylated interferon alpha 2a and ribavirin combination therapy

    PubMed Central

    Kashif, Muhammad; Saleem, Muhammad Khurram; Farooka, Imran Khan; Husnain, Amina; Siddiqui, Arif Mahmood

    2015-01-01

    Objectives: The objective of this study was to determine the incidence of retinopathy in chronic hepatitis C patients treated with Pegylated interferon alpha 2a and Ribavirin. Methods: This descriptive case series study was conducted in Medical Unit II of the Jinnah Hospital Lahore from September 2012 to February 2013. One hundred chronic hepatitis C patients visiting Medical Unit II outpatient department fulfilling inclusion criteria were selected for this study via non probability purposive sampling. Patients were started on pegylated interferon and ribavirin combination therapy. Subjects were subjected to dilated eye fundoscopic examination at the start of therapy and then after three months of the therapy. Results: One hundred patients were included in this study. Out of these 100 patients 5% developed retinopathy whereas fundus examination was normal in rest of the patients. Conclusion: Interferon therapy can lead to retinopathy. Periodic fundoscopic examinations help in early detection and prevent progression to permanent visual loss. PMID:25878638

  11. Incidence of retinopathy in chronic hepatitis C patients treated with pegylated interferon alpha 2a and ribavirin combination therapy.

    PubMed

    Kashif, Muhammad; Saleem, Muhammad Khurram; Farooka, Imran Khan; Husnain, Amina; Siddiqui, Arif Mahmood

    2015-01-01

    The objective of this study was to determine the incidence of retinopathy in chronic hepatitis C patients treated with Pegylated interferon alpha 2a and Ribavirin. This descriptive case series study was conducted in Medical Unit II of the Jinnah Hospital Lahore from September 2012 to February 2013. One hundred chronic hepatitis C patients visiting Medical Unit II outpatient department fulfilling inclusion criteria were selected for this study via non probability purposive sampling. Patients were started on pegylated interferon and ribavirin combination therapy. Subjects were subjected to dilated eye fundoscopic examination at the start of therapy and then after three months of the therapy. One hundred patients were included in this study. Out of these 100 patients 5% developed retinopathy whereas fundus examination was normal in rest of the patients. Interferon therapy can lead to retinopathy. Periodic fundoscopic examinations help in early detection and prevent progression to permanent visual loss.

  12. Hydroxychloroquine augments early virological response to pegylated interferon plus ribavirin in genotype-4 chronic hepatitis C patients.

    PubMed

    Helal, Gouda Kamel; Gad, Magdy Abdelmawgoud; Abd-Ellah, Mohamed Fahmy; Eid, Mahmoud Saied

    2016-12-01

    The therapeutic effect of pegylated interferon (peg-IFN) alfa-2a combined with ribavirin (RBV) on chronic hepatitis C Egyptian patients is low and further efforts are required to optimize this therapy for achievement of higher rates of virological response. This study aimed to evaluate the safety and efficacy of hydroxychloroquine (HCQ) in combination with pegylated interferon plus ribavirin on early virological response (EVR) in chronic hepatitis C Egyptian patients. Naïve 120 Egyptian patients with chronic hepatitis C virus infection were divided into two groups. Group 1 have administered the standard of care therapy (pegylated interferon alfa-2a plus ribavirin) for 12 weeks, (n = 60). Group 2 have administered hydroxychloroquine plus standard of care therapy for 12 weeks, (n = 60). Therapeutics included hydroxychloroquine (200 mg) oral twice daily, peginterferon alfa-2a (160 μg) subcutaneous once weekly and oral weight-based ribavirin (1000-1200 mg/day). Baseline characteristics were similar in the two groups. The percentage of early virological response was significantly more in patients given the triple therapy than in patients given the standard of care [54/60 (90%) vs. 43/60 (71.7%); P = 0.011; respectively]. Biochemical response at week 12 was also significantly higher in patients given the triple therapy compared with the standard of care [58/60 (96.7%) vs. 42/60 (70%); P < 0.001; respectively]. Along the study, the observed adverse events were mild and similar across treatment groups. Addition of hydroxychloroquine to pegylated interferon plus ribavirin improves the rate of early virological and biochemical responses in chronic hepatitis C Egyptian patients without an increase in adverse events. J. Med. Virol. 88:2170-2178, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Experimental Study on the Efficacy of Site-Specific PEGylated Human Serum Albumins in Resuscitation From Hemorrhagic Shock.

    PubMed

    Song, Xinlei; Zhang, Shu; Cheng, Yanna; Zhao, Ting; Lian, Qianqian; Lu, Lu; Wang, Fengshan

    2016-11-01

    To evaluate the resuscitative efficacy and the effect on reperfusion injury of two site-specific PEGylated human serum albumins modified with linear or branched PEG20kDa, compared with saline, 8% human serum albumin and 25% human serum albumin, in a hemorrhagic shock model. Laboratory. Male Wistar rats. Prospective study. Rats were bled to hemorrhagic hypovolemic shock and resuscitated with different resuscitation fluids. The mean arterial pressure and blood gas variables were measured. Hemorheology analysis was performed to evaluate the influence of resuscitation on RBCs and blood viscosity. The microvascular state was indirectly characterized in terms of monocyte chemotactic protein-1 and endothelial nitric oxide synthase that related to shear stress and vasodilation, respectively. The levels of inflammation-related factors and apoptosis-related proteins were used to evaluate the reperfusion injury in lungs. The results showed that PEGylated human serum albumin could improve the level of mean arterial pressure and blood gas variables more effectively at the end of resuscitation. poly(ethylene glycol) modification was able to increase the viscosity of human serum albumin to the level of effectively enhancing the expression of monocyte chemotactic protein-1 and endothelial nitric oxide synthase, which could promote microvascular perfusion. The hyperosmotic resuscitative agents including both 25% human serum albumin and PEGylated human serum albumins could greatly attenuate lung injury. No significant therapeutic advantages but some disadvantages were found for Y shaped poly(ethylene glycol) modification over linear poly(ethylene glycol) modification, such as causing the decrease of erythrocyte deformability. Linear high molecular weight site-specific PEGylated human serum albumin is recommended to be used as a hyperosmotic resuscitative agent.

  14. Expression, purification, and C-terminal site-specific PEGylation of cysteine-mutated glucagon-like peptide-1.

    PubMed

    Gao, Mingming; Tian, Hong; Ma, Chen; Gao, Xiangdong; Guo, Wei; Yao, Wenbing

    2010-09-01

    Glucagon-like peptide-1 (GLP-1) is attracting increasing interest on account of its prominent benefits in type 2 diabetes. However, its clinical application is limited because of short biological half-life. This study was designed to produce a C-terminal site-specific PEGylated analog of cysteine-mutated GLP-1 (cGLP-1) to prolong its action. The gene of cGLP-1 was inserted into pET32a to construct a thioredoxinA fusion protein. After expression in BL21 (DE3) strain, the fusion protein was purified with Ni-affinity chromatography and then was PEGylated with methoxy-polyethylene glycol-maleimide (mPEG(10K)-MAL). The PEGylated fusion protein was purified with anion exchange chromatography and then was cleaved by enterokinase. The digested product was further purified with reverse-phase chromatography. Finally, 8.7 mg mPEG(10K)-cGLP-1 with a purity of up to 98% was obtained from the original 500 ml culture. The circular dichroism spectra indicated that mPEG(10K)-cGLP-1 maintained the secondary structure of native GLP-1. As compared with that of native GLP-1, the plasma glucose lowering activity of mPEG(10K)-cGLP-1 was significantly extended. These results suggest that our method will be useful in obtaining a large quantity of mPEG(10K)-cGLP-1 for further study and mPEG(10K)-cGLP-1 might find a role in the therapy of type 2 diabetes through C-terminal site-specific PEGylation.

  15. Site-specific PEGylation of an anti-CEA/CD3 bispecific antibody improves its antitumor efficacy

    PubMed Central

    Pan, Haitao; Liu, Jiayu; Deng, Wentong; Xing, Jieyu; Li, Qing; Wang, Zhong

    2018-01-01

    Introduction Bispecific antibodies that engage immune cells to kill cancer cells are actively pursued in cancer immunotherapy. Different types of bispecific antibodies, including single-chain fragments, Fab fragments, nanobodies, and immunoglobulin Gs (IgGs), have been studied. However, the low molecular weight of bispecific antibodies with single-chain or Fab fragments generally leads to their rapid clearance in vivo, which limits the therapeutic potential of these bispecific antibodies. Materials and methods In this study, we used a site-specific PEGylation strategy to modify the bispecific single-domain antibody-linked Fab (S-Fab), which was designed by linking an anticarcinoembryonic antigen (anti-CEA) nanobody with an anti-CD3 Fab. Results The half-life (t1/2) of PEGylated S-Fab (polyethylene glycol-S-Fab) was increased 12-fold in vivo with a slightly decreased tumor cell cytotoxicity in vitro as well as more potent tumor growth inhibition in vivo compared to S-Fab. Conclusion This study demonstrated that PEGylation is an effective approach to enhance the antitumor efficacy of bispecific antibodies. PMID:29881272

  16. Effects of temperature and PEG grafting density on the translocation of PEGylated nanoparticles across asymmetric lipid membrane.

    PubMed

    Zhang, Zuoheng; Lin, Xubo; Gu, Ning

    2017-12-01

    Plasma membrane internalization of nanoparticles (NPs) is important for their biomedical applications such as drug-delivery carriers. On one hand, in order to improve their half-life in circulation, PEGylation has been widely used. However, it may hinder the NPs' membrane internalization ability. On the other hand, higher temperature could enhance the membrane permeability and may affect the NPs' ability to enter into or exit from cells. To make full use of their advantages, we systematically investigated the effects of temperature and PEG density on the translocation of PEGylated nanoparticles across the plasma asymmetric membrane of eukaryotic cells, using near-atom level coarse-grained molecular dynamics simulations. Our results showed that higher temperature could accelerate the translocation of NPs across membranes by making lipids more disorder and faster diffusion. On the contrary, steric hindrance effects of PEG would inhibit NPs' translocation process and promote lipids flip-flops. The PEG chains could rearrange themselves to minimize the contacts between PEG and lipid tails during the translocation, which was similar to 'snorkeling effect'. Moreover, lipid flip-flops were affected by PEGylated density as well as NPs' translocation direction. Higher PEG grafting density could promote lipid flip-flops, but inhibit lipid extraction from bilayers. The consequence of lipid flip-flop and extraction was that the membranes got more symmetric. Copyright © 2017. Published by Elsevier B.V.

  17. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor.

    PubMed

    Wang, Shige; Li, Kai; Chen, Yu; Chen, Hangrong; Ma, Ming; Feng, Jingwei; Zhao, Qinghua; Shi, Jianlin

    2015-01-01

    Two-dimensional transition metal dichalcogenides, particularly MoS2 nanosheets, have been deemed as a novel category of NIR photothermal transducing agent. Herein, an efficient and versatile one-pot solvothermal synthesis based on "bottom-up" strategy has been, for the first time, proposed for the controlled synthesis of PEGylated MoS2 nanosheets by using a novel "integrated" precursor containing both Mo and S elements. This facile but unique PEG-mediated solvothermal procedure endowed MoS2 nanosheets with controlled size, increased crystallinity and excellent colloidal stability. The photothermal performance of nanosheets was optimized via modulating the particulate size and surface PEGylation. PEGylated MoS2 nanosheets with desired photothermal conversion performance and excellent colloidal and photothermal stability were further utilized for highly efficient photothermal therapy of cancer in a tumor-bearing mouse xenograft. Without showing observable in vitro and in vivo hemolysis, coagulation and toxicity, the optimized MoS2-PEG nanosheets showed promising in vitro and in vivo anti-cancer efficacy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Gold Nanorod Mediated Mild Hyperthermia and PEGylated Human Serum Albumin Drug Delivery for Cancer Therapies

    NASA Astrophysics Data System (ADS)

    Mehtala, Jonathan G.

    Photothermally active gold nanorods were used to sensitize cells to chemotherapeutic agents by producing mildly hyperthermic effects (42-43 °C). We examined the synergistic effects of GNR-mediated mild hyperthermia (MHT) on cisplatin (CP) activity against SKOV3 ovarian cancer cells. In vitro studies were performed using CP at cytostatic concentrations (5 μM) and mPEG-stabilized GNRs (lambdamax 815 nm) with near-infrared laser excitation for MHT (or external heating as a positive control), followed by 72 hours incubation at 37 °C. The amount of PEG-GNRs needed for GNR-mediated MHT was determined to be 1 μg/mL, several times lower than the loadings used in tumor tissue ablation. A cell viability assay indicated 80% enhancement in CP-mediated cytotoxicity 3 days after GNR-mediated MHT relative to the projected additive effect. A pilot in vivo study showed preliminary results that cisplatin chemotherapy can be developed in combination with low loadings of GNR-mediated MHT for localized MHT to treat tumors. Stable aqueous dispersions of citrate-stabilized gold nanorods were prepared in scalable fashion by surfactant exchange from cetyltrimethylammonium bromide (CTAB)-stabilized GNRs, using sodium polystyrenesulfonate (PSS) as a detergent. Nanoparticle tracking analysis (NTA) was used to measure the size of the Cit-GNR dispersions, which provides particle sizing resolution several times better than that of dynamic light scattering (DLS). Cit-GNRs were further functionalized with human serum albumin (HSA) and thiols and dithiocarbamates (DTCs) of varying molecular weights. The quality of the Cit-GNR dispersions allows us to address fundamental questions relating GNR stabilization to surface adsorption, including insights into the formation of the protein corona in serum-containing media. Mono-PEGylated human serum albumin was synthesized to investigate its ability to improve the bioavailability of the ability of paclitaxel (PTX), a poorly soluble drug. Matrix assisted

  19. PEGylation enhances tumor targeting of plasmid DNA by an artificial cationized protein with repeated RGD sequences, Pronectin.

    PubMed

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2004-05-31

    The objective of this study is to investigate feasibility of a non-viral gene carrier with repeated RGD sequences (Pronectin F+) in tumor targeting for gene expression. The Pronectin F+ was cationized by introducing spermine (Sm) to the hydroxyl groups to allow to polyionically complex with plasmid DNA. The cationized Pronectin F+ prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have active ester and methoxy groups at the terminal, to form various PEG-introduced cationized Pronectin F+. The cationized Pronectin F+ with or without PEGylation at different extents was mixed with a plasmid DNA of LacZ to form respective cationized Pronectin F+-plasmid DNA complexes. The plasmid DNA was electrophoretically complexed with cationized Pronectin F+ and PEG-introduced cationized Pronectin F+, irrespective of the PEGylation extent, although the higher N/P ratio of complexes was needed for complexation with the latter Pronectin F+. The molecular size and zeta potential measurements revealed that the plasmid DNA was reduced in size to about 250 nm and the charge was changed to be positive by the complexation with cationized Pronectin F+. For the complexation with PEG-introduced cationized Pronectin F+, the charge of complex became neutral being almost 0 mV with the increasing PEGylation extents, while the molecular size was similar to that of cationized Pronectin F+. When cationized Pronectin F+-plasmid DNA complexes with or without PEGylation were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass, the PEG-introduced cationized Pronectin F+-plasmid DNA complex specifically enhanced the level of gene expression in the tumor, to a significantly high extent compared with the cationized Pronectin F+-plasmid DNA complexes and free plasmid DNA. The enhanced level of gene expression depended on the percentage of PEG introduced, the N/P ratio, and the plasmid DNA dose. A fluorescent microscopic study revealed that the

  20. Economic evaluation of pegylated interferon plus ribavirin for treatment of chronic hepatitis C in Thailand: genotype 1 and 6.

    PubMed

    Kapol, Nattiya; Lochid-Amnuay, Surasit; Teerawattananon, Yot

    2016-08-05

    Pegylated interferon alpha 2a, alpha 2b and ribavirin have been included to the National List of Essential Medicines (NLEM) for treatment of only chronic hepatitis C genotypes 2 and 3 in Thailand. This reimbursement policy has not covered for other genotypes of hepatitis C virus infection (HCV) especially for genotypes 1 and 6 that account for 30-50 % of all HCV infection in Thailand. Therefore, this research determined whether pegylated interferon alpha 2a or alpha 2b plus ribavirin is more cost-effective than a palliative care for treatment of HCV genotype 1 and 6 in Thailand. A cost-utility analysis using a model-based economic evaluation was conducted based on a societal perspective. A Markov model was developed to estimate costs and quality-adjusted life years (QALYs) comparing between the combination of pegylated interferon alpha 2a or alpha 2b and ribavirin with a usual palliative care for genotype 1 and 6 HCV patients. Health-state transition probabilities, virological responses, and utility values were obtained from published literatures. Direct medical and direct non-medical costs were included and retrieved from published articles and Thai Standard Cost List for Health Technology Assessment. The incremental cost-effectiveness ratio (ICER) was presented as costs in Thai baht per QALY gained. HCV treatment with pegylated interferon alpha 2a or alpha 2b plus ribavirin was dominant or cost-saving in Thailand compared to a palliative care. The ICER value was negative with lower in total costs (peg 2a- 747,718vs. peg 2b- 819,921 vs. palliative care- 1,169,121 Thai baht) and more in QALYs (peg 2a- 13.44 vs. peg 2b- 13.14 vs. palliative care- 11.63 years) both in HCV genotypes 1 and 6. As cost-saving results, the Subcommittee for Development of the NLEM decided to include both pegylated interferon alpha 2a and alpha 2b into the NLEM for treatment of HCV genotype 1 and 6 recently. Economic evaluation for these current drugs can be further applied to other novel

  1. Xanthan gum stabilized PEGylated gold nanoparticles for improved delivery of curcumin in cancer

    NASA Astrophysics Data System (ADS)

    Swami Muddineti, Omkara; Kumari, Preeti; Ajjarapu, Srinivas; Manish Lakhani, Prit; Bahl, Rishabh; Ghosh, Balaram; Biswas, Swati

    2016-08-01

    In recent years, gold nanoparticles (AuNPs) have received immense interest in various biomedical applications including drug delivery, photothermal ablation of cancer and imaging agent for cancer diagnosis. However, the synthesis of AuNPs poses challenges due to the poor reproducibility and stability of the colloidal system. In the present work, we developed a one step, facile procedure for the synthesis of AuNPs from hydrogen tetrachloroaurate (III) hydrate (HAuCl4. 3H2O) by using ascorbic acid and xanthan gum (XG) as reducing agent and stabilizer, respectively. The effect of concentrations of HAuCl4, 3H2O, ascorbic acid and methoxy polyethylene glycol-thiol (mPEG800-SH) were optimized and it was observed that stable AuNPs were formed at concentrations of 0.25 mM, 50 μM and 1 mM for HAuCl4.3H2O, ascorbic acid, and mPEG800-SH, respectively. The XG stabilized, deep red wine colored AuNPs (XG-AuNPs) were obtained by drop-wise addition of aqueous solution of ascorbic acid (50 mM) and XG (1.5 mg ml-1). Synthesized XG-AuNPs showed λmax at 540 nm and a mean hydrodynamic diameter of 80 ± 3 nm. PEGylation was performed with mPEG800-SH to obtain PEGylated XG-AuNPs (PX-AuNPs) and confirmed by Ellman’s assay. No significant shift observed in λmax and hydrodynamic diameter between XG-AuNPs and PX-AuNPs. Colloidal stability of PX-AuNPs was studied in normal saline, buffers within a pH range of 1.2-7.4, DMEM complete medium and in normal storage condition at 4 ˚C. Further, water soluble curcumin was prepared using PVP-K30 as solid dispersion and loaded on to PX-AuNPs (CPX-AuNPs), and evaluated for cellular uptake and cytotoxicity in Murine melanoma (B16F10) cells. Time and concentration dependent studies using CPX-AuNPs showed efficient uptake and decreased cell viability compared to free curcumin.

  2. Pegylated Interferon α Therapy in Chronic Delta Hepatitis: A One-Center Experience.

    PubMed

    Bahcecioglu, Ibrahim Halil; Ispiroglu, Murat; Demirel, Ulvi; Yalniz, Mehmet

    2015-03-01

    The only established therapy for chronic viral delta hepatitis, the most severe form of viral hepatitis is treatment with pegylated-interferon α (Peg IFN α). In this study, we aimed to determine the efficacy of pegylated-interferon α 2a (Peg-IFN α 2a) and 2b (Peg IFN α 2b) in the treatment of patients infected with chronic delta hepatitis virus. The sample size was based on available patients potentially to be recruited. Data of 63 patients receiving either Peg IFN alpha 2a or Peg IFN alpha 2b were retrospectively assessed in the present cohort study performed in Turkey. Of 56 patients completed the study, 41 received Peg IFN α 2a and 15 received Peg IFN α 2b for 12 months. Patients were evaluated for biochemical and virological responses at the end of given treatment and six months after the treatment. Stage of fibrosis was found high in both groups (85.4% vs. 86.7%), while cirrhosis was higher in the group of Peg IFN α 2b (53.3% vs. 34.1%). At the end of treatment, either hepatitis delta virus RNA (HDV RNA) alone or both HDV RNA and hepatitis b virus DNA (HBV DNA) had negative results in 32% of patients. Although HDV RNA negativity was sustained in 30.3% of patients, negativity of both HDV RNA and HBV DNA was decreased to 19.6% six months after completion of the treatment. HBV DNA became positive in one third of patients with response at six months after completion of the treatment (10.7% of all patients). HDV RNA negativity at month six was found as a predictor of positive response. No significant difference was found between Peg IFN α 2a and Peg IFN α 2b for virological response rate. Treatment with Peg IFN α achieved a sustained negativity of HDV RNA in about one third of patients. Duration of Peg IFN α therapy might be prolonged to at least 24 months or more to prevent the occurrence of Hepatitis B virus (HBV) relapse encountered six months after completion of the treatment.

  3. Immune mechanisms regulating pharmacokinetics and pharmacodynamics of PEGylated liposomal anticancer agents

    NASA Astrophysics Data System (ADS)

    Song, Gina

    Nanotechnology has made significant advances in drug delivery system for the treatment of cancer. Among various nanoparticle (NP) platforms, liposomes have been most widely used as a NP drug carrier for cancer therapy. High variation in pharmacokinetics (PK) and pharmacodynamics (PD) of liposome-based therapeutics has been reported. However, the interaction of liposome-based therapeutics with the immune system, specifically the mononuclear phagocyte system (MPS), and underlying molecular mechanisms for variable responses to liposomal drugs remain poorly understood. The objective of this dissertation was to elucidate immune mechanisms for the variable responses to PEGylated liposomal doxorubicin (PLD; DoxilRTM), a clinically relevant NP, in animal models and in patients. In vitro, in vivo and clinical systems were investigated to evaluate the effects of chemokines (CCL2 and CCL5), heterogeneity of the tumor microenvironment, and genetic variations on PK and PD of PLD. Results showed that there was a significantly positive linear relationship between PLD exposure (AUC) and total amount of CCL2 and CCL5, most prevalent chemokines in plasma, in patients with recurrent ovarian cancer. Consistent with these findings, preclinical studies using mice bearing SKOV3 orthotopic ovarian cancer xenografts demonstrated that PLD induced the production and secretion of chemokines into plasma. In addition, in vitro studies using human monocytic THP-1 cells demonstrated that PLD altered monocyte migration towards CCL2 and CCL5. The PK and efficacy studies of PLD in murine models of breast cancer showed that heterogeneous tumor microenvironment was associated with significantly different tumor delivery and efficacy of PLD, but not small molecule doxorubicin between two breast tumor models. A candidate genetic locus that was associated with clearance of PLD in 23 inbred mouse strains contains a gene that encodes for engulfment adapter PTB domain containing 1 (Gulp1). By using

  4. Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Liu, Teng; Wang, Chao; Cui, Wei; Gong, Hua; Liang, Chao; Shi, Xiaoze; Li, Zhiwei; Sun, Baoquan; Liu, Zhuang

    2014-09-01

    Single- or few-layered transitional metal dichalcogenides, as a new genus of two-dimensional nanomaterials, have attracted tremendous attention in recent years, owing to their various intriguing properties. In this study, chemically exfoliated MoS2 nanosheets are modified with lipoic acid-terminated polyethylene glycol (LA-PEG), obtaining PEGylated MoS2 (MoS2-PEG) with high stability in physiological solutions and no obvious toxicity. Taking advantage of its ultra-high surface area, the obtained MoS2-PEG is able to load a photodynamic agent, chlorin e6 (Ce6), by physical adsorption. In vitro experiments reveal that Ce6 after being loaded on MoS2-PEG shows remarkably increased cellular uptake and thus significantly enhanced photodynamic therapeutic efficiency. Utilizing the strong, near-infrared (NIR) absorbance of the MoS2 nanosheets, we further demonstrate photothermally enhanced photodynamic therapy using Ce6-loaded MoS2-PEG for synergistic cancer killing, in both in vitro cellular and in vivo animal experiments. Our study presents a new type of multifunctional nanocarrier for the delivery of photodynamic therapy, which, if combined with photothermal therapy, appears to be an effective therapeutic approach for cancer treatment.Single- or few-layered transitional metal dichalcogenides, as a new genus of two-dimensional nanomaterials, have attracted tremendous attention in recent years, owing to their various intriguing properties. In this study, chemically exfoliated MoS2 nanosheets are modified with lipoic acid-terminated polyethylene glycol (LA-PEG), obtaining PEGylated MoS2 (MoS2-PEG) with high stability in physiological solutions and no obvious toxicity. Taking advantage of its ultra-high surface area, the obtained MoS2-PEG is able to load a photodynamic agent, chlorin e6 (Ce6), by physical adsorption. In vitro experiments reveal that Ce6 after being loaded on MoS2-PEG shows remarkably increased cellular uptake and thus significantly enhanced photodynamic

  5. Acute hepatitis C: a 24-week course of pegylated interferon α-2b versus a 12-week course of pegylated interferon α-2b alone or with ribavirin.

    PubMed

    Santantonio, Teresa; Fasano, Massimo; Sagnelli, Evangelista; Tundo, Paolo; Babudieri, Sergio; Fabris, Paolo; Toti, Mario; Di Perri, Giovanni; Marino, Nicoletta; Pizzigallo, Eligio; Angarano, Gioacchino

    2014-06-01

    Therapy of acute hepatitis C (AHC) has not yet been standardized and several issues are still unresolved. This open, randomized, multicenter trial aimed to assess the efficacy and safety of a 24-week course of pegylated IFN (Peg-IFN) alpha-2b versus a 12-week course of Peg-IFN alpha-2b alone or with ribavirin (RBV) in AHC patients. One hundred and thirty HCV acutely infected patients who did not spontaneously resolve by week 12 after onset were consecutively enrolled and randomized to receive Peg-IFN alpha-2b monotherapy (1.5 μg/kg/week) for 24 or 12 weeks (arm 1, n = 44 and arm 2, n = 43, respectively) or in combination with RBV (10.6 mg/kg/day) for 12 weeks (arm 3, n = 43). The primary endpoint was undetectable HCV RNA at 6-month posttreatment follow-up (sustained virological response; SVR). All patients were followed for 48 weeks after therapy cessation. HCV RNA levels were determined by real-time polymerase chain reaction (limit of detection: 15 IU/mL) at the central laboratory at baseline, week 4, end of treatment, and 6 and 12 months posttreatment. Using an intent-to-treat analysis, overall SVR rate was 71.5%. In particular, an SVR was achieved in 31 of 44 (70.5%), 31 of 43 (72.1%), and 31 of 43 (72.1%) patients in arms 1, 2, and 3, respectively (P = 0.898). Sixteen patients (12.3%) prematurely discontinued therapy or were lost to follow-up; thus, sustained response rates with per-protocol analysis were 81.6%, 81.6%, and 81.6% for patients in arms 1, 2, and 3 respectively. With multivariate analysis, virologic response at week 4 of treatment was an independent predictor of SVR. Peg-IFN alpha-2b was well tolerated. Peg-IFN alpha-2b induces a high SVR in chronically evolving AHC patients. Response rates were not influenced by combination therapy or treatment duration. © 2014 by the American Association for the Study of Liver Diseases.

  6. PEGylation, increasing specific activity and multiple dosing as strategies to improve the risk-benefit profile of targeted radionuclide therapy with 177Lu-DOTA-bombesin analogues

    PubMed Central

    2012-01-01

    Background Radiolabelled bombesin (BN) conjugates are promising radiotracers for imaging and therapy of breast and prostate tumours, in which BN2/gastrin-releasing peptide receptors are overexpressed. We describe the influence of the specific activity of a 177Lu-DOTA-PEG5k-Lys-B analogue on its therapeutic efficacy and compare it with its non-PEGylated counterpart. Methods Derivatisation of a stabilised DOTA-BN(7–14)[Cha13,Nle14] analogue with a linear PEG molecule of 5 kDa (PEG5k) was performed by PEGylation of the ϵ-amino group of a β3hLys-βAla-βAla spacer between the BN sequence and the DOTA chelator. The non-PEGylated and the PEGylated analogues were radiolabelled with 177Lu. In vitro evaluation was performed in human prostate carcinoma PC-3 cells, and in vivo studies were carried out in nude mice bearing PC-3 tumour xenografts. Different specific activities of the PEGylated BN analogue and various dose regimens were evaluated concerning their therapeutic efficacy. Results The specificity and the binding affinity of the BN analogue for BN2/GRP receptors were only slightly reduced by PEGylation. In vitro binding kinetics of the PEGylated analogue was slower since steady-state condition was reached after 4 h. PEGylation improved the stability of BN conjugate in vitro in human plasma by a factor of 5.6. The non-PEGylated BN analogue showed favourable pharmacokinetics already, i.e. fast blood clearance and renal excretion, but PEGylation improved the in vivo behaviour further. One hour after injection, the tumour uptake of the PEG5k-BN derivative was higher compared with that of the non-PEGylated analogue (3.43 ± 0.63% vs. 1.88 ± 0.4% ID/g). Moreover, the increased tumour retention resulted in a twofold higher tumour accumulation at 24 h p.i., and increased tumour-to-non-target ratios (tumour-to-kidney, 0.6 vs. 0.4; tumour-to-liver, 8.8 vs. 5.9, 24 h p.i.). In the therapy study, both 177Lu-labelled BN analogues significantly inhibited tumour

  7. PEGylated Self-Assembled Nano-Bacitracin A: Probing the Antibacterial Mechanism and Real-Time Tracing of Target Delivery in Vivo.

    PubMed

    Hong, Wei; Zhao, Yining; Guo, Yuru; Huang, Chengcheng; Qiu, Peng; Zhu, Jia; Chu, Chun; Shi, Hong; Liu, Mingchun

    2018-04-04

    Although nano-self-assemblies of hydrophobic-modified bacitracin A with poly(d,l-lactic- co-glycolic acid) (PLGA) (nano-BA PLGA ) have demonstrated promising antibacterial activities, the application of nano-BA PLGA was severely compromised by low water solubility. In this study, a series of PEGylated PLGA copolymers were selected to conjugate with the N-terminus of bacitracin A to construct PEGylated self-assembled nano-BAs and to further develop nano-self-assemblies of bacitracin A with strong antibacterial potency and high solubility. Compared with nano-BA PLGA , all PEGylated nano-BAs, except nano-BA 5k , exhibited strong antibacterial efficiency against both Gram-positive and Gram-negative bacteria by inducing loss of cytoplasmic membrane potential, membrane permeabilization, and leakage of calcein from artificial cell membranes. Studies elucidating the underlying mechanism of PEGylated nano-BAs against Gram-negative bacteria indicated that the strong hydrophobic and van der Waals interactions between PLGA and lipopolysaccharide (LPS) could bind, neutralize, and disassociate LPS, facilitating cellular uptake of the nanoparticles, which could destabilize the membrane, resulting in cell death. Moreover, PEGylated nano-BAs (nano-BA 12k ) with a longer PLGA block were expected to occupy a higher local density of BA mass on the surface and result in stronger hydrophobic and van der Waals interactions with LPS, which were responsible for the enhanced antibacterial activity against Gram-positive and emerging antibacterial activity against Gram-negative bacteria, respectively. In vivo imaging verified that PEGylated nano-BAs exhibited higher inflammatory tissue distribution and longer circulation time than nano-BA PLGA . Therefore, although PEGylation did not affect antibacterial activity, it is necessary for target delivery and resistance to clearance of the observed PEGylated nano-BAs. In vivo, nano-BA 12k also showed the highest therapeutic index against infection

  8. Impact of liver steatosis on response to pegylated interferon therapy in patients with chronic hepatitis B

    PubMed Central

    Ateş, Fehmi; Yalnız, Mehmet; Alan, Saadet

    2011-01-01

    AIM: To evaluate the impact of liver steatosis upon response to given therapy in chronic hepatitis B (CHB) patients. METHODS: 84 consecutive CHB patients treated with 48-wk PEGylated interferon (PEG-IFN) therapy were enrolled. Baseline characteristics and sustained viral response (SVR) to PEG-IFN therapy were evaluated. RESULTS: Mean body mass index (BMI) was 27.36 ± 4.4 kg/m2. Six (7.1%) had hypertension and three (3.5%) had diabetes mellitus. Steatosis was present in 22.6% (19/84) of liver biopsy samples. Age, BMI, and triglyceride levels of the patients with hepatic steatosis were significantly higher than those without hepatic steatosis (P < 0.05). SVR to PEG-IFN therapy was 21.4% (18/84). Sixteen of these 18 CHB patients with SVR (88.9%) did not have any histopathologically determined steatosis. On the other hand, only two of the 19 CHB patients with hepatic steatosis had SVR (10.5%). Although the SVR rate observed in patients without steatosis (16/65, 24.6%) was higher compared to those with steatosis (2/19, 10.5%), the difference was not statistically significant (P > 0.05). CONCLUSION: Occurrence of hepatic steatosis is significantly high in CHB patients and this association leads to a trend of decreased, but statistically insignificant, SVR rates to PEG-IFN treatment. PMID:22110283

  9. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination.

    PubMed

    Garinot, Marie; Fiévez, Virginie; Pourcelle, Vincent; Stoffelbach, François; des Rieux, Anne; Plapied, Laurence; Theate, Ivan; Freichels, Hélène; Jérôme, Christine; Marchand-Brynaert, Jacqueline; Schneider, Yves-Jacques; Préat, Véronique

    2007-07-31

    To improve the efficiency of orally delivered vaccines, PEGylated PLGA-based nanoparticles displaying RGD molecules at their surface were designed to target human M cells. RGD grafting was performed by an original method called "photografting" which covalently linked RGD peptides mainly on the PEG moiety of the PCL-PEG, included in the formulation. First, three non-targeted formulations with size and zeta potential adapted to M cell uptake and stable in gastro-intestinal fluids, were developed. Their transport by an in vitro model of the human Follicle associated epithelium (co-cultures) was largely increased as compared to mono-cultures (Caco-2 cells). RGD-labelling of nanoparticles significantly increased their transport by co-cultures, due to interactions between the RGD ligand and the beta(1) intregrins detected at the apical surface of co-cultures. In vivo studies demonstrated that RGD-labelled nanoparticles particularly concentrated in M cells. Finally, ovalbumin-loaded nanoparticles were orally administrated to mice and induced an IgG response, attesting antigen ability to elicit an immune response after oral delivery.

  10. Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo

    PubMed Central

    Klippstein, Rebecca; Wang, Julie Tzu-Wen; El-Gogary, Riham I; Bai, Jie; Mustafa, Falisa; Rubio, Noelia; Bansal, Sukhvinder; Al-Jamal, Wafa T; Al-Jamal, Khuloud T

    2015-01-01

    Clinical applications of curcumin for the treatment of cancer and other chronic diseases have been mainly hindered by its short biological half-life and poor water solubility. Nanotechnology-based drug delivery systems have the potential to enhance the efficacy of poorly soluble drugs for systemic delivery. This study proposes the use of poly(lactic-co-glycolic acid) (PLGA)-based polymeric oil-cored nanocapsules (NCs) for curcumin loading and delivery to colon cancer in mice after systemic injection. Formulations of different oil compositions are prepared and characterized for their curcumin loading, physico-chemical properties, and shelf-life stability. The results indicate that castor oil-cored PLGA-based NC achieves high drug loading efficiency (≈18% w(drug)/w(polymer)%) compared to previously reported NCs. Curcumin-loaded NCs internalize more efficiently in CT26 cells than the free drug, and exert therapeutic activity in vitro, leading to apoptosis and blocking the cell cycle. In addition, the formulated NC exhibits an extended blood circulation profile compared to the non-PEGylated NC, and accumulates in the subcutaneous CT26-tumors in mice, after systemic administration. The results are confirmed by optical and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. In vivo growth delay studies are performed, and significantly smaller tumor volumes are achieved compared to empty NC injected animals. This study shows the great potential of the formulated NC for treating colon cancer. PMID:26140363

  11. EphA2 Targeting Pegylated Nanocarrier Drug Delivery System for Treatment of Lung Cancer

    PubMed Central

    Patel, Apurva R.; Chougule, Mahavir

    2017-01-01

    Purpose Evaluation of tumor targeting pegylated EphA2 peptide coated nanoparticles (ENDDs) of a novel anticancer agent DIM-C-pPhC6H5 (DIM-P) and Docetaxel (DOC) and investigate its antitumor activity and potential for treatment of lung cancer. Methods Nanoparticles were prepared with DIM-P and DOC (NDDs) using Nano-DeBEE. ENDDs were prepared by conjugating NDDs with 6His-PEG2K–EphA2 peptide and characterized for physicochemical properties, binding assay, cytotoxicity, cellular uptake studies, drug release and pharmacokinetic parameters. Anti-tumor activity of ENDDs was evaluated using a metastatic H1650 and orthotopic A549 tumor models in nude mice and tumor tissue were analyzed by RT-PCR and immunohistochemistry. Results Particle size and entrapment efficiency of ENDDs were 197±21 nm and 95±2%. ENDDs showed 32.5±3.5% more cellular uptake than NDDs in tumor cells. ENDDs showed 23 ± 3% and 26±4% more tumor reduction compared to NDDs in metastatic and orthotopic tumor models, respectively. In-vivo imaging studies using the Care stream MX FX Pro system showed (p<0.001) 40–60 fold higher flux for ENDDs compared to NDDs at tumor site. Conclusions The results emanating from these studies demonstrate anti-cancer potential of DIM-P and the role of ENDDs as effective tumor targeting drug delivery systems for lung cancer treatment. PMID:24867421

  12. PEGylation and Dimerization of Expressed Proteins under Near Equimolar Conditions with Potassium 2-Pyridyl Acyltrifluoroborates

    PubMed Central

    2018-01-01

    The covalent conjugation of large, functionalized molecules remains a frontier in synthetic chemistry, as it requires rapid, chemoselective reactions. The potassium acyltrifluoroborate (KAT)–hydroxylamine amide-forming ligation shows promise for conjugations of biomolecules under aqueous, acidic conditions, but the variants reported to date are not suited to ligations at micromolar concentrations. We now report that 2-pyridyl KATs display significantly enhanced ligation kinetics over their aryl counterparts. Following their facile, one-step incorporation onto the termini of polyethylene glycol (PEG) chains, we show that 2-pyridyl KATs can be applied to the construction of protein–polymer conjugates in excellent (>95%) yield. Four distinct expressed, folded proteins equipped with a hydroxylamine could be PEGylated with 2–20 kDa 2-pyridyl mPEG KATs in high yield and with near-equimolar amounts of coupling partners. Furthermore, the use of a bis 2-pyridyl PEG KAT enables the covalent homodimerization of proteins with good conversion. The 2-pyridyl KAT ligation offers an effective alternative to conventional protein–polymer conjugation by operating under aqueous acidic conditions well suited for the handling of folded proteins. PMID:29532019

  13. Management of pegylated interferon alpha toxicity in adjuvant therapy of melanoma.

    PubMed

    Daud, Adil; Soon, Christopher; Dummer, Reinhard; Eggermont, Alexander M M; Hwu, Wen-Jen; Grob, Jean Jacques; Garbe, Claus; Hauschild, Axel

    2012-08-01

    Both native IFNα2b and pegylated IFNα2b (PegIFNα2b) are approved for the adjuvant treatment of high-risk melanoma. This review compares the toxicity profiles of high-dose IFNα2b (HDI) and PegIFNα2b, and provides recommendations on the management of common PegIFNα2b-related toxicities, based on available clinical data and published literature. The toxicity profile of PegIFNα2b at the approved dose (6 μg/kg/week for 8 weeks then 3 μg/kg/week for up to 5 years) is qualitatively similar to HDI in melanoma. The most common adverse events (AEs) are fatigue, anorexia, hepatotoxicity, flu-like symptoms, injection site reactions and depression. However, fatigue and flu-like symptoms appear less severe with PegIFNα2b, and toxicity seems to occur earlier, whereas with HDI toxicity may increase with time. Most AEs can be managed effectively by dose modification and aggressive symptom control. Dosing to tolerance using a three-step dose reduction schedule to maintain an ECOG performance status of 0 - 1 may enable patients experiencing toxicity to remain on treatment; this can be applied readily in clinical practice. PegIFNα2b is therefore a valuable alternative option for adjuvant treatment in melanoma, with a toxicity profile similar to that of HDI overall but a more convenient administration schedule.

  14. Factorial design studies of antiretroviral drug-loaded stealth liposomal injectable: PEGylation, lyophilization and pharmacokinetic studies

    NASA Astrophysics Data System (ADS)

    Sudhakar, Beeravelli; Krishna, Mylangam Chaitanya; Murthy, Kolapalli Venkata Ramana

    2016-01-01

    The aim of the present study was to formulate and evaluate the ritonavir-loaded stealth liposomes by using 32 factorial design and intended to delivered by parenteral delivery. Liposomes were prepared by ethanol injection method using 32 factorial designs and characterized for various physicochemical parameters such as drug content, size, zeta potential, entrapment efficiency and in vitro drug release. The optimization process was carried out using desirability and overlay plots. The selected formulation was subjected to PEGylation using 10 % PEG-10000 solution. Stealth liposomes were characterized for the above-mentioned parameters along with surface morphology, Fourier transform infrared spectrophotometer, differential scanning calorimeter, stability and in vivo pharmacokinetic studies in rats. Stealth liposomes showed better result compared to conventional liposomes due to effect of PEG-10000. The in vivo studies revealed that stealth liposomes showed better residence time compared to conventional liposomes and pure drug solution. The conventional liposomes and pure drug showed dose-dependent pharmacokinetics, whereas stealth liposomes showed long circulation half-life compared to conventional liposomes and pure ritonavir solution. The results of statistical analysis showed significance difference as the p value is (<0.05) by one-way ANOVA. The result of the present study revealed that stealth liposomes are promising tool in antiretroviral therapy.

  15. PEGylated carboxyhemoglobin bovine (SANGUINATE): results of a phase I clinical trial.

    PubMed

    Misra, Hemant; Lickliter, Jason; Kazo, Friedericke; Abuchowski, Abraham

    2014-08-01

    PEGylated carboxyhemoglobin bovine (SANGUINATE) is a dual action carbon monoxide releasing (CO)/oxygen (O2 ) transfer agent for the treatment of hypoxia. Its components inhibit vasoconstriction, decrease extravasation, limit reactive oxygen species production, enhance blood rheology, and deliver oxygen to the tissues. Animal models of cerebral ischemia, peripheral ischemia, and myocardial ischemia demonstrated SANGUINATE's efficacy in reducing myocardial infarct size, limiting necrosis from cerebral ischemia, and promoting more rapid recovery from hind limb ischemia. In a Phase I trial, three cohorts of eight healthy volunteers received single ascending doses of 80, 120, or 160 mg/kg of SANGUINATE. Two volunteers within each cohort served as a saline control. There were no serious adverse events. Serum haptoglobin decreased, but did not appear to be dose related. The T1/2 was dose dependent and ranged from 7.9 to 13.8 h. In addition to the Phase I trial, SANGUINATE was used under an expanded access emergency Investigational New Drug. SANGUINATE was found to be safe and well tolerated in a Phase I clinical trial, and therefore it will advance into further clinical trials in patients. © 2014 The Authors. Artificial Organs published by Wiley Periodicals, Inc. on behalf of International Center for Artificial Organs and Transplantation (ICAOT).

  16. PEGylated Bovine Carboxyhemoglobin (SANGUINATE™): Results of Clinical Safety Testing and Use in Patients.

    PubMed

    Abuchowski, A

    2016-01-01

    Oxygen transfer agents have long been sought as a means to treat hypoxia caused by congenital or acquired conditions. Hemoglobin-based oxygen carriers were in clinical development as blood substitutes, but development was halted due to the finding of significant vasoactivity. Rather than develop a blood substitute, a product for indications characterized by hypoxia is in development. PEGylated bovine carboxyhemoglobin (SANGUINATE™) is both a carbon monoxide releasing molecule and an oxygen transfer agent. It is comprised of three functional components that act to inhibit vasoconstriction, reduce inflammation and optimize the delivery of oxygen. SANGUINATE has the potential to reduce or prevent the effects of ischemia by inhibiting vasoconstriction and re-oxygenating tissue. Phase 1 safety trials in healthy volunteers were completed in 2013. SANGUINATE was shown to be safe and well tolerated with no serious adverse effects. Phase Ib studies have been completed in stable patients with Sickle Cell Disease. SANGUINATE has also been administered to two patients under emergency use protocols. Both patients exhibited improved status following treatment with SANGUINATE.

  17. Pegylated IFN-α suppresses hepatitis C virus by promoting the DAPK-mTOR pathway.

    PubMed

    Liu, Wei-Liang; Yang, Hung-Chih; Hsu, Ching-Sheng; Wang, Chih-Chiang; Wang, Tzu-San; Kao, Jia-Horng; Chen, Ding-Shinn

    2016-12-20

    Death-associated protein kinase (DAPK) has been found to be induced by IFN, but its antiviral activity remains elusive. Therefore, we investigated whether DAPK plays a role in the pegylated IFN-α (peg-IFN-α)-induced antiviral activity against hepatitis C virus (HCV) replication. Primary human hepatocytes, Huh-7, and infectious HCV cell culture were used to study the relationship between peg-IFN-α and the DAPK-mammalian target of rapamycin (mTOR) pathways. The activation of DAPK and signaling pathways were determined using immunoblotting. By silencing DAPK and mTOR, we further assessed the role of DAPK and mTOR in the peg-IFN-α-induced suppression of HCV replication. Peg-IFN-α up-regulated the expression of DAPK and mTOR, which was associated with the suppression of HCV replication. Overexpression of DAPK enhanced mTOR expression and then inhibited HCV replication. In addition, knockdown of DAPK reduced the expression of mTOR in peg-IFN-α-treated cells, whereas silencing of mTOR had no effect on DAPK expression, suggesting mTOR may be a downstream effector of DAPK. More importantly, knockdown of DAPK or mTOR significantly mitigated the inhibitory effects of peg-IFN-α on HCV replication. In conclusion, our data suggest that the DAPK-mTOR pathway is critical for anti-HCV effects of peg-IFN-α.

  18. Structure and Dynamics of Highly PEG-ylated Sterically Stabilized Micelles in Aqueous Media

    PubMed Central

    Vuković, Lela; Khatib, Fatima A.; Drake, Stephanie P.; Madriaga, Antonett; Brandenburg, Kenneth S.; Král, Petr; Onyuksel, Hayat

    2011-01-01

    Molecular assemblies of highly PEG-ylated phospholipids are important in many biomedical applications. We study sterically stabilized micelles (SSM) of self-assembled DSPE-PEG2000 in pure water and isotonic HEPES buffered saline solution. The observed SSM sizes of 2 – 15 nm largely depend on the solvent and the lipid concentration used. The critical micelle concentration (CMC) of DSPE-PEG2000 is ≈ 10 times higher in water than in buffer and the viscosity of the dispersion dramatically increases with the lipid concentration. To explain the experimentally observed results, we perform atomistic molecular dynamics simulations of the solvated SSM. Our modeling reveal that the observed assemblies have very different aggregation numbers of Nagg ≈ 90 (saline solution) and Nagg < 8 (water), due to very different screening of their charged −PO4− groups. We also demonstrate that the micelle cores can inflate and their corona highly fluctuate, allowing thus storage and delivery of molecules with different chemistry. PMID:21780810

  19. Structure and dynamics of highly PEG-ylated sterically stabilized micelles in aqueous media.

    PubMed

    Vuković, Lela; Khatib, Fatima A; Drake, Stephanie P; Madriaga, Antonett; Brandenburg, Kenneth S; Král, Petr; Onyuksel, Hayat

    2011-08-31

    Molecular assemblies of highly PEG-ylated phospholipids are important in many biomedical applications. We have studied sterically stabilized micelles (SSMs) of self-assembled DSPE–PEG2000 in pure water and isotonic HEPES-buffered saline solution. The observed SSM sizes of 2–15 nm largely depend on the solvent and the lipid concentration used. The critical micelle concentration of DSPE–PEG2000 is 10 times higher in water than in buffer, and the viscosity of the dispersion dramatically increases with the lipid concentration. To explain the experimentally observed results, we performed atomistic molecular dynamics simulations of solvated SSMs. Our modeling revealed that the observed assemblies have very different aggregation numbers (N(agg) ≈ 90 in saline solution and N(agg) < 8 in water) because of very different screening of their charged PO4(–) groups. We also demonstrate that the micelle cores can inflate and their coronas can fluctuate strongly, thus allowing storage and delivery of molecules with different chemistries.

  20. Successful treatment of HCV/HBV/HDV-coinfection with pegylated interferon and ribavirin

    PubMed Central

    Hartl, Janine; Ott, Claudia; Kirchner, Gabriele; Salzberger, Bernd; Wiest, Reiner

    2012-01-01

    Dual and triple infections with hepatitis virus C (HCV), B (HBV) and D (HDV) frequently lead to severe liver damage. Hereby we describe a 38-year-old Caucasian male coinfected with HCV (genotype 3a), HBV [positive hepatitis B surface antigen (HbsAg) and antibody to hepatitis B core antigen; negative hepatitis B e antigen (HbeAg) and antibody to hepatitis B e antigen (anti-HBe)] and HDV. Laboratory diagnostics revealed increased liver enzymes and histological examination of the liver showed signs of fibrosis with moderate inflammation. On therapy with pegIFN-α2b and ribavirin HCV-RNA was undetectable at week 8. After week 24 the antiviral therapy was stopped because of a HBs-seroconversion, the loss of HbeAg and the detection of anti-HBe. Furthermore the HCV-RNA was negative. Six months after successful treatment of the triple-infection, HCV- and HDV-RNA and HbsAg remained negative and the liver enzymes had been completely normalized. In conclusion, pegylated-interferon plus ribavirin may be an effective therapy for HCV, HBV and HDV-coinfected patients. PMID:24765463

  1. "Click" star-shaped and dendritic PEGylated gold nanoparticle-carborane assemblies.

    PubMed

    Li, Na; Zhao, Pengxiang; Salmon, Lionel; Ruiz, Jaime; Zabawa, Mark; Hosmane, Narayan S; Astruc, Didier

    2013-10-07

    Carboranes that have a high boron content are key materials for boron neutron capture therapy (BNCT), while PEGylated gold nanoparticles (AuNPs) are also most useful in various aspects of nanomedicine including photothermotherapy, imaging and drug vectorization. Therefore, methods to assemble these key components have been investigated for the first time. Strategies and results are delineated in this article, and the nanomaterials have been characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-vis., mass and multinuclear NMR data. A series of well-defined water-soluble bifunctional AuNPs containing carborane and polyethylene glycol (PEG) were synthesized through either two-step Cu(I)-catalyzed azide-alkyne cycloaddition CuAAC ("click") reactions at the periphery of azido-terminated AuNPs in the presence of the efficient catalyst [Cu(I)tren(CH2Ph)6][Br] or simply by direct stabilization of AuNPs using a tris-carborane thiol dendron or a hybrid dendron containing both PEG and carborane.

  2. Enhancement of radiosensitivity of melanoma cells by pegylated gold nanoparticles under irradiation of megavoltage electrons.

    PubMed

    Mousavi, Mehdi; Nedaei, Hassan Ali; Khoei, Samideh; Eynali, Samira; Khoshgard, Karim; Robatjazi, Mostafa; Iraji Rad, Rasoul

    2017-02-01

    Gold nanoparticles (GNP) have significant potential as radiosensitizer agents due to their distinctive properties. Several studies have shown that the surface modification of nanoparticles with methyl polyethylene glycol (mPEG) can increase their biocompatibility. However, the present study investigated the radiosensitization effects of mPEG-coated GNP (mPEG-GNP) in B16F10 murine melanoma cells under irradiation of 6 MeV Electron beam. The synthesized GNP were characterized by UV-Visible spectroscopy, dynamic light scattering, transmission electron microscopy, and zeta potential. Enhancement of radiosensitization was evaluated by the clonogenic assay at different radiation doses of megavoltage electron beams. It was observed that mPEG-GNP with a hydrodynamic size of approximately 50 nm are almost spherical and cellular uptake occurred at all concentrations. Both proliferation efficiency and survival fraction decreased with increasing mPEG-GNP concentration. Furthermore, significant GNP sensitization occurred with a maximum dose enhancement factor of 1.22 at a concentration of 30 μM. Pegylated-GNP are taken up by B16F10 cancer cells and cause radiosensitization in the presence of 6 MeV electrons. The radiosensitization effects of GNP may probably be due to biological processes. Therefore, the underlying biological mechanisms beyond the physical dose enhancement need to be further clarified.

  3. Development and characterization of CD22-targeted pegylated-liposomal doxorubicin (IL-PLD).

    PubMed

    O'Donnell, Robert T; Martin, Shiloh M; Ma, Yunpeng; Zamboni, William C; Tuscano, Joseph M

    2010-06-01

    Non-Hodgkin's lymphoma (NHL) is the sixth most common cause of cancer deaths in the U.S. Most NHLs initially respond well to chemotherapy, but relapse is common and treatment is often limited due to the toxicity of chemotherapeutic agents. Pegylated-liposomal doxorubicin (PLD, Ben Venue Laboratories, Inc), a produces less myelotoxicity than non-liposomal (NL) doxorubicin. To further enhance efficacy and NHL targeting and to decrease toxicity, we conjugated an anti-CD22 monoclonal antibody (HB22.7) to the surface of PLD, thereby creating CD22-targeted immunoliposomal PLD (IL-PLD). HB22.7 was successfully conjugated to PLD and the resulting IL-PLD exhibits specific binding to CD22-expressing cells as assessed by immunofluorescence staining. IL-PLD exhibits more cytotoxicity than PLD in CD22 positive cell lines but does not increase killing of CD22 negative cells. The IC(50) of IL-PLD is 3.1 to 5.4 times lower than that of PLD in CD22+ cell lines while the IC(50) of IL-PLD is equal to that of PLD in CD22- cells. Furthermore, IL-PLD remained bound to the CD22+ cells after washing and continued to exert cytotoxic effects, while PLD and NL- doxorubicin could easily be washed from these cells.

  4. Phase II study of neoadjuvant gemcitabine, pegylated liposomal doxorubicin, and docetaxel in locally advanced breast cancer.

    PubMed

    Artioli, Grazia; Grazia, Artioli; Mocellin, Simone; Simone, Mocellin; Borgato, Lucia; Lucia, Borgato; Cappetta, Alessandro; Alessandro, Cappetta; Bozza, Fernando; Fernando, Bozza; Zavagno, Giorgio; Giorgio, Zavagno; Zovato, Stefania; Stefania, Zovato; Marchet, Alberto; Alberto, Marchet; Pastorelli, Davide; Davide, Pastorelli

    2010-09-01

    This was a phase II study to assess the activity of a novel neoadjuvant regimen in locally-advanced breast cancer. Fifty patients with histological confirmation of locally advanced breast cancer received treatment with gemcitabine 1000 mg/m(2) (day 1) followed by gemcitabine 800 mg/m(2) plus docetaxel 75 mg/m(2) plus pegylated liposomal doxorubicin (PLD) 30 mg/m(2) (day 8) every 3 weeks for at least 4 cycles, plus a final 2 additional cycles. Tumour size was T1 (n=2), T2 (n=32), T3 (n=14), T4 (n=2). All 50 patients underwent surgery. Clinical complete, partial and no response were observed in 13 (26%), 24 (48%) and 11 (22%) patients, respectively (overall response rate: 74%). The number of chemotherapy cycles was found to be an independent predictor of a pathologic complete response. The combination of gemcitabine-docetaxel-PLD can yield high tumour response rates in patients with locally-advanced breast cancer who undergo a full treatment of 6 cycles.

  5. Cys34-PEGylated Human Serum Albumin for Drug Binding and Delivery

    PubMed Central

    Mehtala, Jonathan G.; Kulczar, Chris; Lavan, Monika; Knipp, Gregory; Wei, Alexander

    2015-01-01

    Polyethylene glycol (PEG) derivatives were conjugated onto the Cys-34 residue of human serum albumin (HSA) to determine their effects on the solubilization, permeation, and cytotoxic activity of hydrophobic drugs such as paclitaxel (PTX). PEG(C34)HSA conjugates were prepared on a multigram scale by treating native HSA (n-HSA) with 5- or 20-kDa mPEG-maleimide, resulting in up to 77% conversion of the mono-PEGylated adduct. Nanoparticle tracking analysis of PEG(C34)HSA formulations in phosphate buffer revealed an increase in nanosized aggregates relative to n-HSA, both in the absence and presence of PTX. Cell viability studies conducted with MCF-7 breast cancer cells indicated that PTX cytotoxicity was enhanced by PEG(C34)HSA when mixed at 10:1 mole ratios, up to a two-fold increase in potency relative to n-HSA. The PEG(C34)HSA conjugates were also evaluated as PTX carriers across monolayers of HUVEC and hCMEC/D3 cells, and found to have nearly identical permeation profiles as n-HSA. PMID:25918947

  6. Phase II Study of Bortezomib and Pegylated Liposomal Doxorubicin in the Treatment of Metastatic Breast Cancer

    PubMed Central

    Irvin, William J.; Orlowski, Robert Z.; Chiu, Wing-Keung; Carey, Lisa A.; Collichio, Frances A.; Bernard, Philip S.; Stijleman, Inge J.; Perou, Charles; Ivanova, Anastasia; Dees, E. Claire

    2018-01-01

    Background Based on preclinical studies and a phase I trial of the combination of bortezomib and pegylated liposomal doxorubicin (PLD), which both showed activity in breast cancer, we conducted a phase II study of this regimen in patients with metastatic breast cancer. Patients and Methods Patients received bortezomib 1.3 mg/m2 on days 1, 4, 8, and 11 of an every-21-day cycle, along with PLD 30 mg/m2 on day 4. The primary objective was to evaluate the response rate of this combination, while secondary objectives were to obtain further safety data about this combination, to evaluate the time to disease progression (TTP), and to evaluate response by the breast cancer subtype. Results One of 12 evaluable patients had a partial response (8%), while 3 (25%) had stable disease. At 26 months follow-up, the median overall survival was 4.3 months (95% CI, 1.2–26.2) and the median TTP was 1.3 months (95% CI, 0.8–14.0 months). The combination was well tolerated, with the most common events including low-grade nausea and vomiting, neutropenia, and neuropathy, and no cardiac toxicity was seen. Of the 7 tumors subtyped, no association was seen between intrinsic subtype or receptor status and response. Conclusion The combination of PLD and bortezomib was well tolerated but has minimal activity in heavily pretreated unselected metastatic breast cancer. PMID:21147690

  7. PEGylated poly(ethylene imine) copolymer-delivered siRNA inhibits HIV replication in vitro.

    PubMed

    Weber, Nick D; Merkel, Olivia M; Kissel, Thomas; Muñoz-Fernández, María Ángeles

    2012-01-10

    RNA interference is increasingly being utilized for the specific targeting and down-regulation of disease-causing genes, including targeting viral infections such as HIV. T lymphocytes, the primary target for HIV, are very difficult to treat with gene therapy applications such as RNA interference because of issues with drug delivery. To circumvent these problems, we investigated poly(ethylene imine) (PEI) as a method of improving transfection efficiency of siRNA to T lymphocytes. Additionally, polyethylene glycol (PEG) moieties were engrafted to the PEI polymers with the goals of improving stability and reducing cytotoxicity. Initial studies on PEG-PEI/siRNA polyplex formation, size and their interaction with cell membranes demonstrated their feasibility as drug delivery agents. Assays with lymphocytes revealed low cytotoxicity profiles of the polyplexes at pharmacologically relevant concentrations with PEGylated copolymers obtaining the best results. Successful transfection of a T cell line or primary T cells with siRNA was observed via flow cytometry and confocal microscopy. Finally, the biological effect of copolymer-delivered siRNA was measured. Of particular significance, siRNA targeted to the HIV gene nef and delivered by one of the PEG-PEI copolymers in repetitive treatments every 2-3 days was observed to inhibit HIV replication to the same extent as azidothymidine over the course of 15 days. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Effect of solubilizing agents on mupirocin loading into and release from PEGylated nanoliposomes.

    PubMed

    Cern, Ahuva; Nativ-Roth, Einat; Goldblum, Amiram; Barenholz, Yechezkel

    2014-07-01

    Mupirocin was identified by quantitative structure property relationship models as a good candidate for remote liposomal loading. Mupirocin is an antibiotic that is currently restricted to topical administration because of rapid hydrolysis in vivo to its inactive metabolite. Formulating mupirocin in PEGylated nanoliposomes may potentially expand its use to parenteral administration by protecting it from degradation in the circulation and target it (by the enhanced permeability effect) to the infected tissue. Mupirocin is slightly soluble in aqueous medium and its solubility can be increased using solubilizing agents. The effect of the solubilizing agents on mupirocin remote loading was studied when the solubilizing agents were added to the drug loading solution. Propylene glycol was found to increase mupirocin loading, whereas polyethylene glycol 400 showed no effect. Hydroxypropyl-β-cyclodextrin (HPCD) showed a concentration-dependent effect on mupirocin loading; using the optimal HPCD concentration increased loading, but higher concentrations inhibited it. The inclusion of HPCD in the liposome aqueous phase while forming the liposomes resulted in increased drug loading and substantially inhibited drug release in serum. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. PEGylated liposomal vancomycin: a glimmer of hope for improving treatment outcomes in MRSA pneumonia.

    PubMed

    Pumerantz, Andrew S

    2012-12-01

    Methicillin-resistant Staphylococcus aureus (MRSA) plays a significant role in the pandemic of multidrug resistant bacterial infections and is a major cause of hospital-acquired pneumonia. MRSA pneumonia carries a high morbidity and mortality rate especially in elderly diabetics with chronic kidney disease. S. aureus is highly virulent and successful respiratory pathogen. Vancomycin and linezolid are the only two antimicrobial agents FDA-approved to treat MRSA pneumonia. Standard vancomycin dosing is associated with high clinical failure rates and higher dosages are associated with increased nephrotoxicity. Pharmacokinetic and pharmacodynamic limitations are major contributors to poor outcomes with vancomycin. New agents are needed to improve treatment outcomes with MRSA pneumonia. Recently released antimicrobials with in vitro activity are not FDA-approved for treating MRSA pneumonia. Other novel agents are being investigated though none are in late-stage development. Pharmaceutical industry perception of low returns on investment, a Sisyphean regulatory environment, and obstacles to patentability have contributed to declining interest in both the development of novel antibiotics and the improvement of existing generic formulations. Despite decades of investigation into liposomal encapsulation as a drug delivery system that would increase efficacy and decrease toxicity, only liposomal amphotericin B and doxorubicin are commercially available. In this article, the pharmacokinetics and biodistribution of a novel PEGylated liposomal vancomycin formulation along with passive targeting and the enhanced permeability and retention effect of liposomal drug delivery; the pathogenesis of MRSA pneumonia; and recent patents of novel anti-MRSA agents, including inhalational liposomal vancomycin, are reviewed.

  10. Dexamethasone-Loaded, PEGylated, Vertically Aligned, Multiwalled Carbon Nanotubes for Potential Ischemic Stroke Intervention.

    PubMed

    Komane, Patrick P; Kumar, Pradeep; Marimuthu, Thashree; Toit, Lisa C du; Kondiah, Pierre P D; Choonara, Yahya E; Pillay, Viness

    2018-06-10

    The complete synthesis, optimization, purification, functionalization and evaluation of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) was reported for potential application in dexamethasone delivery to the ischemic brain tissue. The conditions for high yield were optimized and carbon nanotubes functionalized and PEGylated prior to dexamethasone loading. Morphological changes were confirmed by SEM and TEM. Addition of functional groups to MWCNTs was demonstrated by FTIR. Thermal stability reduced following MWCNTs functionalization as demonstrated in TGA. The presence of carbon at 2θ of 25° and iron at 2θ of 45° in MWCNTs was illustrated by XRD. Polydispersive index and zeta potential were found to be 0.261 and −15.0 mV, respectively. Dexamethasone release increased by 55%, 65% and 95% in pH of 7.4, 6.5 and 5.5 respectively as evaluated by UV-VIS. The functionalized VA-MWCNTs were demonstrated to be less toxic in PC-12 cells in the concentration range from 20 to 20,000 µg/mL. These findings have demonstrated the potential of VA-MWCNTs in the enhancement of fast and prolonged release of dexamethasone which could lead to the effective treatment of ischemic stroke. More work is under way for targeting ischemic sites using atrial natriuretic peptide antibody in stroke rats.

  11. Photosensitizer-Loaded Branched Polyethylenimine-PEGylated Ceria Nanoparticles for Imaging-Guided Synchronous Photochemotherapy.

    PubMed

    Yang, Zhang-You; Li, Hong; Zeng, Yi-Ping; Hao, Yu-Hui; Liu, Cong; Liu, Jing; Wang, Wei-Dong; Li, Rong

    2015-11-04

    A multifunctional theranostic platform based on photosensitizer (chlorin e6, Ce6)-loaded branched polyethylenimine-PEGylated ceria nanoparticles (PPCNPs-Ce6) was created for the development of effective cancer treatments involving the use of imaging-guided synchronous photochemotherapy. PPCNPs-Ce6 with high Ce6 photosensitizer loading (Ce6: cerium ∼40 wt %) significantly enhanced the delivery of Ce6 into cells and its accumulation in lysosomes, remarkably improving photodynamic therapeutic (PDT) efficacy levels compared to those in the administration of free Ce6 at ultralow drug doses (∼200 nM). Interestingly, PPCNPs-Ce6 efficiently induced HeLa cell death even at low concentrations (∼10 μM) without the use of laser irradiation and exhibit chemocytotoxicity. Inductively coupled plasma mass spectrometry (ICP-MS) and biology transmission electron microscopy (Bio-TEM) analyses demonstrated that ceria nanoparticles enter cells abundantly and accumulate in lysosomes or large vesicles. We then evaluated the effects of the different materials on lysosomal integrity and function, which revealed that PPCNPs-Ce6 catastrophically impaired lysosomal function compared to results with PPCNPs and Ce6. Studies of apoptosis revealed greater induction of apoptosis by PPCNPs-Ce6 treatment. This multifunctional nanocarrier also exhibited a high degree of solubility and stability in aqueous solutions, suggesting its applicability for extensive biomedical application.

  12. Extension arm facilitated pegylation of alphaalpha-hemoglobin with modifications targeted exclusively to amino groups: functional and structural advantages of free Cys-93(beta) in the PEG-Hb adduct.

    PubMed

    Li, Dongxia; Hu, Tao; Manjula, Belur N; Acharya, Seetharama A

    2009-11-01

    Cys-93(beta) of hemoglobin (Hb) was reversibly protected as a mixed disulfide with thiopyridine during extension arm facilitated (EAF) PEGylation and its influence on the structural and functional properties of the EAF-PEG-Hb has been investigated. Avoiding PEGylation of Cys-93(beta) in the EAF-PEG-Hb lowers the level of perturbation of heme pocket, alpha1beta2 interface, autoxidation, heme loss, and the O(2) affinity, as compared to the EAF-PEG-Hb with PEGylation of Cys-93(beta).The structural and functional advantages of reversible protection of Cys-93(beta) during EAF PEGylation of oxy-Hb has been compared with Euro PEG-Hb generated by EAF PEGylation of deoxy Hb where Cys-93(beta) is free in the final product. The alphaalpha-fumaryl cross-linking and EAF PEGylation targeted exclusively to Lys residues has been combined together for generation of second-generation EAF-PEG-Hb with lower oxygen affinity. The PEG chains engineered on Lys as well as PEGylation of Cys-93(beta) independently contribute to the stabilization of oxy conformation of Hb and hence increase the oxygen affinity of Hb. However, oxygen affinity of the EAF-PEG-alphaalpha-Hb is more sensitive to the presence of PEGylation on Cys-93(beta) than that of the EAF-PEG-Hb. The present modified EAF PEGylation platform is expected to facilitate the design of novel versions of the EAF-PEG-Hbs that can now integrate the advantages of avoiding PEGylation of Cys-93(beta).

  13. [Bilateral non-arteritic ischemic optic neuropathy during treatment of viral hepatitis C with pegylated interferon and Ribavirin].

    PubMed

    Iferkhass, S; Elasri, F; Chatioui, S; Khoyaali, A; Bargach, T; Reda, K; Oubaaz, A

    2015-01-01

    Hepatitis C is a serious viral infection, for which the current treatment is based on the combination of pegylated interferon (IFN) and Ribavirin(®). Ophthalmic complications observed with PEG-IFN are infrequent and of variable prognosis. They often include an ischemic retinopathy with typical cotton-wool spots, hemorrhage and retinal edema, and rarely acute non-arteritic anterior ischemic optic neuropathy as illustrated by our report. We report the case of a 51-year-old man followed for chronic active hepatitis C, who presented in the fourth month of treatment with pegylated interferon and vidarabine with a sharp decline in visual acuity secondary to acute bilateral non-arteritic anterior ischemic optic neuropathy. The hepatitis C treatment was discontinued. His course was notable by the third week for a significant regression of papilledema with improvement in visual acuity in the right eye and no change in the left eye, remaining at counting fingers. After regressing for four years, the disease progressed to bilateral temporal optic atrophy without change in visual acuity. Pegylated interferon and Ribavirin(®) are commonly used in the treatment of chronic hepatitis C. They are the source of various ophthalmologic complications of varied severity. The pathophysiology of this ocular toxicity currently remains hypothetical. Non-arteritic ischemic optic neuropathy is still a relatively rare complication with a poor functional prognosis, often requiring discontinuation of treatment. Thus, careful ophthalmologic monitoring before and during antiviral treatment of patients with hepatitis C appears necessary. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Quantitation of free polyethylene glycol in PEGylated protein conjugate by size exclusion HPLC with refractive index (RI) detection.

    PubMed

    Li, Ning; Ziegemeier, Daisy; Bass, Laura; Wang, Wei

    2008-12-15

    In this study, size exclusion high performance liquid chromatography was evaluated for its application in separation and quantitation of free polyethylene glycol (PEG) and its PEGylated-protein-conjugate (PEG-conjugate). Although the large mass of the free PEG (2-fold greater than the protein) made separation difficult, chromatographic conditions were identified enabling resolution and quantitation of the free PEG, PEG-conjugate and non-PEGylated protein with Shodex Protein KW803 and KW804 columns in series and refractive index detection. The optimum resolution of 1.7 and 2.0 was achieved for the free PEG and PEG-conjugate as well as the free PEG and non-PEGylated protein using 20mM HEPES buffer at pH 6.5. Under this condition, the plot of log(10)MW of all the pertinent analytes against retention time showed a linear relationship with a correlation coefficient of 1. Limited assay performance evaluation demonstrated that the method was linear in the concentration range of 10 to 250 microg/mL of free PEG with correlation coefficients of > or = 0.99. When free PEG in this concentration range was spiked into PEG-conjugate samples at 1mg/mL, the recovery was in the range of 78%-120%. Detection and quantitation limits were determined to be, respectively, 10 and 25 microg/mL for free PEG. The R.S.D. for intra- and inter-day precision was 0.09% or less for retention time measurements and 2.9% or less for area count measurements. Robustness testing was performed by deliberately deviating +/-0.2 pH units away from the desired pH as well as by increasing the flow rate. These deviations resulted in no significant impact on area percent distribution of all species. However, separation was found to be sensitive to high ionic strength and buffer species.

  15. Virologic response to treatment with Pegylated Interferon alfa-2b and Ribavirin for chronic hepatitis C in children.

    PubMed

    Pawłowska, Malgorzata; Pilarczyk, Malgorzata; Halota, Waldemar

    2010-12-01

    This study assessed the efficacy and safety of treatment of chronic hepatitis C in children with pegylated interferon alpha and ribavirin. Investigations were performed on 53 children with chronic hepatitis C, aged 8-17 years. Children were divided into 2 groups: naïve (n=29) and retreated (n=24). All children were administered a combined therapy with pegylated interferon (IFN) alpha-2b 1.5 mcg/kg/wk and ribavirin 15 mg/kg/d for 48 weeks. Mean baseline viral load was 0.456×10(6) IU/mL, mean alanine aminotransferase (ALT) activity was 45.8±24.3 IU/mL. No child had liver disease assessed greater than grade 2, stage 2 according to modified Scheuer scale. Serum hepatitis C virus (HCV) RNA in TW 12-EVR, TW 48-ETR, and W 72-sustained virologic response (SVR) with the polymerase chain reaction (PCR) method (Roche TaqMan) were evaluated. Sustained virologic response was achieved in 47% of children. The prevalence of relapses was 7.5%. The most important predictor of SVR in both groups was undetectable HCV RNA at TW 12. All retreated children who achieved partial EVR - (the HCV RNA level decreased more than 2 logs relative to baseline) were relapsers. In responders from both groups, baseline ALT activity was higher and baseline viral load was lower. In all children who achieved SVR, HCV RNA was undetectable 12 months later. Pegylated IFN and ribavirin are effective in treating chronic hepatitis C in children. Complete EVR is predictive of a sustained viral response. And high rate of relapses in retreated patients may suggest a longer duration of retherapy.

  16. Efficient preparation and PEGylation of recombinant human non-glycosylated erythropoietin expressed as inclusion body in E. coli.

    PubMed

    Wang, Yin-Jue; Liu, Yong-Dong; Chen, Jing; Hao, Su-Juan; Hu, Tao; Ma, Guang-Hui; Su, Zhi-Guo

    2010-02-15

    Recombinant human erythropoietin produced by mammalian cells contains about 40% carbohydrates which maintain its stability and long residence in body. However, mammalian derived Epo has low yields and high costs of production. In this article, a cost-effective strategy of producing non-glycosylated Epo from Escherichia coli and then PEGylating it to replace the role of sugar chains was investigated. Recombinant human non-glycosylated erythropoietin (rh-ngEpo) was overexpressed as inclusion body in E. coli. As the routine inclusion body washing step resulted in poor protein recovery and purity, a new process scheme of using strong ion-exchange chromatography to purify denatured rh-ngEpo from inclusion body before refolding was developed. The purity of the denatured rh-ngEpo was increased from 59% to over 90%. Rh-ngEpo was then refolded and subsequently purified by one step of weak cation-exchange chromatography to 98% pure. Final protein yield was 129 mg/l, a significant improvement from 49 mg/l obtained via the conventional practice. The in vitro bioactivity of purified rh-ngEpo was comparable with the CHO-expressed Epo and the formation of native secondary structure was also confirmed by CD spectra. Rh-ngEpo was then modified by a 20 kDa methoxy polyethylene glycol (PEG) succinimidyl carbonate. The monoPEGylated protein, which retained 68% bioactivity, had enhanced thermal stability and a remarkably prolonged circulating half-life in rats as compared with that of the unmodified protein. These studies demonstrated the feasibility of PEGylating rh-ngEpo as a promising way for the development of new Epo drugs. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Effect of the Route of Administration and PEGylation of Poly(amidoamine) Dendrimers on Their Systemic and Lung Cellular Biodistribution.

    PubMed

    Zhong, Qian; Merkel, Olivia M; Reineke, Joshua J; da Rocha, Sandro R P

    2016-06-06

    There are many opportunities in the development of oral inhalation (oi) formulations for the delivery of small molecule therapeutics and biologics to and through the lungs. Nanocarriers have the potential to play a key role in advancing oi technologies and pushing the boundary of the pulmonary delivery market. In this work we investigate the effect of the route of administration and PEGylation on the systemic and lung cellular biodistribution of generation 3, amino-terminated poly(amidoamine) (PAMAM) dendrimers (G3NH2). Pharmacokinetic profiles show that the dendrimers reach their peak concentration in systemic circulation within a few hours after pulmonary delivery, independent of their chemistry (PEGylated or not), charge (+24 mV for G3NH2 vs -3.7 mV for G3NH2-24PEG1000), or size (5.1 nm for G3NH2 and 9.9 nm for G3NH2-24PEG1000). However, high density of surface modification with PEG enhances pulmonary absorption and the peak plasma concentration upon pulmonary delivery. The route of administration and PEGylation also significantly impact the whole body and local (lung cellular) distribution of the dendrimers. While ca. 83% of G3NH2 is found in the lungs upon pulmonary delivery at 6.5 h post administration, only 2% reached the lungs upon intravenous (iv) delivery. Moreover, no measurable concentration of either G3NH2 or G3NH2-24PEG1000 is found in the lymph nodes upon iv administration, while these are the tissues with the second highest mass distribution of dendrimers post pulmonary delivery. Dendrimer chemistry also significantly impacts the (cellular) distribution of the nanocarriers in the lung tissue. Upon pulmonary delivery, approximately 20% of the lung endothelial cells are seen to internalize G3NH2-24PEG1000, compared to only 6% for G3NH2. Conversely, G3NH2 is more readily taken up by lung epithelial cells (35%) when compared to its PEGylated counterpart (24%). The results shown here suggest that both the pulmonary route of administration and dendrimer

  18. Effect of the Route of Administration and PEGylation of Poly(amidoamine) Dendrimers on Their Systemic and Lung Cellular Biodistribution

    PubMed Central

    Zhong, Qian; Merkel, Olivia M.; Reineke, Joshua J.; da Rocha, Sandro R. P.

    2017-01-01

    There are many opportunities in the development of oral inhalation (oi) formulations for the delivery of small molecule therapeutics and biologics to and through the lungs. Nanocarriers have the potential to play a key role in advancing oi technologies and pushing the boundary of the pulmonary delivery market. In this work we investigate the effect of the route of administration and PEGylation on the systemic and lung cellular biodistribution of generation 3, amino-terminated poly(amidoamine) (PAMAM) dendrimers (G3NH2). Pharmacokinetic profiles show that the dendrimers reach their peak concentration in systemic circulation within a few hours after pulmonary delivery, independent of their chemistry (PEGylated or not), charge (+24 mV for G3NH2 vs −3.7 mV for G3NH2-24PEG1000), or size (5.1 nm for G3NH2 and 9.9 nm for G3NH2-24PEG1000). However, high density of surface modification with PEG enhances pulmonary absorption and the peak plasma concentration upon pulmonary delivery. The route of administration and PEGylation also significantly impact the whole body and local (lung cellular) distribution of the dendrimers. While ca. 83% of G3NH2 is found in the lungs upon pulmonary delivery at 6.5 h post administration, only 2% reached the lungs upon intravenous (iv) delivery. Moreover, no measurable concentration of either G3NH2 or G3NH2-24PEG1000 is found in the lymph nodes upon iv administration, while these are the tissues with the second highest mass distribution of dendrimers post pulmonary delivery. Dendrimer chemistry also significantly impacts the (cellular) distribution of the nanocarriers in the lung tissue. Upon pulmonary delivery, approximately 20% of the lung endothelial cells are seen to internalize G3NH2-24PEG1000, compared to only 6% for G3NH2. Conversely, G3NH2 is more readily taken up by lung epithelial cells (35%) when compared to its PEGylated counterpart (24%). The results shown here suggest that both the pulmonary route of administration and dendrimer

  19. Application of meta- and para- phenylenediamine as enhanced oxime ligation catalysts for protein labeling, PEGylation, immobilization and release

    PubMed Central

    Mahmoodi, Mohammad M.; Rashidian, Mohammad; Zhang, Yi; Distefano, Mark D.

    2015-01-01

    Meta- and para- phenylenediamines have recently been shown to catalyze oxime and hydrazone ligation reactions at rates much faster than aniline, a commonly used catalyst. Here, it is demonstrated how these new catalysts can be used in a generally applicable procedure for fluorescent labeling, PEGylation, immobilization and release of aldehyde and ketone functionalized proteins. The chemical orthogonality of phenylenediamine-catalyzed oxime ligation versus copper catalyzed click reaction has also been harnessed for simultaneous dual labeling of bifunctional proteins containing both aldehyde and alkyne groups in high yield. PMID:25640893

  20. Onset of Type 1 Diabetes Mellitus During Pegylated-interferon Alfa and Ribavirin Therapy for Chronic Hepatitis C Virus Infection

    PubMed Central

    Ranganathan, Raghini; Janarthanan, Krishnaveni; Rajasekaran, Senthilkumar

    2012-01-01

    A 16-year-old female was treated with pegylated-interferon (PEG-IFN) alfa (a)-2b and ribavirin combination therapy for chronic hepatitis C virus (HCV) infection. She attained rapid virological response. She presented with diabetic ketoacidosis after 41 weeks of therapy. Anti-glutamic acid decarboxylase antibodies and islet cell antibodies were negative. Her fasting serum C-peptide level was <0.1 ng/mL, and the treatment course was completed. This case underlines the importance of periodic plasma glucose monitoring in patients during and after PEG-IFN and ribavirin therapy. PMID:25755410

  1. Aqueous Synthesis of PEGylated Quantum Dots with Increased Colloidal Stability and Reduced Cytotoxicity.

    PubMed

    Ulusoy, Mehriban; Jonczyk, Rebecca; Walter, Johanna-Gabriela; Springer, Sergej; Lavrentieva, Antonina; Stahl, Frank; Green, Mark; Scheper, Thomas

    2016-02-17

    Ligands used on the surface of colloidal nanoparticles (NPs) have a significant impact on physiochemical properties of NPs and their interaction in biological environments. In this study, we report a one-pot aqueous synthesis of 3-mercaptopropionic acid (MPA)-functionalized CdTe/CdS/ZnS quantum dots (Qdots) in the presence of thiol-terminated methoxy polyethylene glycol (mPEG) molecules as a surface coordinating ligand. The resulting mPEG-Qdots were characterized by using ζ potential, FTIR, thermogravimetric (TG) analysis, and microscale thermophoresis (MST) studies. We investigated the effect of mPEG molecules and their grafting density on the Qdots photophysical properties, colloidal stability, protein binding affinity, and in vitro cellular toxicity. Moreover, cellular binding features of the resulting Qdots were examined by using three-dimensional (3D) tumor-like spheroids, and the results were discussed in detail. Promisingly, mPEG ligands were found to increase colloidal stability of Qdots, reduce adsorption of proteins to the Qdot surface, and mitigate Qdot-induced side effects to a great extent. Flow cytometry and confocal microscopy studies revealed that PEGylated Qdots exhibited distinctive cellular interactions with respect to their mPEG grafting density. As a result, mPEG molecules demonstrated a minimal effect on the ZnS shell deposition and the Qdot fluorescence efficiency at a low mPEG density, whereas they showed pronounced effect on Qdot colloidal stability, protein binding affinity, cytotoxicity, and nonspecific binding at a higher mPEG grafting amount.

  2. Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo.

    PubMed

    Klippstein, Rebecca; Wang, Julie Tzu-Wen; El-Gogary, Riham I; Bai, Jie; Mustafa, Falisa; Rubio, Noelia; Bansal, Sukhvinder; Al-Jamal, Wafa T; Al-Jamal, Khuloud T

    2015-09-01

    Clinical applications of curcumin for the treatment of cancer and other chronic diseases have been mainly hindered by its short biological half-life and poor water solubility. Nanotechnology-based drug delivery systems have the potential to enhance the efficacy of poorly soluble drugs for systemic delivery. This study proposes the use of poly(lactic-co-glycolic acid) (PLGA)-based polymeric oil-cored nanocapsules (NCs) for curcumin loading and delivery to colon cancer in mice after systemic injection. Formulations of different oil compositions are prepared and characterized for their curcumin loading, physico-chemical properties, and shelf-life stability. The results indicate that castor oil-cored PLGA-based NC achieves high drug loading efficiency (≈18% w(drug)/w(polymer)%) compared to previously reported NCs. Curcumin-loaded NCs internalize more efficiently in CT26 cells than the free drug, and exert therapeutic activity in vitro, leading to apoptosis and blocking the cell cycle. In addition, the formulated NC exhibits an extended blood circulation profile compared to the non-PEGylated NC, and accumulates in the subcutaneous CT26-tumors in mice, after systemic administration. The results are confirmed by optical and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. In vivo growth delay studies are performed, and significantly smaller tumor volumes are achieved compared to empty NC injected animals. This study shows the great potential of the formulated NC for treating colon cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Modulation of Endosomal Escape of IRQ-PEGylated Nano-carrier

    NASA Astrophysics Data System (ADS)

    Mudhakir, Diky; Akita, Hidetaka; Harashima, Hideyoshi

    2011-12-01

    The novel IRQ peptide is one of cell penetrating peptides (CPPs) that has ability to induce endosomal escape. It has been demonstrated that IRQ ligand had ability to facilitate an escape of liposomes encapsulating siRNA from the endosomes presumably by fusion-independent mechanism [1,2]. In the present study, we attempted to modulate the intracellular trafficking of IRQ-modified nano-carrier in term of escaping process by changing the lipid composition. The peptide was attached to the terminal end of maleimide group of polyethylene glycol-modified liposomes (IRQ-PEG-Lip). The liposomes were composed of DOTAP, DOPE and cholesterol and it was labeled by water soluble sulpho-rhodamine B (Sr-B). The escape of PEG-coated liposomes was then observed by confocal laser scanning microscope after the endosomes were stained with Lysosensor. The results exhibited that IRQ-PEG-Lip was escaped from endosomal compartment after 1 h transfection when 40% of DOPE was incorporated into the nanostructure comparing to that of PEG-Lip. These results are consistent with the previous results that the IRQ facilitates endosomal escape via independent-mechanism. However, IRQ-PEG-Lip were then completely co-localized in the acidic compartment when density of DOPE was reduced approximately 20%. These results indicated that the utilizing of DOPE is important for the escape process even in the presence of hydrophilic PEG polymer. In conclusion, the regulation of endosomal escape ability of the PEGylated-IRQ nano-carrier was induced by fusion-independent manner as well as fusogenic lipid.

  4. Systemic PEGylated TRAIL treatment ameliorates liver cirrhosis in rats by eliminating activated hepatic stellate cells.

    PubMed

    Oh, Yumin; Park, Ogyi; Swierczewska, Magdalena; Hamilton, James P; Park, Jong-Sung; Kim, Tae Hyung; Lim, Sung-Mook; Eom, Hana; Jo, Dong Gyu; Lee, Choong-Eun; Kechrid, Raouf; Mastorakos, Panagiotis; Zhang, Clark; Hahn, Sei Kwang; Jeon, Ok-Cheol; Byun, Youngro; Kim, Kwangmeyung; Hanes, Justin; Lee, Kang Choon; Pomper, Martin G; Gao, Bin; Lee, Seulki

    2016-07-01

    Liver fibrosis is a common outcome of chronic liver disease that leads to liver cirrhosis and hepatocellular carcinoma. No US Food and Drug Administration-approved targeted antifibrotic therapy exists. Activated hepatic stellate cells (aHSCs) are the major cell types responsible for liver fibrosis; therefore, eradication of aHSCs, while preserving quiescent HSCs and other normal cells, is a logical strategy to stop and/or reverse liver fibrogenesis/fibrosis. However, there are no effective approaches to specifically deplete aHSCs during fibrosis without systemic toxicity. aHSCs are associated with elevated expression of death receptors and become sensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell death. Treatment with recombinant TRAIL could be a potential strategy to ameliorate liver fibrosis; however, the therapeutic application of recombinant TRAIL is halted due to its very short half-life. To overcome this problem, we previously generated PEGylated TRAIL (TRAILPEG ) that has a much longer half-life in rodents than native-type TRAIL. In this study, we demonstrate that intravenous TRAILPEG has a markedly extended half-life over native-type TRAIL in nonhuman primates and has no toxicity in primary human hepatocytes. Intravenous injection of TRAILPEG directly induces apoptosis of aHSCs in vivo and ameliorates carbon tetrachloride-induced fibrosis/cirrhosis in rats by simultaneously down-regulating multiple key fibrotic markers that are associated with aHSCs. TRAIL-based therapies could serve as new therapeutics for liver fibrosis/cirrhosis and possibly other fibrotic diseases. (Hepatology 2016;64:209-223). © 2015 by the American Association for the Study of Liver Diseases.

  5. Pegylated interferon and ribavirin for the recurrence of chronic hepatitis C genotype 1 in transplant patients.

    PubMed

    Oton, E; Barcena, R; Garcia-Garzon, S; Moreno-Zamora, A; Moreno, A; Garcia-Gonzalez, M; Blesa, C; Foruny, J R; Ruiz, P

    2005-11-01

    The efficacy of pegylated interferon (p-IFN) and ribavirin (RB) in transplant patients is not well known. Chronic hepatitis C evolves in a more aggressive form after transplantation, causing a worse survival. Twenty-one naïve patients with recurrent chronic hepatitis C demonstrated by biopsy were treated for 48 weeks with p-IFN alpha2b (1.5 microg/kg/wk) and RB (>10.6 mg/kg/d). Quantification of RNA was performed (Amplicor Cobas 2.0 Roche) at baseline, 4, 12, 24, 48, and 72 weeks. A qualitative technique was used when quantitative levels were undetectable. At more than 1 year since liver transplantation we did not detect coinfection with human immunodeficiency virus or use steroid treatment. Among the cohort there were 16 men (76.2%). The mean overall age was 52 +/- 12 years. Time from liver transplant to treatment was 1637 +/- 1030 days. They were all infected with genotype 1. Eight patients received cyclosporine and the others tacrolimus. One patient was coinfected with hepatitis B virus and was receiving lamivudine. The mean initial histological activity index was 6.9 +/- 1.5 and fibrosis, 2.52 +/- 1.8 (Ishak). Two patients needed spleen embolization before the treatment. Two patients had to stop the treatment: one due to clinical intolerance, and the other one due to a cholangitis. In 14%, p-IFN doses were adjusted. In 32% RB was adjusted. Five (23.8%) did not respond at 24 weeks. Fourteen (66.7%) showed end-treatment responses but four relapsed at 72 weeks. A sustained viral response was achieved in 9 (42.8%). One patient died due to arterial thrombosis just after completing the treatment.

  6. New thermosensitive nanoparticles prepared by biocompatible pegylated aliphatic polyester block copolymers for local cancer treatment.

    PubMed

    Karavelidis, Vassilios; Bikiaris, Dimitrios; Avgoustakis, Konstantinos

    2015-02-01

    New pegylated thermosensitive polymers were developed to study them as drug vehicles in targeting release nanoparticulate systems of anticancer drugs. The drug vehicles were prepared in the form of core-shell nanoparticles using novel polymeric materials synthesized by copolymerization of poly(propylene adipate) (PPAd) and methoxy-polyethylene glycol (mPEG) with different molecular weights. The physical and chemical properties of the synthesized mPEG-PPAd copolymers were studied using several techniques, and their cytocompatibility was evaluated. For drug nanoencapsulation, a water in oil (W/O) emulsification and solvent evaporation technique was used and the prepared nanoparticles were studied for their physical properties, morphology, drug release and anticancer efficacy against cancer cell lines. The size of the nanoparticles lied in a range suitable for tumour targeting. Drug release was affected by the composition of polymer, the temperature and pH of the release medium. The release results obtained indicate that judicious selection of nanoparticles composition may allow for enhanced drug delivery to the tumours following application of local hyperthermia. The paclitaxel-loaded mPEG-PPAd nanoparticles were found to be cytotoxic against to the human hepatoma HepG2) and the human epithelial (HeLa) cancer cell lines. Enhanced cytotoxicity against the HeLa cells was observed at elevated temperature (42°C compared with 37°C), providing support for the potential usefulness of the mPEG-PPAd nanoparticles for the development of thermo-sensitive anticancer drug delivery systems. © 2014 Royal Pharmaceutical Society.

  7. PEGylated lipid nanocapsules with improved drug encapsulation and controlled release properties.

    PubMed

    Hervella, Pablo; Alonso-Sande, Maria; Ledo, Francisco; Lucero, Maria L; Alonso, Maria J; Garcia-Fuentes, Marcos

    2014-01-01

    Drugs with poor lipid and water solubility are some of the most challenging to formulate in nanocarriers, typically resulting in low encapsulation efficiencies and uncontrolled release profiles. PEGylated nanocapsules (PEG-NC) are known for their amenability to diverse modifications that allow the formation of domains with different physicochemical properties, an interesting feature to address a drug encapsulation problem. We explored this problem by encapsulating in PEG-NC the promising anticancer drug candidate F10320GD1, used herein as a model for compounds with such characteristics. The nanocarriers were prepared from Miglyol(®), lecithin and PEG-sterate through a solvent displacement technique. The resulting system was a homogeneous suspension of particles with size around 200 nm. F10320GD1 encapsulation was found to be very poor (<15%) if PEG-NC were prepared using water as continuous phase; but we were able to improve this value to 85% by fixing the pH of the continuous phase to 9. Interestingly, this modification also improved the controlled release properties and the chemical stability of the formulation during storage. These differences in pharmaceutical properties together with physicochemical data suggest that the pH of the continuous phase used for PEG-NC preparation can modify drug allocation, from the external shell towards the inner lipid core of the nanocapsules. Finally, we tested the bioactivity of the drug-loaded PEG-NC in several tumor cell lines, and also in endothelial cells. The results indicated that drug encapsulation led to an improvement on drug cytotoxicity in tumor cells, but not in non-tumor endothelial cells. Altogether, the data confirms that PEG-NC show adequate delivery properties for F10320GD1, and underlines its possible utility as an anticancer therapy.

  8. PEGylated IL-11 (BBT-059): A Novel Radiation Countermeasure for Hematopoietic Acute Radiation Syndrome.

    PubMed

    Kumar, Vidya P; Biswas, Shukla; Sharma, Neel K; Stone, Sasha; Fam, Christine M; Cox, George N; Ghosh, Sanchita P

    2018-07-01

    Interleukin-11 was developed to reduce chemotherapy-induced thrombocytopenia; however, its clinical use was limited by severe adverse effects in humans. PEGylated interleukin-11 (BBT-059), developed by Bolder Biotechnology, Inc., exhibited a longer half-life in rodents and induced longer-lasting increases in hematopoietic cells than interleukin-11. A single dose of 1.2 mg kg of BBT-059, administered subcutaneously to CD2F1 mice (12-14 wk, male) was found to be safe in a 14 d toxicity study. The drug demonstrated its efficacy both as a prophylactic countermeasure and a mitigator in CD2F1 mice exposed to Co gamma total-body irradiation. A single dose of 0.3 mg kg, administered either 24 h pre-, 4 h post-, or 24 h postirradiation increased the survival of mice to 70-100% from lethal doses of radiation. Preadministration (-24 h) of the drug conferred a significantly (p < 0.05) higher survival compared to 24 h post-total-body irradiation. There was significantly accelerated recovery from radiation-induced peripheral blood neutropenia and thrombocytopenia in animals pretreated with BBT-059. The drug also increased bone marrow cellularity and megakaryocytes and accelerated multilineage hematopoietic recovery. In addition, BBT-059 inhibited the induction of radiation-induced hematopoietic biomarkers, thrombopoietin, erythropoietin, and Flt-3 ligand. These results indicate that BBT-059 is a promising radiation countermeasure, demonstrating its potential to be used both pre- and postirradiation for hematopoietic acute radiation syndrome with a broad window for medical management in a radiological or nuclear event.

  9. Preparation and characterization of PEGylated chitosan nanocapsules as a carrier for pharmaceutical application

    NASA Astrophysics Data System (ADS)

    Najafabadi, Alireza Hassani; Abdouss, Majid; Faghihi, Shahab

    2014-03-01

    A new method to conjugate methoxy polyethylene glycol (mPEG) to C6 position of chitosan under the mild condition is introduced that improves the biocompatibility and water solubility of chitosan. Harsh deprotecting step and several purification cycles are two major disadvantages of the current methods for preparing PEGylated chitosan. In this study, the amine groups at C2 position of chitosan are protected using SDS followed by grafting the PEG. The protecting group of chitosan is simply removed by dialyzing against Tris solution. The chemical structure of the prepared polymer is characterized by FTIR and 1H NMR spectroscopy. Fourier transformed-infrared (FT-IR) and 1H NMR spectra confirmed that the mPEG is successfully grafted to C6 position of chitosan. Prepared methoxy polyethylene glycol (mPEG) is then employed to prepare the nanocapsules for the encapsulation of poor water-soluble drug, propofol. The TEM, AFM, and DLS techniques are used to characterize the prepared nanocapsules size and morphology. The results show a size of about 80 nm with spherical shape for nanocapsules. In vitro drug release is carried out to evaluate the potential of nanocarriers for the intravenous delivery of drugs. The profile of release from formulated nanocapsules is similar to those of commercial lipid emulsion (CLE). In vivo animal sleep-recovery test on rats shows a close similarity between the time of unconsciousness and recovery of righting reflex between nanoparticles and CLE. This study provides an efficient, novel, and easy method for preparing a carrier system that requires less intensive reaction conditions, fewer reaction steps, and less purification steps. In addition, the nanocapsules introduced here could be a promising nano carrier for the delivery of poor water-soluble drugs.

  10. Synthesis and characterization of mannosylated pegylated polyethylenimine as a carrier for siRNA

    PubMed Central

    Kim, NaJung; Jiang, Dahai; Jacobi, Ashley; Lennox, Kim A.; Rose, Scott; Behlke, Mark A.; Salem, Aliasger K.

    2011-01-01

    Regulation of gene expression using small interfering RNA (siRNA) is a promising strategy for research and treatment of numerous diseases. In this study, we develop and characterize a delivery system for siRNA composed of polyethylenimine (PEI), polyethylene glycol (PEG), and mannose (Man). Cationic PEI complexes and compacts siRNA, PEG forms a hydrophilic layer outside of the polyplex for steric stabilization, and mannose serves as a cell binding ligand for macrophages. The PEI-PEG-mannose delivery system was constructed in two different ways. In the first approach, mannose and PEG chains are directly conjugated to the PEI backbone. In the second approach, mannose is conjugated to one end of the PEG chain and the other end of the PEG chain is conjugated to the PEI backbone. The PEI-PEG-mannose delivery systems were synthesized with 3.45 – 13.3 PEG chains and 4.7 – 3.0 mannose molecules per PEI. The PEI-PEG-Man-siRNA polyplexes displayed a coarse surface in Scanning Electron Microscopy (SEM) images. Polyplex sizes were found to range from 169nm to 357nm. Gel retardation assays showed that the PEI-PEG-mannose polymers are able to efficiently complex with siRNA at low N/P ratios. Confocal microscope images showed that the PEI-PEG-Man-siRNA polyplexes could enter cells and localized in the lysosomes at 2 hours post-incubation. Pegylation of the PEI reduced toxicity without any adverse reduction in knockdown efficiency relative to PEI alone. Mannosylation of the PEI-PEG could be carried out without any significant reduction in knockdown efficiency relative to PEI alone. Conjugating mannose to PEI via the PEG spacer generated superior toxicity and gene knockdown activity relative to conjugating mannose and PEG directly onto the PEI backbone. PMID:21864664

  11. Self-assembly of PEGylated tetra-phenylalanine derivatives: structural insights from solution and solid state studies

    PubMed Central

    Diaferia, Carlo; Mercurio, Flavia Anna; Giannini, Cinzia; Sibillano, Teresa; Morelli, Giancarlo; Leone, Marilisa; Accardo, Antonella

    2016-01-01

    Water soluble fibers of PEGylated tetra-phenylalanine (F4), chemically modified at the N-terminus with the DOTA chelating agent, have been proposed as innovative contrast agent (CA) in Magnetic Resonance Imaging (MRI) upon complexation of the gadolinium ion. An in-depth structural characterization of PEGylated F4-fibers, in presence (DOTA-L6-F4) and in absence of DOTA (L6-F4), is reported in solution and at the solid state, by a multiplicity of techniques including CD, FTIR, NMR, DLS, WAXS and SAXS. This study aims to better understand how the aggregation process influences the performance of nanostructures as MRI CAs. Critical aggregation concentrations for L6-F4 (43 μM) and DOTA-L6-F4 (75 μM) indicate that self-aggregation process occurs in the same concentration range, independently of the presence of the CA. The driving force for the aggregation is the π-stacking between the side chains of the aromatic framework. CD, FTIR and WAXS measurements indicate an antiparallel β-sheet organization of the monomers in the resulting fibers. Moreover, WAXS and FTIR experiments point out that in solution the nanomaterials retain the same morphology and monomer organizations of the solid state, although the addition of the DOTA chelating agent affects the size and the degree of order of the fibers. PMID:27220817

  12. The in vitro kinetics of the interactions between PEG-ylated magnetic-fluid-loaded liposomes and macrophages.

    PubMed

    Martina, Marie-Sophie; Nicolas, Valerie; Wilhelm, Claire; Ménager, Christine; Barratt, Gillian; Lesieur, Sylviane

    2007-10-01

    Binding and uptake kinetics of magnetic-fluid-loaded liposomes (MFL) by endocytotic cells were investigated in vitro on the model cell-line J774. MFL consisted of unilamellar phosphatidylcholine vesicles (mean hydrodynamic diameter close to 200nm) encapsulating 8-nm nanocrystals of maghemite (gamma-Fe(2)O(3)) and sterically stabilized by introducing 5mol% of distearylphosphatidylcholine poly(ethylene glycol)(2,000) (DSPE-PEG(2,000)) in the vesicle bilayer. The association processes with living macrophages were followed at two levels. On one hand, the lipid vesicles were imaged by confocal fluorescence microscopy. For this purpose 1mol% of rhodamine-marked phosphatidylethanolamine was added to the liposome composition. On the other hand, the iron oxide particles associated with cells were independently quantified by magnetophoresis. All the experiments were similarly performed with PEG-ylated or conventional MFL to point out the role of polymer coating. The results showed cell association with both types of liposomes resulting from binding followed by endocytosis. Steric stabilization by PEG chains reduced binding efficiency limiting the amount of MFL internalized by the macrophages. In contrast, PEG coating did not change the kinetics of endocytosis which exhibited the same first-order rate constant for both conventional and PEG-ylated liposomes. Moreover, lipids and iron oxide particle uptakes were perfectly correlated, indicating that MFL vesicle structure and encapsulation rate were preserved upon cell penetration.

  13. First-in-man study with a novel PEGylated recombinant human insulin-like growth factor-I.

    PubMed

    Kletzl, H; Guenther, A; Höflich, A; Höflich, C; Frystyk, J; Staack, R F; Schick, E; Wandel, C; Bleich, N; Metzger, F

    2017-04-01

    This study is a first time assessment of safety and tolerability, pharmacokinetics, and pharmacodynamics of RO5046013 in human, in comparison with unmodified rhIGF-I. The study was conducted as a single-center, randomized, double-blinded, placebo-controlled, single ascending dose, parallel group study in a clinical research unit in France. A total of 62 healthy volunteers participated in this clinical trial. RO5046013 was given as single subcutaneous injection, or as intravenous infusion over 48h, at ascending dose levels. The active comparator rhIGF-I was administered at 50μg/kg subcutaneously twice daily for 4days. Safety and tolerability, pharmacokinetics, and pharmacodynamics of RO5046013 were evaluated. PEGylation resulted in long exposure to RO5046013 with a half-life of 140-200h. Exposure to RO5046013 increased approximately dose proportionally. RO5046013 was safe and well tolerated at all doses, injection site erythema after SC administration was the most frequent observed AE. No hypoglycemia occurred. Growth hormone (GH) secretion was almost completely suppressed with rhIGF-I administration, whereas RO5046013 caused only a modest decrease in GH at the highest dose given IV. PEGylation of IGF-I strongly enhances half-life, reduces the negative GH feedback and hypoglycemia potential, and therefore offers a valuable alternative to rhIGF-I in treatment of relevant diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Imaging, autoradiography, and biodistribution of (188)Re-labeled PEGylated nanoliposome in orthotopic glioma bearing rat model.

    PubMed

    Huang, Feng-Yun J; Lee, Te-Wei; Kao, Chih-Hao K; Chang, Chih-Hsien; Zhang, Xiaoning; Lee, Wan-Yu; Chen, Wan-Jou; Wang, Shu-Chi; Lo, Jem-Mau

    2011-12-01

    The (188)Re-labeled pegylated nanoliposome (abbreviated as (188)Re-Liposome) was prepared and evaluated for its potential as a theragnostic agent for glioma. (188)Re-BMEDA complex was loaded into the pegylated liposome core with pH 5.5 ammonium sulfate gradient to produce (188)Re-Liposome. Orthotopic Fischer344/F98 glioma tumor-bearing rats were prepared and intravenously injected with (188)Re-Liposome. Biodistribution, pharmacokinetic study, autoradiography (ARG), histopathology, and nano-SPECT/CT imaging were conducted for the animal model. The result showed that (188)Re-Liposome accumulated in the brain tumor of the animal model from 0.28%±0.09% injected dose (ID)/g (n=3) at 1 hour to a maximum of 1.95%±0.35% ID/g (n=3) at 24 hours postinjection. The tumor-to-normal brain uptake ratio (T/N ratio) increased from 3.5 at 1 hour to 32.5 at 24 hours. Both ARG and histopathological images clearly showed corresponding tumor regions with high T/N ratios. Nano-SPECT/CT detected a very clear tumor image from 4 hours till 48 hours. This study reveals the potential of (188)Re-Liposome as a theragnostic agent for brain glioma.

  15. Pegylated interferon alpha-2a and ribavirin combination therapy in HCV liver transplant recipients. Experience of 7 cases.

    PubMed

    Iacob, Speranta; Gheorghe, Liana; Hrehoret, Doina; Becheanu, Gabriel; Herlea, Vlad; Popescu, Irinel

    2008-06-01

    Hepatitis C virus (HCV) related cirrhosis represents the leading indication for liver transplantation (LT) worldwide and HCV reinfection is the rule among transplant recipients. Combination therapy with interferon and ribavirin is the treatment of choice for established recurrent hepatitis C. To evaluate the efficacy and safety of the combination of pegylated interferon alpha-2a and ribavirin in LT recipients with histological recurrence of hepatitis C. Seven LT recipients with chronic hepatitis C recurrence were treated with peginterferon alpha-2a with an initial intended dose of 180 microg/week and an intended dose of ribavirin 800-1000 mg/day for at least 12 months and followed-up for at least 24 weeks. Early virological response rate was 57.1%. Three patients (42.8%) had end of treatment virological response and all had also sustained viral response (SVR). Five patients had end of treatment biological response, out of which 4 had also sustained biochemical response. Three patients had both SVR and sustained biochemical response. Four patients had end of treatment histological response, out of which 3 patients had also SVR. Cytopenia was the most common adverse event: anemia (57.1%), leucopenia/neutropenia (71.4%), thrombocytopenia (42.8%). Combination of pegylated interferon and ribavirin can be safely and successfully used in liver transplant recipients.

  16. Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors.

    PubMed

    Mi, Peng; Kokuryo, Daisuke; Cabral, Horacio; Kumagai, Michiaki; Nomoto, Takahiro; Aoki, Ichio; Terada, Yasuko; Kishimura, Akihiro; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2014-01-28

    Organic-inorganic hybrid nanoparticles with calcium phosphate (CaP) core and PEGylated shell were developed to incorporate magnetic resonance imaging (MRI) contrast agent diethylenetriaminepentaacetic acid gadolinium (III) (Gd-DTPA) for noninvasive diagnosis of solid tumors. A two-step preparation method was applied to elaborate hybrid nanoparticles with a z-average hydrodynamic diameter about 80nm, neutral surface ξ-potential and high colloidal stability in physiological environments by self-assembly of poly(ethylene glycol)-b-poly(aspartic acid) block copolymer, Gd-DTPA, and CaP in aqueous solution, followed with hydrothermal treatment. Incorporation into the hybrid nanoparticles allowed Gd-DTPA to show significant enhanced retention ratio in blood circulation, leading to high accumulation in tumor positions due to enhanced permeability and retention (EPR) effect. Moreover, Gd-DTPA revealed above 6 times increase of relaxivity in the nanoparticle system compared to free form, and eventually, selective and elevated contrast enhancements in the tumor positions were observed. These results indicate the high potential of Gd-DTPA-loaded PEGylated CaP nanoparticles as a novel contrast agent for noninvasive cancer diagnosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Effects of different carboxylic ester spacers on chemical stability, release characteristics, and anticancer activity of mono-PEGylated curcumin conjugates.

    PubMed

    Wichitnithad, Wisut; Nimmannit, Ubonthip; Callery, Patrick S; Rojsitthisak, Pornchai

    2011-12-01

    We investigated the effects of different carboxylic ester spacers of mono-PEGylated curcumin conjugates on chemical stability, release characteristics, and anticancer activity. Three novel conjugates were synthesized with succinic acid, glutaric acid, and methylcarboxylic acid as the respective spacers between curcumin and monomethoxy polyethylene glycol of molecular weight 2000 (mPEG(2000) ): mPEG(2000) -succinyl-curcumin (PSC), mPEG(2000) -glutaryl-curcumin (PGC), and mPEG(2000) -methylcarboxyl-curcumin (PMC), respectively. Hydrolysis of all conjugates in buffer and human plasma followed pseudo first-order kinetics. In phosphate buffer, the overall degradation rate constant and half-life values indicated an order of stability of PGC > PSC > PMC > curcumin. In human plasma, more than 90% of curcumin was released from the esters after incubation for 0.25, 1.5, and 2 h, respectively. All conjugates exhibited cytotoxicity against four human cancer cell lines: Caco-2 (colon), KB (oral cavity), MCF7 (breast), and NCI-H187 (lung) with half maximal inhibitory concentration (IC(50) ) values in the range of 1-6 µM, similar to that observed for curcumin itself. Our results suggest that mono-PEGylation of curcumin produces prodrugs that are stable in buffer at physiological pH, release curcumin readily in human plasma, and show anticancer activity. Copyright © 2011 Wiley-Liss, Inc.

  18. Supramolecular PEGylated Dendritic Systems as pH/Redox Dual-Responsive Theranostic Nanoplatforms for Platinum Drug Delivery and NIR Imaging

    PubMed Central

    Li, Yunkun; Li, Yachao; Zhang, Xiao; Xu, Xianghui; Zhang, Zhijun; Hu, Cheng; He, Yiyan; Gu, Zhongwei

    2016-01-01

    Recently, self-assembling small dendrimers into supramolecular dendritic systems offers an alternative strategy to develop multifunctional nanoplatforms for biomedical applications. We herein report a dual-responsive supramolecular PEGylated dendritic system for efficient platinum-based drug delivery and near-infrared (NIR) tracking. With a refined molecular/supramolecular engineering, supramolecular dendritic systems were stabilized by bioreducible disulfide bonds and endowed with NIR fluorescence probes, and PEGylated platinum derivatives coordinated onto the abundant peripheral groups of supramolecular dendritic templates to generate pH/redox dual-responsive theranostic supramolecular PEGylated dendritic systems (TSPDSs). TSPDSs markedly improved the pharmacokinetics and biodistribution of platinum-based drugs, owing to their stable nanostructures and PEGylated shells during the blood circulation. Tumor intracellular environment (low pH value and high glutathione concentration) could trigger the rapid disintegration of TSPDSs due to acid-labile coordination bonds and redox-cleavable disulfide linkages, and then platinum-based drugs were delivered into the nuclei to exert antitumor activity. In vivo antitumor treatments indicated TSPDSs not only provided high antitumor efficiency which was comparable to clinical cisplatin, but also reduced renal toxicity of platinum-based drugs. Moreover, NIR fluorescence of TSPDSs successfully visualized in vitro and in vivo fate of nanoplatforms and disclosed the intracellular platinum delivery and pharmacokinetics. These results confirm tailor-made supramolecular dendritic system with sophisticated nanostructure and excellent performance is a promising candidate as smart theranostic nanoplatforms. PMID:27375780

  19. Supramolecular PEGylated Dendritic Systems as pH/Redox Dual-Responsive Theranostic Nanoplatforms for Platinum Drug Delivery and NIR Imaging.

    PubMed

    Li, Yunkun; Li, Yachao; Zhang, Xiao; Xu, Xianghui; Zhang, Zhijun; Hu, Cheng; He, Yiyan; Gu, Zhongwei

    2016-01-01

    Recently, self-assembling small dendrimers into supramolecular dendritic systems offers an alternative strategy to develop multifunctional nanoplatforms for biomedical applications. We herein report a dual-responsive supramolecular PEGylated dendritic system for efficient platinum-based drug delivery and near-infrared (NIR) tracking. With a refined molecular/supramolecular engineering, supramolecular dendritic systems were stabilized by bioreducible disulfide bonds and endowed with NIR fluorescence probes, and PEGylated platinum derivatives coordinated onto the abundant peripheral groups of supramolecular dendritic templates to generate pH/redox dual-responsive theranostic supramolecular PEGylated dendritic systems (TSPDSs). TSPDSs markedly improved the pharmacokinetics and biodistribution of platinum-based drugs, owing to their stable nanostructures and PEGylated shells during the blood circulation. Tumor intracellular environment (low pH value and high glutathione concentration) could trigger the rapid disintegration of TSPDSs due to acid-labile coordination bonds and redox-cleavable disulfide linkages, and then platinum-based drugs were delivered into the nuclei to exert antitumor activity. In vivo antitumor treatments indicated TSPDSs not only provided high antitumor efficiency which was comparable to clinical cisplatin, but also reduced renal toxicity of platinum-based drugs. Moreover, NIR fluorescence of TSPDSs successfully visualized in vitro and in vivo fate of nanoplatforms and disclosed the intracellular platinum delivery and pharmacokinetics. These results confirm tailor-made supramolecular dendritic system with sophisticated nanostructure and excellent performance is a promising candidate as smart theranostic nanoplatforms.

  20. Thermostability of native and pegylated Myceliophthora thermophila laccase in aqueous and mixed solvents.

    PubMed

    López-Cruz, J I; Viniegra-Gonzalez, G; Hernández-Arana, A

    2006-01-01

    A commercial preparation of laccase (EC 1.10.3.2), cloned from Myceliophthora thermophila and expressed in Aspergillus oryzae (MtL), was purified and modified by conjugation with poly(ethylene glycol) (M(r) = 5000) and is labeled PEG-MtL. Native enzyme was found to have a molecular mass of 80 kDa, as determined by gel filtration, and 110 kDa, by SDS-PAGE. The oxidative dimerization of 2,6-dimethoxyphenol (DMP) to produce the corresponding dibenzoquinone was catalyzed by MtL in a manner comparable to that for a diffusion-controlled reaction (k(cat)/K(M) approximately = 10(8) M(-)(1) s(-)(1) and E(a) approximately = 18 kJ M(-)(1)). PEG-MtL was found, by TNBS titration, to have blocked 54% of lysine groups; its hydrodynamic and charge properties were different from those of MtL. Catalytic efficiency (k(cat)/K(M)) of PEG-MtL was similar to that of MtL with DMP as substrate; however, k(cat)/K(M) was 2-fold reduced for the reaction in which 2',2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) is oxidized to form a radical cation. E(a) values were similar in both enzyme preparations when assayed in buffered solutions. Far-UV CD spectra were similar for MtL and PEG-MtL and consistent with a protein rich in beta-sheet structure with negligible content of alpha-helices. A blue shift of near-UV CD spectrum for PEG-MtL as compared to MtL was consistent with the decreased polarity of the tyrosyl side chains upon PEG conjugation. Also the blue band of the copper active site was shifted from lambda approximately 610 nm (MtL) to lambda approximately 575 nm (PEG-MtL). Scanning microcalorimetry showed small denaturation enthalpies (6.3 and 7.5 J g(-)(1) for MtL and PEG-MtL, respectively), indicating the high stability of the beta-sheet folding pattern of laccases. However, PEG-MtL proved to be more stable, its half-denaturation temperature being 2 degrees C higher than that of MtL. In 30% alcohol, pegylated laccase showed slower enzyme-activity decay rates than the

  1. Modulation of Bleomycin-Induced Lung Fibrosis by Pegylated Hyaluronidase and Dopamine Receptor Antagonist in Mice

    PubMed Central

    Pershina, Olga Victorovna; Reztsova, Alena Mikhaylovna; Ermakova, Natalia Nikolaevna; Khmelevskaya, Ekaterina Sergeevna; Krupin, Vycheslav Andreevich; Stepanova, Inna Ernestovna; Artamonov, Andrew Vladimirovich; Bekarev, Andrew Alexandrovich; Madonov, Pavel Gennadjevich

    2015-01-01

    Hyaluronidases are groups of enzymes that degrade hyaluronic acid (HA). To stop enzymatic hydrolysis we modified testicular hyaluronidase (HYAL) by activated polyethylene oxide with the help of electron-beam synthesis. As a result we received pegylated hyaluronidase (pegHYAL). Spiperone is a selective D2 dopamine receptor antagonist. It was demonstrated on the model of a single bleomycin damage of alveolar epithelium that during the inflammatory phase monotherapy by pegHYAL or spiperone reduced the populations of hematopoietic stem /progenitor cells in the lung parenchyma. PegHYAL also reduced the levels of transforming growth factor (TGF)-β, interleukin (IL)-1β, tumor necrosis factor (TNF)-α in the serum and lungs, while spiperone reduced the level of the serum IL-1β. Polytherapy by spiperone and pegHYAL caused the increase of the quantity of hematopoietic stem/ progenitor cells in the lungs. Such an influx of blood cell precursors was observed on the background of considerable fall level of TGF-β and the increase level of TNF-α in the serum and lungs. These results show pegHYAL reduced the bleomycin-induced fibrosis reaction (production and accumulation of collagen) in the lung parenchyma. This effect was observed at a single and repetitive bleomycin damage of alveolar epithelium, the antifibrotic activity of pegHYAL surpassing the activity of testicular HYAL. The antifibrotic effect of pegHYAL is enhanced by an additional instillation of spiperone. Therapy by pegHYAL causes the flow of CD31‒CD34‒CD45‒CD44+CD73+CD90+CD106+-cells into the fibrous lungs. These cells are incapable of differentiating into fibroblast cells. Spiperone instillation separately or together with pegHYAL reduced the MSC-like cells considerably. These data enable us to assume, that pegHYAL is a new and promising instrument both for preventive and therapy of toxic pneumofibrosis. The blockage of D2 dopamine receptors with the following change of hyaluronan matrix can be considered

  2. Size-dependent cytotoxicity and inflammatory responses of PEGylated silica-iron oxide nanocomposite size series

    NASA Astrophysics Data System (ADS)

    Injumpa, Wishulada; Ritprajak, Patcharee; Insin, Numpon

    2017-04-01

    Iron oxides nanoparticles have been utilized in biological systems and biomedical applications for many years because they are relatively safe and stable comparing to other magnetic nanomaterials. In some applications, iron oxide nanoparticles were modified with silica in order to be more stable in biological systems and able to be functionalized with various functional groups. Moreover, poly(ethylene glycol) (PEG) was one on the most used polymer to graft onto the nanoparticles in order to increase their biocompatibility, dispersibility and stability in aqueous solutions. Therefore, the nanocomposites comprising iron oxide nanoparticles, silica, and PEG could become multifunctional carriers combining superparamagnetic character, multi-functionality and high stability in biological environments. Herein, we reported the preparation of the nanocomposites and effects of their sizes on cytotoxicity and inflammatory responses. The PEGylated silica-iron oxide nanocomposites were prepared by coating of poly(poly(ethylene glycol) monomethyl ether methacrylate) (PPEGMA) on magnetic nanoparticle-silica nanocomposites via Atom Transfer Radical Polymerization (ATRP). The iron oxide nanoparticles were synthesized using a thermal decomposition method. The silica shells were then coated on iron oxides nanoparticles using reverse microemulsion and sol-gel methods. The size series of the nanocomposites with the diameter of 24.86±4.38, 45.24±5.00, 98.10±8.88 and 202.22±6.70 nm as measured using TEM were obtained. Thermogravimetric analysis (TGA) was used for the determination of % weight of PPEGMA on the nanocomposites showing the weight loss of ranging from 65% for smallest particles to 30% for largest particles. The various sizes (20, 40, 100, 200 nm) and concentrations (10, 100, 1000 μg/mL) of the nanocomposites were tested for their cytotoxicity in fibroblast and macrophage cell lines using MTT assay. The different sizes did not affect cell viability of fibroblast, albeit

  3. Pegylated interferon α-2b plus ribavirin for older patients with chronic hepatitis C

    PubMed Central

    Kainuma, Mosaburo; Furusyo, Norihiro; Kajiwara, Eiji; Takahashi, Kazuhiro; Nomura, Hideyuki; Tanabe, Yuichi; Satoh, Takeaki; Maruyama, Toshihiro; Nakamuta, Makoto; Kotoh, Kazuhiro; Azuma, Koichi; Shimono, Junya; Shimoda, Shinji; Hayashi, Jun; Group, The Kyushu University Liver Disease Study

    2010-01-01

    AIM: To analyze the efficacy and safety of a combination therapy of pegylated interferon (PEG-IFN) α-2b plus ribavirin (RBV) in older Japanese patients (65 years or older) infected with hepatitis C virus (HCV). METHODS: This multicenter study included 938 patients with HCV genotype 1 who received 1.5 μg/kg per week PEG-IFN α-2b plus RBV 600-1000 mg/d for 48 wk and 313 HCV genotype 2 patients who received this treatment for 24 wk. RESULTS: At 24 wk after the end of combination therapy, the overall sustained virological response (SVR) for genotypes 1 and 2 were 40.7% and 79.6%, respectively. The SVR rate decreased significantly with age in each genotype, and was markedly reduced in genotype 1 (P < 0.001). Moreover, the SVR was significantly higher in patients with genotype 1 who were less than 65 years (47.3% of 685) than in those 65 years or older (22.9% of 253) (P < 0.001) and was higher in patients with genotype 2 who were less than 65 years (82.9% of 252) than in those 65 years or older (65.6% of 61) (P = 0.004). When patients received a dosage at least 80% or more of the target dosage of PEG-IFN α-2b and 60% or more of the target dosage of RBV, the SVR rate significantly increased to 66.5% in patients less than 65 years and to 45.2% in those 65 years or older (P < 0.001). Adverse effects resulted in treatment discontinuation more often in patients with genotype 1 (14.4%) than in patients with genotype 2 (7.3%), especially by patients 65 years or older (24.1%). CONCLUSION: PEG-IFN α-2b plus RBV treatment was effective in chronic hepatitis C patients 65 years or older who completed treatment with at least the minimum acceptable treatment dosage. PMID:20845506

  4. Direct comparison of two pegylated liposomal doxorubicin formulations: is AUC predictive for toxicity and efficacy?

    PubMed

    Cui, Jingxia; Li, Chunlei; Guo, Wenmin; Li, Yanhui; Wang, Caixia; Zhang, Li; Zhang, Lan; Hao, Yanli; Wang, Yongli

    2007-04-02

    Rationally designed liposomes could improve the therapeutic indexes of chemotherapeutic drugs, which is due to alterations in the pharmacokinetics and biodistribution of encapsulated drugs. For traditional drug delivery systems, the accumulation of drugs in healthy and malignant tissues could be correlated with toxicity and efficacy. Some previous studies also indicate that the higher tumor AUC, the better therapeutic efficacy, suggestive of the possible existence of positive correlation. Are AUC values of liposomal drugs really predictive? For the purpose to address this question, we designed two pegylated liposomal doxorubicin formulations (PLD-75 and PLD-100), which had the same lipid/drug ratio and bilayer composition, but different size and internal ammonium sulfate concentration. In vitro drug retention experiments revealed that drug was released at a faster rate from PLD-75, a small size formulation. The plasma pharmacokinetics of PLD-75 was similar to that of PLD-100, regardless of whether the mice were tumor-free or not. It should be noted, though, that in tumor-bearing mice the plasma doxorubicin level in PLD-75 group was only about 59% of that in PLD-100 group at 48 h post injection. Furthermore, their biodistribution behavior in S-180 tumor-bearing KM mice was significantly different. Compared with animals receiving PLD-100, those receiving PLD-75 showed a 19.2%, 27.8%, and 23.5% decrease in liver (p<0.01), spleen (p<0.001) and lung (p<0.05) AUC, respectively. In other healthy tissues except kidney, the drug deposition also reduced by 10-15%, but the difference was not significant. The tumor AUC after administration of PLD-100 and PLD-75 were 1285.3 ugh/g and 762.0 ugh/g, respectively (p<0.001). Maximum drug levels achieved in the tumors were 33.80 microg/g (for PLD-100) and 20.85 microg/g (for PLD-75), and peak tumor concentration was achieved faster in PLD-75 group. However, enhanced drug accumulation does not mean increased antineoplastic effect, and

  5. Pegylation of Antimicrobial Peptides Maintains the Active Peptide Conformation, Model Membrane Interactions, and Antimicrobial Activity while Improving Lung Tissue Biocompatibility following Airway Delivery

    PubMed Central

    Morris, Christopher J.; Beck, Konrad; Fox, Marc A.; Ulaeto, David; Clark, Graeme C.

    2012-01-01

    Antimicrobial peptides (AMPs) have therapeutic potential, particularly for localized infections such as those of the lung. Here we show that airway administration of a pegylated AMP minimizes lung tissue toxicity while nevertheless maintaining antimicrobial activity. CaLL, a potent synthetic AMP (KWKLFKKIFKRIVQRIKDFLR) comprising fragments of LL-37 and cecropin A peptides, was N-terminally pegylated (PEG-CaLL). PEG-CaLL derivatives retained significant antimicrobial activity (50% inhibitory concentrations [IC50s] 2- to 3-fold higher than those of CaLL) against bacterial lung pathogens even in the presence of lung lining fluid. Circular dichroism and fluorescence spectroscopy confirmed that conformational changes associated with the binding of CaLL to model microbial membranes were not disrupted by pegylation. Pegylation of CaLL reduced AMP-elicited cell toxicity as measured using in vitro lung epithelial primary cell cultures. Further, in a fully intact ex vivo isolated perfused rat lung (IPRL) model, airway-administered PEG-CaLL did not result in disruption of the pulmonary epithelial barrier, whereas CaLL caused an immediate loss of membrane integrity leading to pulmonary edema. All AMPs (CaLL, PEG-CaLL, LL-37, cecropin A) delivered to the lung by airway administration showed limited (<3%) pulmonary absorption in the IPRL with extensive AMP accumulation in lung tissue itself, a characteristic anticipated to be beneficial for the treatment of pulmonary infections. We conclude that pegylation may present a means of improving the lung biocompatibility of AMPs designed for the treatment of pulmonary infections. PMID:22430978

  6. Quantitative analysis of polyethylene glycol (PEG) and PEGylated proteins in animal tissues by LC-MS/MS coupled with in-source CID.

    PubMed

    Gong, Jiachang; Gu, Xiaomei; Achanzar, William E; Chadwick, Kristina D; Gan, Jinping; Brock, Barry J; Kishnani, Narendra S; Humphreys, W Griff; Iyer, Ramaswamy A

    2014-08-05

    The covalent conjugation of polyethylene glycol (PEG, typical MW > 10k) to therapeutic peptides and proteins is a well-established approach to improve their pharmacokinetic properties and diminish the potential for immunogenicity. Even though PEG is generally considered biologically inert and safe in animals and humans, the slow clearance of large PEGs raises concerns about potential adverse effects resulting from PEG accumulation in tissues following chronic administration, particularly in the central nervous system. The key information relevant to the issue is the disposition and fate of the PEG moiety after repeated dosing with PEGylated proteins. Here, we report a novel quantitative method utilizing LC-MS/MS coupled with in-source CID that is highly selective and sensitive to PEG-related materials. Both (40K)PEG and a tool PEGylated protein (ATI-1072) underwent dissociation in the ionization source of mass spectrometer to generate a series of PEG-specific ions, which were subjected to further dissociation through conventional CID. To demonstrate the potential application of the method to assess PEG biodistribution following PEGylated protein administration, a single dose study of ATI-1072 was conducted in rats. Plasma and various tissues were collected, and the concentrations of both (40K)PEG and ATI-1072 were determined using the LC-MS/MS method. The presence of (40k)PEG in plasma and tissue homogenates suggests the degradation of PEGylated proteins after dose administration to rats, given that free PEG was absent in the dosing solution. The method enables further studies for a thorough characterization of disposition and fate of PEGylated proteins.

  7. Early development of de novo hepatocellular carcinoma after direct-acting agent therapy: Comparison with pegylated interferon-based therapy in chronic hepatitis C patients.

    PubMed

    Yoo, S H; Kwon, J H; Nam, S W; Kim, H Y; Kim, C W; You, C R; Choi, S W; Cho, S H; Han, J-Y; Song, D S; Chang, U I; Yang, J M; Lee, H L; Lee, S W; Han, N I; Kim, S-H; Song, M J; Hwang, S; Sung, P S; Jang, J W; Bae, S H; Choi, J Y; Yoon, S K

    2018-04-16

    Patients with chronic hepatitis C who achieve a sustained viral response after pegylated interferon therapy have a reduced risk of hepatocellular carcinoma, but the risk after treatment with direct-acting antivirals is unclear. We compared the rates of early development of hepatocellular carcinoma after direct-acting antivirals and after pegylated interferon therapy. We retrospectively analysed 785 patients with chronic hepatitis C who had no history of hepatocellular carcinoma (211 treated with pegylated interferon, 574 with direct-acting antivirals) and were followed up for at least 24 weeks after antiviral treatment. De novo hepatocellular carcinoma developed in 6 of 574 patients receiving direct-acting antivirals and in 1 of 211 patients receiving pegylated interferon. The cumulative incidence of early hepatocellular carcinoma development did not differ between the treatment groups either for the whole cohort (1.05% vs 0.47%, P = .298) or for those patients with Child-Pugh Class A cirrhosis (3.73% vs 2.94%, P = .827). Multivariate analysis indicated that alpha-fetoprotein level >9.5 ng/mL at the time of end-of-treatment response was the only independent risk factor for early development of hepatocellular carcinoma in all patients (P < .0001, hazard ratio 176.174, 95% confidence interval 10.768-2882.473) and in patients treated with direct-acting agents (P < .0001, hazard ratio 128.402, 95% confidence interval 8.417-1958.680). In conclusion, the rate of early development of hepatocellular carcinoma did not differ between patients treated with pegylated interferon and those treated with direct-acting antivirals and was associated with the serum alpha-fetoprotein level at the time of end-of-treatment response. © 2018 John Wiley & Sons Ltd.

  8. Iron Complexation to Histone Deacetylase Inhibitors SAHA and LAQ824 in PEGylated Liposomes Can Considerably Improve Pharmacokinetics in Rats

    PubMed Central

    Wang, Yan; Tu, Sheng; Steffen, Dana; Xiong, May P.

    2015-01-01

    PURPOSE The formulation of histone deacetylase inhibitors (HDACi) is challenging due to poor water solubility and rapid elimination of drugs in vivo. This study investigated the effects of complexing iron (Fe3+) to the HDACi suberoylanilide hydroxamic acid (SAHA) and LAQ824 (LAQ) prior to their encapsulation into PEGylated liposomes, and investigated whether this technique could improve drug solubility, in vitro release and in vivo pharmacokinetic (PK) properties. METHODS The reaction stoichiometry, binding constants and solubility were measured for Fe complexes of SAHA and LAQ. The complexes were passively encapsulated into PEGylated liposomes and characterized by size distribution, zeta-potential, encapsulation efficiency (EE), and in vitro drug release studies. PC-3 cells were used to verify the in vitro anticancer activity of the formulations. In vivo pharmacokinetic properties of liposomal LAQ-Fe (L-LAQ-Fe) was evaluated in rats. RESULTS SAHA and LAQ form complexes with Fe at 1:1 stoichiometric ratio, with a binding constant on the order of 104 M−1. Fe complexation improved the aqueous solubility and the liposomal encapsulation efficiency of SAHA and LAQ (29–35% EE, final drug concentration > 1 mM). Liposomal encapsulated complexes (L-HDACi-Fe) exhibited sustained in vitro release properties compared to L-HDACi but cytotoxicity on PC-3 cells was comparable to free drugs. The PK of L-LAQ-Fe revealed 15-fold improvement in the plasma t1/2 (12.11 h) and 211-fold improvement in the AUC∞ (105.7 μg·h/ml) compared to free LAQ (0.79 h, 0.5 μg·h/ml). Similarly, the plasma t1/2 of Fe was determined to be 11.83 h in a separate experiment using radioactive Fe-59. The majority of Fe-59 activity was found in liver and spleen of rats and correlates with liposomal uptake by the mononuclear phagocyte system. CONCLUSIONS We have demonstrated that encapsulation of Fe complexes of HDACi into PEGylated liposomes can improve overall drug aqueous solubility, in vitro

  9. Iron complexation to histone deacetylase inhibitors SAHA and LAQ824 in PEGylated liposomes can considerably improve pharmacokinetics in rats.

    PubMed

    Wang, Yan; Tu, Sheng; Steffen, Dana; Xiong, May

    2014-01-01

    The formulation of histone deacetylase inhibitors (HDACi) is challenging due to poor water solubility and rapid elimination of drugs in vivo. This study investigated the effects of complexing iron (Fe3+) to the HDACi suberoylanilide hydroxamic acid (SAHA) and LAQ824 (LAQ) prior to their encapsulation into PEGylated liposomes, and investigated whether this technique could improve drug solubility, in vitro release and in vivo pharmacokinetic (PK) properties. METHODS. The reaction stoichiometry, binding constants and solubility were measured for Fe complexes of SAHA and LAQ. The complexes were passively encapsulated into PEGylated liposomes and characterized by size distribution, zeta-potential, encapsulation efficiency (EE), and in vitro drug release studies. PC-3 cells were used to verify the in vitro anticancer activity of the formulations. In vivo pharmacokinetic properties of liposomal LAQ-Fe (L-LAQ-Fe) was evaluated in rats. RESULTS. SAHA and LAQ form complexes with Fe at 1:1 stoichiometric ratio, with a binding constant on the order of 104 M-1. Fe complexation improved the aqueous solubility and the liposomal encapsulation efficiency of SAHA and LAQ (29-35% EE, final drug concentration > 1 mM). Liposomal encapsulated complexes (L-HDACi-Fe) exhibited sustained in vitro release properties compared to L-HDACi but cytotoxicity on PC-3 cells was comparable to free drugs. The PK of L-LAQ-Fe revealed 15-fold improvement in the plasma t1/2 (12.11 h)and 211-fold improvement in the AUC∞ (105.7 µg·h/ml) compared to free LAQ (0.79 h, 0.5 µg·h/ml). Similarly, the plasma t1/2 of Fe was determined to be 11.83 h in a separate experiment using radioactive Fe-59. The majority of Fe-59 activity was found in liver and spleen of rats and correlates with liposomal uptake by the mononuclear phagocyte system. CONCLUSIONS. We have demonstrated that encapsulation of Fe complexes of HDACi into PEGylated liposomes can improve overall drug aqueous solubility, in vitro release and in

  10. Co-encapsulation of chrysophsin-1 and epirubicin in PEGylated liposomes circumvents multidrug resistance in HeLa cells.

    PubMed

    Lo, Yu-Li; Tu, Wei-Chen

    2015-12-05

    Chrysophsin-1, an amphipathic alpha-helical antimicrobial peptide, is isolated from the gills of the red sea bream and possesses different structure and mechanism(s) in comparison with traditional multidrug resistance (MDR) modulators. For the purpose of reducing off-target normal cell toxicity, it is rational to incorporate chrysophsin-1 and epirubicin in a PEGylated liposomal formulation. In the present study, we report a multifunctional liposomes with epirubicin as an antineoplastic agent and an apoptosis inducer, as well as chrysophsin-1 as a MDR transporter inhibitor and an apoptosis modulator in human cervical cancer HeLa cells. Co-incubation of HeLa cells with PEGylated liposomal formulation of epirubicin and chrysophsin-1 resulted in a significant increase in the cytotoxicity of epirubicin. The liposomal formulations of epirubicin and/or chrysophsin-1 were shown to considerably improve the intracellular H2O2 and O2(-) levels of HeLa cells. Furthermore, these treatments were found to extensively reduce mRNA expression levels of MDR1, MRP1, and MRP2. The addition of chrysophsin-1 in liposomes was demonstrated to substantially enhance the intracellular accumulation of epirubicin in HeLa cells. Moreover, the PEGylated liposomes of epirubicin and chrysophsin-1 were also found to significantly increase the mRNA expressions of p53, Bax, and Bcl-2. The ratio of Bax to Bcl-2 was noticeably amplified in the presence of these formulations. Apoptosis induction was also validated by chromatin condensation, a reduction in mitochondrial membrane potential, the increased sub-G1 phase of cell cycle, and more populations of apoptosis using annexin V/PI assay. These formulations were verified to increase the activity and mRNA expression levels of caspase-9 and caspases-3. Collectively, our findings provide the first evidence that cotreatment with free or liposomal chrysophsin-1 and epirubicin leads to cell death in human cervical cancer cells through the ROS

  11. Concurrent autoimmune hepatitis and grave's disease in hepatitis C during pegylated interferon α-2a and ribavirin therapy.

    PubMed

    Trikudanathan, Guru V; Ahmad, Imad; Israel, Jonathan L

    2011-01-01

    Classical interferon-α has been shown to be associated with the development of a variety of autoimmune disorders. A 34-year-old white woman with chronic hepatitis C virus infection who was treated with pegylated interferon α-2a and ribavirin, developed Grave's disease and autoimmune hepatitis (AIH) at 32 and 44 weeks, respectively, following initiation of the therapy. The diagnosis of AIH was made based on the new development of anti-smooth muscle antibodies, anti-mitochondrial antibodies, and liver biopsy findings. It was confirmed by positive response to steroid challenge and was assessed according to the international AIH scoring system. Based on the previous case reports, we review the existing literature. Clinicians should be aware of the possibility of multiple autoimmune disorders during interferon-based therapy for chronic hepatitis.

  12. In vitro and in vivo studies on the transport of PEGylated silica nanoparticles across the blood-brain barrier.

    PubMed

    Liu, Dan; Lin, Bingqian; Shao, Wei; Zhu, Zhi; Ji, Tianhai; Yang, Chaoyong

    2014-02-12

    Transport of PEGylated silica nanoparticles (PSiNPs) with diameters of 100, 50, and 25 nm across the blood-brain barrier (BBB) was evaluated using an in vitro BBB model based on mouse cerebral endothelial cells (bEnd.3) cultured on transwell inserts within a chamber. In vivo animal experiments were further performed by noninvasive in vivo imaging and ex vivo optical imaging after injection via carotid artery. Confocal fluorescence studies were carried out to evaluate the uptake of PSiNPs by brain endothelial cells. The results showed that PSiNPs can traverse the BBB in vitro and in vivo. The transport efficiency of PSiNPs across BBB was found to be size-dependent, with increased particle size resulting in decreased efficiency. This work points to the potential application of small sized silica nanoparticles in brain imaging or drug delivery.

  13. Concurrent Autoimmune Hepatitis and Grave's Disease in Hepatitis C during Pegylated Interferon α-2a and Ribavirin Therapy

    PubMed Central

    Trikudanathan, Guru V.; Ahmad, Imad; Israel, Jonathan L

    2011-01-01

    Classical interferon-α has been shown to be associated with the development of a variety of autoimmune disorders. A 34-year-old white woman with chronic hepatitis C virus infection who was treated with pegylated interferon α-2a and ribavirin, developed Grave's disease and autoimmune hepatitis (AIH) at 32 and 44 weeks, respectively, following initiation of the therapy. The diagnosis of AIH was made based on the new development of anti-smooth muscle antibodies, anti-mitochondrial antibodies, and liver biopsy findings. It was confirmed by positive response to steroid challenge and was assessed according to the international AIH scoring system. Based on the previous case reports, we review the existing literature. Clinicians should be aware of the possibility of multiple autoimmune disorders during interferon-based therapy for chronic hepatitis. PMID:21912063

  14. Decreased prothrombotic effects of pegylated recombinant human megakaryocyte growth and development factor in thrombocytopenic state in a rat thrombosis model.

    PubMed

    Nishiyama, U; Kuwaki, T; Akahori, H; Kato, T; Ikeda, Y; Miyazaki, H

    2005-02-01

    Previous in vitro studies demonstrated that thrombopoietin (TPO) acts on platelets to activate a variety of intracellular signaling pathways and to enhance platelet sensitivity to multiple agonists. Little is known, however, about whether TPO exerts prothrombotic effects in vivo. The aim of this study was to examine the effects of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF), a pegylated N-terminal domain of human TPO, in a rat model of venous thrombosis. A microthrombus was photochemically induced on the vessel wall of a mesenteric venule, but the vessel was not occluded by it. A single intravenous injection of PEG-rHuMGDF (3 microg kg(-1)) after the thrombus generation into normal rats enhanced the thrombus size, resulting in transient thrombotic occlusion in the majority of rats. Stimulatory effects on thrombus growth were also observed following administration of glycosylated recombinant human full-length TPO (6 microg kg(-1)). In rats rendered thrombocytopenic by total body irradiation, however, PEG-rHuMGDF, even at 300 microg kg(-1), did not induce a significant increase in thrombus size or thrombotic occlusion. Platelets from thrombocytopenic rats had decreased surface levels of c-Mpl and decreased sensitivity to PEG-rHuMGDF in an in vitro aggregation response. Thus, decreased prothrombotic effects of PEG-rHuMGDF in thrombocytopenic rats might be the result not only of low platelet counts but also of decreased platelet reactivity to PEG-rHuMGDF. These results indicate that PEG-rHuMGDF has little effect on venous thrombus formation in thrombocytopenic states associated with high endogenous TPO levels.

  15. Impact of HIV infection on sustained virological response to treatment against hepatitis C virus with pegylated interferon plus ribavirin.

    PubMed

    Monje-Agudo, P; Castro-Iglesias, A; Rivero-Juárez, A; Martínez-Marcos, F; Ortega-González, E; Real, L M; Pernas, B; Merchante, N; Cid, P; Macías, J; Merino, M D; Rivero, A; Mena, A; Neukam, K; Pineda, J A

    2015-10-01

    It is commonly accepted that human immunodeficiency (HIV) coinfection negatively impacts on the rates of sustained virological response (SVR) to therapy with pegylated interferon plus ribavirin (PR). However, this hypothesis is derived from comparing different studies. The aim of this study was to determine the impact of HIV coinfection on SVR to PR in one single population. In a multicentric, prospective study conducted between 2000 and 2013, all previously naïve hepatitis C virus (HCV)-infected patients who started PR in five Spanish hospitals were analyzed. SVR was evaluated 24 weeks after the scheduled end of therapy. Of the 1046 patients included in this study, 413 (39%) were coinfected with HIV. Three hundred and forty-one (54%) HCV-monoinfected versus 174 (42%) HIV/HCV-coinfected patients achieved SVR (p < 0.001). The corresponding figures for undetectable HCV RNA at treatment week 4 were 86/181 (47%) versus 59/197 (30%), p < 0.001. SVR was observed in 149 (69%) HCV genotype 2/3-monoinfected subjects versus 91 (68%) HIV/HCV genotype 2/3-coinfected subjects (p = 0.785). In the HCV genotype 1/4-infected population, 188 (46%) monoinfected patients versus 82 (30%) with HIV coinfection (p < 0.001) achieved SVR. In this subgroup, absence of HIV coinfection was independently associated with higher SVR [adjusted odds ratio (95% confidence interval): 2.127 (1.135-3.988); p = 0.019] in a multivariate analysis adjusted for age, sex, baseline HCV RNA load, IL28B genotype, fibrosis stage, and type of pegylated interferon. HIV coinfection impacts on the rates of SVR to PR only in HCV genotype 1/4-infected patients, while it has no effect on SVR in the HCV genotype 2/3-infected subpopulation.

  16. Resveratrol in Hepatitis C Patients Treated with Pegylated-Interferon-α-2b and Ribavirin Reduces Sleep Disturbance

    PubMed Central

    Pennisi, Manuela; Bertino, Gaetano; Gagliano, Caterina; Malaguarnera, Michele; Bella, Rita; Borzì, Antonio Maria; Madeddu, Roberto; Drago, Filippo

    2017-01-01

    Background: Hepatitis C virus infection and interferon treatment have shown to be risk factors for sleep disorder health-related quality of life. Aim: To determine whether the effects of resveratrol on sleep disorders were associated with different tests in subjects with chronic hepatitis C treated with Peg-IFN-α and RBV. Patients and Methods: In this prospective, randomized, placebo controlled, double blind clinical trial, 30 subjects (Group A) with chronic hepatitis received Pegylated-Interferon-α2b (1.5 mg/kg per week), Ribavirin and placebo (N-acetylcysteine 600 mg and lactoferrin 23.6 g), while 30 subjects (Group B) received the same dosage of Pegylated-Interferon-α2b, Ribavirin and association of N-acetylcysteine 600 mg, lactoferrin 23.6 g and Resveratrol 19.8 mg for 12 months. All subjects underwent laboratory exams and questionnaires to evaluate mood and sleep disorders (General Health Questionnaire (GHQ), Profile of Mood States (POMS), Pittsburgh Sleep Quality Inventory (PSQI), Epworth Sleepiness Scale (ESS)). Results: The comparison between Group A and Group B showed significant differences after six months in C-reactive protein (p < 0.0001); after 12 months in aspartate aminotransferase (AST) (p < 0.0001) Viremia (p < 0.0001), HAI (p < 0.0012) and C-reactive protein (p < 0.0001); and at follow up in AST (p < 0.0001), Viremia (p < 0.0026) and C-reactive protein (p < 0.0001). Significant differences were observed after 12 month and follow-up in General Health Questionnaire, after 1, 6, 12 and follow-up in Profile of Mood States, after 6, 12, follow-up in Pittsburgh Sleep Quality Inventory and Epworth Sleepiness Scale. Conclusions: Supplementation with Resveratrol decreased General Health Questionnaire score and reduced sleep disorders in patients treated with Peg–IFN-α and RBV. PMID:28820468

  17. Serum microRNA-122 level correlates with virologic responses to pegylated interferon therapy in chronic hepatitis C.

    PubMed

    Su, Tung-Hung; Liu, Chen-Hua; Liu, Chun-Jen; Chen, Chi-Ling; Ting, Te-Tien; Tseng, Tai-Chung; Chen, Pei-Jer; Kao, Jia-Horng; Chen, Ding-Shinn

    2013-05-07

    MicroRNA-122 (miR-122) facilitates hepatitis C virus replication in vitro. Serum miR-122 has been implicated as a biomarker for various liver diseases; however, its role in chronic hepatitis C remains unclear. To address this issue, 126 patients with chronic hepatitis C who completed pegylated IFN plus ribavirin therapy with sustained virologic response (SVR) or nonresponse (NR) were retrospectively included, and their pretreatment clinical profiles and treatment responses were collected. Serum miR-122 was quantified before and during treatment. Another 51 patients in SVR and NR groups were prospectively enrolled for validation. Serum miR-122 was found to be a surrogate for hepatic miR-122 and positively correlated with hepatic necroinflammation. Patients who showed complete early virologic response and SVR had significantly higher pretreatment serum miR-122 levels than those with NR (P = 0.001 and P = 0.008, respectively), especially in subgroups of patients with hepatitis C virus genotype 2 and IL-28B rs8099917 TT genotype. Patients with IL-28B TT genotype had significantly better treatment responses and higher pretreatment serum miR-122 level than those with GT or GG genotypes. Univariate analysis showed that pretreatment body mass index, γ-glutamyl transpeptidase, triglyceride, IL-28B TT genotype, and serum miR-122 are predictors for SVR. Multivariate analysis specifically in IL-28B TT genotype demonstrated that pretreatment serum miR-122 independently predicted SVR. The validation cohort confirmed a significantly greater pretreatment serum miR-122 level in patients with SVR compared with NR (P = 0.025). In conclusion, serum miR-122 may serve as a surrogate of hepatic miR-122, and a higher pretreatment serum miR-122 level can help predict virologic responses to pegylated IFN plus ribavirin therapy.

  18. Development of anti-E6 pegylated lipoplexes for mucosal application in the context of cervical preneoplastic lesions.

    PubMed

    Lechanteur, Anna; Furst, Tania; Evrard, Brigitte; Delvenne, Philippe; Hubert, Pascale; Piel, Géraldine

    2015-04-10

    Cervical cancer induced by human papillomavirus (HPV) is the fourth highest mortality causing cancer in women despite the use of prophylactic vaccines. E6 targeting represents an attractive strategy to treat this cancer. Indeed, oncoprotein E6 is produced by keratinocytes infected by HPV and is partially responsible for carcinogenesis. E6 interferes with the apoptosis process in stressed cells by degradation of p53 tumor suppressor gene. Our strategy consists in using E6 siRNA complexed with pegylated lipoplexes. The addition of hydrophilic polymer around the nanoparticles is crucial to use them by vaginal application on account of cervicovaginal mucus. Physicochemical characteristics were evaluated and in vitro assays were performed to evaluate transfection potential, E6 mRNA extinction and p53 re-expression. Cationic liposomes DOTAP/Cholesterol/DOPE 1/0.75/0.5 (N/P 2.5) with or without 50% DSPE-PEG2000 and associated with siE6 have demonstrated good physicochemical characteristics in terms of complexation, size, surface charge and stability. Both lipoplexes have been tested on CaSki cell line (HPV 16+) with 50 nM and 100 nM of siE6. Lipoplexes formulations induce 30-40% of E6 mRNA extinction and induce the re-expression of p53. In conclusion, pegylated anti-E6 lipoplexes have demonstrated their efficiency to cross the cellular membrane and to release siRNA into the cytoplasm confirmed by final p53 protein production. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Development of PEGylated carboxylic acid-modified polyamidoamine dendrimers as bone-targeting carriers for the treatment of bone diseases.

    PubMed

    Yamashita, Shugo; Katsumi, Hidemasa; Hibino, Nozomi; Isobe, Yugo; Yagi, Yumiko; Kusamori, Kosuke; Sakane, Toshiyasu; Yamamoto, Akira

    2017-09-28

    In this study, we aimed to develop a polyethylene glycol (PEG)-conjugated third generation polyamidoamine (PAMAM) dendrimer with multiple carboxylic acids as a bone-targeting carrier for the treatment of bone diseases. We conjugated PAMAM backbones to various carboxylic acids [aspartic acid (Asp), glutamic acid (Glu), succinic acid (Suc), or aconitic acid (Aco)] to obtain four different types of carboxylic acid-modified PAMAMs. PEG was covalently bound to carboxylic acid-modified PAMAMs to obtain PEGylated carboxylic acid-modified PAMAMs. In a tissue distribution study, the amount of 111 In-labeled unmodified PAMAM taken up by the bone after intravenous injection in mice was 11.3%. In contrast, the dose of 111 In-labeled PEG(5)-Asp-PAMAM, PEG(5)-Glu-PAMAM, PEG(5)-Suc-PAMAM, or PEG(5)-Aco-PAMAM that accumulated in the bone after injection was approximately 46.0, 15.6, 22.6, and 24.5%, respectively. The bone clearance rates of 111 In-labeled PEGylated carboxylic acid-modified PAMAMs were proportional to their affinities to hydroxyapatite and Ca 2+ . An intra-bone distribution study showed that fluorescein isothiocyanate-labeled PEG(5)-Asp-PAMAM predominantly accumulated on eroded and quiescent surfaces, a pattern associated with the pathogenesis of bone diseases, such as rheumatoid arthritis and osteoporosis. Our findings indicate that PEG(5)-Asp-PAMAM is a promising drug carrier for efficient drug targeting to the bones. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Site Specific Discrete PEGylation of 124I-Labeled mCC49 Fab′ Fragments Improves Tumor MicroPET/CT Imaging in Mice

    PubMed Central

    Ding, Haiming; Carlton, Michelle M.; Povoski, Stephen P.; Milum, Keisha; Kumar, Krishan; Kothandaraman, Shankaran; Hinkle, George H.; Colcher, David; Brody, Rich; Davis, Paul D.; Pokora, Alex; Phelps, Mitchell; Martin, Edward W.; Tweedle, Michael F.

    2014-01-01

    The tumor-associated glycoprotein-72 (TAG-72) antigen is highly overexpressed in various human adenocarcinomas and anti-TAG-72 monoclonal antibodies, and fragments are therefore useful as pharmaceutical targeting vectors. In this study, we investigated the effects of site-specific PEGylation with MW 2–4 kDa discrete, branched PEGylation reagents on mCC49 Fab′ (MW 50 kDa) via in vitro TAG72 binding, and in vivo blood clearance kinetics, biodistribution, and mouse tumor microPET/CT imaging. mCC49Fab′ (Fab′-NEM) was conjugated at a hinge region cysteine with maleimide-dPEG12-(dPEG24COOH)3 acid (Mal-dPEG-A), maleimide-dPEG12-(dPEG12COOH)3 acid (Mal-dPEG-B), or maleimide-dPEG12-(m-dPEG24)3 (Mal-dPEG-C), and then radiolabeled with iodine-124 (124I) in vitro radioligand binding assays and in vivo studies used TAG-72 expressing LS174T human colon carcinoma cells and xenograft mouse tumors. Conjugation of mCC49Fab′ with Mal-dPEG-A (Fab′-A) reduced the binding affinity of the non PEGylated Fab′ by 30%; however, in vivo, Fab′-A significantly lengthened the blood retention vs Fab′-NEM (47.5 vs 28.1%/ID at 1 h, 25.1 vs 8.4%/ID at 5 h, p < 0.01), showed excellent tumor to background, better microPET/CT images due to higher tumor accumulation, and increased tumor concentration in excised tissues at 72 h by 130% (5.09 ± 0.83 vs 3.83 ± 1.50%ID/g, p < 0.05). Despite the strong similarity of the three PEGylation reagents, PEGylation with Mal-dPEG-B or -C reduced the in vitro binding affinity of Fab′-NEM by 70%, blood retention, microPET/CT imaging tumor signal intensity, and residual 72 h tumor concentration by 49% (3.83 ± 1.50 vs 1.97 ± 0.29%ID/g, p < 0.05) and 63% (3.83 ± 1.50 vs 1.42 ± 0.35%ID/g, p < 0.05), respectively. We conclude that remarkably subtle changes in the structure of the PEGylation reagent can create significantly altered biologic behavior. Further study is warranted of conjugates of the triple branched, negatively charged Mal-dPEG-A. PMID

  1. Novel Bioconjugation Strategy Using Elevated Hydrostatic Pressure: A Case Study for the Site-Specific Attachment of Polyethylene Glycol (PEGylation) of Recombinant Human Ciliary Neurotrophic Factor.

    PubMed

    Wang, Qi; Zhang, Chun; Guo, Fangxia; Li, Zenglan; Liu, Yongdong; Su, Zhiguo

    2017-11-15

    In this paper, we reported a novel strategy for the site-specific attachment of polyethylene glycol (PEGylation) of proteins using elevated hydrostatic pressure. The process was similar to the conventional one except the reactor was under elevated hydrostatic pressure. The model protein was recombinant human ciliary neurotrophic factor (rhCNTF), and the reagent was monomethoxy-polyethylene glycol-maleimide (mPEG-MAL). PEGylation with mPEG (40 kDa)-MAL at pH 7.0 under normal pressure for 5 h achieved a less than 5% yield. In comparison, when the pressure was elevated, the PEGylation yield was increased dramatically, reaching nearly 90% at 250 MPa. Furthermore, the following phenomena were observed: (1) high-hydrostatic-pressure PEGylation (HHPP) could operate at a low reactant ratio of 1:1.2 (rhCNTF to mPEG-MAL), while the conventional process needs a much-higher ratio. (2) Short and long chains of PEG gave a similar yield of 90% in HHPP, while the conventional yield for the short chain of the PEG was higher than that of the long chain. (3) The reaction pH in the range of 7.0 to 8.0 had almost no influence upon the yield of HHPP, while the PEGylation yield was significantly increased by a factor of three from pH 7.0 to 8.0 at normal pressure. Surface accessibility analysis was performed using GRASP2 software, and we found that Cys17 of rhCNTF was located at the concave patches, which may have steric hindrance for the PEG to approach. The speculated benefit of HHPP was the facilitation of target-site exposure, reducing the steric hindrance and making the reaction much easier. Structure and activity analysis demonstrated that the HHPP product was comparable to the PEGylated rhCNTF prepared through a conventional method. Overall, this work demonstrated that HHPP, as we proposed, may have application potentials in various conjugations of biomacromolecules.

  2. Characterization of a PEGylated protein therapeutic by ion exchange chromatography with on-line detection by native ESI MS and MS/MS.

    PubMed

    Muneeruddin, K; Bobst, C E; Frenkel, R; Houde, D; Turyan, I; Sosic, Z; Kaltashov, I A

    2017-01-16

    Detailed profiling of both enzymatic (e.g., glycosylation) and non-enzymatic (e.g., oxidation and deamidation) post-translational modifications (PTMs) is frequently required for the quality assessment of protein-based drugs. Challenging as it is, this task is further complicated for the so-called second-generation biopharmaceuticals, which also contain "designer PTMs" introduced to either enhance their pharmacokinetic profiles (e.g., PEGylated proteins) or endow them with therapeutic activity (e.g., protein-drug conjugates). Such modifications of protein covalent structure can dramatically increase structural heterogeneity, making the very notion of "molecular mass" meaningless, as ions representing different glycoforms of a PEGylated protein may have nearly identical distributions of ionic current as a function of m/z, making their contributions to the mass spectrum impossible to distinguish. In this work we demonstrate that a combination of ion exchange chromatography (IXC) with on-line detection by electrospray ionization mass spectrometry (ESI MS) and methods of ion manipulation in the gas phase (limited charge reduction and collision-induced dissociation) allows meaningful structural information to be obtained on a structurally heterogeneous sample of PEGylated interferon β-1a. IXC profiling of the protein sample gives rise to a convoluted chromatogram with several partially resolved peaks which can represent both deamidation and different glycosylation patterns within the protein, as well as varying extent of PEGylation. Thus, profiling the protein with on-line IXC/ESI/MS/MS allows it to be characterized by providing information on three different types of PTMs (designer, enzymatic and non-enzymatic) within a single protein therapeutic.

  3. In Vitro Cellular Gene Delivery Employing a Novel Composite Material of Single-Walled Carbon Nanotubes Associated With Designed Peptides With Pegylation.

    PubMed

    Ohta, Takahisa; Hashida, Yasuhiko; Higuchi, Yuriko; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2017-03-01

    Single-walled carbon nanotubes (SWCNTs) attract great interest in biomedical fields including application for drug delivery system. In this study, we developed a novel gene delivery system employing SWCNTs associated with polycationic and amphiphilic H-(-Lys-Trp-Lys-Gly-) 7 -OH [(KWKG) 7 ] peptides having pegylation. SWCNTs wrapped with (KWKG) 7 formed a complex with plasmid DNA (pDNA) in aqueous solution based on polyionic interaction but later underwent aggregation. On the other hand, a complex of pDNA and SWCNT-(KWKG) 7 modified with polyethylene glycol (PEG) chains of 12 units [SWCNT-(KWKG) 7 -(PEG) 12 ] afforded good dispersion stability for 24 h even in a cell culture medium. The in vitro cellular uptake of SWCNT-(KWKG) 7 -(PEG) 12 /pDNA complex prepared with fluorescence-labeled pDNA was evaluated with fluorescent microscopic observation and flow cytometry. The uptake by A549 human lung adenocarcinoma epithelial cells increased along with the extent of pegylation, suggesting the importance of dispersion stability in addition to the cationic charge which facilitates ionic cellular interaction. The expression of pDNA encoding the monomeric Kusabira-Orange 2 fluorescent protein in the form of the SWCNT-(KWKG) 7 -(PEG) 12 /pDNA complex demonstrated remarkable enhancement of transfection depending also on the extent of pegylation and the N/P ratio. The potential of the SWCNT composite wrapped with polycationic and amphiphilic (KWKG) 7 with pegylation as a carrier for gene delivery was demonstrated. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Acid-Sensitive Sheddable PEGylated, Mannose-Modified Nanoparticles Increase the Delivery of Betamethasone to Chronic Inflammation Sites in a Mouse Model.

    PubMed

    O'Mary, Hannah L; Aldayel, Abdulaziz M; Valdes, Solange A; Naguib, Youssef W; Li, Xu; Salvady, Karun; Cui, Zhengrong

    2017-06-05

    Inflammation is implicated in a host of chronic illnesses. Within these inflamed tissues, the pH of the microenvironment is decreased and immune cells, particularly macrophages, infiltrate the area. Additionally, the vascular integrity of these sites is altered with increased fenestrations between endothelial cells. These distinctive properties may be exploited to enhance targeted delivery of anti-inflammatory therapies. Using a mouse model of chronic inflammation, we previously showed that acid-sensitive sheddable PEGylation increases the distribution and retention of nanoparticles in chronic inflammation sites. Here we demonstrated that surface modification of the acid-sensitive sheddable PEGylated nanoparticles with mannose, a ligand to mannose receptors present in chronic inflammation sites, significantly increases the targeted delivery of the nanoparticles to these areas. Furthermore, we showed that the acid-sensitive sheddable PEGylated, mannose-modified nanoparticles are able to significantly increase the delivery of betamethasone-21-acetate (BA), a model anti-inflammatory compound, to chronic inflammation sites as compared to free BA. These results highlight the ability to engineer formulations to target chronic inflammation sites by exploiting the microenvironment of these regions.

  5. Acid-sensitive sheddable PEGylated, mannose-modified nanoparticles increase the delivery of betamethasone to chronic inflammation sites in a mouse model

    PubMed Central

    O’Mary, Hannah L.; Aldayel, Abdulaziz M.; Valdes, Solange A.; Naguib, Youssef W.; Li, Xu; Salvady, Karun; Cui, Zhengrong

    2017-01-01

    Inflammation is implicated in a host of chronic illnesses. Within these inflamed tissues, the pH of the microenvironment is decreased and immune cells, particularly macrophages, infiltrate the area. Additionally, the vascular integrity of these sites is altered with increased fenestrations between endothelial cells. These distinctive properties may be exploited to enhance targeted delivery of anti-inflammatory therapies. Using a mouse model of chronic inflammation, we previously showed that acid-sensitive sheddable PEGylation increases the distribution and retention of nanoparticles in chronic inflammation sites. Here we demonstrated that surface modification of the acid-sensitive sheddable PEGylated nanoparticles with mannose, a ligand to mannose receptors present in chronic inflammation sites, significantly increases the targeted delivery of the nanoparticles to these areas. Furthermore, we showed that the acid-sensitive sheddable PEGylated, mannose-modified nanoparticles are able to significantly increase the delivery of betamethasone-21-acetate (BA), a model anti-inflammatory compound, to chronic inflammation sites as compared to free BA. These results highlight the ability to engineer formulations to target chronic inflammation sites by exploiting the microenvironment of these regions. PMID:28463518

  6. Acid-Sensitive Sheddable PEGylated PLGA Nanoparticles Increase the Delivery of TNF-α siRNA in Chronic Inflammation Sites

    PubMed Central

    Aldayel, Abdulaziz M; Naguib, Youssef W; O'Mary, Hannah L; Li, Xu; Niu, Mengmeng; Ruwona, Tinashe B; Cui, Zhengrong

    2016-01-01

    There has been growing interest in utilizing small interfering RNA (siRNA) specific to pro-inflammatory cytokines, such as tumor necrosis factor-α ( TNF-α), in chronic inflammation therapy. However, delivery systems that can increase the distribution of the siRNA in chronic inflammation sites after intravenous administration are needed. Herein we report that innovative functionalization of the surface of siRNA-incorporated poly (lactic-co-glycolic) acid (PLGA) nanoparticles significantly increases the delivery of the siRNA in the chronic inflammation sites in a mouse model. The TNF-α siRNA incorporated PLGA nanoparticles were prepared by the standard double emulsion method, but using stearoyl-hydrazone-polyethylene glycol 2000, a unique acid-sensitive surface active agent, as the emulsifying agent, which renders (i) the nanoparticles PEGylated and (ii) the PEGylation sheddable in low pH environment such as that in chronic inflammation sites. In a mouse model of lipopolysaccharide-induced chronic inflammation, the acid-sensitive sheddable PEGylated PLGA nanoparticles showed significantly higher accumulation or distribution in chronic inflammation sites than PLGA nanoparticles prepared with an acid-insensitive emulsifying agent (i.e., stearoyl-amide-polyethylene glycol 2000) and significantly increased the distribution of the TNF-α siRNA incorporated into the nanoparticles in inflamed mouse foot. PMID:27434685

  7. Doxorubicin conjugation and drug linker chemistry alter the intravenous and pulmonary pharmacokinetics of a PEGylated Generation 4 polylysine dendrimer in rats.

    PubMed

    Leong, Nathania J; Mehta, Dharmini; McLeod, Victoria M; Kelly, Brian D; Pathak, Rashmi; Owen, David J; Porter, Christopher Jh; Kaminskas, Lisa M

    2018-05-28

    PEGylated polylysine dendrimers have demonstrated potential as inhalable drug delivery systems that can improve the treatment of lung cancers. Their treatment potential may be enhanced by developing constructs that display prolonged lung retention, together with good systemic absorption, the capacity to passively target lung tumours from the blood and highly selective, yet rapid liberation in the tumour microenvironment. This study sought to characterise how the nature of cathepsin B cleavable peptide linkers, used to conjugate doxorubicin to a PEGylated (PEG570) G4 polylysine dendrimer, affect drug liberation kinetics and intravenous and pulmonary pharmacokinetics in rats. The construct bearing a self-emolative diglycolic acid-V-Citrulline linker exhibited faster doxorubicin release kinetics compared to constructs bearing self emolative diglycolic acid-GLFG, or non-self emolative glutaric acid-GLFG linkers. The V-Citrulline construct exhibited slower plasma clearance, but faster absorption from the lungs than a GLFG construct, although mucociliary clearance and urinary elimination were unchanged. Doxorubicin-conjugation enhanced localisation in the bronchoalveolar lavage fluid compared to lung tissue, suggesting that projection of doxorubicin from the dendrimer surface reduced tissue uptake. These data show that the linker chemistry employed to conjugate drugs to PEGylated carriers can affect drug release profiles and systemic and lung disposition. Copyright © 2018. Published by Elsevier Inc.

  8. Development, Validation, and Application of a Novel Ligand-Binding Assay to Selectively Measure PEGylated Recombinant Human Coagulation Factor VIII (BAX 855).

    PubMed

    Weber, Alfred; Engelmaier, Andrea; Hainzelmayer, Sandra; Minibeck, Eva; Anderle, Heinz; Schwarz, Hans Peter; Turecek, Peter L

    2015-10-21

    BAX 855 is a PEGylated recombinant factor VIII preparation that showed prolonged circulatory half-life in nonclinical and clinical studies. This paper describes the development, validation, and application of a novel ligand-binding assay (LBA) to selectively measure BAX 855 in plasma. The LBA is based on PEG-specific capture of BAX 855, followed by immunological factor VIII (FVIII)-specific detection of the antibody-bound BAX 855. This assay principle enabled sensitive measurement of BAX 855 down to the low nanomolar range without interference from non-PEGylated FVIII as demonstrated by validation data for plasma from animals typically used for nonclinical characterization of FVIII. The selectivity of an in-house-developed anti-PEG and a commercially available preparation, shown by competition studies to primarily target the terminating methoxy group of PEG, also allowed assessment of the intactness of the attached PEG chains. Altogether, this new LBA adds to the group of methods to selectively, accurately, and precisely measure a PEGylated drug in complex biological matrices. The feasibility and convenience of using this method was demonstrated during extensive nonclinical characterization of BAX 855.

  9. Click-PEGylation - A mobility shift approach to assess the redox state of cysteines in candidate proteins.

    PubMed

    van Leeuwen, Lucie A G; Hinchy, Elizabeth C; Murphy, Michael P; Robb, Ellen L; Cochemé, Helena M

    2017-07-01

    The redox state of cysteine thiols is critical for protein function. Whereas cysteines play an important role in the maintenance of protein structure through the formation of internal disulfides, their nucleophilic thiol groups can become oxidatively modified in response to diverse redox challenges and thereby function in signalling and antioxidant defences. These oxidative modifications occur in response to a range of agents and stimuli, and can lead to the existence of multiple redox states for a given protein. To assess the role(s) of a protein in redox signalling and antioxidant defence, it is thus vital to be able to assess which of the multiple thiol redox states are present and to investigate how these alter under different conditions. While this can be done by a range of mass spectrometric-based methods, these are time-consuming, costly, and best suited to study abundant proteins or to perform an unbiased proteomic screen. One approach that can facilitate a targeted assessment of candidate proteins, as well as proteins that are low in abundance or proteomically challenging, is by electrophoretic mobility shift assays. Redox-modified cysteine residues are selectively tagged with a large group, such as a polyethylene glycol (PEG) polymer, and then the proteins are separated by electrophoresis followed by immunoblotting, which allows the inference of redox changes based on band shifts. However, the applicability of this method has been impaired by the difficulty of cleanly modifying protein thiols by large PEG reagents. To establish a more robust method for redox-selective PEGylation, we have utilised a Click chemistry approach, where free thiol groups are first labelled with a reagent modified to contain an alkyne moiety, which is subsequently Click-reacted with a PEG molecule containing a complementary azide function. This strategy can be adapted to study reversibly reduced or oxidised cysteines. Separation of the thiol labelling step from the PEG

  10. A PEGylated platelet free plasma hydrogel based composite scaffold enables stable vascularization and targeted cell delivery for volumetric muscle loss.

    PubMed

    Aurora, Amit; Wrice, Nicole; Walters, Thomas J; Christy, Robert J; Natesan, Shanmugasundaram

    2018-01-01

    Extracellular matrix (ECM) scaffolds are being used for the clinical repair of soft tissue injuries. Although improved functional outcomes have been reported, ECM scaffolds show limited tissue specific remodeling response with concomitant deposition of fibrotic tissue. One plausible explanation is the regression of blood vessels which may be limiting the diffusion of oxygen and nutrients across the scaffold. Herein we develop a composite scaffold as a vasculo-inductive platform by integrating PEGylated platelet free plasma (PFP) hydrogel with a muscle derived ECM scaffold (m-ECM). In vitro, adipose derived stem cells (ASCs) seeded onto the composite scaffold differentiated into two distinct morphologies, a tubular network in the hydrogel, and elongated structures along the m-ECM scaffold. The composite scaffold showed a high expression of ITGA5, ITGB1, and FN and a synergistic up-regulation of ang1 and tie-2 transcripts. The in vitro ability of the composite scaffold to provide extracellular milieu for cell adhesion and molecular cues to support vessel formation was investigated in a rodent volumetric muscle loss (VML) model. The composite scaffold delivered with ASCs supported robust and stable vascularization. Additionally, the composite scaffold supported increased localization of ASCs in the defect demonstrating its ability for localized cell delivery. Interestingly, ASCs were observed homing in the injured muscle and around the perivascular space possibly to stabilize the host vasculature. In conclusion, the composite scaffold delivered with ASCs presents a promising approach for scaffold vascularization. The versatile nature of the composite scaffold also makes it easily adaptable for the repair of soft tissue injuries. Decellularized extracellular matrix (ECM) scaffolds when used for soft tissue repair is often accompanied by deposition of fibrotic tissue possibly due to limited scaffold vascularization, which limits the diffusion of oxygen and nutrients

  11. A Load-Based Temperature Prediction Model for Anomaly Detection

    NASA Astrophysics Data System (ADS)

    Sobhani, Masoud

    Electric load forecasting, as a basic requirement for the decision-making in power utilities, has been improved in various aspects in the past decades. Many factors may affect the accuracy of the load forecasts, such as data quality, goodness of the underlying model and load composition. Due to the strong correlation between the input variables (e.g., weather and calendar variables) and the load, the quality of input data plays a vital role in forecasting practices. Even if the forecasting model were able to capture most of the salient features of the load, a low quality input data may result in inaccurate forecasts. Most of the data cleansing efforts in the load forecasting literature have been devoted to the load data. Few studies focused on weather data cleansing for load forecasting. This research proposes an anomaly detection method for the temperature data. The method consists of two components: a load-based temperature prediction model and a detection technique. The effectiveness of the proposed method is demonstrated through two case studies: one based on the data from the Global Energy Forecasting Competition 2014, and the other based on the data published by ISO New England. The results show that by removing the detected observations from the original input data, the final load forecast accuracy is enhanced.

  12. Self locking coupling mechanism for engaging and moving a load

    DOEpatents

    Wood, R.L.; Casamajor, A.B.; Parsons, R.E.

    1980-09-12

    A coupling mechanism for engaging and lifting a load has a housing with a guide passage for receiving a knob which is secured to the load through a neck of smaller diameter. A hollow ball in the housing has an opening which receives the knob and the ball is then turned to displace the opening from the housing passage and to cause the neck to enter a slot in the ball thereby securing the load to the coupling mechanism as elements of the housing block travel of the neck back into the opening when the ball is turned to the load holding orientation. As engagement of the load and locking of the coupling mechanism are accomplished simultaneously by the same ball motion, operation is simplified and reliability is greatly increased. The ball is preferably turned by a motor through worm gearing and the coupling mechanism may be controlled from a remote location. Among other uses, the coupling mechanism is adaptable to the handling of spent nuclear reactor fuel elements.

  13. Self locking coupling mechanism for engaging and moving a load

    DOEpatents

    Wood, Richard L.; Casamajor, Alan B.; Parsons, Richard E.

    1982-01-01

    Coupling mechanism (11) for engaging and lifting a load (12) has a housing (19) with a guide passage (18) for receiving a knob (13) which is secured to the load (12) through a neck (15) of smaller diameter. A hollow ball (23) in the housing (19) has an opening (27) which receives the knob (13) and the ball (23) is then turned to displace the opening (27) from the housing passage (18) and to cause the neck (15) to enter a slot (29) in the ball (23) thereby securing the load (12) to the coupling mechanism (11) as elements (49) of the housing (19) block travel of the neck (15) back into the opening (27) when the ball (23) is turned to the load holding orientation. As engagement of the load (12) and locking of the coupling mechanism are accomplished simultaneously by the same ball (23) motion, operation is simplified and reliability is greatly increased. The ball (23) is preferably turned by a motor (32) through worm gearing (36) and the coupling mechanism (11) may be controlled from a remote location. Among other uses, the coupling mechanism (11) is adaptable to the handling of spent nuclear reactor fuel elements (12).

  14. Formulation Development, Optimization, and In vitro - In vivo Characterization of Natamycin Loaded PEGylated Nano-lipid Carriers for Ocular Applications.

    PubMed

    Patil, Akash; Lakhani, Prit; Taskar, Pranjal; Wu, Kai-Wei; Sweeney, Corinne; Avula, Bharathi; Wang, Yan-Hong; Khan, Ikhlas A; Majumdar, Soumyajit

    2018-04-23

    Current study aimed at formulating and optimizing natamycin (NT) loaded PEGylated NLCs (NT-PEG-NLCs) using Box-Behnken Design and investigating their potential in ocular applications. Response surface methodology (RSM) computations and plots for optimization were performed using Design Expert ® software, to obtain optimum values for response variables based on the criteria of desirability. Optimized NT-PEG-NLCs had predicted values for the dependent variables not significantly different from the experimental values. NT-PEG-NLCs were characterized for their physicochemical parameters; NT's rate of permeation and flux across rabbit cornea was evaluated, in vitro; ocular tissue distribution was assessed in rabbits, in vivo. NT-PEG-NLCs were found to have optimum particle size (< 300 nm) narrow PDI, high NT entrapment and NT content. In vitro transcorneal permeability and flux of NT from NT-PEG-NLCs was significantly higher than Natacyn ® . NT-PEG-NLC (0.3%) showed improved delivery of NT across the intact cornea and provided concentrations statistically similar to the marketed suspension (5%) in inner ocular tissues, in vivo, indicating that it could be a potential alternative to the conventional suspension during the course of fungal keratitis therapy. Copyright © 2018. Published by Elsevier Inc.

  15. Adhesion of thiolated silica nanoparticles to urinary bladder mucosa: Effects of PEGylation, thiol content and particle size.

    PubMed

    Mun, Ellina A; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2016-10-15

    Intravesical drug administration is used to deliver cytotoxic agents through a catheter to treat bladder cancer. One major limitation of this approach is poor retention of the drug in the bladder due to periodic urine voiding. Mucoadhesive dosage forms thus offer significant potential to improve drug retention in the bladder. Here, we investigate thiolated silica nanoparticles retention on porcine bladder mucosa in vitro, quantified through Wash Out50 (WO50) values, defined as the volume of liquid necessary to remove 50% of the adhered particles from a mucosal tissue. Following irrigation with artificial urine solution, the thiolated nanoparticles demonstrate significantly greater retention (WO50 up to 36mL) compared to non-mucoadhesive dextran (WO50 7mL), but have weaker mucoadhesive properties than chitosan (WO50 89mL). PEGylation of thiolated silica reduces their mucoadhesion with WO50 values of 29 and 8mL for particles decorated with 750 and 5000Da PEG, respectively. The retention of thiolated silica nanoparticles is dependent on their thiol group contents and physical dimensions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Early gene expression profiles of patients with chronic hepatitis C treated with pegylated interferon-alfa and ribavirin.

    PubMed

    Younossi, Zobair M; Baranova, Ancha; Afendy, Arian; Collantes, Rochelle; Stepanova, Maria; Manyam, Ganiraju; Bakshi, Anita; Sigua, Christopher L; Chan, Joanne P; Iverson, Ayuko A; Santini, Christopher D; Chang, Sheng-Yung P

    2009-03-01

    Responsiveness to hepatitis C virus (HCV) therapy depends on viral and host factors. Our aim was to assess sustained virologic response (SVR)-associated early gene expression in patients with HCV receiving pegylated interferon-alpha2a (PEG-IFN-alpha2a) or PEG-IFN-alpha2b and ribavirin with the duration based on genotypes. Blood samples were collected into PAXgene tubes prior to treatment as well as 1, 7, 28, and 56 days after treatment. From the peripheral blood cells, total RNA was extracted, quantified, and used for one-step reverse transcription polymerase chain reaction to profile 154 messenger RNAs. Expression levels of messenger RNAs were normalized with six "housekeeping" genes and a reference RNA. Multiple regression and stepwise selection were performed to assess differences in gene expression at different time points, and predictive performance was evaluated for each model. A total of 68 patients were enrolled in the study and treated with combination therapy. The results of gene expression showed that SVR could be predicted by the gene expression of signal transducer and activator of transcription-6 (STAT-6) and suppressor of cytokine signaling-1 in the pretreatment samples. After 24 hours, SVR was predicted by the expression of interferon-dependent genes, and this dependence continued to be prominent throughout the treatment. Early gene expression during anti-HCV therapy may elucidate important molecular pathways that may be influencing the probability of achieving virologic response.

  17. Pegylated-asparaginase during induction therapy for adult acute lymphoblastic leukaemia: toxicity data from the UKALL14 trial.

    PubMed

    Patel, B; Kirkwood, A A; Dey, A; Marks, D I; McMillan, A K; Menne, T F; Micklewright, L; Patrick, P; Purnell, S; Rowntree, C J; Smith, P; Fielding, A K

    2017-01-01

    Safety and efficacy data on pegylated asparaginase (PEG-ASP) in adult acute lymphoblastic leukaemia (ALL) induction regimens are limited. The UK National Cancer Research Institute UKALL14 trial NCT01085617 prospectively evaluated the tolerability of 1000 IU/m 2 PEG-ASP administered on days 4 and 18 as part of a five-drug induction regimen in adults aged 25-65 years with de novo ALL. Median age was 46.5 years. Sixteen of the 90 patients (median age 56 years) suffered treatment-related mortality during initial induction therapy. Eight of the 16 died of sepsis in combination with hepatotoxicity. Age and Philadelphia (Ph) status were independent variables predicting induction death >40 versus ⩽40 years, odds ratio (OR) 18.5 (2.02-169.0), P=0.01; Ph- versus Ph+ disease, OR 13.60 (3.52-52.36), P<0.001. Of the 74 patients who did not die, 37 (50.0%) experienced at least one grade 3/4 PEG-ASP-related adverse event, most commonly hepatotoxicity (36.5%, n=27). A single dose of PEG-ASP achieved trough therapeutic enzyme levels in 42/49 (86%) of the patients tested. Although PEG-ASP delivered prolonged asparaginase activity in adults, it was difficult to administer safely as part of the UKALL14 intensive multiagent regimen to those aged >40 years. It proved extremely toxic in patients with Ph+ ALL, possibly owing to interaction with imatinib.

  18. Multifunctional reduction-responsive SPIO&DOX-loaded PEGylated polymeric lipid vesicles for magnetic resonance imaging-guided drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Yang, Weitao; Du, Hongli; Guo, Fangfang; Wang, Hanjie; Chang, Jin; Gong, Xiaoqun; Zhang, Bingbo

    2016-04-01

    Multifunctional superparamagnetic iron-oxide (SPIO)-based nanoparticles have been emerging as candidate nanosystems for cancer diagnosis and therapy. Here, we report the use of reduction- responsive SPIO/doxorubicin (DOX)-loaded poly(ethylene glycol) monomethyl ether (PEG)ylated polymeric lipid vesicles (SPIO&DOX-PPLVs) as a novel theranostic system for tumor magnetic resonance imaging (MRI) diagnosis and controlled drug delivery. These SPIO&DOX-PPLVs are composed of SPIOs that function as MR contrast agents for tumor enhancement and PPLVs as polymer matrices for encapsulating SPIO and antitumor drugs. The in vitro characterizations show that the SPIO&DOX-PPLVs have nanosized structures (˜80 nm), excellent colloidal stability, good biocompatibility, as well as T 2-weighted MRI capability with a relatively high T 2 relaxivity (r 2 = 213.82 mM-1 s-1). In vitro drug release studies reveal that the release rate of DOX from the SPIO&DOX-PPLVs is accelerated in the reduction environment. An in vitro cellular uptake study and an antitumor study show that the SPIO&DOX-PPLVs have magnetic targeting properties and effective antitumor activity. In vivo studies show the SPIO&DOX-PPLVs have excellent T 2-weighted tumor targeted MRI capability, image-guided drug delivery capability, and high antitumor effects. These results suggest that the SPIO&DOX-PPLVs are promising nanocarriers for MRI diagnosis and cancer therapy applications.

  19. Pegylated liposomal formulation of doxorubicin overcomes drug resistance in a genetically engineered mouse model of breast cancer.

    PubMed

    Füredi, András; Szebényi, Kornélia; Tóth, Szilárd; Cserepes, Mihály; Hámori, Lilla; Nagy, Veronika; Karai, Edina; Vajdovich, Péter; Imre, Tímea; Szabó, Pál; Szüts, Dávid; Tóvári, József; Szakács, Gergely

    2017-09-10

    Success of cancer treatment is often hampered by the emergence of multidrug resistance (MDR) mediated by P-glycoprotein (ABCB1/Pgp). Doxorubicin (DOX) is recognized by Pgp and therefore it can induce therapy resistance in breast cancer patients. In this study our aim was to evaluate the susceptibility of the pegylated liposomal formulation of doxorubicin (PLD/Doxil®/Caelyx®) to MDR. We show that cells selected to be resistant to DOX are cross-resistant to PLD and PLD is also ineffective in an allograft model of doxorubicin-resistant mouse B-cell leukemia. In contrast, PLD was far more efficient than DOX as reflected by a significant increase of both relapse-free and overall survival of Brca1 -/- ;p53 -/- mammary tumor bearing mice. Increased survival could be explained by the delayed onset of drug resistance. Consistent with the higher Pgp levels needed to confer resistance, PLD administration was able to overcome doxorubicin insensitivity of the mouse mammary tumors. Our results indicate that the favorable pharmacokinetics achieved with PLD can effectively overcome Pgp-mediated resistance, suggesting that PLD therapy could be a promising strategy for the treatment of therapy-resistant breast cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A HPLC-UV method for the determination of puerarin in rat plasma after intravenous administration of PEGylated puerarin conjugate.

    PubMed

    Liu, Xinyi; Zhi, Hongying; Du, Feng; Ye, Zuguang; Wang, Naijie; Qin, Wenjie; Li, Jianrong

    2010-12-01

    A sensitive and reproducible HPLC method for quantitative determination of puerarin (PUE) in rat plasma was developed and validated using 4-hydroxybenzaldehyde as an internal standard. The separation of PUE was performed on a CAPCELL PAK C18 column by gradient elution with 0.2% aqueous phosphoric acid and acetonitrile as the mobile phase. The method was validated and found to be linear in the range of 80-12,000ng/mL. The limit of quantification was 80ng/mL based on 100μL of plasma. The variations for intra- and inter-day precision were less than 8.3%, and the accuracy values were between 98% and 105.2%. The extraction recoveries were more than 85%. The method was successfully applied in the comparative study of pharmacokinetics of PEGylated puerarin (PEG-PUE) versus PUE in rats. Compared with PUE, PEG-PUE showed a 5.2-fold increase in half-life of PUE and a 4.7-fold increase in mean residence time. In addition, this method was also successfully applied to determine the low plasma concentration of PUE regenerated from PEG-PUE in vitro. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles.

    PubMed

    Xiao, Ning; Gu, Wei; Wang, Hao; Deng, Yunlong; Shi, Xin; Ye, Ling

    2014-03-01

    To overcome the negative contrast limitations of iron oxide-based contrast agents and to improve the biocompatibility of Gd-chelate contrast agents, PEGylated Gd-doped iron oxide (PEG-GdIO) NPs as a T1-T2 dual-modal contrast agent were synthesized by the polyol method. The transverse relaxivity (r2) and longitudinal relaxivity (r1) of PEG-GdIO were determined to be 66.9 and 65.9 mM(-1) s(-1), respectively. The high r1 value and low r2/r1 ratio make PEG-GdIO NPs suitable as a T1-T2 dual-modal contrast agent. The in vivo MRI demonstrated a brighter contrast enhancement in T1-weighted image and a simultaneous darken effect in T2-weighted MR image compared to the pre-contrast image in the region of glioma. Furthermore, the biocompatibility of PEG-GdIO NPs was confirmed by the in vitro MTT cytotoxicity and in vivo histological analyses (H&E). Therefore, PEG-GdIO NPs hold great potential in T1-T2 dual-modal imaging for the diagnosis of brain glioma. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. A pre-clinical safety study of PEGylated recombinant human endostatin (M2ES) in Sprague Dawley rats.

    PubMed

    Geng, Xingchao; Guo, Lifang; Liu, Li; Wang, Chao; Peng, Qian; Qi, Weihong; Sun, Li; Liu, Xiaomeng; Miao, Yufa; Lin, Zhi; Fu, Yan; Luo, Yongzhang; Li, Bo

    2018-06-01

    PEGylated recombinant human endostatin (M 2 ES) exhibited prolonged serum half-life and enhanced antitumor activity when compared with endostatin. A pre-clinical study was performed to evaluate the safety of M 2 ES in rats. After intravenous (IV) infusions of M 2 ES at a dose level of 3, 15 and 75 mg/kg in Sprague Dawley (SD) rats, M 2 ES was well tolerated in animals, with no observable changes in clinical observation, body weight, food consumption, urine analysis, hematology and serum biochemical analysis. The increase of kidney weights, and slight to severe vacuolation and necrosis of proximal tubule epithelial cells in kidney were observed in 15 and 75 mg/kg M 2 ES groups, but this adverse-effect was reversible. In summary, the major toxicity target organ of M 2 ES might be kidney, and the no observed adverse effect level (NOAEL) of M 2 ES in rats was 3 mg/kg in this study. These pre-clinical safety data contribute to the initiation of the ongoing clinical study. Copyright © 2018. Published by Elsevier Inc.

  3. Synergistic Enhancement of Antitumor Efficacy by PEGylated Multi-walled Carbon Nanotubes Modified with Cell-Penetrating Peptide TAT

    NASA Astrophysics Data System (ADS)

    Hu, Shanshan; Wang, Tong; Pei, Xibo; Cai, He; Chen, Junyu; Zhang, Xin; Wan, Qianbing; Wang, Jian

    2016-10-01

    In the present study, a cell-penetrating peptide, the transactivating transcriptional factor (TAT) domain from HIV, was linked to PEGylated multi-walled carbon nanotubes (MWCNTs) to develop a highly effective antitumor drug delivery system. FITC was conjugated on MWCNTs-polyethylene glycol (PEG) and MWCNTs-PEG-TAT to provide fluorescence signal for tracing the cellular uptake of the nanocarrier. After loaded with an anticancer agent, doxorubicin (DOX) via π - π stacking interaction, the physicochemical characteristics, release profile and biological evaluation of the obtained nano-sized drug carrier were investigated. The DOX loaded MWCNTs-PEG and MWCNTs-PEG-TAT drug carriers both displayed appropriate particle size, excellent stability, high drug loading, and pH-dependent drug release profile. Nevertheless, compared with DOX-MWCNTs-PEG, DOX-MWCNTs-PEG-TAT showed improved cell internalization, intracellular distribution and potentiated anticancer efficacy due to the TAT-mediated membrane translocation, endosomal escape and nuclear targeting. Furthermore, the therapeutic efficacy of DOX was not compromised after being conjugated with MWCNTs-PEG-TAT and the proposed nanocarrier was also confirmed to have a good biocompatibility. In conclusion, our results suggested that the unique combination of TAT and MWCNTs as a multifunctional drug delivery system might be a powerful tool for improved anticancer drug development.

  4. New life to an old treatment: pegylated Interferon beta 1a in the management of multiple sclerosis.

    PubMed

    Ortiz, Miguel Angel; Espino-Paisan, Laura; Nunez, Concepcion; Alvarez-Lafuente, Roberto; Urcelay, Elena

    2018-02-25

    In the 1990s, the betainterferons and glatiramer acetate were introduced for treating relapsing-remitting multiple sclerosis. These medications have a demonstrated record of efficacy and safety, although they require frequent administration via injection and are only partially effective. The optimization of treatment in patients who do not respond adequately to this first-line therapy is essential for attaining the best long-term outcomes. Switching to the recently approved emergent therapies is a strategy to consider for treatment of patients with a suboptimal response. This review summarizes the mechanisms of action, clinical benefits, and safety profiles of current multiple sclerosis disease-modifying therapies, including highly efficacious monoclonal antibodies or convenient oral therapies. Although the first-line interferon beta exhibits a favorable benefit-to-risk profile, treatment compliance is compromised potentially due to its known adverse events and frequent injectable administration. Less frequent dosing and improved pharmacological properties have been achieved by reaction of interferon beta with chemically activated polyethylene glycol. Provided that none of the available therapies shows better effectiveness for all outcomes and their safety in clinical practice is a fundamental concern, the pegylated form of interferon beta seems to keep its place as a competitive therapeutic option. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. An insight of in vitro transport of PEGylated non-ionic surfactant vesicles (NSVs) across the intestinal polarized enterocyte monolayers.

    PubMed

    Primavera, Rosita; Palumbo, Paola; Celia, Christian; Cinque, Benedetta; Carata, Elisabetta; Carafa, Maria; Paolino, Donatella; Cifone, Maria Grazia; Di Marzio, Luisa

    2018-06-01

    PEGylated non-ionic surfactant-based vesicles (NSVs) are promising drug delivery systems for the local, oral and systemic administrations of therapeutics. The aim of this study was to test the cellular biocompatibility and transport of Nile Red-loaded NSVs (NR-NSVs) across the Caco-2-cell monolayers, which represent an in vitro model of human intestinal epithelium. The NR-NSVs assumed a spherical shape with a mean size of 140 nm, and a narrow size distribution. The NR-NSVs did not modify Caco-2 cell viability, which remained unaltered in vitro up to a concentration of 1 mM. The transport studies demonstrated that the NR-NSVs moved across the Caco-2 monolayers without affecting the transepithelial electrical resistance. These results were supported by flow cytometry analysis, which demonstrated that NR-NSVs were internalized inside the Caco-2 cells. Nanoparticle tracking and Transmission Electron Microscopy (TEM) analysis showed the presence of NR-NSVs in the basolateral side of the Caco-2 monolayers. TEM images also showed that NSVs were transported intact across the Caco-2 monolayers, thus demonstrating a predominant transcytosis mechanism of transport through endocytosis. The NSVs did not affect the integrity of the membrane barrier in vitro, and can potentially be used in clinics to increase the oral bioavailability and delivery of therapeutics. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts

    PubMed Central

    Krauze, Michal T.; Noble, Charles O.; Kawaguchi, Tomohiro; Drummond, Daryl; Kirpotin, Dmitri B.; Yamashita, Yoji; Kullberg, Erika; Forsayeth, John; Park, John W.; Bankiewicz, Krystof S.

    2007-01-01

    We have previously shown that convection-enhanced delivery (CED) of highly stable nanoparticle/liposome agents encapsulating chemotherapeutic drugs is effective against intracranial rodent brain tumor xenografts. In this study, we have evaluated the combination of a newly developed nanoparticle/liposome containing the topoisomerase I inhibitor CPT-11 (nanoliposomal CPT-11 [nLs-CPT-11]), and PEGylated liposomal doxorubicin (Doxil) containing the topoisomerase II inhibitor doxorubicin. Both drugs were detectable in the CNS for more than 36 days after a single CED application. Tissue half-life was 16.7 days for nLs-CPT-11 and 10.9 days for Doxil. The combination of the two agents produced synergistic cytotoxicity in vitro. In vivo in U251MG and U87MG intracranial rodent xenograft models, CED of the combination was also more efficacious than either agent used singly. Analysis of the parameters involved in this approach indicated that tissue pharmacokinetics, tumor microanatomy, and biochemical interactions of the drugs all contributed to the therapeutic efficacy observed. These findings have implications for further clinical applications of CED-based treatment of brain tumors. PMID:17652269

  7. Pegylated IFN-α-2a and ribavirin in the treatment of hepatitis C infection in children.

    PubMed

    Pawlowska, Malgorzata

    2015-03-01

    The epidemiology, natural history and efficacy of treatment for chronic hepatitis C in children are presented. An increase in the number of vertical infections of this etiology is suggested. In children, especially in those vertically infected, spontaneous elimination of hepatitis C virus (HCV) is observed more often than it is in adults. The most common HCV genotype detected in children is genotype 1, but Italian researchers have described an increase of infection with genotypes 3 and 4 HCV in children in recent years. In the context of recent opinions suggesting a more rapid progression of HCV 3 genotype infection, treatment of these children should begin immediately. The high efficacy (sustained viral response > 50%), safety (few adverse events with less intensity as compared to adults) and good tolerance of therapy with pegylated IFN α-2a and ribavirin have been revealed in children. The differences in the efficacy and tolerability of HCV treatment between children and adults are described. A recommendation for inclusion and monitoring parameters of children's physical and mental development during HCV treatment is presented. Regarding new anti-HCV therapies with very high efficacy, including IFN-free treatment, the introduction of these therapies to children is recommended.

  8. Reversibly extracellular pH controlled cellular uptake and photothermal therapy by PEGylated mixed-charge gold nanostars.

    PubMed

    Wang, Shouju; Teng, Zhaogang; Huang, Peng; Liu, Dingbin; Liu, Ying; Tian, Ying; Sun, Jing; Li, Yanjun; Ju, Huangxian; Chen, Xiaoyuan; Lu, Guangming

    2015-04-17

    Shielding nanoparticles from nonspecific interactions with normal cells/tissues before they reach and after they leave tumors is crucial for the selective delivery of NPs into tumor cells. By utilizing the reversible protonation of weak electrolytic groups to pH changes, long-chain amine/carboxyl-terminated polyethylene glycol (PEG) decorated gold nanostars (GNSs) are designed, exhibiting reversible, significant, and sensitive response in cell affinity and therapeutic efficacy to the extracellular pH (pHe) gradient between normal tissues and tumors. This smart nanosystem shows good dispersity and unimpaired photothermal efficacy in complex bioenvironment at pH 6.4 and 7.4 even when their surface charge is neutral. One PEGylated mixed-charge GNSs with certain surface composition, GNS-N/C 4, exhibits high cell affinity and therapeutic efficacy at pH 6.4, and low affinity and almost "zero" damage to cells at pH 7.4. Remarkably, this significant and sensitive response in cell affinity and therapeutic efficacy is reversible as local pH alternated. In vivo, GNS-N/C 4 shows higher accumulation in tumors and improved photothermal therapeutic efficacy than pH-insensitive GNSs. This newly developed smart nanosystem, whose cell affinity reversibly transforms in response to pHe gradient with unimpaired biostability, provides a novel effective means of tumor-selective therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Accelerated Blood Clearance (ABC) Phenomenon Favors the Accumulation of Tartar Emetic in Pegylated Liposomes in BALB/c Mice Liver.

    PubMed

    Lopes, Tamara C M; Silva, Débora F; Costa, Walyson C; Frézard, Frédéric; Barichello, José M; Silva-Barcellos, Neila M; de Lima, Wanderson G; Rezende, Simone A

    2018-01-01

    Tartar emetic (TE) was the first drug used to treat leishmaniasis. However, its use was discontinued due to high toxicity. Association of TE with liposomes is a strategy to reduce its side effects. Pegylated liposomes (Lpeg) present lower rates of uptake by macrophages and prolonged circulation compared to their nonpegylated counterparts. However, repeated administration of Lpeg can cause an Accelerated Blood Clearance (ABC) phenomenon, whereby recognition of liposomes by antibodies results in faster phagocytosis. This work evaluated the effect of TE administration on histopathological aspects and the effect of the ABC phenomenon on targeting and toxicity in mice. Our results show that treatment with free or liposomal TE had no effect on the erythrocyte count, on liver and spleen weight, and on hepatic, splenic, and cardiac histology in mice. Severe lesions were observed on the kidneys of animals treated with a single dose of free TE. Treatment with TE in Lpeg after induction of ABC phenomenon caused a significant increase in Sb level in the liver without toxicity. Furthermore, mice treated with TE in liposomes showed normal renal histopathology. These results suggest site-specific targeting of Sb to the liver after induction of ABC phenomenon with no toxicity to other organs.

  10. Successful treatment of chronic hepatitis C with pegylated interferon in combination with ribavirin in a methadone maintenance treatment program

    PubMed Central

    Litwin, Alain H.; Harris, Kenneth A.; Nahvi, Shadi; Zamor, Philippe J.; Soloway, Irene J.; Tenore, Peter L.; Kaswan, Daniel; Gourevitch, Marc. N.; Arnsten, Julia H.

    2009-01-01

    Injection drug users constitute 60% of the more than 4 million people in the United States with hepatitis C virus (HCV), including many methadone maintenance patients. Few data exist describing clinical outcomes for patients receiving HCV treatment on-site in a methadone maintenance settings. In this retrospective study, we describe clinical outcomes for 73 patients receiving HCV treatment on-site in a methadone maintenance treatment program. Fifty-five percent of patients achieved end-of-treatment response, and 45% achieved sustained viral response. These treatment response rates are nearly equivalent to previously published HCV treatment response rates, despite high prevalences of ongoing drug use (49%), psychiatric comorbidity (67%), and HIV coinfection (32%). These data show that on-site HCV treatment with pegylated interferon and ribavirin is effective in methadone-maintained patients, many of whom are active drug users, psychiatrically ill, or HIV coinfected, and that methadone maintenance treatment programs represent an opportunity to safely treat chronic hepatitis C. PMID:19038524

  11. Further examination of various administration protocols of pegylated recombinant human megakaryocyte growth and development factor on thrombocytopenia in myelosuppressed mice.

    PubMed

    Akahori, H; Ozai, M; Ida, M; Shibuya, K; Kato, T; Miyazaki, H

    1998-02-01

    Thrombopoietin (TPO) is the recently isolated lineage-dominant hematopoietic factor that plays a pivotal role in the regulation of megakaryocytopoiesis and thrombopoiesis. In vivo studies have shown that daily multiple injections of pegylated human megakaryocyte growth and development factor (PEG-rHuMGDF), a truncated molecule related to human TPO, modified with polyethylene glycol, greatly improve thrombocytopenia and in most cases anemia and neutropenia in myelosuppressed animal models. In this study, we further examined various administration protocols of PEG-rHuMGDF on thrombocytopenia in mice treated with a combination of irradiation and carboplatin. After the myelosuppressive treatment on Day 0, mice received the same amount of PEG-rHuMGDF beginning on Day 1 by a single, 3 times (on alternate days), or 7 day daily administration. A single injection of PEG-rHuMGDF significantly reduced the severity and duration of thrombocytopenia and anemia with a concomitant accelerated recovery of megakaryocytic and erythroid progenitors in the bone marrow, similar to the 2 other administration protocols. As the start of a single injection of PEG-rHuMGDF was delayed, its therapeutic effects were attenuated. These results indicate that an administration of PEG-rHuMGDF at an earlier time after the myelosuppressive treatment is necessary to improve thrombocytopenia and anemia.

  12. Time-evolution of in vivo protein corona onto blood-circulating PEGylated liposomal doxorubicin (DOXIL) nanoparticles.

    PubMed

    Hadjidemetriou, Marilena; Al-Ahmady, Zahraa; Kostarelos, Kostas

    2016-04-07

    Nanoparticles (NPs) are instantly modified once injected in the bloodstream because of their interaction with the blood components. The spontaneous coating of NPs by proteins, once in contact with biological fluids, has been termed the 'protein corona' and it is considered to be a determinant factor for the pharmacological, toxicological and therapeutic profile of NPs. Protein exposure time is thought to greatly influence the composition of protein corona, however the dynamics of protein interactions under realistic, in vivo conditions remain unexplored. The aim of this study was to quantitatively and qualitatively investigate the time evolution of in vivo protein corona, formed onto blood circulating, clinically used, PEGylated liposomal doxorubicin. Protein adsorption profiles were determined 10 min, 1 h and 3 h post-injection of liposomes into CD-1 mice. The results demonstrated that a complex protein corona was formed as early as 10 min post-injection. Even though the total amount of protein adsorbed did not significantly change over time, the fluctuation of protein abundances observed indicated highly dynamic protein binding kinetics.

  13. A noticeable phenomenon: thiol terminal PEG enhances the immunogenicity of PEGylated emulsions injected intravenously or subcutaneously into rats.

    PubMed

    Wang, Chunling; Cheng, Xiaobo; Sui, Yue; Luo, Xiang; Jiang, Gongping; Wang, Yu; Huang, Zhenjun; She, Zhennan; Deng, Yihui

    2013-11-01

    Repeated intravenous injection of long-circulating methoxy-polyethylene glycol (PEG)-liposomes alters the pharmacokinetics and biodistribution of the second administration, regarded as the "accelerated blood clearance (ABC) phenomenon." Nevertheless, the effect of terminal groups of distearoylphosphatidylethanolamine-polyethylene glycol (DSPE-PEG) on the induction of the ABC phenomenon had not been reported previously. In this study, rats were injected intravenously or subcutaneously with PEG coated emulsions (DE) which were prepared using PEG terminated with either the methoxyl (OCH3), hydroxyl (OH), amino (NH2), carboxyl (COOH), or thiol (SH) group. DE-OCH3 demonstrated the longest prolonged half-life in vivo after a single intravenous injection, followed by DE-SH and DE-COOH. In contrast, DE-OH was rapidly removed from the blood circulation, as was DE-NH2. Moreover, we observed a strong positive relationship between the circulation time of initially injected PEGylated emulsions and the extent to which the ABC phenomenon was induced, but a exception of DE-SH increasing the ABC effect. Furthermore, the present study suggested that thiols might stimulate the proliferation and differentiation of B cells to induce the fastest clearance of the second intravenous administration by inducing the synthesis of the cell membrane and cytosolic proteins or reacting with follicular dendritic cells. The results strongly suggested that thiol groups played a stimulatory role in the immune response and provided a considerable implication for multiple drug therapy of thiol groups. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Effects of nanoencapsulation and PEGylation on biodistribution of indocyanine green in healthy mice: quantitative fluorescence imaging and analysis of organs

    PubMed Central

    Bahmani, Baharak; Lytle, Christian Y; Walker, Ameae M; Gupta, Sharad; Vullev, Valentine I; Anvari, Bahman

    2013-01-01

    Near-infrared nanoconstructs present a potentially effective platform for site-specific and deep tissue optical imaging and phototherapy. We have engineered a polymeric nanocapsule composed of polyallylamine hydrochloride (PAH) chains cross-linked with sodium phosphate and doped with indocyanine green (ICG) toward such endeavors. The ICG-doped nanocapsules were coated covalently with polyethylene glycol (5000 daltons) through reductive amination. We administrated the constructs by tail vein injection to healthy mice. To characterize the biodistribution of the constructs, we performed in vivo quantitative fluorescence imaging and subsequently analyzed the various extracted organs. Our results suggest that encapsulation of ICG in these PEGylated constructs is an effective approach to prolong the circulation time of ICG and delay its hepatic accumulation. Increased bioavailability of ICG, due to encapsulation, offers the potential of extending the clinical applications of ICG, which are currently limited due to rapid elimination of ICG from the vasculature. Our results also indicate that PAH and ICG-doped nanocapsules (ICG-NCs) are not cytotoxic at the levels used in this study. PMID:23637530

  15. Phase 2 study of pegylated liposomal doxorubicin in combination with interleukin-12 for AIDS-related Kaposi sarcoma

    PubMed Central

    Little, Richard F.; Aleman, Karen; Kumar, Pallavi; Wyvill, Kathleen M.; Pluda, James M.; Read-Connole, Elizabeth; Wang, Victoria; Pittaluga, Stefania; Catanzaro, Andrew T.; Steinberg, Seth M.

    2007-01-01

    Thirty-six patients with AIDS-associated Kaposi sarcoma (KS) requiring chemotherapy were treated for six 3-week cycles of pegylated liposomal doxorubicin (20 mg/m2) plus interleukin-12 (IL-12; 300 ng/kg subcutaneously twice weekly), followed by 500 ng/kg subcutaneous IL-12 twice weekly for up to 3 years. All received highly active antiretroviral therapy (HAART). Twenty-two had poor-prognosis KS (T1S1). Thirty patients had a major response, including 9 with complete response, yielding an 83.3% major response rate (95% confidence interval: 67.2%-93.6%). Median time to first response was 2 cycles. Median progression was not reached at median potential follow-up of 46.9 months. Of 27 patients with residual disease when starting maintenance IL-12, 15 had a new major response compared with this new baseline. The regimen was overall well tolerated; principal toxicities were neutropenia, anemia, transaminitis, and neuropsychiatric toxicity. Patients had increases in serum IL-12, interferon gamma, and inducible protein-10 (IP-10), and these remained increased at weeks 18 and 34. The regimen of IL-12 plus liposomal doxorubicin yielded rapid tumor responses and a high response rate in patients with AIDS-KS receiving HAART, and responses were sustained on IL-12 maintenance therapy. A randomized trial of IL-12 in this setting may be warranted. This study is registered at http://www.clinicaltrials.gov as no. NCT00020449. PMID:17846226

  16. Hyaluronic Acid Hydrogel Functionalized with Self-Assembled Micelles of Amphiphilic PEGylated Kartogenin for the Treatment of Osteoarthritis.

    PubMed

    Kang, Mi-Lan; Jeong, Se-Young; Im, Gun-Il

    2017-07-01

    Synthetic hyaluronic acid (HA) containing a covalently integrated drug is capable of releasing therapeutic molecules and is an attractive candidate for the intra-articular treatment of osteoarthritis (OA). Herein, self-assembled PEGylated kartogenin (PEG/KGN) micelles consisting of hydrophilic polyethylene glycol (PEG) and hydrophobic KGN, which has been shown to induce chondrogenesis in human mesenchymal stem cells, were prepared by covalent crosslinking. HA hydrogels containing PEG/KGN micelles (HA/PEG/KGN) were prepared by covalently bonding PEG chains to HA. The physicochemical properties of the HA/PEG/KGN conjugate gels were investigated using Fourier transform infrared spectroscopy, 1 H NMR, dynamic light scattering (DLS), and scanning electron microscopy (SEM). HA/PEG/KGN gels exhibited larger micelles in aqueous solution than PEG/KGN. SEM images of PEG/KGN micelles showed a dark core and a bright shell, whereas PEG/KGN micelles covalently integrated into HA had an irregular oval shape. Covalent integration of PEG/KGN micelles in HA hydrogels significantly reduced drug release rates and provided sustained release over a prolonged period of time. HA/PEG/KGN hydrogels were degradable enzymatically by collagenase and hyaluronidase in vitro. Injection of HA/PEG/KGN hydrogels into articular cartilage significantly suppressed the progression of OA in rats compared with free-HA hydrogel injection. These results suggest that the HA/PEG/KGN hydrogels have greater potency than free-HA hydrogels against OA as biodegradable synthetic therapeutics.

  17. CD9 monoclonal antibody-conjugated PEGylated liposomes for targeted delivery of rapamycin in the treatment of cellular senescence

    NASA Astrophysics Data System (ADS)

    Thuy Nguyen, Hanh; Thapa, Raj Kumar; Shin, Beom Soo; Jeong, Jee-Heon; Kim, Jae-Ryong; Yong, Chul Soon; Kim, Jong Oh

    2017-03-01

    Premature cellular senescence refers to the state of irreversible cell cycle arrest due to DNA damage or other stresses. In this study, CD9 monoclonal antibody (CD9mAb) was successfully conjugated to the surface of PEGylated liposomes for targeted delivery of rapamycin (LR-CD9mAb) to overcome senescence of CD9 receptor-overexpressing cells. LR-CD9mAb has a small particle size (143.3 ± 2.4 nm), narrow size distribution (polydispersity index: 0.220 ± 0.036), and negative zeta potential (-14.6 ± 1.2 mV). The uptake of CD9-targeted liposomes by premature senescent human dermal fibroblasts (HDFs) was higher than that by young HDFs, as displayed by confocal microscopic images. The senescence might not be reversed by treatment with rapamycin; however, the drug promoted cell proliferation and reduced the number of cells that expressed the senescence-associated-β-galactosidase (SA-β-gal). These effects were further confirmed by cell viability, cell cycle, and Western blotting analyses. Moreover, CD9-targeted liposomes showed better anti-senescence activity, in comparison with free rapamycin or the conventional liposomal formulation, suggesting the potential application of this system in further in vivo studies.

  18. Accelerated Blood Clearance (ABC) Phenomenon Favors the Accumulation of Tartar Emetic in Pegylated Liposomes in BALB/c Mice Liver

    PubMed Central

    Lopes, Tamara C. M.; Silva, Débora F.; Costa, Walyson C.; Barichello, José M.; Silva-Barcellos, Neila M.; de Lima, Wanderson G.

    2018-01-01

    Tartar emetic (TE) was the first drug used to treat leishmaniasis. However, its use was discontinued due to high toxicity. Association of TE with liposomes is a strategy to reduce its side effects. Pegylated liposomes (Lpeg) present lower rates of uptake by macrophages and prolonged circulation compared to their nonpegylated counterparts. However, repeated administration of Lpeg can cause an Accelerated Blood Clearance (ABC) phenomenon, whereby recognition of liposomes by antibodies results in faster phagocytosis. This work evaluated the effect of TE administration on histopathological aspects and the effect of the ABC phenomenon on targeting and toxicity in mice. Our results show that treatment with free or liposomal TE had no effect on the erythrocyte count, on liver and spleen weight, and on hepatic, splenic, and cardiac histology in mice. Severe lesions were observed on the kidneys of animals treated with a single dose of free TE. Treatment with TE in Lpeg after induction of ABC phenomenon caused a significant increase in Sb level in the liver without toxicity. Furthermore, mice treated with TE in liposomes showed normal renal histopathology. These results suggest site-specific targeting of Sb to the liver after induction of ABC phenomenon with no toxicity to other organs. PMID:29593857

  19. Nano-hybrid carboxymethyl-hexanoyl chitosan modified with (3-aminopropyl)triethoxysilane for camptothecin delivery.

    PubMed

    Hsiao, Meng-Hsuan; Tung, Tsan-Hua; Hsiao, Chi-Sheng; Liu, Dean-Mo

    2012-06-20

    Silane-modified amphiphilic chitosan was synthesized by anchoring a silane coupling agent, (3-aminopropyl)triethoxysilane, to a novel amphiphilic carboxymethyl-hexanoyl chitosan (CHC). The chemical structure of this new organic-inorganic hybrid molecule was characterized by FTIR and 13C-, 29Si-nuclear magnetic resonance, while the structural evolution was examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS). Experimental results indicated a self-assembly behaviour of molecules into nanoparticles with a stable polygonal geometry, consisting of ordered silane layers of 6 nm in thickness. The self-assembly property was found to be influenced by chemical composition and concentration of silane incorporated, while the size can be varied by the amount of anchored silane. It was also demonstrated that such vesicle exhibited excellent cytocompatibility and cellular internalization capability in ARPE-19 cell line, and presented well-controlled encapsulation and release profiles for (S)-(+)-camptothecin. These unique properties render it as a potential drug delivery nanosystem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers.

    PubMed

    Shrestha, Neha; Shahbazi, Mohammad-Ali; Araújo, Francisca; Zhang, Hongbo; Mäkilä, Ermei M; Kauppila, Jussi; Sarmento, Bruno; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-08-01

    Porous silicon (PSi) based particulate systems are emerging as an important drug delivery system due to its advantageous properties such as biocompatibility, biodegradability and ability to tailor the particles' physicochemical properties. Here, annealed thermally hydrocarbonized PSi (AnnTHCPSi) and undecylenic acid modified AnnTHCPSi (AnnUnTHCPSi) microparticles were developed as a PSi-based platform for oral delivery of insulin. Chitosan (CS) was used to modify the AnnUnTHCPSi microparticles to enhance the intestinal permeation of insulin. Surface modification with CS led to significant increase in the interaction of PSi microparticles with Caco-2/HT-29 cell co-culture monolayers. Compared to pure insulin, the CS-conjugated microparticles significantly improved the permeation of insulin across the Caco-2/HT-29 cell monolayers, with ca. 20-fold increase in the amount of insulin permeated and ca. 7-fold increase in the apparent permeability (P(app)) value. Moreover, among all the investigated particles, the CS-conjugated microparticles also showed the highest amount of insulin associated with the mucus layer and the intestinal Caco-2 cells and mucus secreting HT-29 cells. Our results demonstrate that CS-conjugated AnnUnTHCPSi microparticles can efficiently enhance the insulin absorption across intestinal cells, and thus, they are promising microsystems for the oral delivery of proteins and peptides across the intestinal cell membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Preparation and Characterization of Films Extruded of Polyethylene/Chitosan Modified with Poly(lactic acid)

    PubMed Central

    Quiroz-Castillo, Jesús Manuel; Rodríguez-Félix, Dora Evelia; Grijalva-Monteverde, Heriberto; Lizárraga-Laborín, Lauren Lucero; Castillo-Ortega, María Mónica; del Castillo-Castro, Teresa; Rodríguez-Félix, Francisco; Herrera-Franco, Pedro Jesús

    2014-01-01

    The use of mixtures of synthetic and natural polymers is a potential option to reduce the pollution by plastic waste. In this work, the method for the chemical modification of chitosan with poly(lactic acid) was developed; then, the preparation of films of blends of polyethylene and chitosan-poly(lactic acid) produced by an extrusion method using polyethylene-graft maleic anhydride as a compatibilizer. It was possible to obtain films with a maximum content of 20 wt% and 30 wt%, chitosan, with and without compatibilizer, respectively. Scanning electron microscope (SEM) analysis showed a homogeneous surface on all films. The addition of the compatibilizer had a significant effect on the mechanical properties of the films, such as an increase in Young’s modulus and a decrease in the elongation at break; additionally, the compatibilizer promotes thermal degradation in a single step and gives the film a slight increase in thermal resistance. These results are attributed to an improved interaction in the interface of polyethylene and chitosan-poly(lactic acid), promoted by the compatibilizer. PMID:28787928

  2. Adsorption of sunset yellow FCF from aqueous solution by chitosan-modified diatomite.

    PubMed

    Zhang, Y Z; Li, J; Li, W J; Li, Y

    2015-01-01

    Sunset yellow (SY) FCF is a hazardous azo dye pollutant found in food processing effluent. This study investigates the use of diatomaceous earth with chitosan (DE@C) as a modified adsorbent for the removal of SY from wastewater. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of SY. The obtained N2 adsorption-desorption isotherm values accord well with IUPAC type II. Our calculations determined a surface area of 69.68 m2 g(-1) for DE@C and an average pore diameter of 4.85 nm. Using response surface methodology, optimized conditions of process variables for dye adsorption were achieved. For the adsorption of SY onto DE@C, this study establishes mathematical models for the optimization of pH, contact time and initial dye concentration. Contact time plays a greater role in the adsorption process than either pH or initial dye concentration. According to the adjusted correlation coefficient (adj-R2>0.97), the models used here are suitable for illustration of the adsorption process. Theoretical experimental conditions included a pH of 2.40, initial dye concentration of 113 mg L(-1) and 30.37 minutes of contact time. Experimental values for the adsorption rate (92.54%) were close to the values predicted by the models (95.29%).

  3. The effect of bi-terminal PEGylation of an integrin  α vβ 6-targeted 18F peptide on pharmacokinetics and tumor uptake

    SciTech Connect

    Hausner, Sven H.; Bauer, Nadine; Hu, Lina Y.

    Radiotracers based on the peptide A20FMDV2 selectively target the cell surface receptor integrin α vβ 6. This integrin has been identified as a prognostic indicator correlating with the severity of disease for several challenging malignancies. In previous studies of A20FMDV2 peptides labeled with 4- 18F-fluorobenzoic acid ( 18F-FBA), we have shown that the introduction of poly(ethylene glycol) (PEG) improves pharmacokinetics, including increased uptake in α vβ 6-expressing tumors. The present study evaluated the effect of site-specific C-terminal or dual (N- and C-terminal) PEGylation, yielding 18F-FBA-A20FMDV2-PEG 28 (4) and 18F-FBA-PEG 28-A20FMDV2-PEG 28 (5), on α vβ 6-targeted tumor uptake and pharmacokinetics.more » The results are compared with 18F-FBA–labeled A20FMDV2 radiotracers (1–3) bearing either no PEG or different PEG units at the N terminus. The radiotracers were prepared and radiolabeled on solid phase. Using 3 cell lines, DX3puroβ6 (α vβ 6+), DX3puro (α vβ 6–), and BxPC-3 (α vβ 6+), we evaluated the radiotracers in vitro (serum stability; cell binding and internalization) and in vivo in mouse models bearing paired DX3puroβ6–DX3puro and, for 5, BxPC-3 xenografts. Here, the size and location of the PEG units significantly affected α vβ 6 targeting and pharmacokinetics. Although the C-terminally PEGylated 4 showed some improvements over the un-PEGylated 18F-FBA-A20FMDV2 (1), it was the bi-terminally PEGylated 5 that displayed the more favorable combination of high α vβ 6 affinity, selectivity, and pharmacokinetic profile. In vitro, 5 bound to α vβ 6-expressing DX3puroβ6 and BxPC-3 cells with 60.5% ± 3.3% and 48.8% ± 8.3%, respectively, with a significant fraction of internalization (37.2% ± 4.0% and 37.6% ± 4.1% of total radioactivity, respectively). By comparison, in the DX3puro control 5 showed only 3.0% ± 0.5% binding and 0.9% ± 0.2% internalization. In vivo, 5 maintained high, α vβ 6-directed binding in the

  4. The effect of bi-terminal PEGylation of an integrin  α vβ 6-targeted 18F peptide on pharmacokinetics and tumor uptake

    DOE PAGES

    Hausner, Sven H.; Bauer, Nadine; Hu, Lina Y.; ...

    2015-03-26

    Radiotracers based on the peptide A20FMDV2 selectively target the cell surface receptor integrin α vβ 6. This integrin has been identified as a prognostic indicator correlating with the severity of disease for several challenging malignancies. In previous studies of A20FMDV2 peptides labeled with 4- 18F-fluorobenzoic acid ( 18F-FBA), we have shown that the introduction of poly(ethylene glycol) (PEG) improves pharmacokinetics, including increased uptake in α vβ 6-expressing tumors. The present study evaluated the effect of site-specific C-terminal or dual (N- and C-terminal) PEGylation, yielding 18F-FBA-A20FMDV2-PEG 28 (4) and 18F-FBA-PEG 28-A20FMDV2-PEG 28 (5), on α vβ 6-targeted tumor uptake and pharmacokinetics.more » The results are compared with 18F-FBA–labeled A20FMDV2 radiotracers (1–3) bearing either no PEG or different PEG units at the N terminus. The radiotracers were prepared and radiolabeled on solid phase. Using 3 cell lines, DX3puroβ6 (α vβ 6+), DX3puro (α vβ 6–), and BxPC-3 (α vβ 6+), we evaluated the radiotracers in vitro (serum stability; cell binding and internalization) and in vivo in mouse models bearing paired DX3puroβ6–DX3puro and, for 5, BxPC-3 xenografts. Here, the size and location of the PEG units significantly affected α vβ 6 targeting and pharmacokinetics. Although the C-terminally PEGylated 4 showed some improvements over the un-PEGylated 18F-FBA-A20FMDV2 (1), it was the bi-terminally PEGylated 5 that displayed the more favorable combination of high α vβ 6 affinity, selectivity, and pharmacokinetic profile. In vitro, 5 bound to α vβ 6-expressing DX3puroβ6 and BxPC-3 cells with 60.5% ± 3.3% and 48.8% ± 8.3%, respectively, with a significant fraction of internalization (37.2% ± 4.0% and 37.6% ± 4.1% of total radioactivity, respectively). By comparison, in the DX3puro control 5 showed only 3.0% ± 0.5% binding and 0.9% ± 0.2% internalization. In vivo, 5 maintained high, α vβ 6-directed binding in the

  5. Evaluation of gold nanotracers to track adipose-derived stem cells in a PEGylated fibrin gel for dermal tissue engineering applications

    PubMed Central

    Chung, Eunna; Nam, Seung Yun; Ricles, Laura M; Emelianov, Stanislav Y; Suggs, Laura J

    2013-01-01

    Evaluating the regenerative capacity of a tissue-engineered device in a noninvasive and synchronous manner is critical to determining the mechanisms for success in clinical applications. In particular, directly tracking implanted cells in a three-dimensional (3D) scaffold is desirable in that it enables the monitoring of cellular activity in a specific and localized manner. The authors’ group has previously demonstrated that the PEGylation of fibrin results in a 3D scaffold that supports morphologic and phenotypic changes in mesenchymal stem cells that may be advantageous in wound healing applications. Recently, the authors have evaluated adipose-derived stem cells (ASCs) as a mesenchymal cell source to regenerate skin and blood vessels due to their potential for proliferation, differentiation, and production of growth factors. However, tracking and monitoring ASCs in a 3D scaffold, such as a PEGylated fibrin gel, have not yet been fully investigated. In the current paper, nanoscale gold spheres (20 nm) as cell tracers for ASCs cultured in a PEGylated fibrin gel were evaluated. An advanced dual-imaging modality combining ultrasound and photoacoustic imaging was utilized to monitor rat ASCs over time. The ASCs took up gold nanotracers and could be detected up to day 16 with high sensitivity using photoacoustic imaging. There were no detrimental effects on ASC morphology, network formation, proliferation, and protein expression/secretion (ie, smooth muscle α-actin, vascular endothelial growth factor, matrix metalloproteinase-2, and matrix metalloproteinase-9) associated with gold nanotracers. Therefore, utilization of gold nanotracers can be an effective strategy to monitor the regenerative process of a stem cell source in a 3D gel for vascular and dermal tissue engineering applications. PMID:23345978

  6. In Vitro Co-Delivery Evaluation of Novel Pegylated Nano-Liposomal Herbal Drugs of Silibinin and Glycyrrhizic Acid (Nano-Phytosome) to Hepatocellular Carcinoma Cells

    PubMed Central

    Ochi, Mohammad Mahdi; Amoabediny, Ghasem; Rezayat, Seyed Mahdi; Akbarzadeh, Azim; Ebrahimi, Bahman

    2016-01-01

    Objective This study aimed to evaluate a co-encapsulated pegylated nano-liposome system based on two herbal anti-tumor drugs, silibinin and glycyrrhizic acid, for delivery to a hepatocellular carcinoma (HCC) cell line (HepG2). Materials and Methods In this experimental study, co-encapsulated nano-liposomes by the thin layer film hydration method with HEPES buffer and sonication at 60% amplitude. Liposomes that co-encapsulated silibinin and glycyrrhizic acid were prepared with a specified molar ratio of dipalmitoylphosphatidylcholine (DPPC), cholesterol (CHOL), and methoxy-polyethylene glycol 2000 (PEG2000)–derived distearoyl phosphatidylethanolamine (mPEG2000-DSPE). We used the MTT technique to assess cytotoxicity for various concentrations of co-encapsulated nano-liposomes, free silibinin (25% w/v) and glycyrrhizic acid (75% w/v) on HepG2 and fibroblast cell lines over a 48-hour period. Results Formulation of pegylated nano-liposomes showed a narrow size distribution with an average diameter of 46.3 nm. The encapsulation efficiency (EE) for silibinin was 24.37%, whereas for glycyrrhizic acid it was 68.78%. Results of in vitro cytotoxicity showed significantly greater co-encapsulated nano-liposomes on the HepG2 cell line compared to the fibroblast cell line. The half maximal inhibitory concentration (IC50) for co-encapsulated pegylated nanoliposomal herbal drugs was 48.68 µg/ml and free silibinin with glycyrrhizic acid was 485.45 µg/ml on the HepG2 cell line. Conclusion This in vitro study showed that nano-liposome encapsulation of silibinin with glycyrrhizic acid increased the biological activity of free drugs, increased the stability of silibinin, and synergized the therapeutic effect of silibinin with glycyrrhizic acid. The IC50 of the co-encapsulated nano-liposomes was lower than the combination of free silibinin and glycyrrhizic acid on the HepG2 cell line. PMID:27540518

  7. Facile and green reduction of covalently PEGylated nanographene oxide via a `water-only' route for high-efficiency photothermal therapy

    NASA Astrophysics Data System (ADS)

    Chen, Jingqin; Wang, Xiaoping; Chen, Tongsheng

    2014-02-01

    A facile and green strategy is reported for the fabrication of nanosized and reduced covalently PEGylated graphene oxide (nrGO-PEG) with great biocompatibility and high near-infrared (NIR) absorbance. Covalently PEGylated nGO (nGO-PEG) was synthesized by the reaction of nGO-COOH and methoxypolyethylene glycol amine (mPEG-NH2). The neutral and purified nGO-PEG solution was then directly bathed in water at 90°C for 24 h without any additive to obtain nrGO-PEG. Covalent PEGylation not only prevented the aggregation of nGO but also dramatically promoted the reduction extent of nGO during this reduction process. The resulting single-layered nrGO-PEG sheets were approximately 50 nm in average lateral dimension and exhibited great biocompatibility and approximately 7.6-fold increment in NIR absorption. Moreover, this facile reduction process repaired the aromatic structure of GO. CCK-8 and flow cytometry (FCM) assays showed that exposure of A549 cells to 100 μg/mL of nrGO-PEG for 2 h, exhibiting 71.5% of uptake ratio, did not induce significant cytotoxicity. However, after irradiation with 808 nm laser (0.6 W/cm2) for 5 min, the cells incubated with 6 μg/mL of nrGO-PEG solution showed approximately 90% decrease of cell viability, demonstrating the high-efficiency photothermal therapy of nrGO-PEG to tumor cells in vitro. This work established nrGO-PEG as a promising photothermal agent due to its small size, great biocompatibility, high photothermal efficiency, and low cost.

  8. pH-Sensitive PEGylated liposomes functionalized with a fibronectin-mimetic peptide show enhanced intracellular delivery to colon cancer cell.

    PubMed

    Garg, Ashish; Kokkoli, Efrosini

    2011-08-01

    pH-sensitive liposomes undergo rapid destabilization under mildly acidic conditions such as those found in endocytotic vesicles. Though this makes them promising drug carriers, their application is limited due to their rapid clearance from circulation by the reticulo-endothelial system. Researchers have therefore used pH-sensitive liposomes that are sterically stabilized by polyethylene glycol (PEG) molecules (stealth liposomes) on the liposome surface. The goal of this study is to bring bio-functionality to pH-sensitive PEGylated liposomes in order to facilitate their potential use as a targeted drug delivery agent. To improve the selectivity of these nanoparticles, we included a targeting moiety, PR_b which specifically recognizes and binds to integrin α(5)β(1) expressing cells. PR_b (KSSPHSRN(SG)(5)RGDSP) is a novel fibronectin-mimetic peptide sequence that mimics the cell adhesion domain of fibronectin. Integrin α(5)β(1) is expressed on several types of cancer cells, including colon cancer, and plays an important role in tumor growth and metastasis. We have thoroughly studied the release of calcein from pH-sensitive PEGylated liposomes by varying the lipid composition of the liposomes in the absence and presence of the targeting peptide, PR_b, and accounting for the first time for the effect of both pH and time (photo-bleaching effect) on the fluorescence signal of calcein. We have demonstrated that we can design PR_b-targeted pH-sensitive PEGylated liposomes, which can undergo destabilization under mildly acidic conditions and have shown that incorporating the PR_b peptide does not significantly affect the pH-sensitivity of the liposomes. PR_b-targeted pH-sensitive PEGylated liposomes bind to CT26.WT colon carcinoma cells that express integrin α(5)β(1), undergo cellular internalization, and release their load intracellularly in a short period of time as compared to other formulations. Our studies demonstrate that PR_b-functionalized pH-sensitive targeted

  9. Development of PEGylated KMnF3 nanoparticles as a T1-weighted contrast agent: chemical synthesis, in vivo brain MR imaging, and accounting for high relaxivity

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Jun; Song, Xiao-Xia; Tang, Qun

    2013-05-01

    Magnetic nanoparticles consisting of manganese-based T1-weighted contrast agents have rapidly achieved clinical application, however low proton relaxivity impedes further development. In this report, by analyzing nanoparticles' surface oxidation states we propose the possible reason for the low r1 relaxivity of common MnO nanoparticles and develop PEGylated fluoroperovskite KMnF3 nanoparticles as new T1-weighted contrast agents, which exhibit the highest longitudinal relaxivity (r1 = 23.15 mM-1 s-1) among all the reported manganese-based T1-weighted contrast agents. We, for the first time, illustrate a typical example showing that the surface oxidation states of metal ions exposed on the nanoparticles' surfaces are able to influence not only the optical, magnetic, electronic or catalytic properties but also water proton longitudinal relaxivity when applied as an MRI contrast agent. Cytotoxicity tests demonstrate that the PEGylated KMnF3 nanoparticles are free from toxicity. Further in vivo MRI experiments distinctively depict fine anatomical features in brain imaging at a low dose of 5 mg of Mn per kg and possible removal from the kidneys due to their small size and biocompatibility.Magnetic nanoparticles consisting of manganese-based T1-weighted contrast agents have rapidly achieved clinical application, however low proton relaxivity impedes further development. In this report, by analyzing nanoparticles' surface oxidation states we propose the possible reason for the low r1 relaxivity of common MnO nanoparticles and develop PEGylated fluoroperovskite KMnF3 nanoparticles as new T1-weighted contrast agents, which exhibit the highest longitudinal relaxivity (r1 = 23.15 mM-1 s-1) among all the reported manganese-based T1-weighted contrast agents. We, for the first time, illustrate a typical example showing that the surface oxidation states of metal ions exposed on the nanoparticles' surfaces are able to influence not only the optical, magnetic, electronic or

  10. Safety, Antitumor Activity, and Immune Activation of Pegylated Recombinant Human Interleukin-10 (AM0010) in Patients With Advanced Solid Tumors.

    PubMed

    Naing, Aung; Papadopoulos, Kyriakos P; Autio, Karen A; Ott, Patrick A; Patel, Manish R; Wong, Deborah J; Falchook, Gerald S; Pant, Shubham; Whiteside, Melinda; Rasco, Drew R; Mumm, John B; Chan, Ivan H; Bendell, Johanna C; Bauer, Todd M; Colen, Rivka R; Hong, David S; Van Vlasselaer, Peter; Tannir, Nizar M; Oft, Martin; Infante, Jeffrey R

    2016-10-10

    Purpose Interleukin-10 (IL-10) stimulates the expansion and cytotoxicity of tumor-infiltrating CD8+ T cells and inhibits inflammatory CD4+ T cells. Pegylation prolongs the serum concentration of IL-10 without changing the immunologic profile. This phase I study sought to determine the safety and antitumor activity of AM0010. Patients and Methods Patients with selected advanced solid tumors were treated with AM0010 in a dose-escalation study, which was followed by a renal cell cancer (RCC) dose-expansion cohort. AM0010 was self-administered subcutaneously at doses of 1 to 40 μg/kg once per day. Primary end points were safety and tolerability; clinical activity and immune activation were secondary end points. Results In the dose-escalation and -expansion cohorts, 33 and 18 patients, respectively, were treated with daily subcutaneous injection of AM0010. AM0010 was tolerated in a heavily pretreated patient population. Treatment-related adverse events (AEs) included anemia, fatigue, thrombocytopenia, fever, and injection site reactions. Grade 3 to 4 nonhematopoietic treatment-related AEs, including rash (n = 2) and transaminitis (n = 1), were observed in five of 33 patients. Grade 3 to 4 anemia or thrombocytopenia was observed in five patients. Most treatment-related AEs were transient or reversible. AM0010 led to systemic immune activation with elevated immune-stimulatory cytokines and reduced transforming growth factor beta in the serum. Partial responses were observed in one patient with uveal melanoma and four of 15 evaluable patients with RCC treated at 20 μg/kg (overall response rate, 27%). Prolonged stable disease of at least 4 months was observed in four patients, including one with colorectal cancer with disease stabilization for 20 months. Conclusion AM0010 has an acceptable toxicity profile with early evidence of antitumor activity, particularly in RCC. These data support the further evaluation of AM0010 both alone and in combination with other immune

  11. Development of a PEGylated-Based Platform for Efficient Delivery of Dietary Antioxidants Across the Blood-Brain Barrier.

    PubMed

    Fernandes, Carlos; Pinto, Miguel; Martins, Cláudia; Gomes, Maria João; Sarmento, Bruno; Oliveira, Paulo J; Remião, Fernando; Borges, Fernanda

    2018-05-16

    The uptake and transport of dietary antioxidants remains the most important setback for their application in therapy. To overcome the limitations, a PEGylated-based platform was developed to improve the delivery properties of two dietary hydroxycinnamic (HCA) antioxidants-caffeic and ferulic acids. The antioxidant properties of the new polymer-antioxidant conjugates (PEGAntiOxs), prepared by linking poly(ethylene glycol) (PEG) to the cinnamic acids by a one-step Knovenagel condensation reaction, were evaluated. PEGAntiOxs present a higher lipophilicity than the parent compounds (caffeic and ferulic acids) and similar, or higher, antioxidant properties. PEGAntiOxs were not cytotoxic at the tested concentrations in SH-SY5Y, Caco-2, and hCMEC/D3 cells. By contrast, cytotoxic effects in hCMEC/D3 and SH-SY5Y cells were observed, at 50 and 100 μM, for caffeic and ferulic acids. PEGAntiOxs operate as antioxidants against several oxidative stress-cellular inducers in a neuronal cell-based model, and were able to inhibit glycoprotein-P in Caco-2 cells. PEGAntiOxs can cross hCMEC/D3 monolayer cells, a model of the blood-brain barrier (BBB) endothelial membrane. In summary, PEGAntiOxs are valid antioxidant prototypes that can uphold the antioxidant properties of HCAs, reduce their cytotoxicity, and improve their BBB permeability. PEGAntiOxs can be used in the near future as drug candidates to prevent or slow oxidative stress associated with neurodegenerative diseases.

  12. A Bayesian Approach for Population Pharmacokinetic Modeling of Pegylated Interferon α-2a in Hepatitis C Patients.

    PubMed

    Saleh, Mohammad I

    2017-11-01

    Pegylated interferon α-2a (PEG-IFN-α-2a) is an antiviral drug used for the treatment of chronic hepatitis C virus (HCV) infection. This study describes the population pharmacokinetics of PEG-IFN-α-2a in hepatitis C patients using a Bayesian approach. A possible association between patient characteristics and pharmacokinetic parameters is also explored. A Bayesian population pharmacokinetic modeling approach, using WinBUGS version 1.4.3, was applied to a cohort of patients (n = 292) with chronic HCV infection. Data were obtained from two phase III studies sponsored by Hoffmann-La Roche. Demographic and clinical information were evaluated as possible predictors of pharmacokinetic parameters during model development. A one-compartment model with an additive error best fitted the data, and a total of 2271 PEG-IFN-α-2a measurements from 292 subjects were analyzed using the proposed population pharmacokinetic model. Sex was identified as a predictor of PEG-IFN-α-2a clearance, and hemoglobin baseline level was identified as a predictor of PEG-IFN-α-2a volume of distribution. A population pharmacokinetic model of PEG-IFN-α-2a in patients with chronic HCV infection was presented in this study. The proposed model can be used to optimize PEG-IFN-α-2a dosing in patients with chronic HCV infection. Optimal PEG-IFN-α-2a selection is important to maximize response and/or to avoid potential side effects such as thrombocytopenia and neutropenia. NV15942 and NV15801.

  13. Phase I study of pegylated interferon-alpha-2b as an adjuvant therapy in Japanese patients with malignant melanoma.

    PubMed

    Yamazaki, Naoya; Uhara, Hisashi; Wada, Hidefumi; Matsuda, Kenji; Yamamoto, Keiko; Shimamoto, Takashi; Kiyohara, Yoshio

    2016-10-01

    In the adjuvant setting for malignant melanoma, interferon (IFN)-α-2b and pegylated (PEG) IFN-α-2b were approved in several countries including the USA before these were approved in Japan. To resolve the "drug-lag" issue, this phase I study was designed to evaluate the safety and tolerability in Japanese patients with stage II or III malignant melanoma who had undergone surgery, by treating with PEG IFN-α-2b. As with a previously reported phase III study, patients were to receive PEG IFN-α-2b 6 μg/kg per week s.c. during an 8-week induction phase, followed by a maintenance phase at a dose of 3 μg/kg per week up to 5 years. Dose-limiting toxicity and pharmacokinetics were assessed during the initial 8 weeks. Of the nine patients enrolled, two patients had dose-limiting toxicities that resolved after discontinuation of treatment. The most frequently reported drug-related adverse events (DRAE) included pyrexia, decreased neutrophil and white blood cell counts, and arthralgia. Grade 3 DRAE included decreased neutrophil count. No deaths, serious adverse events and grade 4 adverse events were reported. Distant metastasis occurred in one patient. No apparent differences in area under the concentration-time curve and maximum observed serum concentration were observed between Japanese and historical non-Japanese pharmacokinetic data, suggesting no marked racial differences. No neutralizing antibody was detected in these patient samples. PEG IFN-α-2b was tolerated in Japanese patients, and eventually approved in Japan in May 2015 for adjuvant therapy in patients with stage III malignant melanoma. Because the number of patients was limited, further investigation would be crucial. © 2016 Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc. The Journal of Dermatology published by John Wiley & Sons Australia, Ltd on behalf of Japanese Dermatological Association.

  14. A novel intracellular pH-responsive formulation for FTY720 based on PEGylated graphene oxide nano-sheets.

    PubMed

    Masoudipour, Elham; Kashanian, Soheila; Maleki, Nasim; Karamyan, Ali; Omidfar, Kobra

    2018-01-01

    This study was performed to investigate a novel pH-responsive nanocarrier based on modified nano graphene oxide (nGO) to promote the acid-triggered intracellular release of a poorly soluble drug, FTY720. To synthesize a drug conjugated to modified nGO, first the polyethylene glycol (PEG) was conjugated to nGO, then the produced PEG-nGO was functionalized with the anticancer drug, FTY720, through amide bonding. It was characterized by the scanning electron microscopy (SEM), the atomic force microscopy (AFM), the Fourier transform infrared (FTIR) spectroscopy and the UV-vis spectroscopy. In vitro drug release of the FTY720-conjugated PEG-nGO was evaluated at pH 7.4 and 4.6 PBS at 37 °C. Furthermore, the antineoplastic action of unloaded and drug-loaded carrier against the human breast adenocarcinoma cell line MCF7 was explored using MTT and BrdU assays. Characterization methods indicated successful drug deposition on the surface of nGO. In vitro, drug release results revealed a significantly faster release of FTY720 from PEG-nGO at acidic pH, compared with physiological pH. The proliferation assays proved that the unloaded nGO had no significant cytotoxicity against MCF7 cells, while free FTY720- and FTY720-loaded PEG-nGO had an approximately equal cytotoxic effect on the MCF7 cells. It was found that the extended release characteristic of FTY720 was well fitted to Korsmeyer-Peppas model and the release profile of FTY720 from PEG-nGO is diffusion controlled. PEGylated GO can act as a pH-responsive drug carrier to improve the efficacy of anticancer drug delivery.

  15. Surface PEGylation of mesoporous silica materials via surface-initiated chain transfer free radical polymerization: Characterization and controlled drug release.

    PubMed

    Huang, Long; Liu, Meiying; Mao, Liucheng; Huang, Qiang; Huang, Hongye; Wan, Qing; Tian, Jianwen; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-12-01

    As a new type of mesoporous silica materials with large pore diameter (pore size between 2 and 50nm) and high specific surface areas, SBA-15 has been widely explored for different applications especially in the biomedical fields. The surface modification of SBA-15 with functional polymers has demonstrated to be an effective way for improving its properties and performance. In this work, we reported the preparation of PEGylated SBA-15 polymer composites through surface-initiated chain transfer free radical polymerization for the first time. The thiol group was first introduced on SBA-15 via co-condensation with γ-mercaptopropyltrimethoxysilane (MPTS), that were utilized to initiate the chain transfer free radical polymerization using poly(ethylene glycol) methyl ether methacrylate (PEGMA) and itaconic acid (IA) as the monomers. The successful modification of SBA-15 with poly(PEGMA-co-IA) copolymers was evidenced by a series of characterization techniques, including 1 H NMR, FT-IR, TGA and XPS. The final SBA-15-SH- poly(PEGMA-co-IA) composites display well water dispersity and high loading capability towards cisplatin (CDDP) owing to the introduction of hydrophilic PEGMA and carboxyl groups. Furthermore, the CDDP could be released from SBA-15-SH-poly(PEGMA-co-IA)-CDDP complexes in a pH dependent behavior, suggesting the potential controlled drug delivery of SBA-15-SH-poly(PEGMA-co-IA). More importantly, the strategy should be also useful for fabrication of many other functional materials for biomedical applications owing to the advantages of SBA-15 and well monomer adoptability of chain transfer free radical polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Low-factor consumption for major surgery in haemophilia B with long-acting recombinant glycoPEGylated factor IX.

    PubMed

    Escobar, M A; Tehranchi, R; Karim, F A; Caliskan, U; Chowdary, P; Colberg, T; Giangrande, P; Giermasz, A; Mancuso, M E; Serban, M; Tsay, W; Mahlangu, J N

    2017-01-01

    Surgery in patients with haemophilia B carries a high risk of excessive bleeding and requires adequate haemostatic control until wound healing. Nonacog beta pegol, a long-acting recombinant glycoPEGylated factor IX (FIX), was used in the perioperative management of patients undergoing major surgery. To evaluate the efficacy and safety of nonacog beta pegol in patients with haemophilia B who undergo major surgery. This was an open-label, multicentre, non-controlled surgery trial aimed at assessing peri- and postoperative efficacy and safety of nonacog beta pegol in 13 previously treated patients with haemophilia B. All patients received a preoperative nonacog beta pegol bolus injection of 80 IU kg -1 . Postoperatively, the patients received fixed nonacog beta pegol doses of 40 IU kg -1 , repeated at the investigator's discretion. Safety assessments included monitoring of immunogenicity and adverse events. Intraoperative haemostatic effect was rated 'excellent' or 'good' in all 13 cases. Apart from the preoperative injection, none of the patients needed additional doses of nonacog beta pegol on the day of surgery. The median number of postoperative doses of nonacog beta pegol was 2.0 from days 1 to 6 and 1.5 from days 7 to 13. No unexpected intra- or postoperative complications were observed including deaths or thromboembolic events. No patients developed inhibitors. These results indicated that nonacog beta pegol was safe and effective in the perioperative setting, allowing major surgical interventions in patients with haemophilia B with minimal peri- and postoperative concentrate consumption and infrequent injections as reported with standard FIX products. © 2016 John Wiley & Sons Ltd.

  17. Safety and Efficacy of Pegylated Interferon Lambda, Ribavirin, and Daclatasvir in HCV and HIV-Coinfected Patients.

    PubMed

    Nelson, Mark; Rubio, Rafael; Lazzarin, Adriano; Romanova, Svetlana; Luetkemeyer, Annie; Conway, Brian; Molina, Jean-Michel; Xu, Dong; Srinivasan, Subasree; Portsmouth, Simon

    2017-03-01

    To evaluate the efficacy and safety of pegylated interferon-lambda-1a (Lambda)/ribavirin (RBV)/daclatasvir (DCV) for treatment of patients coinfected with chronic hepatitis C virus (HCV) and human immunodeficiency virus (HIV). Treatment-naive patients were assigned to cohort A [HCV genotype (GT)-2 or -3] or cohort B [HCV GT-1(a or b) or -4]. All patients received Lambda/RBV/DCV for the first 12 weeks; cohort A received Lambda/RBV for an additional 12 weeks, followed by 24 weeks of follow-up, and cohort B received response-guided therapy. The primary endpoint was the proportion of patients who achieved a sustained virologic response at post-treatment week 12 (SVR12). In cohort A (n = 104), 84.6% achieved SVR12 (95.0% in GT-2; 83.1% in GT-3). In cohort B (n = 196), 76.0% achieved SVR12 (71.7% in GT-1a; 86.0% in GT-1b; 70.7% in GT-4). Rates of discontinuation due to adverse events (AEs) (3.8% and 6.1%) and serious AEs (5.8% and 6.1%) were low in cohorts A and B, respectively. In addition, treatment with Lambda/RBV/DCV had little impact on CD4 counts. SVR12 rates with Lambda/RBV/DCV in an HCV/HIV-coinfected population ranged from 71.7% to 95.0%. Treatment was generally well tolerated, with a low proportion of patients discontinuing due to AEs. Clinical trial registration NCT01866930.

  18. PEGylation controls attachment and engulfment of monodisperse magnetic poly(2-hydroxyethyl methacrylate) microspheres by murine J774.2 macrophages

    NASA Astrophysics Data System (ADS)

    Horák, Daniel; Hlidková, Helena; Klyuchivska, Olga; Grytsyna, Iryna; Stoika, Rostyslav

    2017-12-01

    The first objective of this work was to prepare biocompatible magnetic polymer microspheres with reactive functional groups that could withstand nonspecific protein adsorption from biological media. Carboxyl group-containing magnetic poly(2-hydroxyethyl methacrylate) (mgt.PHEMA) microspheres ∼4 μm in size were prepared by multistage swelling polymerization, precipitation of iron oxide inside their pores, and coating with an α-methoxy-ω-amino poly(ethylene glycol) (CH3O-PEG750-NH2 or CH3O-PEG5,000-NH2)/α-amino-ω-t-Boc-amino poly(ethylene glycol) (H2N-PEG5,000-NH-t-Boc) mixture. The mgt.PHEMA@PEG microspheres contained ∼10 μmol COOH per g. Biocompatibility of the particles was evaluated by their treatment with human embryonic kidney cells of the HEK293 line. The microspheres did not interfere with the growth of these cells, suggesting that the particles can be considered non-toxic. A second goal of this study was to address on the interaction of the developed microspheres with macrophages that commonly eliminate foreign microbodies appearing in organisms. Murine J774.2 macrophages (J774.2) were cultured in the presence of the neat and PEGylated microspheres for 2 h. Mgt.PHEMA@PEG5,000 microspheres significantly adhered to the surface of J774.2 macrophages but were minimally engulfed. Due to these properties, the mgt.PHEMA@PEG microspheres might be useful for application in drug delivery systems and monitoring of the efficiency of phagocytosis.

  19. Improvement of thrombocytopenia following bone marrow transplantation by pegylated recombinant human megakaryocyte growth and development factor in mice.

    PubMed

    Kabaya, K; Shibuya, K; Torii, Y; Nitta, Y; Ida, M; Akahori, H; Kato, T; Kusaka, M; Miyazaki, H

    1996-12-01

    We examined whether pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) is capable of improving thrombocytopenia and promoting thrombopoietic reconstitution following lethal irradiation and bone marrow transplantation (BMT) in mice. Immediately after receiving 10 Gy whole body irradiation (day 0), male C3H/HeN mice were inoculated with 10(6) bone marrow cells obtained from syngeneic mice. Circulating platelet counts decreased to below 4% of the normal counts with a nadir on day 10, and then returned to the normal level on day 28 in the control mice undergoing BMT. Subcutaneous consecutive treatment with PEG-rHuMGDF at doses from 10 to 300 micrograms/kg/day from day 1 for 13 days significantly improved the platelet nadir and promoted platelet recovery. The white blood cell counts and hemoglobin concentration following BMT were not influenced by the PEG-rHuMGDF. PEG-rHuMGDF-injection starting from day 5 did not improve the platelet nadir following BMT. Furthermore, administration with PEG-rHuMGDF on alternate days at 55.7 micrograms/kg/day for 7 days or at an interval of 3 days at 78 micrograms/kg/day for 4 days (twice a week for 2 weeks) had a significant efficacy, but these administration regimens had less efficacy than consecutive administration at 30 micrograms/kg/day for 13 days. The numbers of megakaryocytes and megakaryocyte progenitor cells decreased to 5 and 0.2% of normal level, respectively, in the control mice. Consecutive administration of PEG-rHuMGDF enhanced the recovery of the mean number of these cells compared to those in vehicle-treated mice, although such effects were not statistically significant except for the number of megakaryocyte progenitors on day 12. These results suggest that consecutive treatment with PEG-rHuMGDF beginning from the day after BMT may be effective in improving thrombocytopenia following BMT.

  20. PEGylation of the GALA Peptide Enhances the Lung-Targeting Activity of Nanocarriers That Contain Encapsulated siRNA.

    PubMed

    Santiwarangkool, Sarochin; Akita, Hidekata; Nakatani, Taichi; Kusumoto, Kenji; Kimura, Hiroki; Suzuki, Masaru; Nishimura, Masaharu; Sato, Yusuke; Harashima, Hideyoshi

    2017-09-01

    A α-helical GALA peptide (WEAALAEALAEALAEHLAEALAEALEALAA) has been found to possess dual functions: a pH-dependent inducer of endosomal escape, and a ligand that targets lung endothelium. In the present study, the flexibility of GALA was improved by modifying the edge with polyethylene glycol linker, to increase lung-targeting activity. We first investigated the uptake of the GALA-modified liposomes in which GALA was directly conjugated to the lipid (Cholesterol: GALA/Chol) or the phospholipid-PEG (GALA/PEG 2000 ). The liposomes that were modified with GALA/PEG 2000 (GALA/PEG 2000 -LPs) were taken up at a higher level by human lung endothelial cells (HMVEC-L), in comparison with particles that were modified with GALA/Chol (GALA/Chol-LPs). Small-interfering RNA-encapsulating liposomal-based nanocarriers (multifunctional envelope-type nano device: MEND) that were formulated with a vitamin E-scaffold SS-cleavable pH-activated lipid-like material, namely GALA/PEG 2000 -MEND ssPalmE were also modified with GALA/PEG 2000 . Gene silencing activity in the lung endothelium was then evaluated against an endothelial marker; CD31. In comparison with the unmodified MEND ssPalmE , GALA/PEG 2000 -MEND ssPalmE exhibited a higher silencing activity in the lung. Optimization of GALA/PEG 2000 -MEND ssPalmE resulted in silencing activity in the lung with an ED 50 value of 0.21 mg/kg, while non-specific gene silencing in liver was marginal. Collectively, PEGylated GALA is a promising device for use in targeting the lung endothelium. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Pegylated-asparaginase during induction therapy for adult acute lymphoblastic leukaemia: toxicity data from the UKALL14 trial

    PubMed Central

    Patel, B; Kirkwood, A A; Dey, A; Marks, D I; McMillan, A K; Menne, T F; Micklewright, L; Patrick, P; Purnell, S; Rowntree, C J; Smith, P; Fielding, A K

    2017-01-01

    Safety and efficacy data on pegylated asparaginase (PEG-ASP) in adult acute lymphoblastic leukaemia (ALL) induction regimens are limited. The UK National Cancer Research Institute UKALL14 trial NCT01085617 prospectively evaluated the tolerability of 1000 IU/m2 PEG-ASP administered on days 4 and 18 as part of a five-drug induction regimen in adults aged 25–65 years with de novo ALL. Median age was 46.5 years. Sixteen of the 90 patients (median age 56 years) suffered treatment-related mortality during initial induction therapy. Eight of the 16 died of sepsis in combination with hepatotoxicity. Age and Philadelphia (Ph) status were independent variables predicting induction death >40 versus ⩽40 years, odds ratio (OR) 18.5 (2.02–169.0), P=0.01; Ph− versus Ph+ disease, OR 13.60 (3.52–52.36), P<0.001. Of the 74 patients who did not die, 37 (50.0%) experienced at least one grade 3/4 PEG-ASP-related adverse event, most commonly hepatotoxicity (36.5%, n=27). A single dose of PEG-ASP achieved trough therapeutic enzyme levels in 42/49 (86%) of the patients tested. Although PEG-ASP delivered prolonged asparaginase activity in adults, it was difficult to administer safely as part of the UKALL14 intensive multiagent regimen to those aged >40 years. It proved extremely toxic in patients with Ph+ ALL, possibly owing to interaction with imatinib. PMID:27480385

  2. Negative argininosuccinate synthetase expression in melanoma tumours may predict clinical benefit from arginine-depleting therapy with pegylated arginine deiminase

    PubMed Central

    Feun, L G; Marini, A; Walker, G; Elgart, G; Moffat, F; Rodgers, S E; Wu, C J; You, M; Wangpaichitr, M; Kuo, M T; Sisson, W; Jungbluth, A A; Bomalaski, J; Savaraj, N

    2012-01-01

    Background: Arginine-depleting therapy with pegylated arginine deiminase (ADI-PEG20) was reported to have activity in advanced melanoma in early phase I–II trial, and clinical trials are currently underway in other cancers. However, the optimal patient population who benefit from this treatment is unknown. Methods: Advanced melanoma patients with accessible tumours had biopsy performed before the start of treatment with ADI-PEG20 and at the time of progression or relapse when amenable to determine whether argininosuccinate synthetase (ASS) expression in tumour was predictive of response to ADI-PEG20. Results: Twenty-seven of thirty-eight patients treated had melanoma tumours assessable for ASS staining before treatment. Clinical benefit rate (CBR) and longer time to progression were associated with negative expression of tumour ASS. Only 1 of 10 patients with ASS-positive tumours (ASS+) had stable disease, whereas 4 of 17 (24%) had partial response and 5 had stable disease, when ASS expression was negative (ASS−), giving CBR rates of 52.9 vs 10%, P=0.041. Two responding patients with negative ASS expression before therapy had rebiopsy after tumour progression and the ASS expression became positive. The survival of ASS− patients receiving at least four doses at 320 IU m−2 was significantly better than the ASS+ group at 26.5 vs 8.5 months, P=0.024. Conclusion: ADI-PEG20 is safe and the drug is only efficacious in melanoma patients whose tumour has negative ASS expression. Argininosuccinate synthetase tumour positivity is associated with drug resistance and tumour progression. PMID:22472884

  3. Coadministration of ezetimibe with pegylated interferon plus ribavirin could improve early virological response in chronic hepatitis C obese Egyptian patients.

    PubMed

    Helal, Gouda K; Gad, Magdy A; Abd-Ellah, Mohamed F; Mahgoup, Elsayed M

    2016-05-01

    Ezetimibe has been reported to inhibit viral entry and to reduce BMI and has been proposed as a novel therapeutic agent for chronic hepatitis C (CHC), potentiating the effects of pegylated interferon and ribavirin (peg-IFN/RBV). The aim of the study was to assess the effects of ezetimibe coadministration with peg-IFN/RBV combination on the early virological response (EVR) rates in nonobese and obese patients with CHC genotype 4 (CHC-4). A total of 144 CHC-4 patients were divided into two groups; group 1 included nonobese patients (n=76) and group 2 included obese patients (n=68). Each group was further subclassified into equal control and treated groups. The control groups received peg-IFN/RBV combination for 24 weeks, and the treated groups received peg-IFN/RBV plus ezetimibe for 12 weeks and then only peg-IFN/RBV for the remaining 12 weeks. The study revealed that EVR significantly improved in the obese patients (85.3 vs. 64.7% in the treated and control groups, respectively, at P<0.05) without any significant improvement in the nonobese patients. Biochemical responses (defined as normalization of alanine aminotransferase at week 12) were markedly improved in the treated groups in both the nonobese and obese groups compared with their respective controls. The addition of ezetimibe to peg-IFN/RBV combination significantly improves EVR rates in obese patients compared with nonobese patients, and remarkably improves the biochemical responses in both obese and nonobese patients with CHC-4. This may shed light on a new strategy for the treatment of CHC, particularly in obese Egyptian patients.

  4. Using PEGylated iron oxide nanoparticles with ultrahigh relaxivity for MR imaging of an orthotopic model of human hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhi; Hu, Yong; Yang, Yuchan; Xu, Wei; Yao, Mingrong; Gao, Dongmei; Zhao, Yan; Zhan, Songhua; Shi, Xiangyang; Wang, Xiaolin

    2017-02-01

    Hepatocellular carcinoma (HCC) is the most common type of liver malignant tumor, which is often diagnosed in advanced stages, resulting in low survival rate. The sensitive diagnosis of early HCC presents a great interest. Herein, a novel superparamagnetic contrast agent composed of iron oxide nanoparticles is reported. Firstly, polyethyleneimine-coated iron oxide (Fe3O4@PEI) nanoparticles (NPs) were synthesized via a mild reduction route, followed by their modification of polyethylene glycol monomethyl ether ( mPEG-COOH) via 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride coupling chemistry. After acetylation of the remaining PEI amines, the PEGylated Fe3O4 (Fe3O4@PEI.Ac- mPEG-COOH) NPs were successively characterized via different techniques. The Fe3O4@PEI.Ac- mPEG-COOH probes with an Fe3O4 NP size of 9 nm are water dispersible and cytocompatible within the given concentration range. The percentages of PEI and m-PEG-COOH on the particles surface are calculated to be 15.5 and 7.2%, respectively. Prior to the administration of Fe3O4@PEI.Ac- mPEG-COOH NPs of ultrahigh r 2 relaxivity (461.29 mM-1 s-1) via tail intravenous injection for MR imaging of HCC, the orthotopic model of HCC was established in the nude mice by surgical transplantation with HCCLM3 cells. The analysis of MR signal intensity (SI) in the orthotopic tumor model demonstrated that the developed Fe3O4@PEI.Ac- mPEG-COOH NPs were able to infiltrate into the tumor area through the enhanced permeability and retention (EPR) effect reaching the bottom at 2 h postinjection. The developed Fe3O4@PEI.Ac- mPEG-COOH NPs may be further applied for theranostics of different diseases through combing various therapeutic agents.

  5. Outcome of pediatric patients with acute lymphoblastic leukemia/lymphoblastic lymphoma with hypersensitivity to pegaspargase treated with PEGylated Erwinia asparaginase, pegcrisantaspase: A report from the Children's Oncology Group

    PubMed Central

    Rau, Rachel E.; Dreyer, ZoAnn; Choi, Mi Rim; Liang, Wei; Skowronski, Roman; Allamneni, Krishna P.; Devidas, Meenakshi; Raetz, Elizabeth A.; Adamson, Peter C.; Blaney, Susan M.; Loh, Mignon L; Hunger, Stephen P.

    2018-01-01

    Background Erwinia asparaginase is a Food and Drug Administration approved agent for the treatment of acute lymphoblastic leukemia (ALL) for patients who develop hypersensitivity to Escherichia coli derived asparaginases. Erwinia asparaginase is efficacious, but has a short half-life, requiring six doses to replace one dose of the most commonly used first-line asparaginase, pegaspargase, a polyethylene glycol (PEG) conjugated E. coli asparaginase. Pegcristantaspase, a recombinant PEGylated Erwinia asparaginase with improved pharmacokinetics, was developed for patients with hypersensitivity to pegaspargase. Here, we report a series of patients treated on a pediatric phase 2 trial of pegcrisantaspase. Procedure Pediatric patients with ALL or lymphoblastic lymphoma and hypersensitivity to pegaspargase enrolled on Children's Oncology Group trial AALL1421 (Jazz 13-011) and received intravenous pegcrisantaspase. Serum asparaginase activity (SAA) was monitored before and after dosing; immunogenicity assays were performed for antiasparaginase and anti-PEG antibodies and complement activation was evaluated. Results Three of the four treated patients experienced hypersensitivity to pegcrisantaspase manifested as clinical hypersensitivity reactions or rapid clearance of SAA. Immunogenicity assays demonstrated the presence of anti-PEG immunoglobulin G antibodies in all three hypersensitive patients, indicating a PEG-mediated immune response. Conclusions This small series of patients, nonetheless, provides data, suggesting preexisting immunogenicity against the PEG moiety of pegaspargase and poses the question as to whether PEGylation may be an effective strategy to optimize Erwinia asparaginase administration. Further study of larger cohorts is needed to determine the incidence of preexisting antibodies against PEG-mediated hypersensitivity to pegaspargase. PMID:29090524

  6. Development of PEGylated KMnF3 nanoparticles as a T1-weighted contrast agent: chemical synthesis, in vivo brain MR imaging, and accounting for high relaxivity.

    PubMed

    Liu, Zhi-jun; Song, Xiao-xia; Tang, Qun

    2013-06-07

    Magnetic nanoparticles consisting of manganese-based T1-weighted contrast agents have rapidly achieved clinical application, however low proton relaxivity impedes further development. In this report, by analyzing nanoparticles' surface oxidation states we propose the possible reason for the low r1 relaxivity of common MnO nanoparticles and develop PEGylated fluoroperovskite KMnF3 nanoparticles as new T1-weighted contrast agents, which exhibit the highest longitudinal relaxivity (r1 = 23.15 mM(-1) s(-1)) among all the reported manganese-based T1-weighted contrast agents. We, for the first time, illustrate a typical example showing that the surface oxidation states of metal ions exposed on the nanoparticles' surfaces are able to influence not only the optical, magnetic, electronic or catalytic properties but also water proton longitudinal relaxivity when applied as an MRI contrast agent. Cytotoxicity tests demonstrate that the PEGylated KMnF3 nanoparticles are free from toxicity. Further in vivo MRI experiments distinctively depict fine anatomical features in brain imaging at a low dose of 5 mg of Mn per kg and possible removal from the kidneys due to their small size and biocompatibility.

  7. A Comparison of the Pharmacokinetics and Pulmonary Lymphatic Exposure of a Generation 4 PEGylated Dendrimer Following Intravenous and Aerosol Administration to Rats and Sheep.

    PubMed

    Ryan, Gemma M; Bischof, Robert J; Enkhbaatar, Perenlei; McLeod, Victoria M; Chan, Linda J; Jones, Seth A; Owen, David J; Porter, Christopher J H; Kaminskas, Lisa M

    2016-02-01

    Cancer metastasis to pulmonary lymph nodes dictates the need to deliver chemotherapeutic and diagnostic agents to the lung and associated lymph nodes. Drug conjugation to dendrimer-based delivery systems has the potential to reduce toxicity, enhance lung retention and promote lymphatic distribution in rats. The current study therefore evaluated the pharmacokinetics and lung lymphatic exposure of a PEGylated dendrimer following inhaled administration. Plasma pharmacokinetics and disposition of a 22 kDa PEGylated dendrimer were compared after aerosol administration to rats and sheep. Lung-derived lymph could not be sampled in rats and so lymphatic transport of the dendrimer from the lung was assessed in sheep. Higher plasma concentrations were achieved when dendrimer was administered to the lungs of rats as a liquid instillation when compared to an aerosol. Plasma pharmacokinetics were similar between sheep and rats, although some differences in disposition patterns were evident. Unexpectedly, less than 0.5% of the aerosol dose was recovered in pulmonary lymph. The data suggest that rats provide a relevant model for assessing the pharmacokinetics of inhaled macromolecules prior to evaluation in larger animals, but that the pulmonary lymphatics are unlikely to play a major role in the absorption of nanocarriers from the lungs.

  8. Investigation of factors affecting in vitro doxorubicin release from PEGylated liposomal doxorubicin for the development of in vitro release testing conditions.

    PubMed

    Shibata, Hiroko; Izutsu, Ken-Ichi; Yomota, Chikako; Okuda, Haruhiro; Goda, Yukihiro

    2015-01-01

    Establishing appropriate drug release testing methods of liposomal products for assuring quality and performance requires the determination of factors affecting in vitro drug release. In this study, we investigated the effects of test conditions (human plasma lot, pH/salt concentration in the test media, dilution factor, temperature, ultrasound irradiation, etc.), and liposomal preparation conditions (pH/concentration of ammonium sulfate solution), on doxorubicin (DXR) release from PEGylated liposomal DXR. Higher temperature and lower pH significantly increased DXR release. The evaluation of DXR solubility indicated that the high DXR release induced by low pH may be attributed to the high solubility of DXR at low pH. Ultrasound irradiation induced rapid DXR release in an amplitude-dependent manner. The salt concentration in the test solution, human plasma lot, and dilution factor had a limited impact on DXR-release. Variations in the ammonium sulfate concentration used in solutions for the formation/hydration of liposomes significantly affected DXR release behavior, whereas differences in pH did not. In addition, heating condition in phosphate-buffered saline at lower pH (<6.5) exhibited higher discriminative ability for the release profiles from various liposomes with different concentrations of ammonium sulfate than did ultrasound irradiation. These results are expected to be helpful in the process of establishing appropriate drug release testing methods for PEGylated liposomal DXR.

  9. Effect of new synthetic PEGylated ferulic acids in comparison with ferulic acid and commercial surfactants on the properties of wheat flour dough and bread.

    PubMed

    Nicks, François; Richel, Aurore; Dubrowski, Thomas; Wathelet, Bernard; Wathelet, Jean-Paul; Blecker, Christophe; Paquot, Michel

    2013-08-15

    Ferulic acid esterified with poly(ethylene glycol) with three different average molecular weights (200, 400 and 1000 g mol(-1)) was studied in bread-making. The effects of these antioxidants on the properties of wheat flour dough and bread were analysed and compared with those obtained with ferulic acid and two commercial surfactants, the diacetyl tartaric acid ester of mono- and diglycerides and sodium stearoyl lactylate. Farinographic and alveographic methods as well as weight, volume and bread firmness measurements were used for this purpose. Similar to ferulic acid, when the PEGylated derivatives were implemented in the dough (5000 ppm), it accelerated the breakdown of the dough and decreased its rheological properties. However, the important diminution of loaf volume, observed when dough supplemented with ferulic acid was baked, was avoided. That decrease in volume was related to the inhibition of the yeast (Saccharomyces cerevisae) by the unesterified ferulic acid. Moreover, two of the PEGylated ferulic acids even contributed to an increase of loaf volumes (5-6%) and demonstrated crumb softener properties. The addition of ferulic acid to wheat flour dough caused the inhibition of the yeast, which resulted in decreased bread volume. That effect could be avoid by the esterification of ferulic acid with poly(ethylene glycol). © 2013 Society of Chemical Industry.

  10. Synergistic thermoradiotherapy based on PEGylated Cu3BiS3 ternary semiconductor nanorods with strong absorption in the second near-infrared window.

    PubMed

    Li, Ang; Li, Xiang; Yu, Xujiang; Li, Wei; Zhao, Ruyi; An, Xiao; Cui, Daxiang; Chen, Xiaoyuan; Li, Wanwan

    2017-01-01

    In this work, we report a successful synthesis of copper bismuth sulfide nanorods (NRs) with broad and strong photoabsorption ranging from ultraviolet (UV) to near-infrared (NIR) wavelengths, which can be used as a 1064 nm-laser-driven photothermal agent with the photothermal conversion efficiency of 40.7%, noticeably higher than most of the reported PTT agents working in NIR-II window. The as-prepared PEGylated Cu 3 BiS 3 NRs were used as photoacoustic imaging (PAI) and CT imaging agents due to their strong NIR absorption and large X-ray attenuation coefficient of bismuth. We are the first to demonstrate that a small quantity of PEGylated Cu 3 BiS 3 NRs in tumors can concentrate radiation energy and trigger mild PTT under NIR-II irradiation and thus, these particles could be used as a novel, synergistic thermoradiotheraputic agent that enhances the efficacy of radiotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Relation of pretreatment sequence diversity in NS5A region of HCV genotype 1 with immune response between pegylated-INF/ribavirin therapy outcomes.

    PubMed

    de Queiróz, A T L; Maracaja-Coutinho, V; Jardim, A C G; Rahal, P; de Carvalho-Mello, I M V G; Matioli, S R

    2011-02-01

    Hepatitis C virus (HCV) infection frequently persists despite substantial virus-specific immune responses and the combination of pegylated interferon (INF)-α and ribavirin therapy. Major histocompatibility complex class I restricted CD8(+) T cells are responsible for the control of viraemia in HCV infection, and several studies suggest protection against viral infection associated with specific HLAs. The reason for low rates of sustained viral response (SVR) in HCV patients remains unknown. Escape mutations in response to cytotoxic T lymphocyte are widely described; however, its influence in the treatment outcome is ill understood. Here, we investigate the differences in CD8 epitopes frequencies from the Los Alamos database between groups of patients that showed distinct response to pegylated α-INF with ribavirin therapy and test evidence of natural selection on the virus in those who failed treatment, using five maximum likelihood evolutionary models from PAML package. The group of sustained virological responders showed three epitopes with frequencies higher than Non-responders group, all had statistical support, and we observed evidence of selection pressure in the last group. No escape mutation was observed. Interestingly, the epitope VLSDFKTWL was 100% conserved in SVR group. These results suggest that the response to treatment can be explained by the increase in immune pressure, induced by interferon therapy, and the presence of those epitopes may represent an important factor in determining the outcome of therapy. © 2010 Blackwell Publishing Ltd.

  12. Systemic administration of a PEGylated adenovirus vector with a cancer-specific promoter is effective in a mouse model of metastasis.

    PubMed

    Yao, X; Yoshioka, Y; Morishige, T; Eto, Y; Watanabe, H; Okada, Y; Mizuguchi, H; Mukai, Y; Okada, N; Nakagawa, S

    2009-12-01

    Cancer gene therapy by adenovirus vectors (Advs) for metastatic cancer is limited because systemic administration of Adv produces low therapeutic effect and severe side effects. In this study, we generated a dual cancer-specific targeting vector system by using PEGylation and the telomere reverse transcriptase (TERT) promoter and attempted to treat experimental metastases through systemic administration of the vectors. We first optimized the molecular size of PEG and modification ratios used to create PEG-Ads. Systemic administration of PEG-Ad with 20-kDa PEG at a 45% modification ratio (PEG[20K/45%]-Ad) resulted in higher tumor-selective transgene expression than unmodified Adv. Next, we examined the effectiveness against metastases and side effects of a TERT promoter-driven PEG[20K/45%]-Ad containing the herpes simplex virus thymidine kinase (HSVtk) gene (PEG-Ad-TERT/HSVtk). Systemic administration of PEG-Ad-TERT/HSVtk showed superior antitumor effects against metastases with negligible side effects. A cytomegalovirus (CMV) promoter-driven PEG[20K/45%]-Ad also produced antimetastatic effects, but these were accompanied by side effects. Combining PEG-Ad-TERT/HSVtk with etoposide or 5-fluorouracil enhanced the therapeutic effects with negligible side effects. These results suggest that modification with 20-kDa PEG at a 45% modification ratio is the optimal condition for PEGylation of Adv, and PEG-Ad-TERT/HSVtk is a prototype Adv for systemic cancer gene therapy against metastases.

  13. Enhancement of the efficacy of therapeutic proteins by formulation with PEGylated liposomes; a case of FVIII, FVIIa and G-CSF.

    PubMed

    Yatuv, Rivka; Robinson, Micah; Dayan, Inbal; Baru, Moshe

    2010-02-01

    Improving the pharmacodynamics of protein drugs has the potential to improve the care and the quality of life of patients suffering from a variety of diseases. Four approaches to improve protein drugs are described: PEGylation, amino acid substitution, fusion to carrier proteins and encapsulation. A new platform technology based on the binding of proteins/peptides to the outer surface of PEGylated liposomes (PEGLip) is then presented. Binding of proteins to PEGLip is non-covalent, highly specific and dependent on an amino acid consensus sequence within the proteins. Association of proteins with PEGLip results in substantial enhancement of the pharmacodynamic properties of proteins following administration. This has been demonstrated in preclinical studies and clinical trials with coagulation factors VIII and VIIa. It has also been demonstrated in preclinical studies with granulocyte colony-stimulating factor. A mechanism is presented that explains the improvements in hemostatic efficacy of PEGLip-formulated coagulation factors VIII and VIIa. The reader will gain an understanding of the advantages and disadvantages of each of the approaches discussed. PEGLip formulation is an important new approach to improve the pharmacodynamics of protein drugs. This approach may be applied to further therapeutic proteins in the future.

  14. Helper T lymphocyte response in the peripheral blood of patients with intraepithelial neoplasia submitted to immunotherapy with pegylated interferon-α.

    PubMed

    Michelin, Márcia Antoniazi; Montes, Letícia; Nomelini, Rosekeila Simões; Trovó, Marco Aurélio; Murta, Eddie Fernando Candido

    2015-03-10

    Immunotherapy in cancer patients is a very promising treatment and the development of new protocols and the study of the mechanisms of regression is imperative. The objective of this study was to evaluate the production of cytokines in helper T (CD4+) lymphocytes during immunotherapy with pegylated IFN-α in patients with cervical intraepithelial neoplasia (CIN). We conducted a prospective study with 17 patients with CIN II-III using immunotherapy with pegylated IFN-α subcutaneouly weekly, and using flow cytometry we evaluated the peripheric CD4+ T lymphocytes. The results show that in the regression group the patients presented a significant increase in the amount of IFN-γ during the entire immunotherapy, compared with the group without a response. The amount of CD4+ T lymphocytes positive for IL-2, IL-4, IL-10 and TGF-β is significantly lower in patients with good clinical response. The results also demonstrate that patients with regression have a higher amount of intracellular TNF-α in CD4+ T lymphocytes before the start of treatment. Analyzing these data sets, it can be concluded that immunotherapy is a viable clinical treatment for patients with high-grade CIN and that the regression is dependent on the change in the immune response to a Th1 pattern.

  15. Helper T Lymphocyte Response in the Peripheral Blood of Patients with Intraepithelial Neoplasia Submitted to Immunotherapy with Pegylated Interferon-α

    PubMed Central

    Michelin, Márcia Antoniazi; Montes, Letícia; Nomelini, Rosekeila Simões; Trovó, Marco Aurélio; Murta, Eddie Fernando Candido

    2015-01-01

    Immunotherapy in cancer patients is a very promising treatment and the development of new protocols and the study of the mechanisms of regression is imperative. The objective of this study was to evaluate the production of cytokines in helper T (CD4+) lymphocytes during immunotherapy with pegylated IFN-α in patients with cervical intraepithelial neoplasia (CIN). We conducted a prospective study with 17 patients with CIN II-III using immunotherapy with pegylated IFN-α subcutaneouly weekly, and using flow cytometry we evaluated the peripheric CD4+ T lymphocytes. The results show that in the regression group the patients presented a significant increase in the amount of IFN-γ during the entire immunotherapy, compared with the group without a response. The amount of CD4+ T lymphocytes positive for IL-2, IL-4, IL-10 and TGF-β is significantly lower in patients with good clinical response. The results also demonstrate that patients with regression have a higher amount of intracellular TNF-α in CD4+ T lymphocytes before the start of treatment. Analyzing these data sets, it can be concluded that immunotherapy is a viable clinical treatment for patients with high-grade CIN and that the regression is dependent on the change in the immune response to a Th1 pattern. PMID:25764160

  16. Designed synthesis of multi-functional PEGylated Yb2O3:Gd@SiO2@CeO2 islands core@shell nanostructure.

    PubMed

    Li, Junqi; Yao, Shuang; Song, Shuyan; Wang, Xiao; Wang, Yinghui; Ding, Xing; Wang, Fan; Zhang, Hongjie

    2016-07-28

    Nanomaterials that can restrain or reduce the production of excessive reactive oxygen species such as H2O2 to defend and treat against Alzheimer's disease (AD) have attracted much attention. In this paper, we adopt the strategy of layer-by-layer deposition; namely, first synthesizing available gadolinium-doped ytterbia nanoparticles (Yb2O3:Gd NPs) as cores, and then coating them with silica via the classical Stöber method to prevent leakage and act as a carrier for subsequent ceria deposition and PEGylation, and finally obtain the expected core@shell-structured nanocomposite of PEGylated Yb2O3:Gd@SiO2@CeO2 islands. The nanomaterial has proved not only to be a high-performance dual-modal contrast agent for use in MRI and CT, but also to exhibit excellent catalase mimetic activity, which may help the prognosis, diagnosis and treatment of AD in the future. In addition, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy characterization have revealed the successful design and synthesis of the cores with remarkable size uniformity, with well-distributed CeO2 islands decorated on the surface of SiO2 shells, and tightly immobilized PEG.

  17. PEGylated Lipid bilayer coated mesoporous silica nanoparticles for co-delivery of paclitaxel and curcumin: Design, characterization and its cytotoxic effect.

    PubMed

    Lin, Jiahao; Cai, Qiang; Tang, Yinian; Xu, Yanjun; Wang, Qian; Li, Tingting; Xu, Huihao; Wang, Shuaiyu; Fan, Kai; Liu, Zhongjie; Jin, Yipeng; Lin, Degui

    2018-01-30

    Highly ordered mesoporous silica nanoparticles (MSNs) with pore diameter of 2.754nm and particle size of 115±15nm were prepared with etching method. Homogeneous PEGylated lipid bilayer with 10-15nm thickness was coated around the surface of MSNs using film hydration method. Systematic optimization and characterization of co-encapsulation process of paclitaxel (Tax) and curcumin (Cur) into PEGylated lipid bilayer coated mesoporous silica nanoparticles (PLMSNs) were performed carrying out single factor test, associated with Box-Behnken Design. The concentration of encapsulated drugs was measured by reversed phase high performance liquid chromatography (RP-HPLC) method. Optimal factor settings were as follows: 50mg MSNs, ratio of MSNs to lipid (w/w)=1:1.11, and ratio of lipid to CHO (w/w)=3.93:1. The average experimental EE Tax , EE Cur and stability score value were (77.48±2.73) %, (30.70±3.56) % and 4 point respectively based on the conditions mentioned above. Morphology determination of Tax-Cur-PLMSNs revealed that the composite nanoparticles were spherical particals with uniform dispersion. In vitro release experiment indicated that PLMSNs improved dissolution of Tax compared to Tax powder suspension and exhibited sustained release property. Tax-Cur-PLMSNs manifested definite and persistently promoted cytotoxic effect against canine breast cancer cells. This prolonged and enhanced activity of Tax-Cur-PLMSNs might contribute to its sustained release effect. Copyright © 2017. Published by Elsevier B.V.

  18. IL28B But Not ITPA Polymorphism Is Predictive of Response to Pegylated Interferon, Ribavirin, and Telaprevir Triple Therapy in Patients With Genotype 1 Hepatitis C

    PubMed Central

    Hayes, C. Nelson; Abe, Hiromi; Miki, Daiki; Ochi, Hidenori; Karino, Yoshiyasu; Toyota, Joji; Nakamura, Yusuke; Kamatani, Naoyuki; Sezaki, Hitomi; Kobayashi, Mariko; Akuta, Norio; Suzuki, Fumitaka; Kumada, Hiromitsu

    2011-01-01

    Background. Pegylated interferon, ribavirin, and telaprevir triple therapy is a new strategy expected to eradicate the hepatitis C virus (HCV) even in patients infected with difficult-to-treat genotype 1 strains, although adverse effects, such as anemia and rash, are frequent. Methods. We assessed efficacy and predictive factors for sustained virological response (SVR) for triple therapy in 94 Japanese patients with HCV genotype 1. We included recently identified predictive factors, such as IL28B and ITPA polymorphism, and substitutions in the HCV core and NS5A proteins. Results. Patients treated with triple therapy achieved comparatively high SVR rates (73%), especially among treatment-naive patients (80%). Of note, however, patients who experienced relapse during prior pegylated interferon plus ribavirin combination therapy were highly likely to achieve SVR while receiving triple therapy (93%); conversely, prior nonresponders were much less likely to respond to triple therapy (32%). In addition to prior treatment response, IL28B SNP genotype and rapid viral response were significant independent predictors for SVR. Patients with the anemia-susceptible ITPA SNP rs1127354 genotype typically required ribavirin dose reduction earlier than did patients with other genotypes. Conclusions. Analysis of predictive factors identified IL28B SNP, rapid viral response, and transient response to previous therapy as significant independent predictors of SVR after triple therapy. PMID:21628662

  19. Sustainable one-step synthesis of hierarchical microspheres of PEGylated MoS2 nanosheets and MoO3 nanorods: Their cytotoxicity towards lung and breast cancer cells

    NASA Astrophysics Data System (ADS)

    Kumar, Neeraj; George, Blassan Plackal Adimuriyil; Abrahamse, Heidi; Parashar, Vyom; Ngila, Jane Catherine

    2017-02-01

    Nanotechnology provides an emerging potent alternate mode of cancer therapy. Nanomaterials dispersion or solubility is of particular concern in utilising their full potential applications in biomedical fields. PEGylation of nanomaterials is considered to provide products with stealth properties, and physiological environment with no obvious adverse effects. The purpose of this work was to develop a sustainable one-step method for fabrication of hierarchical microspheres of PEGylated MoS2 nanosheets using a stoichiometric ratio of Mo(VI) and thiourea. This study further investigated the cytotoxicity of the PEGylated MoS2 nanosheets towards lung (A549) and breast cancer (MCF-7) cell lines by analysing morphological changes and performing dose-dependent cell proliferation, and cytotoxicity analysis using adenosine 5‧-triphosphate (ATP), and lactate dehydrogenase (LDH) assay. For comparison, MoO3 nanorods were synthesised by simple chemical route and their cytotoxicity towards lung (A549) and breast cancer (MCF-7) cell lines were checked. The findings suggested that PEGylated MoS2 nanosheets have excellent cytotoxicity towards breast cancer (MCF-7) cell lines, and MoO3 have better cytotoxicity towards lung (A549) cancer cell lines. This work envisages an accessible foundation for engineering sophisticated biomolecule-MoS2 nanosheets conjugation due to the defect-rich biocompatible surface, to achieve great versatility, additional functions, and further advances in the biomedical field.

  20. SU-F-T-665: Confocal Microscopy Imaging of Cell Cycle Distribution in Cells Treated with Pegylated Gold Nanoshells

    SciTech Connect

    Sadetaporn, D; The University of Texas MD Anderson Cancer Center, Houston, TX; Flint, D

    Purpose: To use confocal microscopy to distinguish cells in different phases of the cell cycle before and after treatment with pegylated gold nanoshells (PEG-AuNSs). Methods: Transfected fibrosarcoma cells (HT1080-EYFP-53BP1-FUCCI) were cultured in T-25 flasks and seeded in glass bottom dishes. These cells express the fluorescent probe AmCyan during the G2/S phases of the cell cycle, mCherry during the G1 phase, and EYFP tagged to the DNA repair protein 53BP1. After allowing cells 4 h to adhere to dishes, PEG-AuNS (Nanospectra Biosciences, Houston, TX) at a concentration of 0.15 OD were administered. At time points of 8, 16 and 24 hmore » following treatment, the PEG-AuNS-treated and control samples were washed with phosphate buffered saline (PBS) and fixed using 4% paraformaldehyde in PBS. Samples were imaged with an Olympus FV1200 confocal microscope using 473, 543, and 641 nm excitation lasers. We used band-pass filters to select AmCyan and mCherry fluorescence. Reflection from the 641 nm laser was used to detect PEG-AuNSs. Z-stack images were analyzed to assess cell cycle distribution through fluorescent probe expression. Live cells were imaged after PEG-AuNS treatment using a confocal microscope with a stage top CO2 incubator. Results: We were able to obtain high-resolution images of cells with internalized AuNSs. We were also able to distinguish cells in different phases of the cell cycle. Conclusion: This work demonstrates a new assay to investigate the effect of AuNSs on the cell cycle phase in live cells. Future work will employ confocal microscopy and flow cytometry to focus on effects of AuNS treatment on cell cycle distribution. This research was supported by the Sister Institution Network Fund and the Center for Radiation Oncology Research at The University of Texas MD Anderson Cancer Center and Cancer Prevention and Research Institute of Texas. Gabriel Sawakuchi has research support from Elekta Inc.« less

  1. Using PEGylated magnetic nanoparticles to describe the EPR effect in tumor for predicting therapeutic efficacy of micelle drugs.

    PubMed

    Chen, Ling; Zang, Fengchao; Wu, Haoan; Li, Jianzhong; Xie, Jun; Ma, Ming; Gu, Ning; Zhang, Yu

    2018-01-25

    Micelle drugs based on a polymeric platform offer great advantages over liposomal drugs for tumor treatment. Although nearly all of the nanomedicines approved in the clinical use can passively target to the tumor tissues on the basis of an enhanced permeability and retention (EPR) effect, the nanodrugs have shown heterogenous responses in the patients. This phenomenon may be traced back to the EPR effect of tumor, which is extremely variable in the individuals from extensive studies. Nevertheless, there is a lack of experimental data describing the EPR effect and predicting its impact on therapeutic efficacy of nanoagents. Herein, we developed 32 nm magnetic iron oxide nanoparticles (MION) as a T 2 -weighted contrast agent to describe the EPR effect of each tumor by in vivo magnetic resonance imaging (MRI). The MION were synthesized by a thermal decomposition method and modified with DSPE-PEG2000 for biological applications. The PEGylated MION (Fe 3 O 4 @PEG) exhibited high r 2 of 571 mM -1 s -1 and saturation magnetization (M s ) of 94 emu g -1 Fe as well as long stability and favorable biocompatibility through the in vitro studies. The enhancement intensities of the tumor tissue from the MR images were quantitatively measured as TNR (Tumor/Normal tissue signal Ratio) values, which were correlated with the delay of tumor growth after intravenous administration of the PLA-PEG/PTX micelle drug. The results demonstrated that the group with the smallest TNR values (TNR < 0.5) displayed the best tumor inhibitory effect. In addition, there was a superior correlation between TNR value and relative tumor delay in individual mice. These analysis results indicated that the TNR value of the tumor region enhanced by Fe 3 O 4 @PEG (d = 32 nm) could be used to predict the therapeutic efficacy of the micelle drugs (d ≤ 32 nm) in a certain period of time. Fe 3 O 4 @PEG has a potential to serve as an ideal MRI contrast agent to visualize the EPR effect in patients for accurate

  2. Post-insertion of poloxamer 188 strengthened liposomal membrane and reduced drug irritancy and in vivo precipitation, superior to PEGylation.

    PubMed

    Zhang, Wenli; Wang, Guangji; See, Esther; Shaw, John P; Baguley, Bruce C; Liu, Jianping; Amirapu, Satya; Wu, Zimei

    2015-04-10

    The ultimate aim of this study was to develop asulacrine (ASL)-loaded long-circulating liposomes to prevent phlebitis during intravenous (i.v.) infusion for chemotherapy. Poly(ethylene)glycol (PEG) and poloxamer 188-modified liposomes (ASL-PEGL and ASL-P188L) were developed, and ASL was loaded using a remote loading method facilitated with a low concentration of sulfobutyl ether-β-cyclodextrin as a drug solubilizer. The liposomes were characterized in terms of morphology, size, release properties and stability. Pharmacokinetics and venous tissue tolerance of the formulations were simultaneously studied in rabbits following one-hour i.v. infusion via the ear vein. The irritancy was assessed using a rat paw-lift/lick model after subplantar injections. High drug loading 9.0% w/w was achieved with no drug leakage found from ASL-PEGL or ASL-P188L suspended in a 5% glucose solution at 30days. However, a rapid release (leakage) from ASL-PEGL was observed when PBS was used as release medium, partially related to the use of cyclodextrin in drug loading. Post-insertion of poloxamer 188 to the liposomes appeared to be able to restore the drug retention possibly by increasing the packing density of phospholipids in the membrane. In rabbits (n=5), ASL-P188L had a prolonged half-life with no drug precipitation or inflammation in the rabbit ear vein in contrast to ASL solution. Following subplantar (footpad) injections in rats ASL solution induced paw-lick/lift responses in all rats whereas ASL-P188L caused no response (n=8). PEGylation showed less benefit possibly due to the drug 'leakage'. In conclusion, drug precipitation in the vein and the drug mild irritancy may both contribute to the occurrence of phlebitis caused by the ASL solution, and could both be prevented by encapsulation of the drug in liposomes. Poloxamer 188 appeared to be able to 'seal' the liposomal membrane and enhance drug retention. The study also highlighted the importance of bio-relevant in vitro release

  3. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    SciTech Connect

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com; Vakhrusheva, Tatyana V.; Sokolov, Alexey V.

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acidmore » (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  4. Multilineage hematopoietic recovery by a single injection of pegylated recombinant human megakaryocyte growth and development factor in myelosuppressed mice.

    PubMed

    Shibuya, K; Akahori, H; Takahashi, K; Tahara, E; Kato, T; Miyazaki, H

    1998-01-01

    Previous studies have shown that daily multiple administration of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) markedly stimulates thrombopoiesis and effectively ameliorates thrombocytopenia, and in most cases anemia and neutropenia, in myelosuppressed animals. In this study, we evaluated the effects of a single intravenous injection of PEG-rHuMGDF on hematopoietic recovery after sublethal total-body irradiation in mice. A single injection of PEG-rHuMGDF (1 to 640 microg/kg) 1 hour after irradiation accelerated platelet, red blood cell (RBC), and white blood cell (WBC) recovery in a dose-dependent fashion. In the bone marrow of vehicle-treated mice, megakaryocytic, erythroid, and myeloid progenitors, as well as day 12 colony-forming unit-spleen (CFU-S), were dramatically decreased much earlier than the nadirs of peripheral blood cells, whereas megakaryocytes were modestly decreased. Treatment with PEG-rHuMGDF (80 microg/kg, an optimal dose) 1 hour after irradiation resulted in more rapid recovery of these four hematopoietic progenitors and also significantly facilitated megakaryocyte recovery. In addition, the same PEG-rHuMGDF administration schedule expanded bone marrow cells capable of rescuing lethally irradiated recipient mice. As the interval between irradiation and PEG-rHuMGDF treatment was longer, its effects on hematopoietic recovery were attenuated. In contrast to the effects of PEG-rHuMGDF, a single injection of recombinant human granulocyte colony-stimulating factor (rhG-CSF) 1 hour after irradiation exclusively accelerated WBC recovery, but only to a similar extent as PEG-rHuMGDF (80 microg/kg) treatment even when rhG-CSF doses were escalated to 1,000 microg/kg. This appeared related to different pharmacokinetics of these two factors after a single injection in irradiated mice. The concentrations of PEG-rHuMGDF after injection persisted in the plasma for a longer time compared with rhG-CSF. These results indicate

  5. Octa-Arginine-Modified Pegylated Liposomal Doxorubicin: An Effective Treatment Strategy for Non-Small Cell Lung Cancer

    PubMed Central

    Biswas, Swati; Deshpande, Pranali P.; Perche, Federico; Dodwadkar, Namita S.; Sane, Shailendra D.; Torchilin, Vladimir P.

    2013-01-01

    The present study aims to evaluate the efficacy of octa-arginine (R8)-modified PEGylated liposomal doxorubicin (R8-PLD) for the treatment of non-small cell lung cancer, for which the primary treatment modality currently consists of surgery and radiotherapy. Cell-penetrating peptide R8 modification of Doxorubicin-(Dox)-loaded liposomes was performed by post-insertion of an R8-conjugated amphiphilic PEG-PE copolymer (R8-PEG-DOPE) into the liposomal lipid bilayer. In vitro analysis with the non-small cell lung cancer cell line, A549 confirmed the efficient cellular accumulation of Dox, delivered by R8-PLD compared to PLD. It led to the early initiation of apoptosis and a 9-fold higher level of the apoptotic regulator, caspase 3/7 (9.24±0.34) compared to PLD (1.07±0.19) at Dox concentration of 100 µg/mL. The treatment of A549 monolayers with R8-PLD increased the level of cell death marker lactate dehydrogenase (LDH) secretion (1.2 ± 0.1 for PLD and 2.3 ± 0.1 for R8-PLD at Dox concentration of 100 µg/mL) confirming higher cytotoxicity of R8-PLD than PLD, which was ineffective under the same treatment regimen (cell viability 90 ± 6 % in PLD vs. 45 ± 2 % in R8-PLD after 24 h). R8-PLD had significantly higher penetration into the hypoxic A549 tumor spheroids compared to PLD. R8-PLD induced greater level of apoptosis to A549 tumor xenograft and dramatic inhibition of tumor volume and tumor weight reduction. The R8-PLD treated tumor lysate had a elevated caspase3/7 expression than with R8-PLD treatment. This suggested system improved the delivery efficiency of Dox in selected model of cancer which supports the potential usefulness of R8-PLD in cancer treatment, lung cancer in particular. PMID:23419527

  6. Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R

    SciTech Connect

    Atsmon, Jacob; Sackler Faculty of Medicine, Tel Aviv University; Brill-Almon, Einat

    PRX-105 is a plant-derived recombinant version of the human ‘read-through’ acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50 nmol/kg PRX-105, 2more » min before being exposed to 1.33 × LD{sub 50} and 1.5 × LD{sub 50} of toxin and 10 min after exposure to 1.5 × LD{sub 50} survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200 mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t{sub ½}) in mice was 994 (± 173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t{sub ½} in humans was substantially longer than in mice (average 26.7 h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation. - Highlights: • PRX-105 is a PEGylated plant-derived recombinant human acetylcholinesterase-R. • PRX-105 is a promising bio-scavenger for organophosphorous toxins at lethal doses. • PRX-105 was shown to protect animals both prophylactically and post-poisoning. • First

  7. Silybin supplementation during HCV therapy with pegylated interferon-α plus ribavirin reduces depression and anxiety and increases work ability.

    PubMed

    Malaguarnera, Giulia; Bertino, Gaetano; Chisari, Giuseppe; Motta, Massimo; Vecchio, Michele; Vacante, Marco; Caraci, Filippo; Greco, Carmela; Drago, Filippo; Nunnari, Giuseppe; Malaguarnera, Michele

    2016-11-15

    Hepatitis C virus infection and interferon treatment are often associated with anxiety, depressive symptoms and poor health-related quality of life. To evaluate the Silybin-vitamin E-phospholipids complex effect on work ability and whether health related factors (anxiety and depression) were associated with work ability in subjects with chronic hepatitis C treated with Pegylated-Interferon-α2b (Peg-IFN) and Ribavirin (RBV). Thirty-one patients (Group A) with chronic hepatitis and other 31 subjects in Group B were recruited in a randomized, prospective, placebo controlled, double blind clinical trial. Group A received 1.5 mg/kg per week of Peg-IFN plus RBV and placebo, while Group B received the same dosage of Peg-IFN plus RBV plus association of Silybin 94 mg + vitamin E 30 mg + phospholipids 194 mg in pills for 12 months. All subjects underwent to laboratory exams and questionnaires to evaluate depression (Beck Depression Inventory - BDI), anxiety (State-trait anxiety inventory - STAI) and work ability (Work ability Index - WAI). The comparison between group A and group B showed significant differences after 6 months in ALT (P < 0.001), and viremia (P < 0.05), after 12 months in ALT (P < 0.001), and AST (P < 0.001), at follow up in AST (P < 0.05), and ALT (P < 0.001). Significant difference were observed after 1 month in WAI (p < 0.001) and BDI (P < 0.05), after 6 months in WAI (P < 0.05) and STAI (P < 0.05), after 12 months and at follow up in WAI, STAI and BDI (p < 0.01). The supplementation with Silybin-vitamin E -phospholipids complex increased work ability and reduced depression and anxiety in patients treated with Peg-IFN and RBV. NCT01957319 , First received: September 25, 2013. Last updated: September 30, 2013 (retrospectively registered).

  8. Pegylated interferon β-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study.

    PubMed

    Calabresi, Peter A; Kieseier, Bernd C; Arnold, Douglas L; Balcer, Laura J; Boyko, Alexey; Pelletier, Jean; Liu, Shifang; Zhu, Ying; Seddighzadeh, Ali; Hung, Serena; Deykin, Aaron

    2014-07-01

    Subcutaneous pegylated interferon (peginterferon) beta-1a is being developed for treatment of relapsing multiple sclerosis, with less frequent dosing than currently available first-line injectable treatments. We assessed the safety and efficacy of peginterferon beta-1a after 48 weeks of treatment in the placebo-controlled phase of the ADVANCE trial, a study of patients with relapsing-remitting multiple sclerosis. We did this 2-year, double-blind, parallel group, phase 3 study, with a placebo-controlled design for the first 48 weeks, at 183 sites in 26 countries. Patients with relapsing-remitting multiple sclerosis (age 18-65 years, with Expanded Disability Status Scale score ≤5) were randomly assigned (1:1:1) via an interactive voice response or web system, and stratified by site, to placebo or subcutaneous peginterferon beta-1a 125 μg once every 2 weeks or every 4 weeks. The primary endpoint was annualised relapse rate at 48 weeks. This trial is registered with ClinicalTrials.gov, number NCT00906399. We screened 1936 patients and enrolled 1516, of whom 1512 were randomly assigned (500 to placebo, 512 to peginterferon every 2 weeks, 500 to peginterferon every 4 weeks); 1332 (88%) patients completed 48 weeks of treatment. Adjusted annualised relapse rates were 0·397 (95% CI 0·328-0·481) in the placebo group versus 0·256 (0·206-0·318) in the every 2 weeks group and 0·288 (0·234-0·355) in the every 4 weeks group (rate ratio for every 2 weeks group 0·644, 95% CI 0·500-0·831, p=0·0007; rate ratio for the every 4 weeks group 0·725, 95% CI 0·565-0·930, p=0·0114). 417 (83%) patients taking placebo, 481 (94%) patients taking peginterferon every 2 weeks, and 472 (94%) patients taking peginterferon every 4 weeks reported adverse events including relapses. The most common adverse events associated with peginterferon beta-1a were injection site reactions, influenza-like symptoms, pyrexia, and headache. 76 (15%) patients taking placebo, 55 (11%) patients

  9. Accelerated drug release and clearance of PEGylated epirubicin liposomes following repeated injections: a new challenge for sequential low-dose chemotherapy

    PubMed Central

    Yang, Qiang; Ma, Yanling; Zhao, Yongxue; She, Zhennan; Wang, Long; Li, Jie; Wang, Chunling; Deng, Yihui

    2013-01-01

    Background Sequential low-dose chemotherapy has received great attention for its unique advantages in attenuating multidrug resistance of tumor cells. Nevertheless, it runs the risk of producing new problems associated with the accelerated blood clearance phenomenon, especially with multiple injections of PEGylated liposomes. Methods Liposomes were labeled with fluorescent phospholipids of 1,2-dipalmitoyl-snglycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) and epirubicin (EPI). The pharmacokinetics profile and biodistribution of the drug and liposome carrier following multiple injections were determined. Meanwhile, the antitumor effect of sequential low-dose chemotherapy was tested. To clarify this unexpected phenomenon, the production of polyethylene glycol (PEG)-specific immunoglobulin M (IgM), drug release, and residual complement activity experiments were conducted in serum. Results The first or sequential injections of PEGylated liposomes within a certain dose range induced the rapid clearance of subsequently injected PEGylated liposomal EPI. Of note, the clearance of EPI was two- to three-fold faster than the liposome itself, and a large amount of EPI was released from liposomes in the first 30 minutes in a complement-activation, direct-dependent manner. The therapeutic efficacy of liposomal EPI following 10 days of sequential injections in S180 tumor-bearing mice of 0.75 mg EPI/kg body weight was almost completely abolished between the sixth and tenth day of the sequential injections, even although the subsequently injected doses were doubled. The level of PEG-specific IgM in the blood increased rapidly, with a larger amount of complement being activated while the concentration of EPI in blood and tumor tissue was significantly reduced. Conclusion Our investigation implied that the accelerated blood clearance phenomenon and its accompanying rapid leakage and clearance of drug following sequential low-dose injections may reverse the unique

  10. Critical determinant of intestinal permeability and oral bioavailability of pegylated all trans-retinoic acid prodrug-based nanomicelles: Chain length of poly (ethylene glycol) corona.

    PubMed

    Li, Zhenbao; Han, Xiaopeng; Zhai, Yinglei; Lian, He; Zhang, Dong; Zhang, Wenjuan; Wang, Yongjun; He, Zhonggui; Liu, Zheng; Sun, Jin

    2015-06-01

    Pegylation method is widely used to prolong the blood circulation time of proteins and nanoparticles after intravenous administration, but the effect of surface poly (ethylene glycol) (PEG) chain length on oral absorption of the pegylated nanoparticles is poorly reported. The aim of our study was to investigate the influence of PEG corona chain length on membrane permeability and oral bioavailability of the amphiphilic pegylated prodrug-based nanomicelles, taking all trans-retinoic acid (ATRA) as a model drug. The amphiphilic ATRA-PEG conjugates were synthesized by esterification reaction between all trans-retinoic acid and mPEGs (mPEG500, mPEG1000, mPEG2000, and mPEG5000). The conjugates could self-assemble in aqueous medium to form nanomicelles by emulsion-solvent evaporation method. The resultant nanomicelles were in spherical shape with an average diameter of 13-20 nm. The drug loading efficiency of ATRA-PEG500, ATRA-PEG1000, ATRA-PEG2000, and ATRA-PEG5000 was about 38.4, 26.6, 13.1, and 5.68 wt%, respectively. With PEG chain length ranging from 500 to 5000, ATRA-PEG nanomicelles exhibited a bell shape of chemical stability in different pH buffers, intestinal homogenate and plasma. More importantly, they were all rapidly hydrolyzed into the parent drug in hepatic homogenate, with the half-time values being 0.3-0.4h. In comparison to ATRA solution and ATRA prodrug-based nanomicelles, ATRA-PEG1000 showed the highest intestinal permeability. After oral administration, ATRA-PEG2000 and ATRA-PEG5000 nanomicelles were not nearly absorbed, while the oral bioavailability of ATRA-PEG500 and ATRA-PEG1000 demonstrated about 1.2- and 2.0-fold higher than ATRA solution. Our results indicated that PEG1000 chain length of ATRA-PEG prodrug nanomicelles has the optimal oral bioavailability probably due to improved stability and balanced mucus penetration capability and cell binding, and that the PEG chain length on a surface of nanoparticles cannot exceed a key threshold with

  11. Cationic PEGylated liposomes incorporating an antimicrobial peptide tilapia hepcidin 2–3: an adjuvant of epirubicin to overcome multidrug resistance in cervical cancer cells

    PubMed Central

    Juang, Vivian; Lee, Hsin-Pin; Lin, Anya Maan-Yuh; Lo, Yu-Li

    2016-01-01

    Antimicrobial peptides (AMPs) have been recently evaluated as a new generation of adjuvants in cancer chemotherapy. In this study, we designed PEGylated liposomes encapsulating epirubicin as an antineoplastic agent and tilapia hepcidin 2–3, an AMP, as a multidrug resistance (MDR) transporter suppressor and an apoptosis/autophagy modulator in human cervical cancer HeLa cells. Cotreatment of HeLa cells with PEGylated liposomal formulation of epirubicin and hepcidin 2–3 significantly increased the cytotoxicity of epirubicin. The liposomal formulations of epirubicin and/or hepcidin 2–3 were found to noticeably escalate the intracellular H2O2 and O2− levels of cancer cells. Furthermore, these treatments considerably reduced the mRNA expressions of MDR protein 1, MDR-associated protein (MRP) 1, and MRP2. The addition of hepcidin 2–3 in liposomes was shown to markedly enhance the intracellular epirubicin uptake and mainly localized into the nucleus. Moreover, this formulation was also found to trigger apoptosis and autophagy in HeLa cells, as validated by significant increases in the expressions of cleaved poly ADP ribose polymerase, caspase-3, caspase-9, and light chain 3 (LC3)-II, as well as a decrease in mitochondrial membrane potential. The apoptosis induction was also confirmed by the rise in sub-G1 phase of cell cycle assay and apoptosis percentage of annexin V/propidium iodide assay. We found that liposomal epirubicin and hepcidin 2–3 augmented the accumulation of GFP-LC3 puncta as amplified by chloroquine, implying the involvement of autophagy. Interestingly, the partial inhibition of necroptosis and the epithelial–mesenchymal transition by this combination was also verified. Altogether, our results provide evidence that coincubation with PEGylated liposomes of hepcidin 2–3 and epirubicin caused programmed cell death in cervical cancer cells through modulation of multiple signaling pathways, including MDR transporters, apoptosis, autophagy, and

  12. Cationic PEGylated liposomes incorporating an antimicrobial peptide tilapia hepcidin 2-3: an adjuvant of epirubicin to overcome multidrug resistance in cervical cancer cells.

    PubMed

    Juang, Vivian; Lee, Hsin-Pin; Lin, Anya Maan-Yuh; Lo, Yu-Li

    Antimicrobial peptides (AMPs) have been recently evaluated as a new generation of adjuvants in cancer chemotherapy. In this study, we designed PEGylated liposomes encapsulating epirubicin as an antineoplastic agent and tilapia hepcidin 2-3, an AMP, as a multidrug resistance (MDR) transporter suppressor and an apoptosis/autophagy modulator in human cervical cancer HeLa cells. Cotreatment of HeLa cells with PEGylated liposomal formulation of epirubicin and hepcidin 2-3 significantly increased the cytotoxicity of epirubicin. The liposomal formulations of epirubicin and/or hepcidin 2-3 were found to noticeably escalate the intracellular H 2 O 2 and O 2 - levels of cancer cells. Furthermore, these treatments considerably reduced the mRNA expressions of MDR protein 1, MDR-associated protein (MRP) 1, and MRP2. The addition of hepcidin 2-3 in liposomes was shown to markedly enhance the intracellular epirubicin uptake and mainly localized into the nucleus. Moreover, this formulation was also found to trigger apoptosis and autophagy in HeLa cells, as validated by significant increases in the expressions of cleaved poly ADP ribose polymerase, caspase-3, caspase-9, and light chain 3 (LC3)-II, as well as a decrease in mitochondrial membrane potential. The apoptosis induction was also confirmed by the rise in sub-G1 phase of cell cycle assay and apoptosis percentage of annexin V/propidium iodide assay. We found that liposomal epirubicin and hepcidin 2-3 augmented the accumulation of GFP-LC3 puncta as amplified by chloroquine, implying the involvement of autophagy. Interestingly, the partial inhibition of necroptosis and the epithelial-mesenchymal transition by this combination was also verified. Altogether, our results provide evidence that coincubation with PEGylated liposomes of hepcidin 2-3 and epirubicin caused programmed cell death in cervical cancer cells through modulation of multiple signaling pathways, including MDR transporters, apoptosis, autophagy, and/or necroptosis

  13. Efficacy and safety of native versus pegylated Escherichia coli asparaginase for treatment of adults with high-risk, Philadelphia chromosome-negative acute lymphoblastic leukemia.

    PubMed

    Ribera, Josep-Maria; Morgades, Mireia; Montesinos, Pau; Martino, Rodrigo; Barba, Pere; Soria, Beatriz; Bermúdez, Arancha; Moreno, María-José; González-Campos, José; Vives, Susana; Gil, Cristina; Abella, Eugenia; Guàrdia, Ramon; Martínez-Carballeira, Daniel; Martínez-Sánchez, Pilar; Amigo, María-Luz; Mercadal, Santiago; Serrano, Alfons; López-Martínez, Aurelio; Vall-Llovera, Ferran; Sánchez-Sánchez, María-José; Peñarrubia, María-Jesús; Calbacho, María; Méndez, Jose-Angel; Bergua, Juan; Cladera, Antonia; Tormo, Mar; García-Belmonte, Daniel; Feliu, Evarist; Ciudad, Juana; Orfao, Alberto

    2017-11-22

    Native or pegylated (PEG) asparaginase (ASP) are commonly used in treatment of acute lymphoblastic leukemia (ALL), but have been scarcely compared in the same trial in adult patients. Native vs. PEG-ASP administered according to availability in each center were prospectively evaluated in adults with high-risk ALL. Ninety-one patients received native ASP and 35 PEG-ASP in induction. No significant differences were observed in complete remission, minimal residual disease levels after induction and after consolidation, disease-free survival, and overall survival. No significant differences in grades 3-4 toxicity were observed in the induction period, although a trend for higher hepatic toxicity was observed in patients receiving PEG-ASP. In this trial the type of ASP did not influence patient response and outcome.

  14. A randomized controlled study into the efficacy and toxicity of pegylated liposome encapsulated doxorubicin as an adjuvant therapy in dogs with splenic haemangiosarcoma.

    PubMed

    Teske, E; Rutteman, G R; Kirpenstein, J; Hirschberger, J

    2011-12-01

    Safety and efficacy of pegylated liposome encapsulated doxorubicin (PL-DOX) was compared with free doxorubicin as an adjuvant monotherapy in dogs with splenic haemangiosarcoma after splenectomy in a randomized prospective clinical trial. A total of 17 dogs in each group were treated. No significant difference in survival between the two treatments was found. The calculated median overall survival time for the 34 dogs was 166 days [95% confidence interval (CI) 148-184]. The ½ year and one-year survival was 41.2% (95% CI 24.8-56.9) and 22.7% (95% CI 9.9-37.4), respectively. In dogs treated with PL-DOX, a desquamating dermatitis like palmar-plantar erythrodysesthesia (PPES) was seen in two dogs, while three other dogs showed anaphylactic reactions. Cardiotoxicity was not seen in either treatment groups. © 2011 Blackwell Publishing Ltd.

  15. Transformation from Multilamellar to Unilamellar Vesicles by Addition of a Cationic Lipid to PEGylated Liposomes Explored with Synchrotron Small Angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Sakuragi, Mina; Koiwai, Kazunori; Nakamura, Kouji; Masunaga, Hiroyasu; Ogawa, Hiroki; Sakurai, Kazuo

    2011-01-01

    PEGylated liposomes composed of a benzamidine derivative (TRX), hydrogenated soybean phosphatidylcholine (HSPC), and N-(monomethoxy-polyethyleneglycolcarbamyl) distearoyl phosphatidylethanolamine (PEG-PE) were examined in terms of how the addition of TRX affects their structures with small angle x-ray scattering (SAXS) as well as transmission electron microscopy (TEM). TEM images showed the presence of unilamella vesicles for both with and without TRX, though a small amount of multilamella vesicles were observed in absence of TRX. We analyzed SAXS profiles at contained TRX composition combined with contrast variation technique by adding PEG solution and unilamella vesicle model could be reproduced. Subsequently, we analyzed SAXS profiles at no TRX composition. The mixture model of unilamella and multilamella vesicle was reconstructed and we estimated about 10 % multilamella vesicles from a fitting parameter.

  16. Enhanced anti-tumor efficacy of paclitaxel with PEGylated lipidic nanocapsules in presence of curcumin and poloxamer: In vitro and in vivo studies.

    PubMed

    Anwar, Mohammed; Akhter, Sohail; Mallick, Neha; Mohapatra, Sharmistha; Zafar, Sobiya; Rizvi, M Moshahid A; Ali, Asgar; Ahmad, Farhan J

    2016-11-01

    Cancer chemotherapeutic drug containing PEGylated lipidic nanocapsules (D-LNCs) were formulated by the controlled addition of organic phase (combined solution of paclitaxel and curcumin in a mixture of oleic acid and MPEG 2000 -DSPE (90:2.5 molar ratio) in acetone) to the aqueous phase (consist of Poloxamer 407 as emulsifying agents and glycerol as a co-solvent) at a temperature of 55-60°C followed by evaporation of organic solvent. The obtained pre-colloidal dispersion of D-LNCs was processed through high pressure homogenization to get more uniformly and nano-sized particles. Effect of concentration of emulsifying agent and process variables of high pressure homogenization (pressure and number of cycles) on average particle size and entrapment efficiency was further investigated by constructing Box-Behnken experimental design to achieve the optimum manufacturing process. D-LNCs were characterized by dynamic light scattering, scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. In vitro release studies showed a sustained release pattern of drug from the PEGylated D-LNCs, whereas in vivo pharmacokinetic studies after a single-dose intravenous (i.v.) administration of paclitaxel (15mg/kg) in Ehrlich ascites tumor (EAT)-bearing female Swiss albino mice showed a prolonged circulation time and slower elimination of paclitaxel from D-LNCs as compared with marketed formulation (Paclitec ® ). From the plasma concentration vs. time profile, i.v. bioavailability (AUC 0-∞ ) of paclitaxel from D-LNCs was found to be increased approximately 2.91-fold (P<0.001) as compared to Paclitec ® . In vitro cell viability assay against MCF-7 and MCF-7/ADR cell lines, in vivo biodistribution studies and tumor inhibition study in EAT-bearing mice, all together prove its significantly improved potency towards cancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Pegylated interferon-alpha2b plus ribavirin therapy in patients with hepatitis C and psychiatric disorders: results of a cohort study.

    PubMed

    Lang, Jean-Philippe; Melin, Pascal; Ouzan, Denis; Rotily, Michel; Fontanges, Thierry; Marcellin, Patrick; Chousterman, Michel; Cacoub, Patrice

    2010-01-01

    Hepatitis C antiviral therapies have significant psychiatric side effects. It is therefore believed that they might exacerbate mental illness in patients with pre-existing psychiatric disorders, resulting in poor adherence and response to antiviral treatment. We aimed to assess adherence to treatment, virological outcomes and mental safety in psychiatric patients, compared with non-psychiatric patients, treated for hepatitis C. A cohort study involved unselected hepatitis C patients on scheduled therapy with pegylated interferon-alpha2b and ribavirin, between 2002 and 2005 in France, and followed-up until 6 months after the end of treatment. Virological response was reported by the physician according to standard definitions and adverse events were monitored. Adherence to treatment was assessed by patient report. Among 1,860 patients, 403 (22%) had pre-existing psychiatric disorders, mostly depressive and anxiety disorders. Strict adherence was similar in psychiatric and non-psychiatric patients (35% versus 39%; P=0.20) as was the rate of sustained virological response (52% versus 51%; P=0.75). Conversely the rate of mental adverse events was higher in psychiatric patients (78% versus 57%; P<0.001). Baseline characteristics independently associated with the risk of later mental adverse events were history of depression, initial pegylated interferon-alpha2b dose and female gender. Antiviral therapy in hepatitis C patients with associated psychiatric disease appears as effective as in other patients but results in a higher rate of mental adverse events, emphasizing the need for close monitoring of these psychiatric patients.

  18. Population Pharmacokinetics to Model the Time-Varying Clearance of the PEGylated Asparaginase Oncaspar® in Children with Acute Lymphoblastic Leukemia.

    PubMed

    Würthwein, Gudrun; Lanvers-Kaminsky, Claudia; Hempel, Georg; Gastine, Silke; Möricke, Anja; Schrappe, Martin; Karlsson, Mats O; Boos, Joachim

    2017-12-01

    The pharmacokinetics of the polyethylene glycol (PEG)-conjugated asparaginase Oncaspar ® are characterized by an increase in elimination over time. The focus of our analysis is the better understanding of this time-dependency. In paediatric acute lymphoblastic leukemia therapy (AIEOP-BFM ALL 2009), two administrations of Oncaspar ® (2500 U/m 2 intravenously) in induction phase (14-day interval) and one single administration in reinduction were followed by weekly monitoring of asparaginase activity. Non-linear mixed-effects modeling techniques (NONMEM) were used. Samples indicating immunological inactivation were excluded to describe the pharmacokinetics under standard conditions. Models with time-constant or time-varying clearance (CL) as well as transit compartment models with an increase in CL over a chain of compartments were investigated. Models with time-constant elimination could not adequately describe 6107 asparaginase activities from 1342 patients. Implementing a time-varying CL improved the fit. Modeling an increase of CL over time after dose (E max - and Weibull-functions) were superior to models with an increase of CL over time after the first administration. However, a transit compartment model came out to be the best structural model. The increase in elimination of PEGylated asparaginase appears to be driven by physicochemical processes that are drug-related. The observed hydrolytically in vitro instability of the drug leads to the hypothesis that this increase in CL might be due to an in vivo hydrolysis of the instable ester bond between PEG and the enzyme combined with an increased elimination of the partly de-PEGylated enzyme (Trial registered at www.clinicaltrials.gov , NCT0111744).

  19. Ultrasound-triggered effects of the microbubbles coupled to GDNF- and Nurr1-loaded PEGylated liposomes in a rat model of Parkinson's disease.

    PubMed

    Yue, Peijian; Gao, Lin; Wang, Xuejing; Ding, Xuebing; Teng, Junfang

    2018-06-01

    The purpose of this study was to investigate ultrasound-triggered effects of the glial cell line-derived neurotrophic factor (GDNF) + nuclear receptor-related factor 1 (Nurr1)-polyethylene glycol (PEG)ylated liposomes-coupled microbubbles (PLs-GDNF + Nurr1-MBs) on behavioral impairment and neuron loss in a rat model of Parkinson's disease (PD). The unloaded PEGylated liposomes-coupled microbubbles (PLs-MBs) were characterized for zeta potential, particle size, and concentration. 6-hydroxydopamine (6-OHDA) was used to establish the PD rat model. Rotational, climbing pole, and suspension tests were used to detect behavioral impairment. The immunohistochemical staining of tyrosine hydroxylase (TH) and dopamine transporter (DAT) was used to assess the neuron loss. Western blot and quantitative real-time PCR (qRT-PCR) analysis were used to measure the expression levels of GDNF and Nurr1. The particle size of PLs-MBs was gradually increased, while the concentration and absolute zeta potential were gradually decreased as the time prolongs. 6-OHDA increased amphetamine-induced rotations and loss of dopaminergic neurons as compared to sham group. Interestingly, PLs-GDNF-MBs or PLs-Nurr1-MBs decreased rotations and increased the TH and DAT immunoreactivity. Combined of both genes resulted in a robust reduction in the rotations and a greater increase of the dopaminergic neurons. The delivery of PLs-GDNF + Nurr1-MBs into the brains using magnetic resonance imaging (MRI)-guided focused ultrasound may be more efficacious for the treatment of PD than the single treatment. © 2017 Wiley Periodicals, Inc.

  20. Prevention of palmar-plantar erythrodysesthesia with an antiperspirant in breast cancer patients treated with pegylated liposomal doxorubicin (SAKK 92/08).

    PubMed

    Templeton, Arnoud J; Ribi, Karin; Surber, Christian; Sun, Hong; Hsu Schmitz, Shu-Fang; Beyeler, Michael; Dietrich, Daniel; Borner, Markus; Winkler, Annette; Müller, Andreas; von Rohr, Lukas; Winterhalder, Ralph C; Rochlitz, Christoph; von Moos, Roger; Zaman, Khalil; Thürlimann, Beat J K; Ruhstaller, Thomas

    2014-06-01

    Elevated concentrations of doxorubicin are found in eccrine sweat glands of the palms and soles. We therefore evaluated an antiperspirant as preventive treatment for palmar-plantar erythrodysesthesia (hand-foot syndrome) in patients with metastatic breast cancer treated with pegylated liposomal doxorubicin. An antiperspirant containing aluminum chlorohydrate or placebo cream was applied to the left or right hand and foot in a double-blinded manner (intra-patient randomization). The primary endpoint was the rate of grade 2 or 3 palmar-plantar erythrodysesthesia. A secondary endpoint was the patient-reported symptom burden (tingling, numbness, pain, or skin problems). Using McNemar's matched pairs design, 53 patients were needed to detect a 20% difference between the treatment and placebo sides with a significance level of 5% and power of 90%. Grade 2 or 3 PPE occurred in 30 (58%) of 52 evaluable patients; in six patients adverse effects occurred on the placebo side but not on the treatment side, whereas one patient developed palmar-plantar erythrodysesthesia on the treatment side only (P = 0.07). Four patients developed grade 2 or 3 palmar-plantar erythrodysesthesia on their foot on the placebo side but not on the treatment side (P = 0.05). In the cohort with grade 2 or 3 palmar-plantar erythrodysesthesia there was a trend towards fewer dermatologic symptomatologies with the active treatment (P = 0.05), and no difference for other adverse events. Using topical aluminum chlorohydrate as an antiperspirant appears to reduce the incidence of grade 2 or 3 palmar-plantar erythrodysesthesia following pegylated liposomal doxorubicin chemotherapy for metastatic breast cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Marked improvement of thrombocytopenia in a murine model of idiopathic thrombocytopenic purpura by pegylated recombinant human megakaryocyte growth and development factor.

    PubMed

    Shibuya, Kazunori; Kuwaki, Tomoaki; Tahara, Emiko; Yuki, Chizuru; Akahori, Hiromichi; Kato, Takashi; Miyazaki, Hiroshi

    2002-10-01

    We examined the stimulatory effect of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) on platelet production in male (NZW x BXSB) F(l) (W/B F(1)) mice, a murine model of idiopathic thrombocytopenic purpura. A cohort of 19- to 25-week-old, severely thrombocytopenic male W/B F(1) mice were given PEG-rHuMGDF at different dosing schedules. Before and at various times after therapy, platelet counts, reticulated platelets, platelet lifespan, and levels of platelet-associated immunoglobulin G were measured. Analysis of megakaryocytic cells was performed. Treatment of male W/B F(1) mice with PEG-rHuMGDF (30 microg/kg/day) three times per week for several weeks resulted in sustained thrombocytosis, accompanied by increased megakaryocytopoiesis in both the bone marrow and spleen. The degree of the platelet response to PEG-rHuMGDF varied between individual mice, likely reflecting the heterogeneity of the disease. Production of new platelets in response to PEG-rHuMGDF was manifested by an increase in reticulated platelets. Levels of platelet-associated immunoglobulin G decreased inversely during periods of thrombocytosis. PEG-rHuMGDF therapy also improved thrombocytopenia in male W/B F(1) mice refractory to splenectomy. Platelet lifespan was not affected by PEG-rHuMGDF. Male W/B F(1) mice treated with pegylated murine MGDF, a homologue of PEG-rHuMGDF, had persistent thrombocytosis for at least 7 months, suggesting that antiplatelet antibody production was not enhanced. PEG-rHuMGDF therapy potently stimulated platelet production, effectively ameliorating thrombocytopenia in a murine model of idiopathic thrombocytopenic purpura.

  2. Analyzing the influence of PEG molecular weight on the separation of PEGylated gold nanoparticles by asymmetric-flow field-flow fractionation.

    PubMed

    Hansen, Matthew; Smith, Mackensie C; Crist, Rachael M; Clogston, Jeffrey D; McNeil, Scott E

    2015-11-01

    Polyethylene glycol (PEG) is an important tool for increasing the biocompatibility of nanoparticle therapeutics. Understanding how these potential nanomedicines will react after they have been introduced into the bloodstream is a critical component of the preclinical evaluation process. Hence, it is paramount that better methods for separating, characterizing, and analyzing these complex and polydisperse formulations are developed. We present a method for separating nominal 30-nm gold nanoparticles coated with various molecular weight PEG moieties that uses only phosphate-buffered saline as the mobile phase, without the need for stabilizing surfactants. The optimized asymmetric-flow field-flow fractionation technique using in-line multiangle light scattering, dynamic light scattering, refractive index, and UV-vis detectors allowed successful separation and detection of a mixture of nanoparticles coated with 2-, 5-, 10-, and 20-kDa PEG. The particles coated with the larger PEG species (10 and 20 kDa) were eluted at times significantly earlier than predicted by field-flow fractionation theory. This was attributed to a lower-density PEG shell for the higher molecular weight PEGylated nanoparticles, which allows a more fluid PEG surface that can be greater influenced by external forces. Hence, the apparent particle hydrodynamic size may fluctuate significantly depending on the overall density of the stabilizing surface coating when an external force is applied. This has considerable implications for PEGylated nanoparticles intended for in vivo application, as nanoparticle size is important for determining circulation times, accumulation sites, and routes of excretion, and highlights the importance and value of the use of secondary size detectors when one is working with complex samples in asymmetric-flow field-flow fractionation.

  3. Changes in Fasting Plasma Glucose Levels with Ribavirin and Pegylated Interferon Treatment in Normal and Impaired Glucose Tolerant Patients with Chronic Hepatitis C

    PubMed Central

    Sarasombath, Ongkarn; Suwantarat, Nuntra; Tice, Alan D

    2012-01-01

    Background Patients with Hepatitis C Virus (HCV) infection have increased rates of glucose intolerance, and studies have shown the improvement of fasting plasma glucose (FPG) levels after clearance of HCV infection with standard ribavirin plus pegylated interferon treatment. The purpose of this study was to examine glycemic changes with standard HCV treatment in patients with impaired fasting glucose (IFG) and normal fasting glucose (NFG). Methods A retrospective study of FPG changes in HCV patients with IFG and NFG treated with standard HCV therapy was conducted. Baseline characteristics and viral responses were assessed; FPG levels before treatment, at the end of treatment, and more than one-month post treatment were compared. Results The mean FPG levels increased by 8.68 mg/dl at the end of treatment in the NFG group but decreased by 9.0 mg/dl in the IFG group, a statistically significant difference (P=0.019). The change in FPG levels remained significantly different after adjusting for weight change (P=0.009) and weight changes and initial weight (P=0.039). FPG change from baseline at more than one month after treatment were similar in both groups (P=0.145). The change in FPG levels was not associated with sustained viral response. Conclusions In HCV-infected patients, standard ribavirin plus pegylated interferon treatment reduced FPG levels in patients with IFG and increased FPG levels in NFG individuals; independent of initial weight, weight change, or viral response. Standard HCV treatment modulates fasting plasma glucose levels which supports the need for a prospective study to determine the clinical significance of this finding. PMID:22737650

  4. One-pot synthesis of pegylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents.

    PubMed

    Lutz, Jean-François; Stiller, Sabrina; Hoth, Ann; Kaufner, Lutz; Pison, Ulrich; Cartier, Régis

    2006-11-01

    A well-defined copolymer poly(oligo(ethylene glycol) methacrylate-co-methacrylic acid) P(OEGMA-co-MAA) was studied as a novel water-soluble biocompatible coating for superparamagnetic iron oxide nanoparticles. This copolymer was prepared via a two-step procedure: a well-defined precursor poly(oligo(ethylene glycol) methacrylate-co-tert-butyl methacrylate), P(OEGMA-co-tBMA) (M(n) = 17300 g mol(-1); M(w)/M(n) = 1.22), was first synthesized by atom-transfer radical polymerization in the presence of the catalyst system copper(I) chloride/2,2'-bipyridyl and subsequently selectively hydrolyzed in acidic conditions. The resulting P(OEGMA-co-MAA) was directly utilized as a polymeric stabilizer in the nanoparticle synthesis. Four batches of ultrasmall PEGylated magnetite nanoparticles (i.e., with an average diameter below 30 nm) were prepared via aqueous coprecipitation of iron salts in the presence of variable amounts of P(OEGMA-co-MAA). The diameter of the nanoparticles could be easily tuned in the range 10-25 nm by varying the initial copolymer concentration. Moreover, the formed PEGylated ferrofluids exhibited a long-term colloidal stability in physiological buffer and could therefore be studied in vivo by magnetic resonance (MR) imaging. Intravenous injection into rats showed no detectable signal in the liver within the first 2 h. Maximum liver accumulation was found after 6 h, suggesting a prolongated circulation of the nanoparticles in the bloodstream as compared to conventional MR imaging contrast agents.

  5. PEGylated (NH4)xWO3 nanorods as efficient and stable multifunctional nanoagents for simultaneous CT imaging and photothermal therapy of tumor.

    PubMed

    Macharia, Daniel K; Tian, Qiyun; Chen, Liang; Sun, Yingqi; Yu, Nuo; He, Chuanglong; Wang, Han; Chen, Zhigang

    2017-09-01

    The simultaneous imaging and photothermal therapy of tumors have attracted much attention, and a prerequisite is to obtain multifunctional nanomaterials. Ideally, one kind of nanoparticles with single component can be used as both imaging agent and photothermal agent. Herein, we have developed the PEGylated (NH 4 ) x WO 3 (denoted as (NH 4 ) x WO 3 -PEG) nanorods as multifunctional nanoparticles with single semiconductor component. (NH 4 ) x WO 3 -PEG nanorods with about 30nm diameter and length of several hundred nanometers have been obtained through a solvothermal synthesis-PEGylation two-step route. Under the irradiation of 980-nm laser with intensity of 0.72Wcm -2 , aqueous dispersion of (NH 4 ) x WO 3 -PEG nanorods (0.67-5.44mmol/L) displays high elevation (17.6-34.5°C) of temperature in 400s, accompanied by an excellent long-term photothermal stability. Furthermore, (NH 4 ) x WO 3 -PEG nanorods exhibit as high as 6 times X-ray attenuation ability compared to that of the clinically used iodine-based X-ray computed tomography (CT) contrast agent (Iopromide). More importantly, after PBS solution of (NH 4 ) x WO 3 -PEG nanorods is injected into the tumor of mice, the tumor can be effectively detected by CT imaging. Moreover, cancer cells in vivo can be further destroyed by the photothermal effects of (NH 4 ) x WO 3 -PEG nanorods, under the irradiation of 980-nm laser with the safe intensity of 0.72Wcm -2 for 10min. Therefore, (NH 4 ) x WO 3 -PEG nanorods can be used as a new kind of stable and efficient multifunctional nanoagent with single component for simultaneous CT imaging and photothermal therapy of tumor. Copyright © 2017. Published by Elsevier B.V.

  6. Impact of a product-specific reference standard for the measurement of a PEGylated rFVIII activity: the Swiss Multicentre Field Study.

    PubMed

    Bulla, O; Poncet, A; Alberio, L; Asmis, L M; Gähler, A; Graf, L; Nagler, M; Studt, J-D; Tsakiris, D A; Fontana, P

    2017-07-01

    Measuring factor VIII (FVIII) activity can be challenging when it has been modified, such as when FVIII is pegylated to increase its circulating half-life. Use of a product-specific reference standard may help avoid this issue. Evaluate the impact of using a product-specific reference standard for measuring the FVIII activity of BAX 855 - a pegylated FVIII - in eight of Switzerland's main laboratories. Factor VIII-deficient plasma, spiked with five different concentrations of BAX 855, plus a control FVIII sample, was sent to the participating laboratories. They measured FVIII activity by using either with a one-stage (OSA) or the chromogenic assay (CA) against their local or a product-specific reference standard. When using a local reference standard, there was an overestimation of BAX 855 activity compared to the target concentrations, both with the OSA and CA. The use of a product-specific reference standard reduced this effect: mean recovery ranged from 127.7% to 213.5% using the OSA with local reference standards, compared to 110% to 183.8% with a product-specific reference standard, and from 146.3% to 182.4% using the CA with local reference standards compared to 72.7% to 103.7% with a product-specific reference standard. In this in vitro study, the type of reference standard had a major impact on the measurement of BAX 855 activity. Evaluation was more accurate and precise when using a product-specific reference standard. © 2017 John Wiley & Sons Ltd.

  7. Development and evaluation of bevacizumab-modified pegylated cationic liposomes using cellular and in vivo models of human pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Kuesters, Geoffrey M.

    Targeting the tumor vascular supply in a homogenous manner is a difficult task to achieve with the use of pegylated cationic liposomes (PCLs) alone. Our formulation consisting of bevacizumab conjugated to the distal end of PEG on PCLs was thus developed in an effort to eliminate some of this heterogeneity as well as to increase tumor targeting overall. This study focuses on pancreatic cancer, which has the poorest five-year survival rate of all cancers because of its late diagnosis. The addition of bevacizumab will target tumor areas because it binds to VEGF which is secreted by tumors in high levels. In vitro, we showed that pancreatic cancer cells (Capan-1, HPAF-II and PANC-1) all secrete VEGF into media at different levels, with Capan-1 producing the most and HPAF-II producing the least. A murine endothelial cell line, MS1-VEGF, produces and secretes the most VEGF. A human microvascular endothelial cell line (HMEC-1) was grown in two different conditions, with and without VEGF in the media. Modifying PCLs with bevacizumab enhanced the binding and uptake of PCLs by some pancreatic and endothelial cells in vitro, particularly the cells that had or secreted the most significant amount of VEGF in the media. This translated into enhanced tumor targeting in a biodistribution study using a Capan-1 subcutaneous pancreatic tumor model. This also showed enhanced blood retention compared to the unmodified PCLs while it diminished uptake by the spleen and increased uptake by the kidney. To test the therapeutic benefit of this enhanced uptake and targeting, an anti-angiogenic agent, 2-methoxyestradiol was incorporated into the formulation with 20% incorporation efficiency. Both the unmodified and modified drug-loaded PCLs were the least efficacious against Capan-1, moderately effective against HPAF-II, PANC-1, MS1-VEGF and HMEC-1 grown without VEGF in the media and most efficacious against HMEC-1 grown with VEGF which had the most VEGF present in the media. Multiple in vivo

  8. MSAll strategy for comprehensive quantitative analysis of PEGylated-doxorubicin, PEG and doxorubicin by LC-high resolution q-q-TOF mass spectrometry coupled with all window acquisition of all fragment ion spectra.

    PubMed

    Yin, Lei; Su, Chong; Ren, Tianming; Meng, Xiangjun; Shi, Meiyun; Paul Fawcett, J; Zhang, Mengliang; Hu, Wei; Gu, Jingkai

    2017-11-06

    The covalent attachment of polyethylene glycol (PEG) to therapeutic compounds (known as PEGylation) is one of the most promising techniques to improve the biological efficacy of small molecular weight drugs. After administration, PEGylated prodrugs can be metabolized into pharmacologically active compounds so that PEGylated drug, free drug and released PEG are present simultaneously in the body. Understanding the pharmacokinetic behavior of these three compounds is needed to guide the development of pegylated theranostic agents. However, PEGs are polydisperse molecules with a wide range of molecular weights, so that the simultaneous quantitation of PEGs and PEGylated molecules in biological matrices is very challenging. This article reports the application of a data-independent acquisition method (MS All ) based on liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-q-q-TOF-MS) in the positive ion mode to the simultaneous determination of methoxyPEG2000-doxorubicin (mPEG2K-Dox) and its breakdown products in rat blood. Using the MS All technique, precursor ions of all molecules are generated in q1, fragmented to product ions in q2 (collision cell), and subjected to TOF separation before precursor and product ions are recorded using low and high collision energies (CE) respectively in different experiments for a single sample injection. In this study, dissociation in q2 generated a series of high resolution PEG-related product ions at m/z 89.0611, 133.0869, 177.1102, 221.1366, 265.1622, 309.1878, and 353.2108 corresponding to fragments containing various numbers of ethylene oxide subunits, Dox-related product ions at m/z 321.0838 and 361.0785, and an mPEG2K-Dox specific product ion at m/z 365.0735. Detection of mPEGs and mPEG2K-Dox was based on high resolution extracted ions of mPEG and the specific compound. The method was successfully applied to a pharmacokinetic study of doxorubicin, mPEG2K (methylated polyethylene glycol

  9. Supramolecular PEGylation of biopharmaceuticals

    PubMed Central

    Webber, Matthew J.; Vinciguerra, Brittany; Cortinas, Abel B.; Thapa, Lavanya S.; Jhunjhunwala, Siddharth; Isaacs, Lyle; Langer, Robert; Anderson, Daniel G.

    2016-01-01

    The covalent modification of therapeutic biomolecules has been broadly explored, leading to a number of clinically approved modified protein drugs. These modifications are typically intended to address challenges arising in biopharmaceutical practice by promoting improved stability and shelf life of therapeutic proteins in formulation, or modifying pharmacokinetics in the body. Toward these objectives, covalent modification with poly(ethylene glycol) (PEG) has been a common direction. Here, a platform approach to biopharmaceutical modification is described that relies on noncovalent, supramolecular host–guest interactions to endow proteins with prosthetic functionality. Specifically, a series of cucurbit[7]uril (CB[7])–PEG conjugates are shown to substantially increase the stability of three distinct protein drugs in formulation. Leveraging the known and high-affinity interaction between CB[7] and an N-terminal aromatic residue on one specific protein drug, insulin, further results in altering of its pharmacological properties in vivo by extending activity in a manner dependent on molecular weight of the attached PEG chain. Supramolecular modification of therapeutic proteins affords a noncovalent route to modify its properties, improving protein stability and activity as a formulation excipient. Furthermore, this offers a modular approach to append functionality to biopharmaceuticals by noncovalent modification with other molecules or polymers, for applications in formulation or therapy. PMID:27911829

  10. Comparison of hiking stick use on lateral stability while balancing with and without a load.

    PubMed

    Jacobson, B H; Caldwell, B; Kulling, F A

    1997-08-01

    To compare hiking stick use on lateral stability while balancing with or without a load (15-kg internal frame backpack) under conditions of no stick, 1 stick, and 2 sticks for six trials 15 volunteers ages 19 to 23 years (M = 21.7 yr.) were tested six separate times on a stability platform. During randomly ordered, 1-min. trials, the length of time (sec.) the subject maintained balance (+/-10 degrees of horizontal) and the number of deviations beyond 10 degrees were recorded simultaneously. Backpack and hiking sticks were individually adjusted for each subject. A 2 x 3 repeated factor analysis of variance indicated that subjects balanced significantly longer both with and without a load while using 2 hiking sticks than 1 or 0 sticks. Significantly fewer deviations beyond 10 degrees were found when subjects were without a load and using 1 or 2 sticks versus when they used none, and no significant difference in the number of deviations were found between 1 and 2 hiking sticks. When subjects were equipped with a load, significantly improved balance was found only between the 2 sticks and no sticks. Balance was significantly enhanced by using hiking sticks, and two sticks were more effective than one while carrying a load. An increase in maintenance of static balance may reduce the possibility of falling and injury while standing on loose alpine terrain.

  11. 7 CFR 1710.202 - Requirement to prepare a load forecast-power supply borrowers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Requirement to prepare a load forecast-power supply...—power supply borrowers. (a) A power supply borrower with a total utility plant of $500 million or more... be prepared pursuant to the approved load forecast work plan. (b) A power supply borrower that is a...

  12. 7 CFR 1710.203 - Requirement to prepare a load forecast-distribution borrowers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Requirement to prepare a load forecast-distribution borrowers. 1710.203 Section 1710.203 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Load...

  13. 7 CFR 1710.202 - Requirement to prepare a load forecast-power supply borrowers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Requirement to prepare a load forecast-power supply borrowers. 1710.202 Section 1710.202 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Load...

  14. Relation between coordinate systems describing the dynamics of a loaded Stewart platform

    NASA Astrophysics Data System (ADS)

    Petrova, V. I.

    2018-05-01

    The paper puts forward formulae for transformation of coordinates in three coordinate frames used for the study of motion of a loaded Stewart platform, which is the central mechanism of the dynamic bench. A new method for finding the law of variation of coordinates is proposed. This method depends on solving the problem-specific system of differential equations.

  15. Combined Therapy of Pegylated G-CSF and Alxn4100TPO Improves Survival and Mitigates Acute Radiation Syndrome after Whole-Body Ionizing Irradiation Alone and Followed by Wound Trauma.

    PubMed

    Kiang, Juliann G; Zhai, Min; Bolduc, David L; Smith, Joan T; Anderson, Marsha N; Ho, Connie; Lin, Bin; Jiang, Suping

    2017-11-01

    Exposure to ionizing radiation alone or combined with traumatic tissue injury is a crucial life-threatening factor in nuclear and radiological incidents. Radiation injuries occur at the molecular, cellular, tissue and systemic levels; their mechanisms, however, remain largely unclear. Exposure to radiation combined with skin wounding, bacterial infection or burns results in greater mortality than radiation exposure alone in dogs, pigs, rats, guinea pigs and mice. In the current study we observed that B6D2F1/J female mice exposed to 60 Co gamma-photon radiation followed by 15% total-body-surface-area skin wounds experienced an increment of 25% higher mortality over a 30-day observation period compared to those subjected to radiation alone. Radiation exposure delayed wound healing by approximately 14 days. On day 30 post-injury, bone marrow and ileum in animals from both groups (radiation alone or combined injury) still displayed low cellularity and structural damage. White blood cell counts, e.g., neutrophils, lymphocytes, monocytes, eosinophils, basophils and platelets, still remained very low in surviving irradiated alone animals, whereas only the lymphocyte count was low in surviving combined injury animals. Likewise, in surviving animals from radiation alone and combined injury groups, the RBCs, hemoglobin, hematocrit and platelets remained low. We observed, that animals treated with both pegylated G-CSF (a cytokine for neutrophil maturation and mobilization) and Alxn4100TPO (a thrombopoietin receptor agonist) at 4 h postirradiation, a 95% survival (vehicle: 60%) over the 30-day period, along with mitigated body-weight loss and significantly reduced acute radiation syndrome. In animals that received combined treatment of radiation and injury that received pegylated G-CSF and Alxn4100TPO, survival was increased from 35% to 55%, but did not accelerate wound healing. Hematopoiesis and ileum showed significant improvement in animals from both groups (irradiation

  16. Performance of women with fibromyalgia in walking up stairs while carrying a load.

    PubMed

    Collado-Mateo, Daniel; Adsuar, José C; Olivares, Pedro R; Dominguez-Muñoz, Francisco J; Maestre-Cascales, Cristina; Gusi, Narcis

    2016-01-01

    Background. Fibromyalgia is a chronic disease characterized by widespread pain and other associated symptoms. It has a relevant impact on physical fitness and the ability to perform daily living tasks. The objective of the study was to analyze the step-by-step-performance and the trunk tilt of women with fibromyalgia in the 10-step stair climbing test compared with healthy controls. Methods. A cross-sectional study was carried out. Twelve women suffering from fibromyalgia and eight healthy controls were recruited from a local association. Participants were asked to climb 10 stairs without carrying a load and 10 stairs carrying a load of 5 kg in each hand. Mediolateral trunk tilt was assessed using the "Functional Assessment of Biomechanics (FAB)" wireless motion capture device, and the time between steps was assessed via weight-bearing insoles. Results. Trunk tilt in the stair-climbing task carrying a load was significantly higher in women with fibromyalgia when compared to the healthy controls (2.31 (0.63) vs. 1.69 (0.51) respectively). The effect of carrying a load was significantly higher for women with fibromyalgia compared with healthy controls at the intermediate and final part of the task. Discussion. Trunk tilt during stair climbing while carrying a load was higher in women with FM, which could increase the risk of falling. Additionally, women with FM experienced a higher pace slowdown as a consequence of the load, which supports the need of including specific strength and resistance training to physical therapies for this population.

  17. Performance of women with fibromyalgia in walking up stairs while carrying a load

    PubMed Central

    Adsuar, José C.; Olivares, Pedro R.; Dominguez-Muñoz, Francisco J.; Maestre-Cascales, Cristina; Gusi, Narcis

    2016-01-01

    Background. Fibromyalgia is a chronic disease characterized by widespread pain and other associated symptoms. It has a relevant impact on physical fitness and the ability to perform daily living tasks. The objective of the study was to analyze the step-by-step-performance and the trunk tilt of women with fibromyalgia in the 10-step stair climbing test compared with healthy controls. Methods. A cross-sectional study was carried out. Twelve women suffering from fibromyalgia and eight healthy controls were recruited from a local association. Participants were asked to climb 10 stairs without carrying a load and 10 stairs carrying a load of 5 kg in each hand. Mediolateral trunk tilt was assessed using the “Functional Assessment of Biomechanics (FAB)” wireless motion capture device, and the time between steps was assessed via weight-bearing insoles. Results. Trunk tilt in the stair-climbing task carrying a load was significantly higher in women with fibromyalgia when compared to the healthy controls (2.31 (0.63) vs. 1.69 (0.51) respectively). The effect of carrying a load was significantly higher for women with fibromyalgia compared with healthy controls at the intermediate and final part of the task. Discussion. Trunk tilt during stair climbing while carrying a load was higher in women with FM, which could increase the risk of falling. Additionally, women with FM experienced a higher pace slowdown as a consequence of the load, which supports the need of including specific strength and resistance training to physical therapies for this population. PMID:26855878

  18. Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: implications for cancer gene therapy.

    PubMed

    Walsh, M; Tangney, M; O'Neill, M J; Larkin, J O; Soden, D M; McKenna, S L; Darcy, R; O'Sullivan, G C; O'Driscoll, C M

    2006-01-01

    Recent success in phase I/II clinical trials (Konstan, M. W.; Davis, P. B.; Wagener, J. S.; Hilliard, K. A.; Stern, R. C.; Milgram, L. J.; Kowalczyk, T. H.; Hyatt, S. L.; Fink, T. L.; Gedeon, C. R.; Oette, S. M.; Payne, J. M.; Muhammad, O.; Ziady, A. G.; Moen, R. C.; Cooper, M. J. Hum. Gene Ther. 2004, 15 (12), 1255-69) has highlighted pegylated poly-L-lysine (C1K30-PEG) as a nonviral gene delivery agent capable of achieving clinically significant gene transfer levels in vivo. This study investigates the potential of a C1K30-PEG gene delivery system for cancer gene therapy and evaluates its mode of cellular entry with the purpose of developing an optimally formulated prototype for tumor cell transfection. C1K30-PEG complexes have a neutral charge and form rod-like and toroid-like nanoparticles. Comparison of the transfection efficiency achieved by C1K30-PEG with other cationic lipid and polymeric vectors demonstrates that C1K30-PEG transfects cells more efficiently than unpegylated poly-L-lysine and compares well to commercially available vectors. In vivo gene delivery by C1K30-PEG nanoparticles to a growing subcutaneous murine tumor was also demonstrated. To determine potential barriers to C1K30-PEG gene delivery, the entry mechanism and intracellular fate of rhodamine labeled complexes were investigated. Using cellular markers to delineate the pathway taken by the complexes upon cellular entry, only minor colocalization was observed with EEA-1, a marker of early endosomes. No colocalization was observed between the complexes and the transferrin receptor, which is a marker for clathrin-coated pits. In addition, complexes were not observed to enter late endosomes/lysosomes. Cellular entry of the complexes was completely inhibited by the macropinocytosis inhibitor, amiloride, indicating that the complexes enter cells via macropinosomes. Such mechanistic studies are an essential step to support future rational design of pegylated poly-L-lysine vectors to improve the

  19. PEGylated graphene oxide-mediated quercetin-modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing.

    PubMed

    Chu, Jing; Shi, Panpan; Yan, Wenxia; Fu, Jinping; Yang, Zhi; He, Chengmin; Deng, Xiaoyuan; Liu, Hanping

    2018-05-24

    Nanoscale delivery based on polyethylene glycol (PEG)ylated graphene oxide (GO-PEG) merits attention for biomedical applications owing to its functional surface modification, superior solubility/biocompatibility and controllable drug release capability. However, impaired skin regeneration in applications of these fascinating nanomaterials in diabetes is still limited, and critical issues need to be addressed regarding insufficient collagen hyperplasia and inadequate blood supply. Therefore, a high-performance tissue engineering scaffold with biocompatible and biodegradable properties is essential for diabetic wound healing. Natural and artificial acellular dermal matrix (ADM) scaffolds with spatially organized collagen fibers can provide a suitable architecture and environment for cell attachment and proliferation. Here, a novel collagen-nanomaterial-drug hybrid scaffold was constructed from GO-PEG-mediated quercetin (GO-PEG/Que)-modified ADM (ADM-GO-PEG/Que). The resulting unique and versatile hybrid scaffold exhibited multiple advantages, including the following: a biocompatible, cell-adhesive surface for accelerating mesenchymal stem cell (MSC) attachment and proliferation; superior stability and adjustability of the conduction potential of quercetin for inducing the differentiation of MSCs into adipocytes and osteoblasts; and a biodegradable nanofiber interface for promoting collagen deposition and angiogenesis in diabetic wound repair. This study provides new prospects for the design of innovative GO-PEG-based collagen hybrid scaffolds for application in efficient therapeutic drug delivery, stem cell-based therapies, tissue engineering and regenerative medicine.

  20. Efficient mobilization of haematopoietic progenitors after a single injection of pegylated recombinant human granulocyte colony-stimulating factor in mouse strains with distinct marrow-cell pool sizes.

    PubMed

    de Haan, G; Ausema, A; Wilkens, M; Molineux, G; Dontje, B

    2000-09-01

    We have compared the efficacy of a single injection of SD/01, a newly engineered, pegylated form of recombinant human granulocyte colony stimulating factor (rhG-CSF), with a single injection of glycosylated rhG-CSF (Filgrastim). SD/01 was administered to regular and recombinant inbred strains of mice (AKR, C57L/J, DBA/2, C57BL/6, AKXL) known to have widely distinct marrow-cell pool sizes and proliferation kinetics. A single injection of G-CSF was unable to mobilize granulocyte-macrophage colony-forming units (CFU-GM). In sharp contrast, a single dose of SD/01 resulted in massive mobilization of progenitors and stem cells. Although all mice strains showed qualitatively similar mobilization responses, large interstrain differences remained. C57L and C57BL/6 mice mobilized relatively poorly, whereas AKR and DBA/2 mice showed threefold to tenfold superior responses. In order to explain these different phenotypes, we studied the effects of SD/01 in nine AKXL recombinant inbred strains, derived from well-responding AKR and poorly responding C57L parental strains. The best predictor for SD/01 responsiveness in these strains was marrow cellularity prior to mobilization. Comparison of the AKXL strain distribution pattern for marrow cellularity with loci previously mapped in these strains showed complete concordance with Aat, a serine protease inhibitor mapping to chromosome 12.

  1. Enhancing the efficiency of bortezomib conjugated to pegylated gold nanoparticles: an in vitro study on human pancreatic cancer cells and adenocarcinoma human lung alveolar basal epithelial cells.

    PubMed

    Coelho, Sílvia Castro; Almeida, Gabriela M; Santos-Silva, Filipe; Pereira, Maria Carmo; Coelho, Manuel A N

    2016-08-01

    Gold nanoparticles have become promising vectors for cancer diagnosis and treatment. The present study investigates the effect of bortezomib (BTZ), a proteasome inhibitor, conjugated with pegylated gold nanoparticles (PEGAuNPs) in pancreatic and lung cancer cells. Synthesized gold nanoparticles (PEGAuNPs) were conjugated with bortezomib antitumor drug. We investigated the cytotoxicity induced by BTZ conjugated with functionalized gold nanoparticles in vitro, in the human pancreatic (S2-013) and lung (A549) cancer cell lines. We found an efficient of conjugation of BTZ with PEGAuNPs. In vitro assays showed that after 72 h' incubation with PEGAuNPs-BTZ cancer cells revealed alterations in morphology; also for S2-013 and A549 cancer cells, the IC50 value of free BTZ is respectively 1.5 and 4.3 times higher than the IC50 value of PEGAuNPs-BTZ. Furthermore, for TERT-HPNE, the IC50 value is around 63 times lower for free BTZ than the conjugated nanovehicle. Cell growth inhibition results showed a remarkable enhancement in the effect of BTZ when conjugated with AuNPs. Our findings showed that conjugation with PEGAuNPs enhance the BTZ growth-inhibition effect on human cancer cells (S2-013 and A549) and decreases its toxicity against normal cells (TERT-HPNE).

  2. Pegylated Interferon α-2a Triggers NK-Cell Functionality and Specific T-Cell Responses in Patients with Chronic HBV Infection without HBsAg Seroconversion

    PubMed Central

    Bruder Costa, Juliana; Dufeu-Duchesne, Tania; Leroy, Vincent; Bertucci, Inga; Bouvier-Alias, Magali; Pouget, Noelle; Brevot-Lutton, Ophelie; Bourliere, Marc; Zoulim, Fabien

    2016-01-01

    Pegylated interferon α-2a (Peg-IFN-α) represents a therapeutic alternative to the prolonged use of nucleos(t)ide analog (NA) in chronic hepatitis B (CHB) infection. The mechanisms leading to a positive clinical outcome remain unclear. As immune responses are critical for virus control, we investigated the effects of Peg-IFN-α on both innate and adaptive immunity, and related it to the clinical evolution. The phenotypic and functional features of the dendritic cells (DCs), natural killer (NK) cells and HBV-specific CD4/CD8 T cells were analyzed in HBeAg-negative CHB patients treated for 48-weeks with NA alone or together with Peg-IFN-α, before, during and up to 2-years after therapy. Peg-IFN-α induced an early activation of DCs, a potent expansion of the CD56bright NK subset, and enhanced the activation and functionality of the CD56dim NK subset. Peg-IFN-α triggered an increase in the frequencies of Th1- and Th17-oriented HBV-specific CD4/CD8 T cells. Peg-IFN-α reversed the unresponsiveness of patients to a specific stimulation. Most of the parameters returned to baseline after the stop of Peg-IFN-α therapy. Peg-IFN-α impacts both innate and adaptive immunity, overcoming dysfunctional immune responses in CHB patients. These modulations were not associated with seroconversion, which questioned the benefit of the add-on Peg-IFN-α treatment. PMID:27348813

  3. Tat peptide and hexadecylphosphocholine introduction into pegylated liposomal doxorubicin: An in vitro and in vivo study on drug cellular delivery, release, biodistribution and antitumor activity.

    PubMed

    Teymouri, Manouchehr; Badiee, Ali; Golmohammadzadeh, Shiva; Sadri, Kayvan; Akhtari, Javad; Mellat, Mostafa; Nikpoor, Amin Reza; Jaafari, Mahmoud Reza

    2016-09-10

    We have investigated the co-addition of hexadecylphosphocholine (HePC) and a Tat derived peptide (Tat), coupled to Maleimide-PEG2000-DSPE pegylated liposomal doxorubicin (PLD) in many respects, including drug and liposome cellular delivery, drug release, biodistribution, in vivo cell delivery and antitumor activity. The liposomes were HePC-free and -containing liposomes, from which liposomes with 25, 50, 100 and 200 numbers of Tat/liposome were prepared. Similarly, DiI-C18 (3)-model liposomes (DiI-L and DiI-HePC-L) were prepared. HePC and Tat increased cellular delivery of Dox and cytotoxicity in B16F0 melanoma and C26 colon carcinoma cells. Tat enhanced liposome-cell interaction and caused Dox burst release. HePC and Tat reduced the serum retention time of liposomal Dox, slightly and dramatically, respectively. In comparison, Tat-liposomes enhanced Dox delivery to liver and spleen cells 3h post-injection. Likewise, Dox content of these tissues and tumor was lower at 24h. The naïve liposomes retarded tumor growth more effectively and their related median survival time of the treated C26 bearing BALB/c mice was longer than those of Tat-liposomes (MST>45days versus MST<38days). Overall liposomes exhibiting sustained drug release and negligible cell interaction were more suitable delivery systems in targeting cancerous tumors and suppressing their growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells

    NASA Astrophysics Data System (ADS)

    Pozzi, Daniela; Colapicchioni, Valentina; Caracciolo, Giulio; Piovesana, Susy; Capriotti, Anna Laura; Palchetti, Sara; de Grossi, Stefania; Riccioli, Anna; Amenitsch, Heinz; Laganà, Aldo

    2014-02-01

    When nanoparticles (NPs) enter a physiological environment, medium components compete for binding to the NP surface leading to formation of a rich protein shell known as the ``protein corona''. Unfortunately, opsonins are also adsorbed. These proteins are immediately recognized by the phagocyte system with rapid clearance of the NPs from the bloodstream. Polyethyleneglycol (PEG) coating of NPs (PEGylation) is the most efficient anti-opsonization strategy. Linear chains of PEG, grafted onto the NP surface, are able to create steric hindrance, resulting in a significant inhibition of protein adsorption and less recognition by macrophages. However, excessive PEGylation can lead to a strong inhibition of cellular uptake and less efficient binding with protein targets, reducing the potential of the delivery system. To reach a compromise in this regard we employed a multi-component (MC) lipid system with uncommon properties of cell uptake and endosomal escape and increasing length of PEG chains. Nano liquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS) analysis allowed us to accurately determine the corona composition showing that apolipoproteins are the most abundant class in the corona and that increasing the PEG length reduced the protein adsorption and the liposomal surface affinity for apolipoproteins. Due to the abundance of apolipoproteins, we exploited the ``protein corona effect'' to deliver cationic liposome-human plasma complexes to human prostate cancer PC3 cells that express a high level of scavenger receptor class B type 1 in order to evaluate the cellular uptake efficiency of the systems used. Combining laser scanning confocal microscopy with flow cytometry analysis in PC3 cells we demonstrated that MC-PEG2k is the best compromise between an anti-opsonization strategy and active targeting and could be a promising candidate to treat prostate cancer in vivo.When nanoparticles (NPs) enter a physiological environment, medium components

  5. Enhanced distribution and extended elimination of glycyrrhetinic acid in mice liver by mPEG-PLA modified (mPEGylated) liposome.

    PubMed

    Li, Juan; Yu, Hua; Li, Shuai; Wang, Guang Ji

    2010-04-06

    A rapid and simple method of high-performance liquid chromatography with UV detector for the quantification of glycyrrhetinic acid (GA) in mice plasma and tissues has been developed and validated. With the established assay method, the pharmacokinetic profiles and tissue distribution of GA in different formulations are compared in mice after intravenous administration of the drug (25mg/kg). The results showed that mPEG-PLA modified (mPEGylated) GA liposome (PL-GA) significantly prolonged the mean residence time (MRT) of GA in mice plasma and liver (MRT: 0.43+/-0.13 and 1.72+/-0.11h, respectively) than the normal GA liposome (L-GA) (MRT: 0.23+/-0.01 and 1.07+/-0.31h, respectively) and GA sodium injection (S-GA) (MRT: 0.13+/-0.01 and 0.95+/-0.08h, respectively). Moreover, PL-GA specifically increased GA uptake in liver (AUC(0-infinity,)(liver) value of 1.6-fold and 1.3-fold higher than that for S-GA and L-GA, respectively) and reduced its distribution into other tissues after dosing. Due to these pharmacokinetic properties, it may be promising to develop PL-GA further as a new pharmaceutical preparation for GA on the treatment of various chronic hepatic diseases. Copyright 2009. Published by Elsevier B.V.

  6. PEGylated lipid bilayer-wrapped nano-graphene oxides for synergistic co-delivery of doxorubicin and rapamycin to prevent drug resistance in cancers

    NASA Astrophysics Data System (ADS)

    Thapa, Raj Kumar; Byeon, Jeong Hoon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2017-07-01

    Nano-graphene oxide (nGO) is a carbon allotrope studied for its potential as carrier for chemotherapeutic delivery and its photoablation effects. However, interaction of nGO with blood components and the subsequent toxicities warrant a hybrid system for effective cancer drug delivery. Combination chemotherapy aids in effective cancer treatment and prevention of drug resistance. Therefore, in this study, we attempted to prepare polyethylene glycosylated (PEGylated) lipid bilayer-wrapped nGO co-loaded with doxorubicin (DOX) and rapamycin (RAPA), GOLDR, for the prevention and treatment of resistant cancers. Our results revealed a stable GOLDR formulation with appropriate particle size (∼170 nm), polydispersity (∼0.19) and drug loading. Free drug combination (DOX and RAPA) presented synergistic anticancer effects in MDA-MB-231, MCF-7, and BT474 cells. Treatment with GOLDR formulation maintained this synergism in treated cancer cells, which was further enhanced by the near infrared (NIR) laser irradiation-induced photothermal effects of nGO. Higher chromatin condensation and apoptotic body formation, and enhanced protein expression of apoptosis-related markers (Bax, p53, p21, and c-caspase 3) following GOLDR treatment in the presence of NIR laser treatment clearly suggests its superiority in effective chemo-photothermal therapy of resistant cancers. The hybrid nanosystem that we developed provides a basis for the effective use of GOLDR treatment in the prevention and treatment of resistant cancer types.

  7. Use of hyperbaric oxygen therapy and PEGylated carboxyhemoglobin bovine in a Jehovah's Witness with life-threatening anemia following postpartum hemorrhage.

    PubMed

    Thenuwara, K; Thomas, J; Ibsen, M; Ituk, U; Choi, K; Nickel, E; Goodheart, M J

    2017-02-01

    We present a case of a Jehovah's Witness patient who refused blood products, with the exception of albumin and clotting factors, and underwent cesarean section under spinal anesthesia complicated by postpartum hemorrhage. She was fluid resuscitated and treated with multiple uterotonics and internal iliac artery embolization. Because of agitation she required emergency tracheal intubation. Her hemoglobin concentration dropped from a preoperative value of 12mg/dL to 3mg/dL on postoperative day one. She was acidotic, requiring vasopressors for hemodynamic stability and remained ventilated and sedated. She was treated with daily erythropoietin, iron therapy and cyanocobalamin. Because of ongoing hemorrhage, continued acidemia and vasopressor requirements she was co-treated with PEGylated carboxyhemoglobin bovine and hyperbaric oxygen therapy to reverse her oxygen debt. On postoperative day eight her hemoglobin concentration was 7mg/dL, she was hemodynamically stable and vasopressors were discontinued. She was extubated and discharged from the intensive care unit on postoperative day eight. This report highlights the multiple modalities used in treating a severely anemic patient who refused blood, the use of an investigational new drug, the process of obtaining this drug via the United States Food and Drug Administration emergency expanded access regulation for single patient clinical treatment, and ethical dilemmas faced during treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study

    PubMed Central

    Zhang, Ting; Tang, Meng; Zhang, Shanshan; Hu, Yuanyuan; Li, Han; Zhang, Tao; Xue, Yuying; Pu, Yuepu

    2017-01-01

    The numerous increasing use of carbon nanotubes (CNTs) derived from nanotechnology has raised concerns about their biosafety and potential toxicity. CNTs cause immunologic dysfunction and limit the application of CNTs in biomedicine. The immunological responses induced by pristine multi-walled carbon nanotubes (p-MWCNTs) and PEGylated multi-walled carbon nanotubes (MWCNTs-PEG) on BALB/c mice via an intravenous administration were investigated. The results reflect that the p-MWCNTs induced significant increases in spleen, thymus, and lung weight. Mice treated with p-MWCNTs showed altered lymphocyte populations (CD3+, CD4+, CD8+, and CD19+) in peripheral blood and increased serum IgM and IgG levels, and splenic macrophage ultrastructure indicated mitochondria swelling. p-MWCNTs inhibited humoral and cellular immunity function and were associated with decreased immune responses against sheep erythrocytes and serum hemolysis level. Natural killer (NK) activity was not modified by two types of MWCNTs. In comparison with two types of MWCNTs, for a same dose, p-MWCNTs caused higher levels of inflammation and immunosuppression than MWCNTs-PEG. The results of immunological function suggested that after intravenous administration with p-MWCNTs caused more damage to systemic immunity than MWCNTs-PEG. Here, we demonstrated that a surface functional modification on MWCNTs reduces their immune perturbations in vivo. The chemistry-modified MWCNTs change their preferred immune response in vivo and reduce the immunotoxicity of p-MWCNTs. PMID:28280324

  9. Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study.

    PubMed

    Zhang, Ting; Tang, Meng; Zhang, Shanshan; Hu, Yuanyuan; Li, Han; Zhang, Tao; Xue, Yuying; Pu, Yuepu

    2017-01-01

    The numerous increasing use of carbon nanotubes (CNTs) derived from nanotechnology has raised concerns about their biosafety and potential toxicity. CNTs cause immunologic dysfunction and limit the application of CNTs in biomedicine. The immunological responses induced by pristine multi-walled carbon nanotubes (p-MWCNTs) and PEGylated multi-walled carbon nanotubes (MWCNTs-PEG) on BALB/c mice via an intravenous administration were investigated. The results reflect that the p-MWCNTs induced significant increases in spleen, thymus, and lung weight. Mice treated with p-MWCNTs showed altered lymphocyte populations (CD3 + , CD4 + , CD8 + , and CD19 + ) in peripheral blood and increased serum IgM and IgG levels, and splenic macrophage ultrastructure indicated mitochondria swelling. p-MWCNTs inhibited humoral and cellular immunity function and were associated with decreased immune responses against sheep erythrocytes and serum hemolysis level. Natural killer (NK) activity was not modified by two types of MWCNTs. In comparison with two types of MWCNTs, for a same dose, p-MWCNTs caused higher levels of inflammation and immunosuppression than MWCNTs-PEG. The results of immunological function suggested that after intravenous administration with p-MWCNTs caused more damage to systemic immunity than MWCNTs-PEG. Here, we demonstrated that a surface functional modification on MWCNTs reduces their immune perturbations in vivo. The chemistry-modified MWCNTs change their preferred immune response in vivo and reduce the immunotoxicity of p-MWCNTs.

  10. Convection-enhanced delivery of a topoisomerase I inhibitor (nanoliposomal topotecan) and a topoisomerase II inhibitor (pegylated liposomal doxorubicin) in intracranial brain tumor xenografts1

    PubMed Central

    Yamashita, Yoji; Krauze, Michal T.; Kawaguchi, Tomohiro; Noble, Charles O.; Drummond, Daryl C.; Park, John W.; Bankiewicz, Krystof S.

    2007-01-01

    Despite multimodal treatment options, the response and survival rates for patients with malignant gliomas remain dismal. Clinical trials with convection-enhanced delivery (CED) have recently opened a new window in neuro-oncology to the direct delivery of chemotherapeutics to the CNS, circumventing the blood-brain barrier and reducing systemic side effects. Our previous CED studies with liposomal chemotherapeutics have shown promising antitumor activity in rodent brain tumor models. In this study, we evaluated a combination of nanoliposomal topotecan (nLs-TPT) and pegylated liposomal doxorubicin (PLD) to enhance efficacy in our brain tumor models, and to establish a CED treatment capable of improving survival from malignant brain tumors. Both liposomal drugs decreased key enzymes involved in tumor cell replication in vitro. Synergistic effects of nLs-TPT and PLD on U87MG cell death were found. The combination displayed excellent efficacy in a CED-based survival study 10 days after tumor cell implantation. Animals in the control group and those in single-agent groups had a median survival of less than 30 days, whereas the combination group experienced a median survival of more than 90 days. We conclude that CED of two liposomal chemotherapeutics (nLs-TPT and PLD) may be an effective treatment option for malignant gliomas. PMID:17018695

  11. Tolerance-like innate immunity and spleen injury: a novel discovery via the weekly administrations and consecutive injections of PEGylated emulsions

    PubMed Central

    Wang, Long; Wang, Chunling; Jiao, Jiao; Su, Yuqing; Cheng, Xiaobo; Huang, Zhenjun; Liu, Xinrong; Deng, Yihui

    2014-01-01

    There has been an increasing interest in the study of the innate immune system in recent years. However, few studies have focused on whether innate immunity can acquire tolerance. Therefore, in this study, we investigated tolerance in the innate immune system via the consecutive weekly and daily injections of emulsions modified with polyethylene glycol (PEG), referred to as PEGylated emulsions (PE). The effects of these injections of PE on pharmacokinetics and biodistribution were studied in normal and macrophage-depleted rats. Additionally, we evaluated the antigenic specificity of immunologic tolerance. Immunologic tolerance against PE developed after 21 days of consecutive daily injections or the fourth week of PE administration. Compared with a single administration, it was observed that the tolerant rats had a lower rate of PE clearance from the blood, which was independent of the stress response. In addition, weekly PE injections caused injury to the spleen. Furthermore, the rats tolerant to PEs with the methoxy group (–OCH3) of PEG, failed to respond to the PEs with a different terminal group of PEG or to non-PEG emulsions. Innate immunity tolerance was induced by PE, regardless of the mode of administration. Further study of this mechanism suggested that monocytes play an essential role in the suppression of innate immunity. These findings provide novel insights into the understanding of the innate immune system. PMID:25120362

  12. The Comparison of Biodistribution, Efficacy and Toxicity of Two PEGylated Liposomal Doxorubicin Formulations in Mice Bearing C-26 Colon Carcinoma: a Preclinical Study.

    PubMed

    Razavi-Azarkhiavi, K; Jafarian, A H; Abnous, K; Razavi, B M; Shirani, K; Zeinali, M; Jaafari, M R; Karimi, G

    2016-06-01

    Over the past several years, the considerable attention has been progressively given to liposomal formulations of anthracyclines. SinaDoxosome(®) (Exir Nano Sina Company, Iran) is a pegylated liposomal doxorubicin (DOX) which approved by Food and Drug Administration of IRAN for treatment of some types of cancer. The aim of this study was to compare the biodistribution, efficacy, cardiotoxicity and hepatotoxicity of SinaDoxosome(®) with Caelyx(®) in mice bearing C-26 colon carcinoma. Mice tumor size evaluation during the experimental period (28 days) showed comparable therapeutic efficacy of nano-formulations. The biodistribution studies showed no significant difference in DOX tissue concentration between Caelyx(®) and SinaDoxosome(®). DOX induced-ECG changes were not detected in nano-formulations. No significant alteration was found in biochemical indexes of myocardial injury in mice exposed to nano-formulations in comparison with control mice. The tissue oxidative parameters such as lipid peroxidation, glutathione, catalase and superoxide dismutase was significantly changed as the results of free DOX treatment. However, the oxidative status of Caelyx(®) and SinaDoxosome(®) treated animals did not showed any changes. The experiment also revealed that apoptotic pathway was not activated in the heart of mice exposed to nano-formulations. Although this investigation showed that Caelyx(®) and SinaDoxosome(®) are similar in terms of biodistribution, efficacy and toxicity, appropriate clinical evaluations in patients should be considered. © Georg Thieme Verlag KG Stuttgart · New York.

  13. The pharmacokinetic and pharmacodynamic properties of site-specific pegylated genetically modified recombinant human interleukin-11 in normal and thrombocytopenic monkeys.

    PubMed

    Ma, Shan-Shan; Ho, Seong-Hyun; Ma, Su-Yong; Li, Yue-Juan; Li, Kai-Tong; Tang, Xiao-Chuang; Zhao, Guang-Rong; Xu, Song-Shan

    2017-10-01

    In order to improve the pharmacokinetic and pharmacodynamic properties of recombinant human interleukin-11 mutein (mIL-11) and to reduce the frequency of administration, we examined the feasibility of chemical modification of mIL-11 by methoxy polyethylene glycol succinimidyl carbonate (mPEG-SC). PEG-mIL-11 was prepared by a pH controlled amine specific method. Bioactivity of the protein was determined in a IL-11-dependent in vitro bioassay, its pharmacodynamic and pharmacokinetic properties were investigated by using normal and thrombocytopenic monkey models. N-terminus sequencing and peptide mapping analysis revealed that Lys33 is the PEGylated position for PEG-mIL-11. Bioactivity of PEG-mIL-11 assessed by B9-11 cell proliferation assay was comparable to that of mIL-11. More than 79-fold increase in area-under-the curve (AUC) and 26-fold increase in maximum plasma concentration (C max ) was observed in pharmacokinetic analysis. Single dose administration of the PEG-mIL-11 induced blood platelets number increase and the effect duration were comparable to that of 7 to 10 consecutive daily administration of mIL-11 to the normal and thrombocytopenic monkey models. PEG-mIL-11 is a promising therapeutic for thrombocytopenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Neonatal Treatment with a Pegylated Leptin Antagonist Induces Sexually Dimorphic Effects on Neurones and Glial Cells, and on Markers of Synaptic Plasticity in the Developing Rat Hippocampal Formation.

    PubMed

    López-Gallardo, M; Antón-Fernández, A; Llorente, R; Mela, V; Llorente-Berzal, A; Prada, C; Viveros, M P

    2015-08-01

    The present study aimed to better understand the role of the neonatal leptin surge, which peaks on postnatal day (PND)9-10, on the development of the hippocampal formation. Accordingly, male and female rats were administered with a pegylated leptin antagonist on PND9 and the expression of neurones, glial cells and diverse markers of synaptic plasticity was then analysed by immunohistochemistry in the hippocampal formation. Antagonism of the actions of leptin at this specific postnatal stage altered the number of glial fibrillary acidic protein positive cells, and also affected type 1 cannabinoid receptors, synaptophysin and brain-derived neurotrophic factor (BDNF), with the latter effect being sexually dimorphic. The results indicate that the physiological leptin surge occurring around PND 9-10 is critical for hippocampal formation development and that the dynamics of leptin activity might be different in males and females. The data obtained also suggest that some but not all the previously reported effects of maternal deprivation on hippocampal formation development (which markedly reduces leptin levels at PND 9-10) might be mediated by leptin deficiency in these animals. © 2015 British Society for Neuroendocrinology.

  15. Novel analogues of degarelix incorporating hydroxy-, methoxy-, and pegylated-urea moieties at positions 3, 5, 6 and the N-terminus. Part III.

    PubMed

    Samant, Manoj P; Hong, Doley J; Croston, Glenn; Rivier, Catherine; Rivier, Jean

    2006-06-15

    Novel degarelix (Fe200486) analogues were screened for antagonism of GnRH-induced response (IC(50)) in a reporter gene assay. Inhibition of luteinizing hormone release over time was measured in the castrated male rat. N(omega)-Hydroxy- and N(omega)-methoxy-carbamoylation of Dab and Dap at position 3 (3-6), and N(omega)-hydroxy-,N(omega)-methoxy-carbamoylation and pegylation of 4Aph at positions 5 and 6 (7-10, 15-17, 22-25) were carried out. Modulation of hydrophobicity was achieved using different acylating groups at the N-terminus (11-14, 18-21, 26-28). Analogues 8, 15-17, 22, and 23 were equipotent to acyline (IC(50) = 0.69 nM) and degarelix (IC(50) = 0.58 nM) in vitro. Analogues 7, 17, and 23 were shorter acting than acyline, when 9, 11, 13, 15, 16, and 22 were longer acting. Only 9 and 14 were inactive at releasing histamine. No analogue exhibited a duration of action comparable to that of degarelix. Analogues with shorter and longer retention times on HPLC (a measure of hydrophilicity) than degarelix were identified.

  16. Patellar fixation protected with a load-sharing cable: a mechanical and clinical study.

    PubMed

    Perry, C R; McCarthy, J A; Kain, C C; Pearson, R L

    1988-01-01

    The stability of patellar fracture fixation protected with a load-sharing cable was studied in cadavers. A transverse patellar osteotomy was produced and stabilized with standard patellar fixation with or without a figure-of-eight cable that extends from the proximal pole of the patella to the tibial tubercle. Standard fixation techniques (interfragmentary cancellous screws or modified tension-band wiring) alone failed after significantly fewer cycles of flexion and extension than did the same fixation when supplemented with a load-sharing cable. In the clinical evaluation of the load-sharing cable, 14 consecutive patients with displaced patellar fractures were treated. No immobilization was used and the patients were started on passive and active range of motion and weight-bearing ambulation in the early postoperative period. Thirteen fractures healed uneventfully. The increased stability of patellar fracture fixation protected with a load-sharing cable offers three advantages: (a) adjunctive casting is unnecessary, (b) comminuted fractures can be "pieced" together anatomically with less concern for loss of fixation, and (c) early postoperative passive and active range of motion can be achieved.

  17. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery.

    PubMed

    Yao, Yao; Su, Zhihui; Liang, Yanchao; Zhang, Na

    2015-01-01

    Combination of chemotherapeutic drug and small interfering RNA (siRNA) can affect multiple disease pathways and has been proven effective in suppressing tumor progression. Co-delivery of drug and siRNA within a same nanocarrier is a vital means in this field. The present study aimed at the development of a pH-sensitive liposome to co-deliver drug and siRNA to tumor region. Driven by the electrostatic interaction, the pH-sensitive material, carboxymethyl chitosan (CMCS), was coated onto the surface of the cationic liposome (CL) preloaded with sorafenib (Sf) and siRNA (Si). To evaluate whether the resulting CMCS-modified Sf and siRNA co-delivery cationic liposome (CMCS-SiSf-CL) enhanced antitumor efficiency after systematic administration, in vitro and in vivo experiments were evaluated in HepG2 cells and the H22 cells-bearing Kunming mice model. The experimental results demonstrated that CMCS-SiSf-CL was able to condense siRNA efficiently and protect siRNA from being degraded by serum and RNase. The release rate of Sf from CMCS-modified liposome exhibited pH-sensitive release behavior. Furthermore, in vitro cellular uptake results showed that CMCS-SiSf-CL yielded higher fluorescence intensity at pH 6.5 than at pH 7.4, and that siRNA could be delivered to tumor site by CMCS-SiSf-CL in vivo. The in vivo antitumor efficacy showed that CMCS-Sf-CL inhibits tumor growth effectively when compared with free Sf solution. In current experimental conditions, this liposomal formulation did not show significant toxicity both in vitro and in vivo. Therefore, co-delivering Sf with siRNA by CMCS-SiSf-CL might provide a promising approach for tumor therapy.

  18. Emulsions Stabilized by Chitosan-Modified Silica Nanoparticles: pH Control of Structure-Property Relations.

    PubMed

    Alison, Lauriane; Demirörs, Ahmet F; Tervoort, Elena; Teleki, Alexandra; Vermant, Jan; Studart, Andre R

    2018-05-29

    In food-grade emulsions, particles with an appropriate surface modification can be used to replace surfactants and potentially enhance the stability of emulsions. During the life cycle of products based on such emulsions, they can be exposed to a broad range of pH conditions and hence it is crucial to understand how pH changes affect stability of emulsions stabilized by particles. Here, we report on a comprehensive study of the stability, microstructure, and macroscopic behavior of pH-controlled oil-in-water emulsions containing silica nanoparticles modified with chitosan, a food-grade polycation. We found that the modified colloidal particles used as stabilizers behave differently depending on the pH, resulting in unique emulsion structures at multiple length scales. Our findings are rationalized in terms of the different emulsion stabilization mechanisms involved, which are determined by the pH-dependent charges and interactions between the colloidal building blocks of the system. At pH 4, the silica particles are partially hydrophobized through chitosan modification, favoring their adsorption at the oil-water interface and the formation of Pickering emulsions. At pH 5.5, the particles become attractive and the emulsion is stabilized by a network of agglomerated particles formed between the droplets. Finally, chitosan aggregates form at pH 9 and these act as the emulsion stabilizers under alkaline conditions. These insights have important implications for the processing and use of particle-stabilized emulsions. On one hand, changes in pH can lead to undesired macroscopic phase separation or coalescence of oil droplets. On the other hand, the pH effect on emulsion behavior can be harnessed in industrial processing, either to tune their flow response by altering the pH between processing stages or to produce pH-responsive emulsions that enhance the functionality of the emulsified end products.

  19. Biosensor based on ds-DNA decorated chitosan modified multiwall carbon nanotubes for voltammetric biodetection of herbicide amitrole.

    PubMed

    Ensafi, Ali A; Amini, Maryam; Rezaei, Behzad

    2013-09-01

    The interaction of amitrole and salmon sperm ds-DNA was studied using UV-vis and differential pulse voltammetry (DPV) at both bare and DNA-modified electrodes. Amitrole showed an oxidation peak at 0.445 V at a bare pencil graphite electrode (PGE). When ds-DNA was added into the amitrole solution, the peak current of amitrole decreased and the peak potential underwent a shift. UV-vis spectra showed that the absorption intensity of the ds-DNA at 260 nm decreased with increasing amitrole concentration, proving the interaction between amitrole and the ds-DNA. The results also showed that amitrole could interact with the ds-DNA molecules via the intercalative binding mode. Finally, a pretreated pencil graphite electrode (PGE) modified with multiwall carbon nanotubes (MWCNTs) and chitosan (CHIT) decorated with the ds-DNA were tested in order to determine amitrole content in solution. Electrochemical oxidation of amitrole bonded on DNA/MWCNTs-CHIT/PGE was used to obtain an analytical signal. A linear dependence was observed to exist between the peak current and 0.025-2.4 ng mL(-1) amitrole with a detection limit of 0.017 ng mL(-1). The sensor showed a good selectivity and precision for the determination of amitrole. Finally, applicability of the biosensor was evaluated by measuring the analyte in soil and water samples with good selectivity. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Oleanolic-bioenhancer coloaded chitosan modified nanocarriers attenuate breast cancer cells by multimode mechanism and preserve female fertility.

    PubMed

    Sharma, Monika; Sharma, Shweta; Sharma, Vikas; Sharma, Komal; Yadav, Santosh Kumar; Dwivedi, Pankaj; Agrawal, Satish; Paliwal, Sarvesh Kumar; Dwivedi, Anil Kumar; Maikhuri, Jagdamba Prasad; Gupta, Gopal; Mishra, Prabhat Ranjan; Rawat, Ajay Kumar Singh

    2017-11-01

    Addressing multidrug resistant stage of breast cancer is an impediment for chemotherapy. Moreover, breast cancer chemotherapy has potential enduring confrontations i.e. related toxicity including effect on fertility of young female patients. The co-delivery of polyphenolic bio-enhancers with oleanolic acid in chitosan coated PLGA nanoparticles was designed for oral delivery with enhanced antitumor effect consecutively preserving the female fertility. The optimized oleanolic- bio-enhancer nano formulation CH-OA-B-PLGA with particle size was 342.2±3.7nm and zeta potential of 34.2±3.1mV was capable of lowering viability in MDAMB 231 cell line 16 times than OA. Further, mechanistic studies in MDAMB-231 cells revealed that CH-OA-PLGA induces apoptosis by mitochondrial membrane disruption; follows ROS mediated and caspase dependent apoptosis. The antitumor effect studied in 4-T1 induced Balb/c mice mammary tumor model displayed augmented antitumor potency by CH-OA-B-PLGA in comparison to OA. In the in vivo toxicity on Sprague-Dawley rat model, CH-OA-B-PLGA significantly displayed the safe profile and also preserves fertility in female rats. The experiment result suggests co-delivery of oleanolic acid with bio-enhancers as a breakthrough for developing safe chemotherapy for hormone independent breast cancer therapy countering the toxicity issues. Copyright © 2017. Published by Elsevier B.V.

  1. PEGylated G-CSF (BBT-015), GM-CSF (BBT-007), and IL-11 (BBT-059) analogs enhance survival and hematopoietic cell recovery in a mouse model of the hematopoietic syndrome of the acute radiation syndrome.

    PubMed

    Plett, Paul Artur; Chua, Hui Lin; Sampson, Carol H; Katz, Barry P; Fam, Christine M; Anderson, Lana J; Cox, George N; Orschell, Christie M

    2014-01-01

    Hematopoietic growth factors (HGF) are recommended therapy for high dose radiation exposure, but unfavorable administration schedules requiring early and repeat dosing limit the logistical ease with which they can be used. In this report, using a previously described murine model of H-ARS, survival efficacy and effect on hematopoietic recovery of unique PEGylated HGF were investigated. The PEGylated-HGFs possess longer half-lives and more potent hematopoietic properties than corresponding non-PEGylated-HGFs. C57BL/6 mice underwent single dose lethal irradiation (7.76-8.72 Gy, Cs, 0.62-1.02 Gy min) and were treated with various dosing regimens of 0.1, 0.3, and 1.0 mg kg of analogs of human PEG-G-CSF, murine PEG-GM-CSF, or human PEG-IL-11. Mice were administered one of the HGF analogs at 24-28 h post irradiation, and in some studies, additional doses given every other day (beginning with the 24-28 h dose) for a total of three or nine doses. Thirty-day (30 d) survival was significantly increased with only one dose of 0.3 mg kg of PEG-G-CSF and PEG-IL-11 or three doses of 0.3 mg kg of PEG-GM-CSF (p ≤ 0.006). Enhanced survival correlated with consistently and significantly enhanced WBC, NE, RBC, and PLT recovery for PEG-G- and PEG-GM-CSF, and enhanced RBC and PLT recovery for PEG-IL-11 (p ≤ 0.05). Longer administration schedules or higher doses did not provide a significant additional survival benefit over the shorter, lower dose, schedules. These data demonstrate the efficacy of BBT's PEG-HGF to provide significantly increased survival with fewer injections and lower drug doses, which may have significant economic and logistical value in the aftermath of a radiation event.

  2. PEGylated hybrid ytterbia nanoparticles as high-performance diagnostic probes for in vivo magnetic resonance and X-ray computed tomography imaging with low systemic toxicity

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Pu, Fang; Liu, Jianhua; Jiang, Liyan; Yuan, Qinghai; Li, Zhengqiang; Ren, Jinsong; Qu, Xiaogang

    2013-05-01

    Novel nanoparticulate contrast agents with low systemic toxicity and inexpensive character have exhibited more advantages over routinely used small molecular contrast agents for the diagnosis and prognosis of disease. Herein, we designed and synthesized PEGylated hybrid ytterbia nanoparticles as high-performance nanoprobes for X-ray computed tomography (CT) imaging and magnetic resonance (MR) imaging both in vitro and in vivo. These well-defined nanoparticles were facile to prepare and cost-effective, meeting the criteria as a biomedical material. Compared with routinely used Iobitridol in clinic, our PEG-Yb2O3:Gd nanoparticles could provide much significantly enhanced contrast upon various clinical voltages ranging from 80 kVp to 140 kVp owing to the high atomic number and well-positioned K-edge energy of ytterbium. By the doping of gadolinium, our nanoparticulate contrast agent could perform perfect MR imaging simultaneously, revealing similar organ enrichment and bio-distribution with the CT imaging results. The super improvement in imaging efficiency was mainly attributed to the high content of Yb and Gd in a single nanoparticle, thus making these nanoparticles suitable for dual-modal diagnostic imaging with a low single-injection dose. In addition, detailed toxicological study in vitro and in vivo indicated that uniformly sized PEG-Yb2O3:Gd nanoparticles possessed excellent biocompatibility and revealed overall safety.Novel nanoparticulate contrast agents with low systemic toxicity and inexpensive character have exhibited more advantages over routinely used small molecular contrast agents for the diagnosis and prognosis of disease. Herein, we designed and synthesized PEGylated hybrid ytterbia nanoparticles as high-performance nanoprobes for X-ray computed tomography (CT) imaging and magnetic resonance (MR) imaging both in vitro and in vivo. These well-defined nanoparticles were facile to prepare and cost-effective, meeting the criteria as a biomedical material

  3. Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy.

    PubMed

    Yuan, Youyong; Liu, Bin

    2014-09-10

    A drug delivery system based on poly(ethylene glycol) (PEG) grafted conjugated polyelectrolyte (CPE) has been developed to serve as a polymeric photosensitizer and drug carrier for combined photodynamic and chemotherapy. The amphiphilic brush copolymer can self-assemble into micellar nanopaticles (NPs) in aqueous media with hydrophobic conjugated polyelectrolyte backbone as the core and hydrophilic PEG as the shell. The NPs have an average diameter of about 100 nm, with the absorption and emission maxima at 502 and 598 nm, respectively, making them suitable for bioimaging applications. Moreover, the CPE itself can serve as a photosensitizer, which makes the NPs not only a carrier for drug but also a photosensitizing unit for photodynamic therapy, resulting in the combination of chemo- and photodynamic therapy for cancer. The half-maximal inhibitory concentration (IC50) value for the combination therapy to U87-MG cells is 12.7 μg mL(-1), which is much lower than that for the solely photodynamic therapy (25.5 μg mL(-1)) or chemotherapy (132.8 μg mL(-1)). To improve the tumor specificity of the system, cyclic arginine-glycine-aspartic acid (cRGD) tripeptide as the receptor to integrin αvβ3 overexpressed cancer cells was further incorporated to the surface of the NPs. The delivery system based on PEGylated CPE is easy to fabricate, which integrates the merits of targeted cancer cell image, chemotherapeutic drug delivery, and photodynamic therapy, making it promising for cancer treatment.

  4. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery.

    PubMed

    Ding, Yuan; Sun, Dan; Wang, Gui-Ling; Yang, Hong-Ge; Xu, Hai-Feng; Chen, Jian-Hua; Xie, Ying; Wang, Zhi-Qiang

    2015-01-01

    Cell-penetrating peptides (CPPs) as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG) and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL) to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR) to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS) was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into targeted subcellular compartments while remaining inactive and free from opsonins at a maximum extent in systemic circulation. The 4% CPPL as a drug delivery system will have great potential in the clinical application of anticancer drugs in future.

  5. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery

    PubMed Central

    Ding, Yuan; Sun, Dan; Wang, Gui-Ling; Yang, Hong-Ge; Xu, Hai-Feng; Chen, Jian-Hua; Xie, Ying; Wang, Zhi-Qiang

    2015-01-01

    Cell-penetrating peptides (CPPs) as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG) and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL) to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR) to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS) was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into targeted subcellular compartments while remaining inactive and free from opsonins at a maximum extent in systemic circulation. The 4% CPPL as a drug delivery system will have great potential in the clinical application of anticancer drugs in future. PMID:26491292

  6. pH-Sensitive PEGylated liposomes for delivery of an acidic dinitrobenzamide mustard prodrug: Pathways of internalization, cellular trafficking and cytotoxicity to cancer cells.

    PubMed

    Yang, Mimi M; Wilson, William R; Wu, Zimei

    2017-01-10

    This paper aims to develop and evaluate a pH-sensitive PEGylated liposomal (pPSL) system for tumor-targeted intracellular delivery of SN25860, a weakly acidic, poorly water-soluble dinitrobenzamide mustard prodrug which is activated by the E. coli nitroreductase nfB. pPSL and non pH-sensitive liposomes (nPSL), as reference, were formulated by thin-film hydration; an active drug loading method was developed with the aid of solubilizers. Cytotoxicity was evaluated in an nfsB-transfected EMT6 mouse mammary carcinoma cell line. Cellular uptake of liposomes was evaluated by both high performance liquid chromatography and flow cytometry. Intracellular trafficking was visualised by confocal microscopy. High drug loading (7.0±0.2% w/w) was achieved after systematic optimization of drug loading conditions. pPSL-SN25860 demonstrated a 21 and 24- fold increase in antiproliferative potency compared to nPSL-SN25860 and free drug, respectively. Cells treated with pPSL had a 1.6-2.5- fold increase in intracellular drug concentration compared to nPSL. This trend was consistent with flow cytometry results. Cells treated with chlorpromazine demonstrated reduced uptake of both nPSL (40%) and pPSL (46%), indicating clathrin-mediated endocytosis was the major pathway. Confocal microscopy showed that pPSL had not only undergone faster and greater endocytosis than nPSL but was also homogeneously distributed in the cytosol and nuclei suggesting endosome escape, in contrast to nPSL. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Preliminary efficacy, safety, pharmacokinetics, pharmacodynamics and quality of life study of pegylated recombinant human arginase 1 in patients with advanced hepatocellular carcinoma.

    PubMed

    Yau, Thomas; Cheng, Paul N; Chan, Pierre; Chen, Li; Yuen, Jimmy; Pang, Roberta; Fan, Sheung Tat; Wheatley, Denys N; Poon, Ronnie T

    2015-04-01

    This study was designed to evaluate the efficacy, safety profile, pharmacokinetics, pharmacodynamics and quality of life of pegylated recombinant human arginase 1 (Peg-rhAgr1) in patients with advanced hepatocellular carcinoma (HCC). Patients were given weekly doses of Peg-rhAgr1 (1600 U/kg). Tumour response was assessed every 8 weeks using RECIST 1.1 and modified RECIST criteria. A total of 20 patients were recruited, of whom 15 were deemed evaluable for treatment efficacy. Eighteen patients (90%) were hepatitis B carriers. Median age was 61.5 (range 30-75). Overall disease control rate was 13%, with 2 of the 15 patients achieving stable disease for >8 weeks. The median progression-free survival (PFS) was 1.7 (95% CI: 1.67-1.73) months, with median overall survival (OS) of all 20 enrolled patients being 5.2 (95% CI: 3.3-12.0) months. PFS was significantly prolonged in patients with adequate arginine depletion (ADD) >2 months versus those who had ≤2 months of ADD (6.4 versus 1.7 months; p = 0.01). The majority of adverse events (AEs) were grade 1/2 non-hematological toxicities. Transient liver dysfunctions (25%) were the most commonly reported serious AEs and likely due to disease progression. Pharmacokinetic and pharmacodynamic data showed that Peg-rhAgr1 induced rapid and sustained arginine depletion. The overall quality of life of the enrolled patients was well preserved. Peg-rhAgr1 is well tolerated with a good toxicity profile in patients with advanced HCC. A weekly dose of 1600 U/kg is sufficient to induce ADD. Significantly longer PFS times were recorded for patients who had ADD for >2 months.

  8. Association of the S267F variant on NTCP gene and treatment response to pegylated interferon in patients with chronic hepatitis B: a multicentre study.

    PubMed

    Thanapirom, Kessarin; Suksawatamnuay, Sirinporn; Sukeepaisarnjaroen, Wattana; Treeprasertsuk, Sombat; Tanwandee, Tawesak; Charatcharoenwitthaya, Phunchai; Thongsawat, Satawat; Leerapun, Apinya; Piratvisuth, Teerha; Boonsirichan, Rattana; Bunchorntavakul, Chalermrat; Pattanasirigool, Chaowalit; Pornthisarn, Bubpha; Tuntipanichteerakul, Supoj; Sripariwuth, Ekawee; Jeamsripong, Woramon; Sanpajit, Theeranun; Poovorawan, Yong; Komolmit, Piyawat

    2018-01-01

    Sodium taurocholate co-transporting polypeptide (NTCP) is a cell receptor for HBV. The S267F variant on the NTCP gene is inversely associated with the chronicity of HBV infection, progression to cirrhosis and hepatocellular carcinoma in East Asian populations. The aim of this study was to determine whether the S267F variant was associated with response to pegylated interferon (PEG-IFN) in patients with chronic HBV infection. A total of 257 patients with chronic HBV, treated with PEG-IFN for 48 weeks, were identified from 13 tertiary hospitals included in the hepatitis B database of the Thai Association for the Study of the Liver (THASL). Of these, 202 patients were infected with HBV genotype C (84.9%); 146 patients were hepatitis B e antigen (HBeAg)-positive (56.8%). Genotypic frequencies of the S267F polymorphism were 85.2%, 14.8% and 0% for the GG, GA and AA genotypes, respectively. S267F GA was associated with sustained alanine aminotransferase (ALT) normalization (OR = 3.25, 95% CI 1.23, 8.61; P=0.02) in HBeAg-positive patients. Patients with S267F variant tended to have more virological response, sustained response with hepatitis B surface antigen (HBsAg) loss at 24 weeks following PEG-IFN treatment. There was no association between the S267F variant and improved patient outcomes in HBeAg-negative patients. The S267F variant on the NTCP gene is independently associated with sustained normalization of ALT following treatment with PEG-IFN in patients with HBV infection who are HBeAg-positive. The findings of this study provide additional support for the clinical significance of the S267F variant of NTCP beyond HBV entry.

  9. Variation in both IL28B and KIR2DS3 genes influence pegylated interferon and ribavirin hepatitis C treatment outcome in HIV-1 co-infection.

    PubMed

    Keane, Ciara; O'Shea, Daire; Reiberger, Thomas; Peck-Radosavljevic, Markus; Farrell, Gillian; Bergin, Colm; Gardiner, Clair M

    2013-01-01

    Pegylated-IFN and ribavirin remains the current treatment for chronic HCV infection in patients co-infected with HIV-1, but this regimen has low efficacy rates, particularly for HCV genotype 1/4 infection, has severe side effects and is extremely costly. Therefore, accurate prediction of treatment response is urgently required. We have recently shown that the NK cell gene, KIR2DS3 and a SNP associated with the IL28B gene synergise to increase the risk of chronic infection in primary HCV mono-infected patients. Identification of SNPs associated with the IL28B gene has also proven very powerful for predicting patient response to treatment. Patients co-infected with HIV-1 are of particular concern given they respond less well to HCV treatment, have more side effects and suffer a more rapid liver disease progression. In this study, we examined both IL28B and KIR2DS3 for their ability to predict treatment response in a cohort of HIV-1/HCV co-infected patients attending two treatment centres in Europe. We found that variation in both host genetic risk factors, IL28B and KIR2DS3, was strongly associated with sustained virological response (SVR) to treatment in our co-infected cohort (n = 149). The majority of patients who achieved a rapid virological response (RVR) achieved a SVR. However, it is currently impossible to predict treatment outcome in patients who fail to achieve an RVR. In our cohort, the presence of host genetic risk factors, IL28B-T and KIR2DS3 alleles, resulted in increased odds of treatment failure in these RVR negative patients (n = 88). Our data suggests that testing for host genetic factors will improve predicting treatment responsiveness in the clinical management of co-infected patients, and provides further evidence of the importance of the innate immune system in the immune response to HCV.

  10. Type 1 Diabetes Mellitus Associated with Pegylated Interferon-α Plus Ribavirin Treatment for Chronic Hepatitis C: Case Report and Literature Review.

    PubMed

    Oka, Reiko; Hiroi, Naoki; Shigemitsu, Rika; Sue, Mariko; Oshima, Yasuo; Yoshida-Hiroi, Mayumi

    2011-01-01

    Combined pegylated interferon (PEG-IFN)+ribavirin (RBV) therapy has been used as a primary treatment for chronic hepatitis C. However, IFN-induced autoimmune disease, including type 1 diabetes mellitus, has been highlighted as one of the problems with this therapy. Here we report the case of a patient who developed type 1 diabetes mellitus during combined PEG-IFN+RBV therapy for hepatitis C but who showed no exacerbation of diabetes despite continued use of IFN. A 63-year-old man with chronic hepatitis C and a nonresponder to previous IFNα treatments, was admitted to our hospital because of excessive thirst, polydipsia, and polyuria 24 weeks after the start of PEG-IFNα+RBV therapy. High levels of blood glucose and glycosylated hemoglobin and low levels of C-peptide and immunoreactive insulin were observed. The serum antiglutamic acid decarboxylase antibody titer was 27,700 U/mL. We diagnosed IFN-induced type 1 diabetes mellitus; however PEG-IFNα+RBV therapy was continued for 48 weeks. Serum HCV remains negative five years after this treatment. Intensive insulin therapy was started immediately after the diagnosis of type 1 diabetes. Although the patient initially required 22 U/day of insulin, the dosage could be gradually reduced after completion of PEG-IFNα+RBV therapy and blood glucose remained well controlled. Prediction of onset of type 1 diabetes mellitus on the basis of baseline measurement of pancreas-associated autoantibodies is difficult. Therefore, it would be advisable to consider the possibility of onset of type 1 diabetes mellitus in all patients receiving IFN+RBV therapy.

  11. Mixed Formulation of Conventional and Pegylated Meglumine Antimoniate-Containing Liposomes Reduces Inflammatory Process and Parasite Burden in Leishmania infantum-Infected BALB/c Mice.

    PubMed

    Reis, Levi Eduardo Soares; Fortes de Brito, Rory Cristiane; Cardoso, Jamille Mirelle de Oliveira; Mathias, Fernando Augusto Siqueira; Aguiar Soares, Rodrigo Dian Oliveira; Carneiro, Claudia Martins; de Abreu Vieira, Paula Melo; Ramos, Guilherme Santos; Frézard, Frédéric Jean Georges; Roatt, Bruno Mendes; Reis, Alexandre Barbosa

    2017-11-01

    Pentavalent antimonial has been the first choice treatment for visceral leishmaniasis; however, it has several side effects that leads to low adherence to treatment. Liposome-encapsulated meglumine antimoniate (MA) arises as an important strategy for chemotherapy enhancement. We evaluated the immunopathological changes using the mixture of conventional and pegylated liposomes with MA. The mice were infected with Leishmania infantum and a single-dose treatment regimen. Comparison was made with groups treated with saline, empty liposomes, free MA, and a liposomal formulation of MA (Lipo MA). Histopathological analyses demonstrated that animals treated with Lipo MA showed a significant decrease in the inflammatory process and the absence of granulomas. The in vitro stimulation of splenocytes showed a significant increase of gamma interferon (IFN-γ) produced by CD8 + T cells and a decrease in interleukin-10 (IL-10) produced by CD4 + and CD8 + T cells in the Lipo MA. Furthermore, the Lipo MA group showed an increase in the IFN-γ/IL-10 ratio in both CD4 + and CD8 + T cell subsets. According to the parasite load evaluation using quantitative PCR, the Lipo MA group showed no L. infantum DNA in the spleen (0.0%) and 41.4% in the liver. In addition, we detected a low positive correlation between parasitism and histopathology findings (inflammatory process and granuloma formation). Thus, our results confirmed that Lipo MA is a promising antileishmanial formulation able to reduce the inflammatory response and induce a type 1 immune response, accompanied by a significant reduction of the parasite burden into hepatic and splenic compartments in treated animals. Copyright © 2017 American Society for Microbiology.

  12. Mixed Formulation of Conventional and Pegylated Meglumine Antimoniate-Containing Liposomes Reduces Inflammatory Process and Parasite Burden in Leishmania infantum-Infected BALB/c Mice

    PubMed Central

    Reis, Levi Eduardo Soares; Fortes de Brito, Rory Cristiane; Cardoso, Jamille Mirelle de Oliveira; Mathias, Fernando Augusto Siqueira; Aguiar Soares, Rodrigo Dian Oliveira; Carneiro, Claudia Martins; de Abreu Vieira, Paula Melo; Ramos, Guilherme Santos; Frézard, Frédéric Jean Georges; Roatt, Bruno Mendes

    2017-01-01

    ABSTRACT Pentavalent antimonial has been the first choice treatment for visceral leishmaniasis; however, it has several side effects that leads to low adherence to treatment. Liposome-encapsulated meglumine antimoniate (MA) arises as an important strategy for chemotherapy enhancement. We evaluated the immunopathological changes using the mixture of conventional and pegylated liposomes with MA. The mice were infected with Leishmania infantum and a single-dose treatment regimen. Comparison was made with groups treated with saline, empty liposomes, free MA, and a liposomal formulation of MA (Lipo MA). Histopathological analyses demonstrated that animals treated with Lipo MA showed a significant decrease in the inflammatory process and the absence of granulomas. The in vitro stimulation of splenocytes showed a significant increase of gamma interferon (IFN-γ) produced by CD8+ T cells and a decrease in interleukin-10 (IL-10) produced by CD4+ and CD8+ T cells in the Lipo MA. Furthermore, the Lipo MA group showed an increase in the IFN-γ/IL-10 ratio in both CD4+ and CD8+ T cell subsets. According to the parasite load evaluation using quantitative PCR, the Lipo MA group showed no L. infantum DNA in the spleen (0.0%) and 41.4% in the liver. In addition, we detected a low positive correlation between parasitism and histopathology findings (inflammatory process and granuloma formation). Thus, our results confirmed that Lipo MA is a promising antileishmanial formulation able to reduce the inflammatory response and induce a type 1 immune response, accompanied by a significant reduction of the parasite burden into hepatic and splenic compartments in treated animals. PMID:28827416

  13. Serum apolipoprotein B-100 concentration predicts the virological response to pegylated interferon plus ribavirin combination therapy in patients infected with chronic hepatitis C virus genotype 1b.

    PubMed

    Yoshizawa, Kai; Abe, Hiroshi; Aida, Yuta; Ishiguro, Haruya; Ika, Makiko; Shimada, Noritomo; Tsubota, Akihito; Aizawa, Yoshio

    2013-07-01

    Host lipoprotein metabolism is associated closely with the life cycle of hepatitis C virus (HCV), and serum lipid profiles have been linked to the response to pegylated interferon (Peg-IFN) plus ribavirin (RBV) therapy. Polymorphisms in the human IL28B gene and amino acid substitutions in the core and interferon sensitivity-determining region (ISDR) in NS5A of HCV genotype 1b (G1b) were also shown to strongly affect the outcome of Peg-IFN plus RBV therapy. In this study, an observational cohort study was performed in 247 HCV G1b-infected patients to investigate whether the response to Peg-IFN and RBV combination therapy in these patients is independently associated with the level of lipid factors, especially apolipoprotein B-100 (apoB-100), an obligatory structural component of very low density lipoprotein and low density lipoprotein. The multivariate logistic analysis subsequently identified apoB-100 (odds ratio (OR), 1.602; 95% confidence interval (CI), 1.046-2.456), alpha-fetoprotein (OR, 0.764; 95% CI, 0.610-0.958), non-wild-type ISDR (OR, 5.617; 95% CI, 1.274-24.754), and the rs8099917 major genotype (OR, 34.188; 95% CI, 10.225-114.308) as independent factors affecting rapid initial virological response (decline in HCV RNA levels by ≥3-log10 at week 4). While lipid factors were not independent predictors of complete early or sustained virological response, the serum apoB-100 level was an independent factor for sustained virological response in patients carrying the rs8099917 hetero/minor genotype. Together, we conclude that serum apoB-100 concentrations could predict virological response to Peg-IFN plus RBV combination therapy in patients infected with HCV G1b, especially in those with the rs8099917 hetero/minor genotype. Copyright © 2013 Wiley Periodicals, Inc.

  14. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation.

    PubMed

    Bunker, Alex; Magarkar, Aniket; Viitala, Tapani

    2016-10-01

    Combined experimental and computational studies of lipid membranes and liposomes, with the aim to attain mechanistic understanding, result in a synergy that makes possible the rational design of liposomal drug delivery system (LDS) based therapies. The LDS is the leading form of nanoscale drug delivery platform, an avenue in drug research, known as "nanomedicine", that holds the promise to transcend the current paradigm of drug development that has led to diminishing returns. Unfortunately this field of research has, so far, been far more successful in generating publications than new drug therapies. This partly results from the trial and error based methodologies used. We discuss experimental techniques capable of obtaining mechanistic insight into LDS structure and behavior. Insight obtained purely experimentally is, however, limited; computational modeling using molecular dynamics simulation can provide insight not otherwise available. We review computational research, that makes use of the multiscale modeling paradigm, simulating the phospholipid membrane with all atom resolution and the entire liposome with coarse grained models. We discuss in greater detail the computational modeling of liposome PEGylation. Overall, we wish to convey the power that lies in the combined use of experimental and computational methodologies; we hope to provide a roadmap for the rational design of LDS based therapies. Computational modeling is able to provide mechanistic insight that explains the context of experimental results and can also take the lead and inspire new directions for experimental research into LDS development. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effects of pegylated recombinant human megakaryocyte growth and development factor on thrombocytopenia induced by a new myelosuppressive chemotherapy regimen in mice.

    PubMed

    Akahori, H; Shibuya, K; Ozai, M; Ida, M; Kabaya, K; Kato, T; Miyazaki, H

    1996-11-01

    Thrombopoietin, the endogenous c-Mpl ligand, is a novel lineage-specific hematopoietic factor that plays a pivotal role in the regulation of megakaryocytopoiesis and thrombopoiesis. In this study, we examined the effects of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF), a truncated molecule of recombinant human c-Mpl ligand derivatized with polyethylene glycol, on myelosuppressive chemotherapy-induced thrombocytopenia in mice. We developed a new murine model of thrombocytopenia induced by i.v. injections of mitomycin C (MMC) for two consecutive days. In control mice, platelet counts began to decrease on day 6, reached a nadir of less than 5% of basal level on day 14, and could not recover to basal level by day 26. Administration of PEG-rHuMGDF greatly enhanced recovery of the number of megakaryocyte progenitor cells and the megakaryocytes in bone marrow, and markedly reduced the severity of thrombocytopenia; it also accelerated platelet recovery in a dose-dependent manner in myelosuppressed mice. Mice receiving consecutive administration of higher doses of PEG-rHuMGDF showed no thrombocytopenia but rather had platelet counts being increased over basal level. Although absolute neutrophil counts and red cell counts also were decreased following MMC treatment, administration of PEG-rHuMGDF also improved neutropenia and anemia. Administration of PEG-rHuMGDF on alternate days or once a week after chemotherapy was almost as effective as consecutive administration in improving thrombocytopenia. Combined administration of PEG-rHuMGDF and rHuG-CSF had an additive effect on improvement of thrombocytopenia and neutropenia. These results suggest that PEG-rHuMGDF is a therapeutically effective agent in the treatment of thrombocytopenia associated with chemotherapy.

  16. Establishment of the first international standard for PEGylated granulocyte colony stimulating factor (PEG-G-CSF): Report of an international collaborative study

    PubMed Central

    Wadhwa, Meenu; Bird, Chris; Dougall, Thomas; Rigsby, Peter; Bristow, Adrian; Thorpe, Robin

    2015-01-01

    We assessed the feasibility of developing a suitable international reference standard for determination of in vitro biological activity of human sequence recombinant PEG-G-CSF products with a 20 kD linear PEG linked to the N-terminal methionyl residue of G-CSF (INN Filgrastim), produced using a conjugation process and coupling chemistry similar to that employed for the lead PEGfilgrastim product. Based on initial data which showed that the current WHO 2nd international standard, IS for G-CSF (09/136) or alternatively, a PEG-G-CSF standard with a unitage traceable to the G-CSF IS may potentially serve as the IS for PEG-G-CSF products, two candidate preparations of PEG-G-CSF were formulated and lyophilized at NIBSC. These preparations were tested by 23 laboratories using in vitro bioassays in a multi-centre collaborative study. Results indicated that on the basis of parallelism, the current WHO 2nd IS for G-CSF or any of the PEG-G-CSF samples could be used as the international standard for PEG-G-CSF preparations. However, because of the variability in potency estimates seen when PEG-G-CSF preparations were compared with the current WHO 2nd IS for G-CSF, a candidate PEG-G-CSF was suitable as the WHO IS. The preparation 12/188 was judged suitable to serve as the WHO IS based on in vitro biological activity data. Therefore, the preparation coded 12/188 was established by the WHO Expert Committee on Biological Standardization (ECBS) in 2013 as the WHO 1st IS for human PEGylated G-CSF with an assigned in vitro bioactivity of 10,000 IU per ampoule. PMID:25450254

  17. First report on the safety and efficacy of an extended half-life glycoPEGylated recombinant FVIII for major surgery in severe haemophilia A.

    PubMed

    Hampton, K; Chowdary, P; Dunkley, S; Ehrenforth, S; Jacobsen, L; Neff, A; Santagostino, E; Sathar, J; Takedani, H; Takemoto, C M; Négrier, C

    2017-09-01

    N8-GP (turoctocog alfa pegol) is an extended half-life glycoPEGylated recombinant factor VIII (FVIII) product developed for the prevention and treatment of bleeds in haemophilia A patients. This is a planned interim analysis of pathfinder™3, an international, open-label, Phase 3 trial evaluating the efficacy and safety (including immunogenicity) of N8-GP administered before, during and after major surgery in severe haemophilia A patients aged ≥12 years. Sixteen patients who underwent 18 major surgical procedures (including synovectomy, joint replacement and ankle arthrodesis) were included here. Postoperative assessments were conducted daily for days 1-6, and once for days 7-14. Primary endpoint was N8-GP haemostatic efficacy, assessed after completion of surgery using a four-point scale ('excellent', 'good', 'moderate', 'none'). Haemostasis was successful (rated 'excellent' or 'good') on completion of surgery in 17 (94.4%) procedures and rated as 'moderate' (5.6%) for one surgery in a patient with multiple comorbidities who needed an intraoperative N8-GP dose (20.7 IU kg -1 ). In the postoperative period, three bleeds occurred (one during days 1-6; two during days 7-14); all were successfully treated with N8-GP. Mean N8-GP consumption on day of surgery was 80.0 IU kg -1 ; patients received a mean of 1.7 doses (median: 2, range: 1-3). No safety concerns were identified. The data showed that N8-GP was effective and well tolerated for the prevention and treatment of bleeds during major surgery; such FVIII products with extended half-lives may modify current treatment schedules, enabling fewer infusions and earlier patient discharge. © 2017 John Wiley & Sons Ltd.

  18. Efficacy of and risk of bleeding during pegylated interferon plus ribavirin treatment in HIV/HCV-coinfected patients with pretreatment thrombocytopenia.

    PubMed

    Mira, J A; Neukam, K; López-Cortés, L F; Rivero-Juárez, A; Téllez, F; Girón-González, J A; de los Santos-Gil, I; Ojeda-Burgos, G; Merino, D; Ríos-Villegas, M J; Collado, A; Torres-Cornejo, A; Macías, J; Rivero, A; Pérez-Pérez, M; Pineda, J A

    2015-09-01

    The aim of this study was to assess the efficacy of and the risk of major bleeding during pegylated interferon (peg-IFN)/ribavirin (RBV) treatment among human immunodeficiency virus (HIV)/hepatitis C virus (HCV)-coinfected patients according to the pretreatment platelet count. Two hundred and seventy-four HCV/HIV-coinfected, previously naïve individuals with compensated cirrhosis enrolled in one Spanish prospective cohort who received peg-IFN/RBV were included in this study. The frequency of severe bleeding and sustained virological response (SVR) rate were compared between patients with a pretreatment platelet count ≤70,000/mm(3) and >70,000/mm(3), respectively. Sixty-one (22 %) patients had a baseline platelet count ≤70,000/mm(3). The median (Q1-Q3) pretreatment platelet count was 58,000 (49,000-65,000) cells/mm(3) in the platelet ≤70,000 group and 129,000 (102,500-166,000) cells/mm(3) in the platelet >70,000 group (p < 0.0001). Seventeen (28 %) subjects of the platelet ≤70,000 group and 71 (33 %) patients of the platelet >70,000 group achieved SVR (p = 0.4). Only 2 (3.2 %) patients in the platelet ≤70,000 group developed a severe hemorrhagic event, specifically esophageal variceal bleeding. The efficacy of therapy with peg-IFN/RBV in HIV/HCV-coinfected patients with low pretreatment platelet counts is comparable to that found in the overall subset of subjects with compensated cirrhosis. The frequency of severe hemorrhagic events related with this therapy is low in this population.

  19. Efficacy, safety and proper dose analysis of PEGylated granulocyte colony-stimulating factor as support for dose-dense adjuvant chemotherapy in node positive Chinese breast cancer patients.

    PubMed

    Zhang, Fan; LingHu, RuiXia; Zhan, XingYang; Li, Ruisheng; Feng, Fan; Gao, Xudong; Zhao, Lei; Yang, Junlan

    2017-10-03

    For high-risk breast cancer patients with positive axillary lymph nodes, dose-dense every-two-week epirubicin/cyclophosphamide-paclitaxel (ddEC-P) regimen is the optimal postoperative adjuvant therapy. However, this regimen is limited by the grade 3/4 neutropenia and febrile neutropenia (FN). There is an urgent need to explore the efficacy, safety and proper dosage of PEGylated granulocyte colony-stimulating factor (PEG-G-CSF) as support for ddEC-P in Chinese breast cancer patients with positive axillary lymph nodes. Prospectively, 40 women with stage IIIA to IIIC breast cancer received ddEC-P ± trastuzumab as adjuvant treatment. PEG-G-CSF was injected subcutaneously in a dose of 6 mg or 3 mg on the 2 th day of each treatment cycle. With administration of PEG-G-CSF, all of the 40 patients completed 8 cycles of ddEC-P ± trastuzumab regimen without dose reductions or treatment delays. Moreover, no FN cases were observed. Further analysis showed that the proper dosage of PEG-G-CSF was 6 mg for ddEC treatment, and 3 mg for ddP treatment. PEG-G-CSF exhibits advantages compared with G-CSF in convenient of administration and tolerance for high risk Chinese breast cancer patients. More importantly, the proper dose of PEG-G-CSF for high risk Chinese breast cancer patients during ddEC-P chemotherapy may be 6 mg for ddEC treatment and 3 mg for ddP treatment.

  20. Development of facile drug delivery platform of ranibizumab fabricated PLGA-PEGylated magnetic nanoparticles for age-related macular degeneration therapy.

    PubMed

    Yan, Jian; Peng, Xifeng; Cai, Yulian; Cong, Wendong

    2018-06-01

    The present anti-angiogenic therapies for neovascular age-related macular degeneration require effective drug delivery systems for transfer drug molecules. Ranibizumab is an active humanized monoclonal antibody that counteracts active forms of vascular endothelial growth factor A in the neovascular age-related macular degeneration therapy. The development of ranibizumab-related therapies, we have designed the effective drug career with engineered magnetic nanoparticles (Fe 3 O 4 ) as a facile platform of ranibizumab delivery for the treatment of neovascular age-related macular degeneration. Ranibizumab conjugated iron oxide (Fe 3 O 4 )/PEGylated poly lactide-co-glycolide (PEG-PLGA) was successfully designed and the synthesized materials are analyzed different analytical techniques. The microscopic techniques (Scanning Electron Microscopy (SEM) & Transmission Electron Microscopy (TEM)) are clearly displayed that spherical nanoparticles into the PEG-PLGA matrix and presence of elements and chemical interactions confirmed by the results of energy dispersive X-ray analysis (EDX) and Fourier trans-form infrared (FTIR) spectroscopic methods. The in vitro anti-angiogenic evaluation of Fe 3 O 4 /PEG-PLGA polymer nanomaterial efficiently inhibits the tube formation in the Matrigel-based assay method by using human umbilical vein endothelial cells. Ranibizumab treated Fe 3 O 4 /PEG-PLGA polymer nanomaterials not disturbed cell proliferation and the results could not display the any significant differences in human endothelial cells. The present investigated results describe that Fe 3 O 4 /PEG-PLGA polymer nanomaterials can be highly favorable and novel formulation for the treatment of neovascular age-related macular degeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time, and bioactivity in vivo.

    PubMed

    Nelson, Christopher E; Kintzing, James R; Hanna, Ann; Shannon, Joshua M; Gupta, Mukesh K; Duvall, Craig L

    2013-10-22

    A family of pH-responsive diblock polymers composed of poly[(ethylene glycol)-b-[(2-(dimethylamino)ethyl methacrylate)-co-(butyl methacrylate)], PEG-(DMAEMA-co-BMA), was reversible addition-fragmentation chain transfer (RAFT) synthesized with 0-75 mol % BMA in the second polymer block. The relative mole % of DMAEMA and BMA was varied in order to identify a polymer that can be used to formulate PEGylated, siRNA-loaded polyplex nanoparticles (NPs) with an optimized balance of cationic and hydrophobic content in the NP core based on siRNA packaging, cytocompatibility, blood circulation half-life, endosomal escape, and in vivo bioactivity. The polymer with 50:50 mol % of DMAEMA:BMA (polymer "50 B") in the RAFT-polymerized block efficiently condensed siRNA into 100 nm NPs that displayed pH-dependent membrane disruptive behavior finely tuned for endosomal escape. In vitro delivery of siRNA with polymer 50 B produced up to 94% protein-level knockdown of the model gene luciferase. The PEG corona of the NPs blocked nonspecific interactions with constituents of human whole blood, and the relative hydrophobicity of polymer 50 B increased NP stability in the presence of human serum or the polyanion heparin. When injected intravenously, 50 B NPs enhanced blood circulation half-life 3-fold relative to more standard PEG-DMAEMA (0 B) NPs (p < 0.05), due to improved stability and a reduced rate of renal clearance. The 50 B NPs enhanced siRNA biodistribution to the liver and other organs and significantly increased gene silencing in the liver, kidneys, and spleen relative to the benchmark polymer 0 B (p < 0.05). These collective findings validate the functional significance of tuning the balance of cationic and hydrophobic content of polyplex NPs utilized for systemic siRNA delivery in vivo.

  2. SINGLE AGENT CARBOPLATIN VERSUS CARBOPLATIN PLUS PEGYLATED LIPOSOMAL DOXORUBICIN IN RECURRENT OVARIAN CANCER: FINAL SURVIVAL RESULTS OF A SWOG (S0200) PHASE 3 RANDOMIZED TRIAL

    PubMed Central

    Markman, Maurie; Moon, James; Wilczynski, Sharon; Lopez, Ana Maria; Rowland, Kendrith M.; Michelin, David P.; Lanzotti, Victor J.; Anderson, Garnet L.; Alberts, David S.

    2009-01-01

    Objectives Randomized phase 3 trials have demonstrated the utility of a regimen of carboplatin plus pegylated liposomal doxorubicin (PLD) in recurrent ovarian cancer, and have provided provocative data suggesting a substantially lower risk of carboplatin-associated hypersensitivity if PDL is delivered in combination with the platinum agent. Methods To further examine both of these clinically-relevant issues, the survival outcome (with longer follow-up) and hypersensitivity reaction profile of a previously reported phase 3 trial that compared single agent carboplatin (AUC 5) to carboplatin (AUC 5) plus PLD (30 mg/m2) delivered on an every 4-week schedule in recurrent ovarian cancer (SWOG 0200) were re-analyzed. Results In the limited number of patients (n=61) entered into this phase 3 study before closure by the SWOG Data Safety and Monitoring Committee due to insufficient accrual, there was an initially reported improvement in outcome associated with the combination regimen. With longer follow-up and additional events there is still a statistically-significant improved progression-free survival (median: 12 versus 8 months, p=0.02), but the previously observed impact of the two-drug regimen on overall survival is no longer apparent (median: 31 versus 18 months; p=0.2). While no hypersensitivity reactions were reported in the carboplatin plus PLD arm (0/31), 9 of 30 patients (30%) of women randomized to single agent carboplatin experienced an allergic episode (p=0.0008), with 5 being ≥ grade 3 in severity. Conclusion Despite a favorable impact of carboplatin and PLD on progression-free survival in this trial, the effect on overall survival is not statistically significant. For currently unknown reasons, administering PLD with carboplatin appears to substantially reduce the incidence of platinum-associated hypersensitivity reactions. PMID:20044128

  3. Investigation of PEG crystallization in frozen and freeze-dried PEGylated recombinant human growth hormone-sucrose systems: implications on storage stability.

    PubMed

    Bhatnagar, Bakul S; Martin, Susan W H; Hodge, Tamara S; Das, Tapan K; Joseph, Liji; Teagarden, Dirk L; Shalaev, Evgenyi Y; Suryanarayanan, Raj

    2011-08-01

    The objectives of the current study were to investigate (i) the phase behavior of a PEGylated recombinant human growth hormone (PEG-rhGH, ∼60 kDa) during freeze-drying and (ii) its storage stability. The phase transitions during freeze-thawing of an aqueous solution containing PEG-rhGH and sucrose were characterized by differential scanning calorimetry. Finally, PEG-rhGH and sucrose formulations containing low, medium, and high polyethylene glycol (PEG) to sucrose ratios were freeze-dried in dual-chamber syringes and stored at 4°C and 25°C. Chemical decomposition (methionine oxidation and deamidation) and irreversible aggregation were characterized by size-exclusion and ion-exchange chromatography, and tryptic mapping. PEG crystallization was facilitated when it was covalently linked with rhGH. When the solutions were frozen, phase separation into PEG-rich and sucrose-rich phases facilitated PEG crystallization and the freeze-dried cake contained crystalline PEG. Annealing caused PEG crystallization and when coupled with higher drying temperatures, the primary drying time decreased by up to 51%. When the freeze-dried cakes were stored at 4°C, while there was no change in the purity of the PEG-rhGH monomer, deamidation was highest in the formulations with the lowest PEG to sucrose ratio. When stored at 25°C, this composition also showed the most pronounced decrease in monomer purity, the highest level of aggregation, and deamidation. Furthermore, an increase in PEG crystallinity during storage was accompanied by a decrease in PEG-rhGH stability. Interestingly, during storage, there was no change in PEG crystallinity in formulations with medium and high PEG to sucrose ratios. Although PEG crystallization during freeze-drying did not cause protein degradation, crystallization during storage might have influenced protein stability. Copyright © 2011 Wiley-Liss, Inc.

  4. Systems and methods for providing power to a load based upon a control strategy

    DOEpatents

    Perisic, Milun; Kajouke, Lateef A; Ransom, Ray M

    2013-12-24

    Systems and methods are provided for an electrical system. The electrical system includes a load, an interface configured to receive a voltage from a voltage source, and a controller configured to receive the voltage from the voltage source through the interface and to provide a voltage and current to the load. Wherein, when the controller is in a constant voltage mode, the controller provides a constant voltage to the load, when the controller is in a constant current mode, the controller provides a constant current to the load, and when the controller is in a constant power mode, the controller provides a constant power to the load.

  5. Facilitated movement of inertial Brownian motors driven by a load under an asymmetric potential.

    PubMed

    Ai, Bao-quan; Liu, Liang-gang

    2007-10-01

    Based on recent work [L. Machura, M. Kostur, P. Talkner, J. Luczka, and P. Hanggi, Phys. Rev. Lett. 98, 040601 (2007)], we extend the study of inertial Brownian motors to the case of an asymmetric potential. It is found that some transport phenomena appear in the presence of an asymmetric potential. Within tailored parameter regimes, there exists two optimal values of the load at which the mean velocity takes its maximum, which means that a load can facilitate the transport in the two parameter regimes. In addition, the phenomenon of multiple current reversals can be observed when the load is increased.

  6. Access to a Loaded Gun Without Adult Permission and School-Based Bullying.

    PubMed

    Simckes, Maayan S; Simonetti, Joseph A; Moreno, Megan A; Rivara, Frederick P; Oudekerk, Barbara A; Rowhani-Rahbar, Ali

    2017-09-01

    Gun access and bullying are risk factors for sustaining or perpetrating violence among adolescents. Our knowledge of gun access among bullied students is limited. We used data on students, aged 12-18 years, from the 2011 and 2013 School Crime Supplement to the National Crime Victimization Survey to assess the association between self-reported bullying victimization (traditional and cyber) and access to a loaded gun without adult permission. Prevalence ratios (PRs) and confidence intervals (CIs) were obtained from multivariable Poisson regression using the Taylor series after controlling for student age, sex, family income, public/private school, and race. Of 10,704 participants, 4.2% (95% CI: 3.8%-4.6%) reported gun access. Compared with nonbullied students, those who reported traditional bullying (PR = 2.2; 95% CI: 1.7-2.4), cyberbullying (PR = 2.8; 95% CI: 1.6-4.9), and both (PR = 5.9; 95% CI: 4.6-7.7) were more likely to also report gun access. Adolescents who experience bullying, particularly those who report both traditional bullying and cyberbullying, are more likely to report access to a loaded gun without adult permission. These findings highlight the importance of developing interventions focused on these modifiable risk factors for preventing self-directed or interpersonal violence among youth. Copyright © 2017 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  7. Investigation of Hexadecylphosphocholine (miltefosine) usage in Pegylated liposomal doxorubicin as a synergistic ingredient: In vitro and in vivo evaluation in mice bearing C26 colon carcinoma and B16F0 melanoma.

    PubMed

    Teymouri, Manouchehr; Farzaneh, Hamidreza; Badiee, Ali; Golmohammadzadeh, Shiva; Sadri, Kayvan; Jaafari, Mahmoud Reza

    2015-12-01

    In this investigation, Hexadecylphosphocholine (HePC, miltefosine) was being used as a new ingredient in Pegylated liposomal doxorubicin (PLD) and different aspects of this integration such as its effect on doxorubicin (Dox) release and cell uptake, cytotoxicity of liposomes, in vivo distribution and half-life clearance time of Dox as well as median survival time were illustrated. The liposomal formulations were Pegylated liposomal doxorubicin containing 0, 0.5, 1, 2 and 4% mole ratios of HePC (HePC-PLD) and their respective Dox-free liposomes (HePC-PLs). The cells used were colon carcinoma (C26), adriamycin-resistant breast cancer (MCF-7-ADR), and B16F0 melanoma cell lines, of which C26 and B16F0 cells were exploited for tumoring in BALB/c and C57Bl/6 mice, respectively. In most cases, increase in miltefosine percentage resulted in physically liposomal instability, increased Dox delivery and toxicity and reduced blood half-life of Dox. Overall, HePC 4% -PLD and PLD differed significantly in many respects and it was considered too toxic to be injected at the same dose (15mg Dox/ kg) as PLD. Although HePC 2% -PLD could extend the median survival time marginally in comparison to PLD, the concept of HePC- containing liposomes merits further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A load-based mechanism for inter-leg coordination in insects

    PubMed Central

    2017-01-01

    Animals rely on an adaptive coordination of legs during walking. However, which specific mechanisms underlie coordination during natural locomotion remains largely unknown. One hypothesis is that legs can be coordinated mechanically based on a transfer of body load from one leg to another. To test this hypothesis, we simultaneously recorded leg kinematics, ground reaction forces and muscle activity in freely walking stick insects (Carausius morosus). Based on torque calculations, we show that load sensors (campaniform sensilla) at the proximal leg joints are well suited to encode the unloading of the leg in individual steps. The unloading coincides with a switch from stance to swing muscle activity, consistent with a load reflex promoting the stance-to-swing transition. Moreover, a mechanical simulation reveals that the unloading can be ascribed to the loading of a specific neighbouring leg, making it exploitable for inter-leg coordination. We propose that mechanically mediated load-based coordination is used across insects analogously to mammals. PMID:29187626

  9. Inrush Current Suppression Circuit and Method for Controlling When a Load May Be Fully Energized

    NASA Technical Reports Server (NTRS)

    Schwerman, Paul (Inventor)

    2017-01-01

    A circuit and method for controlling when a load may be fully energized includes directing electrical current through a current limiting resistor that has a first terminal connected to a source terminal of a field effect transistor (FET), and a second terminal connected to a drain terminal of the FET. The gate voltage magnitude on a gate terminal of the FET is varied, whereby current flow through the FET is increased while current flow through the current limiting resistor is simultaneously decreased. A determination is made as to when the gate voltage magnitude on the gate terminal is equal to or exceeds a predetermined reference voltage magnitude, and the load is enabled to be fully energized when the gate voltage magnitude is equal to or exceeds the predetermined reference voltage magnitude.

  10. In vivo tissue distribution and efficacy studies for cyclosporin A loaded nano-decorated subconjunctival implants.

    PubMed

    Yavuz, Burçin; Bozdağ Pehlivan, Sibel; Kaffashi, Abbas; Çalamak, Semih; Ulubayram, Kezban; Palaska, Erhan; Çakmak, Hasan Basri; Ünlü, Nurşen

    2016-11-01

    Biodegradable implants are promising drug delivery systems for sustained release ocular drug delivery with the benefits such as minimum systemic side effects, constant drug concentration at the target site and getting cleared without surgical removal. Dry eye syndrome (DES) is a common disease characterized with the changes in ocular epithelia surface and results in inflammatory reaction that might lead to blindness. Cyclosporin A (CsA) is a cyclic peptide that is frequently employed for the treatment of DES and it needs to be applied several times a day in tear drops form. The aim of this study was to evaluate in vivo behavior and efficacy of the developed nano-decorated subconjunctival implant systems for sustained release CsA delivery. Biodegradable Poly-ɛ-caprolactone (PCL) implant or micro-fiber implants containing CsA loaded poly-lactide-co-glycolide (85:15) (PLGA) or PCL nanoparticles were prepared in order to achieve sustained release. Two of the formulations PCL-PLGA-NP-F and PCL-PCL-NP-I were selected for in vivo evaluation based on their in vitro characteristics determined in our previous study. In this study, formulations were implanted to Swiss Albino mice with induced dry eye syndrome to investigate the ocular distribution of CsA following subconjunctival implantation and to evaluate the efficacy. Tissue distribution study indicated that CsA was present in ocular tissues such as cornea, sclera and lens even 90 days after the application and blood CsA levels were found lower than ocular tissues. Efficacy studies also showed that application of CsA-loaded fiber implant formulation resulted in faster recovery based on their staining scores.

  11. Effect on HBs antigen clearance of addition of pegylated interferon alfa-2a to nucleos(t)ide analogue therapy versus nucleos(t)ide analogue therapy alone in patients with HBe antigen-negative chronic hepatitis B and sustained undetectable plasma hepatitis B virus DNA: a randomised, controlled, open-label trial.

    PubMed

    Bourlière, Marc; Rabiega, Pascaline; Ganne-Carrie, Nathalie; Serfaty, Lawrence; Marcellin, Patrick; Barthe, Yoann; Thabut, Dominique; Guyader, Dominique; Hezode, Christophe; Picon, Magali; Causse, Xavier; Leroy, Vincent; Bronowicki, Jean Pierre; Carrieri, Patrizia; Riachi, Ghassan; Rosa, Isabelle; Attali, Pierre; Molina, Jean Michel; Bacq, Yannick; Tran, Albert; Grangé, Jean Didier; Zoulim, Fabien; Fontaine, Hélène; Alric, Laurent; Bertucci, Inga; Bouvier-Alias, Magali; Carrat, Fabrice

    2017-03-01

    Findings from uncontrolled studies suggest that addition of pegylated interferon in patients with HBe antigen (HBeAg)-negative chronic hepatitis B receiving nucleos(t)ide analogues with undetectable plasma hepatitis B virus (HBV) DNA might increase HBs antigen (HBsAg) clearance. We aimed to assess this strategy. In this randomised, controlled, open-label trial, we enrolled patients aged 18-75 years with HBeAg-negative chronic hepatitis B and documented negative HBV DNA while on stable nucleos(t)ide analogue regimens for at least 1 year from 30 hepatology tertiary care wards in France. Patients had to have an alanine aminotransferase concentration of less than or equal to five times the upper normal range, no hepatocellular carcinoma, and a serum α fetoprotein concentration of less than 50 ng/mL, normal dilated fundus oculi examination, and a negative pregnancy test in women. Patients with contraindications to pegylated interferon were not eligible. A centralised randomisation used computer-generated lists of random permuted blocks of four with stratification by HBsAg titres (< or ≥2·25 log 10 IU/mL) to allocate patients (1:1) to receive a 48 week course of subcutaneous injections of 180 μg per week of pegylated interferon alfa-2a in addition to the nucleos(t)ide analogue regimen or to continue to receive nucleos(t)ide analogues only. The primary endpoint was HBsAg loss at week 96 by intention-to-treat analysis. This trial is closed and registered with ClinicalTrials.gov, number NCT01172392. Between Jan 20, 2011, and July 18, 2012, we randomly allocated 185 patients (92 [50%] to pegylated interferon and nucleos(t)ide analogues and 93 [50%] to nucleos(t)ide analogues alone). We excluded two patients from the pegylated interferon plus nucleos(t)ide analogues group from analyses because of withdrawal of consent (one patient) or violation of inclusion criteria (one patient). At week 96, loss of HBsAg was reported in seven (7·8%) of 90 patients in the pegylated

  12. Increased duration of dual pegylated interferon and ribavirin therapy for genotype 1 hepatitis C post-liver transplantation increases sustained virologic response: a retrospective review.

    PubMed

    Wells, Malcolm M; Roth, Lee S; Marotta, Paul; Levstik, Mark; Mason, Andrew L; Bain, Vincent G; Chandok, Natasha; Aljudaibi, Bandar M

    2013-01-01

    In patients with advanced post-transplant hepatitis C virus (HCV) recurrence, antiviral treatment (AVT) with interferon and ribavirin is indicated to prevent graft failure. The aim of this study was to determine and report Canadian data with respect to the safety, efficacy, and spontaneous virologic response (SVR) predictors of AVT among transplanted patients with HCV recurrence. A retrospective chart review was performed on patients transplanted in London, Ontario and Edmonton, Alberta from 2002 to 2012 who were treated for HCV. Demographic, medical, and treatment information was collected and analyzed. A total of 85 patients with HCV received pegylated interferon with ribavirin post-liver transplantation and 28 of the 65 patients (43%) with genotype 1 achieved SVR. Of the patients having genotype 1 HCV who achieved SVR, there was a significantly lower stage of fibrosis (1.37 ± 0.88 vs. 1.89 ± 0.96; P = 0.03), increased ribavirin dose (total daily dose 1057 ± 230 vs. 856 ± 399 mg; P = 0.02), increased rapid virologic response (RVR) (6/27 vs. 0/31; P = 0.05), increased early virologic response (EVR) (28/28 vs. 18/35; P = 0.006), and longer duration of therapy (54.7 ± 13.4 weeks vs. 40.2 ± 18.7; P = 0.001). A logistic regression model using gender, age, RVR, EVR, anemia, duration of therapy, viral load, years' post-transplant, and type of organ (donation after cardiac death vs. donation after brain death) significantly predicted SVR (P < 0.001), with duration of therapy having a significant odds ratio of 1.078 (P = 0.007). This study identified factors that predict SVR in HCV-positive patients who received dual therapy post-transplantation. Extending therapy from 48 weeks to 72 weeks of dual therapy is associated with increased SVR rates. Future studies examining the role of extended therapy are needed to confirm these findings, since the current study is a retrospective one.

  13. Protein pathway activation associated with sustained virologic response in patients with chronic hepatitis C treated with pegylated interferon (PEG-IFN) and ribavirin (RBV).

    PubMed

    Younossi, Zobair M; Limongi, Dolores; Stepanova, Maria; Pierobon, Mariaelena; Afendy, Arian; Mehta, Rohini; Baranova, Ancha; Liotta, Lance; Petricoin, Emanuel

    2011-02-04

    Only half of chronic hepatitis C (CH-C) patients treated with pegylated interferon and ribavirin (PEG-IFN+RBV) achieve sustained virologic response) SVR. In addition to known factors, we postulated that activation of key protein signaling networks in the peripheral blood mononuclear cells (PBMCs) may contribute to SVR due to inherent patient-specific basal immune cell signaling architecture. In this study, we included 92 patients with CH-C. PBMCs were collected while patients were not receiving treatment and used for phosphoprotein-based network profiling. Patients received a full course of PEG-IFN+RBV with overall SVR of 55%. From PBMC, protein lysates were extracted and then used for Reverse Phase Protein Microarray (RPMA) analysis, which quantitatively measured the levels of cytokines and activation levels of 25 key protein signaling molecules involved in immune cell regulation and interferon alpha signaling. Regression models for predicting SVR were generated by stepwise bidirectional selection. Both clinical-laboratory and RPMA parameters were used as predictor variables. Model accuracies were estimated using 10-fold cross-validation. Our results show that by comparing patients who achieved SVR to those who did not, phosphorylation levels of 6 proteins [AKT(T308), JAK1(Y1022/1023), p70 S6 Kinase (S371), PKC zeta/lambda(T410/403), TYK2(Y1054/1055), ZAP-70(Y319)/Syk(Y352)] and overall levels of 6 unmodified proteins [IL2, IL10, IL4, IL5, TNF-alpha, CD5L] were significantly different (P < 0.05). For SVR, the model based on a combination of clinical and proteome parameters was developed, with an AUC = 0.914, sensitivity of 92.16%, and specificity of 85.0%. This model included the following parameters: viral genotype, previous treatment status, BMI, phosphorylated states of STAT2, AKT, LCK, and TYK2 kinases as well as steady state levels of IL4, IL5, and TNF-alpha. In conclusion, SVR could be predicted by a combination of clinical, cytokine, and protein signaling

  14. Randomized controlled trial of the NS5A inhibitor daclatasvir plus pegylated interferon and ribavirin for HCV genotype-4 (COMMAND-4).

    PubMed

    Hézode, Christophe; Alric, Laurent; Brown, Ashley; Hassanein, Tarek; Rizzetto, Mario; Buti, Maria; Bourlière, Marc; Thabut, Dominique; Molina, Esther; Rustgi, Vinod; Samuel, Didier; McPhee, Fiona; Liu, Zhaohui; Yin, Philip D; Hughes, Eric; Treitel, Michelle

    2015-08-27

    Treatment options for HCV genotype-4 (GT4) are limited. This Phase III study (COMMAND-4; AI444-042) evaluated the efficacy and safety of daclatasvir (DCV), a pan-genotypic HCV NS5A inhibitor, with pegylated interferon-α2a/ribavirin (PEG-IFN/RBV) in treatment-naive patients with HCV GT4 infection. Patients were randomly assigned (2:1; blinded) to treatment with DCV 60 mg (n=82) or placebo (n=42) once daily plus PEG-IFN 180 µg weekly and RBV 1,000-1,200 mg/day (weight-based) twice daily. DCV-treated patients with undetectable HCV RNA at weeks 4 and 12 (eRVR) received 24 weeks of DCV plus PEG-IFN/RBV; those without eRVR received an additional 24 weeks of PEG-IFN/RBV. All placebo-treated patients received 48 weeks of PEG-IFN/RBV. The primary end point was sustained virological response (SVR) at post-treatment week 12 (SVR12). Patients were 75% IL28B non-CC and 11% had cirrhosis. SVR rates (HCV RNA < lower limit of quantitation [LLOQ]) at post-treatment week 12 or later (imputed to include patients missing SVR12 assessments but had SVR after post-treatment week 12) were 82% (67/82) with DCV plus PEG-IFN/RBV versus 43% (18/42) with PEG-IFN/RBV (P<0.0001). In DCV recipients, SVR12 rates were comparable across subgroups. The safety and tolerability profile of DCV plus PEG-IFN/RBV was comparable to that of PEG-IFN/RBV. Discontinuations due to adverse events occurred in 4.9% of patients receiving DCV plus PEG-IFN/RBV and 7.1% of patients receiving PEG-IFN/RBV. In treatment-naive patients with HCV GT4 infection, DCV plus PEG-IFN/RBV achieved higher SVR12 rates than PEG-IFN/RBV alone. These data support DCV-based regimens for treatment of HCV GT4 infection, including all-oral combinations with other direct-acting antivirals (AI444-042; ClinicalTrials.gov NCT01448044).

  15. The Patient-Related Burden of Pegylated-Interferon-α Therapy and Adverse Events among Patients with Viral Hepatitis C in Japan.

    PubMed

    Kumada, Hiromitsu; daCosta DiBonaventura, Marco; Yuan, Yong; Kalsekar, Anupama; Kopenhafer, Lewis; Tang, Ann; Victor, Timothy W; L'Italien, Gilbert; Chayama, Kazuaki; Toyota, Joji

    2014-05-01

    Pegylated-interferon-α (IFN-α)-based therapies for viral hepatitis C (HCV) are effective, but they are associated with several adverse events (AEs). The primary objectives of this study were to quantify the burden of IFN-α-based treatment and to measure the prevalence and burden of IFN-α-related AEs in Japan. A cross-sectional survey was administered online to patients with HCV in 2013. Patients who were currently taking IFN-α-based therapy (n = 188) were compared with patients who were taking a liver protectant but not IFN-α-based therapy (n = 180) and with patients who were untreated (n = 365) on measures of health-related quality of life (using the Hepatitis Quality of Life Questionnaire, version 2), work productivity, and health care resource use, controlling for sociodemographic characteristics and health history. Among patients taking IFN-α-based therapy, the prevalence and burden of AEs was examined on the same set of health outcomes as noted above along with treatment satisfaction and adherence. Compared with untreated patients, patients using IFN-α reported poorer health-related quality of life (physical component summary score, 50.13 vs. 52.04; mental component summary score, 44.12 vs. 47.97), more overall work impairment (32.73 vs. 25.64), more physician visits in the past 6 months (14.51 vs. 8.36), and an increased likelihood of an emergency room visit (odds ratio = 7.25) and hospitalization (odds ratio = 4.05) (all P < 0.05). The mean number of AEs was 6.05 for patients using IFN-α. All AEs were associated with poorer health outcomes (particularly the mental component summary score), and most were also associated with lower treatment satisfaction and medication adherence. A significant patient burden for IFN-α treatment itself and various AEs was observed. The results suggest that effective, non-IFN-α-based treatments may reduce the societal burden. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR

  16. Pembrolizumab Plus Pegylated Interferon alfa-2b or Ipilimumab for Advanced Melanoma or Renal Cell Carcinoma: Dose-Finding Results from the Phase Ib KEYNOTE-029 Study.

    PubMed

    Atkins, Michael B; Hodi, F Stephen; Thompson, John A; McDermott, David F; Hwu, Wen-Jen; Lawrence, Donald P; Dawson, Nancy A; Wong, Deborah J; Bhatia, Shailender; James, Marihella; Jain, Lokesh; Robey, Seth; Shu, Xinxin; Homet Moreno, Blanca; Perini, Rodolfo F; Choueiri, Toni K; Ribas, Antoni

    2018-04-15

    Purpose: Pembrolizumab monotherapy, ipilimumab monotherapy, and pegylated interferon alfa-2b (PEG-IFN) monotherapy are active against melanoma and renal cell carcinoma (RCC). We explored the safety and preliminary antitumor activity of pembrolizumab combined with either ipilimumab or PEG-IFN in patients with advanced melanoma or RCC. Experimental Design: The phase Ib KEYNOTE-029 study (ClinicalTrials.gov, NCT02089685) included independent pembrolizumab plus reduced-dose ipilimumab and pembrolizumab plus PEG-IFN cohorts. Pembrolizumab 2 mg/kg every 3 weeks (Q3W) plus 4 doses of ipilimumab 1 mg/kg Q3W was tolerable if ≤6 of 18 patients experienced a dose-limiting toxicity (DLT). The target DLT rate for pembrolizumab 2 mg/kg Q3W plus PEG-IFN was 30%, with a maximum of 14 patients per dose level. Response was assessed per RECIST v1.1 by central review. Results: The ipilimumab cohort enrolled 22 patients, including 19 evaluable for DLTs. Six patients experienced ≥1 DLT. Grade 3 to 4 treatment-related adverse events occurred in 13 (59%) patients. Responses occurred in 5 of 12 (42%) patients with melanoma and 3 of 10 (30%) patients with RCC. In the PEG-IFN cohort, DLTs occurred in 2 of 14 (14%) patients treated at dose level 1 (PEG-IFN 1 μg/kg/week) and 2 of 3 (67%) patients treated at dose level 2 (PEG-IFN 2 μg/kg/week). Grade 3 to 4 treatment-related adverse events occurred in 10 of 17 (59%) patients. Responses occurred in 1 of 5 (20%) patients with melanoma and 2 of 12 (17%) patients with RCC. Conclusions: Pembrolizumab 2 mg/kg Q3W plus ipilimumab 1 mg/kg Q3W was tolerable and provided promising antitumor activity in patients with advanced melanoma or RCC. The