Science.gov

Sample records for a-mode ultrasound devices

  1. Comparison of the biometric values obtained by two different A-mode ultrasound devices (Eye Cubed vs. PalmScan): A Transversal, descriptive, and comparative study

    PubMed Central

    2010-01-01

    Background To assess the reliability of the measurements obtained with the PalmScan™, when compared with another standardized A-mode ultrasound device, and assess the consistency and correlation between the two methods. Methods Transversal, descriptive, and comparative study. We recorded the axial length (AL), anterior chamber depth (ACD) and lens thickness (LT) obtained with two A-mode ultrasounds (PalmScan™ A2000 and Eye Cubed™) using an immersion technique. We compared the measurements with a two-sample t-test. Agreement between the two devices was assessed with Bland-Altman plots and 95% limits of agreement. Results 70 eyes of 70 patients were enrolled in this study. The measurements with the Eye Cubed™ of AL and ACD were shorter than the measurements taken by the PalmScan™. The differences were not statistically significant regarding AL (p < 0.4) but significant regarding ACD (p < 0.001). The highest agreement between the two devices was obtained during LT measurement. The PalmScan™ measurements were shorter, but not statistically significantly (p < 0.2). Conclusions The values of AL and LT, obtained with both devices are not identical, but within the limits of agreement. The agreement is not affected by the magnitude of the ocular dimensions (but only between range of 20 mm to 27 mm of AL and 3.5 mm to 5.7 mm of LT). A correction of about 0.5 D could be considered if an intraocular lens is being calculated. However due to the large variability of the results, the authors recommend discretion in using this conversion factor, and to adjust the power of the intraocular lenses based upon the personal experience of the surgeon. PMID:20334670

  2. Comparison of the biometric values obtained by two different A-mode ultrasound devices (Eye Cubed vs. PalmScan): a transversal, descriptive, and comparative study.

    PubMed

    Velez-Montoya, Raul; Shusterman, Eugene Mark; López-Miranda, Miriam Jessica; Mayorquin-Ruiz, Mariana; Salcedo-Villanueva, Guillermo; Quiroz-Mercado, Hugo; Morales-Cantón, Virgilio

    2010-03-24

    To assess the reliability of the measurements obtained with the PalmScan, when compared with another standardized A-mode ultrasound device, and assess the consistency and correlation between the two methods. Transversal, descriptive, and comparative study. We recorded the axial length (AL), anterior chamber depth (ACD) and lens thickness (LT) obtained with two A-mode ultrasounds (PalmScan A2000 and Eye Cubed) using an immersion technique. We compared the measurements with a two-sample t-test. Agreement between the two devices was assessed with Bland-Altman plots and 95% limits of agreement. 70 eyes of 70 patients were enrolled in this study. The measurements with the Eye Cubed of AL and ACD were shorter than the measurements taken by the PalmScan. The differences were not statistically significant regarding AL (p < 0.4) but significant regarding ACD (p < 0.001). The highest agreement between the two devices was obtained during LT measurement. The PalmScan measurements were shorter, but not statistically significantly (p < 0.2). The values of AL and LT, obtained with both devices are not identical, but within the limits of agreement. The agreement is not affected by the magnitude of the ocular dimensions (but only between range of 20 mm to 27 mm of AL and 3.5 mm to 5.7 mm of LT). A correction of about 0.5 D could be considered if an intraocular lens is being calculated. However due to the large variability of the results, the authors recommend discretion in using this conversion factor, and to adjust the power of the intraocular lenses based upon the personal experience of the surgeon.

  3. Towards Wearable A-Mode Ultrasound Sensing for Real-Time Finger Motion Recognition.

    PubMed

    Yang, Xingchen; Sun, Xueli; Zhou, Dalin; Li, Yuefeng; Liu, Honghai

    2018-06-01

    It is evident that surface electromyography (sEMG) based human-machine interfaces (HMI) have inherent difficulty in predicting dexterous musculoskeletal movements such as finger motions. This paper is an attempt to investigate a plausible alternative to sEMG, ultrasound-driven HMI, for dexterous motion recognition due to its characteristic of detecting morphological changes of deep muscles and tendons. A multi-channel A-mode ultrasound lightweight device is adopted to evaluate the performance of finger motion recognition; an experiment is designed for both widely acceptable offline and online algorithms with eight able-bodied subjects employed. The experiment result presents that the offline recognition accuracy is up to 98.83% ± 0.79%. The real-time motion completion rate is 95.4% ± 8.7% and online motion selection time is 0.243 ± 0.127 s. The outcomes confirm the feasibility of A-mode ultrasound based wearable HMI and its prosperous applications in prosthetic devices, virtual reality, and remote manipulation.

  4. Handheld ultrasound array imaging device

    NASA Astrophysics Data System (ADS)

    Hwang, Juin-Jet; Quistgaard, Jens

    1999-06-01

    A handheld ultrasound imaging device, one that weighs less than five pounds, has been developed for diagnosing trauma in the combat battlefield as well as a variety of commercial mobile diagnostic applications. This handheld device consists of four component ASICs, each is designed using the state of the art microelectronics technologies. These ASICs are integrated with a convex array transducer to allow high quality imaging of soft tissues and blood flow in real time. The device is designed to be battery driven or ac powered with built-in image storage and cineloop playback capability. Design methodologies of a handheld device are fundamentally different to those of a cart-based system. As system architecture, signal and image processing algorithm as well as image control circuit and software in this device is deigned suitably for large-scale integration, the image performance of this device is designed to be adequate to the intent applications. To elongate the battery life, low power design rules and power management circuits are incorporated in the design of each component ASIC. The performance of the prototype device is currently being evaluated for various applications such as a primary image screening tool, fetal imaging in Obstetrics, foreign object detection and wound assessment for emergency care, etc.

  5. Ultrasound appearances of Implanon implanted contraceptive devices.

    PubMed

    McNeill, G; Ward, E; Halpenny, D; Snow, A; Torreggiani, W

    2009-01-01

    Subdermal contraceptive devices represent a popular choice of contraception. Whilst often removed without the use of imaging, circumstances exist where imaging is required. Ultrasound is the modality of choice. The optimal technique and typical sonographic appearances are detailed in this article.

  6. Experimental validation of A-mode ultrasound acquisition system for computer assisted orthopaedic surgery

    NASA Astrophysics Data System (ADS)

    De Lorenzo, Danilo; De Momi, Elena; Beretta, Elisa; Cerveri, Pietro; Perona, Franco; Ferrigno, Giancarlo

    2009-02-01

    Computer Assisted Orthopaedic Surgery (CAOS) systems improve the results and the standardization of surgical interventions. Anatomical landmarks and bone surface detection is straightforward to either register the surgical space with the pre-operative imaging space and to compute biomechanical parameters for prosthesis alignment. Surface points acquisition increases the intervention invasiveness and can be influenced by the soft tissue layer interposition (7-15mm localization errors). This study is aimed at evaluating the accuracy of a custom-made A-mode ultrasound (US) system for non invasive detection of anatomical landmarks and surfaces. A-mode solutions eliminate the necessity of US images segmentation, offers real-time signal processing and requires less invasive equipment. The system consists in a single transducer US probe optically tracked, a pulser/receiver and an FPGA-based board, which is responsible for logic control command generation and for real-time signal processing and three custom-made board (signal acquisition, blanking and synchronization). We propose a new calibration method of the US system. The experimental validation was then performed measuring the length of known-shape polymethylmethacrylate boxes filled with pure water and acquiring bone surface points on a bovine bone phantom covered with soft-tissue mimicking materials. Measurement errors were computed through MR and CT images acquisitions of the phantom. Points acquisition on bone surface with the US system demonstrated lower errors (1.2mm) than standard pointer acquisition (4.2mm).

  7. Feasibility of A-mode ultrasound attenuation as a monitoring method of local hyperthermia treatment.

    PubMed

    Manaf, Noraida Abd; Aziz, Maizatul Nadwa Che; Ridzuan, Dzulfadhli Saffuan; Mohamad Salim, Maheza Irna; Wahab, Asnida Abd; Lai, Khin Wee; Hum, Yan Chai

    2016-06-01

    Recently, there is an increasing interest in the use of local hyperthermia treatment for a variety of clinical applications. The desired therapeutic outcome in local hyperthermia treatment is achieved by raising the local temperature to surpass the tissue coagulation threshold, resulting in tissue necrosis. In oncology, local hyperthermia is used as an effective way to destroy cancerous tissues and is said to have the potential to replace conventional treatment regime like surgery, chemotherapy or radiotherapy. However, the inability to closely monitor temperature elevations from hyperthermia treatment in real time with high accuracy continues to limit its clinical applicability. Local hyperthermia treatment requires real-time monitoring system to observe the progression of the destroyed tissue during and after the treatment. Ultrasound is one of the modalities that have great potential for local hyperthermia monitoring, as it is non-ionizing, convenient and has relatively simple signal processing requirement compared to magnetic resonance imaging and computed tomography. In a two-dimensional ultrasound imaging system, changes in tissue microstructure during local hyperthermia treatment are observed in terms of pixel value analysis extracted from the ultrasound image itself. Although 2D ultrasound has shown to be the most widely used system for monitoring hyperthermia in ultrasound imaging family, 1D ultrasound on the other hand could offer a real-time monitoring and the method enables quantitative measurement to be conducted faster and with simpler measurement instrument. Therefore, this paper proposes a new local hyperthermia monitoring method that is based on one-dimensional ultrasound. Specifically, the study investigates the effect of ultrasound attenuation in normal and pathological breast tissue when the temperature in tissue is varied between 37 and 65 °C during local hyperthermia treatment. Besides that, the total protein content measurement was also

  8. Large Area MEMS Based Ultrasound Device for Cancer Detection.

    PubMed

    Wodnicki, Robert; Thomenius, Kai; Hooi, Fong Ming; Sinha, Sumedha P; Carson, Paul L; Lin, Der-Song; Zhuang, Xuefeng; Khuri-Yakub, Pierre; Woychik, Charles

    2011-08-21

    We present image results obtained using a prototype ultrasound array which demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micro-Machined Ultrasound Transducers (cMUTs) which have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 um and the operating frequency is nominally 9 MHz. The spatial resolution of the new probe is comparable to production PZT probes, however the sensitivity is reduced by conditions that should be correctable. Simulated opposed-view image registration and Speed of Sound volume reconstruction results for ultrasound in the mammographic geometry are also presented.

  9. Large area MEMS based ultrasound device for cancer detection

    NASA Astrophysics Data System (ADS)

    Wodnicki, Robert; Thomenius, Kai; Ming Hooi, Fong; Sinha, Sumedha P.; Carson, Paul L.; Lin, Der-Song; Zhuang, Xuefeng; Khuri-Yakub, Pierre; Woychik, Charles

    2011-08-01

    We present image results obtained using a prototype ultrasound array that demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micromachined Ultrasound Transducers (cMUTs) that have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 μm and the operating frequency is nominally 9 MHz. The spatial resolution of the new probe is comparable to those of production PZT probes; however the sensitivity is reduced by conditions that should be correctable. Simulated opposed-view image registration and Speed of Sound volume reconstruction results for ultrasound in the mammographic geometry are also presented.

  10. Review of MRI positioning devices for guiding focused ultrasound systems.

    PubMed

    Yiallouras, C; Damianou, C

    2015-06-01

    This article contains a review of positioning devices that are currently used in the area of magnetic resonance imaging (MRI) guided focused ultrasound surgery (MRgFUS). The paper includes an extensive review of literature published since the first prototype system was invented in 1991. The technology has grown into a fast developing area with application to any organ accessible to ultrasound. The initial design operated using hydraulic principles, while the latest technology incorporates piezoelectric motors. Although, in the beginning there were fears regarding MRI safety, during recent years, the deployment of MR-safe positioning devices in FUS has become routine. Many of these positioning devices are now undergoing testing in clinical trials. Existing MRgFUS systems have been utilized mostly in oncology (fibroids, brain, liver, kidney, bone, pancreas, eye, thyroid, and prostate). It is anticipated that, in the near future, there will be a positioning device for every organ that is accessible by focused ultrasound. Copyright © 2014 John Wiley & Sons, Ltd.

  11. 76 FR 43119 - Medical Devices; General and Plastic Surgery Devices; Classification of the Focused Ultrasound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... and it is identified as a device using focused ultrasound to produce localized, mechanical motion... labeling includes warnings related to patient reaction in terms of pain and information to user in terms of observable skin reactions that are known to be precursors to the potential thermal adverse effects...

  12. Comparison of a pocket-size ultrasound device with a premium ultrasound machine: diagnostic value and time required in bedside ultrasound examination.

    PubMed

    Stock, Konrad Friedrich; Klein, Bettina; Steubl, Dominik; Lersch, Christian; Heemann, Uwe; Wagenpfeil, Stefan; Eyer, Florian; Clevert, Dir-Andre

    2015-10-01

    Time savings and clinical accuracy of a new miniature ultrasound device was investigated utilizing comparison with conventional high-end ultrasound instruments. Our objective was to determine appropriate usage and limitations of this diagnostic tool in internal medicine. We investigated 28 patients from the internal-medicine department. Patients were examined with the Acuson P10 portable device and a Sonoline Antares instrument in a cross-over design. All investigations were carried out at the bedside; the results were entered on a standardized report form. The time for the ultrasound examination (transfer time, setting up and disassembly, switching on and off, and complete investigation time) was recorded separately. Mean time for overall examination per patient with the portable ultrasound device was shorter (25.0 ± 4.5 min) than with the high-end machine (29.4 ± 4.4 min; p < 0.001). When measuring the size of liver, spleen, and kidneys, the values obtained differed significantly between portable device and the high-end instrument. In our study, we identified 113 pathological ultrasound findings with the high-end ultrasound machine, while 82 pathological findings (73%) were concordantly detected with the portable ultrasound device. The main diagnostic strengths of the portable device were in the detection of ascites (sensitivity 80%), diagnosis of fatty liver, and identification of severe parenchymal liver damage. The clinical utility of portable ultrasound machines is limited. There will be clinical roles for distinct clinical questions such as detection of ascites or pleural effusion when used by experienced examiners. However, sensitivity in detecting multiple pathologies is not comparable to high-end ultrasound machines.

  13. Minimally-invasive Ultrasound Devices for Treating Low Back Pain

    NASA Astrophysics Data System (ADS)

    Nau, William; Diederich, C.; Shu, R.; Kinsey, A.; Lotz, J.; Ferrier, W.; Sutton, J.; Pellegrino, R.

    2006-05-01

    demonstrated with both applicator design configurations. Results from these studies demonstrated the capability to control temperature distributions within targeted regions of the disc using interstitial ultrasound with greater thermal penetration than can be achieved with the RF heating devices currently in clinical use. Thus interstitial ultrasound offers a potential alternative heating modality for the clinical management of low back pain.

  14. Ultrasound

    MedlinePlus

    ... community Home > Pregnancy > Prenatal care > Ultrasound during pregnancy Ultrasound during pregnancy E-mail to a friend Please ... you. What are some reasons for having an ultrasound? Your provider uses ultrasound to do several things, ...

  15. Ultrasound

    MedlinePlus Videos and Cool Tools

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two- ... sound waves and appear dark or black. An ultrasound can supply vital information about a mother's pregnancy ...

  16. Ultrasound

    MedlinePlus

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  17. Fast Track ultrasound protocol to detect acute complications after totally implantable venous access device placement.

    PubMed

    Wu, Chun-Yu; Lin, Feng-Sheng; Wang, Yi-Chia; Chou, Wei-Han; Lin, Wen-Ying; Sun, Wei-Zen; Lin, Chih-Peng

    2015-01-01

    The role of ultrasound examination in detection of postprocedure complications from totally implantable venous access devices (TIVAD) placement is still uncertain. In a cohort of 665 cancer outpatients, we assessed a quick ultrasound examination protocol in early detection of mechanical complications of catheterization. Immediately after TIVAD placement, an ultrasound examination and chest radiography were performed to detect hemothorax, pneumothorax, and catheter malposition. The two methods were compared. Of the 668 catheters inserted, 628 were placed into axillary veins and 40 into internal jugular veins. The ultrasound examination took 2.5 ± 1.1 min. No hemothorax was detected, and neither pneumothorax nor catheter malposition was evident among the 40 internal jugular vein cannulations. Ultrasound and chest radiography examinations of the 628 axillary vein cannulations detected five and four instances of pneumothorax, respectively. Ultrasound detected all six catheter malpositions into the internal jugular vein. However, ultrasound failed to detect two out of three malpositions in the contralateral brachiocephalic vein and one kinking inside the superior vena cava. Without revision surgery, the operating time was 34.1 ± 15.6 min. With revision surgery, the operating time was shorter when ultrasound detected catheter malposition than when chest radiography was used (96.8 ± 12.9 vs. 188.8 ± 10.3 min, p < 0.001). Postprocedure ultrasound examination is a quick and sensitive method to detect TIVAD-related pneumothorax. It also precisely detects catheter malposition to internal jugular vein thus reduces time needed for revision surgery while chest radiography remains necessary to confirm catheter final position.

  18. MR compatible positioning device for guiding a focused ultrasound system for the treatment of brain deseases.

    PubMed

    Mylonas, N; Damianou, C

    2014-03-01

    A prototype magnetic resonance imaging (MRI)-compatible positioning device that navigates a high intensity focused ultrasound (HIFU) transducer is presented. The positioning device has three user-controlled degrees of freedom that allow access to brain targets using a lateral coupling approach. The positioning device can be used for the treatment of brain cancer (thermal mode ultrasound) or ischemic stroke (mechanical mode ultrasound). The positioning device incorporates only MRI compatible materials such as piezoelectric motors, ABS plastic, brass screws, and brass rack and pinion. The robot has the ability to accurately move the transducer thus creating overlapping lesions in rabbit brain in vivo. The registration and repeatability of the system was evaluated using tissues in vitro and gel phantom and was also tested in vivo in the brain of a rabbit. A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be placed on the table of the MRI scanner. This system can be used to treat in the future patients with brain cancer and ischemic stroke. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Ultrasound detection of cavitation as a phenomenon common to intervention devices causing tissue ablation

    NASA Astrophysics Data System (ADS)

    Bach, David S.; Armstrong, William F.; Erbel, Raimund; Ellis, Stephen G.; Sousa, Joao; Rosenschein, Uri

    1992-08-01

    Cavitation previously has been observed in association with ultrasonic angioplasty and high- frequency rotational atherectomy. This study evaluates the production of cavitation accompanying the use of several catheter-based devices under development or in current use in the practice of interventional cardiology. Catheters were examined in an in vitro model, and cavitation was evaluated using standard ultrasound imaging equipment. Cavitation was detected with each of the devices that effects tissue ablation, but not tissue resection. Devices produced characteristic patterns of cavitation dependent on the mode of energy release of the device. The size, but not the intensity, of the cavitation effect was proportional to the energy output of the devices. The precise role of cavitation in the mechanism of tissue ablation remains uncertain.

  20. 2D array transducers for real-time 3D ultrasound guidance of interventional devices

    NASA Astrophysics Data System (ADS)

    Light, Edward D.; Smith, Stephen W.

    2009-02-01

    We describe catheter ring arrays for real-time 3D ultrasound guidance of devices such as vascular grafts, heart valves and vena cava filters. We have constructed several prototypes operating at 5 MHz and consisting of 54 elements using the W.L. Gore & Associates, Inc. micro-miniature ribbon cables. We have recently constructed a new transducer using a braided wiring technology from Precision Interconnect. This transducer consists of 54 elements at 4.8 MHz with pitch of 0.20 mm and typical -6 dB bandwidth of 22%. In all cases, the transducer and wiring assembly were integrated with an 11 French catheter of a Cook Medical deployment device for vena cava filters. Preliminary in vivo and in vitro testing is ongoing including simultaneous 3D ultrasound and x-ray fluoroscopy.

  1. Dual-modality imaging with a ultrasound-gamma device for oncology

    NASA Astrophysics Data System (ADS)

    Polito, C.; Pellegrini, R.; Cinti, M. N.; De Vincentis, G.; Lo Meo, S.; Fabbri, A.; Bennati, P.; Cencelli, V. Orsolini; Pani, R.

    2018-06-01

    Recently, dual-modality systems have been developed, aimed to correlate anatomical and functional information, improving disease localization and helping oncological or surgical treatments. Moreover, due to the growing interest in handheld detectors for preclinical trials or small animal imaging, in this work a new dual modality integrated device, based on a Ultrasounds probe and a small Field of View Single Photon Emission gamma camera, is proposed.

  2. Targeted Prostate Thermal Therapy with Catheter-Based Ultrasound Devices and MR Thermal Monitoring

    NASA Astrophysics Data System (ADS)

    Diederich, Chris; Ross, Anthony; Kinsey, Adam; Nau, Will H.; Rieke, Viola; Butts Pauly, Kim; Sommer, Graham

    2006-05-01

    Catheter-based ultrasound devices have significant advantages for thermal therapy procedures, including potential for precise spatial and dynamic control of heating patterns to conform to targeted volumes. Interstitial and transurethral ultrasound applicators, with associated treatment strategies, were developed for thermal ablation of prostate combined with MR thermal monitoring. Four types of multielement transurethral applicators were devised, each with different levels of selectivity and intended therapeutic goals: sectored tubular transducer devices with fixed directional heating patterns; planar and lightly focused curvilinear devices with narrow heating patterns; and multi-sectored tubular devices capable of dynamic angular control without applicator movement. These devices are integrated with a 4 mm delivery catheter, incorporate an inflatable cooling balloon (10 mm OD) for positioning within the prostate and capable of rotation via an MR-compatible motor. Similarly, interstitial devices (2.4 mm OD) have been developed for percutaneous implantation with fixed directional heating patterns (e.g., 180 deg.). In vivo experiments in canine prostate (n=15) under MR temperature imaging were used to evaluate the heating technology and develop treatment strategies. MR thermal imaging in a 0.5 T interventional MRI was used to monitor temperature contours and thermal dose in multiple slices through the target volume. Sectored transurethral devices produce directional coagulation zones, extending 15-20 mm radial distance to the outer prostate capsule. The curvilinear applicator produces distinct 2-3 mm wide lesions, and with sequential rotation and modulated dwell time can precisely conform thermal ablation to selected areas or the entire prostate gland. Multi-sectored transurethral applicators can dynamically control the angular heating profile and target large regions of the gland in short treatment times without applicator manipulation. Interstitial implants with

  3. Ultrasound

    MedlinePlus

    ... completed. Young children may need additional preparation. When scheduling an ultrasound for yourself or your child, ask ... of Privacy Practices Notice of Nondiscrimination Manage Cookies Advertising Mayo Clinic is a not-for-profit organization ...

  4. Ultrasound

    MedlinePlus

    ... reflect off body structures. A computer receives the waves and uses them to create a picture. Unlike with an x-ray or CT scan, this test does not use ionizing radiation. The test is done in the ultrasound ...

  5. Evaluation of a simplified augmented reality device for ultrasound-guided vascular access in a vascular phantom.

    PubMed

    Jeon, Yunseok; Choi, Seungpyo; Kim, Heechan

    2014-09-01

    To investigate whether a novel ultrasound device may be used with a simplified augmented reality technique, and to compare this device with conventional techniques during vascular access using a vascular phantom. Prospective, randomized study. Anesthesiology and Pain Medicine departments of a university-affiliated hospital. 20 physicians with no experience with ultrasound-guided techniques. All participants performed the vascular access technique on the vascular phantom model using both a conventional device and the new ultrasound device. Time and the number of redirections of the needle until aspiration of dye into a vessel of the vascular phantom were measured. The median/interquartile range of time was 39.5/41.7 seconds versus 18.6/10.0 seconds (P < 0.001) and number of redirections was 3/3.5 versus 1/0 (P < 0.001) for the conventional and novel ultrasound devices, respectively. During vascular access in a vascular phantom model, the novel device decreased the time and the number of redirections significantly. The device successfully improved the efficiency of the ultrasound-guided vascular access technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Carotid Doppler ultrasound findings in patients with left ventricular assist devices.

    PubMed

    Cervini, Patrick; Park, Soon J; Shah, Dipesh K; Penev, Irina E; Lewis, Bradley D

    2010-12-01

    Left ventricular assist devices (LVADs) have been used to treat advanced heart failure refractory to medical management, as bridge therapy to myocardial recovery, as bridge therapy to cardiac transplantation, or as destination therapy for patients with unfavorable transplant candidacy. Neurologic complications are some of the most common and devastating complications in these patients. Preoperative carotid ultrasound is, therefore, a standard evaluation in patients at risk for cerebrovascular disease. Postoperative carotid artery Doppler sonography is performed in those patients with neurologic symptoms. It is likely, therefore, that sonographers, radiologists, and other physicians working in a center where LVADs are implanted will likely encounter a carotid artery Doppler study in this patient group. To our knowledge, the carotid Doppler findings in these patients have never been published. We review the Doppler ultrasound findings in 6 patients after LVAD insertion.

  7. Practical application to composite materials of a portable digital ultrasound device controlled by a microprocessor

    NASA Astrophysics Data System (ADS)

    Castel, J. G.; Husarek, V.

    1987-06-01

    The usefulness of a portable microprocessor-controlled ultrasound device for the periodic assessment of aircraft parts made of composite materials is shown. The performance of the device is demonstrated with the examples of a metallic honeycomb with a carbon-fiber skin, a phenolic honeycomb with a carbon skin, and a phenolic honeycomb with a Kevlar skin. Also considered are assessments of homogeneous carbon-fiber parts, including the study of artificial defects consisting of 1-2 mm diameter holes, and the assessment of the behavior of a carbon-titanium interface with separated zones. Advantages of the device include ease of adjustment, automated evaluation of the depth of defects, and the nearly-absolute reproducibility of adjustments.

  8. Comparison of an imaging heel quantitative ultrasound device (DTU-one) with densitometric and ultrasonic measurements.

    PubMed

    Diessel, E; Fuerst, T; Njeh, C F; Hans, D; Cheng, S; Genant, H K

    2000-01-01

    The purpose of this study was to evaluate a new imaging ultrasound scanner for the heel, the DTU-one (Osteometer MediTech, Denmark), by comparing quantitative ultrasound (QUS) results with bone mineral density (BMD) of the heel and femur from dual X-ray absorptiometry (DXA), and by comparing the DTU-one with another QUS device, the UBA 575+. The regions of interest in the DXA heel scan were matched with the regions evaluated by the two QUS devices. 134 healthy and 16 osteoporotic women aged 30-84 years old were enrolled in the study. In vivo short-term precision of the DTU-one for broadband ultrasound attenuation (BUA) and speed of sound (SOS) was 2.9% and 0.1%, respectively, and long-term precision was 3.8% and 0.2%, respectively. Highest correlations (r) between QUS and BMD measurements were achieved when comparing DTU-one results with BMD in matched regions of the DXA heel scan. Correlation coefficients (r) were 0.81 for BUA and SOS. Highest correlations with the UBA 575+ were 0.68 and 0.72, respectively. The comparison of BMD in different femoral sites with BUA and SOS (DTU-one) varied from 0.62 to 0.69 when including the entire study population. The correlation between BMD values within different sites of the femur tended to be higher (from r = 0.81 to 0.93). When comparing BUA with BUA and SOS with SOS on the two QUS devices, the absolute QUS values differed significantly. However, correlations were relatively high, with 0.76 for BUA and 0.82 for SOS. In conclusion, the results of the new quantitative ultrasound device, the DTU-one, are highly correlated (r = 0.8) with results obtained using the UBA 575+ and with BMD in the heel. The precision of the DTU-one is comparable to other QUS devices for BUA and is high for SOS.

  9. A real-time device for converting Doppler ultrasound audio signals into fluid flow velocity

    PubMed Central

    Hogeman, Cynthia S.; Koch, Dennis W.; Krishnan, Anandi; Momen, Afsana; Leuenberger, Urs A.

    2010-01-01

    A Doppler signal converter has been developed to facilitate cardiovascular and exercise physiology research. This device directly converts audio signals from a clinical Doppler ultrasound imaging system into a real-time analog signal that accurately represents blood flow velocity and is easily recorded by any standard data acquisition system. This real-time flow velocity signal, when simultaneously recorded with other physiological signals of interest, permits the observation of transient flow response to experimental interventions in a manner not possible when using standard Doppler imaging devices. This converted flow velocity signal also permits a more robust and less subjective analysis of data in a fraction of the time required by previous analytic methods. This signal converter provides this capability inexpensively and requires no modification of either the imaging or data acquisition system. PMID:20173048

  10. Miniaturized high-intensity focused ultrasound device in patients with glaucoma: a clinical pilot study.

    PubMed

    Aptel, Florent; Charrel, Thomas; Lafon, Cyril; Romano, Fabrice; Chapelon, Jean-Yves; Blumen-Ohana, Esther; Nordmann, Jean-Philippe; Denis, Philippe

    2011-11-11

    To evaluate the relative safety and potential efficacy of high-intensity focused ultrasound cyclocoagulation by a miniaturized annular device containing six piezoceramic transducers in patients with refractory glaucoma. This was a three-center prospective interventional pilot study. Twelve eyes of 12 patients with refractory glaucoma were insonified using a ring-shaped probe containing six miniaturized high-frequency transducers operating at 21 MHz. Ultrasound biomicroscopy (UBM) and a complete ophthalmic examination were performed before the procedure and at 1 day, 1 week, 1 month, and 3 months after the procedure. Additional visits were performed 6 and 12 months after the procedure. Intraocular pressure was significantly reduced (P < 0.01) from a mean preoperative value of 37.9 ± 10.7 mm Hg to a mean postoperative value of 27.3 ± 12.4, 25.2 ± 11.3, 25.2 ± 7.7, 24.8 ± 9.8, and 26.3 ± 5.1 mm Hg at 1 day, 1 week, 1 month, 3 months, and 6 months, respectively, and to a mean value of 24.7 ± 8.5 at the last follow-up visit. No major intraoperative or postoperative complications occurred. Minor postoperative corneal complications developed in four patients with previous corneal abnormalities: superficial punctate keratitis (n = 3) and central superficial corneal ulceration (n = 1). UBM showed cystic involution of the ciliary body in 9 of the 12 eyes and a suprachoroidal fluid space in 8 of the 12 eyes. Ultrasonic circular cyclocoagulation using high-intensity focused ultrasound delivered by a circular miniaturized device containing six piezoceramic transducers seems to be an effective and well-tolerated method to reduce intraocular pressure in patients with refractory glaucoma.

  11. Design evolution enhances patient compliance for low-intensity pulsed ultrasound device usage

    PubMed Central

    Pounder, Neill M; Jones, John T; Tanis, Kevin J

    2016-01-01

    Poor patient compliance or nonadherence with prescribed treatments can have a significant unfavorable impact on medical costs and clinical outcomes. In the current study, voice-of-the-customer research was conducted to aid in the development of a next-generation low-intensity pulsed ultrasound (LIPUS) bone healing product. An opportunity to improve patient compliance reporting was identified, resulting in the incorporation into the next-generation device of a visual calendar that provides direct feedback to the patient, indicating days for which they successfully completed treatment. Further investigation was done on whether inclusion of the visual calendar improved patient adherence to the prescribed therapy (20 minutes of daily treatment) over a 6-month period. Thus, 12,984 data files were analyzed from patients prescribed either the earlier- or the next-generation LIPUS device. Over the 6-month period, overall patient compliance was 83.8% with the next-generation LIPUS device, compared with 74.2% for the previous version (p<0.0001). Incorporation of the calendar feature resulted in compliance never decreasing below 76% over the analysis period, whereas compliance with the earlier-generation product fell to 51%. A literature review on the LIPUS device shows a correlation between clinical effectiveness and compliance rates more than 70%. Incorporation of stakeholder feedback throughout the design and innovation process of a next-generation LIPUS device resulted in a measurable improvement in patient adherence, which may help to optimize clinical outcomes. PMID:27942237

  12. Prostate thermal therapy with catheter-based ultrasound devices and MR thermal monitoring

    NASA Astrophysics Data System (ADS)

    Diederich, Chris J.; Nau, Will H.; Kinsey, Adam; Ross, Tony; Wootton, Jeff; Juang, Titania; Butts-Pauly, Kim; Ricke, Viola; Liu, Erin H.; Chen, Jing; Bouley, Donna M.; Van den Bosch, Maurice; Sommer, Graham

    2007-02-01

    Four types of transurethral applicators were devised for thermal ablation of prostate combined with MR thermal monitoring: sectored tubular transducer devices with directional heating patterns; planar and curvilinear devices with narrow heating patterns; and multi-sectored tubular devices capable of dynamic angular control without applicator movement. These devices are integrated with a 4 mm delivery catheter, incorporate an inflatable cooling balloon (10 mm OD) for positioning within the prostate and capable of rotation via an MR-compatible motor. Interstitial devices (2.4 mm OD) have been developed for percutaneous implantation with directional or dynamic angular control. In vivo experiments in canine prostate under MR temperature imaging were used to evaluate the heating technology and develop treatment control strategies. MR thermal imaging in a 0.5 T interventional MRI was used to monitor temperature and thermal dose in multiple slices through the target volume. Sectored tubular, planar, and curvilinear transurethral devices produce directional coagulation zones, extending 15-20 mm radial distance to the outer prostate capsule. Sequential rotation and modulated dwell time can conform thermal ablation to selected regions. Multi-sectored transurethral applicators can dynamically control the angular heating profile and target large regions of the gland in short treatment times without applicator manipulation. Interstitial implants with directional devices can be used to effectively ablate the posterior peripheral zone of the gland while protecting the rectum. The MR derived 52 °C and lethal thermal dose contours (t 43=240 min) allowed for real-time control of the applicators and effectively defined the extent of thermal damage. Catheter-based ultrasound devices, combined with MR thermal monitoring, can produce relatively fast and precise thermal ablation of prostate, with potential for treatment of cancer or BPH.

  13. Are ultrasound-guided ophthalmic blocks injurious to the eye? A comparative rabbit model study of two ultrasound devices evaluating intraorbital thermal and structural changes.

    PubMed

    Palte, Howard D; Gayer, Steven; Arrieta, Esdras; Scot Shaw, Eric; Nose, Izuru; Lee, Elizabete; Arheart, Kristopher L; Dubovy, Sander; Birnbach, David J; Parel, Jean-Marie

    2012-07-01

    Since Atkinson's original description of retrobulbar block in 1936, needle-based anesthetic techniques have become integral to ophthalmic anesthesia. These techniques are unfortunately associated with rare, grave complications such as globe perforation. Ultrasound has gained widespread acceptance for peripheral nerve blockade, but its translation to ocular anesthesia has been hampered because sonic energy, in the guise of thermal or biomechanical insult, is potentially injurious to vulnerable eye tissue. The US Food and Drug Administration (FDA) has defined guidelines for safe use of ultrasound for ophthalmic examination, but most ultrasound devices used by anesthesiologists are not FDA-approved for ocular application because they generate excessive energy. Regulating agencies state that ultrasound examinations can be safely undertaken as long as tissue temperatures do not increase >1.5°C above physiological levels. Using a rabbit model, we investigated the thermal and mechanical ocular effects after prolonged ultrasonic exposure to single orbital- and nonorbital-rated devices. In a dual-phase study, aimed at detecting ocular injury, the eyes of 8 rabbits were exposed to continuous 10-minute ultrasound examinations from 2 devices: (1) the Sonosite Micromaxx (nonorbital rated) and (2) the Sonomed VuMax (orbital rated) machines. In phase I, temperatures were continuously monitored via thermocouples implanted within specific eye structures (n = 4). In phase II the eyes were subjected to ultrasonic exposure without surgical intervention (n = 4). All eyes underwent light microscopy examinations, followed at different intervals by histology evaluations conducted by an ophthalmic pathologist. Temperature changes were monitored in the eyes of 4 rabbits. The nonorbital-rated transducer produced increases in ocular tissue temperature that surpassed the safe limit (increases >1.5°C) in the lens of 3 rabbits (at 5.0, 5.5, and 1.5 minutes) and cornea of 2 rabbits (both at 1

  14. Are Ultrasound-Guided Ophthalmic Blocks Injurious to the Eye? A Comparative Rabbit Model Study of Two Ultrasound Devices Evaluating Intraorbital Thermal and Structural Changes

    PubMed Central

    Palte, Howard D.; Gayer, Steven; Arrieta, Esdras; Shaw, Eric Scot; Nose, Izuru; Lee, Elizabete; Arheart, Kristopher L.; Dubovy, Sander; Birnbach, David J.; Parel, Jean-Marie

    2012-01-01

    Background Since Atkinson’s original description of retrobulbar block in 1936, needle-based anesthetic techniques have become integral to ophthalmic anesthesia. These techniques are unfortunately associated with rare, grave complications such as globe perforation. Ultrasound has gained widespread acceptance for peripheral nerve blockade but its translation to ocular anesthesia has been hampered because sonic energy, in the guise of thermal or biomechanical insult, is potentially injurious to vulnerable eye tissue. The United States Food and Drug Administration have defined guidelines for safe use of ultrasound for ophthalmic examination but most ultrasound devices used by anesthesiologists are not Food and Drug Administration-approved for ocular application because they generate excessive energy. Regulating agencies state that ultrasound examination can be safely undertaken as long as tissue temperatures do not increase >1.5°C above physiological levels. Methods Using a rabbit model, we investigated the thermal and mechanical ocular effects after prolonged ultrasonic exposure to single orbital and non-orbital-rated devices. In a dual-phase study, aimed at detecting ocular injury, the eyes of 8 rabbits were exposed to continuous 10-minute ultrasound examinations from two devices: 1) the Sonosite Micromaxx (non-orbital-rated) and 2) the Sonomed VuMax (orbital-rated) machines. In Phase I temperatures were continuously monitored via thermocouples implanted within specific eye structures (n=4). In Phase II the eyes were subjected to ultrasonic exposure without surgical intervention (n=4). All eyes underwent light microscopy examinations followed, at different intervals, by histology evaluations conducted by an ophthalmic pathologist. Results Temperature changes were monitored in the eyes of four rabbits. The non-orbital-rated transducer produced increases in ocular tissue temperature that surpassed the safe limit (increases> 1.50C ) in the lens of three rabbits (at 5

  15. Design and implementation of a smartphone-based portable ultrasound pulsed-wave Doppler device for blood flow measurement.

    PubMed

    Huang, Chih-Chung; Lee, Po-Yang; Chen, Pay-Yu; Liu, Ting-Yu

    2012-01-01

    Blood flow measurement using Doppler ultrasound has become a useful tool for diagnosing cardiovascular diseases and as a physiological monitor. Recently, pocket-sized ultrasound scanners have been introduced for portable diagnosis. The present paper reports the implementation of a portable ultrasound pulsed-wave (PW) Doppler flowmeter using a smartphone. A 10-MHz ultrasonic surface transducer was designed for the dynamic monitoring of blood flow velocity. The directional baseband Doppler shift signals were obtained using a portable analog circuit system. After hardware processing, the Doppler signals were fed directly to a smartphone for Doppler spectrogram analysis and display in real time. To the best of our knowledge, this is the first report of the use of this system for medical ultrasound Doppler signal processing. A Couette flow phantom, consisting of two parallel disks with a 2-mm gap, was used to evaluate and calibrate the device. Doppler spectrograms of porcine blood flow were measured using this stand-alone portable device under the pulsatile condition. Subsequently, in vivo portable system verification was performed by measuring the arterial blood flow of a rat and comparing the results with the measurement from a commercial ultrasound duplex scanner. All of the results demonstrated the potential for using a smartphone as a novel embedded system for portable medical ultrasound applications. © 2012 IEEE

  16. Pocket ultrasound device as a complement to physical examination for ascites evaluation and guided paracentesis.

    PubMed

    Keil-Ríos, Daniel; Terrazas-Solís, Hiram; González-Garay, Alejandro; Sánchez-Ávila, Juan Francisco; García-Juárez, Ignacio

    2016-04-01

    The pocket ultrasound device (PUD) is a new tool that may be of use in the early detection of ascites. Abdominal ultrasound-guided paracentesis has been reported to decrease the rate of complications due to the procedure, but must be performed in a healthcare setting; this new tool may be a useful on an ambulatory basis. The aim of this study was to determine the diagnostic usefulness of the PUD in the diagnosis of ascites and the safety of guided paracentesis. We conducted a retrospective study that included adult patients suspected of having ascites and in whom an evaluation was performed with the PUD to identify it. Concordance with abdominal ultrasound (AUS) was determined with the Kappa coefficient. Sensitivity (Se), specificity (Sp) and likelihood ratios (LR) were determined and compared with physical examination, AUS, computed tomography and procurement of fluid by paracentesis. Complications resulting from the guided paracentesis were analyzed. 89 participants were included and 40 underwent a paracentesis. The PUD for ascites detection had 95.8 % Se, 81.8 % Sp, 5.27 +LR and 0.05 -LR. It had a concordance with AUS of 0.781 (p < 0.001). Technical problems during the guided paracentesis were present in only two participants (5 %) and three patients (7.5 %) developed minor complications that required no further intervention. There were no severe complications or deaths. This study suggests that the PUD is a reliable tool for ascites detection as a complement to physical examination and appears to be a safe method to perform guided paracentesis.

  17. A scanned focused ultrasound device for hyperthermia: numerical simulation and prototype implementation

    NASA Astrophysics Data System (ADS)

    Meaney, Paul M.; Raynolds, Timothy; Geimer, Shireen D.; Potwin, Lincoln; Paulsen, Keith D.

    2004-07-01

    We are developing a scanned focused ultrasound system for hyperthermia treatment of breast cancer. Focused ultrasound has significant potential as a therapy delivery device because it can focus sufficient heating energy below the skin surface with minimal damage to intervening tissue. However, as a practical therapy system, the focal zone is generally quite small and requires either electronic (in the case of a phased array system) or mechanical steering (for a fixed bowl transducer) to cover a therapeutically useful area. We have devised a simple automated steering system consisting of a focused bowl transducer supported by three vertically movable rods which are connected to computer controlled linear actuators. This scheme is particularly attractive for breast cancer hyperthermia where the support rods can be fed through the base of a liquid coupling tank to treat tumors within the breast while coupled to our noninvasive microwave thermal imaging system. A MATLAB routine has been developed for controlling the rod motion such that the beam focal point scans a horizontal spiral and the subsequent heating zone is cylindrical. In coordination with this effort, a 3D finite element thermal model has been developed to evaluate the temperature distributions from the scanned focused heating. In this way, scanning protocols can be optimized to deliver the most uniform temperature rise to the desired location.

  18. Is it Time to Replace Physical Examination with a Hand-Held Ultrasound Device?

    PubMed Central

    Kaul, Sanjiv

    2014-01-01

    Attempts at using physical examination (PE) go back centuries, with inspection, palpation, and percussion being the mainstay of this approach until 2 centuries ago when the stethoscope was invented and auscultation became probably the most important element of PE for patients with known or suspected cardiovascular disease (CVD). Despite its several limitations, PE is still used, sometimes as the only means, of evaluating and following patients with CVD. In this paper I shall argue for the substitution of this inaccurate and archaic approach by direct visualization of the heart using a hand-held ultrasound (HHU) device. I am not in any way suggesting the substitution of a comprehensive echocardiographic examination by an expert sonographer/echocardiographer by HHU in patients with significant CVD. Instead, I am arguing for the replacement of PE for evaluation of the heart at the point of care as well as at the bedside, simply because HHU is more accurate and provides more meaningful information. PMID:28465916

  19. Is it Time to Replace Physical Examination with a Hand-Held Ultrasound Device?

    PubMed

    Kaul, Sanjiv

    2014-01-01

    Attempts at using physical examination (PE) go back centuries, with inspection, palpation, and percussion being the mainstay of this approach until 2 centuries ago when the stethoscope was invented and auscultation became probably the most important element of PE for patients with known or suspected cardiovascular disease (CVD). Despite its several limitations, PE is still used, sometimes as the only means, of evaluating and following patients with CVD. In this paper I shall argue for the substitution of this inaccurate and archaic approach by direct visualization of the heart using a hand-held ultrasound (HHU) device. I am not in any way suggesting the substitution of a comprehensive echocardiographic examination by an expert sonographer/echocardiographer by HHU in patients with significant CVD. Instead, I am arguing for the replacement of PE for evaluation of the heart at the point of care as well as at the bedside, simply because HHU is more accurate and provides more meaningful information.

  20. Development of a Mechanical Scanning Device With High-Frequency Ultrasound Transducer for Ultrasonic Capsule Endoscopy.

    PubMed

    Wang, Xingying; Seetohul, Vipin; Chen, Ruimin; Zhang, Zhiqiang; Qian, Ming; Shi, Zhehao; Yang, Ge; Mu, Peitian; Wang, Congzhi; Huang, Zhihong; Zhou, Qifa; Zheng, Hairong; Cochran, Sandy; Qiu, Weibao

    2017-09-01

    Wireless capsule endoscopy has opened a new era by enabling remote diagnostic assessment of the gastrointestinal tract in a painless procedure. Video capsule endoscopy is currently commercially available worldwide. However, it is limited to visualization of superficial tissue. Ultrasound (US) imaging is a complementary solution as it is capable of acquiring transmural information from the tissue wall. This paper presents a mechanical scanning device incorporating a high-frequency transducer specifically as a proof of concept for US capsule endoscopy (USCE), providing information that may usefully assist future research. A rotary solenoid-coil-based motor was employed to rotate the US transducer with sectional electronic control. A set of gears was used to convert the sectional rotation to circular rotation. A single-element focused US transducer with 39-MHz center frequency was used for high-resolution US imaging, connected to an imaging platform for pulse generation and image processing. Key parameters of US imaging for USCE applications were evaluated. Wire phantom imaging and tissue phantom imaging have been conducted to evaluate the performance of the proposed method. A porcine small intestine specimen was also used for imaging evaluation in vitro. Test results demonstrate that the proposed device and rotation mechanism are able to offer good image resolution ( [Formula: see text]) of the lumen wall, and they, therefore, offer a viable basis for the fabrication of a USCE device.

  1. Comparison of sound speed measurements on two different ultrasound tomography devices

    NASA Astrophysics Data System (ADS)

    Sak, Mark; Duric, Neb; Littrup, Peter; Bey-Knight, Lisa; Sherman, Mark; Gierach, Gretchen; Malyarenko, Antonina

    2014-03-01

    Ultrasound tomography (UST) employs sound waves to produce three-dimensional images of breast tissue and precisely measures the attenuation of sound speed secondary to breast tissue composition. High breast density is a strong breast cancer risk factor and sound speed is directly proportional to breast density. UST provides a quantitative measure of breast density based on three-dimensional imaging without compression, thereby overcoming the shortcomings of many other imaging modalities. The quantitative nature of the UST breast density measures are tied to an external standard, so sound speed measurement in breast tissue should be independent of specific hardware. The work presented here compares breast sound speed measurement obtained with two different UST devices. The Computerized Ultrasound Risk Evaluation (CURE) system located at the Karmanos Cancer Institute in Detroit, Michigan was recently replaced with the SoftVue ultrasound tomographic device. Ongoing clinical trials have used images generated from both sets of hardware, so maintaining consistency in sound speed measurements is important. During an overlap period when both systems were in the same exam room, a total of 12 patients had one or both of their breasts imaged on both systems on the same day. There were 22 sound speed scans analyzed from each system and the average breast sound speeds were compared. Images were either reconstructed using saved raw data (for both CURE and SoftVue) or were created during the image acquisition (saved in DICOM format for SoftVue scans only). The sound speed measurements from each system were strongly and positively correlated with each other. The average difference in sound speed between the two sets of data was on the order of 1-2 m/s and this result was not statistically significant. The only sets of images that showed a statistical difference were the DICOM images created during the SoftVue scan compared to the SoftVue images reconstructed from the raw data

  2. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies.

    PubMed

    Radziemski, Leon; Makin, Inder Raj S

    2016-01-01

    Animal studies are an important step in proving the utility and safety of an ultrasound based implanted battery recharging system. To this end an Ultrasound Electrical Recharging System (USER™) was developed and tested. Experiments in vitro demonstrated power deliveries at the battery of up to 600 mW through 10-15 mm of tissue, 50 mW of power available at tissue depths of up to 50 mm, and the feasibility of using transducers bonded to titanium as used in medical implants. Acute in vivo studies in a porcine model were used to test reliability of power delivery, temperature excursions, and cooling techniques. The culminating five-week survival study involved repeated battery charging, a total of 10.5h of ultrasound exposure of the intervening living tissue, with an average RF input to electrical charging efficiency of 20%. This study was potentially the first long term cumulative living-tissue exposure using transcutaneous ultrasound power transmission to an implanted receiver in situ. Histology of the exposed tissue showed changes attributable primarily due to surgical implantation of the prototype device, and no damage due to the ultrasound exposure. The in vivo results are indicative of the potential safe delivery of ultrasound energy for a defined set of source conditions for charging batteries within implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies

    PubMed Central

    Radziemski, Leon; Makin, Inder Raj S.

    2015-01-01

    Animal studies are an important step in proving the utility and safety of an ultrasound based implanted battery recharging system. To this end an Ultrasound Electrical Recharging System (USER™) was developed and tested. Experiments in vitro demonstrated power deliveries at the battery of up to 600 mW through 10 – 15 mm of tissue, 50 mW of power available at tissue depths of up to 50 mm, and the feasibility of using transducers bonded to titanium as used in medical implants. Acute in vivo studies in a porcine model were used to test reliability of power delivery, temperature excursions, and cooling techniques. The culminating five-week survival study involved repeated battery charging, a total of 10.5 hours of ultrasound exposure of the intervening living tissue, with an average RF input to electrical charging efficiency of 20%. This study was potentially the first long term cumulative living-tissue exposure using transcutaneous ultrasound power transmission to an implanted receiver in situ. Histology of the exposed tissue showed changes attributable primarily due to surgical implantation of the prototype device, and no damage due to the ultrasound exposure. The in vivo results are indicative of the potential safe delivery of ultrasound energy for a defined set of source conditions for charging batteries within implants. PMID:26243566

  4. Italian chapter of the International Society of cardiovascular ultrasound expert consensus document on training requirements for noncardiologists using hand-carried ultrasound devices.

    PubMed

    Pelliccia, Francesco; Palmiero, Pasquale; Maiello, Maria; Losi, Maria-Angela

    2012-07-01

    Hand-carried ultrasound devices (HCDs), also named personal use echo, are pocket-size, compact, and battery-equipped echocardiographic systems. They have limited technical capabilities but offer some advantages compared with standard echocardiographic devices due to their simplicity of use, immediate availability at the patient's bedside, transportability, and relatively low cost. Current HCDs are considered as screening tools and are used to complement the physical examination by cardiologists. Many noncardiologic subspecialists, however, have adopted this technologic advancement rapidly raising the concern of an inappropriate use of HCD by health professionals who do not have any specific training. In keeping with the mission of the International Society of Cardiovascular Ultrasound to advance the science and art of cardiovascular ultrasound and encourage the knowledge of this subject, the purpose of this Expert Consensus document is to focus on the training for all health care professionals considering the use of HCD. Accordingly, this paper summarizes general aspects of HCD, such as technical characteristics and clinical indications, and then details the specific training requirements for noncardiologists (i.e., training program, minimum case load, duration, and certification of competence). © 2012, Wiley Periodicals, Inc.

  5. Thermo-Acoustic Ultrasound for Detection of RF-Induced Device Lead Heating in MRI.

    PubMed

    Dixit, Neerav; Stang, Pascal P; Pauly, John M; Scott, Greig C

    2018-02-01

    Patients who have implanted medical devices with long conductive leads are often restricted from receiving MRI scans due to the danger of RF-induced heating near the lead tips. Phantom studies have shown that this heating varies significantly on a case-by-case basis, indicating that many patients with implanted devices can receive clinically useful MRI scans without harm. However, the difficulty of predicting RF-induced lead tip heating prior to scanning prevents numerous implant recipients from being scanned. Here, we demonstrate that thermo-acoustic ultrasound (TAUS) has the potential to be utilized for a pre-scan procedure assessing the risk of RF-induced lead tip heating in MRI. A system was developed to detect TAUS signals by four different TAUS acquisition methods. We then integrated this system with an MRI scanner and detected a peak in RF power absorption near the tip of a model lead when transmitting from the scanner's body coil. We also developed and experimentally validated simulations to characterize the thermo-acoustic signal generated near lead tips. These results indicate that TAUS is a promising method for assessing RF implant safety, and with further development, a TAUS pre-scan could allow many more patients to have access to MRI scans of significant clinical value.

  6. Micromolded thick PZT sol gel composite structures for ultrasound transducer devices operating at high frequencies

    NASA Astrophysics Data System (ADS)

    Pang, Guofeng

    The objective of this work has been to design and develop a micromolding technique useful for batch fabrication to microfabricate 3D ceramic structures for device purposes using a sol gel composite processing technique and deep photolithography (UV LIGA). These structures may be the elements of ultrasound transducers, the structures associated with electronic packaging, or microstructures for microfluidic applications. To demonstrate the technique, the project has focused on the design and fabrication of annular and linear arrays for high frequency (>20 MHz) ultrasound imaging applications, particularly where an electronically steered imaging modality is employed. Other typical micromolded structures have been demonstrated to show the potential for micromolding. The transferability of the technique for industrial purposes is proposed. Using a sol gel composite process, the critical components in this technique are mold making, mold filling, material-processing, demolding, top electrode and essential material characterization. Two types of molds have been created using UV LIGA and/or electroplating. A purely organic mold made of Su-8 epoxy based photo-resist has shown tremendous performance for micromolding. The transducer packaging process has also been designed and evaluated at the laboratory level. A Su-8 micro bridge and bond pad has been used for wire bonding purposes. A 5-element annular array transducer has been fabricated by this technique and fully packaged. The micromolded piezoceramic structures have been characterized. The pulse echo performance of each element and the focusing performance of 5 elements of a packaged transducer array have been evaluated using a coaxial cable and a cable delay system.

  7. Efficiency of quantitative echogenicity for investigating supraspinatus tendinopathy by the gray-level histogram of two ultrasound devices.

    PubMed

    Hsu, Jiun-Cheng; Chen, Po-Han; Huang, Kuo-Chin; Tsai, Yao-Hung; Hsu, Wei-Hsiu

    2017-10-01

    The gray-level histogram of ultrasound is a promising tool for scanning the hypoechogenic appearance of supraspinatus tendinopathy, and the aim of this study was to test the hypothesis that the gray-level value of the supraspinatus tendon in the painful shoulder has a lower value on B-mode images even though in different ultrasound devices. Sixty-seven patients who had unilateral shoulder pain with rotator cuff tendinopathy underwent bilateral shoulder ultrasonography, and we compared the mean gray-level values of painful shoulders and contralateral shoulders without any pain in each patient using two ultrasound devices. The echogenicity ratio (symptomatic/asymptomatic side) of two ultrasound devices was compared. A significant difference existed between the symptomatic shoulder and contralateral asymptomatic shoulder (p < 0.001) on the mean gray-level value measurements of each device. The symptomatic-to-asymptomatic tendon echogenicity ratio of device A was 0.919 ± 0.090 in the transverse plane and 0.937 ± 0.081 in the longitudinal plane, and the echogenicity ratio of device B was 0.899 ± 0.113 in the transverse plane and 0.940 ± 0.113 in the longitudinal plane. The decline of the mean gray-level value and the echogenicity ratio of the supraspinatus tendon in the painful shoulder may be utilized as a useful sonographic reference of unilateral rotator cuff lesions. Diagnostic level III.

  8. Endobronchial Ultrasound-guided Transbronchial Needle Aspiration With a 19-G Needle Device.

    PubMed

    Tremblay, Alain; McFadden, Seamus; Bonifazi, Martina; Luzzi, Valentina; Kemp, Samuel V; Gasparini, Stefano; Chee, Alex; MacEachern, Paul; Dumoulin, Elaine; A Hergott, Christopher; Shah, Pallav L

    2018-05-16

    Endobronchial ultrasound (EBUS)-guided transbronchial needle aspiration is a well-established first-line minimally invasive modality for mediastinal lymph node sampling. Although results are excellent overall, the technique underperforms in certain situations. We aimed to describe our results using a new 19-G EBUS-guided transbronchial needle aspiration device to determine safety and feasibility of this approach. We completed a retrospective chart review of all cases performed to the time of data analysis at each of 3 study sites. A total of 165 procedures were performed with a total of 297 individual lymph nodes or lesions sampled with the 19-G device by 10 bronchoscopists. Relatively large targets were selected for sampling with the device (mean lymph node size: 20.4 mm; lung lesions: 33.5 mm). A specific diagnosis was obtained in 77.3% of cases with an additional 13.6% of cases with benign lymphocytes, for a procedural adequacy rate of 90.9%. Procedure sample adequacy was 88.6% in suspected malignant cases, 91.0% in suspected sarcoidosis/lymphadenopathy cases, and 85.7% of cases with suspected lymphoma. On a per-node basis, a specific diagnosis was noted in 191/280 (68.2%) of samples, with an additional 61 showing benign lymphocytes for a per-node sample adequacy rate of 90%. One case (0.6%) of intraprocedure bleeding was noted. A new flexible 19-G EBUS needle was successfully and safely applied in a large patient cohort for sampling of lung and enlarged mediastinal lesions with high diagnostic rates across clinical indications.

  9. Comparison of Two Devices for Intraoperative Portal Venous Flow Measurement in Living-Donor Liver Transplantation: Transit Time Ultrasound and Conventional Doppler Ultrasound.

    PubMed

    Wang, H-K; Chen, C-Y; Lin, N-C; Liu, C-S; Loong, C-C; Lin, Y-H; Lai, Y-C; Chiou, H-J

    2018-05-01

    Intraoperative portal venous flow measurement provides surgeons with instant guidance for portal flow modulation during living-donor liver transplantation (LDLT). In this study, we compared the agreement of portal flow measurement obtained by 2 devices: transit time ultrasound (TTU) and conventional Doppler ultrasound (CDU). Fifty-four recipients of LDLT underwent intraoperative measurement of portal flow after completion of vascular anastomosis of the implanted partial liver graft. Both TTU and CDU were used concurrently. Agreement of TTU and CDU was assessed by intraclass correlation coefficient using a model of 2-way random effects, absolute agreement, and single measurement. A Bland-Altman plot was applied to assess the variability between the 2 devices. The mean, median, and range of portal venous flow was 1456, 1418, and 117 to 2776 mL/min according to TTU; and 1564, 1566, and 119 to 3216 mL/min according to CDU. The intraclass correlation coefficient of portal venous flow between TTU and CDU was 0.68 (95% confidence interval, 0.51-0.80). The Bland-Altman plots revealed an average variation of 4.8% between TTU and CDU but with a rather wide 95% confidence interval of variation ranging from -57.7% to 67.4%. Intraoperative TTU and CDU showed moderate agreement in portal flow measurement. However, a relatively wide range of variation exists between TTU and CDU, indicating that data obtained from the 2 devices may not be interchangeable. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Diagnostic performance of multi-organ ultrasound with pocket-sized device in the management of acute dyspnea.

    PubMed

    Sforza, Alfonso; Mancusi, Costantino; Carlino, Maria Viviana; Buonauro, Agostino; Barozzi, Marco; Romano, Giuseppe; Serra, Sossio; de Simone, Giovanni

    2017-06-19

    The availability of ultra-miniaturized pocket ultrasound devices (PUD) adds diagnostic power to the clinical examination. Information on accuracy of ultrasound with handheld units in immediate differential diagnosis in emergency department (ED) is poor. The aim of this study is to test the usefulness and accuracy of lung ultrasound (LUS) alone or combined with ultrasound of the heart and inferior vena cava (IVC) using a PUD for the differential diagnosis of acute dyspnea (AD). We included 68 patients presenting to the ED of "Maurizio Bufalini" Hospital in Cesena (Italy) for AD. All patients underwent integrated ultrasound examination (IUE) of lung-heart-IVC, using PUD. The series was divided into patients with dyspnea of cardiac or non-cardiac origin. We used 2 × 2 contingency tables to analyze sensitivity, specificity, positive predictive value and negative predictive value of the three ultrasonic methods and their various combinations for the diagnosis of cardiogenic dyspnea (CD), comparing with the final diagnosis made by an independent emergency physician. LUS alone exhibited a good sensitivity (92.6%) and specificity (80.5%). The highest accuracy (90%) for the diagnosis of CD was obtained with the combination of LUS and one of the other two methods (heart or IVC). The IUE with PUD is a useful extension of the clinical examination, can be readily available at the bedside or in ambulance, requires few minutes and has a reliable diagnostic discriminant ability in the setting of AD.

  11. Catheter-based high-intensity ultrasound for epicardial ablation of the left ventricle: device design and in vivo feasiblity

    NASA Astrophysics Data System (ADS)

    Salgaonkar, Vasant A.; Nazer, Babak; Jones, Peter D.; Tanaka, Yasuaki; Martin, Alastair; Ng, Bennett; Duggirala, Srikant; Diederich, Chris J.; Gerstenfeld, Edward P.

    2015-03-01

    The development and in vivo testing of a high-intensity ultrasound thermal ablation catheter for epicardial ablation of the left ventricle (LV) is presented. Scar tissue can occur in the mid-myocardial and epicardial space in patients with nonischemic cardiomyopathy and lead to ventricular tachycardia. Current ablation technology uses radiofrequency energy, which is limited epicardially by the presence of coronary vessels, phrenic nerves, and fat. Ultrasound energy can be precisely directed to deliver targeted deep epicardial ablation while sparing intervening epicardial nerve and vessels. The proof-of-concept ultrasound applicators were designed for sub-xyphoid access to the pericardial space through a steerable 14-Fr sheath. The catheter consists of two rectangular planar transducers, for therapy (6.4 MHz) and imaging (5 MHz), mounted at the tip of a 3.5-mm flexible nylon catheter coupled and encapsulated within a custom-shaped balloon for cooling. Thermal lesions were created in the LV in a swine (n = 10) model in vivo. The ultrasound applicator was positioned fluoroscopically. Its orientation and contact with the LV were verified using A-mode imaging and a radio-opaque marker. Ablations employed 60-s exposures at 15 - 30 W (electrical power). Histology indicated thermal coagulation and ablative lesions penetrating 8 - 12 mm into the left ventricle on lateral and anterior walls and along the left anterior descending artery. The transducer design enabled successful sparing from the epicardial surface to 2 - 4 mm of intervening ventricle tissue and epicardial fat. The feasibility of targeted epicardial ablation with catheter-based ultrasound was demonstrated.

  12. Transvaginal ultrasound

    MedlinePlus

    Endovaginal ultrasound; Ultrasound - transvaginal; Fibroids - transvaginal ultrasound; Vaginal bleeding - transvaginal ultrasound; Uterine bleeding - transvaginal ultrasound; Menstrual bleeding - transvaginal ultrasound; ...

  13. Exploiting spatial degrees of freedom for high data rate ultrasound communication with implantable devices

    NASA Astrophysics Data System (ADS)

    Wang, Max L.; Arbabian, Amin

    2017-09-01

    We propose and demonstrate an ultrasonic communication link using spatial degrees of freedom to increase data rates for deeply implantable medical devices. Low attenuation and millimeter wavelengths make ultrasound an ideal communication medium for miniaturized low-power implants. While a small spectral bandwidth has drastically limited achievable data rates in conventional ultrasonic implants, a large spatial bandwidth can be exploited by using multiple transducers in a multiple-input/multiple-output system to provide spatial multiplexing gain without additional power, larger bandwidth, or complicated packaging. We experimentally verify the communication link in mineral oil with a transmitter and a receiver 5 cm apart, each housing two custom-designed mm-sized piezoelectric transducers operating at the same frequency. Two streams of data modulated with quadrature phase-shift keying at 125 kbps are simultaneously transmitted and received on both channels, effectively doubling the data rate to 250 kbps with a measured bit error rate below 10-4. We also evaluate the performance and robustness of the channel separation network by testing the communication link after introducing position offsets. These results demonstrate the potential of spatial multiplexing to enable more complex implant applications requiring higher data rates.

  14. Training Program for Cardiology Residents to Perform Focused Cardiac Ultrasound Examination with Portable Device.

    PubMed

    Siqueira, Vicente N; Mancuso, Frederico J N; Campos, Orlando; De Paola, Angelo A; Carvalho, Antonio C; Moises, Valdir A

    2015-10-01

    Training requirements for general cardiologists without echocardiographic expertise to perform focused cardiac ultrasound (FCU) with portable devices have not yet been defined. The objective of this study was to evaluate a training program to instruct cardiology residents to perform FCU with a hand-carried device (HCD) in different clinical settings. Twelve cardiology residents were subjected to a 50-question test, 4 lectures on basic echocardiography and imaging interpretation, the supervised interpretation of 50 echocardiograms and performance of 30 exams using HCD. After this period, they repeated the written test and were administered a practical test comprising 30 exams each (360 patients) in different clinical settings. They reported on 15 parameters and a final diagnosis; their findings were compared to the HCD exam of a specialist in echocardiography. The proportion of correct answers on the theoretical test was higher after training (86%) than before (51%; P = 0.001). The agreement was substantial among the 15 parameters analyzed (kappa ranging from 0.615 to 0.891; P < 0.001). The percentage of correct interpretation was lower for abnormal (75%) than normal (95%) items, for valve abnormalities (85%) compared to other items (92%) and for graded scale (87%) than for dichotomous (95%) items (P < 0.0001, for all). For the final diagnoses, the kappa value was higher than 0.941 (P < 0.001; 95% CI [0.914, 0.955]). The training proposed enabled residents to perform FCU with HCD, and their findings were in good agreement with those of a cardiologist specialized in echocardiography. © 2015, Wiley Periodicals, Inc.

  15. Modeling of endoluminal and interstitial ultrasound hyperthermia and thermal ablation: applications to device design, feedback control, and treatment planning

    PubMed Central

    Prakash, Punit; Salgaonkar, Vasant A.; Diederich, Chris J.

    2014-01-01

    Endoluminal and catheter-based ultrasound applicators are currently under development and are in clinical use for minimally invasive hyperthermia and thermal ablation of various tissue targets. Computational models play a critical role in in device design and optimization, assessment of therapeutic feasibility and safety, devising treatment monitoring and feedback control strategies, and performing patient-specific treatment planning with this technology. The critical aspects of theoretical modeling, applied specifically to endoluminal and interstitial ultrasound thermotherapy, are reviewed. Principles and practical techniques for modeling acoustic energy deposition, bioheat transfer, thermal tissue damage, and dynamic changes in the physical and physiological state of tissue are reviewed. The integration of these models and applications of simulation techniques in identification of device design parameters, development of real time feedback-control platforms, assessing the quality and safety of treatment delivery strategies, and optimization of inverse treatment plans are presented. PMID:23738697

  16. A Microfluidics-based Pulpal Arteriole Blood Flow Phantom for Validation of Doppler Ultrasound Devices in Pulpal Blood Flow Velocity Measurement.

    PubMed

    Kim, Dohyun; Park, Sung-Ho

    2016-11-01

    Recently, Doppler ultrasound has been used for the measurement of pulpal blood flow in human teeth. However, the reliability of this method has not been verified. In this study, we developed a model to simulate arteriole blood flow within the dental pulp by using microfluidics. This arteriole simulator, or flow phantom, was used to determine the reliability of measurements obtained by using a Doppler ultrasound device. A microfluidic chip was fabricated by using the soft lithography technique, and blood-mimicking fluid was pumped through the channel by a microfluidic system. A Doppler ultrasound device was used for the measurement of flow velocity. The peak, mean, and minimal flow velocities obtained from the phantom and the Doppler ultrasound device were compared by using linear regression analysis and Pearson correlation coefficient. Bland-Altman analyses were performed to evaluate the velocity differences between the flow generated by the phantom and the flow measurements made with the Doppler ultrasound device. The microfluidic system was able to generate the flow profiles as intended, and the fluid flow could be monitored and controlled by the software program. There were excellent linear correlations between the peak, mean, and minimal flow velocities of the phantom and those of the Doppler ultrasound device (r = 0.94-0.996, P < .001). However, the velocities were overestimated by the Doppler ultrasound device. This phantom provides opportunities for research and education involving the Doppler ultrasound technique in dentistry. Although Doppler ultrasound can be an effective tool for the measurement of pulpal blood flow velocity, it is essential to validate and calibrate the device before clinical use. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Can hand-carried ultrasound devices be extended for use by the noncardiology medical community?

    PubMed

    Duvall, W Lane; Croft, Lori B; Goldman, Martin E

    2003-07-01

    Echocardiography (echo) is a powerful, noninvasive, inexpensive diagnostic imaging technique that provides important information in a variety of cardiovascular diseases. Echo provides rapid information regarding ventricular and valvular function in the clinical management of patients. Smaller, relatively inexpensive hand-carried cardiac ultrasound (HCU) devices have become commercially available, which can be used for diagnostic cardiac imaging. Because of their relative ease of use, portability, and affordable cost, these new hand-held systems have made point-of-care (bedside) echocardiography available to all medical personnel. The rate-limiting step to the widespread use of this technology is the lack of personnel with echo training at the immediate contact point with patients. Although extensive training and experience are needed to acquire and interpret a complete echo, training medical personnel to perform and interpret a limited echo (defined as a brief, diagnosis focused exam) may fully exploit the potential of echo as a point-of-care diagnostic tool and may be accomplished in a short period of time. Presently there are guidelines for independent competency in echocardiography and HCU echo established by several professional organizations and as a result of these rigorous guidelines, other noncardiology medical professionals who could practically derive the greatest benefit are discouraged and virtually precluded from utilizing echo during the initial encounter with the patient. However, there is now a growing body of literature in a diverse group of noncardiology medical personnel that demonstrates that it is possible to quickly and effectively train them to perform and interpret limited echocardiograms. Medical students, medical residents, cardiology fellows with limited experience, emergency department physicians, and surgical intensive care unit staff have all been evaluated after only brief, focused training periods, and investigators found that HCU

  18. The efficacy of a combination non-thermal focused ultrasound and radiofrequency device for noninvasive body contouring in Asians.

    PubMed

    Shek, Samantha Y N; Yeung, Chi K; Chan, Johnny C Y; Chan, Henry H L

    2016-02-01

    Several studies have been published on the first generation non-thermal focused ultrasound with an average improvement of 0-3.95 cm reported. We aim to investigate the efficacy of the second-generation non-thermal focused ultrasound device with a combined radiofrequency hand piece. With the addition of radiofrequency energy, the temperature of the adipose tissue is raised before focused ultrasound is applied. This facilitates the mechanical disruption of fat cells by focused ultrasound. Twenty subjects were recruited and underwent three treatments biweekly. Caliper reading, abdominal circumference, and standardized photographs were taken with the Vectra(®) system at all visits. We aim to have the subjects stand and hold the same position and the photograph taken after exhalation. Caliper and circumference measurements carry uncertainty. It is impossible to eliminate all uncertainties but can be improved by having the same trained physician assistant perform the measurement at the same site and taking an average of three readings. Pain score and satisfaction were recorded by means of the visual analogue scale. The efficacy is defined by a statistically significant improvement in circumferential improvement based on intention-to-treat analysis. Seventeen subjects completed the treatment schedule. Abdominal circumference showed statistically significant improvement at 2 weeks post-second treatment (P = 0.023) and almost all subsequent follow-ups. Caliper readings were statistically significant at 2 weeks post-second treatment (P = 0.013) and almost all follow-ups. The mean pain score reported was 2.3 on the visual analog scale and 6% were unsatisfied with the overall treatments. Six incidents of wheal formation appeared immediately after treatment all of which subsided spontaneously within several hours. The combination non-thermal focused ultrasound and radiofrequency device is effective for improving body contour in Asians. © 2015 Wiley Periodicals, Inc.

  19. Evaluation of a novel high-intensity focused ultrasound device: preclinical studies in a porcine model.

    PubMed

    Jewell, Mark L; Desilets, Charles; Smoller, Bruce R

    2011-05-01

    High-intensity focused ultrasound (HIFU) has been applied clinically for the noninvasive treatment of pathological conditions in various organs for over 50 years; however, there are little data describing the use of thermal HIFU to ablate fat for body contouring and treatment of collagen-rich layers. A novel device under clinical investigation (LipoSonix; Medicis Technologies Corporation, Bothell, Washington) uses HIFU to eliminate unwanted adipose tissue. The authors describe the results of HIFU treatment in a series of preclinical studies performed in a validated porcine model. Preclinical research included in vivo treatment of the abdominal subcutaneous adipose tissue of swine with transcutaneous HIFU therapy. Endpoint analyses included thermocouple temperature data, full-body necropsy, local pathology and histology studies, clinical hematology, urinalysis, and blood chemistry parameters, including lipid panels. The application of HIFU energy levels of 166 to 372 J/cm(2) generated tissue temperature approaching 70°C, which was restricted to the focal area (n = seven). Application of 68 and 86 J/cm(2) did not produce clinically-significant changes in serum liver function tests, free fatty acids, or cholesterol (n = eight). Gross examination of tissue from various organs showed no evidence of fat emboli or accumulation (n = two). Histology demonstrated well-preserved vasculature and intact nerve fibers within the HIFU focal area (n = three). Following treatment with 85.3 to 270 J/cm(2), normal healing response included the migration of macrophages into the damaged tissue and removal of disrupted cellular debris and lipids (n = 8). In a preclinical swine model, the controlled thermal effect of HIFU appears to provide a safe and effective means for ablating subcutaneous adipose tissue.

  20. Initial Experience with a Wireless Ultrasound-Guided Vacuum-Assisted Breast Biopsy Device

    PubMed Central

    Choi, E-Ryung; Han, Boo-Kyung; Ko, Eun Sook; Ko, Eun Young; Choi, Ji Soo; Cho, Eun Yoon; Nam, Seok Jin

    2015-01-01

    Objective To determine the imaging characteristic of frequent target lesions of wireless ultrasound (US)-guided, vacuum-assisted breast biopsy (Wi-UVAB) and to evaluate diagnostic yield, accuracy and complication of the device in indeterminate breast lesions. Materials and Methods From March 2013 to October 2014, 114 women (age range, 29–76 years; mean age, 50.0 years) underwent Wi-UVAB using a 13-gauge needle (Mammotome Elite®; Devicor Medical Products, Cincinnati, OH, USA). In 103 lesions of 96 women with surgical (n = 81) or follow-up (n = 22) data, complications, biopsy procedure, imaging findings of biopsy targets and histologic results were reviewed. Results Mean number of biopsy cores was 10 (range 4–25). Nine patients developed moderate bleeding. All lesions were suspicious on US, and included non-mass lesions (67.0%) and mass lesions (33.0%). Visible calcifications on US were evident in 57.3% of the target lesions. Most of the lesions (93.2%) were nonpalpable. Sixty-six (64.1%) were malignant [ductal carcinoma in situ (DCIS) rate, 61%] and 12 were high-risk lesions (11.7%). Histologic underestimation was identified in 11 of 40 (27.5%). DCIS cases and in 3 of 9 (33.3%) high-risk lesions necessitating surgery. There was no false-negative case. Conclusion Wi-UVAB is very handy and advantageous for US-unapparent non-mass lesions to diagnose DCIS, especially for calcification cases. Histologic underestimation is unavoidable; still, Wi-UVAB is safe and accurate to diagnose a malignancy. PMID:26630136

  1. A Disposable Microfluidic Device for Controlled Drug Release from Thermal-Sensitive Liposomes by High Intensity Focused Ultrasound.

    PubMed

    Meng, Long; Deng, Zhiting; Niu, Lili; Li, Fei; Yan, Fei; Wu, Junru; Cai, Feiyan; Zheng, Hairong

    2015-01-01

    The drug release triggered thermally by high intensity focused ultrasound (HIFU) has been considered a promising drug delivery strategy due to its localized energy and non-invasive characters. However, the mechanism underlying the HIFU-mediated drug delivery remains unclear due to its complexity at the cellular level. In this paper, micro-HIFU (MHIFU) generated by a microfluidic device is introduced which is able to control the drug release from temperature-sensitive liposomes (TSL) and evaluate the thermal and mechanical effects of ultrasound on the cellular drug uptake and apoptosis. By simply adjusting the input electrical signal to the device, the temperature of sample can be maintained at 37 °C, 42 °C and 50 °C with the deviation of ± 0.3 °C as desired. The flow cytometry results show that the drug delivery under MHIFU sonication leads to a significant increase in apoptosis compared to the drug release by incubation alone at elevated temperature of 42 °C. Furthermore, increased squamous and protruding structures on the surface membrane of cells were detected by atomic force microscopy (AFM) after MHIFU irradiation of TSL. We demonstrate that compared to the routine HIFU treatment, MHIFU enables monitoring of in situ interactions between the ultrasound and cell in real time. Furthermore, it can quantitatively analyze and characterize the alterations of the cell membrane as a function of the treatment time.

  2. Ultrasound pregnancy

    MedlinePlus

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; Placenta previa - ultrasound; Multiple pregnancy - ultrasound; ...

  3. [Validation of a new hand-carried ultrasound device equipped with directional color power Doppler and continuous wave Doppler].

    PubMed

    Kawai, Junichi; Tanabe, Kazuaki; Matsuzaki, Masashi; Yamaguchi, Kazuto; Yagi, Toshikazu; Fujii, Yoko; Konda, Toshiko; Ui, Kazuyo; Sumida, Toshiaki; Okada, Midori; Tani, Tomoko; Morioka, Shigefumi

    2003-10-01

    This study evaluated the accuracy of the directional color power Doppler (DCPD) and continuous wave Doppler (CWD) methods incorporated in the new hand-carried SonoSite 180PLUS ultrasound device. The hand-held ultrasound system with 2.5 MHz transducer and SONOS 5500 was used as a standard ultrasound system with a 2 to 4 MHz wideband transducer. The experimental study used a Doppler wire phantom to evaluate the influence of target wire speed and angle of transducer on DCPD imaging. The clinical study included 48 consecutive patients. DCPD assessment of valvular regurgitation measured the distances of DCPD signals of mitral, aortic and tricuspid valve regurgitation using the apical four-chamber view for comparison with standard echocardiography. CWD assessment measured the peak velocities of the aortic flow and tricuspid valve regurgitant flow for comparison with standard echocardiography. In the experimental study, DCPD signals were not influenced by target wire speed changes and transducer incident angles. In the clinical study, agreements for mitral, aortic and tricuspid regurgitation between the two methods were 89.6%, 81.8% and 78.7%, respectively. The distances of DCPD valve regurgitant signals by the hand-carried ultrasound device showed good correlation (mitral regurgitation: y = 0.84x + 0.55; r = 0.93, aortic regurgitation: y = 0.95x + 0.27; r = 0.94, tricuspid regurgitation: y = 0.86x + 0.61; r = 0.90) with those by standard echocardiography. Evaluation of CWD velocity measurements showed good agreement for the lower flow velocities (< 2.0 m/sec). However, underestimation occurred for the high flow velocities (> 2.0 m/sec) compared with those by standard echocardiography (aortic flow: y = 0.80x + 0.11; r = 0.95, tricuspid regurgitation: y = 1.00x - 0.23; r = 0.90). The new hand-carried ultrasound device (SonoSite 180PLUS equipped with DCPD and CWD) is clinically useful for evaluating valvular regurgitations and flow velocities. Further studies are needed to

  4. Annular phased-array high-intensity focused ultrasound device for image-guided therapy of uterine fibroids.

    PubMed

    Held, Robert Thomas; Zderic, Vesna; Nguyen, Thuc Nghi; Vaezy, Shahram

    2006-02-01

    An ultrasound (US), image-guided high-intensity focused ultrasound (HIFU) device was developed for noninvasive ablation of uterine fibroids. The HIFU device was an annular phased array, with a focal depth range of 30-60 mm, a natural focus of 50 mm, and a resonant frequency of 3 MHz. The in-house control software was developed to operate the HIFU electronics drive system for inducing tissue coagulation at different distances from the array. A novel imaging algorithm was developed to minimize the HIFU-induced noise in the US images. The device was able to produce lesions in bovine serum albumin-embedded polyacrylamide gels and excised pig liver. The lesions could be seen on the US images as hyperechoic regions. Depths ranging from 30 to 60 mm were sonicated at acoustic intensities of 4100 and 6100 W/cm2 for 15 s each, with the latter producing average lesion volumes at least 63% larger than the former. Tissue sonication patterns that began distal to the transducer produced longer lesions than those that began proximally. The variation in lesion dimensions indicates the possible development of HIFU protocols that increase HIFU throughput and shorten tumor treatment times.

  5. Opening of the blood-brain barrier with an unfocused ultrasound device in rabbits.

    PubMed

    Beccaria, Kevin; Canney, Michael; Goldwirt, Lauriane; Fernandez, Christine; Adam, Clovis; Piquet, Julie; Autret, Gwennhael; Clément, Olivier; Lafon, Cyril; Chapelon, Jean-Yves; Carpentier, Alexandre

    2013-10-01

    The blood-brain barrier (BBB) is a major impediment to the intracerebral diffusion of drugs used in the treatment of gliomas. Previous studies have demonstrated that pulsed focused ultrasound (US) in conjunction with a microbubble contrast agent can be used to open the BBB. To apply the US-induced opening of the BBB in clinical practice, the authors designed an innovative unfocused US device that can be implanted in the skull and used to transiently and repeatedly open the BBB during a standard chemotherapy protocol. The goal of this preliminary work was to study the opening of the BBB induced by the authors' small unfocused US transducer and to evaluate the effects of the sonications on brain parenchyma. Craniectomy was performed in 16 healthy New Zealand White rabbits; epidural application of a single-element planar ultrasonic transducer operating at 1 MHz was then used with a pulse-repetition frequency of 1 Hz, pulse lengths of 10-35 msec, in situ acoustic pressure levels of 0.3-0.8 MPa, and sonication for 60-120 seconds. SonoVue was intravenously injected during the US applications, and opening of the BBB was determined by detecting extravasation of Evans blue dye (EBD) in brain tissues, quantitative measurement of EBD with UV-visible spectrophotometry, and contrast enhancement after Gd injection in 4.7-T MRI. A histological study was performed to determine adverse effects. An opening of the BBB was observed over a large extent of the US beam in the brain corresponding to in situ pressures of greater than 0.2 MPa. The BBB opening observed was highly significant for both EBD (p < 0.01) and MRI Gd enhancement (p < 0.0001). The BBB opening was associated with minor adverse effects that included perivascular red blood cell extravasations that were less than 150 μm in size and not visible on MR images. Moderate edema was visible on FLAIR sequences and limited to the extent of the sonication field. The results demonstrate that the BBB can be opened in large areas of

  6. 4D Ultrasound - Medical Devices for Recent Advances on the Etiology of Cerebral Palsy

    PubMed Central

    Tomasovic, Sanja; Predojevic, Maja

    2011-01-01

    Children cerebral palsy (CCP) encompasses a group of nonprogessive and noninfectious conditions, which cause light, moderate, and severe deviations in neurological development. Diagnosis of CCP is set mostly by the age of 3 years. The fact that a large number of cerebral damage occurs prenatally and the fact that early intervention in cases of neurological damage is successful, prompted some researchers to explore the possibility of detecting neurologically damaged fetus in the uterus. This research was made possible thanks to the development of two-dimensional ultrasound technology in a real time, which enabled the display of the mobility of the fetus. Advancement of the ultrasound technology has enabled the development of 4D ultrasound where a spontaneous fetal movement can be observed almost in a real time. Estimate of the number and quality of spontaneous fetal movements and stitches on the head, the neurology thumb and a high palate were included in the prenatal neurological screening of the fetus. This raises the question, as to does the fetal behavior reflect, (which was revealed in 2D or 4D ultrasound), fetal neurological development in a manner that will allow the detection of the brain damage. PMID:23407920

  7. Fast Conformal Thermal Ablation in the Prostate with Transurethral Multi-Sectored Ultrasound Devices and MR Guidance

    NASA Astrophysics Data System (ADS)

    Kinsey, Adam M.; Diederich, Chris J.; Nau, William H.; Ross, Anthony B.; Pauly, Kim Butts; Rieke, Viola; Sommer, Graham

    2007-05-01

    Transurethral ultrasound applicators incorporating an array of multisectored tubular transducers were evaluated in theoretical simulations and in vivo canine prostates under MR guidance as a method for fast, conformal thermal therapy of the prostate. Comprehensive simulations with a biothermal model investigated the effect on lesion creation of sector size, perfusion, treatment time, rectal cooling, prostate target dimensions, and feedback controller parameters (maximum temperature, pilot points at boundary, update times). In vivo canine prostates (n = 4) were treated with trisectored ultrasound transducers (3 mm OD) under MR temperature monitoring to contour the ablation zone (>52 C for 1-2 min) to the boundary of the prostate. Contiguous thermal lesions extended 2 cm in radius from the urethra in less than 15 min and independent sector control simultaneously allowed for conformal treatment in the angular dimension. Experiments investigated sequential translation of the transducer assembly within the catheter for tailoring heat treatments to different partitions in the prostate (base, apex) without changing the initial setup. This treatment method offered greater lesion shape control in three dimensions and slightly lengthened the overall treatment time. The MR temperature images correlated with post-treatment histology and accurately controlled the heating to the target boundary. MR-based control of transurethral ultrasound devices appeared more practical with multisectored transducers compared to rotating curvilinear and planar applicators due to less stringent requirements on spatial and temporal MR parameters. This study demonstrated the applicability of these devices in the prostate for anterior-lateral BPH treatment, and whole gland or quadrant target volumes for cancer treatment.

  8. Incremental value of pocket-sized imaging device for bedside diagnosis of unilateral pleural effusions and ultrasound-guided thoracentesis

    PubMed Central

    Lisi, Matteo; Cameli, Matteo; Mondillo, Sergio; Luzzi, Luca; Zacà, Valerio; Cameli, Paolo; Gotti, Giuseppe; Galderisi, Maurizio

    2012-01-01

    OBJECTIVES The present study aimed to assess the additional value of a pocket-sized imaging device (PSID) as an adjunct to plain chest X-rays in the diagnosis of pleural effusion (PE), mainly for those requiring pleural thoracentesis. METHODS We performed a thoracic ultrasound examination using a PSID in 73 patients with an abnormal chest X-ray diagnostic for unilateral PE. Abundant PE was defined as an interpleural distance between the diaphragm and visceral pleura (VP) of ≥30 mm at the apex of the 50 mm bisector line of the costodiaphragmatic recess at end expiration. RESULTS According to PSID ultrasound evaluation, abundant PE was present in 46 patients (63%), while 27 (37%) patients showed the presence of mild PE or absence of PE. Thoracentesis was performed successfully and without procedure-induced complications in all 46 patients with abundant PE. Using the above-mentioned method, we obtained a high diagnostic accuracy (area under the curve = 0.99) and excellent sensitivity and specificity of 91.7 and 99.9%, respectively, to predict a PE >1000 ml, when VP was >6.3 cm. CONCLUSIONS PSID is a useful tool that may integrate and complete the physical examination, also providing additional information to chest X-ray in the clinical management of patients with suspected PE. PSID evaluation can also increase the effectiveness and safety of thoracentesis. PMID:22815326

  9. Focused ultrasound to expel calculi from the kidney: safety and efficacy of a clinical prototype device.

    PubMed

    Harper, Jonathan D; Sorensen, Mathew D; Cunitz, Bryan W; Wang, Yak-Nam; Simon, Julianna C; Starr, Frank; Paun, Marla; Dunmire, Barbrina; Liggitt, H Denny; Evan, Andrew P; McAteer, James A; Hsi, Ryan S; Bailey, Michael R

    2013-09-01

    Focused ultrasound has the potential to expel small stones or residual stone fragments from the kidney, or move obstructing stones to a nonobstructing location. We evaluated the efficacy and safety of ultrasonic propulsion in a live porcine model. Calcium oxalate monohydrate kidney stones and laboratory model stones (2 to 8 mm) were ureteroscopically implanted in the renal pelvicalyceal system of 12 kidneys in a total of 8 domestic swine. Transcutaneous ultrasonic propulsion was performed using an HDI C5-2 imaging transducer (ATL/Philips, Bothell, Washington) and the Verasonics® diagnostic ultrasound platform. Successful stone relocation was defined as stone movement from the calyx to the renal pelvis, ureteropelvic junction or proximal ureter. Efficacy and procedure time was determined. Three blinded experts evaluated histological injury to the kidney in the control, sham treatment and treatment arms. All 26 stones were observed to move during treatment and 17 (65%) were relocated successfully to the renal pelvis (3), ureteropelvic junction (2) or ureter (12). Average ± SD successful procedure time was 14 ± 8 minutes and a mean of 23 ± 16 ultrasound bursts, each about 1 second in duration, were required. There was no evidence of gross or histological injury to the renal parenchyma in kidneys exposed to 20 bursts (1 second in duration at 33-second intervals) at the same output (2,400 W/cm(2)) used to push stones. Noninvasive transcutaneous ultrasonic propulsion is a safe, effective and time efficient means to relocate calyceal stones to the renal pelvis, ureteropelvic junction or ureter. This technology holds promise as a useful adjunct to surgical management for renal calculi. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Focused Ultrasound to Expel Calculi from the Kidney: Safety and Efficacy of a Clinical Prototype Device

    PubMed Central

    Harper, Jonathan D.; Sorensen, Mathew D.; Cunitz, Bryan W.; Wang, Yak-Nam; Simon, Julianna C.; Starr, Frank; Paun, Marla; Dunmire, Barbrina; Liggitt, H. Denny; Evan, Andrew P.; McAteer, James A.; Hsi, Ryan S.; Bailey, Michael R.

    2015-01-01

    Purpose Focused ultrasound has the potential to expel small stones or residual stone fragments from the kidney, or move obstructing stones to a nonobstructing location. We evaluated the efficacy and safety of ultrasonic propulsion in a live porcine model. Materials and Methods Calcium oxalate monohydrate kidney stones and laboratory model stones (2 to 8 mm) were ureteroscopically implanted in the renal pelvicalyceal system of 12 kidneys in a total of 8 domestic swine. Transcutaneous ultrasonic propulsion was performed using an HDI C5-2 imaging transducer (ATL/Philips, Bothell, Washington) and the Verasonics® diagnostic ultrasound platform. Successful stone relocation was defined as stone movement from the calyx to the renal pelvis, ureteropelvic junction or proximal ureter. Efficacy and procedure time was determined. Three blinded experts evaluated histological injury to the kidney in the control, sham treatment and treatment arms. Results All 26 stones were observed to move during treatment and 17 (65%) were relocated successfully to the renal pelvis (3), ureteropelvic junction (2) or ureter (12). Average ± SD successful procedure time was 14 ± 8 minutes and a mean of 23 ± 16 ultrasound bursts, each about 1 second in duration, were required. There was no evidence of gross or histological injury to the renal parenchyma in kidneys exposed to 20 bursts (1 second in duration at 33-second intervals) at the same output (2,400 W/cm2) used to push stones. Conclusions Noninvasive transcutaneous ultrasonic propulsion is a safe, effective and time efficient means to relocate calyceal stones to the renal pelvis, ureteropelvic junction or ureter. This technology holds promise as a useful adjunct to surgical management for renal calculi. PMID:23583535

  11. [Feasibility of device closure for multiple atrial septal defects using 3D printing and ultrasound-guided intervention technique].

    PubMed

    Qiu, X; Lü, B; Xu, N; Yan, C W; Ouyang, W B; Liu, Y; Zhang, F W; Yue, Z Q; Pang, K J; Pan, X B

    2017-04-25

    Objective: To investigate the feasibility of trans-catheter closure of multiple atrial septal defects (ASD) monitored by trans-thoracic echocardiography (TTE) under the guidance of 3D printing heart model. Methods: Between April and August 2016, a total of 21 patients (8 male and 13 female) with multiple ASD in Fuwai Hospital of Chinese Academy of Medical Sciences underwent CT scan and 3-dimensional echocardiography for heart disease model produced by 3D printing technique. The best occlusion program was determined through the simulation test on the model. Percutaneous device closure of multiple ASD was performed follow the predetermined program guided by TTE. Clinical follow-up including electrocardiogram and TTE was arranged at 1 month after the procedure. Results: The trans-catheter procedure was successful in all 21 patients using a single atrial septal occluder. Mild residual shunt was found in 5 patient in the immediate postoperative period, 3 of them were disappeared during postoperative follow-up. There was no death, vascular damage, arrhythmia, device migration, thromboembolism, valvular dysfunction during the follow-up period. Conclusion: The use of 3D printing heart model provides a useful reference for transcatheter device closure of multiple ASD achieving through ultrasound-guided intervention technique, which appears to be safe and feasible with good outcomes of short-term follow-up.

  12. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines: Traditional ultrasound: This uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound: This ...

  13. Percutaneous puncture of renal calyxes guided by a novel device coupled with ultrasound

    PubMed Central

    Chan, Chen Jen; Srougi, Victor; Tanno, Fabio Yoshiaki; Jordão, Ricardo Duarte; Srougi, Miguel

    2015-01-01

    ABSTRACT Purpose: To evaluate the efficiency of a novel device coupled with ultrassound for renal percutaneous puncture. Materials and Methods: After establishing hydronephrosis, ten pigs had three calyxes of each kidney punctured by the same urology resident, with and without the new device (“Punctiometer”). Time for procedure completion, number of attempts to reach the calyx, puncture precision and puncture complications were recorded in both groups and compared. Results: Puncture success on the first attempt was achieved in 25 punctures (83%) with the Punctiometer and in 13 punctures (43%) without the Punctiometer (p=0.011). The mean time required to perform three punctures in each kidney was 14.5 minutes with the Punctiometer and 22.4 minutes without the Punctiometer (p=0.025). The only complications noted were renal hematomas. In the Punctiometer group, all kidneys had small hematomas. In the no Punctiometer group 80% had small hematomas, 10% had a medium hematoma and 10% had a big hematoma. There was no difference in complications between both groups. Conclusions: The Punctiometer is an effective device to increase the likelihood of an accurate renal calyx puncture during PCNL, with a shorter time required to perform the procedure. PMID:26689521

  14. Green light emitting nanostructures of Tb3+ doped LaOF prepared via ultrasound route applicable in display devices

    NASA Astrophysics Data System (ADS)

    Suresh, C.; Nagabhushana, H.; Basavaraj, R. B.; Prasad, B. Daruka

    2017-05-01

    For the first time Tb3+ (1-5 mol %) doped LaOF nanophosphors using Aloe vera (AV) leaves extract as bio-surfactant were synthesized by facile ultrasound supported sonochemical route at relatively high temperature (700°C) and short duration of 3h. The powder X-ray diffraction (PXRD) profiles of LaOF nanophosphors showed tetragonal structure. The morphological features of LaOF with effect of Sonication time and concentration of bio-surfactant were studied by scanning electron microscope (SEM). The particle size were estimated from transmission electron microscope (TEM) image was found to be in the range of 20-30 nm. The characteristic photoluminescence emission peaks at 487, 541, 586 and 620 nm in green region corresponding to 5D4→7Fj (j=6, 5, 4, 3) transitions of Tb3+ were observed. The LaOF: Tb3+ nanophosphors exhibit green luminescence with better chromaticity coordinates, colour purity and higher intensity under low-voltage electron beam excitation were observed by Commission International De I'Eclairage (CIE) along with colour correlated temperature (CCT). All results indicate that these obtained nanophosphors have potential applications in field emission display device.

  15. Comparison between high-intensity focused ultrasound devices for the treatment of patients with localized prostate cancer

    NASA Astrophysics Data System (ADS)

    Kim, Hakushi; Tomonaga, Tetsuro; Shoji, Sunao; Uchida, Toyoaki

    2017-03-01

    To evaluate the association between long-term clinical outcomes and morbidity of patients with prostate cancer who underwent high-intensity focused ultrasound (HIFU). We included 918 patients with stage T1c-T3N0M0 prostate cancer who were treated with Sonablate™ (SB) devices during 1999-2012 and followed-up for >2 years. Risk stratification and complication rates were compared between the treatment groups. The 10-year overall and cancer-specific survival rates were 89.6% and 97.4%, respectively. The 5-year biochemical disease-free survival (bDFS) rates in the SB200/500, SB500 version 4, and SB500 tissue change monitor groups were 48.3%, 62.3%, and 82.0%, respectively (p < 0.0001). In the low-, intermediate-, and high-risk categories, the 10-year bDFS rates for all patients were 63%, 52%, and 32%, respectively (p < 0.0001), whereas the 5-year bDFS rates in the tissue change monitor group were 95%, 84%, and 72%, respectively (p = 0.0134). The overall negative biopsy rate was 87.3%. Multivariate analysis showed pre-treatment serum prostate-specific antigen levels, neoadjuvant hormonal therapy, and devices as significant predictors (p < 0.0001). Urethral stricture, epididymitis, and urinary incontinence were observed in 19.7%, 6.2%, and 2.3% of the cases, respectively. Long-term follow-up with HIFU demonstrated improved clinical outcomes owing to technical, imaging, and technological advancements.

  16. A hand‐carried cardiac ultrasound device in the outpatient cardiology clinic reduces the need for standard echocardiography

    PubMed Central

    Trambaiolo, P; Papetti, F; Posteraro, A; Amici, E; Piccoli, M; Cerquetani, E; Pastena, G; Gambelli, G; Salustri, A

    2007-01-01

    Objective To assess the potential value and cost‐effectiveness of a hand‐carried ultrasound (HCU) device in an outpatient cardiology clinic. Methods 222 consecutive patients were prospectively enrolled in the study. When standard echocardiography (SE) was specifically indicated on the basis of clinical history, electrocardiogram and physical examination, the same cardiologist (level‐2 or level‐3 trained) immediately performed an HCU examination. The cardiologist then reassessed the clinical situation to confirm or cancel the SE request according to the information provided by HCU. The SE examination was performed by a sonographer and examined in a blinded fashion by a cardiologist expert in echocardiography. Findings from the two examinations were compared. Results HCU was performed in 108/222 patients, and a definite diagnosis was established in 34 of them (31%), making SE examination potentially avoidable. In the 74 patients with inconclusive HCU results and for whom SE was still indicated, the decision was mainly dictated by the lack of spectral Doppler modality in the HCU system. The overall agreement between HCU and SE for diagnosis of normal/abnormal echocardiograms was 73% (κ = 0.4). On the basis of the potentially avoided SE examinations and the obviated need for a second cardiac consultation, a total cost saving of €2142 per 100 patients referred for echocardiography was estimated. Conclusions The use of a simple HCU device in the outpatient cardiology clinic allowed reliable diagnosis in one third of the patients referred for echocardiography, which translates into cost and time saving benefits. PMID:16940393

  17. Comparison of Two Different Ultrasound Devices Using Strain Elastography Technology in the Diagnosis of Breast Lesions Related to the Histologic Results.

    PubMed

    Farrokh, André; Schaefer, Fritz; Degenhardt, Friedrich; Maass, Nicolai

    2018-05-01

    This study was conducted to provide evidence that elastograms of two different devices and different manufacturers using the same technical approach provide the same diagnoses. A total of 110 breast lesions were prospectively analysed by two experts in ultrasound, using the strain elastography function from two different manufacturers (Hitachi HI-RTE, Hitachi Medical Systems, Wiesbaden, Germany; and Siemens eSie Touch, Siemens Medical Systems, Erlangen, Germany). Results were compared with the histopathologic results. Applying the Bowker test of symmetry, no statistically significant difference between the two elastography functions of these two devices was found (p = 0.120). The Cohen's kappa of k = 0.591 showed moderate strength of agreement between the two elastograms. The two examiners yielded moderate strength of agreement analysing the elastograms (Hitachi HI-RTE, k = 0.478; Siemens eSie Touch, k = 0.441). In conclusion, evidence is provided that elastograms of the same lesion generated by two different ultrasound devices equipped with a strain elastography function do not significantly differ. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  18. The use of a pocket-sized ultrasound device improves physical examination: results of an in- and outpatient cohort study.

    PubMed

    Colli, Agostino; Prati, Daniele; Fraquelli, Mirella; Segato, Sergio; Vescovi, Pier Paolo; Colombo, Fabrizio; Balduini, Carlo; Della Valle, Serena; Casazza, Giovanni

    2015-01-01

    The performance of pocket mobile ultrasound devices (PUDs) is comparable with that of standard ultrasonography, whereas the accuracy of a physical examination is often poor requiring further tests to assess diagnostic hypotheses. Adding the use of PUD to physical examination could lead to an incremental benefit. We assessed whether the use of PUD in the context of physical examination can reduce the prescription of additional tests when used by physicians in different clinical settings. We conducted a cohort impact study in four hospital medical wards, one gastroenterological outpatient clinic, and 90 general practices in the same geographical area. The study involved 135 physicians who used PUD, after a short predefined training course, to examine 1962 consecutive patients with one of 10 diagnostic hypotheses: ascites, pleural effusion, pericardial effusion, urinary retention, urinary stones, gallstones, biliary-duct dilation, splenomegaly, abdominal mass, abdominal aortic aneurysm. According to the physicians' judgment, PUD examination could rule out or in the diagnostic hypothesis or require further testing; the concordance with the final diagnosis was assessed. The main outcome was the proportion of cases in which additional tests were required after PUD. The PUD diagnostic accuracy was assessed in patients submitted to further testing. The 1962 patients included 37% in-patients, 26% gastroenterology outpatients, 37% from general practices. Further testing after PUD examination was deemed unnecessary in 63%. Only 5% of patients with negative PUD not referred for further testing were classified false negatives with respect to the final diagnosis. In patients undergoing further tests, the sensitivity was 91%, and the specificity 83%. After a simple and short training course, a PUD examination can be used in addition to a physical examination to improve the answer to ten common clinical questions concerning in- and outpatients, and can reduce the need for further

  19. Thermal ablation of pancreatic cyst with a prototype endoscopic ultrasound capable radiofrequency needle device: A pilot feasibility study

    PubMed Central

    Moris, Maria; Atar, Mustafa; Kadayifci, Abdurrahman; Krishna, Murli; Librero, Ariston; Richie, Eugene; Brugge, William; Wallace, Michael B.

    2017-01-01

    Background and Objectives: Pancreatic cysts are evaluated by endoscopic ultrasound and fine needle aspiration (EUS). The only accepted treatment is pancreatectomy, which is associated with morbidity and mortality. This study evaluated the optimal thermal dosimetry of a novel radiofrequency ablation device using a standard electrosurgical unit in ex vivo cyst models. Methods: A modified EUS 22-gauge monopolar needle prototype with a tip electrode connected to a standard electrosurgical unit (Erbe USA, Marietta, GA, USA) was used to induce a subboiling point temperature. A cyst model was created using 2-cm sections of porcine small intestine ligated and filled with saline. After ablation, the cyst models were prepared for pathological evaluation. The epithelial layers were measured in at least two different sites with a micrometer and compared with the corresponding control sample. Results: Thirty-two cyst models were ablated with maximum temperatures of 50°C, 60°C, 90°C, and 97°C in 8, 11, 11, and 2 cysts, respectively. Longer ablation times were required to induce higher temperatures. A trend in the reduction in thickness of the measured layers was observed after exposure to higher temperatures. A temperature over 50°C was required for the ablation of the muscularis, submucosa, and villi, and over 60°C was required to ablate the mucosal crypts. Conclusions: In a preclinical model, a novel radiofrequency EUS-capable needle connected to a standard electrosurgical unit using standard low-voltage coagulation provided ablation in a temperature-dependent fashion with a threshold of at least 60°C and a safe cyst margin below 97°C. This potentially will allow low-cost, convenient cyst ablation. PMID:28440238

  20. Twelve years' experience with high-intensity focused ultrasound (HIFU) using sonablate™ devices for the treatment of localized prostate cancer

    NASA Astrophysics Data System (ADS)

    Uchida, Toyoaki; Nakano, Muyura; Shoji, Sunao; Nagata, Yoshihiro; Usui, Yukio; Terachi, Toshiro

    2012-10-01

    To report on the long-term results of high-intensity focused ultrasound (HIFU) in the treatment of localized prostate cancer. Patients with clinical Stage T1c-T3N0M0, biopsy proven, localized prostate cancer, with a serum prostate specific antigen (PSA) level of <30 ng/ml, any Gleason score were included. All patients underwent HIFU using the Sonablate™ (S) device and were required to have a minimal follow-up of 2 years after the last HIFU session to be included in this analysis. Four different generation HIFU devices, S200, S500, S500 version 4 and S500 TCM, have been used for this study. Biochemical failure was defined according to the Phoenix definition (PSA nadir+2ng/ml). Seven hundred and fifty-three men with prostate cancer were included. The patients were divided into two groups: in the Former group, 421 patients were treated with S200 and 500 from 1990 to 2005; in the Latter group, 332 patients were treated with S500 ver. 4 and TCM from 2005 to 2009. The mean age, PSA, Gleason score, operation time, and follow-up period in the Former and Latter groups were 68 and 67 years, 11.3 and 9.7 ng/ml, 6.2 and 6.6, 167 and 101 min, and 49 and 38 months, respectively. The biochemical disease-free rate (BDFR) in the groups at 5 years was, respectively, 67% and 53%, and was 50% at 10 years in the Former group (p<0.0001). The BDFR in patients in the low-, intermediate-, and high-risk groups in the Former group at 5 and 10 years were 68% and 65%, 52% and 48%, and 43% and 40%, respectively (p<0.0001). The BDFR in patients in the low-, intermediate-, and high-risk groups in the Latter group at 5 years were 83%, 76%, and 42% (p<0.0001). The negative prostate biopsy rate in the Former and Latter groups was 81% and 93%, respectively. Postoperative erectile dysfunction was noted in 45%, 38%, and 24% of patients at 6 months, 12 months, and 2 years after HIFU. The results after long-term follow-up have indicated that HIFU is an efficient and safe treatment for patients with

  1. Effect of incisional friction and ophthalmic viscosurgical devices on the heat generation of ultrasound during cataract surgery.

    PubMed

    Floyd, Michael; Valentine, Jeremy; Coombs, Jamie; Olson, Randall J

    2006-07-01

    To determine the thermal features of the Legacy (Alcon) and Sovereign (Advanced Medical Optics) phacoemulsification machines in a cadaver eye and with 7 ophthalmic viscosurgical devices (OVDs). In situ and in vitro study. Temperature without occlusion was recorded at the sleeve placed in the wound of a cadaver eye, and temperature over baseline was determined after 60 seconds. The result was then compared with the results in a previous study that used balanced salt solution (BSS) in artificial chambers. In the second portion of the experiment, with irrigation and aspiration lines occluded, temperature was recorded at the sleeve placed in an artificial chamber filled with sodium hyaluronate 2.3% (Healon5), sodium hyaluronate 1.4% (Healon GV), sodium hyaluronate 1.0% (Healon), sodium hyaluronate 1.6% (Amvisc Plus), sodium hyaluronate 1.0% (Provisc), sodium hyaluronate 3.0%-chondroitin sulfate 4.0% (Viscoat), or hyaluronate 3.0% (Vitrax). Temperature over baseline was also determined after 60 seconds. These results were compared with each set of OVD data and with the results in the prior BSS study. In the eye-bank model, the Legacy machine had a 62% temperature increase from incisional friction and the Sovereign machine had a decrease of 8.6% over results in an artificial anterior chamber. The OVD temperature increases were greater for the Sovereign (P<.001) and followed the same general trend for the Legacy. The least temperature increase was with Amvisc Plus, Healon, and Healon GV; the intermediate increases were with Provisc and Vitrax; and the greatest increases were with Viscoat and Healon5. The OVD findings did not correlate with viscosity or pseudoplasticity. Incisional friction alone increased heat generation in the Legacy, a stroke-length driven instrument, more than in the Sovereign, a power-driven instrument. Ophthalmic viscosurgical devices are not only a concern due to outflow occlusion but can also add up to 6 times the heat in comparison with BSS. The

  2. [Efficacy and problems of bladder volume measurement using portable three dimensional ultrasound scanning device--in particular, on measuring bladder volume lower than 100ml].

    PubMed

    Oh-Oka, Hitoshi; Nose, Ryuichiro

    2005-09-01

    Using a portable three dimensional ultrasound scanning device (The Bladder Scan BVI6100, Diagnostic Ultrasound Corporation), we examined measured values of bladder volume, especially focusing on volume lower than 100 ml. A total of 100 patients (male: 66, female: 34) were enrolled in the study. We made a comparison study between the measured value (the average of three measurements of bladder urine volume after a trial in male and female modes) using BVI6100, and the actual measured value of the sample obtained by urethral catheterization in each patient. We examined the factors which could increase the error rate. We also introduced the effective techniques to reduce measurement errors. The actual measured values in all patients correlated well with the average value of three measurements after a trial in a male mode of the BVI6100. The correlation coefficient was 0.887, the error rate was--4.6 +/- 24.5%, and the average coefficient of variation was 15.2. It was observed that the measurement result using the BVI6100 is influenced by patient side factors (extracted edges between bladder wall and urine, thickened bladder wall, irregular bladder wall, flattened rate of bladder, mistaking prostate for bladder in male, mistaking bladder for uterus in a female mode, etc.) or examiner side factors (angle between BVI and abdominal wall, compatibility between abdominal wall and ultrasound probe, controlling deflection while using probe, etc). When appropriate patients are chosen and proper measurement is performed, BVI6100 provides significantly higher accuracy in determining bladder volume, compared with existing abdominal ultrasound methods. BVI6100 is a convenient and extremely effective device also for the measurement of bladder urine over 100 ml.

  3. Randomized sham-controlled trial to evaluate the safety and effectiveness of a high-intensity focused ultrasound device for noninvasive body sculpting.

    PubMed

    Jewell, Mark L; Baxter, Richard A; Cox, Sue Ellen; Donofrio, Lisa M; Dover, Jeffrey S; Glogau, Richard G; Kane, Michael A; Weiss, Robert A; Martin, Patrick; Schlessinger, Joel

    2011-07-01

    High-intensity focused ultrasound presents a noninvasive approach to body sculpting for nonobese patients. The purpose of this study was to evaluate the safety and effectiveness of a high-intensity focused ultrasound device for sculpting of the abdomen and flanks. Adults (aged 18 to 65 years) with subcutaneous abdominal fat greater than or equal to 2.5 cm thick who met screening criteria were randomized to receive high-intensity focused ultrasound treatment of the anterior abdomen and flanks at energy levels (a total of three passes each) of 47 J/cm (141 J/cm total), 59 J/cm (177 J/cm), or 0 J/cm (no energy applied, sham control). The primary endpoint was change from baseline waist circumference at the iliac crest level at posttreatment week 12. Subjective aesthetic assessments included the Global Aesthetic Improvement Scale and a patient satisfaction questionnaire. Safety assessments included adverse events, laboratory values, and physical examinations. For the primary endpoint, in the intent-to-treat population, statistical significance versus sham was achieved for the 59-J/cm (-2.44; p = 0.01) but not the 47-J/cm treatment group (-2.06 cm; p = 0.13). In a per-protocol population, statistical significance versus sham was achieved for both the 59-J/cm (-2.52 cm; p = 0.002) and the 47-J/cm treatment groups (-2.10 cm; p = 0.04). Investigator subjective measures of global aesthetic improvement and patient satisfaction also favored each active treatment versus sham. Adverse events included mild to moderate discomfort, bruising, and edema. Laboratory values and physical examinations were unremarkable. Treatment with this high-intensity focused ultrasound device reduced waist circumference and was generally well tolerated for noninvasive body sculpting. Reduction in waist circumference was statistically significant with both active treatments (per protocol). Therapeutic, II.(Figure is included in full-text article.).

  4. Improved cardiovascular diagnostic accuracy by pocket size imaging device in non-cardiologic outpatients: the NaUSiCa (Naples Ultrasound Stethoscope in Cardiology) study

    PubMed Central

    2010-01-01

    Miniaturization has evolved in the creation of a pocket-size imaging device which can be utilized as an ultrasound stethoscope. This study assessed the additional diagnostic power of pocket size device by both experts operators and trainees in comparison with physical examination and its appropriateness of use in comparison with standard echo machine in a non-cardiologic population. Three hundred four consecutive non cardiologic outpatients underwent a sequential assessment including physical examination, pocket size imaging device and standard Doppler-echo exam. Pocket size device was used by both expert operators and trainees (who received specific training before the beginning of the study). All the operators were requested to give only visual, qualitative insights on specific issues. All standard Doppler-echo exams were performed by expert operators. One hundred two pocket size device exams were performed by experts and two hundred two by trainees. The time duration of the pocket size device exam was 304 ± 117 sec. Diagnosis of cardiac abnormalities was made in 38.2% of cases by physical examination and in 69.7% of cases by physical examination + pocket size device (additional diagnostic power = 31.5%, p < 0.0001). The overall K between pocket size device and standard Doppler-echo was 0.67 in the pooled population (0.84 by experts and 0.58 by trainees). K was suboptimal for trainees in the eyeball evaluation of ejection fraction, left atrial dilation and right ventricular dilation. Overall sensitivity was 91% and specificity 76%. Sensitivity and specificity were lower in trainees than in experts. In conclusion, pocket size device showed a relevant additional diagnostic value in comparison with physical examination. Sensitivity and specificity were good in experts and suboptimal in trainees. Specificity was particularly influenced by the level of experience. Training programs are needed for pocket size device users. PMID:21110840

  5. Ultrasound assisted dialysis of semi-permeable membrane devices for the simultaneous analysis of a wide number of persistent organic pollutants.

    PubMed

    Bustamante, Julen; Navarro, Patricia; Arana, Gorka; de Diego, Alberto; Madariaga, Juan Manuel

    2013-09-30

    A new procedure based on ultrasound assisted dialysis (UAD) for the simultaneous and quantitative extraction of a wide number of persistent organic pollutants (POPs) such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) or some other organochlorinated pesticides (OCPs) contained in semi-permeable membrane devices (SPMDs) has been developed. This extraction technique combines the advantages of the organic solvent dialysis (OSD) and the speed of the ultrasound assisted extraction. The extraction was performed in an ultrasound bath for 32 min placing the SPMD in a glass flask covered with 80 mL of hexane. This set-up is able to extract simultaneously up to 8 samples. The proposed method entails good repeatabilities (RSD 2-13%) and recoveries (around 100% for almost every analyte). Limits of detection were at ng SPMD(-1) level and enough for the determination of the target analytes in a slightly polluted aquatic environment, as it was tested by successfully comparing the OSD to the proposed methodology. Therefore, the results obtained show that the UAD can be a good alternative for the extraction of POPs in SPMDs as it requires short extraction times and solvent volumes, and provides a cleaner extract for the subsequent clean-up step. Moreover, it fits better than the OSD to the general requirements of Green Chemistry. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. A new approach for the screening of carotid lesions: a 'fast-track' method with the use of new generation hand-held ultrasound devices.

    PubMed

    Aboyans, V; Lacroix, P; Jeannicot, A; Guilloux, J; Bertin, F; Laskar, M

    2004-09-01

    We assessed the usefulness of fast-track neck sonography with a new-generation hand-held ultrasound scanner in the detection of > or =60% carotid stenosis. Patients with a past history of atherosclerotic disease or presence of risk factors were enrolled. All had fast-track carotid screening with a hand-held ultrasound scanner. Initial assessment was performed with our quick imaging protocol. A second examiner performed a conventional complete carotid duplex as gold-standard. We enrolled 197 consecutive patients with a mean age of 67 years (range 35-94). A carotid stenosis >60% was detected in 13 cases (6%). The sensitivity, specificity, positive and negative predictive value of fast-track sonography was 100%, 64%, 17% and 100%, respectively. Concomitant power Doppler imaging during the fast-track method did not improve accuracy. The use of a fast-track method with a hand-held ultrasound device can reduce the number of unnecessary carotid Duplex and enhance the screening efficiency without missing significant carotid stenoses.

  7. High-Intensity Focused Ultrasound (HIFU) Using Sonablate® Devices for the Treatment of Benign Prostatic Hyperplasia and Localized Prostate Cancer: 18-year experience

    NASA Astrophysics Data System (ADS)

    Uchida, Toyoaki

    2011-09-01

    From 1993 to 2010, we have treated 156 patients benign prostatic hyperplasia (BPH) and 1,052 patients localized prostate cancer high-intensity focused ultrasound (HIFU). Four different HIFU devices, SonablateR-200, SonablateR-500, SonablateR-500 version 4 and Sonablate® TCM, have been used for this study. Clinical outcome of HIFU for BPH did not show any superior effects to transurethral resection of the prostate, laser surgery or transurethral vapolization of the prostate. However, HIFU appears to be a safe and minimally invasive therapy for patients with localized prostate cancer, especially low- and intermediate-risk patients. The rate of clinical outcome has significantly improved over the years due to technical improvements in the device.

  8. Ultrasound skin tightening.

    PubMed

    Minkis, Kira; Alam, Murad

    2014-01-01

    Ultrasound skin tightening is a noninvasive, nonablative method that allows for energy deposition into the deep dermal and subcutaneous tissue while avoiding epidermal heating. Ultrasound coagulation is confined to arrays of 1-mm(3) zones that include the superficial musculoaponeurotic system and connective tissue. This technology gained approval from the Food and Drug Administration as the first energy-based skin "lifting" device, specifically for lifting lax tissue on the neck, submentum, and eyebrows. Ultrasound has the unique advantage of direct visualization of treated structures during treatment. Ultrasound is a safe and efficacious treatment for mild skin tightening and lifting. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Prediction of hip fracture risk by quantitative ultrasound in more than 7000 Swiss women > or =70 years of age: comparison of three technologically different bone ultrasound devices in the SEMOF study.

    PubMed

    Krieg, Marc-Antoine; Cornuz, Jacques; Ruffieux, Christiane; Van Melle, Guy; Büche, Daniel; Dambacher, Maximilian A; Hans, Didier; Hartl, Florian; Häuselmann, Hansjorg J; Kraenzlin, Marius; Lippuner, Kurt; Neff, Maurus; Pancaldi, Pierro; Rizzoli, Rene; Tanzi, Franco; Theiler, Robert; Tyndall, Alan; Wimpfheimer, Claus; Burckhardt, Peter

    2006-09-01

    To compare the prediction of hip fracture risk of several bone ultrasounds (QUS), 7062 Swiss women > or =70 years of age were measured with three QUSs (two of the heel, one of the phalanges). Heel QUSs were both predictive of hip fracture risk, whereas the phalanges QUS was not. As the number of hip fracture is expected to increase during these next decades, it is important to develop strategies to detect subjects at risk. Quantitative bone ultrasound (QUS), an ionizing radiation-free method, which is transportable, could be interesting for this purpose. The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk (SEMOF) study is a multicenter cohort study, which compared three QUSs for the assessment of hip fracture risk in a sample of 7609 elderly ambulatory women > or =70 years of age. Two QUSs measured the heel (Achilles+; GE-Lunar and Sahara; Hologic), and one measured the heel (DBM Sonic 1200; IGEA). The Cox proportional hazards regression was used to estimate the hazard of the first hip fracture, adjusted for age, BMI, and center, and the area under the ROC curves were calculated to compare the devices and their parameters. From the 7609 women who were included in the study, 7062 women 75.2 +/- 3.1 (SD) years of age were prospectively followed for 2.9 +/- 0.8 years. Eighty women reported a hip fracture. A decrease by 1 SD of the QUS variables corresponded to an increase of the hip fracture risk from 2.3 (95% CI, 1.7, 3.1) to 2.6 (95% CI, 1.9, 3.4) for the three variables of Achilles+ and from 2.2 (95% CI, 1.7, 3.0) to 2.4 (95% CI, 1.8, 3.2) for the three variables of Sahara. Risk gradients did not differ significantly among the variables of the two heel QUS devices. On the other hand, the phalanges QUS (DBM Sonic 1200) was not predictive of hip fracture risk, with an adjusted hazard risk of 1.2 (95% CI, 0.9, 1.5), even after reanalysis of the digitalized data and using different cut-off levels (1700 or 1570 m/s). In this elderly women

  10. Minimal invasive complete excision of benign breast tumors using a three-dimensional ultrasound-guided mammotome vacuum device.

    PubMed

    Baez, E; Huber, A; Vetter, M; Hackelöer, B-J

    2003-03-01

    The aim of this study was to evaluate the use of three-dimensional (3D) ultrasonography in the complete excision of benign breast tumors using ultrasound-guided vacuum-assisted core-needle biopsy (Mammotome). A protocol for the management of benign breast tumors is proposed. Twenty consecutive patients with sonographically benign breast lesions underwent 3D ultrasound-guided mammotome biopsy under local anesthesia. The indication for surgical biopsy was a solid lesion with benign characteristics on both two-dimensional (2D) and 3D ultrasound imaging, increasing in size over time or causing pain or irritation. Preoperatively, the size of the lesion was assessed using 2D and 3D volumetry. During vacuum biopsy the needle was visualized sonographically in all three dimensions, including the coronal plane. Excisional biopsy was considered complete when no residual tumor tissue could be seen sonographically. Ultrasonographic follow-up examinations were performed on the following day and 3-6 months later to assess residual tissue and scarring. All lesions were histologically benign. Follow-up examinations revealed complete excision of all lesions of < 1.5 mL in volume as assessed by 3D volumetry. 3D ultrasonographic volume assessment was more accurate than 2D using the ellipsoid formula or assessment of the maximum diameter for the prediction of complete excision of the tumor. No bleeding or infections occurred postoperatively and no scarring was seen ultrasonographically on follow-up examinations. Ultrasound-guided vacuum-assisted biopsy allows complete excision of benign breast lesions that are ultrasound offers the advantage of better preoperative demonstration of the lesions' margins, resulting in better assessment of volumetry, improved intraoperative needle location and perioperative

  11. Feasibility of remote real-time guidance of a cardiac examination performed by novices using a pocket-sized ultrasound device.

    PubMed

    Mai, Tuan V; Ahn, David T; Phillips, Colin T; Agan, Donna L; Kimura, Bruce J

    2013-01-01

    Background. The potential of pocket-sized ultrasound devices (PUDs) to improve global healthcare delivery is limited by the lack of a suitable imaging protocol and trained users. Therefore, we investigated the feasibility of performing a brief, evidence-based cardiac limited ultrasound exam (CLUE) through wireless guidance of novice users. Methods. Three trainees applied PUDs on 27 subjects while directed by an off-site cardiologist to obtain a CLUE to screen for LV systolic dysfunction (LVSD), LA enlargement (LAE), ultrasound lung comets (ULC+), and elevated CVP (eCVP). Real-time remote audiovisual guidance and interpretation by the cardiologist were performed using the iPhone 4/iPod (FaceTime, Apple, Inc.) attached to the PUD and transmitted data wirelessly. Accuracy and technical quality of transmitted images were compared to on-site, gold-standard echo thresholds. Results. Novice versus sonographer imaging yielded technically adequate views in 122/135 (90%) versus 130/135 (96%) (P < 0.05). CLUE's combined SN, SP, and ACC were 0.67, 0.96, and 0.90. Technical adequacy (%) and accuracy for each abnormality (n) were LVSD (85%, 0.93, n = 5), LAE (89%, 0.74, n = 16), ULC+ (100%, 0.94, n = 5), and eCVP (78%, 0.91, n = 1). Conclusion. A novice can perform the CLUE using PUD when wirelessly guided by an expert. This method could facilitate PUD use for off-site bedside medical decision making and triaging of patients.

  12. A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device

    NASA Astrophysics Data System (ADS)

    Crake, Calum; Brinker, Spencer T.; Coviello, Christian M.; Livingstone, Margaret S.; McDannold, Nathan J.

    2018-03-01

    Previous work has demonstrated that passive acoustic imaging may be used alongside MRI for monitoring of focused ultrasound therapy. However, past implementations have generally made use of either linear arrays originally designed for diagnostic imaging or custom narrowband arrays specific to in-house therapeutic transducer designs, neither of which is fully compatible with clinical MR-guided focused ultrasound (MRgFUS) devices. Here we have designed an array which is suitable for use within an FDA-approved MR-guided transcranial focused ultrasound device, within the bore of a 3 Tesla clinical MRI scanner. The array is constructed from 5  ×  0.4 mm piezoceramic disc elements arranged in pseudorandom fashion on a low-profile laser-cut acrylic frame designed to fit between the therapeutic elements of a 230 kHz InSightec ExAblate 4000 transducer. By exploiting thickness and radial resonance modes of the piezo discs the array is capable of both B-mode imaging at 5 MHz for skull localization, as well as passive reception at the second harmonic of the therapy array for detection of cavitation and 3D passive acoustic imaging. In active mode, the array was able to perform B-mode imaging of a human skull, showing the outer skull surface with good qualitative agreement with MR imaging. Extension to 3D showed the array was able to locate the skull within  ±2 mm/2° of reference points derived from MRI, which could potentially allow registration of a patient to the therapy system without the expense of real-time MRI. In passive mode, the array was able to resolve a point source in 3D within a  ±10 mm region about each axis from the focus, detect cavitation (SNR ~ 12 dB) at burst lengths from 10 cycles to continuous wave, and produce 3D acoustic maps in a flow phantom. Finally, the array was used to detect and map cavitation associated with microbubble activity in the brain in nonhuman primates.

  13. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that uses...

  14. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that uses...

  15. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that uses...

  16. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that uses...

  17. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that uses...

  18. The Accuracy of a Handheld Ultrasound Device for Neuraxial Depth and Landmark Assessment: A Prospective Cohort Trial.

    PubMed

    Seligman, Katherine M; Weiniger, Carolyn F; Carvalho, Brendan

    2017-08-30

    This study investigated the accuracy of a wireless handheld ultrasound with pattern recognition software that recognizes lumbar spine bony landmarks and measures depth to epidural space (Accuro, Rivanna Medical, Charlottesville, VA) (AU). AU measurements to epidural space were compared to Tuohy needle depth to epidural space (depth to loss of resistance at epidural placement). Data from 47 women requesting labor epidural analgesia were analyzed. The mean difference between depth to epidural space measured by AU versus needle depth was -0.61 cm (95% confidence interval, -0.79 to -0.44), with a standard deviation of 0.58 (95% confidence interval, 0.48-0.73). Using the AU-identified insertion point resulted in successful epidural placement at first attempt in 87% of patients, 78% without redirects.

  19. Doppler Ultrasound: What Is It Used for?

    MedlinePlus

    ... During a Doppler ultrasound, a technician trained in ultrasound imaging (sonographer) presses a small hand-held device (transducer), ... neurologic-disorders/neurologic-tests-and-procedures/other-neurologic-imaging-studies. Accessed Oct. 18, 2016. ... . Mayo Clinic Footer Legal ...

  20. Ultrasound - Breast

    MedlinePlus

    ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... perform an ultrasound-guided biopsy . Because ultrasound provides real-time images, it is often used to guide biopsy ...

  1. Three-dimensional versus two-dimensional ultrasound for assessing levonorgestrel intrauterine device location: A pilot study.

    PubMed

    Andrade, Carla Maria Araujo; Araujo Júnior, Edward; Torloni, Maria Regina; Moron, Antonio Fernandes; Guazzelli, Cristina Aparecida Falbo

    2016-02-01

    To compare the rates of success of two-dimensional (2D) and three-dimensional (3D) sonographic (US) examinations in locating and adequately visualizing levonorgestrel intrauterine devices (IUDs) and to explore factors associated with the unsuccessful viewing on 2D US. Transvaginal 2D and 3D US examinations were performed on all patients 1 month after insertion of levonorgestrel IUDs. The devices were considered adequately visualized on 2D US if both the vertical (shadow, upper and lower extremities) and the horizontal (two echogenic lines) shafts were identified. 3D volumes were also captured to assess the location of levonorgestrel IUDs on 3D US. Thirty women were included. The rates of adequate device visualization were 40% on 2D US (95% confidence interval [CI], 24.6; 57.7) and 100% on 3D US (95% CI, 88.6; 100.0). The device was not adequately visualized in all six women who had a retroflexed uterus, but it was adequately visualized in 12 of the 24 women (50%) who had a nonretroflexed uterus (95% CI, -68.6; -6.8). We found that 3D US is better than 2D US for locating and adequately visualizing levonorgestrel IUDs. Other well-designed studies with adequate power should be conducted to confirm this finding. © 2015 Wiley Periodicals, Inc.

  2. Treating multiple body parts for skin laxity and fat deposits using a novel focused radiofrequency device with an ultrasound component: Safety and efficacy study.

    PubMed

    Chilukuri, Suneel; Denjean, Dominique; Fouque, Linda

    2017-12-01

    Growing demand for noninvasive skin tightening and reduction in fat results in an increasing pressure for devices with good clinical efficacy, consistency of results, and high patient comfort. The objective was to validate clinical efficacy and versatility of a novel device, which combines radiofrequency (RF) and ultrasound for treating skin laxity and fat deposits. We treated 34 subjects with facial skin laxity and/or abundant body or arm fat deposits. Subjects were divided based on their indications. Ten subjects received treatments to the face, 7 subjects to arms, 8 subjects to thighs, and 9 subjects on abdomen. All patients received 4 treatments on a weekly basis. Photographs of patients were assessed by blinded evaluators to recognize the baseline images from the 3-month follow-up images. Patient comfort and satisfaction were evaluated using a 5-point Likert scale questionnaire. Any adverse events were recorded. Patient images were correctly recognized in >90% of cases in all study groups. Patient questionnaires showed overall satisfaction with the therapy course and results. On a scale of 1 to 5, the patients agreed (4.1) that they are satisfied with the results that the treatment is comfortable (4.1) and that they are satisfied with the treatment time (4.1). No adverse events were reported. Consistent clinical efficacy was confirmed across all the treated areas, together with high patient comfort and satisfaction. We conclude the device is a highly versatile solution that can deliver results across body parts and different indications. © 2017 The Authors Journal of Cosmetic Dermatology Published by Wiley Periodicals, Inc.

  3. USim: A New Device and App for Case-Specific, Intraoperative Ultrasound Simulation and Rehearsal in Neurosurgery. A Preliminary Study.

    PubMed

    Perin, Alessandro; Prada, Francesco Ugo; Moraldo, Michela; Schiappacasse, Andrea; Galbiati, Tommaso Francesco; Gambatesa, Enrico; d'Orio, Piergiorgio; Riker, Nicole Irene; Basso, Curzio; Santoro, Matteo; Meling, Torstein Ragnar; Schaller, Karl; DiMeco, Francesco

    2018-05-01

    Intraoperative ultrasound (iUS) is an excellent aid for neurosurgeons to perform better and safer operations thanks to real time, continuous, and high-quality intraoperative visualization. To develop an innovative training method to teach how to perform iUS in neurosurgery. Patients undergoing surgery for different brain or spine lesions were iUS scanned (before opening the dura) in order to arrange a collection of 3-dimensional, US images; this set of data was matched and paired to preoperatively acquired magnetic resonance images in order to create a library of neurosurgical cases to be studied offline for training and rehearsal purposes. This new iUS training approach was preliminarily tested on 14 European neurosurgery residents, who participated at the 2016 European Association of Neurosurgical Societies Training Course (Sofia, Bulgaria). USim was developed by Camelot and the Besta NeuroSim Center as a dedicated app that transforms any smartphone into a "virtual US probe," in order to simulate iUS applied to neurosurgery on a series of anonymized, patient-specific cases of different central nervous system tumors (eg, gliomas, metastases, meningiomas) for education, simulation, and rehearsal purposes. USim proved to be easy to use and allowed residents to quickly learn to handle a US probe and interpret iUS semiotics. USim could help neurosurgeons learn neurosurgical iUS safely. Furthermore, neurosurgeons could simulate many cases, of different brain/spinal cord tumors, that resemble the specific cases they have to operate on. Finally, the library of cases would be continuously updated, upgraded, and made available to neurosurgeons.

  4. Portable Bladder Ultrasound

    PubMed Central

    2006-01-01

    L are considered an indication for urinary retention, requiring intermittent catheterization, whereas a PVR urine volume of 100 mL to 150 mL or less is generally considered an acceptable result of bladder training. Urinary retention has been associated with poor outcomes including UTI, bladder overdistension, and higher hospital mortality rates. The standard method of determining PVR urine volumes is intermittent catheterization, which is associated with increased risk of UTI, urethral trauma and discomfort. The Technology Being Reviewed Portable bladder ultrasound products are transportable ultrasound devices that use automated technology to register bladder volume digitally, including PVR volume, and provide three-dimensional images of the bladder. The main clinical use of portable bladder ultrasound is as a diagnostic aid. Health care professionals (primarily nurses) administer the device to measure PVR volume and prevent unnecessary catheterization. An adjunctive use of the bladder ultrasound device is to visualize the placement and removal of catheters. Also, portable bladder ultrasound products may improve the diagnosis and differentiation of urological problems and their management and treatment, including the establishment of voiding schedules, study of bladder biofeedback, fewer UTIs, and monitoring of potential urinary incontinence after surgery or trauma. Review Strategy To determine the effectiveness and clinical utility of portable bladder ultrasound as reported in the published literature, the Medical Advisory Secretariat used its standard search strategy to retrieve international health technology assessments and English-language journal articles from selected databases. Nonsystematic reviews, nonhuman studies, case reports, letters, editorials, and comments were excluded. Summary of Findings Of the 4 included studies that examined the clinical utility of portable bladder ultrasound in the elderly population, all found the device to be acceptable. One

  5. Endoscopic ultrasound

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/007646.htm Endoscopic ultrasound To use the sharing features on this page, please enable JavaScript. Endoscopic ultrasound is a type of imaging test. It is ...

  6. Obstetric Ultrasound

    PubMed Central

    Nicholson, Stuart F.; Nimrod, Carl A.

    1988-01-01

    This article addresses the current indications for an obstetric ultrasound and describes the findings that it is reasonable to expect when reading an ultrasound report. The authors discuss several common obstetrical problems focussing the attention on the usefulness of the imaging information. Finally, they provide a glimpse into the future direction of obstetric ultrasound by discussing vaginal scanning, Doppler assessment of fetal blood flow, and routine ultrasound in pregnancy. PMID:21253229

  7. High-intensity focused ultrasound (HIFU) using Sonablate{trade mark, serif} devices for the treatment of localized prostate cancer: 13-year experience

    NASA Astrophysics Data System (ADS)

    Uchida, Toyoaki; Tomonaga, Tetsuro; Shoji, Sunao; Kim, Hakushi; Nagata, Yoshihiro

    2012-11-01

    To report on the long-term results of high-intensity focused ultrasound (HIFU) in the treatment of localized prostate cancer. Eight hundred and eighty-four men with prostate cancer treated with Sonablate® (SB) devices were included. All patients were followed for more than 2 years. The patients were divided into three groups: in the first group, 419 patients were treated with SB200/500 from 1999 to 2006; in the second group, 263 patients were treated with SB 500 ver. 4 from 2005 to 2009: in the third group, 202 patients were treated with SB 500 TCM from 2007 up to present. Biochemical failure was defined according to the Phoenix definition (PSA nadir + 2 ng/ml). The mean age, PSA, Gleason score, operation time, and follow-up period in each group were 68, 66 and 67 years, 11.2, 9.7 and 9.3 ng/ml, 6.2, 6.6 and 6.7, 167, 101 and 106 min, and 56, 48 and 36 months, respectively. The biochemical disease-free rate (bDFR) in each group at 5 years was, respectively, 54%, 61% and 84%, and was 50% at 10 years in the SB200/500 group (p<0.0001). The bDFR in patients in the low-, intermediate-, and high-risk groups in all patients at 10 years were 72% and 58%, 44%, respectively (p<0.0001). The BDFR in patients in the low-, intermediate-, and high-risk groups in the SB500 TCM group at 5 years were 97%, 83%, and 74% (p=0.0056). The negative prostate biopsy rates in 3 groups were 81%, 92% and 88%, respectively. As post HIFU complications, urethral stricture, acute epididymitis and urinary incontinence were noted in 18.0%, 6.2% and 1.9%, respectively. Rectourethral fistula was occurred in 0.6% in the first HIFU cases, Postoperative erectile dysfunction was noted in 27% of patients at 2 years after HIFU. HIFU therapy appears to be minimally invasive, efficacious, and safe for patients with localized prostate cancer. Technological advances as well as cultural and economic vectors have caused a shift from to minimally invasive techniques.

  8. A novel transcutaneous, non-focused ultrasound energy delivering device is able to induce subcutaneous adipose tissue destruction in an animal model.

    PubMed

    Levi, Assi; Amitai, Dan Ben; Lapidoth, Moshe

    2017-01-01

    The understanding that adipocytes are greatly influenced by thermal changes combined with the advancement of non-invasive ultrasound technologies have led to the application of ultrasound as an energy source to induce thermal fat destruction. While application of high intensity focused, ultrasound energy have been widely explored, there is far less information regarding the effects of non-focused ultrasound on adipose tissue. The purpose of this study was to characterize the effects of a novel transcutaneous, multi-elements, non-focused ultrasound energy regimen in an animal model, as a proof-of-concept of its potential to treat non-invasive subcutaneous benign tumors. The non-invasive transcutaneous ultrasound system prototype (LUMENIS, Ltd., Yoqneam, Israel) was applied to thermally induce adipocytes' death. During treatment, the ultrasound energy was transmitted into the subcutaneous adipose tissue (SAT) of 12 domestic adult female pigs. Two modes of operation (long and short), which differ in both the acoustic energy applied to the tissue and in their time durations (i.e., differ in their power settings), were used in this study. Efficacy and safety assessments included: Temperature measurement of skin and subcutaneous adipose tissue (SAT) visual inspection and ultrasound imaging of the thermally affected areas, histopathological assessment of tissue samples using hematoxylin & eosin, and Masson's trichrome stains and in situ cell death detection kit for apoptosis assessment. The long and short treatment modes led to a 13.2°C and 17.8°C rise from baseline, respectively, in the SAT, whereas skin surface temperature was practically unaffected. Visual, ultrasonographic, and histopathological evaluation of the treated area showed SAT ablation. No treatment-related changes were observed in the epidermis, dermis subcutaneous muscle and nerves, or in livers and kidneys of treated animals. Additionally, no significant changes from baseline in blood- and urine

  9. Abdominal ultrasound

    MedlinePlus

    ... inflammation in pancreas) Spleen enlargement ( splenomegaly ) Portal hypertension Liver tumors Obstruction of bile ... Digestive system Kidney anatomy Ultrasound in pregnancy Kidney - blood and urine flow ...

  10. Ultrasound liquid crystal lens

    NASA Astrophysics Data System (ADS)

    Shimizu, Yuki; Koyama, Daisuke; Fukui, Marina; Emoto, Akira; Nakamura, Kentaro; Matsukawa, Mami

    2018-04-01

    A variable-focus lens using a combination of liquid crystals and ultrasound is discussed. The lens uses a technique based on ultrasound vibration to control the molecular orientation of the liquid crystal. The lens structure is simple, with no mechanical moving parts and no transparent electrodes, which is helpful for device downsizing; the structure consists of a liquid crystal layer sandwiched between two glass substrates with a piezoelectric ring. The tens-of-kHz ultrasonic resonance flexural vibration used to excite the lens generates an acoustic radiation force on the liquid crystal layer to induce changes in the molecular orientation of the liquid crystal. The orientations of the liquid crystal molecules and the optical characteristics of the lens were investigated under ultrasound excitation. Clear optical images were observed through the lens, and the focal point could be controlled using the input voltage to the piezoelectric ring to give the lens its variable-focus action.

  11. Ultrasound ionization of biomolecules.

    PubMed

    Wu, Chen-I; Wang, Yi-Sheng; Chen, Nelson G; Wu, Chung-Yi; Chen, Chung-Hsuan

    2010-09-15

    To date, mass spectrometric analysis of biomolecules has been primarily performed with either matrix-assisted laser desorption/ionization (MALDI) or electrospray ionization (ESI). In this work, ultrasound produced by a simple piezoelectric device is shown as an alternative method for soft ionization of biomolecules. Precursor ions of proteins, saccharides and fatty acids showed little fragmentation. Cavitation is considered as a primary mechanism for the ionization of biomolecules. Copyright 2010 John Wiley & Sons, Ltd.

  12. Fetal Ultrasound

    MedlinePlus

    ... isn't recommended simply to determine a baby's sex. Similarly, fetal ultrasound isn't recommended solely for the purpose of producing keepsake videos or pictures. If your health care provider doesn' ...

  13. Musculoskeletal Ultrasound

    MedlinePlus

    ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...

  14. Obstetrical Ultrasound

    MedlinePlus

    ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...

  15. Ultrasound -- Vascular

    MedlinePlus

    ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...

  16. Ultrasound - Scrotum

    MedlinePlus

    ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...

  17. Hip Ultrasound

    MedlinePlus

    ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...

  18. Factors associated with low-lying intrauterine devices: a cross-sectional ultrasound study in a cohort of African-American women.

    PubMed

    Moshesh, Malana; Saldana, Tina; Deans, Elizabeth; Cooper, Tracy; Baird, Donna

    2018-03-14

    The object of this study is to examine factors and symptoms associated with low-lying IUDs as defined by ultrasound. This is a cross-sectional sub-study of participants in the Study of Environment, Life-style, and Fibroids (SELF). SELF participants had screening ultrasounds for fibroids at study enrollment; those with an IUD in place are included in this sub-study. Low-lying IUDs were identified and localized. Logistic regression was used to identify factors and symptoms associated with low-lying IUDs. Among 168 women with IUDs at ultrasound, 28 (17%) had a low-lying IUD. Having a low-lying IUD was associated with low education level (≤high school: aOR 3.1 95% CI 1.14-8.55) and with increased BMI (p=.002). Women with a low-lying IUD were more likely to report a "big problem" with dysmenorrhea (the highest option of the Likert scale) as compared to women with a normally-positioned IUD (OR 3.2 95% CI 1.07-9.54). Our study found that women with a low-lying IUD are more likely to be of lower education and higher BMI, and to report more dysmenorrhea. Women who are obese may benefit from additional counseling and closer follow-up after IUD placement. Future research is warranted to investigate IUD placement and possible IUD migration among women who are obese. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Cranial Ultrasound/Head Ultrasound

    MedlinePlus

    ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...

  20. Ultrasound-guided venous access for pacemakers and defibrillators.

    PubMed

    Seto, Arnold H; Jolly, Aaron; Salcedo, Jonathan

    2013-03-01

    Ultrasound guidance is widely recommended to reduce the risk of complications during central venous catheter placement. However, ultrasound guidance is not commonly utilized for implanting leads for cardiac rhythm management devices. We describe our technique of ultrasound-guided pacemaker implantation, including a novel pull-through technique that allows percutaneous guidewire insertion prior to the first incision. We review the literature and recent advances in ultrasound imaging technology that may facilitate the adoption of ultrasound guidance. Ultrasound guidance provides a safe and rapid technique for extrathoracic subclavian or axillary venous lead placement. © 2012 Wiley Periodicals, Inc.

  1. Ultrasound microscope: the new field in ultrasound diagnostics

    NASA Astrophysics Data System (ADS)

    Novyc'kyy, Victor V.; Lushchyk, Ulyana B.

    2001-06-01

    A device which is a new stage in the development of medical equipment has been developed. The device works as an ultrasound microscope in vivo and provides 4 up to 32 colored histological image. It gives possibility to estimate tissue acoustic density with the help of 4 up to 32 gradation coloring different tissues and enables tissue microcirculation visualization. With the help of the device a doctor can objectify fatty hepatitis and cirrhosis, edema of different organs and tissues as well as microcirculation in organs and tissues (e.g. muscles, myocard and bone system). New promising applications of ultrasound systems in diagnostics and for choosing individual treatment tactics, with pathogenesis being taken into account, may be developed with the help of the device.

  2. Impedance-controlled ultrasound probe

    NASA Astrophysics Data System (ADS)

    Gilbertson, Matthew W.; Anthony, Brian W.

    2011-03-01

    An actuated hand-held impedance-controlled ultrasound probe has been developed. The controller maintains a prescribed contact state (force and velocity) between the probe and a patient's body. The device will enhance the diagnostic capability of free-hand elastography and swept-force compound imaging, and also make it easier for a technician to acquire repeatable (i.e. directly comparable) images over time. The mechanical system consists of an ultrasound probe, ball-screw-driven linear actuator, and a force/torque sensor. The feedback controller commands the motor to rotate the ball-screw to translate the ultrasound probe in order to maintain a desired contact force. It was found that users of the device, with the control system engaged, maintain a constant contact force with 15 times less variation than without the controller engaged. The system was used to determine the elastic properties of soft tissue.

  3. Hot topics in biomedical ultrasound: ultrasound therapy and its integration with ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Everbach, E. Carr

    2005-09-01

    Since the development of biomedical ultrasound imaging from sonar after WWII, there has been a clear divide between ultrasonic imaging and ultrasound therapy. While imaging techniques are designed to cause as little change as possible in the tissues through which ultrasound propagates, ultrasound therapy typically relies upon heating or acoustic cavitation to produce a desirable therapeutic effect. Concerns over the increasingly high acoustic outputs of diagnostic ultrasound scanners prompted the adoption of the Mechanical Index (MI) and Thermal Index (TI) in the early 1990s. Therapeutic applications of ultrasound, meanwhile, have evolved from deep tissue heating in sports medicine to include targeted drug delivery, tumor and plaque ablation, cauterization via high intensity focused ultrasound (HIFU), and accelerated dissolution of blood clots. The integration of ultrasonic imaging and therapy in one device is just beginning, but the promise of improved patient outcomes is balanced by regulatory and practical impediments.

  4. Ultrasound: biological effects and industrial hygiene concerns.

    PubMed

    Wiernicki, C; Karoly, W J

    1985-09-01

    Due to the increased use of high intensity ultrasonic devices, there is now a greater risk of worker exposure to ultrasonic radiation than there was in the past. Exposure to high power ultrasound may produce adverse biological effects. High power ultrasound, characterized by high intensity outputs at frequencies of 20-100 kHz, has a wide range of applications throughout industry. Future applications may involve equipment with higher energy outputs. Contact ultrasound, i.e., no airspace between the energy source and the biological tissue, is significantly more hazardous than exposure to airborne ultrasound because air transmits less than one percent of the energy. This paper discusses biological effects associated with overexposure to ultrasound, exposure standards proposed for airborne and contact ultrasound, industrial hygiene controls that can be employed to minimize exposure, and the instrumentation that is required for evaluating exposures.

  5. 21 CFR 878.4590 - Focused ultrasound stimulator system for aesthetic use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Focused ultrasound stimulator system for aesthetic....4590 Focused ultrasound stimulator system for aesthetic use. (a) Identification. A Focused Ultrasound Stimulator System for Aesthetic Use is a device using focused ultrasound to produce localized, mechanical...

  6. 21 CFR 878.4590 - Focused ultrasound stimulator system for aesthetic use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Focused ultrasound stimulator system for aesthetic....4590 Focused ultrasound stimulator system for aesthetic use. (a) Identification. A Focused Ultrasound Stimulator System for Aesthetic Use is a device using focused ultrasound to produce localized, mechanical...

  7. 21 CFR 878.4590 - Focused ultrasound stimulator system for aesthetic use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Focused ultrasound stimulator system for aesthetic....4590 Focused ultrasound stimulator system for aesthetic use. (a) Identification. A Focused Ultrasound Stimulator System for Aesthetic Use is a device using focused ultrasound to produce localized, mechanical...

  8. American Institute of Ultrasound in Medicine

    MedlinePlus

    ... Ultrasound Pediatric Ultrasound Point-of-Care Ultrasound Sonography Therapeutic Ultrasound Ultrasound in Global Health Ultrasound in Medical Education CME Center CME Tracker Annual Convention Journal Tests ...

  9. Abdominal Ultrasound

    MedlinePlus

    ... asked to drink four to six glasses of liquid about an hour before the test to fill your bladder. You may be asked to avoid eating for eight to 12 hours before the test to avoid gas buildup in the intestines. For ultrasound of the ...

  10. Elucidation of the role of biological factors and device design in cerebral NIRS using an in vivo hematoma model based on high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Wang, Jianting; Huang, Stanley; Myers, Matthew; Chen, Yu; Welle, Cristin; Pfefer, Joshua

    2016-03-01

    Near-Infrared Spectroscopy (NIRS) is an emerging medical countermeasure for rapid, field detection of hematomas caused by traumatic brain injury (TBI). Bench and animal tests to determine NIRS sensitivity and specificity are needed. However, current animal models involving non-invasively induced, localized neural damage are limited. We investigated an in vivo murine hematoma model in which cerebral hemorrhage was induced noninvasively by high-intensity focused ultrasound (HIFU) with calibrated positioning and parameters. To characterize the morphology of induced hematomas, we used skull-intact histological evaluation. A multi-wavelength fiber-optic NIRS system with three source-detector separation distances was used to detect hematoma A 1.1 MHz transducer produced consistent small-to-medium hematoma localized to a single hemisphere, along with bruising of the scalp, with a low mortality rate. A 220 kHz transducer produced larger, more diffuse hematomas, with higher variability in size and a correspondingly higher mortality rate. No skin bruising or blood accumulation between the skin and skull was observed following injury application with the 220 kHz transducer. Histological analysis showed higher sensitivity for larger hematomas (>4x4 mm2). NIRS optical density change after HIFU was able to detect all hematomas, with sensitivity dependent on wavelength and separation distance. While improvements in methods for validating cerebral blood distribution are needed, the HIFU hematoma model provided useful insights that will inform development of biologically relevant, performance test methods for cerebral NIRS systems.

  11. Ultrasound: Bladder (For Parents)

    MedlinePlus

    ... the computer screen. A technician (sonographer) trained in ultrasound imaging will spread a clear, warm gel on the ... specially trained in reading and interpreting X-ray, ultrasound, and other imaging studies) will interpret the ultrasound results and then ...

  12. Ultrasound: Pelvis (For Parents)

    MedlinePlus

    ... the computer screen. A technician (sonographer) trained in ultrasound imaging will spread a clear, warm gel on the ... specially trained in reading and interpreting X-ray, ultrasound, and other imaging studies) will interpret the ultrasound results and then ...

  13. Emerging Non-Cancer Applications of Therapeutic Ultrasound

    PubMed Central

    O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-01-01

    Ultrasound therapy has been investigated for over half a century. Ultrasound can act on tissue through a variety of mechanisms, including thermal, shockwave and cavitation mechanisms, and through these can elicit different responses. Ultrasound therapy can provide a non-invasive or minimally invasive treatment option, and ultrasound technology has advanced to the point where devices can be developed to investigate a wide range of applications. This review focuses on non-cancer, clinical applications of therapeutic ultrasound, with an emphasis on treatments that have recently reached clinical investigations, and preclinical research programs that have great potential to impact patient care. PMID:25792225

  14. Mime as a Mode of Intelligence.

    ERIC Educational Resources Information Center

    Shope, Richard

    The dramatic art of mime can be viewed through a theory of multiple intelligences. Mime is a mode of the bodily-kinesthetic intelligence which is characterized as the ability to integrate body movement and to use the body in highly differentiated and skilled ways, for expression as well as directed goals. Mime is the language of the body, the…

  15. Eye and orbit ultrasound

    MedlinePlus

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... eye is numbed with medicine (anesthetic drops). The ultrasound wand (transducer) is placed against the front surface ...

  16. MO-DE-210-04: Repositioning and Monitoring of Prostate Cancer Radiotherapy with a New 4D Ultrasound Intra-Modality IGRT Device

    SciTech Connect

    Fargier-Voiron, M; Sarrut, D; Guillet, L

    2015-06-15

    Purpose: We report our clinical experience using a non-invasive transperineal (TP) ultrasound (US) probe dedicated to pre-positioning and monitoring of prostate cancer patients. The accuracy of pre-treatment positioning was compared to CBCT for prostate and post-prostatectomy patients. Intrafraction motions were recorded for both localizations. The dosimetric impact of these displacements was finally investigated on prostate patients. Methods: Differences between CBCT/CT and TP-US/TP-US registrations were analyzed on 427 and 453 sessions for 13 prostate and 14 post-prostatectomy patients, respectively. Ten prostate patients’ dosimetries were retrospectively planned using 2 different protocols: 80Gy in 40 fractions and 36.25Gy in 5 fractions with amore » 5mm CTV- to- PTV margin. The delivery time was measured in order to analyze ranges of intrafraction motions related to each protocol. Mean prostate displacements were calculated for each patient and applied to the treatment isocenter coordinates to evaluate the dosimetric impact of these motions. Results: CBCT and TP-US shifts agreements at ±5mm were 76.6%, 95.1%, 96.3% and 90.3%, 85.0%, 97.6% in anterior- posterior, superior- inferior and left-right directions, for prostate and post-prostatectomy patients, respectively. Intrafraction motions were analyzed considering delivery times of 140 and 290s with an additional time of 120s for patient installation for doses of 2 and 7.25Gy, respectively. Intrafraction motions were patient-dependent and were larger as the irradiation time increased. Larger displacements were observed for prostate compared to post-prostatectomy localizations. Shifts above 3mm were observed on 17.6% and 4.5% of the 2Gy sessions against 30.6% and 7.3% of the 7.25Gy sessions in the anterior-posterior direction for prostate and post-prostatectomy localizations, respectively. Preliminary dosimetric results showed that intrafraction motions mainly impact the PTV coverage. Conclusion: 4D TP

  17. Novel ultrasound method to reposition kidney stones

    PubMed Central

    Shah, Anup; Owen, Neil R.; Lu, Wei; Cunitz, Bryan W.; Kaczkowski, Peter J.; Harper, Jonathan D.; Bailey, Michael R.; Crum, Lawrence A.

    2011-01-01

    The success of surgical management of lower pole stones is principally dependent on stone fragmentation and residual stone clearance. Choice of surgical method depends on stone size, yet all methods are subject to post-surgical complications resulting from residual stone fragments. Here we present a novel method and device to reposition kidney stones using ultrasound radiation force delivered by focused ultrasound and guided by ultrasound imaging. The device couples a commercial imaging array with a focused annular array transducer. Feasibility of repositioning stones was investigated by implanting artificial and human stones into a kidney-mimicking phantom that simulated a lower pole and collecting system. During experiment, stones were located by ultrasound imaging and repositioned by delivering short bursts of focused ultrasound. Stone motion was concurrently monitored by fluoroscopy, ultrasound imaging, and video photography, from which displacement and velocity were estimated. Stones were seen to move immediately after delivering focused ultrasound and successfully repositioned from the lower pole to the collecting system. Estimated velocities were on the order of 1 cm/s. This in vitro study demonstrates a promising modality to facilitate spontaneous clearance of kidney stones and increased clearance of residual stone fragments after surgical management. PMID:20967437

  18. Ten-year Biochemical Disease-free Survival After High-intensity Focused Ultrasound (HIFU) for Localized Prostate Cancer: Comparison with Four Different Generation Devices

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Nakano, M.; Shoji, S.; Omata, T.; Harano, Y.; Nagata, Y.; Usui, Y.; Terachi, T.

    2010-03-01

    HIFU has been recognized as a minimally invasive treatment option for localized prostate cancer. The purpose of the study was to assess with a long-term outcome of HIFU for prostate cancer. From January 1999, a total of 657 patients who had HIFU with at least 2 year follow-up were treated with four different types of Sonablate® (Focus Surgery, Indianapolis, USA) devices. Thirty-three patients were treated with Sonablate® 200 (S200) from 1999 to 2001, 406 patients with Sonablate® 500 (S500) from 2001 to 2005, 200 patients with Sonablate® 500 version 4 (V4) from 2005-2008 and 19 patients with Sonablate® 500 TCM (TCM) from 2007. Biochemical disease-free survival rate (bDFS) in all patients was 59% in 8 years. bDFS in 8 years in patients with S200 and S500 groups were 55% and 56%, and bDFS in 4 and 2 years in patients with V4 and TCM group were 72% and 84%, respectively. bDFS in low, intermediate, and high risk groups were 75%, 54%, and 43% in S200/S500 and 93%, 72%, and 58% in V4/TCM group. Negative prostate biopsy rate after HIFU was 97% in S200, 79% in S500, 94% in V4 and 100% in TCM group. HIFU as primary therapy for prostate cancer is indicated in patients with low- and intermediate-risk (T1-T2b N0M0 disease, a Gleason score of ⩽7, a PSA level of <20 ng/mL) and a prostate volume of less than 40 mL. The rate of clinical outcome has significantly improved over the years due to technical improvements in the device.

  19. Method and system to synchronize acoustic therapy with ultrasound imaging

    NASA Technical Reports Server (NTRS)

    Hossack, James (Inventor); Owen, Neil (Inventor); Bailey, Michael R. (Inventor)

    2009-01-01

    Interference in ultrasound imaging when used in connection with high intensity focused ultrasound (HIFU) is avoided by employing a synchronization signal to control the HIFU signal. Unless the timing of the HIFU transducer is controlled, its output will substantially overwhelm the signal produced by ultrasound imaging system and obscure the image it produces. The synchronization signal employed to control the HIFU transducer is obtained without requiring modification of the ultrasound imaging system. Signals corresponding to scattered ultrasound imaging waves are collected using either the HIFU transducer or a dedicated receiver. A synchronization processor manipulates the scattered ultrasound imaging signals to achieve the synchronization signal, which is then used to control the HIFU bursts so as to substantially reduce or eliminate HIFU interference in the ultrasound image. The synchronization processor can alternatively be implemented using a computing device or an application-specific circuit.

  20. Ultrasound in Space Medicine

    NASA Technical Reports Server (NTRS)

    Dulchavsky, Scott A.; Sargsyan, A.E.

    2009-01-01

    This slide presentation reviews the use of ultrasound as a diagnostic tool in microgravity environments. The goals of research in ultrasound usage in space environments are: (1) Determine accuracy of ultrasound in novel clinical conditions. (2) Determine optimal training methodologies, (3) Determine microgravity associated changes and (4) Develop intuitive ultrasound catalog to enhance autonomous medical care. Also uses of Ultrasound technology in terrestrial applications are reviewed.

  1. Endocavity Ultrasound Probe Manipulators

    PubMed Central

    Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop

    2014-01-01

    We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure. PMID:24795525

  2. Aesthetic ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Barthe, Peter G.; Slayton, Michael H.

    2012-10-01

    Ultrasound provides key benefits in aesthetic surgery compared to laser and RF based energy sources. We present results of research, development, pre-clinical and clinical studies, regulatory clearance and commercialization of a revolutionary non-invasive aesthetic ultrasound imaging and therapy system. Clinical applications for this platform include non-invasive face-lifts, brow-lifts, and neck-lifts achieved through fractionated treatment of the superficial musculoaponeurotic system (SMAS) and subcutaneous tissue. Treatment consists of placing a grid of micro-coagulative lesions on the order of 1 mm3 at depths in skin of 1 to 6 mm, source energy levels of 0.1 to 3 J, and spacing on the order of 1.5 mm, from 4 to 10 MHz dual-mode image/treat transducers. System details are described, as well as a regulatory pathway consisting of acoustic and bioheat simulations, source characterization (hydrophone, radiation force, and Schlieren), pre-clinical studies (porcine skin ex vivo, in vivo, and human cadaver), human safety studies (treat and resect) and efficacy trials which culminated in FDA clearance (2009) under a new device classification and world-wide usage. Clinical before and after photographs are presented which validate the clinical approach.

  3. [Occupational risk caused by ultrasound in medicine].

    PubMed

    Magnavita, N; Fileni, A

    1994-01-01

    Ultrasound (US) is extensively used in the medical field for its therapeutic and diagnostic applications. US units are commonly found in hospitals and clinics of all sizes, and a growing number of medical staff such as doctors and nurses are exposed to hand-transmitted ultrasound waves in their work-place. This review discusses the available information on the occupational risk of the operators using diagnostic and therapeutic ultrasound devices. The new occupational groups of medical workers who use ultrasound (diagnostic, surgical, sterilization, and physiotherapeutic) equipment are exposed to contact ultrasound waves. Contact ultrasound -- i.e., no airspace between the energy source and the biological tissue -- is much more hazardous than exposure to airborne ultrasound because air transmits less than one percent of this kind of energy. In spite of being a non-ionizing radiation with an excellent safety record, US is likely to induce some changes in the exposed organ. Recent Russian studies indicate that the hospital workers who have been long exposed to ultrasound at work may develop neurovascular dose-dependent disorders of the peripheral nervous system in the form of the angiodystonic syndrome of vegetative polyneuritis of the hands. In some Scandinavian studies, female physiotherapists (exposed to ultrasound and short waves) exhibit increased rate of spontaneous abortions and congenital malformations, but no definite conclusion can be drawn on the basis of these results alone. Trends in exposure for diagnostic ultrasound equipment over the last two decades show a continuous increase. While there is no reason for alarm, there is a growing need for avoiding unnecessary exposure to medical workers.

  4. Ultrasound in Arthritis.

    PubMed

    Sudoł-Szopińska, Iwona; Schueller-Weidekamm, Claudia; Plagou, Athena; Teh, James

    2017-09-01

    Ultrasound is currently performed in everyday rheumatologic practice. It is used for early diagnosis, to monitor treatment results, and to diagnose remission. The spectrum of pathologies seen in arthritis with ultrasound includes early inflammatory features and associated complications. This article discusses the spectrum of ultrasound features of arthritides seen in rheumatoid arthritis and other connective tissue diseases in adults, such as Sjögren syndrome, lupus erythematosus, dermatomyositis, polymyositis, and juvenile idiopathic arthritis. Ultrasound findings in spondyloarthritis, osteoarthritis, and crystal-induced diseases are presented. Ultrasound-guided interventions in patients with arthritis are listed, and the advantages and disadvantages of ultrasound are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Holistic ultrasound in trauma: An update.

    PubMed

    Saranteas, Theodosios; Mavrogenis, Andreas F

    2016-10-01

    Holistic ultrasound is a total body examination using an ultrasound device aiming to achieve immediate patient care and decision making. In the setting of trauma, it is one of the most fundamental components of care of the injured patients. Ground-breaking imaging software allows physicians to examine various organs thoroughly, recognize imaging signs early, and potentially foresee the onset or the possible outcome of certain types of injuries. Holistic ultrasound can be performed on a routine basis at the bedside of the patients, at admission and during the perioperative period. Trauma care physicians should be aware of the diagnostic and guidance benefits of ultrasound and should receive appropriate training for the optimal management of their patients. In this paper, the findings of holistic ultrasound in trauma patients are presented, with emphasis on the lungs, heart, cerebral circulation, abdomen, and airway. Additionally, the benefits of ultrasound imaging in interventional anaesthesia techniques such as ultrasound-guided peripheral nerve blocks and central vein catheterization are described. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Medical Ultrasound Imaging.

    ERIC Educational Resources Information Center

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  7. Transvaginal ultrasound (image)

    MedlinePlus

    Transvaginal ultrasound is a method of imaging the genital tract in females. A hand held probe is inserted directly ... vaginal cavity to scan the pelvic structures, while ultrasound pictures are viewed on a monitor. The test ...

  8. Abdominal ultrasound (image)

    MedlinePlus

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X-ray, MRI, ... it has its place as a diagnostic tool. Ultrasound scans use high frequency sound waves to produce ...

  9. High intensity focused ultrasound (HIFU).

    PubMed

    Barkin, Jack

    2011-04-01

    Curative treatments for localized prostate cancer, from least invasive to most invasive, include brachytherapy, cryosurgery, three-dimensional conformal radiation therapy, external beam radiation therapy, and radical prostatectomy. A patient with localized, low risk or intermediate risk prostate cancer who is diagnosed at an early age and receives one of these treatments has only an approximately 50% chance of maintaining an undetectable prostate-specific antigen (PSA) level, good spontaneous erections, and total continence by 5 years after treatment. This article discusses transrectal high intensity focused ultrasound (HIFU) treatment of localized prostate cancer using the Sonablate 500 (Focus Surgery, Indianapolis, IN, USA) device, which the author has adopted in favor of the Ablatherm (EDAP, TMS S. A., Lyons, France) device, the other HIFU device approved for use in Canada. Characteristics of the ideal prostate cancer include stage T1-T2b, less than 40 cc in size, and with an anterior-posterior dimension of up to 35 mm high. The anterior zone of the prostate is treated before the posterior zone. The procedure involves 2 to 3 second bursts of ultrasound energy, followed by 3 second cooling cycles. In each treatment lesion, the physician achieves a temperature of 100 C at the focal point. The device allows for real-time visualization of tissue response following the delivery of ultrasound energy. HIFU is a minimally invasive, outpatient treatment for localized prostate cancer that provides similar short term and medium term cure rates and considerably less morbidity and side effects than other treatments. Although the effectiveness of HIFU has not yet been demonstrated in large, long term studies, this treatment option should be discussed with patients who have just been diagnosed with low risk or intermediate risk prostate cancer and desire aggressive, noninvasive, curative therapy, with potentially a lower incidence of side effects compared to conventional

  10. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  11. Applications of ultrasound in dentistry.

    PubMed

    Walmsley, A D

    1988-01-01

    An ultrasonic descaler working at kHz frequencies is used in dentistry to remove attached deposits from the teeth. Such devices offer many advantages over conventional hand instruments by reducing both the work and time involved in the clinical descaling process. Although it is a recognised clinical instrument, there has been little attempt to standardise its acoustic power output. A parameter which may characterise adequately the acoustic emission from these instruments is the displacement amplitude of the probe tip. Modification of the ultrasonic descaler generator has led to the further use of the instrument in other dental areas. Diagnostic applications of MHz ultrasound is limited by the structure and arrangement of the dental tissues. Therapeutic ultrasound has been used to treat a variety of dentally related ailments, and ultrasonic cleaning baths are used to clean both dental instruments and materials.

  12. Simplified stereo-optical ultrasound plane calibration

    NASA Astrophysics Data System (ADS)

    Hoßbach, Martin; Noll, Matthias; Wesarg, Stefan

    2013-03-01

    Image guided therapy is a natural concept and commonly used in medicine. In anesthesia, a common task is the injection of an anesthetic close to a nerve under freehand ultrasound guidance. Several guidance systems exist using electromagnetic tracking of the ultrasound probe as well as the needle, providing the physician with a precise projection of the needle into the ultrasound image. This, however, requires additional expensive devices. We suggest using optical tracking with miniature cameras attached to a 2D ultrasound probe to achieve a higher acceptance among physicians. The purpose of this paper is to present an intuitive method to calibrate freehand ultrasound needle guidance systems employing a rigid stereo camera system. State of the art methods are based on a complex series of error prone coordinate system transformations which makes them susceptible to error accumulation. By reducing the amount of calibration steps to a single calibration procedure we provide a calibration method that is equivalent, yet not prone to error accumulation. It requires a linear calibration object and is validated on three datasets utilizing di erent calibration objects: a 6mm metal bar and a 1:25mm biopsy needle were used for experiments. Compared to existing calibration methods for freehand ultrasound needle guidance systems, we are able to achieve higher accuracy results while additionally reducing the overall calibration complexity. Ke

  13. Simulation of ultrasound propagation in bone

    NASA Astrophysics Data System (ADS)

    Kaufman, Jonathan J.; Luo, Gangming; Siffert, Robert S.

    2004-10-01

    Ultrasound has been proposed as a means to noninvasively assess bone and, particularly, bone strength and fracture risk, as for example in osteoporosis. Because strength is a function of both mineral density and architecture, ultrasound has the potential to provide more accurate measurement of bone integrity than, for example, with x-ray absorptiometric methods. Although some of this potential has already been realized-a number of clinical devices are presently available-there is still much that is unknown regarding the interaction of ultrasound with bone. Because of the inherent complexity of the propagation medium, few analytic solutions exist with practical application. For this reason, ultrasound simulation techniques have been developed and applied to a number of different problems of interest in ultrasonic bone assessment. Both 2D and 3D simulation results will be presented, including the effects of architecture and density on the received waveform, propagation effects of both cortical and trabecular bone, and the relative contributions of scattering and absorption to attenuation in trabecular bone. The results of these simulation studies should lead to improved understanding and ultimately to more effective clinical devices for ultrasound bone assessment. [This work was supported by The Carroll and Milton Petrie Foundation and by SBIR Grant No. 1R43RR16750 from the National Center for Research Resources of the NIH.

  14. New heights in ultrasound: first report of spinal ultrasound from the international space station.

    PubMed

    Marshburn, Thomas H; Hadfield, Chris A; Sargsyan, Ashot E; Garcia, Kathleen; Ebert, Douglas; Dulchavsky, Scott A

    2014-01-01

    Changes in the lumbar and sacral spine occur with exposure to microgravity in astronauts; monitoring these alterations without radiographic capabilities on the International Space Station (ISS) requires novel diagnostic solutions to be developed. We evaluated the ability of point-of-care ultrasound, performed by nonexpert-operator astronauts, to provide accurate anatomic information about the spine in long-duration crewmembers in space. Astronauts received brief ultrasound instruction on the ground and performed in-flight cervical and lumbosacral ultrasound examinations using just-in-time training and remote expert tele-ultrasound guidance. Ultrasound examinations on the ISS used a portable ultrasound device with real-time communication/guidance with ground experts in Mission Control. The crewmembers were able to obtain diagnostic-quality examinations of the cervical and lumbar spine that would provide essential information about acute or chronic changes to the spine. Spinal ultrasound provides essential anatomic information in the cervical and lumbosacral spine; this technique may be extensible to point-of-care situations in emergency departments or resource-challenged areas without direct access to additional radiologic capabilities. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Anthropomorphic cardiac ultrasound phantom.

    PubMed

    Smith, S W; Rinaldi, J E

    1989-10-01

    A new phantom is described which simulates the human cardiac anatomy for applications in ultrasound imaging, ultrasound Doppler, and color-flow Doppler imaging. The phantom consists of a polymer left ventricle which includes a prosthetic mitral and aortic valve and is connected to a mock circulatory loop. Aerated tap water serves as a blood simulating fluid and ultrasound contrast medium within the circulatory loop. The left ventricle is housed in a Lexan ultrasound visualization chamber which includes ultrasound viewing ports and acoustic absorbers. A piston pump connected to the visualization chamber by a single port pumps degassed water within the chamber which in turn pumps the left ventricle. Real-time ultrasound images and Doppler studies measure flow patterns through the valves and within the left ventricle.

  16. Wireless communication of real-time ultrasound data and control

    NASA Astrophysics Data System (ADS)

    Tobias, Richard J.

    2015-03-01

    The Internet of Things (IoT) is expected to grow to 26 billion connected devices by 2020, plus the PC, smart phone, and tablet segment that includes mobile Health (mHealth) connected devices is projected to account for another 7.3 billion units by 2020. This paper explores some of the real-time constraints on the data-flow and control of a wireless connected ultrasound machine. The paper will define an ultrasound server and the capabilities necessary for real-time use of the device. The concept of an ultrasound server wirelessly (or over any network) connected to multiple lightweight clients on devices like an iPad, iPhone, or Android-based tablet, smartphone and other network-attached displays (i.e., Google Glass) is explored. Latency in the ultrasound data stream is one of the key areas to measure and to focus on keeping as small as possible (<30ms) so that the ultrasound operator can see what is at the probe at that moment, instead of where the probe was a short period earlier. By keeping the latency less than 30ms, the operator will feel like the data he sees on the wireless connected devices is running in real-time with the operator. The second parameter is the management of bandwidth. At minimum we need to be able to see 20 frames-per- second. It is possible to achieve ultrasound in triplex mode at >20 frames-per-second on a properly configured wireless network. The ultrasound server needs to be designed to accept multiple ultrasound data clients and multiple control clients. A description of the server and some of its key features will be described.

  17. Microfocused ultrasound for skin tightening.

    PubMed

    MacGregor, Jennifer L; Tanzi, Elizabeth L

    2013-03-01

    The demand for noninvasive skin tightening procedures is increasing as patients seek safe and effective alternatives to aesthetic surgical procedures of the face, neck, and body. Over the past decade, radiofrequency and infrared laser devices have been popularized owing to their ability to deliver controlled heat to the dermis, stimulate neocollagenesis, and effect modest tissue tightening with minimal recovery. However, these less invasive approaches are historically associated with inferior efficacy so that surgery still remains the treatment of choice to address moderate to severe tissue laxity. Microfocused ultrasound was recently introduced as a novel energy modality for transcutaneous heat delivery that reaches the deeper subdermal connective tissue in tightly focused zones at consistent programmed depths. The goal is to produce a deeper wound healing response at multiple levels with robust collagen remodeling and a more durable clinical response. The Ulthera device (Ulthera, Inc, Meza, AZ), with refined microfocused ultrasound technology, has been adapted specifically for skin tightening and lifting with little recovery or risk of complications since its introduction in 2009. As clinical parameters are studied and optimized, enhanced efficacy and consistency of clinical improvement is expected.

  18. Power Doppler ultrasonography and synovitis: correlating ultrasound imaging with histopathological findings and evaluating the performance of ultrasound equipments.

    PubMed

    Koski, J M; Saarakkala, S; Helle, M; Hakulinen, U; Heikkinen, J O; Hermunen, H

    2006-12-01

    To examine the validity of power Doppler ultrasound imaging to identify synovitis, using histopathology as gold standard, and to assess the performance of ultrasound equipments. 44 synovial sites in small and large joints, bursae and tendon sheaths were depicted with ultrasound. A synovial biopsy was performed on the site depicted and a synovial sample was taken for histopathological evaluation. The performance of three ultrasound devices was tested using flow phantoms. A positive Doppler signal was detected in 29 of 35 (83%) of the patients with active histological inflammation. In eight additional samples, histological examination showed other pathological synovial findings and a Doppler signal was detected in five of them. No significant correlation was found between the amount of Doppler signal and histological synovitis score (r = 0.239, p = NS). The amount of subsynovial infiltration of polymorphonuclear leucocytes and surface fibrin correlated significantly with the amount of power Doppler signal: r = 0.397 (p<0.01) and 0.328 (p<0.05), respectively. The ultrasound devices differed in showing the smallest detectable flow. A negative Doppler signal does not exclude the possibility of synovitis. A positive Doppler signal in the synovium is an indicator of an active synovial inflammation in patients. A Doppler signal does not correlate with the extent of the inflammation and it can also be seen in other synovial reactions. It is important that the quality measurements of ultrasound devices are reported, because the results should be evaluated against the quality of the device used.

  19. Simultaneous ultrasound and photoacoustics based flow cytometry

    NASA Astrophysics Data System (ADS)

    Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C.

    2018-04-01

    We have developed a flow cytometer based on simultaneous detection of ultrasound and photoacoustic waves from individual particles/cells flowing in a microfluidic channel. Our polydimethylsiloxane (PDMS) based hydrodynamic 3-dimensional (3D) flow-focusing microfluidic device contains a cross-junction channel, a micro-needle (ID 100 μm and OD 200 μm) insert, and a 3D printed frame to hold and align a high frequency (center frequency 375 MHz) ultrasound transducer. The focused flow passes through a narrow focal zone with lateral and axial focal lengths of 6-8 μm and 15-20 μm, respectively. Both the lateral and axial alignments are achieved by screwing the transducer to the frame onto the PDMS device. Individual particles pass through an interrogation zone in the microfluidic channel with a collinearly aligned ultrasound transducer and a focused 532 nm wavelength laser beam. The particles are simultaneously insonified by high-frequency ultrasound and irradiated by a laser beam. The ultrasound backscatter and laser generated photoacoustic waves are detected for each passing particle. The backscattered ultrasound and photoacoustic signal are strongly dependent on the size, morphology, mechanical properties, and material properties of the flowing particles; these parameters can be extracted by analyzing unique features in the power spectrum of the signals. Frequencies less than 100 MHz do not have these unique spectral signatures. We show that we can reliably distinguish between different particles in a sample using the acoustic-based flow cytometer. This technique, when extended to biomedical applications, allows us to rapidly analyze the spectral signatures from individual single cells of a large cell population, with applications towards label-free detection and characterization of healthy and diseased cells.

  20. Application of Ultrasound Energy as a New Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Tachibana, Katsuro; Tachibana, Shunro

    1999-05-01

    Ultrasound has been in use for the last three decades as amodality for diagnostic imaging in medicine. Recently, there have beennumerous reports on the application of nonthermal ultrasound energyfor targeting or controlling drug release. This new concept oftherapeutic ultrasound combined with drugs has led to much excitementin various medical fields. Ultrasound energy can enhance the effectsof thrombolytic agents such as urokinase. Therapeutic ultrasoundcatheters are currently being developed for treatment ofcardiovascular diseases. Devices with ultrasound transducers implantedin transdermal drug patches are also being evaluated for possibledelivery of insulin through the skin. Chemical activation of drugs byultrasound energy for treatment of cancers is another new fieldrecently termed “Sonodynamic Therapy”. Various examples of ultrasoundapplication are under investigation which could lead to revolutionarydrug delivery systems in the future.

  1. The potential of ultrasound in cardiac pacing and rhythm modulation.

    PubMed

    Kohut, Andrew R; Vecchio, Christopher; Adam, Dan; Lewin, Peter A

    2016-09-01

    This review examines the potential for ultrasound to induce or otherwise influence cardiac pacing and rhythm modulation. Of particular interest is the possibility of developing new, truly non-invasive, nonpharmacological, acute and chronic, ultrasound-based arrhythmia treatments. Such approaches would not depend upon implanted or indwelling devices of any kind and would use ultrasound at diagnostic exposure levels (so as not to harm the heart or surrounding tissues). It is known that ultrasound can cause cardiomyocyte depolarization and a variety of underlying mechanisms have been proposed. Expert commentary: Questions still remain regarding the effect of exposure parameters and work will also be necessary to identify the optimal target regions within the heart if ultrasound energy is to be used to induce safe and reliable pacing in a clinical setting.

  2. Assistive technology for ultrasound-guided central venous catheter placement.

    PubMed

    Ikhsan, Mohammad; Tan, Kok Kiong; Putra, Andi Sudjana

    2018-01-01

    This study evaluated the existing technology used to improve the safety and ease of ultrasound-guided central venous catheterization. Electronic database searches were conducted in Scopus, IEEE, Google Patents, and relevant conference databases (SPIE, MICCAI, and IEEE conferences) for related articles on assistive technology for ultrasound-guided central venous catheterization. A total of 89 articles were examined and pointed to several fields that are currently the focus of improvements to ultrasound-guided procedures. These include improving needle visualization, needle guides and localization technology, image processing algorithms to enhance and segment important features within the ultrasound image, robotic assistance using probe-mounted manipulators, and improving procedure ergonomics through in situ projections of important information. Probe-mounted robotic manipulators provide a promising avenue for assistive technology developed for freehand ultrasound-guided percutaneous procedures. However, there is currently a lack of clinical trials to validate the effectiveness of these devices.

  3. Optical Detection of Ultrasound in Photoacoustic Imaging

    PubMed Central

    Dong, Biqin; Sun, Cheng; Zhang, Hao F.

    2017-01-01

    Objective Photoacoustic (PA) imaging emerges as a unique tool to study biological samples based on optical absorption contrast. In PA imaging, piezoelectric transducers are commonly used to detect laser-induced ultrasonic waves. However, they typically lack adequate broadband sensitivity at ultrasonic frequency higher than 100 MHz while their bulky size and optically opaque nature cause technical difficulties in integrating PA imaging with conventional optical imaging modalities. To overcome these limitations, optical methods of ultrasound detection were developed and shown their unique applications in photoacoustic imaging. Methods We provide an overview of recent technological advances in optical methods of ultrasound detection and their applications in PA imaging. A general theoretical framework describing sensitivity, bandwidth, and angular responses of optical ultrasound detection is also introduced. Results Optical methods of ultrasound detection can provide improved detection angle and sensitivity over significantly extended bandwidth. In addition, its versatile variants also offer additional advantages, such as device miniaturization, optical transparency, mechanical flexibility, minimal electrical/mechanical crosstalk, and potential noncontact PA imaging. Conclusion The optical ultrasound detection methods discussed in this review and their future evolution may play an important role in photoacoustic imaging for biomedical study and clinical diagnosis. PMID:27608445

  4. Multicarrier airborne ultrasound transmission with piezoelectric transducers.

    PubMed

    Ens, Alexander; Reindl, Leonhard M

    2015-05-01

    In decentralized localization systems, the received signal has to be assigned to the sender. Therefore, longrange airborne ultrasound communication enables the transmission of an identifier of the sender within the ultrasound signal to the receiver. Further, in areas with high electromagnetic noise or electromagnetic free areas, ultrasound communication is an alternative. Using code division multiple access (CDMA) to transmit data is ineffective in rooms due to high echo amplitudes. Further, piezoelectric transducers generate a narrow-band ultrasound signal, which limits the data rate. This work shows the use of multiple carrier frequencies in orthogonal frequency division multiplex (OFDM) and differential quadrature phase shift keying modulation with narrowband piezoelectric devices to achieve a packet length of 2.1 ms. Moreover, the adapted channel coding increases data rate by correcting transmission errors. As a result, a 2-carrier ultrasound transmission system on an embedded system achieves a data rate of approximately 5.7 kBaud. Within the presented work, a transmission range up to 18 m with a packet error rate (PER) of 13% at 10-V supply voltage is reported. In addition, the transmission works up to 22 m with a PER of 85%. Moreover, this paper shows the accuracy of the frame synchronization over the distance. Consequently, the system achieves a standard deviation of 14 μs for ranges up to 10 m.

  5. Tracked 3D ultrasound in radio-frequency liver ablation

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Fichtinger, Gabor; Taylor, Russell H.; Choti, Michael A.

    2003-05-01

    Recent studies have shown that radio frequency (RF) ablation is a simple, safe and potentially effective treatment for selected patients with liver metastases. Despite all recent therapeutic advancements, however, intra-procedural target localization and precise and consistent placement of the tissue ablator device are still unsolved problems. Various imaging modalities, including ultrasound (US) and computed tomography (CT) have been tried as guidance modalities. Transcutaneous US imaging, due to its real-time nature, may be beneficial in many cases, but unfortunately, fails to adequately visualize the tumor in many cases. Intraoperative or laparoscopic US, on the other hand, provides improved visualization and target imaging. This paper describes a system for computer-assisted RF ablation of liver tumors, combining navigational tracking of a conventional imaging ultrasound probe to produce 3D ultrasound imaging with a tracked RF ablation device supported by a passive mechanical arm and spatially registered to the ultrasound volume.

  6. Ultrasound: Abdomen (For Parents)

    MedlinePlus

    ... the computer screen. A technician (sonographer) trained in ultrasound imaging will spread a clear, warm gel on the skin of the abdomen. This gel helps with the transmission of the sound waves. The ... abdominal ultrasound is painless. Your child may feel a slight ...

  7. Ultrasound: Head (For Parents)

    MedlinePlus

    ... the computer screen. A technician (sonographer) trained in ultrasound imaging will spread a clear, warm gel on your child's scalp (over the fontanel). This gel helps with the transmission of the ... Expect The head ultrasound test is painless, though your child may feel ...

  8. Focused ultrasound thermal therapy system with ultrasound image guidance and temperature measurement feedback.

    PubMed

    Lin, Kao-Han; Young, Sun-Yi; Hsu, Ming-Chuan; Chan, Hsu; Chen, Yung-Yaw; Lin, Win-Li

    2008-01-01

    In this study, we developed a focused ultrasound (FUS) thermal therapy system with ultrasound image guidance and thermocouple temperature measurement feedback. Hydraulic position devices and computer-controlled servo motors were used to move the FUS transducer to the desired location with the measurement of actual movement by linear scale. The entire system integrated automatic position devices, FUS transducer, power amplifier, ultrasound image system, and thermocouple temperature measurement into a graphical user interface. For the treatment procedure, a thermocouple was implanted into a targeted treatment region in a tissue-mimicking phantom under ultrasound image guidance, and then the acoustic interference pattern formed by image ultrasound beam and low-power FUS beam was employed as image guidance to move the FUS transducer to have its focal zone coincident with the thermocouple tip. The thermocouple temperature rise was used to determine the sonication duration for a suitable thermal lesion as a high power was turned on and ultrasound image was used to capture the thermal lesion formation. For a multiple lesion formation, the FUS transducer was moved under the acoustic interference guidance to a new location and then it sonicated with the same power level and duration. This system was evaluated and the results showed that it could perform two-dimensional motion control to do a two-dimensional thermal therapy with a small localization error 0.5 mm. Through the user interface, the FUS transducer could be moved to heat the target region with the guidance of ultrasound image and acoustic interference pattern. The preliminary phantom experimental results demonstrated that the system could achieve the desired treatment plan satisfactorily.

  9. A resonance-free nano-film airborne ultrasound emitter

    NASA Astrophysics Data System (ADS)

    Daschewski, Maxim; Harrer, Andrea; Prager, Jens; Kreutzbruck, Marc; Beck, Uwe; Lange, Thorid; Weise, Matthias

    2013-01-01

    In this contribution we present a novel thermo-acoustic approach for the generation of broad band airborne ultrasound and investigate the applicability of resonance-free thermo-acoustic emitters for very short high pressure airborne ultrasound pulses. We report on measurements of thermo-acoustic emitter consisting of a 30 nm thin metallic film on a usual soda-lime glass substrate, generating sound pressure values of more than 140 dB at 60 mm distance from the transducer and compare the results with conventional piezoelectric airborne ultrasound transducers. Our experimental investigations show that such thermo-acoustic devices can be used as broad band emitters using pulse excitation.

  10. Teaching enthesis ultrasound: experience of an ultrasound training workshop.

    PubMed

    Miguel, Cláudia; De Miguel, Eugenio; Batlle-Gualda, Enrique; Rejón, Eduardo; Lojo, Leticia

    2012-12-01

    To evaluate a standardised enthesis ultrasound training method, a workshop was conducted to train rheumatologists on enthesis ultrasound. After a theoretical session about ultrasound elementary enthesis lesions (changes in tendon architecture/thickness, bone proliferation/erosion, bursitis or Doppler signal), a reading exercise of 28 entheses' ultrasonographic images (plantar fasciae, Achilles, origin and insertion of patellar tendon) was completed. Participants scored through an electronic multiple-choice device with six possible lesions in each enthesis. To assess the adequacy and efficacy of the workshop, we explored the following: (1) subjective outcomes: a 12-item structured satisfaction questionnaire (graded 1-5 using Likert scale) and (2) objective outcomes of reliability: sensitivity (Se), specificity (Sp) and percentage of correctly classified cases (CC). Forty-nine participants attended the workshop. The satisfaction questionnaire demonstrated a 4.7 mean global value. The inter-reader Kappa reliability coefficient was moderate for the plantar fascia (0.47), Achilles tendon (0.47), and distal patellar tendons (0.50) and good for the proximal patellar tendon (0.63). The whole group means comparing to teachers' consensus were as follows: (a) plantar fascia: Se, 73.2%; Sp, 87.7%; CC, 83.3%; (b) Achilles: Se, 66.9%; Sp, 85.0%; CC, 79.5%; (c) distal patellar tendon: Se, 74.6%; Sp, 85.3%; CC, 82.1%; and (d) proximal patellar tendon: Se, 82.2%; Sp, 90.6%; CC, 88%. The proposed learning method seemed to be simple, easily performed, effective and well accepted by the target audience.

  11. Simulators for training in ultrasound guided procedures.

    PubMed

    Farjad Sultan, Syed; Shorten, George; Iohom, Gabrielle

    2013-06-01

    The four major categories of skill sets associated with proficiency in ultrasound guided regional anaesthesia are 1) understanding device operations, 2) image optimization, 3) image interpretation and 4) visualization of needle insertion and injection of the local anesthetic solution. Of these, visualization of needle insertion and injection of local anaesthetic solution can be practiced using simulators and phantoms. This survey of existing simulators summarizes advantages and disadvantages of each. Current deficits pertain to the validation process.

  12. Ultrasound in regional anaesthesia.

    PubMed

    Griffin, J; Nicholls, B

    2010-04-01

    Ultrasound guidance is rapidly becoming the gold standard for regional anaesthesia. There is an ever growing weight of evidence, matched with improving technology, to show that the use of ultrasound has significant benefits over conventional techniques, such as nerve stimulation and loss of resistance. The improved safety and efficacy that ultrasound brings to regional anaesthesia will help promote its use and realise the benefits that regional anaesthesia has over general anaesthesia, such as decreased morbidity and mortality, superior postoperative analgesia, cost-effectiveness, decreased postoperative complications and an improved postoperative course. In this review we consider the evidence behind the improved safety and efficacy of ultrasound-guided regional anaesthesia, before discussing its use in pain medicine, paediatrics and in the facilitation of neuraxial blockade. The Achilles' heel of ultrasound-guided regional anaesthesia is that anaesthetists are far more familiar with providing general anaesthesia, which in most cases requires skills that are achieved faster and more reliably. To this ends we go on to provide practical advice on ultrasound-guided techniques and the introduction of ultrasound into a department.

  13. Design of an ergonomic ultrasound system: accommodation of user anthropometrics.

    PubMed

    Park, Sung; Yim, Jinho; Lee, Goeun

    2012-01-01

    Long-term use of medical imaging devices requires significant improvements to the user experience. One factor that impact upon such experience is whether the device is ergonomically built, ecologically designed, and leverages the current medical practice. In this research, we took a holistic and systematic approach to design an effective and biomechanically-fit ultrasound system. Research methods from behavior science (e.g., contextual inquiry, pseudo experiments) had been adopted to involve the users (sonographers) early in the design process. The end results - product design guideline for a cart type ultrasound system and control panel layout - were reviewed by the users and adjusted so that the design is within the range of an acceptable learning curve while maintaining innovativeness, a differentiated value over competitor's ultrasound devices.

  14. Therapeutic aspects of endoscopic ultrasound

    NASA Astrophysics Data System (ADS)

    Woodward, Timothy A.

    1999-06-01

    Endoscopic ultrasound (EUS) is a technology that had been used primarily as a passive imaging modality. Recent advances have enabled us to move beyond the use of EUS solely as a staging tool to an interventional device. Current studies suggest that interventional applications of EUS will allow for minimally invasive assessment and therapies in a cost-effective manner. Endoscopic ultrasound with fine needle aspiration (EUS-FNA) has been demonstrated to be a technically feasible, relatively safe method of obtaining cytologic specimens. The clinical utility of EUS- FNA appears to be greatest in the diagnosis and staging of pancreatic cancer and in the nodal staging of gastrointestinal and pulmonary malignancies. In addition, EUS-FNA has demonstrated utility in the sampling pleural and ascitic fluid not generally appreciated or assessable to standard interventions. Interventional applications of EUS include EUS-guided pseudocyst drainage, EUS-guided injection of botulinum toxin in the treatment of achalasia, and EUS- guided celiac plexus neurolysis in the treatment of pancreatic cancer pain. Finally, EUS-guided fine-needle installation is being evaluated, in conjunction with recent bimolecular treatment modalities, as a delivery system in the treatment of certain gastrointestinal tumors.

  15. Wireless ultrasound-powered biotelemetry for implants.

    PubMed

    Towe, Bruce C; Larson, Patrick J; Gulick, Daniel W

    2009-01-01

    A miniature piezoelectric receiver coupled to a diode is evaluated as a simple device for wireless transmission of bioelectric events to the body surface. The device converts the energy of a surface-applied ultrasound beam to a high frequency carrier current in solution. Bioelectrical currents near the implant modulate the carrier amplitude, and this signal is remotely detected and demodulated to recover the biopotential waveform. This technique achieves millivolt sensitivity in saline tank tests, and further attention to system design is expected to improve sensitivity.

  16. Ultrasound Contrast Agents

    NASA Astrophysics Data System (ADS)

    Cachard, Christian; Basset, Olivier

    While the use of contrast agents in other imaging modalities (X ray, MRI, PET, …) has been routinely accepted for many years, the development and commercialization of contrast agents designed specifically for ultrasound imaging has occurred only very recently. As in the other imaging modalities, the injection of contrast agents during an ultrasound examination is intended to facilitate the detection and diagnosis of specific pathologies. Contrast agents efficiency is based on the backscattering of ultrasound by microbubbles. These microparticules are intravenously injected in the blood flow. After an introduction and generalities on ultrasound contrast agents (UCA) the microbubble physics in an acoustic field will be developed. Second, physics characteristics of contrast agents will be compared (bubbles with or without shell, gas nature, size distribution). Influence of acoustic pressure on the behaviour of the microparticules (linear, non linear and destruction) will be discussed. Finally, a review of specific imaging adapted to contrast agent properties as harmonic imaging, pulse inversion imaging will be presented.

  17. [Basics of emergency ultrasound].

    PubMed

    Schellhaas, S; Breitkreutz, R

    2012-09-05

    Focused ultrasound is a key methodology of critical care medicine. By referencing few ultrasound differential diagnosis, it is possible to identifying in real-time the reason of the critical state of a patient. Therefore typical focused ultrasound protocols were developed. The well known Focused Assessment with Sonography for trauma (FAST) was incorporated into the Advanced Trauma Life Support (ATLS) for shock room. Focused echocardiographic evaluation in life support (FEEL) has been designed to be conformed with the universal Advanced Life Support (ALS) algorithm and to identify treatable conditions such as acute right ventricular pressure overload in pulmonary embolism, hypovolemia, or pericardial effusion/tamponade. Using lung ultrasound one can differentiate pulmonary edema, pleural effusion or pneumothorax.

  18. Venous Ultrasound (Extremities)

    MedlinePlus

    ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...

  19. Carotid Ultrasound Imaging

    MedlinePlus

    ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...

  20. Ultrasound in pregnancy (image)

    MedlinePlus

    The ultrasound has become a standard procedure used during pregnancy. It can demonstrate fetal growth and can detect increasing ... abnormalities, hydrocephalus, anencephaly, club feet, and other ... does not produce ionizing radiation and is considered ...

  1. What is ultrasound?

    PubMed

    Leighton, Timothy G

    2007-01-01

    This paper is based on material presented at the start of a Health Protection Agency meeting on ultrasound and infrasound. In answering the question 'what is ultrasound?', it shows that the simple description of a wave which transports mechanical energy through the local vibration of particles at frequencies of 20 kHz or more, with no net transport of the particles themselves, can in every respect be misleading or even incorrect. To explain the complexities responsible for this, the description of ultrasound is first built up from the fundamental properties of these local particle vibrations. This progresses through an exposition of the characteristics of linear waves, in order to explain the propensity for, and properties of, the nonlinear propagation which occurs in many practical ultrasonic fields. Given the Health Protection environment which framed the original presentation, explanation and examples are given of how these complexities affect issues of practical importance. These issues include the measurement and description of fields and exposures, and the ability of ultrasound to affect tissue (through microstreaming, streaming, cavitation, heating, etc.). It is noted that there are two very distinct regimes, in terms of wave characteristics and potential for bioeffect. The first concerns the use of ultrasound in liquids/solids, for measurement or material processing. For biomedical applications (where these two processes are termed diagnosis and therapy, respectively), the issue of hazard has been studied in depth, although this has not been done to such a degree for industrial uses of ultrasound in liquids/solids (sonar, non-destructive testing, ultrasonic processing etc.). However, in the second regime, that of the use of ultrasound in air, although the waves in question tend to be of much lower intensities than those used in liquids/solids, there is a greater mismatch between the extent to which hazard has been studied, and the growth in commercial

  2. [Ultrasound findings in rhabdomyolysis].

    PubMed

    Carrillo-Esper, Raúl; Galván-Talamantes, Yazmin; Meza-Ayala, Cynthia Margarita; Cruz-Santana, Julio Alberto; Bonilla-Reséndiz, Luis Ignacio

    Rhabdomyolysis is defined as skeletal muscle necrosis. Ultrasound assessment has recently become a useful tool for the diagnosis and monitoring of muscle diseases, including rhabdomyolysis. A case is presented on the ultrasound findings in a patient with rhabdomyolysis. To highlight the importance of ultrasound as an essential part in the diagnosis in rhabdomyolysis, to describe the ultrasound findings, and review the literature. A 30 year-old with post-traumatic rhabdomyolysis of both thighs. Ultrasound was performed using a Philips Sparq model with a high-frequency linear transducer (5-10MHz), in low-dimensional scanning mode (2D), in longitudinal and transverse sections at the level of both thighs. The images obtained showed disorganisation of the orientation of the muscle fibres, ground glass image, thickening of the muscular fascia, and the presence of anechoic areas. Ultrasound is a useful tool in the evaluation of rhabdomyolysis. Copyright © 2015 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  3. Focused ultrasound in ophthalmology

    PubMed Central

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. PMID:27757007

  4. Focused ultrasound in ophthalmology.

    PubMed

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities.

  5. A 100-200 MHz ultrasound biomicroscope.

    PubMed

    Knspik, D A; Starkoski, B; Pavlin, C J; Foster, F S

    2000-01-01

    The development of higher frequency ultrasound imaging systems affords a unique opportunity to visualize living tissue at the microscopic level. This work was undertaken to assess the potential of ultrasound imaging in vivo using the 100-200 MHz range. Spherically focused lithium niobate transducers were fabricated. The properties of a 200 MHz center frequency device are described in detail. This transducer showed good sensitivity with an insertion loss of 18 dB at 200 MHz. Resolution of 14 /spl mu/m in the lateral direction and 12 /spl mu/m in the axial direction was achieved with f/1.14 focusing. A linear mechanical scan system and a scan converter were used to generate B-scan images at a frame rate up to 12 frames per second. System performance in B-mode imaging is limited by frequency dependent attenuation in tissues. An alternative technique, zone-focus image collection, was investigated to extend depth of field. Images of coronary arteries, the eye, and skin are presented along with some preliminary correlations with histology. These results demonstrate the feasibility of ultrasound biomicroscopy In the 100-200 MHz range. Further development of ultrasound backscatter imaging at frequencies up to and above 200 MHz will contribute valuable information about tissue microstructure.

  6. Virtual Ultrasound Guidance for Inexperienced Operators

    NASA Technical Reports Server (NTRS)

    Caine, Timothy; Martin, David

    2012-01-01

    Medical ultrasound or echocardiographic studies are highly operator-dependent and generally require lengthy training and internship to perfect. To obtain quality echocardiographic images in remote environments, such as on-orbit, remote guidance of studies has been employed. This technique involves minimal training for the user, coupled with remote guidance from an expert. When real-time communication or expert guidance is not available, a more autonomous system of guiding an inexperienced operator through an ultrasound study is needed. One example would be missions beyond low Earth orbit in which the time delay inherent with communication will make remote guidance impractical. The Virtual Ultrasound Guidance system is a combination of hardware and software. The hardware portion includes, but is not limited to, video glasses that allow hands-free, full-screen viewing. The glasses also allow the operator a substantial field of view below the glasses to view and operate the ultrasound system. The software is a comprehensive video program designed to guide an inexperienced operator through a detailed ultrasound or echocardiographic study without extensive training or guidance from the ground. The program contains a detailed description using video and audio to demonstrate equipment controls, ergonomics of scanning, study protocol, and scanning guidance, including recovery from sub-optimal images. The components used in the initial validation of the system include an Apple iPod Classic third-generation as the video source, and Myvue video glasses. Initially, the program prompts the operator to power-up the ultrasound and position the patient. The operator would put on the video glasses and attach them to the video source. After turning on both devices and the ultrasound system, the audio-video guidance would then instruct on patient positioning and scanning techniques. A detailed scanning protocol follows with descriptions and reference video of each view along with

  7. Focused Ultrasound Surgery for Uterine Fibroids

    MedlinePlus

    ... ultrasound surgery, your doctor may perform a pelvic magnetic resonance imaging (MRI) scan before treatment. Focused ultrasound surgery — also called magnetic resonance-guided focused ultrasound surgery or focused ultrasound ...

  8. Co-registered photoacoustic, thermoacoustic, and ultrasound mouse imaging

    NASA Astrophysics Data System (ADS)

    Reinecke, Daniel R.; Kruger, Robert A.; Lam, Richard B.; DelRio, Stephen P.

    2010-02-01

    We have constructed and tested a prototype test bed that allows us to form 3D photoacoustic CT images using near-infrared (NIR) irradiation (700 - 900 nm), 3D thermoacoustic CT images using microwave irradiation (434 MHz), and 3D ultrasound images from a commercial ultrasound scanner. The device utilizes a vertically oriented, curved array to capture the photoacoustic and thermoacoustic data. In addition, an 8-MHz linear array fixed in a horizontal position provides the ultrasound data. The photoacoustic and thermoacoustic data sets are co-registered exactly because they use the same detector. The ultrasound data set requires only simple corrections to co-register its images. The photoacoustic, thermoacoustic, and ultrasound images of mouse anatomy reveal complementary anatomic information as they exploit different contrast mechanisms. The thermoacoustic images differentiate between muscle, fat and bone. The photoacoustic images reveal the hemoglobin distribution, which is localized predominantly in the vascular space. The ultrasound images provide detailed information about the bony structures. Superposition of all three images onto a co-registered hybrid image shows the potential of a trimodal photoacoustic-thermoacoustic-ultrasound small-animal imaging system.

  9. Rodent wearable ultrasound system for wireless neural recording.

    PubMed

    Piech, David K; Kay, Joshua E; Boser, Bernhard E; Maharbiz, Michel M

    2017-07-01

    Advances in minimally-invasive, distributed biological interface nodes enable possibilities for networks of sensors and actuators to connect the brain with external devices. The recent development of the neural dust sensor mote has shown that utilizing ultrasound backscatter communication enables untethered sub-mm neural recording devices. These implanted sensor motes require a wearable external ultrasound interrogation device to enable in-vivo, freely-behaving neural interface experiments. However, minimizing the complexity and size of the implanted sensors shifts the power and processing burden to the external interrogator. In this paper, we present an ultrasound backscatter interrogator that supports real-time backscatter processing in a rodent-wearable, completely wireless device. We demonstrate a generic digital encoding scheme which is intended for transmitting neural information. The system integrates a front-end ultrasonic interface ASIC with off-the-shelf components to enable a highly compact ultrasound interrogation device intended for rodent neural interface experiments but applicable to other model systems.

  10. Portable bladder ultrasound: an evidence-based analysis.

    PubMed

    2006-01-01

    retention, requiring intermittent catheterization, whereas a PVR urine volume of 100 mL to 150 mL or less is generally considered an acceptable result of bladder training. Urinary retention has been associated with poor outcomes including UTI, bladder overdistension, and higher hospital mortality rates. The standard method of determining PVR urine volumes is intermittent catheterization, which is associated with increased risk of UTI, urethral trauma and discomfort. Portable bladder ultrasound products are transportable ultrasound devices that use automated technology to register bladder volume digitally, including PVR volume, and provide three-dimensional images of the bladder. The main clinical use of portable bladder ultrasound is as a diagnostic aid. Health care professionals (primarily nurses) administer the device to measure PVR volume and prevent unnecessary catheterization. An adjunctive use of the bladder ultrasound device is to visualize the placement and removal of catheters. Also, portable bladder ultrasound products may improve the diagnosis and differentiation of urological problems and their management and treatment, including the establishment of voiding schedules, study of bladder biofeedback, fewer UTIs, and monitoring of potential urinary incontinence after surgery or trauma. To determine the effectiveness and clinical utility of portable bladder ultrasound as reported in the published literature, the Medical Advisory Secretariat used its standard search strategy to retrieve international health technology assessments and English-language journal articles from selected databases. Nonsystematic reviews, nonhuman studies, case reports, letters, editorials, and comments were excluded. Of the 4 included studies that examined the clinical utility of portable bladder ultrasound in the elderly population, all found the device to be acceptable. One study reported that the device underestimated catheterized bladder volume In patients with urology problems, 2 of

  11. Acoustic bubble sorting for ultrasound contrast agent enrichment.

    PubMed

    Segers, Tim; Versluis, Michel

    2014-05-21

    An ultrasound contrast agent (UCA) suspension contains encapsulated microbubbles with a wide size distribution, with radii ranging from 1 to 10 μm. Medical transducers typically operate at a single frequency, therefore only a small selection of bubbles will resonate to the driving ultrasound pulse. Thus, the sensitivity can be improved by narrowing down the size distribution. Here, we present a simple lab-on-a-chip method to sort the population of microbubbles on-chip using a traveling ultrasound wave. First, we explore the physical parameter space of acoustic bubble sorting using well-defined bubble sizes formed in a flow-focusing device, then we demonstrate successful acoustic sorting of a commercial UCA. This novel sorting strategy may lead to an overall improvement of the sensitivity of contrast ultrasound by more than 10 dB.

  12. Portable ultrasound in disaster triage: a focused review.

    PubMed

    Wydo, S M; Seamon, M J; Melanson, S W; Thomas, P; Bahner, D P; Stawicki, S P

    2016-04-01

    Ultrasound technology has become ubiquitous in modern medicine. Its applications span the assessment of life-threatening trauma or hemodynamic conditions, to elective procedures such as image-guided peripheral nerve blocks. Sonographers have utilized ultrasound techniques in the pre-hospital setting, emergency departments, operating rooms, intensive care units, outpatient clinics, as well as during mass casualty and disaster management. Currently available ultrasound devices are more affordable, portable, and feature user-friendly interfaces, making them well suited for use in the demanding situation of a mass casualty incident (MCI) or disaster triage. We have reviewed the existing literature regarding the application of sonology in MCI and disaster scenarios, focusing on the most promising and practical ultrasound-based paradigms applicable in these settings.

  13. Basic physics of ultrasound imaging.

    PubMed

    Aldrich, John E

    2007-05-01

    The appearance of ultrasound images depends critically on the physical interactions of sound with the tissues in the body. The basic principles of ultrasound imaging and the physical reasons for many common artifacts are described.

  14. Ultrasound of the Thyroid Gland

    MedlinePlus

    ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... has substantially grown over time Because ultrasound provides real-time images, images that are renewed continuously, it also ...

  15. Endoscopic ultrasound-guided biliary drainage

    PubMed Central

    Chavalitdhamrong, Disaya; Draganov, Peter V

    2012-01-01

    Endoscopic ultrasound (EUS)-guided biliary drainage has emerged as a minimally invasive alternative to percutaneous and surgical interventions for patients with biliary obstruction who had failed endoscopic retrograde cholangiopancreatography (ERCP). EUS-guided biliary drainage has become feasible due to the development of large channel curvilinear therapeutic echo-endoscopes and the use of real-time ultrasound and fluoroscopy imaging in addition to standard ERCP devices and techniques. EUS-guided biliary drainage is an attractive option because of its minimally invasive, single step procedure which provides internal biliary decompression. Multiple investigators have reported high success and low complication rates. Unfortunately, high quality prospective data are still lacking. We provide detailed review of the use of EUS for biliary drainage from the perspective of practicing endoscopists with specific focus on the technical aspects of the procedure. PMID:22363114

  16. Mechanics of ultrasound elastography

    PubMed Central

    Li, Guo-Yang

    2017-01-01

    Ultrasound elastography enables in vivo measurement of the mechanical properties of living soft tissues in a non-destructive and non-invasive manner and has attracted considerable interest for clinical use in recent years. Continuum mechanics plays an essential role in understanding and improving ultrasound-based elastography methods and is the main focus of this review. In particular, the mechanics theories involved in both static and dynamic elastography methods are surveyed. They may help understand the challenges in and opportunities for the practical applications of various ultrasound elastography methods to characterize the linear elastic, viscoelastic, anisotropic elastic and hyperelastic properties of both bulk and thin-walled soft materials, especially the in vivo characterization of biological soft tissues. PMID:28413350

  17. Ultrasound in space

    NASA Technical Reports Server (NTRS)

    Martin, David S.; South, Donna A.; Garcia, Kathleen M.; Arbeille, Philippe

    2003-01-01

    Physiology of the human body in space has been a major concern for space-faring nations since the beginning of the space era. Ultrasound (US) is one of the most cost effective and versatile forms of medical imaging. As such, its use in characterizing microgravity-induced changes in physiology is being realized. In addition to the use of US in related ground-based studies, equipment has also been modified to fly in space. This involves alteration to handle the stresses of launch and different power and cooling requirements. Study protocols also have been altered to accommodate the microgravity environment. Ultrasound studies to date have shown a pattern of adaptation to microgravity that includes changes in cardiac chamber sizes and vertebral spacing. Ultrasound has been and will continue to be an important component in the investigation of physiological and, possibly, pathologic changes occurring in space or as a result of spaceflight.

  18. Combined Ultrasound and MR Imaging to Guide Focused Ultrasound Therapies in the Brain

    PubMed Central

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-01-01

    Purpose Several emerging therapies with potential for use in the brain harness effects produced by acoustic cavitation – the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength, and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. Materials and Methods We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. Results The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. Conclusion While preliminary, these data clearly demonstrate, for the first time, that is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate it will also prove to

  19. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    NASA Astrophysics Data System (ADS)

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-07-01

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that will

  20. Focused Ultrasound Surgery in Oncology: Overview and Principles

    PubMed Central

    McDannold, Nathan J.; Hynynen, Kullervo; Jolesz, Ferenc A.

    2011-01-01

    Focused ultrasound surgery (FUS) is a noninvasive image-guided therapy and an alternative to surgical interventions. It presents an opportunity to revolutionize cancer therapy and to affect or change drug delivery of therapeutic agents in new focally targeted ways. In this article the background, principles, technical devices, and clinical cancer applications of image-guided FUS are reviewed. © RSNA, 2011 PMID:21436096

  1. Apprenticeship as a Mode of Learning and Model of Education

    ERIC Educational Resources Information Center

    Billett, Stephen

    2016-01-01

    Purpose: Apprenticeships are now usually seen as a model of education focused on occupational preparation, albeit manifested in different ways across nation states. However, throughout human history, the majority of occupational preparation has been premised upon apprenticeship as a mode of learning. That is, a preparation arising mainly through…

  2. Students' Perceptions of Academic Writing as a Mode of Communication

    ERIC Educational Resources Information Center

    Majidi, Mojdeh

    2005-01-01

    Adopting the social theory of writing and new rhetorical genre studies (Bakhtin, 1986; Dias, Freedman, Medway, & Pare, 1999; Freedman & Medway, 1994; Miller, 1984/1994) as the theoretical framework in this study I made an attempt to explore graduate students' perceptions of academic writing as a mode of communication in academia. I interviewed…

  3. Human Factors Engineering and testing for a wearable, long duration ultrasound system self-applied by an end user.

    PubMed

    Taggart, Rebecca; Langer, Matthew D; Lewis, George K

    2014-01-01

    One of the major challenges in the design of a new class of medical device is ensuring that the device will have a safe and effective user interface for the intended users. Human Factors Engineering addresses these concerns through direct study of how a user interacts with newly designed devices with unique features. In this study, a novel long duration, low intensity therapeutic ultrasound device is tested by 20 end users representative of the intended user population. Over 90% of users were able to operate the device successfully. The therapeutic ultrasound device was found to be reasonably safe and effective for the intended users, uses, and use environments.

  4. Biological effects of low frequency high intensity ultrasound application on ex vivo human adipose tissue.

    PubMed

    Palumbo, P; Cinque, B; Miconi, G; La Torre, C; Zoccali, G; Vrentzos, N; Vitale, A R; Leocata, P; Lombardi, D; Lorenzo, C; D'Angelo, B; Macchiarelli, G; Cimini, A; Cifone, M G; Giuliani, M

    2011-01-01

    In the present work the effects of a new low frequency, high intensity ultrasound technology on human adipose tissue ex vivo were studied. In particular, we investigated the effects of both external and surgical ultrasound-irradiation (10 min) by evaluating, other than sample weight loss and fat release, also histological architecture alteration as well apoptosis induction. The influence of saline buffer tissue-infiltration on the effects of ultrasound irradiation was also examined. The results suggest that, in our experimental conditions, both transcutaneous and surgical ultrasound exposure caused a significant weight loss and fat release. This effect was more relevant when the ultrasound intensity was set at 100 % (~2.5 W/cm², for external device; ~19-21 W/cm2, for surgical device) compared to 70 % (~1.8 W/cm² for external device; ~13-14 W/cm2 for surgical device). Of note, the effectiveness of ultrasound was much higher when the tissue samples were previously infiltrated with saline buffer, in accordance with the knowledge that ultrasonic waves in aqueous solution better propagate with a consequently more efficient cavitation process. Moreover, the overall effects of ultrasound irradiation did not appear immediately after treatment but persisted over time, being significantly more relevant at 18 h from the end of ultrasound irradiation. Evaluation of histological characteristics of ultrasound-irradiated samples showed a clear alteration of adipose tissue architecture as well a prominent destruction of collagen fibers which were dependent on ultrasound intensity and most relevant in saline buffer-infiltrated samples. The structural changes of collagen bundles present between the lobules of fat cells were confirmed through scanning electron microscopy (SEM) which clearly demonstrated how ultrasound exposure induced a drastic reduction in the compactness of the adipose connective tissue and an irregular arrangement of the fibers with a consequent alteration in

  5. Doppler ultrasound monitoring technology.

    PubMed

    Docker, M F

    1993-03-01

    Developments in the signal processing of Doppler ultrasound used for the detection of fetal heart rate (FHR) have improved the operation of cardiotocographs. These developments are reviewed and the advantages and disadvantages of the various Doppler and signal processing methods are compared.

  6. [Ultrasound guided percutaneous nephrolithotripsy].

    PubMed

    Guliev, B G

    2014-01-01

    The study was aimed to the evaluation of the effectiveness and results of ultrasound guided percutaneous nephrolithotripsy (PNL) for the treatment of patients with large stones in renal pelvis. The results of PNL in 138 patients who underwent surgery for kidney stones from 2011 to 2013 were analyzed. Seventy patients (Group 1) underwent surgery with combined ultrasound and radiological guidance, and 68 patients (Group 2)--only with ultrasound guidance. The study included patients with large renal pelvic stones larger than 2.2 cm, requiring the formation of a single laparoscopic approach. Using the comparative analysis, the timing of surgery, the number of intra- and postoperative complications, blood loss and length of stay were evaluated. Percutaneous access was successfully performed in all patients. Postoperative complications (exacerbation of chronic pyelonephritis, gross hematuria) were observed in 14.3% of patients in Group 1 and in 14.7% of patients in Group 2. Bleeding requiring blood transfusion, and injuries of adjacent organs were not registered. Efficacy of PNL in the Group 1 was 95.7%; 3 (4.3%) patients required additional interventions. In Group 2, the effectiveness of PNL was 94.1%, 4 (5.9%) patients additionally underwent extracorporeal lithotripsy. There were no significant differences in the effectiveness of PNL, the volume of blood loss and duration of hospitalization. Ultrasound guided PNL can be performed in large pelvic stones and sufficient expansion of renal cavities, thus reducing radiation exposure of patients and medical staff.

  7. Ultrasound internal tattooing.

    PubMed

    Couture, Olivier; Faivre, Magalie; Pannacci, Nicolas; Babataheri, Avin; Servois, Vincent; Tabeling, Patrick; Tanter, Mickael

    2011-02-01

    The ability of remotely tagging tissues in a controlled and three-dimensional manner during preoperative imaging could greatly help surgeons to identify targets for resection. The authors' objective is to selectively and noninvasively deposit markers under image guidance for such internal tattooing. This study describes the production of new ultrasound-inducible droplets carrying large payloads of fluorescent markers and the in vivo proof of concept of their remote and controlled deposition via focused ultrasound. The droplets are monodispersed multiple emulsions produced in a microfluidic system, consisting of aqueous fluorescein in perfluorocarbon in water. Their conversion (either by vaporization or cavitation) is performed remotely using a clinical ultrasonic imaging probe. When submitted to 5 MHz imaging pulses, the droplets vaporize in vitro at 1.4 MPa peak-negative pressure and eject their content. After several seconds, a brightly fluorescent spot (0.5 mm diameter) is observed at the focus of the transducer. Experiments in the chorioallantoique membrane of chicken eggs and chicken embryo demonstrate that the spot is stable and is easily seen by naked eye. These ultrasound-inducible multiple emulsions could be used to deliver large amounts of contrast agents, chemotherapy, and genetic materials in vivo using a conventional ultrasound scanner.

  8. ICV Echo Ultrasound Scan

    NASA Image and Video Library

    2012-12-31

    View of Integrated Cardiovascular (ICV) Echo Ultrasound Scan,in the Columbus module. ICV aims to quantify the extent,time course and clinical significance of cardiac atrophy (decrease in the size of the heart muscle) in space. Photo was taken during Expedition 34.

  9. Ultrasound and the IRB

    ERIC Educational Resources Information Center

    Epstein, Melissa A.

    2005-01-01

    The purpose of this paper is to assist researchers in writing their research protocols and subject consent forms so that both the Institutional Review Board (IRB) and subjects are assured of the minimal risk associated with diagnostic B-scan ultrasound as it is used in speech research. There have been numerous epidemiological studies on fetal…

  10. Musculoskeletal ultrasound in rheumatology in Korea: targeted ultrasound initiative survey.

    PubMed

    Kang, Taeyoung; Wakefield, Richard J; Emery, Paul

    2016-04-01

    In collaboration with the Targeted Ultrasound Initiative (TUI), to conduct the first study in Korea to investigate current practices in ultrasound use among Korean rheumatologists. We translated the TUI Global Survey into Korean and added questions to better understand the specific challenges facing rheumatologists in Korea. To target as many rheumatologists in Korea as possible, we created an on-line version of this survey, which was conducted from March to April 2013. Rheumatologists are in charge of ultrasound in many Korean hospitals. Rheumatologists in hospitals and private clinics use ultrasound to examine between one and five patients daily; they use ultrasound for diagnosis more than monitoring and receive compensation of about US$30-50 per patient. There are marked differences in the rates of ultrasound usage between rheumatologists who work in private practice compared with tertiary hospitals. Korean rheumatologists not currently using ultrasound in their practice appear eager to do so. This survey provides important insights into the current status of ultrasound in rheumatology in Korea and highlights several priorities; specifically, greater provision of formal training, standardization of reporting and accrual of greater experience among ultrasound users. If these needs are addressed, all rheumatology departments in Korea are likely to use ultrasound or have access to it in the future. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  11. Optical micromachined ultrasound transducers (OMUT)--a new approach for high-frequency transducers.

    PubMed

    Tadayon, Mohammad Amin; Ashkenazi, Shai

    2013-09-01

    The sensitivity and reliability of piezoelectric ultrasound transducers severely degrade in applications requiring high frequency and small element size. Alternative technologies such as capacitive micromachined ultrasound transducers (CMUT) and optical sensing and generation of ultrasound have been proposed and studied for several decades. In this paper, we present a new type of device based on optical micromachined ultrasound transducer (OMUT) technology. OMUTs rely on microfabrication techniques to construct micrometerscale air cavities capped by an elastic membrane. A modified photoresist bonding process has been developed to facilitate the fabrication of these devices. We will describe the design, fabrication, and testing of prototype OMUT devices which implement a receive-only function. Future design modifications are proposed for incorporating complete transmit¿receive functionality in a single element.

  12. Ultrasound measurement apparatus for liquids characterization

    NASA Astrophysics Data System (ADS)

    Vieira, R. C.; Costa-Felix, R. P. B.

    2018-03-01

    The present paper discloses the validation of an experimental ultrasound apparatus and method for liquids characterization. The research aims to stablish a simple, reliable, accurate and portable way to identify contaminants in hydrocarbon substances, such as adulteration in gasoline. The results depicted so far demonstrated a general uncertainty of speed of sound assessment less than 10 m s-1, and distance accuracy of less than 1%. Those figures are good enough for an in-site device to evaluate possible contamination of fuels or other liquids.

  13. Signal processing in ultrasound. [for diagnostic medicine

    NASA Technical Reports Server (NTRS)

    Le Croissette, D. H.; Gammell, P. M.

    1978-01-01

    Signal is the term used to denote the characteristic in the time or frequency domain of the probing energy of the system. Processing of this signal in diagnostic ultrasound occurs as the signal travels through the ultrasonic and electrical sections of the apparatus. The paper discusses current signal processing methods, postreception processing, display devices, real-time imaging, and quantitative measurements in noninvasive cardiology. The possibility of using deconvolution in a single transducer system is examined, and some future developments using digital techniques are outlined.

  14. Ultrasound in twin pregnancies.

    PubMed

    Morin, Lucie; Lim, Kenneth

    2011-06-01

    To review the literature with respect to the use of diagnostic ultrasound in the management of twin pregnancies. To make recommendations for the best use of ultrasound in twin pregnancies. Reduction in perinatal mortality and morbidity and short- and long-term neonatal morbidity in twin pregnancies. Optimization of ultrasound use in twin pregnancies. Published literature was retrieved through searches of PubMed and the Cochrane Library in 2008 and 2009 using appropriate controlled vocabulary (e.g., twin, ultrasound, cervix, prematurity) and key words (e.g., acardiac, twin, reversed arterial perfusion, twin-to-twin transfusion syndrome, amniotic fluid). Results were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies. There were no date restrictions. Studies were restricted to those with available English or French abstracts or text. Searches were updated on a regular basis and incorporated into the guideline to September 2009. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The evidence collected was reviewed by the Diagnostic Imaging Committee of the Society of Obstetricians and Gynaecologists of Canada, with input from members of the Maternal Fetal Medicine Committee and the Genetics Committee of the SOGC. The recommendations were made according to the guidelines developed by The Canadian Task Force on Preventive Health Care (Table 1). The benefit expected from this guideline is facilitation and optimization of the use of ultrasound in twin pregnancy. SUMMARY STATEMENTS: 1. There are insufficient data to make recommendations on repeat anatomical assessments in twin pregnancies. Therefore, a complete anatomical survey at each scan may not be needed following a complete

  15. Ultrasound characterization of middle ear effusion.

    PubMed

    Seth, Rahul; Discolo, Christopher M; Palczewska, Grazyna M; Lewandowski, Jan J; Krakovitz, Paul R

    2013-01-01

    To further enhance and assess the ability to characterize middle ear effusion (MEE) using non-invasive ultrasound technology. This is a prospective unblinded comparison study. Fifty-six children between the ages of 6 months and 17 years scheduled to undergo bilateral myringotomy with pressure equalization tube placement were enrolled. With the child anesthetized, the probe was placed into the external ear canal after sterile water was inserted. Ultrasound recordings of middle ear contents were analyzed by computer algorithm. Middle ear fluid was collected during myringotomy and analyzed for bacterial culture and viscosity. Ultrasound waveforms yielded a computer algorithm interpretation of middle ear contents in 66% of ears tested. When a result was obtained, the sensitivity and specificity for successfully characterizing middle ear fluid content as either void of fluid, thick fluid (mucoid), or thin fluid (serous or purulent) were at least 94%. Mucoid effusions had higher measured viscosity values (P=.002). Viscosity measures were compared to culture result, and those with low viscosity (thin consistency) had a higher likelihood of having a positive culture (P=.048). The device sensitivity and specificity for fluid detection were 94% or greater among interpretable waveforms (66% of those tested). Although this technology provides important information of the middle ear effusion presence and characteristic, further technological improvements are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Ultrasound Characterization of Middle Ear Effusion

    PubMed Central

    Seth, Rahul; Discolo, Christopher M; Palczewska, Grazyna M; Lewandowski, Jan J; Krakovitz, Paul R

    2012-01-01

    Purpose To further enhance and assess the ability to characterize middle ear effusion (MEE) using non-invasive ultrasound technology. Materials and Methods This is a prospective unblinded comparison study. Fifty-six children between the ages of 6 months and 17 years scheduled to undergo bilateral myringotomy with pressure equalization tube placement were enrolled. With the child anesthetized, the probe was placed into the external ear canal after sterile water was inserted. Ultrasound recordings of middle ear contents were analyzed by computer algorithm. Middle ear fluid was collected during myringotomy and analyzed for bacterial culture and viscosity. Results Ultrasound waveforms yielded a computer algorithm interpretation of middle ear contents in 66% of ears tested. When a result was obtained, the sensitivity and specificity for successfully characterizing middle ear fluid content as either void of fluid, thick fluid (mucoid), or thin fluid (serous or purulent) was at least 94%. Mucoid effusions had higher measured viscosity values (P=0.002). Viscosity measures were compared to culture result, and those with low viscosity (thin consistency) had a higher likelihood of having a positive culture (P=0.048). Conclusion The device sensitivity and specificity for fluid detection was 94% or greater among interpretable waveforms (66% of those tested). Although this technology provides important information of the middle ear effusion presence and characteristic, further technological improvements are needed. PMID:23084430

  17. Ultrasound Assessment of Human Meniscus.

    PubMed

    Viren, Tuomas; Honkanen, Juuso T; Danso, Elvis K; Rieppo, Lassi; Korhonen, Rami K; Töyräs, Juha

    2017-09-01

    The aim of the present study was to evaluate the applicability of ultrasound imaging to quantitative assessment of human meniscus in vitro. Meniscus samples (n = 26) were harvested from 13 knee joints of non-arthritic human cadavers. Subsequently, three locations (anterior, center and posterior) from each meniscus were imaged with two ultrasound transducers (frequencies 9 and 40 MHz), and quantitative ultrasound parameters were determined. Furthermore, partial-least-squares regression analysis was applied for ultrasound signal to determine the relations between ultrasound scattering and meniscus integrity. Significant correlations between measured and predicted meniscus compositions and mechanical properties were obtained (R 2  = 0.38-0.69, p < 0.05). The relationship between conventional ultrasound parameters and integrity of the meniscus was weaker. To conclude, ultrasound imaging exhibited a potential for evaluation of meniscus integrity. Higher ultrasound frequency combined with multivariate analysis of ultrasound backscattering was found to be the most sensitive for evaluation of meniscus integrity. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Simulation and training of ultrasound supported anaesthesia: a low-cost approach

    NASA Astrophysics Data System (ADS)

    Schaaf, T.; Lamontain, M.; Hilpert, J.; Schilling, F.; Tolxdorff, T.

    2010-03-01

    The use of ultrasound imaging technology during techniques of peripheral nerve blockade offers several clinical benefits. Here we report on a new method to educate residents in ultrasound-guided regional anesthesia. The daily challenge for the anesthesiologists is the 3D angle-depending handling of the stimulation needle and the ultrasound probe while watching the 2D ultrasound image on the monitor. Purpose: Our approach describes how a computer-aided simulation and training set for ultrasound-guided regional anesthesia could be built based on wireless low-cost devices and an interactive simulation of a 2D ultrasound image. For training purposes the injection needle and the ultrasound probe are replaced by wireless Bluetooth-connected 3D tracking devices, which are embedded in WII-mote controllers (Nintendo-Brand). In correlation to the tracked 3D positions of the needle and transducer models the visibility and position of the needle should be simulated in the 2D generated ultrasound image. Conclusion: In future, this tracking and visualization software module could be integrated in a more complex training set, where complex injection paths could be trained based on a 3D segmented model and the training results could be part of a curricular e-learning module.

  19. Sonoporation of adherent cells under regulated ultrasound cavitation conditions.

    PubMed

    Muleki Seya, Pauline; Fouqueray, Manuela; Ngo, Jacqueline; Poizat, Adrien; Inserra, Claude; Béra, Jean-Christophe

    2015-04-01

    A sonoporation device dedicated to the adherent cell monolayer has been implemented with a regulation process allowing the real-time monitoring and control of inertial cavitation activity. Use of the cavitation-regulated device revealed first that adherent cell sonoporation efficiency is related to inertial cavitation activity, without inducing additional cell mortality. Reproducibility is enhanced for the highest sonoporation rates (up to 17%); sonoporation efficiency can reach 26% when advantage is taken of the standing wave acoustic configuration by applying a frequency sweep with ultrasound frequency tuned to the modal acoustic modes of the cavity. This device allows sonoporation of adherent and suspended cells, and the use of regulation allows some environmental parameters such as the temperature of the medium to be overcome, resulting in the possibility of cell sonoporation even at ambient temperature. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Point-of-care cardiac ultrasound techniques in the physical examination: better at the bedside.

    PubMed

    Kimura, Bruce J

    2017-07-01

    The development of hand-carried, battery-powered ultrasound devices has created a new practice in ultrasound diagnostic imaging, called 'point-of-care' ultrasound (POCUS). Capitalising on device portability, POCUS is marked by brief and limited ultrasound imaging performed by the physician at the bedside to increase diagnostic accuracy and expediency. The natural evolution of POCUS techniques in general medicine, particularly with pocket-sized devices, may be in the development of a basic ultrasound examination similar to the use of the binaural stethoscope. This paper will specifically review how POCUS improves the limited sensitivity of the current practice of traditional cardiac physical examination by both cardiologists and non-cardiologists. Signs of left ventricular systolic dysfunction, left atrial enlargement, lung congestion and elevated central venous pressures are often missed by physical techniques but can be easily detected by POCUS and have prognostic and treatment implications. Creating a general set of repetitive imaging skills for these entities for application on all patients during routine examination will standardise and reduce heterogeneity in cardiac bedside ultrasound applications, simplify teaching curricula, enhance learning and recollection, and unify competency thresholds and practice. The addition of POCUS to standard physical examination techniques in cardiovascular medicine will result in an ultrasound-augmented cardiac physical examination that reaffirms the value of bedside diagnosis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Clinical ophthalmic ultrasound improvements

    NASA Technical Reports Server (NTRS)

    Garrison, J. B.; Piro, P. A.

    1981-01-01

    The use of digital synthetic aperture techniques to obtain high resolution ultrasound images of eye and orbit was proposed. The parameters of the switched array configuration to reduce data collection time to a few milliseconds to avoid eye motion problems in the eye itself were established. An assessment of the effects of eye motion on the performance of the system was obtained. The principles of synthetic techniques are discussed. Likely applications are considered.

  2. Tissue identification by ultrasound

    NASA Technical Reports Server (NTRS)

    Lecroissette, D. H.; Heyser, R. C.; Gammell, P. M.; Wilson, R. L.

    1978-01-01

    The ultrasonic properties of animal and human soft tissue were measured over the frequency range of 1.5 to 10.0 MHz. The method employed a swept-frequency, coherent technique known as time delay spectrometry. Measurements of attenuation versus frequency on liver, backfat, kidney, pancreas, spleen, breast, and other tissue were made. Considerable attention was paid to tissue handling and in determining the effects of fixing on the attenuation of ultrasound in the tissue.

  3. Ultrasound Imaging Initiative

    DTIC Science & Technology

    2003-01-01

    texture mapping hardware," IEEE Tranactions on Information Technology in Biomedicine, Submitted. [14] C.R. Castro Pareja , J.M. Jagadeesh and R. Shekhar...modulation in real-time three-dimensional sparse synthetic aperture ultrasound imaging systems "* Carlos R. Castro Pareja , Masters of Science, The Ohio...C.R. Castro Pareja , "An architecture for real-time image registration," M.S. Thesis, The Ohio State University, March 2002. 14. C.R. Castro Pareja , R

  4. [Diagnostic ultrasound in pneumothorax].

    PubMed

    Maury, É; Pichereau, C; Bourcier, S; Galbois, A; Lejour, G; Baudel, J-L; Ait-Oufella, H; Guidet, B

    2016-10-01

    For a long time the lung has been regarded as inaccessible to ultrasound. However, recent clinical studies have shown that this organ can be examined by this technique, which appears, in some situations, to be superior to thoracic radiography. The examination does not require special equipment and is possible using a combination of simple qualitative signs: lung sliding, the presence of B lines and the demonstration of the lung point. The lung sliding corresponds to the artefact produced by the movement of the two pleural layers, one against the other. The B lines indicate the presence of an interstitial syndrome. The presence of lung sliding and/or B lines has a negative predictive value of 100% and formally excludes a pneumothorax in the area where the probe has been applied. The presence of the lung point is pathognomonic of pneumothorax but the sensitivity is no more than 60%. Ultrasound is therefore a rapid and simple means of excluding a pneumothorax (lung sliding or B lines) and of confirming a pneumothorax when the lung point is visible. The question that remains is whether ultrasound can totally replace radiography in the management of this disorder. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  5. Combinational light emitting diode-high frequency focused ultrasound treatment for HeLa cell.

    PubMed

    Choe, Se-Woon; Park, Kitae; Park, Chulwoo; Ryu, Jaemyung; Choi, Hojong

    2017-12-01

    Light sources such as laser and light emitting diode or ultrasound devices have been widely used for cancer therapy and regenerative medicines, since they are more cost-effective and less harmful than radiation therapy, chemotherapy or magnetic treatment. Compared to laser and low intensity ultrasound techniques, light emitting diode and high frequency focused ultrasound shows enhanced therapeutic effects, especially for small tumors. We propose combinational light emitting diode-high frequency focused ultrasound treatment for human cervical cancer HeLa cells. Individual red, green, and blue light emitting diode light only, high frequency focused ultrasound only, or light emitting diode light combined with high frequency focused ultrasound treatments were applied in order to characterize the responses of HeLa cells. Cell density exposed by blue light emitting diode light combined with high frequency focused ultrasound (2.19 ± 0.58%) was much lower than that of cells exposed by red and green light emitting diode lights (81.71 ± 9.92% and 61.81 ± 4.09%), blue light emitting diode light (11.19 ± 2.51%) or high frequency focused ultrasound only (9.72 ± 1.04%). We believe that the proposed combinational blue light emitting diode-high frequency focused ultrasound treatment could have therapeutic benefits to alleviate cancer cell proliferation.

  6. Histological and Ultrastructural Effects of Ultrasound-induced Cavitation on Human Skin Adipose Tissue.

    PubMed

    Bani, Daniele; Quattrini Li, Alessandro; Freschi, Giancarlo; Russo, Giulia Lo

    2013-09-01

    In aesthetic medicine, the most promising techniques for noninvasive body sculpturing purposes are based on ultrasound-induced fat cavitation. Liporeductive ultrasound devices afford clinically relevant subcutaneous fat pad reduction without significant adverse reactions. This study aims at evaluating the histological and ultrastructural changes induced by ultrasound cavitation on the different cell components of human skin. Control and ultrasound-treated ex vivo abdominal full-thickness skin samples and skin biopsies from patients pretreated with or without ultrasound cavitation were studied histologically, morphometrically, and ultrastructurally to evaluate possible changes in adipocyte size and morphology. Adipocyte apoptosis and triglyceride release were also assayed. Clinical evaluation of the effects of 4 weekly ultrasound vs sham treatments was performed by plicometry. Compared with the sham-treated control samples, ultrasound cavitation induced a statistically significant reduction in the size of the adipocytes (P < 0.001), the appearance of micropores and triglyceride leakage and release in the conditioned medium (P < 0.05 at 15 min), or adipose tissue interstitium, without appreciable changes in microvascular, stromal, and epidermal components and in the number of apoptotic adipocytes. Clinically, the ultrasound treatment caused a significant reduction of abdominal fat. This study further strengthens the current notion that noninvasive transcutaneous ultrasound cavitation is a promising and safe technology for localized reduction of fat and provides experimental evidence for its specific mechanism of action on the adipocytes.

  7. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.

    PubMed

    Oelze, Michael L; Mamou, Jonathan

    2016-02-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation, and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years, QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient (BSC), estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter (ESD) and the effective acoustic concentration (EAC) of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on

  8. Review of quantitative ultrasound: envelope statistics and backscatter coefficient imaging and contributions to diagnostic ultrasound

    PubMed Central

    Oelze, Michael L.; Mamou, Jonathan

    2017-01-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging techniques can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient, estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter and the effective acoustic concentration of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on clinical

  9. Physics and instrumentation of ultrasound.

    PubMed

    Lawrence, John P

    2007-08-01

    A thorough understanding of the physics of ultrasound waves and the instrumentation will provide the user with a better understanding of the capabilities and limitations of ultrasound equipment. The ultrasound machine combines two technologies: image production (M-mode and 2-dimensional imaging) with Doppler assessment (continuous and pulse wave as well as color-flow mapping). These distinct technologies have been combined to provide the examiner with the ability to make accurate and comprehensive diagnoses and guide therapeutic intervention.

  10. Bolt axial stress measurement based on a mode-converted ultrasound method using an electromagnetic acoustic transducer.

    PubMed

    Ding, Xu; Wu, Xinjun; Wang, Yugang

    2014-03-01

    A method is proposed to measure the stress on a tightened bolt using an electromagnetic acoustic transducer (EMAT). A shear wave is generated by the EMAT, and a longitudinal wave is obtained from the reflection of the shear wave due to the mode conversion. The ray paths of the longitudinal and the shear wave are analyzed, and the relationship between the bolt axial stress and the ratio of time of flight between two mode waves is then formulated. Based on the above outcomes, an EMAT is developed to measure the bolt axial stress without loosening the bolt, which is required in the conventional EMAT test method. The experimental results from the measurement of the bolt tension show that the shear and the mode-converted longitudinal waves can be received successfully, and the ratio of the times of flight of the shear and the mode-converted longitudinal waves is linearly proportional to the bolt axial tension. The non-contact characteristic of EMAT eliminates the effect of the couplant and also makes the measurement more convenient than the measurement performed using the piezoelectric transducer. This method provides a promising way to measure the stress on tightened bolts. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Evaluation of ultrasound techniques for brain injury detection

    NASA Astrophysics Data System (ADS)

    Mobley, Joel; Kasili, Paul M.; Norton, Stephen J.; Vo-Dinh, Tuan

    1998-05-01

    In this work, we examine the physics underlying wave propagation in the head to evaluate various ultrasonic transducers for use in a brian injury detection device. The results of measurements of the attenuation coefficient and phase velocity for ultrasonic propagation in samples of brain tissue and skull bone from sheep are presented. The material properties are then used to investigate the propagation of ultrasonic pressure fields in the head. The ultrasound fields for three different transducers are calculated for propagation in a simulated brain/skull model. The model is constructed using speed-of-sound and mass density values of the two tissue types. The impact of the attenuation on the ultrasound fields is then examined. Finally, the relevant points drawn from these discussions are summarized. We hope to minimize the confounding effects of the skull by using sub-MHz ultrasound while maintaining the necessary temporal and spatial resolution to successfully detect injury in the brain.

  12. Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing

    NASA Astrophysics Data System (ADS)

    Hewener, Holger J.; Tretbar, Steffen H.

    Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.

  13. Optical Micromachined Ultrasound Transducers (OMUT)-- A New Approach for High Frequency Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    Tadayon, Mohammad Amin

    Piezoelectric technology is the backbone of most medical ultrasound imaging arrays, however, in scaling the technology to sizes required for high frequency operation (> 20 MHz), it encounters substantial difficulties in fabrication and signal transduction efficiency. These limitations particularly affect the design of intravascular ultrasound (IVUS) imaging probes whose operating frequency can approach 60 MHz. Optical technology has been proposed and investigated for several decades as an alternative approach for high frequency ultrasound transducers. However, to apply this promising technology in guiding clinical operations such as in interventional cardiology, brain surgery, and laparoscopic surgery further raise in the sensitivity is required. Here, in order to achieve the required sensitivity for an intravascular ultrasound imaging probe, we introduce design changes making use of alternative receiver mechanisms. First, we present an air cavity detector that makes use of a polymer membrane for increased mechanical deflection. We have also significantly raised the thin film detector sensitivity by improving its optical characteristics. This can be achieved by inducing a refractive index feature inside the Fabry-Perot resonator that simply creates a waveguide between the two mirrors. This approach eliminates the loss in energy due to diffraction in the cavity, and therefore the Q-factor is only limited by mirror loss and absorption. To demonstrate this optical improvements, a waveguide Fabry-Perot resonator has been fabricated consisting of two dielectric Bragg reflectors with a layer of photosensitive polymer between them. The measured finesse of the fabricated resonator was 692, and the Q-factor was 55000. The fabrication process of this device has been modified to fabricate an ultrasonically testable waveguide Fabry-Perot resonator. By applying this method, we have achieved a noise equivalent pressure of 178 Pa over a bandwidth of 28 MHz or 0.03 Pa/Hz1/2 which

  14. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  15. Chest wall segmentation in automated 3D breast ultrasound scans.

    PubMed

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Simulation of absolute amplitudes of ultrasound signals using equivalent circuits.

    PubMed

    Johansson, Jonny; Martinsson, Pär-Erik; Delsing, Jerker

    2007-10-01

    Equivalent circuits for piezoelectric devices and ultrasonic transmission media can be used to cosimulate electronics and ultrasound parts in simulators originally intended for electronics. To achieve efficient system-level optimization, it is important to simulate correct, absolute amplitude of the ultrasound signal in the system, as this determines the requirements on the electronics regarding dynamic range, circuit noise, and power consumption. This paper presents methods to achieve correct, absolute amplitude of an ultrasound signal in a simulation of a pulse-echo system using equivalent circuits. This is achieved by taking into consideration loss due to diffraction and the effect of the cable that connects the electronics and the piezoelectric transducer. The conductive loss in the transmission line that models the propagation media of the ultrasound pulse is used to model the loss due to diffraction. Results show that the simulated amplitude of the echo follows measured values well in both near and far fields, with an offset of about 10%. The use of a coaxial cable introduces inductance and capacitance that affect the amplitude of a received echo. Amplitude variations of 60% were observed when the cable length was varied between 0.07 m and 2.3 m, with simulations predicting similar variations. The high precision in the achieved results show that electronic design and system optimization can rely on system simulations alone. This will simplify the development of integrated electronics aimed at ultrasound systems.

  17. A flexible ultrasound transducer array with micro-machined bulk PZT.

    PubMed

    Wang, Zhe; Xue, Qing-Tang; Chen, Yuan-Quan; Shu, Yi; Tian, He; Yang, Yi; Xie, Dan; Luo, Jian-Wen; Ren, Tian-Ling

    2015-01-23

    This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications.

  18. An ergonomic, instrumented ultrasound probe for 6-axis force/torque measurement.

    PubMed

    Gilbertson, Matthew W; Anthony, Brian W

    2013-01-01

    An ergonomic, instrumented ultrasound probe has been developed for medical imaging applications. The device, which fits compactly in the hand of sonographers and permits rapid attachment & removal of the ultrasound probe, measures ultrasound probe-to-patient contact forces and torques in all six axes. The device was used to measure contact forces and torques applied by ten professional sonographers on five patients during thirty-six abdominal exams. Of the three contact forces, those applied along the probe axis were found to be largest, averaging 7.0N. Measurement noise was quantified for each axis, and found to be small compared with the axial force. Understanding the range of forces applied during ultrasound imaging enables the design of more accurate robotic imaging systems and could also improve understanding of the correlation between contact force and sonographer fatigue and injury.

  19. Ultrasound physics in a nutshell.

    PubMed

    Coltrera, Marc D

    2010-12-01

    This content presents to the neophyte ultrasonographer the essential nutshell of information needed to properly interpret ultrasound images. Basic concepts of physics related to ultrasound are supported with formulas and related to clinical use. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Abdominal ultrasound and medical education.

    PubMed

    García de Casasola Sánchez, G; Torres Macho, J; Casas Rojo, J M; Cubo Romano, P; Antón Santos, J M; Villena Garrido, V; Diez Lobato, R

    2014-04-01

    Ultrasound is a very versatile diagnostic modality that permits real-time visualization of multiple internal organs. It is of invaluable help for the physical examination of the patients. To assess if ultrasound can be incorporated into medical education and if the students can perform a basic abdominal ultrasound examination without the necessity of a long period of training. Twelve medical students were trained in basic abdominal ultrasound during a 15-h training program including a 5-h theoretical and practical course and supervised practice in 20 selected patients. Subsequently, we conducted an evaluation test that assessed the ability of students to obtain the ultrasound views and to detect various pathologies in five different patients. The students were able to correctly identify the abdominal views more than 90% of the times. This percentage was only lower (80%) in the right subcostal view to locate the gallbladder. The accuracy or global efficiency of the ultrasound for the diagnosis of relevant pathological findings of the patients was greater than 90% (91.1% gallstones, abdominal aortic aneurysm 100%; splenomegaly 98.3%, ascites 100%; dilated inferior vena cava 100%; acute urinary retention 100%). The ultrasound may be a feasible learning tool in medical education. Ultrasound can help students to improve the physical examination. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  1. Ultrasound-guided synovial biopsy

    PubMed Central

    Sitt, Jacqueline C M; Wong, Priscilla

    2016-01-01

    Ultrasound-guided needle biopsy of synovium is an increasingly performed procedure with a high diagnostic yield. In this review, we discuss the normal synovium, as well as the indications, technique, tissue handling and clinical applications of ultrasound-guided synovial biopsy. PMID:26581578

  2. Addressing Phonological Questions with Ultrasound

    ERIC Educational Resources Information Center

    Davidson, Lisa

    2005-01-01

    Ultrasound can be used to address unresolved questions in phonological theory. To date, some studies have shown that results from ultrasound imaging can shed light on how differences in phonological elements are implemented. Phenomena that have been investigated include transitional schwa, vowel coalescence, and transparent vowels. A study of…

  3. Imaging By Ultrasound

    PubMed Central

    Kidney, Maria R.

    1986-01-01

    Imaging by ultrasound has dramatically changed the investigation and management of many clinical problems. It is useful in many different parts of the body. In this brief discussion, the following topics are considered: hepatic lesions, bleeding in early pregnancy, gynecological pathology (adnexal lesions), aortic aneurysms, thyroid nodules and scrotal masses. The usefulness of duplex carotid sonography, which combines ultrasonic imaging and Doppler studies, is also discussed. Other topics (gallstones, biliary obstruction, renal calculi, hydronephrosis) are discussed in the appropriate sections. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:21267202

  4. Ultrasound cavitation versus cryolipolysis for non-invasive body contouring.

    PubMed

    Mahmoud ELdesoky, Mohamed Taher; Mohamed Abutaleb, Enas ELsayed; Mohamed Mousa, Gihan Samir

    2015-08-24

    The demand for non-surgical and non-invasive devices is continuous and increasing. Such devices have gradually gained ground in the reduction of localised fat and the improvement of body contouring. The study aimed to compare the effects of ultrasound cavitation and cryolipolysis on localised abdominal fat. In total, 60 participants with a body mass index (BMI) over 30 kg/m 2 , whose age ranged between 25 and 45 years, were included. The participants were randomly assigned to three groups of 20 each, using ultrasound cavitation and diet, cryolipolysis and diet, and diet only (the control group), respectively. Measures were bodyweight, BMI, waist circumference and suprailiac skinfold were measured at the beginning of the study and 2 months later. The three groups showed significant improvements in all measured variables after 2 months. There was no statistically significant difference in bodyweight or in BMI among the groups after treatment. However, the groups using ultrasound cavitation and cryolipolysis showed better post-treatment improvement than the diet-only group in waist circumference and suprailiac skinfold. There was no statistically significant difference post-treatment between the cavitation and cryolipolysis groups in waist circumference or suprailiac skinfold. Both ultrasound cavitation and cryolipolysis are safe and effective for the reduction of abdominal fat thickness and for abdominal contouring. © 2015 The Australasian College of Dermatologists.

  5. Integrated medical school ultrasound: development of an ultrasound vertical curriculum.

    PubMed

    Bahner, David P; Adkins, Eric J; Hughes, Daralee; Barrie, Michael; Boulger, Creagh T; Royall, Nelson A

    2013-07-02

    Physician-performed focused ultrasonography is a rapidly growing field with numerous clinical applications. Focused ultrasound is a clinically useful tool with relevant applications across most specialties. Ultrasound technology has outpaced the education, necessitating an early introduction to the technology within the medical education system. There are many challenges to integrating ultrasound into medical education including identifying appropriately trained faculty, access to adequate resources, and appropriate integration into existing medical education curricula. As focused ultrasonography increasingly penetrates academic and community practices, access to ultrasound equipment and trained faculty is improving. However, there has remained the major challenge of determining at which level is integrating ultrasound training within the medical training paradigm most appropriate. The Ohio State University College of Medicine has developed a novel vertical curriculum for focused ultrasonography which is concordant with the 4-year medical school curriculum. Given current evidenced-based practices, a curriculum was developed which provides medical students an exposure in focused ultrasonography. The curriculum utilizes focused ultrasonography as a teaching aid for students to gain a more thorough understanding of basic and clinical science within the medical school curriculum. The objectives of the course are to develop student understanding in indications for use, acquisition of images, interpretation of an ultrasound examination, and appropriate decision-making of ultrasound findings. Preliminary data indicate that a vertical ultrasound curriculum is a feasible and effective means of teaching focused ultrasonography. The foreseeable limitations include faculty skill level and training, initial cost of equipment, and incorporating additional information into an already saturated medical school curriculum. Focused ultrasonography is an evolving concept in medicine

  6. Prostate ultrasound: back in business!

    PubMed

    Crisan, Nicolae; Andras, Iulia; Radu, Corina; Andras, David; Coman, Radu-Tudor; Tucan, Paul; Pisla, Doina; Crisan, Dana; Coman, Ioan

    2017-11-29

    The use of grey scale prostate ultrasound decreased after the implementation of magnetic resonance imaging (MRI) for the diagnosis and evaluation of prostate cancer. The new developments, such as multiparametric ultrasound and MRI-ultrasound fusion technology, renewed the interest for this imaging method in the assessment of prostate cancer. The purpose of this paper was to review the current role of prostate ultrasound in the setting of these new applications. A thorough reevaluation of the selection criteria of the patients is required to assess which patients would benefit from multiparametric ultrasound, who wouldbenefit from multiparametric MRI or the combination of both to assist prostate biopsy in order to ensure the balance between overdiagnosis and underdiagnosis of prostate cancer.

  7. Ultrasound of the Brachial Plexus.

    PubMed

    Griffith, James F

    2018-07-01

    Examination of the brachial plexus with ultrasound is efficient because it allows many parts of the brachial plexus as well as the surrounding soft tissues to be assessed with high spatial resolution. The key to performing good ultrasound of the brachial plexus is being familiar with the anatomy and the common variants. That makes it possible to concentrate solely on the ultrasound appearances free of simultaneously wondering about the anatomy. Ultrasound of the brachial plexus is particularly good for assessing nerve sheath tumor, perineural fibrosis, metastases, some inflammatory neuropathies, neuralgic amyotrophy, and posttraumatic sequalae. It is limited in the assessment of thoracic outlet syndrome and in the acute/subacute trauma setting. This review addresses the anatomy, ultrasound technique, as well as pathology of the brachial plexus from the cervical foramina to the axilla. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. An Electro-Optic Spatial Light Modulator for Thermoelastic Generation of Programmably Focused Ultrasound.

    DTIC Science & Technology

    1984-12-01

    The concept proposed is an electro - optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro - optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test. (Author)

  9. An electro-optic spatial light modulator for thermoelastic generation of programmably focused ultrasound

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The concept proposed is an electro-optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro-optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test.

  10. Controlled Ultrasound Tissue Erosion

    PubMed Central

    Xu, Zhen; Ludomirsky, Achiau; Eun, Lucy Y.; Hall, Timothy L.; Tran, Binh C.; Fowlkes, J. Brian; Cain, Charles A.

    2009-01-01

    The ability of ultrasound to produce highly controlled tissue erosion was investigated. This study is motivated by the need to develop a noninvasive procedure to perforate the neonatal atrial septum as the first step in treatment of hypoplastic left heart syndrome. A total of 232 holes were generated in 40 pieces of excised porcine atrial wall by a 788 kHz single-element transducer. The effects of various parameters [e.g., pulse repetition frequency (PRF), pulse duration (PD), and gas content of liquid] on the erosion rate and energy efficiency were explored. An Isppa of 9000 W/cm2, PDs of 3, 6, 12, and 24 cycles; PRFs between 1.34 kHz and 66.7 kHz; and gas saturation of 40–55% and 79–85% were used. The results show that very short pulses delivered at certain PRFs could maximize the erosion rate and energy efficiency. We show that well-defined perforations can be precisely located in the atrial wall through the controlled ultrasound tissue erosion (CUTE) process. A preliminary in vivo experiment was conducted on a canine subject, and the atrial septum was perforated using CUTE. PMID:15244286

  11. A cMUT probe for ultrasound-guided focused ultrasound targeted therapy.

    PubMed

    Gross, Dominique; Coutier, Caroline; Legros, Mathieu; Bouakaz, Ayache; Certon, Dominique

    2015-06-01

    Ultrasound-mediated targeted therapy represents a promising strategy in the arsenal of modern therapy. Capacitive micromachined ultrasonic transducer (cMUT) technology could overcome some difficulties encountered by traditional piezoelectric transducers. In this study, we report on the design, fabrication, and characterization of an ultrasound-guided focused ultrasound (USgFUS) cMUT probe dedicated to preclinical evaluation of targeted therapy (hyperthermia, thermosensitive liposomes activation, and sonoporation) at low frequency (1 MHz) with simultaneous ultrasonic imaging and guidance (15 to 20 MHz). The probe embeds two types of cMUT arrays to perform the modalities of targeted therapy and imaging respectively. The wafer-bonding process flow employed for the manufacturing of the cMUTs is reported. One of its main features is the possibility of implementing two different gap heights on the same wafer. All the design and characterization steps of the devices are described and discussed, starting from the array design up to the first in vitro measurements: optical (microscopy) and electrical (impedance) measurements, arrays' electroacoustic responses, focused pressure field mapping (maximum peak-to-peak pressure = 2.5 MPa), and the first B-scan image of a wire-target phantom.

  12. Assessment of ultrasound modulation of near infrared light on the quantification of scattering coefficient.

    PubMed

    Singh, M Suheshkumar; Yalavarthy, Phaneendra K; Vasu, R M; Rajan, K

    2010-07-01

    To assess the effect of ultrasound modulation of near infrared (NIR) light on the quantification of scattering coefficient in tissue-mimicking biological phantoms. A unique method to estimate the phase of the modulated NIR light making use of only time averaged intensity measurements using a charge coupled device camera is used in this investigation. These experimental measurements from tissue-mimicking biological phantoms are used to estimate the differential pathlength, in turn leading to estimation of optical scattering coefficient. A Monte-Carlo model based numerical estimation of phase in lieu of ultrasound modulation is performed to verify the experimental results. The results indicate that the ultrasound modulation of NIR light enhances the effective scattering coefficient. The observed effective scattering coefficient enhancement in tissue-mimicking viscoelastic phantoms increases with increasing ultrasound drive voltage. The same trend is noticed as the ultrasound modulation frequency approaches the natural vibration frequency of the phantom material. The contrast enhancement is less for the stiffer (larger storage modulus) tissue, mimicking tumor necrotic core, compared to the normal tissue. The ultrasound modulation of the insonified region leads to an increase in the effective number of scattering events experienced by NIR light, increasing the measured phase, causing the enhancement in the effective scattering coefficient. The ultrasound modulation of NIR light could provide better estimation of scattering coefficient. The observed local enhancement of the effective scattering coefficient, in the ultrasound focal region, is validated using both experimental measurements and Monte-Carlo simulations.

  13. Determining Directions of Ultrasound in Solids

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.

    1987-01-01

    Ultrasound shadows cast by grooves. Improved method for determining direction of ultrasound in materials is shadow method using Scanning laser acoustic microscopy (SLAM). Direction of ultrasound calculated from dimensions of groove and portion of surface groove shields from ultrasound. Method has variety of applications in nontraditional quality-control applications.

  14. Closed-Loop Noninvasive Ultrasound Glucose Sensing and Insulin Delivery

    DTIC Science & Technology

    2007-09-01

    glucose sensing using the low-profile cymbal. Center of Excellence in Piezoelectric Materials and Devices, Penn Stater Conference Center Hotel, University...ultrasound patch” uses the cymbal, which is a flextensional transducer made of a circular piezoelectric ceramic sand- wiched between two metal end caps.14–17...PZT ceramic contained a shallow cavity beneath its inner surface. The fundamental mode of vibration is the flexing of the end caps caused by the

  15. Design Considerations and Performance of MEMS Acoustoelectric Ultrasound Detectors

    PubMed Central

    Wang, Zhaohui; Ingram, Pier; Greenlee, Charles L.; Olafsson, Ragnar; Norwood, Robert A.; Witte, Russell S.

    2014-01-01

    Most single-element hydrophones depend on a piezoelectric material that converts pressure changes to electricity. These devices, however, can be expensive, susceptible to damage at high pressure, and/or have limited bandwidth and sensitivity. We have previously described the acoustoelectric (AE) hydrophone as an inexpensive alternative for mapping an ultrasound beam and monitoring acoustic exposure. The device exploits the AE effect, an interaction between electrical current flowing through a material and a propagating pressure wave. Previous designs required imprecise fabrication methods using common laboratory supplies, making it difficult to control basic features such as shape and size. This study describes a different approach based on microelectromechanical systems (MEMS) processing that allows for much finer control of several design features. In an effort to improve the performance of the AE hydrophone, we combine simulations with bench-top testing to evaluate key design features, such as thickness, shape, and conductivity of the active and passive elements. The devices were evaluated in terms of sensitivity, frequency response, and accuracy for reproducing the beam pattern. Our simulations and experimental results both indicated that designs using a combination of indium tin oxide (ITO) for the active element and gold for the passive electrodes (conductivity ratio = ~20) produced the best result for mapping the beam of a 2.25-MHz ultrasound transducer. Also, the AE hydrophone with a rectangular dumbbell configuration achieved a better beam pattern than other shape configurations. Lateral and axial resolutions were consistent with images generated from a commercial capsule hydrophone. Sensitivity of the best-performing device was 1.52 nV/Pa at 500 kPa using a bias voltage of 20 V. We expect a thicker AE hydrophone closer to half the acoustic wavelength to produce even better sensitivity, while maintaining high spectral bandwidth for characterizing medical

  16. Droplets, Bubbles and Ultrasound Interactions.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  17. Unpowered wireless ultrasound tomography system

    NASA Astrophysics Data System (ADS)

    Zahedi, Farshad; Huang, Haiying

    2016-04-01

    In this paper, an unpowered wireless ultrasound tomography system is presented. The system consists of two subsystems; the wireless interrogation unit (WIU) and three wireless nodes installed on the structure. Each node is designed to work in generation and sensing modes, but operates at a specific microwave frequency. Wireless transmission of the ultrasound signals between the WIU and the wireless nodes is achieved by converting ultrasound signals to microwave signals and vice versa, using a microwave carrier signal. In the generation mode, both a carrier signal and an ultrasound modulated microwave signal are transmitted to the sensor nodes. Only the node whose operating frequency matches the carrier signal will receive these signals and demodulate them to recover the original ultrasound signal. In the sensing mode, a microwave carrier signal with two different frequency components matching the operating frequencies of the sensor nodes is broadcasted by the WIU. The sensor nodes, in turn, receive the corresponding carrier signals, modulate it with the ultrasound sensing signal, and wirelessly transmit the modulated signal back to the WIU. The demodulation of the sensing signals is performed in the WIU using a digital signal processing. Implementing a software receiver significantly reduces the complexity and the cost of the WIU. A wireless ultrasound tomography system is realized by interchanging the carrier frequencies so that the wireless transducers can take turn to serve as the actuator and sensors.

  18. Enhanced ultrasound for advanced diagnostics, ultrasound tomography for volume limb imaging and prosthetic fitting

    NASA Astrophysics Data System (ADS)

    Anthony, Brian W.

    2016-04-01

    Ultrasound imaging methods hold the potential to deliver low-cost, high-resolution, operator-independent and nonionizing imaging systems - such systems couple appropriate algorithms with imaging devices and techniques. The increasing demands on general practitioners motivate us to develop more usable and productive diagnostic imaging equipment. Ultrasound, specifically freehand ultrasound, is a low cost and safe medical imaging technique. It doesn't expose a patient to ionizing radiation. Its safety and versatility make it very well suited for the increasing demands on general practitioners, or for providing improved medical care in rural regions or the developing world. However it typically suffers from sonographer variability; we will discuss techniques to address user variability. We also discuss our work to combine cylindrical scanning systems with state of the art inversion algorithms to deliver ultrasound systems for imaging and quantifying limbs in 3-D in vivo. Such systems have the potential to track the progression of limb health at a low cost and without radiation exposure, as well as, improve prosthetic socket fitting. Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and quantitative process for prosthetic cup design and fabrication has not been fully demonstrated. Medical ultrasonography may inform the design process of prosthetic sockets in a more objective manner. This keynote talk presents the results of progress in this area.

  19. Neuromuscular ultrasound of cranial nerves.

    PubMed

    Tawfik, Eman A; Walker, Francis O; Cartwright, Michael S

    2015-04-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed.

  20. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  1. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  2. Photovoltaic device

    DOEpatents

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  3. Resonant ultrasound spectroscopy

    DOEpatents

    Migliori, Albert

    1991-01-01

    A resonant ultrasound spectroscopy method provides a unique characterization of an object for use in distinguishing similar objects having physical differences greater than a predetermined tolerance. A resonant response spectrum is obtained for a reference object by placing excitation and detection transducers at any accessible location on the object. The spectrum is analyzed to determine the number of resonant response peaks in a predetermined frequency interval. The distribution of the resonance frequencies is then characterized in a manner effective to form a unique signature of the object. In one characterization, a small frequency interval is defined and stepped though the spectrum frequency range. Subsequent objects are similarly characterized where the characterizations serve as signatures effective to distinguish objects that differ from the reference object by more than the predetermined tolerance.

  4. Ultrasound elastomicroscopy for articular cartilage: from static to transient and 1D to 2D

    NASA Astrophysics Data System (ADS)

    Zheng, Yongping; Bridal, Sharon L.; Shi, Jun; Saied, Amena; Lu, Minghua; Jaffre, Britta; Mak, Arthur F. T.; Laugier, Pascal; Qin, Ling

    2003-05-01

    Articular cartilage (AC) is a biological weight-bearing tissue covering the ends of articulating bones within synovial joints. Its function very much depends on the unique multi-layered structure and the depth-dependent material properties, which have not been well invetigated nondestructively. In this study, transient depth-dependent material properties of bovine patella cartilage were measured using ultrasound elastomicroscopy methods. A 50 MHz focused ultrasound transducer was used to collect A-mode ultrasound echoes from the articular cartilage during the compression and subsequent force-relaxation. The transient displacements of the cartilage tissues at different depths were calculated from the ultrasound echoes using a cross-correlation technique. It was observed that the strains in the superficial zone were much larger than those in the middle and deep zones as the equilibrium state was approached. The tissues inside the AC layer continued to move during the force-relaxation phase after the compression was completed. This process has been predicted by a biphasic theory. In this study, it has been verified experimentally. It was also observed that the tissue deformations at different depths of AC were much more evenly distributed before force-relaxation. AC specimens were also investigated using a 2D ultrasound elastomicroscopy system that included a 3D translating system for moving the ultrasound transducer over the specimens. B-mode RF ultrasound signals were collected from the specimens under different loading levels applied with a specially designed compressor. Preliminary results demonstrated that the scanning was repeatable with high correlation of radio frequency signals obtained from the same site during different scans when compression level was unchanged (R2 > 0.97). Strains of the AC specimens were mapped using data collected with this ultrasound elastomicroscope. This system can also be potentially used for the assessment of other biological

  5. An Assessment of Iterative Reconstruction Methods for Sparse Ultrasound Imaging

    PubMed Central

    Valente, Solivan A.; Zibetti, Marcelo V. W.; Pipa, Daniel R.; Maia, Joaquim M.; Schneider, Fabio K.

    2017-01-01

    Ultrasonic image reconstruction using inverse problems has recently appeared as an alternative to enhance ultrasound imaging over beamforming methods. This approach depends on the accuracy of the acquisition model used to represent transducers, reflectivity, and medium physics. Iterative methods, well known in general sparse signal reconstruction, are also suited for imaging. In this paper, a discrete acquisition model is assessed by solving a linear system of equations by an ℓ1-regularized least-squares minimization, where the solution sparsity may be adjusted as desired. The paper surveys 11 variants of four well-known algorithms for sparse reconstruction, and assesses their optimization parameters with the goal of finding the best approach for iterative ultrasound imaging. The strategy for the model evaluation consists of using two distinct datasets. We first generate data from a synthetic phantom that mimics real targets inside a professional ultrasound phantom device. This dataset is contaminated with Gaussian noise with an estimated SNR, and all methods are assessed by their resulting images and performances. The model and methods are then assessed with real data collected by a research ultrasound platform when scanning the same phantom device, and results are compared with beamforming. A distinct real dataset is finally used to further validate the proposed modeling. Although high computational effort is required by iterative methods, results show that the discrete model may lead to images closer to ground-truth than traditional beamforming. However, computing capabilities of current platforms need to evolve before frame rates currently delivered by ultrasound equipments are achievable. PMID:28282862

  6. Fast integrated intravascular photoacoustic/ultrasound catheter

    NASA Astrophysics Data System (ADS)

    Choi, Changhoon; Cho, Seunghee; Kim, Taehoon; Park, Sungjo; Park, Hyoeun; Kim, Jinmoo; Lee, Seunghoon; Kang, Yeonsu; Jang, Kiyuk; Kim, Chulhong

    2016-03-01

    In cardiology, a vulnerable plaque is considered to be a key subject because it is strongly related to atherosclerosis and acute myocardial infarction. Because conventional intravascular imaging devices exhibit several limitations with regard to vulnerable plaque detection, the need for an effective lipid imaging modality has been continuously suggested. Photoacoustic (PA) imaging is a medical imaging technique with a high level of ultrasound (US) resolution and strong optical contrast. In this study, we successfully developed an integrated intravascular photoacoustic/ultrasound (IV-PAUS) imaging system with a catheter diameter of 1.2 mm for lipid-rich atherosclerosis imaging. An Nd:YAG pulsed laser with an excitation wavelength of 1064 nm was utilized. IV-PAUS offers 5-mm depth penetration and axial and lateral PA imaging resolutions of 94 μm and 203 μm, respectively, as determined by imaging a 6-μm carbon fiber. We initially obtained 3-dimensional (3D) co-registered PA/US images of metal stents. Subsequently, we successfully obtained 3D coregistered PA/US ex vivo images using an iliac artery from a rabbit atherosclerosis model. Accordingly, lipid-rich plaques were sufficiently differentiated from normal tissue in the ex vivo experiment. We validated these findings histologically to confirm the lipid content.

  7. Ultrasound Improves Cricothyrotomy Success in Cadavers with Poorly Defined Neck Anatomy: A Randomized Control Trial.

    PubMed

    Siddiqui, Naveed; Arzola, Cristian; Friedman, Zeev; Guerina, Laarni; You-Ten, Kong Eric

    2015-11-01

    Misidentification of the cricothyroid membrane in a "cannot intubate-cannot oxygenate" situation can lead to failures and serious complications. The authors hypothesized that preprocedure ultrasound-guided identification of the cricothyroid membrane would reduce complications associated with cricothyrotomy. A group of 47 trainees were randomized to digital palpation (n = 23) and ultrasound (n = 24) groups. Cricothyrotomy was performed on human cadavers by using the Portex device (Smiths Medical, USA). Anatomical landmarks of cadavers were graded as follows: grade 1-easy = visual landmarks; 2-moderate = requires light palpation of landmarks; 3-difficult = requires deep palpation of landmarks; and 4-impossible = landmarks not palpable. Primary outcome was the complication rate as measured by the severity of injuries. Secondary outcomes were correct device placement, failure to cannulate, and insertion time. Ultrasound guidance significantly decreased the incidence of injuries to the larynx and trachea (digital palpation: 17 of 23 = 74% vs. ultrasound: 6 of 24 = 25%; relative risk, 2.88; 95% CI, 1.39 to 5.94; P = 0.001) and increased the probability of correct insertion by 5.6 times (P = 0.043) in cadavers with difficult and impossible landmark palpation (digital palpation 8.3% vs. ultrasound 46.7%). Injuries were found in 100% of the grades 3 to 4 (difficult-impossible landmark palpation) cadavers by digital palpation compared with only 33% by ultrasound (P < 0.001). The mean (SD) insertion time was significantly longer with ultrasound than with digital palpation (196.1 s [60.6 s] vs. 110.5 s [46.9 s]; P < 0.001). Preprocedure ultrasound guidance in cadavers with poorly defined neck anatomy significantly reduces complications and improves correct insertion of the airway device in the cricothyroid membrane.

  8. An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones.

    PubMed

    Protopappas, Vasilios C; Baga, Dina A; Fotiadis, Dimitrios I; Likas, Aristidis C; Papachristos, Athanasios A; Malizos, Konstantinos N

    2005-09-01

    An ultrasound wearable system for remote monitoring and acceleration of the healing process in fractured long bones is presented. The so-called USBone system consists of a pair of ultrasound transducers, implanted into the fracture region, a wearable device and a centralized unit. The wearable device is responsible to carry out ultrasound measurements using the axial-transmission technique and initiate therapy sessions of low-intensity pulsed ultrasound. The acquired measurements and other data are wirelessly transferred from the patient-site to the centralized unit, which is located in a clinical setting. The evaluation of the system on an animal tibial osteotomy model is also presented. A dataset was constructed for monitoring purposes consisting of serial ultrasound measurements, follow-up radiographs, quantitative computed tomography-based densitometry and biomechanical data. The animal study demonstrated the ability of the system to collect ultrasound measurements in an effective and reliable fashion and participating orthopaedic surgeons accepted the system for future clinical application. Analysis of the acquired measurements showed that the pattern of evolution of the ultrasound velocity through healing bones over the postoperative period monitors a dynamic healing process. Furthermore, the ultrasound velocity of radiographically healed bones returns to 80% of the intact bone value, whereas the correlation coefficient of the velocity with the material and mechanical properties of the healing bone ranges from 0.699 to 0.814. The USBone system constitutes the first telemedicine system for the out-hospital management of patients sustained open fractures and treated with external fixation devices.

  9. Delay and Standard Deviation Beamforming to Enhance Specular Reflections in Ultrasound Imaging.

    PubMed

    Bandaru, Raja Sekhar; Sornes, Anders Rasmus; Hermans, Jeroen; Samset, Eigil; D'hooge, Jan

    2016-12-01

    Although interventional devices, such as needles, guide wires, and catheters, are best visualized by X-ray, real-time volumetric echography could offer an attractive alternative as it avoids ionizing radiation; it provides good soft tissue contrast, and it is mobile and relatively cheap. Unfortunately, as echography is traditionally used to image soft tissue and blood flow, the appearance of interventional devices in conventional ultrasound images remains relatively poor, which is a major obstacle toward ultrasound-guided interventions. The objective of this paper was therefore to enhance the appearance of interventional devices in ultrasound images. Thereto, a modified ultrasound beamforming process using conventional-focused transmit beams is proposed that exploits the properties of received signals containing specular reflections (as arising from these devices). This new beamforming approach referred to as delay and standard deviation beamforming (DASD) was quantitatively tested using simulated as well as experimental data using a linear array transducer. Furthermore, the influence of different imaging settings (i.e., transmit focus, imaging depth, and scan angle) on the obtained image contrast was evaluated. The study showed that the image contrast of specular regions improved by 5-30 dB using DASD beamforming compared with traditional delay and sum (DAS) beamforming. The highest gain in contrast was observed when the interventional device was tilted away from being orthogonal to the transmit beam, which is a major limitation in standard DAS imaging. As such, the proposed beamforming methodology can offer an improved visualization of interventional devices in the ultrasound image with potential implications for ultrasound-guided interventions.

  10. [Classification of cerebrovascular processes using ultrasound methods].

    PubMed

    Klein, K

    1984-01-01

    By means of ultrasound A-mode echography and Doppler-Kranzbühler sonography new fundamentals of non-invasive qualitative and quantitative classification of cerebrovascular processes could be developed: Apart from usual screening of stenoses and pulse curve analyses, measurements of diameters and wall movements in the extracranial and intracranial carotid artery and in the vertebral artery as well as determinations of the systolic and diastolic flow velocities in the extracranial arteries are outstanding features. By recording and evaluating these parameters and data patterns, coupled with clinical findings, differential conclusions on reactions of the cerebral hemodynamics in macrocirculatory and microcirculatory regions were realized in geriatric patients under the following pathophysiological and therapeutically induced conditions: Generally and regionally accentuated arteriosclerotic lesions of the brain (predominant vertebrobasilar insufficiency), decrease of flow velocities according to the diameter, aggravation by distress; principal possibility of pharmacological influence if myogenic autoregulation function is rehabilitable: It is demonstrated by the example of a long-term therapy with a combination of Raubasine, Dihydroergocristine and DHE (Defluina forte).

  11. [Thoracic ultrasound: the pneumologist's new stethoscope].

    PubMed

    Heinen, V; Duysinx, B; Corhay, J L; Louis, R

    2012-10-01

    We now have access to a large library of publications validating transparietal thoracic echography in various clinical situations. Parietal lesions, including osteolysis, can be detected and biopsied during the thoracic ultrasound (TUS) examination. To evaluate the parietal extension of lung cancers, TUS has proved superior to tomodensitometry. Pleural effusions can be easily diagnosed and aspirated. Pneumothoraces can be detected using well defined lung artifacts with a high frequency probe. Pleural and peripheral lung nodules can be detected and biopsied with real time visualization; the procedure is safe and accurate. Lung consolidations with a pleural contact can be diagnosed; this is particularly useful for pregnant women. In conclusion, TUS is a precious diagnostic tool for chosen applications, and can help to guide interventional procedures. The portable devices are also very useful for bedridden patients or for out of hospital use.

  12. A new quality of bone ultrasound research.

    PubMed

    Gluer, C C

    2008-07-01

    Quantitative ultrasound (QUS) methods have strong power to predict osteoporotic fractures, but they are also very relevant for the assessment of bone quality. A representative sample of recent studies addressing these topics can be found in this special issue. Further pursuit of these methods will establish micro-QUS imaging methods as tools for measuring specific aspects of bone quality. Once this is achieved, we will be able to link such data to the clinical QUS methods used in vivo to determine which aspects of bone quality cause QUS to be a predictor of fracture risk that is independent of bone mineral density (BMD). Potentially this could lead to the development of a new generation of QUS devices for improved and expanded clinical assessment. Good quality of basic science work will thus lead to good quality of clinical patient examinations on the basis of a more detailed assessment of bone quality.

  13. Evaluation of chest ultrasound integrated teaching of respiratory system physiology to medical students.

    PubMed

    Paganini, Matteo; Bondì, Michela; Rubini, Alessandro

    2017-12-01

    Ultrasound imaging is a widely used diagnostic technique, whose integration in medical education is constantly growing. The aim of this study was to evaluate chest ultrasound usefulness in teaching respiratory system physiology, students' perception of chest ultrasound integration into a traditional lecture in human physiology, and short-term concept retention. A lecture about respiratory physiology was integrated with ultrasound and delivered to third-year medical students. It included basic concepts of ultrasound imaging and the physiology of four anatomic sectors of the body of a male volunteer, shown with a portable ultrasound device (pleural sliding, diaphragmatic movement, inferior vena cava diameter variations, cardiac movements). Students' perceptions of the integrated lecture were assessed, and attendance recorded. After 4 mo, four multiple-choice questions about respiratory physiology were administered during the normal human physiology examinations, and the results of students who attended the lesson and those of who did not were compared. One hundred thirty-four students attended the lecture. Most of them showed encouragement for the study of the subject and considered the ultrasound integrated lecture more interesting than a traditional one and pertinent to the syllabus. Exposed students achieved a better score at the examination and committed less errors than did nonexposed students. The chest ultrasound integrated lecture was appreciated by students. A possible association between the exposure to the lecture and short-term concept retention is shown by better performances of the exposed cohort at the examination. A systematic introduction of ultrasound into physiology traditional teaching will be promoted by the Ultrasound-Based Medical Education movement. Copyright © 2017 the American Physiological Society.

  14. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network.

    PubMed

    Xing, Jida; Chen, Jie

    2015-06-23

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous

  15. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network

    PubMed Central

    Xing, Jida; Chen, Jie

    2015-01-01

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous

  16. Ultrasound Fracture Diagnosis in Space

    NASA Technical Reports Server (NTRS)

    Dulchavsky, Scott A.; Amponsah, David; Sargsyan, Ashot E.; Garcia, Kathleen M.; Hamilton, Douglas R.; vanHolsbeeck, Marnix

    2010-01-01

    Introduction: This ground-based investigation accumulated high-level clinical evidence on the sensitivity and specificity of point of care ultrasound performed by expert and novice users for the rapid diagnosis of musculoskeletal (MSK) injuries. We developed preliminary educational methodologies to provide just-in-time training of novice users by creating multi-media training tools and imaging procedures for non expert operators and evaluated the sensitivity and specificity of non-expert performed musculoskeletal ultrasound to diagnose acute injuries in a Level 1 Trauma Center. Methods: Patients with potential MSK injuries were identified in the emergency room. A focused MSK ultrasound was performed by expert operators and compared to standard radiographs. A repeat examination was performed by non-expert operators who received a short, just-in-time multimedia education aid. The sensitivity and specificity of the expert and novice ultrasound examinations were compared to gold standard radiography. Results: Over 800 patients were enrolled in this study. The sensitivity and specificity of expert performed ultrasound exceeded 98% for MSK injuries. Novice operators achieved 97% sensitivity and 99% specificity for targeted examinations with the greatest error in fractures involving the hand and foot. Conclusion: Point of care ultrasound is a sensitive and specific diagnostic test for MSK injury when performed by experts and just-in-time trained novice operators.

  17. Rapid Diagnosis of an Ulnar Fracture with Portable Hand-Held Ultrasound

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Andrew W.; Brown, Ross; Diebel, Lawrence N.; Nicolaou, Savvas; Marshburn, Tom; Dulchavsky, Scott A.

    2002-01-01

    Orthopedic fractures are a common injury in operational activities, injuries that often occur in isolated or hostile environments. Clinical ultrasound devices have become more user friendly and lighter allowing them to be easily transported with forward medical teams. The bone-soft tissue interface has a very large acoustic impedance, with a high reflectance that can be used to visualize breaks in contour including fractures. Herein reported is a case of an ulnar fracture that was quickly visualized in the early phase of a multi-system trauma resuscitation with a hand-held ultrasound device. The implications for operational medicine are discussed.

  18. Unpowered wireless generation and sensing of ultrasound

    NASA Astrophysics Data System (ADS)

    Huang, Haiying

    2013-04-01

    This paper presents a wireless ultrasound pitch-catch system that demonstrates the wireless generation and sensing of ultrasounds based on the principle of frequency conversion. The wireless ultrasound pitch-catch system consists of a wireless interrogator and two wireless ultrasound transducers. The wireless interrogator generates an ultrasound-modulated signal and a carrier signal, both at the microwave frequency, and transmits these two signals to the wireless ultrasound actuator using a pair of antennas. Upon receiving these two signals, the wireless ultrasound actuator recovers the ultrasound excitation signal using a passive mixer and then supplies it to a piezoelectric wafer sensor for ultrasound generation in the structure. For wireless ultrasound sensing, the frequency conversion process is reversed. The ultrasound sensing signal is up-converted to a microwave signal by the wireless ultrasound sensor and is recovered at the wireless interrogator using a homodyne receiver. To differentiate the wireless actuator from the wireless sensor, each wireless transducer is equipped with a narrowband microwave filter so that it only responds to the carrier frequency that matches the filter's operation bandwidth. The principle of operation of the wireless pitch-catch system, the hardware implementation, and the associated data processing algorithm to recover the ultrasound signal from the wirelessly received signal are described. The wirelessly acquired ultrasound signal is compared with those acquired using wired connection in both time and frequency domain.

  19. Protection circuits for very high frequency ultrasound systems.

    PubMed

    Choi, Hojong; Shung, K Kirk

    2014-04-01

    The purpose of protection circuits in ultrasound applications is to block noise signals from the transmitter from reaching the transducer and also to prevent unwanted high voltage signals from reaching the receiver. The protection circuit using a resistor and diode pair is widely used due to its simple architecture, however, it may not be suitable for very high frequency (VHF) ultrasound transducer applications (>100 MHz) because of its limited bandwidth. Therefore, a protection circuit using MOSFET devices with unique structure is proposed in this paper. The performance of the designed protection circuit was compared with that of other traditional protection schemes. The performance characteristics measured were the insertion loss (IL), total harmonic distortion (THD) and transient response time (TRT). The new protection scheme offers the lowest IL (-1.0 dB), THD (-69.8 dB) and TRT (78 ns) at 120 MHz. The pulse-echo response using a 120 MHz LiNbO3 transducer with each protection circuit was measured to validate the feasibility of the protection circuits in VHF ultrasound applications. The sensitivity and bandwidth of the transducer using the new protection circuit improved by 252.1 and 50.9 %, respectively with respect to the protection circuit using a resistor and diode pair. These results demonstrated that the new protection circuit design minimizes the IL, THD and TRT for VHF ultrasound transducer applications.

  20. Protection Circuits for Very High Frequency Ultrasound Systems

    PubMed Central

    Shung, K. Kirk

    2014-01-01

    The purpose of protection circuits in ultrasound applications is to block noise signals from the transmitter from reaching the transducer and also to prevent unwanted high voltage signals from reaching the receiver. The protection circuit using a resistor and diode pair is widely used due to its simple architecture, however, it may not be suitable for very high frequency (VHF) ultrasound transducer applications (>100 MHz) because of its limited bandwidth. Therefore, a protection circuit using MOSFET devices with unique structure is proposed in this paper. The performance of the designed protection circuit was compared with that of other traditional protection schemes. The performance characteristics measured were the insertion loss (IL), total harmonic distortion (THD) and transient response time (TRT). The new protection scheme offers the lowest IL (−1.0 dB), THD (−69.8 dB) and TRT (78 ns) at 120 MHz. The pulse-echo response using a 120 MHz LiNbO3 transducer with each protection circuit was measured to validate the feasibility of the protection circuits in VHF ultrasound applications. The sensitivity and bandwidth of the transducer using the new protection circuit improved by 252.1 and 50.9 %, respectively with respect to the protection circuit using a resistor and diode pair. These results demonstrated that the new protection circuit design minimizes the IL, THD and TRT for VHF ultrasound transducer applications. PMID:24682684

  1. 3-D ultrasound guidance of surgical robotics: a feasibility study.

    PubMed

    Pua, Eric C; Fronheiser, Matthew P; Noble, Joanna R; Light, Edward D; Wolf, Patrick D; von Allmen, Daniel; Smith, Stephen W

    2006-11-01

    Laparoscopic ultrasound has seen increased use as a surgical aide in general, gynecological, and urological procedures. The application of real-time, three-dimensional (RT3D) ultrasound to these laparoscopic procedures may increase information available to the surgeon and serve as an additional intraoperative guidance tool. The integration of RT3D with recent advances in robotic surgery also can increase automation and ease of use. In this study, a 1-cm diameter probe for RT3D has been used laparoscopically for in vivo imaging of a canine. The probe, which operates at 5 MHz, was used to image the spleen, liver, and gall bladder as well as to guide surgical instruments. Furthermore, the three-dimensional (3-D) measurement system of the volumetric scanner used with this probe was tested as a guidance mechanism for a robotic linear motion system in order to simulate the feasibility of RT3D/robotic surgery integration. Using images acquired with the 3-D laparoscopic ultrasound device, coordinates were acquired by the scanner and used to direct a robotically controlled needle toward desired in vitro targets as well as targets in a post-mortem canine. The rms error for these measurements was 1.34 mm using optical alignment and 0.76 mm using ultrasound alignment.

  2. Sealing device

    DOEpatents

    Garcia-Crespo, Andres Jose

    2013-12-10

    A sealing device for sealing a gap between a dovetail of a bucket assembly and a rotor wheel is disclosed. The sealing device includes a cover plate configured to cover the gap and a retention member protruding from the cover plate and configured to engage the dovetail. The sealing device provides a seal against the gap when the bucket assemply is subjected to a centrifugal force.

  3. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Kasdan, Harvey L. (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor)

    2016-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  4. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey (Inventor); Tai, Yu-Chong (Inventor)

    2015-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  5. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2017-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  6. PLUS: open-source toolkit for ultrasound-guided intervention systems.

    PubMed

    Lasso, Andras; Heffter, Tamas; Rankin, Adam; Pinter, Csaba; Ungi, Tamas; Fichtinger, Gabor

    2014-10-01

    A variety of advanced image analysis methods have been under the development for ultrasound-guided interventions. Unfortunately, the transition from an image analysis algorithm to clinical feasibility trials as part of an intervention system requires integration of many components, such as imaging and tracking devices, data processing algorithms, and visualization software. The objective of our paper is to provide a freely available open-source software platform-PLUS: Public software Library for Ultrasound-to facilitate rapid prototyping of ultrasound-guided intervention systems for translational clinical research. PLUS provides a variety of methods for interventional tool pose and ultrasound image acquisition from a wide range of tracking and imaging devices, spatial and temporal calibration, volume reconstruction, simulated image generation, and recording and live streaming of the acquired data. This paper introduces PLUS, explains its functionality and architecture, and presents typical uses and performance in ultrasound-guided intervention systems. PLUS fulfills the essential requirements for the development of ultrasound-guided intervention systems and it aspires to become a widely used translational research prototyping platform. PLUS is freely available as open source software under BSD license and can be downloaded from http://www.plustoolkit.org.

  7. Class-A mode-locked lasers: Fundamental solutions

    NASA Astrophysics Data System (ADS)

    Kovalev, Anton V.; Viktorov, Evgeny A.

    2017-11-01

    We consider a delay differential equation (DDE) model for mode-locked operation in class-A semiconductor lasers containing both gain and absorber sections. The material processes are adiabatically eliminated as these are considered fast in comparison to the delay time for a long cavity device. We determine the steady states and analyze their bifurcations using DDE-BIFTOOL [Engelborghs et al., ACM Trans. Math. Software 28, 1 (2002)]. Multiple forms of coexistence, transformation, and hysteretic behavior of stable steady states and fundamental periodic regimes are discussed in bifurcation diagrams.

  8. MR-guided Focused Ultrasound for Uterine Fibroids

    MedlinePlus

    ... Professions Site Index A-Z MR-guided Focused Ultrasound for Uterine Fibroids Magnetic Resonance-guided Focused Ultrasound ( ... are the limitations of MRgFUS? What is Focused Ultrasound of Uterine Fibroids? Magnetic Resonance-guided Focused Ultrasound ( ...

  9. Feasibility of contrast-enhanced ultrasound-guided biopsy of sentinel lymph nodes in dogs.

    PubMed

    Gelb, Hylton R; Freeman, Lynetta J; Rohleder, Jacob J; Snyder, Paul W

    2010-01-01

    Our goal was to develop and validate a technique to identify the sentinel lymph nodes of the mammary glands of healthy dogs with contrast-enhanced ultrasound, and evaluate the feasibility of obtaining representative samples of a sentinel lymph node under ultrasound guidance using a new biopsy device. Three healthy intact female adult hounds were anesthetized and each received an injection of octafluoropropane-filled lipid microspheres and a separate subcutaneous injection of methylene blue dye around a mammary gland. Ultrasound was then used to follow the contrast agent through the lymphatic channel to the sentinel lymph node. Lymph node biopsy was performed under ultrasound guidance, followed by an excisional biopsy of the lymph nodes and a regional mastectomy procedure. Excised tissues were submitted for histopathologic examination and evaluated as to whether they were representative of the node. The ultrasound contrast agent was easily visualized with ultrasound leading up to the sentinel lymph nodes. Eight normal lymph nodes (two inguinal, one axillary in two dogs; two inguinal in one dog) were identified and biopsied. Lymphoid tissue was obtained from all biopsy specimens. Samples from four of eight lymph nodes contained both cortical and medullary lymphoid tissue. Contrast-enhanced ultrasound can be successfully used to image and guide minimally invasive biopsy of the normal sentinel lymph nodes draining the mammary glands in healthy dogs. Further work is needed to evaluate whether this technique may be applicable in patients with breast cancer or other conditions warranting evaluation of sentinel lymph nodes in animals.

  10. Ultrasound detection of simulated intra-ocular foreign bodies by minimally trained personnel.

    PubMed

    Sargsyan, Ashot E; Dulchavsky, Alexandria G; Adams, James; Melton, Shannon; Hamilton, Douglas R; Dulchavsky, Scott A

    2008-01-01

    To test the ability of non-expert ultrasound operators of divergent backgrounds to detect the presence, size, location, and composition of foreign bodies in an ocular model. High school students (N = 10) and NASA astronauts (N = 4) completed a brief ultrasound training session which focused on basic ultrasound principles and the detection of foreign bodies. The operators used portable ultrasound devices to detect foreign objects of varying location, size (0.5-2 mm), and material (glass, plastic, metal) in a gelatinous ocular model. Operator findings were compared to known foreign object parameters and ultrasound experts (N = 2) to determine accuracy across and between groups. Ultrasound had high sensitivity (astronauts 85%, students 87%, and experts 100%) and specificity (astronauts 81%, students 83%, and experts 95%) for the detection of foreign bodies. All user groups were able to accurately detect the presence of foreign bodies in this model (astronauts 84%, students 81%, and experts 97%). Astronaut and student sensitivity results for material (64% vs. 48%), size (60% vs. 46%), and position (77% vs. 64%) were not statistically different. Experts' results for material (85%), size (90%), and position (98%) were higher; however, the small sample size precluded statistical conclusions. Ultrasound can be used by operators with varying training to detect the presence, location, and composition of intraocular foreign bodies with high sensitivity, specificity, and accuracy.

  11. Consideration on suppression of cancer cell proliferation by ultrasound exposure using sonochemical and biological measurements

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Nishimura, H.; Kawashima, N.; Takeuchi, S.

    2004-01-01

    The suppression methods of cancer cells proliferation using ultrasound exposure are investigated to develop a new minimally invasive cancer treatment method. A stainless steel vibrating plate with a Langevin type transducer is attached to the bottom of a water tank of the ultrasound exposure system used in this study. Ultrasound was irradiated to cancer cells of mouse T lymphoma (EL-4) in a flask. A decreasing tendency of the number of viable cancer cells exposed to ultrasound of 150 kHz and acoustic intensity ISPTP of 750 mW/cm2 was confirmed in the culturing process. Then, the suppression mechanism of cancer cell proliferation by ultrasound exposure was considered through confirmation of apoptosis and necrosis with the exposed cancer cells by electrophoresis and enzyme activity measurements. It was found that the apoptosis was induced on the cancer cells after ultrasound exposure. We confirmed the generation of hydroxyl radical in water in the water tank by ESR device. When the hydroxyl radicals were scavenged by adding ethanol to the culture medium for cancer cells, the apoptosis was not induced and proliferation was not suppressed. Therefore, we found that generation of activated oxygen in the culturing medium by ultrasound exposure was caused to apoptosis induction and suppression of cancer cell proliferation. We will present the results of above consideration in this conference.

  12. Quantitative Ultrasound Backscatter for Pulsed Cavitational Ultrasound Therapy—Histotripsy

    PubMed Central

    Wang, Tzu-Yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L.; Fowlkes, J. Brian; Rothman, Edward D.; Roberts, William W.; Cain, Charles A.

    2011-01-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs. This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology. Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated. PMID:19750596

  13. Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy- histotripsy.

    PubMed

    Wang, Tzu-yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L; Fowlkes, J Brian; Rothman, Edward D; Roberts, William W; Cain, Charles A

    2009-05-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs.This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology.Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated.

  14. Resonant nonlinear ultrasound spectroscopy

    DOEpatents

    Johnson, Paul A.; TenCate, James A.; Guyer, Robert A.; Van Den Abeele, Koen E. A.

    2001-01-01

    Components with defects are identified from the response to strains applied at acoustic and ultrasound frequencies. The relative resonance frequency shift .vertline..DELTA..function./.function..sub.0.vertline., is determined as a function of applied strain amplitude for an acceptable component, where .function..sub.0 is the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak of a selected mode to determine a reference relationship. Then, the relative resonance frequency shift .vertline..DELTA..function./.function..sub.0 is determined as a function of applied strain for a component under test, where fo .function..sub.0 the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak to determine a quality test relationship. The reference relationship is compared with the quality test relationship to determine the presence of defects in the component under test.

  15. Ultrasound induced cancer immunotherapy.

    PubMed

    Unga, Johan; Hashida, Mitsuru

    2014-06-01

    Recently, the use of ultrasound (US) has been shown to have potential in cancer immunotherapy. High intensity focused US destruction of tumors may lead to immunity forming in situ in the body by immune cells being exposed to the tumor debris and immune stimulatory substances that are present in the tumor remains. Another way of achieving anti-cancer immune responses is by using US in combination with microbubbles and nanobubbles to deliver genes and antigens into cells. US leads to bubble destruction and the forces released to direct delivery of the substances into the cytoplasm of the cells thus circumventing the natural barriers. In this way tumor antigens and antigen-encoding genes can be delivered to immune cells and immune response stimulating genes can be delivered to cancer cells thus enhancing immune responses. Combination of bubbles with cell-targeting ligands and US provides an even more sophisticated delivery system whereby the therapy is not only site specific but also cell specific. In this review we describe how US has been used to achieve immunity and discuss the potential and possible obstacles in future development. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Broadband unidirectional ultrasound propagation

    SciTech Connect

    Sinha, Dipen N.; Pantea, Cristian

    A passive, linear arrangement of a sonic crystal-based apparatus and method including a 1D sonic crystal, a nonlinear medium, and an acoustic low-pass filter, for permitting unidirectional broadband ultrasound propagation as a collimated beam for underwater, air or other fluid communication, are described. The signal to be transmitted is first used to modulate a high-frequency ultrasonic carrier wave which is directed into the sonic crystal side of the apparatus. The apparatus processes the modulated signal, whereby the original low-frequency signal exits the apparatus as a collimated beam on the side of the apparatus opposite the sonic crystal. The sonic crystalmore » provides a bandpass acoustic filter through which the modulated high-frequency ultrasonic signal passes, and the nonlinear medium demodulates the modulated signal and recovers the low-frequency sound beam. The low-pass filter removes remaining high-frequency components, and contributes to the unidirectional property of the apparatus.« less

  17. Resonant ultrasound spectrometer

    DOEpatents

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  18. Triplet ultrasound growth parameters.

    PubMed

    Vora, Neeta L; Ruthazer, Robin; House, Michael; Chelmow, David

    2006-03-01

    To create ultrasound growth curves for normal growth of fetal triplets using statistical methodology that properly accounts for similarities of growth of fetuses within a mother as well as repeated measurements over time for each fetus. In this longitudinal study, all triplet pregnancies managed at a single tertiary center from 1992-2004 were reviewed. Fetuses with major anomalies, prior selective reduction, or fetal demise were excluded. Data from early and late gestation in which there were fewer than 30 fetal measurements available for analysis were excluded. We used multilevel models to account for variation in growth within a single fetus over time, variations in growth between multiple fetuses within a single mother, and variations in fetal growth between mothers. Medians (50th), 10th, and 90th percentiles were estimated by the creation of multiple quadratic growth models from bootstrap samples adapting a previously published method to compute prediction intervals. Estimated fetal weight was derived from Hadlock's formula. One hundred fifty triplet pregnancies were identified. Twenty-seven pregnancies were excluded for the following reasons: missing records (23), fetal demise (3), and fetal anomaly (1). The study group consisted of 123 pregnancies. The gestational age range was restricted to 14-34 weeks. Figures and tables were developed showing medians, 10th and 90th percentiles for estimated fetal weight, femur length, biparietal diameter, abdominal circumference, and head circumference. Growth curves for triplet pregnancies were derived. These may be useful for identification of abnormal growth in triplet fetuses. III.

  19. Applicator for in-vitro ultrasound-activated targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Gerold, B.; Gourevich, D.; Volovick, A.; Xu, D.; Arditti, F.; Prentice, P.; Cochran, S.; Gnaim, J.; Medan, Y.; Wang, L.; Melzer, A.

    2012-10-01

    Reducing toxicity and improving uptake of cancer drugs in tumors are important goals of targeted drug delivery (TDD). Ultrasonic drug release from various encapsulants has been a focus of many research groups. However, a single standard ultrasonic device, viable for use by biologists, is not currently present in the market. The device reported here is designed to allow investigation of the impact of ultrasound on cellular uptake and cell viability in-vitro. In it, single-element transducers with different operating frequencies are mounted below a standard 96-well plate. The plate is moved above the transducers, such that each line of wells can be sonicated at a different frequency. To assess the device, 96-well plates were seeded with cells and sonicated using different ultrasonic parameters, with and without doxorubicin. Cell viability was measured by colorimetric MTT assay and the uptake of doxorubicin by cells was also determined. The device proved to be highly viable in preliminary tests; it demonstrated that change in ultrasonic parameters produces different effect on cells. For example, increase in uptake of doxorubicin was demonstrated following ultrasound application. The growing interest in ultrasound-activated TDD emphasizes the need for standardization of the ultrasound device and the one reported here may offer some indications of how that may be achieved. It is planned to further improve the prototype by increasing the number of ultrasonic frequencies and degrees of freedom for each transducer.

  20. Passive Markers for Tracking Surgical Instruments in Real-Time 3-D Ultrasound Imaging

    PubMed Central

    Stoll, Jeffrey; Ren, Hongliang; Dupont, Pierre E.

    2013-01-01

    A family of passive echogenic markers is presented by which the position and orientation of a surgical instrument can be determined in a 3-D ultrasound volume, using simple image processing. Markers are attached near the distal end of the instrument so that they appear in the ultrasound volume along with the instrument tip. They are detected and measured within the ultrasound image, thus requiring no external tracking device. This approach facilitates imaging instruments and tissue simultaneously in ultrasound-guided interventions. Marker-based estimates of instrument pose can be used in augmented reality displays or for image-based servoing. Design principles for marker shapes are presented that ensure imaging system and measurement uniqueness constraints are met. An error analysis is included that can be used to guide marker design and which also establishes a lower bound on measurement uncertainty. Finally, examples of marker measurement and tracking algorithms are presented along with experimental validation of the concepts. PMID:22042148

  1. Compensated Row-Column Ultrasound Imaging System Using Fisher Tippett Multilayered Conditional Random Field Model

    PubMed Central

    Ben Daya, Ibrahim; Chen, Albert I. H.; Shafiee, Mohammad Javad; Wong, Alexander; Yeow, John T. W.

    2015-01-01

    3-D ultrasound imaging offers unique opportunities in the field of non destructive testing that cannot be easily found in A-mode and B-mode images. To acquire a 3-D ultrasound image without a mechanically moving transducer, a 2-D array can be used. The row column technique is preferred over a fully addressed 2-D array as it requires a significantly lower number of interconnections. Recent advances in 3-D row-column ultrasound imaging systems were largely focused on sensor design. However, these imaging systems face three intrinsic challenges that cannot be addressed by improving sensor design alone: speckle noise, sparsity of data in the imaged volume, and the spatially dependent point spread function of the imaging system. In this paper, we propose a compensated row-column ultrasound image reconstruction system using Fisher-Tippett multilayered conditional random field model. Tests carried out on both simulated and real row-column ultrasound images show the effectiveness of our proposed system as opposed to other published systems. Visual assessment of the results show our proposed system’s potential at preserving detail and reducing speckle. Quantitative analysis shows that our proposed system outperforms previously published systems when evaluated with metrics such as Peak Signal to Noise Ratio, Coefficient of Correlation, and Effective Number of Looks. These results show the potential of our proposed system as an effective tool for enhancing 3-D row-column imaging. PMID:26658577

  2. A Standard Mammography Unit - Standard 3D Ultrasound Probe Fusion Prototype: First Results.

    PubMed

    Schulz-Wendtland, Rüdiger; Jud, Sebastian M; Fasching, Peter A; Hartmann, Arndt; Radicke, Marcus; Rauh, Claudia; Uder, Michael; Wunderle, Marius; Gass, Paul; Langemann, Hanna; Beckmann, Matthias W; Emons, Julius

    2017-06-01

    The combination of different imaging modalities through the use of fusion devices promises significant diagnostic improvement for breast pathology. The aim of this study was to evaluate image quality and clinical feasibility of a prototype fusion device (fusion prototype) constructed from a standard tomosynthesis mammography unit and a standard 3D ultrasound probe using a new method of breast compression. Imaging was performed on 5 mastectomy specimens from patients with confirmed DCIS or invasive carcinoma (BI-RADS ™ 6). For the preclinical fusion prototype an ABVS system ultrasound probe from an Acuson S2000 was integrated into a MAMMOMAT Inspiration (both Siemens Healthcare Ltd) and, with the aid of a newly developed compression plate, digital mammogram and automated 3D ultrasound images were obtained. The quality of digital mammogram images produced by the fusion prototype was comparable to those produced using conventional compression. The newly developed compression plate did not influence the applied x-ray dose. The method was not more labour intensive or time-consuming than conventional mammography. From the technical perspective, fusion of the two modalities was achievable. In this study, using only a few mastectomy specimens, the fusion of an automated 3D ultrasound machine with a standard mammography unit delivered images of comparable quality to conventional mammography. The device allows simultaneous ultrasound - the second important imaging modality in complementary breast diagnostics - without increasing examination time or requiring additional staff.

  3. Glass-windowed ultrasound transducers.

    PubMed

    Yddal, Tostein; Gilja, Odd Helge; Cochran, Sandy; Postema, Michiel; Kotopoulis, Spiros

    2016-05-01

    In research and industrial processes, it is increasingly common practice to combine multiple measurement modalities. Nevertheless, experimental tools that allow the co-linear combination of optical and ultrasonic transmission have rarely been reported. The aim of this study was to develop and characterise a water-matched ultrasound transducer architecture using standard components, with a central optical window larger than 10 mm in diameter allowing for optical transmission. The window can be used to place illumination or imaging apparatus such as light guides, miniature cameras, or microscope objectives, simplifying experimental setups. Four design variations of a basic architecture were fabricated and characterised with the objective to assess whether the variations influence the acoustic output. The basic architecture consisted of a piezoelectric ring and a glass disc, with an aluminium casing. The designs differed in piezoelectric element dimensions: inner diameter, ID=10 mm, outer diameter, OD=25 mm, thickness, TH=4 mm or ID=20 mm, OD=40 mm, TH=5 mm; glass disc dimensions OD=20-50 mm, TH=2-4 mm; and details of assembly. The transducers' frequency responses were characterised using electrical impedance spectroscopy and pulse-echo measurements, the acoustic propagation pattern using acoustic pressure field scans, the acoustic power output using radiation force balance measurements, and the acoustic pressure using a needle hydrophone. Depending on the design and piezoelectric element dimensions, the resonance frequency was in the range 350-630 kHz, the -6 dB bandwidth was in the range 87-97%, acoustic output power exceeded 1 W, and acoustic pressure exceeded 1 MPa peak-to-peak. 3D stress simulations were performed to predict the isostatic pressure required to induce material failure and 4D acoustic simulations. The pressure simulations indicated that specific design variations could sustain isostatic pressures up to 4.8 MPa.The acoustic simulations were able to

  4. Electrochromic devices

    DOEpatents

    Allemand, Pierre M.; Grimes, Randall F.; Ingle, Andrew R.; Cronin, John P.; Kennedy, Steve R.; Agrawal, Anoop; Boulton, Jonathan M.

    2001-01-01

    An electrochromic device is disclosed having a selective ion transport layer which separates an electrochemically active material from an electrolyte containing a redox active material. The devices are particularly useful as large area architectural and automotive glazings due to there reduced back reaction.

  5. PLASMA DEVICE

    DOEpatents

    Gow, J.D.; Wilcox, J.M.

    1961-12-26

    A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)

  6. Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis.

    PubMed

    Soltani, Azita; Volz, Kim R; Hansmann, Doulas R

    2008-12-07

    The potential of ultrasound to enhance enzyme-mediated thrombolysis by application of constant operating parameters (COP) has been widely demonstrated. In this study, the effect of ultrasound with modulated operating parameters (MOP) on enzyme-mediated thrombolysis was investigated. The MOP protocol was applied to an in vitro model of thrombolysis. The results were compared to a COP with the equivalent soft tissue thermal index (TIS) over the duration of ultrasound exposure of 30 min (p < 0.14). To explore potential differences in the mechanism responsible for ultrasound-induced thrombolysis, a perfusion model was used to measure changes in average fibrin pore size of clot before, after and during exposure to MOP and COP protocols and cavitational activity was monitored in real time for both protocols using a passive cavitation detection system. The relative lysis enhancement by each COP and MOP protocol compared to alteplase alone yielded values of 33.69 +/- 12.09% and 63.89 +/- 15.02% in a thrombolysis model, respectively (p < 0.007). Both COP and MOP protocols caused an equivalent significant increase in average clot pore size of 2.09 x 10(-2) +/- 0.01 microm and 1.99 x 10(-2) +/- 0.004 microm, respectively (p < 0.74). No signatures of inertial or stable cavitation were observed for either acoustic protocol. In conclusion, due to mechanisms other than cavitation, application of ultrasound with modulated operating parameters has the potential to significantly enhance the relative lysis enhancement compared to application of ultrasound with constant operating parameters.

  7. [Ultrasound-guided peripheral catheterization].

    PubMed

    Salleras-Duran, Laia; Fuentes-Pumarola, Concepció

    2016-01-01

    Peripheral catheterization is a technique that can be difficult in some patients. Some studies have recently described the use of ultrasound to guide the venous catheterization. To describe the success rate, time required, complications of ultrasound-guided peripheral venous catheterization. and patients and professionals satisfaction The search was performed in databases (Medline-PubMed, Cochrane Library, CINAHL and Cuiden Plus) for studies published about ultrasound-guided peripheral venous catheterization performed on patients that provided results on the success of the technique, complications, time used, patient satisfaction and the type of professional who performed the technique. A total of 21 studies were included. Most of them get a higher success rate 80% in the catheterization ecoguide and time it is not higher than the traditional technique. The Technical complications analyzed were arterial puncture rates and lower nerve 10%. In all studies measuring and comparing patient satisfaction in the art ecoguide is greater. Various professional groups perform the technique. The use of ultrasound for peripheral pipes has a high success rate, complications are rare and the time used is similar to that of the traditional technique. The technique of inserting catheters through ultrasound may be learned by any professional group performing venipuncture. Finally, it gets underscores the high patient satisfaction with the use of this technique. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  8. [Ultrasound biomicroscopy of conjunctival lesions].

    PubMed

    Buchwald, Hans-Jürgen; Müller, Andreas; Spraul, Christoph W; Lang, Gerhard K

    2003-01-01

    The value of ultrasound biomicroscopy in the diagnosis of conjunctival lesions is not well established. For the examination of conjunctival lesions, we used an ultrasound biomicroscope (Humphrey, Zeiss, Oberkochen) with a high frequency transducer (30 MHz). Between January 2000 and August 2001, 28 patients (16 female, 12-male) with conjunctival lesions, aged 9 to 81 years, were available for this study. Histological examination of the excised tissue displayed the presence of a compound naevus (8/28), cysts (6/28), inflammatory processes (3/28), granulomatous processes (2/28), lymphomas (2/28), foreign bodies (2/28), a pterygium (2/28), a malignant melanoma (1/28), a primary acquired melanosis (1/28), and a conjunctival amyloidosis (1/28). Using ultrasound biomicroscopy we were able to demonstrate a cystic tumour in the six patients (21 %) with a cyst of the conjunctiva. In patients suffering from solid tumours of the conjunctiva the definite diagnosis could not be made with ultrasound biomicroscopy alone. The eight patients with compound naevus displayed a somewhat heterogeneous sonographic structure within the tumour. In the patient with a foreign body we were able to demonstrate posterior shadowing of the underlying tissue. For evaluation of conjunctival lesions caused by a cyst or a solid tumour, ultrasound biomicroscopy may be an additional diagnostic tool, e. g. for assessing the margins of the tumour. However, up to now it is not possible to differentiate between different lesions solely by means of ultrasonography.

  9. QUS devices for assessment of osteoporosis

    NASA Astrophysics Data System (ADS)

    Langton, Christian

    2002-05-01

    The acronym QUS (Quantitative Ultrasound) is now widely used to describe ultrasound assessment of osteoporosis, a disease primarily manifested by fragility fractures of the wrist and hip along with shortening of the spine. There is currently available a plethora of commercial QUS devices, measuring various anatomic sites including the heel, finger, and tibia. Largely through commercial rather than scientific drivers, the parameters reported often differ significantly from the two fundamental parameters of velocity and attenuation. Attenuation at the heel is generally reported as BUA (broadband ultrasound attenuation, the linearly regressed increase in attenuation between 200 and 600 kHz). Velocity derivatives include bone, heel, TOF, and AdV. Further, velocity and BUA parameters may be mathematically combined to provide proprietary parameters including ``stiffness'' and ``QUI.'' In terms of clinical utility, the situation is further complicated by ultrasound being inherently dependent upon ``bone quality'' (e.g., structure) in addition to ``bone quantity'' (generally expressed as BMD, bone mineral density). Hence the BMD derived WHO criteria for osteoporosis and osteopenia may not be directly applied to QUS. There is therefore an urgent need to understand the fundamental dependence of QUS parameters, to perform calibration and cross-correlation studies of QUS devices, and to define its clinical utility.

  10. Ultrasound: Renal (Kidneys, Ureters, Bladder) (For Parents)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Ultrasound: Renal (Kidneys, Ureters, Bladder) KidsHealth / For Parents / Ultrasound: Renal (Kidneys, Ureters, Bladder) What's in this article? ...

  11. In-line positioning of ultrasound images using wireless remote display system with tablet computer facilitates ultrasound-guided radial artery catheterization.

    PubMed

    Tsuchiya, Masahiko; Mizutani, Koh; Funai, Yusuke; Nakamoto, Tatsuo

    2016-02-01

    Ultrasound-guided procedures may be easier to perform when the operator's eye axis, needle puncture site, and ultrasound image display form a straight line in the puncture direction. However, such methods have not been well tested in clinical settings because that arrangement is often impossible due to limited space in the operating room. We developed a wireless remote display system for ultrasound devices using a tablet computer (iPad Mini), which allows easy display of images at nearly any location chosen by the operator. We hypothesized that the in-line layout of ultrasound images provided by this system would allow for secure and quick catheterization of the radial artery. We enrolled first-year medical interns (n = 20) who had no prior experience with ultrasound-guided radial artery catheterization to perform that using a short-axis out-of-plane approach with two different methods. With the conventional method, only the ultrasound machine placed at the side of the head of the patient across the targeted forearm was utilized. With the tablet method, the ultrasound images were displayed on an iPad Mini positioned on the arm in alignment with the operator's eye axis and needle puncture direction. The success rate and time required for catheterization were compared between the two methods. Success rate was significantly higher (100 vs. 70 %, P = 0.02) and catheterization time significantly shorter (28.5 ± 7.5 vs. 68.2 ± 14.3 s, P < 0.001) with the tablet method as compared to the conventional method. An ergonomic straight arrangement of the image display is crucial for successful and quick completion of ultrasound-guided arterial catheterization. The present remote display system is a practical method for providing such an arrangement.

  12. Sterile working in ultrasonography: the use of dedicated ultrasound covers and sterile ultrasound gel.

    PubMed

    Marhofer, Peter; Fritsch, Gerhard

    2015-01-01

    Ultrasound is currently an important tool for diagnostic and interventional procedures. Ultrasound imaging provides significant advantages as compared to other imaging methods. The widespread use of ultrasound also carries the risk of drawbacks such as cross-infections. A large body of literature reports this possibly life-threatening side effect and specific patient populations are particularly at risk (e.g., neonates). Various methods of ultrasound probe disinfection are described; however, none of the mechanical or chemical probe disinfection procedures is optimal and, in particular, disinfection with high concentration of alcohol might be associated with ultrasound probe damage. The preparation of ultrasound probes with dedicated probe covers is a useful alternative for sterile working conditions. One ultrasound probe cover discussed in this paper is directly glued on to the ultrasound probe without the use of ultrasound coupling gel. By the use of sterile ultrasound coupling gel at the outer surface, additional effects on aseptic working conditions can be obtained.

  13. High-intensity therapeutic ultrasound: metrological requirements versus clinical usage

    NASA Astrophysics Data System (ADS)

    Aubry, J.-F.

    2012-10-01

    High-intensity therapeutic ultrasound (HITU) is an appealing non-invasive, non-ionizing therapeutic modality with a wide range of tissue interactions ranging from transient permeabilization of cell membranes to thermal ablation. The ability to guide and monitor the treatment with an associated ultrasonic or magnetic resonance imaging device has resulted in a dramatic rise in the clinical use of therapeutic ultrasound in the past two decades. Nevertheless, the range of clinical applications and the number of patients treated has grown at a much higher pace than the definition of standards. In this paper the metrological requirements of the therapeutic beams are reviewed and are compared with the current clinical use of image-guided HITU mostly based on a practical approach. Liver therapy, a particularly challenging clinical application, is discussed to highlight the differences between some complex clinical situations and the experimental conditions of the metrological characterization of ultrasonic transducers.

  14. Dual-frequency ultrasound for detecting and sizing bubbles.

    PubMed

    Buckey, Jay C; Knaus, Darin A; Alvarenga, Donna L; Kenton, Marc A; Magari, Patrick J

    2005-01-01

    ISS construction and Mars exploration require extensive extravehicular activity (EVA), exposing crewmembers to increased decompression sickness risk. Improved bubble detection technologies could help increase EVA efficiency and safety. Creare Inc. has developed a bubble detection and sizing instrument using dual-frequency ultrasound. The device emits "pump" and "image" signals at two frequencies. The low-frequency pump signal causes an appropriately-sized bubble to resonate. When the image frequency hits a resonating bubble, mixing signals are returned at the sum and difference of the two frequencies. To test the feasibility of transcutaneous intravascular detection, intravascular bubbles in anesthetized swine were produced using agitated saline and decompression stress. Ultrasonic transducers on the chest provided the two frequencies. Mixing signals were detected transthoracically in the right atrium using both methods. A histogram of estimated bubble sizes could be constructed. Bubbles can be detected and sized transthoracically in the right atrium using dual-frequency ultrasound. c2005 Elsevier Ltd. All rights reserved.

  15. Ultrasound diagnosis of penile fracture.

    PubMed

    Nomura, Jason T; Sierzenski, Paul R

    2010-04-01

    Rupture of the corpus cavernosum, penile fracture, is an uncommon occurrence. Diagnosis is straightforward when classical historical and physical examination findings are present. However, atypical presentations can make the diagnosis difficult. Review the literature supporting use of ultrasound for the diagnosis of penile fracture. Review of the ultrasonographic findings in patients with penile fracture. A 32-year-old man presented with penile ecchymosis after sex but lacking several historical and physical examination elements for a diagnosis of penile fracture. Ultrasound performed by the treating physician revealed rupture of the tunica albuginea and presence of a hematoma, leading to a diagnosis of penile fracture. Ultrasound is a simple, efficient, and non-invasive imaging method to assist in the diagnosis of penile fracture. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Ultrasound: From Earth to Space

    PubMed Central

    Law, Jennifer; Macbeth, Paul. B.

    2011-01-01

    Ultrasonography is a versatile imaging modality that offers many advantages over radiography, computed tomography, and magnetic resonance imaging. On Earth, the use of ultrasound has become standard in many areas of medicine including diagnosis of medical and surgical diseases, management of obstetric and gynecologic conditions, assessment of critically ill patients, and procedural guidance. Advances in telecommunications have enabled remotely-guided ultrasonography for both geographically isolated populations and astronauts aboard the International Space Station. While ultrasound has traditionally been used in spaceflight to study anatomical and physiological adaptations to microgravity and evaluate countermeasures, recent years have seen a growth of applications adapted from terrestrial techniques. Terrestrial, remote, and space applications for ultrasound are reviewed in this paper. PMID:22399873

  17. Ultrasound tissue analysis and characterization

    NASA Astrophysics Data System (ADS)

    Kaufhold, John; Chan, Ray C.; Karl, William C.; Castanon, David A.

    1999-07-01

    On the battlefield of the future, it may become feasible for medics to perform, via application of new biomedical technologies, more sophisticated diagnoses and surgery than is currently practiced. Emerging biomedical technology may enable the medic to perform laparoscopic surgical procedures to remove, for example, shrapnel from injured soldiers. Battlefield conditions constrain the types of medical image acquisition and interpretation which can be performed. Ultrasound is the only viable biomedical imaging modality appropriate for deployment on the battlefield -- which leads to image interpretation issues because of the poor quality of ultrasound imagery. To help overcome these issues, we develop and implement a method of image enhancement which could aid non-experts in the rapid interpretation and use of ultrasound imagery. We describe an energy minimization approach to finding boundaries in medical images and show how prior information on edge orientation can be incorporated into this framework to detect tissue boundaries oriented at a known angle.

  18. Material characterization using ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Falardeau, Timothe; Belanger, Pierre

    2018-04-01

    Characterization of material properties can be performed using a wide array of methods e.g. X-ray diffraction or tensile testing. Each method leads to a limited set of material properties. This paper is interested in using ultrasound tomography to map speed of sound inside a material sample. The velocity inside the sample is directly related to its elastic properties. Recent develop-ments in ultrasound diffraction tomography have enabled velocity mapping of high velocity contrast objects using a combination of bent-ray time-of-flight tomography and diffraction tomography. In this study, ultrasound diffraction tomography was investigated using simulations in human bone phantoms. A finite element model was developed to assess the influence of the frequency, the number of transduction positions and the distance from the sample as well as to adapt the imaging algorithm. The average velocity in both regions of the bone phantoms were within 5% of the true value.

  19. Ultrasound: from Earth to space.

    PubMed

    Law, Jennifer; Macbeth, Paul B

    2011-06-01

    Ultrasonography is a versatile imaging modality that offers many advantages over radiography, computed tomography, and magnetic resonance imaging. On Earth, the use of ultrasound has become standard in many areas of medicine including diagnosis of medical and surgical diseases, management of obstetric and gynecologic conditions, assessment of critically ill patients, and procedural guidance. Advances in telecommunications have enabled remotely-guided ultrasonography for both geographically isolated populations and astronauts aboard the International Space Station. While ultrasound has traditionally been used in spaceflight to study anatomical and physiological adaptations to microgravity and evaluate countermeasures, recent years have seen a growth of applications adapted from terrestrial techniques. Terrestrial, remote, and space applications for ultrasound are reviewed in this paper.

  20. Ultrasound Imaging Velocimetry: a review

    NASA Astrophysics Data System (ADS)

    Poelma, Christian

    2017-01-01

    Whole-field velocity measurement techniques based on ultrasound imaging (a.k.a. `ultrasound imaging velocimetry' or `echo-PIV') have received significant attention from the fluid mechanics community in the last decade, in particular because of their ability to obtain velocity fields in flows that elude characterisation by conventional optical methods. In this review, an overview is given of the history, typical components and challenges of these techniques. The basic principles of ultrasound image formation are summarised, as well as various techniques to estimate flow velocities; the emphasis is on correlation-based techniques. Examples are given for a wide range of applications, including in vivo cardiovascular flow measurements, the characterisation of sediment transport and the characterisation of complex non-Newtonian fluids. To conclude, future opportunities are identified. These encompass not just optimisation of the accuracy and dynamic range, but also extension to other application areas.

  1. Power ultrasound in meat processing.

    PubMed

    Alarcon-Rojo, A D; Janacua, H; Rodriguez, J C; Paniwnyk, L; Mason, T J

    2015-09-01

    Ultrasound has a wide range of applications in various agricultural sectors. In food processing, it is considered to be an emerging technology with the potential to speed up processes without damaging the quality of foodstuffs. Here we review the reports on the applications of ultrasound specifically with a view to its use in meat processing. Emphasis is placed on the effects on quality and technological properties such as texture, water retention, colour, curing, marinating, cooking yield, freezing, thawing and microbial inhibition. After the literature review it is concluded that ultrasound is a useful tool for the meat industry as it helps in tenderisation, accelerates maturation and mass transfer, reduces cooking energy, increases shelf life of meat without affecting other quality properties, improves functional properties of emulsified products, eases mould cleaning and improves the sterilisation of equipment surfaces. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Development and implementation of ultrasound picture archiving and communication system

    NASA Astrophysics Data System (ADS)

    Weinberg, Wolfram S.; Tessler, Franklin N.; Grant, Edward G.; Kangarloo, Hooshang; Huang, H. K.

    1990-08-01

    The Department of Radiological Sciences at the UCLA School of Medicine is developing an archiving and communication system (PACS) for digitized ultrasound images. In its final stage the system will involve the acquisition and archiving of ultrasound studies from four different locations including the Center for Health Sciences, the Department for Mental Health and the Outpatient Radiology and Endoscopy Departments with a total of 200-250 patient studies per week. The concept comprises two stages of image manipulation for each ultrasound work area. The first station is located close to the examination site and accomodates the acquisition of digital images from up to five ultrasound devices and provides for instantaneous display and primary viewing and image selection. Completed patient studies are transferred to a main workstation for secondary review, further analysis and comparison studies. The review station has an on-line storage capacity of 10,000 images with a resolution of 512x512 8 bit data to allow for immediate retrieval of active patient studies of up to two weeks. The main work stations are connected through the general network and use one central archive for long term storage and a film printer for hardcopy output. First phase development efforts concentrate on the implementation and testing of a system at one location consisting of a number of ultrasound units with video digitizer and network interfaces and a microcomputer workstation as host for the display station with two color monitors, each allowing simultaneous display of four 512x512 images. The discussion emphasizes functionality, performance and acceptance of the system in the clinical environment.

  3. Determination of lesion size by ultrasound during radiofrequency catheter ablation.

    PubMed

    Awad, S; Eick, O

    2003-01-01

    The catheter tip temperature that is used to control the radiofrequency generator output poorly correlates to lesion size. We, therefore, evaluated lesions created in vitro using a B-mode ultrasound imaging device as a potential means to assess lesion generation during RF applications non-invasively. Porcine ventricular tissue was immersed in saline solution at 37 degrees C. The catheter was fixed in a holder and positioned in a parallel orientation to the tissue with an array transducer (7.5 MHz) app. 3 cm above the tissue. Lesions were produced either in a temperature controlled mode with a 4-mm tip catheter with different target temperatures (50, 60, 70 and 80 degrees C, 80 W maximum output) or in a power controlled mode (25, 50 and 75 W, 20 ml/min irrigation flow) using an irrigated tip catheter. Different contact forces (0.5 N, 1.0 N) were tested, and RF was delivered for 60 s. A total of 138 lesions was produced. Out of these, 128 could be identified on the ultrasound image. The lesion depth and volume was on average 4.1 +/- 1.6 mm and 52 +/- 53 mm3 as determined by ultrasound and 3.9 +/- 1.7 mm and 52 +/- 55 mm3 as measured thereafter, respectively. A linear correlation between the lesion size determined by ultrasound and that measured thereafter was demonstrated with a correlation coefficient of r = 0.87 for lesion depth and r = 0.93 for lesion volume. We conclude that lesions can be assessed by B-mode ultrasound imaging.

  4. Medical Imaging with Ultrasound: Some Basic Physics.

    ERIC Educational Resources Information Center

    Gosling, R.

    1989-01-01

    Discussed are medical applications of ultrasound. The physics of the wave nature of ultrasound including its propagation and production, return by the body, spatial and contrast resolution, attenuation, image formation using pulsed echo ultrasound techniques, measurement of velocity and duplex scanning are described. (YP)

  5. Ultrasound technology: A decision-making tool

    USDA-ARS?s Scientific Manuscript database

    An ultrasound demonstration was conducted for participants (~ 110 people) of the Arkansas Cattle Grower’s Conference, Hope, AR. Evaluation of live animals with ultrasound technology allows beef producers the ability to make selection and management decisions. Specifically, ultrasound at the conclu...

  6. Ultrasound field measurement using a binary lens

    PubMed Central

    Clement, G.T.; Nomura, H.; Kamakura, T.

    2014-01-01

    Field characterization methods using a scattering target in the absence of a point-like receiver have been well described in which scattering is recorded by a relatively large receiver located outside the field of measurement. Unfortunately, such methods are prone to artifacts due to averaging across the receiver surface. To avoid this problem while simultaneously increasing the gain of a received signal, the present study introduces a binary plate lens designed to focus spherically-spreading waves onto a planar region having a nearly-uniform phase proportional to that of the target location. The lens is similar to a zone plate, but modified to produce a biconvex-like behavior, such that it focuses both planar and spherically spreading waves. A measurement device suitable for characterizing narrowband ultrasound signals in air is designed around this lens by coupling it to a target and planar receiver. A prototype device is constructed and used to characterize the field of a highly-focused 400 kHz air transducer along 2 radial lines. Comparison of the measurements with numeric predictions formed from nonlinear acoustic simulation showed good relative pressure correlation, with mean differences of 10% and 12% over center 3dB FWHM drop and 12% and 17% over 6dB. PMID:25643084

  7. Intraoperative ultrasound of the pancreas.

    PubMed

    Shin, Lewis K; Brant-Zawadzki, Graham; Kamaya, Aya; Jeffrey, R Brooke

    2009-03-01

    Intraoperative ultrasound provides spatial resolution of the pancreas superior to computed tomography, magnetic resonance imaging, and transabdominal sonography. This pictorial essay will review common benign and malignant pancreatic processes including the following: pancreatic ductal adenocarcinoma, pancreatitis, endocrine tumors, mucinous cystic neoplasm, intraductal papillary mucinous neoplasm, serous cystadenoma, and solid pseudopapillary tumor. The use of intraoperative ultrasound in specific surgical situations will be discussed, which include the following: (1) identification of insulinoma(s) which are not detectable preoperatively, (2) identification of the pancreatic duct to determine dissection planes for chronic pancreatitis surgery (eg, Puestow procedure) and for tumor resection, and (3) staging purposes for malignant disease.

  8. Ultrasound Diagnosis of Penile Fracture.

    PubMed

    Nizamani, Waseem Mehmood; Ali, Syed Imtiaz; Vaswani, Aneel Kumar; Shahani, Bhesham Kumar

    2015-10-01

    A rare but possibly underreported urological emergency is penile fracture which results from tear in the tunica albuginea of the penis. The proposed etiology is forceful manipulation of an erect penis or secondary to blunt trauma. We would like to report a case of young patient presenting with large penile shaft hematoma and deformity. The patient did not provide obvious history of trauma or sexual intercourse. The ultrasound of penis was performed which suggested the diagnosis of penile fracture and ultrasound findings were correlated with peroperative findings.

  9. [The use of intraoperative Doppler ultrasound in endoscopic transsphenoidal surgery].

    PubMed

    Sharipov, O I; Kutin, M A; Kalinin, P L; Fomichev, D V; Lukshin, V A; Kurnosov, A B

    2016-01-01

    Doppler ultrasound (DUS) has been widely used in neurosurgical practice to diagnose various cerebrovascular diseases. This technique is used in transsphenoidal surgery to identify the localization of intracranial arteries when making an approach or during tumor resection. To identify the cavernous segment of the internal carotid artery (ICA) and/or basilar artery during endoscopic transsphenoidal surgery, we used a combined device on the basis of a click line curette («Karl Storz») and a 16 MHz Doppler probe (Lassamed). The technique was used in 51 patients during both standard transsphenoidal surgery (23 cases) and transsphenoidal tumor resection through an extended approach (28 cases). Doppler ultrasound was used in different situations: to determine a trajectory of the endonasal transsphenoidal approach in the absence of the normal anatomical landmarks (16 cases), to define the limits of safe resection of a tumor located in the laterosellar region (7), and to implement an extended transsphenoidal endoscopic approach (28). Intraoperative Doppler ultrasound enabled identification of the cavernous segment of the internal carotid artery in 45 cases and the basilar artery in 2 cases; a blood vessel was not found in 4 cases. Injury to the cavernous segment of the internal carotid artery was observed only in 1 case. The use of the described combined device in transsphenoidal surgery turned Doppler ultrasound into an important and useful technique for visualization of the ICA within the tumor stroma as well as in the case of the changed skull base anatomy. Its use facilitates manipulations in a deep and narrow wound and enables inspection of the entire surface of the operative field in various planes, thereby surgery becomes safer due to the possibility of maximum investigation of the operative field.

  10. Ultrasound therapy applicators for controlled thermal modification of tissue

    NASA Astrophysics Data System (ADS)

    Burdette, E. Clif; Lichtenstiger, Carol; Rund, Laurie; Keralapura, Mallika; Gossett, Chad; Stahlhut, Randy; Neubauer, Paul; Komadina, Bruce; Williams, Emery; Alix, Chris; Jensen, Tor; Schook, Lawrence; Diederich, Chris J.

    2011-03-01

    Heat therapy has long been used for treatments in dermatology and sports medicine. The use of laser, RF, microwave, and more recently, ultrasound treatment, for psoriasis, collagen reformation, and skin tightening has gained considerable interest over the past several years. Numerous studies and commercial devices have demonstrated the efficacy of these methods for treatment of skin disorders. Despite these promising results, current systems remain highly dependent on operator skill, and cannot effectively treat effectively because there is little or no control of the size, shape, and depth of the target zone. These limitations make it extremely difficult to obtain consistent treatment results. The purpose of this study was to determine the feasibility for using acoustic energy for controlled dose delivery sufficient to produce collagen modification for the treatment of skin tissue in the dermal and sub-dermal layers. We designed and evaluated a curvilinear focused ultrasound device for treating skin disorders such as psoriasis, stimulation of wound healing, tightening of skin through shrinkage of existing collagen and stimulation of new collagen formation, and skin cancer. Design parameters were examined using acoustic pattern simulations and thermal modeling. Acute studies were performed in 201 freshly-excised samples of young porcine underbelly skin tissue and 56 in-vivo treatment areas in 60- 80 kg pigs. These were treated with ultrasound (9-11MHz) focused in the deep dermis. Dose distribution was analyzed and gross pathology assessed. Tissue shrinkage was measured based on fiducial markers and video image registration and analyzed using NIH Image-J software. Comparisons were made between RF and focused ultrasound for five energy ranges. In each experimental series, therapeutic dose levels (60degC) were attained at 2-5mm depth. Localized collagen changes ranged from 1-3% for RF versus 8-15% for focused ultrasound. Therapeutic ultrasound applied at high

  11. Research interface on a programmable ultrasound scanner.

    PubMed

    Shamdasani, Vijay; Bae, Unmin; Sikdar, Siddhartha; Yoo, Yang Mo; Karadayi, Kerem; Managuli, Ravi; Kim, Yongmin

    2008-07-01

    Commercial ultrasound machines in the past did not provide the ultrasound researchers access to raw ultrasound data. Lack of this ability has impeded evaluation and clinical testing of novel ultrasound algorithms and applications. Recently, we developed a flexible ultrasound back-end where all the processing for the conventional ultrasound modes, such as B, M, color flow and spectral Doppler, was performed in software. The back-end has been incorporated into a commercial ultrasound machine, the Hitachi HiVision 5500. The goal of this work is to develop an ultrasound research interface on the back-end for acquiring raw ultrasound data from the machine. The research interface has been designed as a software module on the ultrasound back-end. To increase the amount of raw ultrasound data that can be spooled in the limited memory available on the back-end, we have developed a method that can losslessly compress the ultrasound data in real time. The raw ultrasound data could be obtained in any conventional ultrasound mode, including duplex and triplex modes. Furthermore, use of the research interface does not decrease the frame rate or otherwise affect the clinical usability of the machine. The lossless compression of the ultrasound data in real time can increase the amount of data spooled by approximately 2.3 times, thus allowing more than 6s of raw ultrasound data to be acquired in all the modes. The interface has been used not only for early testing of new ideas with in vitro data from phantoms, but also for acquiring in vivo data for fine-tuning ultrasound applications and conducting clinical studies. We present several examples of how newer ultrasound applications, such as elastography, vibration imaging and 3D imaging, have benefited from this research interface. Since the research interface is entirely implemented in software, it can be deployed on existing HiVision 5500 ultrasound machines and may be easily upgraded in the future. The developed research

  12. Impact of ultrasound video transfer on the practice of ultrasound

    NASA Astrophysics Data System (ADS)

    Duerinckx, Andre J.; Hayrapetian, Alek S.; Grant, Edward G.; Valentino, Daniel J.; Rahbar, Darius; Kiszonas, Mike; Franco, Ricky; Melany, Michelle; Narin, Sherelle L.; Ragavendra, Nagesh

    1996-05-01

    Sonography can be highly dependent on real-time imaging and as such is highly physician intensive. Such situations arise mostly during complicated ultrasound radiology studies or echocardiology examinations. Under those circumstances it would be of benefit to transmit real-time images beyond the immediate area of the ultrasound laboratory when a physician is not on location. We undertook this study to determine if both static and dynamic image transfer to remote locations might be accomplished using an ultrafast ATM network and PACS. Image management of the local image files was performed by a commercial PACS from AGFA corporation. The local network was Ethernet based, and the global network was based on Asynchronous Transfer Mode (ATM, rates up to 100 Mbits/sec). Real-time image transfer involved two teaching hospitals, one of which had 2 separate ultrasound facilities. Radiologists consulted with technologists via telephone while the examinations were being performed. The applications of ATM network providing real time video for ultrasound imaging in a clinical environment and its potential impact on health delivery and clinical teaching. This technology increased technologist and physician productivity due to the elimination of commute time for physicians and waiting time for technologists and patients. Physician confidence in diagnosis increased compared to reviewing static images alone. This system provided instant access for radiologists to real-time scans from remote sites. Image quality and frame rate were equivalent to the original. The system increased productivity by allowing physicians to monitor studies at multiple sites simultaneously.

  13. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    SciTech Connect

    O’Reilly, Meaghan A., E-mail: moreilly@sri.utoront

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to themore » ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.« less

  14. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array.

    PubMed

    O'Reilly, Meaghan A; Jones, Ryan M; Birman, Gabriel; Hynynen, Kullervo

    2016-09-01

    Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.

  15. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    PubMed Central

    O’Reilly, Meaghan A.; Jones, Ryan M.; Birman, Gabriel; Hynynen, Kullervo

    2016-01-01

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available. PMID:27587036

  16. Catalytic devices

    DOEpatents

    Liu, Ming; Zhang, Xiang

    2018-01-23

    This disclosure provides systems, methods, and apparatus related to catalytic devices. In one aspect, a device includes a substrate, an electrically insulating layer disposed on the substrate, a layer of material disposed on the electrically insulating layer, and a catalyst disposed on the layer of material. The substrate comprises an electrically conductive material. The substrate and the layer of material are electrically coupled to one another and configured to have a voltage applied across them.

  17. MRI-powered biomedical devices.

    PubMed

    Hovet, Sierra; Ren, Hongliang; Xu, Sheng; Wood, Bradford; Tokuda, Junichi; Tse, Zion Tsz Ho

    2017-11-16

    Magnetic resonance imaging (MRI) is beneficial for imaging-guided procedures because it provides higher resolution images and better soft tissue contrast than computed tomography (CT), ultrasound, and X-ray. MRI can be used to streamline diagnostics and treatment because it does not require patients to be repositioned between scans of different areas of the body. It is even possible to use MRI to visualize, power, and control medical devices inside the human body to access remote locations and perform minimally invasive procedures. Therefore, MR conditional medical devices have the potential to improve a wide variety of medical procedures; this potential is explored in terms of practical considerations pertaining to clinical applications and the MRI environment. Recent advancements in this field are introduced with a review of clinically relevant research in the areas of interventional tools, endovascular microbots, and closed-loop controlled MRI robots. Challenges related to technology and clinical feasibility are discussed, including MRI based propulsion and control, navigation of medical devices through the human body, clinical adoptability, and regulatory issues. The development of MRI-powered medical devices is an emerging field, but the potential clinical impact of these devices is promising.

  18. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  19. Counterbalancing the use of ultrasound contrast agents by a cavitation-regulated system.

    PubMed

    Desjouy, C; Fouqueray, M; Lo, C W; Muleki Seya, P; Lee, J L; Bera, J C; Chen, W S; Inserra, C

    2015-09-01

    The stochastic behavior of cavitation can lead to major problems of initiation and maintenance of cavitation during sonication, responsible of poor reproducibility of US-induced bioeffects in the context of sonoporation for instance. To overcome these disadvantages, the injection of ultrasound contrast agents as cavitation nuclei ensures fast initiation and lower acoustic intensities required for cavitation activity. More recently, regulated-cavitation devices based on the real-time modulation of the applied acoustic intensity have shown their potential to maintain a stable cavitation state during an ultrasonic shot, in continuous or pulsed wave conditions. In this paper is investigated the interest, in terms of cavitation activity, of using such regulated-cavitation device or injecting ultrasound contrast agents in the sonicated medium. When using fixed applied acoustic intensity, results showed that introducing ultrasound contrast agents increases reproducibility of cavitation activity (coefficient of variation 62% and 22% without and with UCA, respectively). Moreover, the use of the regulated-cavitation device ensures a given cavitation activity (coefficient of variation less 0.4% in presence of UCAs or not). This highlights the interest of controlling cavitation over time to free cavitation-based application from the use of UCAs. Interestingly, during a one minute sonication, while ultrasound contrast agents progressively disappear, the regulated-cavitation device counterbalance their destruction to sustain a stable inertial cavitation activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Beating heart mitral valve repair with integrated ultrasound imaging

    NASA Astrophysics Data System (ADS)

    McLeod, A. Jonathan; Moore, John T.; Peters, Terry M.

    2015-03-01

    Beating heart valve therapies rely extensively on image guidance to treat patients who would be considered inoperable with conventional surgery. Mitral valve repair techniques including the MitrClip, NeoChord, and emerging transcatheter mitral valve replacement techniques rely on transesophageal echocardiography for guidance. These images are often difficult to interpret as the tool will cause shadowing artifacts that occlude tissue near the target site. Here, we integrate ultrasound imaging directly into the NeoChord device. This provides an unobstructed imaging plane that can visualize the valve lea ets as they are engaged by the device and can aid in achieving both a proper bite and spacing between the neochordae implants. A proof of concept user study in a phantom environment is performed to provide a proof of concept for this device.

  1. Real-time monitoring of ultrasound imaging of clinical high intensity focused ultrasound (HIFU) exposures

    NASA Astrophysics Data System (ADS)

    Ter Haar, Gail; Kennedy, James; Leslie, Tom; Wu, Feng

    2005-09-01

    Currently, many clinical devices use the change in gray scale seen on a real-time ultrasound image for the assessment of the success of HIFU treatment. It has been shown previously that, for a single HIFU lesion, the presence of gray-scale change was indicative of successful ablation in 100% of cases for 1.6-MHz beams, and in 90% of cases for 0.8-MHz exposures. The absence of gray-scale change was a reliable indicator of lack of ablative damage only for 0.8-MHz exposures (80%) in 80% of exposures using 1.6-MHz beams there was a lesion even in the absence of gray-scale change. This study has been extended to more realistic clinical treatment protocols. The image appearance has been studied for the different volume ablation techniques that are used in the treatment of liver and kidney cancer. The results will be presented.

  2. Penile fracture: role of ultrasound

    PubMed Central

    Gupta, Nishant; Sharma, Komal; Bansal, Itisha; Gupta, Sonali; Li, Shuo; Zinn, Kenneth; Kumar, Yogesh

    2017-01-01

    Penile fracture is a rare surgical emergency which requires prompt diagnosis and immediate surgical repair. In most cases the diagnosis is clinical however, in equivocal cases ultrasound examination can help in establishing the diagnosis by demonstrating the site and extent of tunica albuginea disruption. In this article, we are presenting sonographic findings in two cases of penile fractures. PMID:28725601

  3. Diagnostic ultrasound exposure in man.

    PubMed

    Gramiak, R

    1975-09-01

    In his review of the AAPM statement on ultrasound, the author feels that allowing "some" research or demonstration on normal persons in the face of cautionary statements on as yet unknown side effects is an inconsistent position. The use of videotapes and the development of simulators hacked by data banks are offered in place of tissue phantoms.

  4. Medical ultrasound education for bioengineers

    NASA Astrophysics Data System (ADS)

    Vaezy, Shahram

    2005-04-01

    The widespread adoption of ultrasound technologies in medicine has necessitated the development of educational programs to address the growing demand for trained expertise in both academia and industry. The demand has been especially great in the field of therapeutic ultrasound that has experienced a significant level of research and development activities in the past decade. The applications cover a wide range including cancer treatment, hemorrhage control, cardiac ablation, gene therapy, and cosmetic surgery. A comprehensive educational program in ultrasound is well suited for bioengineering departments at colleges and universities. Our educational program for students in Bioengineering at the University of Washington includes a year-long coursework covering theory and practice of ultrasound, conducting research projects, attending and presenting at weekly seminars on literature survey, presentations at scientific meetings, and attending specialized workshops offered by various institutions for specific topics. An important aspect of this training is its multi-disciplinary approach, encompassing science, engineering, and medicine. The students are required to build teams with expertise in these disciplines. Our experience shows that these students are well prepared for careers in academia, conducting cutting edge research, as well as industry, being involved in the transformation of research end-products to commercially viable technology.

  5. Is routine ultrasound guidance for central line placement beneficial? A prospective analysis.

    PubMed

    Martin, Matthew J; Husain, Farah A; Piesman, Michael; Mullenix, Philip S; Steele, Scott R; Andersen, Charles A; Giacoppe, George N

    2004-01-01

    Portable ultrasound devices have become more readily available in the intensive care unit setting, but their utility outside of controlled trials remains unproven. We sought to determine how the availability of ultrasound guidance affected the types and number of complications during central line placement. Review of a prospectively maintained database in a 20-bed combined intensive care unit. Procedure notes from all attempts at internal jugular vein access from 1996 to 2001 were recorded, and selected patient records were reviewed. Ultrasound guidance was available beginning in March 1998. From 1996 to 2001, there were 484 documented attempts at internal jugular central line placement. Most procedures (83%) were performed by first- or second-year residents. During this period, there were 47 complications for an overall complication rate of 10%. These included 1 pneumothorax (2%), 6 carotid punctures (13%), 2 hematomas (4%), and 34 unsuccessful attempts (72%). There was no significant difference in age, sex, body-mass index, or intubation status between those with and without complications or between the ultrasound and anatomic landmark groups. Ultrasound was used in 179 (37%) attempts. The overall complication rate with ultrasound was 11% versus 9% using anatomic landmarks (p = NS). The complication rate prior to the availability of ultrasound was 15 of 114 attempts (13%) versus 32 of 370 attempts (9%) after the introduction of ultrasound in our intensive care unit (p = NS). Analysis of the 370 procedures performed since ultrasound became available demonstrated a complication rate of 11% with ultrasound guidance versus 6% without (p = 0.09). There was no significant difference in complication rates by resident year group or department (surgery vs. other). However, procedures performed after-hours (1800 to 0800) were associated with a 15% complication rate versus 6% for procedures performed during the workday (p < 0.05). The availability and use of ultrasound

  6. Ultrasound mediated nanoparticle drug delivery

    NASA Astrophysics Data System (ADS)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  7. WE-E-9A-01: Ultrasound Elasticity

    SciTech Connect

    Emelianov, S; Hall, T; Bouchard, R

    2014-06-15

    Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitativemore » Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity

  8. Ultrasound monitoring of inter-knee distances during gait.

    PubMed

    Lai, Daniel T H; Wrigley, Tim V; Palaniswami, M

    2009-01-01

    Knee osteoarthritis is an extremely common, debilitating disease associated with pain and loss of function. There is considerable interest in monitoring lower limb alignment due to its close association with joint overload leading to disease progression. The effects of gait modifications that can lower joint loading are of particular interest. Here we describe an ultrasound-based system for monitoring an important aspect of dynamic lower limb alignment, the inter-knee distance during walking. Monitoring this gait parameter should facilitate studies in reducing knee loading, a primary risk factor of knee osteoarthritis progression. The portable device is composed of an ultrasound sensor connected to an Intel iMote2 equipped with Bluetooth wireless capability. Static tests and calibration results show that the sensor possesses an effective beam envelope of 120 degrees, with maximum distance errors of 10% at the envelope edges. Dynamic walking trials reveal close correlation of inter-knee distance trends between that measured by an optical system (Optotrak Certus NDI) and the sensor device. The maximum average root mean square error was found to be 1.46 cm. Future work will focus on improving the accuracy of the device.

  9. Nonlinear acoustics in biomedical ultrasound

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  10. Visualizing ultrasound through computational modeling

    NASA Technical Reports Server (NTRS)

    Guo, Theresa W.

    2004-01-01

    The Doppler Ultrasound Hematocrit Project (DHP) hopes to find non-invasive methods of determining a person s blood characteristics. Because of the limits of microgravity and the space travel environment, it is important to find non-invasive methods of evaluating the health of persons in space. Presently, there is no well developed method of determining blood composition non-invasively. This projects hopes to use ultrasound and Doppler signals to evaluate the characteristic of hematocrit, the percentage by volume of red blood cells within whole blood. These non-invasive techniques may also be developed to be used on earth for trauma patients where invasive measure might be detrimental. Computational modeling is a useful tool for collecting preliminary information and predictions for the laboratory research. We hope to find and develop a computer program that will be able to simulate the ultrasound signals the project will work with. Simulated models of test conditions will more easily show what might be expected from laboratory results thus help the research group make informed decisions before and during experimentation. There are several existing Matlab based computer programs available, designed to interpret and simulate ultrasound signals. These programs will be evaluated to find which is best suited for the project needs. The criteria of evaluation that will be used are 1) the program must be able to specify transducer properties and specify transmitting and receiving signals, 2) the program must be able to simulate ultrasound signals through different attenuating mediums, 3) the program must be able to process moving targets in order to simulate the Doppler effects that are associated with blood flow, 4) the program should be user friendly and adaptable to various models. After a computer program is chosen, two simulation models will be constructed. These models will simulate and interpret an RF data signal and a Doppler signal.

  11. Intensified recovery of valuable products from whey by use of ultrasound in processing steps - A review.

    PubMed

    Gajendragadkar, Chinmay N; Gogate, Parag R

    2016-09-01

    The current review focuses on the analysis of different aspects related to intensified recovery of possible valuable products from cheese whey using ultrasound. Ultrasound can be used for process intensification in processing steps such as pre-treatment, ultrafiltration, spray drying and crystallization. The combination of low-frequency, high intensity ultrasound with the pre-heat treatment minimizes the thickening or gelling of protein containing whey solutions. These characteristics of whey after the ultrasound assisted pretreatment helps in improving the efficacy of ultrafiltration used for separation and also helps in preventing the blockage of orifice of spray dryer atomizing device. Further, the heat stability of whey proteins is increased. In the subsequent processing step, use of ultrasound assisted atomization helps to reduce the treatment times as well as yield better quality whey protein concentrate (WPC) powder. After the removal of proteins from the whey, lactose is a major constituent remaining in the solution which can be efficiently recovered by sonocrystallization based on the use of anti-solvent as ethanol. The scale-up parameters to be considered during designing the process for large scale applications are also discussed along with analysis of various reactor designs. Overall, it appears that use of ultrasound can give significant process intensification benefits that can be harnessed even at commercial scale applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Design and characterization of a high-power ultrasound driver with ultralow-output impedance

    NASA Astrophysics Data System (ADS)

    Lewis, George K.; Olbricht, William L.

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 Ω) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 Vpp (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  13. Effect of anisotropy on stress-induced electrical potentials in bovine bone using ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Matsukawa, S.; Makino, T.; Mori, S.; Koyama, D.; Takayanagi, S.; Mizuno, K.; Yanagitani, T.; Matsukawa, M.

    2017-04-01

    The bone fracture healing mechanism of the low-intensity pulsed ultrasound technique is not yet clearly understood. In our previous study, the electrical potentials induced in bone were successfully measured by focusing on piezoelectricity in the MHz range. Bone is composed of collagen and hydroxyapatite and has strong anisotropy. The purpose of this study is to investigate the effects of bone anisotropy on the electrical potentials induced by ultrasound irradiation. For this study, ultrasound bone transducers were fabricated using cortical bovine bone plates as piezoelectric devices. An ultrasound of 7.4 kPapeak-peak (i.e., the peak-to-peak pressure value) was used to irradiate the side surface of each bone plate. Electrical potentials induced in the bone plate were then measured by varying the wave propagation direction in the plate. The peak-to-peak values of these ultrasonically induced electrical potentials were found to vary with changes in the ultrasound propagation direction in the bone sample. The potential was maximized at an inclination of approximately 45° to the bone axis but was minimized around the three orthogonal directions. These maxima and minima ranged from 28 to 33 μVpeak-peak and from 5 to 12 μVpeak-peak, respectively. Additionally, our ultrasound results indicated a change in polarity due to bone anisotropy in the MHz range.

  14. Design and characterization of a high-power ultrasound driver with ultralow-output impedance.

    PubMed

    Lewis, George K; Olbricht, William L

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 ohms) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 V(pp) (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  15. Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent.

    PubMed

    Unger, E C; McCreery, T P; Sweitzer, R H; Caldwell, V E; Wu, Y

    1998-12-01

    Paclitaxel-carrying lipospheres (MRX-552) were developed and evaluated as a new ultrasound contrast agent for chemotherapeutic drug delivery. Paclitaxel was suspended in soybean oil and added to an aqueous suspension of phospholipids in vials. The headspace of the vials was replaced with perfluorobutane gas; the vials were sealed, and they were agitated at 4200 rpm on a shaking device. The resulting lipospheres containing paclitaxel were studied for concentration, size, acute toxicity in mice, and acoustic activity and drug release with ultrasound. Lipospheres containing sudan black dye were produced to demonstrate the acoustically active liposphere (AAL)-ultrasound release concept. Acoustically active lipospheres containing paclitaxel had a mean particle count of approximately 1 x 10(9) particles per mL and a mean size of 2.9 microns. Acute toxicity studies in mice showed a 10-fold reduction in toxicity for paclitaxel in AALs compared with free paclitaxel. The AALs reflected ultrasound as a contrast agent. Increasing amounts of ultrasound energy selectively ruptured the AALs and released the paclitaxel. Acoustically active lipospheres represent a new class of acoustically active drug delivery vehicles. Future studies will assess efficacy of AALs for ultrasound-mediated drug delivery.

  16. Ultrasound physics and instrumentation for pathologists.

    PubMed

    Lieu, David

    2010-10-01

    Interest in pathologist-performed ultrasound-guided fine-needle aspiration is increasing. Educational courses discuss clinical ultrasound and biopsy techniques but not ultrasound physics and instrumentation. To review modern ultrasound physics and instrumentation to help pathologists understand the basis of modern ultrasound. A review of recent literature and textbooks was performed. Ultrasound physics and instrumentation are the foundations of clinical ultrasound. The key physical principle is the piezoelectric effect. When stimulated by an electric current, certain crystals vibrate and produce ultrasound. A hand-held transducer converts electricity into ultrasound, transmits it into tissue, and listens for reflected ultrasound to return. The returning echoes are converted into electrical signals and used to create a 2-dimensional gray-scale image. Scanning at a high frequency improves axial resolution but has low tissue penetration. Electronic focusing moves the long-axis focus to depth of the object of interest and improves lateral resolution. The short-axis focus in 1-dimensional transducers is fixed, which results in poor elevational resolution away from the focal zone. Using multiple foci improves lateral resolution but degrades temporal resolution. The sonographer can adjust the dynamic range to change contrast and bring out subtle masses. Contrast resolution is limited by processing speed, monitor resolution, and gray-scale perception of the human eye. Ultrasound is an evolving field. New technologies include miniaturization, spatial compound imaging, tissue harmonics, and multidimensional transducers. Clinical cytopathologists who understand ultrasound physics, instrumentation, and clinical ultrasound are ready for the challenges of cytopathologist-performed ultrasound-guided fine-needle aspiration and core-needle biopsy in the 21st century.

  17. PLASMA DEVICE

    DOEpatents

    Baker, W.R.; Brathenahl, A.; Furth, H.P.

    1962-04-10

    A device for producing a confined high temperature plasma is described. In the device the concave inner surface of an outer annular electrode is disposed concentrically about and facing the convex outer face of an inner annular electrode across which electrodes a high potential is applied to produce an electric field there between. Means is provided to create a magnetic field perpendicular to the electric field and a gas is supplied at reduced pressure in the area therebetween. Upon application of the high potential, the gas between the electrodes is ionized, heated, and under the influence of the electric and magnetic fields there is produced a rotating annular plasma disk. The ionized plasma has high dielectric constant properties. The device is useful as a fast discharge rate capacitor, in controlled thermonuclear research, and other high temperature gas applications. (AEC)

  18. Analytical Device

    NASA Technical Reports Server (NTRS)

    1983-01-01

    In the mid 60s under contract with NASA, Dr. Benjamin W. Grunbaum was responsible for the development of an automated electrophoresis device that would work in the weightless environment of space. The device was never used in space but was revived during the mid 70s as a technology utilization project aimed at an automated system for use on Earth. The advanced system became known as the Grunbaum System for electrophoresis. It is a versatile, economical assembly for rapid separation of specific blood proteins in very small quantities, permitting their subsequent identification and quantification.

  19. Integrated transrectal probe for translational ultrasound-photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Bell, Kevan L.; Harrison, Tyler; Usmani, Nawaid; Zemp, Roger J.

    2016-03-01

    A compact photoacoustic transrectal probe is constructed for improved imaging in brachytherapy treatment. A 192 element 5 MHz linear transducer array is mounted inside a small 3D printed casing along with an array of optical fibers. The device is fed by a pump laser and tunable NIR-optical parametric oscillator with data collected by a Verasonics ultrasound platform. This assembly demonstrates improved imaging of brachytherapy seeds in phantoms with depths up to 5 cm. The tuneable excitation in combination with standard US integration provides adjustable contrast between the brachytherapy seeds, blood filled tubes and background tissue.

  20. Ultrasonographic diagnosis of early pregnancy in cattle using different ultrasound systems.

    PubMed

    Racewicz, Przemysław; Sickinger, Marlene; Włodarek, Jan; Jaśkowski, Jędrzej M

    2016-06-16

    To evaluate the efficiency of different ultrasound devices in achieving an early diagnosis of pregnancy in dairy herds. A total of 1976 Holstein Friesian cows and heifers were artificially inseminated (AI) according to the herd manager's regime. Pregnancy diagnostics were performed between day 26 and 35 after AI using six different types of ultrasound systems (linear vs. sector scanners). Manual rectal palpation between day 45 and 60 after AI was used as the gold standard for pregnancy diagnostics. Sensitivity (SENS), specificity (SPEC), positive (PPV) and negative predictive value (NPV) and diagnostic accuracy (ACC) of the diagnostic measures were determined. Average SENS was 82% (range 67.7-95.2%) with a mean SPEC of 73% (range 50.0-81.0%). ACC was 78.2% with a minimum of 64.6% and a maximum of 89.4%, depending on the ultrasound system. The PPV (ratio of the number of pregnant cows with a positive examination result to the number of cows actually pregnant) was 80.8% (range 59.1-88.1%), whereas the NPV (defined as the ratio of the number of cows correctly diagnosed negative to the number of cows actually open) was 74.4% (72.3-91.9%). Significant differences for these parameters were found depending on the ultrasound system used (p ≤ 0.01; Cramer's V. = 0.14). Regardless of the ultrasound device used, early pregnancy diagnostics between day 26 and 35 show a moderate diagnostic efficiency. Comparing the accuracy of the different devices, there may be a significant influence of type and technical parameters. Even though ultrasound systems with mechanical sector probes are not as convenient to use as systems with linear probes, according to this study, sector scanners are a reasonable alternative.

  1. Electrochemical device

    DOEpatents

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  2. Detection device

    DOEpatents

    Smith, Jay E.

    1984-01-01

    The present invention is directed to a detection device comprising: (1) an entrance chamber, (2) a central chamber, and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  3. Detection device

    DOEpatents

    Smith, J.E.

    1981-02-27

    The present invention is directed to a detection device comprising: (1) an entrance chamber; (2) a central chamber; and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  4. Cleaning devices

    NASA Technical Reports Server (NTRS)

    Schneider, Horst W. (Inventor)

    1981-01-01

    Cleaning devices are described which include a vacuum cleaner nozzle with a sharp rim for directing incoming air down against the floor; a vacuum cleaner wherein electrostatically charged brushes that brush dirt off a floor, are electrically grounded to remove charges that could tend to hold dirt to the brushes; a vacuum cleaner head having slots that form a pair of counter-rotating vortices, and that includes an outlet that blows a stream of air at the floor region which lies between the vortices; a cleaning device that sweeps a group of brushes against the ground along a first direction, and then sweeps them along the same ground area but in a second direction angled from the first by an amount such as 90.degree., to sweep up particles lying in crevices extending along any direction; a device that gently cleans a surface to remove bacteria for analysis, including an inclined wall along which cleaning fluid flows onto the surface, a vacuum chamber for drawing in the cleaning fluid, and a dividing wall spaced slightly from the surface to separate the fluid source from the vacuum cleaner chamber; and a device for providing pulses of pressured air including a chamber to which pressured air is supplied, a ball that circulates around the chamber to repeatedly close an outlet, and an air source that directs air circumferentially to move the ball around the chamber.

  5. MRI monitoring of focused ultrasound sonications near metallic hardware.

    PubMed

    Weber, Hans; Ghanouni, Pejman; Pascal-Tenorio, Aurea; Pauly, Kim Butts; Hargreaves, Brian A

    2018-07-01

    To explore the temperature-induced signal change in two-dimensional multi-spectral imaging (2DMSI) for fast thermometry near metallic hardware to enable MR-guided focused ultrasound surgery (MRgFUS) in patients with implanted metallic hardware. 2DMSI was optimized for temperature sensitivity and applied to monitor focus ultrasound surgery (FUS) sonications near metallic hardware in phantoms and ex vivo porcine muscle tissue. Further, we evaluated its temperature sensitivity for in vivo muscle in patients without metallic hardware. In addition, we performed a comparison of temperature sensitivity between 2DMSI and conventional proton-resonance-frequency-shift (PRFS) thermometry at different distances from metal devices and different signal-to-noise ratios (SNR). 2DMSI thermometry enabled visualization of short ultrasound sonications near metallic hardware. Calibration using in vivo muscle yielded a constant temperature sensitivity for temperatures below 43 °C. For an off-resonance coverage of ± 6 kHz, we achieved a temperature sensitivity of 1.45%/K, resulting in a minimum detectable temperature change of ∼2.5 K for an SNR of 100 with a temporal resolution of 6 s per frame. The proposed 2DMSI thermometry has the potential to allow MR-guided FUS treatments of patients with metallic hardware and therefore expand its reach to a larger patient population. Magn Reson Med 80:259-271, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Effects of ultrasound and ultrasound contrast agent on vascular tissue

    PubMed Central

    2012-01-01

    Background Ultrasound (US) imaging can be enhanced using gas-filled microbubble contrast agents. Strong echo signals are induced at the tissue-gas interface following microbubble collapse. Applications include assessment of ventricular function and virtual histology. Aim While ultrasound and US contrast agents are widely used, their impact on the physiological response of vascular tissue to vasoactive agents has not been investigated in detail. Methods and results In the present study, rat dorsal aortas were treated with US via a clinical imaging transducer in the presence or absence of the US contrast agent, Optison. Aortas treated with both US and Optison were unable to contract in response to phenylephrine or to relax in the presence of acetylcholine. Histology of the arteries was unremarkable. When the treated aortas were stained for endothelial markers, a distinct loss of endothelium was observed. Importantly, terminal deoxynucleotidyl transferase mediated dUTP nick-end-labeling (TUNEL) staining of treated aortas demonstrated incipient apoptosis in the endothelium. Conclusions Taken together, these ex vivo results suggest that the combination of US and Optison may alter arterial integrity and promote vascular injury; however, the in vivo interaction of Optison and ultrasound remains an open question. PMID:22805356

  7. Externally Delivered Focused Ultrasound for Renal Denervation.

    PubMed

    Neuzil, Petr; Ormiston, John; Brinton, Todd J; Starek, Zdenek; Esler, Murray; Dawood, Omar; Anderson, Thomas L; Gertner, Michael; Whitbourne, Rob; Schmieder, Roland E

    2016-06-27

    The aim of this study was to assess clinical safety and efficacy outcomes of renal denervation executed by an externally delivered, completely noninvasive focused therapeutic ultrasound device. Renal denervation has emerged as a potential treatment approach for resistant hypertension. Sixty-nine subjects received renal denervation with externally delivered focused ultrasound via the Kona Medical Surround Sound System. This approach was investigated across 3 consecutive studies to optimize targeting, tracking, and dosing. In the third study, treatments were performed in a completely noninvasive way using duplex ultrasound image guidance to target the therapy. Short- and long-term safety and efficacy were evaluated through use of clinical assessments, magnetic resonance imaging scans prior to and 3 and 24 weeks after renal denervation, and, in cases in which a targeting catheter was used to facilitate targeting, fluoroscopic angiography with contrast. All patients tolerated renal denervation using externally delivered focused ultrasound. Office blood pressure (BP) decreased by 24.6 ± 27.6/9.0 ± 15.0 mm Hg (from baseline BP of 180.0 ± 18.5/97.7 ± 13.7 mm Hg) in 69 patients after 6 months and 23.8 ± 24.1/10.3 ± 13.1 mm Hg in 64 patients with complete 1-year follow-up. The response rate (BP decrease >10 mm Hg) was 75% after 6 months and 77% after 1 year. The most common adverse event was post-treatment back pain, which was reported in 32 of 69 patients and resolved within 72 h in most cases. No intervention-related adverse events involving motor or sensory deficits were reported. Renal function was not altered, and vascular safety was established by magnetic resonance imaging (all patients), fluoroscopic angiography (n = 48), and optical coherence tomography (n = 5). Using externally delivered focused ultrasound and noninvasive duplex ultrasound, image-guided targeting was associated with substantial BP reduction without any major safety signals. Further

  8. "On the other hand ...": the evidence does not support the use of hand-carried ultrasound by hospitalists.

    PubMed

    Feldman, Mitchell D; Petersen, Amy Jean; Tice, Jeffrey A

    2010-03-01

    In the right hands, ultrasound is a safe and helpful diagnostic imaging tool. However, evidence supporting the use of hand-carried ultrasound (HCU) by hospitalist physicians has not kept pace with expanding application of these devices. In spite of its strategic point-of-care benefit, use of this technology by hospitalists may not ultimately translate into improved efficiency and better clinical outcomes. Optimal levels of training in image acquisition and interpretation remain to be established. Novelty, availability, and the results of a few small studies lacking patient-centered outcomes remain insufficient grounds to justify the expanded clinical utilization of these medical imaging devices by nonspecialists.

  9. Ultrasound-guided pleural access.

    PubMed

    Shojaee, Samira; Argento, A Christine

    2014-12-01

    Ultrasonography of the thorax has become a more recognized tool in pulmonary medicine, thanks to continuing clinical research that has proven its many valuable roles in the day-to-day management of pulmonary and pleural diseases. Ultrasound examination is a cost-effective imaging modality that permits the pulmonologist to obtain information about the pathologies in the thorax without the risk of exposure to ionizing radiation, providing the examiner with real-time and immediate results. Its ease of use and training along with its portability to the patient's bedside and accurate examination of the pleural space has allowed for safer pleural procedures such as thoracentesis, chest tube placement, tunneled pleural catheter placement, and medical thoracoscopy. In this review, we summarize the technique of chest ultrasonography, compare ultrasound to other frequently used thoracic imaging modalities, and focus on its use in obtaining pleural access while performing invasive pleural procedures. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. Ultrasound and polar homogeneous reactions.

    PubMed

    Tuulmets, A

    1997-04-01

    The effect of ultrasound on the rates of homogeneous heterolytic reactions not switched to a free radical pathway can be explained by the perturbation of the molecular organization of or the solvation in the reacting system. A quantitative analysis of the sonochemical acceleration on the basis of the microreactor concept was carried out. It was found that (1) the Diels-Alder reaction cannot be accelerated by ultrasound except when SET or free radical processes are promoted, (2) the rectified diffusion during cavitation cannot be responsible for the acceleration of reactions, and (3) the sonochemical acceleration of polar homogeneous reactions takes place in the bulk reaction medium. This implies the presence of a 'sound-field' sonochemistry besides the 'hot-spot' sonochemistry. The occurrence of a sonochemical deceleration effect can be predicted.

  11. Ultrasound of skeletal muscle injury.

    PubMed

    Koh, Eamon Su Chun; McNally, Eugene G

    2007-06-01

    The professional and recreational demands of modern society make the treatment of muscle injury an increasingly important clinical problem, particularly in the athletic population. In the elite athlete, significant financial and professional pressures may also exist that emphasize the need for accurate diagnosis and treatment. With new advances in ultrasound technology, images of exquisite detail allow diagnosis of muscle injury that matches the accuracy of magnetic resonance imaging (MRI). Furthermore, the benefits of real-time and Doppler imaging, ability to perform interventional procedures, and relative cost benefits compared with MRI place ultrasound at the forefront for investigation for these injuries in many circumstances. Muscle injury may be divided into acute and chronic pathology, with muscle strain injury the most common clinical problem presenting to sports physicians. This article reviews the spectrum of acute and chronic muscle injuries, with particular attention to clinical features and some common or important muscle strain injuries.

  12. [Ultrasound dissection in laparoscopic cholecystectomy].

    PubMed

    Horstmann, R; Kern, M; Joosten, U; Hohlbach, G

    1993-01-01

    An ultrasound dissector especially developed for laparoscopic surgery was used during laparoscopic cholecystectomy on 34 patients. The ultrasound power, the volume of suction and irrigation could be determined individually at the generator and activated during the operation with a foot pedal. With the dissector it was possible to fragmentate, emulgate and aspirate simultaneously fat tissue as well as infected edematous structures. The cystic artery and cystic duct, small vessels, lymphatic and connective tissue were not damaged. Therefore this system seems to be excellent for the preparation of Calot's trigonum and blunt dissection of the gallbladder out of its bed, particularly in fatty, acute or chronic infected tissue. No complications were observed within the peri- and postoperative period.

  13. Endobronchial Ultrasound (EBUS) - Update 2017.

    PubMed

    Darwiche, Kaid; Özkan, Filiz; Wolters, Celina; Eisenmann, Stephan

    2018-02-01

    Endobronchial ultrasound (EBUS) has revolutionized the diagnosis of lung cancer over the last decade. This minimally invasive diagnostic method has also become increasingly important in the case of other diseases such as sarcoidosis, thereby helping to avoid unnecessary diagnostic interventions. This review article provides an update regarding EBUS and discusses current and future developments of this method. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Stable phantom materials for ultrasound and optical imaging.

    PubMed

    Cabrelli, Luciana C; Pelissari, Pedro I B G B; Deana, Alessandro M; Carneiro, Antonio A O; Pavan, Theo Z

    2017-01-21

    Phantoms mimicking the specific properties of biological tissues are essential to fully characterize medical devices. Water-based materials are commonly used to manufacture phantoms for ultrasound and optical imaging techniques. However, these materials have disadvantages, such as easy degradation and low temporal stability. In this study, we propose an oil-based new tissue-mimicking material for ultrasound and optical imaging, with the advantage of presenting low temporal degradation. A styrene-ethylene/butylene-styrene (SEBS) copolymer in mineral oil samples was made varying the SEBS concentration between 5%-15%, and low-density polyethylene (LDPE) between 0%-9%. Acoustic properties, such as the speed of sound and the attenuation coefficient, were obtained using frequencies ranging from 1-10 MHz, and were consistent with that of soft tissues. These properties were controlled varying SEBS and LDPE concentration. To characterize the optical properties of the samples, the diffuse reflectance and transmittance were measured. Scattering and absorption coefficients ranging from 400 nm-1200 nm were calculated for each compound. SEBS gels are a translucent material presenting low optical absorption and scattering coefficients in the visible region of the spectrum, but the presence of LDPE increased the turbidity. Adding LDPE increased the absorption and scattering of the phantom materials. Ultrasound and photoacoustic images of a heterogeneous phantom made of LDPE/SEBS containing a spherical inclusion were obtained. Annatto dye was added to the inclusion to enhance the optical absorbance. The results suggest that copolymer gels are promising for ultrasound and optical imaging, making them also potentially useful for photoacoustic imaging.

  15. High frequency ultrasound imaging using Fabry-Perot optical etalon

    NASA Astrophysics Data System (ADS)

    Ashkenazi, S.; Witte, R.; O'Donnell, M.

    2005-04-01

    Optical detection of ultrasound provides a unique and appealing way of forming detector arrays (1D or 2D) using either raster beam scanning or simultaneous array detection exploiting wide area illumination. Etalon based optical techniques are of particular interest, due to their relatively high sensitivity resulting from multiple optical reflections within the resonance structure. Detector arrays formed by etalon based techniques are characterized by high element density and small element active area, which enables high resolution imaging at high ultrasonic frequencies (typically 10-50 MHz). In this paper we present an application of an optical etalon structure for very high frequency ultrasound detection (exceeding 100 MHz). A thin polymer Fabry-Perot etalon (10 μm thickness) has been fabricated using spin coating of polymer photoresist on a glass substrate and gold evaporation forming partially reflecting mirrors on both faces of the polymer layer. The optical resonator formed by the etalon structure has a measured Q-factor of 300. The characteristic broadband response of the optical signal was demonstrated by insonifying the etalon using two different ultrasound transducers and recording the resulting intensity modulation of optical reflection from the etalon. A focused 10 MHz transducer was used for the low MHz frequency region, and a 50 MHz focused transducer was used for the high frequency region. The optical reflection signal was compared to the pulse/echo signal detected by the same ultrasound transducer. The measured signal to noise ratio of the optically detected signal is comparable to that of the pulse/echo signal in both low and high frequency ranges. The etalon detector was integrated in a photoacoustic imaging system. High resolution images of phantom targets and biological tissue (nerve cord) were obtained. The additional information of optical absorption obtained by photoacoustic imaging, along with the high resolution detection of the etalon

  16. Stable phantom materials for ultrasound and optical imaging

    NASA Astrophysics Data System (ADS)

    Cabrelli, Luciana C.; Pelissari, Pedro I. B. G. B.; Deana, Alessandro M.; Carneiro, Antonio A. O.; Pavan, Theo Z.

    2017-01-01

    Phantoms mimicking the specific properties of biological tissues are essential to fully characterize medical devices. Water-based materials are commonly used to manufacture phantoms for ultrasound and optical imaging techniques. However, these materials have disadvantages, such as easy degradation and low temporal stability. In this study, we propose an oil-based new tissue-mimicking material for ultrasound and optical imaging, with the advantage of presenting low temporal degradation. A styrene-ethylene/butylene-styrene (SEBS) copolymer in mineral oil samples was made varying the SEBS concentration between 5%-15%, and low-density polyethylene (LDPE) between 0%-9%. Acoustic properties, such as the speed of sound and the attenuation coefficient, were obtained using frequencies ranging from 1-10 MHz, and were consistent with that of soft tissues. These properties were controlled varying SEBS and LDPE concentration. To characterize the optical properties of the samples, the diffuse reflectance and transmittance were measured. Scattering and absorption coefficients ranging from 400 nm-1200 nm were calculated for each compound. SEBS gels are a translucent material presenting low optical absorption and scattering coefficients in the visible region of the spectrum, but the presence of LDPE increased the turbidity. Adding LDPE increased the absorption and scattering of the phantom materials. Ultrasound and photoacoustic images of a heterogeneous phantom made of LDPE/SEBS containing a spherical inclusion were obtained. Annatto dye was added to the inclusion to enhance the optical absorbance. The results suggest that copolymer gels are promising for ultrasound and optical imaging, making them also potentially useful for photoacoustic imaging.

  17. Driving delivery vehicles with ultrasound

    PubMed Central

    Ferrara, Katherine W.

    2009-01-01

    Therapeutic applications of ultrasound have been considered for over 40 years, with the mild hyperthermia and associated increases in perfusion produced by ultrasound harnessed in many of the earliest treatments. More recently, new mechanisms for ultrasound-based or ultrasound-enhanced therapies have been described, and there is now great momentum and enthusiasm for the clinical translation of these techniques. This dedicated issue of Advanced Drug Delivery Reviews, entitled “Ultrasound for Drug and Gene Delivery,” addresses the mechanisms by which ultrasound can enhance local drug and gene delivery and the applications that have been demonstrated at this time. In this commentary, the identified mechanisms, delivery vehicles, applications and current bottlenecks for translation of these techniques are summarized. PMID:18479775

  18. Towards Dynamic Contrast Specific Ultrasound Tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-10-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.

  19. Recent advances in ultrasound-triggered therapy.

    PubMed

    Yang, Chaopin; Li, Yue; Du, Meng; Chen, Zhiyi

    2018-04-27

    As a non-invasive and real-time diagnostic technique, ultrasound has provided a novel strategy for targeted treatment. With the rapid development of ultrasonic technique and ultrasound contrast agents (UCAs), spatiotemporally controllable application of ultrasound with or without UCAs makes it possible for site-specific delivery of therapeutic agents and targeted modulation with minimal side effects, which indicated a promising therapy in clinical use. This review will describe the main mechanism of targeted therapy induced by ultrasound briefly, then focus on the current application of ultrasound mediated targeted therapy in various fields including tumour, cardiovascular disease, central nervous system, skeletal muscle system diseases and stem cells therapy. In addition, ongoing challenges of ultrasound-mediated targeted therapy for further research and its clinical use are reviewed.

  20. Towards Dynamic Contrast Specific Ultrasound Tomography.

    PubMed

    Demi, Libertario; Van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2016-10-05

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.

  1. Towards Dynamic Contrast Specific Ultrasound Tomography

    PubMed Central

    Demi, Libertario; Van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-01-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast. PMID:27703251

  2. Ultrasound-guided near-infrared spectroscopy for brain functional study: feasibility analysis and preliminary work

    NASA Astrophysics Data System (ADS)

    Xu, Ronald; Qiang, Bo; Liu, Jun

    2005-04-01

    Recent advances in diffuse optical imaging and spectroscopy (DOIS) allow the noninvasive measurement of local changes in cerebral oxygenation and hemodynamics. Available DOIS devices fall into three categories: time domain (TD), frequency domain (FD) and continuous wave (CW). The TD and FD devices have potential for high spatial resolution, high temporal resolution and high accuracy measurement, but the instrument cost and the hardware size prevent their wide clinical application. Furthermore, the presence of the low scattering cerebrospinal fluid layer (CSF) and its thickness variation during motion challenges quantitative, continuous monitoring of the cortex layer oxygenation and blood content. MRI has been used to provide a priori knowledge of the head anatomy that helps the NIR image reconstruction. However, the technology is expensive and lacks portability. This paper proposes a method that combines the accuracy of a TD/FD system and the portability of a CW device. With the optical baseline measured by a TD or FD device and the layer thickness characterized by an ultrasound transducer, a conventional CW system may be able to quantify the cortex layer optical absorption with high accuracy. In this paper, the feasibility of using ultrasound guided CW spectroscopy to monitor brain activities was studied on a multi layer head model using Monte Carlo simulation and order of magnitude analysis. A forward algorithm based on diffuse approximation and 2D Fourier Transform was used to optimize the source detector separation. Both analytical and neuron network approaches were developed for inverse calculation of the cortex layer absorption in real time. An ultrasound transducer was used to monitor the thickness of different layers surrounding the cerebral cortex. The concept of ultrasound guided CW spectroscopy was demonstrated by numerical simulation on a 2 layer head model and the use of the ultrasound transducer for layer thickness characterization was verified by

  3. Musculoskeletal ultrasound for interventional physiatry.

    PubMed

    De Muynck, M; Parlevliet, T; De Cock, K; Vanden Bossche, L; Vanderstraeten, G; Özçakar, L

    2012-12-01

    More and more physiatrists are interested in learning how to use musculoskeletal ultrasonography in their clinical practice. The possibility of high resolution, dynamic, comparative and repeatable imaging makes it an important diagnostic tool for soft tissue pathology. There is also growing interest to use sonography for guiding interventions such as aspirations and infiltrations. In daily practice these are often done blindly or palpation-guided. To improve the accuracy of interventions, fluoroscopy or computed tomography were traditionally used for guidance. Since sonography is non-ionizing, readily available and relatively low cost, it has become the first choice to guide many musculoskeletal interventions. Ultrasound allows real-time imaging of target and needle as well as surrounding vulnerable structures such as vessels and nerves. Many different techniques are proposed in the literature. Interventions under ultrasound guidance have been proven to be more accurate than unguided ones. Further studies are required to prove better clinical results and fewer complications. Infection is the most dreaded complication. This review wants to highlight technical aspects of ultrasound guidance of interventions and give a survey of different interventions that have been introduced, with emphasis on applications in Physical Medicine and Rehabilitation. Results and complications are discussed. Finally training requirements and modalities are presented.

  4. Ultrasound-guided chest biopsies.

    PubMed

    Middleton, William D; Teefey, Sharlene A; Dahiya, Nirvikar

    2006-12-01

    Pulmonary nodules that are surrounded by aerated lung cannot be visualized with sonography. Therefore, percutaneous biopsy must be guided with computed tomography or fluoroscopy. Although this restriction only applies to central lung nodules, it has permeated referral patterns for other thoracic lesions and has retarded the growth of ultrasound-guided interventions. Nevertheless, sonography is an extremely flexible modality that can expeditiously guide many biopsy procedures in the thorax. Peripheral pulmonary nodules can be successfully biopsied with success rates exceeding 90% and complications rates of less than 5%. Orienting the probe parallel to the intercostal space facilitates biopsies of peripheral pulmonary nodules. Anterior mediastinal masses that extend to the parasternal region are often easily approachable provided the internal mammary vessels, costal cartilage, and deep great vessels are identified and avoided. Superior mediastinal masses can be sampled from a suprasternal or supraclavicular approach. Phased array probes or tightly curved arrays may provide improved access for biopsies in this location. Posterior mediastinal masses are more difficult to biopsy with ultrasound guidance because of the overlying paraspinal muscles. However, when posterior mediastinal masses extend into the posterior medial pleural region, they can be biopsied with ultrasound guidance. Because many lung cancers metastasize to the supraclavicular nodes, it is important to evaluate the supraclavicular region when determining the best approach to obtain a tissue diagnosis. When abnormal supraclavicular nodes are present, they often are the easiest and safest lesions to biopsy.

  5. Venous catheterization with ultrasound navigation

    SciTech Connect

    Kasatkin, A. A., E-mail: ant-kasatkin@yandex.ru; Nigmatullina, A. R.; Urakov, A. L., E-mail: ant-kasatkin@yandex.ru

    By ultrasound scanning it was determined that respiratory movements made by chest of healthy and sick person are accompanied by respiratory chest rise of internal jugular veins. During the exhalation of an individual diameter of his veins increases and during the breath it decreases down to the complete disappearing if their lumen. Change of the diameter of internal jugular veins in different phases can influence significantly the results of vein puncture and cauterization in patients. The purpose of this research is development of the method increasing the efficiency and safety of cannulation of internal jugular veins by the ultrasound visualization.more » We suggested the method of catheterization of internal jugular veins by the ultrasound navigation during the execution of which the puncture of venous wall by puncture needle and the following conduction of J-guide is carried out at the moment of patient’s exhalation. This method decreases the risk of complications development during catheterization of internal jugular vein due to exclusion of perforating wound of vein and subjacent tissues and anatomical structures.« less

  6. Ultrasound Techniques for Space Applications

    NASA Technical Reports Server (NTRS)

    Rooney, James A.

    1985-01-01

    Ultrasound has proven to be a safe non-invasive technique for imaging organs and measuring cardiovascular function. It has unique advantages for application to problems with man in space including evaluation of cardiovascular function both in serial studies and during critical operations. In addition, specialized instrumentation may be capable of detecting the onset of decompression sickness during EVA activities. A spatial location and three-dimensional reconstruction system is being developed to improve the accuracy and reproducibility for serial comparative ultrasound studies of cardiovascular function. The three-dimensional method permits the acquisition of ultrasonic images from many views that can be recombined into a single reconstruction of the heart or vasculature. In addition to conventional imaging and monitoring systems, it is sometimes necessary or desirable to develop instrumentation for special purposes. One example of this type of development is the design of a pulsed-Doppler system to monitor cerebral blood flow during critical operations such as re-entry. A second example is the design of a swept-frequency ultrasound system for the detection of bubbles in the circulatory system and/or soft tissues as an early indication of the onset of decompression sickness during EVA activities. This system exploits the resonant properties of bubbles and can detect both fundamental and second harmonic emissions from the insonified region.

  7. Venous catheterization with ultrasound navigation

    NASA Astrophysics Data System (ADS)

    Kasatkin, A. A.; Urakov, A. L.; Nigmatullina, A. R.

    2015-11-01

    By ultrasound scanning it was determined that respiratory movements made by chest of healthy and sick person are accompanied by respiratory chest rise of internal jugular veins. During the exhalation of an individual diameter of his veins increases and during the breath it decreases down to the complete disappearing if their lumen. Change of the diameter of internal jugular veins in different phases can influence significantly the results of vein puncture and cauterization in patients. The purpose of this research is development of the method increasing the efficiency and safety of cannulation of internal jugular veins by the ultrasound visualization. We suggested the method of catheterization of internal jugular veins by the ultrasound navigation during the execution of which the puncture of venous wall by puncture needle and the following conduction of J-guide is carried out at the moment of patient's exhalation. This method decreases the risk of complications development during catheterization of internal jugular vein due to exclusion of perforating wound of vein and subjacent tissues and anatomical structures.

  8. LOADING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1958-10-01

    A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.

  9. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  10. Latching device

    NASA Technical Reports Server (NTRS)

    Ulrich, G. W. (Inventor)

    1975-01-01

    A latching device is suited for use in establishing a substantially motionless connection between a stationary receiver and a movable latching mechanism. The latching mechanism includes a pivotally supported restraining hook continuously urged into a capturing relationship with the receiver, characterized by a spring-biased pawl having a plurality of aligned teeth. The teeth are seated in the surface of the throat of the hook and positionable into restraining engagement with a rigid restraining shoulder projected from the receiver.

  11. Ultrasound acoustic wave energy transfer and harvesting

    NASA Astrophysics Data System (ADS)

    Shahab, Shima; Leadenham, Stephen; Guillot, François; Sabra, Karim; Erturk, Alper

    2014-04-01

    This paper investigates low-power electricity generation from ultrasound acoustic wave energy transfer combined with piezoelectric energy harvesting for wireless applications ranging from medical implants to naval sensor systems. The focus is placed on an underwater system that consists of a pulsating source for spherical wave generation and a harvester connected to an external resistive load for quantifying the electrical power output. An analytical electro-acoustic model is developed to relate the source strength to the electrical power output of the harvester located at a specific distance from the source. The model couples the energy harvester dynamics (piezoelectric device and electrical load) with the source strength through the acoustic-structure interaction at the harvester-fluid interface. Case studies are given for a detailed understanding of the coupled system dynamics under various conditions. Specifically the relationship between the electrical power output and system parameters, such as the distance of the harvester from the source, dimensions of the harvester, level of source strength, and electrical load resistance are explored. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the harvester's underwater resonance frequency is also reported.

  12. Application of ultrasound in periodontics: Part I

    PubMed Central

    Bains, Vive K.; Mohan, Ranjana; Bains, Rhythm

    2008-01-01

    Ultrasonic is a branch of acoustics concerned with sound vibrations in frequency ranges above audible level. Ultrasound uses the transmission and reflection of acoustic energy. A pulse is propagated and its reflection is received, both by the transducer. For clinical purposes ultrasound is generated by transducers, which converts electrical energy into ultrasonic waves. This is usually achieved by magnetostriction or piezoelectricity. Primary effects of ultrasound are thermal, mechanical (cavitation and microstreaming), and chemical (sonochemicals). Knowledge of the basic and other secondary effects of ultrasound is essential for the development of techniques of application. PMID:20142941

  13. Ultrasound Imaging of the Musculoskeletal System.

    PubMed

    Cook, Cristi R

    2016-05-01

    Musculoskeletal ultrasound is a rapidly growing field within veterinary medicine. Ultrasound for musculoskeletal disorders has been commonly used in equine and human medicine and is becoming more commonly performed in small animal patients due to the increase in the recognition of soft tissue injuries. Ultrasound is widely available, cost-effective, but technically difficult to learn. Advantages of musculoskeletal ultrasound are the opposite limb is commonly used for comparison to evaluate symmetry of the tendinous structures and the ease of repeat examinations to assess healing. The article discusses the major areas of shoulder, stifle, iliopsoas, gastrocnemius, and musculoskeletal basics. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Guideline Implementation: Energy-Generating Devices, Part 1-Electrosurgery.

    PubMed

    Eder, Sheryl P

    2017-03-01

    Energy-generating devices are standard equipment in the surgical suite, with electrosurgical units being the most common type of electrical device used in the OR. Prevention of injuries to patients and personnel related to the use of energy-generating devices is a key component of the perioperative nurse's role. The AORN "Guideline for safe use of energy-generating devices" provides guidance on the use and maintenance of devices that deliver energy in the forms of radiofrequency waves, ultrasound waves, or lasers. This article focuses on key points of the guideline, which address precautions specific to electrosurgical units, patients with implanted electronic devices, and minimally invasive surgery, and documentation of the use of energy-generating devices. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  15. Transverse acoustic trapping using a Gaussian focused ultrasound

    PubMed Central

    Lee, Jungwoo; Teh, Shia-Yen; Lee, Abraham; Kim, Hyung Ham; Lee, Changyang; Shung, K. Kirk

    2009-01-01

    The optical tweezer has become a popular device to manipulate particles in nanometer scales, and to study the underlying principles of many cellular or molecular interactions. Theoretical analysis was previously carried out at the authors’ laboratory, to show that similar acoustic trapping of microparticles may be possible with a single beam ultrasound. This paper experimentally presents the transverse trapping of 125 μm lipid droplets under an acoustically transparent mylar film, which is an intermediate step toward achieving acoustic tweezers in 3D. Despite the lack of axial trapping capability in the current experimental arrangement, it was found that a 30 MHz focused beam could be used to laterally direct the droplets towards the focus. The spatial range within which acoustic traps may guide droplet motion was in the range of hundreds of micrometers, much greater than that of optical traps. This suggests that this acoustic device may offer an alternative for manipulating microparticles in a wider spatial range. PMID:20045590

  16. Ultrasound for the evaluation of stenosis after flow diversion.

    PubMed

    McDougall, Cameron M; Khan, Khurshid; Saqqur, Maher; Jack, Andrew; Rempel, Jeremy; Derksen, Carol; Xi, Yin; Chow, Michael

    2018-03-01

    Flow diversion is a relatively new strategy used to treat complex cerebral aneurysms. The optimal method for radiographic follow-up of patients treated with flow diverters has not been established. The rate and clinical implications of in-stent stenosis for these devices is unclear. We evaluate the use of transcranial Doppler ultrasound (TCD) for follow-up of in-stent stenosis. We analyzed 28 patients treated with the Pipeline embolization device (PED) over the course of 42 months from January 2009 to June 2012. Standard conventional cerebral angiograms were performed in all patients. TCD studies were available in 23 patients. Angiographic and TCD results were compared and found to correlate well. TCD is a potentially useful adjunct for evaluating in-stent stenosis after flow diversion. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Biophysical characterization of low-frequency ultrasound interaction with dental pulp stem cells

    PubMed Central

    2013-01-01

    Background Low-intensity ultrasound is considered an effective non-invasive therapy to stimulate hard tissue repair, in particular to accelerate delayed non-union bone fracture healing. More recently, ultrasound has been proposed as a therapeutic tool to repair and regenerate dental tissues. Our recent work suggested that low-frequency kilohertz-range ultrasound is able to interact with dental pulp cells which could have potential to stimulate dentine reparative processes and hence promote the viability and longevity of teeth. Methods In this study, the biophysical characteristics of low-frequency ultrasound transmission through teeth towards the dental pulp were explored. We conducted cell culture studies using an odontoblast-like/dental pulp cell line, MDPC-23. Half of the samples underwent ultrasound exposure while the other half underwent ‘sham treatment’ where the transducer was submerged into the medium but no ultrasound was generated. Ultrasound was applied directly to the cell cultures using a therapeutic ultrasound device at a frequency of 45 kHz with intensity settings of 10, 25 and 75 mW/cm2 for 5 min. Following ultrasound treatment, the odontoblast-like cells were detached from the culture using a 0.25% Trypsin/EDTA solution, and viable cell numbers were counted. Two-dimensional tooth models based on μ-CT 2D images of the teeth were analyzed using COMSOL as the finite element analysis platform. This was used to confirm experimental results and to demonstrate the potential theory that with the correct combination of frequency and intensity, a tooth can be repaired using small doses of ultrasound. Frequencies in the 30 kHz–1 MHz range were analyzed. For each frequency, pressure/intensity plots provided information on how the intensity changes at each point throughout the propagation path. Spatial peak temporal average (SPTA) intensity was calculated and related to existing optimal spatial average temporal average (SATA) intensity deemed effective

  18. [Abdominal ultrasound course an introduction to the ultrasound technique. Physical basis. Ultrasound language].

    PubMed

    Segura-Grau, A; Sáez-Fernández, A; Rodríguez-Lorenzo, A; Díaz-Rodríguez, N

    2014-01-01

    Ultrasound is a non-invasive, accessible, and versatile diagnostic technique that uses high frequency ultrasound waves to define outline the organs of the human body, with no ionising radiation, in real time and with the capacity to visual several planes. The high diagnostic yield of the technique, together with its ease of uses plus the previously mentioned characteristics, has currently made it a routine method in daily medical practice. It is for this reason that the multidisciplinary character of this technique is being strengthened every day. To be able to perform the technique correctly requires knowledge of the physical basis of ultrasound, the method and the equipment, as well as of the human anatomy, in order to have the maximum information possible to avoid diagnostic errors due to poor interpretation or lack of information. Copyright © 2013 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  19. Ultrasound pre-treatment for anaerobic digestion improvement.

    PubMed

    Pérez-Elvira, S; Fdz-Polanco, M; Plaza, F I; Garralón, G; Fdz-Polanco, F

    2009-01-01

    Prior research indicates that ultrasounds can be used in batch reactors as pre-treatment before anaerobic digestion, but the specific energy required at laboratory-scale is too high. This work evaluates both the continuous ultrasound device performance (efficiency and solubilisation) and the operation of anaerobic digesters continuously fed with sonicated sludge, and presents energy balance considerations. The results of sludge solubilisation after the sonication treatment indicate that, applying identical specific energy, it is better to increase the power than the residence time. Working with secondary sludge, batch biodegradability tests show that by applying 30 kWh/m3 of sludge, it is possible to increase biogas production by 42%. Data from continuous pilot-scale anaerobic reactors (V=100 L) indicate that operating with a conventional HRT=20 d, a reactor fed with pre-treated sludge increases the volatile solids removal and the biogas production by 25 and 37% respectively. Operating with HRT=15 d, the removal efficiency is similar to the obtained with a reactor fed with non-hydrolysed sludge at HTR=20 d, although the specific biogas productivity per volume of reactor is higher for the pretreated sludge. Regarding the energy balance, although for laboratory-scale devices it is negative, full-scale suppliers state a net generation of 3-10 kW per kW of energy used.

  20. Non-Invasive Measurement of Pulsatile Intracranial Pressures Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, Richard E.; Shuer, Lawrence M.; Cantrell, John H.; Cantrell, John H.; Hargens, Alan R.

    1997-01-01

    Early detection of elevated intracranial pressure (ICP) will aid clinical decision-making for head trauma, brain tumor and other cerebrovascular diseases. Conventional methods, however, require surgical procedures which take time and are accompanied by increased risk of infection. Accordingly we have developed and refined a new ultrasound device to measure skull movements which are known to occur in conjunction with altered ICP. The principle of this device is based upon pulse phase locked loop (PPLL), which enables us to detect changes in distance on the order of microns between an ultrasound transducer on one side of the skull and the opposite inner surface of the cranium. The present study was designed to verify this measurement technique in cadavera. Transcranial distance was increased in steps of 10 mmHg from zero to 50 mmHg by saline infusion into the lateral ventricle of two cadavera. In separate experiments, pulsations of ICP with the amplitudes of zero to 2 mmHg were generated by rhythmic injections of saline using a syringe. When the ICP was stepwise increased from zero to 50 mmHg, transcranial distance increased in proportion with the ICP increase (y=12 x - 76, r=0.938), where y is changes in transcranial distance in microns and x is ICP in mmHg. In the data recorded while ICP pulsations were generated, fast Fourier transform analysis demonstrated that cranial pulsations were clearly associated with ICP pulsations. The results indicate that changes in transcranial distance is linearly correlated with those in ICP, and also that the PPLL device has sufficient sensitivity to detect transcranial pulsations which occur in association with the cardiac cycle. By analyzing the magnitude of cranial pulsations, we may be able to estimate the pressure-volume index in the cranium. As a result, estimates of intracranial compliance may be possible by using the PPLL device. Further studies are necessary in normal subjects and patients.

  1. Electrochromic device

    DOEpatents

    Schwendemanm, Irina G [Wexford, PA; Polcyn, Adam D [Pittsburgh, PA; Finley, James J [Pittsburgh, PA; Boykin, Cheri M [Kingsport, TN; Knowles, Julianna M [Apollo, PA

    2011-03-15

    An electrochromic device includes a first substrate spaced from a second substrate. A first conductive member is formed over at least a portion of the first substrate. A first electrochromic material is formed over at least a portion of the first conductive member. The first electrochromic material includes an organic material. A second conductive member is formed over at least a portion of the second substrate. A second electrochromic material is formed over at least a portion of the second conductive member. The second electrochromic material includes an inorganic material. An ionic liquid is positioned between the first electrochromic material and the second electrochromic material.

  2. Diversionary device

    DOEpatents

    Grubelich, Mark C.

    2001-01-01

    A diversionary device has a housing having at least one opening and containing a non-explosive propellant and a quantity of fine powder packed within the housing, with the powder being located between the propellant and the opening. When the propellant is activated, it has sufficient energy to propel the powder through the opening to produce a cloud of powder outside the housing. An igniter is also provided for igniting the cloud of powder to create a diversionary flash and bang, but at a low enough pressure to avoid injuring nearby people.

  3. Device Connectivity

    PubMed Central

    Walsh, John; Roberts, Ruth; Morris, Richard

    2015-01-01

    Patients with diabetes have to take numerous factors/data into their therapeutic decisions in daily life. Connecting the devices they are using by feeding the data generated into a database/app is supposed to help patients to optimize their glycemic control. As this is not established in practice, the different roadblocks have to be discussed to open the road. That large telecommunication companies are now entering this market might be a big help in pushing this forward. Smartphones offer an ideal platform for connectivity solutions. PMID:25614015

  4. Electrospray device

    NASA Technical Reports Server (NTRS)

    Demmons, Nathaniel (Inventor); Roy, Thomas (Inventor); Spence, Douglas (Inventor); Martin, Roy (Inventor); Hruby, Vladimir (Inventor); Ehrbar, Eric (Inventor); Zwahlen, Jurg (Inventor)

    2011-01-01

    An electrospray device includes an electrospray emitter adapted to receive electrospray fluid; an extractor plate spaced from the electrospray emitter and having at least one aperture; and a power supply for applying a first voltage between the extractor plate and emitter for generating at least one Taylor cone emission through the aperture to create an electrospray plume from the electrospray fluid, the extractor plate as well as accelerator and shaping plates may include a porous, conductive medium for transporting and storing excess, accumulated electrospray fluid away from the aperture.

  5. Ultrasound mediated transdermal insulin delivery in pigs using a lightweight transducer.

    PubMed

    Park, E J; Werner, Jacob; Smith, Nadine Barrie

    2007-07-01

    In previous studies, ultrasound mediated transdermal drug delivery has shown a promising potential as a method for noninvasive drug administration. For prospective future human application, this study was designed to determine the feasibility of lightweight cymbal transducer array as a practical device for noninvasive transdermal insulin delivery in large pigs. Six Yorkshire pigs (100-140 lbs) were divided into two groups. As the control (n = 3), the first group did not receive any ultrasound exposure with the insulin. The second group (n = 3) was treated with ultrasound and insulin at 20 kHz with an I(sptp) = 100 mW/cm(2) at a 20% duty cycle for 60 min. With the pigs in lateral recumbency after anesthesia, the ultrasound transducer with insulin was placed on the axillary area of the pig. At the beginning and every 15 min up to 90 min, the blood glucose level was determined using a glucose monitoring system. To compare the results of individual animals, the change of blood glucose level was normalized to each animal's initial glucose value at the start of the experiment. Although each animal had a different initial glucose level, the mean and standard error for the six animals was 146 +/- 13 mg/dl. For the control group, the blood glucose level increased to 31 +/- 21 mg/dl compared to the initial baseline over the 90 min experiment. However for the ultrasound with insulin treated group, the glucose level decreased to -72 +/- 5 mg/dl at 60 min (p < 0.05) and continued to decrease to -91 +/- 23 mg/dl in 90 min (p < 0.05). The results indicate the feasibility of ultrasound mediated transdermal insulin delivery using the cymbal transducer array in animal with a similar size and weight to a human. Based on these result, the cymbal array has potential as a practical ultrasound system for noninvasive transdermal insulin delivery for diabetes management.

  6. Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite

    NASA Astrophysics Data System (ADS)

    Poduval, Radhika K.; Noimark, Sacha; Colchester, Richard J.; Macdonald, Thomas J.; Parkin, Ivan P.; Desjardins, Adrien E.; Papakonstantinou, Ioannis

    2017-05-01

    All-optical ultrasound transducers are promising for imaging applications in minimally invasive surgery. In these devices, ultrasound is transmitted and received through laser modulation, and they can be readily miniaturized using optical fibers for light delivery. Here, we report optical ultrasound transmitters fabricated by electrospinning an absorbing polymer composite directly onto the end-face of optical fibers. The composite coating consisting of an aqueous dispersion of multi-walled carbon nanotubes (MWCNTs) in polyvinyl alcohol was directly electrospun onto the cleaved surface of a multimode optical fiber and subsequently dip-coated with polydimethylsiloxane (PDMS). This formed a uniform nanofibrous absorbing mesh over the optical fiber end-face wherein the constituent MWCNTs were aligned preferentially along individual nanofibers. Infiltration of the PDMS through this nanofibrous mesh onto the underlying substrate was observed and the resulting composites exhibited high optical absorption (>97%). Thickness control from 2.3 μm to 41.4 μm was obtained by varying the electrospinning time. Under laser excitation with 11 μJ pulse energy, ultrasound pressures of 1.59 MPa were achieved at 1.5 mm from the coatings. On comparing the electrospun ultrasound transmitters with a dip-coated reference fabricated using the same constituent materials and possessing identical optical absorption, a five-fold increase in the generated pressure and wider bandwidth was observed. The electrospun transmitters exhibited high optical absorption, good elastomer infiltration, and ultrasound generation capability in the range of pressures used for clinical pulse-echo imaging. All-optical ultrasound probes with such transmitters fabricated by electrospinning could be well-suited for incorporation into catheters and needles for diagnostics and therapeutic applications.

  7. Intraoperative Ultrasound in Patients Undergoing Transsphenoidal Surgery for Pituitary Adenoma: Systematic Review [corrected].

    PubMed

    Marcus, Hani J; Vercauteren, Tom; Ourselin, Sebastien; Dorward, Neil L

    2017-10-01

    Transsphenoidal surgery is the gold standard for pituitary adenoma resection. However, despite advances in microsurgical and endoscopic techniques, some pituitary adenomas can be challenging to cure. We sought to determine whether, in patients undergoing transsphenoidal surgery for pituitary adenoma, intraoperative ultrasound is a safe and effective technologic adjunct. The PubMed database was searched between January 1996 and January 2016 to identify relevant publications that 1) featured patients undergoing transsphenoidal surgery for pituitary adenoma, 2) used intraoperative ultrasound, and 3) reported on safety or effectiveness. Reference lists were also checked, and expert opinions were sought to identify further publications. Ultimately, 10 studies were included, comprising 1 cohort study, 7 case series, and 2 case reports. One study reported their prototype probe malfunctioned, leading to false-positive results in 2 cases, and another study' prototype probe was too large to safely enter the sphenoid sinus in 2 cases. Otherwise, no safety issues directly related to use of intraoperative ultrasound were reported. In the only comparative study, remission occurred in 89.7% (61/68) of patients with Cushing disease in whom intraoperative ultrasound was used, compared with 83.8% (57/68) in whom it was not. All studies reported that surgeons anecdotally found intraoperative ultrasound helpful. Although there is limited and low-quality evidence available, the use of intraoperative ultrasound appears to be a safe and effective technologic adjunct to transsphenoidal surgery for pituitary adenoma. Advances in ultrasound technology may allow for more widespread use of such devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A novel fluoride anion modified gelatin nanogel system for ultrasound-triggered drug release.

    PubMed

    Wu, Daocheng; Wan, Mingxi

    2008-01-01

    Controlled drug release, especially tumor-targeted drug release, remains a great challenge. Here, we prepare a novel fluoride anion-modified gelatin nanogel system and investigate its characteristics of ultrasound-triggered drug release. Adriamycin gelatin nanogel modified with fluoride anion (ADM-GNMF) was prepared by a modified co-precipitation method with fluoride anion and sodium sulfate. The loading and encapsulation efficiency of the anti-neoplastic agent adriamycin (ADM) were measured by high performance liquid chromatography (HPLC). The size and shape of ADM-GNMF were determined by electron microscopy and photo-correlation spectroscopy. The size distribution and drug release efficiency of ADM-GNMF, before and after sonication, were measured by two designed measuring devices that consisted of either a submicron particle size analyzer and an ultrasound generator as well as an ultrasound generator, automatic sampler, and HPLC. The ADM-GNMF was stable in solution with an average diameter of 46+/-12 nm; the encapsulation and loading efficiency of adriamycin were 87.2% and 6.38%, respectively. The ultrasound-triggered drug release and size change were most efficient at a frequency of 20 kHz, power density of 0.4w/cm2, and a 1~2 min duration. Under this ultrasound-triggered condition, 51.5% of drug in ADM-GNMF was released within 1~2 min, while the size of ADM-GNMF changed from 46 +/- 12 nm to 1212 +/- 35 nm within 1~2 min of sonication and restored to its previous size in 2~3 min after the ultrasound stopped. In contrast, 8.2% of drug in ADM-GNMF was released within 2~3 min without sonication, and only negligible size changes were found. The ADM-GNMF system efficiently released the encompassed drug in response to ultrasound, offering a novel and promising controlled drug release system for targeted therapy for cancer or other diseases.

  9. [INVITED] Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection

    NASA Astrophysics Data System (ADS)

    Yang, Tian; He, Xiaolong; Zhou, Xin; Lei, Zeyu; Wang, Yalin; Yang, Jie; Cai, De; Chen, Sung-Liang; Wang, Xueding

    2018-05-01

    Integrating surface plasmon resonance (SPR) devices upon single-mode fiber (SMF) end facets renders label-free sensing systems that have a simple dip-and-read configuration, a small form factor, high compatibility with fiber-optic techniques, and invasive testing capability. Such devices are not only low cost replacement of current equipments in centralized laboratories, but also highly desirable for opening paths to new applications of label-free optical sensing technologies, such as point-of-care immunological tests and intravascular ultrasound imaging. In this paper, we explain the requirements and challenges for such devices from the perspectives of biomolecule and ultrasound detection applications. In such a context, we review our recent work on SMF end-facet SPR cavities. This include a glue-and-strip fabrication method to transfer a nano-patterned thin gold film to the SMF end-facet with high yield, high quality and high alignment precision, the designs of distributed Bragg reflector (DBR) and distributed feedback (DFB) SPR cavities that couple efficiently with the SMF guided mode and reach quality factors of over 100, and the preliminary results for biomolecule interaction sensing and ultrasound detection. The particular advantages and potential values of these devices have been discussed, in terms of sensitivity, data reliability, reproducibility, bandwidth, etc.

  10. Thermal Field Imaging Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Andereck, D.; Rahal, S.; Fife, S.

    2000-01-01

    It is often desirable to be able to determine the temperature field in the interiors of opaque fluids forced into convection by externally imposed temperature gradients. To measure the temperature at a point in an opaque fluid in the usual fashion requires insertion of a probe, and to determine the full field therefore requires either the ability to move this probe or the introduction of multiple probes. Neither of these solutions is particularly satisfactory, although they can lead to quite accurate measurements. As an alternative we have investigated the use of ultrasound as a relatively non-intrusive probe of the temperature field in convecting opaque fluids. The temperature dependence of the sound velocity can be sufficiently great to permit a determination of the temperature from timing the traversal of an ultrasound pulse across a chamber. In this paper we will present our results on convecting flows of transparent and opaque fluids. Our experimental cells consist of relatively narrow rectangular cavities made of thermally insulating materials on the sides, and metal top and bottom plates. The ultrasound transducer is powered by a pulser/receiver, the signal output of which goes to a very high speed signal averager. The average of several hundred to several thousand signals is then sent to a computer for storage and analysis. The experimental procedure is to establish a convective flow by imposing a vertical temperature gradient on the chamber, and then to measure, at several regularly spaced locations, the transit time for an ultrasound pulse to traverse the chamber horizontally (parallel to the convecting rolls) and return to the transducer. The transit time is related to the temperature of the fluid through which the sound pulse travels. Knowing the relationship between transit time and temperature (determined in a separate experiment), we can extract the average temperature across the chamber at that location. By changing the location of the transducer it

  11. Ultrasound contrast agents: an overview.

    PubMed

    Cosgrove, David

    2006-12-01

    With the introduction of microbubble contrast agents, diagnostic ultrasound has entered a new era that allows the dynamic detection of tissue flow of both the macro and microvasculature. Underpinning this development is the fact that gases are compressible, and thus the microbubbles expand and contract in the alternating pressure waves of the ultrasound beam, while tissue is almost incompressible. Special software using multiple pulse sequences separates these signals from those of tissue and displays them as an overlay or on a split screen. This can be done at low acoustic pressures (MI<0.3) so that the microbubbles are not destroyed and scanning can continue in real time. The clinical roles of contrast enhanced ultrasound scanning are expanding rapidly. They are established in echocardiography to improve endocardial border detection and are being developed for myocardial perfusion. In radiology, the most important application is the liver, especially for focal disease. The approach parallels that of dynamic CT or MRI but ultrasound has the advantages of high spatial and temporal resolution. Thus, small lesions that can be indeterminate on CT can often be studied with ultrasound, and situations where the flow is very rapid (e.g., focal nodular hyperplasia where the first few seconds of arterial perfusion may be critical to making the diagnosis) are readily studied. Microbubbles linger in the extensive sinusoidal space of normal liver for several minutes whereas they wash out rapidly from metastases, which have a low vascular volume and thus appear as filling defects. The method has been shown to be as sensitive as three-phase CT. Microbubbles have clinical uses in many other applications where knowledge of the microcirculation is important (the macrocirculation can usually be assessed adequately using conventional Doppler though there are a few important situations where the signal boost given by microbubbles is useful, e.g., transcranial Doppler for evaluating

  12. Needle tip visualization by bevel-point ultrasound generator and prototype photoacoustic imaging system

    NASA Astrophysics Data System (ADS)

    Irisawa, Kaku; Murakoshi, Dai; Hashimoto, Atsushi; Yamamoto, Katsuya; Hayakawa, Toshiro

    2017-03-01

    Visualization of the tip of medical devices like needles or catheters under ultrasound imaging has been a continuous topic since the early 1980's. In this study, a needle tip visualization system utilizing photoacoustic effects is proposed. In order to visualize the needle tip, an optical fiber was inserted into a needle. The optical fiber tip is placed on the needle bevel and affixed with black glue. The pulsed laser light from laser diode was transferred to the optical fiber and converted to ultrasound due to laser light absorption of the black glue and the subsequent photoacoustic effect. The ultrasound is detected by transducer array and reconstructed into photoacoustic images in the ultrasound unit. The photoacoustic image is displayed with a superposed ultrasound B-mode image. As a system evaluation, the needle is punctured into bovine meat and the needle tip is observed with commercialized conventional linear transducers or convex transducers. The needle tip is visualized clearly at 7 and 12 cm depths with linear and convex probes, respectively, even with a steep needle puncture angle of around 90 degrees. Laser and acoustic outputs, and thermal rise at the needle tip, were measured and were well below the limits of the safety standards. Compared with existing needle tip visualization technologies, the photoacoustic needle tip visualization system has potential distinguishable features for clinical procedures related with needle puncture and injection.

  13. [Ultrasound physiotherapy treatment of prostatitis].

    PubMed

    Talberg, P I; Andryukhin, M I; Mazina, S E; Nikolaev, A L

    2016-12-01

    Develop a method of treatment of prostatitis based on the use of a standard antibiotic, immunomodulatory therapy, and transrectal ultrasound physiotherapy. The dynamics of the accumulation of the antibiotic was investigated in male rats. Sonication was performed immediately before the administration of the antibiotic and its accumulation in the process at 10, 20, 40, 60, 80, 100 min after dosing. The clinical study included 138 patients with chronic prostatitis. Patients of the experimental group, in addition to standard therapy, 10 sessions of transrectal ultrasound physical therapy was performed. The efficacy of treatment was assessed after 14 and 28 days after initiation. and its discussion. Experiments on laboratory animals have shown that the highest concentration and the residence time of antibiotic in the prostate tissue is noted ultrasonic treatment in the period of maximum blood concentration of the test drug. The data obtained allow to determine that the ultrasonic treatment must be performed considering the pharmacokinetics of the antibiotic. In conducting clinical trials on day 14 of treatment and clinical manifestations of prostatitis bacterial microflora in prostatic secretions were no patients in both groups. In 15% of patients of the experimental group the number of leukocytes decreased to the normal range. After 28 days the amount of leukocytes was normal in 51% of patients in the control and 85% in the experimental group. In animal experiments defined the optimal time interval separating the moment of injection of the antibiotic from the beginning of sonication. Clinical studies have shown that the transrectal ultrasound exposure during the period of maximum concentration of the antibiotic in the blood, improves patient outcomes by 33.8%.

  14. The sympathetic hazards of airborne ultrasound on ultrasound sensitive mice.

    PubMed

    Ohmori, M; Ogawa, K

    1982-01-01

    A commercially available ultrasonic equipment (55-50 kHz/sec, 425 W) operated at a distance of 4 m air space caused death in some mice. The physical energy propagated was quite small, being calculated at less than 0.21 W/cm2. Among many strains of mice, the RIII strain was especially sensitive to ultrasound, and the peak of sensitivity was at 3 to 4 weeks of age at which the mortality rate was 95/149 (64%). No death occurred when mice were pretreated by (a) removing all body hair, (b) by administration of morphine hydrochloridum with a tail reaction, and (c) administration of a sympathetic blocking agent. From these results it is assumed that the ultrasound energy absorbed by the body fur reaches the hypothalamus through the sensory nerves of the hair roots. After the hypothalamus where central sympathetic nerve functions are localized, the stimulus passes down the descending tract of the sympathetic nerve, reaching the cardiac nerves via the autonomic nerve ganglion. Thus, death could occur by shock of the sympathetic nerve reflex.

  15. High frequency ultrasound: a new frontier for ultrasound.

    PubMed

    Shung, K; Cannata, Jonathan; Qifa Zhou, Member; Lee, Jungwoo

    2009-01-01

    High frequency ultrasonic imaging is considered by many to be the next frontier in ultrasonic imaging because higher frequencies yield much improved spatial resolution by sacrificing the depth of penetration. It has many clinical applications including visualizing blood vessel wall, anterior segments of the eye and skin. Another application is small animal imaging. Ultrasound is especially attractive in imaging the heart of a small animal like mouse which has a size in the mm range and a heart beat rate faster than 600 BPM. A majority of current commercial high frequency scanners often termed "ultrasonic backscatter microscope or UBM" acquire images by scanning single element transducers at frequencies between 50 to 80 MHz with a frame rate lower than 40 frames/s, making them less suitable for this application. High frequency linear arrays and linear array based ultrasonic imaging systems at frequencies higher than 30 MHz are being developed. The engineering of such arrays and development of high frequency imaging systems has been proven to be highly challenging. High frequency ultrasound may find other significant biomedical applications. The development of acoustic tweezers for manipulating microparticles is such an example.

  16. Endovascular ultrasound for renal sympathetic denervation in patients with therapy-resistant hypertension not responding to radiofrequency renal sympathetic denervation.

    PubMed

    Stiermaier, Thomas; Okon, Thomas; Fengler, Karl; Mueller, Ulrike; Hoellriegel, Robert; Schuler, Gerhard; Desch, Steffen; Lurz, Philipp

    2016-06-12

    Recent studies have reported a considerable number of non-responders after renal sympathetic de-nervation (RSD) with radiofrequency technology. Here we report our results of repeat RSD using ultrasound in these patients. A cohort study was performed in patients who underwent ultrasound RSD after non-response to RSD with radiofrequency. Non-response was defined as mean daytime systolic blood pressure ≥140 mmHg and/or a reduction of ≤10 mmHg in ambulatory blood pressure measurement (ABPM) ≥6 months after radiofrequency denervation. ABPM was recorded at baseline, post radiofrequency RSD as well as at three and six months post ultrasound RSD. A total of 24 non-responders underwent retreatment with the ultrasound device at a mean 15.3±8.2 months after radiofrequency RSD. Ultrasound RSD was performed successfully in all patients without severe adverse events. Mean daytime systolic blood pressure changed from 161.7±14.6 mmHg at baseline to 158.5±9.5 mmHg post radiofrequency RSD and to 150.5±10.4 mmHg and 151.6±11.0 mmHg at three and six months, respectively, post ultrasound RSD (p<0.01 with repeated measures analysis of variance). The main results of post hoc testing were as follows: baseline versus post radiofrequency RSD, p=0.83; baseline versus three months post ultrasound RSD, p=0.01; and baseline versus six months post ultrasound RSD, p=0.04. Ultrasound RSD appears to be safe and an effective therapeutic approach in patients not responding to previous RSD with radiofrequency technology.

  17. Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings.

    PubMed

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-03-11

    Active ultrasonic testing is widely used for medical diagnosis, material characterization and structural health monitoring. Ultrasonic transducer is a key component in active ultrasonic testing. Due to their many advantages such as small size, light weight, and immunity to electromagnetic interference, fiber-optic ultrasonic transducers are particularly attractive for permanent, embedded applications in active ultrasonic testing for structural health monitoring. However, current fiber-optic transducers only allow effective ultrasound generation at a single location of the fiber end. Here we demonstrate a fiber-optic device that can effectively generate ultrasound at multiple, selected locations along a fiber in a controllable manner based on a smart light tapping scheme that only taps out the light of a particular wavelength for laser-ultrasound generation and allow light of longer wavelengths pass by without loss. Such a scheme may also find applications in remote fiber-optic device tuning and quasi-distributed biochemical fiber-optic sensing.

  18. Synthetic aperture imaging in ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Jayaranthe, Uditha L.; Chen, Elvis C. S.; Peters, Terry M.

    2014-03-01

    Ultrasound calibration allows for ultrasound images to be incorporated into a variety of interventional applica­ tions. Traditional Z- bar calibration procedures rely on wired phantoms with an a priori known geometry. The line fiducials produce small, localized echoes which are then segmented from an array of ultrasound images from different tracked probe positions. In conventional B-mode ultrasound, the wires at greater depths appear blurred and are difficult to segment accurately, limiting the accuracy of ultrasound calibration. This paper presents a novel ultrasound calibration procedure that takes advantage of synthetic aperture imaging to reconstruct high resolution ultrasound images at arbitrary depths. In these images, line fiducials are much more readily and accu­ rately segmented, leading to decreased calibration error. The proposed calibration technique is compared to one based on B-mode ultrasound. The fiducial localization error was improved from 0.21mm in conventional B-mode images to 0.15mm in synthetic aperture images corresponding to an improvement of 29%. This resulted in an overall reduction of calibration error from a target registration error of 2.00mm to 1.78mm, an improvement of 11%. Synthetic aperture images display greatly improved segmentation capabilities due to their improved resolution and interpretability resulting in improved calibration.

  19. Ultrasound Molecular Imaging: Moving Towards Clinical Translation

    PubMed Central

    Abou-Elkacem, Lotfi; Bachawal, Sunitha V.; Willmann, Jürgen K.

    2015-01-01

    Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging. PMID:25851932

  20. Spinal curvature measurement by tracked ultrasound snapshots.

    PubMed

    Ungi, Tamas; King, Franklin; Kempston, Michael; Keri, Zsuzsanna; Lasso, Andras; Mousavi, Parvin; Rudan, John; Borschneck, Daniel P; Fichtinger, Gabor

    2014-02-01

    Monitoring spinal curvature in adolescent kyphoscoliosis requires regular radiographic examinations; however, the applied ionizing radiation increases the risk of cancer. Ultrasound imaging is favored over radiography because it does not emit ionizing radiation. Therefore, we tested an ultrasound system for spinal curvature measurement, with the help of spatial tracking of the ultrasound transducer. Tracked ultrasound was used to localize vertebral transverse processes as landmarks along the spine to measure curvature angles. The method was tested in two scoliotic spine models by localizing the same landmarks using both ultrasound and radiographic imaging and comparing the angles obtained. A close correlation was found between tracked ultrasound and radiographic curvature measurements. Differences between results of the two methods were 1.27 ± 0.84° (average ± SD) in an adult model and 0.96 ± 0.87° in a pediatric model. Our results suggest that tracked ultrasound may become a more tolerable and more accessible alternative to radiographic spine monitoring in adolescent kyphoscoliosis. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Cardiovascular Ultrasound of Neonatal Long Evans Rats ...

    EPA Pesticide Factsheets

    This abstract describes the use of a relatively new technology, cardiovascular ultrasound (echocardiography) for evaluating developmental toxicity affecting heart development. The abstract describes the effects of two known cardiac teratogens, trichloroacetic acid and dimethadione, and their effects as determined by echocardiography. This abstract describes the use and development of a relatively new technology, cardiovascular ultrasound (echocardiography) for evaluating developmental toxicity affecting heart development.

  2. Ultrasound molecular imaging: Moving toward clinical translation.

    PubMed

    Abou-Elkacem, Lotfi; Bachawal, Sunitha V; Willmann, Jürgen K

    2015-09-01

    Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Automatic Contour Tracking in Ultrasound Images

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a new automatic contour tracking system, EdgeTrak, for the ultrasound image sequences of human tongue is presented. The images are produced by a head and transducer support system (HATS). The noise and unrelated high-contrast edges in ultrasound images make it very difficult to automatically detect the correct tongue surfaces. In…

  4. Spondylolisthesis Identified Using Ultrasound Imaging.

    PubMed

    Beneck, George J; Gard, Andrea N; Fodran, Kimberly A

    2017-12-01

    57-year-old woman was recruited for a research study of muscle activation in persons with low back pain. She described a progressive worsening of left lower lumbar pain, which began 5 years prior without any precipitating incident, and intermittent pain at the left gluteal fold (diagnosed as a proximal hamstring tear 2 years prior). Ultrasound revealed marked anterior displacement of the L3-4 and L4-5 facet joints. The subject was recommended for a radiograph using a lateral recumbent view, which demonstrated a grade II spondylolisthesis. J Orthop Sports Phys Ther 2017;47(12):970. doi:10.2519/jospt.2017.7363.

  5. An ergonomic handheld ultrasound probe providing contact forces and pose information.

    PubMed

    Yohan Noh; Housden, R James; Gomez, Alberto; Knight, Caroline; Garcia, Francesca; Hongbin Liu; Razavi, Reza; Rhode, Kawal; Althoefer, Kaspar

    2015-08-01

    This paper presents a handheld ultrasound probe which is integrated with sensors to measure force and pose (position/orientation) information. Using an integrated probe like this, one can relate ultrasound images to spatial location and create 3D ultrasound maps. The handheld device can be used by sonographers and also easily be integrated with robot arms for automated sonography. The handheld device is ergonomically designed; rapid attachment and removal of the ultrasound transducer itself is possible using easy-to-operate clip mechanisms. A cable locking mechanism reduces the impact that gravitational and other external forces have (originating from data and power supply cables connected to the probe) on our measurements. Gravitational errors introduced by the housing of the probe are compensated for using knowledge of the housing geometry and the integrated pose sensor that provides us with accurate orientation information. In this paper, we describe the handheld probe with its integrated force/pose sensors and our approach to gravity compensation. We carried out a set of experiments to verify the feasibility of our approach to obtain accurate spatial information of the handheld probe.

  6. Localized Ablation of Thyroid Tissue by High-Intensity Focused Ultrasound: an Alternative to Surgery?

    NASA Astrophysics Data System (ADS)

    Esnault, Olivier; Franc, Brigitte; Chapelon, Jean-Yves; Lacoste, Francois

    2006-05-01

    PURPOSE: The aim of this study was to evaluate the feasibility of using a High-intensity focused ultrasound (HIFU) device to obtain a localised destruction of the thyroid with no damage to adjacent tissues. MATERIALS AND METHODS: The ewe model was used because its thyroid gland is easily accessible with ultrasound. The animals were anaesthetised with 10 mg / kg IV injection of Penthothal. The HIFU pulses were generated by a 3-MHz spherical transducer under ultrasound guidance. Macroscopic and microscopic tissue lesions were identified after formalin fixation of the anterior part of the ewe's neck. RESULTS: After determining the optimal instrument settings to obtain localized thyroid ablation, the repeatability of the method was evaluated using a HIFU prototype designed specifically for human use: in 13 ewes (26 treated lobes), an average of 20 (range: 14-27) ultrasound pulses (pulse duration: 3 s) per lobe covering a mean volume of 0.5 cm3 (range: 0.3-0.7 cm3) were delivered. The ewes were sacrificed 2-5 weeks after treatment delivery. No damage to the nerves, trachea, esophagus or muscle was observed. Only 3 ewes suffered superficial skin burns. The desired thyroid lesions were obtained in 25/26 treated lobes, as demonstrated by fibrotic tissues, which replaced necrotic areas. CONCLUSION: These results obtained in the ewe model show that thyroid lesions of defined volume can be induced safely and suggest that the HIFU device is now ready for human trials.

  7. Skin temperature increase mediated by wearable, long duration, low-intensity therapeutic ultrasound

    NASA Astrophysics Data System (ADS)

    Langer, Matthew D.; Huang, Wenyi; Ghanem, Angi; Guo, Yuan; Lewis, George K.

    2017-03-01

    One of the safety concerns with the delivery of therapeutic ultrasound is overheating of the transducer-skin interface due to poor or improper coupling. The objective of this research was to define a model that could be used to calculate the heating in the skin as a result of a novel, wearable long-duration ultrasound device. This model was used to determine that the maximum heating in the skin remained below the minimum threshold necessary to cause thermal injury over multiple hours of use. In addition to this model data, a human clinical study used wire thermocouples on the skin surface to measure heating characteristics during treatment with the sustained ultrasound system. Parametric analysis of the model determined that the maximum temperature increase is at the surface of the skin ranged from 40-41.8° C when perfusion was taken into account. The clinical data agreed well with the model predictions. The average steady state temperature observed across all 44 subjects was 40°C. The maximum temperature observed was less than 44° C, which is clinically safe for over 5 hours of human skin contact. The resultant clinical temperature data paired well with the model data suggesting the model can be used for future transducer and ultrasound system design simulation. As a result, the device was validated for thermal safety for typical users and use conditions.

  8. Microbubbles and Ultrasound: A Bird's Eye View.

    PubMed Central

    Kaul, Sanjiv

    2004-01-01

    Gas-filled microbubbles were initially used as ultrasound contrast agent because of their intravascular rheology, which is similar to that of red blood cells. Their transit through tissue can thus be quantified with ultrasound. More recently, these bubbles have been successfully used for molecular imaging by incorporating ligands on their surfaces that will adhere to cellular and other components within the microvasculature and can be detected by ultrasound. These bubbles have also been used for delivery of genes and drugs which can be released locally by disruption of the bubbles with high-energy ultrasound. Finally, bioeffects produced by localized ultrasound disruption of microbubbles have been shown to induce angiogenesis. This brief review will provide a bird's eye view of these applications. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 PMID:17060963

  9. Microbubbles and ultrasound: a bird's eye view.

    PubMed

    Kaul, Sanjiv

    2004-01-01

    Gas-filled microbubbles were initially used as ultrasound contrast agent because of their intravascular rheology, which is similar to that of red blood cells. Their transit through tissue can thus be quantified with ultrasound. More recently, these bubbles have been successfully used for molecular imaging by incorporating ligands on their surfaces that will adhere to cellular and other components within the microvasculature and can be detected by ultrasound. These bubbles have also been used for delivery of genes and drugs which can be released locally by disruption of the bubbles with high-energy ultrasound. Finally, bioeffects produced by localized ultrasound disruption of microbubbles have been shown to induce angiogenesis. This brief review will provide a bird's eye view of these applications.

  10. [Polymeric drug carriers activated by ultrasounds energy].

    PubMed

    Kik, Krzysztof; Lwow, Felicja; Szmigiero, Leszek

    2007-01-01

    In the last two decades an extensive research on the employment of ultrasounds in anticancer therapy has been noticed. So far ultrasounds have been widely used in medicine for diagnostic purposes (ultrasonography), but their great therapeutic potential and the development of polymer based antineoplastic drug carriers have persuaded many investigators to start research on the employment of ultrasounds in anticancer therapy. A new therapeutic concept based on the controlled drug's molecules release from their transporting polymer carriers has been proposed. Cavitation, a phenomenon characteristic for the action of ultrasounds, is used to destroy polymeric drug carriers and for drug release in target sites. The sonodynamic therapy (SDT) which utilizes ultrasonic waves for "acoustic drug activation" leading to the enhancement of cytotoxic activity of some drugs has also been developed. Furthermore, a long standing research on ultrasounds resulted in a new concept based on hyperthermia. This method of cancer treatment does not require any chemotherapeutic agent to be applied.

  11. Sports Ultrasound: Applications Beyond the Musculoskeletal System.

    PubMed

    Finnoff, Jonathan T; Ray, Jeremiah; Corrado, Gianmichael; Kerkhof, Deanna; Hill, John

    2016-09-01

    Traditionally, ultrasound has been used to evaluate musculoskeletal injuries in athletes; however, ultrasound applications extend well beyond musculoskeletal conditions, many of which are pertinent to athletes. Articles were identified in PubMed using the search terms ultrasound, echocardiogram, preparticipation physical examination, glycogen, focused assessment with sonography of trauma, optic nerve, and vocal cord dysfunction. No date restrictions were placed on the literature search. Clinical review. Level 4. Several potential applications of nonmusculoskeletal ultrasound in sports medicine are presented, including extended Focused Assessment with Sonography for Trauma (eFAST), limited echocardiographic screening during preparticipation physical examinations, assessment of muscle glycogen stores, optic nerve sheath diameter measurements in athletes with increased intracranial pressure, and assessment of vocal cord dysfunction in athletes. Ultrasound can potentially be used to assist athletes with monitoring their muscle glycogen stores and the diagnosis of multiple nonmusculoskeletal conditions within sports medicine. © 2016 The Author(s).

  12. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  13. CLOSURE DEVICE

    DOEpatents

    Linzell, S.M.; Dorcy, D.J.

    1958-08-26

    A quick opening type of stuffing box employing two banks of rotatable shoes, each of which has a caraming action that forces a neoprene sealing surface against a pipe or rod where it passes through a wall is presented. A ring having a handle or wrench attached is placed eccentric to and between the two banks of shoes. Head bolts from the shoes fit into slots in this ring, which are so arranged that when the ring is rotated a quarter turn in one direction the shoes are thrust inwardly to cramp the neopnrene about the pipe, malting a tight seal. Moving the ring in the reverse direction moves the shoes outwardly and frees the pipe which then may be readily removed from the stuffing box. This device has particular application as a closure for the end of a coolant tube of a neutronic reactor.

  14. PLASMA DEVICE

    DOEpatents

    Baker, W.R.

    1961-08-22

    A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)

  15. Optoelectronic device

    DOEpatents

    Bonekamp, Jeffrey E.; Boven, Michelle L.; Gaston, Ryan S.

    2014-09-09

    The invention is an optoelectronic device comprising an active portion which converts light to electricity or converts electricity to light, the active portion having a front side for the transmittal of the light and a back side opposite from the front side, at least two electrical leads to the active portion to convey electricity to or from the active portion, an enclosure surrounding the active portion and through which the at least two electrical leads pass wherein the hermetically sealed enclosure comprises at the front side of the active portion a barrier material which allows for transmittal of light, one or more getter materials disposed so as to not impede the transmission of light to or from the active portion, and a contiguous gap pathway to the getter material which pathway is disposed between the active portion and the barrier material.

  16. Electrophoresis device

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S. (Inventor)

    1982-01-01

    A device for separating cellular particles of a sample substance into fractionated streams of different cellular species includes a casing having a distribution chamber, a separation chamber, and a collection chamber. The electrode chambers are separated from the separation chamber interior by means of passages such that flow variations and membrane variations around the slotted portion of the electrode chamber do not enduce flow perturbations into the laminar buffer curtain flowing in the separation chamber. The cellular particles of the sample are separated under the influence of the electrical field and the separation chamber into streams of different cellular species. The streams of separated cells enter a partition array in the collection chamber where they are fractionated and collected.

  17. Treating resistant hypertension with new devices.

    PubMed

    Wienemann, H; Meincke, F; Kaiser, L; Heeger, C H; Bergmann, M W

    2014-06-01

    Arterial hypertension is a frequent, chronic disease, which is one of the main risk factor for cardiovascular and renal diseases such as heart failure, chronic kidney disease, hypertensive heart disease, stroke as well as cardiac arrhythmias. In the clinical setting it remains challenging to accomplish the thresholds of guideline blood pressure (BP) levels now defined as office based BP to be below <140 mmHg. Patients on three or more antihypertensive drugs, with systolic BP values above ≥160 mmHg (≥150 mmHg for patients with type 2 diabetes) are classified as having resistant hypertension. In the past six years the development of interventional sympathetic renal artery denervation (RDN) opened a new treatment option targeting the afferent and efferent sympathetic nerves of the kidney to reduce BP. A large variety of devices are available on the market. Newly developed devices try to focus on new strategies such as ultrasound or irrigated catheters, which might reduce the post-procedural complications and increase the success rate. The first generation SymplicityTM device (Medtronic, Palo Alto, CA, USA) was shown to be safe, with side effects rarely occurring. Clinical trials demonstrate that this procedure is successful in about 70% of patients. However current data from Simplicity HTN-3 with 25% african-americans and a massive BP-lowering effect in the control "sham" group was not able to find a significant effect in the overall patient cohort. Possibly devices which allow to safely destroy sympathetic renal innervation more efficiently might allow for a higher responder rate. Irrigated RDN and ultrasound devices could deliver more energy to deeper tissue levels. This article provides an overview of currently available data on devices.

  18. Ultrasound for the Anesthesiologists: Present and Future

    PubMed Central

    Terkawi, Abdullah S.; Karakitsos, Dimitrios; Elbarbary, Mahmoud; Blaivas, Michael; Durieux, Marcel E.

    2013-01-01

    Ultrasound is a safe, portable, relatively inexpensive, and easily accessible imaging modality, making it a useful diagnostic and monitoring tool in medicine. Anesthesiologists encounter a variety of emergent situations and may benefit from the application of such a rapid and accurate diagnostic tool in their routine practice. This paper reviews current and potential applications of ultrasound in anesthesiology in order to encourage anesthesiologists to learn and use this useful tool as an adjunct to physical examination. Ultrasound-guided peripheral nerve blockade and vascular access represent the most popular ultrasound applications in anesthesiology. Ultrasound has recently started to substitute for CT scans and fluoroscopy in many pain treatment procedures. Although the application of airway ultrasound is still limited, it has a promising future. Lung ultrasound is a well-established field in point-of-care medicine, and it could have a great impact if utilized in our ORs, as it may help in rapid and accurate diagnosis in many emergent situations. Optic nerve sheath diameter (ONSD) measurement and transcranial color coded duplex (TCCD) are relatively new neuroimaging modalities, which assess intracranial pressure and cerebral blood flow. Gastric ultrasound can be used for assessment of gastric content and diagnosis of full stomach. Focused transthoracic (TTE) and transesophageal (TEE) echocardiography facilitate the assessment of left and right ventricular function, cardiac valve abnormalities, and volume status as well as guiding cardiac resuscitation. Thus, there are multiple potential areas where ultrasound can play a significant role in guiding otherwise blind and invasive interventions, diagnosing critical conditions, and assessing for possible anatomic variations that may lead to plan modification. We suggest that ultrasound training should be part of any anesthesiology training program curriculum. PMID:24348179

  19. Educational ultrasound nondestructive testing laboratory.

    PubMed

    Genis, Vladimir; Zagorski, Michael

    2008-09-01

    The ultrasound nondestructive evaluation (NDE) of materials course was developed for applied engineering technology students at Drexel University's Goodwin College of Professional Studies. This three-credit, hands-on laboratory course consists of two parts: the first part with an emphasis on the foundations of NDE, and the second part during which ultrasound NDE techniques are utilized in the evaluation of parts and materials. NDE applications are presented and applied through real-life problems, including calibration and use of the latest ultrasonic testing instrumentation. The students learn engineering and physical principles of measurements of sound velocity in different materials, attenuation coefficients, material thickness, and location and dimensions of discontinuities in various materials, such as holes, cracks, and flaws. The work in the laboratory enhances the fundamentals taught during classroom sessions. This course will ultimately result in improvements in the educational process ["The greater expectations," national panel report, http://www.greaterexpectations.org (last viewed February, 2008); R. M. Felder and R. Brent "The intellectual development of Science and Engineering Students. Part 2: Teaching to promote growth," J. Eng. Educ. 93, 279-291 (2004)] since industry is becoming increasingly reliant on the effective application of NDE technology and the demand on NDE specialists is increasing. NDE curriculum was designed to fulfill levels I and II NDE in theory and training requirements, according to American Society for Nondestructive Testing, OH, Recommended Practice No. SNT-TC-1A (2006).

  20. Prospects for telediagnosis using ultrasound.

    PubMed

    Dewey, C F; Thomas, J D; Kunt, M; Hunter, I W

    1996-01-01

    Ultrasound imaging is currently used as a primary diagnostic tool in cardiology, abdominal disorders, pulmonary medicine, trauma, and obstetrics. Because of its relatively low capital and operating costs as well as its growth potential, it represents one of the major diagnostic modalities of future health care. However, the use of ultrasonography as a mobile and powerful modality is controlled by the availability of a highly skilled technician to acquire the images and an experienced physician to interpret them. This paper discusses the technology required to increase the availability of a diagnosing physician by employing telerobotics. With this technology, the physician can guide the motion of the transducer by the technician from a remote location. Thus, the physician controls the examination and renders the diagnosis. It is shown that communication lines at 1.5 Mbits/s (T-1 speed) can, with appropriate compression, support both real-time viewing of the ultrasound images and telerobotic manipulation of the transducer. The incremental costs of telediagnosis for an examination are estimated to be a small fraction of the base charges and significantly less than the expense of bringing a physician to a remote location or transporting a patient to a regional medical center. Telediagnosis can, in addition, provide benefits from immediate interpretation and consultation that cannot be duplicated using store-and-forward scenarios.

  1. Ultrasound enhanced thrombolysis: Clinical evidence

    NASA Astrophysics Data System (ADS)

    Alexandrov, Andrei V.

    2005-04-01

    Phase II CLOTBUST randomized clinical trial (Houston, Barcelona, Edmonton, Calgary) evaluated patients with acute ischemic stroke due to intracranial occlusion and treated with intravenous tissue plasminogen activator (TPA) within 3 h of symptom onset. Randomization: monitoring with pulsed wave 2 MHz transcranial Doppler (TCD) (Target) or placebo monitoring (Control). Safety: symptomatic bleeding to the brain (sICH). Primary end-point: complete recanalization on TCD or dramatic clinical recovery by the total NIHSS score <3, or improvement by >10 NIHSS points within 2 hours after TPA bolus. All projected 126 patients were randomized 1:1 to target (median NIHSS 16) or control (NIHSS 17). sICH: 4.8% Target, 4.8% Controls. Primary end-point was achieved by 31 (49%, Target) versus 19 (30%, Control), p<0.03. At 3 months, 22 (42% Target) and 14 (29% Control) patients achieved favorable outcomes. Continuous TCD monitoring of intracranial occlusion safely augments TPA-induced arterial recanalization, and 2 MHz diagnostic ultrasound has a positive biological activity that aids systemic thrombolytic therapy. For the first time in clinical medicine, the CLOTBUST trial provides the evidence that ultrasound enhances thrombolytic activity of a drug in humans thereby confirming intense multi-disciplinary experimental research conducted worldwide for the past 30 years.

  2. Ultrasound coefficient of nonlinearity imaging.

    PubMed

    van Sloun, Ruud; Demi, Libertario; Shan, Caifeng; Mischi, Massimo

    2015-07-01

    Imaging the acoustical coefficient of nonlinearity, β, is of interest in several healthcare interventional applications. It is an important feature that can be used for discriminating tissues. In this paper, we propose a nonlinearity characterization method with the goal of locally estimating the coefficient of nonlinearity. The proposed method is based on a 1-D solution of the nonlinear lossy Westerfelt equation, thereby deriving a local relation between β and the pressure wave field. Based on several assumptions, a β imaging method is then presented that is based on the ratio between the harmonic and fundamental fields, thereby reducing the effect of spatial amplitude variations of the speckle pattern. By testing the method on simulated ultrasound pressure fields and an in vitro B-mode ultrasound acquisition, we show that the designed algorithm is able to estimate the coefficient of nonlinearity, and that the tissue types of interest are well discriminable. The proposed imaging method provides a new approach to β estimation, not requiring a special measurement setup or transducer, that seems particularly promising for in vivo imaging.

  3. Development of a Cancer Treatment with the Concomitant Use of Low-Intensity Ultrasound: Entering the Age of Simultaneous Diagnosis and Treatment

    PubMed Central

    Emoto, Makoto

    2014-01-01

    In recent years, studies using ultrasound energy for cancer treatment have advanced, thus revealing the enhancement of drug effects by employing low-intensity ultrasound. Furthermore, anti-angiogenesis against tumors is now attracting attention as a new cancer treatment. Therefore, we focused on the biological effects and the enhancement of drug effects brought by this low-intensity ultrasound energy and reported on the efficacy against a uterine sarcoma model, by implementing the basic studies, for the first time, including the concomitant use of low-intensity ultrasound irradiation, as an expected new antiangiogenic therapy for cancer treatment. Furthermore, we have succeeded in simultaneously utilizing low-intensity ultrasound in both diagnosis and treatment, upon real time evaluation of the anti-tumor effects and anti-angiogenesis effects using color Doppler ultrasound imaging. Although the biological effects of ultrasound have not yet been completely clarified, transient stomas were formed (Sonoporation) in cancer cells irradiated by low-intensity ultrasound and it is believed that the penetration effect of drugs is enhanced due to the drug being more charged inside the cell through these stomas. Furthermore, it has become clear that the concomitant therapy of anti-angiogenesis drugs and low-intensity ultrasound blocks the angiogenic factor VEGF produced by cancer cells, inhibits the induction of circulating endothelial progenitor cells in the bone marrow, and expedites angiogenic inhibitor TSP-1. Based on research achievements in recent years, we predict that the current diagnostic device for color Doppler ultrasound imaging will be improved in the near future, bringing with it the arrival of an age of “low-intensity ultrasound treatment that simultaneously enables diagnosis and treatment of cancer in real time.” PMID:26852677

  4. How to set up a low cost tele-ultrasound capable videoconferencing system with wide applicability

    PubMed Central

    2012-01-01

    Background Worldwide ultrasound equipment accessibility is at an all-time high, as technology improves and costs decrease. Ensuring that patients benefit from more accurate resuscitation and diagnoses from a user-dependent technology, such as ultrasound, requires accurate examination, typically entailing significant training. Remote tele-mentored ultrasound (RTUS) examination is, however, a technique pioneered in space medicine that has increased applicability on earth. We, thus, sought to create and demonstrate a cost-minimal approach and system with potentially global applicability. Methods The cost-minimal RTUS system was constructed by utilizing a standard off-the-shelf laptop computer that connected to the internet through an internal wireless receiver and/or was tethered through a smartphone. A number of portable hand-held ultrasound devices were digitally streamed into the laptop utilizing a video converter. Both the ultrasound video and the output of a head-mounted video camera were transmitted over freely available Voice Over Internet Protocol (VOIP) software to remote experts who could receive and communicate using any mobile device (computer, tablet, or smartphone) that could access secure VOIP transmissions from the internet. Results The RTUS system allowed real-time mentored tele-ultrasound to be conducted from a variety of settings that were inside buildings, outside on mountainsides, and even within aircraft in flight all unified by the simple capability of receiving and transmitting VOIP transmissions. . Numerous types of ultrasound examinations were conducted such as abdominal and thoracic examinations with a variety of users mentored who had previous skills ranging from none to expert. Internet connectivity was rarely a limiting factor, with competing logistical and scheduling demands of the participants predominating. Conclusions RTUS examinations can educate and guide point of care clinical providers to enhance their use of ultrasound. The scope

  5. 21 CFR 890.5860 - Ultrasound and muscle stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasound and muscle stimulator. 890.5860 Section... Ultrasound and muscle stimulator. (a) Ultrasound and muscle stimulator for use in applying therapeutic deep heat for selected medical conditions—(1) Identification. An ultrasound and muscle stimulator for use in...

  6. 21 CFR 890.5860 - Ultrasound and muscle stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasound and muscle stimulator. 890.5860 Section... Ultrasound and muscle stimulator. (a) Ultrasound and muscle stimulator for use in applying therapeutic deep heat for selected medical conditions—(1) Identification. An ultrasound and muscle stimulator for use in...

  7. 21 CFR 890.5860 - Ultrasound and muscle stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasound and muscle stimulator. 890.5860 Section... Ultrasound and muscle stimulator. (a) Ultrasound and muscle stimulator for use in applying therapeutic deep heat for selected medical conditions—(1) Identification. An ultrasound and muscle stimulator for use in...

  8. 21 CFR 890.5860 - Ultrasound and muscle stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasound and muscle stimulator. 890.5860 Section... Ultrasound and muscle stimulator. (a) Ultrasound and muscle stimulator for use in applying therapeutic deep heat for selected medical conditions—(1) Identification. An ultrasound and muscle stimulator for use in...

  9. 21 CFR 890.5860 - Ultrasound and muscle stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasound and muscle stimulator. 890.5860 Section... Ultrasound and muscle stimulator. (a) Ultrasound and muscle stimulator for use in applying therapeutic deep heat for selected medical conditions—(1) Identification. An ultrasound and muscle stimulator for use in...

  10. Integrated device architectures for electrochromic devices

    DOEpatents

    Frey, Jonathan Mack; Berland, Brian Spencer

    2015-04-21

    This disclosure describes systems and methods for creating monolithically integrated electrochromic devices which may be a flexible electrochromic device. Monolithic integration of thin film electrochromic devices may involve the electrical interconnection of multiple individual electrochromic devices through the creation of specific structures such as conductive pathway or insulating isolation trenches.

  11. Laser device

    DOEpatents

    Scott, Jill R [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  12. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  13. Intracavitary ultrasound phased arrays for thermal therapies

    NASA Astrophysics Data System (ADS)

    Hutchinson, Erin

    Currently, the success of hyperthermia and thermal surgery treatments is limited by the technology used in the design and fabrication of clinical heating devices and the completeness of the thermometry systems used for guidance. For both hyperthermia and thermal surgery, electrically focused ultrasound generated by phased arrays provides a means of controlling localized energy deposition in body tissues. Intracavitary applicators can be used to bring the energy source close to a target volume, such as the prostate, thereby minimizing normal tissue damage. The work performed in this study was aimed at improving noninvasive prostate thermal therapies and utilized three research approaches: (1) Acoustic, thermal and optimization simulations, (2) Design and fabrication of multiple phased arrays, (3) Ex vivo and in vivo experimental testing of the heating capabilities of the phased arrays. As part of this study, a novel aperiodic phased array design was developed which resulted in a 30- 45% reduction in grating lobe levels when compared to conventional phased arrays. Measured acoustic fields generated by the constructed aperiodic arrays agreed closely with the fields predicted by the theoretical simulations and covered anatomically appropriate ranges. The power capabilities of these arrays were demonstrated to be sufficient for the purposes of hyperthermia and thermal surgery. The advantage of using phased arrays in place of fixed focus transducers was shown by demonstrating the ability of electronic scanning to increase the size of the necrosed tissue volume while providing a more uniform thermal dose, which can ultimately reduce patient treatment times. A theoretical study on the feasibility of MRI (magnetic resonance imaging) thermometry for noninvasive temperature feedback control was investigated as a means to improve transient and steady state temperature distributions achieved in hyperthermia treatments. MRI guided ex vivo and in vivo experiments demonstrated

  14. Ultrasound comparison of external and internal neck anatomy with the LMA Unique.

    PubMed

    Lee, Steven M; Wojtczak, Jacek A; Cattano, Davide

    2017-12-01

    Internal neck anatomy landmarks and their relation after placement of an extraglottic airway devices have not been studied extensively by the use of ultrasound. Based on our group experience with external landmarks as well as internal landmarks evaluation with other techniques, we aimed use ultrasound to analyze the internal neck anatomy landmarks and the related changes due to the placement of the Laryngeal Mask Airway Unique. Observational pilot investigation. Non-obese adult patients with no evidence of airway anomalies, were recruited. External neck landmarks were measured based on a validated and standardized method by tape. Eight internal anatomical landmarks, reciprocal by the investigational hypothesis to the external landmarks, were also measured by ultrasound guidance. The internal landmarks were re-measured after optimal placement and inflation of the extraglottic airway devices cuff Laryngeal Mask Airway Unique. Six subjects were recruited. Ultrasound measurements of hyoid-mental distance, thyroid-cricoid distance, thyroid height, and thyroid width were found to be significantly ( p < 0.05) overestimated using a tape measure. Sagittal neck landmark distances such as thyroid height, sternal-mental distance, and thyroid-cricoid distance significantly decreased after placement of the Laryngeal Mask Airway Unique. The laryngeal mask airway Unique resulted in significant changes in internal neck anatomy. The induced changes and respective specific internal neck anatomy landmarks could help to design devices that would modify their shape accordingly to areas of greatest displacement. Also, while external neck landmark measurements overestimate their respective internal neck landmarks, as we previously reported, the concordance of each measurement and their respective conversion factor could continue to be of help in sizing extraglottic airway devices. Due to the pilot nature of the study, more investigations are warranted.

  15. Role of ultrasound in colorectal diseases.

    PubMed

    Bor, Renáta; Fábián, Anna; Szepes, Zoltán

    2016-11-21

    Ultrasound is an undervalued non-invasive examination in the diagnosis of colonic diseases. It has been replaced by the considerably more expensive magnetic resonance imaging and computed tomography, despite the fact that, as first examination, it can usefully supplement the diagnostic process. Transabdominal ultrasound can provide quick information about bowel status and help in the choice of adequate further examinations and treatment. Ultrasonography, as a screening imaging modality in asymptomatic patients can identify several colonic diseases such as diverticulosis, inflammatory bowel disease or cancer. In addition, it is widely available, cheap, non-invasive technique without the use of ionizing radiation, therefore it is safe to use in childhood or during pregnancy, and can be repeated at any time. New ultrasound techniques such as elastography, contrast enhanced and Doppler ultrasound, mini-probes rectal and transperineal ultrasonography have broadened the indication. It gives an overview of the methodology of various ultrasound examinations, presents the morphology of normal bowel wall and the typical changes in different colonic diseases. We will pay particular attention to rectal and transperineal ultrasound because of their outstanding significance in the diagnosis of rectal and perineal disorders. This article seeks to overview the diagnostic impact and correct indications of bowel ultrasound.

  16. Performance of chest ultrasound in pediatric pneumonia.

    PubMed

    Claes, Anne-Sophie; Clapuyt, Philippe; Menten, Renaud; Michoux, Nicolas; Dumitriu, Dana

    2017-03-01

    The objective of this study was to evaluate the performance of ultrasound in detecting lung consolidation in children suspected of pneumonia, in comparison to the current gold standard, chest X-rays. From September 2013 to June 2014, a monocentric prospective study was performed on all children between 0 and 16 years-old, referred for chest X-ray for suspected pneumonia. Each child was examined by chest ultrasound by an examiner blinded to the chest X-ray. The presence or absence of areas of consolidation, their number and location were noted for each technique. The size of the consolidations identified only on ultrasound was compared with that of consolidations visible on both techniques. 143 children (mean age 3 years; limits between 8days and 14 years) were included. Ultrasound detected at least one area of consolidation in 44 out of 45 patients with positive X-rays. Of the 59 areas of consolidation on X-ray, ultrasound identified 54. In the 8 patients with negative X-ray, ultrasound revealed 17 areas of consolidation. The mean size of consolidations visible only on ultrasound was 9.4mm; for consolidations visible on both techniques the mean size was 26mm (p<0.0001). The sensitivity and specificity of ultrasound were calculated at 98% and 92%. PPV and NPV were 85% and 99%, respectively. Chest ultrasound is a fast, non-ionizing and feasible technique. With its high negative predictive value, it can replace X-rays in order to exclude lung consolidation in children, thus reducing radiation exposure in this population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Ultrasound-assisted synthesis and processing of carbon materials

    NASA Astrophysics Data System (ADS)

    Fortunato, Maria E.

    2011-12-01

    the porous carbon support. Part II: The effects of high intensity ultrasound arise from acoustic cavitation: the formation, growth, and collapse of bubbles in a liquid. Bubble collapse produces intense localized heating (˜5000 K), high pressures (˜300 atm), and enormous heating and cooling rates (>109 K/sec). In solid-liquid slurries, surface erosion and particle fracture occur due to the shockwaves and microjets formed from asymmetric bubble collapse at extended surfaces. The chemical and physical effects of ultrasound have been studied as an adjunct to the traditional chemical pretreatment of lignocellulosic biomass for ethanol production. Lignocellulosic biomass consists of cellulose, hemicellulose, and lignin. The surface effects of ultrasound were used in this work to increase the accessibility of the cellulose, which can be converted to glucose and then fermented into ethanol. The lignocellulosic biomass used in this work was Miscanthus x giganteus (Mxg) which was grown at the University of Illinois at Urbana-Champaign. The chemical effects of NaOH pretreatment on Mxg were enhanced by ultrasound: greater delignification and a significant increase in the amount of pores >5 nm were observed. ˜ 70% of the theoretical glucose yield was obtained by enzymatic saccharification of the ultrasound-assisted NaOH-pretreated Mxg; this is comparable to the yields that can be obtained by traditional alkaline pretreatments, but it was achieved in a shorter time and at a lower temperature. Because the apparatus used for laboratory studies is not a likely device for scale-up, the economics of ultrasound with regards to energy balance are not yet resolved.

  18. HIFU Monitoring and Control with Dual-Mode Ultrasound Arrays

    NASA Astrophysics Data System (ADS)

    Casper, Andrew Jacob

    The biological effects of high-intensity focused ultrasound (HIFU) have been known and studied for decades. HIFU has been shown capable of treating a wide variety of diseases and disorders. However, despite its demonstrated potential, HIFU has been slow to gain clinical acceptance. This is due, in part, to the difficulty associated with robustly monitoring and controlling the delivery of the HIFU energy. The non-invasive nature of the surgery makes the assessment of treatment progression difficult, leading to long treatment times and a significant risk of under treatment. This thesis research develops new techniques and systems for robustly monitoring HIFU therapies for the safe and efficacious delivery of the intended treatment. Systems and algorithms were developed for the two most common modes of HIFU delivery systems: single-element and phased array applicators. Delivering HIFU with a single element transducer is a widely used technique in HIFU therapies. The simplicity of a single element offers many benefits in terms of cost and overall system complexity. Typical monitoring schemes rely on an external device (e.g. diagnostic ultrasound or MRI) to assess the progression of therapy. The research presented in this thesis explores using the same element to both deliver and monitor the HIFU therapy. The use of a dual-mode ultrasound transducer (DMUT) required the development of an FPGA based single-channel arbitrary waveform generator and high-speed data acquisition unit. Data collected from initial uncontrolled ablations led to the development of monitoring and control algorithms which were implemented directly on the FPGA. Close integration between the data acquisition and arbitrary waveform units allowed for fast, low latency control over the ablation process. Results are presented that demonstrate control of HIFU therapies over a broad range of intensities and in multiple in vitro tissues. The second area of investigation expands the DMUT research to an

  19. Endoscopic ultrasound for the characterization and staging of rectal cancer. Current state of the method. Technological advances and perspectives.

    PubMed

    Gersak, Mariana M; Badea, Radu; Graur, Florin; Hajja, Nadim Al; Furcea, Luminita; Dudea, Sorin M

    2015-06-01

    Endoscopic ultrasound is the most accurate type of examination for the assessment of rectal tumors. Over the years, the method has advanced from gray-scale examination to intravenous contrast media administration and to different types of elastography. The multimodal approach of tumors (transrectal, transvaginal) is adapted to each case. 3D ultrasound is useful for spatial representation and precise measurement of tumor formations, using CT/MR image reconstruction; color elastography is useful for tumor characterization and staging; endoscopic ultrasound using intravenous contrast agents can help study the amount of contrast agent targeted at the level of the tumor formations and contrast wash-in/wash-out time, based on the curves displayed on the device. The transvaginal approach often allows better visualization of the tumor than the transrectal approach. Performing the procedure with the rectal ampulla distended with contrast agent may be seen as an optimization of the examination methodology. All these aspects are additional methods for gray-scale endoscopic ultrasound, capable of increasing diagnostic accuracy. This paper aims at reviewing the progress of transrectal and transvaginal ultrasound, generically called endoscopic ultrasound, for rectal tumor diagnosis and staging, with emphasis on the current state of the method and its development trends.

  20. Intramuscular Heating Characteristics of Multihour Low-Intensity Therapeutic Ultrasound.

    PubMed

    Rigby, Justin H; Taggart, Rebecca M; Stratton, Kelly L; Lewis, George K; Draper, David O

    2015-11-01

    The heating characteristics of a stationary device delivering sustained acoustic medicine with low-intensity therapeutic ultrasound (LITUS) are unknown. To measure intramuscular (IM) heating produced by a LITUS device developed for long-duration treatment of musculoskeletal injuries. Controlled laboratory study. University research laboratory. A total of 26 healthy volunteers (16 men, 10 women; age = 23.0 ± 2.1 years, height = 1.74 ± 0.09 m, mass = 73.48 ± 14.65 kg). Participants were assigned randomly to receive active (n = 20) or placebo (n = 6) LITUS at a frequency of 3 MHz and an energy intensity of 0.132 W/cm(2) continuously for 3 hours with a single transducer or dual transducers on the triceps surae muscle. We measured IM temperature using thermocouples inserted at 1.5- and 3-cm depths into muscle. Temperatures were recorded throughout treatment and 30 minutes posttreatment. We used 2-sample t tests to determine the heating curve of the LITUS treatment and differences in final temperatures between depth and number of transducers. A mild IM temperature increase of 1 °C was reached 10 ± 5 minutes into the treatment, and a more vigorous temperature increase of 4 °C was reached 80 ± 10 minutes into the treatment. The maximal steady-state IM temperatures produced during the final 60 minutes of treatment at the 1.5-cm depth were 4.42 °C ± 0.08 °C and 3.92 °C ± 0.06 °C using 1 and 2 transducers, respectively. At the 3.0-cm depth, the maximal steady-state IM temperatures during the final 60 minutes of treatment were 3.05 °C ± 0.09 °C and 3.17 °C ± 0.05 °C using 1 and 2 transducers, respectively. We observed a difference between the temperatures measured at each depth (t78 = -2.45, P = .02), but the number of transducers used to generate heating was not different (t78 = 1.79, P = .08). The LITUS device elicited tissue heating equivalent to traditional ultrasound but could be sustained for multiple hours. It is a safe and effective alternative tool

  1. All-Optical Ultrasound Transducers for High Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Sheaff, Clay Smith

    High frequency ultrasound (HFUS) has increasingly been used within the past few decades to provide high resolution (< 200 mum) imaging in medical applications such as endoluminal imaging, intravascular imaging, ophthalmology, and dermatology. The optical detection and generation of HFUS using thin films offers numerous advantages over traditional piezoelectric technology. Circumvention of an electronic interface with the device head is one of the most significant given the RF noise, crosstalk, and reduced capacitance that encumbers small-scale electronic transducers. Thin film Fabry-Perot interferometers - also known as etalons - are well suited for HFUS receivers on account of their high sensitivity, wide bandwidth, and ease of fabrication. In addition, thin films can be used to generate HFUS when irradiated with optical pulses - a method referred to as Thermoelastic Ultrasound Generation (TUG). By integrating a polyimide (PI) film for TUG into an etalon receiver, we have created for the first time an all-optical ultrasound transducer that is both thermally stable and capable of forming fully sampled 2-D imaging arrays of arbitrary configuration. Here we report (1) the design and fabrication of PI-etalon transducers; (2) an evaluation of their optical and acoustic performance parameters; (3) the ability to conduct high-resolution imaging with synthetic 2-D arrays of PI-etalon elements; and (4) work towards a fiber optic PI-etalon for in vivo use. Successful development of a fiber optic imager would provide a unique field-of-view thereby exposing an abundance of prospects for minimally-invasive analysis, diagnosis, and treatment of disease.

  2. Breast tumour visualization using 3D quantitative ultrasound methods

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Raheem, Abdul; Tadayyon, Hadi; Liu, Simon; Hadizad, Farnoosh; Czarnota, Gregory J.

    2016-04-01

    Breast cancer is one of the most common cancer types accounting for 29% of all cancer cases. Early detection and treatment has a crucial impact on improving the survival of affected patients. Ultrasound (US) is non-ionizing, portable, inexpensive, and real-time imaging modality for screening and quantifying breast cancer. Due to these attractive attributes, the last decade has witnessed many studies on using quantitative ultrasound (QUS) methods in tissue characterization. However, these studies have mainly been limited to 2-D QUS methods using hand-held US (HHUS) scanners. With the availability of automated breast ultrasound (ABUS) technology, this study is the first to develop 3-D QUS methods for the ABUS visualization of breast tumours. Using an ABUS system, unlike the manual 2-D HHUS device, the whole patient's breast was scanned in an automated manner. The acquired frames were subsequently examined and a region of interest (ROI) was selected in each frame where tumour was identified. Standard 2-D QUS methods were used to compute spectral and backscatter coefficient (BSC) parametric maps on the selected ROIs. Next, the computed 2-D parameters were mapped to a Cartesian 3-D space, interpolated, and rendered to provide a transparent color-coded visualization of the entire breast tumour. Such 3-D visualization can potentially be used for further analysis of the breast tumours in terms of their size and extension. Moreover, the 3-D volumetric scans can be used for tissue characterization and the categorization of breast tumours as benign or malignant by quantifying the computed parametric maps over the whole tumour volume.

  3. Detecting stripe artifacts in ultrasound images.

    PubMed

    Maciak, Adam; Kier, Christian; Seidel, Günter; Meyer-Wiethe, Karsten; Hofmann, Ulrich G

    2009-10-01

    Brain perfusion diseases such as acute ischemic stroke are detectable through computed tomography (CT)-/magnetic resonance imaging (MRI)-based methods. An alternative approach makes use of ultrasound imaging. In this low-cost bedside method, noise and artifacts degrade the imaging process. Especially stripe artifacts show a similar signal behavior compared to acute stroke or brain perfusion diseases. This document describes how stripe artifacts can be detected and eliminated in ultrasound images obtained through harmonic imaging (HI). On the basis of this new method, both proper identification of areas with critically reduced brain tissue perfusion and classification between brain perfusion defects and ultrasound stripe artifacts are made possible.

  4. Intraoperative Ultrasound for Peripheral Nerve Applications.

    PubMed

    Willsey, Matthew; Wilson, Thomas J; Henning, Phillip Troy; Yang, Lynda J-S

    2017-10-01

    Offering real-time, high-resolution images via intraoperative ultrasound is advantageous for a variety of peripheral nerve applications. To highlight the advantages of ultrasound, its extraoperative uses are reviewed. The current intraoperative uses, including nerve localization, real-time evaluation of peripheral nerve tumors, and implantation of leads for peripheral nerve stimulation, are reviewed. Although intraoperative peripheral nerve localization has been performed previously using guide wires and surgical dyes, the authors' approach using ultrasound-guided instrument clamps helps guide surgical dissection to the target nerve, which could lead to more timely operations and shorter incisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Development of ultrasound bioprobe for biological imaging

    PubMed Central

    Shekhawat, Gajendra S.; Dudek, Steven M.; Dravid, Vinayak P.

    2017-01-01

    We report the development of an ultrasound bioprobe for in vitro molecular imaging. In this method, the phase of the scattered ultrasound wave is mapped to provide in vitro and intracellular imaging with nanometer-scale resolution under physiological conditions. We demonstrated the technique by successfully imaging a magnetic core in silica core shells and the stiffness image of intracellular fibers in endothelial cells that were stimulated with thrombin. The findings demonstrate a significant advancement in high-resolution ultrasound imaging of biological systems with acoustics under physiological conditions. These will open up various applications in biomedical and molecular imaging with subsurface resolution down to the nanometer scale. PMID:29075667

  6. Ultrasound enhances retrovirus-mediated gene transfer.

    PubMed

    Naka, Toshio; Sakoda, Tsuyoshi; Doi, Takashi; Tsujino, Takeshi; Masuyama, Tohru; Kawashima, Seinosuke; Iwasaki, Tadaaki; Ohyanagi, Mitsumasa

    2007-01-01

    Viral vector systems are efficient for transfection of foreign genes into many tissues. Especially, retrovirus based vectors integrate the transgene into the genome of the target cells, which can sustain long term expression. However, it has been demonstrated that the transduction efficiency using retrovirus is relatively lower than those of other viruses. Ultrasound was recently reported to increase gene expression using plasmid DNA, with or without, a delivery vehicle. However, there are no reports, which show an ultrasound effect to retrovirus-mediated gene transfer efficiency. Retrovirus-mediated gene transfer systems were used for transfection of 293T cells, bovine aortic endothelial cells (BAECs), rat aortic smooth muscle cells (RASMCs), and rat skeletal muscle myoblasts (L6 cells) with beta-galactosidase (beta-Gal) genes. Transduction efficiency and cell viability assay were performed on 293T cells that were exposed to varying durations (5 to 30 seconds) and power levels (1.0 watts/cm(2) to 4.0 watts/cm(2)) of ultrasound after being transduced by a retrovirus. Effects of ultrasound to the retrovirus itself was evaluated by transduction efficiency of 293T cells. After exposure to varying power levels of ultrasound to a retrovirus for 5 seconds, 293T cells were transduced by a retrovirus, and transduction efficiency was evaluated. Below 1.0 watts/cm(2) and 5 seconds exposure, ultrasound showed increased transduction efficiency and no cytotoxicity to 293T cells transduced by a retrovirus. Also, ultrasound showed no toxicity to the virus itself at the same condition. Exposure of 5 seconds at the power of 1.0 watts/cm(2) of an ultrasound resulted in significant increases in retrovirus-mediated gene expression in all four cell types tested in this experiment. Transduction efficiencies by ultrasound were enhanced 6.6-fold, 4.8-fold, 2.3-fold, and 3.2-fold in 293T cells, BAECs, RASMCs, and L6 cells, respectively. Furthermore, beta-Gal activities were also increased

  7. Intrauterine photoacoustic and ultrasound imaging probe

    NASA Astrophysics Data System (ADS)

    Miranda, Christopher; Barkley, Joel; Smith, Barbara S.

    2018-04-01

    Intrauterine photoacoustic and ultrasound imaging are probe-based imaging modalities with translational potential for use in detecting endometrial diseases. This deep-tissue imaging probe design allows for the retrofitting of commercially available endometrial sampling curettes. The imaging probe presented here has a 2.92-mm diameter and approximate length of 26 cm, which allows for entry into the human endometrial cavity, making it possible to use photoacoustic imaging and high-resolution ultrasound to characterize the uterus. We demonstrate the imaging probes' ability to provide structural information of an excised pig uterus using ultrasound imaging and detect photoacoustic signals at a radial depth of 1 cm.

  8. MR-guided focused ultrasound robot for performing experiments on large animals

    NASA Astrophysics Data System (ADS)

    Mylonas, N.; Damianou, C.

    2011-09-01

    Introduction: In this paper an experimental MRI-guided focused ultrasound robot for large animals is presented. Materials and methods: A single element spherically focused transducer of 4 cm diameter, focusing at 10 cm and operating at 1 MHz was used. A positioning device was developed in order to scan the ultrasound transducer for performing MR-guided focused ultrasound experiments in large animals such as pig, sheep and dog. The positioning device incorporates only MRI compatible materials such as piezoelectric motors, Acrylonitrile Butadiene Styrene (ABS) plastic, brass screws, and brass pulleys. The system is manufactured automatically using a rapid prototyping system. Results: The system was tested successfully in a number of animals for various tasks (creation of single lesions, creation of overlapping lesions, and MR compatibility). Conclusions: A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be sited on the scanner's table. The propagation of HIFU can be via a lateral or superior-inferior approach. This system has the potential to be marketed as a cost effective solution for performing experiments in small and large animals.

  9. Fiber-Optic Ultrasound Sensors for Smart Structures Applications

    DTIC Science & Technology

    2000-01-25

    Introduction 1 1.1 Objectives 1 1.2 Relevance to Air Force 1 1.3 Fiber Optics Ultrasound Sensors 2 2. Research Accomplishments 2 2.1 Fabry - Perot ...fiber-optic ultrasound receivers: - Fabry - Perot (FOFP) sensors, - Sagnac Ultrasound Sensor (SUS), and - Bragg-Grating Ultrasound (BGU) sensors. We...ultrasound receivers with excellent normal-incidence response can be configured as local ( Fabry - Perot ) or non-local (Sagnac) sensors. The Sagnac

  10. Ultrasound mediated transdermal drug delivery.

    PubMed

    Azagury, Aharon; Khoury, Luai; Enden, Giora; Kost, Joseph

    2014-06-01

    Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injections. However, the stratum corneum serves as a barrier that limits the penetration of substances to the skin. Application of ultrasound (US) irradiation to the skin increases its permeability (sonophoresis) and enables the delivery of various substances into and through the skin. This review presents the main findings in the field of sonophoresis in transdermal drug delivery as well as transdermal monitoring and the mathematical models associated with this field. Particular attention is paid to the proposed enhancement mechanisms and future trends in the fields of cutaneous vaccination and gene therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Bubbles Responding to Ultrasound Pressure

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Bubble and Drop Nonlinear Dynamics (BDND) experiment was designed to improve understanding of how the shape and behavior of bubbles respond to ultrasound pressure. By understanding this behavior, it may be possible to counteract complications bubbles cause during materials processing on the ground. This 12-second sequence came from video downlinked from STS-94, July 5 1997, MET:3/19:15 (approximate). The BDND guest investigator was Gary Leal of the University of California, Santa Barbara. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced fluid dynamics experiments will be a part of investigations plarned for the International Space Station. (435KB, 13-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300162.html.

  12. Doppler ultrasound evaluation in preeclampsia

    PubMed Central

    2013-01-01

    Background Worldwide preeclampsia (PE) is the leading cause of maternal death and affects 5 to 8% of pregnant women. PE is characterized by elevated blood pressure and proteinuria. Doppler Ultrasound (US) evaluation has been considered a useful method for prediction of PE; however, there is no complete data about the most frequently altered US parameters in the pathology. The aim of this study was to evaluate the uterine, umbilical, and the middle cerebral arteries using Doppler US parameters [resistance index (RI), pulsatility index (PI), notch (N), systolic peak (SP) and their combinations] in pregnant women, in order to make a global evaluation of hemodynamic repercussion caused by the established PE. Results A total of 102 pregnant Mexican women (65 PE women and 37 normotensive women) were recruited in a cases and controls study. Blood velocity waveforms from uterine, umbilical, and middle cerebral arteries, in pregnancies from 24 to 37 weeks of gestation were recorded by trans-abdominal examination with a Toshiba Ultrasound Power Vision 6000 SSA-370A, with a 3.5 MHz convex transducer. Abnormal general Doppler US profile showed a positive association with PE [odds ratio (OR) = 2.93, 95% confidence interval (CI) = 1.2 - 7.3, P = 0.021)], and a specificity and predictive positive value of 89.2% and 88.6%, respectively. Other parameters like N presence, RI and PI of umbilical artery, as well as the PI of middle cerebral artery, showed differences between groups (P values < 0.05). Conclusion General Doppler US result, as well as N from uterine vessel, RI from umbilical artery, and PI from umbilical and middle cerebral arteries in their individual form, may be considered as tools to determine hemodynamic repercussion caused by PE. PMID:24252303

  13. Ultrasound-guided high-intensity focused ultrasound ablation for treating uterine arteriovenous malformation.

    PubMed

    Yan, X; Zhao, C; Tian, C; Wen, S; He, X; Zhou, Y

    2017-08-01

    To explore HIFU treatment for uterine arteriovenous malformation. A case report. Gynaecological department in a university teaching hospital of China. A patient with uterine arteriovenous malformation. The diagnosis of uterine arteriovenous malformation was made through MRI. Ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation was performed. HIFU is effective in treating uterine arteriovenous malformation. The patient had reduction of the lesion volume and obvious symptom relief, without significant adverse effects. HIFU can be used as a new treatment option for uterine arteriovenous malformation. Ultrasound-guided high-intensity focused ultrasound ablation is effective in treating uterine arteriovenous malformation. © 2017 Royal College of Obstetricians and Gynaecologists.

  14. Ultrasound to video registration using a bi-plane transrectal probe with photoacoustic markers

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Kang, Hyun Jae; Zhang, Haichong K.; Taylor, Russell H.; Boctor, Emad M.

    2016-03-01

    Modern surgical scenarios typically provide surgeons with additional information through fusion of video and other imaging modalities. To provide this information, the tools and devices used in surgery must be registered together with interventional guidance equipment and surgical navigation systems. In this work, we focus explicitly on registering ultrasound with a stereo camera system using photoacoustic markers. Previous work has shown that photoacoustic markers can be used in this registration task to achieve target registration errors lower than the current available systems. Photoacoustic markers are defined as a set of non-collinear laser spots projected onto some surface. They can be simultaneously visualized by a stereo camera system and an ultrasound transducer because of the photoacoustic effect. In more recent work, the three-dimensional ultrasound volume was replaced by images from a single ultrasound image pose from a convex array transducer. The feasibility of this approach was demonstrated, but the accuracy was lacking due to the physical limitations of the convex array transducer. In this work, we propose the use of a bi-plane transrectal ultrasound transducer. The main advantage of using this type of transducer is that the ultrasound elements are no longer restricted to a single plane. While this development would be limited to prostate applications, liver and kidney applications are also feasible if a suitable transducer is built. This work is demonstrated in two experiments, one without photoacoustic sources and one with. The resulting target registration error for these experiments were 1.07mm±0.35mm and 1.27mm+/-0.47mm respectively, both of which are better than current available navigation systems.

  15. Disruption of Prostate Microvasculature by Combining Microbubble-Enhanced Ultrasound and Prothrombin

    PubMed Central

    Liu, Yongliang; Qiao, Lu; Gao, Wenhong; Zhang, Weiguo; Liu, Zheng

    2016-01-01

    Previous studies have shown a unique method to disrupt tumor vasculature using pulsed, high-pressure amplitude therapeutic ultrasound combined with microbubbles. In this study, we attempted to destroy the prostate vasculature of canine prostates using microbubble-enhanced ultrasound (MEUS) and prothrombin. The prostates of 43 male mongrel canines were surgically exposed. Twenty-two prostates were treated using MEUS (n = 11) or MEUS and prothrombin (PMEUS, n = 11). The other 21 prostates, which were treated using microbubbles (n = 7), ultrasound (n = 7) or prothrombin (n = 7) only, served as the controls. Prothrombin was intravenously infused at 20 IU/kg. MEUS was induced using a therapeutic ultrasound device at a peak negative pressure of 4.47 MPa and a microbubble injection. Contrast-enhanced ultrasound was performed to assess the blood perfusion of the prostates. Then, the prostate tissue was harvested immediately after treatment and at 48 hours later for pathological examination. The contrast-enhanced ultrasound peak value of the prostate decreased significantly from 36.2 ± 5.6 to 27.1 ± 6.3 after treatment in the PMEUS group, but it remained unchanged in the other groups. Histological examination found severe microvascular rupture, hemorrhage and thrombosis in both MEUS- and PMEUS-treated prostates immediately after treatment, while disruption in the PMEUS group was more severe than in the MEUS group. Forty-eight hours after treatment, massive necrosis and infiltration of white blood cells occurred in the PMEUS group. This study demonstrated that PMEUS disrupted the normal microvasculature of canine prostates and induced massive necrosis. PMEUS could potentially become a new noninvasive method used for the treatment of benign prostatic hyperplasia. PMID:27643992

  16. Evaluation of Human Research Facility Ultrasound With the ISS Video System

    NASA Technical Reports Server (NTRS)

    Melton, Shannon; Sargsyan, Ashot

    2003-01-01

    Most medical equipment on the International Space Station (ISS) is manifested as part of the U.S. or the Russian medical hardware systems. However, certain medical hardware is also available as part of the Human Research Facility. The HRF and the JSC Medical Operations Branch established a Memorandum of Agreement for joint use of certain medical hardware, including the HRF ultrasound system, the only diagnostic imaging device currently manifested to fly on ISS. The outcome of a medical contingency may be changed drastically, or an unnecessary evacuation may be prevented, if clinical decisions are supported by timely and objective diagnostic information. In many higher-probability medical scenarios, diagnostic ultrasound is a first-choice modality or provides significant diagnostic information. Accordingly, the Clinical Care Capability Development Project is evaluating the HRF ultrasound system for its utility in relevant clinical situations on board ISS. For effective management of these ultrasound-supported ISS medical scenarios, the resulting data should be available for viewing and interpretation on the ground, and bidirectional voice communication should be readily available to allow ground experts (sonographers, physicians) to provide guidance to the Crew Medical Officer. It may also be vitally important to have the capability of real-time guidance via video uplink to the CMO-operator during an exam to facilitate the diagnosis in a timely fashion. In this document, we strove to verify that the HRF ultrasound video output is compatible with the ISS video system, identify ISS video system field rates and resolutions that are acceptable for varying clinical scenaiios, and evaluate the HRF ultrasound video with a commercial, off-the-shelf video converter, and compare it with the ISS video system.

  17. Use of Ultrasound Elastography in the Assessment of the Musculoskeletal System.

    PubMed

    Paluch, Łukasz; Nawrocka-Laskus, Ewa; Wieczorek, Janusz; Mruk, Bartosz; Frel, Małgorzata; Walecki, Jerzy

    2016-01-01

    This article presents possible applications of ultrasound elastography in musculoskeletal imaging based on the available literature, as well as the possibility of extending indications for the use of elastography in the future. Ultrasound elastography (EUS) is a new method that shows structural changes in tissues following application of physical stress. Elastography techniques have been widely used to assess muscles and tendons in vitro since the early parts of the twentieth century. Only recently with the advent of new technology and creation of highly specialized ultrasound devices, has elastography gained widespread use in numerous applications. The authors performed a search of the Medline/PubMed databases for original research and reviewed publications on the application of ultrasound elastography for musculoskeletal imaging. All publications demonstrate possible uses of ultrasound elastography in examinations of the musculoskeletal system. The most widely studied areas include the muscles, tendons and rheumatic diseases. There are also reports on the employment in vessel imaging. The main limitation of elastography as a technique is above all the variability of applied pressure during imaging, which is operator-dependent. It would therefore be reasonable to provide clear guidelines on the technique applied, as well as clear indications for performing the test. It is important to develop methods for creating artifact-free, closed-loop, compression-decompression cycles. The main advantages include cost-effectiveness, short duration of the study, non-invasive nature of the procedure, as well as a potentially broader clinical availability. There are no clear guidelines with regard to indications as well as examination techniques. Ultrasound elastography is a new and still poorly researched method. We conclude, however, that it can be widely used in the examinations of musculoskeletal system. Therefore, it is necessary to conduct large, multi-center studies to

  18. 20 kHz ultrasound assisted treatment of chronic wounds with concurrent optic monitoring

    NASA Astrophysics Data System (ADS)

    Bawiec, Christopher R.; Sunny, Youhan; Diaz, David; Nadkarni, Sumati; Weingarten, Michael S.; Neidrauer, Michael; Margolis, David J.; Zubkov, Leonid; Lewin, Peter A.

    2015-05-01

    This paper describes a novel, wearable, battery powered ultrasound applicator that was evaluated as a therapeutic tool for healing of chronic wounds, such as venous ulcers. The low frequency and low intensity (~100mW/cm2) applicator works by generating ultrasound waves with peak-to-peak pressure amplitudes of 55 kPa at 20 kHz. The device was used in a pilot human study (n=25) concurrently with remote optical (diffuse correlation spectroscopy - DCS) monitoring to assess the healing outcome. More specifically, the ulcers' healing status was determined by measuring tissue oxygenation and blood flow in the capillary network. This procedure facilitated an early prognosis of the treatment outcome and - once verified - may eventually enable customization of wound management. The outcome of the study shows that the healing patients of the ultrasound treated group had a statistically improved (p<0.05) average rate of wound healing (20.6%/week) compared to the control group (5.3%/week). In addition, the calculated blood flow index (BFI) decreased more rapidly in wounds that decreased in size, indicating a correlation between BFI and wound healing prediction. Overall, the results presented support the notion that active low frequency ultrasound treatment of chronic venous ulcers accelerates healing when combined with the current standard clinical care. The ultrasound applicator described here provides a user-friendly, fully wearable system that has the potential for becoming the first device suitable for treatment of chronic wounds in patient's homes, which - in turn - would increase patients' compliance and improve quality of life.

  19. Abdominal aortic aneurysm screening program using hand-held ultrasound in primary healthcare

    PubMed Central

    Kostov, Belchin; Navarro González, Marta; Cararach Salami, Daniel; Pérez Jiménez, Alfonso; Gilabert Solé, Rosa; Bru Saumell, Concepció; Donoso Bach, Lluís; Villalta Martí, Mireia; González-de Paz, Luis; Ruiz Riera, Rafael; Riambau Alonso, Vicenç; Acar-Denizli, Nihan; Farré Almacellas, Marta; Ramos-Casals, Manuel; Benavent Àreu, Jaume

    2017-01-01

    We determined the feasibility of abdominal aortic aneurysm (AAA) screening program led by family physicians in public primary healthcare setting using hand-held ultrasound device. The potential study population was 11,214 men aged ≥ 60 years attended by three urban, public primary healthcare centers. Participants were recruited by randomly-selected telephone calls. Ultrasound examinations were performed by four trained family physicians with a hand-held ultrasound device (Vscan®). AAA observed were verified by confirmatory imaging using standard ultrasound or computed tomography. Cardiovascular risk factors were determined. The prevalence of AAA was computed as the sum of previously-known aneurysms, aneurysms detected by the screening program and model-based estimated undiagnosed aneurysms. We screened 1,010 men, with mean age of 71.3 (SD 6.9) years; 995 (98.5%) men had normal aortas and 15 (1.5%) had AAA on Vscan®. Eleven out of 14 AAA-cases (78.6%) had AAA on confirmatory imaging (one patient died). The total prevalence of AAA was 2.49% (95%CI 2.20 to 2.78). The median aortic diameter at diagnosis was 3.5 cm in screened patients and 4.7 cm (p<0.001) in patients in whom AAA was diagnosed incidentally. Multivariate logistic regression analysis identified coronary heart disease (OR = 4.6, 95%CI 1.3 to 15.9) as the independent factor with the highest odds ratio. A screening program led by trained family physicians using hand-held ultrasound was a feasible, safe and reliable tool for the early detection of AAA. PMID:28453577

  20. Interstitial ultrasound ablation of vertebral and paraspinal tumours: Parametric and patient-specific simulations

    PubMed Central

    Scott, Serena J.; Salgaonkar, Vasant; Prakash, Punit; Burdette, E. Clif; Diederich, Chris J.

    2015-01-01

    Purpose Theoretical parametric and patient-specific models are applied to assess the feasibility of interstitial ultrasound ablation of tumours in and near the spine and to identify potential treatment delivery strategies. Methods 3D patient-specific finite element models (n=11) of interstitial ultrasound ablation of tumours associated with spine were generated. Gaseous nerve insulation and various applicator configurations, frequencies (3 and 7 MHz), placement trajectories, and tumour locations were simulated. Parametric studies with multilayered models investigated the impacts of tumour attenuation, tumour dimension, and the thickness of bone insulating critical structures. Temperature and thermal dose were calculated to define ablation (>240 equivalent minutes at 43°C (EM43°C)) and safety margins (<45°C & <6 EM43°C), and to determine performance and required delivery parameters. Results Osteolytic tumours (≤44 mm) encapsulated by bone could be successfully ablated with 7 MHz interstitial ultrasound (8.1-16.6 W/cm2, 120-5900 J, 0.4-15 min). Ablation of tumours (94.6-100% volumetric) 0-14.5 mm from the spinal canal was achieved within 3-15 min without damaging critical nerves. 3 MHz devices provided faster ablation (390 versus 930 s) of an 18 mm diameter osteoblastic (high bone content) volume than 7 MHz devices. Critical anatomy in proximity to the tumour could be protected by selection of appropriate applicator configurations, active sectors, and applied power schemas, and through gaseous insulation. Preferential ultrasound absorption at bone surfaces facilitated faster, more effective ablations in osteolytic tumours and provided isolation of ablative energies and temperatures. Conclusions Parametric and patient-specific studies demonstrated the feasibility and potential advantages of interstitial ultrasound ablation treatment of paraspinal and osteolytic vertebral tumours. PMID:25017322

  1. Ultrasound Velocity Measurement in a Liquid Metal Electrode

    PubMed Central

    Perez, Adalberto; Kelley, Douglas H.

    2015-01-01

    A growing number of electrochemical technologies depend on fluid flow, and often that fluid is opaque. Measuring the flow of an opaque fluid is inherently more difficult than measuring the flow of a transparent fluid, since optical methods are not applicable. Ultrasound can be used to measure the velocity of an opaque fluid, not only at isolated points, but at hundreds or thousands of points arrayed along lines, with good temporal resolution. When applied to a liquid metal electrode, ultrasound velocimetry involves additional challenges: high temperature, chemical activity, and electrical conductivity. Here we describe the experimental apparatus and methods that overcome these challenges and allow the measurement of flow in a liquid metal electrode, as it conducts current, at operating temperature. Temperature is regulated within ±2 °C using a Proportional-Integral-Derivative (PID) controller that powers a custom-built furnace. Chemical activity is managed by choosing vessel materials carefully and enclosing the experimental setup in an argon-filled glovebox. Finally, unintended electrical paths are carefully prevented. An automated system logs control settings and experimental measurements, using hardware trigger signals to synchronize devices. This apparatus and these methods can produce measurements that are impossible with other techniques, and allow optimization and control of electrochemical technologies like liquid metal batteries. PMID:26273726

  2. Partial Discharge Ultrasound Detection Using the Sagnac Interferometer System

    PubMed Central

    Li, Xiaomin; Gao, Yan; Zhang, Hongjuan; Wang, Dong; Jin, Baoquan

    2018-01-01

    Partial discharge detection is crucial for electrical cable safety evaluation. The ultrasonic signals frequently generated in the partial discharge process contains important characteristic information. However, traditional ultrasonic transducers are easily subject to strong electromagnetic interference in environments with high voltages and strong magnetic fields. In order to overcome this problem, an optical fiber Sagnac interferometer system is proposed for partial discharge ultrasound detection. Optical fiber sensing and time-frequency analysis of the ultrasonic signals excited by the piezoelectric ultrasonic transducer is realized for the first time. The effective frequency band of the Sagnac interferometer system was up to 175 kHz with the help of a designed 10 kV partial discharge simulator device. Using the cumulative histogram method, the characteristic ultrasonic frequency band of the partial discharges was between 28.9 kHz and 57.6 kHz for this optical fiber partial discharge detection system. This new ultrasound sensor can be used as an ideal ultrasonic source for the intrinsically safe detection of partial discharges in an explosive environment. PMID:29734682

  3. Ultrasound power deposition model for the chest wall.

    PubMed

    Moros, E G; Fan, X; Straube, W L

    1999-10-01

    An ultrasound power deposition model for the chest wall was developed based on secondary-source and plane-wave theories. The anatomic model consisted of a muscle-ribs-lung volume, accounted for wave reflection and refraction at muscle-rib and muscle-lung interfaces, and computed power deposition due to the propagation of both reflected and transmitted waves. Lung tissue was assumed to be air-equivalent. The parts of the theory and numerical program dealing with reflection were experimentally evaluated by comparing simulations with acoustic field measurements using several pertinent reflecting materials. Satisfactory agreement was found. A series of simulations were performed to study the influence of angle of incidence of the beam, frequency, and thickness of muscle tissue overlying the ribs on power deposition distributions that may be expected during superficial ultrasound (US) hyperthermia of chest wall recurrences. Both reflection at major interfaces and attenuation in bone were the determining factors affecting power deposition, the dominance of one vs. the other depending on the angle of incidence of the beam. Sufficient energy is reflected by these interfaces to suggest that improvements in thermal doses to overlying tissues are possible with adequate manipulation of the sound field (advances in ultrasonic heating devices) and prospective treatment planning.

  4. Ocular Health (OH) Ultrasound 2 Scan

    NASA Image and Video Library

    2013-06-06

    Astronaut Karen Nyberg,Expedition 37 flight engineer, assisted by astronaut Chris Cassidy, performs an Ocular Health (OH) Ultrasound 2 scan in the Destiny laboratory of the International Space Station.

  5. Whole breast tissue characterization with ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Duric, Neb; Littrup, Peter; Li, Cuiping; Roy, Olivier; Schmidt, Steve; Seamans, John; Wallen, Andrea; Bey-Knight, Lisa

    2015-03-01

    A number of clinical trials have shown that screening ultrasound, supplemental to mammography, detects additional cancers in women with dense breasts. However, labor intensity, operator dependence and high recall rates have limited adoption. This paper describes the use of ultrasound tomography for whole-breast tissue stiffness measurements as a first step toward addressing the issue of high recall rates. The validation of the technique using an anthropomorphic phantom is described. In-vivo applications are demonstrated on 13 breast masses, indicating that lesion stiffness correlates with lesion type as expected. Comparison of lesion stiffness measurements with standard elastography was available for 11 masses and showed a strong correlation between the 2 measures. It is concluded that ultrasound tomography can map out the 3 dimensional distribution of tissue stiffness over the whole breast. Such a capability is well suited for screening where additional characterization may improve the specificity of screening ultrasound, thereby lowering barriers to acceptance.

  6. Ultrasound elastography: principles, techniques, and clinical applications.

    PubMed

    Dewall, Ryan J

    2013-01-01

    Ultrasound elastography is an emerging set of imaging modalities used to image tissue elasticity and are often referred to as virtual palpation. These techniques have proven effective in detecting and assessing many different pathologies, because tissue mechanical changes often correlate with tissue pathological changes. This article reviews the principles of ultrasound elastography, many of the ultrasound-based techniques, and popular clinical applications. Originally, elastography was a technique that imaged tissue strain by comparing pre- and postcompression ultrasound images. However, new techniques have been developed that use different excitation methods such as external vibration or acoustic radiation force. Some techniques track transient phenomena such as shear waves to quantitatively measure tissue elasticity. Clinical use of elastography is increasing, with applications including lesion detection and classification, fibrosis staging, treatment monitoring, vascular imaging, and musculoskeletal applications.

  7. Clinical diagnosis by transcutaneous Doppler ultrasound

    PubMed Central

    Wyse, R. K. H.

    1982-01-01

    Transcutaneous Doppler ultrasound represents a convenient, reliable technique for the non-invasive diagnosis and assessment of a rapidly increasing number of diverse circulatory disorders. ImagesFig. 2Fig. 3 PMID:7050948

  8. Ultrasound- and MRI-Guided Prostate Biopsy

    MedlinePlus

    ... which the MR images are fused with the real-time ultrasound images — an approach known as MRI/TRUS ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...

  9. Right Upper Quadrant Pain: Ultrasound First!

    PubMed

    Revzin, Margarita V; Scoutt, Leslie M; Garner, Joseph G; Moore, Christopher L

    2017-10-01

    Acute right upper quadrant (RUQ) pain is a common presenting symptom in emergency departments and outpatient medical practices, and is most commonly attributable to biliary and hepatic pathology. Ultrasound should be used as a first-line imaging modality for the diagnosis of gallstones and cholecystitis, as it allows the differentiation of medical and surgical causes of upper abdominal pathology, and in many circumstances is sufficient to guide patient management. Knowledge of strengths and limitations of ultrasound in the evaluation of RUQ is paramount in correct diagnosis. A spectrum of RUQ pathology for which a RUQ ultrasound examination should reasonably be considered as the initial imaging modality of choice will be reviewed. © 2017 by the American Institute of Ultrasound in Medicine.

  10. Ultrasound - Aided ejection in micro injection molding

    NASA Astrophysics Data System (ADS)

    Masato, D.; Sorgato, M.; Lucchetta, G.

    2018-05-01

    In this work, an ultrasound-aided ejection system was designed and tested for different polymers (PS, COC and POM) and mold topographies. The proposed solution aims at reducing the ejection friction by decreasing the adhesion component of the frictional force, which is controlled by the contact area developed during the filling stage of the injection molding process. The experimental results indicate a positive effect of ultrasound vibration on the friction force values, with a maximum reduction of 16. Moreover, it is demonstrated that the ultrasound effect is strictly related to both polymer selection and mold roughness. The combined effect on the ejection force of mold surface roughness, melt viscosity during filling and polymer elastic modulus at ejection was modeled to the experimental data, in order to demonstrate that the effect of ultrasound vibration on the ejection friction reduction is due to the heating of the contact interface and the consequent reduction of the polymer elastic modulus.

  11. Ultrasound for fetal assessment in early pregnancy

    PubMed Central

    Whitworth, Melissa; Bricker, Leanne; Neilson, James P; Dowswell, Therese

    2014-01-01

    Background Diagnostic ultrasound is a sophisticated electronic technology, which utilises pulses of high frequency sound to produce an image. Diagnostic ultrasound examination may be employed in a variety of specific circumstances during pregnancy such as after clinical complications, or where there are concerns about fetal growth. Because adverse outcomes may also occur in pregnancies without clear risk factors, assumptions have been made that routine ultrasound in all pregnancies will prove beneficial by enabling earlier detection and improved management of pregnancy complications. Routine screening may be planned for early pregnancy, late gestation, or both. The focus of this review is routine early pregnancy ultrasound. Objectives To assess whether routine early pregnancy ultrasound for fetal assessment (i.e. its use as a screening technique) influences the diagnosis of fetal malformations, multiple pregnancies, the rate of clinical interventions, and the incidence of adverse fetal outcome when compared with the selective use of early pregnancy ultrasound (for specific indications). Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (September 2009). Selection criteria Published, unpublished, and ongoing randomised controlled trials that compared outcomes in women who experienced routine versus selective early pregnancy ultrasound (i.e. less than 24 weeks’ gestation). We have included quasi-randomised trials. Data collection and analysis Two review authors independently extracted data for each included study. We used the Review Manager software to enter and analyse data. Main results Routine/revealed ultrasound versus selective ultrasound/concealed: 11 trials including 37505 women. Ultrasound for fetal assessment in early pregnancy reduces the failure to detect multiple pregnancy by 24 weeks’ gestation (risk ratio (RR) 0.07, 95% confidence interval (CI) 0.03 to 0.17). Routine scan is associated with a reduction in

  12. Carbon nanomaterials as broadband airborne ultrasound transducer

    NASA Astrophysics Data System (ADS)

    Daschewski, M.; Harrer, A.; Prager, J.; Kreutzbruck, M.; Guderian, M.; Meyer-Plath, A.

    2012-05-01

    A method has been developed for the generation of airborne ultrasound using the thermoacoustic principle applied to carbon materials at the micro- and nanoscale. Such materials are shown to be capable to emitting the ultrasound. We tested the acoustic performance of electrospun polyacrylonitrile-derived carbon nanofibers tissues and determined the sound pressure for frequencies up to 350 kHz. The experimental results are compared to analytic calculations.

  13. Ultrasound-guided drug delivery in cancer

    PubMed Central

    2017-01-01

    Recent advancements in ultrasound and microbubble (USMB) mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy. PMID:28607323

  14. Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging

    PubMed Central

    Qiu, Yongqiang; Gigliotti, James V.; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E. M.; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-01-01

    Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed. PMID:25855038

  15. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging.

    PubMed

    Qiu, Yongqiang; Gigliotti, James V; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E M; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-04-03

    Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed.

  16. Multifunctional Catheters Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    PubMed Central

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Nikoozadeh, Amin; Oralkan, Omer; Khuri-Yakub, Pierre T.; Sahn, David J.

    2015-01-01

    A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. Both of these catheters operate on a commercial imaging system with standard software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for electrocardiographic synchronization of ultrasound images and used for unique integration with EP mapping technologies. To help establish the catheters’ ability for integration with EP interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools. PMID:18986948

  17. Multifunctional catheters combining intracardiac ultrasound imaging and electrophysiology sensing.

    PubMed

    Stephens, D N; Cannata, J; Liu, Ruibin; Zhao, Jian Zhong; Shung, K K; Nguyen, Hien; Chia, R; Dentinger, A; Wildes, D; Thomenius, K E; Mahajan, A; Shivkumar, K; Kim, Kang; O'Donnell, M; Nikoozadeh, A; Oralkan, O; Khuri-Yakub, P T; Sahn, D J

    2008-07-01

    A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. Both of these catheters operate on a commercial imaging system with standard software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for electrocardiographic synchronization of ultrasound images and used for unique integration with EP mapping technologies. To help establish the catheters' ability for integration with EP interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools.

  18. Treatment of glaucoma with high intensity focused ultrasound.

    PubMed

    Aptel, Florent; Lafon, Cyril

    2015-05-01

    Glaucoma is a common disease mainly due to an increase in pressure inside the eye, leading to a progressive destruction of the optic nerve, potentially to blindness. Intraocular pressure (IOP) is the result of a balance between production of liquid that fills the eye--aqueous humour--and its resorption. All treatments for glaucoma aim to reduce IOP and can therefore have two mechanisms of action: reducing aqueous humour production by the partial destruction or medical inhibition of the ciliary body--the anatomical structure responsible for production of aqueous humour--or facilitating the evacuation of aqueous humour from the eye. Several physical methods can be used to destroy the ciliary body, e.g. laser, cryotherapy, microwave. All these methods have two major drawbacks: they are non-selective for the organ to be treated and they have an unpredictable dose–effect relationship. High intensity focused ultrasound (HIFU) can be used to coagulate the ciliary body and avoid these drawbacks. A commercially available device was marketed in the 1980s, but later abandoned, essentially for technical reasons. A smaller circular device using miniaturised transducers was recently developed and proposed for clinical practice. Experimental studies have shown selective coagulation necrosis of the treated ciliary body. The first three clinical trials in humans have shown that this device was well tolerated and allowed a significant, predictable and sustained reduction of IOP. The aim of this contribution is to present a summary of the work concerning the use of HIFU to treat glaucoma.

  19. Measurement of tissue viscoelasticity with ultrasound

    NASA Astrophysics Data System (ADS)

    Greenleaf, J. F.; Alizad, A.

    2017-02-01

    Tissue properties such as elasticity and viscosity have been shown to be related to such tissue conditions as contraction, edema, fibrosis, and fat content among others. Magnetic Resonance Elastography has shown outstanding ability to measure the elasticity and in some cases the viscosity of tissues, especially in the liver, providing the ability to stage fibrotic liver disease similarly to biopsy. We discuss ultrasound methods of measuring elasticity and viscosity in tissues. Many of these methods are becoming widely available in the extant ultrasound machines distributed throughout the world. Some of the methods to be discussed are in the developmental stage. The advantages of the ultrasound methods are that the imaging instruments are widely available and that many of the viscoelastic measurements can be made during a short addition to the normal ultrasound examination time. In addition, the measurements can be made by ultrasound repetitively and quickly allowing evaluation of dynamic physiologic function in circumstances such as muscle contraction or artery relaxation. Measurement of viscoelastic tissue mechanical properties will become a consistent part of clinical ultrasound examinations in our opinion.

  20. Ultrasound-guided peripheral nerve blockade.

    PubMed

    Chin, Ki Jinn; Chan, Vincent

    2008-10-01

    The use of ultrasound for peripheral nerve blockade is becoming popular. Although the feasibility of ultrasound-guided nerve blockade is now clear, it is uncertain at this time whether it represents the new standard for regional anesthesia in terms of efficacy and safety. The ability to visualize nerve location, needle advancement, needle-nerve interaction, and local anesthetic spread makes ultrasound-guided nerve block an attractive option. Study results indicate that these advantages can improve the ease of block performance, block success rates, and complications. At the same time there is evidence that ultrasound-guided regional anesthesia is a unique skill in its own right, and that proficiency in it requires training and experience. Ultrasound is a valuable tool that is now available to the regional anesthesiologist, and it is fast becoming a standard part of practice. It promises to be of especial value to the less experienced practitioner. Ultrasound does not in itself, however, guarantee the efficacy and safety of peripheral nerve blockade. Proper training in its use is required and we can expect to see the development of formal standards and guidelines in this regard.